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Abstract

Dualities play a very important role in connecting different theoretical physics models to each
other. In the framework of string theory, dualities build links between 5 types of strings, highlighting
the unified origin reflected by M-theory. In this thesis we discuss how to define and utilise a special
type of dualities - generalised dualities. These are an extended notion of dualities that applies to a
broader variety of dual spaces with no background isometries. We study new types of generalised
U-dualities, and use these to construct and analyse new dual solutions in M-theory.

In chapter 1 we start with reviewing different types of dualities in string and M theory, revisiting
main algebraic and physics aspects of dualities and their mechanisms. We also go through a brief
overview of string theory, defining different types of strings and their main characteristics, and
presenting the dimensional reduction mechanism that we utilise later in generating dual solutions.

Chapter 2 is dedicated to exploring geometries with Exceptional Drinfeld Algebra (EDA) struc-
ture applied to studying the generalised U-duality - a special type of dualities in M theory. We
have also provided classification of different "three-algebra geometries" that represents a specially
chosen case of EDA, and studied in more depth examples that resulted in novel uplifts for special
gaugings of seven dimensional maximal supergravity.

In chapter 3 we discuss the notion of generalised U-duality as a solution generating technique
in supergravity. Using the exceptional geometry technique, we demonstrate how to generate a new
solution in 11-dimensional supergravity starting with type ITA supergravity. We further analyse the
features of newly generated solution and explore its AdS limit and charges. We end the chapter by
solving the Killing spinor equation in the extremal AdS limit case, and finding a %—BPS solution.
This provides us with new interesting insights about the nature of U-dual solutions.

In chapter 4 we continue the investigation of the same solution generating technique using
exceptional geometry, expanding our analysis to initial solutions with more complicated geometrical
structure, generalising the results obtained in the previous chapter. The newly generated solutions
are now described by an underlying 6-algebra structure, generalising the 3-algebra structure in the
previous case. Using exceptional geometry techniques we provide an 11-dimensional uplift of the
4-dimensional gauged supergravity. Similarly to the examples generated in the previous chapter,
we construct a new %—BPS solution and elaborate on the properties of the new dual solution.

We conclude in chapter 5 with some final thoughts, summarising the results of previous chap-
ters and highlighting the contribution of the work we presented in understanding the nature of
generalised dualities in physics and how they serve as solution generating techniques, expanding our
understanding of connections in M-theory and supergravity. We indicate a few further directions

that could be interesting for further investigation.



Abstract

Dualiteiten spelen een zeer belangrijke rol in het verbinden van verschillende theoretisch
natuurkundige modellen met elkaar. In het kader van de snaartheorie leggen dualiteiten verbanden
tussen 5 soorten snaren en benadrukken ze de verenigde oorsprong die wordt weerspiegeld door
M-theorie. In de context van dit werk bespreken we hoe we een speciaal type dualiteiten - veralge-
meende dualiteiten - kunnen definiéren en gebruiken. Dit is een uitgebreide notie van dualiteiten
die van toepassing is op een bredere variéteit van duale ruimten zonder achtergrondisometrieén.
We bestuderen nieuwe soorten veralgemeende U-dualiteiten en gebruiken deze om nieuwe duale
oplossingen in M-theorie te construeren en te analyseren.

In hoofdstuk 1 beginnen we met een overzicht van verschillende soorten dualiteiten in snaar-
en M-theorie, waarbij we de belangrijkste algebraische en fysische aspecten van dualiteiten en hun
mechanismen bespreken. We geven ook een kort overzicht van snaartheorie, definiéren verschil-
lende soorten snaren en hun belangrijkste kenmerken, en presenteren het standaard dimensionale
reductiemechanisme dat we later gebruiken bij het genereren van duale oplossingen.

Hoofdstuk 2 is gewijd aan het verkennen van geometrieén met Exceptional Drinfeld Algebra
(EDA) structuur toegepast op het bestuderen van de veralgemeende U dualiteit - een speciaal type
van dualiteiten in M theorie. We hebben ook een classificatie gegeven van verschillende "drie-algebra
geometrieén" die een speciaal gekozen geval van EDA vertegenwoordigt, en we zijn dieper ingegaan
op voorbeelden die hebben geleid tot nieuwe uplifts voor speciale gaugings van zevendimensionale
maximale superzwaartekracht.

In hoofdstuk 3 bespreken we het begrip veralgemeende U-dualiteit als oplossingsgeneratietech-
niek in superzwaartekracht. Met behulp van de uitzonderlijke meetkunde techniek laten we zien hoe
we een nieuwe oplossing kunnen genereren in 11-dimensionale superzwaartekracht, beginnend met
een speciaal type oplossing in type ITA superzwaartekracht. We analyseren verder de eigenschappen
van de nieuw gegenereerde oplossing en onderzoeken zijn AdS-limiet en ladingen. We eindigen het
hoofdstuk met het oplossen van de Killing-spinorvergelijking in de extreme AdS-limiet en het vinden
van een %—BPS oplossing.

In hoofdstuk 4 gaan we verder met het onderzoek van dezelfde oplossingsgeneratietechniek met
behulp van uitzonderlijke meetkunde, waarbij we onze analyse uitbreiden naar initiéle oplossingen
met een gecompliceerdere geometrische structuur en de resultaten uit het vorige hoofdstuk veral-
gemenen. Met behulp van uitzonderlijke meetkunde technieken geven we een 11-dimensionale uplift
van de 4-dimensionale gauged superzwaartekracht. Net als de voorbeelden uit het vorige hoofdstuk
construeren we een nieuwe %—BPS oplossing en gaan we dieper in op zijn eigenschappen.

We sluiten af in hoofdstuk 5 met enkele laatste gedachten, waarin we de resultaten van de vorige

hoofdstukken samenvatten.
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Chapter 1

Introduction

1.1 String and M-theory

Finding a theory that would unify all the existing interactions in nature under one model is an
eternal challenge of theoretical physics. A unification that would provide a sole origin to all existing
theories on different energy scales and levels is a challenge that physicists try to answer. At small
scales, the Standard Model of elementary particle physics gives a self-consistent explanation of the
original principles of physics that matches the results obtained experimentally in the recent scientific
observations. On the opposite side of scale level, Einstein’s theory of General Relativity provides
a reliable prediction of the behaviour of gravitational effects throughout the universe, which was
recently again confirmed via the first direct detections of gravitational waves.

However, neither of these theories are complete. Whilst there is no known way to deduce the
masses of the elementary particles (and other parameters in the theory) from first principles in
the Standard Model, in the General Relativity applying a standard quantisation procedure will
result in a non-renormalisable theory (the problem of black hole solutions indicates the existence of
problems on a quantum theory level). We do not have a clear method on how to combine the two
theories, since the Standard Model is renormalisable on quantum level, while General Relativity is
not. At the highest energies and smallest possible scales, both quantum and gravitational effects
are important, and we need a theory of "quantum gravity". With the hope that this would be the
fundamental theory of nature, that enables to provide a precise explanation for the masses of the
elementary particles and other theoretical challenges (such as the origin of dark matter and dark
energy). Unifying quantum mechanics and gravity has proven to be one of the hardest challenges
in theoretical physics.

One of the best and most well supported mathematically candidates for a theory of quantum
gravity is string theory. The initial idea of this theory is that instead of elementary particles, we
should consider elementary strings. Compared to particles, the fundamental distinction is that

strings are extended objects, with additional degrees of freedom, leading to various consequences.



A collection of multiple states can be found via string quantisation procedure, corresponding to
different vibrations of the string, which will appear as particles when working at scales larger than
the string length. The behaviour of these particle-like states of the string resembles the interaction
appearing in the Standard Model and Gravity in the same time. Moreover, one of the states can
be identified with the hypothetical Graviton particle spectrum — the carrier of the gravitational
interaction.

This provides an additional supporting point to the candidature of the String theory taking
the role of the quantum gravity, with many strong features, such as the lack of numerous free
parameters, instead having only one free parameter — the string length, unlike the Standard Model,
which appears to have a whole range of unspecified parameters.

The consistency requirements of string theory are remarkably stringent, and it only works in
10 dimensions. (Properties of the four-dimensional physics we experience can be encoded in the
structure of the geometry of the other six dimensions, although finding the appropriate construction
to match our observable universe is an open problem.) At first, these consistency conditions seemed
to allow five distinct string theories, despite the hope that any fundamental quantum gravity should
be unique. However, a further compelling and fascinating property of string theory is the presence of
dualities in the theory, leading to a unified theoretical description, in which the 5 possible solutions
can be viewed as special cases, resulting from the same parent theory — the M-theory.

M-theory was originally introduced as the strong coupling limit of type ITA superstring theory [1].
M-theory is required to reduce to 11 dimensional supergravity - a theory combining the nature of
general relativity and supersymmetry - at energies significantly smaller than the inverse Planck
length 1/lp in the same way as the type IIA or IIB superstring theory reduces to type IIA or IIB
supergravity at energies significantly smaller than the inverse string length 1/l5. The reduction of M-
theory on a circle will result in type IIA string theory, and reduction of 11-dimensional supergravity
on a circle provides us with the 10-dimensional type ITA supergravity, highlighting a clear connection

between the theories.

1.2 Dualities in string and M-theory

String theory provides a unified framework that encompasses both quantum mechanics and general
relativity. Among the phenomena within string theory, duality stands out as a powerful concept
that has greatly deepened our insights into the underlying structure of spacetime and quantum field
theories. Dualities relate seemingly distinct string backgrounds and play a crucial role in unravelling
the nonperturbative and perturbative nature of string theory.

In theoretical physics one of the simplest examples of such a duality appears in classical elec-
tromagnetism in the case of Maxwell’s equations in vacuum, where the theory reveals a symmetry
under the interchange of the electric and magnetic fields. Another great example of dualities in

physics is the Ising temperature duality in thermodynamics, where the lattice Ising model expresses
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similar behaviour below and above a critical point, making the model at low temperatures dual to
the model at high temperatures.

The simplest string duality follows from the fact that strings have length. Particles only see the
world one point at a time, but strings are extended objects. As a result they experience geometry
very differently. For instance, a string does not distinguish between winding around large circle of
radius R and mowving around a small circle of radius 1/R (or vice versa). We say that the large and
small circle descriptions of the geometry are dual. This is known as T-duality.

Another type of dualities - S-duality - involves the coupling g determining the strength of string-
string interactions (this is not an independent parameter, but is determined dynamically within the
theory). Some string theories at strong coupling, g large, are the same as others at weak coupling,
g small. This is a remarkable equivalence, as it allows us to understand strong coupling physics
(difficult) using weak coupling physics (easier). Even more surprisingly, in one “dual” description,
type IIA string theory at strong coupling in 10 dimensions turns out to “grow” an extra spacetime
dimension and is described in terms of an 11-dimensional theory.

Combining these basic dualities leads to a fascinating web of connections that tells us we should
think of all different string theories as being different dual descriptions of a single underlying more
fundamental theory [1,[2]. This theory has become known as M-theory. However, despite much
progress in many areas, the final formulation of this M-theory remains mysterious.

We will review the notion of T-duality and its generalisations. The usual T-duality symmetry is
present when one has a background with commuting i.e. abelian geometric symmetries, represented
by the Abelian Killing vectors of the solution. This is called Abelian T-duality. Abelian T-duality
has an extremely important implementation in relating type ITA string theory to type IIB string
theory by compactifying each theory on a circle with inverse radii. Abelian T-duality is an exact
symmetry of string theory.

Non-Abelian T-duality, extends the Abelian T-duality, unveiling connections between diverse
string backgrounds. Unlike its Abelian counterpart, which arises in the presence of Abelian Killing
vectors, non-Abelian T-duality arises when considering compactifications of string theory on spaces
with non-Abelian isometries |3], [4].

Non-Abelian T-duality is not an exact symmetry of string theory. For Non-Abelian isometry
groups certain anomalies can arise when performing the dual transformation [5|. Even though
the quantum status of non-Abelian T-duality as a genuine duality of the full string theory is less
clear (though there is some recent evidence in favour of this [6]), it has proven an efficient classical
solution generating mechanism, in particular for holographic backgrounds with interesting dual field
theories [7H9|. There is a further generalisation known as Poisson-Lie duality in which there are no
isometries present on either side of the duality [10]. In Poisson-Lie duality, there is an equivalence
between two different classical sigma models [10], which can be proven using a single sigma model
whose target space is doubled |L1]. Both these dualities can be used to describe string theory in

interesting settings such as backgrounds where the sigma model is integrable (for a review, see [12]).
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Unlike the Abelian T-duality, the non-Abelian T-duality is not completely obvious on the level of
higher quantum corrections. While in the Abelian T-duality the mapping between 2 dual solution
in a sigma model can be extended in all orders of the quantum o' correction, in the case of its
non-Abelian counterpart, this can only be done to a certain orders [13]. However, the interest
of considering various generalised versions of T and afterwards U dualities is still viable, and is
motivated by the idea of generating new solutions and building a bigger picture of the M-theory
structure, revealing a web of connections between different solutions.

U-duality is a combination of S and T dualities applied one after another, it is a new "unified"
type of dualities in M-theory. Unlike the T-duality it wasn’t very clear how to generalise U-duality
in the case of non-Abelian isometries (represented by non-Abelian Killing vectors). While T-duality
is an exact perturbative symmetry of string theory at each order in the string coupling constant g,
S-duality and U-duality are non-perturbative in the coupling constant orders.

U-duality has several important implementations in understanding the M-theory and building
connections between different solutions. It provides a helpful mechanism of studying compactifica-
tions of superstring theories, alongside other types of dualities.

The natural way of observing U-duality comes from studying dualities of string theories and
supergravity. Type ITA string theory reduced on a circle is T-dual to type 1IB string theory reduced
on a circle of an inverted radius. Type IIB theory contains an internal global SL(2,Z) symmetry,
reflected in S-duality preserving the symmetry of the theory. T-duality between type ITA and 11B
string theories combined together with the duality SL(2) symmetry group of the T? torus (or more
generally the symmetry of the d-torus) on which we performed a compactification of M-theory to
obtain a lower-dimensional effective theory (M-theory on 2-torus or d-torus more generally) forms
the U-duality symmetry, generally given by the Ey4) groups.

In the following section we will briefly review the string theory models and provide an overview

of the main field in the spectrum to proceed further with the explanation of dualities.

1.3 Overview of string theory

In the string theory there are 5 consistent types of strings that can be all unified under a bigger
11-dimensional theory - the M-theory, as special cases. The set of five types of string is built of:
type I strings, in which strings are unoriented and the spectrum is composed of open and closed
strings with N/ = 1 supersymmetry, type II strings, consisting of oriented closed strings with a
maximal amount of supersymmetry N = 2, with type IIA as its non-chiral version, and type IIB as
its chiral version, and two types of heterotic (also with A/ = 1 supersymmetry, made by mixing the
left-moving sector of the bosonic string with the right-moving sector of the superstring) - one with
the SO(32) gauge group and the second with the Egx Eg gauge group.

These different types of strings are all special cases of the M-theory and are connected to each

other with a web of dualities. Type ITA and type IIB strings are related to each other via T-duality,
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as are the two types of heterotic strings. S-duality connects type [ strings to the heterotic strings
with the SO(32) gauge group, and type IIB to itself again (type IIB is self dual by S-duality).
Moreover, type IIA string theory in the infinitely strong coupling constant limit becomes equivalent
to a bigger theory - the M-theory: meaning there is an S-duality between type ITA strings and
the M-theory. Similarly, S duality is present between the heterotic string with the Egx Eg gauge
group and the M-theory. Thus all the 5 types of string theories are connected to each other via
dualities, and are special cases of a bigger picture - the M-theory. At the same time 11-dimensional
supergravity is a low energy limit of the 11-dimensional M-theory.

Let us start with reviewing the bosonic sector of string theory and introduce the Polyakov
action defined on the worldvolume ¥ - the space-time that a string sweeps out as it moves through

spacetime, that is representing the basic fundamental action of bosonic strings on the worldsheet:

Sp = ﬁ . dea\/Wh”bgW(X)aaX“(T, 0)0p X" (1,0) (1.3.1)
where the structure ﬁ has the meaning of the string tension T, the coordinates 7,0 are the
worldsheet coordinates, X* are the coordinates of the target manifold, and the metric g,, is the
metric of the target space (26 dimensions or 10 in supersymmetric version), hgp, is the worldsheet
space metric.

For the case of flat Minkowski metric (g, (X) = 1) the action is invariant under space-time
translation and Lorentz transformations (Poincare symmetry) in the target space (global symmetry),
as well as under diffeomorphisms and Weyl transformation (metric rescaling) in the worldsheet space
(local symmetries).

Starting with open strings - type of strings with free endpoints and a topology of a line, the
boundary conditions can divided into:

1. Neumann boundary conditions (N)
n9u X o5 = 0 (1.3.2)

where n® is a unit normal vector to the boundary 9%. This condition in the case of a free open
string propagation reduces to a simple 9, X*|sy, = 0 on the surface boundary 9.
2. Dirichlet boundary conditions (D)

t0a X |55 =0 (1.3.3)

where t% is a unit tangent vector to the boundary 0X.. In a case of the simple free string propagating
in a worldsheet - a manifold describing the embedding of the string in the spacetime - this reduces

to 0. X*|px, = 0, which can be rewritten in the following way:
XF|gg = CF (1.3.4)
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for a constant C*, meaning that the string is fixed on the end point. In the case of propagating in an
p-dimensional hypersurface, Dirichlet boundary condition will restrict d — p coordinates, breaking
translation invariance in these directions. This is associated to dynamical p + 1-dimensional objects
in the hypersurface called D-branes - objects where the endpoints of open strings lie (for Dirichlet
boundary conditions).

In the case of closed strings - circle topology, the strings can be divided into periodic and
anti-periodic. Anti-periodic boundary conditions are not used for bosons, and only appear in the
fermionic sector.

In addition to the classification of strings to open and closed, they also can be oriented and
unoriented, with oriented strings corresponding to oriented worldsheet surfaces, and unoriented
strings - to unoriented worldsheet surfaces.

Speaking about the field spectrum of the bosonic sector theory, based on the string type and
their degrees of freedom in 26 dimensional space-time we have the following classification of the

massless fields:

e Closed oriented strings — massless fields of the spectrum g,,,, By, ¢
e Closed unoriented string — massless fields of the spectrum g,,,, ¢

e Open and closed oriented strings — massless fields of the spectrum g,,,,, By, V#”, 10}

e Open and closed unoriented strings — massless fields of the spectrum g,,,, V,L[U]

, ¢
where the field VJ 7 are the U(n) vectors and the indices I, J = 1,2 indicate to which D-brane each
string endpoint is attached, By, is a 2-form field and ¢ is a scalar field.

The low energy limit of the string theory is the limit in which the particle theory can be recovered
and the string length is set to zero, the string constant o/ — 0, and only the massless modes become
relevant. In this limit we also obtain the corresponding effective field theory.

The effective low energy action of the string theory in the string frame in d dimensions (d = 26 in
the bosonic string theory to preserve Poincare invariance, or in the supersymmetric theory d = 10)
can be described by the action (where the strung coupling constant g, = e®° with ¢g the vacuum

expectation value of the dilaton ¢ has to be small for the low energy limit to take place) [14]

1
S = /ddx lgle 2?[R — 4(0¢)* + EHQ} (1.3.5)

with the space-time metric g, ¢ is the dilaton, and the Kalb-Ramond 2-form B,,,, with the totally

anti-symmetric field strength composed from it

H =30B (1.3.6)
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with antisymmetrized indices (hidden). This action is derived by requiring conformal invariance in
quantum theory after renormalisation procedure (see section 3.2 of [15]).

Now, briefly touching the fermionic - supersymmetric part of the string theory (worldsheet
supersymmetry), we add fermionic fields describing the internal spin degrees of freedom. For this
consider anticommuting variables ¢* (7, 0), as well as a gravitino field x, which after integrating out

the graviton results in the so-called Ramond-Neveu-Schwarz (RNS) model

1

S=1— / drdo[n™0, X 0, X , — i) (1.3.7)

For open superstrings, the endpoints o = 0, 27l are free, and both Neuman and Dirichlet boundary
conditions can be chosen for X*, while for ¢* we have left and right moving modes - ¢ and ¢/
For superstrings with closed bosonic and open fermionic parts, in combination we have 4 types of
boundary conditions for the fermionic part: RR, NSNS, RNS, NSR, built on the following blocks:

e Ramond boundary conditions (R)
Yo =0)=9¢"(c=0), o\ (0c=2nl)=¢"(c=2nl), (1.3.8)
e Neveu-Schwarz boundary condition (NS)

Yo =0)=4¢"(c=0), (o =2nl)=—-¢"(c=2nl), (1.3.9)

Since for closed superstrings o ~ o 4 2wl for each component wi and 1" independently we can

have

e Ramond boundary conditions (R) - periodic
Y (o = 0) =YK (o = 27), (1.3.10)
e Neveu-Schwarz boundary condition (NS) - antiperiodic

Wh(o=0) = —¢h(o = 2nl), (1.3.11)

In the case of superstrings we have a larger spectrum of massless fields in the 10 dimensional
supergravity. The full classification is give in section 20.2 of [14], where the bosonic sector is
augmented by the additional C'(V), C®) fields in the type IIA case, additional C(©, Cc® ¥
(where C'W is self-dual) in the type ITB case, and an additional C® field in the type I case.

The massless modes of type Il superstrings compose the supergravity multiplets of the maxi-

mal 10-dimensional supergravity theory, while type I strings correspond to the N=1 supergravity
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spectrum in the low energy limit. We will use these basic description indirectly in studying super-
symmetric solutions (effective actions) in the case of supergravity models we use to generate U-dual

solutions in further chapters.

Apart from string dualities, we have dualities between extended objects of M-theory - Dp-branes
(D is for Dirichlet boundary conditions), appearing from compactifications of 11-dimensional theory
with 2 fundamental objects: M2 branes and their dual M5 branes. String theories also contain branes
apart of strings: type ITA string theory contains even dimensional branes - Dp-branes coupled to
odd dimensional p + 1 forms C), 1, while type IIB string theory consists of odd dimensional branes
coupled to even C), forms. The action of a p-dimensional brane on the space-time coordinates X*(§),
with p = 0,...,d — 1 and the worldsheet coordinates £ with a = 0, ..., p with the pullback metric
hap = G0, X1 0 X" is represented by the so-called generalised Nambu-Goto action:

it = —Tp) /d”“&\/\thl (1.3.12)

with the brane tension 7,), and is proportional to the volume captured by the p-brane.

Various supergravity theories are related to each other via a compactification on a circle (or a
double compactification). It is worth noting that the decompactification limit of 11-dimensional
theory coincides with the strong coupling limit of the type IIA theory. We can also spot some
connection between the spectra of the 11-dimensional model and the reduced 10 dimensional theory.
The Kaluza-Klein scalar contributes to the appearance of the dilaton field in the reduced model,
and the Kaluza-Klein vector gives the RR 1-form, while the 3-form gives a 2-form and a 3-form.The
1-form is associated with the DO-brane, the 3-form - with D2-brane: since there are DO- and D2-
branes associated with the RR 1-form and 3-form respectively, we find that they originate from
the 11-dimensional graviton moving in the compact direction and from a two-dimensional object
- the M2-brane, that couples to the 11-dimensional 3-form. This M2-brane gives rise to the type
IIA string when it is wrapped around the compact dimension (coupled to B, ), and once it is not
wrapped around the compact dimension, then it gives rise to the 2-dimensional brane - the D2-brane
(via the form C’,Sgy)p to which this D2 brane is coupled).

On a broader scale dimensional reduction from 11 to 10 dimensional theory relate various objects
to each other: p-branes, M-branes, D-branes, strings, waves, Kaluza-Klein monopoles, etc. Accom-
panied with T and S dualities these transformations build a web of connections between different

objects in M-theory and string theories (see |14] for more details).

In order to study connections between different supergravity models, let’s demonstrate an ex-
ample of reduction from the 11-dimensional bosonic sector of Supergravity theory (corresponding
to the low energy limit of M-theory) to the bosonic sector of a 10-dimensional supergravity (corre-
sponding to the low energy limit of (super) string theory, type IIA supergravity). This mechanism

will provide us with the basic techniques used for dimensional reductions to be implemented further
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in the thesis. We start with the 11-dimensional action:

1 . 1 . 1 1 A A n
Si= 1 [ /gl R~ G - WGGE 13.13

T 167G ) / VIR = 57 (144)2 /3¢ (13.13)
where ((11) is the coupling constant in the 11-dimensional theory, R is the 11-dimensional curvature,
and all the hatted fields are in 11-dimensions, G =40C.

10

Assuming that all the fields are independent of the coordinate z = £'°, we perform a reduction

from 11 to 10 dimensional theory, with a spectrum of 10 dimensional fields

{¢7gﬂV7BMV7ClSBV)p7CI(L1)} (1314)

where the metric, the Kalb-Ramond 2 -form and the dilaton - are the NSNS sector fields, while the

vector and the 3-form are RR sector fields.

Then we use the Kaluza-Klein (or a special case of Scherk-Schwarz [16]|) procedure to re-write
the 11-dimensional fields in terms of 10-dimensional fields (in String frame and rescaled by the
dilaton):

G = 6_%459;“/ - e§¢C’f})C£l), Cuvp = Cf)
4 A~

X 4 R 4
Gz = —es‘Z’Cf}) Covz = By §on = —€3° (1.3.15)

then proceeding with each term of the 11-dimensional action separately (for detailed procedure see

section 22 of [14]), we finally arrive to the following 10-dimensional action

2
_ 94 10 —2¢(p 2 1 2
1 1 1
_Z N2 4 = @2y _ = (10) 5(3) 51(3)
AR (D v aCc®ac B} (1.3.16)

where the constant g4 = e absorbs the asymptotic value of the dilaton ¢ — ¢g in the action, and

1 1 27TR11
= dz = 1.3.17
Gaoy Gay / G ( )

and the field strengths
H=30B, G® =200, GW =4(00® — HCW) (1.3.18)

and we have taken the 11th coordinate z to be on a circle of Planck length radius rescaled by
ga: Ry = gi/ 3 Planck - the only scale available in the 11-dimensional supergravity. The dilaton

representing the string coupling constant, shows us that the strong-coupling limit of the type ITA
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string theory corresponds to Large radius decompactification limit of the 11 dimensional theory.

1.4 Dualities

1.4.1 Why dualities are interesting?

A duality is an equivalence between two seemingly different physical theories or descriptions.

As was highlighted previously, dualities do not only appear in the string and M-theory, they have
taken place in the framework of classical physics, playing a significant role in building connections
and interpretations of different solutions and physics models. Dualities are important in M-theory
and supergravity as a solution generating technique and a connecting mechanism for seemingly
diferent solutions, revealing the link between these solutions.

In order to understand better the origins of the dualities in superstring and M-theory, we have to
go back to the original examples obtained via simple compactification on a circle, and the dualities
generated by inverting parameters such as the circle radius and the coupling constant, that keeps
the mass spectrum unchanged.

The action of dualities adds to the obvious symmetries of the theory under consideration, such as
non-linear sigma model, where the manifest symmetries are diffeomorphisms, Weyl transformations
of the metrics and gauge symmetries of the gauge fields, a series of less obvious symmetries, such as
the duality of the target space obtained via compactifications on circles or tori, replacing the radius
by the inverted radius. The precise technique of the elementary T-duality will be explained in the
following sections.

In the previous section we had a quick overview of the main types of strings and the field spectra
in different conditions, now we will focus on the symmetries and connections generated by dualities
in the NS-NS and RR sectors of the string theories.

T-duality is in particular interesting in connecting type ITA and type IIB string theories com-
pactified on circles of opposite radii (R and o’/R) resulting in the same NS-NS bosonic sector,
forming a Zo part of the full O(d, d,Z) T-duality group.

T-duality forms an exact symmetry of string theory at every level of perturbation of string
coupling constant g, while S and similarly U dualities do not possess this feature. However, analysing
various types of dualities and their generalisations, allows us to build a web of connections between
various supergravity solution, thus, giving a broader understanding of duality connections in M-

theory.

1.4.2 Abelian T-duality in examples

Let us demonstrate how Abelian T-duality appears in string theory. Consider a closed Bosonic
string moving in a target 26 dimensional space M = RY?4 x S! with a periodicity constraints on

one of the coordinate components X(7,0) = (X% X! ..., X X%) on a two-dimensional world
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sheet X with the string coordinates (7, o)
X®(r,04271) = X®(1,0) + 2rmR (1.4.1)

with a winding number m € Z and string radius R.

The corresponding Polyakov action for this theory is

1
S =

4ol

/ dodr (h®\/|h| g 0a X 0, X ") (1.4.2)
%

with the metric of the target manifold g, and the worldsheet metric hqp, and the constant o, where

the combination T' = ﬁ has the meaning of the intrinsic string tension. The equation of motion

for this action reveals the following solutions, including the right and left moving components

1 1
Xt = §X6‘ 4 ia’Pf(T + o) + oscillator terms (1.4.3)
X“—lX“ ! Pt illator t (1.4.4)
k=5 0—1—504 (T — ) + oscillator terms =3

with the expression for the oscillator terms as ~ L expim(r + o) and ~ L expim(r — o) for the
left and right modes correspondingly, and the momenta are quantised in the compact 25th direction
(neZ)

n  mR
P2 = 2t o (1.4.5)
n  mR
PR == (1.4.6)
Calculation of the theory spectrum reveals
2 2 2
9 n m*R
M*=-0.X"0,.X, = ﬁ—i—W—l—g(NL—i-NR—m (1.4.7)

where Ny, Np are the numbers of left and right moving modes correspondingly. This spectrum
is invariant under the transformation R — %, n — m, which also corresponds to X; — X,
and Xr — —Xpg. This means that the mass spectrum for a string moving in one background
M = RV x S is exactly the same as the mass spectrum of a string moving in a different background
M' = RV x 0 with $"' having an inverse radius to S' (up to the constant o). And this

characterises the simplest example of T-duality.

In the framework of non-linear sigma model Abelian T-duality reveals an interesting feature
connecting seemingly different actions to each other. As an example, a non-linear sigma model

defined on a d-dimensional manifold M

1

5= 4o

,/d2§[\/|hlh“bgwﬁax“8bx”+6abbuyﬁaa:“8b:1:”] (1.4.8)
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with a target space metric g,,, the torsion b,, the dilaton ¢ and the worldsheet metric hy,. With
an abelian isometry in one of the directions € of the coordinate set {0, 2%} where a = 1,...,d — 1,
meaning that there’s no dependence on 6 of the theory fields. And this theory can be then obtained
from a d + 1 dimensional sigma model with an additional variable § acting as a Lagrange multiplier
and an extra 1-form V defined on the manifold M

1
S = o / €T (900Va Vs + 2000 Vadya® + gupdar®dyz”) (1.4.9)
+ ieab(ZbOQVaab:Ua + bagﬁa:vaabxﬁ) + 21’6“1’58@%] (1.4.10)
where the equation of motion for 6 gives us €®9,V, = 0, which in the case of a trivial worldsheet
vector V, = 9,60 would give us the original theory. Solving for V, in this theory gives

1 e b -
Vo = ——(90a0ux® + 1-2= (bgaOpx™ + Op0 1.4.11
goo(go \/E< 0a0p b0)) ( )

integrating over this V, field gives us a dual action with a different geometry

~ 1 ~ ) i
S = Aol /dzf[\/Wh“V(go()@aeabe + 2§0aaa08bxa + Qaﬁaaxaabxﬁ)
+ i€ (20000053 + bagDar* Bpz”)] (1.4.12)

where the connection between the dual fields and the original fields is given by a set of so-called

Buscher’s rules 18]

N 1
goo = — (1.4.13)
goo
b -
Joo = 22 fpg = 22 (1.4.14)
goo goo
. goagos — boabo
9ap = Jap — a0 08 (1415)
goo
~ bog — gogb
bas = bag — 9oaY0B — GopY0a (1.4.16)
goo

As was shown by Buscher in [18] the T-dual action will remain conformally invariant if the dilaton

field (not included previously, and appears as higher o/ correction in the theory) transforms as

~ 1
¢ = ¢ — 5loggoo (1.4.17)
This dual sigma model defined by (f],g, gE) and independent of @ variable, is obtained from the

original model by performing the duality transformation with respect to shifts on 6. This is a

prominent example of Abelian T-duality applied to a sigma model.
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In the example above, the Buscher procedure was applied to the target space-time with an
abelian Isometry group U(1). However, the Buscher procedure can be generalised to the case of a
target space with a non-Abelian isometry group, where the gauge fields are valued in the algebra
of this isometry group, mapping one solution of supergravity to another. A simple example of
non-Abelian T-duality is considered in the next paragraph. In the case of extended objects - branes
duality a double reduction has to be performed for the D(p + 1)-brane and a single reduction for

the Dp-brane, then duality connects the two reduced actions to one another.

1.4.3 Non-Abelian T-duality in examples

Original studies on the non-Abelian T-duality commenced in [3]. These dualities originate from
non-Abelian isometries of sigma models in string theory, and the dual solution is generated by

integrating out the gauge fields.

Buscher’s rules and procedure can be generalised to the case of sigma model with non-Abelian

isometries into the so-called generalised Buscher’s rules, as we will show in what follows.

We will start with the non-gauged non-linear sigma model
S = /dQZ(gW + B,,)0X" 90X (1.4.18)

where the partial derivatives act as 0X* = 9, X* and 0X* = 0: X" and z = 7 +1i0, Z = 7 —io. The
target space is a compact non-Abelian group G with the left-invariant vector fields v,, to which we

will introduce dual 1-forms [, called the Maurer-Cartan forms with the components {*

(g, 1%) = &0 (1.4.19)

a

while the vector fields v, obey the bracket equation defining the structure constants of a Lie algebra

fbc ¢
[va, vb) = fap “Ve (1.4.20)

the Maurer-Cartan forms satisfy the Maurer-Cartan equation
a 1 ayb c
A metric on G can be defined in terms of the Maurer-Cartan forms as
ds® = gaplolb (1.4.22)

Alternatively, we can introduce a G-invariant matrix E of the dimension dim(G) x dim(G), where

X is a direct product, and decompose this matrix into its symmetric and anti-symmetric forms
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defining the metric g and the B-field of the theory model
Eab = gab + Bab (1.4.23)

where
ab = %(Eab + Epa);  Bap = %(Eab — Epa) (1.4.24)
The Maurer-Cartan forms corresponding to the left invariant vector fields are invariant under the
action of the right invariant vector fields, that in mathematical terms can be demonstrated in the
equation
L. 0°=0 (1.4.25)

from where it follows that £, E = 0, meaning that the action is invariant under the infinitesimal
action of right-invariant vector fields. The theory possesses a global symmetry g — gh (for the Lie
group element g) generated by the invariance under the infinitesimal action of the right-invariant
fields

de XH = rhe?, (1.4.26)

where the right vector fields r, here form a non-Abelian Lie algebra with structure constants f, ¢
in the non-Abelian T-duality case. Gauging this symmetry by introducing non-abelian gauge fields
A® minimally coupled to the action. This involves the upgrade of the derivative to a covariant
derivative

dX* = DXF = dX* — rFA® (1.4.27)

which makes the theory invariant under the infinitesimal local gauge transformation.

Splitting the coordinates X into gauged and ungauged, or in other words, into coordinates
parametrising the base X* - ungauged, and the coordinates X* parametrising the non-abelian Lie

group G fiber - gauged. Thus we get for the metric in terms of the Maurer-Cartan forms of the

group
ds* = g dX"dX" + 20, d X" + gapl“1® (1.4.28)

and similarly for the B-field

B = B, dX" NdX" + 2B,odX" AN1® + Bypl® A 1P (1.4.29)

After applying the gauging, and adding the Lagrange multiplier term in a form of field strength

F, similarly to the Abelian T-duality case, the action of the non-linear gauged sigma model will be
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of the form

Sy = / d22[E X XY + Bu0X 90X + EpdX DX + EwDX*DX®

+ Xa (AT — DAY + fo, AP A)] (1.4.30)

where the fields of the sigma model: metric g and the B-field are unified under the matrix E:

EFE=g+B (1.4.31)

and
DX%=0X"— A® (1.4.32)
DX%=0X"— A® (1.4.33)

with the non-Abelian gauge fields A, A.

We will not dive deep into the description of the procedure of obtaining the non-Abelian T-
duality rules in what is given below, but will rather describe the short procedure. The full analysis
is given in [3].

The solution of equation of motion for the gauge fields A* and A® gives
A" = Bp(M™H0X + Ep(M~ Y0 X" + (M~ 1)0x, (1.4.34)

A = Bypo(M™HOXC 4 By (M~H)PoX " — (M~1)%dy,, (1.4.35)

where we defined M as
Moy = Epp + chcab (1436)

Integrating out the gauge fields by parts in the action after submitting the solution found
above, then fixing the gauge due to the gauge invariance of the action under the right-invariant
vector field, choosing X = 0 and 0X® = 0 (matching the degrees of freedom we're allowed to fix
due to the action symmetry), and introducing dual fields EW, E,. Eub, E, as

E,u,y = E,u,u - E,ua<M71)abEb1/7 Eau = _(Mil)abEb )
By = Ep(M™" . Eg=(MYa (1.4.37)

a’

corresponding to the non-Abelian Buscher’s rules [3|, giving the T-dual action
S = / d*2[E,,0X"0X" + Eu0x"0X" + Ep0X"0x" + Eo0x*0X"] (1.4.38)

and this dual action can be interpreted as a non-linear sigma model with coordinates X = {X*#, y*}.

This was the mechanism of non-Abelian T-duality action on a sigma model. This Buscher procedure
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provides an efficient algorithm of obtaining T-dual sigma models via integrating out the gauge fields

(gauging the isometry).

1.4.4 Poisson-Lie T-duality

Non-Abelian T-duality admits the action of the non-Abelian isometry group. For constructing
the Poisson-Lie T-duality we require the notion of the Drinfeld double algebra, which is simply

even-dimensional real algebra 0 with generators 7'y obeying
[Ta, Ti] = Fap“To (1.4.39)

equipped with a symmetric split-signature-invariant pairing 7(-,-) such that 0 admits at least one
decomposition 9 = g + g with g and g sub-algebras that are maximally isotropic with respect to
0: i.e. the inner product is trivial for any two elements that belongs to the subalgebra, and this
feature is maximal (there’s no bigger subalgebra that contains the former subalgebra satistfying the
same property). In the case of Abelian T-duality, the generators T4 commute, and the structure
constants FABC are trivial. This corresponds to the isometries and the Abelian nature of the
underlying algebra. In the case of the non-Abelian T-duality (NATD) the structure constants
F, BC do not vanish. For non-Abelian T-duality to take place the dualised background does not
necessarily have to possess isometries.

For the Poisson-Lie T-duality to take place, the structure of F, BC has to satisfy the Drinfeld
double structure

F bc _ fabc> Fope = 0, Fa be _ f‘bca, Fb — _f b Fabc _ fabc’ Fabc -0 (1440)

a a c ac

The decomposition in terms of generators of g and g - ¢, and £® - in a way that Ty = (t4, %) leads

to the following double algebra:
ltasty) = fup Stes [ta, 0] = [0 te — foo Ple,  [19,87) = fO0 1€ (1.4.41)

Then, according to [11], we can introduce the Poisson-Lie bivector field constructed from the
adjoint action of an element g of the group G constructed by the exponentiation of the subalgebra

g in the following way
gtag ™t = (ag)gtb, gty = (bg)“btb + (agfl)gfb (1.4.42)

so, that
18" = (by)*“(ag-1)? (1.4.43)

and according to this definition, as was shown in [27], this Poisson-Lie bivector field satisfies a set
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of features, as a consequence of the adjoint action, such as
9% = —11%, T =0, Iy =10y + (-1 X ag-1)1I, (1.4.44)

as well as a differential equation, after introducing the left-invariant 1-form | = 1%, = g~ 'dg, so
that
drieb = —efeb e, lomrtd (1.4.45)

and can be included in the Lie derivative action of the algebra d on its dual vector field v, (which
is dual to the left invariant 1-form [ = [%t,), using 7% = Hgbvb - a set of vector fields built from the
PL bi-vector Hgb, as follows

Lo, vp = —fop ey Lm0 = fo. 1€ — f% 0o, Lypam® = —f% n¢ (1.4.46)

This Lie derivative can be further generalised to the so-called Dorfman (or the generalised Lie)
derivative acting on a set of generalised vectors in order to incorporate the gauge symmetries, unified

into a generalised frame field E4 = (E,, E%) in the following manner
E,=v, E*=7%+1° (1.4.47)

Then, the Lie derivative that was previously acting separately on the components [%, v, and 7%, can
be now generalised into a generalised Lie or Dorfman derivative, with its action on the generalised
vectors U = u'0; + pida’ and V = v'0; + v;da’ as

LyV = Lyv~+ Lyv — 1pdp (1.4.48)
which in terms of the generalised frame field can be repackaged into |24]
Lp,Ep=—F,5 Ec (1.4.49)

furnishing the algebra of the Drinfeld double o [12].

In the type II supergravity, the metric and the B-field can be packaged into a structure that is
called the generalised metric Hysy, respecting the O(d,d) structure which is associated with the

string toroidal compactifications on 7™ [28]

— B, B, —B, g
Hapy = (9~ Zmed P e (1.4.50)
gmpon gmn

Where, in the case of an Abelian T-duality this generalised metric is required to be constant, and

the twisting it with constant O(D, D) matrices C,/ transforms one constant solution to another
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constant solution 24|
Hhyy = ChF C\CHpg (1.4.51)

For the case of non-Abelian T-duality the generalised metric can be twisted by non-constant
frame fields [29]
Hyn(z) = By (@) ENP (2)Hap (1.4.52)

Poisson-Lie T-duality, maps one set of structure constants to another, and gives rise to new frame
fields, that can be used to twist the generalised metric, giving a dual generalised metric, which is

constructed by the action of a constant O(D, D) transformation, with matrices C 4,2
HYyy=C,“CxPHep, T)=C,5Tg, Flgc=C Cs"C.CFpra (1.4.53)

where the matrices C B have to be chosen in a way that the structure constants Fig ¢ have the
form of Drinfeld double This new dual solution remains a Supergravity solution since it is
mapped by the O(D, D) symmetry of the formulation of the gauged supergravity, obtainable by

reduction (taking into account the transformation of the gaugings F').

This gives rise to a novel T-dual algebra
[T}, Tp) = Fap“To, L Ep™ = —Fig"EcY (1.4.54)

To deal with the generalised metric in the form of an O(D, D) object [1.4.50} it is useful to define
the frame field in the matrix representation, based on its definition [1.4.47] For this we will need to

use the left and right invariant 1-forms - [ and 7 of the group element g as follows
1 =18 T,da™ = g 'dg, r=roT,dz™ = dgg" (1.4.55)

where the previous elements used in [I.4.47] are related to the 1-forms as follows [, v;" = ;. Then

the frame field can be represented in the O(D, D) matrix form as

1 0
E\f = ( m m) (1.4.56)

mTyT1ab
(A8 U R

So, we can review the Poisson-Lie (PL) T-duality as a constant O(D, D) rotation, with the
generalised frame field satisfying|1.4.49| with the structure constants F, BC of the Drinfeld double.
A further extension of the non-Abelian T-duality was found in [10], [20], and it can be applied to a

more general class of target spaces.

For PL duality transformation, we can combine the metric and B field into a matrix F
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Poisson-Lie symmetry will require the following condition on E,,, [10]
Loy En = 7 q0E v By Egn (1.4.58)

where f be

corresponding to the right action of the group G. A similar requirement is applicable to the dual

, are structure constants of the dual algebra, and v are the left-invariant vector fields

matrix Emn
Loy Emn = [ (0808 Epm Egn (1.4.59)

Solution of these equations can be found via integration to take the following form [10] expressed
in terms of the original and dual bivectors IT and II defined above via the adjoint action of dual

groups elements in terms of the inverse of E,,, and E‘mn:
E™ = ((E%)" + ") ol vy (1.4.60)
E™ = (B~ 4 I ooy (1.4.61)

where (E?)? is a constant matrix, inverted in the dual algebra case according to the initial conditions
and connection between the dual algebra at the unit element of the double [23]. Using the O(d,d)
embedding of the metric g and the 2-form B into the generalised metric ({1.4.50) and splitting Egb

into a symmetric and an anti-symmetric part Egb = 921; + ng building H 4p with these elements

ggb and ng as in ({1.4.50) with flat indices, we can recover the same results (1.4.60)) and (|1.4.61f) for

the elements g, and B, dual sigma models (with Egb replaced by (Eo)gb1 in the dual case) and
using (|1.4.52). We will demonstrate this explicitly when Egb is fully symmetric and diagonal on a

simple example below.

An example of PL duality will be briefly described in section (2.4.2) of chapter 2 in this thesis,
where the solution [2.4.27]is PL dual to the initial solution [2.4.24] Another simple example of a PL
duality can be taken from [30].

The example considers Poisson-Lie T-duality for Drinfeld double algebras represented by su(2)
and es (this is not the algebra of the Euclidean group in 3 dimensions, and is just a name we use
here to denote the algebra with brackets as below) with the generators T, and T correspondingly,
with the following brackets (we denote a,b =1,2,3 and i,j = 1,2):

[T, Tb) = €apeTe, [T3,T) =T, [T°, 7] =0 (1.4.62)

and the mixed brackets:
T3, 7] = ;T3 — 6,513, [T3, T = €19, [T3,T}] = e;;T7 — T; (1.4.63)
These algebras are PL. T-dual to each other as it can be seen from the relationship between their
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generators.

Starting with the left-invariant Maurer-Cartan forms corresponding to su(2)

[1 = cos v sinOd¢p — sinpdf
lo = sin sin 0d¢ + cos Ydb (1.4.64)
l3 = dip + cos0d¢

we can find the expression for the PL bivector satisfying (1.4.45)) to be of the form
% = —¢®A,, with A = (costsin,sintsinf,cosf — 1) (1.4.65)

Now choosing the constant matrix E% to be of the form (E%)™! = diag(A1, X2, A3), using (1.4.60)

we find for the generalised metric components g, and By, of su(2) gauged sigma-model

1 A A2A
ds? = = (Ag Ay + Z222585,,)100 (1.4.66)
% Na
1
B = Veabc)\cAcl“ A (1.4.67)
with
V = M)Az + N A2 (1.4.68)

Then studying the dual es algebra, we use the expression for left-invariant Maurer-Cartan forms

1 = e*Xdyl
lo = e Xdys (1.4.69)
I3 = dy

While the PL bivector that satisfies ((1.4.45|) for these left invariant forms and dual structure con-

stants is
rrab _ _ _abc 4 : ?_ —X X o 7)(_1 2 2\ ,—2x
1% = —e"*A., with A = (y1e¢7X,y2e~ X, sinh ye 2(y1 +y5)e”X) (1.4.70)

from where using the form of Egb and the relation for the dual generalised metric (|1.4.61f) we get
the following results for the components g, and Bab of the PL T-dual sigma-model

- 1, - A -
ds? = = (4, © Gy 11
° ( bt A1A2A3 ')
- 1 1 ~ -
B = —empe—AJ* NI 1.4.71
7 Cabe s ( )
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with -
1 A

-4 1.4.72
A1 A3 + Aa ( )
this reflects one of the simplest examples of PL T-duality.

Another way to derive these results is using the O(d, d) embedding in a form of (1.4.50) where

in Hp according to choice of E? we have ggb = %b gnd ng = 0 resulting in

‘7.

T A
Hyp = (iaj 0 ) (1.4.73)
0 dapAa
and for the dual model
Hap = (5‘“’A“ N ) (1.4.74)
0 g

then using ([1.4.52) with the frame fields corresponding to su(2) in the form of (1.4.56)) with II% as

defined above, and [%, and their inverse v}

1o 0
E.A= m 1.4.75
M (-UgneabCAc Um> ( )

a

it is easy to find the above result for the metric g, and the field By, as in (|1.4.66[), and similarly
for the dual components as in ((1.4.71]), in which we see a similar structure with the factor AjAa)s

inverted in the dual case, due to the inverse choice of factors in H4p and lEIAB.

1.4.5 Defining U-duality: generalisation approach

In order to move toward U-duality, which is a combination of T and S dualities, we first will have
to give a general understanding of the S dualities principles.

In type IIB supergravity a global SI(2,Z) exists corresponding to the S-duality symmetry that
acts on the scalar field combination of the dilaton ¢ and the axion y combined into one complex
field p:

p=x+ie® (1.4.76)

Under the action of the S-duality the metric and the 4-form potential fields (bosonic sector) remain
invariant, while the pair of the 2-form potentials transform as doublet, and the action on the complex
field p can be described via an action of SI(2,Z) group with integer elements a, b, ¢, d, such that

ad — bc = 1, in the way
ap+b

cp+d

(1.4.77)

Compactifying on a circle and identifying with eleven-dimensional supergravity compactified on a

torus implies that the modulus of the IIB theory should be equated to the modular parameter of the

29



torus - p [31]. Within U-duality this 72 torus can be further generalised to a d-torus, corresponding
to an exceptional symmetry group Egy(q)

The mathematical foundations of generalized U-duality are rooted in the exceptional algebra,
which plays a central role in describing the symmetries and transformations among different M-
theory backgrounds.

Generalised U-duality is a symmetry that arises in the context of M-theory, enabling a solution
generating technique that gives rise to new supergravity examples. Like the previously discussed
non-Abelian or PL, T-duality, generalised U-duality extends the dualisation approach to a broader
range of transformations, i.e. spaces without abelian isometries.

In the case of generalised U-duality in order to search for non-perturbative analogues of non-
abelian T-duality and PL duality, we extend the simple Drinfeld Double Algebra to Exceptional
Drinfeld Algebra (EDA) which is associated with the non-Abelian U-duality. This has been proposed
in [26/,27], by generalising the Drinfeld double Lie algebra to a new algebraic structure - the EDA.
Interestingly, this does not form a Lie algebra, but a more general structure known as a Leibniz
algebra (technically, the bracket of two algebra elements is not antisymmetric).

In the case of the generalised T-duality (a term used to refer to non-Anelian and PL T-dualities
in a unified description), the base was a double Lie algebra. A transition to a more generalised
version of the Lie algebra - the so-called Leibniz algebra in which the bilinear product is generalise
to a bracket that can be not anti-symmetric, and satisfies the Leibniz identity for the elements of

the algebra g1, g2, g3 € G

[l91, 921, 93] + [[92, 93], 91] + [[93, 91], 2] = O (1.4.78)

Our studies will focus around the E, exceptional algebra with n = 4 corresponding to the
generalised vector parametrisation that transforms under the extended symmetry group of the

theory, which includes both the spacetime diffeomorphisms and the internal symmetries associated

Vi = < Y ) (1.4.79)
Viqig

Generally speaking, the PL version of U-duality is a sort of extension of PL T-duality with the

with the exceptional group.:

Lie algebra being generalised, and the Exceptional Drinfeld algebra is systematically extended with

the similar structure of equation
Lp,ExM = —F,z°EM (1.4.80)

where the structure constants F', BC possess the Drinfeld double features, and the Lie derivative is
generalised to the Leibniz derivative.

On the example of SL(5) exceptional algebra, where we will use 5-dimensional indices M, N =
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1,...5, while the generalised vector is 10 dimensional: comprising of 4 dimensions of the simple
vector and six components of the 2-form. The SL(5) group has 2 totally antisymmetric invariants:
MNPOK and ¢ MNPok to preserve which under generalised diffeomorphisms we will have to define

the generalised Lie derivative as follows (see [34], [37] for details):
1 1
ﬁAVM = §A7’Q87>QVM — VPOPQAMQ + g@pQAPQVM (1.4.81)

where the antisymmetric derivative dpn is defined via its components (i = 1,...,4 stands as 4
dimensional index) 0;5 = 0; and 0;; = %eijklékl, where the partial derivative 9y is taken with respect
to the dual coordinates #¥ that together with the original 4-dimensional coordinates z* generalise the
notion of diffeomorphisms (incorporating simple diffeomorphisms and gauge transformation), and

can be further grouped into a set of antisymmetric coordinates X MN with components X» = z?,
X — %eijkli,kl_

Combining this with the generalised Lie derivative action on the generalised vector VMV | the
general rule can be rewritten in the form of 10-dimensional index M = [MN] on the generalised
vector VM = VMN with respect to AM = AMN

1
LAVM = ANoN VM — VNN AM 4 MNK e pocon AT VO — gaNANvM (1.4.82)

The closure of the algebra generated by this is achieved by demanding the so-called section condition

to take place for any two elements ¥, ¥’
MNPRRY vBpol =0, MVPRKY TOpoT =0 (1.4.83)

solution of which can be found by requiring & = 0. This reduces the generalised Lie derivative for
the generalised vectors UM = (u, A@)s VM = (v,7m(2)) to the following expression (L is the simple
Lie derivative)

Ly V = (Lyv, Lung) — tedA(2)) (1.4.84)

which can be seen as the generalisation of the expression ([1.4.48)) used in the PL T-duality case.

In order to fulfil relation (|1.4.80)) in the case of EDA now, we can choose the following parametri-
sation for the frame fields (M - stands for the curved index, A - for the flat one)

o E M

_ a

By = FaaM (1.4.85)
and generalising the II bivector in the PL T-duality case to a 3-vector A in the U-duality case, we
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can introduce further a fully anti-symmetric A%19203 = \la1a2a3] g4

EM P 0
M _ a _ a
E AT (Ea1a2M> - (Aalgebvm l[al la2]> (1486)
b "mi"mo]
with
Ea = (Uaa 0)7 Eala2 = ()\a1a2a3v(137 lal A la2) (1487)

and the elements satisfying
m o __ c,m a __ 1 ayb c b__ b
Lvavb = fab Ve dl* = 2fbc N1 s Ual = (5(1 (1488)

Where the trivector A*12%% defined via the scalar matrix K B(z) obtained via the adjoint action

of the group elements g(z) = 7+ as follows
g Hz)oTuy= K, B(x)Ts (1.4.89)

with the parametrization of K, B(z) as follows (here we use the adjoint element of the Leibniz

algebra a, ¢ defined as 12, = a, %)

K, 8= ( @’ 0 ) (1.4.90)

_)\alagcac b (a—l)[blm (a—l)b2]l12

While the action of the generalised Lie derivative on the generalised vector W

wM = ¥ (1.4.91)
Wmimeo

L,w™
LyWM = v (1.4.92)
(Lowa)y = twdv(2))myms

is defined by

In particular, we will focus further on considering the case of SL(5) and the E7, which can be

seen in a way as the dual counterpart of SL(5) in the dimensional classification.

Now, using the definition of the generalised Lie derivative|l.4.92 on the components of the frame
fields |1.4.86 with the assumption of A%192%3 = 0 at the point x = 0 according to section 3 of [26] we
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get the following set of non-trivial structure constants elements of F, 5

FLem (1.4.93)
F bibac — gmg Abibac (1.4.94)

B = A AL, (1455
Fue ¢ = _p @oc - _gmg wmas (1.4.96)
Foes 6f[b01[a1 5;122]]’ (1.4.97)
FmalebgClc2 _ _4eglam/\a1a2[blggf]cgl (1.4.98)

Now, let’s review the properties of the generators in the case of Leibniz algebra and rebuild

the algebra for special cases based on the structure constants we obtained above. We will rewrite
C C C . . . .

the elements F'y 5~ to be constant. However, now F, 5~ # F[AB] , since the Leibniz algebra is an

extended version of the Lie algebra, and the generators satisfy
TyoTp =F,5°Te (1.4.99)
this bilinear form is not anti-symmetric, but the elements of the Leibniz algebra satisfy the equation
Tpo(TpoTe)=(TaoTp)oTec —Tao(TcoTp) (1.4.100)

then the corresponding Leibniz algebra corresponding to (|1.4.93|-[1.4.98]) in terms of the generators
will be

TyoTy = f,°Ts, (1.4.101)
T, o0Thib2 — f bibeq 4 of [bipbole (1.4.102)
T2 o Ty = — f, “°T, 4 3 f[0102[a15;2}Tc1c27 (1.4.103)
T o Tble — _2fd ala?[blTbﬂd (1.4.104)
where the elements f are anti-symmetric only in part of indices ( T = [ [abT and f, bbabs —
fa [bleb‘?’]), and satisfy several identities as a consequence of the Leibniz identity, as shown in [26)]
Fiab e " d _ 0, (1.4.105)
fre “fe M2 =—6f, [dfc} mele, (1.4.106)
fd1d2 [‘115;2}]"6 a1d2]€ — 0, (14107)
al ca b
3f[d1d2[ 15612}]06 ebibs —_ _4fef [lll fc a2]e[b16d?}dj;, (1 4108)
fc ea1a2f€ dbiba _ 3fc 6[blb2fe dlaiaz (1.4.109)
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Now, let us give an explicit form of the generators T4 based on the definition (1.4.99) and the

above-mentioned properties. We rewrite

TyroTp = (Fa)g“Te (1.4.110)
which in its turn gives
Jan € 0
(Fa)BC = < ab boc [b1 ¢b2] (14111)
fa 2 _2fa[01 502}

o aiasc [al a2]

(Fzz1tz2)BC — ( fb 6f[01;12a2[b(jb}b2]d> (14112)
0 -2f, Octes

These features will be important in what follows in the thesis.

Differentiating the definition of the scalar matrix (|1.4.89)), we deduce the differential equation

on the trivector I1%19293  starting with
Omg H(x) 0Ty = 0, K, P(2)T5 (1.4.113)
Then expanding the left hand side of the equation
Omg Hz)oTy=—g  odugogtoTy=—(14Ty) o (K4 PTp) = -14,K, P(Fy) T (1.4.114)

which, after using the explicit form of K , B in (1.4.89) gives the following differential equations on
a,’ and \192%3

emOma,’ = a,%,°fy, ° (1.4.115)

a
e Om A% = (a7!), “(ah), 2 (ah),, Pa, 1f, M (1.4.116)

A few other properties that we will use further in this thesis can be derived from the Leibniz identity

in a form of its consequence
(9oTa)o(goTp)=go(TaoTp) (1.4.117)

which, decomposed into different components of (Fg4) BC gives the following properties (as it was

carefully derived in [26])

(@) @)y Tag fpf =t (1.4.118)

a, e(ail)flbl(ail)f2b2(a71)f3b3f€ fifafs — £, bibobs 3f.. [b1 \b2bs]e (1.4.119)
Fap X =0 (1.4.120)

B(f o MOy Nble — f gl abibeley g 0 yazline — (1.4.121)
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fd b1b20>\a1a2d . 3fd aiaz(by )\bgc]d — 3fde [C)\blbz}d)\alage . 4fd6 [a1 )\ag]d[bl )\bg]ec (14122)

these properties will be used in the future analysis of the special cases to be considered in the main
part of the thesis, restraining the set of supergravity solutions falling under this classification (spaces
where we can apply our dualisation procedure).

Let’s provide a brief description of how the generalised U-duality works. The EDA consisting
of two subalgebras (in the ideal scenario we always use subalgebras that are maximally isotropic -
there does not exist another subalgebra that is isotropic and contain the former subalgebra - but,
as we will show further in Chapter 2, it is possible to use a set of maximally isotropic generators,
that are not always subalgebras) g and g are related by an exceptional algebra transformation TMN
(in the example considered in the next chapter this will correspond to an SL(5) transformation),
and with the corresponding frame fields Ej; and E},;. Then we introduce the generalised Scherk-
Schwarz reduction (see section for details and definition ) of 11-dimensional supergravity to
a reduced dimension (7-dimensional in the SL(5) case) maximal gauged supergravity, which will be
then uplifted and dualised to a new supergravity solution.

The generalised metric, unifying the bosonic fields of the theory, can be parametrised via frame

fields and a scalar matrix Mg constant on the internal space coordinates
Hyn = E\f ENPMap (1.4.123)

Then, the exceptional group transformation (SL(5) transformation in our following example in

Chapter 2) on the fields of the reduced dimensional (7-dimensional) supergravity acts as
M)yp=Ta“TsPMcp (1.4.124)

producing a new dual scalar matrix M5, which we then lift back to 11-dimensional maximal
supergravity using the frame fields EMA producing the new dual scalar fields, corresponding to the

generalised U-dual supergravity solution with the generalised metric
Hin = EVAENBM, 5 (1.4.125)

providing us with a new supergravity solution. We will demonstrate this procedure in examples
in the following 2 chapters and present it as a solution generating technique in supergravity and
M-theory.

1.5 Brief overview of Exceptional Field Theory (ExFT)

Exceptional Field Theory (ExFT) is a theory describing spacetimes with exceptional symmetry
groups, that incorporate exceptional Lie algebra symmetries (SL(5), Eg, F7 and Eg). The field
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components in ExF'T consist of the metric g, 3-form C,pp and a 6-form Cpppg for larger dimen-
sions, transformation of which (d-dimensional diffeomorphisms and gauge transformations) can be
described via a generalised vector parameter AM unifying in itself the vector field A, 2 and 5 -forms

Amns Amnkip corresponding to the transformation of each field:

0Gmn = LAGmn (1.5.1)
0Cmnp = LACrnp + 38[m)\np]
5Cklmnpq = LACk:lmnpq + 68[k)‘lmnpq} + 3OC[klman)‘pq]

where the gauge parameters are unified in the generalised vector AM — (A™, Mnns Amnipq), form-
ing representations of the exceptional groups Ejyg). This can be expressed in the generalised Lie
derivative (special case of Leibniz derivative). In a more general form for the Ey(4) generalised Lie
derivative with respect to coordinates Y™ lying in the R; representation - a representation of Eqa)
where the generalised vector appears, the generalised Lie derivative acting on a generalised vector

VM of a weight A\ reads as

LyVM =UNonvM — aPMy TopURV Y + AvanUN VY (1.5.2)

where P]%V PQ is a projector projecting from the R; x Rj to the adjoint representation, and « is a
constant depending on the group under consideration. The closure of the algebra generated by this
generalised Lie derivative will result in a section condition applied to any fields or gauge parameters
¥, ¥ in the theory

YMEoomVoNY =0, YME,000nT =0 (1.5.3)

where the Y tensor is defined as
1
YHEg = —aPip + 0505 + ——0q 0p (1.5.4)

which in the case of SL(5) reduces to the condition [1.4.83|introduced in the previous section.

The action of ExFT is constructed from the fields: n-dimensional metric g, € GL(n)/SO(1,n—
1) which transforms as a scalar of a weight % under the generalised diffeomorphisms, the gener-
alised metric Hy € Eyq)/Hq - a tensor of weight zero, where Hy is a maximal compact subgroup
of Eq(q), and a set of gauge fields: Ay, ... Cp, . ug_,, Where each p-form belongs to the representation
R), of Eq(q) and transforms with the weight —-=5. The strength field composed of these gauge fields
do not transform tensorially under the generalised Lie derivative, and require special compensator
fields to be added, defining the tensor hierarchy in ExFT [3§].

Consider an example of SL(5): the field content consists of the following elements

{g,ul/aHMN,'PgﬂA:[/)/INaB,LLl/M7C“yp M} (155)

36



where greek indices are 7-dimensional indices related to the "external" 7-dimensional space coor-
dinates z#, and M, N = 1,...,5 denote five-dimensional fundamental indices constructed of the
10-dimensional indices M = 1,...,10 of Ry: M = [MN/]. Field strengths tensors of the gauge fields
A{Yw ;» Buum, and C, M are F. MN s Hyvpm and J, ., M correspondingly. The generalised
metric Han po parametrises the coset space SL(5)/SO(5), and can be decomposed as

Hpyppnpo = MMPMON — MMQMPA (1.5.6)

with man = maag and det(man)= 1.

The SL(5) action invariant under generalised diffeomorphisms (in each term) and external dif-
feomorphisms (the latter requirement fixes the coefficients between terms in the action) is found to
be of the form:

g
1 —
~ 5 N Hyord H' 4 Line(m.9) + (Vo) ' Liop) — (15.7)

1 1 ,
Ssi(s) = /dw7dY\/ [91(R(9) + ; Dum™ N Dmaan = cmagpmaroF, YN FHPO

This action matches the decomposition of 11-dimensional supergravity action (1.3.13): as it has
been shown, the 11-dimensional action decomposed properly into terms match the SL(5) ExFT
action in every term, after performing the decompositions via a Kaluza-Klein reduction and
further uplift of the 11-dimensional supergravity action (see sections (3.2) and (4.6.2) of [49]). In
addition to that, different solutions of the section condition in ExFT (defined back in (1.4.83))) result
in different type IIB supergravity solutions, establishing a strong connection between supergravity
and ExFT.

Using a parametrisation of SL(5) in terms of the generalised metric: the 4-dimensional internal

metric ¢, and the 3-form represented by C™ = %em"lenkl

_ -2/5 ¢mn Qbmkck
mmy = ¢ (—%kc’f ¢+¢klckcl) (1.5.8)

and for the gauge field strengths according to the tensor hierarchy

EL
Fuy M = 1 _mnkl _ (1.5.9)
7€ (Fwkt — v Clap)
Huupm = _Fp,l/pma J/Jl/pg b= _F;u/pa (1510)

while Hyyp5 and J,,, i can be derived from the duality relation between Haq and J™M resulting
from the equation of motion and resulting in the relation mMN Hy ~ xJM. Plugging these fields

in the SL(5) action (1.5.7) one can easily verify that the 11-dimensional SUGRA action (1.3.13))

37



can be recovered in every term matching its SL(5) ExF'T decomposition (into 4 "internal" and 7
"external" coordinates). This highlights an important role of ExFT in supergravity, and we will
be using this technique further in the thesis in constructing new solutions via dualising the original

supergravity solutions decomposed according to the ExFT structure.
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Chapter 2

Exceptional Drinfeld Geometries

2.1 Introduction

The textbook T-duality symmetry of string theory that applies in backgrounds with Abelian isome-
tries is a cornerstone of the duality web that ultimately leads to M-theory [1,2]. Less standard is
the application of T-duality to backgrounds whose isometry group is non-Abelian [3|. While its
status as a precise duality in either o/ and gy expansions is not fully resolved, at the very least
non-Abelian T-duality (NATD) is a useful tool as a solution generating symmetry of Type II super-
gravity (for a review see [12]). More exotic still are applications of T-duality to backgrounds which
have no isometries at all. Poisson-Lie (PL) T-duality, introduced by Kliméik and Severa [10,/11],
provides situations where such a non-isometric duality can be realised. This is made possible when
the target spaces have a certain Poisson-Lie symmetry property giving rise to an unexpectedly rich
algebraic structure encoded by a Drinfeld double, 0 [19]E] Despite this lack of isometry, the corre-
sponding non-linear sigma models can actually exhibit classical (and quantum) integrability [39).
Close connections between integrability and Poisson-Lie duality have come under renewed focus
with holographic motivation following the development of the integrable n |39] and related A [40]
deformations applied to the AdSs x S° superstring in [41] and [42] respectively.

Poisson-Lie geometries (i.e. those for which PL T-duality can be realised) can at first sight
seem convoluted, especially when presented in terms of the regular geometric data consisting of the
metric and Kalb-Ramond two-form. However, when viewed using generalised geometry the situation
is radically improved; the PL property of the target space is encapsulated [23] by a generalised
parallelisation [43,/44]. This consists of a set of generalised frame fields that span the generalised
tangent bundle, TM @ T* M, and which furnish the Drinfeld double algebra under the generalised

Lie derivative. Moreover there is a natural candidate for the extended target space that appears in

!The Drinfeld double ? is an even-dimensional Lie algebra that can be decomposed into two sub-algebras d = g+
that are maximally isotropic with respect to an ad-invariant inner product of split signature. The Jacobi identity of
0 enforces a cocycle compatibility condition between g and g.
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both the world-sheet doubled sigma-model [45,46] and in the Double Field Theory approach [23,24],
namely the group D = exp DE]

The U-duality symmetry of M-theory can also be viewed as a generalisation of T-duality, arising
when one combines the perturbative T-duality symmetry with non-perturbative S-dualities. Until
recently, there has been no hint of whether U-duality admits non-Abelian or generalised versions. A
proposal for the algebraic structure that would underlie such dualities has been introduced in [26},27]
and called the Exceptional Drinfeld Algebra (EDA).

Roughly an EDA is an algebra 0, defined by a bracket, [e, ®] : 9,,®0,, — 0,,, which does not need
to be antisymmetric but obeys the Leibniz identity, and admits a Lie subalgebra g, of dimensions n
or n — 1. Moreover g can be considered a maximally isotropic subalgebra in a sense we shall make
more precise later. For the case of n < 4, that shall be our concern here, the data of an EDA can
be interpreted as consisting of a Lie-algebra g together with a three-algebra g that are restricted to
obey a cocycle compatibility condition. A key point of [26,27] was that the EDA can be realised by
a generalised Leibniz parallelisation for the exceptional tangent bundle TG @ A?T*G thus echoing
the set up of Poisson-Lie T-duality and allowing this framework to be used to generate solutions
using the ideas of generalised Scherk-Schwarz reductions. Some features of the geometry, and the
membrane interpretation, were then given in [35|, while a classification of all possible EDAs for the
case of n = 3 was made in [36].

We shall explore the geometry associated to this new M-theoretic algebraic structure in a number
of explicit examples. These examples reveal intriguing connections to several topics. We study
geometries which encode the structure constants of three-algebras, which naturally show up amongst
the structure constants of the Exceptional Drinfeld Algebra. Here we can also connect with a class of
CSO gaugings of 7-dimensional maximal supergravity. Hence, we get for free out of our construction
some simple new uplifts for these gaugings. These uplifts could be regarded as “non-Abelian U-
duals”, in some sense, of spheres with flux. We will also describe the embedding of Poisson-Lie
T-duality into this set-up in some detail, revealing a construction whereby the Exceptional Drinfeld
Algebra involves augmenting the Drinfeld double with a spinor representation. Making a frequent
usage of some technical results within Exceptional Field Theory which, to allow for completeness but

avoid distraction, have been included as appendix material here. (For a detailed review, see [49].)

2.2 The SL(5) Exceptional Drinfeld Algebra

2.2.1 The algebra

We begin by specifying the Exceptional Drinfeld Algebra in the case of the group Ey4y = SL(5).
We introduce five-dimensional fundamental SL(5) indices A,B =1 ...,5. The generators of the

2The discussion here is adapted to the case where the physical target space M is a group manifold M = G = D/ G
with G = exp g and G = exp g. However, when M can be constructed as a double coset, M = H\D/G, similar ideas
apply both from the world-sheet [47] and target space [48| perspectives.
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Exceptional Drinfeld Algebra live in the ten-dimensional antisymmetric representation, and we can
label these with a pair of antisymmetric five-dimensional indices, T'4p = —TB4. The brackets of the

generators are

1 £F
[Tas, Tep] = SFuasen™ Ter (2.2.1)

(where the factor of 1/2 is inserted to avoid overcounting) and these need not be antisymmetric.

We do require the Leibniz identity
\Tpp:, [Teer, Topr]| = [[Tser, Tee'), Topr] + [Teer, [Tps Topr]] (2.2.2)
which in terms of the structure constants leads to
%FBB',&S'AAIFCC'DD/%/ - %FCC’,(ES’AA/FBB’,DD’gg, = %FBBCCC’E:SIF(S:‘,",DD/AA/ . (2.2.3)

If the bracket is antisymmetric, this reduces to the usual Jacobi identity.

More generally, the constraint is the same as the quadratic constraint of gauged super-
gravity. This link — or equivalently the fact that we are restricting to Leibniz algebras which can arise
from a generalised parallelisation of SL(5) exceptional geometry — also motivates the assumption

that the structure constants can be decomposed into irreducible representations as

- 1 1 1
Fapep® = 4FAB[C[85D}] . Fasc® = Zasc® + 55[?458}6 - 6@\85? - 35[?476]c , o (2.24)

where 7o = —7TA, Sas = Sp4 and ZABCD = Z[ABC]Da ZABCC = (0. This means that the only
SL(5) irreducible representations appearing in the structure constants of our Leibniz algebra are
those specified by the linear constraint of gauged maximal supergravity in seven-dimensions [50].
Now we impose the further conditions that make this SL(5) Leibniz algebra into an Exceptional
Drinfeld Algebra. We require that there is a Lie subalgebra g C 04 which is isotropic in the sense
that?]
eABCPET s @ Tep = 0, (2.2.5)

and we further require this subalgebra to be mazimal in the sense that appending any extra generator
to g will violate . This means that it will have either dimension 4 or 3, and so can be
interpreted (borrowing terminology from Exceptional Field Theory) as the physical subalgebra in
either an M-theory or type IIB background, respectively. To articulate this condition in a more
invariant fashion we can say that alongside 0,, we must specify a “pure spinor” A in an appropriate

representationﬂ of E,(,) which acts linearly on the 9, vector space schematically as A ¢ T". We then

3Note that a systematic construction of generalised frames corresponding to a given set of generalised fluxes was
set out in [51] in which a similar condition plays a necessary role: it really just ensures that the section condition of
Exceptional Field Theory is satisfied.

“In DFT this would actually be a spinor representation, in ExFT it is not generically spinorial but will obey a
purity constraint projecting out certain representations in the tensor product of A with itself.
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demand that the kernel of this action, g = ker(A) be a Lie subalgebra. There are different choices
for A that will result in a subalgebra g of dimension n, which we call an M-theory section, and
dimension n — 1 which we shall call a IIB-theory section. This pure spinor approach is essentially
the same as that used to define solutions to the so-called section condition of Exceptional Field
Theory [34152].

For the case of SL(5), in the IIB-theory section the pure spinor A is in the 10 and the purity
condition is that AMBACP] = (. The linear action is defined by

AeT := AN Tpp — %ACDTCD&“B.

As an example consider A% = —A5* = 1 with the other components zero. Evidently this is pure
and it is such that it defines
ker(A) = span{Tlg, T13, ng} . (226)

In the M-theory section the pure spinor A is in the 5, the purity constraint is automatic and no

further conditions are placed on A. The action on generators is
AeT := A Tgse - (2.2.7)
Consider taking A4 = 0 4,5, in which case
ker(A) = span{Tysla =1...4}. (2.2.8)

We will continue now in this M-theory section, and decompose indices as A = (a,5), where a =
1,...,4 such that the physical subalgebra is generated by the generators t, = Tg5, with Lie algebra

structure constants f,;°.

In terms of the irreducible representations, the Exceptional Drinfeld Algebra is wholly defined

in terms of the Lie algebra structure constants f,;° along with Sgp, 745 and 7,5, with:
2
S55 = 07 Zab05 = 07 ZabS5 = gTaba Zabcd = _T[abag] )
2

4 2
Sus = —§Ta5 - gfabba Zab5c = _fabc - g(sfafb]dd )

(2.2.9)

To write down the algebra explicitly, we combine S, and 7,5 into a “dual” structure constant with
three upper antisymmetric indices given by

rabe 1 abce

[ = ZE (Sde + 274e) - (2.2.10)
If we further define the “dual” generators % = %e“deTcd, then the Exceptional Drinfeld Algebra
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can then be written as

[taa tb] = fabctc 5

[tm thC] _ 2fad[bt~c]d - bedatd o 1£a£b67
i 3 (2.2.11)
[Ebc’ta] _3 f[de[b 52]}5(1@ + fbcdatd Ty 5([11250(1] ,

[i{ab7 fcd] _ 2fab[cg£d]e 7

in which we introduced the combination £, = 745 — fa¢®. With £, = 0 this presentation closely
resembles the structure of a Drinfeld double. However crucially this bracket has a symmetric part
that vanishes if and only if

2

380+ fa" =0, T =0. (2.2.12)

In addition to the Jacobi identity on g, the Leibniz closure conditions ({2.2.3) enforce that the dual

structure constants obey the fundamental identity of a three-algebra
fabgcfdefg - ng[decff]abg —0. (2213)

There are also a set of compatibility equations between f“bcd and fu¢ which include in particular
a condition 5
fo[a[cfde]fb] + fabfdeef + ngde[a'Qb] —0. (2214)

When £, = 0 this last condition states that the dual structure constants, viewed as a map f g —

A3g define a A3g* valued one-cochain.

2.2.2 The generalised geometry realisation

A geometric realisation of this algebra can be achieved using as data the left-invariant forms [* and
dual vector fields v,, obeying i, 1® = 6, of a group manifold G, together with a trivector A*¢ and

a scalar « that are required to obey differential conditions:

1
di* = foe"l" AL Logvy = = fave, (2.2.15)
. 1
dAe = fabeyid 4 gt glenbedie 4 gxabcsdzd, (2.2.16)
1 1 s
Lva Ina = gga = 5(7“5 — faf ) . (2.2.17)

Below, we will often write the trivector A% in its dualised form

1
)\abc — EGdeAd D P gebcda)\de ) (2218)
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These data can be naturally understood in terms of a generalised frame field using SL(5) exceptional
generalised geometry or SL(5) exceptional field theory [37,/53H56]. We provide the necessary back-
ground material in appendix [A.T], and will only summarise the key details here. A generalised frame
is a section of the generalised tangent bundle TM @ A?T*M, where M denotes a four-dimensional
manifold, and so we can write Fap = (eas,w(2)45) in terms of vector field e 45 and a two-form
w(2)45- Under the generalised Lie derivative (for more see appendix which acts as

LpasEep = (LeggecDs LeagW(2)eD — teen WW(2)4B) - (2.2.19)
the frames are constructed such that they obey

1
LpasEep = —iFAB, ep®” Eer, (2.2.20)

where in general the quantities F Ag,cpgf give non-constant “generalised fluxes” defined as in ap-
pendix We are interested in the case where a set of frames can be found with constant fluxes,
in which case their generalised Lie derivatives furnish a geometric realisation of a Leibniz
algebra.

We can achieve such a realisation of our Exceptional Drinfeld Algebra. First, we decompose our

10-dimensional generalised frame as

E,=E.;, EY=_e%p,. (2.2.21)

DN =

and specify that, in terms of pairs of vectors and two-forms, these are given by

E. = (v4,0), E® =%, al®Alb). (2.2.22)

The differential conditions (A.3.21)), (A.3.22) and (2.2.17)) ensure that the algebra of frames (2.2.20))
reproduces the Exceptional Drinfeld Algebra (A.3.25) subject to the imposition of some algebraic

constraints which take the form:

0= flap™ g + 6M@€0%, 0= T\ (2.2.23)

]

These constraints ensure that the structure constants of the EDA are invariant under an adjoint
action of G = expg [26,)27]. They are also what is needed to ensure that the structure constants

are indeed constant.

In what follows, it will be convenient to package the same data into a frame field E4 in the 5
representation i.e. as sections of the bundle (R @ A3T* M) ® (det T*M)~3/19, Here the weight factor
is such that the frame has unit determinant when viewed as a five-by-five matrix (see appendix
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for more details). This matrix is given by

11 .
NN ° . (2.2.24)
T2a72), [T2a72

N|—=

where [ = det1%; and A = asl5 is a corrective weight whose interpretation in terms of the determi-

nant of the external 7-dimensional metric is explained in appendix

2.2.3 The geometry

In the E,(,) Exceptional Generalised Geometry (EGG) / Exceptional Field Theory (ExFT) ap-
proach to supergravity an artificial splitting is made into n internal directions (coordinates of which
we denote x) and D = 11 —n external directions (coordinates of which we denote X'). This splitting
allows the field contentﬂ of the supergravity to be reassembled into appropriate representations of
the B ().

In the case at hand, n = 4, the degrees of freedom associated to the “internal” four-dimensional
metric, g;;, and three-form, Cjji, parametrise the coset SL(5)/SO(5). This coset can be described
using a generalised frame or equivalently a SO(5)-invariant matrix man called the generalised
metric. The technical details of how to extract the conventional geometric data from a generalised
metric are presented in the appendix. In particular note that we have one extra piece of geometric
data, namely the scalar A = A(z) (or equivalently «), which is related to the determinant of the
external metric.

Here we will consider generalised metrics admitting a particular factorised form using the gen-
eralised frame field (2.2.24)), such that

man (X, z) = B4y (2) EP pr(2)ma(X), (2.2.25)

where m 45(X) denotes an SL(5)/SO(5) coset element depending only on the external coordinates
X. This factorised form of eq. is known as a generalised Scherk-Schwarz reduction ansatz.
It is now well-established that, starting with EGG/ExFT, such an ansatz gives rise to lower-
dimensional maximal gauged supergravities [57,[58| (this idea was pioneered in the half-maximal
case in DFT in [59-H61]). The structure constants of the Exceptional Drinfeld Algebra are inter-
preted as the embedding tensor which specifies the gauging of this theory, and the matrix map
contains the scalars of the gauged supergravity.

One can regard two separate generalised frames E* and E’* producing the same Exceptional
Drinfeld Algebra, up to some SL(5) transformation acting on the indices A, but possibly depending

on different choices of the physical coordinates, as being generalised U-dual in the sense that they

®More precisely the bosonic field content is packaged into representations of E, (n) while the fermions (which play
no role in the discussion here) form representations of the maximal compact subgroup.
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will both reduce to the same 7-dimensional theory.

A key point here is that to complete the geometries given by the EDA frame fields as fully-
fledged solutions of 11-dimensional supergravity one needs to determine the external sector by
solving the equations of the resulting lower dimensional gauged supergravity. Conversely, given a
solution of the gauged supergravity whose embedding tensor matches the form of an EDA | then the
ansatz provides an uplift. Our immediate aim however is not to construct full supergravity
solutions, instead we wish simply to gain some intuition for the sort of geometries that arise when
the generalised frame fields of the EDA are used to construct the internal metric. To this end let us
simply set map(X) = dap and set to zero off-diagonal components of fields i.e. those with mixed
four-dimensional and seven-dimensional indices. Using the dictionary reproduced in full in appendix

we can, as in [35], work out the geometry giving rise to the Exceptional Drinfeld Algebra

1
dsty = o®P(1+ A3 [ ds? + ———— (0ap + A M) 1" @ 1P
st =a”?(1+ ) 57+1+)\C)\C( b+ Aap)l* @
_ a2/3(1 + )\C)\C)l/?’dsg +d527 (2.2.26)
1 «o
= NP A A
Co) =~ Tragne vt ANEAL
where we use d4p to contract Lie algebra indices.
2.3 Three-algebra geometries
We will start by exploring geometries with
fat=0, [ #0, (2.3.1)

which we shall refer to as three-algebra geometries. The analogue of such cases in terms of non-
Abelian T-duality would be the geometries that one obtains after dualising from a geometry with
a group manifold symmetry, fa¢ # 0, f%, = 0.

The corresponding Exceptional Drinfeld Algebra is most transparently expressed in terms of the

undualised generators

[Tus, Tys] = 0,

1
[Tas, The] = i(sa[b + 274)Tejs = —[The, Tus) (2.3.2)
[Tab, Tea) = —TabTea + (Sqp + 274 ) Tajfa -

When 7, = 0, this is the Lie algebra CSO(p,q,7+1), p+q+r = 4, as is clear from diagonalising Sy
such that Sap ~ diag(+1,---+1,—1,...,—1,0,...,0). When 74 # 0 we have a genuine Leibniz
——

p q r+1
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algebra. The conditions for closure are
Sa[chd] = 07 T[achd] = 07 (233)

which are also what are required for the final equation of (2.2.23)) to hold. The only solutions can

be organised according to the rank of S,;, assuming the latter has been diagonalised:ﬁ
e S, has rank 4 or 3, then 74, = 0,
e Sy has rank 2, say S11 # 0, S92 # 0, then we can have 75 # 0,
e Sy, has rank 1, say S11 # 0, then we can have 79, 713, 714 # 0,

e S, has rank 0, then we can have either 719, 713,714 # 0 or 712, 713, 723 # 0 (or other choices

related by relabellings of the indices).

In order to realise this algebra using a generalised frame, we introduce 4-dimensional coordinates
z' and take
1% =07, Aabe — fabe pd o — constant (2.34)

a

22%). To extract the geometry, we note that

(where 2% = §

1 ~ 1
)\a = gﬁbcdabedexe = E(Sab — 2Tab)xb, (235)

which we can use in the general formulae (2.2.26)).

If we choose the coordinates x* to be periodic, then this corresponds to a U-fold, as to make the
space globally well-defined we have to patch via a shift of the trivector. This is a non-geometric
U-duality transformation, and we can then further view the flux f abe ) as an M-theory non-geometre
Q-flux [62]. This is the generalisation of the interpretation of non-Abelian T-dual geometries as
T-folds [63].

We note that the paper [26] considered an example where f234, F234, 134, F134) are all non-
zero, in which case Sgp has rank two (but is not diagonal in this basis), while for 7,5 only 79 # 0.
For f2341 = f2342 = 0 this allowed other isotropic subalgebras corresponding to the embedding of
the non-Abelian T-dual of the Bianchi VI algebra.

2.3.1 Non-Abelian T-duality revisited and C'SO(3,0,2)

As a first example, let’s consider C'SO(3,0,2), for which we set

Sap = 4diag(1,1,1,0), 74 =0. (2.3.6)

STf S.p is not diagonal then the constraints on 7, will be different, as will the form of the algebra, but this will
be related by a similarity transform.
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We will show now how this set up actually provides an embedding for the non-Abelian T-dual
(NATD) of the three-sphere S with respect to an SU(2)r isometry sub-group. In the M-theory

section the four-dimensional geometry with coordinates (z¢,2%), i = 1,2, 3, is given by

ds? = (14 Sppa™az™) =23 ((6ij + wizj)da’da? + (dzt)?) ,
2.3.7)
1 6ijk4$k i j 4 (
Ci) = AT+ 5mnmm:1:”dx Adx? Adzx™.

With z* taken to be periodic and identified with the M-theory circle, we can reduce to give a ITA

configuration for which the 3-dimensional internal part is:
ds? = 1 5 ) detdad
R T (035 + wix;) d'de’
1 Eijkltk
21+ Omnx™ ™
e<1> _ (1 + 5mnxmxn)—l/2 )

B(Q) = dz’ A da? , (238)

This is indeed the aforementioned NATD geometry.

This prompts the obvious question: how does the geometry prior to T-dualisation (i.e. that of
the S? with round metric) manifest itself within the EDA setting? To address this we will need to
consider the EDA in the IIB-theory section[’]

To see this, let’s look at the Exceptional Drinfeld Algebra more closely. Let’s relabel our indices
such that now ¢ = 1,2,3. Then the only non-zero components of the three-algebra structure

constants in this case are
fabt, = —eab, (2.3.9)

where €, = eabds, .

Adapted to this we assemble the generators of the EDA as t, = Tgs, t4 = t45, e = %eabchc and
Sq = Tuq such that the algebra is given by
(ta,ty] =0, [1%8°]) = —€ed®,  [ta, 1] = —€*ute, (2.3.10)
0 = [ta, ta] = [ta, 5a] = [t4, 1], (2.3.11)
ta,sp] = +Oaptas [Sarsp] =0, [Sa,1] = —2€,%s., (2.3.12)

The original M-theory section physical subalgebra is U(1)* generated by t,,t4. In IIA, we have a
U(1)? generated by t,. In this presentation we now see an additional SU(2) subalgebra generated
by t* = %eabchc. This non-Abelian algebra is indeed a maximal isotropic in the IIB-theory section

specified by the pure spinor with non-zero components A% = —A% =1,

"This is natural; non-Abelian T-duality will change the chirality from IIB to IIA if three isometry generators are
dualised as is the case for SU(2).
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Working now in this IIB-theory section it is easy to establish a set of generalised frame fields
that realise this EDA. As detailed in the appendix, here the relevant generalised tangent bundle
is E=TM®T*M ®&T*M & A3T*M and we use the notation 4 = (a, 1), &1y, a(3)) to denote
its sections (the generalised vectors). Using the type IIB generalised Lie derivative , this

algebra can be realised using the following generalised frame:

1
E® = §6abchc —

Fo = Fas = (2.3.13)

where [, are the left-invariant one-forms on SU(2), v® the dual vector fields, and vol is the corre-

sponding volume form.

Here we see that there is a natural block diagonal decomposition of the generalised frame field.
Let us consider the top left block i.e. the projections of E* and E, to the O(3,3) generalised
tangent bundle TM @ T*M. These are exactly of the form of the generalised frames for Poisson-Lie
duality [23] in the case that the Drinfeld double is semi-Abelian of the form given in eq. (2.3.10).
This is precisely what is required to realise non-Abelian T-duality starting with the round metric
on the S3Ff] The bottom right block, i.e. the projections of Eu5 and Eys to T*M @ A3T*M can be
understood as defining a spinor representation of the O(3,3) generalised frame field given by the
top left block. We shall discuss this feature in more detail when we return to the full Poisson-Lie

duality context.

Relationship to Hohm-Samtleben frame

We would like now to relate the EDA generalised frame described above to previous constructions of
SL(5) generalised frames realising the same C'SO(3,0, 2) gaugings. A particular class of generalised
frames realising C'SO(p, ¢, r) gaugings were constructed by Hohm and Samtleben in [57]. For ¢ = 0,
this frame depends on the coordinates y¢, where i = 1,...,p— 1, which are coordinates on an Sp_l,[ﬂ

and we let u = 6il-yiyl. Then, the frame involves both a three-form and a trivector

By = (g, —tu,C3)) 5 E® = (0, 0u® Aub) + A¥E, | (2.3.14)

8What is used here is only an SU(2)r, isometry group, so the considerations here do not directly impose the bi-
invariant metric on S®. This comes about because of the assumption made earlier in the generalised Scherk-Schwarz
ansatz that mas = 6as. Choosing other constant map will give non-Abelian T-duals and their lifts of the S?
equipped with metric ds® = g“bla ® I and two-form B = b*?l, A l, with g“b and b,p constant.

9Generalised frames describing sphere reductions in general have been constructed [44] and can be checked also
to involve both a three-form and a trivector.
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with a vielbein v/ = (1 —u)/262, a function o = (1 —u)"/6, and (writing the dualised forms) both

a trivector and three-form, given by
Ao = ((1—u)™2655,0), C' = ((1—u) 2y K (u),0). (2.3.15)

For p=3,¢=0,r =2, K(u) obeys the differential equation 2(1 — u)ud, K = (-2 + u)K — 1, and
the solution is K(u) = —1/u.

For C'SO(3,0,2), the four-dimensional physical geometry encoded in this frame is R? x S?
equipped with

YilYj
1—u

053 = (dy)? + (dy™)? + (@ i ) dyidy
(2.3.16)

. 1
Clg) = —euny™(1 —u)7/*(1 - —)dy* A dy® A dy* .

Although the three-form looks rather complicated, the field strength is just F{4) = Vol(S HAdy3 Ndy?.

Compactifying the coordinates y3,y?, this trivially reduces (on y?, say) to a IIA configuration

with S' x S? internal space

ds3 = (dy®)* + <5Zj +1 _ju> dyldy? ( |
2.3.17

_ 1.
Bg) = —ewyF(1—u) "2 (1 - E)dyl/\ dy®
and a constant dilaton. This can be T-dualised on y3, in order to produce a solely metric configu-
ration:

YilYj
1—u

1 o o

ds? = (dg® + = (1 — u) P 2e 90 dyt)* + <5J + ) dyLdy? . (2.3.18)
w J J

Taking our sphere coordinates to be y! = sinf cos ¢, y? = sinfsin ¢, where 6 € (0,7), ¢ € (0,27),

then u = sin?#, 1 —u = cos? 6, and dy'y? — dy’*y' = —sin? 6d¢. As a result, the geometry becomes
ds3 = (dij® — cos 0d¢)* + dQ3. (2.3.19)

This is the three-sphere S% described as a Hopf fibration.

All these backgrounds produce seven-dimensional gaugings which are equivalent up to global
SL(5) transformations acting on the generalised fluxes. The complete duality chain between the
Hohm-Samtleben frame and our EDA frame consists of: reduction from M-theory to
ITA, T-duality on the Hopf fibre to IIB, non-Abelian T-duality on S3 back to IIA, followed by uplift
to M-theory. This can be interpreted as a “generalised U-duality” however one that consists of a

chain of ordinary plus non-Abelian T-dualities. Part of this duality chain takes place entirely within
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the EDA setting, but that involving the frame (2.3.14]) uses a different construction of generalised
frames. We depict the relationships between these geometries and different SL(5) frames in figure
2.2

Postulated generalised U-dual
Dual within EDA

M-theory geome-
try of EDA frame
(12.3.7)

M-theory geom- ‘
etry of HS frame ‘

(2-3.16)

reduce /uplift NATD on S3

IIA t
|IIB on 53 \\ eOmEeLLy

ITA geometry of ‘ of EDA frame

HS frame (2.3.17) | \ | 233)

reduce /uplift

T on Hopf fibre

Figure 2.1: Duality chains involving the NATD of S® and alternative C'SO(3,0,2) frames

Postulated generalised U-dual

Dual within EDA
{M-theory EDA }

M-theory HS

__J

reduce/uplift

! NATD on S3

(1IA HS ]

Figure 2.2: Duality chains involving the NATD of S® and alternative C'SO(3,0,2) frames

Non-metric 3-algebras

A variant of the situation above is to consider the non-metric 3-algebras considered in [64-66] for
which
fabllc — f*ab67 fabcd — fab44 — fabc4 — 07 (2320)
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with f2, the structure constants of a Lie algebra. In terms of the embedding tensor components

we have equivalently
Syy = S4c=T4c =0, Sap = _2€cd(af6db) y  Tab = _Eabchdd> (2321)

which for 7,5 = 0 requires that f define a uni-modular algebra. In this case the EDA is as in
[-3.10)-([2-3.12)) after the replacement of €®®, — —f, and the construction of the ITB-theory
section generalised frames goes hrough unchanged. This then provides an EDA embedding of non-

Abelian T-duality of uni-modular group manifolds G with respect to a G, isometry.

For instance, with S, = diag(1,1, —1,0), such that we describe C'SO(2,1,2) gaugings, we have
that the non-metric three algebra is built from SL(2), and that the story above will go through.
Recall that we are using d,p to contract algebra indices (i.e. not the indefinite Killing form) and
hence the IIB NATD geometry above will be based on Hj3 rather than S3.

2.3.2 Euclidean 3-algebra and C'SO(4,0,1)

We now consider the case where Sy, is of maximal rank:
Sap = 4diag(1,1,1,1), 74,4 =0. (2.3.22)
The corresponding three-algebra structure constants are totally anti-symmetric
f~abcd — ]?abc 6ed _ 6abcd (2 3 23)
= 0 = ) 3.

This is well known as the unique solution of the fundamental identity for three-algebra structure
constants for Euclidean three-algebras.
The four-dimensional geometry in this case is, with 2! = (2!, 22, 23, 2%),
ds? = (1 + Gpna™z™)"2/3(6y5 + wixj)datda’
1 1

0(3) = *gm@jklﬁld.ﬁﬂi A\ d{L'] A dl’k .

(2.3.24)

The field strength is:

1 4+ 26 M ; ;
W= "1 + 3 m":fn i 5€igkidz’ A dz? N da® A dat
(1 + dppa™a™) (2.3.25)

= —(4+4+25ppx™z™) (1 + 5mnxma:")*7/6Vol(4) .

If we assume our coordinates are non-compact, we can write 2* = r2* with £'2/4;; = 1 parametrising
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a three-sphere, hence

2
dsf = (1479 dr? + - i
4t 22 T (2.3.26)
_ 3 3
F(4) = —mr d'f’ A VOI(S ) .

Observe that the form of this geometry is very similar to that of the NATD geometry (2.3.7)), except

now as seen in spherical coordinates we have an SO(4) rather than SO(3) isometry.

Algebra and 11IB isotropics
Relabelling such that a = 1,2, 3 as before, we have
]'Eabc4 — Eabc’ fab4c — _eabc ) (2.3.27)

The Exceptional Drinfeld Algebra is given explicitly by the following antisymmetric brackets which
indeed describe the algebra C'SO(4,0,1) (i.e. ISO(4)):

[ta,ts] =0 = [ta,ta], (2.3.28)
[ta, 17°] = +€%uts, [ta, 8] = —=ate, [ts, 1] = —*Uy, [t4,8Y] =0, (2.3.29)
[{ab’ ECd] _ _260d[a£b]4 ’ [{ab’ t~c4] _ _26c[ad£b]d , [i‘aél} t~b4] _ —Eabct~04 , (2.3.30)

We now want to find all four- and three-dimensional subalgebras of this algebra, and check which
of these are isotropic in the sense of . For the Poincaré group in four-dimensions, the clas-
sification of all subalgebras was done in [67]. From their results we can extract that the only real
isotropic subalgebras of ISO(4) (up to relabelling of the indices) turn out to be the four-dimensional
Abelian subalgebra generated by t,, along with the following three-dimensional subalgebras: SU(2)
generated by %4, and ISO(2) generated either by t4, ty, 1t with a # b # ¢ or by t,,t4 and ¢ with
a # b # c. In terms of the undualised generators, these correspond to {T12,T13, T23}, {Tus, Tv5, Tup}
and {Tys5, Tys, Ty} respectively. All of these are IIB isotropics.

Now we encounter a puzzling feature; there are no geometric IIB uplifts of this C'SO(4,0,1)
gauging [68]. So it seems that despite the presence of a IIB isotropic we are unable to geometrically
furnish this EDA within type IIB exceptional generalised geometry. This does not preclude the
possibility of there being non-geometric gaugings i.e. ones which depend on both the IIB coordinates
and their duals as mentioned in [68]. If this is the case, this suggests the natural home for a “dual”
version of this frame would be in some “deformed” version of IIB. This may be analogous to, or
perhaps coincide with, the so-called generalised 1IB theory [69,[70], which necessarily arises when

carrying out certain generalised T-dualities, and which can be realised in double or exceptional
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field theory by introducing explicit dual coordinate dependence [71,/72], for instance see the DFT
implementation of such dualities in [22,25]. Although this would be interesting to develop further,
we would prefer to first understand the possibility of generalised U-duality transformations between

the usual 10- and 11-dimensional theories, so we leave this for future work.

Relationship to ITA on S3

Instead, let us investigate the relationship to the known C'SO(4,0, 1) gauging arising from reduction
of type IIA on S3, or 11-dimensional supergravity on R x S? [73]. Again, the idea is that any
alternative frame giving rise to the same gaugings ought to provide a version of generalised U-
duality.

Let us again focus on the general C'SO(p, ¢, r) frame of [57], which we wrote down in the previous

subsection in (2.3.14) and (2.3.15)). For the case p = 4, ¢ = 0, 7 = 1 we have coordinates y* = (y%, y*)
where i = 1,2, 3, and we again define u = 5£zyiyl. The function K (u) appearing in the three-form

is now
K =—9F[1,1;1/2;1 —u] = —u =32 (u'? + (1 — u)/? arcsin(1 — u)'/?) (2.3.31)
obeying
2(1 —w)udy K = (-3 +2u)K — 1. (2.3.32)
This corresponds to the following four-dimensional geometry:

ds3 = (dy®)* + <5ﬂ +7 —]u> dy'dy’

) (2.3.33)
Clay = ey (1= w) ™2 (14 K (u))dy* A dy? A dy®

The coordinates 7% are now seen to parametrise the three-sphere S, while the isometry direction
parametrises R (or S* if compact). Thanks to the equation (2.3.32) we can show that the four-form

flux is constant, and this background is:

ds? = (dy*)? + dQ2,

(2.3.34)
Flq) =2 Vol(S°) A dy?,

where dQ3 is the metric on S3. If one reduces on y?, this gives ITA on S® with H-flux.

We therefore have two constructions of C.SO(4,0,1) frames. The one based on the Exceptional
Drinfeld Algebra corresponds to the geometry (2.3.24). This generalised frame consists of a trivial
four-dimensional vielbein and a linear trivector. This geometry therefore has an alternative descrip-
tion as R* (or 7% if compact) carrying M-theory Q-flux, Q,"¢ ~ fbed . The second construction is
based on the geometry (2.3.34)), that is R x S3 (or S x §3) carrying flux of the four-form. Unlike
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the case of the C'SO(3,0,2) gauging discussed above, there does not appear to be any easy duality
chain involving conventional dualities and non-Abelian T-dualities (as in Figure that relates the

two. Hence we believe them to be related by a novel sort of generalised U-duality transformation.

2.3.3 A Leibniz geometry: 7, # 0

For an example where the EDA is not a Lie algebra, take the non-zero components of 74 to be
TaB = 6a57n7 , o= 1, 2, 3. (2335)

The geometry is easily seen to be

1 —2/3 1 o
ds3 = <1 + Z(n2x2 —(n- x)2)) ((dx4)2 + 6;5dx' da? + 4(eijkn’x7dxk)2) ,
) ) (2.3.36)
Ciy == nizida’ A da? A dat
B =214 m2a2 — (n-2)2)
where n' = 6\n®, i = 1,2,3, n? = §;jn'n’, 2 = §;;2'a7, n-x = §n'a’. This three-form is pure

gauge.
To explore the algebra, we define u, = eamfﬁw, v =1 w, =ty and ¢ = t4. In this basis the
M-theory section isotropic that we are considering (specified by the pure spinor A = 6.45) is the

subgroup generated by w, and ¢ with u, and v® the ’dual’ generators. The algebra is

[tas up] = 0 = [wa, wg] = [¢,0] = 0,¢], [0, 0°] = vl*n”], (2.3.37)
8 8 L oson 8 L
[Wa, V7] = —[vF ws] = 5(5(171 wy —nSwa), [Wa,ugl = S Casy 0, (2.3.38)
1 1
[, V] = —i(chrﬂwY —nPuy), [P ua] = —5(5§n7u7 + nPuy). (2.3.39)

Notice the non-skew (i.e. Leibniz) nature of the algebra is contained entirely in the [u,v] and [v, u]
relations, with [ua, v?] 4 [0, ua] = —65n7u,.

A second M-theory section isotropic sub-algebra is generated by u, and ¢, which is again Abelian
(this isotropic is that specified by the pure spinor Ay = 04.4). Although this simply implements
interchange of the 4 and 5 directions, there is no way that this new isotropic can qualify as an EDA.
To see this consider the fluxes which imply

2
S Tag - (2.3.40)

1
Zaﬁ44 = —g afB s Zoeﬁ55 = 3

To interpret this new isotropic as an EDA we must be able to find a 7/, 5 such that

2 1
Zaﬂ44 = 57'&6, Zaﬂ55 = 3 (l)zﬁv (2.3.41)
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and there is no such 7'(;5. This can be traced to the fact that the [w,v] bracket is skew whilst the
[u,v] is not. The fact that we can find M-theory isotropics for which the EDA conditions are not

satisfied seems to point towards a possible relaxation of some of the constraints of EDA.

The sub-algebra given by v® and ¢ does not correspond to an M-theory section isotropic but

that given by the v’ alone does correspond to a IIB-theory section isotropic.

2.4 Embedding Drinfeld doubles

2.4.1 Decomposing the Exceptional Drinfeld Algebra

The embedding of Drinfeld doubles inside the exceptional Drinfeld algebra has been outlined already
in [26]. Here we expand on the discussion in that paper by systematically explaining how the
Drinfeld double algebra is extended using a spinor representation, including the explicit form of the
generalised frames and constraints that are needed to realise this in generalised geometry. Then,
we describe explicitly how this works for the example of the Bianchi IT - Bianchi V Drinfeld double,
which in [27] was found to be a solution to a coboundary ansatz in the EDA. This realises an explict
example where both f,;¢ and f%¢, are non-zero, and demonstrates as well one useful feature of the

EDA approach which is that it geometrises the dilaton of Poisson-Lie duality.

We can describe the embedding of Drinfeld doubles by restricting to four-dimensional algebras

containing a three-dimensional Lie subalgebra such that, setting a = 1,2, 3,
[Tu5, Tos) = fab“Tes,  [Tas, Tas) = faa Ts, (24.1)
and by further restricting
fabd — fab _p  fabe, _ fabe, __ fabd oo (2.4.2)

Geometrically, we assume that v, and [* obey the defining group manifold relations with the three-

dimensional structure constants f,;,¢, while we take
bt — _gab oyabe — oy, =iy, 1P =alda?, (2.4.3)

where we now require that a be a function of the three-dimensional coordinates x’ such that
Ly, Ina = —fu* which ensures starting with that 7 obeys the condition satisfied by
the Poisson-Lie bivector:

dr® = — fab jc _ opc f, lagbld (2.4.4)
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Starting from ([2.2.26)), the above restrictions lead to the following NSNS sector geometry:

ds2, = ds? + (Bab + AaXp)I @ 17,

b
T+ AN

_ 1 1 agb x e (2.4.5)
(2) = 21+)\C)\ceabc)\ A A

e? = a (14 AN) "2,
Extracting Ggp and Bgyp, the coefficients of the left-invariant forms, it is quick to check that
(G — B)71)% = §9 4 qab (2.4.6)

which is exactly the form required for a Poisson-Lie geometry [11]. (Again, we could extend this
beyond the case g, = d4p by taking a more general matrix m 45 in (2.2.25).)

We now turn to the decomposition of the exceptional Drinfeld algebra (A.3.25). We group the
generators as tg = (tq, 1), t% = (t4,1%). In terms of O(3,3) representations, the set t4 form a
vector and the set t* form a Majorana-Weyl spinor. The isotropy condition is equivalent to:

" Ptatp|, =0, Tastat’| =0, (2.4.7)

where 145 is the usual O(3,3) metric with components 7,° = 7°, = 62, 7, = 7% =0, and T'4 is an
O(3,3) gamma matrix, see appendix [A.2.3]

After decomposing the EDA brackets using (2.4.1) and (2.4.2)) (see the explicit details
in appendix , and regrouping into SO(3, 3) covariant quantities, we find the algebra is

(ta,tg] = Fag“tc,

. 1 .1 .
[MJﬂzzEwa%ﬂ%ﬁ—gmﬂ,
(2.4.8)

N . 1/1 A
[ta,t/ﬂ = —[tA,ta] + 1 <6FBCD(FAFBCD)QB - (FAFB)QBTB> 8 ,

[i*, 1 =0,

where the Drinfeld double structure constants FABC, which obey Fapc = FABDUCD = Flapcy;

have the expected non-zero components
FabC = fabc> Fabc = fabc’ (2~4~9)

and we also havd]
Ta = _2fa44 + fact, T = _.fNaCC' (2410)

19This corresponds to the usual O(d,d) trombone defined using the generalised dilaton d via 74 = E™ 40a (—2d) +
O EM 4, where EM 4 is the O(d, d) generalised vielbein (corresponding to (2.4.15))). For us, e 24 = a2 detl.
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Observe that in the second line of (2.4.8) we have the natural action of the Drinfeld double gen-
erators in the spinor representation. Then in the third line we have a novel action of the spinor
representation on the algebra generators ¢4, which makes this extension of the Drinfeld double into

a Leibniz algebra in general.

This is not always possible due to the closure condition, as already noted in this context in [26],
which requires
far’f®y=0. (2.4.11)

This also follows from the general condition for a half-maximal gauging to admit an uplift to the
maximal theory [74], see appendix

Next, we can write down the corresponding generalised frames. Formally, we should decompose
the exceptional tangent bundle into ITA language. Letting M denote the three-dimensional manifold,
we introduce the doubled tangent bundle £ = T M &T* M, whose sections pair vectors and one-forms,
plus a bundle S = RPA%T* M, whose sections pair functions and two-forms. The former bundle gives
the O(3,3) vector representation while the latter gives a four-dimensional spinor representation.

These appear in the decomposition 10 = 6 @ 4 of the antisymmetric representation of SL(5).

Given V = (v,\(1)) € € and S = (0(p),0(2)) € S the generalised Lie derivative inherited from

the exceptional geometry is:

ﬁVV/ - (vala Lv)\/(l) - L’L),dA(l)) SEa (2412)
Ly S = (Lyo(o), Luo(a) + dA\1)0(0)) € S, (2.4.13)
LsV = (_LvU(O)7 —tpdo(g) — A1) A dO’(o)) €S, (2.4.14)

while £g5" = 0.

We now reorganise our SL(5) frame E 45 into an O(d,d)-vector valued frame E4 = (E,, E%),
where F¢ = %eabchc, and a spinor-valued frame, Eo = (EO, E“b), where E0 = Eys, Eab = %eabcE@;.

The vector-valued frame FE4 gives as sections of TM & T*M
E, = (v4,0), E*= (7%u,,1%), (2.4.15)

which is what we expect for the Drinfeld double [23|, while the spinor frame gives as sections of
R & A*T*M

E0 = a(1,0), E®=a@® oA, (2.4.16)
In the IIB case, the only change we need to make is to take the spinors to have opposite chirality,
i.e. the spinor bundle now consists of odd p-forms, S = T*M @ A3T*M. Given S = () 0(3) €8S
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the corresponding generalised Lie derivatives are (inherited from (A.1.10)):

LvS = (Lo (1), Loy = dAa) Aom) €S, (2.4.17)
LsV = (—tydogy,dogy AApy) €S, (2.4.18)

and again L£g5" = 0. The IIB spinor frame is then
E=a(1%,0), E™ =a@Brl®Ed 1@ AP, (2.4.19)

Although we can always construct the vector and spinor frames for a given Drinfeld double, they will
not always obey the Leibniz algebra (2.4.8)). Indeed, we have to ensure that the algebra generates

constant structure constants, which leads to constraints:
albfldy =0, fuome + 2fp 1 =0, (2.4.20)

which also follow from the constraints from the point of view of the Exceptional Drinfeld
Algebra. In addition, the closure condition (2.4.11)) must hold.

In this way we have also recovered a result directly from an M-theory perspective that the RR
fields compatible with PL T-duality are essentially constant O(d,d) spinors dressed by the spinor
representation of the generalised frame field. This was seen from a DFT perspective in [23,24] and

from a Courant algebroid approach [75].

2.4.2 Example: Bianchi IT and V
Bianchi IT + U(1) in M-theory

This example of an Exceptional Drinfeld Algebra was found in [27] by requiring the three-algebra
structure constants to be determined as a coboundary ansatz. This gives an M-theory solution
where the physical subalgebra is Bianchi II + U(1). The Bianchi II algebra, or Heisenberg algebra,
can be described in a basis {¢1, t2,t3} where the single non-vanishing structure constant is fagt = 1.

The corresponding group data, including the trivial U(1) factor with generator ¢4, and a = 1, is:
19 = (do! — 23da?, da?, da?, da:4) ,  Uq = (01,02 + x301,03,04) . (2.4.21)

A trivector obeying (A.3.22) is
Ao = (0,23, —22%,0), (2.4.22)

with f1242 = f1343 = 1. From the above, this describes an embedding of a dual three-dimensional
subalgebra with structure constants fug = f133 = 1, corresponding to the known Bianchi II /

Bianchi V Drinfeld double (see [76] for a classification of six dimensional doubles).
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The M-theory geometry is

1
5t = s (! — 2+ (L P+ (1 ()0
— 22°2%dz?da® + (dz*)?) (2.4.23)
Ciy = 1= (x2; e <;d((:v2)2 + (@)2) Adat Ade + (7)2da® A da® A dx4> ,

where dC(3) = 0. Reducing on the U(1) direction gives a IIA geometry with

1
1+ (222 + (a9)

ds? — 5 (A2 — 2%da?)? + (14 (2%)2)(dz?)? + (1 + (2%)2)(da®)?

— 2x2$3dx2da:3) , (2.4.24)
H =0,
e = (14 (2%)? + (%)) /2,

which matches the known geometry of a Drinfeld double based on the groups Bianchi IT and Bianchi
V. It is worth remarking that the physical dilaton that arises here was implicitly constrained by
the EDA. In conventional T-duality the Buscher procedure can be used to ascertain the form of the
dilaton (from the determinant produced by Gaussian elimination of gauge fields). However there is
no similar technique for PL duality, and determining the form of the dilaton requires either some
heavy work [77] or DFT techniques [24]. The answer here was mandated by the EDA and is in

agreement with these approaches.

Bianchi V in IIB

We now have to supply the embedding of the dual Bianchi V description, in type IIB. Now the dual
structure constants are f23; = 1 while the physical ones are fi22 = fi3° = 1. A choice of group
data is

1 = (dit, e di?, eild:fg) , Ug = (01, e ' 9, 6_5:133) . (2.4.25)

We have to pick a bivector that not only satisfies the usual Poisson-Lie condition (2.4.4) but also
the conditions (2.4.20)) that ensure the IIB vector plus spinor frame embeds into the Exceptional
Drinfeld Algebra. With f,4* = 0, this requires that 7'2 = 73 = 0. Then from (2.4.4) we find that

723 must obey dr?3 = (=1 + 2723)I, and the solution vanishing at the origin is

1

1 _
723 = (1= ey, (2.4.26)
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The corresponding physical geometry with string frame metric is

251
2/ 1~182 € ~2\2 ~3\2
B2 (2.4.27)
B = =1 d A AT

ed) _ (1 + (,ﬂ23)2>—1/2 )

2.5 Discussion

The goal of this chapter was to make geometrically concrete the algebraic structures introduced
in [26[,27]. These “exceptional Drinfeld geometries” provide generalised parallelisable spaces with a
non-trivial relationship between the more complicated geometry and the simpler generalised frame
based on a group manifold and the trivector. We have now developed an interesting first set of
examples where the exceptional Drinfeld algebra can be explicitly connected to geometries.

A primary motivation for the introduction of the Exceptional Drinfeld Algebras was to generalise
the Drinfeld double algebras that appear in generalised T-duality. As a confidence-building measure,
we have described in detail how to embed O(3,3) Drinfeld doubles and Poisson-Lie T-duality into
the SL(5) Drinfeld algebras. We saw that not all Drinfeld doubles can be embedded; that there are
constraints that must be obeyed by their structure constants and by the explicit choice of Poisson-Lie
bivector; and furthermore that the extension of the Drinfeld double requires introducing a “spinor”
representative of the Drinfeld double and defining a non-trivial Leibniz algebra in which this acts
in turn on the vector representation.

We also studied simple EDA examples where we only allowed the three-algebra structure con-
stants to be non-zero, f“bcd. These can all be realised by a simple trivector ansatz, linear in the
coordinates. In some sense, these geometries are the analogues of what should be obtained af-
ter non-Abelian T-duality, and indeed here we could reproduce the usual non-Abelian T-dual pair
involving an S%.

In addition, this class of geometries can be seen to produce C'SO(p,q,r) gaugings of seven-
dimensional maximal supergravities (with r > 1, due to the fact that at least one component of the
symmetric gauging vanishes thanks to the definition of the EDA, S55 = 0). Thus we have in effect
a very simple construction of new uplifts for such gaugings. We saw how in the C'SO(3,0,2) case,
there was a duality chain relating our geometry to the alternative uplift due to |57|, involving Hopf
T-duality, non-Abelian T-duality, and M-theory uplifts. In the C'SO(4,0,1) case, there appears not
to be such a chain using existing notions of generalised T-dualities.

We therefore have in this example a novel four-dimensional geometry, which encodes the Eu-
clidean 3-algebra with f“bcd = €%, and which we propose to identify as a generalised U-dual of
M-theory on R x S3. The form of this background is strikingly similar to that of the usual non-
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Abelian T-dual of S3, suggesting that the various subtleties with the construction (for instance, how
do we determine the range of the coordinates? Should we regard it as U-fold?) can be interpreted
similarly as in this familiar case.

The structure of the Exceptional Drinfeld Algebra is based on the existence of isotropic sub-
algebras. We had hoped to find examples in which multiple four-dimensional isotropics would be
present, which could then be used as the basis for M-theory to M-theory generalised U-dualities
within the EDA set-up. Unfortunately, in the cases we have looked at, the conditions of the EDA
appear to be very restrictive. Not only does one have to have an isotropic subalgebra (and our
experience shows that they are limited in number), the whole EDA is further constrained exactly
such that it admits a geometric realisation in terms of just a trivector. The example of section [2.3.3]
shows that even when there can be multiple M-theory isotropics, not all of them can be compatible
with an EDA. Equally we saw in the CSO(4,0,1) example that one can find dual IIB isotropics
that do not appear to admit a geometric generalised frame description

Note that from the IIB perspective, we have not systematically reproduced the EDA from the
1IB side but starting with M-theory examples considered IIB descriptions only for those cases. One
therefore needs to interpret the full set of EDA structure constants in terms of a IIB construction
and check whether all are geometrically realisable using a three-dimensional group manifold plus
bivectors, or whether additional geometric ingredients are needed. (Similarly one might also wonder
whether any information is lost in going from M-theory to ITA.)

Perhaps ultimately it may be fruitful to consider relaxing some of the axioms we used to define
the EDA. By comparison, the relaxation of the Drinfeld double (which we recall has two isotropic
sub-algebras) to having only one isotropic subalgebra is vital to describe certain models with H-flux
including the A-deformed WZW [78|. It is likely one can also here find interesting algebras by either
relaxing the group structure on g or the three-algebra structure on dual generators.

Another limitation we may have been dealing with was simply our choice of dimension. When
one goes beyond SL(5) to higher-rank groups (the Eg(g) case has been studied in [79]), it is likely that
the number of possible constructions and transformations will be much greater. Other restrictions
that we would hope to relax in the future would be to consider cases corresponding to less SUSY
and to generalise to coset spaces rather than group manifolds.

There are also open questions related to the mathematical description of exponentiation of an
EDA, when not a Lie algebra, and the precise formulation of the extended geometry in these cases.
This would likely make contact with the approach of [80] in which the physical space is identified
with the quotient of an enlarged group manifold by a subgroup.

The algebraic structure of the exceptional Drinfeld algebra necessitated the introduction of a
trivector in the generalised parallelisation. It would be interesting to compare this with some other
approaches in the literature. For instance, given that the idea of generalised U-duality relies on
relating alternative frames giving rise to equivalent gaugings, it would be interesting to compare

to the approach of [51] which provides a systematic method for constructing frames given a set
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of generalised fluxes. This might also provide a method to carry out some of the generalisations
mentioned above. Further, it would be interesting to compare this construction with that of [81,82]
where the trivector is viewed as a deformation of a pre-existing geometry.

This study paves the way to understanding the specific features and requirements one needs
to define an Exceptional Drinfeld Algebra (EDA), including dimensional limitation and isotropy
conditions. This helps us to consider several examples in the following chapters, and provides an

indicative classification for further research in the direction of EDA and U-dual solutions.
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Chapter 3

Generalised U-dual solutions in

supergravity

3.1 Introduction

In this chapter we illustrate a method to take solutions of type ITA supergravity on a three-sphere,
with NSNS flux, to new solutions of 11-dimensional supergravity on a four-dimensional space with
particular properties. Principal amongst these properties is that the geometry of this space is
secretly controlled by an underlying algebraic structure incorporating the structure constants of a
three-algebra symmetry. This structure generalises that found in solutions generated by non-abelian
T-duality, which produces geometries controlled by an underlying Lie algebra symmetry. We focus
on an example where we start with the F1-NS5 near horizon solution of type ITA supergravity, and
construct a new 11-dimensional solution involving M2-M5-M5’ charges.

The context for our work is the question of how to formulate and use generalised dualities in M-
theory. The classic formulation of a string or M-theory duality is in terms of an equivalence between
theory 1 on space X; and theory 2 on space X5. Conventional (abelian) T-duality corresponds to
the case when theory 1 is type IIA string theory, theory 2 is type 1B string theory, and X; and X»
are circles of inverse radius. U-duality can be stated as an equivalence between M-theory on dual
d-dimensional tori, or type II theory on (d — 1)-dimensional tori.

In supergravity, these dualities can be rephrased as expressing the fact that a dimensional
reduction or consistent truncation of supergravity 1 on X gives the same lower-dimensional theory
as a reduction of supergravity 2 on Xs. This allows duality to be used as a solution generating
technique, where solutions of supergravity 1 of the form M x X; can be mapped to solutions of
supergravity 2 of the form M x Xs, by reducing and uplifting.

Generalised T- and U-duality extend this notion of duality to special classes of dual spaces X1 and
Xy, which are not tori. At a minimum, this is a solution generating method: given a supergravity

solution meeting particular conditions, a generalised duality will produce a second supergravity
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solution related in a particular manner to the first. Whether this extends to a genuine duality of
the full (quantum) string or M-theory is far from guaranteed, even in T-duality examples where
worldsheet methods can be used to formulate aspects of the duality. However, these techniques
have proven their value in supergravity alone as a source of new solutions with applications to
holography, integrability and other areas (see [12] for a review and further references). It is perhaps
also worth remembering that what is now known as U-duality first appeared — almost accidentally
— in supergravity [83], long before the idea of M-theory was developed [1}2].

The most well-appreciated generalisation of T- or U-duality is non-abelian T-duality (NATD) [3].
This has a worldsheet derivation, at least for the transformation of the NSNS sector fields. The basic
structure of this duality is that it takes a space with non-abelian isometries, for example a group
manifold, to a space with fewer isometries. The dual solution is characterised by an underlying
algebraic structure controlled by ‘dual’ structure constants f“bc # 0 inherited from the Lie algebra
of the original non-abelian symmetry.

Unlike abelian T-duality, the worldsheet path integral derivation of the dual background does not
lead to global information, in particular about the range or periodicity of the dual coordinates [4].
It is however possible to find various arguments to globally ‘complete’ the supergravity solution. For
instance, combined with the correct transformations for the RR sector 7], non-abelian T-duality has
been extensively applied to generate AdS solutions with interesting CFT duals. A common approach
for NATD solutions with an AdS factor is to find a holographic completion by embedding the NATD
solution into a supergravity solution with a well-defined holographic interpretation, usually in terms
of a quiver field theory stemming from an underlying Hanany-Witten brane configuration [84].
Alternatively, as pointed out in [63}85], non-abelian T-dual solutions could be viewed globally as
T-folds.

Both abelian and non-abelian T-duality are special cases of Poisson-Lie T-duality [10,[11]. This
applies to d-dimensional backgrounds which may in general lack isometries, but which geometrically
encode data associated to a 2d-dimensional Lie algebra called the Drinfeld double. This can be made
manifest by adopting a generalised geometric (or double field theory) description [23}24]. For back-
grounds admitting Poisson-Lie T-duality there exists a generalised parallelisation [43,/44] providing
a congistent truncation to a lower dimensional gauged supergravity. In general, two inequivalent
higher-dimensional solutions admitting consistent truncations to the same lower dimensional theory
can be viewed as dual in the sense we are considering. (Indeed, NATD was expressed in terms of
consistent truncations [86] some years prior to its doubled geometry formulation [22-25]).

The generalised geometry approach opens the door to the study of new variants of U-duality, by
using the exceptional generalised geometry (or exceptional field theory) description of 11-dimensional
supergravity. This led to the proposals for Poisson-Lie U-duality and an associated ‘exceptional
Drinfeld algebra’ (EDA) introduced in [26,27] and further studied from a variety of angles in
[35.[79L[87H91].

Whereas the Drinfeld double naturally encodes a pair of ordinary Lie subalgebras, the content of
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the EDA is more exotic. The EDA itself is generically a Leibniz rather than a Lie algebra. For M-
theory backgrounds, the structure constants of the EDA are assembled from those of a Lie algebra
fap© and a ‘dual’ 3-algebra with structure constants f“bcd (as well as other n-algebra structure
constants if the dimension of the algebra is large enough).

In our paper [87], cases where fabe, % 0 but f;p¢ = 0 were studied. These should underlie
backgrounds (termed ‘three-algebra geometries’ in |87]) analogous to those which are generated by
non-abelian T-duality. A particularly simple example is the Euclidean 3-algebra in four-dimensions,
fabe, ~ ewbc, The EDA in this case is the Lie algebra CSO(4,0,1), and the generalised geometry
construction gives a consistent truncation to seven-dimensional CSO(4,0, 1) gauged supergravity.
An alternative consistent truncation in this case is provided by type ITA on S® with NSNS flux
[73]. This gives a solution generating mechanism, whereby type ITA solutions of this form can
be consistently truncated to solutions of the seven-dimensional CSO(4,0,1) gauged supergravity,
and then uplifted to new solutions of 11-dimensional supergravity using the generalised geometric
formulation of |26,[27,87].

In this chapter, we apply this logic to produce a new 11-dimensional solution starting with a
non-extremal pp-F1-NS5 solution of type ITA, after taking the five-brane near horizon limit. Our

new 11-dimensional solution has the following properties:

e Just as for non-abelian T-duality, the global properties of the new solution are a priori un-
known. It can be described using a non-geometric generalised frame involving a trivector

linear in the new four-dimensional dual coordinates, and so one possible global interpretation

is as a U-fold. (See section|3.4.1.)

e The new solution can be viewed as carrying M2 and M5 brane charges. (See section )

e In the extremal case, it admits a limit in which it becomes AdSs x S® x T* foliated over an
interval. This solution fits into the general class of M-theory AdSs solutions derived in [92].
These solutions are directly inspired by solutions generated by non-abelian T-duality, and
provide a global completion of our solution (in this AdS limit), with a known holographic dual
and brane interpretation. This is exactly analogous to NATD solutions. (See section[3.4.5)

e The full extremal solution can be viewed as a deformation of the AdSs limit generated by a six-
vector deformation parameter valued in Eg). This deformation is inherited from an SO(2,2)
T-duality-valued bivector deformation of the extremal F1-NS5 near horizon solution, which
describes the interpolation from the AdSs near horizon region to an asymptotic linear dilaton
spacetime. In that case, the deformation has been identified as being dual to (a variant
of) the TT deformation of the dual CFT [93]. This identifies the task of understanding

a corresponding field theory deformation dual to our full solution as an interesting open

question. (See section |3.4.4])
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e The AdS limit of our solution admits a %—BPS solution of the 11-dimensional Killing spinor

equation. (See section[3.4.5)

e Finally, our solution can be used to generate new type ITA solutions by dimensional reduction
(and hence other type II solutions by standard dualities). (See section[3.4.6)

3.2 Generalised T- and U-duality

3.2.1 Duality and generalised geometry

We study notions of generalised duality which can be cleanly expressed using techniques from
generalised geometry and double/exceptional field theory. Here we give a brief description of the
necessary methods. For the d-dimensional ‘internal space’” X; we work with the generalised tangent
bundle TX; & AP T*X;. Sections of this are known as generalised vectors and consist of a pair
V = (v,w) of a vector v and p-form w. We only need the cases p = 1, corresponding to O(d, d)
generalised geometry relevant for discussing generalised T-duality in type Il supergravity, and p = 2,
allowing us to describe the SL(5) exceptional generalised geometry relevant for discussion of 11-
dimensional supergravity when X; is four-dimensional. In both these cases, there is a common

formula for the generalised Lie derivative of generalised vectors:
Ly V' = (L', Lyw' — tydw) . (3.2.1)

This captures the local symmetries of X1, namely diffeomorphisms and gauge transformations of
a (p + 1)-form. The geometry in the guise of the metric and this (p + 1)-form is encoded in
a generalised metric, denoted Mj;n. This can be factorised in terms of a generalised vielbein,
Muyn = EyfAAApENE. If we are just interested in describing the geometry of X; then we may
take Ay = dap, but in particular solutions on M x Xy then A op may depend on the coordinates
of M and describe scalar fields in the lower dimensional theory on M obtained by reducing on
Xj. The inverse generalised vielbein gives a generalised frame E 4, providing a basis for generalised

vectors. This frame will generate an algebra under generalised Lie derivatives:
Lp,Ep=—-Fap“Ec. (3.2.2)

If F4p® are constant, then E4 provides a generalised parallelisation, which allows for a consistent
truncation to a lower-dimensional supergravity.

A second (dual) consistent truncation then corresponds to the existence of an alternative gen-
eralised parallelisation built using a frame E,4 describing the generalised geometry on X. This
frame should obey the same algebra (possibly up to some change of basis corresponding to

a constant O(d,d) or E4 rotation on the indices A). This allows one to translate the problem of
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finding inequivalent dual consistent truncations to the problem of finding algebras admitting mul-
tiple solutions to the differential equations encoded in (3.2.2)). As we will review below, in known
variants of generalised or Poisson-Lie T- and U-duality, this can be done algorithmically within

certain classes of algebras.

3.2.2 Non-abelian T-duality

The prototypical example of a generalised duality is non-abelian T-duality [3]. This applies to
spacetimes with non-abelian isometries. A simple example is to consider a spacetime with an S3
factor (equipped with the round metric), regarded as the group manifold SU(2). Starting with the
worldsheet sigma model, we can gauge the (left) action of the group on itself and (assuming no

other fields are turned on) arrive at the following dual background:

k
Eijk-r

= i g, T 14 amay,
Lo,

ds? = T giged B

20 — 1 4+ kg, 3.2.3
1+ {L‘kxk » € + 27Ty ( )

The new dual coordinates ', i = 1,2, 3 originally appear in the dualisation procedure as Lagrange
multipliers imposing the flatness of the gauge field gauging the non-abelian isometry. Unlike in
abelian T-duality, path integral arguments do not constrain the periodicity or range of these coordi-
nates [4]: we will discuss two different methods to specify the global completion of NATD solutions
below.

Underlying this duality is a pair of generalised frames for the O(d,d) generalised geometry.
(We describe this now with reference to the specific SU(2) example, with d = 3, but the essential
features apply to d-dimensional group manifolds and their duals.) The first describes the consistent
truncation on the S3 2 SU(2) group manifold. It makes use of the following geometric data: the

left-invariant forms [* and dual vectors v, obeying
dl* =L fp"1" N1¢,  Ly,vp = —fap“vc, (3.2.4)

where for SU(2) the algebra index is three-dimensional, a = 1,2, 3, and the structure constants are
fap® = €ap°. The generalised frame E4 = {E,, E*} gives a basis for sections of T'(S*) @ T*(S?) with

Eq = (vq,0), E*=(0,1%). (3.2.5)
Under generalised Lie derivatives, we have the algebra (3.2.2) with
Fap® = {Fa® = fu° , F® =0, Fy = F*° = 0} . (3.2.6)

The second generalised frame describes the dual consistent truncation on the NATD geometry
(3.2.3). This is not a group manifold, but it can be described in terms of an underlying Poisson-Lie
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group structure associated to the group U(1)? (or R?) with a non-trivial Poisson-Lie bivector, 7.

The latter here obeys dr® = — fabje. where [* are trivial left-invariant one-forms, [%; = 0¢ (with
dual vectors ¥, = &) and f%, are dual structure constants. For the NATD of SU(2), these also
describe the su(2) Lie algebra with f, = ¢, We can therefore take a bivector linear in the
coordinates 7 = —e® 2¢. The generalised frame EA = {Ea, E“} gives a basis for sections of the

extended tangent bundle of the dual geometry, with
E, = (04,0), E*= (7%%,1%). (3.2.7)
Under generalised Lie derivatives, we have the algebra with
Fap® — {Fp® =0,F% = f®, Fu.= F® =0}. (3.2.8)

The use of the generalised frame allows for a non-geometric interpretation of the global
properties of the NATD geometry. As pointed out in [63,85], if we take the coordinates x* to be
periodic, then under z* ~ 2% 4 constant the bivector 7 shifts by a constant. Such a bivector shift
can be viewed as a non-geometric O(3,3) transformation. If we patch the dual solution by such a

transformation, it must be regarded as a T-fold.

It is however more common to construct global completions of NATD solutions by leveraging
information about brane charges and — for cases where there is an AdS factor in the full spacetime
— holographic duals. To illustrate how this works, consider the example of the IIB D1-D5 near
horizon solution, for which the spacetime is AdSs x T* x S3, supported by RR flux. The NATD

dual geometry is a solution of massive ITA supergravity, with:

> 3 _
ds® = dsigg, + dsts +do® + 15_92ds%2 , B=1fpVolg, e =14 0%, (3.2.9)

along with dual RR fields [7]. Here we have adopted spherical coordinates z' — (po,0,¢). The
issue of the non-compactness of dual coordinates is then concentrated in determining the range of
0. This can be done by embedding the NATD solution into a global completion with a well-defined
holographic dual and brane interpretation. For the NATD of AdSs x S5 obtained in [7] this method
was demonstrated in [84], and has since been applied to many examples. For the solution ,
the requisite completion is provided by the construction and analysis [94-97] of a general class of
massive ITA AdSz x S? solutions with 3d A = (0,4) supersymmetry and an SU(2) structure. The
NSNS fields take the form:

2 _ [ 2 hghy 2 ha 7.2 hahsg 2
ds” = Jrgs (dshas, + Ty par @5s2) T\ agdsa ) Htde,

(3.2.10)

—

B = 5(—@ + 74}13;;;-‘,-1/2 + 2nm)Volgz ,

This solution exhibits the following general features found in global completions of NATD AdS
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solutions: The coordinate p takes values in a finite interval which is further divided into subintervals
0 € [on, 0n+1]- The functions determining the solution (u, hy and hg) are linear in p. They may
however only be piecewise linear, and their slopes can jump from subinterval to subinterval. The
2-form B is modified by a large gauge transformation as one crosses each subinterval. There is
a (flat space) dual brane configuration, with some branes wrapping the o direction and others
orthogonal and located at the endpoints of the subintervals. This dual brane configuration allows
for the identification of a dual quiver field theory. The NATD solution can be regarded as
giving the more general solution in the first subinterval, with ¢ € [0, 01], and u ~ hy ~ hg ~ p.
Restricting to the case of vanishing Romans mass, the solutions of [94-97| give ordinary IIA
solutions which can be uplifted to M-theory [92], giving a class of 11-dimensional AdSs3 solutions

which we will re-encounter later.

3.2.3 Poisson-Lie T- and Poisson-Lie U-duality

Poisson-Lie T-duality Non-abelian T-duality can be viewed as a special case of Poisson-Lie
T-duality [10,/11], which applies to spacetimes which may lack isometries. They instead admit an
underlying Poisson-Lie group structure, involving a group G equipped not only with left-invariant

forms and vectors, but with a Poisson-Lie bivector. Altogether these data obey:
di* = L1 P ANIE L Loop = — fapve,  dn® = —fo1¢ — 2 fql0n% (3.2.11)

involving simultaneously structure constants for both a Lie algebra g and a ‘dual’ Lie algebra g. The

corresponding spacetime geometry is very efficiently described by a generalised frame with: [23]24]

Ea:(va,O), Ea:(ﬂ'abvbvla)y FABC_>{Fabc:fabc;Fabc:fab07Fabc:Fabc:o}-
(3.2.12)
The case of a standard non-abelian group manifold then has f,;¢ # 0, fabc = 0, while the NATD
%)

has the reverse. The full doubled Lie algebra (with structure constants F45“) here is known as the

Drinfeld algebra. Introducing generators Ty = {T,, T} obeying [Ta, T5] = Fap®, we have
[T(m Tb] = fabCTc ) [Taa Tb] - beaTc - fachC ) [Ta’ Tb} = fabcTC (3-2-13)

The algebra is further equipped with an invariant bilinear form defined by n(Ta,Tb) = 4%, and
otherwise zero. The subalgebras g = {T,,} and § = {7} are maximally isotropic with respect to
this bilinear form, and duality at the level of the algebra involves changing one maximally isotropic
subalgebra for another. This is upgraded to a duality at the level of geometry by constructing a
dual generalised frame now built using the left-invariant forms and vectors of G = exp § (hence
the frame generates the new maximally isotropic subalgebra as its vector part), together with the

corresponding Poisson-Lie bivector encoding the structure constants for g.
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Poisson-Lie U-duality A proposal was made in [26,27| for the algebra and generalised frames
which should describe a notion of Poisson-Lie U-duality. Let us concentrate on the case of d = 4,
for which the U-duality group is SL(5). The proposal is to consider the natural generalisation of
the Poisson-Lie group to the case where the bivector is replaced by a trivector. We then specify

left-invariant forms and vectors and this trivector to obey[]
di* = 5 fyuc"l" N1°, Loyop = = fapve,  dn® = fPG + 3fe n*INe, (3.2.14)

where now a,b = 1,...,4. This introduces dual structure constants fabcd which can be viewed
as defining an antisymmetric three-bracket, associated to a 3-algebra rather than an ordinary Lie

algebra.

These can be used to construct a generalised frame for SL(5) generalised geometry. A generalised
vector in this case is a pair of a vector and a two-form, and lies in the ten-dimensional (antisym-
metric) representation of SL(5). We pick a generalised frame E4 = (FE,, E%), where E%® = —Eba,
given by

E, = (va,0), E® = (7%, 12 A1). (3.2.15)

Computing the algebra of generalised Lie derivatives (3.2.2)) one finds an algebra dubbed the excep-
tional Drinfeld algebra (EDA). In terms of generators Ty = (T, T), this algebra is

[Tm Tb] = fabCTc , [Tab’ Tcd] _ 2f~ab[cej1d]e ’

b brpcld rbed b b ¢c| Frd rbed (3'2'16)
[To, T) = 2£ad" T — f*4 Ty, [T, To] = 3fiac P T + f*Tu.

Note that these brackets are generically not antisymmetric: the EDA is generically an example of
Leibniz rather than a Lie algebra. Closure of the algebra imposes the Jacobi condition for the Lie
algebra with structure constants f;;¢, a cocycle condition involving both f;¢ and fabcd, and the

fundamental identity for three-algebras involving just fo¢,.

A notion of isotropic subalgebra exists, using now not a bilinear form but a bilinear map 7 :
10 ®gym 10 — 5. The subalgebra g = {T,} is isotropic with respect to this definition. However,
unlike in the case of the Drinfeld double, we are not guaranteed the existence of a second, dual
maximal isotropic subalgebra. Note as well that the ‘symmetry’ between f and f is now broken,

and there are now more dual generators T than physical ones Tj.

One could nonetheless proceed to interrogate the notion of non-abelian U-duality, by starting
with solutions defined by fu¢ # 0, f%¢; = 0, and dualising these, as for instance in [88]. However, an

alternative goal is to inverse the usual order, and instead look at solutions with f;;,¢ = 0, fabe, #0.

! For simplicity, these formulae assume that f..© = 0 and that an additional scalar present in the generalised frame
is constant, as is the case for the example we will study. See appendix for more general formulae.
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3.2.4 Dual three-algebras and beyond Poisson-Lie U-duality

The logic of focusing on solutions with f,;,¢ = 0, fabe, = 0 is that they should be in some sense
similar to the solutions generated by NATD. Our goal is therefore to construct examples of such
solutions, verify whether they are actually ‘dual’ to known solutions, and verify to what extent this
really resembles NATD. Furthermore, such solutions will encode three-algebra structure constants
and so are perhaps intrinsically interesting as examples of a relationship between geometry and a
non-standard algebraic structure.

In [87], examples of this kind were studied, and a first look at the corresponding ‘3-algebra ge-
ometries’ was taken, but without constructing full supergravity solutions. A particularly interesting
example is to take:

fabe, o ebe, . (3.2.17)

This is the unique Euclidean 3-algebra. It can be viewed as the direct generalisation of the NATD
of SU(2), for which we had fab, = ¢®, The conditions (3.2.14) can be solved by taking 1%; = o¢,

b be ,x?, introducing coordinates ¢, i = 1,...,4. The EDA

v,' = 0% and a linear trivector, 7€ o €
in this case turns out to be the Lie algebra CSO(4,0,1).

However, it turned out that it is not possible to find valid dual isotropic subalgebras within
this EDA [87]. This precludes using the Poisson-Lie U-duality framework of |26,127] to construct a
dual configuration. As noted in [87], this suggests simply that this framework may just be more
restrictive than the T-duality case. In particular, we could relax the condition that the dual isotropic
be a subalgebra. For example, we could allow ourselves to consider alternative bases (for the same

overall algebra) but for which the selected physical generators T, obey
[To, Ty) = 3 FapeaT. (3.2.18)

This would be the starting point for defining a “quasi’—EDAE]

Equivalently, we may forget about specific algebraic interpretations. The EDA construction
allows us to construct a generalised frame realising a consistent truncation from 11-dimensional
SUGRA to 7-dimensional CSO(4,0,1) gauged SUGRA. This consistent truncation is on a non-
trivial background geometry, resulting from the generalised frame with the trivector. However, it is
already known that this gauged SUGRA can be obtained using a consistent truncation of type ITA
on an S% with NSNS flux [73|. Viewing this as M-theory on S3 x I, we have constant four-form flux, in
line with the commutation relation E] Hence, we can alternatively find ‘generalised U-dual’
solutions by starting with solutions of type ITA supergravity to which this consistent truncation

can be applied, reducing these to 7 dimensions, and then uplifting them using our EDA generalised

%In the case of T-duality, it is possible to relax the condition that the Drinfeld double has two isotropic subalgebras,
allowing to describe models with H-flux, such as those studied in the context of certain integrable deformations in [78|.

3This algebra would be explicitly realised by generalised geometric constructions of this consistent truncation
[44,|57] — see [87] for a comparison with the generalised frames of [57] in particular.
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frame for this gauging. We will now adopt this procedure and show what it leads to for a simple

brane intersecting solution.

3.3 11-dimensional solution from exceptional Drinfeld algebra up-
lift

3.3.1 Type IIA pp-F1-NS5 and reduction to 7 dimensions

We begin our solution generating procedure by taking as our original solution the non-extremal pp-
F1-NS5 solution of type ITA supergravity. After taking the five-brane decoupling limit (as reviewed
in appendix [A.3.1)) to go to the near horizon limit of the five-branes, this solution becomes:

Ta SN (o3 — d 2
ds? = 71— WAt 4 fu(dz + 05070 dn)?) + R2W TS0 4 B2 + dsi

I (3.3.1)
Hy = T’(Q) sinh 24 @dt ANdz Adr + QRQVOISB , e = %fl ,
where W =1— % R2 ]\75l2 and
inh? 2 ginh? an, . NyI2 . N4
fi=1+ M, fm=1+ W, sinh 201 = 2%%, sinh 2av,, = 2R%U\ % (3.3.2)

Here N7 is the number of F1s, N5 the number of NS5s, N,, the number of units of pp-wave momen-
tum, and the four-dimensional transverse space is taken to be a torus of volume (27l )%v

We will be particularly interested in the extremal limit. Turning off the pp-wave contribution
(N,, = 0) the solution in this limit is

d 2
ds? = fi (=4t + d2) + B2~ 4 R¥dsk + dsi
21

73 f2

2 (3.3.3)

dt Adz Adr+2R*Volgs, e 22 =2,

Hy =

with fi =1+ = =, 7? = Npl2/v. This exhibits an interpolation from the near horizon reglon of the
F1 to an asymptotic linear dilaton background. The former corresponds to taking f; = T—Q and the

solution has the form

2 2
ds? = S (—di? +d=2) + RQd% + R*ds?; + dsh
"1 " (3.3.4)

2
Hy = odt Adz Adr+ 2R?Volgs, e 29 = 14,
(3) r2 S

with the metric being AdSs x T4 x S3. Asymptotically, setting f; = 1 and defining a coordinate U
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by r = ReV/E the solution approaches the pure NS5 near horizon solution:
ds? = —dt? + dz? + dU? + R%ds2s +ds2s, Hp) =2R*Volgs, e 2 =*U/1, (3.3.5)

with a flat metric and a linear dilaton. We will discuss later how this interpolating behaviour is
inherited by our new 11-dimensional solution.

Owing to the presence of the S3 factor with accompanying NSNS flux, the background
can be reduced to a solution of seven-dimensional CSO(4,0,1) gauged maximal supergravity using
the ansatz of |[73]. The necessary part of the truncation ansatz that we need is summarised in
appendix Applying this to the solution gives the seven-dimensional metric, scalars
Mgy, and @, and a three-form field strength F(3):

— — r2 sinh 2a, _ d""2
ds? = (r/R)Y511° (fl N f tWAE 4 f(dz + 30520 dE?) + RPW gt ds

) 3.3.6
My =64, P= f1—4/5(r/R)—8/5 , F(g) = 7'3 sinh 2041ler3dt Adz Adr. ( )
1
All other fields in the ansatz are vanishing. We next identify the data of with the ap-
propriate SL(5) covariant fields of the CSO(4,0, 1) gauged supergravity. Take A = (a,5) to be a
five-dimensional fundamental SL(5) index, and let A denote a ten-dimensional index for the anti-
symmetric representation. The SL(5) covariant fields are: the SL(5)-invariant metric ds2, a scalar
matrix M 4g parametrising the coset SL(5)/SO(5), and gauge fields in SL(5) representations. The
latter include a one-form AMA, in the 10-dimensional representation and a two-form B, 4 in the
five-dimensional representation, with corresponding field strengths ]-'WA and H,,pa. The fields

(3.3.6) provide a non-trivial scalar matrix and three-form field strength:

1
O 14, O =
Mg = ( . b @) , Hya=(0,Fg). (3.3.7)

3.3.2 11-dimensional uplift via exceptional field theory

Having mapped our solution to seven-dimensional gauged supergravity, we now uplift it to a different
higher-dimensional solution using a distinct consistent truncation corresponding to the exceptional
Drinfeld algebra realisation of the CSO(4,0, 1) algebra [87]. This makes use of the SL(5) covariant
reformulation of supergravity provided by SL(5) exceptional field theory (ExFT). To describe this
uplift, let y* denote seven-dimensional coordinates describing the solution . We introduce an
SL(5)-valued generalised frame field denoted by EM 4(x) in the ten-dimensional representation or
by EM 4(x) in the five-dimensional representation, as well as a scalar function A(z). These depend
on a set of four-dimensional coordinates =%, i = 1, ..., 4, which will describe the internal space of the

new eleven-dimensional solution. The new eleven-dimensional solution has a simple SL(5) covariant
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construction: we define the ExF'T external metric, generalised metric and field strengths by

gy, 2) = A2(2) g (), M (y,2) = B4 p(2) E5 pr(2) Mas(y)

N g (3.3.8)
Foy" (y,2) = A@@)EM a(@)Fo)* (), Heaym(, w) = A% (@) B4 p()Hzyaly) -

It is in fact the combination EM 4 = AEM A that must be used to construct the generalised frame
obeying the generalised parallelisation condition ([3.2.2)). To realise the CSO(4, 0, 1) algebra
we take trivial left-invariant forms and vectors, 1% = 6%, v,' = 4%, and a trivector linear in the
coordinates z'. The choice 7%¢ = %e“bcdxd reproduces the CSO(4,0,1) algebra and the scalar
potential arising from the truncation of type IIA on an S3 of radius R (see appendix . Note
here we can use d{ to identify curved and flat indices here, for convenience. In terms of the five-

dimensional representation of SL(5), this gives a generalised frame:

- 0
EAM—< " 0), A=1. (3.3.9)
- 1

Using (3.3.9) and (3.3.8) applied to the background arising from the pp-F1-NS5 solution, we obtain

a generalised metric and three-form of the form

1

O 46, + O-LHr,r, —PLix, — ~

Mumwn = ( L n ) v Hem = (=5 Fa), Fg), (3.3.10)
P 5y, P

while the seven-dimensional ExFT external metric is unchanged. It is then a straightforward matter
to convert this to a standard description in terms of the eleven-dimensional metric and four-form

field strength using the known ExFT dictionary (see for instance the review [49]), summarised in

appendix

‘generalised U-dual’

11-dim SUGRA
/\ M2-Mb5-M5’ 3-algebra geometry
type ITA SUGRA
pp-F1-NS5 near horizon

\ uplift via EDA generalised frame
ITIA on S? truncation

CSO(4,0,1) gSUGRA

Figure 3.1: The relationship between our solutions
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3.3.3 Resulting solution

Using equation (A.3.15) for the parametrisation of the generalised metric allows one to obtain the

new internal four-dimensional metric and three-form, with the latter given by

l
Gijkle

Chip = — kT
K r2f1 + Tpa™

(3.3.11)

As there is no ExFT one-form present, the Kaluza-Klein vector A”i vanishes, and using (A.3.12))

one obtains the full 11-dimensional metric

2 1/3 8ii + x;ﬁ
2 _ (2 kniss | (72 f1) 2 2 2/3/ 2 13( Tfl) i
d811 — (T fl + T ) / W(dSMS =+ d8T4> R / ( f ) / mdx dx] (3312)
where
A5y = J7H (— S Wt + fo(dz + 7850 20n gp)2) oy Jodr? (3.3.13)

The three-form and the new four-dimensional part of the metric in equation closely
resemble the two-form and metric appearing in the NATD of S3 , but now in one dimension
higher (this is easiest to see by setting 72 f; = 1).

To complete the solution, we use to extract the remaining components of the four-
form field strength (via a dualisation, as #,,,s directly gives components of the seven-form field

strength). This gives a total four-form field strength:

2 .
rgsinh 201 ra; . 7"0 sinh 2o
- ———dt Adz Adr Adz* — —~—=
ZR)E R zANdr Adz T
R%eijkldxi Adzd A dzF
(r2f1 + zpaP)?

Flgy = Volra

(3.3.14)

A ((47“2f1 + 2z,27)d2! — 4a:l8r(r2f1)dr> .

The dual seven-form field strength ig]

7"0 sinh 2a; e”klzz:l 1
r2fi + xpzP  R?
r% sinh 2o
ITCTEY" pIP)

*xFyy = adx’ Ada? A dz* A Volya

L€ijimdt Adz Adr Adz' Ada? AdaF A dat

2r W z;
R4(2r f1 + xpa®)dt Adz Adr A Volps + ——— o fy Rl -(r2 f1)dt Adz A da’ A Volpa .
(3.3.16)
“We define the Hodge dual of a p-form F via
1 v1p1 Vp Py
CF)pyoopp_py = E\/\glem...w_pul...upg g F, s (3.3.15)

where €,,...,., denotes the Levi-Civita symbol €p1...p—1 = +1. This obeys xx F' = (—1)(—1)p(D_p)F.
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Note that (xF] (4 ))’L]k‘y gt = —I-kaF . We have d x F(4) = +%F(4) A F(4)

3.4 Analysis of the extremal 11-dimensional solution

We now restrict to the extremal limit and set the pp-wave contribution to zero, making the replace-
2

ments W — 1, f{ - 1+ %, 7“(2) sinh 2ac — 212, o, — 0. We can also simplify the form of our solution

by appropriately rescaling the coordinates as well as the metric and three-form so as to effectively

set the constants 7 and R equal to 1]

3.4.1 Solution as a U-fold

Having made these simplifications, we henceforth study the following solution of 11-dimensional

supergravity:

d2
dsty = (21 + ) ) (7 (e + ) + S+ sk

+ (r2f1 + zpa® —2/3 r2f 1/3 (SZ--—i-xiwj dzidz?
J 2f
3.4.1)
2ra; Ar?fi +2 (
Fy = "0t ndz Adr Adat — 2Volga + E DT 200T) 1 40 A dad A da® A da!

(1t aparp A

(r2f1)?

Mi codr Adat Adzd A daF
(7‘2f1 n xpxp)Q 31€ijklAT ANdx” Adx’ ANdx”.
with fi =1+ %

If we take the % coordinates to be periodic, this should be identified as a U-fold. This is analo-
gous to the interpretation of NATD solutions as T-folds suggested in [63,85|. For our solution, this
U-fold interpretation follows from the form of the EDA frame, which features a trivector depending
linearly on the coordinates z*. The patching for z* ~ 2’4+ constant amounts therefore to a shift of

this trivector, which is a non-trivial non-geometric U-duality transformation. From we have
FA iy _ A N N O 0
E“p(2' 4+ Rn') = EAANUY v, UV = . (3.4.2)
Ny 1
If n; = §;jn’ are integers the matrix defines an SL(5;Z) U-duality transformation. We can describe
its action on the four-dimensional internal geometry with metric ¢;; and three-form Cj;; using the

generalised metric M ar, which is a symmetric unit determinant five-by-five matrix, parametrised
by the metric and three-form as in (A.3.15). Under U € SL(5), this transforms as Myn —

Rz/s 4/3 7

®To be precise: this involves settlng (t,z,y") = R(t,%,9") and (r,z*) = 1 (7, %), such that ds?; = dsn,

Fuy = Rr? F(4> We then work with dsll and F(4), in which no dimensionful constants appear (and drop tlldes) This
scaling of the metric and gauge field is a symmetry of the equations of motion (the trombone). We can also introduce
this scaling directly into the ExFT frame by introducing a constant parameter o as in appendix
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UP pMUC N Mpo. In the present case, we factorise My (y, ) = EA v () Map(y)EBar(z), where
as above y denotes 7-dimensional coordinates. This manifestly shows that the generalised metric
and hence four-dimensional metric and three-form together transform under the U-duality transfor-
mation, or monodromy, in , for periodic x.

Associated to this U-fold interpretation is the fact that one can interpret the three-algebra
structure constants as (non-geometric) M-theory Q-flux [62|. This is here defined by Q. ~

ed ., fhed

We will not further pursue this U-fold interpretation, but now focus on ordinary geometric

properties of the solution (3.4.1}).

3.4.2 Solution in spherical coordinates and brane charges

We can rewrite the solution by changing to spherical coordinates, letting 2° = pu’ with
Wt 0;; = 1. This is what is usually done for solutions obtained via non-abelian T-duality. The
possible non-compactness of the solution will now be determined by the range of p. In these
coordinates, the metric and field strength of have the form

dr? d
dsty = (21 + p?)3(r 2f)1/3< (~dt* +d2?) + —- +dsha + ”)

h 72 f1
( 2f1 +p2)72/3(742f1)1/3p2d833’
2rp (3.4.3)
Flyy = AL ——5dt Adz Adr Adp — 2Volp4
(4r*fi +2p°) E PO (r*f1)
P TED ) 345 A Voles — LTV g A Volys
(2ft 22 S T O

The dual field strength is

4 3

2p 2p
———— Volgs A Volps — ———————-dt Adz Adr Adp A Vol
r2fi1 + p? s T rfi(r? fi1 + p?) g ¥ (3.4.4)

+2r(2r2 fy + p2)dt A dz A dr A Vol + ;—pa,,(rzfl)dt Adz Adp A Volps |
1

We can discuss the possible M2 and M5 brane charges carried by this solution. These will be given
by integralﬂ

*F(4) = —

a2 = /JPage7 qMs Z/F(4)7 (3.4.5)

where the Page charge density for M2 branes is Jpyge = *Fy) — %0(3) N Flg). Let us consider

the latter. Let Cgphere and Chorys denote the restriction of the three-form to the sphere and torus

5Tt is possible to make this more exact and to in particular require quantised charges: we defer this discussion to

appendix
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respectively. We have
C'torus A dCsphere + Csphere A dCtorus = d(Ctorus A Csphere) + 2Csphere A dCtorus . (346)

An explicit choice of potential is:

4
C(3) = ﬁdt/\dz/\dp—Qc(g) + P

fl WVOIS:% y (347)

where dc(z) = Volpa. For this potential, the second term in (3.4.6) cancels with the contribution

from xF{4) such that Jpage = —d (C(3) A Volss> and therefore is a total derivative. Hence the

_ ot
2 f1+p?
M2 charge vanishes up to large gauge transformations. In particular we can consider a large gauge
transformation given by

C(3) — C(g) + 4mjVolgs (3.4.8)

such that Tho fC(g) — Thro fC(g) + 27j, with j € Z. Using (3.4.6) this means
JPage — 87T]V0183 /\ VO].T4 3 (3.4.9)

which generates a non-trivial M2 charge.

Next we consider the possible M5 brane charge. We firstly have a non-trivial M5 charge given by
integrating F(4) against the torus. The M2 charge generated by the above large gauge transformation
will be proportional to this M5 charge.

A further M5 charge, denoted M5’, could be obtained by integrating Fl4) over a four-cycle
involving r, p and the sphere directions. Following closely the analysis of NATD solutions in 98],
we look for a path in the (r, p) directions such that the three-sphere shrinks to zero size at beginning
and end of the path, giving a closed four-cycle. This happens at p = 0; suppose it also happens for
some value of r = rg;. Then a possible integration is to integrate from p = 0 to p = p at fixed r =7,

and then integrate at fixed p from 7 to r = r,. Letting C(p,7) =

p=p
/ Fly)
p=0

4
A
=f5p2 We would then have

+ /ri:’“s F(4)‘ =212 (C(p,T) — C(0,7) + C(p,r5) — C(p, 7))

— 2w (Clpiry) — C0,7) = P
7)== v

r=r

(3.4.10)

This is independent of 7. The issue is now whether one can find a closed four-cycle with the above
properties. This issue is linked to the question of finding a global completion of the solution (3.4.3).
Indeed, for the full metric there is no way to close the cycle to give a non-zero value for the
above integration. This is a signal that one needs additional ingredients, such as will be discussed

in the next subsection at least for the AdS limit.

For the solution with f; = 1, that we would obtain by starting with the pure NS5 near horizon
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solution , extra ingredients are not needed. Our new 11-dimensional solution in this case has

the form:

dr? dp?
ds? = (1% + p?)V/3p2/3 (—dt2 +d2? 4 TL; +ds2, + 72) + (r? + p?) 38 p2d s,

p4
F(4) =d (7’2—{—p2V0183> .

A valid choice for the above four-cycle is to take rs = 0 for which

(3.4.11)

qus = 212 5° . (3.4.12)

Restoring dimensionful constants and requiring this to give a quantised brane charge provides one

possible way to determine the range of p, fixing it to lie in the finite interval p € [0, g].

3.4.3 AdS limit and holographic completion

The AdS limit amounts to setting 72 f; = 1 in the solution ([3.4.3):

dst) = (1 + p*)"/3 (dsiys, +dp” + dsia) + (1+p°)~ 2/3 p*dsgs .

(4+2p%) 4 (3.4.13)
mp d /\VO]SJ

In terms of the original F1-NS5 solution , this corresponds to going to the near horizon region
also of the F1.

The solution fits into a general class of M-theory AdSs solutions constructed in [92].
These solutions are of the form AdS3 x S2/Z;, x CYy foliated over an interval. They are closely
related to the AdSs x S? solutions in massive ITA which provide a way to complete the
NATD of AdS3 x T4 x S3. Restricting this class of solutions to ordinary ITA (by setting hg constant)

allows for an uplift to M-theory. The resulting solutions presented in [92] read as follows:

F(4) = 2pVolags, A dp — 2Vol s +

1/2 (¢ 1 2 1/3
\/ h h, h hahg+7u
d5%1 = A( dSAds3 + V hs d SCy, T ~—do > AzdSSS/Z , A= - <i}}/6u1/3 ) )

Fly = —d (% + 20hs) A Volaas, — dghs Voloy, + 2hs d (—0+ ) AVolga g, |

(3.4.14)
where the quotiented 3-sphere is written as an S' Hopf fibration over an S?
L1y 2 2

dSS3/Z 1 (7 + 7}) +dsgz |, dn= Volg. (3.4.15)

The functions u and hy are again linear functions of g, but hg is given by hg = k an integer.
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To match this to our solution (3.4.13]), we relate our radial spherical coordinate p to the coor-

dinate o appearing in (3.4.14)) via:
p°=20. (3.4.16)

This allows us to write ((3.4.13)) as

ds%1 =1+ 29)1/3 (dsids3 + % + ds%4> +(1+ QQ)—2/329ds§3 ,

8(1+ o)
(1+20)?

(3.4.17)
Flgy = 2Volads, A do — 2Volpa + odo A Volgs .

It is straightforward to confirm that the solution (3.4.17) is included in the class of solutions (3.4.14)
for{T]

E=1, wu(o)=hs(o) =20, (3.4.18)

giving A = (1 4 20)/3/(20)"/?, and taking the CYs to correspond to T? specifically (we could
equally well have considered our solution on either T# or K3 from the beginning).

The general class of solutions then has the necessary properties needed to provide a
global completion and holographic dual of the AdS limit of our solution. As specified in [92], one
considers the following set-up. The coordinate p takes values in a finite interval g € [0, 27 (P + 1)],
which is divided into subintervals ¢ € [27j, 2w (j + 1)] for 7 = 0,... P. The function w is linear in p,
while hy is piecewise linear, with its slope jumping from subinterval to subinterval. It further is taken
to obey hy(0) = hy(2m(P+1)) = 0, which has the effect of ‘ending’ the space at the endpoints of the
interval (and allows for the computation of M5’ brane charge by integrating the four-form flux on
the full p interval and S®). The 3-form C(3) is modified by a large gauge transformation (of the form
(3.4.8))) as one crosses the endpoints of each subinterval. There is a (flat space) underlying brane
configuration, involving M5 branes wrapping the (¢, z,r) and S* directions, M5’ branes wrapping the
(t, z) and torus directions, and positioned at o = 27, and M2 branes wrapping the (¢, z, 0) directions
stretched between these M5 branes. This dual brane configuration allows for the identification of
a dual quiver field theory, described in [92]. Our solution can be regarded as giving the
more general solution only in the first subinterval, with ¢ € [0,2x]. This is exactly analogous to
the situation with NATD solutions, and shows that our solution based on dual three-algebra rather

than Lie algebra structure constants admits a similar holographic interpretation.

3.4.4 Full solution as a six-vector deformation of AdS limit

We now return to the full solution (3.4.3)), in order to explain how it can be viewed as a particular

interpolation away from, or deformation of, its AdS3 limit. To show this, it is helpful (though not

"To match precisely, we need to take into account some freedom to change signs of components of our four-form
field strength, e.g. the overall sign C(3y — —C{3) is a matter of convention/orientation, we may also flip the sign of
a torus coordinate, or change the sign of the electric B-field components of the original F1-NS5 solution.
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strictly necessary) to introduce a dimensionless parameter A by rescaling the AdS coordinates as
ts ATV s X2, e ATY2p (3.4.19)

The parameter A now serves as a book-keeping device for describing the deformation of the AdS
limit, which corresponds to A = 0. The function f; is now f; = 1 + /\—1,2 and hence the A — 0
limit picks out the near horizon region where one drops the constant term. Evidently for A = 0
the rescaling is singular, but nonetheless the metric and field strength are well-defined.
Explicitly, one has:

ds? = (14 p® + M H)V3(1+ Ar?) 723 (2 (—dt® + d2?) + dp?)

d 2
+ (1402 + M3+ M3 (:2 + ds%;)

2 2\—2/3 2\1/3 2.2 (3.4.20)
+ (1 +p" + M=) 72 (1 + Ar®) /P pdsgs
2rp pt
F(4) = mdt A dZ A dT A dp — 2V01T4 + d <1—|-)\7"2—i-p2V0183) .

This indeed reduces to the AdS limit for A = 0. For X\ # 0 one has the full solution (in
which we can always undo the rescaling by setting A = 1).

The solution (3.4.20) with finite A can be expressed as an Eg)-valued deformation of the A =0
limit. This involves an action of Ege) on the ¢, 2, p and S? directions. This Eg(6) transformation
should be viewed as a solution generating transformation rather than a U-duality. It may at first
seem highly mysterious that the group Eg ) should appear rather than the SL(5) we used to generate
the solution: this can be explained by tracing the origin of this deformation back to an SO(2,2)
T-duality transformation acting just on the (¢, z) directions of the original F1-NS5 solution. Our full
solution therefore inherits non-trivial structure associated to the action of ‘duality’ transformations
in 2 + 4 = 6 directions, which singles out Eg). We will explain this further below.

An Eg(g) transformation non-trivially mixes the metric with the three-form and six-form poten-

tials, which can be explicitly introduced as:

C —Tzipdt/\d Ad +p74v1
G~ 1T N2 znap 1+ A2+ p2 Olgs , o)
72 1 1 4.
] - los .
Cle) 9 (1+/\T2+1+)\T2+p2>dt/\dz/\dp/\Voss

The remaining components of C(3) and Cs), which have components along the torus, are electro-
magnetically dual to those written here. The relevant component of the dual field strength leading

to the six-form potential is

2p3rdt Adz Adr Adp A Volgs
(14 Ar2)(1+ A2 + p2?)

*Fgy > — (3.4.22)

83



As d*F(4) — %F(4) A F(4) = 0 we then define 0(6) by dC(G) = *F(4) — %0(3) A F(4) The gauge choice
for C(g) has been chosen so that it is finite for A — 0.

To describe the action of Eg(g), we make a (6 + 5)-dimensional split of the coordinates. Let
= (t, 2, p,0%), where 0% denote the coordinates on the unit sphere, and let z# = (r,9',...,y%)

with the 4 corresponding to the torus coordinates. We decompose the metric as
ds® = pyda’dad + |¢|~Y3g,, daida” (3.4.23)

such that the metric g, is an Eg(g) invariant given by

2
gudztdz” = 4392 (det ggs )1/ (d:Q + dsgf4> . (3.4.24)

In particular, it is independent of A.

The metric ¢ transforms alongside the three-form components Cjj and the six-form component
Cijimn = Céijiimn. The Eg(6) covariant object containing these fields is a 27 x 27 generalised metric.
This can be written as [99.|/100]

o 0 0
Mun(9,Cs),Ce)) = U™ Mg UNY . Mun =102 0 26067 0 )
0 0 (det gb)_lgbij
(3.4.25)
& —Cyy +03C + %1% Cy 1, Chgkaks
U= 0w ddieslg | (3.4.26)

0 0 5]

Here the 27-dimensional E6(6) fundamental index decomposes as VM — (Vi, Vi, VT) where Viy =
—Viy and VMW, = VI, + %VIVW“/ + ViW:. There are thus two six-dimensional vector indices:

the second one can be viewed as coming from a dualisation of five-form indices V' = ée”l'“ﬁthJ—s .

It is straightforward to evaluate the generalised metric for the six-dimensional metric and
form-fields obtained from (3.4.20). Some general formulae applicable to situations where the six-
dimensional metric and form-fields admit a (343)-dimensional decomposition are recorded in ap-
pendix[A.3.5] One finds that the generalised metric depends linearly on X, and furthermore that the
A dependence can be factorised via an Eg(g)-valued transformation involving a six-vector parameter.

Generally, we can introduce an Eg(g)-valued matrix describing deformations involving a trivector

8Here both 12345 = €o12345 = +1 are Levi-Civita symbols defined without relative minus signs for convenience.
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Q% and a six-vector QKM = Qlikmn "syych that [100]

& 0 0
Uy = — Qi 201 0. (3.4.27)
G+ €y TR QRskaks S o, QRakeks 5

Again using the formulae in appendix [A.3.5] it can be straightforwardly checked that the generalised
metric describing the background ([3.4.20)) admits a factorisation

Muyn () = UK V) Mg (h = 0)Un"(N) (3.4.28)

where UpN (A) has the form of (3.4.27) with

k=0, Q= IR S (3.4.29)

2%\ /det ggs
where \/M denotes the volume element on the unit three-sphere. Hence the factorisation
demonstrates that the full solution (3.4.20) is a six-vector deformation of the A = 0 back-
ground corresponding to the AdS limit.
The fact that the deformation parameter is non-constant can be understood by viewing this
form of the deformation as involving a change of coordinates as well as a constant Egg) transfor-
mation. This change of coordinates is just that which defines Cartesian coordinates x* in place of

the ‘spherical’ coordinates (p, 8%). In terms of the Cartesian coordinates one has simply:

QtZ'ijl — _iel]kl . (3430)

It is still non-trivial that this is a solution generating transformation, as the full solution depends on
the 2 coordinates, and so we are not in a situation with isometries to which we would automatically
be entitled to apply U-duality transformations. The six-vector deformation however commutes with
the EDA generalised frame containing the trivector Q%% ~ €7*z;  Prior to applying the EDA
generalised frame, what we have is an 11-dimensional configuration (that is not a solution) which
already admits the six-vector factorisation.

This follows directly from the properties of the original F1-NS5 extremal solution. Using the
same coordinate redefinition that introduces the parameter A, the F1-NS5 extremal solution (3.3.3)

can be written ad’]

2 2

T
14 a2

ds? =
% T 1 a2

d 2
(—dt? +dz?) + r% +ds3s +dsta, B e729 =14+ 2. (34.31)

The A dependence now corresponds to an SO(2,2) T-duality deformation acting on the (¢, z) direc-

9This rewriting is inspired by [93L[101].
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tions. This is seen by passing to the appropriate SO(2,2) covariant description via a generalised
-1 0
0 1)’

Hun(\) = U W HrL A= 0)UxE(N), UnY = (—15 ?) , B= % (_01 é) . (3.4.33)

metric

— B¢ 'B Bg! 0 A 0 1
HMN()‘) - J _gl g_l == _9 ) Z = ) n
-9 'B g Z (r—=4+An 10

factorising as

The deformation matrix 4 has an interpretation as a bivector 3%. (This can alternatively be seen as
a TsT transformation.) In addition, the SO(2,2) invariant generalised dilaton is e 2%y /| det(g)| = 72

and is independent of .

When we apply the reduction ansatz for type IIA on S* to the F1-NS5 background, the field
strength component Hy,, = 0,B;, becomes the A = 5 component of the SL(5) covariant field
strength #H 3y 4. On uplifting to an eleven-dimensional solution (using the coordinates x'), this leads
to the identification Fy. ijp ~ Hyzr€i50 giving a non-trivial dual seven-form field strength. Hence
the B-field component By, induces the component Cy;jx; of the eleven-dimensional dual six-form.
Accordingly, the bivector deformation 3% becomes the six-vector deformation Qf?¥k —= gtz¢iikl
The smallest U-duality group capable of describing such a deformation is Eg(g), and this provides

the exact explanation for why Eg) appears.

The structure of the F1-NS5 solution appearing here is associated to some intriguing physics.
The solution can be viewed as interpolating from an AdS3 geometry to a linear dilaton spacetime,
holographically dual to Little String Theory [102/103]. This interpolation, realised above via the
bivector deformation, has been argued to correspond to a single-trace TT deformation of the dual
CFTy 93], and has a worldsheet interpretation as a marginal current-current coupling. We might
therefore expect that our full solution captures again a deformation related to 7T of the CFTs dual
to the AdSs limit of our solution (these are the quiver field theories described in [92]). Making this

precise would be interesting future work.

A final comment here is that deformations of the form (3.4.27)) generically lead to terms quadratic
in the six-vector deformation unless the upper left block of the generalised metric vanishes, M;; = 0.
This block is of the form Mj ~ (¢ + 0(23) + (Ce) + 0(23))2>ij and so involves terms quadratic Cig)
as well as both quadratic and quartic in C3). Rather remarkably the gauge choice made above for
the three- and six-form is such that here M;j = 0.
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3.4.5 Supersymmetry

In this section we discuss the supersymmetry of the AdSs limit (3.4.13)) of our solution. The Killing

spinor equation in our conventionsFlT]
Sethy = 2Dpe + o (DVP7X, — 87261 )eF por = 0. (3.4.34)

We will proceed to solve this explicitly, finding a %—BPS solution (3.4.61)). We denote the AdS
coordinates by (t,z,7), the torus coordinates by g%, i = 1,...,4 and the (standard) three-sphere
coordinates by (x,0,¢). Unless otherwise indicated, in the below equations the indices on the

gamma matrices should be assumed to be flat.

We first assume that e is independent of the torus coordinates y*. Then the p = y* components
of (3.4.34) provide an algebraic condition on e:

[p(1+p%)7'T, — %(1 + p?) M2 (2pD P — 4TV 4 4 (1 %pQ)u + )72 [~ 0. (3.4.35)
The AdS components of give differential equations
Dye+ ¢lpXe=0, (3.4.36)
where

X — (_(1 + p?) 7oL, + (1 + p2) 12 <_2prtzrp _ DY 491+ 1p?)(1 4 p2)71/2rpxecp))
(3.4.37)
In (3.4.36) 7o denote curved AdS indices. The spin connection components are Dye = 0Ope and
Dse = Oge — %Fare, with a labelling the ¢ and z directions, and I'; = r~IT,., Ty = rT'y where I, and
I’y are the gamma matrices with flat indices. The form of the r-dependence of the m = r equation
implies that the r-dependence of € has to be of the form r?, with a matrix § to be determined later,
leading to a further algebraic condition on e. Indeed, letting explicitly € = r%¢, where € depends on

t, z and the other spacetime coordinates, we get an equation
(B4 T X)e=0. (3.4.38)
It follows that Dye = —I'y; ' Be. For the (t,z) components we get
Oae = Dar (=B + 3)e = 0, = 1 PTy,rPL(1 - 2B)e. (3.4.39)

We have an r-independent expression on the left hand side, and so by our assumptions the right

hand side of has to be r-independent as well, thus, differentiating the right hand side with respect

0We follow [14] so that {T's,T's} = 274 with 7,5 having mostly minus signature.
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to r we end up requiring the following expression to vanish:
P (Pw — 18, PM]) (1-28)rfe=0, (3.4.40)
which can be achieved if
(Far - [B,Fm])(l —28) =0. (3.4.41)

If 8 commutes with I'y, then the only solution is 8 = %] . Alternatively, if 8 anticommutes with

Tyr, then we can extract 'y, from the equation again leading to

((25)2 - 1) =0, (3.4.42)

which tells us 28 should square to a unit matrix. This condition and that of anticommuting
with 'y, and I',,. is compatible with multiple choices for 3, for instance 28 = +I,, 28 = +il',,
28 = %Iy, ..y, - However, not all options will lead to a non-trivial solution for €, and some of them

have fewer supersymmetries than others, as we will see shortly.

Now let’s agsemble and make sense of the algebraic conditions on e. We can rewrite (3.4.38]) as

1 ) 1
20,8+ Sp(1+ ) 7T, = (14 p) 72 (414 3p?) (14 p7) 720N — 200w — 40 [ = 0

6
(3.4.43)
Subtracting 3 (3.4.35) from (3.4.43) we get:
[21“,,,8 +i(1+ p?) M2 (prte Py1-~~y4)] e=0 (3.4.44)

This (for suitable 8) will provide a coordinate-dependent projector condition on e, similar to that

appearing in non-abelian T-dual solutions [7]. We can also deduce a second projector condition.
Let’s first split the I'*X%¢ and T, parts of (3.4.43) as
1

- [mﬁ +i(1+ p2) 12 (prmﬂ + ry1~~-y4)] €

) (3.4.45)
+Z [2&6 +p(1 4 p?) 7T, — DP9 — (1 4 p?)~' TP — (1 + pQ)’l/QFylmyﬂ e=0

3
the first line of which is exactly (3.4.44)) thus vanishes. We can write the second line as
2008 = TP 4 T (14 p?) 7 (o177 D700 ) — (1 4 p2) 72T e = 0 (3.4.46)

then using the fact that the product of all gamma matrices is (in our conventions) —i, we can rewrite
[tzrexbe — jTv1-94 and use (3.4.44) again to obtain

[2F,.5 —TPXO (1 4 p?) 1/ (rtz - ryl---y4)] e=0 (3.4.47)

88



and then again rewriting ['V1¥% = ['**"TPX0¢ and T% = —T*%*"T", we finally extract a common

factor
(1 (14 p2)*1/2rm) [21}6’ - inX@W} e=0 (3.4.48)

multiplying this by (1 —i(1+4 p2)*1/ QFt”> and extracting the non-negative resulting p? we arrive

at the second projector condition on e:
[2rr5 - z'rf’xe%’} e=0. (3.4.49)

As we want our solution to be as supersymmetric as possible, we want to choose a g that will cancel
some of the algebraic conditions on e. Looking at and keeping in mind that I%*7¥1-¥1 =
—ilPX9? e immediately see that the choice 23 = I'*?¥1-¥4 will turn this condition into a trivial one!
Thus, we can conclude the choice 23 = I'*?¥1--¥4 corresponds to a most supersymmetric solution;
other choices would impose and lead to a solution with fewer supersymmetries.

Now let us look at the full AdS part of the solution that corresponds to 23 = I'**¥1-+¥4 and then

come back to the remaining equations. We will write our solution in the form
€ = EAASEPES3EQ (3.4.50)

with €g is a constant spinor and the other factors are matrices depending on the AdS, p and sphere

coordinates respectively.

The differential equation (3.4.39) on € becomes

B = %Far(l —2B)é (3.4.51)

with the solution ) .
€ = exp §xaFar(1 - 25)} €= <1 + §ma1“m«(1 - 25)) € (3.4.52)

where in the second equality we take into account our previous assumption that 8 anticommutes
with Iy and (28)? = I so that we can make an expansion of the exponent to the linear term. Here

€ = €,eg3€p. Hence the full factor epqs is

2yp-.. 1
EAdS = T%Ft Y1---Y4 (1 + §$arar(1 _ thy1...y4)> ) (3453)

Expanding the r exponent, this can be seen to match the form of the AdS solutions obtained in [104].

Now we congider the remaining differential equations on €. We start with the case corresponding

to the p coordinate:

; 1
Dpe — é(l + %)Y, [Pyl--~y4 + 20070 4 4(1 4 3p*) (L + p?) 7D e = 0 (3.4.54)
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Using the projector conditions (3.4.44)) and (3.4.49) (the latter of course now an identity given the

form of (), as well as gamma matrix identities, we can simplify this to

1
Ope = op(L+p*) e+ TrpB(1+ ") e =0. (3.4.55)

and now the solution for €, will depend on how exqs permutes with 3. For our choice of 3, all the
matrices in epqs commute with I';.,3, and we can simply move eaqs to the left of each term in the

equation. We then end up with a differential equation for €, with the following solution:

1
e =(1+ p?)12 exp [5 tan~! Pthryl...yzlp} (3.4.56)

We move on to the sphere components of the Killing spinor equation. We let egs = €, (x)€a(0)ex ().

The x equation becomes after similar simplifications using the projector conditions
1 _
Oe+ (14 )T [14 Tty € = 0, (3.4.57)
or )
Oxe+ 92 exP[Laryy . yup tan~"! Pl pxe=0. (3.4.58)

Permuting I',, in the second term in this equation with €, we change the sign in the exponent of
€, from equation (3.4.56)), which combined with the exponential of this equation gives the same ¢,
finally in the second term on the left. Thus, after extracting €, from the both terms of the equation

to the left, we have the simple equation

1 1
Ovex + 5Tonex = 0= € = exp - §rpxx] . (3.4.59)

The same technique can be applied to obtain €y and €, parts of the solution, which end up being

1 1
€9 = €xp [— §PX9‘9} , €p =exp {— §F9<pg0} . (3.4.60)
The full solution we have obtained can therefore be written as
1
e = (14 p?)/128 (1 + ixaFm«(l - 25)) exp { — BTy, tan™! p} €Q€Q (3.4.61)

with § = %Ft'zyl"'y‘l, €n = €€p€,. In addition we have the projector condition (3.4.44)), which we

can rewrite as

<1 + \/1172 (thr _ pry1~~~y4ﬂ)) e=0. (3.4.62)
p

This can be shown to reduce to a single projector condition on the constant spinor €y. To show this,

we apply the projector condition in its original form (3.4.44)) to (3.4.61) and proceed as follows. We
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first permute the exponential in €, with I',3 from (3.4.44)). After then factoring out a common e,
we can use the identities sintan~! p = p(1 4+ p?)~1/2, costan' p = (1 + p?)~ /2 to rewrite (3.4.44)

applied to (3.4.61) as
(1+p*)7 1 [(1 + prtzry1---y4p) 26 + i(PFtZTp + Fyl"‘y“)} Ex€pey €n = 0. (3.4.63)

Then permuting with €,, the terms linear in p give different signs in the exponent containing I',,

leading to 2 equations:
(20,8 + TV ¥)eg =0, (I, +il"*P)ey = 0. (3.4.64)
However these are actually equivalent and give the single condition:
(144I")eg = 0. (3.4.65)

Therefore we have 1 condition on €y, reducing the degrees of freedom by %, 8o this is a %—BPS
solution. This is the same amount of supersymetry as the original F1-NS5 solution in its AdSs
limit. Away from this limit we expect our full solution is i—BPS. It is worth noting that
the solutions of [92]| are generically %—BPS, suggesting that our solution allows for an enhancement,
likely due to the special case k£ = 1. We note that a similar explicit Killing spinor solution was

found in [105].

3.4.6 IIA reductions

Finally, let us record the expressions for different solutions of type ITA supergravity which can be
obtained by reducing the solution (3.4.3) in different ways. All these solutions could further be

T-dualised in multiple ways to give solutions of type IIB supergravity.

Reduction on T* direction Reducing on one of the T directions we obtain

ds2 —(r2f + 2)1/2( 2f )1/2 i(—dtQ—i—d 2)+ﬁ+ dp2 ©ds?
10 — 1T p LA 7 Z 2 77"2]"1 873
+ (r2f1 + p2)’1/2(r2f1)1/2,02ds§3 :
H(3) = _2V01T3 ) 6_2Lp = (Tzfl + p2)_1/2(7“2f1)_1/2 s F(Q) = 07
(4r°f1 +20°) 0, (r* 1)
W Wdr A VO]S3 .

(3.4.66)

B 2rp

F(4) = (r2f1)2dt/\d2/\d’l“/\d,0+

pidp A Volgs —

This still has an AdS3 near horizon limit, and the full solution is a six-vector deformation of this.

The six-vector is now associated to the NSNS six-form.
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Reduction on Hopf fibre Writing the metric on the three-sphere as

((dy+ ) +ds32) , dn=Volg. (3.4.67)

AMH

dssg =

and reducing on the Hopf fibre direction parametrised by 1 we obtain

dsfo = (r 2f)l/?p< (—dt? + dz )+ﬁ+di+ds )
h 2f1
+ (2 ) L)Y (2) dsZ
472 f +2 40, f
6‘2“’=(T2f1+02)( 1) 1/2( ) 3,
2rp

F(Q) = Volg2, F(4) = ——5dt Adz Adr Adp — 2Vola .

(r2f1)?
This still has an AdS3 near horizon limit, and the full solution is a five-vector deformation of this,
with the five-vector associated to the RR five-form. As the M-theory AdSz x S* solutions of [92]
were obtained by uplifting the AdSs x S? ITA solutions constructed in [94}97] on a Hopf fibre, the
solution (3.4.68)) can be interpreted using the latter.

Reduction on AdS direction Reducing on the z direction we obtain

1 d d
dst) = (r*f1+p)'/2r <_fdt2 + L + 7’} + ds > +(r2f1 + ,02)_1/2rp2dss3 ,
2rp _ _
H) = (T2f1) At ANdr Adp, e = (P fi+p?) TP By =0, (3.4.69)
(Ar? f1 +2p%) 4 O (r? f1)
F(4) = —2V01T4 + W dp A VOISS — Wd r A VOISJ

This now has an AdSy near horizon limit, and the full solution is a five-vector deformation of this.

The five-vector is associated to the RR five-form.

3.5 Discussion

In this chapter we first discussed the idea of generalised T- and U-dualities, viewed as a solution
generating technique in supergravity. We reviewed how these generalised dualities can be linked to
special classes of algebras, which are efficiently geometrically encoded using generalised parallelisa-
tions in generalised geometry. Building on our previous paper [87], we focused on an example in
11-dimensional supergravity characterised by non-vanishing dual 3-algebra structure constants in

the underlying exceptional Drinfeld algebra introduced to control Poisson-Lie U-duality in [26,27].
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To produce a new supergravity solution, we had to step slightly outside the confines of the
EDA set-up. We used the fact that our EDA generalised frame incorporating the Euclidean 3-
algebra solution provided a consistent truncation to CSO(4,0, 1) maximal gauged supergravity in 7
dimensions. We were able to use this pragmatically to produce dual pairs of solutions by starting
with the known truncation of type IIA on S? leading to the same gauged supergravity, reducing
solutions of the latter form, and then uplifting with our EDA frame. Algebraically, this alternative
starting point can be viewed as relaxing the requirement that one has to pick an isotropic set
of dual generators forming a subalgebra. It would be interesting to complete this observation by
formulating a more precise understanding of which families of generalised frames produce the EDA
with the subalgebra requirement relaxed (the systematic approach of [51] would likely be useful
here). This would allow our construction to be viewed in terms of a slightly enlarged notion of
Poisson-Lie U-duality than that initially suggested in [26,27].

The example described in this paper can be viewed as a proof-of-concept for the idea that it
is possible to generate new supergravity solutions by formulating generalised notions of U-duality.
It would be beneficial to develop a more systematic approach. For instance, it is very clear which
spacetimes admit non-abelian T-duals: those with non-abelian isometries. It is not clear what space-
times admit generalised U-duals characterised by non-vanishing dual 3-algebra structure constants.
It is also not clear what role, if any, is played by an actual 3-algebra symmetry in such spacetimes.

Generalising to higher dimensions will also lead to higher-rank polyvectors and n-algebra sym-
metries. It would appear that solutions characterised by an ansatz involving polyvectors linear in the
coordinates have notable properties. They describe not only the plethora of known NATD solutions,
but also solutions such as the one constructed in this paper, which as we saw shared many features
with solutions generated by NATD, including the general properties of its holographic completion.
Classifying and understanding the types of solutions of this form, and the possible dual solutions
they may arise from, would not only help establish generalised U-duality as a useful technique on a
par with non-abelian T-duality but help elucidate the general structure.

Here it would also be important to develop an understanding of which properties (supersymme-
try, brane charges) of such solutions are induced by the initial solution. For non-abelian T-duality,
for example, one can precisely discuss which supersymmetries are preserved in terms of whether the
action of the initial non-abelian isometries preserve the Killing spinor |7,86,[106]. Generically one
finds a reduced amount of supersymmetry in the dual solution as a result. In our example, in the
AdS limit, we found our new solution had as many supersymmetries as the original near horizon
F1-NS5 solution. It would be useful to understand from a general viewpoint why this was the case.
This might be best formulated using exceptional field theory as a master formalism.

It would be possible to generate further examples by focusing on specific solutions of the gauged
supergravities that appear in these polyvector constructions. For the CSO(4,0,1) supergravity,
numerous solutions were found in |[L07HL09|, all of which can be used to generate dual solutions by

uplifting to type ITA on S® and to 11-dimensional supergravity via our EDA generalised frame.

93



Turning now to the specific example studied in this paper, this exhibits numerous interesting
features linked to deformations and holographic duality. We argued that a holographic completion
of the AdSs3 limit of our solution can be obtained from the class of solutions obtained in [92],
which have well-defined quiver field theory duals. We showed that our full solution can be viewed
as a six-vector deformation away from this AdSs limit. This deformation was inherited from the
interpolation of the original F1-NS5 solution from its AdSs3 limit (in the near horizon region of the
F1s) to the asymptotic linear dilaton spacetime associated to the pure NS5 near horizon limit. This
interpolation has been argued to correspond to a ‘single-trace’ variant of the TT deformation in
the CFTy dual of the AdSs limit [93] (the CFT dual (to the long string sector) of string theory on
AdS; is a symmetric product MY1/Sy, and the TT deformation of [93] deforms the block CFT
M — MTT)-

The immediate question is whether there is an analogous interpretation applicable to our six-
vector deformation of our AdS3 limit in terms of a deformation of the CFT duals of [92]. This is not
to necessarily suggest that this deformation will again be describable as a 7T deformation, but it
may have similar properties. In general, we would expect generalised U-duality, as for non-abelian
T-duality, to produce backgrounds with different CFT duals. However, we can at least say that our
solution generating technique preserved the fact that there ¢s a deformation, encoded geometrically,
and suggest that this may turn out to have a relationship to T'T.

A further comment is that in the F1-NS5 case, the endpoint of the deformation can be viewed
as a vacuum of the Little String Theory [102}/103] dual to the asymptotic linear dilaton spacetime:
for our solution, the latter spacetime maps to the 11-dimensional solution (3.4.11)) (not an AdS
geometry) which may accordingly itself have a similar holographic interpretation in terms of a dual
M5 brane theory.

It may be therefore be interesting to study the deformation of the general class of geometries
(3-4.14) of [92]. If we define

\/ hahg

2
T’2(—dt2 + dZQ) + udg2> s haﬁdll,‘adl‘ﬁ = @d82

gapdz®dz® = A (

u
Vhahs A
, - (3.5.1)
u dr ha
G dazids” = A — 4] —ds? ,
" Viahs 77\ hs O
and make the naturally analogous gauge choice
Cr=Cry = o, (M 4 20n Cs = Cyoo = 2hs (—o+ —" ) Jgs
1= Utzp = o Yo 234 ons | , 2 = Uyphp — 4118 0 4B4h8 12 937, > (3 ; 2)

2 2,2772
r 4hgu”h

_ st 1
O = S (kg + w2y VIR T 2O

then we can immediately read off a deformed background from the expressions in appendix
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This requires choosing a deformation parameter which produces a new solution: this is not guar-
anteed. Note that generically the Ege) generalised metric block Mj; is non-zero for the metric
and potentials picked here. This means that the deformed metric will depend quadratically on A
instead of just linearly. This is not necessarily a problem, however it is possible that situations with
vanishing M;; are special.

Other deformations of the AdS3 limit of the F1-NS5 solution correspond to single-trace JT'/JT
deformations of the dual CFT, see for instance [110,[111]. These again have a straightforward world-
sheet interpretation as TsT i.e. O(d,d) transformations, and modify the bulk geometry. Focusing
on deformations which preserve the ansatz for type ITA on S3, it would be possible to map the cor-
responding backgrounds to new 11-dimensional geometries using our methodology, and to examine
how the deformations are inherited by the new solution, as trivector deformations for example.

It may also be productive to explore these deformations algebraically in the context of the EDA
proposal. For instance, embedding our SL(5)-valued trivector into Ege) and combining with the
six-vector deformation discussed in section , could be viewed through the lens of the Egg)
EDA [79]. This may connect to related work on polyvector deformations, including in the context
of the EDA construction, such as [112].

We have provided new examples of implementing U-duality in constructing connections between
seemingly different solutions, and discovered some interesting features of the new solution. In the
general scope, this extends our understanding of special internal properties of the solutions generated
via generalised U-duality, which in a way extends the framework of generalised T-duality and exhibit
novel supersymmetric features. That gives a better hint of how different supergravity models are

interconnected.
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Chapter 4

Generalised U-dual solutions via ISO(7)
gauged supergravity

4.1 Introduction

The T- and U-duality symmetries of supergravity act on spacetimes with abelian isometries. A first
version of a generalised duality is non-Abelian T-duality (NATD) [3], which provides a mechanism
that dualises a space with non-Abelian isometries to a space with fewer isometries. Both abelian
and non-abelian T-duality are special cases of the Poisson-Lie T-duality [10,/11], which can be
applied to backgrounds lacking isometries, and which are characterised by an underlying double
algebra structure called the Drinfeld double algebra. Further extension of these dualities leads
to notions of generalised U-duality, originally proposed using a generalised geometric approach
(building on [23},24] in the T-duality case) to describe the background, and generalises the Drinfeld
double algebra to the so-called exceptional Drinfeld algebra (EDA), that generically is a Leibniz
algebra instead of a Lie algebra [26427,79,91].

In our earlier papers [87,[113] we used this approach to study an attractive example of a gener-
alised U-duality solution generating construction based on the S1(5) U-duality group acting in four
dimensions. The relevant exceptional Drinfeld algebra was the Lie algebra ISO(4). The generalised
U-duality map took solutions of type ITA supergravity on a three-sphere with NSNS flux to new
solutions of eleven-dimensional supergravity: a basic example was provided starting with the near
horizon NS5 brane.

In this paper, we revisit the generalised U-duality on another example based on the E7 U-duality
group acting in seven dimensions, with the relevant EDA now being an extension of the ISO(7) Lie
algebra. We take a near horizon D2 brane solution as a test example, and show how to transform
this into a new supergravity solution in eleven dimensions.

The appearance of ISO(4) and ISO(7) algebras is not a choice made a priori but a consequence

of choosing to study particular natural algebraic structures, which appear in the definition of the
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underlying Drinfeld double algebra. First of all, we were motivated by the fact that in solutions
obtained by NATD, the breaking of translational isometries in the new dual directions can be linked
to the appearance of ‘dual’ Lie algebra structure constants f‘lbc For the dual of SU(2) i.e. NATD
on S2, these are fabc = e,

In the exceptional Drinfeld algebra |26},27,79,(91] these dual structure constants are generalised
to 3- and 6-algebra structure constants, f“bcd and fadeef g In the four-dimensional SI(5) case
only the former appear. Choosing fo%¢; = e, (a=1,...,4) produced the ISO(4) algebra studied
in [87,[113]. The solutions obtained could be seen to directly generalise many of the properties of
the solutions resulting from NATD.

In this paper we generalise to the seven-dimensional case, where in principle we can have both
the 3- and 6-algebra structures. We choose f‘lbcd = 0 and take f“deef g = eabedef g, which as we
explicitly show corresponds to the ISO(7) algebra.

This ISO(7) example can be viewed as being a sort of electromagnetic dual of our previous
ISO(4) case. This is reflected in the replacement of the 3-algebra structure constants with 6-algebra
structure constants, explicitly linked numerologically to the three-form and its magnetic dual six-
form, and in the natural choices of NS5 brane (M5 brane on a circle) and D2 brane (M2 brane) as
starting points for the construction.

Our approach to constructing new solutions relies on the fact that the generalised geometric
realisation of the exceptional Drinfeld algebra provides a mechanism for carrying out a consistent
truncation from 10- or l1-dimensional supergravity to a lower-dimensional gauged supergravity.
Such truncations allow for both reduction and uplift of solutions. The algebra that is gauged
is exactly the EDA. When a different consistent truncation is known leading to the same lower-
dimensional theory, we can apply ‘generalised U-duality’ by mapping solutions to solutions by
reducing via one consistent truncation and uplifting via the other. The example of [113]| gave a con-
sistent truncation of eleven-dimensional supergravity to seven-dimensional ISO(4) gauged maximal
supergravity, distinct from the previously known origin of this theory via consistent truncation of
type ITA supergravity on a three-sphere with NSNS flux.

In this paper, we will play the same game using reduction and uplift by inequivalent consistent
truncations leading to the four-dimensional ISO(7) gauged maximal supergravity. The first known
consistent truncation in this case is provided by type ITA SUGRA on S°® [114{116]. We apply
our solution generating technique by taking any solution of type ITA fitting into the appropriate
reduction ansatz, consistently truncating it to a 4-dimensional solution, and then uplifting it to
a new ll-dimensional SUGRA solution using the E7 generalised geometry formulation based on
the EDA [91]. It follows that this method gives an alternative consistent truncation, starting with

eleven-dimensional supergravity and leading to ISO(7) gauged supergravity in four dimensions.

In Poisson-Lie T-duality more generally, these can be interpreted as a coycle of a physical Lie algebra, which in
this case is trivial.
2With interpretations as n-cocycles of a physical Lie algebra, which again will be trivial in our examples.
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In fact, this alternative consistent truncation was identified in the paper [51] (which indeed
demonstrated the existence of inequivalent consistent truncations for CSO gaugings more generally).
Here we extend, or use, the observation of [51] in the following ways. Firstly we demonstrate
explicitly how to use these inequivalent consistent truncations to perform a generalised U-duality,
and explicitly produce a new 11-dimensional supergravity solution using this approach. We further
highlight the algebraic interpretation of the second consistent truncation, by concretely connecting
it to the EDA proposal with accompanying n-algebra structure, and by comparison to our previous
papers [87,|113] we demonstrate how this all fits into the pattern of generalised dualities naturally
extending non-abelian T-duality of a three-sphere.

In this chapter we specifically apply the uplift procedure to produce a new 11-dimensional
solution starting with an extremal D2 brane solution after taking the near horizon limit. Then we

analyse the properties of the new 11-dimensional solution, which turn out to be as follows:

e The new solution can be described by using the generalised geometry techniques with a 6-

vector linear in the dual 4-dimensional coordinates. (See sections|4.2.9 and |4.3.9 )

e The new solution can be viewed as carrying an electric (M2) charge. (See section[A.4])

e The new solution can be viewed as a warped product of AdSs, S® and an interval, and it
possesses a %—BPS solution of the 11-dimensional Killing spinor equation. (See section )

In section [4.2.1| we review the ISO(7) subalgebra of the E7 Drinfeld algebra that we will use in our
solution. In section we construct the frame fields of F; Drinfeld subalgebra. Then, in section
we show an example of how to obtain a new 11-dimensional solution using this technology. In
subsection [4.3.1] we start with the initial D2 brane solution that we use as an example of non-vacuum
type IIA SUGRA solution. After that, in subsection we write down the scalar matrix that we
take to uplift the initial D2 brane solution and construct the new uplifted 11-dimensional SUGRA
solution. Then, in sections and we describe the properties of the uplifted solution, its
charges, local vs global nature, and the amount of supersymmetry it possesses. We conclude with

some brief discussion in section [4.4]

4.2 ISO(7) exceptional Drinfeld algebra and generalised frame

4.2.1 The algebra

The whole E7 exceptional Drinfeld algebra was described in [91]. The 56 generators of the E7
exceptional Drinfeld algebra are denoted Ty = (T,, T2, T %, Tal""”’a/), where the Latin
indices run from 1 to 7 and sets of multiple indices a; ... a, are understood to be antisymmetric.

The (generically non-antisymmetric) brackets of these generators can be written generally as:
[Ta, Tg] = XAp“Tc . (4.2.1)
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The EDA structure constants X4p¢ are specified in terms of structure constants fg¢, o,
[, and Z,. The former three can be formally associated with Lie algebra, 3-algebra and 6-
algebra structures. In this paper, we focus on non-zero 6-algebra structure constants only, [, =

0, in which case the algebra is given by the following non-zero brackets:

[Ta; Tbl...bg;] — _fblmbscaTw [TL“ Tbl"'b7’b,] _ 7f[b1...b6aTb7}b/ <422)
[Tal"'a5,Tb] _ fal...ag,chC’ [Tal'"'a57Tb1b2] _ 2fa1..‘a5[blch2]c (423)
[Tal'"a5,Tb1"'b5] — _5fa1...a5[blch2...b5]c (424)
[Talma5,Tb1mb77b,] — _7fa1...as[blchQ...bﬂC,b, _ fal...asb/CTbl...b7,C (425)

[Tal"'a7’a/7Tb] _ _Qlf[alma(}C(;g;}((zi;chldg, [Ta1'~~a7:a/7Tb1b2] _ 7f[a1...ascTa7]a/cb1b2 (426)

[Tal...cw,a" Tbl---bs} — 21f[a1...agc(szlll?]d‘;,echl...b5d1d2,e (427)

In the absence of the other structure constants, the 6-algebra structure constants must obey the
identity
fdal...a5cfb1...b6d _ 6fa1...a5[b1dfb2...b6]dc — O , (428)

ensuring closure of the algebra. This can be viewed as a generalisation of the Jacobi identity for
Lie algebras and the fundamental identity for 3-algebras.

We now further restrict to the following special case:

fbl...bsa — Ebl---bﬁ‘cé‘ac (429)

b1...bgc

where € is a 7-dimensional Levi-Civita symbol and {4, is seven-dimensional identity matrix.

This is easily verified to obey (4.2.8). After defining the dualised notations

a 1 ai...a7,a 2 1 ai...as

T = ﬂeal...(wT s Tbc = aebcal...ag,T 5 (4210)
the non-trivial brackets of the algebra then simplify to

[Taa Tbc] = 25a[ch]7 [Taa Tb] — _5achc )

[Tbca Ta] = _25(1[ch]7 [Tabv TCd] = _456[(151[,16Td]e ) (4211)
[Taby Tcd] =46 T ) [Tabv TC} = 25d[a,fddg} :
[a[c d]b:|

The generators (T, Th.) generate the ISO(7) Lie algebra. The other brackets (note that these

3This can be generalised by replacing 6. in (4:2.9) by a symmetric matrix of indefinite signature, which would
correspond to the algebra of the CSO(p, g, + 1) gaugings with p + ¢ + r = 7; replacing 0,4 by a matrix with both
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are not antisymmetric and e.g. [T% T}] = 0) match those specified by the ISO(7) gauging of four-

dimensional maximal supergravity (for example, compare with appendix C of [118] where the full
structure constants X 43¢ appearing in ([#.2.1)) are given).

4.2.2 The generalised frame

Given any exceptional Drinfeld algebra, a generalised frame can be constructed realising the algebra
under the generalised Lie derivative of the appropriate exceptional generalised geometry. This
explicit construction is described in [26}27,[79,/91]. The data that enters the generalised frame
consists of a (left- or right-)invariant vielbein e%,,, obeying the Maurer-Cartan equation with Lie
algebra structure constants fq,°, a 3-vector 721225 and a 6-vector %1% as well as a scalar function
A. The vielbein is linked to a group manifold and the n-vectors and scalar obey equations of the

form:

Daﬂ,blebs — fblebsa +...,
Dyribe = ghrobe, 1o flerbabs rhabsbe] 4 (4.2.12)
DA =27,

where D, = e,'0; and the ... corresponds to the terms with Lie algebra structure constants, which
are absent in our case.

Now let’s construct the necessary data and generalised frame fields for the E7 subalgebra with
only the six-algebra structure constants f’'~-%, non-trivial. The above differential equations then
yield €@ = 69, w123 = 0 A = 1 and allow for a six-vector linear in the coordinates, 7%~ =
xi§8 fo1%6 - Then, referring to eq. (5.34) of |91], we can construct the generalised frame, which
will by definition obey

Lp,Ep=—-XagEc (4.2.13)

under the FE; generalised Lie derivative, thereby realising the algebra of the ISO(7) gauging. A
generalised frame for the E7 generalised geometry gives a basis E4™ for generalised vectors, which
correspond to vectors, two-forms, five-forms and seven-forms tensored with one-forms. In form

notation, the EDA generalised frame describing the ISO(7) algebra has the following elements:

Eq, = (
EMe = (0,6 A e®,0,0),
a5 = (_gbar-ase, () ¢8 AL A €% ()
Eoa-ard = (0, —7rlar-asgar] A ga’ ("N Ne")® e“,) ,

(4.2.14)

symmetric and antisymmetric parts would give something more exotic in which the 28-dimensional ‘electric’ algebra
is no longer Lie.
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where in particular the vielbein e, and one-form e® have trivial components, e, = d,,, e%; = 4}, and

0106 — l‘beal‘..a@b_

It is useful to record an explicit expression for this frame as a 56 x56 Er valued matrix. The nat-
ural decomposition of the generalised vector index is VM = (V™ Vi s, Vini..ms» Viny...mzm ) but it
is convenient to dualise the five-form and mixed symmetry components (as with the algebra genera-
tors above) such that the seven-dimensional decomposition used is V™ = (V™ Vi mg, V™2 V).
Using this convention for both M and A indices we can write the ISO(7) exceptional Drinfeld algebra

generalised frame, or rather its inverse which is more useful for our purposes below, as

sa 0 0 0

Bt = 0 s : 0 (4.2.15)
2, 0%, 0 28522 g
0 2SS (R

This generalised frame (which could also have been constructed using the results of [51]) can be used
to construct solutions of 11-dimensional supergravity by uplifting solutions of ISO(7) gauged super-
gravity. Given such a solution, depending on four-dimensional coordinates y, and given in terms of
the four-dimensional metric g, (y), the scalar matrix Map(y), and one-form AuA(y), a solution to

eleven-dimensional supergravity can be constructed by computing the following quantities:

9o (¥, %) = g (y),  Mun(y, ) = Ex? (@) Ex" (@) Map(y), A (y,2) = Ea™ (2) A (y)

(4.2.16)
which correspond to the external metric, generalised metric and external one-form of the Ey excep-
tional field theory/exceptional generalised geometry description of 11-dimensional supergravity in
a 4 + 7 split [33,/53]. Using the known dictionary between this formulation and the standard vari-
ables of 11-dimensional supergravity, the uplifted solution can be extracted. Conversely the ansatz
(4.2.16)) with the generalised frame specifies the general form (again on making use of the
exceptional geometry dictionary) of a consistent truncation from 11-dimensional supergravity to the
ISO(7) gauged supergravity. This is a standard application of exceptional geometric techniques (see
e.g. [57,58]).

Rather than slavishly work out the full explicit details (which we defer for future work), we will
illustrate how this uplift mechanism works on an explicit example, in keeping with our motivation
in terms of generalised dualities. A question which needs to be addressed at this point is how to
find examples of solutions which we can feed in to this mechanism. The ISO(7) gauged supergravity
has no known vacua, so we need to consider other sorts of solutions. A natural candidate is that
obtained by the near horizon limit of the D2 brane, which gives a domain wall solution in four
dimensions [119]. We now turn to this solution and its transformation to a new eleven-dimensional

solution.
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4.3 New 11-dimensional solution

4.3.1 The initial D2 brane solution

In our previous study [113] of the ISO(4) exceptional Drinfeld algebra, we constructed an example
of generalised U-duality where we started with the near horizon NS5 solution in type ITA, reduced
to seven-dimensional ISO(4) gauged supergravity and uplifted using an SI(5) exceptional Drinfeld
algebra frame to eleven dimensions. Here we will start with the D2 brane solution in type ITA
instead, whose near horizon geometry has the appropriate form for the ISO(7) consistent truncation.
Lifting everything to 11-dimensions, this D2 comes from the M2 while the previously considered NS5
comes from the M5. Swapping M5 for M2 reflects the fact that on switching from ISO(4) to ISO(7)
we exchange a trivector for a six-vector, mirroring the exchange of the role of the eleven-dimensional
three- and six-forms in the M2 and M5 solutions. In other words, we are applying electromagnetic

duality to the entirety of our previous generalised U-duality described in [113].

The D2 brane solution in the string frame is:
dsg = H™'?[—dt® + dyf + dy3) + H'?[dr® 4 r*d2g)), (4.3.1)
e =H" Cupp=H"'-1, (4.3.2)

with H =1+ %5 The Einstein frame metric is:
dsyy = H2/3[=dt* + dy} + dy3) + H*/®[dr® + r*dQ] . (4.3.3)

To perform the reduction to a four-dimensional solution, we use the ansatz as in [115] for a consistent
truncation of type ITA SUGRA on S® in the Einstein frame. Assuming all the vector fields Ay and

B(9) appearing in the ansatz are turned off, for the metric and dilaton this ansatz has the form:
3
ds?, = A7 ds? + gndy™dy™, €7 2% = Apgpup MO (4.3.4)

where
10 =1 in R, A2 = det gmn/ det Gomn (4.3.5)

and gy, is the round SO(7) symmetric metric on S%. The matrix M98 represents a block of the

scalar matrix of the four-dimensional theory. For the D2 solution, we can use the simplified ansatz

MOS8 = §abpr (4.3.6)

4 Assuming that by choice of units and rescaling of coordinates we can set all constants to 1.
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Then comparing the dilaton forms we find
AM = H™3/8, (4.3.7)
and comparing the metric ansatz we deduce
G = H33925, A = SHOS A = S 3/2 (4.3.8)
and the 4-dimensional metric is then
ds? = rOHY? | — dt® + dy? + dy3 + Hdr?| . (4.3.9)

Since in the D2 brane solution we have a 3-form with all external components, we have to match it
with a non-trivial external 3-form of the type ITA gauged SUGRA ansatz on S®). This ansatz is:

Ci) = ,uj,uJC’U, where C!7/ = Ctyly;‘]dt A dy1 A dy2 (4.3.10)

thus
Cogry2 = prtsCryy g’ (4.3.11)

Comparing with the D2 solution, it’s not hard to see that
Coprya” = 0" (HT1 = 1). (4.3.12)

Although this three-form appears in the tensor hierarchy of the gauged supergravity, it does not
constitute part of the degrees of freedom of the theory which will be uplifted to eleven dimensions.
In 4 dimensions the field strength of this potential is dual to a scalar (which would therefore require
a —1 form potential) and in fact this field strength can be related to the scalar potential of the
theory [115,/116]. It thus serves as part of the definition of the gauged supergravity and not an
independent field within it.

4.3.2 Uplifting the scalar matrix and obtaining the new solution

Let’s construct the full 56 x 56 scalar matrix Map (the flat index A = (ab, a8), where a runs from
1to7):
Magps Myg “ Magea Mg
Mab Mab,cd Mab Mab,cS
Mup = ed . 8 e (4.3.13)
Mab,c8 Mab ¢ Mab,cd Mab ¢

Ma8 . Ma&cd Ma8 bs Ma8,b8
c
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from which the generalised metric of the eleven-dimensional uplift is constructed as follows
My = Eyy*MapE? . (4.3.14)

In order to construct the Myp matrix we refer to the dictionary described in [115], from where,

comparing with the form of the D2 brane solution of the previous section

rAH1/25 0 0 0
0 —8 fy—3/2 a1 [b1 gbo]az 0 0

Map — r (4.3.15)
0 0 7472H71/25a3[b35b4}a4 0
0 0 0 =6 fF—3/25asbs

Here to meet the requirement of det M= 1 we have to impose the near-horizon limit of the D2 brane

solution by setting H = %5

The generalised metric describing the new uplifted solution is, after using the generalised frame
(4.2.15))

r_3/2<5mn 0 27”_3/25,%[”2 Ty 0
0 2T—1/25m1[n1 5n2}m2 0 27"_1/21'[7”1 5m2]n
Marn — 43.16
MN 2T_3/2(5n[m2xm1} 0 7’1/2Km1m2,n1n2 0 ( )
0 2T—1/25m[n2$n1] 0 7,,3/2[('mn
where

Kimymamning = 20m; 1 Onagjms +4T—2$[m25m1“n1xn2], K™ = 5m”(1+r_2xaxa)—r_2xmx”, (4.3.17)

We need to compare this with the expression for the parametrisation of the E7 generalised metric
in terms of the internal seven-dimensional components of the metric ¢,,,, three-form and six-form.
Referring for example to [99], we see that corresponds to a generalised metric with vanishing
three-form but non-trivial six-form. The precise parametrisation of the generalised metric that we
need (taking care to follow the conventions of [91] which we used to construct the EDA generalised

frame) then has the form:

&2 Lyn 0 2¢m[n2 Um] 0
0 QS% <2¢m1[n1 (z)ng}mg + 4U[m1 (z)mg][nl UTLQ]) 0 2¢n[m2 Uml]
Muyn = _1
2¢n[m2 Um1] 0 2¢ 2 ¢m1[n1 ¢n2]m2 0
1
0 2¢m[n2 U”l] 0 ¢*§¢mn
(4.3.18)
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where ¢ = det (),

1
Um = @wl/%mm---"ﬁcmn,% o Lon = Gmn(1 4+ U,UP) — U Uy, (4.3.19)

and U, = ¢ U™, where here € denotes the alternating symbol.

Comparing the two expressions we find that the seven-dimensional internal metric is:
brn = 73 (1 4+ 17 20,2?) "3 [0 + 1 22 (4.3.20)
and that the six-form is:
Contooms = €myomen@ 2 (1+ 7 2zpa?) 7" (4.3.21)
The latter gives rise to the field strength components
Fonyoms = €myemat 2(1+ 17 222" 72 [T + 5r2a,a?] (4.3.22)

Ermyme = —26m1_,m6n3:”7“*3(1 + T*prwp)*Q . (4.3.23)

Now using the ExFT construction we can build the full new 11-dimensional solution. The 11-

dimensional metric is:

where w = —ﬁ = —% in our case of n = 11 — d = 4. The 4-dimensional ExFT metric is that
extracted in (4.3.9) from the D2 brane solution, in the near horizon limit:
(dsZ)EIFT = T7/2[—dt2 +dy? + dy2 +r2dr?], (4.3.25)

and as there is no one-form present we have Aﬁ = 0. Thus, the new 11-dimensional metric is

dAsfl = r_1/3(1+r_2:rkxk)_1/3 r5(1+r_2:cpxp)[—dt2+dy%+dy§+r_5dr2]+(5mn+r_2xmxn)dxmdx"}

(4.3.26)
The only gauge field components present are those of the six-form given in . We can rewrite
our solution in different coordinate systems. We can pass to spherical coordinates in place of the

2’ in terms of which we we can rewrite the new 11-dimensional metric as

<2

dsy, = r1/3(r2—|—p2)2/3 {r3(—dt2—|—dy%—|—dy§+r_5dr2) —|—r_2dp2] —|—7’1/3(r2—|—p2)_1/3p2d9%6) (4.3.27)
where p? = x;2' and dQ%G) denotes the metric on the unit six-sphere. The six-form potential and
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its field strength are:

7 7 2 2
p 2p rs+5p
7\70136 s F(7) = — QTdT A VOlsﬁ + mﬂ

— 6 X

The four-form field strength obtained by Hodge dualisation is
Fuyy = rH(7r? 4+ 5p2)dt A dyt A dy? A dr 4+ 2r° pdt A dyt A dy? Adp. (4.3.29)

A further coordinate change relates the 4-dimensional part of the metric to a familiar form of the
metric on AdSy. This is a property inherited from the original D2 solution, whose near horizon
string frame metric is a function of the radial coordinate times AdSs x S% (in a dual frame [119]
the metric is exactly AdSy x S%). By introducing a new coordinate

T =

r3/2 (4.3.30)

GV V)

then the 4-dimensional bit of the solution can be shown to involve an AdS4; metric in the Poincare
patch, using the fact that
3 2 2 2 —5 7.2 —2-2 2 2 2 o di?
ro|=dt® + dyi + dys + r°dr] = R™7F[—dt* + dyy + dy5] + R =3 (4.3.31)
where R = 2/3 is the AdS radius.

We can finally comment on the behaviour of our metric as » — 0. The Ricci scalar is
R= —%7’71/3(497’2 +25p°) (1% 4 p?) /3 (4.3.32)

and so the solution is singular for » — 0. This is also a feature of the D2 brane near horizon solution.

4.3.3 Properties of the new solution
Charges and global properties

The solution that we have obtained is a local solution: we have not yet specified the range of
the coordinates ¢, or alternatively that of p if we change to spherical coordinates. The situation
is entirely analogous to that found when obtaining solutions via non-abelian T-duality, and to
our previous generalised U-duality construction [113]. If the 2° are to be regarded as periodically
identified then our solution can be regarded as a non-geometric background, globally identified up
to a non-trivial Fy transformation acting as a constant shift of the six-vector used in constructing
the solution, as noted in [51] and similar to examples in [63,85,(113,/120]. Alternatively, we can
work in the spherical coordinates and attempt to fix the range of p by requiring the solution carry

well-defined brane charges.
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Accordingly, let’s consider the charges of the new uplifted solution. It only carries electric M2

charge, namely

Qw2 ~ /*F4 = /dcﬁ, (4.3.33)

where from above Cg = p”/(r? 4 p?)Volgs. We could try to specify a seven-cycle to evaluate this
charge (generalising the argument of [98| for non-abelian T-dual solutions) by integrating from
p = po to some value p = p; at a fixed value of r = rg, and then integrate from r = rg to r = r;
at fixed p = p1, such that the six-sphere part of the solution vanishes at p = pg and r = r;. The
result is independent of 7o, and gives 1673p] /15(r% + p2). Choosing pg = 0 and 71 = 0 would give
an electric charge Qo ~ 1672p3 /15, which on properly reinserting dimensionful constants could
be argued to fix p; by requiring the charge is an integer times the M2 charge.

Note that this M2 charge is analogous to the M5 charge appearing in our earlier solution [113],
hence in this “dual” example the electric and magnetic charges are swapped, mirroring the swap of
trivector and six-vector we noted earlier. To be more specific, the relevant M5 charge of [113] is that
which is present when the initial solution there is solely the near horizon NS5 brane. It was also
possible in [113] to start with an F1-NS5 intersection. The resulting new 11-dimensional solution
then required a different global completion which was possible at least for its AdS3 limit. This limit
fit into a class of solutions [92] in a manner reminiscent of AdS solutions obtained via non-abelian
T-duality. This involved a linear function of p?, defined on a series of subintervals with jumps in
slope across each subinterval. It is unclear if it is possible to apply similar thinking to our example
in this chapter (which has a more complicated functional dependence on the r coordinate alongside

p), or to find or classify other solutions built using the ISO(7) generalised frame.

SUSY analysis

Let us now look at the solution of the Killing spinor equation and find out how many supersymme-
tries the new uplifted solution has. The Killing spinor equation we need to solve if]
i

1
Oty = 20u€ — iw,ﬁbfabe + m(raﬁ’ﬂS = 8T eFop.5 =0 (4.3.34)

where the Greek indices are the curved coordinates, and Latin indices are the flat ones. For the
t-component (and similarly for y* and y?), using the hatted indices for the curved coordinates, and

unhatted for the flat ones, we explicitly have:

1 ) )
[0ze + 67“1/2(1 +r72p?) 7t 2o, 4+ Tr(1 + ?r72p2)1) —1 (2thyly2p +7r(1+ ?T*sz)l“tyly%)} e=0.
(4.3.35)
Assuming that e is t-independent (similarly y* and y? independent), and looking at the similar

coordinate dependence in front of the same gamma-matrix combination, we can extract the following

5We follow the conventions we used in [113], in particular {T's, T} = 2nap with 14, having mostly minus signature.
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projection condition on €
(1+i0%'¥")e =0 (4.3.36)

which we can use in solving the rest of the equations.

The r and p equations become

1 1
Ore =17 (141720 14 (1450722 — irflprrp}e (4.3.37)
1
0p€ = 67“_1(1 +r2p?) " H2rtp + 31, e (4.3.38)
with the common solution
, 1

€ =€rpty  Erp =151+ 17 2p*) Y0 exp [—QFmtan_l(;)} , (4.3.39)

where € depends on the S% coordinates only. Now, working in round spherical coordinates (x, 01, . .., 05)

on S we can find a solution of the form € = €4 €0, - - - €95€0 With € a constant spinor. Indeed, we

firstly have the equation

1
Og€e = 5(1 + 7 2p?) 712 [Tpy + 7 1ol le (4.3.40)

where we can commute the gamma matrices from the €,, part, moving it to the left of both sides

of the equation, and end up solving for €,

1
€y = €xp [irrxx] (4.3.41)

and in a similar manner for the rest of the 5 angles 0;....05 we find

1 1
€9, = €Xp [§FX9191}7 €9, = €Xp [§F919292], ete... (4.3.42)

so the final solution is of the form

€ = €rp€x€q, * " €05€0 (4.3.43)

where after applying the condition (4.3.36]) €g is a constant spinor satisfying
(14T )eg = 0 (4.3.44)

which kills a half of the total degrees of freedom, thus, our solution is %—BPS. This is consistent
with the supersymmetry of the initial D2 solution and with the supersymmetry preservation of our

previous example of ‘generalised U-duality’ [113].
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4.4 Conclusion

In this chapter we discussed another example of a solution generating mechanism which can be
viewed as a generalised U-duality transformation. We used a special case of the F7 exceptional
Drinfeld algebra, describing the four-dimensional ISO(7) gauging, and used this to construct a new
11-dimensional solution starting with the near horizon limit of the D2 brane solution of type ITA
SUGRA. This can be seen as a “dual” construction (in the electromagnetic sense) of our previous
example, based on the SI(5) exceptional Drinfeld algebra corresponding to the seven-dimensional
ISO(4) gauging [113]|. Together these examples generalise, in a particular manner, features of non-
abelian T-duality to the 11-dimensional setting (see table, using the natural exceptional Drinfeld
algebra cases with either non-trivial 3- and 6-algebra structure constants, and hence non-trivial tri-

and six-vectors.

Solution obtained by: Algebraic structure Generalised frame
Non-abelian T-duality of S3 fabc = ¢eab, bivector
S1(5) generalised U-duality of S% (w/NSNS flux) fabe, = eabe, trivector
E7 generalised U-duality of S® (w/RR flux) fabedef | — cabedef six-vector

Table 4.1: Properties of generalised dualities

We have so far only considered the M-theory realisation of the EDA, but it would be interesting
to systematically explore similar features in its ITA and IIB decompositions. Here we would ex-
pect to construct a variety of other generalised frames involving n-vectors with a linear coordinate
dependence, and identify the lower-dimensional gaugings these capture.

The usefulness of these constructions depends on whether the choice of EDA allows one to
access gauged supergravities with either interesting known solutions or known alternative origins
as consistent truncations from 10- and 11-dimensions. In this paper and in [113] we used the latter
approach to identify brane solutions at the 10-dimensional level to which we could apply reduction
and uplift. The ISO(7) example of this paper is a case where there are in fact no known vacua (the
D2 brane solution reducing to a domain wall solution). We have made choices for the EDA which
seemed algebraically ‘natural’ and to some extent gotten lucky in finding that these corresponded
to uplifts of known gauged supergravities in fact corresponding to consistent truncations already
identified from a different, though related, perspective in [51]. It would be good to extend and
improve this search strategy, including to situations with simultaneously non-trivial 3- and 6-algebra
structure constants, and more broadly to try to understand exactly what is the common feature
(spheres with flux?) of the initial solutions ‘dual’ to the solutions built using these EDA generalised
frames, and how the n-algebra symmetry manifests in these background (if at all).

A natural question about the ISO(7) case concerns whether we can do anything with the dyonic
ISO(7) gaugings [1215123|, which have a richer vacuum structure. These gaugings can be obtained

by a consistent truncation from the massive type ITA theory on S° [115/[116]: we have been using this
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consistent truncation in the massless limit for the ISO(7) gauging. It can be quickly checked that this
gauging modifies the algebra with additional non-zero brackets including [T“,Tb] ~ T,
This bracket is however always zero in the EDA construction [91]. Hence the dyonic ISO(7) algebra
is not an EDA — if it were we would immediately know how to construct a [geometric| generalised
frame realising it. Indeed we have been informed by Y. Sakatani that making this bracket non-zero
in an extension of the EDA always requires locally non-geometric R-fluxes, in agreement with the

statement of [51] implying the dyonic ISO(7) gauging does not admit a locally geometric uplift.
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Chapter 5

Conclusion

Summarizing the thesis, we have made an insightful overview of the supergravity and M-theory
studying the dualities connecting different solutions within these theories. Leveraging the techniques
of the Leibniz algebra and the generalised geometry, we have constructed several examples of new
solutions generated with the ExFT formalism. The examples discussed clearly demonstrate the
capabilities of the generalised U-duality in building liaisons between seemingly different solutions in
supergravity (M-theory in general), and provides new hints towards the nature of the complicated
web of M-theory solutions.

We saw that the structure of the Exceptional Drinfeld Algebra (EDA) is based on the existing of
isotropic subalgebras, with a very restrictive conditions in order for the isotropies to appear, using
the fact that the EDA generalised frame admits a consistent truncation to a lower dimensional
theory. We have seen that not all of the M-theory isotropies are compatible with the EDA, and not
all of the isotropies turn to admit the geometric generalised frame description.

Generalised U-duality can be used as a solution generating technique in supergravity, as we
successfully demonstrated in chapter 3, using a consistent truncation from an initial theory to a
maximally gauged 7-dimensional supergravity. We used this procedure to uplift the resulting gauged
7-dimensional model to a new dual solution using the EDA frame. We were able to generate dual
pairs of solutions starting from the known type ITA supergravities on S® and uplifting it with the
EDA frame.

It is, however, not clear whether the generalisation to other dimensions will express a similar
behaviour with the ability of developing a generalised set of rules to describe the technique of
generating dual solutions. For example, in the case of the generalised T-duality it is clear that
the space-time with non-abelian isometries admit the generalise T-dual solution. In the case of the
generalised U-duality a similar identifying criterium is lacking. The open questions are still the
behaviour of the theories in supergravities with other duality groups. A preliminary study of the
FEg(6) gauged supergravity was given in [79]. Extending the classification to higher non-abelian group

would be helpful to view the generalised U-duality as an algorithmic solution generating technique,
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that will enable develop a better way to reveal the characteristics of the nature of dualities in
M-theory.

Another question open for a future research is the preservation of supersymmetry in the U-dual
solution. Up to this point, we were able to spot that the number of supersymmetries remained
preserved in the examples of 1SO(4) and ISO(7) gauged theories. However, these were not the
most general cases that we considered, and the question of the general proof is still open for further
investigation. In the framework of this research we demonstrated on a few examples the conservation
of the number of supersymmetries in the case of the CSO(4,0,1) supergravity. For the non-abelian
T-duality the number of supersymmetries in the dual solution turn out to be reduced compared to
the original solution. While, in the examples we reviewed in the thesis, for the case of generalised
U-duality we observed the preservation of the number of supersymmetries after applying the duality
transformation. Here, we must highlight that the examples we considered were viewed in the AdS
limit.

After a proper consideration of the example with the CSO(4,0,1) gauged supergravity, we turned
towards studying a special case of the E7 gauged supergravity. This choice wasn’t spontaneous — it
reflects the duality in 11 dimensional M-theory between 4 and 7 dimensions, corresponding to the
numeration of the gauging exceptional algebras, as well as reflecting the dualities of the supergravity
models. We studied a special case of E7 Exceptional Drinfeld algebra - the ISO(7) gauging case.
This example also has a dual electromagnetic interpretation to the previous CSO(4,0,1) case. In
terms of non-abelian Drinfeld algebra, these 2 examples also has a dual interpretation with either
non-trivial 3 or 6 - algebra structure constants, corresponding to either tri-vectors or six-vectors. The
open question here is generalisation of the suggested technique to other dimensions, correspondingly
generating new set of n-vectors that describe the generalised frame of the n-algebra. The possibility
of constructing such examples in other dimensions will depend on whether the choice of EDA will
admit a gauged supergravity solution known previously or a consistently truncated from a known 11-
dimensional solution. A good future direction would be to understand the common characteristics
of the solution that can generate dual solutions using the EDA frames and the n-algebra behaviour
in these backgrounds.

An open questions for future endeavours remains the investigation of the dyonic gauging special
case in the ISO(7) gauging, which will involve an additional bracket relation in the algebra, removing
it from the EDA algebras class. Our expectation is getting similar results to the SO(8) dyonic case,
with a generalisation of the no-go theorem for this dyonic case.

Via analysis made in this chapter we, in a way, confirmed the general pattern between different
gauging groups applied to the dualisation technique - we spotted similar features for the so-called
electromagnetic dual case of ISO(7) gauging, comparing to its ISO(4) gauging counterpart dis-
cussed in the previous chapter. This study helped revealing more properties of the mechanisms of
generalised U-duality and how different dual solution share similar features or possess differences

compared to each other (supersymmetry, charges, etc..). This provides an insightful description of
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the principles taking place in the generalised U-duality procedure and the novel solutions generated
through it, emphasising an interesting connectivity between different classes of gauging groups and

dual solutions.
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Appendix A

Appendix

A.1 SL(5) exceptional geometry

A.1.1 Generalised Lie derivative and generalised frames

Here we describe some of the technology of SL(5) exceptional generalised geometry / exceptional
field theory [37/53H56]. We will use capital calligraphic indices M, N, --- = 1,...5 to label quantities
transforming in the 5, and use antisymmetric pairs of such indices to label quantities transforming
in the 10.

We start with the definition of the generalised Lie derivative, which captures the bosonic local
symmetries (diffeomorphisms and gauge transformations) of supergravity. Let A € 10 be a gen-
eralised vector of weight Ay and A € 10 be a generalised vector of weight Ay = —w = 1/5. The

generalised Lie derivative of V' with respect to A is
LAAMN = %APQapQAMN + 20pgATMANIQ 4 %(1 + A4 + w)dpgAPLAMN (A.1.1)
Meanwhile a generalised tensor C' € 5 of weight Ao has generalised Lie derivative
LaCM = %APQapQCM — CPOpoAMe + %()\c + 1+ 3w)dpoAPeCM. (A.1.2)

The actual coordinate dependence of all quantities in the theory is restricted by the formally SL(5)
covariant section condition
8[/\/U\/®81C£] =0, (A.1.3)

which has independent “solutions” |[125]| that break SL(5) covariance and correspond to underlying

M-theory, type IIA or type IIB geometries.
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M-theory generalised geometry

For the M-theory solution of the section condition, we label the SL(5) indices as M = (i,5), with

i =1,...,4, and impose that d;; = 0 acting on all quantities in the theory. Then in terms of the

underlying M-theory generalised geometry we find that quantities in the 10 decompose as a pair

consisting of a vector and a two-form, which are sections of (perhaps weighted) generalised tangent
bundles

A= (v,\2) €TM & N*T*M , (A.1.4)

A= (a,ap) € (TM ® A*T*M) @ (det T*M)PaF)/2 (A.1.5)

and the generalised Lie derivative acts as:
LAA = (Lya, Lyag) — LadA(2)) , (A.1.6)

where the ordinary Lie derivative L, acts on the vector v and two-form «a(y) which are of weight
A+ w.

Meanwhile, a generalised tensor C' in the fundamental corresponds to a scalar plus a three-form:
C = (cioy, c3) € (R® APT*M) @ (det T* M)A t3)/2 (A.1.7)

and

LAC = (Lyc(gy, Lucz) + dA2)c(0)) (A.1.8)

in which the ordinary Lie derivative acts on the scalar ¢y and three-form c(3) which are of weight
Ao + 3w.

Type 11B generalised geometry

The type IIB solution of the section condition splits M = (i, «) with ¢ = 1,2, 3 the spacetime index
and a = 4,5 an SL(2) S-duality index. We impose 0, = 08 = 0 acting on all fields in the theory,
and identify the natural derivatives with respect to the spacetime coordinates as 9 = %eijk(‘)k. The

positions of spacetime indices therefore naturally come out reversed.

A generalised vector A of weight A4 can now be decomposed in terms of vectors, a doublet of

one-forms and a three-form:
A = (a,a), 60y, a@) € (TM &T*M & T*M & A*T*M) ® (det T*M)rate)/2 (A.1.9)
and with A = (v, A1), 5\(1), A(3)) of weight Ay = 1/5, the generalised Lie derivative acts as
LpA = (Lya, Lyay — tadAy, Loy — tadX1), Luaz) — dAay A Gy + dAgy Aagy),  (A.1.10)
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with the spacetime Lie derivative L, acting on the tensors here which are of spacetime weight A4 +w.

A generalised tensor C' of weight A¢ in the fundamental is equivalent to a one-form and a doublet

of three-forms, all of spacetime weight Ao + 3w:
C = (cry, c(3), 6(3)) € (T*M @ A*T*M & A3T* M) @ (det T M )AeT5)/2 (A.L11)

with
LAC = (LUC(l), LUC(?,) - C(l) A d/\(l), Lvé(g) - C(l) A dS\(l)) . (A.1.12)

A.1.2 Generalised frames and their algebra

The physical fields describing the geometry live in the coset SL(5)/SO(5), which is parametrised by
a unit determinant (inverse) generalised vielbein EMN 5 = 2EM ENg. The generalised vielbein
EM 4 in the 5 and that EMN 45 in the 10 have weight 0. In order to construct the algebra of frame
fields, we have to instead use a generalised vielbein EMN 4 of weight —w = 1/5. This parametrises
the coset RT x SL(5)/SO(5). TO describe the RT factor, we introduce a scalar A of weight 1/5:

LAA = %Apgapgﬁ + %aPQAPQA (A.1.13)

and define
EMA = AI/QEMA EMNAB = QE[M_AEN]B = AEMNAB. (A.1.14)

Hence EM 4 is a set of 5 generalised tensors of weight Mg, = 1/10, 50 A, +3w = —1/2. Using these

quantities, the algebra of generalised frames under the generalised Lie derivative can be written

Lp.FMe = —FapcPEMp, (A.1.15)
hence 1
Lp BN ep = —QFAB,CDSfEMNgf = 2F 5 Epis » (A.1.16)
where
Fapcpt” = 4FAB[C[55Q . (A.1.17)

The form of the generalised Lie derivative means that the generalised flux F4sc” can be decomposed

in terms of irreducible representations of SL(5)

1 1
Fape® = Xapc® — ETABécD — 55[7?47310 (A.1.18)
with :
X age? = Zape®? + 55[1?453}c . (A.1.19)
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Here 745 € 10 is the so-called trombone gauging [126], Sas € 15 and Zpc” € 40 obeys Zapc? =
Z ABC}D7 Zanc® = 0. Explicit expressions in terms of the unweighted and weighted vielbeins are:

TAB = A <6EMAEN58MN InA + 8MN(EMAENB)>

(A.1.20)
= 5EMAEN v In A + O (BEMAEN )
Sap = AAEM 400w EN 15y = 4EM 4 0n EN ) (A.1.21)
Zae® = A (BEM 4BV 5 BT orun EPp — 200 Oaan EM BV ) )
(A.1.22)

1 1
= 3 <EM[AENBE,P6]8M./\/’ED7D - 25aa|MN(EMBENC])> + 5(5[?47'36'} .

A.1.3 Dictionary to 11- and 10-dimensional geometries

The SL(5) generalised geometry splits the full 11- or 10-dimensional geometry into a seven-dimensional
“external” part and a four-dimensional “internal” part. The 11- or 10-dimensional Einstein frame

metric is decomposed as:
ds? = g7 Y5G , dX XY + gij(da’ + A dXP)(da? + AJdXY), (A.1.23)

where G, p,v = 0,...,6, corresponds to a seven-dimensional Einstein frame U-duality invariant

metric, and has weight 2/5 under generalised Lie derivatives. It is consistent to then identify
A = (det G, )1 (A.1.24)

The fields carrying both external and internal indices (such as the Kaluza-Klein vector Aui) appear
in the SL(5) ExFT as n-dimensional p-forms in various representations of SL(5). However, we will
assume that these all vanish in our set-up. We therefore have just to describe the internal metric

and three-form, which together parametrise the afore-mentioned coset SL(5)/SO(5).

M-theory parametrisation

Start with the M-theory solution of the section condition, with physical coordinates z¢ = 2%. A
conventional representation of the SL(5)/SO(5) coset in terms of a (unit determinant) generalised

vielbein, consistent with the diffeomorphism and gauge transformations generated by the generalised

. -1/4 a _—1/4_a on
g €m —g €' n
EA = g% ( . Sl ) 7 (A.1.25)

Lie derivative, is
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leading to a generalised metric myan = FAMEB 6 45 in a five-dimensional representation

—1/2 _,—1/2 cP

_ 1/10 ) Imn g Imp

MMN =9 _ a , (A.1.26)
(_g 1/29npcp gl/2 +g 1/29pqcpcq>

where the four-dimensional metric is written as gmn = €%me’n04 and the three-form C™ =

%em”qunpq, where €¢'23 = 1 is the alternating symbol.

IIB parametrisation

The IIB solution of the section condition identifies the three-dimensional coordinates as T; =
%eijk:cjk. In this case, denote the (Einstein frame) spacetime metric by g%, the vielbein by e,
and their determinants by g = det(¢¥), e = det(e,’). The alternating symbol in spacetime is €%,
and has weight —1, and €;;;, has weight +1. Also let h%, denote a vielbein for the coset SL(2)/SO(2)

parametrised by the axio-dilaton, with Haps = h%ah%ad55. Then the IIB geometric parametrisation

takes
1/26,a 0 B 1 C
EAy =t/ € e, = /2 0 A1.27
man = g/ 9'gij + 9_1/2%0450?035 e (A.1.28)
9—1/27_[&70;}/ g_l/QHaﬁ ’
with
o 1 . . 1 C()
Cco = §€ijk(0]kaBjk) , Hap = e® <Co o 6_@) . (A.1.29)
0

A.2 Embedding Drinfeld doubles in SL(5)

A.2.1 Half-maximal truncation

In order to describe an embedding of a Drinfeld double, we can truncate the Exceptional Drinfeld
Algebra. This means reducing from SL(5) to SO(3,3), along the lines of |[37,68]. The 5 of SL(5)
produces one of the four-dimensional Majorana-Weyl spinor representations of (the double cover
of) SO(3,3) plus a singlet. In terms of the five-dimensional indices, we write M = (I,4) where
I =1,2,3,5 is the spinorial index. We break dpn = (917, 014) and impose 974 = 0. The bispinorial
derivative Jry in fact transforms in the vector representation 6 of SO(3,3).

We can compute the O(3,3) generalised Lie derivative acting on the 5 = 4 @ 1, using (A.1.2)).
The singlet component transforms as a scalar of weight Ac + 1+ 3w under O(3, 3) diffeomorphisms

with parameter A7/
1 1
LACH = §AIJ8]JC4 + §(Ac + 1+ 3w)or A7t (A.2.1)
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The spinor in the 4 transforms as:
1 1
Lpc! = §AJK8JKCI +50c+1+4 3w) A ATECT — 79 ATE (A.2.2)

defining an SO(3, 3) spinorial generalised Lie derivative [37]. Now, the generalised frame field EM 4
has weight Ag, = 1/10. Hence E*4 gives SO(3,3) scalars of weight 1/2, and E! 4 gives SO(3,3)
spinors. After truncating out the RR sector (by projecting out all components of the generalised

vielbein carrying a single index M =4 or A = 4), we are left with:

EM, = (EIC“ 0 ) , (A2.3)

0 e

where E,, is an SO(3,3)/S0(3) x SO(3) coset element in the Majorana-Weyl spinor representation
(and so has unit determinant), and e~2% denotes the SO(3,3) generalised dilaton, which is a scalar

of weight 1.
We can now compute the algebra ((A.3.17)) of generalised frames of the form (A.2.3)) and interpret

these in O(3,3) terms. The non-zero components of Fype? turn out to be:

1 1
“Tap — =Sas (A.2.4)

~ 1 1
Fapy’ = Mapy” + 556 Salys  Fapa® = —5Tap > Foag® = 2 4

(o

where the irreducible fluxes have decomposed to give non-vanishing components:

TaB = EIanﬁé'U(—Qd) + 8[J(EIQEJ5) , Saﬁ = 4E1(a|8]JEJ|/B) , (A25)
s 6 1 4 1
Zaﬁfy = Maﬁfy + ié[aTﬁ'y] y Za64 = _§7a57 (A26)

with an SO(3, 3) irreducible representation
- 1
Mys,’ =3 <EI[QEJ5EK,Y]8JKE‘S[ — 28JK(EJ[QEK5)5%> , (A.2.7)

obeying M,3,” = 0. We can more conveniently define

- 1 1
Mocﬂ _ gevéeaM’y&,B _ §€IJKL61JE(04KEB)L (A28)

which is symmetric.

The two irreducible symmetric representations S,g and M®5 can be related to the self-dual
and anti-self-dual parts of the usual SO(3,3) generalised flux fr;x [74] (using gamma matrices or
equivalently 't Hooft symbols), and a half-maximal theory uplifts to the maximal theory if [74]

SasM* =0. (A.2.9)
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A.2.2 Drinfeld doubles

So far this is a standard exercise in determining the particular fluxes of the half-maximal theory.

Now let’s specialise to Drinfeld doubles. We break up our indices further as I = (4,5) and a = (a, 5).

Drinfeld double: ITA frame

To describe type IIA we take d;5 # 0 and 0;; = 0. Our data are the group manifold vector fields
Vg, one-forms [* and the Poisson-Lie bivector 7% We also define \, = %Gabcﬂ'bc. Then a type IIA

choice of spinorial frame and generalised dilaton is:

1/2,,i -
pr, = [ (detD " 0 e = o2 et (A.2.10)
(det)=1/2), (detl)=1/?

It can be checked that the following flux components are turned on:

Tab = 6cd[afNCdb] y  Tab = _28aci> + fac©,
Sap = _2€cd(a]?6db) ; Sas = _2facca (A.Q.ll)
- 1 ~ 1
Mab — 56cal(afcdb) , M = ifacc )
(This requires using the constraints (2.4.20]), and taking the “dilaton” d to obey 0,® = fuu*. This
is not the physical dilaton but should be thought of as an extra function appearing in the definition

of the frame (A.2.10). To match with section take o = e~ ®, and in ([2:4.10) we have 7, = 7a5
and 7¢ = %e“bctbc.)

The SL(5) frame in the 10 consists of a part in 6 and a part in the 4 of SO(3,3). The part in
the 6 is obtained from the antisymmetrisation of the spinorial frame, EM 4, = 2EI[aEJ6]. The part
in the 4 is just the spinor frame weighted by e~¢. Let’s denote this by El,=e g, Translating

these into differential form language leads to the expressions (2.4.15) and (2.4.16).

Drinfeld double: IIB frame

To describe type 1IB we take: 9;5 = 0, 8;; # 0. The natural partial derivatives are thus ' = %eij k Ojk-
Our data are now vector fields v®, one-forms [, and Poisson-Lie bivector mg,, with all indices in the

opposite positions. A type IIB choice of spinorial frame and generalised dilaton is:

. ((detz)—l/%ai —(det 1)1/2,i \b

—2d _ 2%
0 (det1)!/? ) , e “=e""detl (A.2.12)
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where \* = %eabcwbc. It can be checked that the following flux components are turned on:

Tab = €abe(—20°® + f43),  Tus = —fur’,
Sab = _2€cd(af6db) ; Sas = _Qfacc7 (A'2'13)
- 1 ~ ~ 1

M — 56cd(afcdb) M — §facc )

(Again this used the constraints (2.4.20)).)

We can again translate the frame into differential form language, leading to the expressions
(2.4.15) and (2.4.19) (with indices in the opposite placement).

Uplift condition

The condition SagM @B —= () can be easily seen to imply that a Drinfeld double uplifts to an Excep-
tional Drinfeld Algebra only if:
Fefa =0, (A.2.14)

which is indeed the condition found in [26] by checking closure.

A.2.3 Spinors and gamma matrices

Let e* denote a vielbein basis of one-forms, and e, the inverse. We can represent an O(d, d) spinor

as a polyform, C' = Zp C(p) and the gamma matrices using the wedge and interior products:
I =v2eA, Ty=V2i,, (A.2.15)

obeying the O(d,d) Clifford algebra {I'y,T°} = 262, {T',, T} =0, {T'%,T%} = 0.
The Majorana-Weyl representations correspond to even and odd polyforms. For d = 3, we can

write these as:
1 a b 1 0_a b c ab _c
Ceven = Co + icabe ANe', Coqa = geabc(C e* Ne’ N e+ 3C%e°), (A.2.16)

or in index notation C, = (Cp, Cyp), C* = (CY, C). Acting with a single gamma matrix maps be-
tween these representations. Acting with two gamma matrices on Ceyen We obtain the antisymmetric

combination (I'4p)e” with non-zero components

(Fab)OCd = _45L66167l] ) (Fab)cd0 = _|_45([:a52] y

(Fab)OO = 527 (Fab)cdef = 2525([;3531(] + 85&5;55} .

(A.2.17)
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Similarly, acting on Coqq we obtain the components of (I'yp)%s:
(Ca)o = —40(,35 . () ea = 400,

(0a)%0 = =07, (Ta)e = —20001°67 — 8,550

(A.2.18)

For convenience, let us record here also the reduction of the EDA relations that can be encoded in
the algebra (2.4.8]) using these gamma matrices. We have vector on vector brackets

[t(h tb] = fabctc ) [ta47 tb4] = fabct64

- (A.2.19)
[taa tb4] = (_facbt04 + fbcatc) = _[tb47 ta} )
vector on spinor brackets
[tap t4] = fa44t4 ) [taa tbc] = (Zfad[btc]d - fbcat4 + fa44tbc) )
a4 1 azbe a4 4be falb 7cld (AQQO)
[t 7t4]:§fbct ) [t )t ]:_2f dat™,
and the spinor on vector brackets
_ 4 b _ bscld 7b 4glbred
[tata] = —faa'ta, (1% ta] = (Bfiae"yyt™ + *Cata — 3fas*ayteY), A221)

[t4, ta4] — fb44t”ab , [tbc7 ta4] — _]E'bcdtad 7

while the spinor on spinor brackets vanish.

A.3 Ingredients

A.3.1 Five-brane near horizon limit of pp-F1-NS5

Initial solution We adapt the notation of [14,127]. The non-extremal pp-F1-NS5 solution is

As? = f7 (1 WA + fu(dz + §ET0200000%) 4 f (W1 4 r2dsds) o+ dist

n fnT2

B 1 72 sinh 201 B - —21 r2sinh 2as 2o 2 1 (A.3.1)
tz — 27 Az tz1..4 = —Ys 27 forZ (& = s f1f5 s
where
7‘31 — 72 _ 'f‘2 _ 7'2
fo=1+3, fi=l+d, fi=1+3, W=1-3, (A32)

2

r? =r2sinh® oy, 72 =r2sinh®as, 72 =risinh?aq,,
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and in terms of the numbers Ny, N5, N, of strings, five-branes and pp-waves, as well as the (dimen-

sionless) volume parameter v of the T4, we have

QNl 2Nl 2N, l
sinh 201 = =32 g; , sinh2as5 = T5 ,  sinh2q, = RQ” ig . (A.3.3)
0 0 0

The extremal limit sends r¢ — 0 and aq,as5,a, — oo such that r% sinh 2as, r% sinh 25 and
r¢ sinh 2ay, are constant and given by (A-3.3). Then sinha? ~ 3 sinh 2a;, and so

N1i2g2 N, 14
r?=Mba 2 N2 2= Dn sgs (A.3.4)

NS5 near horizon limit To obtain a solution we can apply our reduction and uplift procedure
to, we need to go to the NS5 near horizon limit. This limit can be taken by sending the string
coupling to zero such that

gs =0, o fixed. (A.3.5)

This is the Little String Theory (LST) limit [102,103].In this limit, @7 and o, are fixed, but

5 2 5 2
sinh 205 ~ 23 Nels (A.3.6)

0

If we define u = i, ug = l:%, then the three-charge background then becomes in the limit

2
ds? = fi (=, "Wdt? + fu(dz + 4 “Osfljjﬂdt) ) + N5z§W—1dul2 + N5l2ds2; + ds2a

ug sinh 204 1

Ha— —
3 2 d<f1u2

e = Ny,

) Adt A dz + 2N512Vol(S?), (A.3.7)

with

uO sinh? o

fr=14 il e gy shsilen gy g g (A.3.8)

Redefining u = r'/l5, ug = r(/ls and immediately d ropping the primes we obtain the background
in the form (3.3.2). In effect this is just the original three-charge background with the “1 4+ d
ropped from f5 and g5 set to 1.

A.3.2 (CSO(4,0,1) from ITA on S*

This gauging is known to result from a warped reduction of ITA SUGRA on S* [73,/128]. For the
pp-F1-NS5 solution, we only need to make use of the NSNS sector reduction ansatz. Here we need

to introduce p®, a = 1,...,4 as constrained coordinates on the S, d,,u®u® = 1, a unit determinant
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symmetric matri Mgy, with inverse M2 and define
U = 2MPMb 2 — AM®, A= M®Pueub. (A.3.9)
Then the ansatz is
dsg = <I>1/2ds$ + géA_lMale,uaD,ub, e = A_1<I>5/4,

H3 = ﬁ(?)) - %6a1a2a3a4gilA71F(‘21)a2 A DM%MMbNb
— %eala2a3a4g_2A_2 (Up™ Dp® A Dp® A Dp®t + 3Dp™ A Dp® A DM‘I?’bM‘MC,ubMC) ,

(A.3.10)

where Du® = d,u“+gA(1)“bub, DM = dM“b+2gA(1)(“|CMC‘b) and F(Q)“b = dA(l)ab—i—gA(l)“/\A(l)Cb.
However these Kaluza-Klein gauge potentials will play no role in the cases we consider. Although
we only write here the ansatz in the NSNS sector, we do need to make use of the full ansatz of 73]
to identify the SL(5) covariant multiplets that result. For instance, the ansatz for the RR four-form
field strength introduces a further four three-forms. These combine with the single three-form f(3)
in to form the five-dimensional representation of SL(5). Similarly the scalars My, and @
are joined by four additional scalar fields from the RR sector in order to obtain the full scalar coset
SL(5)/SO(5). With the RR contribution set to zero, the SL(5) covariant scalar matrix M 45, and

accompanying scalar potential V', are given by:

<<I>1/4Mab 0

. @) V= 102012 (2M P M5, — (M®5,)?) . (A.3.11)

A.3.3 Exceptional field theory dictionary

Exceptional field theory (see the review [49]) describes 11-dimensional supergravity backgrounds
after splitting into a d-dimensional internal part, with coordinates x¢, and (11 — d)-dimensional
external part, with coordinates X*. Fixing the 11-dimensional Lorentz symmetry we write the
metric as

1 . . . . .
dsty = ¢ 9-dg,,dX" dX" + ¢;;Dxr'Dx?, Dz’ =da’ + A, dX", (A.3.12)
where ¢ = det ¢;;. The three-form and its four-form field strength are decomposed as follows:
Cz) = C) + C2)iDa’ + 3C(1);;Da' Da? + %CyjpDa’ Da? D (A.3.13)
Flyy = Fay+F(3),Da' +1F 5, D2’ D2l + 3 F (1,5, Do’ Da? Da* + L ¥y Da’ Da? Da* Dol | (A.3.14)

where the (p) subscript denotes an n-dimensional p-form and all wedge products are implicit.

'Note that what we call M,; is denoted Mojﬁl in |73].
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The fields carrying purely internal indices enter a generalised metric parametrising a coset
Eq(q)/Ha, while those carrying external indices (asides from the external metric, g,,) are treated
as components of (11 — d)-dimensional forms in a tensor hierarchy. For instance, one has AMM ~
(A;/', Cij,-..). Here one has to eventually include components of the dual six-form (and putative

dualisations of the metric). In this way, each p-form gives a representation of E 4.

For d = 4, we have Ey4y = SL(5). Let M =1,...,5 denote a fundamental index of SL(5). The

generalised metric is represented by a five-by-five unit determinant symmetric matrix:

1 1
L1 ¢ 2¢ij —¢" 26 C*
My = ¢10 1Y 1 i (A.3.15)
—¢"2¢iCF $2 + ¢ 2 CFC!
where C" = %eijklcjkl, Ciji = —el-jlel. The relevant part of the SL(5) tensor hierarchy consists

of gauge fields AHMN = —AuNM, B CWPM, with field strengths .EU,MN, HwpM; JWPUM
These field strengths can be identified with components of the eleven-dimensional four-form and its

seven-form dual as follows:

5 . . 1 ikl
JT'-,uVZ = Fuuza ]:uuz] = §5U (F/u/kl - CklmFuum) >
1 ijkl
Huupi = _Fuupia HuupS = EEU (_F,uupijkl + 4Fuypicjkl) ) (A316)
5 i 1 ijkl
\Ztupa = _Flwpa7 \pral = ﬁem (+Fyupajkl - Cjleuupo) .

The bare three-forms appear here as these field strengths transform covariantly under generalised
diffeomorphisms. The minus signs are fixed such that the Bianchi identities of ExFT in the conven-

tions used reproduce those of 11-dimensional supergravity, with dEy — %ﬁh AEy=0.

A.3.4 Exceptional Drinfeld algebra frame

Generalised frames A generalised frame in the SL(5) ExFT can be represented in the 10- or
5-dimensional representations. However we can only take the generalised Lie derivative with respect

to generalised frames E 45 in the former. The algebra of generalised frames is
LiwEMe = —Fasc"EYp, (A.3.17)

or
f
LpwE"Nep = —LFup cp® EMNer,  Fapep®™ = 4FAB[C[551)}} : (A.3.18)

The gauging Fapc? can be decomposed in terms of irreducible representations of SL(5)
F_ABCD = ZABCD + %5[1345316» — %TAB(%) — %5[?47_6}6 . (A.3.19)
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Here 745 € 10 is the so-called trombone gauging, Sas € 15 and Zapc? € 40 obeys ZapcP =
Ziape)®, Zasct = 0.

Exceptional Drinfeld algebra frame For the exceptional Drinfeld algebra introduced in [26,27]

one has L
- 1 12« 51)' 0 31
EMA:A72 1 1 1 1 y AEO(SZS, (A320)
20 27, 1 2a" 2
in terms of data (a,1%,v%, T, = 3, €pedam?) describing a particular group manifold with left-

abc

invariant frames [%; and a trivector 7%°¢, obeying certain compatibility and differential conditions,

in particular
dl* = %fbcalb A Ly, vy = — fap“ve Ly,Ina = %Sa = %(TaS - faff) ) (A321)

dr®e — fabcdld + 3fed[a77bc]dle + %ﬂ_abcsdld ] (A322)

These imply that the components of the gaugings are

555 = O7 ZabCS = O Zab55 == %Taby ZCLde - T[ab(sc] 9

(A.3.23)
Sas = Ta5 3fab o Zabs® = —fa" — g [afb]d .

while S, and 7, are defined via the “dual” structure constant with three upper antisymmetric
indices

1
— €S0 + 274¢) - (A.3.24)

f~abcd _ 1

In terms of generators T 45 obeying [T g, Tep) = %FAB,Cpngg]: the algebra can be written in a
compact form reminiscent of the Drinfeld double algebra if we let T, = 1,5, Tab = 1 e®edT .. The

brackets are:

[Ta’ Tb] — fabcTc; [Tab Tcd] _ 2fab[c Td}e ’
[TCL7 Tbc] _ 2fad[bTC]d fbcd 12 Tbc [j—vbc’ Ta] _ Sf[de [béz]]fde + ]?bcdaTd + det[szCd} )
(A.3.25)

CSO(4,0, 1) frame and scalar potential This frame has a = 1, v, = 6} and 7%¢ = ge®dx, [87]

where we use 6 to identify the curved and flat indices on z* and 6, to raise/lower). This results
a
in fabcd = ge“bcd or equivalently Sg; = 4¢d.p, with the other structure constants components all

vanishing.

When Syp # 0 is the only non-vanishing SL(5) gauging, the scalar potential resulting from
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ExFT is in our conventions

1

V32

(QMABSBCMCDSDA — (MABSAB)2) . (A.3.26)

For the CSO(4,0, 1) case with the scalar matrix as in (A.3.11)) and the gauging Sap resulting from
the EDA frame, this exactly matches the scalar potential of (A.3.11).

A.3.5 Eg) generalised metric for a 3-+3 split and six-vector deformation

Components Write the six-dimensional index as i = (a,«), where both a and « are three-

dimensional. Consider the case where

a 0
d)ij = (gob h ﬂ) ) Cijk — (Clﬁabca 02604,37) y  €abcaBy = €abc€afBy s (A327)

and Ci, s = Ceéi,..ig- Let ¢t denote the number of timelike directions of the metric ¢, and let
g = det(gap), h = det(hap). The components of the Egg) generalised metric defined by (3.4.25)) can

then be computed block-by-block to be
Ma = 16190 (1 + 25 (hCF + (C5 + 3C1C2)?))

(A.3.28)
Mas = 16has (1+ 2(9C3 + (Cs = $C1C2)?)) , Maa =0,

Mo = —(=1)"|6]3gaae"* (hCy + Co(Cs + §C1Cn),
Mo = =(=1)![¢] P hase? (902 — C1(Cs — FC1Ca), (4.3.29)
M =0= M = M = Mg,

Mp = (—1)!6] 72 gap(Cs + 1C1.Co) M,z = (—=1)! 6|73 hap(Cs — 1C1Cy),

(A.3.30)
Maéz = Maa = 07
M®Ps = —(=1)[6] 2P geac™®Cy, - M5 = (—1)"[g]Phase’PCy (A.3.31)
Maal_) — Macxﬁ_ — Mab@ — MaBa -0 e
Mg = (=18 Pgap, Mgz = (—1)"16]"Phag, Maz =0, (A.3.32)

Six-vector deformation Using (3.4.27)), one sees that the six-vector deformation has the rela-
tively simple effect of

M = Mg+ OMy, M5 = MY+ QM7 My — Mg + QMG + M;) + PMy  (A.3.33)
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leaving other blocks invariant. Then given a configuration with
ds?) = gapdzda® + hapda®da® + G datda” (A.3.34)

and gauge field components C and Cy and C as above, the effect of a six-vector deformation is to

produce the following metric and gauge fields:

dsty = (1+©1)3(1+ 02) 2 gadada® + (1 +©1)3(1 + 02) P hopdada’

(A.3.35)
+ (14 01)'3(1 4 ©2)'/3G,, datda”
~ 1
Ci = 17g, (O = Qg0 = O1(Co ~ 5C109)))
~ 1
C2=1 +0 (C2 +Q(hC1 + Ca(Cs + 5C1Ca)))
STive (A.3.36)
Co= 577 @, o+ 30102 +Q(gh+ hCE + (Cs + 3C10a)%))
1 1
3776, 0o 30100 +Q(gh + 903 +(Co — §C1C2))
where
01 = 29(C6 + 5C1Ca) + Q% (gh + hCF + (Cs + 5C1Ca)?) (A.3.37)

Oy = 29(06 — %Cng) + Qz(gh + QCQ2 + (Cﬁ — %0102)2) .

A.4 Charge quantisation

In this appendix we consider the requirement of brane charge quantisation for our new solution.
We therefore reinstate the dimensionful constants r; and R inherited from the original F1-NS5
solution. We also note that we can include a constant o (assumed dimensionless) in the EDA frame
corresponding to the trombone rescaling of the 11-dimensional solution. Including this, the extremal
solution in spherical coordinates would be:

- 1 R%dp* = R%*dr?
ds?, = 232 f1 + p?) PR32 )3 <f1(_dt2 +d2?%) + Tfo t—a ds%4>

4 a2/3(r2f1 + p2)72/3R2/3(T2f1)1/3p2d8§3 ,

2r? rp 22 (A.4.1)
F(4) = amﬁdt A dZ AN dT’ A\ dp — CK@VOITAL
R(4r2f1 + 2p?) 4 Rp* 2
Wﬂ dp/\VOlSS —am&(r fl)d’f’/\VOlS3 .
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The dual field strength is

«F, 2 2T P ol AVolg — a?——211 3dt Adz Adr Adp A Vol
= —a’—5————Volg: - z Adr :
@ r2fi+p? R T rhi 2+ D) ’ : (A.4.2)
5 A.
+ a2R—Z(2T2f1 + p*)dt Adz A dr A Volps + a2%&,(r2f1)dt Adz Adp A Volps.
1

The number of membranes and fivebranes will be determined by

Narg = (27r1)fjlg/JPage> Nus = ml)gl%/FM) (A.43)

As discussed in section Jpage vanishes up to large gauge transformations of the form Ci3y —
Cls) + 4mjl3Volgs, j € Z, which shift Jpage — Jpage + 4 jl30 5 Volgs A Volpa. Hence

Ty

l
l

NMQ = N147Tj g % . (A4:4:)

S W

Now consider the M5 branes. Integrating the flux through the torus we have

16
l

_ 1 27"%
CrPB YR

o

Nuss = 2m)told = —47N 75 . (A.4.5)

R3

S

. _aar(Th
Notice that N2 = j|Ny5°|-

Next integrating the flux through the four-cycle in (r, p, S®) directions as described in section

gives, if r1 =0

N]\/[5/ = mQﬂ'QOéRﬁ2 = %ﬁZ (A46)

where p corresponds to the limit of the p integration (starting at p = 0). Then charge quantisation

requires
a3

P, NeN. (A4.7)

pP=N

The above results work remarkably well with the matching to the AdS solutions of [92]. Restoring
the Planck length appropriately in the solution ([3.4.14)) such that p has units of length and g is
dimensionless, and carefully working through the identification with the AdS limit r2f; = 7} of

(A.4.1), the matching condition (3.4.16]) and (3.4.18) become

203 22 A 2]
2_ “'p _ 10 _ 1p@
1Y RO(Q’ U (0% lpR ) 4 « R3

(A4.8)

In [92] we have a sequence of intervals p € [27j, 2w (j + 1)]. Viewing our solution as lying in the
7y 3 .. . - . .

first interval, ¢ € [0,27] we have p? = % giving one unit of charge. Meanwhile the relationship

between the M2 and M5 charges matches that following from equations (3.6) to (3.8) of [92].

Finally we can try to fix the relationship between the 11-dimensional Planck length and the
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10-dimensional string length appearing in the original solutions in type IIA on S®. A crude way to
do this is to reduce the Newton’s constant prefactor of 11- and 10-dimensional supergravity to the

7-dimensional theory, via

1 1 2m2i 5t 212 R3 B a2N?
— [ dppdQs = — [ R3O = L = = =2 A49
2K3, poats 2K3, K (2m)813  (2m)8 I3 2r ( )

which implies
Nus = 2N503 N . (A.4.10)

It seems most natural to take o = (2N5)~ /3, as the field strength component giving rise to this

flux comes directly from the three-form flux due to the F1 in the original brane solution.
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