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Abstract

Dualities play a very important role in connecting di�erent theoretical physics models to each

other. In the framework of string theory, dualities build links between 5 types of strings, highlighting

the uni�ed origin re�ected by M-theory. In this thesis we discuss how to de�ne and utilise a special

type of dualities - generalised dualities. These are an extended notion of dualities that applies to a

broader variety of dual spaces with no background isometries. We study new types of generalised

U-dualities, and use these to construct and analyse new dual solutions in M-theory.

In chapter 1 we start with reviewing di�erent types of dualities in string and M theory, revisiting

main algebraic and physics aspects of dualities and their mechanisms. We also go through a brief

overview of string theory, de�ning di�erent types of strings and their main characteristics, and

presenting the dimensional reduction mechanism that we utilise later in generating dual solutions.

Chapter 2 is dedicated to exploring geometries with Exceptional Drinfeld Algebra (EDA) struc-

ture applied to studying the generalised U-duality - a special type of dualities in M theory. We

have also provided classi�cation of di�erent "three-algebra geometries" that represents a specially

chosen case of EDA, and studied in more depth examples that resulted in novel uplifts for special

gaugings of seven dimensional maximal supergravity.

In chapter 3 we discuss the notion of generalised U-duality as a solution generating technique

in supergravity. Using the exceptional geometry technique, we demonstrate how to generate a new

solution in 11-dimensional supergravity starting with type IIA supergravity. We further analyse the

features of newly generated solution and explore its AdS limit and charges. We end the chapter by

solving the Killing spinor equation in the extremal AdS limit case, and �nding a 1
2 -BPS solution.

This provides us with new interesting insights about the nature of U-dual solutions.

In chapter 4 we continue the investigation of the same solution generating technique using

exceptional geometry, expanding our analysis to initial solutions with more complicated geometrical

structure, generalising the results obtained in the previous chapter. The newly generated solutions

are now described by an underlying 6-algebra structure, generalising the 3-algebra structure in the

previous case. Using exceptional geometry techniques we provide an 11-dimensional uplift of the

4-dimensional gauged supergravity. Similarly to the examples generated in the previous chapter,

we construct a new 1
2 -BPS solution and elaborate on the properties of the new dual solution.

We conclude in chapter 5 with some �nal thoughts, summarising the results of previous chap-

ters and highlighting the contribution of the work we presented in understanding the nature of

generalised dualities in physics and how they serve as solution generating techniques, expanding our

understanding of connections in M-theory and supergravity. We indicate a few further directions

that could be interesting for further investigation.
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Abstract

Dualiteiten spelen een zeer belangrijke rol in het verbinden van verschillende theoretisch

natuurkundige modellen met elkaar. In het kader van de snaartheorie leggen dualiteiten verbanden

tussen 5 soorten snaren en benadrukken ze de verenigde oorsprong die wordt weerspiegeld door

M-theorie. In de context van dit werk bespreken we hoe we een speciaal type dualiteiten - veralge-

meende dualiteiten - kunnen de�niëren en gebruiken. Dit is een uitgebreide notie van dualiteiten

die van toepassing is op een bredere variëteit van duale ruimten zonder achtergrondisometrieën.

We bestuderen nieuwe soorten veralgemeende U-dualiteiten en gebruiken deze om nieuwe duale

oplossingen in M-theorie te construeren en te analyseren.

In hoofdstuk 1 beginnen we met een overzicht van verschillende soorten dualiteiten in snaar-

en M-theorie, waarbij we de belangrijkste algebraïsche en fysische aspecten van dualiteiten en hun

mechanismen bespreken. We geven ook een kort overzicht van snaartheorie, de�niëren verschil-

lende soorten snaren en hun belangrijkste kenmerken, en presenteren het standaard dimensionale

reductiemechanisme dat we later gebruiken bij het genereren van duale oplossingen.

Hoofdstuk 2 is gewijd aan het verkennen van geometrieën met Exceptional Drinfeld Algebra

(EDA) structuur toegepast op het bestuderen van de veralgemeende U dualiteit - een speciaal type

van dualiteiten in M theorie. We hebben ook een classi�catie gegeven van verschillende "drie-algebra

geometrieën" die een speciaal gekozen geval van EDA vertegenwoordigt, en we zijn dieper ingegaan

op voorbeelden die hebben geleid tot nieuwe uplifts voor speciale gaugings van zevendimensionale

maximale superzwaartekracht.

In hoofdstuk 3 bespreken we het begrip veralgemeende U-dualiteit als oplossingsgeneratietech-

niek in superzwaartekracht. Met behulp van de uitzonderlijke meetkunde techniek laten we zien hoe

we een nieuwe oplossing kunnen genereren in 11-dimensionale superzwaartekracht, beginnend met

een speciaal type oplossing in type IIA superzwaartekracht. We analyseren verder de eigenschappen

van de nieuw gegenereerde oplossing en onderzoeken zijn AdS-limiet en ladingen. We eindigen het

hoofdstuk met het oplossen van de Killing-spinorvergelijking in de extreme AdS-limiet en het vinden

van een 1
2 -BPS oplossing.

In hoofdstuk 4 gaan we verder met het onderzoek van dezelfde oplossingsgeneratietechniek met

behulp van uitzonderlijke meetkunde, waarbij we onze analyse uitbreiden naar initiële oplossingen

met een gecompliceerdere geometrische structuur en de resultaten uit het vorige hoofdstuk veral-

gemenen. Met behulp van uitzonderlijke meetkunde technieken geven we een 11-dimensionale uplift

van de 4-dimensionale gauged superzwaartekracht. Net als de voorbeelden uit het vorige hoofdstuk

construeren we een nieuwe 1
2 -BPS oplossing en gaan we dieper in op zijn eigenschappen.

We sluiten af in hoofdstuk 5 met enkele laatste gedachten, waarin we de resultaten van de vorige

hoofdstukken samenvatten.

7



List of publications

1. Exploring Exceptional Drinfeld Geometries, Chris D. A. Blair, Daniel C. Thompson, So�a

Zhidkova, JHEP 09 (2020) 151 (Q1 journal) [87], corresponds to chapter 2.

2. Generalised U-dual Solutions in Supergravity, Chris D. A. Blair, So�a Zhidkova, JHEP (2022)

81 (Q1 journal) [113], corresponds to chapter 3.

3. Generalised U-dual Solutions via ISO(7) gauged supergravity, Chris D. A. Blair, So�a Zhid-

kova, JHEP (2022) 93 (Q1 journal) [117], corresponds to chapter 4.

8



Chapter 1

Introduction

1.1 String and M-theory

Finding a theory that would unify all the existing interactions in nature under one model is an

eternal challenge of theoretical physics. A uni�cation that would provide a sole origin to all existing

theories on di�erent energy scales and levels is a challenge that physicists try to answer. At small

scales, the Standard Model of elementary particle physics gives a self-consistent explanation of the

original principles of physics that matches the results obtained experimentally in the recent scienti�c

observations. On the opposite side of scale level, Einstein's theory of General Relativity provides

a reliable prediction of the behaviour of gravitational e�ects throughout the universe, which was

recently again con�rmed via the �rst direct detections of gravitational waves.

However, neither of these theories are complete. Whilst there is no known way to deduce the

masses of the elementary particles (and other parameters in the theory) from �rst principles in

the Standard Model, in the General Relativity applying a standard quantisation procedure will

result in a non-renormalisable theory (the problem of black hole solutions indicates the existence of

problems on a quantum theory level). We do not have a clear method on how to combine the two

theories, since the Standard Model is renormalisable on quantum level, while General Relativity is

not. At the highest energies and smallest possible scales, both quantum and gravitational e�ects

are important, and we need a theory of "quantum gravity". With the hope that this would be the

fundamental theory of nature, that enables to provide a precise explanation for the masses of the

elementary particles and other theoretical challenges (such as the origin of dark matter and dark

energy). Unifying quantum mechanics and gravity has proven to be one of the hardest challenges

in theoretical physics.

One of the best and most well supported mathematically candidates for a theory of quantum

gravity is string theory. The initial idea of this theory is that instead of elementary particles, we

should consider elementary strings. Compared to particles, the fundamental distinction is that

strings are extended objects, with additional degrees of freedom, leading to various consequences.
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A collection of multiple states can be found via string quantisation procedure, corresponding to

di�erent vibrations of the string, which will appear as particles when working at scales larger than

the string length. The behaviour of these particle-like states of the string resembles the interaction

appearing in the Standard Model and Gravity in the same time. Moreover, one of the states can

be identi�ed with the hypothetical Graviton particle spectrum � the carrier of the gravitational

interaction.

This provides an additional supporting point to the candidature of the String theory taking

the role of the quantum gravity, with many strong features, such as the lack of numerous free

parameters, instead having only one free parameter � the string length, unlike the Standard Model,

which appears to have a whole range of unspeci�ed parameters.

The consistency requirements of string theory are remarkably stringent, and it only works in

10 dimensions. (Properties of the four-dimensional physics we experience can be encoded in the

structure of the geometry of the other six dimensions, although �nding the appropriate construction

to match our observable universe is an open problem.) At �rst, these consistency conditions seemed

to allow �ve distinct string theories, despite the hope that any fundamental quantum gravity should

be unique. However, a further compelling and fascinating property of string theory is the presence of

dualities in the theory, leading to a uni�ed theoretical description, in which the 5 possible solutions

can be viewed as special cases, resulting from the same parent theory � the M-theory.

M-theory was originally introduced as the strong coupling limit of type IIA superstring theory [1].

M-theory is required to reduce to 11 dimensional supergravity - a theory combining the nature of

general relativity and supersymmetry - at energies signi�cantly smaller than the inverse Planck

length 1/lP in the same way as the type IIA or IIB superstring theory reduces to type IIA or IIB

supergravity at energies signi�cantly smaller than the inverse string length 1/ls. The reduction of M-

theory on a circle will result in type IIA string theory, and reduction of 11-dimensional supergravity

on a circle provides us with the 10-dimensional type IIA supergravity, highlighting a clear connection

between the theories.

1.2 Dualities in string and M-theory

String theory provides a uni�ed framework that encompasses both quantum mechanics and general

relativity. Among the phenomena within string theory, duality stands out as a powerful concept

that has greatly deepened our insights into the underlying structure of spacetime and quantum �eld

theories. Dualities relate seemingly distinct string backgrounds and play a crucial role in unravelling

the nonperturbative and perturbative nature of string theory.

In theoretical physics one of the simplest examples of such a duality appears in classical elec-

tromagnetism in the case of Maxwell's equations in vacuum, where the theory reveals a symmetry

under the interchange of the electric and magnetic �elds. Another great example of dualities in

physics is the Ising temperature duality in thermodynamics, where the lattice Ising model expresses
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similar behaviour below and above a critical point, making the model at low temperatures dual to

the model at high temperatures.

The simplest string duality follows from the fact that strings have length. Particles only see the

world one point at a time, but strings are extended objects. As a result they experience geometry

very di�erently. For instance, a string does not distinguish between winding around large circle of

radius R and moving around a small circle of radius 1/R (or vice versa). We say that the large and

small circle descriptions of the geometry are dual. This is known as T-duality.

Another type of dualities - S-duality - involves the coupling g determining the strength of string-

string interactions (this is not an independent parameter, but is determined dynamically within the

theory). Some string theories at strong coupling, g large, are the same as others at weak coupling,

g small. This is a remarkable equivalence, as it allows us to understand strong coupling physics

(di�cult) using weak coupling physics (easier). Even more surprisingly, in one �dual� description,

type IIA string theory at strong coupling in 10 dimensions turns out to �grow� an extra spacetime

dimension and is described in terms of an 11-dimensional theory.

Combining these basic dualities leads to a fascinating web of connections that tells us we should

think of all di�erent string theories as being di�erent dual descriptions of a single underlying more

fundamental theory [1, 2]. This theory has become known as M-theory. However, despite much

progress in many areas, the �nal formulation of this M-theory remains mysterious.

We will review the notion of T-duality and its generalisations. The usual T-duality symmetry is

present when one has a background with commuting i.e. abelian geometric symmetries, represented

by the Abelian Killing vectors of the solution. This is called Abelian T-duality. Abelian T-duality

has an extremely important implementation in relating type IIA string theory to type IIB string

theory by compactifying each theory on a circle with inverse radii. Abelian T-duality is an exact

symmetry of string theory.

Non-Abelian T-duality, extends the Abelian T-duality, unveiling connections between diverse

string backgrounds. Unlike its Abelian counterpart, which arises in the presence of Abelian Killing

vectors, non-Abelian T-duality arises when considering compacti�cations of string theory on spaces

with non-Abelian isometries [3], [4].

Non-Abelian T-duality is not an exact symmetry of string theory. For Non-Abelian isometry

groups certain anomalies can arise when performing the dual transformation [5]. Even though

the quantum status of non-Abelian T-duality as a genuine duality of the full string theory is less

clear (though there is some recent evidence in favour of this [6]), it has proven an e�cient classical

solution generating mechanism, in particular for holographic backgrounds with interesting dual �eld

theories [7�9]. There is a further generalisation known as Poisson-Lie duality in which there are no

isometries present on either side of the duality [10]. In Poisson-Lie duality, there is an equivalence

between two di�erent classical sigma models [10], which can be proven using a single sigma model

whose target space is doubled [11]. Both these dualities can be used to describe string theory in

interesting settings such as backgrounds where the sigma model is integrable (for a review, see [12]).
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Unlike the Abelian T-duality, the non-Abelian T-duality is not completely obvious on the level of

higher quantum corrections. While in the Abelian T-duality the mapping between 2 dual solution

in a sigma model can be extended in all orders of the quantum α′ correction, in the case of its

non-Abelian counterpart, this can only be done to a certain orders [13]. However, the interest

of considering various generalised versions of T and afterwards U dualities is still viable, and is

motivated by the idea of generating new solutions and building a bigger picture of the M-theory

structure, revealing a web of connections between di�erent solutions.

U -duality is a combination of S and T dualities applied one after another, it is a new "uni�ed"

type of dualities in M-theory. Unlike the T-duality it wasn't very clear how to generalise U-duality

in the case of non-Abelian isometries (represented by non-Abelian Killing vectors). While T-duality

is an exact perturbative symmetry of string theory at each order in the string coupling constant g,

S-duality and U-duality are non-perturbative in the coupling constant orders.

U-duality has several important implementations in understanding the M-theory and building

connections between di�erent solutions. It provides a helpful mechanism of studying compacti�ca-

tions of superstring theories, alongside other types of dualities.

The natural way of observing U-duality comes from studying dualities of string theories and

supergravity. Type IIA string theory reduced on a circle is T-dual to type IIB string theory reduced

on a circle of an inverted radius. Type IIB theory contains an internal global SL(2,Z) symmetry,

re�ected in S-duality preserving the symmetry of the theory. T-duality between type IIA and IIB

string theories combined together with the duality SL(2) symmetry group of the T2 torus (or more

generally the symmetry of the d-torus) on which we performed a compacti�cation of M-theory to

obtain a lower-dimensional e�ective theory (M-theory on 2-torus or d-torus more generally) forms

the U-duality symmetry, generally given by the Ed(d) groups.

In the following section we will brie�y review the string theory models and provide an overview

of the main �eld in the spectrum to proceed further with the explanation of dualities.

1.3 Overview of string theory

In the string theory there are 5 consistent types of strings that can be all uni�ed under a bigger

11-dimensional theory - the M-theory, as special cases. The set of �ve types of string is built of:

type I strings, in which strings are unoriented and the spectrum is composed of open and closed

strings with N = 1 supersymmetry, type II strings, consisting of oriented closed strings with a

maximal amount of supersymmetry N = 2, with type IIA as its non-chiral version, and type IIB as

its chiral version, and two types of heterotic (also with N = 1 supersymmetry, made by mixing the

left-moving sector of the bosonic string with the right-moving sector of the superstring) - one with

the SO(32) gauge group and the second with the E8× E8 gauge group.

These di�erent types of strings are all special cases of the M-theory and are connected to each

other with a web of dualities. Type IIA and type IIB strings are related to each other via T-duality,
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as are the two types of heterotic strings. S-duality connects type I strings to the heterotic strings

with the SO(32) gauge group, and type IIB to itself again (type IIB is self dual by S-duality).

Moreover, type IIA string theory in the in�nitely strong coupling constant limit becomes equivalent

to a bigger theory - the M-theory: meaning there is an S-duality between type IIA strings and

the M-theory. Similarly, S duality is present between the heterotic string with the E8× E8 gauge

group and the M-theory. Thus all the 5 types of string theories are connected to each other via

dualities, and are special cases of a bigger picture - the M-theory. At the same time 11-dimensional

supergravity is a low energy limit of the 11-dimensional M-theory.

Let us start with reviewing the bosonic sector of string theory and introduce the Polyakov

action de�ned on the worldvolume Σ - the space-time that a string sweeps out as it moves through

spacetime, that is representing the basic fundamental action of bosonic strings on the worldsheet:

SP =
1

4πα′

∫
Σ
dτdσ

√
|h|habgµν(X)∂aX

µ(τ, σ)∂bX
ν(τ, σ) (1.3.1)

where the structure 1
4πα′ has the meaning of the string tension T , the coordinates τ, σ are the

worldsheet coordinates, Xµ are the coordinates of the target manifold, and the metric gµν is the

metric of the target space (26 dimensions or 10 in supersymmetric version), hab is the worldsheet

space metric.

For the case of �at Minkowski metric (gµν(X) = ηµν) the action is invariant under space-time

translation and Lorentz transformations (Poincare symmetry) in the target space (global symmetry),

as well as under di�eomorphisms and Weyl transformation (metric rescaling) in the worldsheet space

(local symmetries).

Starting with open strings - type of strings with free endpoints and a topology of a line, the

boundary conditions can divided into:

1. Neumann boundary conditions (N)

na∂aX
µ|∂Σ = 0 (1.3.2)

where na is a unit normal vector to the boundary ∂Σ. This condition in the case of a free open

string propagation reduces to a simple ∂σXµ|∂Σ = 0 on the surface boundary ∂Σ.

2. Dirichlet boundary conditions (D)

ta∂aX
µ|∂Σ = 0 (1.3.3)

where ta is a unit tangent vector to the boundary ∂Σ. In a case of the simple free string propagating

in a worldsheet - a manifold describing the embedding of the string in the spacetime - this reduces

to ∂τXµ|∂Σ = 0, which can be rewritten in the following way:

Xµ|∂Σ = Cµ (1.3.4)
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for a constant Cµ, meaning that the string is �xed on the end point. In the case of propagating in an

p-dimensional hypersurface, Dirichlet boundary condition will restrict d − p coordinates, breaking

translation invariance in these directions. This is associated to dynamical p+1-dimensional objects

in the hypersurface called D-branes - objects where the endpoints of open strings lie (for Dirichlet

boundary conditions).

In the case of closed strings - circle topology, the strings can be divided into periodic and

anti-periodic. Anti-periodic boundary conditions are not used for bosons, and only appear in the

fermionic sector.

In addition to the classi�cation of strings to open and closed, they also can be oriented and

unoriented, with oriented strings corresponding to oriented worldsheet surfaces, and unoriented

strings - to unoriented worldsheet surfaces.

Speaking about the �eld spectrum of the bosonic sector theory, based on the string type and

their degrees of freedom in 26 dimensional space-time we have the following classi�cation of the

massless �elds:

� Closed oriented strings → massless �elds of the spectrum gµν , Bµν , ϕ

� Closed unoriented string → massless �elds of the spectrum gµν , ϕ

� Open and closed oriented strings → massless �elds of the spectrum gµν , Bµν V IJ
µ , ϕ

� Open and closed unoriented strings → massless �elds of the spectrum gµν , V
[IJ ]
µ , ϕ

where the �eld V IJ
µ are the U(n) vectors and the indices I, J = 1, 2 indicate to which D-brane each

string endpoint is attached, Bµν is a 2-form �eld and ϕ is a scalar �eld.

The low energy limit of the string theory is the limit in which the particle theory can be recovered

and the string length is set to zero, the string constant α′ → 0, and only the massless modes become

relevant. In this limit we also obtain the corresponding e�ective �eld theory.

The e�ective low energy action of the string theory in the string frame in d dimensions (d = 26 in

the bosonic string theory to preserve Poincare invariance, or in the supersymmetric theory d = 10)

can be described by the action (where the strung coupling constant gs ≡ eϕ0 with ϕ0 the vacuum

expectation value of the dilaton ϕ has to be small for the low energy limit to take place) [14]

S =

∫
ddx
√
|g|e−2ϕ

[
R− 4(∂ϕ)2 +

1

12
H2
]

(1.3.5)

with the space-time metric gµν , ϕ is the dilaton, and the Kalb-Ramond 2-form Bµν , with the totally

anti-symmetric �eld strength composed from it

H = 3∂B (1.3.6)
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with antisymmetrized indices (hidden). This action is derived by requiring conformal invariance in

quantum theory after renormalisation procedure (see section 3.2 of [15]).

Now, brie�y touching the fermionic - supersymmetric part of the string theory (worldsheet

supersymmetry), we add fermionic �elds describing the internal spin degrees of freedom. For this

consider anticommuting variables ψµ(τ, σ), as well as a gravitino �eld χ, which after integrating out

the graviton results in the so-called Ramond-Neveu-Schwarz (RNS) model

S =
1

4πα′

∫
dτdσ[ηab∂aX

µ∂bXµ − iψ̄�∂ψµ] (1.3.7)

For open superstrings, the endpoints σ = 0, 2πl are free, and both Neuman and Dirichlet boundary

conditions can be chosen for Xµ, while for ψµ we have left and right moving modes - ψµ− and ψµ+
For superstrings with closed bosonic and open fermionic parts, in combination we have 4 types of

boundary conditions for the fermionic part: RR, NSNS, RNS, NSR, built on the following blocks:

� Ramond boundary conditions (R)

ψµ+(σ = 0) = ψµ−(σ = 0), ψµ+(σ = 2πl) = ψµ−(σ = 2πl), (1.3.8)

� Neveu-Schwarz boundary condition (NS)

ψµ+(σ = 0) = ψµ−(σ = 0), ψµ+(σ = 2πl) = −ψµ−(σ = 2πl), (1.3.9)

Since for closed superstrings σ ∼ σ+ 2πl for each component ψµ+ and ψµ− independently we can

have

� Ramond boundary conditions (R) - periodic

ψµ±(σ = 0) = ψµ±(σ = 2πl), (1.3.10)

� Neveu-Schwarz boundary condition (NS) - antiperiodic

ψµ±(σ = 0) = −ψµ±(σ = 2πl), (1.3.11)

In the case of superstrings we have a larger spectrum of massless �elds in the 10 dimensional

supergravity. The full classi�cation is give in section 20.2 of [14], where the bosonic sector is

augmented by the additional C(1), C(3) �elds in the type IIA case, additional C(0), C(2), C(4)

(where C(4) is self-dual) in the type IIB case, and an additional C(2) �eld in the type I case.

The massless modes of type II superstrings compose the supergravity multiplets of the maxi-

mal 10-dimensional supergravity theory, while type I strings correspond to the N=1 supergravity
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spectrum in the low energy limit. We will use these basic description indirectly in studying super-

symmetric solutions (e�ective actions) in the case of supergravity models we use to generate U-dual

solutions in further chapters.

Apart from string dualities, we have dualities between extended objects of M-theory - Dp-branes

(D is for Dirichlet boundary conditions), appearing from compacti�cations of 11-dimensional theory

with 2 fundamental objects: M2 branes and their dual M5 branes. String theories also contain branes

apart of strings: type IIA string theory contains even dimensional branes - Dp-branes coupled to

odd dimensional p+ 1 forms Cp+1, while type IIB string theory consists of odd dimensional branes

coupled to even Cp forms. The action of a p-dimensional brane on the space-time coordinatesXµ(ξ),

with µ = 0, ..., d − 1 and the worldsheet coordinates ξa with a = 0, ..., p with the pullback metric

hab = gµν∂aX
µ∂bX

ν is represented by the so-called generalised Nambu-Goto action:

S
(p)
NG = −T(p)

∫
dp+1ξ

√
|hab| (1.3.12)

with the brane tension T(p), and is proportional to the volume captured by the p-brane.

Various supergravity theories are related to each other via a compacti�cation on a circle (or a

double compacti�cation). It is worth noting that the decompacti�cation limit of 11-dimensional

theory coincides with the strong coupling limit of the type IIA theory. We can also spot some

connection between the spectra of the 11-dimensional model and the reduced 10 dimensional theory.

The Kaluza-Klein scalar contributes to the appearance of the dilaton �eld in the reduced model,

and the Kaluza-Klein vector gives the RR 1-form, while the 3-form gives a 2-form and a 3-form.The

1-form is associated with the D0-brane, the 3-form - with D2-brane: since there are D0- and D2-

branes associated with the RR 1-form and 3-form respectively, we �nd that they originate from

the 11-dimensional graviton moving in the compact direction and from a two-dimensional object

- the M2-brane, that couples to the 11-dimensional 3-form. This M2-brane gives rise to the type

IIA string when it is wrapped around the compact dimension (coupled to Bµν), and once it is not

wrapped around the compact dimension, then it gives rise to the 2-dimensional brane - the D2-brane

(via the form C
(3)
µνρ to which this D2 brane is coupled).

On a broader scale dimensional reduction from 11 to 10 dimensional theory relate various objects

to each other: p-branes, M-branes, D-branes, strings, waves, Kaluza-Klein monopoles, etc. Accom-

panied with T and S dualities these transformations build a web of connections between di�erent

objects in M-theory and string theories (see [14] for more details).

In order to study connections between di�erent supergravity models, let's demonstrate an ex-

ample of reduction from the 11-dimensional bosonic sector of Supergravity theory (corresponding

to the low energy limit of M-theory) to the bosonic sector of a 10-dimensional supergravity (corre-

sponding to the low energy limit of (super) string theory, type IIA supergravity). This mechanism

will provide us with the basic techniques used for dimensional reductions to be implemented further
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in the thesis. We start with the 11-dimensional action:

S11 =
1

16πG(11)

∫
d11x̂

√
|ĝ|
[
R̂− 1

2 · 4!
Ĝ2 − 1

(144)2
1√
ĝ
ϵ(11)ĜĜĈ

]
(1.3.13)

where G(11) is the coupling constant in the 11-dimensional theory, R̂ is the 11-dimensional curvature,

and all the hatted �elds are in 11-dimensions, Ĝ = 4∂Ĉ.

Assuming that all the �elds are independent of the coordinate z ≡ x̂10, we perform a reduction

from 11 to 10 dimensional theory, with a spectrum of 10 dimensional �elds

{ϕ, gµν , Bµν , C(3)
µνρ, C

(1)
µ } (1.3.14)

where the metric, the Kalb-Ramond 2 -form and the dilaton - are the NSNS sector �elds, while the

vector and the 3-form are RR sector �elds.

Then we use the Kaluza-Klein (or a special case of Scherk�Schwarz [16]) procedure to re-write

the 11-dimensional �elds in terms of 10-dimensional �elds (in String frame and rescaled by the

dilaton):

ĝµν = e−
2
3
ϕgµν − e

4
3
ϕC(1)

µ C(1)
ν , Ĉµνρ = C(3)

µνρ

ĝµz = −e
4
3
ϕC(1)

µ Ĉµνz = Bµν ĝzz = −e
4
3
ϕ (1.3.15)

then proceeding with each term of the 11-dimensional action separately (for detailed procedure see

section 22 of [14]), we �nally arrive to the following 10-dimensional action

S10 =
g2A

16πG(10)

∫
d10x

√
|g|
[
e−2ϕ

(
R− 4(∂ϕ)2 +

1

2 · 3!
H2
)

−1

4

(
(G(2))2 +

1

2 · 3!
(G(4))2

)
− 1

144
√
|g|
ϵ(10)∂C(3)∂C(3)B

]
(1.3.16)

where the constant gA = eϕ0 absorbs the asymptotic value of the dilaton ϕ→ ϕ0 in the action, and

1

G(10)
=

1

G(11)

∫
dz =

2πR11

G(11)
(1.3.17)

and the �eld strengths

H = 3∂B, G(2) = 2∂C(1), G(4) = 4
(
∂C(3) −HC(1)

)
(1.3.18)

and we have taken the 11th coordinate z to be on a circle of Planck length radius rescaled by

gA: R11 = g
2/3
A lPlanck - the only scale available in the 11-dimensional supergravity. The dilaton

representing the string coupling constant, shows us that the strong-coupling limit of the type IIA
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string theory corresponds to Large radius decompacti�cation limit of the 11 dimensional theory.

1.4 Dualities

1.4.1 Why dualities are interesting?

A duality is an equivalence between two seemingly di�erent physical theories or descriptions.

As was highlighted previously, dualities do not only appear in the string and M-theory, they have

taken place in the framework of classical physics, playing a signi�cant role in building connections

and interpretations of di�erent solutions and physics models. Dualities are important in M-theory

and supergravity as a solution generating technique and a connecting mechanism for seemingly

diferent solutions, revealing the link between these solutions.

In order to understand better the origins of the dualities in superstring and M-theory, we have to

go back to the original examples obtained via simple compacti�cation on a circle, and the dualities

generated by inverting parameters such as the circle radius and the coupling constant, that keeps

the mass spectrum unchanged.

The action of dualities adds to the obvious symmetries of the theory under consideration, such as

non-linear sigma model, where the manifest symmetries are di�eomorphisms, Weyl transformations

of the metrics and gauge symmetries of the gauge �elds, a series of less obvious symmetries, such as

the duality of the target space obtained via compacti�cations on circles or tori, replacing the radius

by the inverted radius. The precise technique of the elementary T-duality will be explained in the

following sections.

In the previous section we had a quick overview of the main types of strings and the �eld spectra

in di�erent conditions, now we will focus on the symmetries and connections generated by dualities

in the NS-NS and RR sectors of the string theories.

T-duality is in particular interesting in connecting type IIA and type IIB string theories com-

pacti�ed on circles of opposite radii (R and α′/R) resulting in the same NS-NS bosonic sector,

forming a Z2 part of the full O(d, d,Z) T-duality group.

T-duality forms an exact symmetry of string theory at every level of perturbation of string

coupling constant g, while S and similarly U dualities do not possess this feature. However, analysing

various types of dualities and their generalisations, allows us to build a web of connections between

various supergravity solution, thus, giving a broader understanding of duality connections in M-

theory.

1.4.2 Abelian T-duality in examples

Let us demonstrate how Abelian T-duality appears in string theory. Consider a closed Bosonic

string moving in a target 26 dimensional space M = R1,24 × S1 with a periodicity constraints on

one of the coordinate components X(τ, σ) = (X0, X1, ..., X24, X25) on a two-dimensional world
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sheet Σ with the string coordinates (τ, σ)

X25(τ, σ + 2π) = X25(τ, σ) + 2πmR (1.4.1)

with a winding number m ∈ Z and string radius R.

The corresponding Polyakov action for this theory is

S =
1

4πα′

∫
Σ
dσdτ

(
hab
√

|h|gµν∂aXµ∂bX
ν
)

(1.4.2)

with the metric of the target manifold gµν and the worldsheet metric hab, and the constant α′, where

the combination T ≡ 1
4πα′ has the meaning of the intrinsic string tension. The equation of motion

for this action reveals the following solutions, including the right and left moving components

Xµ
L =

1

2
Xµ

0 +
1

2
α′PµL (τ + σ) + oscillator terms (1.4.3)

Xµ
R =

1

2
Xµ

0 +
1

2
α′PµR(τ − σ) + oscillator terms (1.4.4)

with the expression for the oscillator terms as ∼ 1
m exp im(τ + σ) and ∼ 1

m exp im(τ − σ) for the

left and right modes correspondingly, and the momenta are quantised in the compact 25th direction

(n ∈ Z)

P 25
L =

n

R
+
mR

α′ (1.4.5)

P 25
R =

n

R
− mR

α′ (1.4.6)

Calculation of the theory spectrum reveals

M2 ≡ −∂τXµ∂τXν =
n2

R2
+
m2R2

(α′)2
+

2

α′ (NL +NR − 2) (1.4.7)

where NL, NR are the numbers of left and right moving modes correspondingly. This spectrum

is invariant under the transformation R → α′

R , n → m, which also corresponds to XL → XL

and XR → −XR. This means that the mass spectrum for a string moving in one background

M = R1,24×S1 is exactly the same as the mass spectrum of a string moving in a di�erent background

M ′ = R1,24 × S′1 with S′1 having an inverse radius to S1 (up to the constant α′). And this

characterises the simplest example of T-duality.

In the framework of non-linear sigma model Abelian T-duality reveals an interesting feature

connecting seemingly di�erent actions to each other. As an example, a non-linear sigma model

de�ned on a d-dimensional manifold M

S =
1

4πα′

∫
d2ξ[

√
|h|habgµν∂axµ∂bxν + ϵabbµν∂ax

µ∂bx
ν ] (1.4.8)
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with a target space metric gµν , the torsion bµν the dilaton ϕ and the worldsheet metric hab. With

an abelian isometry in one of the directions θ of the coordinate set {θ, xα} where α = 1, ..., d − 1,

meaning that there's no dependence on θ of the theory �elds. And this theory can be then obtained

from a d+1 dimensional sigma model with an additional variable θ̃ acting as a Lagrange multiplier

and an extra 1-form V de�ned on the manifold M

Sd+1 =
1

4πα′

∫
d2ξ[

√
|h|hab(g00VaVb + 2g0αVa∂bx

α + gαβ∂ax
α∂bx

β) (1.4.9)

+ iϵab(2b0αVa∂bx
α + bαβ∂ax

α∂bx
β) + 2iϵabθ̃∂aVb] (1.4.10)

where the equation of motion for θ̃ gives us ϵab∂aVb = 0, which in the case of a trivial worldsheet

vector Va = ∂aθ would give us the original theory. Solving for Va in this theory gives

Va = − 1

g00
(g0α∂ax

α + i
ϵ b
a√
h
(b0α∂bx

α + ∂bθ̃)) (1.4.11)

integrating over this Va �eld gives us a dual action with a di�erent geometry

S̃ =
1

4πα′

∫
d2ξ[

√
|h|hµν(g̃00∂aθ̃∂bθ̃ + 2g̃0α∂aθ̃∂bx

α + g̃αβ∂ax
α∂bx

β)

+ iϵab(2b̃0α∂aθ̃∂bx
α + b̃αβ∂ax

α∂bx
β)] (1.4.12)

where the connection between the dual �elds and the original �elds is given by a set of so-called

Buscher's rules [18]

g̃00 =
1

g00
(1.4.13)

g̃0α =
b0α
g00

, b̃0α =
g0α
g00

(1.4.14)

g̃αβ = gαβ −
g0αg0β − b0αb0β

g00
(1.4.15)

b̃αβ = bαβ −
g0αb0β − g0βb0α

g00
(1.4.16)

As was shown by Buscher in [18] the T-dual action will remain conformally invariant if the dilaton

�eld (not included previously, and appears as higher α′ correction in the theory) transforms as

ϕ̃ = ϕ− 1

2
logg00 (1.4.17)

This dual sigma model de�ned by (g̃, b̃, ϕ̃) and independent of θ̃ variable, is obtained from the

original model by performing the duality transformation with respect to shifts on θ̃. This is a

prominent example of Abelian T-duality applied to a sigma model.
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In the example above, the Buscher procedure was applied to the target space-time with an

abelian Isometry group U(1). However, the Buscher procedure can be generalised to the case of a

target space with a non-Abelian isometry group, where the gauge �elds are valued in the algebra

of this isometry group, mapping one solution of supergravity to another. A simple example of

non-Abelian T-duality is considered in the next paragraph. In the case of extended objects - branes

duality a double reduction has to be performed for the D(p + 1)-brane and a single reduction for

the Dp-brane, then duality connects the two reduced actions to one another.

1.4.3 Non-Abelian T-duality in examples

Original studies on the non-Abelian T-duality commenced in [3]. These dualities originate from

non-Abelian isometries of sigma models in string theory, and the dual solution is generated by

integrating out the gauge �elds.

Buscher's rules and procedure can be generalised to the case of sigma model with non-Abelian

isometries into the so-called generalised Buscher's rules, as we will show in what follows.

We will start with the non-gauged non-linear sigma model

S =

∫
d2z(gµν +Bµν)∂X

µ∂̄Xν (1.4.18)

where the partial derivatives act as ∂Xµ ≡ ∂zX
µ and ∂̄Xµ ≡ ∂z̄X

µ and z ≡ τ + iσ, z̄ ≡ τ − iσ. The
target space is a compact non-Abelian group G with the left-invariant vector �elds va, to which we

will introduce dual 1-forms l, called the Maurer-Cartan forms with the components la

⟨va, lb⟩ = δba (1.4.19)

while the vector �elds va obey the bracket equation de�ning the structure constants of a Lie algebra

f a
bc

[va, vb] = f c
ab vc (1.4.20)

the Maurer-Cartan forms satisfy the Maurer-Cartan equation

dla = −1

2
f a
bc lb ∧ lc (1.4.21)

A metric on G can be de�ned in terms of the Maurer-Cartan forms as

ds2 = gabl
alb (1.4.22)

Alternatively, we can introduce a G-invariant matrix E of the dimension dim(G)× dim(G), where

× is a direct product, and decompose this matrix into its symmetric and anti-symmetric forms

21



de�ning the metric g and the B-�eld of the theory model

Eab = gab +Bab (1.4.23)

where

gab =
1

2
(Eab + Eba), Bab =

1

2
(Eab − Eba) (1.4.24)

The Maurer-Cartan forms corresponding to the left invariant vector �elds are invariant under the

action of the right invariant vector �elds, that in mathematical terms can be demonstrated in the

equation

Lra lb = 0 (1.4.25)

from where it follows that LraE = 0, meaning that the action is invariant under the in�nitesimal

action of right-invariant vector �elds. The theory possesses a global symmetry g → gh (for the Lie

group element g) generated by the invariance under the in�nitesimal action of the right-invariant

�elds

δϵX
µ = rµa ϵ

a, (1.4.26)

where the right vector �elds ra here form a non-Abelian Lie algebra with structure constants f a
bc

in the non-Abelian T-duality case. Gauging this symmetry by introducing non-abelian gauge �elds

Aa, minimally coupled to the action. This involves the upgrade of the derivative to a covariant

derivative

dXµ → DXµ ≡ dXµ − rµaA
a (1.4.27)

which makes the theory invariant under the in�nitesimal local gauge transformation.

Splitting the coordinates X into gauged and ungauged, or in other words, into coordinates

parametrising the base Xµ - ungauged, and the coordinates Xa parametrising the non-abelian Lie

group G �ber - gauged. Thus we get for the metric in terms of the Maurer-Cartan forms of the

group

ds2 = gµνdX
µdXν + 2gµadX

µla + gabl
alb (1.4.28)

and similarly for the B-�eld

B = BµνdX
µ ∧ dXν + 2BµadX

µ ∧ la +Babl
a ∧ lb (1.4.29)

After applying the gauging, and adding the Lagrange multiplier term in a form of �eld strength

F , similarly to the Abelian T-duality case, the action of the non-linear gauged sigma model will be
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of the form

Sg =

∫
d2z[Eµν∂X

µ∂̄Xν + Eaν∂X
a∂̄Xν + Eµb∂X

µD̄Xb + EabDX
aD̄Xb

+ χa(∂Ā
a − ∂̄Aa + fabcA

bĀc)] (1.4.30)

where the �elds of the sigma model: metric g and the B-�eld are uni�ed under the matrix E:

E = g +B (1.4.31)

and

DXa = ∂Xa −Aa (1.4.32)

D̄Xa = ∂̄Xa − Āa (1.4.33)

with the non-Abelian gauge �elds A, Ā.

We will not dive deep into the description of the procedure of obtaining the non-Abelian T-

duality rules in what is given below, but will rather describe the short procedure. The full analysis

is given in [3].

The solution of equation of motion for the gauge �elds Aa and Āa gives

Aa = Ebc(M
−1)ca∂Xb + Eµb(M

−1)ba∂Xµ + (M−1)ba∂χa (1.4.34)

Āa = Ebc(M
−1)ab∂̄Xc + Ebµ(M

−1)ab∂̄Xµ − (M−1)ab∂̄χb (1.4.35)

where we de�ned M as

Mab = Emn + χcf
c
ab (1.4.36)

Integrating out the gauge �elds by parts in the action (1.4.30) after submitting the solution found

above, then �xing the gauge due to the gauge invariance of the action under the right-invariant

vector �eld, choosing ∂Xa = 0 and ∂̄Xa = 0 (matching the degrees of freedom we're allowed to �x

due to the action symmetry), and introducing dual �elds Ẽµν , Ẽaν , Ẽµb, Ẽab as

Ẽµν = Eµν − Eµa(M
−1)abEbν , Ẽaν = −(M−1)abE

b
ν ,

Ẽµa = Eµb(M
−1)b a, Ẽab = (M−1)ab (1.4.37)

corresponding to the non-Abelian Buscher's rules [3], giving the T-dual action

S =

∫
d2z
[
Ẽµν∂X

µ∂̄Xν + Ẽaν∂χ
a∂̄Xν + Ẽµb∂X

µ∂̄χb + Ẽab∂χ
a∂̄χb

]
(1.4.38)

and this dual action can be interpreted as a non-linear sigma model with coordinates X̃ = {Xµ, χa}.
This was the mechanism of non-Abelian T-duality action on a sigma model. This Buscher procedure
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provides an e�cient algorithm of obtaining T-dual sigma models via integrating out the gauge �elds

(gauging the isometry).

1.4.4 Poisson-Lie T-duality

Non-Abelian T-duality admits the action of the non-Abelian isometry group. For constructing

the Poisson-Lie T-duality we require the notion of the Drinfeld double algebra, which is simply

even-dimensional real algebra d with generators TA obeying

[TA, TB] = F C
AB TC (1.4.39)

equipped with a symmetric split-signature-invariant pairing η(·, ·) such that d admits at least one

decomposition d = g + g̃ with g and g̃ sub-algebras that are maximally isotropic with respect to

d: i.e. the inner product is trivial for any two elements that belongs to the subalgebra, and this

feature is maximal (there's no bigger subalgebra that contains the former subalgebra satisfying the

same property). In the case of Abelian T-duality, the generators TA commute, and the structure

constants F C
AB are trivial. This corresponds to the isometries and the Abelian nature of the

underlying algebra. In the case of the non-Abelian T-duality (NATD) the structure constants

F C
AB do not vanish. For non-Abelian T-duality to take place the dualised background does not

necessarily have to possess isometries.

For the Poisson-Lie T-duality to take place, the structure of F C
AB has to satisfy the Drinfeld

double structure

F c
ab = f c

ab , Fabc = 0, F bc
a = f̃ bca, F ba c = −f b

ac , F abc = f̃abc, F abc = 0 (1.4.40)

The decomposition in terms of generators of g and g̃ - ta and t̃a - in a way that TA ≡ (ta, t̃
a) leads

to the following double algebra:

[ta, tb] = f c
ab tc, [ta, t̃

b] = f̃ bcatc − f b
ac t̃c, [t̃a, t̃b] = f̃ab ct̃

c (1.4.41)

Then, according to [11], we can introduce the Poisson-Lie bivector �eld constructed from the

adjoint action of an element g of the group G constructed by the exponentiation of the subalgebra

g in the following way

gtag
−1 = (ag)

b
atb, gt̃ag−1 = (bg)

abtb + (ag−1)ab t̃
b (1.4.42)

so, that

Πabg ≡ (bg)
ac(ag−1)bc (1.4.43)

and according to this de�nition, as was shown in [27], this Poisson-Lie bivector �eld satis�es a set
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of features, as a consequence of the adjoint action, such as

Πabg = −Πbag , Πe = 0, Πhg = Πg + (ag−1 × ag−1)Πh (1.4.44)

as well as a di�erential equation, after introducing the left-invariant 1-form l = lata = g−1dg, so

that

dΠabg = −lcf̃ab c − 2lcf
[a

cd Πb]d (1.4.45)

and can be included in the Lie derivative action of the algebra d on its dual vector �eld va (which

is dual to the left invariant 1-form l ≡ lata), using πa ≡ Πabg vb - a set of vector �elds built from the

PL bi-vector Πabg , as follows

Lvavb = −f c
ab vc, Lvaπ

b = f b
ac πc − f̃ bc avc, Lπaπb = −f̃ab cπc (1.4.46)

This Lie derivative can be further generalised to the so-called Dorfman (or the generalised Lie)

derivative acting on a set of generalised vectors in order to incorporate the gauge symmetries, uni�ed

into a generalised frame �eld EA = (Ea, Ẽ
a) in the following manner

Ea = va Ẽa = πa + la (1.4.47)

Then, the Lie derivative that was previously acting separately on the components la, va and πa, can

be now generalised into a generalised Lie or Dorfman derivative, with its action on the generalised

vectors U = ui∂i + µidx
i and V = vi∂i + νidx

i as

LUV = Luv + Luν − ιvdµ (1.4.48)

which in terms of the generalised frame �eld can be repackaged into [24]

LEA
EB = −F C

AB EC (1.4.49)

furnishing the algebra of the Drinfeld double d [12].

In the type II supergravity, the metric and the B-�eld can be packaged into a structure that is

called the generalised metric HMN , respecting the O(d, d) structure which is associated with the

string toroidal compacti�cations on Tn [28]

HMN =

(
gmn −Bmpg

pqBqn −Bmpgpn

gmpBpn gmn

)
(1.4.50)

Where, in the case of an Abelian T-duality this generalised metric is required to be constant, and

the twisting it with constant O(D,D) matrices C P
M transforms one constant solution to another
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constant solution [24]

H ′
MN = C P

M C Q
N HPQ (1.4.51)

For the case of non-Abelian T-duality the generalised metric can be twisted by non-constant

frame �elds [29]

HMN (x) = E A
M (x)E B

N (x)HAB (1.4.52)

Poisson-Lie T-duality, maps one set of structure constants to another, and gives rise to new frame

�elds, that can be used to twist the generalised metric, giving a dual generalised metric, which is

constructed by the action of a constant O(D,D) transformation, with matrices C B
A

H ′
AB = C C

A C D
B HCD, T ′

A = C B
A TB, F ′

ABC = C E
A C F

B C G
C FEFG (1.4.53)

where the matrices C B
A have to be chosen in a way that the structure constants F ′ C

AB have the

form of Drinfeld double 1.4.40. This new dual solution remains a Supergravity solution since it is

mapped by the O(D,D) symmetry of the formulation of the gauged supergravity, obtainable by

reduction (taking into account the transformation of the gaugings F ).

This gives rise to a novel T-dual algebra

[T ′
A, T

′
B] = F ′ C

AB TC , LE′
A
E′ M
B = −F ′ C

AB E′ M
C (1.4.54)

To deal with the generalised metric in the form of an O(D,D) object 1.4.50, it is useful to de�ne

the frame �eld in the matrix representation, based on its de�nition 1.4.47. For this we will need to

use the left and right invariant 1-forms - l and r of the group element g as follows

l ≡ lamTadx
m ≡ g−1dg, r ≡ ramTadx

m ≡ dgg−1 (1.4.55)

where the previous elements used in 1.4.47 are related to the 1-forms as follows lamv
m
b = δab . Then

the frame �eld can be represented in the O(D,D) matrix form as

E A
M =

(
lam 0

vmb Πab vma

)
(1.4.56)

So, we can review the Poisson-Lie (PL) T-duality as a constant O(D,D) rotation, with the

generalised frame �eld satisfying 1.4.49 with the structure constants F C
AB of the Drinfeld double.

A further extension of the non-Abelian T-duality was found in [10], [20], and it can be applied to a

more general class of target spaces.

For PL duality transformation, we can combine the metric and B �eld into a matrix E

Emn ≡ gmn +Bmn (1.4.57)
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Poisson-Lie symmetry will require the following condition on Emn [10]

LvaEmn = f̃ bc av
p
bv
q
cEpmEqn (1.4.58)

where f̃ bc a are structure constants of the dual algebra, and via are the left-invariant vector �elds

corresponding to the right action of the group G. A similar requirement is applicable to the dual

matrix Ẽmn
LṽaẼmn = f bc aṽ

p
b ṽ
q
c ẼpmẼqn (1.4.59)

Solution of these equations can be found via integration to take the following form [10] expressed

in terms of the original and dual bivectors Π and Π̃ de�ned above via the adjoint action of dual

groups elements in terms of the inverse of Emn and Ẽmn:

Emn =
(
(E0)ab +Πab

)
vma v

n
b (1.4.60)

Ẽmn =
(
((E0)−1)ab + Π̃ab

)
ṽma ṽ

n
b (1.4.61)

where (E0)ab is a constant matrix, inverted in the dual algebra case according to the initial conditions

and connection between the dual algebra at the unit element of the double [23]. Using the O(d, d)

embedding of the metric g and the 2-form B into the generalised metric (1.4.50) and splitting E0
ab

into a symmetric and an anti-symmetric part E0
ab = g0ab + B0

ab building HAB with these elements

g0ab and B
0
ab as in (1.4.50) with �at indices, we can recover the same results (1.4.60) and (1.4.61) for

the elements gmn and Bmn dual sigma models (with E0
ab replaced by (E0)−1

ab in the dual case) and

using (1.4.52). We will demonstrate this explicitly when E0
ab is fully symmetric and diagonal on a

simple example below.

An example of PL duality will be brie�y described in section (2.4.2) of chapter 2 in this thesis,

where the solution 2.4.27 is PL dual to the initial solution 2.4.24. Another simple example of a PL

duality can be taken from [30].

The example considers Poisson-Lie T-duality for Drinfeld double algebras represented by su(2)

and e3 (this is not the algebra of the Euclidean group in 3 dimensions, and is just a name we use

here to denote the algebra with brackets as below) with the generators Ta and T̃ a correspondingly,

with the following brackets (we denote a, b = 1, 2, 3 and i, j = 1, 2):

[Ta, Tb] = ϵabcTc, [T̃ 3, T̃ i] = T̃ i, [T̃ i, T̃ j ] = 0 (1.4.62)

and the mixed brackets:

[Ti, T̃
j ] = ϵij T̃

3 − δijT3, [T3, T̃
i] = ϵij T̃

j , [T̃ 3, Ti] = ϵij T̃
j − Ti (1.4.63)

These algebras are PL T-dual to each other as it can be seen from the relationship between their
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generators.

Starting with the left-invariant Maurer-Cartan forms corresponding to su(2)

l1 = cosψ sin θdϕ− sinψdθ

l2 = sinψ sin θdϕ+ cosψdθ (1.4.64)

l3 = dψ + cos θdϕ

we can �nd the expression for the PL bivector satisfying (1.4.45) to be of the form

Πab = −ϵabcAc, with A⃗ = (cosψ sin θ, sinψ sin θ, cos θ − 1) (1.4.65)

Now choosing the constant matrix E0
ab to be of the form (E0

ab)
−1 = diag(λ1, λ2, λ3), using (1.4.60)

we �nd for the generalised metric components gab and Bab of su(2) gauged sigma-model

ds2 =
1

V

(
AaAb +

λ1λ2λ3
λa

δab
)
lalb (1.4.66)

B =
1

V
ϵabcλcAcl

a ∧ lb (1.4.67)

with

V ≡ λ1λ2λ3 + λaA
2
a (1.4.68)

Then studying the dual e3 algebra, we use the expression for left-invariant Maurer-Cartan forms

l̃1 = e−χdy1

l̃2 = e−χdy2 (1.4.69)

l̃3 = dχ

While the PL bivector that satis�es (1.4.45) for these left invariant forms and dual structure con-

stants is

Π̃ab = −ϵabcÃc, with ⃗̃A = (y1e
−χ, y2e

−χ, sinhχe−χ − 1

2
(y21 + y22)e

−2χ) (1.4.70)

from where using the form of E0
ab and the relation for the dual generalised metric (1.4.61) we get

the following results for the components g̃ab and B̃ab of the PL T-dual sigma-model

˜ds2 =
1

Ṽ

(
ÃaÃb +

λa
λ1λ2λ3

δab
)
l̃a l̃b

B̃ =
1

Ṽ
ϵabc

1

λc
Ãc l̃

a ∧ l̃b (1.4.71)
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with

Ṽ ≡ 1

λ1λ2λ3
+
Ã2
a

λa
(1.4.72)

this re�ects one of the simplest examples of PL T-duality.

Another way to derive these results is using the O(d, d) embedding in a form of (1.4.50) where

in HAB according to choice of E0 we have g0ab =
δab
λa

and B0
ab = 0 resulting in

HAB =

(
δab
λa

0

0 δabλa

)
(1.4.73)

and for the dual model

H̃AB =

(
δabλa 0

0 δab
λa

)
(1.4.74)

then using (1.4.52) with the frame �elds corresponding to su(2) in the form of (1.4.56) with Πab as

de�ned above, and lam and their inverse vma

E A
M =

(
lam 0

−vmb ϵabcAc vma

)
(1.4.75)

it is easy to �nd the above result for the metric gab and the �eld Bab as in (1.4.66), and similarly

for the dual components as in (1.4.71), in which we see a similar structure with the factor λ1λ2λ3
inverted in the dual case, due to the inverse choice of factors in HAB and H̃AB.

1.4.5 De�ning U-duality: generalisation approach

In order to move toward U-duality, which is a combination of T and S dualities, we �rst will have

to give a general understanding of the S dualities principles.

In type IIB supergravity a global Sl(2,Z) exists corresponding to the S-duality symmetry that

acts on the scalar �eld combination of the dilaton ϕ and the axion χ combined into one complex

�eld ρ:

ρ ≡ χ+ ie−ϕ (1.4.76)

Under the action of the S-duality the metric and the 4-form potential �elds (bosonic sector) remain

invariant, while the pair of the 2-form potentials transform as doublet, and the action on the complex

�eld ρ can be described via an action of Sl(2,Z) group with integer elements a, b, c, d, such that

ad− bc = 1, in the way

ρ→ aρ+ b

cρ+ d
(1.4.77)

Compactifying on a circle and identifying with eleven-dimensional supergravity compacti�ed on a

torus implies that the modulus of the IIB theory should be equated to the modular parameter of the
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torus - ρ [31]. Within U-duality this T 2 torus can be further generalised to a d-torus, corresponding

to an exceptional symmetry group Ed(d)
The mathematical foundations of generalized U-duality are rooted in the exceptional algebra,

which plays a central role in describing the symmetries and transformations among di�erent M-

theory backgrounds.

Generalised U-duality is a symmetry that arises in the context of M-theory, enabling a solution

generating technique that gives rise to new supergravity examples. Like the previously discussed

non-Abelian or PL T-duality, generalised U-duality extends the dualisation approach to a broader

range of transformations, i.e. spaces without abelian isometries.

In the case of generalised U-duality in order to search for non-perturbative analogues of non-

abelian T-duality and PL duality, we extend the simple Drinfeld Double Algebra to Exceptional

Drinfeld Algebra (EDA) which is associated with the non-Abelian U-duality. This has been proposed

in [26,27], by generalising the Drinfeld double Lie algebra to a new algebraic structure - the EDA.

Interestingly, this does not form a Lie algebra, but a more general structure known as a Leibniz

algebra (technically, the bracket of two algebra elements is not antisymmetric).

In the case of the generalised T-duality (a term used to refer to non-Anelian and PL T-dualities

in a uni�ed description), the base was a double Lie algebra. A transition to a more generalised

version of the Lie algebra - the so-called Leibniz algebra in which the bilinear product is generalise

to a bracket that can be not anti-symmetric, and satis�es the Leibniz identity for the elements of

the algebra g1, g2, g3 ∈ G

[[g1, g2], g3] + [[g2, g3], g1] + [[g3, g1], g2] = 0 (1.4.78)

Our studies will focus around the En exceptional algebra with n = 4 corresponding to the

generalised vector parametrisation that transforms under the extended symmetry group of the

theory, which includes both the spacetime di�eomorphisms and the internal symmetries associated

with the exceptional group.:

V I =

(
vi

vi1i2

)
(1.4.79)

Generally speaking, the PL version of U-duality is a sort of extension of PL T-duality with the

Lie algebra being generalised, and the Exceptional Drinfeld algebra is systematically extended with

the similar structure of equation

LEA
E M
B = −F C

AB E M
C (1.4.80)

where the structure constants F C
AB possess the Drinfeld double features, and the Lie derivative is

generalised to the Leibniz derivative.

On the example of SL(5) exceptional algebra, where we will use 5-dimensional indices M,N =
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1, ...5, while the generalised vector is 10 dimensional: comprising of 4 dimensions of the simple

vector and six components of the 2-form. The SL(5) group has 2 totally antisymmetric invariants:

ϵMNPQK and ϵMNPQK to preserve which under generalised di�eomorphisms we will have to de�ne

the generalised Lie derivative as follows (see [34], [37] for details):

LΛV
M =

1

2
ΛPQ∂PQV

M − V P∂PQΛ
MQ +

1

5
∂PQΛ

PQVM (1.4.81)

where the antisymmetric derivative ∂MN is de�ned via its components (i = 1, ..., 4 stands as 4

dimensional index) ∂i5 = ∂i and ∂ij = 1
2ϵijkl∂̃kl, where the partial derivative ∂̃kl is taken with respect

to the dual coordinates x̃kl that together with the original 4-dimensional coordinates xi generalise the

notion of di�eomorphisms (incorporating simple di�eomorphisms and gauge transformation), and

can be further grouped into a set of antisymmetric coordinates XMN with components Xi5 = xi,

Xij = 1
2ϵ
ijklx̃kl.

Combining this with the generalised Lie derivative action on the generalised vector VMN , the

general rule can be rewritten in the form of 10-dimensional index M = [MN ] on the generalised

vector VM = VMN with respect to ΛM = ΛMN

LΛV
M = ΛN∂NV

M − V N∂NΛ
M + ϵMNKϵPQK∂NΛ

PV Q − 1

5
∂NΛ

NVM (1.4.82)

The closure of the algebra generated by this is achieved by demanding the so-called section condition

to take place for any two elements Ψ, Ψ′

ϵMNPQK∂MN∂PQΨ = 0, ϵMNPQK∂MNΨ∂PQΨ
′ = 0 (1.4.83)

solution of which can be found by requiring ∂̃ij = 0. This reduces the generalised Lie derivative for

the generalised vectors UM = (u, λ(2)), VM = (v, η(2)) to the following expression (L is the simple

Lie derivative)

LUV = (Luv, Luη(2) − ιvdλ(2)) (1.4.84)

which can be seen as the generalisation of the expression (1.4.48) used in the PL T-duality case.

In order to ful�l relation (1.4.80) in the case of EDA now, we can choose the following parametri-

sation for the frame �elds (M - stands for the curved index, A - for the �at one)

E M
A =

(
E M
a

Ea1a2M

)
(1.4.85)

and generalising the Π bivector in the PL T-duality case to a 3-vector λ in the U-duality case, we
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can introduce further a fully anti-symmetric λa1a2a3 ≡ λ[a1a2a3], so

EMA =

(
EMa

Ea1a2M

)
=

(
vma 0

λa1a2bvmb l
[a1
[m1

l
a2]
m2]

)
(1.4.86)

with

Ea = (va, 0), Ea1a2 = (λa1a2a3va3 , l
a1 ∧ la2) (1.4.87)

and the elements satisfying

Lvav
m
b = −f c

ab vmc , dla =
1

2
f a
bc lb ∧ lc, val

b = δba (1.4.88)

Where the trivector λa1a2a3 de�ned via the scalar matrix K B
A (x) obtained via the adjoint action

of the group elements g(x) ≡ ex
aTa as follows

g−1(x) ◦ TA ≡ K B
A (x)TB (1.4.89)

with the parametrization of K B
A (x) as follows (here we use the adjoint element of the Leibniz

algebra a a
b de�ned as lam = a a

b rbm)

K B
A ≡

(
a b
a 0

−λa1a2ca b
c (a−1) a1

[b1
(a−1) a2

b2]

)
(1.4.90)

While the action of the generalised Lie derivative on the generalised vector WM

WM =

(
wm

wm1m2

)
(1.4.91)

is de�ned by

LVWM =

(
Lvw

m

(Lvw(2) − ιwdv(2))m1m2

)
(1.4.92)

In particular, we will focus further on considering the case of SL(5) and the E7, which can be

seen in a way as the dual counterpart of SL(5) in the dimensional classi�cation.

Now, using the de�nition of the generalised Lie derivative 1.4.92 on the components of the frame

�elds 1.4.86 with the assumption of λa1a2a3 = 0 at the point x = 0 according to section 3 of [26] we
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get the following set of non-trivial structure constants elements of F C
AB

F c
ab = f c

ab , (1.4.93)

F b1b2c
a = ema ∂mλ

b1b2c, (1.4.94)

F b1b2
a c1c2 = 4f e

ad δb1b2ef δfdc1c2 , (1.4.95)

F a1a2 c
b = −F a1a2c

b = −emb ∂mλa1a2c, (1.4.96)

F a1a2bc1c2 = 6f
[a1

[bc1
δ
a2]
c2]
, (1.4.97)

F a1a2b1b2c1c2 = −4emd ∂mλ
a1a2[b1δb2]dc1c2 (1.4.98)

Now, let's review the properties of the generators in the case of Leibniz algebra and rebuild

the algebra for special cases based on the structure constants we obtained above. We will rewrite

the elements F C
AB to be constant. However, now F C

AB ̸= F C
[AB] , since the Leibniz algebra is an

extended version of the Lie algebra, and the generators satisfy

TA ◦ TB = F C
AB TC (1.4.99)

this bilinear form is not anti-symmetric, but the elements of the Leibniz algebra satisfy the equation

TA ◦ (TB ◦ TC) = (TA ◦ TB) ◦ TC − TA ◦ (TC ◦ TB) (1.4.100)

then the corresponding Leibniz algebra corresponding to (1.4.93 - 1.4.98) in terms of the generators

will be

Ta ◦ Tb = f c
ab Tc, (1.4.101)

Ta ◦ T b1b2 = f b1b2c
a Tc + 2f [b1

ac T b2]c, (1.4.102)

T a1a2 ◦ Tb = −f a1a2c
b Tc + 3f

[a1
[c1c2

δ
a2]
b] T

c1c2 , (1.4.103)

T a1a2 ◦ T b1b2 = −2f
a1a2[b1

d T b2]d (1.4.104)

where the elements f are anti-symmetric only in part of indices (f c
ab = f c

[ab] and f b1b2b3
a =

f
[b1b2b3]

a ), and satisfy several identities as a consequence of the Leibniz identity, as shown in [26]

f e
[ab f

d]
c]e = 0, (1.4.105)

f e
bc f a1a2d

e = −6f
[d

e[b f
a1a2]e

c] , (1.4.106)

f
[a1

d1d2
δ
a2]
b f a1a2]e

c = 0, (1.4.107)

3f
[a1

[d1d2
δ
a2]
e] f

eb1b2
c = −4f

[a1
ef f a2]e[b1

c δ
b2]f
d1d2

, (1.4.108)

f ea1a2
c f db1b2

e = 3f e[b1b2
c f d]a1a2

e (1.4.109)
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Now, let us give an explicit form of the generators TA based on the de�nition (1.4.99) and the

above-mentioned properties. We rewrite

TA ◦ TB = (FA)
C

B TC (1.4.110)

which in its turn gives

(Fa)
C

B =

(
f c
ab 0

f b1b2c
a −2f

[b1
a[c1

δ
b2]
c2]

)
(1.4.111)

(F a1a2) C
B =

(
−f a1a2c

b 6f
[a1

[c1c2
δ
a2]
b]

0 −2f
a1a2[b1

d δ
b2]d
c1c2

)
(1.4.112)

These features will be important in what follows in the thesis.

Di�erentiating the de�nition of the scalar matrix (1.4.89), we deduce the di�erential equation

on the trivector Πa1a2a3 , starting with

∂mg
−1(x) ◦ TA = ∂mK

B
A (x)TB (1.4.113)

Then expanding the left hand side of the equation

∂mg
−1(x) ◦ TA = −g−1 ◦ ∂mg ◦ g−1 ◦ TA = −(ldmTd) ◦ (K B

A TB) = −ldmK B
A (Fd)

C
B TC (1.4.114)

which, after using the explicit form of K B
A in (1.4.89) gives the following di�erential equations on

a b
a and λa1a2a3

emc ∂ma
b

a = a d
a a e

c f
b

de (1.4.115)

emc ∂mλ
a1a2a3 = (a−1) a1

b1
(a−1) a2

b2
(a−1) a3

b3
a d
c f b1b2b3

d (1.4.116)

A few other properties that we will use further in this thesis can be derived from the Leibniz identity

in a form of its consequence

(g ◦ TA) ◦ (g ◦ TB) = g ◦ (TA ◦ TB) (1.4.117)

which, decomposed into di�erent components of (FA) C
B gives the following properties (as it was

carefully derived in [26])

(a−1) e
a (a−1) f

b a c
g f g

ef = f c
ab (1.4.118)

a e
a (a−1) b1

f1
(a−1) b2

f2
(a−1) b3

f3
f f1f2f3
e = f b1b2b3

a + 3f [b1
ac λb2b3]c (1.4.119)

f c
ab λ

abd = 0 (1.4.120)

3(f a1
e[c δ

[a2
d] λ

b1b2]e − f a2
e[c δ

[a1
d] λ

b1b2]e) + f
[a1

cd λa2]b1b2 = 0 (1.4.121)
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f b1b2c
d λa1a2d − 3f

a1a2[b1
d λb2c]d = 3f

[c
de λb1b2]dλa1a2e − 4f

[a1
de λa2]d[b1λb2]ec (1.4.122)

these properties will be used in the future analysis of the special cases to be considered in the main

part of the thesis, restraining the set of supergravity solutions falling under this classi�cation (spaces

where we can apply our dualisation procedure).

Let's provide a brief description of how the generalised U-duality works. The EDA consisting

of two subalgebras (in the ideal scenario we always use subalgebras that are maximally isotropic -

there does not exist another subalgebra that is isotropic and contain the former subalgebra - but,

as we will show further in Chapter 2, it is possible to use a set of maximally isotropic generators,

that are not always subalgebras) g and g̃ are related by an exceptional algebra transformation T N
M

(in the example considered in the next chapter this will correspond to an SL(5) transformation),

and with the corresponding frame �elds EM and E′
M . Then we introduce the generalised Scherk-

Schwarz reduction (see section (2.2.3) for details and de�nition ) of 11-dimensional supergravity to

a reduced dimension (7-dimensional in the SL(5) case) maximal gauged supergravity, which will be

then uplifted and dualised to a new supergravity solution.

The generalised metric, unifying the bosonic �elds of the theory, can be parametrised via frame

�elds and a scalar matrix MAB constant on the internal space coordinates

HMN = E A
M E B

N MAB (1.4.123)

Then, the exceptional group transformation (SL(5) transformation in our following example in

Chapter 2) on the �elds of the reduced dimensional (7-dimensional) supergravity acts as

M ′
AB = T C

A T D
B MCD (1.4.124)

producing a new dual scalar matrix M ′
AB, which we then lift back to 11-dimensional maximal

supergravity using the frame �elds E′ A
M producing the new dual scalar �elds, corresponding to the

generalised U-dual supergravity solution with the generalised metric

H ′
MN = E′ A

M E′ B
N M ′

AB (1.4.125)

providing us with a new supergravity solution. We will demonstrate this procedure in examples

in the following 2 chapters and present it as a solution generating technique in supergravity and

M-theory.

1.5 Brief overview of Exceptional Field Theory (ExFT)

Exceptional Field Theory (ExFT) is a theory describing spacetimes with exceptional symmetry

groups, that incorporate exceptional Lie algebra symmetries (SL(5), E6, E7 and E8). The �eld
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components in ExFT consist of the metric gmn 3-form Cmnp and a 6-form Cklmnpq for larger dimen-

sions, transformation of which (d-dimensional di�eomorphisms and gauge transformations) can be

described via a generalised vector parameter ΛM unifying in itself the vector �eld Λ, 2 and 5 -forms

λmn, λmnklp corresponding to the transformation of each �eld:

δgmn = LΛgmn (1.5.1)

δCmnp = LΛCmnp + 3∂[mλnp]

δCklmnpq = LΛCklmnpq + 6∂[kλlmnpq] + 30C[klm∂nλpq]

where the gauge parameters are uni�ed in the generalised vector ΛM = (Λm, λmn, λmnlpq), form-

ing representations of the exceptional groups Ed(d). This can be expressed in the generalised Lie

derivative (special case of Leibniz derivative). In a more general form for the Ed(d) generalised Lie

derivative with respect to coordinates YM lying in the R1 representation - a representation of Ed(d)
where the generalised vector appears, the generalised Lie derivative acting on a generalised vector

VM of a weight λV reads as

LUVM = UN∂NV
M − αPM P

N Q∂PU
QV N + λV ∂NU

NVM (1.5.2)

where PM P
N Q is a projector projecting from the R1 × R1 to the adjoint representation, and α is a

constant depending on the group under consideration. The closure of the algebra generated by this

generalised Lie derivative will result in a section condition applied to any �elds or gauge parameters

Ψ, Ψ′ in the theory

YMN
PQ∂MΨ∂NΨ

′ = 0, YMN
PQ∂M∂NΨ = 0 (1.5.3)

where the Y tensor is de�ned as

YMN
PQ = −αPM N

Q P + δMP δ
N
Q +

1

n− 2
δMQ δ

N
P (1.5.4)

which in the case of SL(5) reduces to the condition 1.4.83 introduced in the previous section.

The action of ExFT is constructed from the �elds: n-dimensional metric gµν ∈ GL(n)/SO(1, n−
1) which transforms as a scalar of a weight 2

n−2 under the generalised di�eomorphisms, the gener-

alised metric HMN∈ Ed(d)/Hd - a tensor of weight zero, where Hd is a maximal compact subgroup

of Ed(d), and a set of gauge �elds: Aµ, ... Cµ1...µ9−d
, where each p-form belongs to the representation

Rp of Ed(d) and transforms with the weight p
n−2 . The strength �eld composed of these gauge �elds

do not transform tensorially under the generalised Lie derivative, and require special compensator

�elds to be added, de�ning the tensor hierarchy in ExFT [38].

Consider an example of SL(5): the �eld content consists of the following elements

{gµν , HMN ,PQ, A
MN
µ , BµνM, C M

µνρ } (1.5.5)
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where greek indices are 7-dimensional indices related to the "external" 7-dimensional space coor-

dinates xµ, and M, N = 1, ..., 5 denote �ve-dimensional fundamental indices constructed of the

10-dimensional indices M = 1, ..., 10 of R1: M = [MN ]. Field strengths tensors of the gauge �elds

AMN
µ , BµνM, and C M

µνρ are F MN
µν , HµνρM and J M

µνρσ correspondingly. The generalised

metric HMN ,PQ parametrises the coset space SL(5)/SO(5), and can be decomposed as

HMN ,PQ = mMPmQN −mMQmPN (1.5.6)

with mMN = mNM and det(mMN )= 1.

The SL(5) action invariant under generalised di�eomorphisms (in each term) and external dif-

feomorphisms (the latter requirement �xes the coe�cients between terms in the action) is found to

be of the form:

SSL(5) =

∫
dx7dY

√
|g|
(
R(g) +

1

4
Dµm

MNDµmMN − 1

8
mMPmNQF

MN
µν FµνPQ

− 1

12
mMNHµνρMHµνρ

N + Lint(m, g) + (
√
|g|)−1Ltop

)
(1.5.7)

This action matches the decomposition of 11-dimensional supergravity action (1.3.13): as it has

been shown, the 11-dimensional action decomposed properly into terms match the SL(5) ExFT

action 1.5.7 in every term, after performing the decompositions via a Kaluza-Klein reduction and

further uplift of the 11-dimensional supergravity action (see sections (3.2) and (4.6.2) of [49]). In

addition to that, di�erent solutions of the section condition in ExFT (de�ned back in (1.4.83)) result

in di�erent type IIB supergravity solutions, establishing a strong connection between supergravity

and ExFT.

Using a parametrisation of SL(5) in terms of the generalised metric: the 4-dimensional internal

metric ϕmn and the 3-form represented by Cm = 1
3!ϵ

mnklCnkl

mMN = ϕ−2/5

(
ϕmn ϕmkC

k

−ϕnkCk ϕ+ ϕklC
kC l

)
(1.5.8)

and for the gauge �eld strengths according to the tensor hierarchy

F MN
µν =

(
Fmµν

1
2ϵ
mnkl(Fµνkl − F pµνCklp)

)
(1.5.9)

Hµνρm = −Fµνρm, J 5
µνρσ = −Fµνρσ (1.5.10)

while Hµνρ5 and J i
µνρσ can be derived from the duality relation between HM and JM resulting

from the equation of motion and resulting in the relation mMNHN ∼ ⋆JM. Plugging these �elds

in the SL(5) action (1.5.7) one can easily verify that the 11-dimensional SUGRA action (1.3.13)
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can be recovered in every term matching its SL(5) ExFT decomposition (into 4 "internal" and 7

"external" coordinates). This highlights an important role of ExFT in supergravity, and we will

be using this technique further in the thesis in constructing new solutions via dualising the original

supergravity solutions decomposed according to the ExFT structure.
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Chapter 2

Exceptional Drinfeld Geometries

2.1 Introduction

The textbook T-duality symmetry of string theory that applies in backgrounds with Abelian isome-

tries is a cornerstone of the duality web that ultimately leads to M-theory [1, 2]. Less standard is

the application of T-duality to backgrounds whose isometry group is non-Abelian [3]. While its

status as a precise duality in either α′ and gs expansions is not fully resolved, at the very least

non-Abelian T-duality (NATD) is a useful tool as a solution generating symmetry of Type II super-

gravity (for a review see [12]). More exotic still are applications of T-duality to backgrounds which

have no isometries at all. Poisson-Lie (PL) T-duality, introduced by Klim£ík and Severa [10, 11],

provides situations where such a non-isometric duality can be realised. This is made possible when

the target spaces have a certain Poisson-Lie symmetry property giving rise to an unexpectedly rich

algebraic structure encoded by a Drinfeld double, d [19].1 Despite this lack of isometry, the corre-

sponding non-linear sigma models can actually exhibit classical (and quantum) integrability [39].

Close connections between integrability and Poisson-Lie duality have come under renewed focus

with holographic motivation following the development of the integrable η [39] and related λ [40]

deformations applied to the AdS5 × S5 superstring in [41] and [42] respectively.

Poisson-Lie geometries (i.e. those for which PL T-duality can be realised) can at �rst sight

seem convoluted, especially when presented in terms of the regular geometric data consisting of the

metric and Kalb-Ramond two-form. However, when viewed using generalised geometry the situation

is radically improved; the PL property of the target space is encapsulated [23] by a generalised

parallelisation [43, 44]. This consists of a set of generalised frame �elds that span the generalised

tangent bundle, TM ⊕ T ⋆M , and which furnish the Drinfeld double algebra under the generalised

Lie derivative. Moreover there is a natural candidate for the extended target space that appears in

1The Drinfeld double d is an even-dimensional Lie algebra that can be decomposed into two sub-algebras d = g+ g̃
that are maximally isotropic with respect to an ad-invariant inner product of split signature. The Jacobi identity of
d enforces a cocycle compatibility condition between g and g̃.
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both the world-sheet doubled sigma-model [45,46] and in the Double Field Theory approach [23,24],

namely the group D = exp d.2

The U-duality symmetry of M-theory can also be viewed as a generalisation of T-duality, arising

when one combines the perturbative T-duality symmetry with non-perturbative S-dualities. Until

recently, there has been no hint of whether U-duality admits non-Abelian or generalised versions. A

proposal for the algebraic structure that would underlie such dualities has been introduced in [26,27]

and called the Exceptional Drinfeld Algebra (EDA).

Roughly an EDA is an algebra dn, de�ned by a bracket, [•, •] : dn⊗dn → dn, which does not need

to be antisymmetric but obeys the Leibniz identity, and admits a Lie subalgebra g, of dimensions n

or n− 1. Moreover g can be considered a maximally isotropic subalgebra in a sense we shall make

more precise later. For the case of n ≤ 4, that shall be our concern here, the data of an EDA can

be interpreted as consisting of a Lie-algebra g together with a three-algebra g̃ that are restricted to

obey a cocycle compatibility condition. A key point of [26,27] was that the EDA can be realised by

a generalised Leibniz parallelisation for the exceptional tangent bundle TG ⊕ ∧2T ⋆G thus echoing

the set up of Poisson-Lie T-duality and allowing this framework to be used to generate solutions

using the ideas of generalised Scherk-Schwarz reductions. Some features of the geometry, and the

membrane interpretation, were then given in [35], while a classi�cation of all possible EDAs for the

case of n = 3 was made in [36].

We shall explore the geometry associated to this new M-theoretic algebraic structure in a number

of explicit examples. These examples reveal intriguing connections to several topics. We study

geometries which encode the structure constants of three-algebras, which naturally show up amongst

the structure constants of the Exceptional Drinfeld Algebra. Here we can also connect with a class of

CSO gaugings of 7-dimensional maximal supergravity. Hence, we get for free out of our construction

some simple new uplifts for these gaugings. These uplifts could be regarded as �non-Abelian U-

duals�, in some sense, of spheres with �ux. We will also describe the embedding of Poisson-Lie

T-duality into this set-up in some detail, revealing a construction whereby the Exceptional Drinfeld

Algebra involves augmenting the Drinfeld double with a spinor representation. Making a frequent

usage of some technical results within Exceptional Field Theory which, to allow for completeness but

avoid distraction, have been included as appendix material here. (For a detailed review, see [49].)

2.2 The SL(5) Exceptional Drinfeld Algebra

2.2.1 The algebra

We begin by specifying the Exceptional Drinfeld Algebra in the case of the group E4(4) = SL(5).

We introduce �ve-dimensional fundamental SL(5) indices A,B = 1 . . . , 5. The generators of the

2The discussion here is adapted to the case where the physical target space M is a group manifold M = G ∼= D/G̃

with G = exp g and G̃ = exp g̃. However, when M can be constructed as a double coset, M = H\D/G̃, similar ideas
apply both from the world-sheet [47] and target space [48] perspectives.
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Exceptional Drinfeld Algebra live in the ten-dimensional antisymmetric representation, and we can

label these with a pair of antisymmetric �ve-dimensional indices, TAB = −TBA. The brackets of the
generators are

[TAB, TCD] =
1

2
FAB,CD

EFTEF , (2.2.1)

(where the factor of 1/2 is inserted to avoid overcounting) and these need not be antisymmetric.

We do require the Leibniz identity

[
TBB′ , [TCC′ , TDD′ ]

]
=
[
[TBB′ , TCC′ ], TDD′

]
+
[
TCC′ , [TBB′ , TDD′ ]

]
, (2.2.2)

which in terms of the structure constants leads to

1

2
FBB′,EE ′AA′

FCC′,DD′EE
′ − 1

2
FCC′,EE ′AA′

FBB′,DD′EE
′
=

1

2
FBB′,CC′EE

′
FEE ′,DD′AA′

. (2.2.3)

If the bracket is antisymmetric, this reduces to the usual Jacobi identity.

More generally, the constraint (2.2.3) is the same as the quadratic constraint of gauged super-

gravity. This link � or equivalently the fact that we are restricting to Leibniz algebras which can arise

from a generalised parallelisation of SL(5) exceptional geometry � also motivates the assumption

that the structure constants can be decomposed into irreducible representations as

FAB,CD
EF = 4FAB[C

[Eδ
F ]
D] , FABC

D = ZABC
D +

1

2
δD[ASB]C − 1

6
τABδ

D
C − 1

3
δD[AτB]C , (2.2.4)

where τAB = −τBA, SAB = SBA and ZABC
D = Z[ABC]

D, ZABC
C = 0. This means that the only

SL(5) irreducible representations appearing in the structure constants of our Leibniz algebra are

those speci�ed by the linear constraint of gauged maximal supergravity in seven-dimensions [50].

Now we impose the further conditions that make this SL(5) Leibniz algebra into an Exceptional

Drinfeld Algebra. We require that there is a Lie subalgebra g ⊂ d4 which is isotropic in the sense

that3

ϵABCDETAB ⊗ TCD

∣∣∣
g
= 0 , (2.2.5)

and we further require this subalgebra to bemaximal in the sense that appending any extra generator

to g will violate (2.2.5). This means that it will have either dimension 4 or 3, and so can be

interpreted (borrowing terminology from Exceptional Field Theory) as the physical subalgebra in

either an M-theory or type IIB background, respectively. To articulate this condition in a more

invariant fashion we can say that alongside dn we must specify a �pure spinor� Λ in an appropriate

representation4 of En(n) which acts linearly on the dn vector space schematically as Λ •T . We then

3Note that a systematic construction of generalised frames corresponding to a given set of generalised �uxes was
set out in [51] in which a similar condition plays a necessary role: it really just ensures that the section condition of
Exceptional Field Theory is satis�ed.

4In DFT this would actually be a spinor representation, in ExFT it is not generically spinorial but will obey a
purity constraint projecting out certain representations in the tensor product of Λ with itself.
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demand that the kernel of this action, g = ker(Λ) be a Lie subalgebra. There are di�erent choices

for Λ that will result in a subalgebra g of dimension n, which we call an M-theory section, and

dimension n − 1 which we shall call a IIB-theory section. This pure spinor approach is essentially

the same as that used to de�ne solutions to the so-called section condition of Exceptional Field

Theory [34,52].

For the case of SL(5), in the IIB-theory section the pure spinor Λ is in the 10 and the purity

condition is that Λ[ABΛCD] = 0. The linear action is de�ned by

Λ • T := ΛACTCB − 1

5
ΛCDTCDδ

A
B.

As an example consider Λ45 = −Λ54 = 1 with the other components zero. Evidently this is pure

and it is such that it de�nes

ker(Λ) = span{T12, T13, T23} . (2.2.6)

In the M-theory section the pure spinor Λ is in the 5, the purity constraint is automatic and no

further conditions are placed on Λ. The action on generators is

Λ • T := Λ[ATBC] . (2.2.7)

Consider taking ΛA = δA,5, in which case

ker(Λ) = span{Ta5|a = 1 . . . 4} . (2.2.8)

We will continue now in this M-theory section, and decompose indices as A = (a, 5), where a =

1, . . . , 4 such that the physical subalgebra is generated by the generators ta ≡ Ta5, with Lie algebra

structure constants fabc.

In terms of the irreducible representations, the Exceptional Drinfeld Algebra is wholly de�ned

in terms of the Lie algebra structure constants fabc along with Sab, τab and τa5, with:

S55 = 0 , Zabc
5 = 0 , Zab5

5 =
2

3
τab , Zabc

d = −τ[abδdc] ,

Sa5 = −2

3
τa5 −

4

3
fab

b , Zab5
c = −fabc −

2

3
δc[afb]d

d .

(2.2.9)

To write down the algebra explicitly, we combine Sab and τab into a �dual� structure constant with

three upper antisymmetric indices given by

f̃abcd =
1

4
ϵabce(Sde + 2τde) . (2.2.10)

If we further de�ne the �dual� generators t̃ab ≡ 1
2ϵ
abcdTcd, then the Exceptional Drinfeld Algebra
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can then be written as

[ta, tb] = fab
ctc ,

[ta, t̃
bc] = 2fad

[bt̃c]d − f̃ bcdatd −
1

3
Lat̃

bc ,

[t̃bc, ta] = 3f[de
[bδ

c]
a]t̃

de + f̃ bcdatd + Ldδ
[b
a t̃
cd] ,

[t̃ab, t̃cd] = 2f̃ab[cet̃
d]e ,

(2.2.11)

in which we introduced the combination La = τa5 − fad
d. With La = 0 this presentation closely

resembles the structure of a Drinfeld double. However crucially this bracket has a symmetric part

that vanishes if and only if
2

3
L[dδ

c
e] + fde

c = 0 , τab = 0 . (2.2.12)

In addition to the Jacobi identity on g, the Leibniz closure conditions (2.2.3) enforce that the dual

structure constants obey the fundamental identity of a three-algebra

f̃abgcf̃
def

g − 3f̃g[decf̃
f ]ab

g = 0 . (2.2.13)

There are also a set of compatibility equations between f̃abcd and fabc which include in particular

a condition

6ff [a
[cf̃de]f b] + fab

f f̃ cdef +
2

3
f̃ cde[aLb] = 0. (2.2.14)

When La = 0 this last condition states that the dual structure constants, viewed as a map f̃ : g →
∧3g de�ne a ∧3g∗ valued one-cochain.

2.2.2 The generalised geometry realisation

A geometric realisation of this algebra can be achieved using as data the left-invariant forms la and

dual vector �elds va, obeying ιva l
b = δba, of a group manifold G, together with a trivector λabc and

a scalar α that are required to obey di�erential conditions:

dla =
1

2
fbc

alb ∧ lc , Lvavb = −fabcvc , (2.2.15)

dλabc = f̃abcdl
d + 3fed

[aλbc]dle +
1

3
λabcLdl

d , (2.2.16)

Lva lnα =
1

3
La ≡

1

3
(τa5 − faf

f ) . (2.2.17)

Below, we will often write the trivector λabc in its dualised form

λabc = ϵabcdλd , λa =
1

3!
ϵbcdaλ

bcd . (2.2.18)

43



These data can be naturally understood in terms of a generalised frame �eld using SL(5) exceptional

generalised geometry or SL(5) exceptional �eld theory [37, 53�56]. We provide the necessary back-

ground material in appendix A.1, and will only summarise the key details here. A generalised frame

is a section of the generalised tangent bundle TM ⊕ Λ2T ∗M , where M denotes a four-dimensional

manifold, and so we can write EAB = (eAB, ω(2)AB) in terms of vector �eld eAB and a two-form

ω(2)AB. Under the generalised Lie derivative (for more see appendix A.1.1) which acts as

LEABECD = (LeABeCD, LeABω(2)CD − ιeCDdω(2)AB) , (2.2.19)

the frames are constructed such that they obey

LEABECD = −1

2
FAB, CD

EFEEF , (2.2.20)

where in general the quantities FAB, CD
EF give non-constant �generalised �uxes� de�ned as in ap-

pendix A.1. We are interested in the case where a set of frames can be found with constant �uxes,

in which case their generalised Lie derivatives (2.2.20) furnish a geometric realisation of a Leibniz

algebra.

We can achieve such a realisation of our Exceptional Drinfeld Algebra. First, we decompose our

10-dimensional generalised frame as

Ea ≡ Ea5 , Eab ≡ 1

2
ϵabcdEcd , (2.2.21)

and specify that, in terms of pairs of vectors and two-forms, these are given by

Ea = (va, 0) , Eab = (λabcvc, αl
a ∧ lb) . (2.2.22)

The di�erential conditions (A.3.21), (A.3.22) and (2.2.17) ensure that the algebra of frames (2.2.20)

reproduces the Exceptional Drinfeld Algebra (A.3.25) subject to the imposition of some algebraic

constraints which take the form:

0 = f[ab
dλc] + 6λ[aLbδ

d
c] , 0 = τ[abλc] . (2.2.23)

These constraints ensure that the structure constants of the EDA are invariant under an adjoint

action of G = exp g [26, 27]. They are also what is needed to ensure that the structure constants

are indeed constant.

In what follows, it will be convenient to package the same data into a frame �eld ẼA in the 5

representation i.e. as sections of the bundle (R⊕Λ3T ∗M)⊗ (detT ∗M)−3/10. Here the weight factor

is such that the frame has unit determinant when viewed as a �ve-by-�ve matrix (see appendix A.1
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for more details). This matrix is given by

ẼM
A = ∆− 1

2

(
l
1
2α

1
2 via 0

l−
1
2α− 1

2λa l−
1
2α− 1

2

)
, (2.2.24)

where l ≡ det lai and ∆ = α
3
5 l

1
5 is a corrective weight whose interpretation in terms of the determi-

nant of the external 7-dimensional metric is explained in appendix A.1.

2.2.3 The geometry

In the En(n) Exceptional Generalised Geometry (EGG) / Exceptional Field Theory (ExFT) ap-

proach to supergravity an arti�cial splitting is made into n internal directions (coordinates of which

we denote x) and D = 11−n external directions (coordinates of which we denote X). This splitting

allows the �eld content5 of the supergravity to be reassembled into appropriate representations of

the En(n).

In the case at hand, n = 4, the degrees of freedom associated to the �internal� four-dimensional

metric, gij , and three-form, Cijk, parametrise the coset SL(5)/SO(5). This coset can be described

using a generalised frame or equivalently a SO(5)-invariant matrix mMN called the generalised

metric. The technical details of how to extract the conventional geometric data from a generalised

metric are presented in the appendix. In particular note that we have one extra piece of geometric

data, namely the scalar ∆ ≡ ∆(x) (or equivalently α), which is related to the determinant of the

external metric.

Here we will consider generalised metrics admitting a particular factorised form using the gen-

eralised frame �eld (2.2.24), such that

mMN (X,x) = ẼA
M(x)ẼB

N (x)m̄AB(X) , (2.2.25)

where m̄AB(X) denotes an SL(5)/SO(5) coset element depending only on the external coordinates

X. This factorised form of eq. (2.2.25) is known as a generalised Scherk-Schwarz reduction ansatz.

It is now well-established that, starting with EGG/ExFT, such an ansatz gives rise to lower-

dimensional maximal gauged supergravities [57, 58] (this idea was pioneered in the half-maximal

case in DFT in [59�61]). The structure constants of the Exceptional Drinfeld Algebra are inter-

preted as the embedding tensor which speci�es the gauging of this theory, and the matrix m̄AB

contains the scalars of the gauged supergravity.

One can regard two separate generalised frames EA and E′A producing the same Exceptional

Drinfeld Algebra, up to some SL(5) transformation acting on the indices A, but possibly depending

on di�erent choices of the physical coordinates, as being generalised U-dual in the sense that they

5More precisely the bosonic �eld content is packaged into representations of En(n) while the fermions (which play
no role in the discussion here) form representations of the maximal compact subgroup.
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will both reduce to the same 7-dimensional theory.

A key point here is that to complete the geometries given by the EDA frame �elds as fully-

�edged solutions of 11-dimensional supergravity one needs to determine the external sector by

solving the equations of the resulting lower dimensional gauged supergravity. Conversely, given a

solution of the gauged supergravity whose embedding tensor matches the form of an EDA, then the

ansatz (2.2.25) provides an uplift. Our immediate aim however is not to construct full supergravity

solutions, instead we wish simply to gain some intuition for the sort of geometries that arise when

the generalised frame �elds of the EDA are used to construct the internal metric. To this end let us

simply set m̄AB(X) = δAB and set to zero o�-diagonal components of �elds i.e. those with mixed

four-dimensional and seven-dimensional indices. Using the dictionary reproduced in full in appendix

A.1.3, we can, as in [35], work out the geometry giving rise to the Exceptional Drinfeld Algebra

ds211 = α2/3(1 + λcλ
c)1/3

(
ds27 +

1

1 + λcλc
(δab + λaλb)l

a ⊗ lb
)

= α2/3(1 + λcλ
c)1/3ds27 + ds24 ,

C(3) = −1

6

α

1 + λcλc
λbcdl

b ∧ lc ∧ ld ,

(2.2.26)

where we use δab to contract Lie algebra indices.

2.3 Three-algebra geometries

We will start by exploring geometries with

fab
c = 0 , f̃abcd ̸= 0 , (2.3.1)

which we shall refer to as three-algebra geometries. The analogue of such cases in terms of non-

Abelian T-duality would be the geometries that one obtains after dualising from a geometry with

a group manifold symmetry, fabc ̸= 0, f̃abc = 0.

The corresponding Exceptional Drinfeld Algebra is most transparently expressed in terms of the

undualised generators

[Ta5, Tb5] = 0 ,

[Ta5, Tbc] =
1

2
(Sa[b + 2τa[b)Tc]5 = −[Tbc, Ta5] ,

[Tab, Tcd] = −τabTcd + (Sc][b + 2τc][b)Ta][d .

(2.3.2)

When τab = 0, this is the Lie algebra CSO(p, q, r+1), p+q+r = 4, as is clear from diagonalising Sab
such that SAB ∼ diag(+1, · · ·+ 1︸ ︷︷ ︸

p

,−1, . . . ,−1︸ ︷︷ ︸
q

, 0, . . . , 0︸ ︷︷ ︸
r+1

). When τab ̸= 0 we have a genuine Leibniz
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algebra. The conditions for closure are

Sa[bτcd] = 0 , τ[abτcd] = 0 , (2.3.3)

which are also what are required for the �nal equation of (2.2.23) to hold. The only solutions can

be organised according to the rank of Sab assuming the latter has been diagonalised:6

� Sab has rank 4 or 3, then τab = 0,

� Sab has rank 2, say S11 ̸= 0, S22 ̸= 0, then we can have τ12 ̸= 0,

� Sab has rank 1, say S11 ̸= 0, then we can have τ12, τ13, τ14 ̸= 0,

� Sab has rank 0, then we can have either τ12, τ13, τ14 ̸= 0 or τ12, τ13, τ23 ̸= 0 (or other choices

related by relabellings of the indices).

In order to realise this algebra using a generalised frame, we introduce 4-dimensional coordinates

xi and take

lai = δai , λabc = f̃abcdx
d , α = constant , (2.3.4)

(where xa ≡ δai x
i). To extract the geometry, we note that

λa =
1

6
ϵbcdaf̃

bcd
ex
e =

1

4
(Sab − 2τab)x

b , (2.3.5)

which we can use in the general formulae (2.2.26).

If we choose the coordinates xi to be periodic, then this corresponds to a U-fold, as to make the

space globally well-de�ned we have to patch via a shift of the trivector. This is a non-geometric

U-duality transformation, and we can then further view the �ux f̃abcd as an M-theory non-geometrc

Q-�ux [62]. This is the generalisation of the interpretation of non-Abelian T-dual geometries as

T-folds [63].

We note that the paper [26] considered an example where f̃2341, f̃2342, f̃1341, f̃1342 are all non-

zero, in which case Sab has rank two (but is not diagonal in this basis), while for τab only τ12 ̸= 0.

For f̃2341 = f̃2342 = 0 this allowed other isotropic subalgebras corresponding to the embedding of

the non-Abelian T-dual of the Bianchi VI algebra.

2.3.1 Non-Abelian T-duality revisited and CSO(3, 0, 2)

As a �rst example, let's consider CSO(3, 0, 2), for which we set

Sab = 4diag(1, 1, 1, 0) , τab = 0 . (2.3.6)

6If Sab is not diagonal then the constraints on τab will be di�erent, as will the form of the algebra, but this will
be related by a similarity transform.
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We will show now how this set up actually provides an embedding for the non-Abelian T-dual

(NATD) of the three-sphere S3 with respect to an SU(2)L isometry sub-group. In the M-theory

section the four-dimensional geometry with coordinates (xi, x4), i = 1, 2, 3, is given by

ds24 = (1 + δmnx
mxn)−2/3

(
(δij + xixj)dx

idxj + (dx4)2
)
,

C(3) = − 1

2!

ϵijk4x
k

1 + δmnxmxn
dxi ∧ dxj ∧ dx4 .

(2.3.7)

With x4 taken to be periodic and identi�ed with the M-theory circle, we can reduce to give a IIA

con�guration for which the 3-dimensional internal part is:

ds23 =
1

1 + δmnxmxn
(δij + xixj) dx

idxj ,

B(2) = − 1

2!

ϵijkx
k

1 + δmnxmxn
dxi ∧ dxj ,

eΦ = (1 + δmnx
mxn)−1/2 .

(2.3.8)

This is indeed the aforementioned NATD geometry.

This prompts the obvious question: how does the geometry prior to T-dualisation (i.e. that of

the S3 with round metric) manifest itself within the EDA setting? To address this we will need to

consider the EDA in the IIB-theory section.7

To see this, let's look at the Exceptional Drinfeld Algebra more closely. Let's relabel our indices

such that now a = 1, 2, 3. Then the only non-zero components of the three-algebra structure

constants in this case are

f̃ab4c = −ϵabc (2.3.9)

where ϵabc ≡ ϵabdδdc.

Adapted to this we assemble the generators of the EDA as ta ≡ Ta5, t4 ≡ t45, t̃a ≡ 1
2ϵ
abcTbc and

sa = Ta4 such that the algebra is given by

[ta, tb] = 0 , [t̃a, t̃b] = −ϵabct̃c , [ta, t̃
b] = −ϵbcatc , (2.3.10)

0 = [t4, ta] = [t4, sa] = [t4, t̃
b] , (2.3.11)

[ta, sb] = +δabt4 , [sa, sb] = 0 , [sa, t̃
b] = −2ϵa

bcsc , (2.3.12)

The original M-theory section physical subalgebra is U(1)4 generated by ta, t4. In IIA, we have a

U(1)3 generated by ta. In this presentation we now see an additional SU(2) subalgebra generated

by t̃a4 ≡ 1
2ϵ
abcTbc. This non-Abelian algebra is indeed a maximal isotropic in the IIB-theory section

speci�ed by the pure spinor with non-zero components Λ45 = −Λ54 = 1.

7This is natural; non-Abelian T-duality will change the chirality from IIB to IIA if three isometry generators are
dualised as is the case for SU(2).
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Working now in this IIB-theory section it is easy to establish a set of generalised frame �elds

that realise this EDA. As detailed in the appendix, here the relevant generalised tangent bundle

is E = TM ⊕ T ⋆M ⊕ T ⋆M ⊕ Λ3T ⋆M and we use the notation A = (a, α(1), α̃(1), α(3)) to denote

its sections (the generalised vectors). Using the type IIB generalised Lie derivative (A.1.10), this

algebra can be realised using the following generalised frame:

Ea =
1

2
ϵabcEbc = (va, 0, 0, 0) ,

Ea = Ea5 = (0, la, 0, 0) ,

Ea4 = (0, 0, la, 0) ,

E45 = (0, 0, 0, vol) ,

(2.3.13)

where la are the left-invariant one-forms on SU(2), va the dual vector �elds, and vol is the corre-

sponding volume form.

Here we see that there is a natural block diagonal decomposition of the generalised frame �eld.

Let us consider the top left block i.e. the projections of Ea and Ea to the O(3, 3) generalised

tangent bundle TM ⊕T ⋆M . These are exactly of the form of the generalised frames for Poisson-Lie

duality [23] in the case that the Drinfeld double is semi-Abelian of the form given in eq. (2.3.10).

This is precisely what is required to realise non-Abelian T-duality starting with the round metric

on the S3.8 The bottom right block, i.e. the projections of Ea5 and E45 to T ⋆M ⊕ Λ3T ⋆M can be

understood as de�ning a spinor representation of the O(3, 3) generalised frame �eld given by the

top left block. We shall discuss this feature in more detail when we return to the full Poisson-Lie

duality context.

Relationship to Hohm-Samtleben frame

We would like now to relate the EDA generalised frame described above to previous constructions of

SL(5) generalised frames realising the same CSO(3, 0, 2) gaugings. A particular class of generalised

frames realising CSO(p, q, r) gaugings were constructed by Hohm and Samtleben in [57]. For q = 0,

this frame depends on the coordinates yi, where i = 1, . . . , p−1, which are coordinates on an Sp−1,9

and we let u ≡ δijy
iyj . Then, the frame involves both a three-form and a trivector

Ea = (ua,−ιuaC(3)) , Eab = (0, αua ∧ ub) + λabcEc , (2.3.14)

8What is used here is only an SU(2)L isometry group, so the considerations here do not directly impose the bi-
invariant metric on S3. This comes about because of the assumption made earlier in the generalised Scherk-Schwarz
ansatz that m̄AB = δAB. Choosing other constant m̄AB will give non-Abelian T-duals and their lifts of the S3

equipped with metric ds2 = gabla ⊗ lb and two-form B = babla ∧ lb with gab and bab constant.
9Generalised frames describing sphere reductions in general have been constructed [44] and can be checked also

to involve both a three-form and a trivector.
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with a vielbein uia ≡ (1− u)1/2δia, a function α = (1− u)1/6, and (writing the dualised forms) both

a trivector and three-form, given by

λa = ((1− u)−1/2δiky
k, 0) , Ci = ((1− u)−1/2yiK(u), 0) . (2.3.15)

For p = 3, q = 0, r = 2, K(u) obeys the di�erential equation 2(1− u)u∂uK = (−2 + u)K − 1, and

the solution is K(u) = −1/u.

For CSO(3, 0, 2), the four-dimensional physical geometry encoded in this frame is R2 × S2

equipped with

ds24 = (dy3)2 + (dy4)2 +

(
δij +

yiyj

1− u

)
dyjdyj ,

C(3) = −ϵikyk(1− u)−1/2(1− 1

u
)dyi ∧ dy3 ∧ dy4 .

(2.3.16)

Although the three-form looks rather complicated, the �eld strength is just F(4) = Vol(S2)∧dy3∧dy4.

Compactifying the coordinates y3, y4, this trivially reduces (on y4, say) to a IIA con�guration

with S1 × S2 internal space

ds23 = (dy3)2 +

(
δij +

yiyj

1− u

)
dyjdyj ,

B(2) = −ϵikyk(1− u)−1/2(1− 1

u
)dyi ∧ dy3 ,

(2.3.17)

and a constant dilaton. This can be T-dualised on y3, in order to produce a solely metric con�gu-

ration:

ds23 = (dỹ3 +
1

u
(1− u)+1/2ϵijy

jdyi)2 +

(
δij +

yiyj

1− u

)
dyjdyj . (2.3.18)

Taking our sphere coordinates to be y1 = sin θ cosϕ, y2 = sin θ sinϕ, where θ ∈ (0, π), ϕ ∈ (0, 2π),

then u = sin2 θ, 1− u = cos2 θ, and dy1y2 − dy2y1 = − sin2 θdϕ. As a result, the geometry becomes

ds23 = (dỹ3 − cos θdϕ)2 + dΩ2
2 . (2.3.19)

This is the three-sphere S3 described as a Hopf �bration.

All these backgrounds produce seven-dimensional gaugings which are equivalent up to global

SL(5) transformations acting on the generalised �uxes. The complete duality chain between the

Hohm-Samtleben frame (2.3.14) and our EDA frame (2.3.8) consists of: reduction from M-theory to

IIA, T-duality on the Hopf �bre to IIB, non-Abelian T-duality on S3 back to IIA, followed by uplift

to M-theory. This can be interpreted as a �generalised U-duality� however one that consists of a

chain of ordinary plus non-Abelian T-dualities. Part of this duality chain takes place entirely within
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the EDA setting, but that involving the frame (2.3.14) uses a di�erent construction of generalised

frames. We depict the relationships between these geometries and di�erent SL(5) frames in �gure

2.2.

IIB on S3

(3.4.67)

IIA geometry
of EDA frame
(2.3.8)

IIA geometry of
HS frame (2.3.17)

M-theory geom-
etry of HS frame
(2.3.16)

M-theory geome-
try of EDA frame
(2.3.7)

T on Hopf �bre

NATD on S3

Dual within EDA

reduce/upliftreduce/uplift

Postulated generalised U-dual

Figure 2.1: Duality chains involving the NATD of S3 and alternative CSO(3, 0, 2) frames

IIB on S3 IIA EDAIIA HS

M-theory HS M-theory EDA

Hopf-T

NATD on S3

Dual within EDA

reduce/upliftreduce/uplift

Postulated generalised U-dual

Figure 2.2: Duality chains involving the NATD of S3 and alternative CSO(3, 0, 2) frames

Non-metric 3-algebras

A variant of the situation above is to consider the non-metric 3-algebras considered in [64�66] for

which

f̃ab4c = f̃abc , f̃abcd = f̃ab44 = f̃abc4 = 0 , (2.3.20)
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with f̃abc the structure constants of a Lie algebra. In terms of the embedding tensor components

we have equivalently

S44 = S4c = τ4c = 0 , Sab = −2ϵcd(af̃
cd
b) , τab = −ϵabcf̃ cdd , (2.3.21)

which for τab = 0 requires that f̃ de�ne a uni-modular algebra. In this case the EDA is as in

(2.3.10)-(2.3.12) after the replacement of ϵabc → −f̃abc, and the construction of the IIB-theory

section generalised frames goes hrough unchanged. This then provides an EDA embedding of non-

Abelian T-duality of uni-modular group manifolds G with respect to a GL isometry.

For instance, with Sab = diag(1, 1,−1, 0), such that we describe CSO(2, 1, 2) gaugings, we have

that the non-metric three algebra is built from SL(2), and that the story above will go through.

Recall that we are using δab to contract algebra indices (i.e. not the inde�nite Killing form) and

hence the IIB NATD geometry above will be based on H3 rather than S3.

2.3.2 Euclidean 3-algebra and CSO(4, 0, 1)

We now consider the case where Sab is of maximal rank:

Sab = 4diag(1, 1, 1, 1) , τab = 0 . (2.3.22)

The corresponding three-algebra structure constants are totally anti-symmetric

f̃abcd ≡ f̃abceδ
ed = ϵabcd . (2.3.23)

This is well known as the unique solution of the fundamental identity for three-algebra structure

constants for Euclidean three-algebras.

The four-dimensional geometry in this case is, with xi = (x1, x2, x3, x4),

ds24 = (1 + δmnx
mxn)−2/3(δij + xixj)dx

idxj ,

C(3) = − 1

3!

1

1 + δmnxmxn
ϵijklx

ldxi ∧ dxj ∧ dxk .
(2.3.24)

The �eld strength is:

F(4) = − 1

4!

4 + 2δmnx
mxn

(1 + δmnxmxn)2
ϵijkldx

i ∧ dxj ∧ dxk ∧ dxl ,

= −(4 + 2δmnx
mxn)(1 + δmnx

mxn)−7/6Vol(4) .

(2.3.25)

If we assume our coordinates are non-compact, we can write xi = rx̂i with x̂ix̂jδij = 1 parametrising
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a three-sphere, hence

ds24 = (1 + r2)1/3
[
dr2 +

r2

1 + r2
dΩ2

3

]
,

F(4) = − 4 + 2r2

(1 + r2)2
r3dr ∧Vol(S3) .

(2.3.26)

Observe that the form of this geometry is very similar to that of the NATD geometry (2.3.7), except

now as seen in spherical coordinates we have an SO(4) rather than SO(3) isometry.

Algebra and IIB isotropics

Relabelling such that a = 1, 2, 3 as before, we have

f̃abc4 = ϵabc , f̃ab4c = −ϵabc . (2.3.27)

The Exceptional Drinfeld Algebra is given explicitly by the following antisymmetric brackets which

indeed describe the algebra CSO(4, 0, 1) (i.e. ISO(4)):

[ta, tb] = 0 = [ta, t4] , (2.3.28)

[ta, t̃
bc] = +ϵbcat4 , [ta, t̃

b4] = −ϵbcatc , [t4, t̃
bc] = −ϵbcdtd , [t4, t̃

b4] = 0 , (2.3.29)

[t̃ab, t̃cd] = −2ϵcd[at̃b]4 , [t̃ab, t̃c4] = −2ϵc[adt̃
b]d , [t̃a4, t̃b4] = −ϵabct̃c4 , (2.3.30)

We now want to �nd all four- and three-dimensional subalgebras of this algebra, and check which

of these are isotropic in the sense of (2.2.5). For the Poincaré group in four-dimensions, the clas-

si�cation of all subalgebras was done in [67]. From their results we can extract that the only real

isotropic subalgebras of ISO(4) (up to relabelling of the indices) turn out to be the four-dimensional

Abelian subalgebra generated by ta, along with the following three-dimensional subalgebras: SU(2)

generated by t̃a4, and ISO(2) generated either by ta, tb, t̃c4 with a ̸= b ̸= c or by ta, t4 and t̃bc with

a ̸= b ̸= c. In terms of the undualised generators, these correspond to {T12, T13, T23}, {Ta5, Tb5, Tab}
and {Ta5, T45, Ta4} respectively. All of these are IIB isotropics.

Now we encounter a puzzling feature; there are no geometric IIB uplifts of this CSO(4, 0, 1)

gauging [68]. So it seems that despite the presence of a IIB isotropic we are unable to geometrically

furnish this EDA within type IIB exceptional generalised geometry. This does not preclude the

possibility of there being non-geometric gaugings i.e. ones which depend on both the IIB coordinates

and their duals as mentioned in [68]. If this is the case, this suggests the natural home for a �dual�

version of this frame would be in some �deformed� version of IIB. This may be analogous to, or

perhaps coincide with, the so-called generalised IIB theory [69, 70], which necessarily arises when

carrying out certain generalised T-dualities, and which can be realised in double or exceptional
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�eld theory by introducing explicit dual coordinate dependence [71, 72], for instance see the DFT

implementation of such dualities in [22, 25]. Although this would be interesting to develop further,

we would prefer to �rst understand the possibility of generalised U-duality transformations between

the usual 10- and 11-dimensional theories, so we leave this for future work.

Relationship to IIA on S3

Instead, let us investigate the relationship to the known CSO(4, 0, 1) gauging arising from reduction

of type IIA on S3, or 11-dimensional supergravity on R × S3 [73]. Again, the idea is that any

alternative frame giving rise to the same gaugings ought to provide a version of generalised U-

duality.

Let us again focus on the general CSO(p, q, r) frame of [57], which we wrote down in the previous

subsection in (2.3.14) and (2.3.15). For the case p = 4, q = 0, r = 1 we have coordinates yi = (yi, yz)

where i = 1, 2, 3, and we again de�ne u ≡ δijy
iyj . The function K(u) appearing in the three-form

(2.3.15) is now

K = −2F1[1, 1; 1/2; 1− u] = −u−3/2(u1/2 + (1− u)1/2 arcsin(1− u)1/2) (2.3.31)

obeying

2(1− u)u∂uK = (−3 + 2u)K − 1 . (2.3.32)

This corresponds to the following four-dimensional geometry:

ds24 = (dyz)2 +

(
δij +

yiyj

1− u

)
dyidyj ,

C(3) =
1

2
ϵijky

k(1− u)−1/2(1 +K(u))dyi ∧ dyj ∧ dyz ,
(2.3.33)

The coordinates yi are now seen to parametrise the three-sphere S3, while the isometry direction yz

parametrises R (or S1 if compact). Thanks to the equation (2.3.32) we can show that the four-form

�ux is constant, and this background is:

ds24 = (dyz)2 + dΩ2
3 ,

F(4) = 2Vol(S3) ∧ dyz ,
(2.3.34)

where dΩ2
3 is the metric on S3. If one reduces on yz, this gives IIA on S3 with H-�ux.

We therefore have two constructions of CSO(4, 0, 1) frames. The one based on the Exceptional

Drinfeld Algebra corresponds to the geometry (2.3.24). This generalised frame consists of a trivial

four-dimensional vielbein and a linear trivector. This geometry therefore has an alternative descrip-

tion as R4 (or T 4 if compact) carrying M-theory Q-�ux, Qabcd ∼ f̃ bcda. The second construction is

based on the geometry (2.3.34), that is R× S3 (or S1 × S3) carrying �ux of the four-form. Unlike
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the case of the CSO(3, 0, 2) gauging discussed above, there does not appear to be any easy duality

chain involving conventional dualities and non-Abelian T-dualities (as in Figure 2.2) that relates the

two. Hence we believe them to be related by a novel sort of generalised U-duality transformation.

2.3.3 A Leibniz geometry: τab ̸= 0

For an example where the EDA is not a Lie algebra, take the non-zero components of τab to be

ταβ = ϵαβγn
γ , α = 1, 2, 3 . (2.3.35)

The geometry is easily seen to be

ds24 =

(
1 +

1

4
(n2x2 − (n · x)2)

)−2/3(
(dx4)2 + δijdx

idxj +
1

4
(ϵijkn

ixjdxk)2
)
,

C(3) =
1

2

1

1 + 1
4(n

2x2 − (n · x)2)
nixjdx

i ∧ dxj ∧ dx4 ,
(2.3.36)

where ni ≡ δiαn
α, i = 1, 2, 3, n2 ≡ δijn

inj , x2 ≡ δijx
ixj , n · x ≡ δijn

ixj . This three-form is pure

gauge.

To explore the algebra, we de�ne uα ≡ ϵαβγ t̃
βγ , vα ≡ t̃α4, wα ≡ tα and ϕ ≡ t4. In this basis the

M-theory section isotropic that we are considering (speci�ed by the pure spinor ΛA = δA,5) is the

subgroup generated by wα and ϕ with uα and vα the 'dual' generators. The algebra is

[uα, uβ] = 0 = [wα, wβ] = [ϕ, d] = [d, ϕ] , [vα, vβ] = v[αnβ] , (2.3.37)

[wα, v
β] = −[vβ, wα] =

1

2
(δβαn

γwγ − nβwα) , [wα, uβ] =
1

2
ϵαβγn

γϕ , (2.3.38)

[uα, v
β] = −1

2
(δβαn

γuγ − nβuα) , [vβ, uα] = −1

2
(δβαn

γuγ + nβuα) . (2.3.39)

Notice the non-skew (i.e. Leibniz) nature of the algebra is contained entirely in the [u, v] and [v, u]

relations, with [uα, v
β] + [vβ, uα] = −δβαnγuγ .

A second M-theory section isotropic sub-algebra is generated by uα and ϕ, which is again Abelian

(this isotropic is that speci�ed by the pure spinor ΛA = δA,4). Although this simply implements

interchange of the 4 and 5 directions, there is no way that this new isotropic can qualify as an EDA.

To see this consider the �uxes (A.3.23) which imply

Zαβ4
4 = −1

3
ταβ , Zαβ5

5 =
2

3
ταβ . (2.3.40)

To interpret this new isotropic as an EDA we must be able to �nd a τ ′αβ such that

Zαβ4
4 =

2

3
τ ′αβ , Zαβ5

5 = −1

3
τ ′αβ , (2.3.41)
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and there is no such τ ′αβ . This can be traced to the fact that the [w, v] bracket is skew whilst the

[u, v] is not. The fact that we can �nd M-theory isotropics for which the EDA conditions are not

satis�ed seems to point towards a possible relaxation of some of the constraints of EDA.

The sub-algebra given by vi and ϕ does not correspond to an M-theory section isotropic but

that given by the vi alone does correspond to a IIB-theory section isotropic.

2.4 Embedding Drinfeld doubles

2.4.1 Decomposing the Exceptional Drinfeld Algebra

The embedding of Drinfeld doubles inside the exceptional Drinfeld algebra has been outlined already

in [26]. Here we expand on the discussion in that paper by systematically explaining how the

Drinfeld double algebra is extended using a spinor representation, including the explicit form of the

generalised frames and constraints that are needed to realise this in generalised geometry. Then,

we describe explicitly how this works for the example of the Bianchi II - Bianchi V Drinfeld double,

which in [27] was found to be a solution to a coboundary ansatz in the EDA. This realises an explict

example where both fabc and f̃abcd are non-zero, and demonstrates as well one useful feature of the

EDA approach which is that it geometrises the dilaton of Poisson-Lie duality.

We can describe the embedding of Drinfeld doubles by restricting to four-dimensional algebras

containing a three-dimensional Lie subalgebra such that, setting a = 1, 2, 3,

[Ta5, Tb5] = fab
cTc5 , [Ta5, T45] = fa4

4T45 , (2.4.1)

and by further restricting

f̃ab4c ≡ f̃abc ̸= 0 , f̃abcd = f̃abc4 = 0 = f̃ab44 , τ45 = 0 . (2.4.2)

Geometrically, we assume that va and la obey the de�ning group manifold relations with the three-

dimensional structure constants fabc, while we take

λab4 = −πab , λabc = 0 , v4 = α∂4 , l4 = α−1dx4 , (2.4.3)

where we now require that α be a function of the three-dimensional coordinates xi such that

Lva lnα ≡ −fa44 which ensures starting with (A.3.22) that πab obeys the condition satis�ed by

the Poisson-Lie bivector:

dπab = −f̃abclc − 2lcfcd
[aπb]d . (2.4.4)
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Starting from (2.2.26), the above restrictions lead to the following NSNS sector geometry:

ds210 = ds27 +
1

1 + λcλc
(δab + λaλb)l

a ⊗ lb ,

B(2) =
1

2

1

1 + λcλc
ϵabcλ

alb ∧ lc ,

eϕ = α−1(1 + λcλ
c)−1/2 .

(2.4.5)

Extracting Gab and Bab, the coe�cients of the left-invariant forms, it is quick to check that

[(G−B)−1]ab = δab + πab , (2.4.6)

which is exactly the form required for a Poisson-Lie geometry [11]. (Again, we could extend this

beyond the case gab = δab by taking a more general matrix m̄AB in (2.2.25).)

We now turn to the decomposition of the exceptional Drinfeld algebra (A.3.25). We group the

generators as tA = (ta, t
a4), t̂α = (t4, t

ab). In terms of O(3, 3) representations, the set tA form a

vector and the set t̂α form a Majorana-Weyl spinor. The isotropy condition (2.2.5) is equivalent to:

ηABtAtB
∣∣
g
= 0 , ΓAαβtAt

β
∣∣
g
= 0 , (2.4.7)

where ηAB is the usual O(3, 3) metric with components ηab = ηba = δba, ηab = ηab = 0, and ΓA is an

O(3, 3) gamma matrix, see appendix A.2.3.

After decomposing the EDA brackets (A.3.23) using (2.4.1) and (2.4.2) (see the explicit details

in appendix A.2.3), and regrouping into SO(3, 3) covariant quantities, we �nd the algebra is

[tA, tB] = FAB
CtC ,

[tA, t̂
α] =

1

4
FAB

C(ΓBC)
α
β t̂
β − 1

2
τAt̂

α ,

[t̂α, tA] = −[tA, t̂
α] +

1

4

(
1

6
FBCD(ΓAΓ

BCD)αβ − (ΓAΓ
B)αβτB

)
t̂β ,

[t̂α, t̂β] = 0 ,

(2.4.8)

where the Drinfeld double structure constants FABC , which obey FABC ≡ FAB
DηCD = F[ABC],

have the expected non-zero components

Fab
c = fab

c , F abc = f̃abc , (2.4.9)

and we also have10

τa = −2fa4
4 + fac

c , τa = −f̃acc . (2.4.10)

10This corresponds to the usual O(d, d) trombone de�ned using the generalised dilaton d via τA = EM
A∂M (−2d)+

∂MEM
A, where EM

A is the O(d, d) generalised vielbein (corresponding to (2.4.15)). For us, e−2d = α2 det l.
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Observe that in the second line of (2.4.8) we have the natural action of the Drinfeld double gen-

erators in the spinor representation. Then in the third line we have a novel action of the spinor

representation on the algebra generators tA, which makes this extension of the Drinfeld double into

a Leibniz algebra in general.

This is not always possible due to the closure condition, as already noted in this context in [26],

which requires

fab
cf̃abd = 0 . (2.4.11)

This also follows from the general condition for a half-maximal gauging to admit an uplift to the

maximal theory [74], see appendix A.2.1.

Next, we can write down the corresponding generalised frames. Formally, we should decompose

the exceptional tangent bundle into IIA language. LettingM denote the three-dimensional manifold,

we introduce the doubled tangent bundle E ∼= TM⊕T ∗M , whose sections pair vectors and one-forms,

plus a bundle S ∼= R⊕Λ2T ∗M , whose sections pair functions and two-forms. The former bundle gives

the O(3, 3) vector representation while the latter gives a four-dimensional spinor representation.

These appear in the decomposition 10 = 6⊕ 4 of the antisymmetric representation of SL(5).

Given V = (v, λ(1)) ∈ E and S = (σ(0), σ(2)) ∈ S the generalised Lie derivative inherited from

the exceptional geometry is:

LV V ′ = (Lvv
′, Lvλ

′
(1) − ιv′dλ(1)) ∈ E , (2.4.12)

LV S = (Lvσ(0), Lvσ(2) + dλ(1)σ(0)) ∈ S , (2.4.13)

LSV = (−Lvσ(0),−ιvdσ(2) − λ(1) ∧ dσ(0)) ∈ S , (2.4.14)

while LSS′ = 0.

We now reorganise our SL(5) frame EAB into an O(d, d)-vector valued frame EA = (Ea, E
a),

where Ea = 1
2ϵ
abcEbc, and a spinor-valued frame, Êα = (Ê0, Êab), where Ê0 ≡ E45, Êab ≡ 1

2ϵ
abcEc4.

The vector-valued frame EA gives as sections of TM ⊕ T ∗M

Ea = (va, 0) , Ea = (πabvb, l
a) , (2.4.15)

which is what we expect for the Drinfeld double [23], while the spinor frame gives as sections of

R⊕ Λ2T ∗M

Ê0 = α(1, 0) , Êab = α(πab, la ∧ lb) . (2.4.16)

In the IIB case, the only change we need to make is to take the spinors to have opposite chirality,

i.e. the spinor bundle now consists of odd p-forms, S̄ ∼= T ∗M ⊕Λ3T ∗M . Given S = (σ(1), σ(3)) ∈ S̄
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the corresponding generalised Lie derivatives are (inherited from (A.1.10)):

LV S = (Lvσ(1), Lvσ(3) − dλ(1) ∧ σ(1)) ∈ S̄ , (2.4.17)

LSV = (−ιvdσ(1), dσ(1) ∧ λ(1)) ∈ S̄ , (2.4.18)

and again LSS′ = 0. The IIB spinor frame is then

Êa = α(la, 0) , Êabc = α(3π[ablc], la ∧ lb ∧ lc) . (2.4.19)

Although we can always construct the vector and spinor frames for a given Drinfeld double, they will

not always obey the Leibniz algebra (2.4.8). Indeed, we have to ensure that the algebra generates

constant structure constants, which leads to constraints:

π[abf̃ c]dd = 0 , fbc
aπbc + 2fb4

4πab = 0 , (2.4.20)

which also follow from the constraints (2.2.23) from the point of view of the Exceptional Drinfeld

Algebra. In addition, the closure condition (2.4.11) must hold.

In this way we have also recovered a result directly from an M-theory perspective that the RR

�elds compatible with PL T-duality are essentially constant O(d, d) spinors dressed by the spinor

representation of the generalised frame �eld. This was seen from a DFT perspective in [23,24] and

from a Courant algebroid approach [75].

2.4.2 Example: Bianchi II and V

Bianchi II + U(1) in M-theory

This example of an Exceptional Drinfeld Algebra was found in [27] by requiring the three-algebra

structure constants to be determined as a coboundary ansatz. This gives an M-theory solution

where the physical subalgebra is Bianchi II + U(1). The Bianchi II algebra, or Heisenberg algebra,

can be described in a basis {t1, t2, t3} where the single non-vanishing structure constant is f231 = 1.

The corresponding group data, including the trivial U(1) factor with generator t4, and α = 1, is:

la = (dx1 − x3dx2, dx2, dx3, dx4) , va = (∂1, ∂2 + x3∂1, ∂3, ∂4) . (2.4.21)

A trivector obeying (A.3.22) is

λa = (0, x3,−x2, 0) , (2.4.22)

with f̃1242 = f̃1343 = 1. From the above, this describes an embedding of a dual three-dimensional

subalgebra with structure constants f̃122 = f̃133 = 1, corresponding to the known Bianchi II /

Bianchi V Drinfeld double (see [76] for a classi�cation of six dimensional doubles).
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The M-theory geometry is

ds24 =
1

(1 + (x2)2 + (x3)2)2/3
(
(dx1 − x3dx2)2 + (1 + (x3)2)(dx2)2 + (1 + (x2)2)(dx3)2

− 2x2x3dx2dx3 + (dx4)2
)
,

C(3) =
1

1 + (x2)2 + (x3)2

(
1

2
d((x2)2 + (x3)2) ∧ dx1 ∧ dx4 + (x3)2dx2 ∧ dx3 ∧ dx4

)
,

(2.4.23)

where dC(3) = 0. Reducing on the U(1) direction gives a IIA geometry with

ds23 =
1

1 + (x2)2 + (x3)2
(
(dx1 − x3dx2)2 + (1 + (x3)2)(dx2)2 + (1 + (x2)2)(dx3)2

− 2x2x3dx2dx3
)
,

H(3) = 0 ,

eϕ = (1 + (x2)2 + (x3)2)−1/2 ,

(2.4.24)

which matches the known geometry of a Drinfeld double based on the groups Bianchi II and Bianchi

V. It is worth remarking that the physical dilaton that arises here was implicitly constrained by

the EDA. In conventional T-duality the Buscher procedure can be used to ascertain the form of the

dilaton (from the determinant produced by Gaussian elimination of gauge �elds). However there is

no similar technique for PL duality, and determining the form of the dilaton requires either some

heavy work [77] or DFT techniques [24]. The answer here was mandated by the EDA and is in

agreement with these approaches.

Bianchi V in IIB

We now have to supply the embedding of the dual Bianchi V description, in type IIB. Now the dual

structure constants are f̃231 = 1 while the physical ones are f122 = f13
3 = 1. A choice of group

data is

la = (dx̃1, ex̃
1
dx̃2, ex̃

1
dx̃3) , va = (∂1, e

−x̃1∂2, e
−x̃1∂3) . (2.4.25)

We have to pick a bivector that not only satis�es the usual Poisson-Lie condition (2.4.4) but also

the conditions (2.4.20) that ensure the IIB vector plus spinor frame embeds into the Exceptional

Drinfeld Algebra. With fa44 = 0, this requires that π12 = π13 = 0. Then from (2.4.4) we �nd that

π23 must obey dπ23 = (−1 + 2π23)l1, and the solution vanishing at the origin is

π23 =
1

2
(1− e2x̃

1
) . (2.4.26)
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The corresponding physical geometry with string frame metric is

ds23 = (dx̃1)2 +
e2x̃

1

1 + (π23)2
(
(dx̃2)2 + (dx̃3)2

)
,

B(2) = − π23e2x̃
1

1 + (π23)2
dx̃2 ∧ dx̃3 ,

eϕ = (1 + (π23)2)−1/2 .

(2.4.27)

2.5 Discussion

The goal of this chapter was to make geometrically concrete the algebraic structures introduced

in [26,27]. These �exceptional Drinfeld geometries� provide generalised parallelisable spaces with a

non-trivial relationship between the more complicated geometry and the simpler generalised frame

based on a group manifold and the trivector. We have now developed an interesting �rst set of

examples where the exceptional Drinfeld algebra can be explicitly connected to geometries.

A primary motivation for the introduction of the Exceptional Drinfeld Algebras was to generalise

the Drinfeld double algebras that appear in generalised T-duality. As a con�dence-building measure,

we have described in detail how to embed O(3, 3) Drinfeld doubles and Poisson-Lie T-duality into

the SL(5) Drinfeld algebras. We saw that not all Drinfeld doubles can be embedded; that there are

constraints that must be obeyed by their structure constants and by the explicit choice of Poisson-Lie

bivector; and furthermore that the extension of the Drinfeld double requires introducing a �spinor�

representative of the Drinfeld double and de�ning a non-trivial Leibniz algebra in which this acts

in turn on the vector representation.

We also studied simple EDA examples where we only allowed the three-algebra structure con-

stants to be non-zero, f̃abcd. These can all be realised by a simple trivector ansatz, linear in the

coordinates. In some sense, these geometries are the analogues of what should be obtained af-

ter non-Abelian T-duality, and indeed here we could reproduce the usual non-Abelian T-dual pair

involving an S3.

In addition, this class of geometries can be seen to produce CSO(p, q, r) gaugings of seven-

dimensional maximal supergravities (with r ≥ 1, due to the fact that at least one component of the

symmetric gauging vanishes thanks to the de�nition of the EDA, S55 = 0). Thus we have in e�ect

a very simple construction of new uplifts for such gaugings. We saw how in the CSO(3, 0, 2) case,

there was a duality chain relating our geometry to the alternative uplift due to [57], involving Hopf

T-duality, non-Abelian T-duality, and M-theory uplifts. In the CSO(4, 0, 1) case, there appears not

to be such a chain using existing notions of generalised T-dualities.

We therefore have in this example a novel four-dimensional geometry, which encodes the Eu-

clidean 3-algebra with f̃abcd = ϵabcd, and which we propose to identify as a generalised U-dual of

M-theory on R × S3. The form of this background is strikingly similar to that of the usual non-
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Abelian T-dual of S3, suggesting that the various subtleties with the construction (for instance, how

do we determine the range of the coordinates? Should we regard it as U-fold?) can be interpreted

similarly as in this familiar case.

The structure of the Exceptional Drinfeld Algebra is based on the existence of isotropic sub-

algebras. We had hoped to �nd examples in which multiple four-dimensional isotropics would be

present, which could then be used as the basis for M-theory to M-theory generalised U-dualities

within the EDA set-up. Unfortunately, in the cases we have looked at, the conditions of the EDA

appear to be very restrictive. Not only does one have to have an isotropic subalgebra (and our

experience shows that they are limited in number), the whole EDA is further constrained exactly

such that it admits a geometric realisation in terms of just a trivector. The example of section 2.3.3

shows that even when there can be multiple M-theory isotropics, not all of them can be compatible

with an EDA. Equally we saw in the CSO(4, 0, 1) example that one can �nd dual IIB isotropics

that do not appear to admit a geometric generalised frame description

Note that from the IIB perspective, we have not systematically reproduced the EDA from the

IIB side but starting with M-theory examples considered IIB descriptions only for those cases. One

therefore needs to interpret the full set of EDA structure constants in terms of a IIB construction

and check whether all are geometrically realisable using a three-dimensional group manifold plus

bivectors, or whether additional geometric ingredients are needed. (Similarly one might also wonder

whether any information is lost in going from M-theory to IIA.)

Perhaps ultimately it may be fruitful to consider relaxing some of the axioms we used to de�ne

the EDA. By comparison, the relaxation of the Drinfeld double (which we recall has two isotropic

sub-algebras) to having only one isotropic subalgebra is vital to describe certain models with H-�ux

including the λ-deformed WZW [78]. It is likely one can also here �nd interesting algebras by either

relaxing the group structure on g or the three-algebra structure on dual generators.

Another limitation we may have been dealing with was simply our choice of dimension. When

one goes beyond SL(5) to higher-rank groups (the E6(6) case has been studied in [79]), it is likely that

the number of possible constructions and transformations will be much greater. Other restrictions

that we would hope to relax in the future would be to consider cases corresponding to less SUSY

and to generalise to coset spaces rather than group manifolds.

There are also open questions related to the mathematical description of exponentiation of an

EDA, when not a Lie algebra, and the precise formulation of the extended geometry in these cases.

This would likely make contact with the approach of [80] in which the physical space is identi�ed

with the quotient of an enlarged group manifold by a subgroup.

The algebraic structure of the exceptional Drinfeld algebra necessitated the introduction of a

trivector in the generalised parallelisation. It would be interesting to compare this with some other

approaches in the literature. For instance, given that the idea of generalised U-duality relies on

relating alternative frames giving rise to equivalent gaugings, it would be interesting to compare

to the approach of [51] which provides a systematic method for constructing frames given a set
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of generalised �uxes. This might also provide a method to carry out some of the generalisations

mentioned above. Further, it would be interesting to compare this construction with that of [81,82]

where the trivector is viewed as a deformation of a pre-existing geometry.

This study paves the way to understanding the speci�c features and requirements one needs

to de�ne an Exceptional Drinfeld Algebra (EDA), including dimensional limitation and isotropy

conditions. This helps us to consider several examples in the following chapters, and provides an

indicative classi�cation for further research in the direction of EDA and U-dual solutions.
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Chapter 3

Generalised U-dual solutions in

supergravity

3.1 Introduction

In this chapter we illustrate a method to take solutions of type IIA supergravity on a three-sphere,

with NSNS �ux, to new solutions of 11-dimensional supergravity on a four-dimensional space with

particular properties. Principal amongst these properties is that the geometry of this space is

secretly controlled by an underlying algebraic structure incorporating the structure constants of a

three-algebra symmetry. This structure generalises that found in solutions generated by non-abelian

T-duality, which produces geometries controlled by an underlying Lie algebra symmetry. We focus

on an example where we start with the F1-NS5 near horizon solution of type IIA supergravity, and

construct a new 11-dimensional solution involving M2-M5-M5' charges.

The context for our work is the question of how to formulate and use generalised dualities in M-

theory. The classic formulation of a string or M-theory duality is in terms of an equivalence between

theory 1 on space X1 and theory 2 on space X2. Conventional (abelian) T-duality corresponds to

the case when theory 1 is type IIA string theory, theory 2 is type IIB string theory, and X1 and X2

are circles of inverse radius. U-duality can be stated as an equivalence between M-theory on dual

d-dimensional tori, or type II theory on (d− 1)-dimensional tori.

In supergravity, these dualities can be rephrased as expressing the fact that a dimensional

reduction or consistent truncation of supergravity 1 on X1 gives the same lower-dimensional theory

as a reduction of supergravity 2 on X2. This allows duality to be used as a solution generating

technique, where solutions of supergravity 1 of the form M × X1 can be mapped to solutions of

supergravity 2 of the form M ×X2, by reducing and uplifting.

Generalised T- and U-duality extend this notion of duality to special classes of dual spacesX1 and

X2, which are not tori. At a minimum, this is a solution generating method: given a supergravity

solution meeting particular conditions, a generalised duality will produce a second supergravity
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solution related in a particular manner to the �rst. Whether this extends to a genuine duality of

the full (quantum) string or M-theory is far from guaranteed, even in T-duality examples where

worldsheet methods can be used to formulate aspects of the duality. However, these techniques

have proven their value in supergravity alone as a source of new solutions with applications to

holography, integrability and other areas (see [12] for a review and further references). It is perhaps

also worth remembering that what is now known as U-duality �rst appeared � almost accidentally

� in supergravity [83], long before the idea of M-theory was developed [1, 2].

The most well-appreciated generalisation of T- or U-duality is non-abelian T-duality (NATD) [3].

This has a worldsheet derivation, at least for the transformation of the NSNS sector �elds. The basic

structure of this duality is that it takes a space with non-abelian isometries, for example a group

manifold, to a space with fewer isometries. The dual solution is characterised by an underlying

algebraic structure controlled by `dual' structure constants f̃abc ̸= 0 inherited from the Lie algebra

of the original non-abelian symmetry.

Unlike abelian T-duality, the worldsheet path integral derivation of the dual background does not

lead to global information, in particular about the range or periodicity of the dual coordinates [4].

It is however possible to �nd various arguments to globally `complete' the supergravity solution. For

instance, combined with the correct transformations for the RR sector [7], non-abelian T-duality has

been extensively applied to generate AdS solutions with interesting CFT duals. A common approach

for NATD solutions with an AdS factor is to �nd a holographic completion by embedding the NATD

solution into a supergravity solution with a well-de�ned holographic interpretation, usually in terms

of a quiver �eld theory stemming from an underlying Hanany-Witten brane con�guration [84].

Alternatively, as pointed out in [63, 85], non-abelian T-dual solutions could be viewed globally as

T-folds.

Both abelian and non-abelian T-duality are special cases of Poisson-Lie T-duality [10,11]. This

applies to d-dimensional backgrounds which may in general lack isometries, but which geometrically

encode data associated to a 2d-dimensional Lie algebra called the Drinfeld double. This can be made

manifest by adopting a generalised geometric (or double �eld theory) description [23,24]. For back-

grounds admitting Poisson-Lie T-duality there exists a generalised parallelisation [43,44] providing

a consistent truncation to a lower dimensional gauged supergravity. In general, two inequivalent

higher-dimensional solutions admitting consistent truncations to the same lower dimensional theory

can be viewed as dual in the sense we are considering. (Indeed, NATD was expressed in terms of

consistent truncations [86] some years prior to its doubled geometry formulation [22�25]).

The generalised geometry approach opens the door to the study of new variants of U-duality, by

using the exceptional generalised geometry (or exceptional �eld theory) description of 11-dimensional

supergravity. This led to the proposals for Poisson-Lie U-duality and an associated `exceptional

Drinfeld algebra' (EDA) introduced in [26, 27] and further studied from a variety of angles in

[35,79,87�91].

Whereas the Drinfeld double naturally encodes a pair of ordinary Lie subalgebras, the content of
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the EDA is more exotic. The EDA itself is generically a Leibniz rather than a Lie algebra. For M-

theory backgrounds, the structure constants of the EDA are assembled from those of a Lie algebra

fab
c and a `dual' 3-algebra with structure constants f̃abcd (as well as other n-algebra structure

constants if the dimension of the algebra is large enough).

In our paper [87], cases where f̃abcd ̸= 0 but fabc = 0 were studied. These should underlie

backgrounds (termed `three-algebra geometries' in [87]) analogous to those which are generated by

non-abelian T-duality. A particularly simple example is the Euclidean 3-algebra in four-dimensions,

f̃abcd ∼ ϵabcd. The EDA in this case is the Lie algebra CSO(4, 0, 1), and the generalised geometry

construction gives a consistent truncation to seven-dimensional CSO(4, 0, 1) gauged supergravity.

An alternative consistent truncation in this case is provided by type IIA on S3 with NSNS �ux

[73]. This gives a solution generating mechanism, whereby type IIA solutions of this form can

be consistently truncated to solutions of the seven-dimensional CSO(4, 0, 1) gauged supergravity,

and then uplifted to new solutions of 11-dimensional supergravity using the generalised geometric

formulation of [26,27,87].

In this chapter, we apply this logic to produce a new 11-dimensional solution starting with a

non-extremal pp-F1-NS5 solution of type IIA, after taking the �ve-brane near horizon limit. Our

new 11-dimensional solution has the following properties:

� Just as for non-abelian T-duality, the global properties of the new solution are a priori un-

known. It can be described using a non-geometric generalised frame involving a trivector

linear in the new four-dimensional dual coordinates, and so one possible global interpretation

is as a U-fold. (See section 3.4.1.)

� The new solution can be viewed as carrying M2 and M5 brane charges. (See section 3.4.2.)

� In the extremal case, it admits a limit in which it becomes AdS3 × S3 × T4 foliated over an

interval. This solution �ts into the general class of M-theory AdS3 solutions derived in [92].

These solutions are directly inspired by solutions generated by non-abelian T-duality, and

provide a global completion of our solution (in this AdS limit), with a known holographic dual

and brane interpretation. This is exactly analogous to NATD solutions. (See section 3.4.3.)

� The full extremal solution can be viewed as a deformation of the AdS3 limit generated by a six-

vector deformation parameter valued in E6(6). This deformation is inherited from an SO(2, 2)

T-duality-valued bivector deformation of the extremal F1-NS5 near horizon solution, which

describes the interpolation from the AdS3 near horizon region to an asymptotic linear dilaton

spacetime. In that case, the deformation has been identi�ed as being dual to (a variant

of) the T T̄ deformation of the dual CFT [93]. This identi�es the task of understanding

a corresponding �eld theory deformation dual to our full solution as an interesting open

question. (See section 3.4.4.)
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� The AdS limit of our solution admits a 1
2 -BPS solution of the 11-dimensional Killing spinor

equation. (See section 3.4.5.)

� Finally, our solution can be used to generate new type IIA solutions by dimensional reduction

(and hence other type II solutions by standard dualities). (See section 3.4.6.)

3.2 Generalised T- and U-duality

3.2.1 Duality and generalised geometry

We study notions of generalised duality which can be cleanly expressed using techniques from

generalised geometry and double/exceptional �eld theory. Here we give a brief description of the

necessary methods. For the d-dimensional `internal space' X1 we work with the generalised tangent

bundle TX1 ⊕ Λ(p)T ∗X1. Sections of this are known as generalised vectors and consist of a pair

V = (v, ω) of a vector v and p-form ω. We only need the cases p = 1, corresponding to O(d, d)

generalised geometry relevant for discussing generalised T-duality in type II supergravity, and p = 2,

allowing us to describe the SL(5) exceptional generalised geometry relevant for discussion of 11-

dimensional supergravity when X1 is four-dimensional. In both these cases, there is a common

formula for the generalised Lie derivative of generalised vectors:

LV V ′ = (Lvv
′, Lvω

′ − ιv′dω) . (3.2.1)

This captures the local symmetries of X1, namely di�eomorphisms and gauge transformations of

a (p + 1)-form. The geometry in the guise of the metric and this (p + 1)-form is encoded in

a generalised metric, denoted MMN . This can be factorised in terms of a generalised vielbein,

MMN = EM
A∆ABEN

B. If we are just interested in describing the geometry of X1 then we may

take ∆AB = δAB, but in particular solutions on M ×X1 then ∆AB may depend on the coordinates

of M and describe scalar �elds in the lower dimensional theory on M obtained by reducing on

X1. The inverse generalised vielbein gives a generalised frame EA, providing a basis for generalised

vectors. This frame will generate an algebra under generalised Lie derivatives:

LEA
EB = −FABCEC . (3.2.2)

If FABC are constant, then EA provides a generalised parallelisation, which allows for a consistent

truncation to a lower-dimensional supergravity.

A second (dual) consistent truncation then corresponds to the existence of an alternative gen-

eralised parallelisation built using a frame ẼA describing the generalised geometry on X2. This

frame should obey the same algebra (3.2.2) (possibly up to some change of basis corresponding to

a constant O(d, d) or Ed rotation on the indices A). This allows one to translate the problem of
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�nding inequivalent dual consistent truncations to the problem of �nding algebras admitting mul-

tiple solutions to the di�erential equations encoded in (3.2.2). As we will review below, in known

variants of generalised or Poisson-Lie T- and U-duality, this can be done algorithmically within

certain classes of algebras.

3.2.2 Non-abelian T-duality

The prototypical example of a generalised duality is non-abelian T-duality [3]. This applies to

spacetimes with non-abelian isometries. A simple example is to consider a spacetime with an S3

factor (equipped with the round metric), regarded as the group manifold SU(2). Starting with the

worldsheet sigma model, we can gauge the (left) action of the group on itself and (assuming no

other �elds are turned on) arrive at the following dual background:

ds2 =
δij + xixj
1 + xkxk

dxidxj , Bij =
ϵijkx

k

1 + xmxm
, e−2φ = 1 + xkxk . (3.2.3)

The new dual coordinates xi, i = 1, 2, 3 originally appear in the dualisation procedure as Lagrange

multipliers imposing the �atness of the gauge �eld gauging the non-abelian isometry. Unlike in

abelian T-duality, path integral arguments do not constrain the periodicity or range of these coordi-

nates [4]: we will discuss two di�erent methods to specify the global completion of NATD solutions

below.

Underlying this duality is a pair of generalised frames for the O(d, d) generalised geometry.

(We describe this now with reference to the speci�c SU(2) example, with d = 3, but the essential

features apply to d-dimensional group manifolds and their duals.) The �rst describes the consistent

truncation on the S3 ∼= SU(2) group manifold. It makes use of the following geometric data: the

left-invariant forms la and dual vectors va obeying

dla = 1
2fbc

alb ∧ lc , Lvavb = −fabcvc , (3.2.4)

where for SU(2) the algebra index is three-dimensional, a = 1, 2, 3, and the structure constants are

fab
c = ϵab

c. The generalised frame EA = {Ea, Ea} gives a basis for sections of T (S3)⊕ T ∗(S3) with

Ea = (va, 0) , Ea = (0, la) . (3.2.5)

Under generalised Lie derivatives, we have the algebra (3.2.2) with

FAB
C → {Fabc = fab

c , F abc = 0 , Fabc = F abc = 0} . (3.2.6)

The second generalised frame describes the dual consistent truncation on the NATD geometry

(3.2.3). This is not a group manifold, but it can be described in terms of an underlying Poisson-Lie
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group structure associated to the group U(1)3 (or R3) with a non-trivial Poisson-Lie bivector, πab.

The latter here obeys dπab = −f̃abc l̃c, where l̃a are trivial left-invariant one-forms, l̃ai = δci (with

dual vectors ṽai = δia) and f̃
ab
c are dual structure constants. For the NATD of SU(2), these also

describe the su(2) Lie algebra with f̃abc = ϵabc. We can therefore take a bivector linear in the

coordinates πab = −ϵabcxc. The generalised frame ẼA = {Ẽa, Ẽa} gives a basis for sections of the

extended tangent bundle of the dual geometry, with

Ea = (ṽa, 0) , Ea = (πabṽb, l̃
a) . (3.2.7)

Under generalised Lie derivatives, we have the algebra (3.2.2) with

FAB
C → {Fabc = 0 , F abc = f̃abc , Fabc = F abc = 0} . (3.2.8)

The use of the generalised frame (3.2.7) allows for a non-geometric interpretation of the global

properties of the NATD geometry. As pointed out in [63, 85], if we take the coordinates xi to be

periodic, then under xi ∼ xi + constant the bivector πab shifts by a constant. Such a bivector shift

can be viewed as a non-geometric O(3, 3) transformation. If we patch the dual solution by such a

transformation, it must be regarded as a T-fold.

It is however more common to construct global completions of NATD solutions by leveraging

information about brane charges and � for cases where there is an AdS factor in the full spacetime

� holographic duals. To illustrate how this works, consider the example of the IIB D1-D5 near

horizon solution, for which the spacetime is AdS3 × T4 × S3, supported by RR �ux. The NATD

dual geometry is a solution of massive IIA supergravity, with:

ds2 = ds2AdS3 + ds2
T4 + dϱ2 + ϱ2

1+ϱ2
ds2

S2
, B = ϱ3

1+ϱ2
VolS2 , e−2φ = 1 + ϱ2 , (3.2.9)

along with dual RR �elds [7]. Here we have adopted spherical coordinates xi → (ϱ, θ, ϕ). The

issue of the non-compactness of dual coordinates is then concentrated in determining the range of

ϱ. This can be done by embedding the NATD solution into a global completion with a well-de�ned

holographic dual and brane interpretation. For the NATD of AdS5×S5 obtained in [7] this method

was demonstrated in [84], and has since been applied to many examples. For the solution (3.2.9),

the requisite completion is provided by the construction and analysis [94�97] of a general class of

massive IIA AdS3 × S2 solutions with 3d N = (0, 4) supersymmetry and an SU(2) structure. The

NSNS �elds take the form:

ds2 = u√
h4h8

(ds2AdS3 +
h8h4

4h8h4+u′2
ds2

S2
) +

√
h4
h8
ds2

T4 +
√

h4h8
u dϱ2 ,

B = 1
2(−ϱ+

uu′

4h8h4+u′2
+ 2nπ)VolS2 ,

(3.2.10)

This solution exhibits the following general features found in global completions of NATD AdS
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solutions: The coordinate ϱ takes values in a �nite interval which is further divided into subintervals

ϱ ∈ [ϱn, ϱn+1]. The functions determining the solution (u, h4 and h8) are linear in ϱ. They may

however only be piecewise linear, and their slopes can jump from subinterval to subinterval. The

2-form B is modi�ed by a large gauge transformation as one crosses each subinterval. There is

a (�at space) dual brane con�guration, with some branes wrapping the ϱ direction and others

orthogonal and located at the endpoints of the subintervals. This dual brane con�guration allows

for the identi�cation of a dual quiver �eld theory. The NATD solution (3.2.9) can be regarded as

giving the more general solution in the �rst subinterval, with ϱ ∈ [0, ϱ1], and u ∼ h4 ∼ h8 ∼ ϱ.

Restricting to the case of vanishing Romans mass, the solutions of [94�97] give ordinary IIA

solutions which can be uplifted to M-theory [92], giving a class of 11-dimensional AdS3 solutions

which we will re-encounter later.

3.2.3 Poisson-Lie T- and Poisson-Lie U-duality

Poisson-Lie T-duality Non-abelian T-duality can be viewed as a special case of Poisson-Lie

T-duality [10, 11], which applies to spacetimes which may lack isometries. They instead admit an

underlying Poisson-Lie group structure, involving a group G equipped not only with left-invariant

forms and vectors, but with a Poisson-Lie bivector. Altogether these data obey:

dla = 1
2fbc

alb ∧ lc , Lvavb = −fabcvc , dπab = −f̃abclc − 2lcfcd
[aπb]d , (3.2.11)

involving simultaneously structure constants for both a Lie algebra g and a `dual' Lie algebra g̃. The

corresponding spacetime geometry is very e�ciently described by a generalised frame with: [23,24]

Ea = (va, 0) , Ea = (πabvb, l
a) , FAB

C → {Fabc = fab
c , F abc = f̃abc , Fabc = F abc = 0} .

(3.2.12)

The case of a standard non-abelian group manifold then has fabc ̸= 0, f̃abc = 0, while the NATD

has the reverse. The full doubled Lie algebra (with structure constants FABC) here is known as the

Drinfeld algebra. Introducing generators TA = {Ta, T̃ a} obeying [TA, TB] = FAB
C , we have

[Ta, Tb] = fab
cTc , [Ta, T̃

b] = f̃ bcaTc − fac
bT̃ c , [T̃ a, T̃ b] = f̃abcT̃

c (3.2.13)

The algebra is further equipped with an invariant bilinear form de�ned by η(Ta, T̃
b) = δba, and

otherwise zero. The subalgebras g = {Ta} and g̃ = {T̃ a} are maximally isotropic with respect to

this bilinear form, and duality at the level of the algebra involves changing one maximally isotropic

subalgebra for another. This is upgraded to a duality at the level of geometry by constructing a

dual generalised frame now built using the left-invariant forms and vectors of G̃ = exp g̃ (hence

the frame generates the new maximally isotropic subalgebra as its vector part), together with the

corresponding Poisson-Lie bivector encoding the structure constants for g.
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Poisson-Lie U-duality A proposal was made in [26, 27] for the algebra and generalised frames

which should describe a notion of Poisson-Lie U-duality. Let us concentrate on the case of d = 4,

for which the U-duality group is SL(5). The proposal is to consider the natural generalisation of

the Poisson-Lie group to the case where the bivector is replaced by a trivector. We then specify

left-invariant forms and vectors and this trivector to obey1

dla = 1
2fbc

alb ∧ lc , Lvavb = −fabcvc , dπabc = f̃abcdl
d + 3fed

[aπbc]dle , (3.2.14)

where now a, b = 1, . . . , 4. This introduces dual structure constants f̃abcd which can be viewed

as de�ning an antisymmetric three-bracket, associated to a 3-algebra rather than an ordinary Lie

algebra.

These can be used to construct a generalised frame for SL(5) generalised geometry. A generalised

vector in this case is a pair of a vector and a two-form, and lies in the ten-dimensional (antisym-

metric) representation of SL(5). We pick a generalised frame EA = (Ea, E
ab), where Eab = −Eba,

given by

Ea = (va, 0) , Eab = (πabcvc, l
a ∧ lb) . (3.2.15)

Computing the algebra of generalised Lie derivatives (3.2.2) one �nds an algebra dubbed the excep-

tional Drinfeld algebra (EDA). In terms of generators TA = (Ta, T̃
ab), this algebra is

[Ta, Tb] = fab
cTc , [T̃ ab, T̃ cd] = 2f̃ab[ceT̃

d]e ,

[Ta, T̃
bc] = 2fad

[bT̃ c]d − f̃ bcdaTd , [T̃ bc, Ta] = 3f[de
[bδ

c]
a]T̃

de + f̃ bcdaTd .
(3.2.16)

Note that these brackets are generically not antisymmetric: the EDA is generically an example of

Leibniz rather than a Lie algebra. Closure of the algebra imposes the Jacobi condition for the Lie

algebra with structure constants fabc, a cocycle condition involving both fab
c and f̃abcd, and the

fundamental identity for three-algebras involving just f̃abcd.

A notion of isotropic subalgebra exists, using now not a bilinear form but a bilinear map η :

10 ⊗sym 10 → 5̄. The subalgebra g = {Ta} is isotropic with respect to this de�nition. However,

unlike in the case of the Drinfeld double, we are not guaranteed the existence of a second, dual

maximal isotropic subalgebra. Note as well that the `symmetry' between f and f̃ is now broken,

and there are now more dual generators T̃ ab than physical ones Ta.

One could nonetheless proceed to interrogate the notion of non-abelian U-duality, by starting

with solutions de�ned by fabc ̸= 0, f̃abcd = 0, and dualising these, as for instance in [88]. However, an

alternative goal is to inverse the usual order, and instead look at solutions with fabc = 0, f̃abcd ̸= 0.

1For simplicity, these formulae assume that fac
c = 0 and that an additional scalar present in the generalised frame

is constant, as is the case for the example we will study. See appendix A.3.4 for more general formulae.
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3.2.4 Dual three-algebras and beyond Poisson-Lie U-duality

The logic of focusing on solutions with fab
c = 0, f̃abcd ̸= 0 is that they should be in some sense

similar to the solutions generated by NATD. Our goal is therefore to construct examples of such

solutions, verify whether they are actually `dual' to known solutions, and verify to what extent this

really resembles NATD. Furthermore, such solutions will encode three-algebra structure constants

and so are perhaps intrinsically interesting as examples of a relationship between geometry and a

non-standard algebraic structure.

In [87], examples of this kind were studied, and a �rst look at the corresponding `3-algebra ge-

ometries' was taken, but without constructing full supergravity solutions. A particularly interesting

example is to take:

f̃abcd ∝ ϵabcd . (3.2.17)

This is the unique Euclidean 3-algebra. It can be viewed as the direct generalisation of the NATD

of SU(2), for which we had f̃abc = ϵabc. The conditions (3.2.14) can be solved by taking lai = δai ,

va
i = δia and a linear trivector, πabc ∝ ϵabcdx

d, introducing coordinates xi, i = 1, . . . , 4. The EDA

(3.2.16) in this case turns out to be the Lie algebra CSO(4, 0, 1).

However, it turned out that it is not possible to �nd valid dual isotropic subalgebras within

this EDA [87]. This precludes using the Poisson-Lie U-duality framework of [26, 27] to construct a

dual con�guration. As noted in [87], this suggests simply that this framework may just be more

restrictive than the T-duality case. In particular, we could relax the condition that the dual isotropic

be a subalgebra. For example, we could allow ourselves to consider alternative bases (for the same

overall algebra) but for which the selected physical generators Ta obey

[Ta, Tb] =
1
2FabcdT̃

cd . (3.2.18)

This would be the starting point for de�ning a �quasi'-EDA.2

Equivalently, we may forget about speci�c algebraic interpretations. The EDA construction

allows us to construct a generalised frame realising a consistent truncation from 11-dimensional

SUGRA to 7-dimensional CSO(4, 0, 1) gauged SUGRA. This consistent truncation is on a non-

trivial background geometry, resulting from the generalised frame with the trivector. However, it is

already known that this gauged SUGRA can be obtained using a consistent truncation of type IIA

on an S3 with NSNS �ux [73]. Viewing this as M-theory on S3×I, we have constant four-form �ux, in

line with the commutation relation (3.2.18).3 Hence, we can alternatively �nd `generalised U-dual'

solutions by starting with solutions of type IIA supergravity to which this consistent truncation

can be applied, reducing these to 7 dimensions, and then uplifting them using our EDA generalised

2In the case of T-duality, it is possible to relax the condition that the Drinfeld double has two isotropic subalgebras,
allowing to describe models with H-�ux, such as those studied in the context of certain integrable deformations in [78].

3This algebra would be explicitly realised by generalised geometric constructions of this consistent truncation
[44,57] � see [87] for a comparison with the generalised frames of [57] in particular.
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frame for this gauging. We will now adopt this procedure and show what it leads to for a simple

brane intersecting solution.

3.3 11-dimensional solution from exceptional Drinfeld algebra up-

lift

3.3.1 Type IIA pp-F1-NS5 and reduction to 7 dimensions

We begin our solution generating procedure by taking as our original solution the non-extremal pp-

F1-NS5 solution of type IIA supergravity. After taking the �ve-brane decoupling limit (as reviewed

in appendix A.3.1) to go to the near horizon limit of the �ve-branes, this solution becomes:

ds2s = f−1
1 (−f−1

n Wdt2 + fn(dz +
1
2
r20 sinh 2αn

fnr2
dt)2) +R2W−1 dr

2

r2
+R2ds2

S3
+ ds2

T4 ,

H(3) = r20 sinh 2α1
1

r3f21
dt ∧ dz ∧ dr + 2R2VolS3 , e−2φ = r2

R2 f1 ,
(3.3.1)

where W = 1− r20
r2
, R2 ≡ N5l

2
s and

f1 = 1 +
r20 sinh2 α1

r2
, fn = 1 +

r20 sinh2 αn

r2
, sinh 2α1 =

2N1l2s
v

1
r20
, sinh 2αn = 2Nnl4s

R2
xv

1
r20
. (3.3.2)

Here N1 is the number of F1s, N5 the number of NS5s, Nn the number of units of pp-wave momen-

tum, and the four-dimensional transverse space is taken to be a torus of volume (2πls)
4v.

We will be particularly interested in the extremal limit. Turning o� the pp-wave contribution

(Nn = 0) the solution in this limit is

ds2s = f−1
1 (−dt2 + dz2) +R2 dr

2

r2
+R2ds2

S3
+ ds2

T4 ,

H(3) =
2r21
r3f21

dt ∧ dz ∧ dr + 2R2VolS3 , e−2φ = r2

R2 f1 ,

(3.3.3)

with f1 = 1 +
r21
r2
, r21 = N1l

2
s/v. This exhibits an interpolation from the near horizon region of the

F1 to an asymptotic linear dilaton background. The former corresponds to taking f1 =
r21
r2

and the

solution has the form

ds2s =
r2

r21
(−dt2 + dz2) +R2 dr

2

r2
+R2ds2

S3
+ ds2

T4 ,

H(3) =
2r

r21
dt ∧ dz ∧ dr + 2R2VolS3 , e−2φ =

r21
R2 ,

(3.3.4)

with the metric being AdS3 ×T4 × S3. Asymptotically, setting f1 = 1 and de�ning a coordinate U
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by r = ReU/R the solution approaches the pure NS5 near horizon solution:

ds2s = −dt2 + dz2 + dU2 +R2ds2
S3

+ ds2
T4 , H(3) = 2R2VolS3 , e−2φ = e2U/R , (3.3.5)

with a �at metric and a linear dilaton. We will discuss later how this interpolating behaviour is

inherited by our new 11-dimensional solution.

Owing to the presence of the S3 factor with accompanying NSNS �ux, the background (3.3.1)

can be reduced to a solution of seven-dimensional CSO(4, 0, 1) gauged maximal supergravity using

the ansatz of [73]. The necessary part of the truncation ansatz that we need is summarised in

appendix A.3.2. Applying this to the solution (3.3.1) gives the seven-dimensional metric, scalars

Mab and Φ, and a three-form �eld strength F̃(3):

ds27 = (r/R)4/5f
2/5
1

(
f−1
1 (−f−1

n Wdt2 + fn(dz +
1
2
r20 sinh 2αn

fnr2
dt)2) +R2W−1 dr

2

r2
+ ds2

T4

)
,

Mab = δab , Φ = f
−4/5
1 (r/R)−8/5 , F̃(3) = r20 sinh 2α1

1

f21 r
3
dt ∧ dz ∧ dr .

(3.3.6)

All other �elds in the ansatz are vanishing. We next identify the data of (3.3.6) with the ap-

propriate SL(5) covariant �elds of the CSO(4, 0, 1) gauged supergravity. Take A = (a, 5) to be a

�ve-dimensional fundamental SL(5) index, and let A denote a ten-dimensional index for the anti-

symmetric representation. The SL(5) covariant �elds are: the SL(5)-invariant metric ds27, a scalar

matrix MAB parametrising the coset SL(5)/SO(5), and gauge �elds in SL(5) representations. The

latter include a one-form Aµ
A, in the 10-dimensional representation and a two-form BµνA in the

�ve-dimensional representation, with corresponding �eld strengths FµνA and HµνρA. The �elds

(3.3.6) provide a non-trivial scalar matrix and three-form �eld strength:

MAB =

(
Φ−1

4 δab 0

0 Φ

)
, H(3)A = (0, F̃(3)) . (3.3.7)

3.3.2 11-dimensional uplift via exceptional �eld theory

Having mapped our solution to seven-dimensional gauged supergravity, we now uplift it to a di�erent

higher-dimensional solution using a distinct consistent truncation corresponding to the exceptional

Drinfeld algebra realisation of the CSO(4, 0, 1) algebra [87]. This makes use of the SL(5) covariant

reformulation of supergravity provided by SL(5) exceptional �eld theory (ExFT). To describe this

uplift, let yµ denote seven-dimensional coordinates describing the solution (3.3.6). We introduce an

SL(5)-valued generalised frame �eld denoted by ẼMA(x) in the ten-dimensional representation or

by ẼM
A(x) in the �ve-dimensional representation, as well as a scalar function ∆(x). These depend

on a set of four-dimensional coordinates xi, i = 1, . . . , 4, which will describe the internal space of the

new eleven-dimensional solution. The new eleven-dimensional solution has a simple SL(5) covariant
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construction: we de�ne the ExFT external metric, generalised metric and �eld strengths by

gµν(y, x) = ∆2(x)gµν(y) , MMN (y, x) = ẼA
M(x)ẼB

N (x)MAB(y) ,

F(2)
M (y, x) = ∆(x)ẼMA(x)F(2)

A(y) , H(3)M(y, x) = ∆2(x)ẼA
M(x)H(3)A(y) .

(3.3.8)

It is in fact the combination EMA ≡ ∆ẼMA that must be used to construct the generalised frame

(3.2.15) obeying the generalised parallelisation condition (3.2.2). To realise the CSO(4, 0, 1) algebra

we take trivial left-invariant forms and vectors, lai = δai , va
i = δia, and a trivector linear in the

coordinates xi. The choice πabc = 1
Rϵ

abc
dx

d reproduces the CSO(4, 0, 1) algebra and the scalar

potential arising from the truncation of type IIA on an S3 of radius R (see appendix A.3.4). Note

here we can use δai to identify curved and �at indices here, for convenience. In terms of the �ve-

dimensional representation of SL(5), this gives a generalised frame:

ẼA
M =

(
δam 0

−xm
R 1

)
, ∆ = 1 . (3.3.9)

Using (3.3.9) and (3.3.8) applied to the background arising from the pp-F1-NS5 solution, we obtain

a generalised metric and three-form of the form

MMN =

(
Φ−1

4 δmn +Φ 1
R2xmxn −Φ 1

Rxm

−Φ 1
Rxn Φ

)
, H(3)M = (−xm

R F̃(3), F̃(3)) , (3.3.10)

while the seven-dimensional ExFT external metric is unchanged. It is then a straightforward matter

to convert this to a standard description in terms of the eleven-dimensional metric and four-form

�eld strength using the known ExFT dictionary (see for instance the review [49]), summarised in

appendix A.3.3.

type IIA SUGRA
pp-F1-NS5 near horizon

CSO(4, 0, 1) gSUGRA

11-dim SUGRA
M2-M5-M5' 3-algebra geometry

IIA on S3 truncation

uplift via EDA generalised frame

`generalised U-dual'

Figure 3.1: The relationship between our solutions
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3.3.3 Resulting solution

Using equation (A.3.15) for the parametrisation of the generalised metric allows one to obtain the

new internal four-dimensional metric and three-form, with the latter given by

Cijk = −
ϵijklRx

l

r2f1 + xmxm
. (3.3.11)

As there is no ExFT one-form present, the Kaluza-Klein vector Aµi vanishes, and using (A.3.12)

one obtains the full 11-dimensional metric

ds211 = (r2f1 + xkx
k)1/3

[
(r2f1)

1/3

R4/3

(
ds2M3

+ ds2
T4

)
+R2/3(r2f1)

1/3

(
δij +

xixj
r2f1

)
r2f1 + xkxk

dxidxj

]
(3.3.12)

where

ds2M3
= f−1

1 (−f−1
n Wdt2 + fn(dz +

1
2
r20 sinh 2αn

fnr2
dt)2) + R2dr2

r2W
. (3.3.13)

The three-form (3.3.11) and the new four-dimensional part of the metric in equation (3.3.12) closely

resemble the two-form and metric appearing in the NATD of S3 (3.2.3), but now in one dimension

higher (this is easiest to see by setting r2f1 = 1).

To complete the solution, we use (A.3.16) to extract the remaining components of the four-

form �eld strength (via a dualisation, as Hµνρ5 directly gives components of the seven-form �eld

strength). This gives a total four-form �eld strength:

F(4) =
r20 sinh 2α1

(r2f1)2
rxi
R

dt ∧ dz ∧ dr ∧ dxi − r20 sinh 2α1

R3
VolT4

+
R 1

4!ϵijkldx
i ∧ dxj ∧ dxk

(r2f1 + xpxp)2
∧
(
(4r2f1 + 2xqx

q)dxl − 4xl∂r(r
2f1)dr

)
.

(3.3.14)

The dual seven-form �eld strength is4

⋆F(4) =
r20 sinh 2α1

r2f1 + xpxp
ϵijklx

l

R2
1
3!dx

i ∧ dxj ∧ dxk ∧VolT4

− r20 sinh 2α1

rf1(r2f + xpxp)
1
4!ϵijkldt ∧ dz ∧ dr ∧ dxi ∧ dxj ∧ dxk ∧ dxl

+
2r

R4
(2r2f1 + xkx

k)dt ∧ dz ∧ dr ∧VolT4 +
r2W

R3rf1

xi
R
∂r(r

2f1)dt ∧ dz ∧ dxi ∧VolT4 .

(3.3.16)

4We de�ne the Hodge dual of a p-form F via

(⋆F )µ1...µD−p =
1

p!

√
|g|ϵµ1...µD−pν1...νpg

ν1ρ1 . . . gνpρpFρ1...ρp , (3.3.15)

where ϵµ1...µD denotes the Levi-Civita symbol ϵ01...D−1 = +1. This obeys ⋆ ⋆ F = (−1)(−1)p(D−p)F .
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Note that (⋆F(4))ijky1...y4 = +CijkFy1...y4 . We have d ⋆ F(4) = +1
2F(4) ∧ F(4).

3.4 Analysis of the extremal 11-dimensional solution

We now restrict to the extremal limit and set the pp-wave contribution to zero, making the replace-

mentsW → 1, f1 → 1+
r21
r2
, r20 sinh 2α→ 2r21, αn → 0. We can also simplify the form of our solution

by appropriately rescaling the coordinates as well as the metric and three-form so as to e�ectively

set the constants r1 and R equal to 1.5

3.4.1 Solution as a U-fold

Having made these simpli�cations, we henceforth study the following solution of 11-dimensional

supergravity:

ds211 = (r2f1 + xkx
k)1/3(r2f1)

1/3
(
f−1
1 (−dt2 + dz2) +

dr2

r2
+ ds2

T4

)
+ (r2f1 + xkx

k)−2/3(r2f1)
1/3

(
δij +

xixj
r2f1

)
dxidxj

F(4) =
2rxi

(r2f1)2
dt ∧ dz ∧ dr ∧ dxi − 2VolT4 +

(4r2f1 + 2xqx
q)

(r2f1 + xpxp)2
1
4!ϵijkldx

i ∧ dxj ∧ dxk ∧ dxl

+
xl∂r(r

2f1)

(r2f1 + xpxp)2
1
3!ϵijkldr ∧ dxi ∧ dxj ∧ dxk .

(3.4.1)

with f1 = 1 + 1
r2
.

If we take the xi coordinates to be periodic, this should be identi�ed as a U-fold. This is analo-

gous to the interpretation of NATD solutions as T-folds suggested in [63,85]. For our solution, this

U-fold interpretation follows from the form of the EDA frame, which features a trivector depending

linearly on the coordinates xi. The patching for xi ∼ xi+ constant amounts therefore to a shift of

this trivector, which is a non-trivial non-geometric U-duality transformation. From (3.3.9) we have

ẼA
M(xi +Rni) = ẼA

NU
N

M , UN
M =

(
δnm 0

−nm 1

)
. (3.4.2)

If ni = δijn
j are integers the matrix de�nes an SL(5;Z) U-duality transformation. We can describe

its action on the four-dimensional internal geometry with metric ϕij and three-form Cijk using the

generalised metric MMN , which is a symmetric unit determinant �ve-by-�ve matrix, parametrised

by the metric and three-form as in (A.3.15). Under U ∈ SL(5), this transforms as MMN →

5To be precise: this involves setting (t, z, yI) = R(t̃, z̃, ỹI) and (r, xi) = r1(r̃, x̃
i), such that ds211 = R2/3r

4/3
1 d̃s

2

11,

F(4) = Rr21F̃(4). We then work with d̃s
2

11 and F̃(4), in which no dimensionful constants appear (and drop tildes). This
scaling of the metric and gauge �eld is a symmetry of the equations of motion (the trombone). We can also introduce
this scaling directly into the ExFT frame by introducing a constant parameter α as in appendix A.3.4.
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UP
MUQ

NMPQ. In the present case, we factorise MMN (y, x) = ẼA
M(x)MAB(y)Ẽ

B
N (x), where

as above y denotes 7-dimensional coordinates. This manifestly shows that the generalised metric

and hence four-dimensional metric and three-form together transform under the U-duality transfor-

mation, or monodromy, in (3.4.2), for periodic xi.

Associated to this U-fold interpretation is the fact that one can interpret the three-algebra

structure constants as (non-geometric) M-theory Q-�ux [62]. This is here de�ned by Qa
bcd ∼

∂aπ
bcd ∼ f̃ bcda.

We will not further pursue this U-fold interpretation, but now focus on ordinary geometric

properties of the solution (3.4.1).

3.4.2 Solution in spherical coordinates and brane charges

We can rewrite the solution (3.4.1) by changing to spherical coordinates, letting xi = ρµi with

µiµjδij = 1. This is what is usually done for solutions obtained via non-abelian T-duality. The

possible non-compactness of the solution will now be determined by the range of ρ. In these

coordinates, the metric and �eld strength of (3.4.1) have the form

ds211 = (r2f1 + ρ2)1/3(r2f1)
1/3

(
1

f1
(−dt2 + dz2) +

dr2

r2
+ ds2

T4 +
dρ2

r2f1

)
+ (r2f1 + ρ2)−2/3(r2f1)

1/3ρ2ds2
S3
,

F(4) =
2rρ

(r2f1)2
dt ∧ dz ∧ dr ∧ dρ− 2VolT4

+
(4r2f1 + 2ρ2)

(r2f1 + ρ2)2
ρ3dρ ∧VolS3 −

ρ4∂r(r
2f1)

(r2f1 + ρ2)2
dr ∧VolS3 .

(3.4.3)

The dual �eld strength is

⋆F(4) = − 2ρ4

r2f1 + ρ2
VolS3 ∧VolT4 −

2ρ3

rf1(r2f1 + ρ2)
dt ∧ dz ∧ dr ∧ dρ ∧VolS3

+ 2r(2r2f1 + ρ2)dt ∧ dz ∧ dr ∧VolT4 +
rρ

f1
∂r(r

2f1)dt ∧ dz ∧ dρ ∧VolT4 .

(3.4.4)

We can discuss the possible M2 and M5 brane charges carried by this solution. These will be given

by integrals6

qM2 =

∫
JPage , qM5 =

∫
F(4) , (3.4.5)

where the Page charge density for M2 branes is JPage = ⋆F(4) − 1
2C(3) ∧ F(4). Let us consider

the latter. Let Csphere and Ctorus denote the restriction of the three-form to the sphere and torus

6It is possible to make this more exact and to in particular require quantised charges: we defer this discussion to
appendix A.4.
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respectively. We have

Ctorus ∧ dCsphere + Csphere ∧ dCtorus = d(Ctorus ∧ Csphere) + 2Csphere ∧ dCtorus . (3.4.6)

An explicit choice of potential is:

C(3) =
ρ

f1
dt ∧ dz ∧ dρ− 2c(3) +

ρ4

r2f1 + ρ2
VolS3 , (3.4.7)

where dc(3) = VolT4 . For this potential, the second term in (3.4.6) cancels with the contribution

from ⋆F(4) such that JPage = −d
(
c(3) ∧ ρ4

r2f1+ρ2
VolS3

)
and therefore is a total derivative. Hence the

M2 charge vanishes up to large gauge transformations. In particular we can consider a large gauge

transformation given by

C(3) → C(3) + 4πjVolS3 (3.4.8)

such that TM2

∫
C(3) → TM2

∫
C(3) + 2πj, with j ∈ Z. Using (3.4.6) this means

JPage → 8πjVolS3 ∧VolT4 , (3.4.9)

which generates a non-trivial M2 charge.

Next we consider the possible M5 brane charge. We �rstly have a non-trivial M5 charge given by

integrating F(4) against the torus. The M2 charge generated by the above large gauge transformation

will be proportional to this M5 charge.

A further M5 charge, denoted M5', could be obtained by integrating F(4) over a four-cycle

involving r, ρ and the sphere directions. Following closely the analysis of NATD solutions in [98],

we look for a path in the (r, ρ) directions such that the three-sphere shrinks to zero size at beginning

and end of the path, giving a closed four-cycle. This happens at ρ = 0; suppose it also happens for

some value of r = rs. Then a possible integration is to integrate from ρ = 0 to ρ = ρ̄ at �xed r = r̄,

and then integrate at �xed ρ̄ from r̄ to r = rs. Letting C(ρ, r) =
ρ4

r2f1+ρ2
we would then have

∫ ρ=ρ̄

ρ=0
F(4)

∣∣∣
r=r̄

+

∫ r=rs

r=r̄
F(4)

∣∣∣
ρ=ρ̄

= 2π2 (C(ρ̄, r̄)− C(0, r̄) + C(ρ̄, rs)− C(ρ̄, r̄))

= 2π2(C(ρ̄, rs)− C(0, r̄)) =
2π2ρ̄4

r2sf1(rs) + ρ̄2
.

(3.4.10)

This is independent of r̄. The issue is now whether one can �nd a closed four-cycle with the above

properties. This issue is linked to the question of �nding a global completion of the solution (3.4.3).

Indeed, for the full metric (3.4.3) there is no way to close the cycle to give a non-zero value for the

above integration. This is a signal that one needs additional ingredients, such as will be discussed

in the next subsection at least for the AdS limit.

For the solution with f1 = 1, that we would obtain by starting with the pure NS5 near horizon
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solution (3.3.5), extra ingredients are not needed. Our new 11-dimensional solution in this case has

the form:

ds211 = (r2 + ρ2)1/3r2/3
(
−dt2 + dz2 +

dr2

r2
+ ds2

T4 +
dρ2

r2

)
+ (r2 + ρ2)−2/3r2/3ρ2ds2

S3
,

F(4) = d

(
ρ4

r2 + ρ2
VolS3

)
.

(3.4.11)

A valid choice for the above four-cycle is to take rs = 0 for which

qM5 = 2π2ρ̄2 . (3.4.12)

Restoring dimensionful constants and requiring this to give a quantised brane charge provides one

possible way to determine the range of ρ, �xing it to lie in the �nite interval ρ ∈ [0, ρ̄].

3.4.3 AdS limit and holographic completion

The AdS limit amounts to setting r2f1 = 1 in the solution (3.4.3):

ds211 = (1 + ρ2)1/3
(
ds2AdS3 + dρ2 + ds2

T4

)
+ (1 + ρ2)−2/3ρ2ds2

S3
,

F(4) = 2ρVolAdS3 ∧ dρ− 2VolT4 +
(4 + 2ρ2)

(1 + ρ2)2
ρ3dρ ∧VolS3 .

(3.4.13)

In terms of the original F1-NS5 solution (3.3.3), this corresponds to going to the near horizon region

also of the F1.

The solution (3.4.13) �ts into a general class of M-theory AdS3 solutions constructed in [92].

These solutions are of the form AdS3 × S3/Zk × CY2 foliated over an interval. They are closely

related to the AdS3 × S2 solutions (3.2.10) in massive IIA which provide a way to complete the

NATD of AdS3×T4×S3. Restricting this class of solutions to ordinary IIA (by setting h8 constant)

allows for an uplift to M-theory. The resulting solutions presented in [92] read as follows:

ds211 = ∆

(
u√
ĥ4h8

ds2AdS3 +

√
ĥ4
h8
ds2CY2

+

√
ĥ4h8
u dϱ2

)
+
h28
∆2

ds2
S3/Zk

, ∆ =
h
1/2
8

(
ĥ4h8+

1
4u

′2
)1/3

ĥ
1/6
4 u1/3

,

F(4) = −d
(
uu′

2ĥ4
+ 2ϱh8

)
∧VolAdS3 − ∂ϱĥ4 VolCY2 + 2h8 d

(
−ϱ+ uu′

4ĥ4h8+u′2

)
∧VolS3/Zk

,

(3.4.14)

where the quotiented 3-sphere is written as an S1 Hopf �bration over an S2

ds2
S3/Zk

=
1

4

[(
dψ
k + η

)2
+ ds2

S2

]
, dη = VolS2 . (3.4.15)

The functions u and ĥ4 are again linear functions of ϱ, but h8 is given by h8 = k an integer.
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To match this to our solution (3.4.13), we relate our radial spherical coordinate ρ to the coor-

dinate ϱ appearing in (3.4.14) via:

ρ2 = 2ϱ . (3.4.16)

This allows us to write (3.4.13) as

ds211 = (1 + 2ϱ)1/3
(
ds2AdS3 +

dϱ2

2ϱ + ds2
T4

)
+ (1 + 2ϱ)−2/32ϱds2

S3
,

F(4) = 2VolAdS3 ∧ dϱ− 2VolT4 +
8(1 + ϱ)

(1 + 2ϱ)2
ϱdϱ ∧VolS3 .

(3.4.17)

It is straightforward to con�rm that the solution (3.4.17) is included in the class of solutions (3.4.14)

for:7

k = 1 , u(ϱ) = ĥ4(ϱ) = 2ϱ , (3.4.18)

giving ∆ = (1 + 2ϱ)1/3/(2ϱ)1/2, and taking the CY2 to correspond to T4 speci�cally (we could

equally well have considered our solution on either T4 or K3 from the beginning).

The general class of solutions (3.4.14) then has the necessary properties needed to provide a

global completion and holographic dual of the AdS limit of our solution. As speci�ed in [92], one

considers the following set-up. The coordinate ϱ takes values in a �nite interval ϱ ∈ [0, 2π(P + 1)],

which is divided into subintervals ϱ ∈ [2πj, 2π(j +1)] for j = 0, . . . P . The function u is linear in ϱ,

while ĥ4 is piecewise linear, with its slope jumping from subinterval to subinterval. It further is taken

to obey ĥ4(0) = ĥ4(2π(P +1)) = 0, which has the e�ect of `ending' the space at the endpoints of the

interval (and allows for the computation of M5' brane charge by integrating the four-form �ux on

the full ρ interval and S3). The 3-form C(3) is modi�ed by a large gauge transformation (of the form

(3.4.8)) as one crosses the endpoints of each subinterval. There is a (�at space) underlying brane

con�guration, involving M5 branes wrapping the (t, z, r) and S3 directions, M5' branes wrapping the

(t, z) and torus directions, and positioned at ϱ = 2πj, and M2 branes wrapping the (t, z, ϱ) directions

stretched between these M5 branes. This dual brane con�guration allows for the identi�cation of

a dual quiver �eld theory, described in [92]. Our solution (3.4.13) can be regarded as giving the

more general solution only in the �rst subinterval, with ϱ ∈ [0, 2π]. This is exactly analogous to

the situation with NATD solutions, and shows that our solution based on dual three-algebra rather

than Lie algebra structure constants admits a similar holographic interpretation.

3.4.4 Full solution as a six-vector deformation of AdS limit

We now return to the full solution (3.4.3), in order to explain how it can be viewed as a particular

interpolation away from, or deformation of, its AdS3 limit. To show this, it is helpful (though not

7To match precisely, we need to take into account some freedom to change signs of components of our four-form
�eld strength, e.g. the overall sign C(3) → −C(3) is a matter of convention/orientation, we may also �ip the sign of
a torus coordinate, or change the sign of the electric B-�eld components of the original F1-NS5 solution.
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strictly necessary) to introduce a dimensionless parameter λ by rescaling the AdS coordinates as

t→ λ−1/2t , z → λ−1/2z , r → λ+1/2r . (3.4.19)

The parameter λ now serves as a book-keeping device for describing the deformation of the AdS

limit, which corresponds to λ = 0. The function f1 is now f1 = 1 + 1
λr2

and hence the λ → 0

limit picks out the near horizon region where one drops the constant term. Evidently for λ = 0

the rescaling (3.4.19) is singular, but nonetheless the metric and �eld strength are well-de�ned.

Explicitly, one has:

ds211 = (1 + ρ2 + λr2)1/3(1 + λr2)−2/3
(
r2(−dt2 + dz2) + dρ2

)
+ (1 + ρ2 + λr2)1/3(1 + λr2)1/3

(
dr2

r2
+ ds2

T4

)
+ (1 + ρ2 + λr2)−2/3(1 + λr2)1/3ρ2ds2

S3
,

F(4) =
2rρ

(1 + λr2)2
dt ∧ dz ∧ dr ∧ dρ− 2VolT4 + d

(
ρ4

1 + λr2 + ρ2
VolS3

)
.

(3.4.20)

This indeed reduces to the AdS limit (3.4.13) for λ = 0. For λ ̸= 0 one has the full solution (in

which we can always undo the rescaling by setting λ = 1).

The solution (3.4.20) with �nite λ can be expressed as an E6(6)-valued deformation of the λ = 0

limit. This involves an action of E6(6) on the t, z, ρ and S3 directions. This E6(6) transformation

should be viewed as a solution generating transformation rather than a U-duality. It may at �rst

seem highly mysterious that the group E6(6) should appear rather than the SL(5) we used to generate

the solution: this can be explained by tracing the origin of this deformation back to an SO(2, 2)

T-duality transformation acting just on the (t, z) directions of the original F1-NS5 solution. Our full

solution therefore inherits non-trivial structure associated to the action of `duality' transformations

in 2 + 4 = 6 directions, which singles out E6(6). We will explain this further below.

An E6(6) transformation non-trivially mixes the metric with the three-form and six-form poten-

tials, which can be explicitly introduced as:

C(3) =
r2ρ

1 + λr2
dt ∧ dz ∧ dρ+

ρ4

1 + λr2 + ρ2
VolS3 ,

C(6) = −r
2ρ3

2

(
1

1 + λr2
+

1

1 + λr2 + ρ2

)
dt ∧ dz ∧ dρ ∧VolS3 .

(3.4.21)

The remaining components of C(3) and C(6), which have components along the torus, are electro-

magnetically dual to those written here. The relevant component of the dual �eld strength leading

to the six-form potential is

⋆F(4) ⊃ −2ρ3rdt ∧ dz ∧ dr ∧ dρ ∧VolS3

(1 + λr2)(1 + λr2 + ρ2)
(3.4.22)
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As d ⋆ F(4) − 1
2F(4) ∧F(4) = 0 we then de�ne C(6) by dC(6) = ⋆F(4) − 1

2C(3) ∧F(4). The gauge choice

for C(6) has been chosen so that it is �nite for λ→ 0.

To describe the action of E6(6), we make a (6 + 5)-dimensional split of the coordinates. Let

xi = (t, z, ρ, θα), where θα denote the coordinates on the unit sphere, and let xµ = (r, y1, . . . , y4)

with the yi corresponding to the torus coordinates. We decompose the metric as

ds2 = ϕijdx
idxj + |ϕ|−1/3gµνdx

µdxν , (3.4.23)

such that the metric gµν is an E6(6) invariant given by

gµνdx
µdxν = r4/3ρ2(det gS3)

1/3

(
dr2

r2
+ ds2

T4

)
. (3.4.24)

In particular, it is independent of λ.

The metric ϕij transforms alongside the three-form components Cijk and the six-form component

Cijklmn ≡ Cϵijklmn. The E6(6) covariant object containing these �elds is a 27 × 27 generalised metric.

This can be written as [99,100]

MMN (ϕ,C(3), C(6)) = UM
KM̄KLUN

L , M̄MN = |ϕ|1/3

ϕij 0 0

0 2ϕi[jϕj
′]i′ 0

0 0 (detϕ)−1ϕij

 ,

(3.4.25)

UM
N =

δi
j −Cijj′ +δi

jC + 1
4!ϵ

jk1...k5Cik1k2Ck3k4k5

0 2δii
′

jj′ − 1
3!ϵ

ii′jk1k2k3Ck1k2k3

0 0 δi
j

 . (3.4.26)

Here the 27-dimensional E6(6) fundamental index decomposes as VM = (V i, Vii′ , V
ī) where Vii′ =

−Vi′i and VMWM ≡ V iWi +
1
2Vii′W

ii′ + V īWī. There are thus two six-dimensional vector indices:

the second one can be viewed as coming from a dualisation of �ve-form indices V ī ≡ 1
5!ϵ

ij1...j5Vj1...j5 .
8

It is straightforward to evaluate the generalised metric for the six-dimensional metric and

form-�elds obtained from (3.4.20). Some general formulae applicable to situations where the six-

dimensional metric and form-�elds admit a (3+3)-dimensional decomposition are recorded in ap-

pendix A.3.5. One �nds that the generalised metric depends linearly on λ, and furthermore that the

λ dependence can be factorised via an E6(6)-valued transformation involving a six-vector parameter.

Generally, we can introduce an E6(6)-valued matrix describing deformations involving a trivector

8Here both ϵ012345 = ϵ012345 = +1 are Levi-Civita symbols de�ned without relative minus signs for convenience.
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Ωijk and a six-vector Ωijklmn ≡ Ωϵijklmn, such that [100]

ŨM
N =

 δi
j 0 0

−Ωii′j 2δii
′

jj′ 0

δi
jΩ+ 1

4!ϵik1...k5Ω
jk1k2Ωk3k4k5 − 1

3!ϵijj′k1k2k3Ω
k1k2k3 δi

j

 . (3.4.27)

Again using the formulae in appendix A.3.5, it can be straightforwardly checked that the generalised

metric describing the background (3.4.20) admits a factorisation

MMN (λ) = ŨM
K(λ)MKL(λ = 0)ŨN

L(λ) (3.4.28)

where ŨMN (λ) has the form of (3.4.27) with

Ωijk = 0 , Ω = − λ

2ρ3
√
det gS3

, (3.4.29)

where
√

det gS3 denotes the volume element on the unit three-sphere. Hence the factorisation

(3.4.28) demonstrates that the full solution (3.4.20) is a six-vector deformation of the λ = 0 back-

ground corresponding to the AdS limit.

The fact that the deformation parameter is non-constant can be understood by viewing this

form of the deformation as involving a change of coordinates as well as a constant E6(6) transfor-

mation. This change of coordinates is just that which de�nes Cartesian coordinates xi in place of

the `spherical' coordinates (ρ, θα). In terms of the Cartesian coordinates one has simply:

Ωtzijkl = −λ
2
ϵijkl . (3.4.30)

It is still non-trivial that this is a solution generating transformation, as the full solution depends on

the xi coordinates, and so we are not in a situation with isometries to which we would automatically

be entitled to apply U-duality transformations. The six-vector deformation however commutes with

the EDA generalised frame containing the trivector Ωijk ∼ ϵijklxl. Prior to applying the EDA

generalised frame, what we have is an 11-dimensional con�guration (that is not a solution) which

already admits the six-vector factorisation.

This follows directly from the properties of the original F1-NS5 extremal solution. Using the

same coordinate rede�nition that introduces the parameter λ, the F1-NS5 extremal solution (3.3.3)

can be written as9

ds2s =
r2

1 + λr2
(−dt2 + dz2) +

dr2

r2
+ ds2

S3
+ ds2

T4 , Btz =
r2

1 + λr2
, e−2φ = 1 + λr2 . (3.4.31)

The λ dependence now corresponds to an SO(2, 2) T-duality deformation acting on the (t, z) direc-

9This rewriting is inspired by [93,101].
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tions. This is seen by passing to the appropriate SO(2, 2) covariant description via a generalised

metric

HMN (λ) =

(
g −Bg−1B Bg−1

−g−1B g−1

)
=

(
0 Z

Z (r−2 + λ)η

)
, Z ≡

(
0 1

1 0

)
, η ≡

(
−1 0

0 1

)
,

(3.4.32)

factorising as

HMN (λ) = UM
K(λ)HKL(λ = 0)UN

L(λ) , UM
N =

(
1 0

−β 1

)
, β ≡ λ

2

(
0 1

−1 0

)
. (3.4.33)

The deformation matrix β has an interpretation as a bivector βij . (This can alternatively be seen as

a TsT transformation.) In addition, the SO(2, 2) invariant generalised dilaton is e−2φ
√

|det(g)| = r2

and is independent of λ.

When we apply the reduction ansatz for type IIA on S3 to the F1-NS5 background, the �eld

strength component Htzr = ∂rBtz becomes the A = 5 component of the SL(5) covariant �eld

strength H(3)A. On uplifting to an eleven-dimensional solution (using the coordinates xi), this leads

to the identi�cation Ftzrijkl ∼ Htzrϵijkl giving a non-trivial dual seven-form �eld strength. Hence

the B-�eld component Btz induces the component Ctzijkl of the eleven-dimensional dual six-form.

Accordingly, the bivector deformation βtz becomes the six-vector deformation Ωtzijkl = βtzϵijkl.

The smallest U-duality group capable of describing such a deformation is E6(6), and this provides

the exact explanation for why E6(6) appears.

The structure of the F1-NS5 solution appearing here is associated to some intriguing physics.

The solution can be viewed as interpolating from an AdS3 geometry to a linear dilaton spacetime,

holographically dual to Little String Theory [102, 103]. This interpolation, realised above via the

bivector deformation, has been argued to correspond to a single-trace T T̄ deformation of the dual

CFT2 [93], and has a worldsheet interpretation as a marginal current-current coupling. We might

therefore expect that our full solution captures again a deformation related to T T̄ of the CFTs dual

to the AdS3 limit of our solution (these are the quiver �eld theories described in [92]). Making this

precise would be interesting future work.

A �nal comment here is that deformations of the form (3.4.27) generically lead to terms quadratic

in the six-vector deformation unless the upper left block of the generalised metric vanishes, Mij = 0.

This block is of the form Mij ∼ (ϕ + C2
(3) + (C(6) + C2

(3))
2)ij and so involves terms quadratic C(6)

as well as both quadratic and quartic in C(3). Rather remarkably the gauge choice made above for

the three- and six-form is such that here Mij = 0.
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3.4.5 Supersymmetry

In this section we discuss the supersymmetry of the AdS3 limit (3.4.13) of our solution. The Killing

spinor equation in our conventions10

δϵψµ = 2Dµϵ+
i

144(Γ
νρσλ

µ − 8Γρσλδνµ)ϵFνρσλ = 0 . (3.4.34)

We will proceed to solve this explicitly, �nding a 1
2 -BPS solution (3.4.61). We denote the AdS

coordinates by (t, z, r), the torus coordinates by yi, i = 1, . . . , 4 and the (standard) three-sphere

coordinates by (χ, θ, φ). Unless otherwise indicated, in the below equations the indices on the

gamma matrices should be assumed to be �at.

We �rst assume that ϵ is independent of the torus coordinates yi. Then the µ = yi components

of (3.4.34) provide an algebraic condition on ϵ:[
ρ(1+ ρ2)−1Γρ−

i

2
(1+ ρ2)−1/2

(
2ρΓtzrρ− 4Γy1...y4 +4(1+

1

2
ρ2)(1+ ρ2)−1/2Γρχθφ

)]
ϵ = 0 . (3.4.35)

The AdS components of (3.4.34) give di�erential equations

Dm̂ϵ+
1
6Γm̂Xϵ = 0 , (3.4.36)

where

X =
(
−(1 + ρ2)−1ρΓρ + i(1 + ρ2)−1/2

(
−2ρΓtzrρ − Γy1...y4 + 2(1 + 1

2ρ
2)(1 + ρ2)−1/2Γρχθφ

))
.

(3.4.37)

In (3.4.36) m̂ denote curved AdS indices. The spin connection components are Dr̂ϵ = ∂rϵ and

Dâϵ = ∂aϵ− 1
2Γarϵ, with â labelling the t and z directions, and Γr̂ = r−1Γr, Γâ = rΓa where Γr and

Γa are the gamma matrices with �at indices. The form of the r-dependence of the m̂ = r equation

implies that the r-dependence of ϵ has to be of the form rβ , with a matrix β to be determined later,

leading to a further algebraic condition on ϵ. Indeed, letting explicitly ϵ = rβ ϵ̃, where ϵ̃ depends on

t, z and the other spacetime coordinates, we get an equation

(β + 1
6ΓrX)ϵ = 0 . (3.4.38)

It follows that Dm̂ϵ = −Γm̂Γrβϵ. For the (t, z) components we get

∂aϵ = Γar(−β + 1
2)ϵ⇒ ∂aϵ̃ = r−βΓarr

β 1
2(1− 2β)ϵ̃ . (3.4.39)

We have an r-independent expression on the left hand side, and so by our assumptions the right

hand side of has to be r-independent as well, thus, di�erentiating the right hand side with respect

10We follow [14] so that {Γa,Γb} = 2ηab with ηab having mostly minus signature.
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to r we end up requiring the following expression to vanish:

r−β
(
Γar − [β,Γar]

)
(1− 2β)rβ ϵ̃ = 0 , (3.4.40)

which can be achieved if (
Γar − [β,Γar]

)
(1− 2β) = 0 . (3.4.41)

If β commutes with Γar then the only solution is β = 1
2I. Alternatively, if β anticommutes with

Γar, then we can extract Γar from the equation again leading to(
(2β)2 − 1

)
= 0 , (3.4.42)

which tells us 2β should square to a unit matrix. This condition and that of anticommuting

with Γtr and Γzr is compatible with multiple choices for β, for instance 2β = ±Γtz, 2β = ±iΓr,
2β = ±Γtzy1...y4 . However, not all options will lead to a non-trivial solution for ϵ̃, and some of them

have fewer supersymmetries than others, as we will see shortly.

Now let's assemble and make sense of the algebraic conditions on ϵ. We can rewrite (3.4.38) as[
2Γrβ +

1

3
ρ(1 + ρ2)−1Γρ −

i

6
(1 + ρ2)−1/2

(
4(1 +

1

2
ρ2)(1 + ρ2)−1/2Γρχθφ − 2Γy1...y4 − 4ρΓtzrρ

)]
ϵ = 0

(3.4.43)

Subtracting 1
3 (3.4.35) from (3.4.43) we get:[

2Γrβ + i(1 + ρ2)−1/2
(
ρΓtzrρ + Γy1...y4

)]
ϵ = 0 (3.4.44)

This (for suitable β) will provide a coordinate-dependent projector condition on ϵ, similar to that

appearing in non-abelian T-dual solutions [7]. We can also deduce a second projector condition.

Let's �rst split the Γρχθφ and Γr parts of (3.4.43) as

1

3

[
2Γrβ + i(1 + ρ2)−1/2

(
ρΓtzrρ + Γy1...y4

)]
ϵ

+
2

3

[
2Γrβ + ρ(1 + ρ2)−1Γρ − iΓρχθφ − i(1 + ρ2)−1Γρχθφ − i(1 + ρ2)−1/2Γy1...y4

]
ϵ = 0

(3.4.45)

the �rst line of which is exactly (3.4.44) thus vanishes. We can write the second line as[
2Γrβ − iΓρχθφ + Γtzr(1 + ρ2)−1

(
ρΓtzrρ + iΓtzrρχθφ

)
− i(1 + ρ2)−1/2Γy1...y4

]
ϵ = 0 (3.4.46)

then using the fact that the product of all gamma matrices is (in our conventions) −i, we can rewrite

Γtzrρχθφ = iΓy1...y4 , and use (3.4.44) again to obtain[
2Γrβ − iΓρχθφ + i(1 + ρ2)−1/2

(
Γtz − Γy1...y4

)]
ϵ = 0 (3.4.47)
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and then again rewriting Γy1...y4 = iΓtzrΓρχθφ, and Γtz = −ΓtzrΓr, we �nally extract a common

factor (
1 + i(1 + ρ2)−1/2Γtzr

)[
2Γrβ − iΓρχθφ

]
ϵ = 0 (3.4.48)

multiplying this by
(
1− i(1 + ρ2)−1/2Γtzr

)
and extracting the non-negative resulting ρ2 we arrive

at the second projector condition on ϵ:[
2Γrβ − iΓρχθφ

]
ϵ = 0 . (3.4.49)

As we want our solution to be as supersymmetric as possible, we want to choose a β that will cancel

some of the algebraic conditions on ϵ. Looking at (3.4.49) and keeping in mind that Γtzry1...y4 =

−iΓρχθφ, we immediately see that the choice 2β = Γtzy1...y4 will turn this condition into a trivial one!

Thus, we can conclude the choice 2β = Γtzy1...y4 corresponds to a most supersymmetric solution;

other choices would impose (3.4.49) and lead to a solution with fewer supersymmetries.

Now let us look at the full AdS part of the solution that corresponds to 2β = Γtzy1...y4 and then

come back to the remaining equations. We will write our solution in the form

ϵ = ϵAdSϵρϵS3ϵ0 (3.4.50)

with ϵ0 is a constant spinor and the other factors are matrices depending on the AdS, ρ and sphere

coordinates respectively.

The di�erential equation (3.4.39) on ϵ̃ becomes

∂aϵ̃ =
1

2
Γar(1− 2β)ϵ̃ (3.4.51)

with the solution

ϵ̃ = exp
[1
2
xaΓar(1− 2β)

]
ϵ̄ =

(
1 +

1

2
xaΓar(1− 2β)

)
ϵ̄ (3.4.52)

where in the second equality we take into account our previous assumption that β anticommutes

with Γar and (2β)2 = I so that we can make an expansion of the exponent to the linear term. Here

ϵ̄ = ϵρϵS3ϵ0. Hence the full factor ϵAdS is

ϵAdS = r
1
2
Γtzy1...y4

(
1 +

1

2
xaΓar(1− Γtzy1...y4)

)
. (3.4.53)

Expanding the r exponent, this can be seen to match the form of the AdS solutions obtained in [104].

Now we consider the remaining di�erential equations on ϵ. We start with the case corresponding

to the ρ coordinate:

∂ρϵ−
i

6
(1 + ρ2)−1/2Γρ

[
Γy1...y4 + 2ρΓtzrρ + 4(1 +

1

2
ρ2)(1 + ρ2)−1/2Γρχθφ

]
ϵ = 0 (3.4.54)
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Using the projector conditions (3.4.44) and (3.4.49) (the latter of course now an identity given the

form of β), as well as gamma matrix identities, we can simplify this to

∂ρϵ−
1

6
ρ(1 + ρ2)−1ϵ+ Γrρβ(1 + ρ2)−1ϵ = 0 . (3.4.55)

and now the solution for ϵρ will depend on how ϵAdS permutes with β. For our choice of β, all the

matrices in ϵAdS commute with Γrρβ, and we can simply move ϵAdS to the left of each term in the

equation. We then end up with a di�erential equation for ϵρ with the following solution:

ϵρ = (1 + ρ2)1/12 exp
[1
2
tan−1 ρΓtzry1...y4ρ

]
(3.4.56)

We move on to the sphere components of the Killing spinor equation. We let ϵS3 = ϵχ(χ)ϵθ(θ)ϵφ(φ).

The χ equation becomes after similar simpli�cations using the projector conditions

∂χϵ+
1

2
(1 + ρ2)−1/2Γρχ

[
1 + ρΓρtzry1...y4

]
ϵ = 0 , (3.4.57)

or

∂χϵ+
1

2
exp[Γtzry1...y4ρ tan

−1 ρ]Γρχϵ = 0 . (3.4.58)

Permuting Γρχ in the second term in this equation with ϵρ we change the sign in the exponent of

ϵρ from equation (3.4.56), which combined with the exponential of this equation gives the same ϵρ
�nally in the second term on the left. Thus, after extracting ϵρ from the both terms of the equation

to the left, we have the simple equation

∂χϵχ +
1

2
Γρχϵχ = 0 ⇒ ϵχ = exp

[
− 1

2
Γρχχ

]
. (3.4.59)

The same technique can be applied to obtain ϵθ and ϵφ parts of the solution, which end up being

ϵθ = exp
[
− 1

2
Γχθθ

]
, ϵφ = exp

[
− 1

2
Γθφφ

]
. (3.4.60)

The full solution we have obtained can therefore be written as

ϵ = (1 + ρ2)1/12rβ
(
1 +

1

2
xaΓar(1− 2β)

)
exp

[
− βΓrρ tan

−1 ρ
]
ϵΩϵ0 , (3.4.61)

with β = 1
2Γ

tzy1...y4 , ϵΩ = ϵχϵθϵφ. In addition we have the projector condition (3.4.44), which we

can rewrite as (
1 + i√

1+ρ2

(
Γtzr − ρΓy1...y4ρ

))
ϵ = 0 . (3.4.62)

This can be shown to reduce to a single projector condition on the constant spinor ϵ0. To show this,

we apply the projector condition in its original form (3.4.44) to (3.4.61) and proceed as follows. We
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�rst permute the exponential in ϵρ with Γrβ from (3.4.44). After then factoring out a common ϵρ
we can use the identities sin tan−1 ρ = ρ(1 + ρ2)−1/2, cos tan−1 ρ = (1 + ρ2)−1/2 to rewrite (3.4.44)

applied to (3.4.61) as

(1 + ρ2)−1
[(
1 + ρΓtzry1...y4ρ

)
2Γrβ + i

(
ρΓtzrρ + Γy1...y4

)]
ϵχϵθϵφϵ0 = 0 . (3.4.63)

Then permuting with ϵχ, the terms linear in ρ give di�erent signs in the exponent containing Γρ,

leading to 2 equations:

(2Γrβ + iΓy1...y4)ϵ0 = 0 , (Γρ + iΓtzrρ)ϵ0 = 0 . (3.4.64)

However these are actually equivalent and give the single condition:

(1 + iΓtzr)ϵ0 = 0 . (3.4.65)

Therefore we have 1 condition on ϵ0, reducing the degrees of freedom by 1
2 , so this is a 1

2 -BPS

solution. This is the same amount of supersymetry as the original F1-NS5 solution in its AdS3
limit. Away from this limit we expect our full solution (3.4.3) is 1

4 -BPS. It is worth noting that

the solutions of [92] are generically 1
4 -BPS, suggesting that our solution allows for an enhancement,

likely due to the special case k = 1. We note that a similar explicit Killing spinor solution was

found in [105].

3.4.6 IIA reductions

Finally, let us record the expressions for di�erent solutions of type IIA supergravity which can be

obtained by reducing the solution (3.4.3) in di�erent ways. All these solutions could further be

T-dualised in multiple ways to give solutions of type IIB supergravity.

Reduction on T4 direction Reducing on one of the T4 directions we obtain

ds210 = (r2f1 + ρ2)1/2(r2f1)
1/2

(
1

f1
(−dt2 + dz2) +

dr2

r2
+

dρ2

r2f1
+ ds2

T3

)
+ (r2f1 + ρ2)−1/2(r2f1)

1/2ρ2ds2
S3
,

H(3) = −2VolT3 , e−2φ = (r2f1 + ρ2)−1/2(r2f1)
−1/2 , F(2) = 0 ,

F(4) =
2rρ

(r2f1)2
dt ∧ dz ∧ dr ∧ dρ+

(4r2f1 + 2ρ2)

(r2f1 + ρ2)2
ρ3dρ ∧VolS3 −

ρ4∂r(r
2f1)

(r2f1 + ρ2)2
dr ∧VolS3 .

(3.4.66)

This still has an AdS3 near horizon limit, and the full solution is a six-vector deformation of this.

The six-vector is now associated to the NSNS six-form.
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Reduction on Hopf �bre Writing the metric on the three-sphere as

ds2
S3

=
1

4

(
(dψ + η)2 + ds2

S2

)
, dη = VolS2 . (3.4.67)

and reducing on the Hopf �bre direction parametrised by ψ we obtain

ds210 = (r2f1)
1/2 ρ

2

(
1

f1
(−dt2 + dz2) +

dr2

r2
+

dρ2

r2f1
+ ds2

T4

)
+ (r2f1 + ρ2)−1(r2f1)

1/2
(ρ
2

)3
ds2

S2
,

H(3) =
1
8

(4r2f1 + 2ρ2)

(r2f1 + ρ2)2
ρ3dρ ∧VolS2 − 1

8

ρ4∂r(r
2f1)

(r2f1 + ρ2)2
dr ∧VolS2 ,

e−2φ = (r2f1 + ρ2)(r2f1)
−1/2

(ρ
2

)−3
,

F(2) = VolS2 , F(4) =
2rρ

(r2f1)2
dt ∧ dz ∧ dr ∧ dρ− 2VolT4 .

(3.4.68)

This still has an AdS3 near horizon limit, and the full solution is a �ve-vector deformation of this,

with the �ve-vector associated to the RR �ve-form. As the M-theory AdS3 × S3 solutions of [92]

were obtained by uplifting the AdS3 × S2 IIA solutions constructed in [94�97] on a Hopf �bre, the

solution (3.4.68) can be interpreted using the latter.

Reduction on AdS direction Reducing on the z direction we obtain

ds211 = (r2f1 + ρ2)1/2r

(
− 1

f1
dt2 +

dr2

r2
+

dρ2

r2f1
+ ds2

T4

)
+ (r2f1 + ρ2)−1/2rρ2ds2

S3
,

H(3) =
2rρ

(r2f1)2
dt ∧ ∧dr ∧ dρ , e−2φ = (r2f1 + ρ2)−1/2 f1

r , F(2) = 0 ,

F(4) = −2VolT4 +
(4r2f1 + 2ρ2)

(r2f1 + ρ2)2
ρ3dρ ∧VolS3 −

ρ4∂r(r
2f1)

(r2f1 + ρ2)2
dr ∧VolS3 .

(3.4.69)

This now has an AdS2 near horizon limit, and the full solution is a �ve-vector deformation of this.

The �ve-vector is associated to the RR �ve-form.

3.5 Discussion

In this chapter we �rst discussed the idea of generalised T- and U-dualities, viewed as a solution

generating technique in supergravity. We reviewed how these generalised dualities can be linked to

special classes of algebras, which are e�ciently geometrically encoded using generalised parallelisa-

tions in generalised geometry. Building on our previous paper [87], we focused on an example in

11-dimensional supergravity characterised by non-vanishing dual 3-algebra structure constants in

the underlying exceptional Drinfeld algebra introduced to control Poisson-Lie U-duality in [26,27].
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To produce a new supergravity solution, we had to step slightly outside the con�nes of the

EDA set-up. We used the fact that our EDA generalised frame incorporating the Euclidean 3-

algebra solution provided a consistent truncation to CSO(4, 0, 1) maximal gauged supergravity in 7

dimensions. We were able to use this pragmatically to produce dual pairs of solutions by starting

with the known truncation of type IIA on S3 leading to the same gauged supergravity, reducing

solutions of the latter form, and then uplifting with our EDA frame. Algebraically, this alternative

starting point can be viewed as relaxing the requirement that one has to pick an isotropic set

of dual generators forming a subalgebra. It would be interesting to complete this observation by

formulating a more precise understanding of which families of generalised frames produce the EDA

with the subalgebra requirement relaxed (the systematic approach of [51] would likely be useful

here). This would allow our construction to be viewed in terms of a slightly enlarged notion of

Poisson-Lie U-duality than that initially suggested in [26,27].

The example described in this paper can be viewed as a proof-of-concept for the idea that it

is possible to generate new supergravity solutions by formulating generalised notions of U-duality.

It would be bene�cial to develop a more systematic approach. For instance, it is very clear which

spacetimes admit non-abelian T-duals: those with non-abelian isometries. It is not clear what space-

times admit generalised U-duals characterised by non-vanishing dual 3-algebra structure constants.

It is also not clear what role, if any, is played by an actual 3-algebra symmetry in such spacetimes.

Generalising to higher dimensions will also lead to higher-rank polyvectors and n-algebra sym-

metries. It would appear that solutions characterised by an ansatz involving polyvectors linear in the

coordinates have notable properties. They describe not only the plethora of known NATD solutions,

but also solutions such as the one constructed in this paper, which as we saw shared many features

with solutions generated by NATD, including the general properties of its holographic completion.

Classifying and understanding the types of solutions of this form, and the possible dual solutions

they may arise from, would not only help establish generalised U-duality as a useful technique on a

par with non-abelian T-duality but help elucidate the general structure.

Here it would also be important to develop an understanding of which properties (supersymme-

try, brane charges) of such solutions are induced by the initial solution. For non-abelian T-duality,

for example, one can precisely discuss which supersymmetries are preserved in terms of whether the

action of the initial non-abelian isometries preserve the Killing spinor [7, 86, 106]. Generically one

�nds a reduced amount of supersymmetry in the dual solution as a result. In our example, in the

AdS limit, we found our new solution had as many supersymmetries as the original near horizon

F1-NS5 solution. It would be useful to understand from a general viewpoint why this was the case.

This might be best formulated using exceptional �eld theory as a master formalism.

It would be possible to generate further examples by focusing on speci�c solutions of the gauged

supergravities that appear in these polyvector constructions. For the CSO(4, 0, 1) supergravity,

numerous solutions were found in [107�109], all of which can be used to generate dual solutions by

uplifting to type IIA on S3 and to 11-dimensional supergravity via our EDA generalised frame.
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Turning now to the speci�c example studied in this paper, this exhibits numerous interesting

features linked to deformations and holographic duality. We argued that a holographic completion

of the AdS3 limit of our solution can be obtained from the class of solutions obtained in [92],

which have well-de�ned quiver �eld theory duals. We showed that our full solution can be viewed

as a six-vector deformation away from this AdS3 limit. This deformation was inherited from the

interpolation of the original F1-NS5 solution from its AdS3 limit (in the near horizon region of the

F1s) to the asymptotic linear dilaton spacetime associated to the pure NS5 near horizon limit. This

interpolation has been argued to correspond to a `single-trace' variant of the T T̄ deformation in

the CFT2 dual of the AdS3 limit [93] (the CFT dual (to the long string sector) of string theory on

AdS3 is a symmetric product MN1/SN1 and the T T̄ deformation of [93] deforms the block CFT

M → MT T̄ ).

The immediate question is whether there is an analogous interpretation applicable to our six-

vector deformation of our AdS3 limit in terms of a deformation of the CFT duals of [92]. This is not

to necessarily suggest that this deformation will again be describable as a T T̄ deformation, but it

may have similar properties. In general, we would expect generalised U-duality, as for non-abelian

T-duality, to produce backgrounds with di�erent CFT duals. However, we can at least say that our

solution generating technique preserved the fact that there is a deformation, encoded geometrically,

and suggest that this may turn out to have a relationship to T T̄ .

A further comment is that in the F1-NS5 case, the endpoint of the deformation can be viewed

as a vacuum of the Little String Theory [102,103] dual to the asymptotic linear dilaton spacetime:

for our solution, the latter spacetime maps to the 11-dimensional solution (3.4.11) (not an AdS

geometry) which may accordingly itself have a similar holographic interpretation in terms of a dual

M5 brane theory.

It may be therefore be interesting to study the deformation of the general class of geometries

(3.4.14) of [92]. If we de�ne

gabdx
adxb = ∆

(
u√
ĥ4h8

r2(−dt2 + dz2) +

√
ĥ4h8
u

dϱ2

)
, hαβdx

αdxβ =
h28
∆2

ds2
S3/Zk

,

Gµνdx
µdxν = ∆

 u√
ĥ4h8

dr2

r2
+

√
ĥ4
h8

ds2CY2

 ,

(3.5.1)

and make the naturally analogous gauge choice

C1 ≡ Ctzρ =
r2

2
∂ϱ

(
uu′

2ĥ4
+ 2ϱh8

)
, C2 ≡ Cψθϕ = 2h8

(
−ϱ+ uu′

4ĥ4h8 + u′2

)√
gS3/Zk

,

C6 = −r
2

2

4h28u
2ĥ′24

h(4h8ĥ4 + u′2)

√
gS3/Zk

+ 1
2C1C2 ,

(3.5.2)

then we can immediately read o� a deformed background from the expressions in appendix A.3.5.
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This requires choosing a deformation parameter which produces a new solution: this is not guar-

anteed. Note that generically the E6(6) generalised metric block Mij is non-zero for the metric

and potentials picked here. This means that the deformed metric will depend quadratically on λ

instead of just linearly. This is not necessarily a problem, however it is possible that situations with

vanishing Mij are special.

Other deformations of the AdS3 limit of the F1-NS5 solution correspond to single-trace JT̄/J̄T

deformations of the dual CFT2, see for instance [110,111]. These again have a straightforward world-

sheet interpretation as TsT i.e. O(d, d) transformations, and modify the bulk geometry. Focusing

on deformations which preserve the ansatz for type IIA on S3, it would be possible to map the cor-

responding backgrounds to new 11-dimensional geometries using our methodology, and to examine

how the deformations are inherited by the new solution, as trivector deformations for example.

It may also be productive to explore these deformations algebraically in the context of the EDA

proposal. For instance, embedding our SL(5)-valued trivector into E6(6) and combining with the

six-vector deformation discussed in section 3.4.4, could be viewed through the lens of the E6(6)

EDA [79]. This may connect to related work on polyvector deformations, including in the context

of the EDA construction, such as [112].

We have provided new examples of implementing U-duality in constructing connections between

seemingly di�erent solutions, and discovered some interesting features of the new solution. In the

general scope, this extends our understanding of special internal properties of the solutions generated

via generalised U-duality, which in a way extends the framework of generalised T-duality and exhibit

novel supersymmetric features. That gives a better hint of how di�erent supergravity models are

interconnected.
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Chapter 4

Generalised U-dual solutions via ISO(7)

gauged supergravity

4.1 Introduction

The T- and U-duality symmetries of supergravity act on spacetimes with abelian isometries. A �rst

version of a generalised duality is non-Abelian T-duality (NATD) [3], which provides a mechanism

that dualises a space with non-Abelian isometries to a space with fewer isometries. Both abelian

and non-abelian T-duality are special cases of the Poisson-Lie T-duality [10, 11], which can be

applied to backgrounds lacking isometries, and which are characterised by an underlying double

algebra structure called the Drinfeld double algebra. Further extension of these dualities leads

to notions of generalised U-duality, originally proposed using a generalised geometric approach

(building on [23,24] in the T-duality case) to describe the background, and generalises the Drinfeld

double algebra to the so-called exceptional Drinfeld algebra (EDA), that generically is a Leibniz

algebra instead of a Lie algebra [26,27,79,91].

In our earlier papers [87, 113] we used this approach to study an attractive example of a gener-

alised U-duality solution generating construction based on the Sl(5) U-duality group acting in four

dimensions. The relevant exceptional Drinfeld algebra was the Lie algebra ISO(4). The generalised

U-duality map took solutions of type IIA supergravity on a three-sphere with NSNS �ux to new

solutions of eleven-dimensional supergravity: a basic example was provided starting with the near

horizon NS5 brane.

In this paper, we revisit the generalised U-duality on another example based on the E7 U-duality

group acting in seven dimensions, with the relevant EDA now being an extension of the ISO(7) Lie

algebra. We take a near horizon D2 brane solution as a test example, and show how to transform

this into a new supergravity solution in eleven dimensions.

The appearance of ISO(4) and ISO(7) algebras is not a choice made a priori but a consequence

of choosing to study particular natural algebraic structures, which appear in the de�nition of the
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underlying Drinfeld double algebra. First of all, we were motivated by the fact that in solutions

obtained by NATD, the breaking of translational isometries in the new dual directions can be linked

to the appearance of `dual' Lie algebra structure constants f̃abc.1 For the dual of SU(2) i.e. NATD

on S3, these are f̃abc = ϵabc.

In the exceptional Drinfeld algebra [26,27,79,91] these dual structure constants are generalised

to 3- and 6-algebra structure constants, f̃abcd and f̃abcdef g.2 In the four-dimensional Sl(5) case

only the former appear. Choosing f̃abcd = ϵabcd (a = 1, . . . , 4) produced the ISO(4) algebra studied

in [87, 113]. The solutions obtained could be seen to directly generalise many of the properties of

the solutions resulting from NATD.

In this paper we generalise to the seven-dimensional case, where in principle we can have both

the 3- and 6-algebra structures. We choose f̃abcd = 0 and take f̃abcdef g = ϵabcdef g, which as we

explicitly show corresponds to the ISO(7) algebra.

This ISO(7) example can be viewed as being a sort of electromagnetic dual of our previous

ISO(4) case. This is re�ected in the replacement of the 3-algebra structure constants with 6-algebra

structure constants, explicitly linked numerologically to the three-form and its magnetic dual six-

form, and in the natural choices of NS5 brane (M5 brane on a circle) and D2 brane (M2 brane) as

starting points for the construction.

Our approach to constructing new solutions relies on the fact that the generalised geometric

realisation of the exceptional Drinfeld algebra provides a mechanism for carrying out a consistent

truncation from 10- or 11-dimensional supergravity to a lower-dimensional gauged supergravity.

Such truncations allow for both reduction and uplift of solutions. The algebra that is gauged

is exactly the EDA. When a di�erent consistent truncation is known leading to the same lower-

dimensional theory, we can apply `generalised U-duality' by mapping solutions to solutions by

reducing via one consistent truncation and uplifting via the other. The example of [113] gave a con-

sistent truncation of eleven-dimensional supergravity to seven-dimensional ISO(4) gauged maximal

supergravity, distinct from the previously known origin of this theory via consistent truncation of

type IIA supergravity on a three-sphere with NSNS �ux.

In this paper, we will play the same game using reduction and uplift by inequivalent consistent

truncations leading to the four-dimensional ISO(7) gauged maximal supergravity. The �rst known

consistent truncation in this case is provided by type IIA SUGRA on S6 [114�116]. We apply

our solution generating technique by taking any solution of type IIA �tting into the appropriate

reduction ansatz, consistently truncating it to a 4-dimensional solution, and then uplifting it to

a new 11-dimensional SUGRA solution using the E7 generalised geometry formulation based on

the EDA [91]. It follows that this method gives an alternative consistent truncation, starting with

eleven-dimensional supergravity and leading to ISO(7) gauged supergravity in four dimensions.

1In Poisson-Lie T-duality more generally, these can be interpreted as a coycle of a physical Lie algebra, which in
this case is trivial.

2With interpretations as n-cocycles of a physical Lie algebra, which again will be trivial in our examples.
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In fact, this alternative consistent truncation was identi�ed in the paper [51] (which indeed

demonstrated the existence of inequivalent consistent truncations for CSO gaugings more generally).

Here we extend, or use, the observation of [51] in the following ways. Firstly we demonstrate

explicitly how to use these inequivalent consistent truncations to perform a generalised U-duality,

and explicitly produce a new 11-dimensional supergravity solution using this approach. We further

highlight the algebraic interpretation of the second consistent truncation, by concretely connecting

it to the EDA proposal with accompanying n-algebra structure, and by comparison to our previous

papers [87, 113] we demonstrate how this all �ts into the pattern of generalised dualities naturally

extending non-abelian T-duality of a three-sphere.

In this chapter we speci�cally apply the uplift procedure to produce a new 11-dimensional

solution starting with an extremal D2 brane solution after taking the near horizon limit. Then we

analyse the properties of the new 11-dimensional solution, which turn out to be as follows:

� The new solution can be described by using the generalised geometry techniques with a 6-

vector linear in the dual 4-dimensional coordinates. (See sections 4.2.2 and 4.3.2.)

� The new solution can be viewed as carrying an electric (M2) charge. (See section A.4.)

� The new solution can be viewed as a warped product of AdS4, S6 and an interval, and it

possesses a 1
2 -BPS solution of the 11-dimensional Killing spinor equation. (See section 4.3.3.)

In section 4.2.1 we review the ISO(7) subalgebra of the E7 Drinfeld algebra that we will use in our

solution. In section 4.2.2 we construct the frame �elds of E7 Drinfeld subalgebra. Then, in section

4.3 we show an example of how to obtain a new 11-dimensional solution using this technology. In

subsection 4.3.1 we start with the initialD2 brane solution that we use as an example of non-vacuum

type IIA SUGRA solution. After that, in subsection 4.3.2 we write down the scalar matrix that we

take to uplift the initial D2 brane solution and construct the new uplifted 11-dimensional SUGRA

solution. Then, in sections A.4 and 4.3.3 we describe the properties of the uplifted solution, its

charges, local vs global nature, and the amount of supersymmetry it possesses. We conclude with

some brief discussion in section 4.4.

4.2 ISO(7) exceptional Drinfeld algebra and generalised frame

4.2.1 The algebra

The whole E7 exceptional Drinfeld algebra was described in [91]. The 56 generators of the E7

exceptional Drinfeld algebra are denoted TA = (Ta, T a1a2 , T a1...a5 , T a1...a7,a
′
), where the Latin

indices run from 1 to 7 and sets of multiple indices a1 . . . ap are understood to be antisymmetric.

The (generically non-antisymmetric) brackets of these generators can be written generally as:

[TA, TB] = XAB
CTC . (4.2.1)
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The EDA structure constants XAB
C are speci�ed in terms of structure constants fabc, fa1...a3b,

fa1...a6b and Za. The former three can be formally associated with Lie algebra, 3-algebra and 6-

algebra structures. In this paper, we focus on non-zero 6-algebra structure constants only, fa1...a6b ̸=
0, in which case the algebra is given by the following non-zero brackets:

[Ta, T
b1...b5 ] = −f b1...b5caTc, [Ta, T

b1...b7,b′ ] = 7f [b1...b6aT
b7]b′ (4.2.2)

[T a1...a5 , Tb] = fa1...a5cbTc, [T a1...a5 , T b1b2 ] = 2fa1...a5[b1cT
b2]c (4.2.3)

[T a1...a5 , T b1...b5 ] = −5fa1...a5[b1cT
b2...b5]c (4.2.4)

[T a1...a5 , T b1...b7,b
′
] = −7fa1...a5[b1cT

b2...b7]c,b′ − fa1...a5b
′
cT

b1...b7,c (4.2.5)

[T a1...a7,a
′
, Tb] = −21f [a1...a6cδ

a7]a′c
bd1d2

T d1d2 , [T a1...a7,a
′
, T b1b2 ] = 7f [a1...a6cT

a7]a′cb1b2 (4.2.6)

[T a1...a7,a
′
, T b1...b5 ] = 21f [a1...a6cδ

a7]a′c
d1d2e

T b1...b5d1d2,e (4.2.7)

In the absence of the other structure constants, the 6-algebra structure constants must obey the

identity

fda1...a5cf
b1...b6

d − 6fa1...a5[b1df
b2...b6]d

c = 0 , (4.2.8)

ensuring closure of the algebra. This can be viewed as a generalisation of the Jacobi identity for

Lie algebras and the fundamental identity for 3-algebras.

We now further restrict to the following special case:

f b1...b6a = ϵb1...b6cδac (4.2.9)

where ϵb1...b6c is a 7-dimensional Levi-Civita symbol and δab is seven-dimensional identity matrix.

This is easily veri�ed to obey (4.2.8). After de�ning the dualised notations

T̃ a =
1

7!
ϵa1...a7T

a1...a7,a, T̃bc =
1

5!
ϵbca1...a5T

a1...a5 , (4.2.10)

the non-trivial brackets of the algebra then simplify to

[Ta, T̃bc] = 2δa[bTc], [Ta, T̃
b] = −δacT bc ,

[T̃bc, Ta] = −2δa[bTc], [T̃ab, T
cd] = −4δe[aδ

[c
b]T

d]e , (4.2.11)

[T̃ab, T̃cd] = 4δ[
a[c
T̃
d]b

], [T̃ab, T̃
c] = 2δd[aT̃

dδcb] .

The generators (Ta, T̃bc) generate the ISO(7) Lie algebra.3 The other brackets (note that these

3This can be generalised by replacing δab in (4.2.9) by a symmetric matrix of inde�nite signature, which would
correspond to the algebra of the CSO(p, q, r + 1) gaugings with p + q + r = 7; replacing δab by a matrix with both
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are not antisymmetric and e.g. [T̃ a, Tb] = 0) match those speci�ed by the ISO(7) gauging of four-

dimensional maximal supergravity (for example, compare with appendix C of [118] where the full

structure constants XAB
C appearing in (4.2.1) are given).

4.2.2 The generalised frame

Given any exceptional Drinfeld algebra, a generalised frame can be constructed realising the algebra

under the generalised Lie derivative of the appropriate exceptional generalised geometry. This

explicit construction is described in [26, 27, 79, 91]. The data that enters the generalised frame

consists of a (left- or right-)invariant vielbein eam, obeying the Maurer-Cartan equation with Lie

algebra structure constants fabc, a 3-vector πb1b2b3 and a 6-vector πb1...b6 , as well as a scalar function

∆. The vielbein is linked to a group manifold and the n-vectors and scalar obey equations of the

form:

Daπ
b1b2b3 = f b1b2b3a + . . . ,

Daπ
b1...b6 = f b1...b6a − 10f [b1b2b3aπ

b4b5b6] + . . . ,

Da∆ = Za ,

(4.2.12)

where Da ≡ ea
i∂i and the . . . corresponds to the terms with Lie algebra structure constants, which

are absent in our case.

Now let's construct the necessary data and generalised frame �elds for the E7 subalgebra with

only the six-algebra structure constants f b1...b6a non-trivial. The above di�erential equations then

yield eam = δam, π
b1b2b3 = 0, ∆ = 1 and allow for a six-vector linear in the coordinates, πb1...b6 =

xiδai f
b1...b6

a. Then, referring to eq. (5.34) of [91], we can construct the generalised frame, which

will by de�nition obey

LEA
EB = −XAB

CEC (4.2.13)

under the E7 generalised Lie derivative, thereby realising the algebra of the ISO(7) gauging. A

generalised frame for the E7 generalised geometry gives a basis EAM for generalised vectors, which

correspond to vectors, two-forms, �ve-forms and seven-forms tensored with one-forms. In form

notation, the EDA generalised frame describing the ISO(7) algebra has the following elements:

Ea = (ea, 0, 0, 0) ,

Ea1a2 = (0, ea1 ∧ ea2 , 0, 0) ,

Ea1...a5 = (−πba1...a5eb, 0, ea1 ∧ · · · ∧ ea5 , 0) ,

Ea1...a7,a
′
= (0,−7π[a1...a6ea7] ∧ ea′ , 0, (ea1 ∧ · · · ∧ ea7)⊗ ea

′
) ,

(4.2.14)

symmetric and antisymmetric parts would give something more exotic in which the 28-dimensional `electric' algebra
is no longer Lie.
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where in particular the vielbein ea and one-form ea have trivial components, eai = δia, e
a
i = δai , and

πa1...a6 = xbϵ
a1...a6b.

It is useful to record an explicit expression for this frame as a 56 ×56 E7 valued matrix. The nat-

ural decomposition of the generalised vector index is VM = (V m, Vm1m2 , Vm1...m5 , Vm1...m7,m′) but it

is convenient to dualise the �ve-form and mixed symmetry components (as with the algebra genera-

tors above) such that the seven-dimensional decomposition used is VM = (V m, Vm1m2 , V
m1m2 , Vm′).

Using this convention for bothM and A indices we can write the ISO(7) exceptional Drinfeld algebra

generalised frame, or rather its inverse which is more useful for our purposes below, as

E A
M =


δam 0 0 0

0 2δm1

[a1
δm2

a2]
0 0

2x[m1
δam2]

0 2δ
[a1
m1δ

a2]
m2 0

0 2x[a1δ
m
a2]

0 δma

 . (4.2.15)

This generalised frame (which could also have been constructed using the results of [51]) can be used

to construct solutions of 11-dimensional supergravity by uplifting solutions of ISO(7) gauged super-

gravity. Given such a solution, depending on four-dimensional coordinates y, and given in terms of

the four-dimensional metric gµν(y), the scalar matrix MAB(y), and one-form Aµ
A(y), a solution to

eleven-dimensional supergravity can be constructed by computing the following quantities:

gµν(y, x) = gµν(y) , MMN (y, x) = EM
A(x)EN

B(x)MAB(y) , Aµ
M (y, x) = EA

M (x)Aµ
A(y) ,

(4.2.16)

which correspond to the external metric, generalised metric and external one-form of the E7 excep-

tional �eld theory/exceptional generalised geometry description of 11-dimensional supergravity in

a 4 + 7 split [33, 53]. Using the known dictionary between this formulation and the standard vari-

ables of 11-dimensional supergravity, the uplifted solution can be extracted. Conversely the ansatz

(4.2.16) with the generalised frame (4.2.15) speci�es the general form (again on making use of the

exceptional geometry dictionary) of a consistent truncation from 11-dimensional supergravity to the

ISO(7) gauged supergravity. This is a standard application of exceptional geometric techniques (see

e.g. [57,58]).

Rather than slavishly work out the full explicit details (which we defer for future work), we will

illustrate how this uplift mechanism works on an explicit example, in keeping with our motivation

in terms of generalised dualities. A question which needs to be addressed at this point is how to

�nd examples of solutions which we can feed in to this mechanism. The ISO(7) gauged supergravity

has no known vacua, so we need to consider other sorts of solutions. A natural candidate is that

obtained by the near horizon limit of the D2 brane, which gives a domain wall solution in four

dimensions [119]. We now turn to this solution and its transformation to a new eleven-dimensional

solution.
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4.3 New 11-dimensional solution

4.3.1 The initial D2 brane solution

In our previous study [113] of the ISO(4) exceptional Drinfeld algebra, we constructed an example

of generalised U-duality where we started with the near horizon NS5 solution in type IIA, reduced

to seven-dimensional ISO(4) gauged supergravity and uplifted using an Sl(5) exceptional Drinfeld

algebra frame to eleven dimensions. Here we will start with the D2 brane solution in type IIA

instead, whose near horizon geometry has the appropriate form for the ISO(7) consistent truncation.

Lifting everything to 11-dimensions, this D2 comes from the M2 while the previously considered NS5

comes from the M5. Swapping M5 for M2 re�ects the fact that on switching from ISO(4) to ISO(7)

we exchange a trivector for a six-vector, mirroring the exchange of the role of the eleven-dimensional

three- and six-forms in the M2 and M5 solutions. In other words, we are applying electromagnetic

duality to the entirety of our previous generalised U-duality described in [113].

The D2 brane solution in the string frame is:

ds2S = H−1/2[−dt2 + dy21 + dy22] +H1/2[dr2 + r2dΩ2
(6)] , (4.3.1)

e−2ϕ = H−1/2 , Cty1y2 = H−1 − 1 , (4.3.2)

with H = 1 + 1
r5
.4 The Einstein frame metric is:

ds2E = H−5/8[−dt2 + dy21 + dy22] +H3/8[dr2 + r2dΩ2
(6)] . (4.3.3)

To perform the reduction to a four-dimensional solution, we use the ansatz as in [115] for a consistent

truncation of type IIA SUGRA on S6 in the Einstein frame. Assuming all the vector �elds A(1) and

B(2) appearing in the ansatz are turned o�, for the metric and dilaton this ansatz has the form:

ds2E = ∆−1ds24 + gmndy
mdyn , e−

3
2ϕ = ∆µaµbM

a8,b8 (4.3.4)

where

µaµbδab = 1 in R7, ∆2 = det gmn/ det ĝmn (4.3.5)

and ĝmn is the round SO(7) symmetric metric on S6. The matrix Ma8,b8 represents a block of the

scalar matrix of the four-dimensional theory. For the D2 solution, we can use the simpli�ed ansatz

Ma8,b8 ≡ δabM . (4.3.6)

4Assuming that by choice of units and rescaling of coordinates we can set all constants to 1.
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Then comparing the dilaton forms we �nd

∆M = H−3/8 , (4.3.7)

and comparing the metric ansatz we deduce

gmn = H3/8r2ĝmn, ∆ = r6H9/8, M = r−6H−3/2 , (4.3.8)

and the 4-dimensional metric is then

ds24 = r6H1/2
[
− dt2 + dy21 + dy22 +Hdr2

]
. (4.3.9)

Since in the D2 brane solution we have a 3-form with all external components, we have to match it

with a non-trivial external 3-form of the type IIA gauged SUGRA ansatz on S(6). This ansatz is:

C(3) = µIµJCIJ , where CIJ = C IJ
ty1y2 dt ∧ dy1 ∧ dy2 (4.3.10)

thus

Cty1y2 = µIµJC IJ
ty1y2 (4.3.11)

Comparing with the D2 solution, it's not hard to see that

C IJ
ty1y2 = δIJ(H−1 − 1) . (4.3.12)

Although this three-form appears in the tensor hierarchy of the gauged supergravity, it does not

constitute part of the degrees of freedom of the theory which will be uplifted to eleven dimensions.

In 4 dimensions the �eld strength of this potential is dual to a scalar (which would therefore require

a −1 form potential) and in fact this �eld strength can be related to the scalar potential of the

theory [115, 116]. It thus serves as part of the de�nition of the gauged supergravity and not an

independent �eld within it.

4.3.2 Uplifting the scalar matrix and obtaining the new solution

Let's construct the full 56× 56 scalar matrix MAB (the �at index A = (ab, a8), where a runs from

1 to 7):

MAB =


Ma8,b8 M cd

a8 Ma8,cd M c8
a8

Mab
cd Mab,cd Mab

c8 Mab,c8

Mab,c8 M cd
ab Mab,cd M c8

ab

Ma8
cd Ma8,cd Ma8

b8 Ma8,b8

 , (4.3.13)
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from which the generalised metric of the eleven-dimensional uplift is constructed as follows

MMN = E A
M MABE

B
N . (4.3.14)

In order to construct the MAB matrix we refer to the dictionary described in [115], from where,

comparing with the form of the D2 brane solution of the previous section

MAB =


r−4H−1/2δab 0 0 0

0 r−8H−3/2δa1[b1δb2]a2 0 0

0 0 r−2H−1/2δa3[b3δb4]a4 0

0 0 0 r−6H−3/2δa5b5

 (4.3.15)

Here to meet the requirement of detM= 1 we have to impose the near-horizon limit of the D2 brane

solution by setting H = 1
r5
.

The generalised metric describing the new uplifted solution is, after using the generalised frame

(4.2.15)

MMN =


r−3/2δmn 0 2r−3/2δm[n2

xn1] 0

0 2r−1/2δm1[n1δn2]m2 0 2r−1/2x[m1δm2]n

2r−3/2δn[m2
xm1] 0 r1/2Km1m2,n1n2 0

0 2r−1/2δm[n2xn1] 0 r3/2Kmn

 (4.3.16)

where

Km1m2,n1n2 = 2δm1[n1
δn2]m2

+4r−2x[m2
δm1][n1

xn2], Kmn = δmn(1+r−2xax
a)−r−2xmxn , (4.3.17)

We need to compare this with the expression for the parametrisation of the E7 generalised metric

in terms of the internal seven-dimensional components of the metric ϕmn, three-form and six-form.

Referring for example to [99], we see that (4.3.16) corresponds to a generalised metric with vanishing

three-form but non-trivial six-form. The precise parametrisation of the generalised metric that we

need (taking care to follow the conventions of [91] which we used to construct the EDA generalised

frame) then has the form:

MMN =


ϕ
1
2Lmn 0 2ϕm[n2

Un1] 0

0 ϕ
1
2 (2ϕm1[n1ϕn2]m2 + 4U [m1ϕm2][n1Un2]) 0 2ϕn[m2Um1]

2ϕn[m2
Um1] 0 2ϕ−

1
2ϕm1[n1

ϕn2]m2
0

0 2ϕm[n2Un1] 0 ϕ−
1
2ϕmn


(4.3.18)
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where ϕ = det(ϕmn),

Um =
1

6!
ϕ−1/2ϵmn1...n6Cn1...n6 , Lmn ≡ ϕmn(1 + UpU

p)− UmUn , (4.3.19)

and Um = ϕmnU
n, where here ϵ denotes the alternating symbol.

Comparing the two expressions we �nd that the seven-dimensional internal metric is:

ϕmn = r−1/3(1 + r−2xpx
p)−1/3

[
δmn + r−2xmxn

]
(4.3.20)

and that the six-form is:

Cm1...m6 = ϵm1...m6nx
nr−2(1 + r−2xpx

p)−1 . (4.3.21)

The latter gives rise to the �eld strength components

Fm1...m7 = ϵm1...m7r
−2(1 + r−2xnx

n)−2
[
7 + 5r−2xpx

p
]
, (4.3.22)

Frm1...m6 = −2ϵm1...m6nx
nr−3(1 + r−2xpx

p)−2 . (4.3.23)

Now using the ExFT construction we can build the full new 11-dimensional solution. The 11-

dimensional metric is:

ĝµ̂ν̂ =

(
|ϕ|ωgExFTµν +Aµ

kAν
lϕkl Akµϕkn

Akνϕkm ϕmn

)
, (4.3.24)

where ω = − 1
n−2 = −1

2 in our case of n = 11 − d = 4. The 4-dimensional ExFT metric is that

extracted in (4.3.9) from the D2 brane solution, in the near horizon limit:

(ds2)ExFT = r7/2[−dt2 + dy21 + dy22 + r−5dr2] , (4.3.25)

and as there is no one-form present we have Akµ = 0. Thus, the new 11-dimensional metric is

d̂s
2

11 = r−1/3(1+r−2xkx
k)−1/3

[
r5(1+r−2xpx

p)[−dt2+dy21+dy22+r−5dr2]+(δmn+r
−2xmxn)dx

mdxn
]

(4.3.26)

The only gauge �eld components present are those of the six-form given in (4.3.21). We can rewrite

our solution in di�erent coordinate systems. We can pass to spherical coordinates in place of the

xi, in terms of which we we can rewrite the new 11-dimensional metric as

d̂s
2

11 = r1/3(r2+ρ2)2/3
[
r3
(
−dt2+dy21+dy22+r−5dr2

)
+r−2dρ2

]
+r1/3(r2+ρ2)−1/3ρ2dΩ2

(6) (4.3.27)

where ρ2 ≡ xix
i and dΩ2

(6) denotes the metric on the unit six-sphere. The six-form potential and
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its �eld strength are:

C(6) =
ρ7

r2 + ρ2
VolS6 , F(7) = − 2ρ7

(r2 + ρ2)2
rdr ∧VolS6 +

7r2 + 5ρ2

(r2 + ρ2)2
ρ6dρ ∧VolS6 . (4.3.28)

The four-form �eld strength obtained by Hodge dualisation is

F(4) = r4(7r2 + 5ρ2)dt ∧ dy1 ∧ dy2 ∧ dr + 2r5ρdt ∧ dy1 ∧ dy2 ∧ dρ . (4.3.29)

A further coordinate change relates the 4-dimensional part of the metric to a familiar form of the

metric on AdS4. This is a property inherited from the original D2 solution, whose near horizon

string frame metric is a function of the radial coordinate times AdS4 × S6 (in a dual frame [119]

the metric is exactly AdS4 × S6). By introducing a new coordinate

r̃ ≡ 2

3
r3/2 (4.3.30)

then the 4-dimensional bit of the solution can be shown to involve an AdS4 metric in the Poincare

patch, using the fact that

r3[−dt2 + dy21 + dy22 + r−5dr2] = R−2r̃2[−dt2 + dy21 + dy22] +R2dr̃
2

r̃2
(4.3.31)

where R = 2/3 is the AdS radius.

We can �nally comment on the behaviour of our metric as r → 0. The Ricci scalar is

R = −1
6r

−1/3(49r2 + 25ρ2)(r2 + ρ2)−5/3 (4.3.32)

and so the solution is singular for r → 0. This is also a feature of the D2 brane near horizon solution.

4.3.3 Properties of the new solution

Charges and global properties

The solution that we have obtained is a local solution: we have not yet speci�ed the range of

the coordinates xi, or alternatively that of ρ if we change to spherical coordinates. The situation

is entirely analogous to that found when obtaining solutions via non-abelian T-duality, and to

our previous generalised U-duality construction [113]. If the xi are to be regarded as periodically

identi�ed then our solution can be regarded as a non-geometric background, globally identi�ed up

to a non-trivial E7 transformation acting as a constant shift of the six-vector used in constructing

the solution, as noted in [51] and similar to examples in [63, 85, 113, 120]. Alternatively, we can

work in the spherical coordinates and attempt to �x the range of ρ by requiring the solution carry

well-de�ned brane charges.
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Accordingly, let's consider the charges of the new uplifted solution. It only carries electric M2

charge, namely

QM2 ∼
∫
⋆F4 =

∫
dC6 , (4.3.33)

where from above C6 = ρ7/(r2 + ρ2)VolS6 . We could try to specify a seven-cycle to evaluate this

charge (generalising the argument of [98] for non-abelian T-dual solutions) by integrating from

ρ = ρ0 to some value ρ = ρ1 at a �xed value of r = r0, and then integrate from r = r0 to r = r1

at �xed ρ = ρ1, such that the six-sphere part of the solution vanishes at ρ = ρ0 and r = r1. The

result is independent of r0, and gives 16π3ρ71/15(r
2
1 + ρ21). Choosing ρ0 = 0 and r1 = 0 would give

an electric charge QM2 ∼ 16π3ρ51/15, which on properly reinserting dimensionful constants could

be argued to �x ρ1 by requiring the charge is an integer times the M2 charge.

Note that this M2 charge is analogous to the M5 charge appearing in our earlier solution [113],

hence in this �dual� example the electric and magnetic charges are swapped, mirroring the swap of

trivector and six-vector we noted earlier. To be more speci�c, the relevant M5 charge of [113] is that

which is present when the initial solution there is solely the near horizon NS5 brane. It was also

possible in [113] to start with an F1-NS5 intersection. The resulting new 11-dimensional solution

then required a di�erent global completion which was possible at least for its AdS3 limit. This limit

�t into a class of solutions [92] in a manner reminiscent of AdS solutions obtained via non-abelian

T-duality. This involved a linear function of ρ2, de�ned on a series of subintervals with jumps in

slope across each subinterval. It is unclear if it is possible to apply similar thinking to our example

in this chapter (which has a more complicated functional dependence on the r coordinate alongside

ρ), or to �nd or classify other solutions built using the ISO(7) generalised frame.

SUSY analysis

Let us now look at the solution of the Killing spinor equation and �nd out how many supersymme-

tries the new uplifted solution has. The Killing spinor equation we need to solve is5

δϵψµ = 2∂µϵ−
1

2
ωµ

abΓabϵ+
i

144
(Γαβγδ µ − 8Γβγδηαµ)ϵFαβγδ = 0 (4.3.34)

where the Greek indices are the curved coordinates, and Latin indices are the �at ones. For the

t-component (and similarly for y1 and y2), using the hatted indices for the curved coordinates, and

unhatted for the �at ones, we explicitly have:

Γt∂t̂ϵ+
1

6
r1/2(1+ r−2ρ2)−1

[
2ρΓρ+7r(1+

5

7
r−2ρ2)Γr− i

(
2ρΓty

1y2ρ+7r(1+
5

7
r−2ρ2)Γty

1y2r
)]
ϵ = 0 .

(4.3.35)

Assuming that ϵ is t-independent (similarly y1 and y2 independent), and looking at the similar

coordinate dependence in front of the same gamma-matrix combination, we can extract the following

5We follow the conventions we used in [113], in particular {Γa,Γb} = 2ηab with ηab having mostly minus signature.
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projection condition on ϵ

(1 + iΓty
1y2)ϵ = 0 (4.3.36)

which we can use in solving the rest of the equations.

The r and ρ equations become

∂r̂ϵ = r−1(1 + r−2ρ2)−1
[
1 +

1

6
(1 + 5r−2ρ2)− 1

2
r−1ρΓrρ

]
ϵ (4.3.37)

∂ρ̂ϵ =
1

6
r−1(1 + r−2ρ2)−1[2r−1ρ+ 3Γrρ]ϵ (4.3.38)

with the common solution

ϵ = ϵrρϵ̄ , ϵrρ = r7/6(1 + r−2ρ2)1/6 exp

[
−1

2
Γrρ tan

−1(
r

ρ
)

]
, (4.3.39)

where ϵ̄ depends on the S6 coordinates only. Now, working in round spherical coordinates (χ, θ1, . . . , θ5)

on S6, we can �nd a solution of the form ϵ̄ = ϵχϵθ1 . . . ϵθ5ϵ0 with ϵ0 a constant spinor. Indeed, we

�rstly have the equation

∂χ̂ϵ =
1

2
(1 + r−2ρ2)−1/2[Γρχ + r−1ρΓrχ]ϵ (4.3.40)

where we can commute the gamma matrices from the ϵrρ part, moving it to the left of both sides

of the equation, and end up solving for ϵχ

ϵχ = exp
[1
2
Γrχχ

]
(4.3.41)

and in a similar manner for the rest of the 5 angles θ1....θ5 we �nd

ϵθ1 = exp
[1
2
Γχθ1θ1

]
, ϵθ2 = exp

[1
2
Γθ1θ2θ2

]
, etc... (4.3.42)

so the �nal solution is of the form

ϵ = ϵrρϵχϵθ1 · · · ϵθ5ϵ0 (4.3.43)

where after applying the condition (4.3.36) ϵ0 is a constant spinor satisfying

(1 + iΓty
1y2)ϵ0 = 0 (4.3.44)

which kills a half of the total degrees of freedom, thus, our solution is 1
2 -BPS. This is consistent

with the supersymmetry of the initial D2 solution and with the supersymmetry preservation of our

previous example of `generalised U-duality' [113].
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4.4 Conclusion

In this chapter we discussed another example of a solution generating mechanism which can be

viewed as a generalised U-duality transformation. We used a special case of the E7 exceptional

Drinfeld algebra, describing the four-dimensional ISO(7) gauging, and used this to construct a new

11-dimensional solution starting with the near horizon limit of the D2 brane solution of type IIA

SUGRA. This can be seen as a �dual� construction (in the electromagnetic sense) of our previous

example, based on the Sl(5) exceptional Drinfeld algebra corresponding to the seven-dimensional

ISO(4) gauging [113]. Together these examples generalise, in a particular manner, features of non-

abelian T-duality to the 11-dimensional setting (see table 4.1), using the natural exceptional Drinfeld

algebra cases with either non-trivial 3- and 6-algebra structure constants, and hence non-trivial tri-

and six-vectors.

Solution obtained by: Algebraic structure Generalised frame
Non-abelian T-duality of S3 f̃abc = ϵabc bivector

Sl(5) generalised U-duality of S3 (w/NSNS �ux) f̃abcd = ϵabcd trivector
E7 generalised U-duality of S6 (w/RR �ux) f̃abcdef g = ϵabcdef g six-vector

Table 4.1: Properties of generalised dualities

We have so far only considered the M-theory realisation of the EDA, but it would be interesting

to systematically explore similar features in its IIA and IIB decompositions. Here we would ex-

pect to construct a variety of other generalised frames involving n-vectors with a linear coordinate

dependence, and identify the lower-dimensional gaugings these capture.

The usefulness of these constructions depends on whether the choice of EDA allows one to

access gauged supergravities with either interesting known solutions or known alternative origins

as consistent truncations from 10- and 11-dimensions. In this paper and in [113] we used the latter

approach to identify brane solutions at the 10-dimensional level to which we could apply reduction

and uplift. The ISO(7) example of this paper is a case where there are in fact no known vacua (the

D2 brane solution reducing to a domain wall solution). We have made choices for the EDA which

seemed algebraically `natural' and to some extent gotten lucky in �nding that these corresponded

to uplifts of known gauged supergravities in fact corresponding to consistent truncations already

identi�ed from a di�erent, though related, perspective in [51]. It would be good to extend and

improve this search strategy, including to situations with simultaneously non-trivial 3- and 6-algebra

structure constants, and more broadly to try to understand exactly what is the common feature

(spheres with �ux?) of the initial solutions `dual' to the solutions built using these EDA generalised

frames, and how the n-algebra symmetry manifests in these background (if at all).

A natural question about the ISO(7) case concerns whether we can do anything with the dyonic

ISO(7) gaugings [121�123], which have a richer vacuum structure. These gaugings can be obtained

by a consistent truncation from the massive type IIA theory on S6 [115,116]: we have been using this
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consistent truncation in the massless limit for the ISO(7) gauging. It can be quickly checked that this

gauging modi�es the algebra (4.2.11) with additional non-zero brackets including [T̃ a, T̃ b] ∼ T ab.

This bracket is however always zero in the EDA construction [91]. Hence the dyonic ISO(7) algebra

is not an EDA � if it were we would immediately know how to construct a [geometric] generalised

frame realising it. Indeed we have been informed by Y. Sakatani that making this bracket non-zero

in an extension of the EDA always requires locally non-geometric R-�uxes, in agreement with the

statement of [51] implying the dyonic ISO(7) gauging does not admit a locally geometric uplift.
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Chapter 5

Conclusion

Summarizing the thesis, we have made an insightful overview of the supergravity and M-theory

studying the dualities connecting di�erent solutions within these theories. Leveraging the techniques

of the Leibniz algebra and the generalised geometry, we have constructed several examples of new

solutions generated with the ExFT formalism. The examples discussed clearly demonstrate the

capabilities of the generalised U-duality in building liaisons between seemingly di�erent solutions in

supergravity (M-theory in general), and provides new hints towards the nature of the complicated

web of M-theory solutions.

We saw that the structure of the Exceptional Drinfeld Algebra (EDA) is based on the existing of

isotropic subalgebras, with a very restrictive conditions in order for the isotropies to appear, using

the fact that the EDA generalised frame admits a consistent truncation to a lower dimensional

theory. We have seen that not all of the M-theory isotropies are compatible with the EDA, and not

all of the isotropies turn to admit the geometric generalised frame description.

Generalised U-duality can be used as a solution generating technique in supergravity, as we

successfully demonstrated in chapter 3, using a consistent truncation from an initial theory to a

maximally gauged 7-dimensional supergravity. We used this procedure to uplift the resulting gauged

7-dimensional model to a new dual solution using the EDA frame. We were able to generate dual

pairs of solutions starting from the known type IIA supergravities on S3 and uplifting it with the

EDA frame.

It is, however, not clear whether the generalisation to other dimensions will express a similar

behaviour with the ability of developing a generalised set of rules to describe the technique of

generating dual solutions. For example, in the case of the generalised T-duality it is clear that

the space-time with non-abelian isometries admit the generalise T-dual solution. In the case of the

generalised U-duality a similar identifying criterium is lacking. The open questions are still the

behaviour of the theories in supergravities with other duality groups. A preliminary study of the

E6(6) gauged supergravity was given in [79]. Extending the classi�cation to higher non-abelian group

would be helpful to view the generalised U-duality as an algorithmic solution generating technique,
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that will enable develop a better way to reveal the characteristics of the nature of dualities in

M-theory.

Another question open for a future research is the preservation of supersymmetry in the U-dual

solution. Up to this point, we were able to spot that the number of supersymmetries remained

preserved in the examples of ISO(4) and ISO(7) gauged theories. However, these were not the

most general cases that we considered, and the question of the general proof is still open for further

investigation. In the framework of this research we demonstrated on a few examples the conservation

of the number of supersymmetries in the case of the CSO(4,0,1) supergravity. For the non-abelian

T-duality the number of supersymmetries in the dual solution turn out to be reduced compared to

the original solution. While, in the examples we reviewed in the thesis, for the case of generalised

U-duality we observed the preservation of the number of supersymmetries after applying the duality

transformation. Here, we must highlight that the examples we considered were viewed in the AdS

limit.

After a proper consideration of the example with the CSO(4,0,1) gauged supergravity, we turned

towards studying a special case of the E7 gauged supergravity. This choice wasn't spontaneous � it

re�ects the duality in 11 dimensional M-theory between 4 and 7 dimensions, corresponding to the

numeration of the gauging exceptional algebras, as well as re�ecting the dualities of the supergravity

models. We studied a special case of E7 Exceptional Drinfeld algebra - the ISO(7) gauging case.

This example also has a dual electromagnetic interpretation to the previous CSO(4,0,1) case. In

terms of non-abelian Drinfeld algebra, these 2 examples also has a dual interpretation with either

non-trivial 3 or 6 - algebra structure constants, corresponding to either tri-vectors or six-vectors. The

open question here is generalisation of the suggested technique to other dimensions, correspondingly

generating new set of n-vectors that describe the generalised frame of the n-algebra. The possibility

of constructing such examples in other dimensions will depend on whether the choice of EDA will

admit a gauged supergravity solution known previously or a consistently truncated from a known 11-

dimensional solution. A good future direction would be to understand the common characteristics

of the solution that can generate dual solutions using the EDA frames and the n-algebra behaviour

in these backgrounds.

An open questions for future endeavours remains the investigation of the dyonic gauging special

case in the ISO(7) gauging, which will involve an additional bracket relation in the algebra, removing

it from the EDA algebras class. Our expectation is getting similar results to the SO(8) dyonic case,

with a generalisation of the no-go theorem for this dyonic case.

Via analysis made in this chapter we, in a way, con�rmed the general pattern between di�erent

gauging groups applied to the dualisation technique - we spotted similar features for the so-called

electromagnetic dual case of ISO(7) gauging, comparing to its ISO(4) gauging counterpart dis-

cussed in the previous chapter. This study helped revealing more properties of the mechanisms of

generalised U-duality and how di�erent dual solution share similar features or possess di�erences

compared to each other (supersymmetry, charges, etc..). This provides an insightful description of
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the principles taking place in the generalised U-duality procedure and the novel solutions generated

through it, emphasising an interesting connectivity between di�erent classes of gauging groups and

dual solutions.
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Appendix A

Appendix

A.1 SL(5) exceptional geometry

A.1.1 Generalised Lie derivative and generalised frames

Here we describe some of the technology of SL(5) exceptional generalised geometry / exceptional

�eld theory [37,53�56]. We will use capital calligraphic indicesM,N , · · · = 1, . . . 5 to label quantities

transforming in the 5, and use antisymmetric pairs of such indices to label quantities transforming

in the 10.

We start with the de�nition of the generalised Lie derivative, which captures the bosonic local

symmetries (di�eomorphisms and gauge transformations) of supergravity. Let A ∈ 10 be a gen-

eralised vector of weight λA and Λ ∈ 10 be a generalised vector of weight λΛ = −ω ≡ 1/5. The

generalised Lie derivative of V with respect to Λ is

LΛA
MN =

1

2
ΛPQ∂PQA

MN + 2∂PQΛ
P[MAN ]Q +

1

2
(1 + λA + ω)∂PQΛ

PQAMN . (A.1.1)

Meanwhile a generalised tensor C ∈ 5 of weight λC has generalised Lie derivative

LΛC
M =

1

2
ΛPQ∂PQC

M − CP∂PQΛ
MQ +

1

2
(λC + 1 + 3ω)∂PQΛ

PQCM . (A.1.2)

The actual coordinate dependence of all quantities in the theory is restricted by the formally SL(5)

covariant section condition

∂[MN ⊗ ∂KL] = 0 , (A.1.3)

which has independent �solutions� [125] that break SL(5) covariance and correspond to underlying

M-theory, type IIA or type IIB geometries.
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M-theory generalised geometry

For the M-theory solution of the section condition, we label the SL(5) indices as M = (i, 5), with

i = 1, . . . , 4, and impose that ∂ij = 0 acting on all quantities in the theory. Then in terms of the

underlying M-theory generalised geometry we �nd that quantities in the 10 decompose as a pair

consisting of a vector and a two-form, which are sections of (perhaps weighted) generalised tangent

bundles

Λ = (v, λ(2)) ∈ TM ⊕ Λ2T ∗M , (A.1.4)

A = (a, α(2)) ∈ (TM ⊕ Λ2T ∗M)⊗ (detT ∗M)(λA+ω)/2 , (A.1.5)

and the generalised Lie derivative acts as:

LΛA = (Lva, Lvα(2) − ιadλ(2)) , (A.1.6)

where the ordinary Lie derivative Lv acts on the vector v and two-form α(2) which are of weight

λA + ω.

Meanwhile, a generalised tensor C in the fundamental corresponds to a scalar plus a three-form:

C = (c(0), c(3)) ∈ (R⊕ Λ3T ∗M)⊗ (detT ∗M)(λC+3ω)/2 , (A.1.7)

and

LΛC = (Lvc(0), Lvc(3) + dλ(2)c(0)) (A.1.8)

in which the ordinary Lie derivative acts on the scalar c(0) and three-form c(3) which are of weight

λC + 3ω.

Type IIB generalised geometry

The type IIB solution of the section condition splits M = (i, α) with i = 1, 2, 3 the spacetime index

and α = 4, 5 an SL(2) S-duality index. We impose ∂iα = ∂αβ = 0 acting on all �elds in the theory,

and identify the natural derivatives with respect to the spacetime coordinates as ∂i ≡ 1
2ϵ
ijk∂k. The

positions of spacetime indices therefore naturally come out reversed.

A generalised vector A of weight λA can now be decomposed in terms of vectors, a doublet of

one-forms and a three-form:

A = (a, α(1), α̃(1), α(3)) ∈ (TM ⊕ T ∗M ⊕ T ∗M ⊕ Λ3T ∗M)⊗ (detT ∗M)(λA+ω)/2 (A.1.9)

and with Λ = (v, λ(1), λ̃(1), λ(3)) of weight λΛ = 1/5, the generalised Lie derivative acts as

LΛA = (Lva, Lvα(1) − ιadλ(1), Lvα̃(1) − ιadλ̃(1), Lvα(3) − dλ(1) ∧ α̃(1) + dλ̃(1) ∧ α(1)) , (A.1.10)
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with the spacetime Lie derivative Lv acting on the tensors here which are of spacetime weight λA+ω.

A generalised tensor C of weight λC in the fundamental is equivalent to a one-form and a doublet

of three-forms, all of spacetime weight λC + 3ω:

C = (c(1), c(3), c̃(3)) ∈ (T ∗M ⊕ Λ3T ∗M ⊕ Λ3T ∗M)⊗ (detT ∗M)(λC+3ω)/2 (A.1.11)

with

LΛC = (Lvc(1), Lvc(3) − c(1) ∧ dλ(1), Lv c̃(3) − c(1) ∧ dλ̃(1)) . (A.1.12)

A.1.2 Generalised frames and their algebra

The physical �elds describing the geometry live in the coset SL(5)/SO(5), which is parametrised by

a unit determinant (inverse) generalised vielbein ẼMN
AB = 2Ẽ[M

AẼ
N ]

B. The generalised vielbein

ẼM
A in the 5 and that ẼMN

AB in the 10 have weight 0. In order to construct the algebra of frame

�elds, we have to instead use a generalised vielbein EMN
AB of weight −ω = 1/5. This parametrises

the coset R+ × SL(5)/SO(5). TO describe the R+ factor, we introduce a scalar ∆ of weight 1/5:

LΛ∆ =
1

2
ΛPQ∂PQ∆+

1

2

1

5
∂PQΛ

PQ∆ (A.1.13)

and de�ne

EM
A = ∆1/2ẼM

A EMN
AB = 2E[M

AE
N ]

B = ∆ẼMN
AB . (A.1.14)

Hence EM
A is a set of 5 generalised tensors of weight λEA = 1/10, so λEA+3ω = −1/2. Using these

quantities, the algebra of generalised frames under the generalised Lie derivative can be written

LEABE
M

C = −FABC
DEM

D , (A.1.15)

hence

LEABE
MN

CD = −1

2
FAB, CD

EFEMN
EF = 2FAB[C

EED]E , (A.1.16)

where

FAB, CD
EF = 4FAB[C

[Eδ
F ]
D] . (A.1.17)

The form of the generalised Lie derivative means that the generalised �ux FABC
D can be decomposed

in terms of irreducible representations of SL(5)

FABC
D = XABC

D − 1

6
τABδ

D
C − 1

3
δD[AτB]C (A.1.18)

with

XABC
D = ZABC

D +
1

2
δD[ASB]C . (A.1.19)
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Here τAB ∈ 10 is the so-called trombone gauging [126], SAB ∈ 15 and ZABC
D ∈ 40 obeys ZABC

D =

Z[ABC]
D, ZABC

C = 0. Explicit expressions in terms of the unweighted and weighted vielbeins are:

τAB = ∆
(
6ẼM

AẼ
N

B∂MN ln∆ + ∂MN (ẼM
AẼ

N
B)
)

= 5EM
AE

N
B∂MN ln∆ + ∂MN (EM

AE
N

B)
(A.1.20)

SAB = 4∆ẼM
(A|∂MN Ẽ

N
|B) = 4EM

(A|∂MNE
N

|B) (A.1.21)

ZABC
D = ∆

(
3ẼM

[AẼ
N

BẼ
P
C]∂MN Ẽ

D
P − 2δD[A|∂MN Ẽ

M
|BẼ

N
C]

)
= 3

(
EM

[AE
N

BE
P
C]∂MNE

D
P − 1

2
δD[A∂|MN|(E

M
BE

N
C])

)
+

1

2
δD[AτBC] .

(A.1.22)

A.1.3 Dictionary to 11- and 10-dimensional geometries

The SL(5) generalised geometry splits the full 11- or 10-dimensional geometry into a seven-dimensional

�external� part and a four-dimensional �internal� part. The 11- or 10-dimensional Einstein frame

metric is decomposed as:

ds211 = g−1/5GµνdX
µdXν + gij(dx

i +Aµ
idXµ)(dxj +Aν

jdXν) , (A.1.23)

where Gµν , µ, ν = 0, . . . , 6, corresponds to a seven-dimensional Einstein frame U-duality invariant

metric, and has weight 2/5 under generalised Lie derivatives. It is consistent to then identify

∆ = (detGµν)
1/14 . (A.1.24)

The �elds carrying both external and internal indices (such as the Kaluza-Klein vector Aµi) appear

in the SL(5) ExFT as n-dimensional p-forms in various representations of SL(5). However, we will

assume that these all vanish in our set-up. We therefore have just to describe the internal metric

and three-form, which together parametrise the afore-mentioned coset SL(5)/SO(5).

M-theory parametrisation

Start with the M-theory solution of the section condition, with physical coordinates xi ≡ xi5. A

conventional representation of the SL(5)/SO(5) coset in terms of a (unit determinant) generalised

vielbein, consistent with the di�eomorphism and gauge transformations generated by the generalised

Lie derivative, is

ẼA
M = g1/20

(
g−1/4eam −g−1/4eanC

n

0 g1/4

)
, (A.1.25)
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leading to a generalised metric mMN = ẼA
MẼB

N δAB in a �ve-dimensional representation

mMN = g1/10

(
g−1/2gmn −g−1/2gmpC

p

−g−1/2gnpC
p g1/2 + g−1/2gpqC

pCq

)
, (A.1.26)

where the four-dimensional metric is written as gmn = eame
b
nδab and the three-form Cm =

1
6ϵ
mnpqCnpq, where ϵ1234 = 1 is the alternating symbol.

IIB parametrisation

The IIB solution of the section condition identi�es the three-dimensional coordinates as x̃i ≡
1
2ϵijkx

jk. In this case, denote the (Einstein frame) spacetime metric by gij , the vielbein by eai,

and their determinants by g ≡ det(gij), e ≡ det(ea
i). The alternating symbol in spacetime is ϵijk,

and has weight −1, and ϵijk has weight +1. Also let hᾱα denote a vielbein for the coset SL(2)/SO(2)

parametrised by the axio-dilaton, with Hαβ = hᾱαh
ᾱ
αδᾱβ̄ . Then the IIB geometric parametrisation

takes

EA
M = e1/10

(
e1/2ei

a 0

e−1/2hᾱαC
α
i e−1/2hᾱα

)
, hᾱα = eΦ/2

(
1 C0

0 e−Φ

)
, (A.1.27)

mMN = g1/10

(
g1/2gij + g−1/2HαβC

α
i C

β
j g−1/2HβγC

γ
i

g−1/2HαγC
γ
j g−1/2Hαβ

)
, (A.1.28)

with

Cαi =
1

2
ϵijk(C

jk, Bjk) , Hαβ = eΦ

(
1 C0

C0 C2
0 + e−2Φ

)
. (A.1.29)

A.2 Embedding Drinfeld doubles in SL(5)

A.2.1 Half-maximal truncation

In order to describe an embedding of a Drinfeld double, we can truncate the Exceptional Drinfeld

Algebra. This means reducing from SL(5) to SO(3, 3), along the lines of [37, 68]. The 5 of SL(5)

produces one of the four-dimensional Majorana-Weyl spinor representations of (the double cover

of) SO(3, 3) plus a singlet. In terms of the �ve-dimensional indices, we write M = (I, 4) where

I = 1, 2, 3, 5 is the spinorial index. We break ∂MN = (∂IJ , ∂I4) and impose ∂I4 = 0. The bispinorial

derivative ∂IJ in fact transforms in the vector representation 6 of SO(3, 3).

We can compute the O(3, 3) generalised Lie derivative acting on the 5 = 4 ⊕ 1, using (A.1.2).

The singlet component transforms as a scalar of weight λC +1+ 3ω under O(3, 3) di�eomorphisms

with parameter ΛIJ

LΛC
4 =

1

2
ΛIJ∂IJC

4 +
1

2
(λC + 1 + 3ω)∂IJΛ

IJC4 . (A.2.1)
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The spinor in the 4 transforms as:

LΛC
I =

1

2
ΛJK∂JKC

I +
1

2
(λC + 1 + 3ω)∂JKΛJKCI − CJ∂JKΛIK , (A.2.2)

de�ning an SO(3, 3) spinorial generalised Lie derivative [37]. Now, the generalised frame �eld EM
A

has weight λEA = 1/10. Hence E4
A gives SO(3, 3) scalars of weight 1/2, and EIA gives SO(3, 3)

spinors. After truncating out the RR sector (by projecting out all components of the generalised

vielbein carrying a single index M = 4 or A = 4), we are left with:

EM
A =

(
EIα 0

0 e−d

)
, (A.2.3)

where EIα is an SO(3, 3)/SO(3)×SO(3) coset element in the Majorana-Weyl spinor representation

(and so has unit determinant), and e−2d denotes the SO(3, 3) generalised dilaton, which is a scalar

of weight 1.

We can now compute the algebra (A.3.17) of generalised frames of the form (A.2.3) and interpret

these in O(3, 3) terms. The non-zero components of FABC
D turn out to be:

Fαβγ
δ = M̃αβγ

δ +
1

2
δδ[αSβ]γ , Fαβ4

4 = −1

2
ταβ , Fα4β

4 =
1

2
ταβ −

1

4
Sαβ , (A.2.4)

where the irreducible �uxes have decomposed to give non-vanishing components:

ταβ = EIαE
J
β∂IJ(−2d) + ∂IJ(E

I
αE

J
β) , Sαβ = 4EI (α|∂IJE

J
|β) , (A.2.5)

Zαβγ
δ = M̃αβγ

δ +
1

2
δδ[ατβγ] , Zαβ4

4 = −1

3
ταβ , (A.2.6)

with an SO(3, 3) irreducible representation

M̃αβγ
δ = 3

(
EI [αE

J
βE

K
γ]∂JKE

δ
I −

1

2
∂JK(EJ [αE

K
β)δ

δ
γ]

)
, (A.2.7)

obeying Mαβγ
γ = 0. We can more conveniently de�ne

M̃αβ =
1

3!
ϵγδϵαMγδϵ

β =
1

2
ϵIJKL∂IJE

(α
KE

β)
L (A.2.8)

which is symmetric.

The two irreducible symmetric representations Sαβ and M̃αβ can be related to the self-dual

and anti-self-dual parts of the usual SO(3, 3) generalised �ux fIJK [74] (using gamma matrices or

equivalently 't Hooft symbols), and a half-maximal theory uplifts to the maximal theory if [74]

SαβM̃
αβ = 0 . (A.2.9)
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A.2.2 Drinfeld doubles

So far this is a standard exercise in determining the particular �uxes of the half-maximal theory.

Now let's specialise to Drinfeld doubles. We break up our indices further as I = (i, 5) and α = (a, 5).

Drinfeld double: IIA frame

To describe type IIA we take ∂i5 ̸= 0 and ∂ij = 0. Our data are the group manifold vector �elds

va, one-forms la and the Poisson-Lie bivector πab. We also de�ne λa ≡ 1
2ϵabcπ

bc. Then a type IIA

choice of spinorial frame and generalised dilaton is:

EIα =

(
(det l)1/2via 0

(det l)−1/2λa (det l)−1/2

)
, e−2d = e−2Φ̃ det l . (A.2.10)

It can be checked that the following �ux components are turned on:

τab = ϵcd[af̃
cd
b] , τa5 = −2∂aΦ̃ + fac

c ,

Sab = −2ϵcd(af̃
cd
b) , Sa5 = −2fac

c ,

M̃ab =
1

2
ϵcd(afcd

b) , M̃a5 =
1

2
f̃acc .

(A.2.11)

(This requires using the constraints (2.4.20), and taking the �dilaton� Φ̃ to obey ∂aΦ̃ = fa4
4. This

is not the physical dilaton but should be thought of as an extra function appearing in the de�nition

of the frame (A.2.10). To match with section 2.4, take α = e−Φ̃, and in (2.4.10) we have τa ≡ τa5

and τa ≡ 1
2ϵ
abctbc.)

The SL(5) frame in the 10 consists of a part in 6 and a part in the 4 of SO(3, 3). The part in

the 6 is obtained from the antisymmetrisation of the spinorial frame, EMA ≡ 2EI [αE
J
β]. The part

in the 4 is just the spinor frame weighted by e−d. Let's denote this by ÊIα ≡ e−dEIα. Translating

these into di�erential form language leads to the expressions (2.4.15) and (2.4.16).

Drinfeld double: IIB frame

To describe type IIB we take: ∂i5 = 0, ∂ij ̸= 0. The natural partial derivatives are thus ∂i = 1
2ϵ
ijk∂jk.

Our data are now vector �elds va, one-forms la and Poisson-Lie bivector πab, with all indices in the

opposite positions. A type IIB choice of spinorial frame and generalised dilaton is:

EIα =

(
(det l)−1/2la

i −(det l)−1/2lb
iλb

0 (det l)1/2

)
, e−2d = e−2Φ̃ det l (A.2.12)
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where λa = 1
2ϵ
abcπbc. It can be checked that the following �ux components are turned on:

τab = ϵabc(−2∂cΦ̃ + f cdd) , τa5 = −f̃abb ,

Sab = −2ϵcd(af
cd
b) , Sa5 = −2f̃ac

c ,

M̃ab =
1

2
ϵcd(af̃cd

b) M̃a5 =
1

2
facc .

(A.2.13)

(Again this used the constraints (2.4.20).)

We can again translate the frame into di�erential form language, leading to the expressions

(2.4.15) and (2.4.19) (with indices in the opposite placement).

Uplift condition

The condition SαβM̃αβ = 0 can be easily seen to imply that a Drinfeld double uplifts to an Excep-

tional Drinfeld Algebra only if:

f̃abcfab
c = 0 , (A.2.14)

which is indeed the condition found in [26] by checking closure.

A.2.3 Spinors and gamma matrices

Let ea denote a vielbein basis of one-forms, and ea the inverse. We can represent an O(d, d) spinor

as a polyform, C =
∑

pC(p) and the gamma matrices using the wedge and interior products:

Γa =
√
2ea∧ , Γa =

√
2ιea , (A.2.15)

obeying the O(d, d) Cli�ord algebra {Γa,Γb} = 2δba, {Γa,Γb} = 0, {Γa,Γb} = 0.

The Majorana-Weyl representations correspond to even and odd polyforms. For d = 3, we can

write these as:

Ceven = C0 +
1

2
Cabe

a ∧ eb , Codd =
1

6
ϵabc(C

0ea ∧ eb ∧ ec + 3Cabec) , (A.2.16)

or in index notation Cα = (C0, Cab), Cα = (C0, Cab). Acting with a single gamma matrix maps be-

tween these representations. Acting with two gamma matrices on Ceven we obtain the antisymmetric

combination (ΓAB)α
β with non-zero components

(Γab)0
cd = −4δ[ca δ

d]
b , (Γab)cd

0 = +4δ[ac δ
b]
d ,

(Γa
b)0

0 = δba , (Γa
b)cd

ef = 2δbaδ
[e
c δ

f ]
d + 8δb[cδ

[e
d]δ

f ]
a .

(A.2.17)
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Similarly, acting on Codd we obtain the components of (ΓAB)αβ :

(Γab)
cd

0 = −4δc[aδ
d
b] , (Γab)0cd = +4δa[cδ

b
d] ,

(Γa
b)00 = −δba , (Γa

b)cdef = −2δbaδ
[c
e δ

d]
f − 8δb[eδ

[c
f ]δ

d]
a .

(A.2.18)

For convenience, let us record here also the reduction of the EDA relations that can be encoded in

the algebra (2.4.8) using these gamma matrices. We have vector on vector brackets

[ta, tb] = fab
ctc , [ta4, tb4] = f̃abct

c4

[ta, t
b4] = (−facbtc4 + f̃ bcatc) = −[tb4, ta] ,

(A.2.19)

vector on spinor brackets

[ta, t4] = fa4
4t4 , [ta, t

bc] = (2fad
[btc]d − f̃ bcat4 + fa4

4tbc) ,

[ta4, t4] =
1

2
fbc

atbc , [ta4, tbc] = −2f̃a[bdt̃
c]d ,

(A.2.20)

and the spinor on vector brackets

[t4, ta] = −fa44t4 , [tbc, ta] = (3f[de
[bδ

c]
a]t

de + f̃ bcat4 − 3fd4
4δ[ba t

cd]) ,

[t4, t
a4] = fb4

4t̃ab , [tbc, ta4] = −f̃ bcdtad ,
(A.2.21)

while the spinor on spinor brackets vanish.

A.3 Ingredients

A.3.1 Five-brane near horizon limit of pp-F1-NS5

Initial solution We adapt the notation of [14,127]. The non-extremal pp-F1-NS5 solution is

ds2s = f−1
1 (−f−1

n Wdt2 + fn(dz +
1
2
r20 sinh 2αn

fnr2
dt)2) + f5(W

−1dr2 + r2ds2
S3
) + ds2

T4 ,

Btz = −1
2
r20 sinh 2α1

f1r2
, Btz1...4 = −g−2

s
1
2
r20 sinh 2α5

f5r2
, e−2φ = g−2

s f1f
−1
5 ,

(A.3.1)

where

fn = 1 + r2n
r2
, f1 = 1 +

r21
r2
, f5 = 1 +

r25
r2
, W = 1− r20

r2
,

r21 = r20 sinh
2 α1 , r25 = r20 sinh

2 α5 , r2n = r20 sinh
2 αn ,

(A.3.2)
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and in terms of the numbers N1, N5, Nn of strings, �ve-branes and pp-waves, as well as the (dimen-

sionless) volume parameter v of the T4, we have

sinh 2α1 =
2N1l2s
v

g2s
r20
, sinh 2α5 =

2N5l2s
r20

, sinh 2αn = 2Nnl4s
R2

xv
g2s
r20
. (A.3.3)

The extremal limit sends r0 → 0 and α1, α5, αn → ∞ such that r20 sinh 2α1, r20 sinh 2α5 and

r20 sinh 2αn are constant and given by (A.3.3). Then sinhα2
a ≈ 1

2 sinh 2αa and so

r21 = N1l2sg
2
s

v , r25 = N5l
2
s , r2n = Nnl4sg

2
s

R2
xv

(A.3.4)

NS5 near horizon limit To obtain a solution we can apply our reduction and uplift procedure

to, we need to go to the NS5 near horizon limit. This limit can be taken by sending the string

coupling to zero such that

gs → 0 , r0
lsgs

�xed . (A.3.5)

This is the Little String Theory (LST) limit [102,103].In this limit, α1 and αn are �xed, but

sinh 2α5 ≈ 2N5l2s
r20

→ ∞ ⇒ f5 → N5l2s
r2

. (A.3.6)

If we de�ne u = r
lsgs

, u0 = r0
lsgs

, then the three-charge background then becomes in the limit

ds2s = f−1
1 (−f−1

n Wdt2 + fn(dz +
1
2
u20 sinh 2αn

fnu2
dt)2) +N5l

2
sW

−1du
2

u2
+N5l

2
sds

2
S3

+ ds2
T4 ,

H3 = −u
2
0 sinh 2α1

2
d(

1

f1u2
) ∧ dt ∧ dx+ 2N5l

2
sVol(S

3) ,

e−2φ = N−1
5 u2f1 ,

(A.3.7)

with

f1 = 1 +
u20 sinh

2 α1

u2
, fn = 1 +

u20 sinh
2 αn

u2
, W = 1− u20

u2
. (A.3.8)

Rede�ning u = r′/ls, u0 = r′0/ls and immediately d ropping the primes we obtain the background

in the form (3.3.2). In e�ect this is just the original three-charge background with the “1 + ” d

ropped from f5 and gs set to 1.

A.3.2 CSO(4, 0, 1) from IIA on S3

This gauging is known to result from a warped reduction of IIA SUGRA on S3 [73, 128]. For the

pp-F1-NS5 solution, we only need to make use of the NSNS sector reduction ansatz. Here we need

to introduce µa, a = 1, . . . , 4 as constrained coordinates on the S3, δabµaµb = 1, a unit determinant
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symmetric matrix1 Mab with inverse Mab, and de�ne

U = 2MabM bcµaµc −∆Maa , ∆ =Mabµaµb . (A.3.9)

Then the ansatz is

ds2s = Φ1/2ds27 +
1

g2
∆−1M−1

ab Dµ
aDµb , e2φ = ∆−1Φ5/4 ,

H3 = F̃(3) − 1
2ϵa1a2a3a4g

−1∆−1F a1a2(2) ∧Dµa3Ma4bµb

− 1
6ϵa1a2a3a4g

−2∆−2
(
Uµa1Dµa2 ∧Dµa3 ∧Dµa4 + 3Dµa1 ∧Dµa2 ∧DMa3bMa4cµbµc

)
,

(A.3.10)

whereDµa ≡ dµa+gA(1)
abµb,DMab = dMab+2gA(1)

(a|cM c|b) and F(2)
ab = dA(1)

ab+gA(1)
ac∧A(1)

cb.

However these Kaluza-Klein gauge potentials will play no role in the cases we consider. Although

we only write here the ansatz in the NSNS sector, we do need to make use of the full ansatz of [73]

to identify the SL(5) covariant multiplets that result. For instance, the ansatz for the RR four-form

�eld strength introduces a further four three-forms. These combine with the single three-form F̃(3)

in (A.3.10) to form the �ve-dimensional representation of SL(5). Similarly the scalars Mab and Φ

are joined by four additional scalar �elds from the RR sector in order to obtain the full scalar coset

SL(5)/SO(5). With the RR contribution set to zero, the SL(5) covariant scalar matrix MAB, and

accompanying scalar potential V , are given by:

MAB =

(
Φ−1/4Mab 0

0 Φ

)
, V = 1

2g
2Φ1/2(2MabδbcM

cdδad − (Mabδab)
2) . (A.3.11)

A.3.3 Exceptional �eld theory dictionary

Exceptional �eld theory (see the review [49]) describes 11-dimensional supergravity backgrounds

after splitting into a d-dimensional internal part, with coordinates xi, and (11 − d)-dimensional

external part, with coordinates Xµ. Fixing the 11-dimensional Lorentz symmetry we write the

metric as

ds211 = ϕ
− 1
9−d gµνdX

µdXν + ϕijDx
iDxj , Dxi ≡ dxi +Aµ

idXµ , (A.3.12)

where ϕ ≡ detϕij . The three-form and its four-form �eld strength are decomposed as follows:

C(3) = C(3) +C(2)iDx
i + 1

2C(1)ijDx
iDxj + 1

3!CijkDx
iDxjDxk , (A.3.13)

F(4) = F(4)+F(3)iDx
i+ 1

2F(2)ijDx
iDxj+ 1

3!F(1)ijkDx
iDxjDxk+ 1

4!FijklDx
iDxjDxkDxl , (A.3.14)

where the (p) subscript denotes an n-dimensional p-form and all wedge products are implicit.

1Note that what we call Mab is denoted M−1
αβ in [73].
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The �elds carrying purely internal indices enter a generalised metric parametrising a coset

Ed(d)/Hd, while those carrying external indices (asides from the external metric, gµν) are treated

as components of (11 − d)-dimensional forms in a tensor hierarchy. For instance, one has Aµ
M ∼

(Aµ
i,Cµij , . . . ). Here one has to eventually include components of the dual six-form (and putative

dualisations of the metric). In this way, each p-form gives a representation of Ed(d).

For d = 4, we have E4(4) = SL(5). Let M = 1, . . . , 5 denote a fundamental index of SL(5). The

generalised metric is represented by a �ve-by-�ve unit determinant symmetric matrix:

MMN = ϕ
1
10

 ϕ−
1
2ϕij −ϕ−

1
2ϕikC

k

−ϕ−
1
2ϕikC

k ϕ
1
2 + ϕ−

1
2ϕklC

kC l

 , (A.3.15)

where Ci ≡ 1
6ϵ
ijklCjkl, Cijk = −ϵijklC l. The relevant part of the SL(5) tensor hierarchy consists

of gauge �elds Aµ
MN = −Aµ

NM, BµνM, CµνρM, with �eld strengths FµνMN , HµνρM, JµνρσM.

These �eld strengths can be identi�ed with components of the eleven-dimensional four-form and its

seven-form dual as follows:

Fµνi5 = Fµν
i , Fµνij = 1

2ϵ
ijkl(Fµνkl −CklmFµν

m) ,

Hµνρi = −Fµνρi , Hµνρ5 =
1
4!ϵ

ijkl(−Fµνρijkl + 4FµνρiCjkl) ,

Jµνρσ5 = −Fµνρσ , Jµνρσi = 1
3!ϵ

ijkl(+Fµνρσjkl −CjklFµνρσ) .

(A.3.16)

The bare three-forms appear here as these �eld strengths transform covariantly under generalised

di�eomorphisms. The minus signs are �xed such that the Bianchi identities of ExFT in the conven-

tions used reproduce those of 11-dimensional supergravity, with dF̂7 − 1
2 F̂4 ∧ F̂4 = 0.

A.3.4 Exceptional Drinfeld algebra frame

Generalised frames A generalised frame in the SL(5) ExFT can be represented in the 10- or

5-dimensional representations. However we can only take the generalised Lie derivative with respect

to generalised frames EAB in the former. The algebra of generalised frames is

LEABE
M

C = −FABC
DEM

D , (A.3.17)

or

LEABE
MN

CD = −1
2FAB, CD

EFEMN
EF , FAB, CD

EF = 4FAB[C
[Eδ

F ]
D] . (A.3.18)

The gauging FABC
D can be decomposed in terms of irreducible representations of SL(5)

FABC
D = ZABC

D + 1
2δ

D
[ASB]C − 1

6τABδ
D
C − 1

3δ
D
[AτB]C . (A.3.19)
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Here τAB ∈ 10 is the so-called trombone gauging, SAB ∈ 15 and ZABC
D ∈ 40 obeys ZABC

D =

Z[ABC]
D, ZABC

C = 0.

Exceptional Drinfeld algebra frame For the exceptional Drinfeld algebra introduced in [26,27]

one has

ẼM
A = ∆−1

2

 l
1
2α

1
2 via 0

l−
1
2α−1

2πa l−
1
2α−1

2

 , ∆ ≡ α
3
5 l

1
5 , (A.3.20)

in terms of data (α, lai, v
i
a, πa = 1

3!ϵbcdaπ
bcd) describing a particular group manifold with left-

invariant frames lai and a trivector πabc, obeying certain compatibility and di�erential conditions,

in particular

dla = 1
2fbc

alb ∧ lc , Lvavb = −fabcvc , Lva lnα = 1
3La ≡

1
3(τa5 − faf

f ) , (A.3.21)

dπabc = f̃abcdl
d + 3fed

[aπbc]dle + 1
3π

abcLdl
d . (A.3.22)

These imply that the components of the gaugings are

S55 = 0 , Zabc
5 = 0 , Zab5

5 = 2
3τab , Zabc

d = −τ[abδdc] ,

Sa5 = −2
3τa5 −

4
3fab

b , Zab5
c = −fabc − 2

3δ
c
[afb]d

d .
(A.3.23)

while Sab and τab are de�ned via the �dual� structure constant with three upper antisymmetric

indices

f̃abcd =
1

4
ϵabce(Sde + 2τde) . (A.3.24)

In terms of generators TAB obeying [TAB, TCD] =
1
2FAB,CD

EFTEF the algebra can be written in a

compact form reminiscent of the Drinfeld double algebra if we let Ta ≡ Ta5, T̃ ab ≡ 1
2ϵ
abcdTcd. The

brackets are:

[Ta, Tb] = fab
cTc , [T̃ ab, T̃ cd] = 2f̃ab[ceT̃

d]e ,

[Ta, T̃
bc] = 2fad

[bT̃ c]d − f̃ bcdaTd − 1
3LaT̃

bc , [T̃ bc, Ta] = 3f[de
[bδ

c]
a]T̃

de + f̃ bcdaTd + Ldδ
[b
a T̃

cd] .

(A.3.25)

CSO(4, 0, 1) frame and scalar potential This frame has α = 1, via = δia and π
abc = gϵabcdxd [87]

(where we use δia to identify the curved and �at indices on xi and δab to raise/lower). This results

in f̃abcd = gϵabcd or equivalently Sab = 4gδab, with the other structure constants components all

vanishing.

When SAB ̸= 0 is the only non-vanishing SL(5) gauging, the scalar potential resulting from
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ExFT is in our conventions

V =
1

32

(
2MABSBCMCDSDA − (MABSAB)

2
)
. (A.3.26)

For the CSO(4, 0, 1) case with the scalar matrix as in (A.3.11) and the gauging SAB resulting from

the EDA frame, this exactly matches the scalar potential of (A.3.11).

A.3.5 E6(6) generalised metric for a 3+3 split and six-vector deformation

Components Write the six-dimensional index as i = (a, α), where both a and α are three-

dimensional. Consider the case where

ϕij =

(
gab 0

0 hαβ

)
, Cijk → (C1ϵabc, C2ϵαβγ) , ϵabcαβγ = ϵabcϵαβγ , (A.3.27)

and Ci1...i6 = C6ϵi1...i6 . Let t denote the number of timelike directions of the metric ϕij, and let

g ≡ det(gab), h ≡ det(hαβ). The components of the E6(6) generalised metric de�ned by (3.4.25) can

then be computed block-by-block to be

Mab = |ϕ|1/3gab
(
1 + 1

gh(hC
2
1 + (C6 +

1
2C1C2)

2)
)
,

Mαβ = |ϕ|1/3hαβ
(
1 + 1

gh(gC
2
2 + (C6 − 1

2C1C2)
2)
)
, Maα = 0 ,

(A.3.28)

Ma
bc = −(−1)t|ϕ|−2/3gadϵ

bcd(hC1 + C2(C6 +
1
2C1C2)) ,

Mα
βγ = −(−1)t|ϕ|−2/3hαδϵ

βγδ(gC2 − C1(C6 − 1
2C1C2)) ,

Ma
βγ = 0 = Mα

bc = Mb
aα = Mβ

aα ,

(A.3.29)

Mab̄ = (−1)t|ϕ|−2/3gab(C6 +
1
2C1C2) , Mαβ̄ = (−1)t|ϕ|−2/3hαβ(C6 − 1

2C1C2) ,

Maᾱ = Mαā = 0 ,
(A.3.30)

Mab
c̄ = −(−1)t|ϕ|−2/3gcdϵ

dabC2 , Mαβ
γ̄ = (−1)t|ϕ|1/3hγδϵδαβC1 ,

Maα
b̄ = Maα

β̄ = Mab
ᾱ = Mαβ

ā = 0
(A.3.31)

Māb̄ = (−1)t|ϕ|−1/3gab , Mᾱβ̄ = (−1)t|ϕ|1/3hαβ , Māᾱ = 0 , (A.3.32)

Six-vector deformation Using (3.4.27), one sees that the six-vector deformation has the rela-

tively simple e�ect of

Mīj → Mīj + Ω̃Mij , Mii′
j̄ → Mii′

j̄ + Ω̃Mii′
j , Mī̄j → Mī̄j + Ω̃(Mīj +Mj̄i) + Ω̃2Mij (A.3.33)
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leaving other blocks invariant. Then given a con�guration with

ds211 = gabdx
adxb + hαβdx

αdxβ +Gµνdx
µdxν (A.3.34)

and gauge �eld components C1 and C2 and C6 as above, the e�ect of a six-vector deformation is to

produce the following metric and gauge �elds:

d̃s211 = (1 + Θ1)
1/3(1 + Θ2)

−2/3gabdx
adxb + (1 + Θ1)

−2/3(1 + Θ2)
1/3hαβdx

αdxβ

+ (1 + Θ1)
1/3(1 + Θ2)

1/3Gµνdx
µdxν ,

(A.3.35)

C̃1 =
1

1 + Θ2

(
C1 − Ω(gC2 − C1(C6 − 1

2C1C2))
)
,

C̃2 =
1

1 + Θ1

(
C2 +Ω(hC1 + C2(C6 +

1
2C1C2))

)
,

C̃6 =
1

2

1

1 + Θ1
(C6 +

1
2C1C2 +Ω(gh+ hC2

1 + (C6 +
1
2C1C2)

2))

+
1

2

1

1 + Θ2
(C6 − 1

2C1C2 +Ω(gh+ gC2
2 + (C6 − 1

2C1C2)
2))

(A.3.36)

where

Θ1 = 2Ω(C6 +
1
2C1C2) + Ω2(gh+ hC2

1 + (C6 +
1
2C1C2)

2) ,

Θ2 = 2Ω(C6 − 1
2C1C2) + Ω2(gh+ gC2

2 + (C6 − 1
2C1C2)

2) .
(A.3.37)

A.4 Charge quantisation

In this appendix we consider the requirement of brane charge quantisation for our new solution.

We therefore reinstate the dimensionful constants r1 and R inherited from the original F1-NS5

solution. We also note that we can include a constant α (assumed dimensionless) in the EDA frame

corresponding to the trombone rescaling of the 11-dimensional solution. Including this, the extremal

solution in spherical coordinates would be:

ds211 = α2/3(r2f1 + ρ2)1/3R−4/3(r2f1)
1/3

(
1

f1
(−dt2 + dz2) +

R2dρ2

r2f1
+
R2dr2

r2
+ ds2

T4

)
+ α2/3(r2f1 + ρ2)−2/3R2/3(r2f1)

1/3ρ2ds2
S3
,

F(4) = α
2r21

(r2f1)2
rρ

R
dt ∧ dz ∧ dr ∧ dρ− α

2r21
R3

VolT4

+ α
R(4r2f1 + 2ρ2)

(r2f1 + ρ2)2
ρ3dρ ∧VolS3 − α

Rρ4

(r2f1 + ρ2)2
∂r(r

2f1)dr ∧VolS3 .

(A.4.1)
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The dual �eld strength is

⋆F(4) = −α2 2r21
r2f1 + ρ2

ρ4

R2
VolS3 ∧VolT4 − α2 2r21

rf1(r2f1 + ρ2)
ρ3dt ∧ dz ∧ dr ∧ dρ ∧VolS3

+ α2 2r

R4
(2r2f1 + ρ2)dt ∧ dz ∧ dr ∧VolT4 + α2 rρ

R4f1
∂r(r

2f1)dt ∧ dz ∧ dρ ∧VolT4 .

(A.4.2)

The number of membranes and �vebranes will be determined by

NM2 =
1

(2π)6l6p

∫
JPage , NM5 =

1
(2π)3l3p

∫
F(4) (A.4.3)

As discussed in section 3.4.2, JPage vanishes up to large gauge transformations of the form C(3) →
C(3) + 4πjl3pVolS3 , j ∈ Z, which shift JPage → JPage + 4πjl3pα

2r21
R3 VolS3 ∧VolT4 . Hence

NM2 = N14πj
l6s
l3p

α
R3 . (A.4.4)

Now consider the M5 branes. Integrating the �ux through the torus we have

NM5 = − 1
(2π)3l3p

α
2r21
R3 (2π)

4vl4s = −4πN1
l6s
l3p

α
R3 . (A.4.5)

Notice that NM2 = j|N (T4)
M5 |.

Next integrating the �ux through the four-cycle in (r, ρ, S3) directions as described in section

3.4.2 gives, if r1 = 0

NM5′ =
1

(2π)3l3p
2π2αRρ̄2 = αR

4πl3p
ρ̄2 (A.4.6)

where ρ̄ corresponds to the limit of the ρ integration (starting at ρ = 0). Then charge quantisation

requires

ρ̄2 = N
4πl3p
αR , N ∈ N . (A.4.7)

The above results work remarkably well with the matching to the AdS solutions of [92]. Restoring

the Planck length appropriately in the solution (3.4.14) such that ρ has units of length and ϱ is

dimensionless, and carefully working through the identi�cation with the AdS limit r2f1 = r21 of

(A.4.1), the matching condition (3.4.16) and (3.4.18) become

ρ2 =
2l3p
Rα

ϱ , u = α
2r21ϱ

lpR
, ĥ4 = α

2r21lpϱ

R3
. (A.4.8)

In [92] we have a sequence of intervals ϱ ∈ [2πj, 2π(j + 1)]. Viewing our solution as lying in the

�rst interval, ϱ ∈ [0, 2π] we have ρ̄2 =
4πl3p
αR giving one unit of charge. Meanwhile the relationship

between the M2 and M5 charges matches that following from equations (3.6) to (3.8) of [92].

Finally we can try to �x the relationship between the 11-dimensional Planck length and the
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10-dimensional string length appearing in the original solutions in type IIA on S3. A crude way to

do this is to reduce the Newton's constant prefactor of 11- and 10-dimensional supergravity to the

7-dimensional theory, via

1

2κ211

∫
dρ ρ3dΩ3 =

1

2κ210

∫
R3dΩ3 ⇒

2π2 14 ρ̄
4

(2π)8l9p
=

2π2R3

(2π)7l8s
⇒ l3s

l3p
=
α2N

5/2
5

2π
, (A.4.9)

which implies

NM5 = 2N5α
3N1 . (A.4.10)

It seems most natural to take α = (2N5)
−1/3, as the �eld strength component giving rise to this

�ux comes directly from the three-form �ux due to the F1 in the original brane solution.
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