
The Pennsylvania State University
The Graduate School

GRAVITATIONAL WAVE SEARCHES TOWARDS

MULTI-MESSENGER AND MULTI-BAND ASTRONOMY

A Dissertation in
Physics

by
Becca Ewing

© 2024 Becca Ewing

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

August 2024



The dissertation of Becca Ewing was reviewed and approved by the following:

Chad Hanna
Professor of Physics & Astronomy and Astrophysics
Dissertation Co-Advisor
Co-Chair of Committee

Bangalore Sathyaprakash
Elsbach Professor of Physics & Professor of Astronomy and Astrophysics
Dissertation Co-Advisor
Co-Chair of Committee

Sarah Shandera
Associate Professor of Physics

Caryl Gronwall
Senior Scientist, Astronomy and Astrophysics

Irina Mocioiu
Associate Professor of Physics, Director of Graduate Studies

ii



Abstract
Einstein’s general theory of relativity describes how the curvature of spacetime is deter-
mined by the energy and momentum of massive objects. He found that his field equations
admit wave solutions which he called gravitational waves: plane waves traveling at the
speed of light and carrying a perturbation of the spacetime metric as they propagate
throughout the universe. The physical existence of such waves was in doubt for many
years, until their indirect observation via the slow orbital decay of the binary pulsar
system, PSR 1913 + 16, by Russell Hulse and Joseph Taylor. At this point, the endeavor
to directly observe gravitational waves was begun.

It took many years to develop experimental techniques capable of observing the tiny
magnitude of strain expected from compact binary mergers (h ∼ 10−21), but finally
on September 14th 2015 the Advanced LIGO detectors succeeded in making the first
observation of gravitational waves from a pair of merging black holes with the signal
known as GW150914. This was a landmark moment in physics, confirming the prediction
of Einstein’s theory nearly one hundred years later and opening up an entirely new
window with which to observe the universe. Since that date, gravitational waves have
become regular cosmic messengers carrying with them information about their extreme
sources and unexpected new insights in many diverse areas of physics. Without a doubt
the single most informative detection has been the joint observation of gravitational
waves and electromagnetic radiation from the merging neutron stars and short gamma
ray burst, known as GW170817 and GW170817A, respectively. This observation marked
the beginning of multi-messenger astronomy with gravitational waves and advanced
our knowledge of the universe by leaps and bounds. However, as all great discoveries
do, this observation brought even more unanswered questions. While we have seen an
unprecedented rate of growth in the field of gravitational wave astronomy in just a
decade of observation, we are still in the early years. There is much still to learn from
gravitational waves, however to get there we must aim to make as many detections as
possible, building up populations of gravitational waves to reveal bulk properties of their
sources. This has been the subject of my dissertation.

GstLAL is a data analysis algorithm, known as a search pipeline used to identify quiet
gravitational wave signals within the noisy LIGO, Virgo, and KAGRA strain data. My
work has focused on the development and operation of this pipeline, particularly towards
detecting gravitational waves in near real time to enable multi-messenger astronomy.
This dissertation will overview the methods and results of the various gravitational
wave searches which I have led, culminating in O(100) new detections in just a few
years. I additionally present a study towards the next generation of gravitational wave
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observation, showing how detection in ground-based interferometers can be used to
identify stellar-mass binary black hole mergers in the low-frequency data of LISA. The
methods presented here all seek to advance our detection capabilities and particularly, to
improve our immediate prospects for multi-messenger astronomy. The population of new
gravitational wave signals which have been identified as a result of my work will certainly
have long-lasting implications for astrophysics, cosmology, and fundamental physics.
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Chapter 1 |
Introduction

On September 14, 2015 the Advanced LIGO detectors made the first observation of
gravitational waves from a pair of merging black holes in a signal known as GW150914.
These gravitational waves carry information about their source and travel unimpeded
across millions of light years until they pass through the Earth. Gravitational waves
are therefore a new kind of cosmic messenger, completely distinct from electromagnetic
radiation. By observing gravitational waves we can now “listen” to the universe in
addition to viewing it with light. However, we gain a more full picture by combining
observations from multiple cosmic messengers in joint detections. This is the field known
as multi-messenger astronomy; while this field has existed for a long time, it has only been
in the past decade that gravitational waves have joined the cast of viable messengers. The
watershed detection of gravitational waves from a pair of merging neutron stars (known
as GW170817) and the accompanying short gamma ray burst observed at frequencies all
across the electromagnetic spectrum marked the beginning of multi-messenger astronomy
with gravitational waves. This single detection brought a wealth of information about
its unique source and new insights to astrophysics, cosmology, and fundamental physics.
We can now say that the era of gravitational wave astronomy is in full swing.

My work has directly contributed to the now regular detection of gravitational waves
from merging black holes and neutron stars. This dissertation will focus on the methods
I have developed and led to detect gravitational waves and improve our prospects for
multi-messenger astronomy. I will begin in Chapter 1 with background material starting
with the prediction of gravitational waves from general relativity, and discussing the
sources of these waves, the instrumental and data analysis methods used to detect them,
and an outlook for the next generation of observation. In Chapter 2, I overview the
general methods of the GstLAL search pipeline used to detect gravitational waves in near
real time, as well as the technical software implementation of the pipeline in the LIGO
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Scientific, Virgo and KAGRA (LVK) Collaboration’s fourth observing run. Chapter 3
overviews a detection strategy aimed at improving our prospects for multi-messenger
astronomy by sharing sub-threshold gravitational wave detections with astronomers at
the Neil Gehrels Swift Observatory in real time with the goal of enabling joint gamma
ray burst observations. A significant portion of my dissertation was spent contributing
to the production of the Gravitational Wave Transient Catalog and the addition of
35 new gravitational wave candidates in the second part of the LVK Collaboration’s
third observing run; this work is described in Chapter 4. Returning to low latency
detection, Chapters 5 and 6 detail the preparation of the GstLAL search pipeline ahead
of the fourth observing run and the new public results from the run, including 81 new
gravitational wave detections. Finally, in Chapter 7, I present a study of our capabilities
for joint detections among ground- and space-based gravitational wave detectors of the
next generation. I conclude in Chapter 8 with a summary and prospects for future work.

1.1 Gravitational waves in general relativity
The existence of gravitational waves was first postulated by Albert Einstein as a mathe-
matical consequence of his general theory of relativity [8, 9]. Although in the following
years, Einstein himself erroneously cast doubt on the physical existence of gravitational
waves, viewing them as merely mathematical artifacts of the linearized theory. This
led to several decades of stunted progress in the study of gravitational waves, until
it was finally proven in the mid-1900’s that these waves do in fact exist in the fully
non-linearized theory and that they carry energy and momentum [10, 11]. After this,
the experimental pursuit to directly detect gravitational waves finally began, eventually
culminating in the construction of the LIGO, Virgo, KAGRA interferometric detectors
and the observation of gravitational waves from two merging black holes, a signal known
as GW150914 [12]. In this section, I will briefly review the aspects of general relativity
leading to the existence of gravitational waves [13–15].

In the Newtonian theory, gravity is a force which is transmitted instantaneously
between massive objects. However, the theory of special relativity imposes the speed of
light in vacuum as the theoretical maximum speed of information transfer. Therefore,
in general relativity Einstein reformulated gravity as a consequence of the geometry
of spacetime. In other words, it is the spacetime metric which transmits the force of
gravity. Massive sources cause the local spacetime to warp and curve and only in a
vacuum, far away from any masses can the spacetime be approximated as flat Euclidean
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space. Otherwise, no matter the choice of coordinates, the spacetime will always have a
curvature. This curvature determines how objects move in the absence of other forces.
Further, the acceleration of massive sources will cause spacetime to distort dynamically.
It is natural to expect then that the distortion will “ripple” throughout the spacetime as
waves moving at a finite speed.

The Einstein field equations formalize how massive objects determine the curvature
of spacetime, and in turn how the shape of spacetime determines how massive objects
move. The equations are written as follows,

Rµν −
1
2Rgµν = κTµν . (1.1)

The left hand side describes the curvature of spacetime. Rµν is the Ricci curvature tensor
which describes how much the local spacetime metric differs from flat Euclidean space,
in which case we would have Rµν = 0. R is the Ricci curvature scalar, which is defined
as the trace of Rµν . The metric tensor gµν defines the proper distance between nearby
points, i.e. ds2 = gµνdxµdxν . The simplest example is for a flat spacetime, for which we
have the Minkowski metric,

η =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (1.2)

The right hand side of Eqn. 1.1 describes the energy and momentum of massive objects,
given by the stress-energy tensor Tµν . The constant κ = 8πG/c4 has units of inverse
force (N−1) and can be thought of as indicating the magnitude of force required to warp
the spacetime.

To predict the existence of gravitational waves, we consider a metric which is described
by a small perturbation away from the Minkowski metric, i.e.

gµν = ηµν + hµν , |hµν | � 1. (1.3)

Then Eqn. 1.1 can be linearized by keeping terms only to leading order in the perturbation.
The vacuum equations (that is, outside the source where Tµν = 0) then admit wave
solutions:

�h̄µν = 0, h̄µν = Aµνe
ikσxσ , (1.4)

where � indicates the four-dimensional Laplacian or wave operator, � = gµν∂ν∂µ. Here,
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we have denoted the perturbation as h̄µν to indicate the choice of Lorenz gauge. From
this, it can be shown that metric perturbations are plane waves traveling at the speed of
light, with the perturbations perpendicular to the direction of propagation of the wave.
By further choosing the transverse-traceless gauge, the metric perturbations are (i) in
the spatial dimension only and perpendicular to the propagation of the wave and (ii)
symmetric in rotations about the direction of propagation of the wave. We can choose
the propagation direction to be ẑ so that the metric perturbations are in the x̂ and ŷ
directions with hxx = −hyy and hxy = hyx. These quantities represent the two different
polarization states of a gravitational wave and are typically referred to as h+ and h×, i.e.

h =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 . (1.5)

The magnitude of the perturbation, |h| is the gravitational wave amplitude. The
amplitude determines the fractional change in distance between two fixed points (or
test masses) in each direction perpendicular to the wave propagation direction. This is
referred to as the strain. Considering for example, the h+ polarization as a gravitational
wave passes the distances in the x̂ direction will be stretched from L→ L(1 + h) while
distances in the ŷ direction are compressed, L→ L(1− h). The gravitational wave strain
is then,

|h| = ∆L
L
. (1.6)

1.2 Sources of gravitational waves
We expect the strain induced by a passing gravitational wave to be extremely small,
making their direct detection difficult. To understand the kinds of sources which will
emit gravitational waves and the detectability of these signals, we must understand the
energy carried by gravitational waves. This is related to the wave amplitude, which
depends on the quadrupole mass moment of the source as follows [14]:

hij = 2
c4

G

DL

d2Qij

dt2 . (1.7)
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Here, G = 6.674× 10−11 N ·m2/kg2 is the gravitational constant, c = 2.998× 108 m/s2 is
the speed of light in vacuum, and DL is the luminosity distance to the source. Qij is the
quadrupole mass moment of the source which is defined as:

Qij =
∫

d3~xρ(~x)
(
xixj −

1
3r

2δij

)
, (1.8)

where the indices {i, j} indicate spatial coordinates, r is the distance from the coordinate
origin (typically chosen as the center of mass), and δij is the Kronecker delta. From this
we see that Q̈ij has units of energy, making hij a dimensionless quantity, as required. The
quadrupole mass moment of a spherically symmetric source will be zero, therefore only
sources with non-spherically symmetric acceleration may emit gravitational waves [14].

In Eqn. 1.7, we see again the factor of G/c4 (whose inverse appeared first in the
Einstein field equations, Eqn. 1.1). The tiny magnitude of this factor, ∼ 10−44 indicates
that we require an extremely energetic source to produce even very small strain amplitudes.
Therefore, any man-made sources will produce gravitational waves far too weak to ever
be detected. On the other hand, the universe provides many astrophysical sources
which are powerful enough to produce radiation which is observable. For the purpose of
detection, these sources are generally categorized as transient or continuous and modeled
or unmodeled. I will briefly give examples of sources in each category, but the rest of this
section and indeed this dissertation as a whole will focus on the detection of transient
modeled sources only.

The transient sources are those for which the signal duration is short relative to the
observation time. Examples include compact binary coalescences (CBCs) – mergers of
the most compact objects in the known universe, i.e. black holes and neutron stars – as
well-modeled sources (see Sec. 1.4). Famously, in 1975 Richard Alan Hulse and Joseph
Hooten Taylor discovered a binary pulsar system later inferring the loss of energy due to
gravitational wave emission by observing the orbital decay [16, 17]. This was the first
indirect observational evidence for the existence of gravitational waves, many years ahead
of the construction of the LIGO, Virgo, and KAGRA interferometers.

Neutron stars and black holes are known to be formed by the gravitational core-
collapse of massive stars. These powerful events are potential sources of transient
bursts of gravitational emission, assuming that the collapse is sufficiently non-spherical.
However, the many complex dynamics at play in such an event are formidable for current
simulations to accurately capture and thus the exact strength and form of the emitted
gravitational radiation is highly uncertain [18–20]. Still, current estimates suggest that
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the LIGO, Virgo, and KAGRA detectors may be sensitive to such sources and searches for
these signals have been carried out since the first observing run [21–23]. These searches
represent an exciting prospect to gain unexpected new information about the universe.

Sources which produce gravitational radiation lasting much longer than the typical
observation duration are known as continuous sources. For example, an isolated neutron
star with some asymmetry such as a “bump” of mass on its surface may slowly radiate
energy away as weak gravitational waves over many millions of years [24–26]. This
radiation is expected to leak away the rotational energy of the neutron star, producing a
spindown such that older neutron stars rotate much more slowly. Depending on the size of
the mass asymmetry (which would determine the energy loss to gravitational waves), the
LIGO, Virgo, and KAGRA detectors may be able to observe these signals, or otherwise
place upper limits on the mass asymmetries, providing interesting insights to neutron
star physics which may not be obtainable through other astrophysical messengers [27,28].

In the unmodeled continuous regime we expect stochastic gravitational waves. This
is a superposition of weak gravitational waves originating from the various sources
throughout the universe which together produce a continuous background [29, 30]. Such
a signal cannot be modeled as the individual wave components are not discernible, but
could nevertheless be detected by observing cross-correlated data from multiple detectors
over very long durations [31, 32]. Particularly, these stochastic gravitational waves could
carry information directly from the very early universe, just fractions of a second after
the Big Bang. Therefore a measurement of these waves would be hugely influential for
cosmology and high energy physics [33].

Returning to the transient, well-modeled case of CBCs – for example a BBH or BNS, I
will now give an overview of the characteristic strain amplitude produced by such sources
as well as the known signal morphology. For these systems, the motion in the source is
purely non-spherical. This fact makes these sources excellent natural laboratories for
studying gravitational waves as the amplitude of the emitted waves is maximal in this
case. By simple dimensional analysis of Eqn. 1.8 we can see that Q̈ij will be of the order
Mv2 where M = m1 +m2 is the total mass of the binary with component masses m1,m2

and v is the internal velocity. The strain of a CBC source is then,

h = ∆L
L
∼ 2
c4

G

DL

(Mv2) (1.9)

Here, the internal velocity of the system is not an observable, but we can use the virial
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theorem1 to obtain an order of magnitude estimate for the strain of a typical BNS
system. This allows us to replace the unknown v2 with the internal gravitational field,
φint = GM/r, where r is the orbital separation. We can obtain a convenient relation by
further replacing φext = GM/DL, i.e.

h ∼ 2
c4φextφint. (1.10)

Using this relation, we can find the typical strain of a BNS system with component
masses mi = 1.4M�, where M� = 1.988× 1030 kg is the mass of the sun. At a distance
of 40 Mpc and an assumed orbital separation of several hundred kilometers, we obtain
h ∼ 10−21. In the next section, I will briefly summarize the methods used by the LIGO,
Virgo, and KAGRA interferometers to measure strains of this magnitude.

Conceptually, we understand that since gravitational waves carry energy they will
gradually deplete the energy of the orbit,

d
dtEorb = − d

dtEGW. (1.11)

There are several references which work out this calculation in detail [14, 34, 35]. The
end result is a relation between the orbital frequency and a combination of the binary
masses known as the chirp mass:

ω̇ =
(96

5

)
ω11/3

c5 (GMc)5/3. (1.12)

Here, ω = 2πforb is the angular velocity of the orbit2. The chirp mass,Mc, defined as:

Mc = (m1m2)3/5

(m1 +m2)1/5 (1.13)

is closely related to the amplitude of the gravitational waves, and thus the amount
of energy carried away from the system. Eqn. 1.12 shows the well known “chirping”
morphology of gravitational radiation from a binary orbit: as the waves carry away
energy the orbital frequency increases while, by Kepler’s laws the radius of the binary
decreases. This results in the eventual merger of the two objects and the formation of a
final remnant object.

1The virial theorem says that the kinetic energy of a self-gravitating system is approximately equal
to half its gravitational potential energy [14].

2The orbital frequency is half the gravitational wave frequency, so ω = 2πfGW
2 .
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Figure 1.1. Schematic of a basic Michelson interferometer with the addition of Fabry-Perot
optical cavities and power recycling as used by the advanced LIGO detectors. Reprinted
from [1].

1.3 Current gravitational wave detectors
The problem of gravitational wave detection is to measure the tiny changes in distance
induced by a passing wave. As shown in the previous section, for some of the most
energetic and efficient sources of gravitational radiation, i.e. merging black holes and
neutron stars, the gravitational wave strain can be on the order of h ∼ 10−21. This is
orders of magnitude smaller than the size of a proton. To observe such a small change in
length, any detector must be extremely sensitive and employ advanced technologies to
reduce sources of noise.

Today, the advanced LIGO, Virgo, and KAGRA interferometers are the most sen-
sitive gravitational wave detectors ever built [36–40]. These detectors are built on the
principle of basic Michelson interferometry with a few critical modifications to improve
sensitivity. Fig. 1.1 shows a basic illustration of a Michelson interferometer. The detector
is constructed with two perpendicular arms where a laser beam is directed through a
beam splitter. In LIGO, these arms are 4 km in length, while Virgo and KAGRA have
3 km arms. The mirrors at the end of each arm reflect the laser beams back to the
beam splitter where they recombine. The transmitted light is then incident on an output
photodiode. Here, the mirrors act as test masses. As a gravitational wave passes through
the detector plane the distance between each test mass and the beam splitter will oscillate:
as one arm increases in length the other will decrease and vice versa throughout wave
periods. This change in distance translates to a difference in the time taken by the laser
beam to traverse the arm length, leading to a phase shift in the recombined beams and
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Figure 1.2. Left. Noise budget of the advanced LIGO detectors. Reprinted from [2].
Representative amplitude spectral density (ASD) of the advanced LIGO and Virgo detectors as
of the third observing run. Reprinted from [3].

an interference pattern at the output. The LIGO, Virgo, and KAGRA interferometers
are operated in a “dark fringe mode” meaning that the arm lengths are calibrated such
that no light appears at the output in the absence of a gravitational wave. Then, the
presence of any interference fringe may be used to infer the presence of a signal.

Fig. 1.1 is a vastly simplified view of the LIGO, Virgo, and KAGRA detectors.
Basic Michelson interferometry is not sensitive enough to capture the strain magnitudes
produced by gravitational waves. Since their initial construction, each interferometer
implemented Fabry-Perot optical cavities, indicated by the mirror between the beam
splitter and the end test mass in Fig. 1.1 [41,42]. A Fabry-Perot cavity consists of highly
reflective mirrors placed at such a distance to produce resonance within the cavity. This
resonance can increase the circulating power in the detector and the phase shift produced
by a change in the arm lengths, effectively amplifying the signal. Power recycling is
implemented by placing a mirror between the laser input and the beam splitter, also
illustrated simply in Fig. 1.1 [43–45]. With this addition, the input laser power to the
detector can be significantly increased which improves the sensitivity as described below.

Even with these modifications the detectors are still noise dominated. This means
that the gravitational wave signals will be buried within the detector’s inherent noise and
we require advanced data analysis techniques to identify their presence. This is discussed
in more detail in the next section and at length in Chapter 2 for the GstLAL search
algorithm, specifically. The detector noise is characterized by the PSD, typically denoted
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as Sn(f). For a stationary random process n(t) the PSD is defined as:

1
2Sn(f)δ(f − f ′) = 〈ñ(f), ñ∗(f ′)〉, (1.14)

where ñ(f) is the Fourier transform of the noise time-series, n(t) and 〈·, ·〉 denotes an
ensemble average. Conceptually, this quantifies the amount of noise present in the
detector as a function of the frequency.

The left panel of Fig. 1.2 shows the noise budget of the advanced LIGO detectors.
This shows the expected noise from various fundamental sources across the frequency
band from a few Hz to several thousand Hz. At low frequencies below a few tens of Hz,
seismic noise dominates due to the vibrations of the Earth as well as human activity and
weather conditions [46,47]. The seismic noise is mitigated by suspending the test mirrors
from pendulum systems which isolates them from much of the ground vibrations. In
the middle of the frequency band from a few tens to hundreds of Hz we are limited by
thermal noise which arises from light absorption at the end mirrors as well as vibrations
in the suspensions holding the mirrors [48, 49]. Additionally quantum noise is a limiting
factor across the full bandwidth from ∼ 10 to 1000 Hz [37,39,50]. The quantum noise
originates from the particle nature of light in two ways. Shot noise dominates at high
frequencies due to uncertainty in the number of photons hitting the output photodiode
at any time. This can be reduced by increasing the laser power. At low frequencies
radiation pressure noise dominates originating from momentum imparted to the test
masses from the incident photons [51]. The broadband quantum noise can be reduced
through frequency dependent squeezing of light [52, 53].

The right panel of Fig. 1.2 shows the representative measured amplitude spectral
densities (ASDs) (the square root of the PSD) for the advanced LIGO, Virgo, and
KAGRA detectors as of the third observing run [3]. Overall, we see that the detectors
are sensitive to gravitational wave signals in the bandwidth from about 10− 2000 Hz. At
lower or higher frequencies, the power from fundamental noise sources diverges and we
are unable to detect any signal. However, from this ASD we can see that the noise floor
in the most sensitive band of the detector is lower than 10−23, meaning that a signal
from the canonical BNS source considered in the previous section is in fact observable by
current detectors.
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1.4 Gravitational wave detection

1.4.1 Approximating the waveform

In the previous sections, it was mentioned that gravitational wave signals from CBC
sources are well-modeled. Conceptually, we can understand how these signals should
look based on the orbital dynamics and energy balance. However, it is not easy to
solve these equations analytically so rather than finding exact solutions we must rely
on approximations. Namely, we use the Post-Newtonian (PN) approximation. In this
approximation, we make the assumptions of (i) slow motion, i.e. (v/c) is small and
(ii) a weak-field, i.e. far from the source GM/DL is small. Of course, as the objects
inspiral their velocities will speed up becoming relativistic near the merger causing the
PN approximation to break down. But it is accurate enough for the inspiral portion of
the waveform. There are many sources which derive the energy, phase evolution, and
gravitational waveform polarizations in the PN expansion. I will only provide a summary
of the key points here but readers are referred to [14,34,54] for the full derivations.

First, we know that the gravitational waveform has two independent polarizations,
h+(t) and h×(t) but at a given detector we will observe the combined waveform as:

h(t) = F+h+(t) + F×h×(t). (1.15)

Here, F+ and F× are the detector response functions or antenna patterns. In general,
a gravitational wave detector has varying sensitivity to signals coming from different
directions and orientations with the maximal sensitivity being reached for a face-on
merger directly above (or below) the plane of the detector [41]. It can be shown that the
two polarization states combine to give:

h(t) = G

c4
4νM
DL

Q(angles)v2 cos(2ϕ(t) + 2ϕ0), (1.16)

where all of the dependence on the source sky position and inclination have been packaged
neatly into Q(angles) and ν = m1m2/M

2 is the symmetric mass ratio. From here, under
the assumption that the frequency varies slowly (which is true in the early inspiral
portion of the waveform, but again will breakdown near merger) we can write the Fourier
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transform as,

h̃(f) = 1
DL

Q(angles)
√

5π
24c3 (GMc)5/6 (πf)−7/6eiψ(f), (1.17)

where we have also replaced ν and M in favor of the chirp mass,Mc. Here, ψ(f) encodes
the phase evolution of the gravitational wave. It is written as a sum of expansion terms,

ψ(f) = 2πftc + ϕc + 3
128ν

∑
k

αk(πMf) k−5
3 . (1.18)

To leading order (k = 0) we have,

ψ0(f) = ψ(f,Mc) = 2πftc + ϕc + 3
128

(
c3

G

)5/3

(πMcf)−5/3, (1.19)

where tc and ϕc are the time and phase at coalescence. The notation ψ(f,Mc) emphasizes
that at leading order the phase is only a function of the frequency and chirp mass; other
intrinsic parameters such as the mass ratio and the component spins come in at higher
orders and thus leave a weaker imprint on the signal.

1.4.2 Matched filtering

Given our models of the waveforms, we can used matched filtering to search for signals
in the data. This is a standard practice in signal processing for detecting a known signal
within noisy data. I will give a general summary of the application of matched filtering to
detection of GWs from CBC sources in this section following the method of [55]. In the
next chapter, I will specialize these methods to the case of the GstLAL search pipeline.

The strain data from GW interferometers such as LIGO and Virgo can be expressed
as:

d(t) = n(t) + s(t). (1.20)

The noise, n(t), is always present while the signal, s(t), is an additive component which
may or may not be present at any given time. The task of GW analysis pipelines is to
determine when a signal is present and what its form is. We assume that the noise is
stationary, meaning that the noise properties do not change over timescales comparable
to the signal durations. In this case, the noise is described by the PSD, Sn(f).

To identify signals, we construct complex-valued template waveforms, h(t),3 where
3Until now, I have used h(t) to denote the actual gravitational waveform. Now, we consider that the
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the real and imaginary parts of the waveform correspond to the two polarization phases,

h(t) = h+(t) + ih×(t). (1.21)

The shape of each waveform is described by the intrinsic parameters, ~λ = {m1,m2, s1,z, s2,z}4,
while its strength observed at the detector will be determined by the extrinsic parameters
~µ = {α, δ, ι, tc, ϕc, ψ}, describing the sky position, orientation, polarization, and time
and phase at coalescence. Therefore we can denote the templates as A h(t;~λ) where all
the dependence on extrinsic parameters has been packaged into the amplitude term.

The SNR in a given stretch of data is defined by the inner product between the data
and a filter, u(t):

ρ2(t) ≡ 〈d(t), u(t)〉 = 4
∫ ∞

0
df ũ

∗(f)d̃(f)
Sn(f) , (1.22)

where ũ(f) is the Fourier transform of u(t) and ũ∗(f) indicates a complex conjugate.
The theory of matched filtering tells us that the maximal SNR is achieved when the filter
u(t) identically matches the signal. In other words, assuming that h(t;~λ) = s(t), we have
that the template is the matched filter and the complex-valued matched filter response,
R(t), is

R(t) = R+(t) + iR×(t) = 4
∫ ∞

0
df h̃

∗(f)d̃(f)
Sn(f) . (1.23)

Taking the magnitude of this and maximizing over the unknown extrinsic parameters, ~µ,
gives the real-valued SNR,

ρ = max~µ |R(t)| , (1.24)

which can be used as a naive detection statistic for a signal with intrinsic parameters ~λ.
Of course, in practice we don’t know a priori what values the intrinsic parameters will

take for any given signal. This motivates the need for template banks where we construct
and store many templates across a broad parameter space that we are interested in
searching. In constructing such a bank, we typically define the match between two nearby
templates (that is, having similar intrinsic parameters ~λ and ~λ+∆~λ) as the inner product
or overlap between the templates,

M(~λ,∆~λ) = max~µ,∆~µ
[
〈h(~µ,~λ), h(~µ+ ∆~µ,~λ+ ∆~λ)〉

]
, (1.25)

exact physical waveform is unknown and use h(t) as a model to describe the observed signal.
4Here, we make the typical simplifying assumption that the spins are aligned or anti-aligned with

the orbital angular momentum which we take to be in the ẑ direction. Therefore, the in-plane spins
si,x = si,y = 0 are ignored. We additionally neglect the orbital eccentricity and tidal deformabilities.
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where we have maximized over the extrinsic parameters. From this expression, [55]
derives the notion of a minimal match as the worst-case scenario match between a signal
and any template in the bank. This is a common metric for measuring the efficacy of a
template bank. A high minimal match (MM ∼ 1) implies a small mismatch between
a potential signal and the most similar template in the bank, which would result in a
near maximal SNR. However, constructing a template bank with a high minimal match
requires a large number of densely packed templates and filtering all of these presents a
significant computational burden. Therefore, practical methods for constructing template
banks must balance the desire to maximally cover the space while keeping the number of
templates manageable [56–58].

1.4.3 Characterizing detector sensitivity

Finally, given the gravitational waveforms from the CBC sources we expect, the noise
present in our detectors, and the detection statistic, ρ, we can define a simple metric
for the sensitivity of the detector, referred to as the horizon distance. We consider a
canonical BNS merger – an equal mass, non-spinning, circular orbit with both binary
components mi = 1.4M�. Further we will assume this source is optimally located and
oriented, i.e. it is a face-on merger directly above the plane of the detector. The horizon
distance is the distance to which we can expect to observe GWs from such an event with
some chosen SNR typically taken to be ρ = 8 [59]. Using the gravitational waveform of
Eqn. 1.17 and the definition of the SNR in Eqn. 1.23 we can solve for the distance as,

DH = 1
ρ
A

√√√√4
∫ fhi

flow
df f

−7/3

Sn(f) . (1.26)

Here I have wrapped all the extraneous factors of h̃(f) which do not depend on f into the
amplitude term A for simplicity. The horizon distance is by construction an optimistic
measure of the detector sensitivity. To get a more realistic estimate, we average this
quantity over the sky position and inclination, obtaining a factor of ∼ 2.25, giving the
detector range [59, 60],

R = DL

2.25 . (1.27)

This is a common quantity used to estimate sensitivity of gravitational wave detectors5.
5During an observation run of the LIGO, Virgo, and KAGRA Collaboration, estimates of the detector

range are updated continuously and made available to the public via https://online.igwn.org.
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1.5 Next generation gravitational wave detection
The LIGO, Virgo, and KAGRA detectors are to-date the only instruments which have
made detections of gravitational waves from merging black holes and neutron stars.
These detectors have seen phenomenal success and an unprecedented rate of growth
in the field over just ten years of observing. The scientific impact of these detections
cannot be understated. Ten years ago, it was not clear whether binary black holes even
existed; now there have been over one hundred detections of these mergers giving us
insight into a previously unknown population of stellar-mass black holes [12]. We have
already been able to begin teasing out structure in the black hole mass distribution from
the supposed lower mass gap through to the upper mass gap imposed by pair-instability
supernovae [61–63]. These observations have brought advancements in cosmology and
fundamental physics with new measurements of the Hubble constant and constraints on
alternative theories of gravity [64,65]. Further, the first observation of gravitational waves
from a binary neutron star merger confirmed such events as progenitors of short gamma
ray bursts [7, 66, 67]. The joint detection of GWs and electromagnetic (EM) radiation
from the same merger event proved that GWs move at the speed of light [67]. This
observation also elucidated the origin of some of the heaviest elements in the universe
as r-process nucleosynthesis in the kilonovae following a BNS merger [68–70]. Thus,
the observation of gravitational waves has already brought advances in astrophysics,
cosmology, fundamental physics, and high energy physics.

However, even at their design sensitivities, the current ground-based interferometers
will only be capable of probing a small fraction of the cosmological volume, corresponding
to the nearest or most recently merging binaries. Next Generation (XG) detectors are
already being planned which will have sensitivities at least an order of magnitude better
than the current network. The Einstein Telescope (ET) is a European proposal for an
underground triangular detector with three nested interferometers of arm lengths ∼ 10
km (compared to the 4 km of LIGO and 3 km of Virgo) [71]. These specifications will
lead to vastly improved sensitivities, lower noise (especially at low frequencies), and (due
to the nested configuration) an isotropic antenna pattern free of the blind spots that
plague current interferometers. The Cosmic Explorer (CE) is a proposal for two L-shaped
detectors in the U.S.: one with 40 km arms and one with 20 km arms [72, 73]. The
order-of-magnitude increase in arm length will bring a vast improvement to sensitivity
compared to current detectors and the two-detector network configuration is designed to
balance cost with science goals, namely the desire for sky localization.
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Detectors such as ET and CE, especially when operated simultaneously as a network,
will be able to far surpass the capabilities of the current ground-based detector network.
These detectors will be sensitive to the high redshift universe, observing stellar mass binary
black holes to redshifts z ∼ 20 or greater [74–76]. This means that we will effectively
be sensitive to every BBH merging within a Hubble time, allowing for unprecedented
direct observations of the very early Universe. The improvement at low frequencies will
bring sensitivity to higher mass binary black holes up to M ∼ 1000M�. In the low mass
regime, the improved low frequency sensitivity means that BNS signals will last much
longer, leading to improved prospects for pre-merger detection and early warning for
multi-messenger EM follow-up. In addition to the CBC sources, these detectors are
expected to bring measurements of continuous gravitational waves such as the stochastic
background and galactic pulsars as well as unmodeled gravitational wave sources like
supernovae. Further, many of these signals will be extremely loud in XG data having
SNRs ∼ 102−103. This will allow for precise measurements of the waveform and improved
tests of general relativity.

All ground-based interferometers are fundamentally limited by seismic noise at low
frequencies. Therefore, even the XG detectors will not be able to reach below a few Hz.
However, the Universe is full of systems producing gravitational waves at lower frequencies
which can provide new insights to astrophysics and cosmology. This motivates the need
for the Laser Interferometer Space Antenna (LISA), a European proposal for a triangular
spacecraft formation in an Earth-like orbit around the sun [77,78]. LISA would be free
of many of the noise sources that limit ground-based interferometers and is proposed to
have arm lengths ∼ 106 km, leading to an incredible sensitivity in the frequency band of
∼ 10 mHz− 1 Hz. With such a detector, we could observe low-mass compact binaries in
the galaxy, such as binary neutron stars or white dwarves, whose gravitational radiation
would be far too weak to every detect in ground-based interferometers [77, 79]. LISA
will also be sensitive to the inspirals, mergers, and ringdowns of supermassive black hole
binaries with component masses ∼ 105 − 107M� allowing for tests of general relativity
under the most extreme dynamical conditions [80, 81]. Additionally, LISA will observe a
stochastic GW foreground at very low frequencies from millions of unresolvable systems
in the universe and could additionally detect a gravitational wave background from the
early universe [82].

Despite the incredible success of the LIGO, Virgo, and KAGRA gravitational wave
detectors to date, we are still in the early days of gravitational wave astronomy. Next
generation detectors such as ET, CE, and LISA will give us a direct window to the
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universe all the way back to the Big Bang. The next generation of gravitational wave
detection will certainly bring new surprises in astrophysics, cosmology, and fundamental
physics, revolutionizing our understanding of the universe for many years to come.
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Chapter 2 |
GstLAL inspiral search

2.1 Introduction
In this chapter, I will review the methods of the GstLAL pipeline in searching for
GW signals from modeled CBC sources. GstLAL uses matched filtering to search the
detector strain data, d(t), for potential signals, s(t), which are modeled by complex-valued
template waveforms, h(t), as described in Sec. 1.4.2. However, GstLAL typically performs
matched-filtering in the time-domain, i.e. Eqn. 1.23 becomes a convolution:

ρ(t) = 4
∫ ∞
−∞

dτ ĥ(τ)d̂(t+ τ). (2.1)

Additionally, here the data and template have been whitened as indicated by the “hat”.
Whitening ensures that the data is uncorrelated in time and has unit variance [83].
In other words, each sample of whitened data is independent and follows a Gaussian
distribution. The whitened data is defined as:

d̂(t) =
∫ ∞
−∞

df d̃(f)e2πift√
Sn(f)

. (2.2)

In this chapter, I will begin by describing the inputs to this equation – the data
conditioning in Sec. 2.2 and the templates in Sec. 2.3. After we obtain GW candidates with
matched filtering, we rank them against a background of noise triggers with the likelihood
ratio (Sec. 2.4) and then estimate the significance with the false alarm probability (FAP)
and FAR (Sec. 2.5). Finally, in Sec. 2.7 I overview the technical implementation of the
pipeline in terms of the software infrastructure.
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2.2 Data conditioning
As in Sec. 1.4.2, we denote the output strain data from GW interferometers such as
LIGO, Virgo, and KAGRA as:

d(t) = n(t) + s(t) (2.3)

and make the initial assumption of stationary noise. However, over long durations such
as days to weeks or even months, we know that this assumption breaks down and indeed
the detector noise properties do vary significantly. We also assume that the noise is
represented by a Gaussian random variable. The mean of the Gaussian noise may not be
zero, however with the assumption of stationarity the mean will be constant and can
therefore always simply be shifted to zero.

Before the detector data, d(t), can be used in the matched filtering, we require several
conditioning steps. First, it is downsampled. The data from the detectors has sampling
frequency 16384 Hz, but typically the GstLAL pipeline will decimate the incoming data
to a lower sampling frequency before proceeding to the filtering. As the matched filtering
involves an inner product between the data and the template waveform, we must ensure
that the two are sampled at the same rate. This is discussed in more detail in Sec. 2.3.

After downsampling, the data is whitened using the PSD according to Eqn. 2.2. As
described in Chapter 1, the PSD is defined as

〈ñ(f)ñ(f ′)〉 = 1
2Sn(f)δ(f − f ′), f > 0. (2.4)

However, this quantity is not known analytically and instead we must measure it
empirically. From here, I will denote the data as a discrete quantity with time index k,
d̂[k], as opposed to the continuous quantity d̂(t).

To compute the instantaneous PSD, we first split the incoming data into segments of
length T seconds, i.e. N = fsT samples. We apply a window function and take the fast
Fourier transform (FFT),

d̃j[k] =
√√√√ N∑N−1

k=0 w[l]2
∆t

N−1∑
l=0

w[l] · dj[l] exp (−2πikl/N). (2.5)

The subscript j indexes the data segments and l is the time index. We use a Hann
window, w[k], to smoothly zero the data at either end of each segment [4, 84]. For each
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Figure 2.1. Illustrative example of the data segments used for PSD estimation by GstLAL.
The normalized strain time-series data, d[k], is shown in light grey. The solid curves show four
overlapping Hann windows, w[k], with FFT length = fs × 16 seconds. The green curves show
the convolved dj [k] · w[k] in each segment with varying opacities.

segment of length N , the first and last N/4 samples are zeroed by the window function.
Therefore, only the middle N/2 samples are used in the PSD calculation. Each segment
is then overlapped with the next by N/4 samples so that every sample of data is present
in 4 segments of the instantaneous PSD. Fig. 2.1 shows an illustrative example of four
such overlapping windowed data segments. Historically, the data segment length N has
been chosen as fs× 16 seconds corresponding to a 4-second zero pad on either side of the
segment and 8 seconds of data in the middle being used to compute the instantaneous
PSD. From Eqn. 2.4, the instantaneous PSD in the jth data segment is:

Sinst
j [l] = 2∆f

∣∣∣d̃k[l]∣∣∣2 (2.6)

The instantaneous PSD is a rapidly changing quantity and not robust to short time-
scale fluctuations in the noise. We desire an estimate of the PSD which more accurately
represents the noise properties over long durations. [4] derives a suitable PSD by first
taking the median PSD, Smedj [l], over the recent nmed = 7 instantaneous PSD samples.
The median ensures that any short duration non-Gaussianities or outliers in the statistical
properties of the data will be disregarded. The recent navg = 64 median PSDs are then
used to construct the arithmetic mean of the PSD, Sj[l], which ensures that the PSD is
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Figure 2.2. Convergence of the PSD as measured by GstLAL. The vertical axis shows the
log fractional loss in SNR as a result of filtering with the estimated PSD. Within about 200
seconds, the loss in SNR drops to the level of O(1%). Reprinted from [4].

representative of data characteristics over long durations, and will not fluctuate rapidly.
To move the median PSD, an excursion in the data would have to last at least 1

2nmedN

seconds and still it would only contribute 1
navg

of the mean PSD. Sj [l] has been shown to
converge quickly to an accurate estimate of the true PSD, shown in Fig. 2.2, and remain
robust to frequent short duration excursions in the data [4,85]. This is the quantity used
by the GstLAL search pipeline for whitening the data.

However, since the PSD is estimated in real-time as the data is streamed, it is not
possible to use the same Sj[l] to whiten the templates as is used for the data. The
templates must be pre-whitened before an analysis begins. For this purpose, we use a
reference PSD computed using the same method but on a past segment of data. The
effect of whitening the templates with a different PSD is expected to be small as long as
the data is sufficiently stationary, that is the reference should be chosen as recently as
possible to the data being analyzed.

As mentioned previously, the assumption that LIGO noise is stationary and Gaussian
breaks down on long timescales. In fact, even on short timescales the LIGO noise is subject
to transient non-Gaussian excursions known as glitches. This poses a significant problem
for GW detection as glitches can mimic real signals and make it difficult to distinguish
terrestrial noise from astrophysical signals. Developing methods to reduce glitches, identify
their sources, and distinguish them from signals is an ongoing area of study [86–91]. To
mitigate the negative effects of glitches, the GstLAL search pipeline implements a gate
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thresholded on the whitened strain amplitude [4]. Under the assumption that no signal
is present in the data the whitened strain has a unit variance. We can choose a threshold
in units of standard deviations from the mean as a way to identify excursions in the
data which have significant deviations from stationarity. Any stretches of the data which
surpass the threshold are then set to zero before the filtering proceeds. Since whitening
further ensures that neighboring samples of data are uncorrelated, zeroing the data in a
window around potential glitches is expected to have a negligible effect on the matched
filter response to the surrounding data. We must be careful in choosing an appropriate
threshold so that we do not gate real signals. A discussion of the choice of threshold
used in the first part of the O4 is given in Chapter 5.

After down sampling, whitening, and gating the data is ready for input to the matched
filter equation. In the next section I will discuss the second ingredient to the matched
filtering equation which is the templates.

2.3 The LLOID method
In the previous section, I discussed the data conditioning and specified that the templates
are whitened with a pre-computed reference PSD before filtering. In fact, the GstLAL
pipeline first transforms the templates according to the Low-Latency Online Inspiral
Detection (LLOID) method before the matched filtering can proceed [92]. In this section,
I will provide an overview of the LLOID method and its motivation.

To enable multi-messenger astronomy and deep EM follow up campaigns it is im-
perative that we can detect GW candidates as quickly as possible. EM counterparts in
the first few seconds or minutes after the merger are expected to carry rich information
about the source dynamics [93–99]. These signals may fade very quickly so any delay
in the initial detection of a GW candidate reduces our chances of observing the prompt
emission. However, GW searches which rely on template banks and matched filtering to
identify signals can suffer from several inefficiencies which become critical when the goal
is low-latency detection [92]. First, the number of computations required to convolve the
template waveform with the data is formidable especially when the waveforms and data
are sampled at many thousands of Hertz. Second, these searches require hundreds of
thousands to millions of templates to reach an acceptable sensitivity across the full mass
spectrum from ∼ 1.0 M� for the smallest neutron stars to O(100)M� for the heaviest
black holes. Especially in the lower mass range, where waveforms can last several minutes
in the LIGO and Virgo sensitive frequency band, we require an extremely dense bank.
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This is because for these long duration waveforms, a very small change in the masses or
spins of the source can lead to a phase shift which builds up considerably over many cycles
leading to a large SNR loss. This means that we must convolve millions of templates
with every second of data from each detector we wish to analyze. A search such as this
would require vast computational resources and still may struggle to keep up with the
real time arrival of data.

The LLOID method seeks to optimize the matched filtering to produce a GW search
which is highly performant without sacrificing sensitivity [92]. This is a two-pronged
method addressing first the issues of over-sampling by treating the waveform as inde-
pendent time slices each down-sampled to an appropriate frequency according to its
bandwidth. Secondly, the LLOID method employs a singular value decomposition (SVD)
of the full template bank, reducing the total number of templates required to fully cover
the physical parameter space. In this section, I will describe the method of time-slicing
first, followed by the SVD computation.

The Nyquist-Shannon sampling theorem stipulates that to accurately represent a
waveform whose highest frequency component is fN , it must be sampled with a frequency,
fs ≥ 2fN [100]. That is, the sampling rate must be at least twice as high as the
maximum frequency component present in the signal. Otherwise, there can be bias in the
sampled waveform known as aliasing. Given this requirement, the problem of the large
number of computations required to filter a single GW waveform is exacerbated by the
specific waveform morphology of CBC signals. The waveforms monotonically increase
in frequency with time, spanning a range from ∼ 10− 1000 Hz from the early inspiral
through to the merger in our frequency band of interest. This means that the sampling
frequency required to accurately represent the later portion of the waveform necessarily
over samples the early portion. This poses an obvious problem to the efficiency of the
search, however we can leverage the same waveform morphology along with the Nyquist
theorem to split up the time-domain waveform into slices which can each be safely
down-sampled [92].

We use the Nyquist-Shannon theorem to dictate appropriate bounds corresponding
to slices of a CBC waveform which may be sampled at a given rate. The raw strain data
is sampled at 16384 Hz which dictates the maximum possible sampling frequency for the
waveforms. In GstLAL we choose allowed sampling frequencies in decreasing powers of
two, i.e. fs : {16384, 8192, 4096, 2048, ... 2} Hz. To construct time slices, we will start
at the end of the waveform, i.e. at the coalescence time which we define as t = 0. We
count time as increasing backwards towards the beginning of the waveform. For each
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Figure 2.3. Illustration of a time-sliced BNS waveform, with a low frequency cut off 15 Hz
and upper frequency cut off 16384 Hz. Padding was not included in the construction of these
time slices. The colors indicate the sampling frequency of each band. The final few seconds of
the waveform, shown in the inset axis, has time slices that are extremely short in duration.

time slice, defined by its sampling frequency, we need to choose the lower frequency cut
off flow to define the bounds of the slice. This is conveniently determined by the Nyquist
theorem. The flow of the ith slice, with sampling frequency, fs,i, is the Nyquist frequency
of the next slice, that is [92]:

flow = fN,i+1 = fs,i+1

2 = fs,i
4 . (2.7)

For example, a slice sampled at fs = 16384 Hz will extend to the lower frequency cut
off flow = 4096 Hz. The next slice, sampled at fs = 8192 Hz will extend to the lower
frequency cut off flow = 2048 Hz, and so on. The time-slicing is illustrated for a BNS
waveform with m1 = m2 = 1.2 M� in Fig. 2.3. Eqn. 2.7 is the highest allowable choice of
flow, since a higher cut off will necessarily mean that the next slice includes frequency
content higher than its own Nyquist, and therefore the waveform will no longer be
accurately represented. In practice, the GstLAL pipeline also uses a padding factor. With
padding, the lower frequency cut off of each slice is

flow = fN,i+1

padding = fs,i
4× padding . (2.8)
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This produces time slice boundaries which are more conservative by extending a higher
sampling frequency to lower frequency portions of the inspiral (i.e. longer duration slices)
than is strictly necessary.

The waveform slicing and down-sampling only needs to be computed once and can
be done in advance of an analysis. Therefore, it can lead to a significant reduction in the
computations required to filter a single waveform, as the number of samples in the early
portions of the waveform can be reduced by several orders of magnitude with respect to
the late portions near the merger [92]. The down-sampled waveform slices need to be
interpolated and re-combined after filtering to produce the full SNR time-series output.
However this operation is cheap compared to the reduction in computation afforded by
the down sampling. We will discuss the waveform reconstruction in more detail below
with regards to the SVD of the template bank.

The second step in the LLOID method involves computing a SVD on the physical
templates in the bank [101,102]. As mentioned above, in order to achieve a high search
sensitivity in the parameter space of interest, the template bank is constructed very
densely to ensure a small maximum SNR loss between a real signal and the nearest
template. This is known as the maximum mismatch and is usually chosen to be ∼ 3%
in gravitational wave searches (or equivalently, a 97% minimum match) [55]. Therefore
the denseness of the bank is quantified in terms of the degree of similarity between
neighboring templates given by their overlap or inner product, 〈hα, hβ〉. This high
overlap is a redundancy in the matched filtering process. Reducing this redundancy
allows a more sensitive search to be carried out using fewer computational resources.
The SVD is used to reduce the set of physical templates to a smaller set of orthonormal,
albeit non-physical, basis vectors which are used to filter the data.

As mentioned earlier in this chapter, for each physical waveform we would like to
search for we must perform the matched filtering with two templates corresponding
to each quadrature phase of the waveform, h+(t) and h×(t). That is, for M complex
waveforms there are N = 2M real-valued templates to filter. In the rest of this section,
I will follow the notation of [101] and denote the real and imaginary parts of the αth

waveform as ~h(2α−1) and ~h(2α) respectively, such that α : {1, 2, ... M}. The matched
filter response to the αth template is the inner product of the data with the template,
ρα = ~hα · ~d, where the inner product is over the time index, l : {1, 2, ... L}.

We can construct an N × L dimensional matrix by stacking the templates as rows,
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i.e.

H =


~h1
~h2

. . .
~hN

 =


h11 h12 h13 . . . h1L

h21 h22 h23 . . . H2L

. . . . . . . . . . . .

hN1 hN2 hN3 . . . hNL

 . (2.9)

Then, the SVD theorem states that this matrix H, as is true for all matrices, can be
factorized as follows [103]:

H = VΣU. (2.10)

Here, V is an N × N matrix of reconstruction coefficients, Σ is an N × N diagonal
matrix of the singular values of H, and U is an N ×L matrix of orthogonal basis vectors.
We can consider a specific Hαj corresponding to the jth sample of the αth waveform in
the bank,

Hαj =
N∑
ν=1

vανσνuνj. (2.11)

Here, ~vα are the reconstruction coefficients for the αth template, σν are the singular values
of matrix H, ~uj are the jth samples of each basis vector, and the summation is over the
N basis vectors. The ~u being basis vectors means that the matrix H is reconstructed by
a linear combination of the ~u with coefficients given by ~σ.

Until this point, the factorization has not reduced the computational burden required
to filter the N physical waveforms. The crux of this method lies in the fact that the
H may be approximated by a smaller subset of the ~u to a high accuracy. The singular
values represent the relative contributions of each of their respective basis vectors to the
reconstruction. The elements of ~σ are arranged in decreasing order, where the smallest
values are least important in accurately reconstructing the H. Given that we do not
require a perfect coverage of the parameter space, only up to some ∼ 97%, we can
therefore discard some of the basis vectors with the smallest values of σν , i.e.

Hαj ≈
N ′∑
ν=1

vανσνuνj, (2.12)

where N ′ < N . That is, a specific waveform, hα is approximated by the linear combina-
tion:

hα ≈ (vα1σ1) · ~u1 + (vα2σ2) · ~u2 + ... (vαN ′σN ′) · ~uN ′ . (2.13)

Then instead of filtering all N physical template waveforms, we can filter the reduced
set of N ′ basis waveforms, and reconstruct the output of any physical template by

26



Figure 2.4. A time domain BNS waveform with time slice boundaries indicated by shades of
grey. The inset axis shows the first five basis waveforms, uν , for the fourth time slice in shades
of green.

multiplying the correct reconstruction coefficients [101]. An illustration of a few such
basis waveforms for a BNS template is shown in Fig. 2.4, emphasizing the non-physical
shape of the ~u.

The question of how many basis waveforms we can safely discard, i.e. the choice
of N ′, is determined by the allowable SNR loss. [101] derives the SNR loss in the αth

complex template in terms of the reconstruction coefficients,

δρ

ρ
= 1

4

N∑
ν=N ′+1

(
v2

(2α−1)ν + v2
(2α)ν

)
σ2
ν . (2.14)

And [101] and [92] show that with the number of basis waveforms N ′ about an order
of magnitude less than the original number of templates N , the physical waveforms are
reconstructed to an accuracy of about 1 − 104 and the fractional loss in SNR is only
about 10−3. This is a powerful method to reduce the computational burden of matched
filtering searches for GW signals.

Combining the two steps of the LLOID method, GstLAL first splits the full template
bank into smaller sub-banks of neighboring templates in the parameter space. The bank
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splitting can be computed with respect to several parameters. Historically, the chirp mass
Mc and χeff have been used [4,104,105]. More recently, methods have been developed
to group templates based on the PN phase terms [106,107]. Several nearby sub-banks
are grouped together into what we refer to as background bins (this choice of naming
convention will be motivated in Sec. 2.4). The waveforms in each background bin are
first time-sliced and downsampled, such that the redundancy in the time dimension
is reduced. Then, the SVD is computed over the groups of waveforms in each time
slice independently. This reduces the redundancy in the template dimension, i.e. the
overlap between neighboring templates with similar intrinsic parameters. The filtering
proceeds with this reduced set of down-sampled orthogonal basis vectors. The physical
down-sampled waveforms are reconstructed via the pre-computed reconstruction matrices.
Finally, the SNR is computed by up-sampling and combining across time slices.

2.4 Trigger generation and ranking
The matched filtering produces an SNR time-series which we use to identify triggers.
The GstLAL pipeline defines a trigger as any point in the SNR time-series which passes
a threshold of 4.0. Each background bin may include O(1000) templates and the filtering
of each template may produce O(1) trigger per second. Further, we will have independent
SNR time-series from filtering data in each of the detectors participating in an analysis.
We must reduce this large set of triggers, which are expected to mostly originate from
noise, to a smaller set of viable GW candidates.

A coincidence is formed when a template rings up a trigger in multiple detectors
within the light travel time. The network SNR, defined as,

ρnet =
√ ∑
i∈IFOs

ρ2
i , (2.15)

is used as an initial threshold in forming GW candidates. Any trigger with ρnet ≥ 7.0 is
kept and considered as a potential GW candidate. GstLAL does not require coincidence
among more than one detector to form a candidate [104]. That is, a non-coincident
trigger with ρ ≥ 7.0 in a single detector is still considered as a GW candidate.

To estimate the significance of the candidates we must first understand the distribution
of triggers produced by the detector noise. We construct a background of triggers which
we can confidently assume are only terrestrial in origin. We know that coincidence among
independent detectors is a powerful validation test of true GW triggers. Therefore, the

28



GstLAL pipeline constructs background from the non-coincident triggers [4]. Any trigger
found during times when at least two detectors were in operation which was identified in
only a single detector is used to construct a background histogram. This choice relies on
the assumption that a real GW would ring up a trigger from the same template across
at least two detectors. In constructing the background, we conservatively exclude all
triggers from times when only a single detector was operational. This is because during
these times we lack information about possible coincidence and we cannot confidently
exclude the possibility that any trigger is astrophysical in origin. It is imperative for
accurate significance estimation that the background is “clean”, i.e. that it includes only
triggers produced by noise and no signals. On the other hand the candidate list, defined
only by the threshold of ρnet ≥ 7.0 certainly includes noise triggers. The task is to rank
these candidate in order of their likelihood of being produced by real GWs.

As mentioned in Sec. 1.4.2, the SNR can be used as a naive ranking statistic for GW
candidates. However, in non-Gaussian data this is not ideal as transient instrumental
artifacts may ring up high SNRs mimicking true signals. Instead, we use the likelihood
ratio [108,109], defined for a template with intrinsic parameters ~θ = {m1,m2, s1,z, s2,z}
as: [110,111]

L = p( ~O, ~θ|~s)
p( ~O, ~θ|~n)

. (2.16)

Here, ~O is a set of observable properties of the trigger and the data. The numerator is
the PDF under the signal hypothesis, i.e. the probability of finding ~O given that a signal
~s is present in the data. The denominator is the PDF under the noise hypothesis, i.e.
the probability of finding ~O given that no signal is present and the data only includes
noise. In GstLAL, we take ~O =

{
~ρ,~t, ~φ, ~ξ2, ~D

}
. The vectors ~ρ, ~t, and ~φ are the SNRs

and coalescence times and phases in each of the participating detectors, ~D. The ~ξ2 is
a signal consistency test statistic based on the autocorrelation function of the complex
SNR timeseries.

To estimate L, we consider the numerator and denominator separately and factor the
PDFs into simpler terms. Here, I will give a brief overview of the terms beginning with
the signal model in Sec. 2.4.1 followed by the noise model in Sec. 2.4.2, but readers are
referred to [110,111] for more details.
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2.4.1 Signal model

The numerator of Eqn. 2.16 factors as follows:

p( ~O, ~θ|~s) =P (tref , φref |~θ, ~s)

× P ( ~D|tref , ~s)

× P (~ρ, ~∆t, ~∆φ| ~D, tref , ~s)

× P (~ξ2|~ρ, ~θ, ~s)

× P (~θ|~s)

(2.17)

The first term, P (tref , φref |~θ, ~s) is the probability of finding a trigger at the coalescence
time and phase tref , φref measured in a reference detector1 under the assumption that a
signal, ~s, described by a template with the parameters ~θ is present in the data [110,111].
This term depends on the sensitivity of the detector network as a function of time
which can be quantified using the reference detector’s horizon distance, DH(tref , ~θ), as
defined in Sec. 1.4.3. This is the distance to which the detector is expected to observe
an optimally oriented source with SNR ρ = 8. The horizon distance is computed at any
time by using the estimated PSD which is tracked continuously by GstLAL as described
in Sec. 2.2. The probability that a trigger is observed in the reference detector at tref is
then proportional to the detector’s sensitive volume which is simply D3

H .
The second term, P ( ~D|tref , ~s) is the probability of the trigger being found in the exact

subset ~D of detectors operating at tref [110, 111]. ~D is defined as the set of detectors
which observed the trigger with ρ > 4.0 and is not necessarily the same as the set of
detectors operating at the time. This term depends on the horizon distances of each
detector. It is modeled by simulating triggers uniformly oriented and distributed over
the sky and calculating the number of detectors in which each signal is detectable at a
given horizon distance.

Given a time and phase in the reference detector we have an expectation of what
the times and phases should be in each other detector based on the distance between
the detectors and the assumption that gravitational waves travel at the speed of light.
P (~ρ, ~∆t, ~∆φ| ~D, tref , ~s) represents the consistency of the relative times and phases of the
signals observed in each of the participating detectors, ~D [104,111]. The time (phase)
difference is computed relative to the reference, ∆t = t− tref (∆φ = φ− φref). This term
is also modeled by simulation. We construct the PDF by calculating the ∆t and ∆φ for

1In GstLAL we arbitrarily choose the first participating detector in alphabetical order as the reference.
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Figure 2.5. The simulated probability distributions of ∆t (lower right) and ∆φ (upper left)
for a trigger found in LIGO Livingston and LIGO Hanford. The joint PDF over ∆t and ∆φ is
shown in the lower left. We expect real GW signals to fall somewhere on the bright regions of
this distribution.

simulated sources uniformly distributed on the sky. We discard any triggers observed
with |∆t| greater than some conservative cut off which is taken to be larger than the
light travel time between detectors. Finally, we smooth the resulting distribution with a
Gaussian kernel density estimate (KDE). An example of the resulting PDF for LIGO
Hanford and LIGO Livingston is shown in Fig. 2.5.

The next term, P (~ξ2|~ρ, ~θ, ~s) is also a signal consistency test [4, 111]. The detectors
are noise dominated and include glitches which can ring up triggers with high SNR even
when the template waveform is not a good match for the glitch morphology. If we assume
that the template, hα, with parameters ~θ exactly represents the signal in the data, then
we know what the matched filter response time-series should be. This is given by the

31



autocorrelation time-series,

Rα(t) =
∫ ∞
−∞

df |h̃2α(f)|2 + |h̃2α+1(f)|2
Sn(f) exp (2πift) . (2.18)

We can compare this to the measured SNR time-series to understand how closely the
signal shape matches the template, i.e.

ξ2
α(t) = |ρα(t)− ρα(0)Rα(t)|2 , (2.19)

where the autocorrelation time-series is scaled by the value of the complex SNR time-
series, ρα(t), at t = 0 corresponding to the peak SNR at coalescence. The ξ2 is computed
by integrating this time-series over a small window surrounding the trigger time, i.e.
[−δt, δt], and the vector ~ξ2 is the ξ2 value in each participating detector. Because the
noise in each detector is assumed to be independent, we can model the PDF as a product
over the detectors,

P (~ξ2|~ρ, ~θ, ~s) ≈
∏

i∈IFOs
P (ξ2

i |ρi, ~θ, ~s). (2.20)

Historically, the PDFs for each detector had been estimated empirically by tuning a
number of free parameters. However recently, [111] re-derived the term as a semi-analytic
function.

The final term in Eqn. 2.16, P (~θ)|~s) is a prior on our astrophysical expectations of
the distribution of GW source properties in the parameter space [110,111]. This term
is often referred to as a population model or mass model. It represents our expectation
of how likely it is to find a GW signal with intrinsic parameters ~θ = {m1,m2, s1,z, s2,z}
corresponding to each template in the bank. The choice of distribution is made in advance
and often informed by previous detections.

2.4.2 Noise model

The denominator of Eqn. 2.16 factors as follows:

p( ~O, ~θ|~n) =P ( ~D|tref , ~n)

× P ( ~∆t, ~∆φ| ~D,~n)

× P (~ρ, ~ξ2|tref , ~θ, ~n)

(2.21)
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The first term, P ( ~D|tref , ~n), is the probability that a random noise event would produce
a trigger in the exact combination of detectors, ~D, at tref [110, 111]. We first consider
the rate of noise events in a single detector which can be approximated as a Poisson
process and measured simply by counting triggers over a long period of time. The mean
rate of noise events in a single detector is denoted by µ1. The rate of coincident events
among a pair of detectors, D1 and D2, is µ1∧2 = µ1µ2∆t12, where ∆t12 is a coincidence
window chosen based on the light travel time between the two detectors. For a two
detector analysis these are the only quantities we need. For more detectors, we would
need to compute triple (or more) coincident rates which is non-trivial but a method for
doing so is derived in [110]. To estimate the PDF, we need to compute the coincident
rate among the exact subset of detectors D = {D1, D2, ... DN}, which we denote as µ≯ ~D.
This is estimated as the sum of the coincident event rates among each combination, ~N ,
of detectors in ~D:

µ ~D =
∑
~N∈ ~D

µN1∧N2∧...Nn . (2.22)

But, any of the detector combinations in this sum may occur as part of a coincidence
among a larger set of detectors, ~O (the total set of detectors considered in the analysis),
which must be subtracted from the overall rate, i.e.

µ≯ ~D = µ ~D − µ ~O. (2.23)

Finally, the probability is given by the ratio of the mean coincidence rate for the subset
of detectors ~D to the sum of mean coincidence rates of all possible detector combinations
(including non-coincidents, i.e. single detectors) in the total set, ~O,

P ( ~D|tref , ~n) =
µ≯ ~D

µ ~O
=

µ≯ ~D

µ≯1 + µ≯2 + ... µ≯1∧2 + µ≯1∧3 + ... µ1∧2∧...3 + ...
. (2.24)

The second term, P ( ~∆t, ~∆φ| ~D,~n), is similar to the signal consistency test over times
and phases in the numerator. In the noise hypothesis we assume that any spurious
coincidences formed by noise in the independent detectors are not coherent and therefore
their relative times and phases will be uniformly distributed [104,111]. This makes the
PDF a constant.

Finally, we have the probability of finding noise triggers with the given ρ and ξ2

values in each detector, P (~ρ, ~ξ2|tref , ~θ, ~n) [4, 111]. For this term, we compute the ξ2

from Eqn. 2.19 for all of the triggers in the background, i.e. non-coincident triggers
found during times when at least two detectors were in operation. For each detector, we
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Figure 2.6. An example of a P (ρ, ξ2| {θ} , ~n) constructed for a background bin of templates
with Mc ∼ 4.39 − 4.75M� in LIGO Livingston data. The χ2 values referenced in the title
and axis label are a holdover of a historical naming convention, but refer to the ξ2 values of
Eqn. 2.19.

compute a two dimensional background histogram over the ρ − ξ2 space. We smooth
this distribution with a Gaussian KDE to obtain the PDF, and similarly to Eqn. 2.20 we
have:

P (~ρ, ~ξ2|tref , ~θ, ~n) ≈
∏

i∈IFOs
P (ρi, ξ2

i |~θ, ~n). (2.25)

This equation references a particular template defined by the parameters ~θ, however in
practice we construct a single PDF over each background bin, {θ}, assuming that the
noise properties do not vary significantly over the neighboring templates in the bin. One
such histogram is shown in Fig. 2.6. The bright region in the upper left corner of the plot,
for low SNRs and high ξ2 values, is dominated by noise. Any GW candidates falling in
this region of the plot would be difficult to distinguish from noise. However, candidates
falling in the dark regions of the plot, where SNR is high and ξ2 is low, are considered
more likely to be real GW signals.

While GstLAL does not require coincidence among detectors to form candidates, we
do choose to down rank the candidates found in only a single detector by a tunable
penalty. This penalty is applied as an extra term in the denominator of the natural
logarithm of the likelihood ratio, i.e. for single detector candidates:

lnL → lnL − ln(P ). (2.26)
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Figure 2.7. An example of an ρ− ξ2 PDF with significant background contamination (left).
The contamination is shown by the “islands” in the distribution around SNR ∼ 10− 20 and
ξ2/ρ2 . 10−2. The right panel shows the same panel after background count removal, where the
blue arrows indicate the region in ρ− ξ2 space where counts are removed. The disappearance
of the “island” features shows that the unwanted contributions from signal have been removed
and the PDF now more accurately represents the noise distribution. Reprinted from [5].

Given all the terms discussed in Eqn. 2.21, we can construct histograms of the L
distributions in each background bin, P (L| {θ} , ~n). By adding these histograms together,
i.e. marginalizing across the background bins, we produce an overall distribution of
the likelihoods in the noise hypothesis, P (L|~n). This quantity is used to estimate the
significance of GW candidates in Sec. 2.5.

2.4.3 Background contamination

As mentioned previously, it is imperative to the sensitivity of the search that we do not
accidentally include real signals in the construction of our background histograms. Any
contribution in the background from a trigger originating from a real GW signal (referred
to as background contamination) can negatively effect our ability to distinguish signal
from noise. In low-latency operation, the background histograms are built up over time.
The background used to assess the likelihood of a given trigger cumulatively includes all
the noise triggers throughout the analysis up to some short period (less than four hours)
before the detection time. In other words, we use our previous observations to inform
the likelihood of future observations and so the likelihood estimation is causal. Even if
there is background contamination, a trigger will never be ranked against a background
which includes itself. However, contamination will effect future triggers, making their
estimated likelihoods lower than if there was no contamination and effectively lowering
the sensitivity of the search [5].

Our construction of the background hinges on the assumptions that real signals will
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ring up triggers in coincidence among more than one detector and that such signals are
rare. For a real signal, especially a signal with high SNR, many nearby templates may
ring up a trigger. Although we expect the “best” matching template (the one with the
highest SNR) to be found in coincidence among detectors, it is possible that nearby
templates could ring up non-coincident triggers. These triggers may be placed in the
background even though they originate from real signals. Another possible, albeit rarer,
avenue for background contamination is a trigger with a GW source located in the blind
spot of one operating detector. In this case, a real signal may only ring up a trigger
in a single detector and therefore be added to the background. If signals are rare then
even if we have background contamination, the effect on the overall distribution can be
assumed to be negligible. However, as the detectors have become more sensitive, our
detection rates increased beyond what was expected when algorithms such as GstLAL
were initially designed and background contamination has become a significant problem.
Therefore, recent developments have focused on methods of mitigating the negative
effects of background contamination [5].

A recent development has allowed us to track time stamps associated with triggers
added to the background histograms. This enables us to ex post facto remove any counts
from the background which are near in time to triggers determined to be real signals.
In [5] the background contamination was studied and a region of the ρ− ξ2 space was
identified where background contamination is particularly likely. Fig. 2.7 shows an
example of a background histogram before and after signal contamination was removed
from this region. Any counts in a 10 second window around a “true signal” which fall in
this region are subtracted, effectively “cleaning” the background. Since we of course do
not a priori know which triggers are true GW signals, in practice we must make a choice
for how to determine when to remove counts from the background. This choice must
balance the desire to aggressively remove all signals while being careful not to remove
actual noise signatures from the background.

2.5 Significance estimation
In the previous section I described how the GstLAL pipeline chooses to categorize triggers
as background (likely to originate from noise) and candidates (potentially astrophysical
in origin) and uses the likelihood ratio to rank the candidates such that those with the
highest L are thought most likely to originate from an astrophysical GW source. In order
to claim a detection we must estimate the significance of these candidates. To do this,

36



we use the false alarm probability (FAP) and the false alarm rate (FAR).
At a likelihood threshold of L∗2, the FAP is the probability that an analysis yielding

M noise triggers (again, meaning non-coincident triggers during times when at least two
detectors were operating) will produce at least N = 1 noise trigger with L ≥ L∗. First,
consider the toy example where M = 1. The probability that this single noise trigger
has likelihood above the threshold is:

P (N = 1) = P (L ≥ L∗). (2.27)

This is the complement of the probability that the trigger has L < L∗, i.e.

P (L ≥ L∗) = 1− P (L < L∗). (2.28)

We can approximate the rate of noise triggers with L ≥ L∗ as a Poisson process so that
the probability of finding k triggers with L ≥ L∗ is given by:

P (N = k) = λke−λ

k! . (2.29)

Here, λ is the expected number of events with L ≥ L∗ in a given interval (which we
take to be the analysis duration). We can find λ by integrating over the distribution of
observed L for the entire analysis, P (L|~n) [4]. Therefore, we have that

λ = C(L∗|~n) =
∫ ∞
L∗

dLP (L|~n), (2.30)

is given by the complementary CDF over L. Taking k = 0 and substituting into Eqns. 2.29
and 2.28, we have that for a single noise trigger:

P (L ≥ L∗) = 1− e−C(L∗|~n). (2.31)

Now, for an analysis producing M noise triggers, we need the probability that at least
one noise trigger has L ≥ L∗ which is the complement of the probability that all of the
triggers have L < L∗ [4]:

P (N ≥ 1) = 1− (P (N = 0))M = 1− e−MC(L∗|~n). (2.32)
2In practice, we typically refer to the natural logarithm of the likelihood ratio, lnL, however here I

will use L to simplify the notation.
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This is the FAP.
The FAR at a threshold of L∗ is the number of noise triggers with L ≥ L∗ produced

over the observation time, T [4]:

FAR = C(L∗|~n)
T

. (2.33)

In the low-latency mode of operation, T is tracked as the live time of the analysis,
essentially the running wall clock time.

2.6 Online injection campaign
Typically, GW searches are validated by analyzing injections which are simulated signals
added to the strain data. Since the exact signal is known, we can then assess the
performance of the search – its sensitivity to the known signal and how accurately it
identifies the signal parameters. Having this functionality, especially in low-latency, is
critical for monitoring a GW search. If we hope to observe rare merger events with
multi-messenger counterparts, we need GW searches which are highly performant and
stable. This is not possible to achieve if the health of an analysis is not easily available to
users. In the past, before injection campaigns were implemented in low-latency, analysts
struggled from a frustrating inability to identify weaknesses in the analysis until a real
GW candidate was observed, or potentially missed. A low-latency injection campaign
allows an analysis to continuously demonstrate its sensitivity to potential signals and
analysts to quickly identify and diagnose failures when they occur. More than this,
an injection campaign allows to measure the sensitive volume-time, 〈V T 〉, which is an
important science output of GW searches used to place limits on astrophysical merger
rates [3,62]. Historically, the sensitive 〈V T 〉 of GstLAL has been estimated with time
consuming re-analysis of the data, long after its initial availability.

Injection campaigns in low-latency are achieved by duplicating the data source, so
that we can analyze the original non-injected data stream alongside the injected data
stream. However, as discussed in Sec. 2.4.3, our estimation of the background noise
histograms relies upon the assumption that signals in the data are rare. Therefore, if the
rate that signals are injected in the data is much larger than the expected astrophysical
rate, it poses a problem for the significance estimation. On the other hand, an injection
campaign where signals are only injected at the astrophysical rate will not be very
effective. In GstLAL this problem is solved by using the non-injected data stream to
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collect noise statistics in each background bin. Then, the injection candidates are ranked
against the background collected in the corresponding non-injected bin. The technical
implementation of this method is described in the next section.

2.7 Software infrastructure
GstLAL, which gets its name from “LIGO Algorithms Library3 for GStreamer”, funda-
mentally depends upon the use of GStreamer4 for data streaming and signal processing.
GStreamer is an open-source framework for real-time audio and video processing which
is built on graphs representing the flow and manipulation of data through sources, fil-
ters, and sinks. These elements can be combined together in complex ways to form a
data analysis pipeline. GstLAL makes use of many standard GStreamer elements as
well as custom elements written specifically for the problem of gravitational wave data
analysis [112].

The GstLAL software package is written in Python and C and comprises four sub-
packages (in order of dependence):

• gstlal is the base package. It includes fundamental data analysis and signal
processing tools.

• gstlal-ugly is built upon gstlal. It is a temporary holding place for new modules
and applications in the development stage.

• gstlal-inspiral and gstlal-burst include post-processing layers which are
necessary for the specific use case of analyzing LIGO and Virgo strain data to
identify CBC GW signals and unmodeled burst signals respectively. These packages
have dependencies in gstlal and gstlal-ugly.

The software is public and maintained via the LIGO Scientific Collaboration’s GitLab
instance at: https://git.ligo.org/lscsoft/gstlal. The code is primarily distributed
as Docker Images built by the GitLab continuous integration (CI) and stored at the
LIGO containers registry: containers.ligo.org. The images include all the necessary
dependencies to run the GstLAL software and are currently built upon the Rocky Linux
8 operating system (OS), the default OS on LIGO Data Grid (LDG) clusters at the time
of writing.

3https://git.ligo.org/lscsoft/lalsuite
4https://gstreamer.freedesktop.org/
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The GstLAL software suite is vast and written with modularity in mind so that
GStreamer elements can easily be linked together through a simple Python API to
construct arbitrary pipelines [112]. In the rest of this section, I will focus on the technical
implementation of the specific GstLAL low-latency inspiral pipeline and its deployment
workflow developed for the LVK Collaboration’s fourth observing run (O4).

The pipeline is built as a simple directed acyclic graph (DAG) and deployed via
HTCondor5 in two stages: an initial set up stage where pre-computed data products are
prepared and an inspiral stage which continuously analyzes the incoming strain data
and produces the GW candidates. However, since the inspiral analysis is designed to
run continuously and essentially perpetually until user intervention, there is actually
no “direction” in the directed acyclic graph, i.e. there are no dependencies between the
applications at run time.

Any information which applications require from each other is shared asynchronously
and largely without the use of file handling. We rely on the micro web-framework Bottle6

for autonomous information sharing among applications as well as to command dynamic
configurational changes by users throughout the runtime. Additionally, we leverage the
power of the Apache Kafka messaging system via the Confluent Kafka7 Python API.
Every application in the GstLAL low-latency inspiral DAG acts as a Kafka consumer,
producer, or both by ingesting messages from or sending messages to various Kafka topics.
This messaging is used to trigger critical event-based actions in the pipeline as well as to
communicate a high volume of monitoring data outputs. We store the monitoring data as
time-series measurements in InfluxDB8. This allows us to easily visualize the live health
and performance of the analysis via custom web-based dashboards powered by Grafana9.
Additionally, the longtime storage of monitoring data enables archival look-backs on the
state of the analysis at any given time.

2.7.1 Set up stage

In this section, I will outline each of the applications shown in the set up DAG in Fig. 2.8.
These applications prepare data products needed to begin a low-latency GstLAL analysis.
In contrast to the inspiral DAG of Sec. 2.7.2, these applications are only run once per
experiment.

5https://htcondor.readthedocs.io/
6https://bottlepy.org/docs/dev/
7https://docs.confluent.io/home/overview.html
8https://www.influxdata.com/
9https://grafana.com/
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Figure 2.8. Schematic of the GstLAL set up DAG for the inspiral pipeline. The black arrows
indicate dependencies among applications (or jobs), e.g. the gstlal_inspiral_bank_splitter
stage must complete before the gstlal_inspiral_svd_bank stage may proceed. Job inputs
and outputs are indicated by the blue-dashed and green arrows, respectively.

gstlal_inspiral_bank_splitter. As the name suggests, this application splits
a full template bank into small sub-groups, sometimes referred to as split banks, of
neighboring templates. The user must make a choice of which parameters to use for
grouping templates. Ideally, the choice would produce split banks with maximally
overlapping templates so that we can achieve the maximum SVD compression, i.e. the
sampling frequency weighted ratio of the number of basis waveforms to the number
of physical templates required to achieve the given reconstruction accuracy. A greater
compression means we can filter a set of templates more efficiently, leading to a lower-
latency search. Further, the similarity between templates in a split bank allows for
the assumption that the background statistics will not vary appreciably over the set of
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templates, {θ}. The choice of parameters for template bank splitting in O4 is discussed
in Chapter 5 [113].

gstlal_inspiral_svd_bank. This application combines neighboring split banks into
background bins of templates which are time-sliced and decomposed into basis waveforms
for filtering according to the LLOID method [92,101]. This application also pre-whitens
the templates according to the reference PSD.

gstlal_inspiral_create_prior_diststats. This application initializes the rank-
ing statistic terms in Eqns. 2.17 and 2.21. The PDF is written to a file and will later be
populated by noise triggers and candidates throughout the analysis.

2.7.2 Inspiral stage

Here, I will outline each of the applications shown in the inspiral DAG in Fig. 2.9
and Fig. 2.10.

gstlal_inspiral. The GstLAL low-latency inspiral pipeline is centered around
this application. It encompasses the main GStreamer graph – from data retrieval and
conditioning to filtering, reconstruction of the SNR timeseries and identification and
ranking of triggers. A heavily simplified illustration of this GStreamer graph is shown
in Fig. 2.11. The DAG includes 2N instances (or in the language of HTCondor, jobs) of
this application, where N is the number of background bins and the factor 2 accounts
for duplicated jobs to support the parallel injection campaign.

Fig. 2.9 illustrates the required inputs and the outputs produced, including files
and Kafka messaging. The application requires three input files: one which specifies
the SVD basis waveforms to filter, one which defines a reference PSD used to mitigate
the initial loss in SNR in the several minutes while the live PSD is converging, and
one which stores the background histogram mentioned in Sec. 2.4.2. The background
histogram is then periodically updated, or snapshotted, with the cumulative background
triggers collected throughout the runtime. The strain data is processed in one second
packets of data, referred to as buffers. Upon processing of each buffer, the job outputs a
significant amount of monitoring data via Kafka, thereby acting as a Kafka producer.
This data includes scientific metrics such as the SNR timeseries, likelihood and FAR
history of triggers, as well as performance metrics such as the latency of each element in
the GStreamer pipeline and the random access memory (RAM) usage. Information about
any GW candidates, i.e. triggers with ρnet ≥ 7, identified during processing of each buffer
is output to the so-called coinc10 Kafka topic. Next, the candidates produced by each job

10This topic name is poorly chosen as it incorrectly suggests that we require coincidence among
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Figure 2.9. Schematic of the GstLAL low-latency inspiral pipeline DAG. This figure illustrates
the analysis portion of the DAG with the uploading and post-processing portion being continued
in Fig. 2.10. There is no distinction between the two parts in practice. The diagram key is
the same as in Fig. 2.8 with the addition of Kafka topics and message content indicated by
diamonds and cloud shapes, respectively and InfluxDB indicated by the hexagonal shape. Note
that there are no job dependencies in the inspiral DAG. The factors of ×2 on the number of
parallel jobs account for the duplicated jobs needed to support the parallel injection campaign.
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Figure 2.10. Continuation of the schematic of the GstLAL low-latency inspiral pipeline
DAG shown in Fig. 2.9. This figure illustrates the uploading and post-processing portion of the
DAG. There is no distinction between the two parts in practice. The diagram key is the same
as in Fig. 2.9.

(i.e. in a single background bin) are aggregated by keeping only the maximum likelihood
over ten second windows. Finally, any candidates which pass a pre-determined FAR
threshold are communicated via the so-called events Kafka topic to be used down-stream.

gstlal_ll_inspiral_trigger_counter. This application is primarily a Kafka con-
sumer which ingests information about GW candidates from gstlal_inspiral via the
coinc Kafka topic. It aggregates the incoming candidates across all background bins
by taking the maximum likelihood in ten second windows and, as the name suggests,
produces the likelihood counts histogram. The job periodically writes the updated
histogram as a file throughout the runtime. As shown in Fig. 2.9, there is a single

detectors to form GW candidates.
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Figure 2.11. A simplified illustration of the GStreamer graph run by the gstlal_inspiral
application. The N sources correspond to data retrieval from each detector to be analyzed.
Data is passed through several GStreamer elements in one second buffers where it is conditioned
and filtered. All N data streams are combined by a single GStreamer element which is the
coincidence engine of the pipeline. Finally, every valid GStreamer pipeline ends with a sink.

instance of this job in the DAG, as we only want to collect non-injection candidates to
inform the significance estimation, therefore it is not necessary to have a duplicate job to
count injection candidates.

gstlal_marginalize_likelihoods_online. This application collects noise likeli-
hood PDFs from each background bin via HTTP requests managed by Bottle. Each run-
ning gstlal_inspiral job is queried for its background histogram consecutively in a run-
ning loop and the counts are cumulatively added across bins. After the noise PDF has been
marginalized, the signal PDF is queried from the gstlal_ll_inspiral_trigger_counter.
It can take several hours to marginalize the PDFs across all the background bins, at which
point the final PDF is written as a file and the process starts over. The gstlal_inspiral
jobs periodically re-load this file so that the background used for FAR assignment remains
current up to some lag, typically 4− 8 hours. Again, since the PDFs are only collected
from the non-injection background bins, we only require one instance of this job in the
DAG and the output PDF it produces is used to rank both injection and non-injection
candidates.

The upload stage of the inspiral DAG, illustrated in Fig. 2.10, encompasses all of the
post-processing steps after GW candidates have been identified and assigned FARs. As
indicated in Fig. 2.10, each of the applications in the upload stage of the inspiral DAG
are duplicated. This is so that the injection campaign is supported in parallel but kept
completely distinct from the default analysis, i.e. the injection data is never mixed with
non-injection data on the same Kafka topics or processed by the same application.

gstlal_ll_inspiral_event_uploader. This application acts as a Kafka consumer,
ingesting candidates passing a FAR threshold from gstlal_inspiral on the events topic.
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These are aggregated across background bins by keeping either the maximum SNR or
the minimum FAR candidates in some small time window. The aggregation scheme is a
configurational choice and discussed in more detail with regards to the O4 configuration
in Chapter 5 [113]. Candidates surviving this second round of aggregation are uploaded
via an HTTP post request to the GraceDB11 and communicated to the uploads Kafka
topic.

gstlal_ll_inspiral_pastro_uploader and gstlal_ll_inspiral_event_plotter.
These applications are Kafka consumers triggered by messages sent to the uploads topic
to produce metadata for each candidate uploaded to GraceDB.

manifold_cbc_bank_snr_optimizer_online. This application is also a Kafka con-
sumer triggered by messages on the uploads Kafka topic. It uses the methods described
in [58,114] to perform a targeted search over the candidate time window with the goal
of achieving a higher SNR. This application then also acts as a Kafka producer, com-
municating its candidates back to the events topic for upload to GraceDB. The SNR
optimization for a single candidate can take several minutes so in the inspiral DAG we
divide the incoming candidates among ten parallel processors by partitioning the Kafka
topic. In this way, each individual optimizer job is assigned messages from a single
partition and is only responsible to process every tenth candidate.

The remaining applications in the inspiral DAG are used to store the significant
amount of monitoring data produced by the analysis. We use the SCalable Analytics for
LIGO/Virgo/KAGRA Data (scald)12 software which provides GstLAL with bespoke
wrappings for the Python Confluent Kafka and InfluxDB APIs.

gstlal_ll_dq. This application tracks the live data quality of LIGO and Virgo strain
data including the detector states, indicating whether the detector is in observation mode,
as well as a live estimate of the PSD. These metrics are directly stored to InfluxDB for
via the scald utilities.

scald_metric_collector and scald_event_collector. These applications ingest
Kafka messages from the gstlal_inspiral jobs which make up the bulk of the monitoring
metrics of the analysis. The data is aggregated in various time windows and written to
InfluxDB for live visualization on Grafana and archival storage.

11https://gracedb.ligo.org/
12https://git.ligo.org/gstlal-visualisation/ligo-scald
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2.8 Conclusion
The potential for scientific gain from gravitational wave observations is vast. Already,
in just a few years of observing, we have used GW detections to confirm longstanding
theories as well as uncover new and unexpected information in areas such as astrophysics
and fundamental physics. These exciting advances depend on sensitive, performant, and
reliable search algorithms to dig out the quiet signals from detector strain data and
accurately estimate their significance. GstLAL is one such search pipeline which has
demonstrated state-of-the-art sensitivity to gravitational waves from CBC sources. It has
been used to search LIGO and Virgo’s strain data in a low-latency configuration since the
first observing run and has participated in many of the most groundbreaking detections,
including the first detection of GWs from a pair of merging black holes, GW150914 [12],
the first direct detection of GWs from a pair of merging neutron stars, GW170817 [66],
and the first detections of a neutron star merging with a black hole, GW200115 and
GW200105 [115] to name a few. Since its initial development, the pipeline has been in a
constant state of flux being updated and improved incrementally over time for expanded
functionality and better performance [4,104,111,113]. The methods summarized here
are the most up to date at the time of writing.

The remainder of this dissertation will cover methods and results from several
searches for gravitational waves which I have led using the GstLAL search pipeline. First,
in Chapter 3, a sub-threshold search for BNS systems coincident with gamma ray bursts.
In Chapter 4, I provide an overview of the new GW detections added to the Gravitational
Wave Transient Catalog (GWTC-3) after the LVK Collaboration’s third observing run.
Finally, in Chapter 5 - 6 I detail the latest configuration and performance of the GstLAL
search and demonstrate its extremely successful contribution to public results from the
first part of the fourth observing run.

47



Chapter 3 |
Joint GW-GRB sub-threshold search

3.1 Introduction
One of the most exciting scientific prospects of GW detection is to enable multi-messenger
astronomy. The field has existed for decades, combining observations of neutrinos, cosmic
rays, and EM radiation from such sources as solar flares, supernovae, and blazars [116–121].
However, it has only been in recent years that gravitational waves have been added to
the list of viable cosmic messengers.

BNS mergers had been an expected source of gravitational waves long before the
development of the LIGO and Virgo interferometers. In 1975, Hulse and Taylor measured
the systematic variation in the period of the known pulsar, PSR 1913 + 16, to determine
that it was captured in a binary orbit [16]. After observing the system for many more
years, an energy loss was inferred via the slow monotonic decay of the orbital period [17].
This observation was consistent with general relativity predictions of the energy loss due
to gravitational radiation and represented the first indirect detection of gravitational
waves.

At the same time, the bright transient bursts of photons known as gamma ray
bursts (GRBs) have been a popular focus of astronomical observation and study since
their first detection in 1969 [122]. Since then, the observed population of GRBs have
been empirically grouped into two classes deemed “short” and “long” bursts [123]. The
distinction is based upon a strong bi-modality in the burst duration, specifically the
amount of time it takes for 90% of the isotropic energy of the burst to be emitted,
shown in Fig. 3.1. This quantity is typically referred to as T90. Short GRBs are those
for which T90 < 2 seconds, and long GRBs have T90 > 2 seconds. Since 1998, it had
been suspected that long GRBs originate from the death of large stars in core-collapse
supernovae and this claim has been supported with conclusive evidence over many years
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Figure 3.1. The observed bi-modality in the distribution of T90 for GRBs. The cut off
between “short” and “long” GRBs is indicated by the vertical line at 2 seconds. Reprinted
from [6].

of observations [124, 125]. On the other hand, BNS mergers had been proposed as
progenitors for short GRBs for many years, but the claim remained unproven. However,
this conjecture presented an exciting possibility for the dual detection of gravitational
waves and gamma-ray emission from the same source. Due to the complimentary nature of
the information carried by GWs and EM radiation, observing both from the same source
provides a profound potential for insight on the properties and dynamics of the progenitor
system. A detection such as this was sought after for many years until finally achieved
in 2017 with the observation of GWs from the BNS merger known as GW170817 along
with the subsequent short GRB, GRB170817A, and kilonova AT2017gfo [7, 66, 126–128].

The extreme and violent nature of such events make them spectacular natural
laboratories for fundamental and nuclear physics as well as astrophysics and cosmology.
In addition to the multi-messenger detection of GW170817 and GRB170817A, to date
hundreds of short GRBs have been identified by EM telescopes such as the Neil Gehrels
Swift Observatory (Swift) and the Fermi Gamma-ray Burst Monitor (Fermi-GBM) [129,
130]. However, the physical mechanisms governing these processes remain relatively
opaque. There are still many open questions related to the central engine that drives the
burst, exactly what happens in the first few moments of prompt emission, the composition
and structure of the ejecta material, and so on [131–137]. To answer such questions, we
must prepare to make more joint detections.

However, over the past years we have learned that detections like GW170817 are rare.
This motivates the need for highly performant day-to-day operation of GW searches
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and the development of novel strategies to expand our opportunities for detection. The
former ensures that we meet the basic detection standards. Since the LIGO and Virgo
interferometers already have a relatively low coincident duty cycle compared to EM
telescopes, it is imperative that our search algorithms operate stably at high sensitivity
in low latency so that we are prepared for potential signals any time the detectors are in
operation. The latter will allow us to dig even deeper into the limited data we have and
extend our detection horizons. The LIGO interferometers regularly go through extended
commissioning periods, meaning that for long durations of time we are completely blind
to any potential GW counterparts to EM observations. Therefore, we must develop
strategies to make full use of any coincident data we have, ensuring that no potential
discoveries are left on the table.

In this chapter, I will describe a search for coincident sub-threshold GWs and GRBs
from the LIGO and Virgo detectors and Swift, respectively. We will begin in Sec. 3.2
with a case study of GW170817, where we aim to outline the detection scenario, what we
have learned, and the ways in which we can even further optimize the detection scenario
for similar events in the future. We then give an overview of necessary background
information on the Swift Burst Alert Telescope (BAT) in Sec. 3.3. In Sec. 3.4 we describe
the joint search and conclude with current and potential science outcomes in Sec. 3.5.

3.2 GW170817 case study
The detection of gravitational waves from GW170817 was the first direct detection of
merging neutron stars and provided exciting new insights into GRB physics [66, 67].
However, in many ways this detection was serendipitous, and as we have seen over the
recent years of observation, a detection scenario such as this is very rare. As shown in the
spectrogram of Fig. 3.2, GW170817 was an extremely loud signal with a network SNR in
LIGO’s strain data of 32.4 [66]. The signal was determined to have originated from a
pair of merging neutron stars at an estimated luminosity distance of only 40 Mpc [66].
This distance corresponds to a cosmological redshift, z ∼ 0.008 [66]. To date, this is the
closest merger event which has been observed by LIGO and Virgo. To put the numbers
in context, the next closest source in the GWTC-3 has a luminosity distance ∼ 0.16
Gpc and redshift z ∼ 0.03, about four times further away [3, 138]. Compared to the
known short GRB population, GRB170817A is also an outlier, being several orders of
magnitude closer and dimmer [67,139].

Despite its high SNR and all three detectors (LIGO Hanford, LIGO Livingston,
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Figure 3.2. Time frequency spectrogram of the GW170817 signal. The chirping inspiral
track is clearly visible in LIGO Hanford and LIGO Livingston. Reprinted from [7].

and Virgo) being operational at the time, GW170817 was originally detected in only
a single interferometer, LIGO Hanford. This was due to the presence of a loud glitch
∼ 1 second before the coalescence time in LIGO Livingston. However, since the high
SNR made the signal chirp clearly visible in the spectrogram data, the LIGO Livingston
data was manually re-filtered after excising the glitch with a zeroing window function,
allowing a coincidence to be formed among both LIGO detectors [66]. At the time,
the LVK Collaboration had not yet begun sending automated public alerts. The first
preliminary GCN notice [140], which included the potential detection as a single detector
candidate, was sent about 40 minutes after the trigger time and the initial Fermi-GBM
detection notice [141]. Subsequent re-analysis of the trigger using cleaned data from
LIGO Livingston came after this initial alert.

Another peculiarity of the detection scenario for GW170817 was its relatively small
sky localization. The best localized sources in GWTC-3 are those for which all three
detectors participated in the observation. These candidates have 90% credible sky areas
of tens of square degrees [3, 138]. GW170817 was localized to only 28 deg2 [66]. While
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Figure 3.3. The source localization contours for GW170817. The LIGO-only localization
is shown in light green and the improved LIGO-Virgo localization in dark green. Reprinted
from [7].

this is still much larger than the field of view of many EM telescopes, it is clearly one of
the best localized gravitational wave candidates to date. As mentioned in Chapter 1,
gravitational wave detectors have an antenna pattern of sensitivity varying across the sky.
The precise sky localization, despite the trigger only appearing in the LIGO detector
data, is attributed to the event being located in Virgo’s blind spot. Virgo was operating
stably at the time of the trigger with a BNS horizon distance of 58 Mpc [66]. Therefore,
the lack of signal in Virgo data indicated that the source was in Virgo’s blind spot. Using
data from both LIGO detectors and the Virgo detector produced a well-constrained sky
localization, as shown in Fig. 3.3.

At the same time, the GRB was bright enough to be independently observed by
Fermi-GBM at high significance [67]. The time and spatial coincidence with the GW
trigger provided immediate overwhelming evidence that the two indeed originated from
the same source. The relatively small sky localization allowed astronomers with optical
telescopes to tile the region quickly and identify the host galaxy as NGC 4993 [7]. With
the host galaxy identified, the source was essentially pinpointed and deep follow up
observations of the accompanying kilonova could proceed in frequency bands across the
EM spectrum [7,95,142–146].

GW170817 was truly extraordinary but we can’t count on the same observation
scenario for the next multi-messenger event. In some ways the detection of GW170817
was also sub-optimal, as it took more than half an hour to produce a preliminary GCN
notice with identification of the gravitational wave trigger and more than an hour to
produce an initial detection statement [140]. Therefore, although we were able to observe
the event across the EM spectrum over long timescales, we completely missed the early
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Energy band Field of view Source localization
BAT 15− 150 kev 1.4 sr ∼ 1′ − 4′

UVOT 170− 600 nm 17′ × 17′ 0.3”
XRT 0.2− 10 kev 23′ × 23′ 5”

Table 3.1. Various technical specifications of each instrument onboard Swift.

post-merger stage of the evolution which is of extreme interest for elucidating exactly
what happens after two compact objects merge. Further, we cannot expect the next BNS
merger to be localized as well by the GW observation alone. If the signal is found in
only one or two detectors, the localization can be hundreds of square degrees or as large
as the entire hemisphere. In this case, simply tiling the sky area will not be a feasible
way to identify the host galaxy of the source.

There is still much work to be done towards preparing for the next multi-messenger
event and increasing our chances of observing its early evolution. We must prepare for
the possibility of detecting a quieter gravitational wave signal or a source which is further
away. This kind of event may not be highly significant in gravitational waves or gamma
rays independently. Additionally, we must develop a more robust infrastructure that will
allow us to make the detection, localize its source, and alert the community as quickly as
possible so that we can observe all stages of the EM emission. The detection strategy
presented in this chapter addresses each of these goals.

3.3 Swift Burst Alert Telescope
Swift is a satellite telescope designed to observe GRBs across multi-wavelength EM
emission and localize their positions on the sky to the level of arcsecond precision within
minutes [147]. Swift encompasses three telescopes: BAT [148], the X-ray Telescope
(XRT) [149], and the UV/Optical Telescope (UVOT) [150]. The relevant technical
capabilities of each onboard telescope are outlined in Table 3.1. Since its launch in 2004,
Swift has regularly detected GRBs at a rate of about 100 yr−1 [129,151,152].

In its typical mode of operation, BAT identifies burst triggers by observing increased
counts above the expected background [153]. If the source of the excess is determined to
be a point source, the sky position is automatically located to a precision of ∼ 1′ − 4′.
This initial localization can take up to about 10 sec to produce. Then, the XRT and
UVOT are autonomously commanded to slew to the position, where they begin observing
the afterglow emission. The delay time between the initial burst and the first UV/Optical
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and X-ray observations will include the 10 sec for BAT to locate the source plus the time
it takes to slew the XRT and UVOT, which is typically about ∼ 10 sec − 1 min. The
XRT is capable of further localizing the source to within 5” after about 10 sec of the
slew. Finally, the source may then be even better localized by the UVOT to within only
0.3”. These triggers are communicated to the ground immediately and distributed to the
EM follow-up community via GCN. This event data includes timing, source position,
and energy information for each detected count. Following the detection, the afterglow is
periodically observed for days to weeks by the XRT and UVOT.

Due to the large field of view (FOV) of the BAT instrument, the typical data
dumps for onboard triggered bursts comprise a large volume of data which requires
significant bandwidth to communicate to ground [154]. For this reason, Swift was not
designed to communicate or archivally store event data for times without significant
bursts triggered onboard. This means that Swift astronomers have suffered an inability
to detect weaker GRBs that may not trigger the onboard detection algorithm and
historical targeted searches have additionally been limited by the lack of complete data.
This limitation motivated the development of the Gamma-Ray Urgent Archiver for
Novel Opportunities (GUANO) infrastructure for downlinking event data on demand,
surrounding astrophysically interesting times, as triggered by external searches [154]. This
notably includes GW triggers from the LIGO and Virgo detectors but could additionally
include weak short GRBs detected by e.g., Fermi-GBM, neutrinos from IceCube, etc.

BAT event data is stored on a ring buffer such that data is overwritten on timescales
of ∼ 20− 30 min [154]. This means that if an external command does not reach Swift
within this time frame, the data of interest will be lost forever. GUANO manages a queue
of commands based on alerts received from external sources. The commands specify the
start time and duration of data to be saved and are queued in order of priority based
on the external trigger’s FAR. The Swift analysis team utilizes the Tracking and Data
Relay Satellite System (TDRSS) to schedule commands to Swift with a minimum latency
of 14 min. The success of the GUANO command depends upon several factors, most
importantly, the latency with which the command reaches the instrument. In [154] the
GUANO performance was characterized as reaching a 99% success rate for commands
received by Swift with a total latency less than 16 min. The development of this method
has been crucial in increasing the detection rate of Swift GRBs, especially for weak bursts
and targeted searches.

The event data saved by GUANO is then analyzed on the ground by the Non-
Imaging Transient Reconstruction and Temporal Search (NITRATES), a detection
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algorithm designed for identifying sub-threshold GRBs in BAT data. Details of the
NITRATES method are given by [155]. In contrast to the BAT onboard detection
algorithm, NITRATES relies upon a significantly more computationally heavy maximum
likelihood algorithm to achieve a vast improvement in sensitivity. In combination with
GUANO, the use of NITRATES has further extended the Swift detection horizon and led
to additional detections at a rate of ∼ 13 yr−1 since its operation began [155]. The joint
search described in this chapter is only feasible due to the development of the GUANO
commanding infrastructure and NITRATES detection algorithm.

3.4 The joint search
In the O3, the LVK Collaboration released automated public alerts for candidate gravi-
tational waves reaching a FAR threshold of 1.2 per year [3]. This threshold was chosen
as a balance so as not to inundate astronomers with a high number of false alarms while
maximizing the number of true astrophysical candidates that were released. The joint
GW-GRB search with Swift used a much higher FAR threshold of two per day. This high
threshold was chosen to allow the joint search to probe deeply into the available data,
with a higher priority placed on identifying all “true alarms” rather than avoiding “false
alarms”. For each gravitational wave trigger found below this threshold, astronomers at
Swift were alerted via automated notices. In O3, these alerts were sent by private email
directly to Swift astronomers under a special Memorandum of Understanding (MOU).
In O4, the LVK issued low-significance public alerts for all triggers reaching a FAR
threshold of two per day [156]. Therefore, Swift astronomers could receive these alerts
via GCN rather than the bespoke email alert infrastructure of O3.

In O3, the alert contents included the GPS time associated with the GW coalescence
time and a measure of the trigger’s significance in the form of both the network SNR and
the FAR. Additionally, information about the search producing the trigger was included.
The LVK GW search pipelines producing public alerts are grouped into two categories:
“CBC” (compact binary coalescence) and “Burst”. These groups indicate the types of
sources each pipeline searches for. CBC searches (e.g., GstLAL) use matched filtering
to search for modeled waveforms from merging black holes and neutron stars. Burst
searches perform coherent searches over the time-frequency data in at least two detectors
to look for unmodelled transient signals from a variety of potential searches. The alert
carries information about the expected probability of astrophysical origin (p(astro)) of
the signal source, including the probability that the source is a BNS, NSBH, or BBH.
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The search group and p(astro) information allow Swift astronomers to prioritize the
follow up of each alert based on an expected likelihood that the source will have an
associated EM counterpart. For example, the followup of a BNS alert may be prioritized
over a BBH alert, since BNS mergers are known progenitors of short GRBs. Finally, the
alert included an initial skymap Flexible Image Transport System (FITS) file produced
by BAYESTAR [157]. The sky localization information was used in the estimation of
joint significance, described below.

Our bespoke email alert system in O3 was built using the LVAlert (now International
Gravitational Wave Network Alert System (igwn-alert)) notification system for receiving
state changes from GraceDB1. The system achieved latencies of only a few seconds,
measured from the trigger’s time of upload on GraceDB to the time the email was sent.
This extremely low latency was imperative to the success of the search as the GUANO
data dump success rate was highly dependent upon the time of arrival of alerts relative
to the trigger time. Given the low latency of alerts reaching the Swift ground team, the
overall latency of the alerts reaching the instrument was typically limited by the latency
of sending the GUANO command via the TDRSS, as described in [154]. Beginning
midway through the O3 run in September 2019, we sent 636 sub-threshold alerts to the
Swift team, reaching a 90% data dump success rate by the end of the run in March
2020 [154,158].

As described in Sec. 3.3, upon successful downlinking of the Swift BAT sub-threshold
event data, the NITRATES pipeline identifies the maximum likelihood GRB trigger. If
a coincident trigger is identified, the joint significance is estimated by computing the
combined FAR [159]:

FAR = Z

IΩ

[
1− ln

(
Z

Zmax

)]
. (3.1)

Here, Z indicates the joint ranking statistic,

Z = FARGW × FARGRB ×∆t. (3.2)

The independently computed FARs of the GW trigger and the GRB trigger are FARGW

and FARGRB, respectively. The coincidence search window is ∆t = 30 sec, corresponding
to [tc−10, tc+20], with tc being the GW coalescence time. Zmax is computed using upper
FAR cut offs, FARGW,max = 2.315× 10−5 Hz (two per day) and FARGRB,max = 1000 Hz,
giving Zmax = 6.945× 10−7 Hz. IΩ is the sky area overlap integral as derived in [160].

Given this formula for computing the joint GW-GRB FAR, we can see that a sub-
1https://gracedb.ligo.org/
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threshold gravitational wave trigger which is found in coincidence with a sub-threshold
GRB trigger will be substantially increased in significance. As an example, consider a
GW trigger with FARGW = 2 × 10−5 Hz (just under two per day) and a GRB trigger
with FARGRB = 1 × 10−5 Hz. Neither event could constitute a significant detection
alone. The joint ranking statistic is Z = 6 × 10−9 Hz. If we conservatively choose an
uninformative IΩ ' 1 [160], then we find that the combined FAR is 3.45× 10−8 Hz, or
about one per year. This example further motivates the choice of the high two per day
threshold for sending alerts.

3.5 Conclusion
None of the 636 alerts sent to Swift in O3 produced significant coincidences in low-latency.
In [158] a detailed offline analyses was performed for the triggers associated with each
alert. Neither did this offline analysis produce detection quality candidates. However,
the null result still allows constraints to be placed on the photon flux and luminosity
upper limits of GW candidates [158].

Despite the null result, the joint search described in this chapter represents one of
the most promising avenues for detecting an EM counterpart to a GW signal and a
kilonova. With this method, we can leverage the superior localization capabilities of Swift
to promptly identify where on the sky a GW signal has originated from. For bright GRBs
which trigger the onboard BAT detection algorithm automatically, this localization can be
determined and communicated to ground observers on a timescale of seconds to minutes.
Such an observation scenario presents extraordinary potential for scientific discovery,
especially in observing the very early gamma-ray and kilonova emission. However, the
recent development of the GUANO and NITRATES infrastructure means that Swift can
further be utilized to detect sub-threshold GRBs in targeted searches coincident with
GW triggers, albeit at a much higher latency due to the computational burden of the
analysis. Still, this method pushes the joint detection horizon to the limits, allowing us
to fully probe the limited GW-GRB data. Even a coincident detection with Swift which
is delayed by O(hours), presents an extraordinary potential for new scientific discoveries.
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Chapter 4 |
The third GW transient catalog

This chapter is adapted from [3].

4.1 Introduction
In the previous chapter, I demonstrated a strategy for detection of gravitational waves
relying on search pipelines operating in a low-latency configuration to enable multi-
messenger astronomy. This kind of strategy focuses on enabling a deep study of a single
GW and coincident EM transient event. However, as the LIGO and Virgo detectors
get more sensitive we seek to uncover populations of GW sources and study their bulk
properties. In addition to digging deeply into a single observation, we aim to detect
broad populations of GW sources which can inform our understanding in such areas as
black hole and neutron star mass distributions, binary formation channels and merger
rates, the early universe, and star formation [62,161–163].

With data from the LIGO and Virgo detectors we have been regularly observing
gravitational wave candidates since 2015. These candidates are collected cumulatively
into the Gravitational Wave Transient Catalog (GWTC-3) following re-analysis of the
strain data on long timescales relative to its initial availability. This is referred to as
an offline analysis in contrast to the low-latency online analysis. The first instance
of this catalog, GWTC-1, added candidates detected during the first observing run
(O1) (12 September 2015 – 19 January 2016) and the second observing run (O2) (30
November 2016 – 25 August 2017) [164]. In this analysis, 11 significant GW candidates
were identified which all passed a threshold on the probability of astrophysical origin,
p(astro) > 0.50. These notably included the first detection of gravitational waves from a
pair of merging black holes, GW150914 [12], and the first detection of gravitational waves
from a pair of merging neutron stars, GW170817 [66]. GWTC-2 added 39 candidates
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from the first part of the third observing run (O3a), which took place from 1 April 2019
– 1 October 2019 [138]. These 39 candidates were identified based on a FAR threshold of
2.0 per year. The data from O3a was later re-analyzed with improved data calibration,
resulting in GWTC-2.1 which reported on 44 GW candidates with p(astro) above the
threshold of 0.50 [165]. These 44 candidates included 36 of the same candidates from
GWTC-2 and 8 new candidates. Therefore, using the p(astro) threshold for consistency,
by the end of O3a the catalog cumulatively included 55 candidates.

In this chapter I will discuss the latest addition to the catalog, GWTC-3, which adds
35 new significant GW candidates from the second part of the third observing run (O3b)
which took place from 1 November 2019 – 27 March 2020 [3]. In this analysis, we followed
the precedent of GWTC-1 and GWTC-2.1 by using the threshold p(astro) > 0.50 to
identify highly significant candidates. These candidates are all consistent with originating
from compact binary coalescences: binary black holes and for the first time in O3b
the confident detection of a neutron star–black hole binary, GW200115_042309 [115].
We additionally find candidates which have significant probabilities of having at least
one component mass in either of the upper or lower mass gaps [166–169] and several
sources which have confidently unequal masses and high effective inspiral spin. This
addition brings the total number of highly significant candidates reported by the LVK
Collaboration throughout each of the first three observing runs, O1 – O3, to 90.

The catalog additionally includes 7 marginal candidates which had p(astro) ≤ 0.50
but FAR passing a threshold of 2.0 per year [3]. The significant and marginal candidates
are discussed in Sec. 4.4. Additionally, GWTC-3 included a deep sub-threshold list of
1048 gravitational wave triggers extending to a FAR threshold of 2.0 per day. These
triggers are mostly thought to be consistent with noise, and therefore we forego detailed
follow up studies of them. However, these triggers were made available in a public data
release via the Gravitational Wave Open Science Center (GWOSC) [170].

The success of the third observing run was due in large part to the improvement in
detector sensitivity. This can be quantified in terms of the BNS time-volume which is
roughly proportional to the observed detection rate, as shown in Fig. 4.1. The time-
volume is given in units of Gpc3 yrs. The observing time in O1 – O2 was taken to be any
time when at least two detectors were observing. In O3, since the GstLAL search pipeline
allowed for candidates identified in only a single detector we take the observing time to be
any time when at least one detector was observing. The volume is the Euclidean sensitive
volume, which is computed as the volume of a sphere with radius the BNS inspiral
range (as defined in Sec. 1.4.3) of the second most sensitive detector in the network at
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Figure 4.1. The horizontal axis shows the sensitive BNS time-volume of the detector network
in each observing run, indicated by the colored bands. The vertical axis is the number of
GW detections with p(astro) > 0.50. The cumulative observed candidates are shown by the
black line, while the blue line and dark and light blue shaded regions indicate the median, 50%
confidence interval, and 90% confidence interval on the expected number of detections for a
Poisson distribution fit to the total number of candidates at the end of O3b. While O2 and
O3b had roughly the same observing duration, the sensitive time-volume covered by O3b is
several times that of O2, indicating the drastic improvement in detector sensitivity. Reprinted
from [3].

each time [171, 172]. Fig. 4.1 shows that our number of detections has grown rapidly
throughout each observing run, correlating with the increase in sensitive time-volume.

As a member of the LVK Collaboration, I am expected to dedicate 90% of my research
time to collaboration activities. Towards the production of GWTC-3, my contributions
are as follows. I operated the GstLAL search pipeline to produce many of the candidate
events in the catalog, listed here in Sec. 4.4 [3]. The search sensitivities presented
in Sec. 4.5 were estimated by injection campaigns run over the full duration of O3. For
the GstLAL analysis, I carried out these injection analyses amounting to months of work
and millions of CPU hours, essentially doubling the computation time of the initial offline
analysis. As an editorial team member, I was a lead author for [3] and saw the paper
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Figure 4.2. Left. The BNS inspiral range of both LIGO detectors and Virgo as a function
of time in O3b. Each data point indicates the median inspiral range taken over hour-long
segments of data. The right axis indicates the median BNS inspiral ranges over the entire
duration of the O1 - O3a runs for comparison. Right. Distribution of the BNS inspiral range
in each detector with the median values over the full duration of O3b indicated by the dashed
lines. Reprinted from [3].

through from data collection, writing, and publication. In the rest of this chapter, I will
begin by briefly summarizing the state of the LIGO and Virgo detectors during O3b, the
strain data calibration, and the noise mitigation strategies in Sec. 4.2. In Sec. 4.3 I will
overview the methods used by the four participating search pipelines and describe the
detection statistic, i.e. the p(astro), used to determine inclusion as a high significance
candidate in the catalog. In Sec. 4.5, I will describe the methods used to assess search
sensitivity. Finally, in Sec. 4.6 I will give an overview of the inference of some of the
source parameters before concluding with Sec. 4.7.

4.2 Detectors and data
The LIGO and Virgo detectors have always operated in planned periods alternating
between observing and commissioning [173]. Before the start of O3 there was a long
commissioning period where the detectors underwent significant upgrades. Then there
was a short one month commissioning break between O3a and O3b from 1 October – 1
November 2019. During this time the LIGO and Virgo detectors each had certain goals
for their improvement, which are briefly summarized below along with their corresponding
impacts on the BNS inspiral range.

LIGO Hanford and Livingston. The goals between O3a and O3b included:
improving the BNS inspiral range, improving data quality by mitigating noise sources that

61



produce glitches, and improving the stability and joint duty cycle of the detectors [3, 38].
In both detectors, the main improvement to the range came from improvements to the
light squeezer between O3a and O3b [174–176]. In LIGO Livingston, the squeezed light
improvements led to a gain in the BNS inspiral range of about 3 Mpc and in LIGO
Hanford the improvements led to a gain of about 7 Mpc. The laser power in both
detectors was increased significantly between O2 and O3 leading to a reduction in photon
shot noise. LIGO Hanford’s laser power was not changed between O3a and O3b. In
LIGO Livingston, new point absorbers in the test masses were found between O3a and
O3b [49] which led to a reduction in the laser power and corresponding reduction in
the BNS inspiral range of about 5 Mpc. Therefore, the range of the LIGO Livingston
detector was relatively unchanged from O3a to O3b, with median value 135 Mpc and
133 Mpc, respectively. The LIGO Hanford median BNS inspiral range increased from
108 Mpc in O3a to 115 Mpc in O3b. The comparison of BNS inspiral range between
O3a and O3b is shown in Fig. 4.2.

One of the main known glitch types in LIGO Hanford and Livingston are caused by
scattered light in the detector recombining with the main beam incoherently [177,178].
The scattered light produces two known glitch types, referred to as slow scattering and fast
scattering glitches, as shown in the upper and lower panels of Fig. 4.3, respectively [3].
Slow scattering glitches are common in both LIGO detectors and correlate strongly
with microseismic activity from ocean waves and earthquakes. Fast scattering glitches,
which are more common in LIGO Livingston, are caused by bad weather conditions and
human activity, particularly nearby logging trucks. In both detectors, upgrades were
implemented during the commissioning break between O3a and O3b to reduce the effects
of these noise sources [46]. New baffles were installed to absorb scattered light and keep
it from recombining with the main beam and reaction-chain tracking which reduces the
relative motion between test masses. While these upgrades do not lead to increased
BNS inspiral range, they do significantly improve the data quality by reducing the glitch
rate [3].

Finally, the joint duty cycle of the LIGO detectors was improved from O3a to
O3b [3, 138]. The duty cycles of each detector are summarized in Table 4.1. LIGO
Hanford and LIGO Livingston each increased their independent duty cycles from 71%
and 76% in O3a to 79% and 79% in O3b, respectively. This led to a significant increase
in the percent of time when at least two detectors in the network were observing, i.e.
81.9% in O3a to 85.3% in O3b.

Virgo. The main goal between O3a and O3b was to use the time to gain understanding
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H L V 1+ IFO 2+ IFO 3 IFO
O3a 71% 76% 76% 96.9% 81.9% 44.5%

(130.3 days) (138.5 days) (139.5 days) (177.3 days) (149.9 days) (81.4 days)
O3b 79% 79% 76% 96.6% 85.3% 51.0%

(115.7 days) (115.5 days) (111.3 days) (142.0 days) (125.5 days) (75.0 days)

Table 4.1. The duty cycles of LIGO Hanford (H), LIGO Livingston (L), and Virgo (V) in
O3a and O3b given as the percentage of the total observing time as well as the duration in days.
The final three columns in the table show the joint duty cycles where at least one, two, and
three detectors were observing together. The increase in LIGO Hanford and LIGO Livingston
duty cycles led to an improved 2+ IFO duty cycle in O3b compared to O3a [3].

of the various noise sources and sensitivity of the detector [3]. Then over the course
of O3b several minor upgrades were made leading to incremental improvements in the
detector range from 49 Mpc to 56 Mpc. This improvement is indicated in Fig. 4.2
with the bump in median BNS inspiral range after 28 January 2020. The main upgrade
between O3a and O3b was the increase of laser power from 18 to 26 W. The various minor
upgrades throughout O3b included reduction in electronic noise, software improvements,
and improvements to the Fabry-Perot cavities [179]. Additionally, there was mitigation
of scattered light noise [47,180] and adjustments to the light squeezer which had been
initially installed prior to O3a [181,182]. Each of these upgrades led to approximately
1− 3 Mpc gain in the BNS inspiral range.

The detector strain data which is analyzed by searches is reconstructed from various
detector output channels using complex models of the detector responses [3]. This
includes calibrating the strain to these known models and estimating systematic errors
in the reconstruction process as well as removing known noise sources or lines [183–186].
The strain data is initially calibrated in low-latency but often it is re-calibrated before
use by the offline searches. This re-calibration can benefit from improved understanding
of the detector noise and response models. In O3b, the LIGO Hanford and Livingston
data was re-calibrated offline, however the Virgo data used to produce GWTC-3 was the
same as the low-latency data.

Before the searches obtain the calibrated strain data it is pre-processed by data quality
experts [187–189]. Segments of data determined to be particularly noisy, or containing
excess glitches, are removed so that searches only process the clean data [190, 191].
This is done to reduce the possibility of search algorithms mistaking glitches for real
GW candidates. After the search algorithms produce a list of candidates, data is
further validated in windows around each significant candidate. Known glitches in these
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Figure 4.3. Time-frequency spectrograms showing examples of slow scattering (top panel)
and fast scattering (bottom panel) glitches in O3b. Reprinted from [3].

segments may be subtracted if they are thought likely to bias the estimation of source
parameters [192].

4.3 Search methods
In O3b, there were five search pipelines operating in low-latency: cWB [193, 194],
GstLAL [4,92,104], MBTAOnline [195,196], PyCBC Live [197,198], and SPIIR [199,200].
For the offline analyses, SPIIR did not contribute results so the new candidates added
in GWTC-3 are only produced by cWB, GstLAL, the Multi-Band Template Analysis
(MBTA) and PyCBC. I will briefly summarize the methods used by these search pipelines
in this section.

Modeled searches. The modeled searches, GstLAL, MBTA, and PyCBC, use
matched-filtering to search for CBC signals, i.e. merging black holes and neutron stars
whose waveforms are well understood. Each search employs a template bank to cover
the parameter space of interest. PyCBC used two independent configurations: the
PyCBC-broad configuration which covers a broad region of the parameter space with the
goal of being sensitive to as many different source types as possible and the PyCBC-BBH
configuration which restricts its parameter space to that of previously observed BBH
systems. The template bank boundaries of each search are summarized as follows [3].
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The GstLAL template bank was the same as that used for the GWTC-2 analysis [138].
The template bank covers waveforms with detector frame total masses ranging from 2M�
to 758M�. The spins are assumed to be parallel (aligned or anti-aligned) to the orbital an-
gular momentum. A conservative upper mass cutoff for neutron stars is taken to be 3M�.
Components with masses below 3M� have spin magnitudes |si,z| < 0.05. For components
with masses above 3M�, the spin magnitudes are |si,z| < 0.999 . The SEOBNRv4_ROM
waveform approximant [201] is used for templates with chirp mass ≥ 1.73M�. This
is a frequency-domain reduced-order model [202] of the time-domain inspiral–merger–
ringdown model SEOBNRv4 which models quasicircular, nonprecessing BBHs based upon
the effective-one-body (EOB) equations of motion [201]. The TaylorF2 waveform ap-
proximant [203] is used for lower-mass systems. This is a frequency-domain, inspiral-only
model of aligned-spin CBC systems built from closed-form PN approximations.

The MBTA template bank covers waveforms with detector frame component masses
from 1M�to 195M� [3]. MBTA takes 2M� as the cutoff between NS components and
black hole (BH) components. Templates where the smaller mass is below 2M� are
constrained to have the larger mass < 100M�. The spins are similarly assumed to
be parallel to the orbital angular momentum. Components with masses below 2M�
have spin magnitudes |si,z| < 0.05 and otherwise |si,z| < 0.997. Templates for which
both components are below 2M� are constructed with the SpinTaylorT4 waveform
approximant [203]. This is an inspiral-only, time-domain model for CBC systems based
on the PN equations of motion. If either component has mass above 2M�, the waveform
is generated with the SEOBNRv4 approximant which is a full inspiral–merger–ringdown
waveform [201].

The PyCBC-broad template bank covers templates with total masses ranging from
2M� to 500M� and the PyCBC-BBH bank restricts to BBH templates with the larger
component mass ranging from 5M� to 350M� and the smaller component mass ranging
from 5M� to m1 [3] . The total mass of templates in the PyCBC-BBH bank ranges
from 10M� to 500M�. Additionally, the PyCBC-BBH bank places a constraint on
the mass ratio, q = m2/m1, of 1/3 < q ≤ 1. All templates in the PyCBC-BBH bank
assume parallel spins with respect to the orbital angular momentum and spin magnitudes
|si,z| < 0.998. Both PyCBC bank configurations use the SEOBNRv4_ROM [201] waveform
approximant for templates with total mass above 4M�, and TaylorF2 [203] otherwise.

After matched filtering, these searches identify GW triggers based on an SNR threshold.
For GstLAL and PyCBC this threshold is taken as 4.0 while for MBTA the threshold
varies across the parameter space but is always in the range 4.5 to 4.8. While PyCBC
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and MBTA require triggers to be found in coincidence among at least two detectors in
order to qualify as a candidate, GstLAL allows for candidates identified in only a single
detector. Some of the most significant differences between the modeled searches are in
the construction of the ranking statistic and estimation of the background [3]. Each
search uses the likelihood ratio [108, 109] as the ranking statistic, however its specific
construction and implementation vary across the searches. MBTA and PyCBC each
estimate the background using time slides. This means that the data from independent
detectors is translated in time with respect to each other by more than the light travel
time between detectors [204]. The time-sliding ensures that no coincident signals can
remain in the background and therefore any triggers can be safely assumed to be due
to noise. As discussed in Chapter 2, GstLAL does not use time-slides to estimate the
background but rather uses non-coincident triggers observed during times when at least
two detectors were observing. Further, MBTA and PyCBC each rank their candidates
against a local background spanning one to a few weeks prior to the detection time while
GstLAL ranks candidates against a global background collected over the full observation
duration. In other words, the GstLAL candidates are ranked asynchronously; a candidate
identified in the first week of the observing run will still be ranked against all of the
“future” noise.

Unmodelled search. cWB is referred to as an unmodelled search because it can
in principle identify signals from any exotic sources with unknown gravitational wave-
forms [193,194]. While cWB is sensitive to BBH signals, especially those with high masses
and short durations, it does not restrict to CBC signals and does not use any template
bank or waveforms to filter the data. Instead, it uses the time-frequency spectrograms
among pairs of detectors to search for coherent excess power. That is, the analysis
used in GWTC-3 restricts to candidates detected among the HL, HV, and LV detector
pairs. cWB operated with two configurations in the GWTC-3 analysis – one which is
optimized for the detection of high mass BBHs and one for low mass BBHs [3]. The
two configurations both operate in the frequency range 16 Hz to 512 Hz, however the
high mass BBH search targets signals with central frequency, fc < 80 Hz while the low
mass search targets fc > 80 Hz. After a signal is identified, the SNR is estimated by
reconstructing the waveforms. Similarly to the modeled searches MBTA and PyCBC,
cWB constructs background using time-slides of detector data and uses this background
to rank the significance of its candidates.

For inclusion in GWTC-3 we use a FAR threshold of 2.0 per day which represents
a deep extended list of triggers, most of which are likely to originate from noise. We
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require a significance threshold to identify the triggers in this list which are most likely to
be real GW candidates [3]. The FAR indicates how often we expect the detector network
to produce a noise trigger at or above the given ranking statistic of a GW candidate
in question, however it does not incorporate our astrophysical knowledge about merger
rates or populations of compact objects. In other words, the FAR only depends on the
estimated background distribution but does not include the foreground estimate. This is
not an ideal significance estimator for a collection of events which originate from a broad
set of populations. At the same FAR, a GW candidate originating from a well known
population will be more significant than one from an uncertain population. For example,
a BBH with a FAR of 2.0 per year is more significant than say, an NSBH at the same
FAR. This is because we know that merging BBHs are very common, whereas we have
much more uncertainty on the rate of merging NSBHs and have detected far fewer of
them. A FAR of 2.0 per year may not be enough to claim an NSBH detection given the
foreground expectation. If we used FAR as our detection threshold, we would need to
use a more stringent FAR threshold to claim BNS and NSBH detections, thereby leaving
out BBHs which may likely be real.

The probability of astrophysical origin, p(astro), is a better detection threshold since it
incorporates our knowledge of both the background and foreground distributions [205–210].
We follow the precedent of GWTC-1 [164] and GWTC-2.1 [165] and use a threshold
on the p(astro)of > 0.50 to produce a higher purity set of GW candidates which are
followed up with detailed source parameter estimation and careful data quality checks.
For cWB candidates, we make the additional constraint that candidates be found in at
least one of the modeled searches with p(astro) > 0.1, sine cWB can potentially detect
signals from other astrophysical sources, while the p(astro) calculation assumes a CBC
source. These candidates are discussed in the next section. By taking the threshold as
p(astro) > 0.50 we ensure that all of the significant candidates included have a higher
probability of being astrophysical in origin than terrestrial since,

p(astro) = 1− p(terrestrial). (4.1)

The p(astro) is estimated by comparing the number of events in the background distribu-
tion to the foreground distribution at a given ranking statistic [205–207]. The ranking
statistic and background distributions are unique to each search pipeline and are the
same used to estimate FARs. The foreground distribution represents the likelihood
of observing a GW candidate at a given ranking statistic with given source intrinsic
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parameters, {m1,m2, s1,z, s2,z}. Construction of the foreground distribution depends on
a population model – our expectation of the black hole and neutron star mass and spin
distributions and binary merger rates. We can further estimate the probability that each
candidate originated from the three source classes: BNS, NSBH, and BBH, i.e.:

p(astro) = p(BNS) + p(NSBH) + p(BBH). (4.2)

These classes are defined based on a conservative upper limit of the neutron star maximum
mass which we take to be 3.0M�: p(BNS) is the probability that a candidate has both
component masses < 3.0M�, p(NSBH) is the probability that a candidate has the
larger mass > 3.0M�, and p(BBH) is the probability that a candidate has both masses
> 3.0M�. Since it is infeasible to provide detailed source parameter estimation on all
the triggers in the catalog (i.e. those which pass the FAR threshold of 2.0 per day)
the GWTC-3 provides source classifications based on Eqn. 4.2 for the candidates with
p(astro) ≤ 0.50 [170].

4.4 Candidates
GWTC-3 includes 35 candidates with p(astro) > 0.50 [3]. Table 4.2 lists each of these
candidates and indicates the instruments observing at the time, along with the FAR,
network SNR, and p(astro) as found by each of the four search pipelines. Each of
these significant candidates are given a GW name following the convention GWYYM-
MDD_HHMMSS according to the coalescence date and time. Table 4.3 shows the 7
marginal candidates which did not meet the p(astro) threshold but still had FAR less
than 2.0 per year. These candidates are also given the GW identifier, except for three
candidates which were determined likely to have an instrumental origin. The marginal
candidates are discussed in more detail in Sec. 4.4.3. Overall, GWTC-3 includes a total
of 1048 candidate events in the deep sub-threshold list extending to 2.0 per day. These
events are not discussed individually here, but the data release includes their p(astro)
source classifications and estimated sky localizations [170].

During low-latency operation, GW triggers from all search pipelines are uploaded to
GraceDB1 and clustered into superevents based on the coalescence time, including all
triggers nominally within a window of [−1,+1] seconds. The superevents are automatically
assigned an identifier with naming convention SYYMMDD indicating the date of upload.

1https://gracedb.ligo.org/
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In O3, GW candidates originating from CBC searches (i.e. GstLAL, MBTAOnline,
PyCBC Live, or SPIIR) with FAR below a public alert threshold of one per two months
(6 yr−1) were distributed to the public via GCN alert. There were 39 GCN alerts
during O3b, of which 16 were subsequently determined to be instrumental in origin and
retracted [3]. None of these 16 candidates were found above the thresholds for inclusion
in the GWTC-3 analysis.

Of the 39 public candidates from O3b, 5 were not retracted but also not found above
the p(astro) threshold for inclusion as a high significance candidate in GWTC-3 [3]. Of
these, S191205ah [211], S200213t [212], and S191213g [213] were GstLAL candidates
with modest significance. S191205ah and S200213t were both identified in only a single
detector, LIGO Livingston and LIGO Hanford, respectively. S191213g was identified
by GstLAL as a quiet signal in both LIGO Hanford and Livingston. These three
candidates were either not found by the GstLAL analysis for GWTC-3 or found with
FAR > 2.0 per day. S200105ae [214] was an NSBH candidate identified in low-latency
in LIGO Livingston and published in [115]. However, in the GWTC-3 analyses this
candidate was found with p(astro) below the threshold and is therefore included only
as a marginal candidate [3]. This candidate is discussed further in Sec. 4.4.3. Lastly,
S200114f [215] was identified in low-latency by the cWB search pipeline. However in
the re-analysis for GWTC-3 it was found with a low p(astro) below the threshold for
inclusion and was not found by any of the three modeled searches.

The remaining 18 public GW candidates in O3b were found in the GWTC-3 analyses
and are included as high significance candidates in Table 4.2. The 17 candidates listed
in bold in Table 4.2 are new candidates published in [3] for the first time. These
candidates are discussed in the following sections: candidates consistent with a BBH
source in Sec. 4.4.1 and candidates consistent with an NSBH source in Sec. 4.4.2. There
were no candidates from O3b consistent with a BNS source.

The differences among the candidates identified in low-latency and the GWTC-3
re-analysis are not unexpected. In general, the offline analyses benefit from a better
understanding of data quality and the ability to rank candidates against more background.
Especially candidates which have modest significance are likely to fluctuate above or
below the threshold for inclusion due to slight changes in the data analyzed or the search
methods used from low-latency to the offline analysis [3]. The p(astro) threshold used
offline is expected to elucidate additional signals in the regions of parameter space where
astrophysical rates are high, i.e. BBHs. This expectation is confirmed as we find most of
the 17 new candidates to be consistent with BBH sources.
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In addition to differences compared to the candidates identified in low-latency, it is
expected that the candidate list will differ slightly among the search pipelines. These
differences can be attributed to (i) different configurational and tuning choices made by
the searches, (ii) different methods in constructing the ranking statistic, (iii) different
responses by each search to the detector noise and differences in the background estimation
by each search, and (iv) varying sensitivity across the parameter space due to the different
template banks used by each search [3]. Despite these differences, the searches are still
highly redundant and identify many of the same signals, especially those for which
p(astro) ∼ 1. Using multiple searches serves as an internal consistency check and makes
our results as a collaboration more robust.

We expect the 35 candidates with p(astro) > 0.50 to be mostly consistent with signals,
however we can’t rule out the possibility that some of these in fact originated from noise.
We can estimate the purity of this list, i.e. the fraction of signals which are astrophysical
in origin, by summing the p(astro) across all candidates and comparing to the total
number of candidates. Although we use a threshold on p(astro) of only 0.50, many of our
candidates are identified with p(astro) ∼ 1, so the naive guess that 50% of the candidates
originate from noise is not true. We find a purity of ∼ 85− 90% – or rather, we expect a
contamination of triggers with terrestrial origin of ∼ 10− 15% (approximately four to
six candidates) [3]. Of course we cannot a priori know which candidates these are, but
the signals closest to the p(astro) threshold are the most likely to be terrestrial in origin.

4.4.1 Binary black hole candidates

Most of the 35 candidates in Table 4.2 are consistent with a BBH source, i.e. they were
identified as having both component masses > 3.0M�. In this section I will give an
overview of a few of the notable BBH candidates [3].

The GstLAL search pipeline was the only pipeline in O3 which allowed for the
detection of candidates identified in a single detector. In O3b there were 2 single detector
candidates identified only by GstLAL – GW200112_155838 and GW200302_015811,
indicated with a † on the FAR in Table 4.2 [3]. These candidates were both initially
identified in low-latency and had relatively loud SNRs > 10.0. In the offline re-analysis
they were found with high p(astro) > 0.9.

There were 4 candidates identified only by the MBTA search pipeline above the
p(astro) threshold. All of these candidates were identified with high FARs which would
not have met the public alert threshold in O3b and thus were published in GWTC-3 for
the first time [3].
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Name Inst. cWB GstLAL MBTA PyCBC-broad PyCBC-BBH
FAR SNRpastro FAR SNR pastro FAR SNR pastro FAR SNR pastro FAR SNR pastro
(yr−1) (yr−1) (yr−1) (yr−1) (yr−1)

GW191103_012549 HL – – – – – – 27 9 .0 0 .13 4.8 9.3 0.77 0.46 9.3 0.94

GW191105_143521 HLV – – – 24 10 .0 0 .07 0.14 10.7> 0.99 0.012 9.8 > 0.99 0.036 9.8 > 0.99

GW191109_010717 HL < 0.0011 15.6> 0.99 0.0010 15.8> 0.99 1.8× 10−4 15.2> 0.99 0.096 13.2> 0.99 0.047 14.4> 0.99

GW191113_071753HLV – – – – – – 26 9.2 0.68 1 .1 × 10 4 8 .3 < 0 .01 1 .2 × 10 3 8 .5 < 0 .01

GW191126_115259 HL – – – 80 8 .7 0 .02 59 8 .5 0 .30 22 8 .5 0 .39 3.2 8.5 0.70

GW191127_050227HLV – – – 0 .25 10 .3 0 .49 1.2 9.8 0.73 20 9 .5 0 .47 4.1 8.7 0.74

GW191129_134029 HL – – – < 1.0× 10−5 13.3> 0.99 0.013 12.7> 0.99< 2.6× 10−5 12.9> 0.99< 2.4× 10−5 12.9> 0.99

GW191204_110529 HL – – – 21 9 .0 0 .07 1 .3 × 10 4 8 .1 < 0 .01 980 8 .9 < 0 .01 3.3 8.9 0.74

GW191204_171526 HL < 8.7× 10−4 17.1> 0.99 < 1.0× 10−5 15.6> 0.99< 1.0× 10−5 17.1> 0.99< 1.4× 10−5 16.9> 0.99< 1.2× 10−5 16.9> 0.99

GW191215_223052 HLV 0.12 9.8 0.95 < 1.0× 10−5 10.9> 0.99 0.22 10.8> 0.99 0.0016 10.3> 0.99 0.28 10.2> 0.99

GW191216_213338 HV – – – < 1.0× 10−5 18.6> 0.99 9.3× 10−4 17.9> 0.99 0.0019 18.3> 0.99 7.6× 10−4 18.3> 0.99

GW191219_163120HLV – – – – – – – – – 4.0 8.9 0.82 – – –

GW191222_033537 HL < 8.9× 10−4 11.1> 0.99 < 1.0× 10−5 12.0> 0.99 0.0099 10.8> 0.99 0.0021 11.5> 0.99 9.8× 10−5 11.5> 0.99

GW191230_180458HLV 0.050 10.3 0.95 0.13 10.3 0.87 8 .1 9 .8 0 .40 52 9 .6 0 .29 0.42 9.9 0.96

GW200112_155838 LV – – – < 1.0× 10−5† 17.6> 0.99 – – – – – – – – –

GW200115_042309 HLV – – – < 1.0× 10−5 11.5> 0.99 0.0055 11.2> 0.99< 1.2× 10−4 10.8> 0.99 – – –

GW200128_022011 HL 1.3 8.8 0.63 0.022 10.1 0.97 3.3 9.4 0.98 0.63 9.8 0.95 0.0043 9.9 > 0.99

GW200129_065458 HLV – – – < 1.0× 10−5 26.5> 0.99 – – – < 2.3× 10−5 16.3> 0.99< 1.7× 10−5 16.2> 0.99

GW200202_154313HLV – – – < 1.0× 10−5 11.3> 0.99 – – – – – – 0.025 10.8> 0.99

GW200208_130117 HLV – – – 0.0096 10.7 0.99 0.46 10.4> 0.99 0.18 9.6 0.98 3.1× 10−4 10.8> 0.99

GW200208_222617HLV – – – 160 8 .2 < 0 .01 420 8 .9 0 .02 – – – 4.8 7.9 0.70

GW200209_085452HLV – – – 0.046 10.0 0.95 12 9.7 0.97 550 9 .2 0 .04 1.2 9.2 0.89

GW200210_092254HLV – – – 1 .2 9 .5 0 .42 – – – 17 8.9 0.53 7.7 8.9 0.54

GW200216_220804HLV – – – 0.35 9.4 0.77 2 .4 × 10 3 8 .8 0 .02 970 9 .0 < 0 .01 7.8 8.7 0.54

GW200219_094415 HLV 0.77 9.7 0.85 9.9× 10−4 10.7> 0.99 0.18 10.6> 0.99 1.7 9.9 0.89 0.016 10.0> 0.99

GW200220_061928HLV – – – – – – – – – – – – 6.8 7.5 0.62

GW200220_124850 HL – – – 150 8 .2 < 0 .01 1.8× 103 8.2 0.83 – – – 30 7 .8 0 .20

GW200224_222234 HLV< 8.8× 10−4 18.8> 0.99 < 1.0× 10−5 18.9> 0.99< 1.0× 10−5 19.0> 0.99< 8.2× 10−5 19.2> 0.99< 7.7× 10−5 18.6> 0.99

GW200225_060421 HL < 8.8× 10−4 13.1> 0.99 0.079 12.9 0.93 0.0049 12.5> 0.99< 1.1× 10−5 12.3> 0.99 4.1× 10−5 12.3> 0.99

GW200302_015811 HV – – – 0.11† 10.6 0.91 – – – – – – – – –

GW200306_093714 HL – – – – – – 410 8.5 0.81 3 .4 × 10 3 7 .8 < 0 .01 24 8 .0 0 .24

GW200308_173609HLV – – – 680 8 .1 < 0 .01 6 .9 × 10 4 8 .3 0 .24 770 7 .9 < 0 .01 2.4 8.0 0.86

GW200311_115853 HLV< 8.2× 10−4 16.2> 0.99 < 1.0× 10−5 17.7> 0.99< 1.0× 10−5 16.5> 0.99< 6.9× 10−5 17.0> 0.99< 7.7× 10−5 17.4> 0.99

GW200316_215756 HLV – – – < 1.0× 10−5 10.1> 0.99 12 9 .5 0 .30 0.20 9.3 0.98 0.58 9.3 0.98

GW200322_091133HLV – – – – – – 450 9.0 0.62 1 .4 × 10 3 8 .0 < 0 .01 140 7 .7 0 .08

Table 4.2. Candidate GW signals. The time (UTC) of the signal is encoded in the name as
GWYYMMDD_hhmmss (e.g., GW200112_155838 occurred on 2020-01-12 at 15:58:38). The
names of candidates not previously reported are given in bold. The detectors observing at
the merger time of the candidate are indicated using single-letter identifiers (e.g., H for LIGO
Hanford); these are not necessarily the same detectors that contributed triggers associated
with the candidate. Where a candidate was found with p(astro) above the threshold value
of 0.50 by at least one analysis but below the threshold by others, we include in italics the
results from the other analyses, where available. A dash (–) indicates that a candidate was
not found by an analysis. The 2 candidates labeled with a dagger (†) were found only above
threshold in a single detector with the GstLAL analysis, and the FAR estimates were made
using significant extrapolation of the background data, meaning that single-detector candidates
have higher uncertainty than coincident candidates. A conservative estimate of the FAR for
these single-detector candidates is one per live time of the analysis; this is ∼ 3.16 yr−1 for both
LIGO Hanford and LIGO Livingston. Reprinted from [3].
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There were 5 BBH candidates identified only by the PyCBC-BBH analysis as well as
2 identified in both PyCBC analysis configurations. Among these, GW191103_012549
was the most significant, identified with a FAR of 0.46 per year. None of these candidates
were identified in low-latency and thus all are reported in GWTC-3 for the first time [3].

GW200208_222617 and GW200220_061928 were two candidates identified above
the p(astro) threshold only by the PyCBC-BBH analysis. These each were identified
with very high masses, making them relevant in the search for intermediate mass black
hole (IMBH) candidates [216–218]. However, both of these candidates were identified
with low SNRs ∼ 8.0, high FARs of ∼ several per year, and modest p(astro) of 0.70 and
0.62, respectively. Neither candidate was identified as significant in the dedicated IMBH
search [216].

The candidate GW191109_010717 was found with high significance in all search
pipelines in the GWTC-3 analyses as well as the dedicated IMBH search [216]. While it
was identified with high component masses, we cannot confirm that its masses lie in the
range above which black holes are expected to form from stellar collapse [168,217]

4.4.2 Neutron star–black hole binary candidates

The new candidates in O3b included the first confident detections of NSBH binary
mergers. After the first detection of a BBH merger in O1 and a BNS merger in O2
the detection of an NSBH completed observations of the three expected CBC source
classes. GW200115_042309 was found with high significance in all three of the modeled
searches: GstLAL, MBTA, and PyCBC-broad. This candidate was first initially published
in [115] along with GW200105_162426 which is included in GWTC-3 as a marginal
candidate [3]. GW200105_162426 will be discussed in more detail in Sec. 4.4.3. Although
GW200115_042309 was identified in low-latency, no EM counterparts were identified.
This is not unexpected for NSBH signals as the presence of a counterpart will depend upon
the source intrinsic parameters, namely the mass ratio and component spins [219–222].
The particular source parameters of this candidate made it unlikely to have remnant
mass outside of the final compact object to produce an EM counterpart.

GW191219_163120 was a candidate identified only by the PyCBC-broad analysis [3].
The template which produced the trigger had secondary mass 1.84M� which makes it
consistent with an NSBH origin. However, due to technical details of the PyCBC p(astro)
calculation, its significance was estimated with respect to the BBH population. This
resulted in the candidate having an artificially higher p(astro) = 0.82. If it had been
ranked as part of the NSBH population its p(astro) would have dropped to only 0.085,
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Name Inst. cWB GstLAL MBTA PyCBC-broad
FAR SNRpastro FAR SNR pastro FAR SNR pastro FAR SNR pastro
(yr−1) (yr−1) (yr−1) (yr−1)

GW191118_212859 LV – – – – – – 7 .4 × 10 5 8 .0 < 0 .01 1.3 9.1 0.05

GW200105_162426 LV – – – 0.20† 13.9 0.36 – – – – – –

200121_031748∗ HV – – – 58 9 .1 0 .02 1.1 10.7 0.23 – – –

GW200201_203549HLV – – – 1.4 9.0 0.12 850 8 .9 < 0 .011 .0 × 10 3 8 .3 < 0 .01

200214_224526∗ HLV 0.13 13.1 0.91 – – – – – – – – –

200219_201407∗ HLV – – – – – – 0.22 13.6 0.48 – – –

GW200311_103121 HL – – – 110 9 .0 < 0 .01 1.3 9.0 0.03 1.3 9.2 0.19

Table 4.3. Marginal candidates found by the various analyses. The candidates in this table
have a FAR below a threshold of 2.0 yr−1 in at least one analysis, but were not found with
p(astro) that meets our threshold for Table 4.2 (p(astro) > 0.50 from a search analysis, with
the additional requirement that cWB candidates have a counterpart from a matched-filter
analysis). Detector-identifying letters are the same as given in Table 4.2. The instruments
for each candidate are the ones which were operating at the time of the trigger, and are not
necessarily the same as those which participated in the detection. The candidates are named
according to the same convention as in Table 4.2 except that here we omit the GW prefix for
the candidates found to be likely caused by instrumental artifacts, indicated with an asterisk
(∗). Where a candidate was seen below the FAR threshold in at least one analysis but above
threshold in others, we include in italics the information on that trigger from the other analyses
as well where available. As in Table 4.2, the dagger (†) indicates a candidate found by a single
detector with the GstLAL analysis. Reprinted from [3].

excluding it from Table 4.2. Future studies may shed more light on the true nature of this
event, but the example highlights the sensitivity of the p(astro) value to the population
model used to estimate the foreground distribution.

Finally, GW200210_092254 was a possible NSBH candidate identified above the
p(astro) threshold only by the PyCBC analyses. This candidate had a modest significance
with FAR nearly 10 per year in both PyCBC analysis configurations as well as p(astro)
close to the threshold for inclusion [3]. The templates which produced this trigger in
the PyCBC-broad and PyCBC-BBH analyses both had secondary mass 5.61M�. If
astrophysical, we cannot confidently determine whether the signal originated from an
NSBH binary with a heavy neutron star or a BBH with a light secondary in the supposed
lower mass gap, extending from 3− 5M� [166,167].

4.4.3 Marginal candidates

There were 7 candidates identified in the GWTC-3 analyses which had p(astro) below the
threshold for inclusion in Table 4.2 but still had a significant FAR below 2.0 per year [3].
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These candidates are referred to as marginal and listed in Table 4.3.
Most notably, the marginal candidates in GWTC-3 include GW200105_162426 which

is an NSBH candidate identified by GstLAL in LIGO Livingston data and previously
published in [115]. In the offline analysis, this candidate was identified with a high SNR
of 13.9 making its signal clearly visible in the LIGO Livingston data. The SNR peak was
similarly identified in low-latency by MBTAOnline, PyCBC Live, and SPIIR however
none of these searches were configured to assign FARs to single detector candidates.
Similarly, the MBTA and PyCBC offline analyses identified SNR triggers but do not
allow candidates without coincidence, hence they are not included in Table 4.3.

For single detector candidates, we can place a conservative upper bound on the
FAR of one per observing time. However, in practice we obtain a stronger bound,
albeit with added uncertainty, by extrapolating the background population to a longer
observing duration [115]. Despite this uncertainty, the trigger clearly stands out from
the background compared to noise triggers collected over the duration of O3b. This
is demonstrated by the right panel of Fig. 4.4, which shows the ρ − ξ2 background
histogram of noise triggers with similar intrinsic parameters to the template producing
GW200105_162426, as described in Chapter 2. The SNR and ξ2 of GW200115_042309
are also shown, indicating that without coincidence this trigger would not have been
separable from the background. In contrast, the SNR and ξ2 of GW200105_162426 are
unlike any noise trigger obtained throughout the observing duration. For this reason, [115]
concludes that GW200105_162426 is very likely astrophysical.

The uncertainty in the FAR estimation due to extrapolation propagates into the
p(astro) calculation as uncertainty in the background distribution. There is further
uncertainty in the foreground distribution due to the relative lack of NSBH signals
observed to date [3]. Therefore, the low p(astro) estimated for GW200105_162426
in GWTC-3 is not necessarily unexpected. In the future, once we have made more
observations of NSBHs we can better constrain the population model and merger rate of
similar events. At this time, the significance of GW200105_162426 may be re-evaluated
and its true nature determined with less uncertainty.

The three candidates in Table 4.3 indicated with an asterisk, (∗), were determined
by data quality checks to be likely instrumental in origin. These triggers were therefore
not assigned a GW name to reflect our doubt that they are astrophysical in origin [3].
200121_031748 occurred at a time when LIGO Hanford data was found to contain excess
power consistent with a blip glitch [188]. 200214_224526 was found by the cWB analysis
in both LIGO detectors, however both detectors were found to have excess power at
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Figure 4.4. Left. Time-frequency representation of the LIGO Livingston and Virgo data
in a six second window around the coalescence time of GW200105_162426. The chirping
signal track is clearly visible in the LIGO Livingston data due to its high SNR of 13.9. Right.
The probability density function of noise triggers collected by GstLAL from templates with
Mc < 4M� collected over the full duration of O3, combined over the LIGO Hanford, Livingston,
and Virgo detectors. The SNR and ξ2 values of GW200115 and GW190426 are shown for
comparison by the blue and grey diamonds respectively. The single SNR and ξ2 value of
GW200105 in LIGO Livingston data is indicated by the red star, where it is clear that it stands
out from the rest of the background distribution. Reprinted from [115].

the time consistent with a weak scattering arch and fast scattering in LIGO Hanford
and LIGO Livingston, respectively [178]. Additionally, even without the identification of
these instrumental artifacts, this candidate would not have met the criteria for inclusion
in Table 4.2 as it was not found in any of the three modeled searches. Finally, 200219K
was determined to be instrumental in origin as there were several loud glitches in the
LIGO Hanford data near the time of the signal.

4.5 Search sensitivity
To quantify the search sensitivity, we use the sensitive time-volume, 〈V T 〉, over the
duration of O3b computed using injection campaigns [3]. We simulate signals, referred
to as injections, in each of the CBC source classes we are interested in: BNS, NSBH,

75



Mass Mass Spin Redshift Maximum
distribution range (M�) range evolution redshift

BBH p(m1) ∝ m−2.35
1 2 < m1 < 100

|χ1,2| < 0.998 κ = 1 1.9
p(m2|m1) ∝ m2 2 < m2 < 100

NSBH p(m1) ∝ m−2.35
1 2.5 < m1 < 60 |χ1| < 0.998

κ = 0 0.25
Uniform 1 < m2 < 2.5 |χ2| < 0.4

BNS Uniform 1 < m1 < 2.5
|χ1,2| < 0.4 κ = 0 0.15

Uniform 1 < m2 < 2.5

Table 4.4. Parameter distributions used to generate injections for estimating search sensitivity.
We always use the convention that m1 ≥ m2 with masses defined in the source frame. The
redshift-evolution parameter κ controls the injected distribution as described in Eqn. (4.3).

and BBH mergers. The injections are added to the strain data and distributed uniformly
in time throughout the duration of the run. The injections are drawn from a uniform
distribution in comoving volume, Vc, according to a flat Λ-cold-dark-matter (ΛCDM)
cosmology. The probability distribution of the injection redshifts goes as,

p(z) ∝ dVc
dz

(1 + z)κ−1, (4.3)

where the value of κ is specified in Table 4.4 for each source class. The injection mass
and spin distributions were constructed in each of the known CBC source classes. The
injection spins are drawn from isotropic distributions with |si,z| < 0.998 for components
with mass > 2.0M� and 0.4 otherwise. These distributions are outlined in Table 4.4,
with masses always referring to the source frame and assuming m1 ≥ m2. The BNS
injections are generated using the SpinTaylorT4 waveform model [203], while the BBH
and NSBH injections are generated using the SEOBNRv4PHM model [223], or the SEOBNRv4P
model [201,223] for injections corresponding to binaries with redshifted total mass below
9M�.

By counting the number of injections, N , recovered by each search pipeline above the
p(astro) threshold of 0.50, we can compute the sensitive time-volume as:

〈V T 〉 = N

R
, (4.4)

where R is the rate of injected signals per unit volume and time. The time is taken as
the livetime of each analysis. For cWB, the livetime was 94.9 days – this is a subset
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Binary masses (M�) Sensitive hypervolume (Gpc3 yr)
m1 m2 M cWB GstLAL MBTA PyCBC-broad PyCBC-BBH Any

35.0 35.0 30.5 2.6+0.1
−0.1 4.1+0.1

−0.1 3.3+0.2
−0.1 3.3+0.1

−0.1 4.3+0.2
−0.1 5.3+0.1

−0.2

35.0 20.0 22.9 1.35+0.09
−0.10 2.3+0.2

−0.1 1.8+0.1
−0.1 1.9+0.1

−0.1 2.5+0.1
−0.1 3.1+0.1

−0.2

35.0 1.5 5.2 – 1.8+0.2
−0.3 × 10−2 1.9+0.3

−0.3 × 10−2 3.1+0.3
−0.3 × 10−2 – 3.3+0.4

−0.3 × 10−2

20.0 20.0 17.4 0.56+0.04
−0.04 1.34+0.06

−0.05 1.10+0.05
−0.05 1.14+0.05

−0.05 1.42+0.06
−0.05 1.71+0.06

−0.07

20.0 10.0 12.2 0.24+0.03
−0.04 0.60+0.05

−0.05 0.51+0.05
−0.04 0.56+0.05

−0.05 0.65+0.05
−0.05 0.77+0.06

−0.06

20.0 1.5 4.2 – 1.9+0.2
−0.2 × 10−2 1.9+0.2

−0.2 × 10−2 2.7+0.2
−0.2 × 10−2 – 2.9+0.3

−0.2 × 10−2

10.0 10.0 8.7 6.8+0.8
−0.9 × 10−2 0.26+0.01

−0.02 0.26+0.01
−0.02 0.27+0.01

−0.02 0.28+0.02
−0.02 0.32+0.02

−0.01

10.0 5.0 6.1 1.3+0.5
−0.4 × 10−2 0.10+0.02

−0.01 0.10+0.02
−0.01 0.12+0.01

−0.02 0.11+0.02
−0.01 0.13+0.02

−0.01

10.0 1.5 3.1 – 1.6+0.1
−0.1 × 10−2 1.5+0.2

−0.1 × 10−2 1.8+0.1
−0.1 × 10−2 – 2.1+0.1

−0.1 × 10−2

5.0 5.0 4.4 5+1
−2 × 10−3 5.8+0.5

−0.4 × 10−2 4.5+0.4
−0.4 × 10−2 6.5+0.5

−0.4 × 10−2 5.0+0.5
−0.4 × 10−2 7.4+0.5

−0.5 × 10−2

5.0 1.5 2.3 – 1.12+0.05
−0.06 × 10−2 1.19+0.06

−0.05 × 10−2 1.21+0.06
−0.06 × 10−2 – 1.43+0.06

−0.06 × 10−2

1.5 1.5 1.3 – 2.7+0.1
−0.1 × 10−3 3.4+0.1

−0.1 × 10−3 3.5+0.1
−0.2 × 10−3 – 3.9+0.1

−0.2 × 10−3

Table 4.5. Sensitive hypervolume from O3b for the various search analyses with pastro > 0.50
at the assessed points in the mass parameter space. The Any results come from calculating the
sensitive hypervolume for injections found by at least one search analysis. For each set of binary
masses, the given values are the central points of a log-normal distribution with width 0.1. For
some regions and analyses, few injections were recovered such that the sensitive hypervolume
cannot be accurately estimated; these cases are indicated by a dash (–). As an example of this,
the PyCBC-BBH and cWB analyses analyzed only injections in the designated BBH set, and
so no injections were found in the BNS or NSBH regions. Reprinted from [3].

of the times when strictly two detectors were observing [3]. The MBTA and PyCBC
livetimes were 124.5 days and 124.2 days, respectively – these are each subsets of the
amount of time when at least two detectors were observing [3]. The GstLAL livetime was
142.0 days, which is the amount of time when at least one detector was observing [3].

The injected distributions indicated in Table 4.4 do not represent the same astrophys-
ical assumptions chosen for construction of the foreground in the p(astro) calculation.
Further, each search pipeline computes p(astro) independently and the foreground models
used are not consistent among pipelines. For the precise population models used by each
search, see Appendix D7 of [3]. For the cWB and PyCBC-BBH analyses, we exclude
injections outside of the BBH region of parameter space, as indicated by the (–) entries
in Table 4.5. Further, to count an injection as found by cWB we require that it also be
found with p(astro) ≥ 0.1 in at least one of the modeled searches. This requirement has
a negligible effect on the reported sensitivity of cWB.

Rather than computing the 〈V T 〉 across the entire parameter space of injected signals
in Table 4.4, we compute it independently in several sub-regions across the space. The
sensitivity estimates in Table 4.5 are computed using injections drawn from log-normal
distributions with central masses mi ∈ {1.5, 5.0, 10, 20, 35}M�, indicated by the first two
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columns in the table. Each distribution has a width of 0.1. These distributions are chosen
to be representative of the signals we have observed in the past. The results in Table 4.5
demonstrate the variation in sensitivity across the parameter space by each search [3].
As is expected based on previous observations, we find that each search is most sensitive
in the 35− 35M� mass bin, representing GW150914-like signals [12]. The Any column in
the table combines results by counting injections which are found in at least one search
pipeline. This demonstrates how our overall sensitivity as a collaboration improves by
including multiple search pipelines.

4.6 Source parameters
After the initial detection of GW candidates by search pipelines, there are detailed
parameter estimation analyses based on full Bayesian inference to identify the source
properties and estimate their uncertainties [224–227]. The Bayesian inference is founded
on the well-known Bayes theorem [228,229],

p(~θ|~d) = p(~d|~θ)p(~θ)
p(~d)

. (4.5)

Here, ~θ is the vector of unknown source parameters and ~d are the time-series data observed
from each participating detector. p(~θ|~d) are the posterior distributions on the unknown
source parameters (for example masses, spins, sky position and distance). Therefore,
these analyses estimate uncertainty on the inferred source parameters as opposed to the
point estimates produced by searches. p(~d|~θ) is the likelihood of observing the data given
that a signal with parameters ~θ is present. Finally, p(~θ) is the prior distribution on the
source parameters and p(~d) is obtained by marginalizing the likelihood over the prior and
is typically regarded as a normalization constant. These analyses can be complicated
by uncertainty on systematic errors in the strain data calibration and waveform models
used, as well as the high dimension of the parameter space to search. In this section, I
will only focus on the masses, spins, and sky localizations, but see Section V of [3] and
the associated data release for the full results [170].

In parameter estimation, the choice of prior distributions can have a significant
effect on the inferred posterior distributions. Especially for parameters which have
sub-dominant effects on the waveform evolution, the results can rely heavily upon the
prior. For this reason, the GWTC-3 analysis used broad or uniform priors which are
meant to be uninformative and reduce assumptions about the underlying astrophysics [3].
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Using priors which more closely resemble our previous observations could produce a bias
against any unexpected or diverse results.

These analyses typically use different waveform models than those used by the
search pipelines to initially identify signals. For BBH signals, i.e. those for which both
components have mass > 3M�, the IMRPhenomXPHM and SEOBNRv4PHM waveform models
are used [223, 230]. These models allow for the effects of spin precession and higher
modes. For potential NSBH signals, the analyses use waveform models which allow for
matter effects – IMRPhenomNSBH and SEOBNRv4_ROM_NRTidalv2_NSBH [231,232].

4.6.1 Masses

The source masses are typically the best constrained parameters from GW observations
due to their strong imprint on the waveform evolution. Particularly, the combination of
component masses, m1 and m2, known as the chirp mass,

Mc = (m1m2)3/5

(m1 +m2)1/5 , (4.6)

has a strong effect on the frequency evolution in the inspiral phase of the waveform since
it enters at leading PN order [233,234]. Therefore, especially for low mass systems where
the inspiral portion of the waveform lasts for many cycles in the LIGO sensitive frequency
band, we can infer theMc with high accuracy. The total mass, M = m1 +m2, mainly
effects the merger and ringdown phase of the waveform, making it better measured for
high mass, short duration signals where the merger makes up a larger proportion of the
overall waveform in LIGO’s bandwidth. Finally, the mass ratio,

q = m1

m2
, m1 ≥ m2 (4.7)

effects the phase of the inspiral, but only enters at the first PN order, that is after the
Mc [233, 234]. Therefore the mass ratio has a sub-dominant effect and is usually not
constrained as well as the chirp mass. The credible region contours for the inferred
component masses, m1 and m2 as well as total mass M and mass ratio, q = m2/m1 are
shown in Fig. 4.5.

I will highlight a few of the candidates with interesting source masses below, starting
with unambiguous BBHs (i.e. candidates for which both component masses were inferred
to be > 3M� at 99% credibility) followed by signals which may be consistent with an
NSBH origin. The threshold 3M� is chosen as a conservative divider between black hole
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and neutron star component masses. This does not necessarily represent any statement
on the assumed neutron star maximum mass, which is currently unknown but typically
thought to lie in the range 2.1− 2.7M� [96, 235–237].

Unambiguous BBHs. Overall, the BH mass distributions inferred for the new
candidates added to GWTC-3 from O3b are consistent with previous observations from
GWTC-2.1. Unless stated otherwise, the masses quoted here refer to the 90% symmetric
credible region (see Table IV of [3]).

The highest mass binary was probably GW200220_061928, with total mass M =
148+55

−33M� and Mc = 62+23
−15M� [3]. Each of its component masses have significant

probability of lying within the so-called upper mass gap, a region of the stellar mass
parameter space where pair-instability supernovae results in the death of a star leaving
no remnant compact object [168]. This corresponds to an inferred gap in the BH mass
spectrum from about 65− 120M�. Observation of black holes in this mass region would
indicate formation via alternative channels, for example hierarchical mergers [238–240].
The primary mass of GW200220_061928’s source is inferred to be 87+40

−23M� and the
secondary mass, 61+26

−25M�. The parameter estimation analyses identified probabilities
of 94% and 39% that the primary and secondary mass components were > 65M�,
respectively. There was a 7% probability that GW200220_061928’s source had its
primary mass above the mass gap, i.e. m1 > 120M�. The remnant BH formed by the
merger of GW200220_061928’s source objects was inferred as 141+51

−31M�, with a 99%
probability of lying above 100M�, the threshold for inclusion as an IMBH.

At the other end of the black hole mass spectrum, there is a so-called lower mass
gap from 3− 5M� inferred from a lack of x-ray binary observations [166,167]. Among
the unambiguous BBH candidates in O3b, GW191113_071753’s source has the highest
probability of having a component in this region with secondary mass inferred to be
5.9+4.4
−1.3M� [3]. There is a 13% probability that GW191113_071753’s source had its

secondary mass < 5M�.
Similarly to past observations, most of the BBH candidates identified in O3b are

consistent with having equal masses, i.e. q ∼ 1. Probably the candidates with the
most extreme mass ratios among these are GW191113_071753 and GW200208_222617
with q = 0.202+0.490

−0.087 and q = 0.21+0.67
−0.16, respectively [3]. This is consistent with the O3a

candidate GW190412 which was the first detection of a BBH with confidently unequal
masses at a mass ratio of q = 0.28+0.12

−0.06 [138,165,241].
Potential NSBHs. GWTC-3 includes the first confident detections of gravitational

waves from NSBH sources. These candidates are all consistent with having the secondary
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Figure 4.5. Credible-region contours for the inferred masses of the O3b candidates with
p(astro) > 0.50 plus GW200105_162426. Top: Results for the primary and secondary com-
ponent masses m1 and m2. The shaded areas indicate regions excluded by the convention
m1 ≥ m2, and by the most extreme mass ratio considered in our analyses, i.e. q = 0.05 .
Bottom: Results for total mass M and mass ratio q. Each contour represents the 90%
credible region for a different candidate. Highlighted contours are for the NSBH candi-
dates GW191219_163120, GW200105_162426 and GW200115_042309; the NSBH or low-
mass BBH candidate GW200210_092254; GW191204_171526, which has inferred χeff > 0;
GW200225_060421, which has 85% probability that χeff < 0, and GW200220_061928, which
probably has the most massive source of the O3b candidates. We highlight with italics
GW200105_162426 as it has p(astro) < 0.50, as well as GW191219_163120 because of sig-
nificant uncertainty in its p(astro) and because it has significant posterior support outside of
mass ratios where the waveform models have been calibrated. Results for GW200308_173609
and GW200322_091133 are indicated with dashed lines to highlight that these include a
low-likelihood mode at large distances and high masses, and are particularly prior sensitive.
The dotted lines delineate regions where the primary and secondary can have a mass below
3M�. For the region above the m2 = 3M� line, both objects in the binary have masses above
3M�. Reprinted from [3].
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mass m2 < 3M�.
Among these, GW200115_042309 was the most significant. GW200115_042309’s

source was probably the lowest mass binary among the O3b candidates. The primary
mass, inferred as 5.9+2.0

−2.5M� has a 29% probability of lying in the lower mass gap region,
i.e. m1 < 5M� [3]. The secondary component mass, inferred as 1.44+0.85

−0.28, is consistent
with the Galactic NS mass distribution [242,243].

GW200210_092254’s source is similar to the previously published GW190814 from
GWTC-2 [138,165]. This candidate was inferred to have a secondary mass of 2.83+0.47

−0.42M�

with a 76% probability of having m2 < 3M� [3]. This means that the secondary mass
could be consistent with being a heavy neutron star or a light black hole lying in the
lower mass gap. This candidate also has one of the most extreme mass ratios from O3b,
with q ≤ 0.150 at 90% credibility.

If astrophysical, GW191219_163120’s source would be the most extreme mass ratio
binary in O3b with q = 0.038+0.005

−0.004 and q ≤ 0.041 at 90% probability [3]. However, this
candidate’s p(astro) is subject to significant uncertainty as described in Sec. 4.4. Further,
this very extreme mass ratio is outside the region where the waveforms are calibrated
and thus may be subject to significant systematic uncertainty.

4.6.2 Spins

The binary component spins are typically not well constrained by GW measurements,
due to the high PN order at which they enter the waveform [233,234]. The spins only
effect the inspiral evolution in the mass-weighted combination of spins known as the
effective inspiral spin,

χeff = m1 ~s1 +m2 ~s2

m1 +m2
L̂. (4.8)

We typically assume that the component spin vectors, ~si, are aligned or anti-aligned with
the orbital angular momentum. Then, defining L̂ to be in the ẑ-direction the definition
can be simplified as,

χeff = m1s1,z +m2s2,z

m1 +m2
. (4.9)

The χeff mainly has an effect on the inspiral duration of the GW waveforms. The
secondary component spin, s2,z is typically not well-constrained, however the primary
spin, s1,z may be constrained for the most extreme mass ratio binaries as s1,z will dominate
the χeff in this case.
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Figure 4.6. Credible-region contours in the plane of chirp massMc and effective inspiral
spin χeff for O3b candidates with p(astro) > 0.50 plus GW200105_162426. Each contour
represents the 90% credible region for a different candidate. Highlighted contours are for
the NSBH candidates GW191219_163120, GW200105_162426 and GW200115_042309; the
NSBH or low-mass BBH candidate GW200210_092254; GW191204_171526, which has inferred
χeff > 0; GW200225_060421, which has 85% probability that χeff < 0, and GW200220_061928,
which probably has the most massive source of the O3b candidates. We highlight with
italics GW200105_162426 as it has p(astro) < 0.50, as well as GW191219_163120 because of
significant uncertainty in its p(astro) and because it has significant posterior support outside of
mass ratios where the waveform models have been calibrated. Results for GW200308_173609
and GW200322_091133 are indicated with dashed lines to highlight that these include a
low-likelihood mode at large distances and high masses, and are particularly prior sensitive.

The in-plane spin components are characterized by the precession spin [244–246],

χp = max
{
χ1,⊥,

q(4q + 3)
4 + 3q χ2,⊥

}
, (4.10)

where χi,⊥ indicates the spin component which is perpendicular to the orbital angular
momentum, i.e. the x̂ and ŷ components of the spin vector. Measurement of the
precession spin is strongly dominated by the choice of prior and also correlated to the
χeff measurement in that the total spin magnitude is limited to |~si| ≤ 1, thus we only
expect to place weak constraints on the χp.

Constraining the effective inspiral spin can give insight to the various channels through
which binaries formed [161,247,248]. The isolated field formation scenario would tend to
produce mostly aligned spins [249,250], while dynamically formed binaries are expected
to have isotropically distributed spin orientations [251–253]. The 90% credible region
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contours for chirp mass and effective inspiral spin are shown in Fig. 4.6. Most of the
spin posteriors have support for χeff = 0 and, in agreement with GWTC-2.1, there are
more binaries with inferred χeff > 0 than χeff < 0 [3, 138,165]. This indicates a possible
preference for the isolated field formation channel, as binaries formed dynamically in
say, dense cluster environments may be more likely to have mis-aligned spins. Below, I
will highlight a few of the candidates with notable spin values, quoting the inferred 90%
credible symmetric intervals unless otherwise stated.

The highest χeff source is most likely from GW200208_222617, with χeff = 0.48+0.42
−0.46 [3].

This is similar to the highest χeff source from GWTC-2.1 [165]. GW191109_010717’s
source probably has the lowest χeff value among O3b candidats at −0.29+0.42

−0.31 [3].
The inferred χp posteriors are largely uninformative, however the inferred val-

ues for the sources of GW200129_065458 and GW191219_163120 are worth noting.
GW200129_065458 was the highest SNR signal observed in O3b, with ρ = 26.5 as
measured by the GstLAL search pipeline [3]. This places the signal in a region where
waveform systematics become more important relative to statistical uncertainties [254,255].
Therefore, the measurement of χp and the mass ratio (which χp depends on) are highly
dependent on the waveform used – SEOBNRv4PHM or IMRPhenomXPHM. With the for-
mer, the inferred χp is 0.36+0.31

−0.25 and with the latter, 0.77+0.19
−0.44 [3]. If astrophysical,

GW191219_163120’s source would have probably the lowest χp, inferred to be ≤ 0.14
at 90% probability [3]. However, again, the extreme mass ratio of this candidate means
that it may be subject to additional systematic uncertainty, the extent of which is not
currently well understood.

4.6.3 Localization

Our ability to localize a source on the sky, as well as identify its luminosity distance
and redshift, is highly dependent on the number of detectors which participated in the
observation. The best localized source in O3b was that of GW200311_115853 which was
observed in all three detectors – LIGO Hanford, Livingston, and Virgo with SNRs ∼ 12,
∼ 10, and ∼ 7, respectively [3]. Among the candidates detected in all three detectors, this
one had the highest SNR in Virgo which may have contributed to its precise localization.
The 90% credible sky area was 35deg2, which is comparable to the best localized sources
in GWTC-2.1 [3, 165].

The localization volume depends upon the ability to constrain both the sky area and
the luminosity distance. In O3b, the closest observed source was probably the marginal
NSBH GW200105_162426 with an inferred luminosity distance of DL = 0.27+0.12

−0.11Gpc
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and redshift z = 0.06+0.02
−0.02 [3]. This is similar to the closest event observed in O3a, but

still nearly an order of magnitude further away than the closest source ever detected,
the BNS merger GW170817 [66,165]. The furthest observed source in O3b is probably
that of GW200308_173609, with an inferred luminosity distance DL = 7.1+13.9

−4.4 Gpc and
redshift z = 1.04+1.47

−0.57 [3]. The candidates with the smallest localization volume are the
NSBH candidate GW200115_042309 and the BBH candidate GW200202_154313 with
inferred volumes of 0.0023Gpc3 and 0.0063Gpc3, respectively [3]. According to galaxy
catalogs there are thousands of galaxies in these volumes [256,257], so it is not possible
to identify the host galaxies of these sources.

4.7 Conclusion
At the time of writing, GWTC-3 represents the most comprehensive catalog of GW
candidates in existence. The 35 new candidates added to the catalog in O3b bring the
total number of highly significant detections to 90. This is an incredible result in just
ten years of observing. The rate of growth in the field of gravitational wave astronomy is
truly unprecedented, but even still we are only beginning to scrape the surface of what
these observations can teach us about the universe. Continuing to build up populations
of GW events across the full CBC parameter space of BNS, NSBH, and BBH sources will
allow us to probe more deeply into astrophysical population models, binary formation
scenarios, and merger rates. With GW200115_042309, we have now confidently detected
GWs from each of the three CBC source classes and unambiguously proven that neutron
star-black hole systems do exist [115]. However, significant uncertainty remains in the
NSBH mass distribution and merger rates until we make more detections of similar
systems. We have already seen that gravitational wave observations allow for advances
in fundamental physics such as constraining alternative theories of gravity [258, 259],
providing independent measures of the Hubble constant [64], and studying the high
redshift universe [162, 260]. These analyses will continue to be improved by including
more GW observations. In addition to the high significance candidates presented here, the
deep sub-threshold data release will be a boon for broad analysis efforts seeking to glean
as much information from the LIGO, Virgo, and KAGRA strain data as possible [170].

The GWTC-3 paper is published with several companions which I will briefly mention
here. The new candidates published in GWTC-3 are used to estimate merger rates
and source populations in [62] and to perform tests of general relativity in [65]. While
the GWTC-3 analysis presented here focused on the so-called all sky parameter space,
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broadly searching for CBC signals from BNS, NSBH, and BBH systems, dedicated offline
searches in specific parameter regions of interest were also conducted. [216] presents a
dedicated search for IMBH binaries with component masses ∼ 50− 600M� and [261,262]
present searches for sub-solar mass black hole binaries in O3a and O3b, respectively. A
search for lensed gravitational wave signals throughout all of O3 was conducted by [263].
Finally [23] and [264] present searches for short- and long-duration unmodeled GW
bursts in O3. None of these searches identify significant candidates, however the null
results are used to place upper bounds on merger rates in their respective parameter
regions.
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Chapter 5 |
Performance of the low-latency
GstLAL inspiral pipeline towards
O4

This chapter is a reprint of [113].
GstLAL is a stream-based matched-filtering search pipeline aiming at the prompt

discovery of gravitational waves from compact binary coalescences such as the mergers
of black holes and neutron stars. Over the past three observation runs by the LIGO,
Virgo, and KAGRA (LVK) collaboration, the GstLAL search pipeline has participated
in several tens of gravitational wave discoveries. The fourth observing run (O4) is set
to begin in May 2023 and is expected to see the discovery of many new and interesting
gravitational wave signals which will inform our understanding of astrophysics and
cosmology. We describe the current configuration of the GstLAL low-latency search and
show its readiness for the upcoming observation run by presenting its performance on a
mock data challenge. The mock data challenge includes 40 days of LIGO Hanford, LIGO
Livingston, and Virgo strain data along with an injection campaign in order to fully
characterize the performance of the search. We find an improved performance in terms
of detection rate and significance estimation as compared to that observed in the O3
online analysis. The improvements are attributed to several incremental advances in the
likelihood ratio ranking statistic computation and the method of background estimation.

5.1 Introduction
Since the first observing run (O1) of the LVK Collaboration, GstLAL, a matched
filtering based gravitational wave search pipeline [4], has participated in the discovery
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of groundbreaking gravitational wave events. GstLAL was among the search pipelines
that made the first direct detection of gravitational waves from a merging binary black
hole (BBH), known as GW150914 [12]. In the second observing run (O2), GstLAL was
the first pipeline to observe the binary neutron star (BNS) merger known as GW170817,
whose discovery kickstarted the field of multi-messenger astronomy [66,140]. In the third
observing run (O3), GstLAL detected O(10)s of gravitational wave signals including the
first ever neutron star–black hole binary (NSBH) mergers [115] and the very heavy BBH
merger, GW190521, which resulted in a remnant object in the IMBH mass region [265].

The GstLAL pipeline can be operated in one of two configurations: a low-latency or
“online” mode and an “offline” mode. The online configuration of the GstLAL analysis
proceeds in near real time as strain data becomes available from the interferometers
(currently, H, L and V). The online analysis enables the prompt detection of gravitational
wave events, allowing for rapid communication to the external community for electromag-
netic follow-up. In order to provide the best opportunities for multi-messenger astronomy,
it is imperative that the low-latency analyses perform optimally. This includes reliable
signal recovery, accuracy of source property estimation, and the ability of the search to
keep up with real-time data and provide results as quickly as possible.

In contrast, the offline analysis proceeds on long timescales relative to the low-latency
distribution of strain data. The offline analysis can benefit from a fuller understanding
of the detector noise and the ability to re-rank the significance of candidates against
the full asynchronous background estimate collected over the entire run duration. Since
the likelihood ratios and FARs of the candidates are re-computed relative to the full
background, it is also possible to make adjustments to the signal model and mass model
compared to what is used in the online analysis [111]. All of these factors can contribute
to higher sensitivity, as quantified by the sensitive volume-time 〈V T 〉, in the offline
analysis.

In this paper, we will focus on the online configuration and aim to characterize the
GstLAL pipeline’s performance toward the fourth observing run (O4). In Section 5.2 we
will describe the current configuration of the GstLAL online analysis. Additionally, we
describe the Gravitational Wave Low-latency Test Suite (gw-lts) software package as a
tool for monitoring the performance of gravitational wave search pipelines in low-latency.
Then, in Section 5.3 we demonstrate the performance of the pipeline by presenting results
from a Mock Data Challenge (MDC). We will conclude in Section 5.4 with a description
of on-going development towards O4.
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Figure 5.1. The low-latency GstLAL inspiral analysis workflow. The full template bank
must first be decomposed into O(1000) independent background bins via the LLOID method
of singular value decomposition and time slicing [92]. The strain data is transferred from the
interferometer sites at LIGO Livingston, LIGO Hanford, and Virgo to the computing clusters
where it will be read from disk by the GstLAL pipeline. Filtering, trigger generation, and
candidate ranking proceeds in parallel for each background bin independently. These filtering
and ranking jobs are duplicated to process strain channels which include simulated signals
injected into the data. Background statistics are collected independently in each background
bin and asynchronously marginalized over the full parameter space in order to inform the FAR
estimation. Candidate events are aggregated in time across all background bins, using the
maximum SNR or minimum FAR as a metric for determining which candidates will be uploaded
to GraceDB. Finally, candidates passing the public alert FAR threshold will be disseminated
via GCN.

5.2 Software description

5.2.1 GstLAL

The low-latency GstLAL inspiral workflow consists of two broad stages: a set up stage
where pre-computed data products are generated and stored on disk and a persistent
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analysis stage where strain data is filtered in near real time and candidate events are
identified. We will give a brief description of the current workflow and configuration
choices to be used in operating the GstLAL analysis during O4. A diagram of the
low-latency workflow is shown in Fig. 5.1. For a more detailed description of the GstLAL
analysis methods as of the end of O1 and O2 see [4] and [104], respectively. The GstLAL
software package is described in [112].

Before the GstLAL analysis is launched, the template bank is first split into two halves
in a process referred to as “checkerboarding”. Each checkerboarded bank is constructed by
taking alternating neighboring templates from the full bank. The checkerboarded banks
are redundant as they cover the same parameter space while having unique individual
templates. The full O4 template bank includes 1.8× 106 templates, meaning that each
checkerboarded bank has about 9×105 templates. The effectualness of the checkerboarded
banks is validated in [107]. With this configuration the overall analysis can be split
across two independent computing sites which improves the robustness of the analysis
to upstream failures. According to the Low-Latency Online Inspiral Detection (LLOID)
method, the checkerboarded template banks must then be split into independent bins of
waveforms, hereafter referred to as background bins, as shown in Fig. 5.1. A full derivation
and motivation of the LLOID method, including the singular value decomposition (SVD)
and template time-slicing, is given by [92]. We first sort the template bank by the
orthogonal Post-Newtonian (PN) phase terms µ1 and µ2. These are linear combinations
of the PN coefficients, ψ0, ψ2, and ψ3, defined as follows [106]:

µ1 = 0.974ψ0 + 0.209ψ2 + 0.0840ψ3

µ2 = −0.221ψ0 + 0.823ψ2 + 0.524ψ3.
(5.1)

Using these parameters to sort, we split the template bank into sub-banks each with
∼ 500 templates. Each background bin is then constructed by grouping 2 sub-banks
together. When computing the decomposition, we require a 99.999% match between
the re-constructed template waveforms and the initial physical waveforms. This value is
chosen by balancing the need for computational efficiency with the need for accurately
reconstructed waveforms. For the checkerboarded O4 template bank in [107], this
produces ∼ 1000 background bins.

As part of the background bank construction during the set up stage of the analysis,
the SVD waveforms are also whitened. For the initial whitening before filtering has
begun, we use a reference power spectral density (PSD) generated from several hours
of O3 data. As the analysis stage proceeds we re-whiten the SVD waveforms on a
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weekly timescale using recent PSDs in order to account for any long term changes to
the detector characteristic noise. As the analysis runs, the PSD is continuously tracked
using a fast Fourier transform (FFT) length of 4 seconds. Such a short length of FFT in
the whitening stage of the pipeline reduces latency at the cost of a less accurate PSD
measurement which could potentially bring a loss in sensitivity while filtering.

The low-latency analysis ingests strain data, as well as data quality and interferometer
state information from frame files. Each frame includes 1 second of data. The frames
are distributed from the detectors via Apache Kafka, an open source event streaming
platform. After streaming from the detector sites, frames are stored in shared memory
partitions, where they are accessed by the GstLAL analysis. The frames are then
processed in buffers 4096 bytes at a time by each filtering job in the GstLAL pipeline as
shown in Fig. 5.1. In O4, the GstLAL pipeline will also ingest a parallel stream of strain
data including simulated compact binary coalescence (CBC) signals injected into the
data. These injections will be based on the inferred astrophysical distribution of sources
based on the Gravitational Wave Transient Catalog (GWTC-3) [62].

It is known that the LIGO and Virgo data are not “well-behaved” and include
transient and non-Gaussian noise components known as glitches. These glitches can be
mistaken for astrophysical signals, especially high mass BBH templates which are short
in duration within the LIGO-Virgo frequency band. To mitigate the negative effects of
non-Gaussian data, the GstLAL pipeline gates particularly glitchy whitened h(t) strain
data using a threshold on the amplitude of the data in units of standard deviations. In
gating the strain data, we must be careful to balance the desire to reduce false positives
(i.e. mistaking a glitch for an astrophysical signal) with the desire to avoid false negatives
(i.e. mistaking an astrophysical signal for a glitch). Since we know that signals from
heavy mass CBC systems (for example, IMBH binaries) with high amplitudes and short
durations tend to resemble glitches, we want to be conservative with gating data while
filtering templates in this region of the parameter space. However, for low mass systems
we can more aggressively gate with a lower threshold since these signals typically have a
smaller amplitude and much longer duration. For this reason, we choose a gate threshold
which is linear in the chirp mass,

Mc = (m1m2)3/5

(m1 +m2)1/5 , (5.2)

and calculate it for each background bin as follows [266]. We first compute a gate ratio
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defined as:
Rgate = σmax − σmin

Mc,max −Mc,min
, (5.3)

where we choose the minimum and maximum gate thresholds, σmin and σmax as 15.0 and
100.0, respectively. TheMc minimum and maximum are taken to beMc,min = 0.8 and
Mc,max = 45.0. Then, the h(t) gate threshold is calculated for each background bin as:

σthr = Rgate ×∆Mc + σmin. (5.4)

Here, ∆Mc is the difference between the maximumMc in the given background bin and
theMc,min. This produces gate thresholds ranging from ∼ 15 for the smallest mass bins
to ∼ 325 for the largest mass bins.

In the O4 configuration, we choose a filtering stride of 0.25 seconds, meaning that the
matched filter output is computed in stretches of 0.25 seconds at a time. The small stride
is chosen to reduce latency in the filtering stage. Triggers are defined by peaks in the SNR
time-series output by the matched filtering which pass a threshold of 4.0. The GstLAL
analysis has allowed for single detector candidates since O2 and will continue to do so in
O4. However, when calculating the likelihood ratio of single detector candidates we apply
a penalty to down rank their significance. This is a tunable parameter and the value
to be used in O4 will be discussed in more detail in Sec. 5.3.2. Coincident candidates
include triggers from the same template in at least two detectors. We require that the
end times of coincident triggers be within 0.005 seconds of each other after accounting
for the light travel time between detectors. Together, the coincidence threshold and the
requirement that triggers across detectors ring up the same template provide a strong
signal consistency test for candidate events.

The GstLAL pipeline uses the likelihood ratio as a ranking statistic to assign signifi-
cance to gravitational wave candidates [110, 267]. Recent improvements to the likelihood
ratio computation towards O4 are given in [111]. These include an upgraded analytic
SNR-ξ2 signal model and a method for removing signal contamination from the back-
ground which is also described in [5]. The background noise in each detector is estimated
by collecting ranking statistic data from single-detector triggers observed in coincident
time. We exclude triggers from times when only one detector is operating since these
triggers may be astrophysical signals. These background estimations are cumulative and
“snapshotted” to disk every 4 hours. The filtering jobs which process injection strain
data do not collect their own background estimations. This is because the high rate of
injected signals in the data would contaminate the background and corrupt the statistics
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used for the FAR estimation. Instead, these injection filtering jobs use a copy of the
background statistics collected by the corresponding non-injection filtering job which
processes the same background bin.

While the pipeline is designed to run persistently, there is need to take the analysis
down periodically. We remove each of our analyses for a short period of time on a weekly
timescale with a staggered schedule so that at least one of the checkerboarded analyses
is always observing. When an analysis is re-launched after this weekly downtime, we
compress the background ranking statistic data by removing any values in the horizon
distance history that differ fractionally from their neighbors by less than 0.003. This
compression reduces the file size and memory use of the pipeline, which would otherwise
grow without bounds over the duration of the observing period.

For FAR estimation, the ranking statistic data is marginalized by adding counts from
the SNR-ξ2 background distributions collected in each background bin. The histograms
are marginalized over in a continuous loop, taking several hours to complete each iteration.
The marginalization is cumulative in time so that as the run proceeds, we collect more
and more background counts. To account for the two redundant checkerboarded analyses,
we apply a FAR trials factor of 2 to each trigger.

Gravitational wave events passing a FAR threshold of one per hour will be uploaded
to the GraceDB [268]. Because the GstLAL pipeline filters the strain data in ∼ 1000
independent background bins, it is not only possible but highly probable that there will
be multiple triggers associated with each physical gravitational wave candidate. The
number of triggers per candidate could range from a few for quieter signals to several tens
for louder signals. In order to reduce API calls to GraceDB we aggregate these triggers
in time across background bins by the maximum SNR and only upload the current best
candidate. In this aggregation stage, triggers from different background bins are grouped
into candidates using a coincidence window defined by rounding tend − dt down to the
nearest half second and rounding tend + dt up to the nearest half second. Here, tend is the
end time of the trigger and dt = 0.2 seconds. The first trigger received by the aggregator
for a given candidate is uploaded to GraceDB immediately. Any subsequent triggers
for the same candidate which are found with higher SNR are uploaded with a 4 second
geometric wait time. That is, after the first upload, the second upload will not be made
until 4 seconds later, the third upload until 42 seconds later, and so on. The aggregation
stage of the pipeline is illustrated in Fig. 5.1.

Finally, the GstLAL pipeline calculates a probability of astrophysical origin, or
p(astro), for each event uploaded to GraceDB. The p(astro) is a measure of the event’s

93



significance, and as we also compute the probability that the event originates from each
CBC source class (BNS, NSBH, or BBH) it gives an indication of the likelihood that an
event will have an electromagnetic counterpart. Therefore, the p(astro) is an important
quantity to help astronomers determine when to follow up gravitational wave candidates.
More information about the GstLAL pipeline’s computation of p(astro) can be found
in [269].

5.2.2 GW Low-latency Test Suite

The gw-lts software is designed to provide consistency checks and real-time feedback
on the reliability of science outputs of gravitational wave search pipelines. By using
simulated signals injected in the strain data, we can compare the pipeline performance
to what is expected.

The Test Suite requires a source of truth for the signals that are present in the data.
For this, we rely on an injection set on disk which defines all of the injections, including
all intrinsic and extrinsic parameters, and the GPS times at which they appear in the
strain data. Using a live estimate of the PSD and the injected signal’s sky location we
can compute the expected SNR. For information about recovered events, GraceDB is
taken as the source of truth. The igwn-alert software package is a messaging system
built on Apache Kafka which sends notifications of GraceDB state changes to subscribed
users. The Test Suite subscribes to notifications from igwn-alert which are sent for
any new or updated event on GraceDB. The injections are then matched with recovered
alerts in low-latency by finding coincidences within a small ∆t which we take to be ±1
seconds. This time window was chosen to be very small compared to a typical injection
rate to avoid erroneous coincidences.

Once an injected signal is matched with a recovered event, the information is passed
to an arbitrary number of independent jobs via Apache Kafka. The jobs compute metrics
associated with the injection recovery such as the 〈V T 〉, accuracy of source classification
and sky localization, and accuracy of point estimates of the source intrinsic parameters.
The gw-lts capabilities are described in further detail in Section 5.3.

All of the metrics computed by the gw-lts are stored with InfluxDB, which is
an open source platform for storing and querying time series data. We use the data
visualization tool Grafana to display the data in real time in online dashboards. With
this infrastructure, we are able to track changes in the performance of the analysis on
the timescale of seconds. Additionally, from the Influx database we are able to keep an
archival record of the performance metrics.
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5.3 Mock data challenge results
To demonstrate the performance of the GstLAL analysis and our readiness for O4, we
participated in a MDC consisting of a forty day stretch of HLV O3 strain data taken from
5 Jan. 2020 15:59:42 to 14 Feb. 2020 15:59:42 UTC and replayed so as to be analyzed in
a low-latency configuration. The MDC also provided a set of identical strain channels
with injected BNS, NSBH, and BBH signals. Details of the injection distributions used
in the MDC can be found in [270]. Injected signals were placed in the strain data at a
rate of one per ∼ 40 seconds, leading to a total of 5× 104 total injections throughout the
MDC duration.

In this section we seek to quantify the performance of the GstLAL pipeline in its
latest configuration. We will first show the recovery of known gravitational wave events
in the MDC data, as well as highlight any potential retraction level events. We will then
detail the results of the MDC injection campaign. Finally we present the stability and
performance of the pipeline in terms of its uptime and latency.

5.3.1 Gravitational wave events

There are 9 gravitational wave events in the duration of the MDC replay data which
were previously published as significant candidates in GWTC-3 [3]. These are described
throughout the remainder of this section and summarized in Table 5.1, comparing the
GstLAL pipeline’s recovery of the signal in O3 to that in the MDC. We recover all of
the 9 candidates at the 1 per hour FAR threshold for uploading to GraceDB. Of these,
three were found with high significance by GstLAL in the O3 online analysis. Two were
found with marginal or sub-threshold significance online but with high significance offline.
The remaining four candidates were found by GstLAL only in the offline analysis. The
recovery of all previously published candidates shows that the pipeline is performing
with at least the same capability as in O3.

Fig. 5.2 shows the count of observed candidates versus IFAR. The expected back-
ground counts are calculated using an estimated livetime which is equal to the wall clock
time from the first to the last candidate. Additionally, we apply a trials factor of 2 to the
FARs since we only include candidates from one of the checkerboarded analyses. Fig. 5.2
shows the 9 known gravitational wave events recovered in the MDC. The candidate
IFAR statistics agree with the expected counts from noise at lower IFAR and diverge
due to the presence of signals at higher IFAR.

GW200112_155838. This event was a BBH candidate observed in LIGO Livingston
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O3 Online MDC

Name Inst SNR FAR p(astro) Inst SNR FAR p(astro)
(yrs−1) (yrs−1)

GW200112_155838 L1 18.79 4.05× 10−4 > 0.99 L1 18.46 1.01× 10−7 > 0.99
GW200115_042309 H1L1 11.42 6.61× 10−4 > 0.99 H1L1 11.48 2.55× 10−4 > 0.99
GW200128_022011 – – > 1.2 – H1L1 9.98 1.44× 10−4 > 0.99
GW200129_065458 H1L1V1 26.61 2.11× 10−24 > 0.99 H1L1V1 26.30 1.78× 10−17 > 0.99
GW200202_154313 – – > 1.2 – H1L1 11.09 1.69× 10−2 > 0.99
GW200208_130117 – – – – H1L1 10.56 4.92× 10−5 > 0.99
GW200208_222617 – – – – H1L1 8.00 2.02× 103 0.48
GW200209_085452 – – – – H1L1 9.96 1.20 > 0.99
GW200210_092254 – – – – H1L1 9.28 3.64× 103 0.27

Table 5.1. Gravitational wave candidates from 5 Jan. 2020 15:59:42 to 14 Feb. 2020 15:59:42
UTC as recovered by the GstLAL pipeline during the O3 online analysis and during the MDC.
The instruments provided are those which participated in the event, that is, contributed a trigger
with SNR > 4.0. Here, the SNR is the recovered network SNR, FAR is the false alarm rate in
inverse years, and p(astro) is the probability of astrophysical origin. The two low-significance
candidates identified with FAR above the public alert threshold in the O3 online analysis are
indicated with FAR > 1.2 per year. We note that this FAR threshold is after a trials factor
corresponding to the number of operating pipelines has been applied. The last four candidates
in the table were not recovered by GstLAL in the O3 online analysis.

Figure 5.2. Count of observed candidates vs IFAR in days. The dashed line is an estimation
of the expected number of background counts, assuming a FAR threshold of 1× 104 per day.
The one, two, and three σ error regions are indicated by the shaded regions.
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data as a single detector candidate with chirp mass 35.37 M� in O3 and 33.37 M� in
the MDC. In the MDC, we recover the event with a comparable SNR as that observed
in O3, however in the MDC the FAR is significantly lower.

GW200115_042309 was the first confident NSBH detection found in O3. The
event was found as a coincident trigger in LIGO Hanford and LIGO Livingston data.
The SNR recovery, FAR estimation, and chirp mass estimation are all equivalent in the
MDC to what was observed in O3.

GW200129_065458 was a BBH and the loudest gravitational wave signal in the
duration of the MDC with O3 SNR = 26.61. The event was recovered well below the
public alert FAR threshold in both O3 and the MDC.

GW200128_022011 and GW200202_154313 are both BBH candidates found
by GstLAL in the O3 online analysis with low significance. Both candidates were found
with FAR above the O3 public alert threshold of 1.2 per year, where a trials factor
corresponding to the number of operating pipelines has been applied. Later, during the
offline analysis they were recovered as significant candidates and included in GWTC-3 [3].
In the MDC we recover both candidates with significantly lower FARs, both well below
the public alert threshold. Therefore, if similar events occur during O4, we can expect to
recover them as significant public alerts.

GW200208_130117 was not recovered by GstLAL in the O3 online analysis, how-
ever it was found in the offline analysis by GstLAL as a highly significant candidate [3].
As recovered in the MDC, this event is a BBH candidate with chirp mass 34.50 M� and
a much lower FAR than what was found in either the O3 online or offline analyses.

GW200208_222617 was only recovered by GstLAL as a sub-threshold candidate
in the O3 offline analysis, and its inclusion as a significant candidate in GWTC-3 was
due to its recovery by other CBC pipelines [3]. The GstLAL pipeline did not recover
this event in O3 online. In the MDC the event was recovered with low significance at
SNR = 8.00 and FAR = 2.02× 103 per year.

GW200209_085452 and GW200210_092254 were not recovered by GstLAL in
the O3 online analysis, however they were found in the offline analysis by GstLAL.
GW200209_085452 was recovered in the MDC as a significant candidate, although with
a FAR of 1.20 per year it is less significant than in the O3 offline analysis. This event
is a BBH candidate with chirp mass = 39.45 M� found in LIGO Hanford and LIGO
Livingston data. GW200210_092254 was found as a sub-threshold candidate in the
MDC with FAR = 3.64× 103 per year. If astrophysical, the event would be an NSBH
candidate with chirp mass = 7.89 M�. GW200210_092254 was considered as a highly
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Figure 5.3. Spectrogram of L1 h(t) data for ±1 second around the time of the retraction
level candidate recovered in the MDC. This candidate is expected to be terrestrial in origin
due to the clear presence of glitches in this data.

significant candidate in GWTC-3 due to its recovery by other pipelines, however the
GstLAL trigger for this candidate had a p(astro) below the threshold of 0.50 and on
it’s own would be considered marginal. We note that the candidate was recovered with
a higher FAR and a lower p(astro) in the MDC than in the O3 offline analysis. Still,
the recovery of these candidates in the MDC, even at sub-threshold significance which
is the case for GW200210_092254, demonstrates an improvement over the O3 online
sensitivity.

The improved performance of the GstLAL pipeline in the MDC as compared to the O3
online analysis can be attributed to a number of incremental improvements made to the
likelihood ratio ranking statistic and background estimation. [111] describes an improved
signal model and [5] introduces a new method for a time-dependent background wherein
contamination is reduced by removing signals counts from the background SNR − ξ2

histograms. Each of these changes have introduced a small improvement to the 〈V T 〉
which, when combined, leads to a noticeable increase in sensitivity and corresponding
number of detected events.

5.3.2 Retractions

In O3, there were 23 public gravitational wave candidates which were subsequently
determined to be terrestrial in origin and thus retracted. Of these, GstLAL contributed
to 15. In O4, we hope to significantly reduce the number of retractions produced by the
GstLAL pipeline. Four of the 23 retractions took place during the stretch of data covered
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by the MDC. These are: S200106au, S200106av, S200108v, and S200116ah [271–273].
GstLAL did not upload triggers for S200106au and S200106av during O3. In the

MDC, these events would have occurred at a time before the pipeline had collected
sufficient background to begin ranking candidates, and thus we did not upload triggers
for these events. The retractions S200108v and S200116ah were GstLAL-only candidates
in O3, both being found as single detector candidates in LIGO Livingston. Again, the
time corresponding to S200108v would have been early enough in the MDC cycle that the
pipeline was not ranking or uploading triggers yet, so we cannot make any comparison to
our performance in O3 for this retraction. Finally, we did not produce any trigger below
the 1 per hour FAR threshold for uploading to GraceDB corresponding to S200116ah
in the MDC, despite the analysis being fully burned in and operating in a stable state.
This means that a similar noise event in O4 may not lead to a spurious candidate and
subsequent retraction. However, there is insufficient data within the MDC to infer any
changes in performance in terms of the rate of retractions.

In addition to the retracted candidates uploaded by GstLAL in O3, for the purpose
of the MDC we define a “retraction level candidate” as any gravitational wave candidate
uploaded with a FAR less than one per year which is not in the list of previously published
candidates discussed earlier in this section. Over the duration of the MDC, we find one
such retraction level candidate. This was a single-detector candidate found in LIGO
Livingston with an SNR of 14.5 and a FAR of 1.67 per year which was low enough to be
counted as significant. The LIGO Livingston data around the event time shows the clear
presence of scattering glitches, as shown in Fig. 5.3. Further evidence of terrestrial origin
for this candidate is that no coincident triggers were recovered in LIGO Hanford or Virgo
despite both of these detectors operating normally at the time. Candidates recovered
in only a single detector are more susceptible to uncertainty since they lack the strong
signal consistency test of coincidence in multiple detectors. For this reason, there has
been a penalty applied to the ranking statistic of single detector candidates which down
weights their significance. In the O3 offline analysis and in the MDC we used a singles
penalty of 12 in log likelihood ratio, however in order to reduce the number of similar
retraction level events in O4, we plan to increase the singles penalty to 13. With this
penalty applied, the retraction event in the MDC would be down weighted and expected
to be recovered with a FAR greater than two per year.
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Figure 5.4. Time-series of injected decisive SNR for injections with component masses and
spins within the O4 template bank. Dark blue circles indicate injections that were recovered
below a 2 per day FAR threshold. Orange crosses and light blue markers indicate injections
not recovered below this FAR threshold, where orange crosses are injections with decisive SNR
> 8.0. Times on the horizontal axis are GPS times shifted to the original O3 epoch.

5.3.3 Recovered injections

There were 5×104 simulated signals injected into the five week duration of the MDC strain
data. Of these, many had component masses and spins outside the region of parameter
space covered by our template bank. In addition to the injection parameters, the expected
recovery of each injection is dependent on the set of interferometers producing science
quality data at the time of the injection. During times when no interferometers are
operating we of course do not expect to recover any injections. We define the decisive
SNR as the SNR in the second most sensitive interferometer during times when multiple
interferometers were observing, and the only available SNR otherwise. The decisive SNR
is a more informative measure of the loudness of an injection than the network SNR since
it wraps in information about the set of operating interferometers. While all injections
have network SNR ≥ 4.0, we find that many injections have decisive SNR < 4.0.

Fig. 5.4 shows the time-series of decisive SNR for all injections throughout the MDC.
For the purpose of this paper, we focus on injections whose parameters fall inside our
bank, that is injections with component masses between 1.0 M� and 200 M�, with total
masses m1 + m2 < 400.0 M� and mass ratios q = m1/m2 < 20. For objects with
mass < 3.0 M� the template bank restricts spins perpendicular to the orbital plane
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|si,z| < 0.05 and for objects with mass > 3.0 M� allows |si,z| < 0.99. We use the effective
precession spin, χp, defined in [245] as:

χp = max(a1 · s1, a2 · s2)
a1 ·m2

1
(5.5)

to quantify the in-plane spin of injections. Here, a1 = 2 + 3/2q, a2 = 2 + 3q/2,
si =

√
s2
i,x + s2

i,y and the mass ratio q assumes m1 ≥ m2. Since the template bank does
not include any in-plane spins, we focus on injections with χp < 1 × 10−3. However,
we find that all injections with one component mass < 3.0 M� have spins outside the
range of the bank, therefore we relax the spin conditions on these components. The mass
and spin restrictions that we use are summarized in Table 5.2. Finally, to account for
the fact that not all interferometers were providing science quality data at all times, we
highlight injections with an estimated decisive SNR ≥ 8.0. These cuts leave a total of
1457 injections during the five week MDC. Of these, there are 597 BBH, 482 BNS, and
378 NSBH injections.

The injected SNRs are not known in advance of the MDC, but we estimate them using
gw-lts. We calculate the injected strain time series using the injection end time, sky
position, and other source intrinsic parameters assuming an IMRPhenomPv2_NRTidalv2
waveform [274]. We use a running estimate of the detector PSDs and estimate the SNR
with a lower (upper) frequency cut off of 10.0 (1600.0) Hz. Fig. 5.5 shows the recovered
and estimated injected SNR for each detector. If the template bank did not have a
sufficient minimal match, we may expect to see systematically lower recovered SNRs
than the expected values. However, we find that the recovered SNR generally aligns with
the expected SNR. We note that the figure shows a wider spread in the recovered SNRs
for LIGO Hanford than LIGO Livingston. This is likely due to the greater sensitivity in
LIGO Livingston such that injections with low recovered SNRs in LIGO Livingston may
be expected to have had even lower SNRs in LIGO Hanford and thus not be recovered
at the FAR threshold for inclusion in the figure.

An injection is considered “found” if it is recovered by the pipeline with a FAR passing
some pre-determined threshold, and “missed” otherwise. We will quote most results in
the following sections with respect to a 2 per day FAR threshold. At the time of writing,
this is the threshold expected to be used in O4 for sending public alerts [275]. However,
the FARs of CBC signals will be subject to a trials factor corresponding to the number of
operating pipelines, so the effective alert threshold will be lower. We define the injection
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Figure 5.5. Recovered and estimated injected SNR in each interferometer: LIGO Hanford
(H), LIGO Livingston (L), and Virgo (V). The black dashed line shows the diagonal and the
grey dashed lines show injected and recovered SNRs = 4.0, the threshold which defines a trigger.

m1 m2 M q |s1,z| |s2,z| |χp|
1, 3 1, 3 < 6 < 0.33 – – –

3, 200 1, 3 < 203 < 20 – – –
3, 200 3, 200 < 400 < 20 < 0.99 < 0.99 < 0.001

Table 5.2. Restrictions on the masses (m1, m2, M, and q), spins perpendicular to the orbital
plane (s1,z and s2,z), and spins parallel to the orbital plane (χp) of injections according to
the O4 template bank boundaries. The “–” in the first two rows indicates that we make no
restrictions on the spins for injections with mi < 3.0M�. This relaxation is done because the
template bank restricts NS spins |si,z| < 0.05, which would effectively remove most BNS and
NSBH injections from consideration.

recovery efficiency as,

found injections
(found injections + missed injections) . (5.6)

At the 2 per day FAR threshold the efficiency was = 0.84 for all injections in the
template bank. The recovered injection efficiencies for each source class are shown in
Table 5.3 at four typical FAR thresholds. As is expected, the efficiencies are better at
more conservative FAR thresholds. The analysis has the highest efficiency for injections
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FAR BNS NSBH BBH ALL
2.78× 10−4 Hz 0.95 0.77 0.87 0.87

2.31× 10−5 Hz 0.95 0.71 0.84 0.84
3.85× 10−7 Hz 0.89 0.65 0.77 0.78

3.16× 10−8 Hz 0.86 0.62 0.71 0.74

Table 5.3. Injection efficiencies as defined in Eq. 5.6 computed using four FAR thresholds
to count “found” injections: one per hour (the GraceDB upload threshold), two per day (the
public alert threshold), one per month, and two per year. Source categories are defined in
Table 5.2 and “ALL” combines injections from the three source categories.

consistent with BNS sources, and the lowest efficiency for NSBH sources. The injections in
the MDC included precession effects while the O4 GstLAL template bank was constructed
assuming only spins aligned with the orbital angular momentum. Therefore, the relatively
lower NSBH recovery efficiency is expected as the precession will have a more significant
effect on the gravitational waveform for binaries with more extreme mass ratios [276]. In
future work, we may seek to quantify the efficacy of the template bank in the precessing
parameter space.

We would expect the pipeline to recover all injections above some decisive SNR
or network SNR threshold. However, Fig. 5.4 shows that there are several very high
SNR missed injections throughout the duration of the MDC. We find that most of the
missed injections with decisive SNR > 20.0 are high mass BBH injections and a few
are high mass ratio NSBH injections. This results in a decrease of the BBH recovery
efficiency as the injections increase in SNR, which is contradictory to our expectations.
These injections are missed due to falling outside of the SNR-ξ2 signal region used in the
likelihood ratio calculation. The signal region is an analytic model which depends on the
allowed mismatch1 between recovered SNR time-series and the template waveform as part
of the autocorrelation ξ2 test. If the allowed mismatch range is too strict, it will result in
a narrow signal model which can exclude real signals. This effect is exaggerated at high
SNR where we expect larger mismatches due to the discreteness of the template bank
as well as waveform systematics. In the MDC, we used a mismatch range of 0.1− 10%.
The optimal mismatch range in the signal model is an open area of study. See [111] for a
more detailed discussion.

1The “mismatch” can also mean the fractional loss in SNR due to differences between the template
parameters and the true waveform. However, here we refer to the mismatch as defined in [111] which is
an unnormalized quantity, therefore retaining a dependence on the SNR.
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5.3.3.1 Injection parameter recovery

In this section we will quantify the accuracy of point estimates of the source intrinsic
parameters made by the GstLAL pipeline. These estimates simply come from the
template parameters of the trigger which rang up the maximum SNR across background
bins. An understanding of the parameter accuracy obtained by search pipelines can
be useful to full parameter estimation efforts. For example, the Bayesian inference
library Bilby [226,277] relies on the choice of prior probability distributions for intrinsic
parameters. When parameters are well determined by the searches, Bilby can use narrow
distributions around those values, otherwise more broad prior distributions must be used.
We present parameter accuracy results for the chirp massMc, effective inspiral spin χeff ,
mass ratio q, and the coalescence end time, tend. The χeff is a mass-weighted combination
of the component spins parallel to the orbital angular momentum L̂, defined as:

χeff = (m1 ~s1 +m2 ~s2) · L̂
m1 +m2

, (5.7)

where we take L̂ to be in the z-direction. Both the injected and recovered masses quoted
in this paper are in the detector frame. The error on a recovered parameter, λ is defined
as:

error = recovered λ− injected λ

injected λ
, (5.8)

for all parameters except for the end time, where we simply take the error as the difference
between the recovered and injected end times in milliseconds.

It is well known that the chirp mass,Mc, is one of the best measured parameters in
gravitational wave detections, however the recovered accuracy is highly dependent upon
the mass of the system. Injections with smallMc < 10− 20M� are recovered with very
accurateMc, but above this level, the accuracy starts to fall off, as shown in Fig. 5.6.
For BNS injections, we find a meanMc error 2.06× 10−4 with a standard deviation of
8.33 × 10−4. Similarly, the Mc in the NSBH region is recovered very well with mean
−2.14×10−4 and standard deviation 6.26×10−3. The BBH region has a higherMc error
over all, and additionally a much larger spread in the error with mean 1.54× 10−1 and
standard deviation 4.53× 10−1. Histograms of the recoveredMc error for each source
class are shown in Fig. 5.7. The figure shows a skew in the recoveredMc error for BBH
injections toward more positive values, i.e. we are more likely to overestimate theMc in
this region than to underestimate it. This skew is likely due to differences in the injected
waveforms compared to the waveforms used to generate the template bank, however we
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Figure 5.6. InjectedMc for injections found with FAR < 2.31× 10−5 Hz is shown on the
horizontal axis. The vertical axis shows the recoveredMc. The color bar is FAR.

leave a more in depth investigation of this issue to future work.
Fig. 5.8 and Fig. 5.9 are scatter plots of the injected and recovered χeff and q

respectively. These plots show that there is very little correlation between the injected
and recovered values of these parameters. The mean and standard deviation on the
recovered error for these parameters are given in Table 5.4.

A histogram of the difference between the injected and recovered injection end times is
given in Fig. 5.10. Table 5.4 shows the mean tend difference across all source classes and
detectors is 6.23 milliseconds with a standard deviation of 30.22 milliseconds. The 90th

percentile on |tend| is 25.6 milliseconds and we recover every injection with a recovered
tend less than a second away from the injected value. Fig. 5.10 shows that for BNS and
BBH injections, most of the recovered end times fall within ±50 milliseconds of the true
injected end time. For BNS injections, the mean tend difference is −0.90 milliseconds
with a standard deviation 18.0. And for BBH injections, the mean tend difference is 6.03
milliseconds with a standard deviation 11.3. However, for NSBH templates, there is a
wider distribution, skewing towards higher positive values of the end time difference,
with mean 18.7 milliseconds and standard deviation 59.3. This is expected to be due to
waveform systematics.
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Figure 5.7. RecoveredMc error for injections found with FAR < 2.31× 10−5 Hz. The top
panel shows injections in the BNS range of the parameter space, the middle panel shows NSBH
detections, and the bottom panel shows BBH injections. The σ value in each panel indicates
the standard deviation on the recoveredMc error.

Figure 5.8. Injected χeff for injections found with FAR < 2.31× 10−5 Hz is shown on the
horizontal axis. The vertical axis shows the recovered χeff . The color bar is FAR.
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Figure 5.9. Injected mass ratio, q = m1/m2, for injections found with FAR < 2.31× 10−5 Hz
is shown on the horizontal axis. The vertical axis shows the recovered mass ratio. The color
bar is FAR.

Figure 5.10. Recovered end time accuracy in milliseconds of injections recovered with FAR
< 2.31 × 10−5 Hz. Results are shown for each interferometer: LIGO Hanford (red), LIGO
Livingston (blue), and Virgo (purple). BNS injections are shown in the upper panel, NSBH in
the center, and BBH in the lower panel.
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X̄ σ P50 P75 P90

Mc 0.15 0.45 0.007 0.33 0.73
χeff 5.77 252 1.34 3.71 10.8
q 1.39 2.86 0.45 1.67 4.97
tend 6.23 30.22 3.8 9.78 25.6

Table 5.4. Mean, X̄, standard deviation, σ, and the fiftieth, seventy-fifth, and ninetieth
percentiles on the recovered parameter error. The error is defined as in Eqn. 5.8 for all
parameters except for the end time, where we simply take the difference in milliseconds between
the recovered and injected values as the error. Results are computed only including injections
which were recovered below a FAR threshold of two per day. The percentiles are computed for
the absolute value of each distribution.

5.3.3.2 Search sensitivity

Figure 5.11. 〈V T 〉 in each source class at the end of the MDC at four different FAR
thresholds: 2 per year, 1 per month, 2 per day, and 1 per hour. BNS 〈V T 〉 is shown in light
blue, NSBH 〈V T 〉 in dark blue, and BBH 〈V T 〉 in green.

The comoving volume is defined as [171,278]:

Vc = 4πDH

∫ z

0
dz (1 + z)D2

A

E(z) (5.9)

with z as the redshift. DH is the Hubble distance, DA is angular distance, and E(z)
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Figure 5.12. The plot shows the cumulative 〈V T 〉 time-series over the duration of the
MDC for each source class: BNS in light blue (top panel), NSBH in dark blue (middle panel),
and BBH in green (bottom panel). The 〈V T 〉 is calculated using three different thresholds
for counting “found” injections: FAR < 2.31× 10−5 Hz (dot markers), network SNR > 10.0
(dashed line), and decisive SNR > 8.0 (dotted line).

is the Hubble parameter. Multiplying this quantity by an observation time gives the
surveyed spacetime-volume. We compute the total injected volume-time, 〈V T 〉inj, using
the max redshift to which injections were distributed and the time range over which
injections were placed. For the MDC this time range is 3.456× 106 seconds. With this
quantity we can then estimate the online 〈V T 〉 in the MDC as:

〈V T 〉 = Nf × 〈V T 〉inj. (5.10)

Here, Nf is the fraction of “found” injections out of the total number of injections in
the data. We independently compute the 〈V T 〉 for each source population. The max
redshifts of the injection distributions are z = 0.15, 0.25, and 1.9 for BNS, NSBH and
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〈V T 〉 Gpc3yrs BNS NSBH BBH
〈V T 〉inj 1.08× 10−1 4.34× 10−1 29.1
〈V T 〉 3.49× 10−4 8.08× 10−4 1.23× 10−1

Table 5.5. Values of the 〈V T 〉 in cubic gigaparsec-years measured at the end of the MDC
using a FAR threshold of 2.31× 10−5 Hz compared to the injected 〈V T 〉 in each source class.

BBH respectively. Table 5.5 gives the injected 〈V T 〉 for each source class.
Fig. 5.11 shows the final 〈V T 〉 in the MDC for each source class using four different

FAR thresholds to determine whether injections count as found. In Fig. 5.12, we show
the cumulative 〈V T 〉 over the duration of the MDC using different thresholds to count
found injections. For each source class, we find the highest 〈V T 〉 by using a threshold of
network SNR = 10.0 and the lowest 〈V T 〉 with a threshold of decisive SNR = 8.0.

5.3.3.3 Sky localization and source classification

Figure 5.13. Cumulative distribution function of skymap searched area (deg2) for injections
recovered with FAR less than two per day.

For efficient electromagnetic follow-up, it is vital that accurate sky localizations and
source classifications are provided to the public in low latency. The sky localization
information informs where electromagnetic observers should search on the sky to find
coincident events. The accuracy and precision of sky localization information can have a

110



Figure 5.14. Cumulative distribution function of skymap searched probability for injections
recovered with FAR less than two per day.

direct impact on the time it takes to identify a counterpart, especially for narrow field of
view telescopes. Sky localizations are produced in low latency for all events on GraceDB
using Bayestar [157,279]. The sky localization calculation depends on the SNR time-series
around the coalescence time of the event. These are uploaded to GraceDB by the search
pipelines as part of the event metadata. Since the potential for bright electromagnetic
counterparts is highly dependent on the nature of the binary source, it is also important
to provide accurate source classification so that observers may make informed decisions
about when to follow up gravitational wave events. The probability that a gravitational
wave candidate is astrophysical in origin is the p(astro), computed by GstLAL using the
multi-component FGMC formalism [205,206,269]. We use a population model with a
Salpeter distribution for the source component masses m1, m2 given by [280]:

p(m1,m2) ∝ m−2.35
1

m1 −mmin
, (5.11)

withmmin = 0.8M� and a uniform distribution in component spins, s1,z, s2,z. The p(astro)
is further divided into the probability that a gravitational wave candidate originates from
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P50 P75 P90

ALL 271 1080 3910
1 IFO 3150 10, 400 18, 400
2 IFO 301 893 2470

3 IFO 31.9 140 357

Table 5.6. Fiftieth, seventy-fifth, and ninetieth percentiles on the searched area of injections
of each coincidence type recovered with FAR less than two per day. Values are given in deg2.

a BNS, NSBH, or BBH as:

p(astro) = 1− p(Terrestrial)

= p(BNS) + p(NSBH) + p(BBH).
(5.12)

For this purpose, we use a cutoff of 3.0M� as the maximum neutron star mass to
define the BNS, NSBH, and BBH regions. In this section, we will briefly summarize the
accuracy of the Bayestar skymaps as well as the FGMC p(astro) for injections recovered
by GstLAL during the MDC. Detailed information about recent developments to the
FGMC p(astro) calculation and a comparison between offline and online p(astro) results
for GstLAL events is given in [269].

To quantify the sky localization performance we will consider the skymap searched
area and searched probability. The searched area is given in square degrees and represents
the area within the credible region containing the injection’s true source location. This
gives an indication of the accuracy of the skymaps. The searched area can be interpreted
as the sky area an electromagnetic observer would have to tile before reaching the true
injection sky location assuming they start at the highest probability sky position given
by the skymap. Therefore, a smaller searched area is desirable as it means an observer
could find the injection with minimal telescope pointings. The searched probability is
similarly the probability within the credible region containing the injection’s true sky
location. We aim to find 90% of injections within the 90% credible region of the true
source location. If the searched probability P-P plot lies off the diagonal, we can make
the interpretation that there is an inconsistency in the sky localizations, i.e. they may
be accurate but lack precision, or vice versa.

Fig. 5.13 shows the cumulative distribution function of the searched area for all
injections recovered by GstLAL with FAR less than two per day. We find that the 90th

percentile of searched area is 3910 deg2. This is about 19% of one hemisphere of the sky.
Since we know that injections recovered in coincidence by two or three interferometers
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will have more accurate sky localizations, we give statistics on the searched areas by
coincidence type in Table 5.6. Fig. 5.14 shows the cumulative distribution function of the
searched probabilities. We find that the fiftieth, seventy-fifth, and ninetieth percentiles on
the searched probability are 0.53 , 0.79 , and 0.93 respectively. The CDF lies very near
to the diagonal, indicating that Bayestar is producing well-calibrated sky localizations.

Figure 5.15. Sankey diagram showing p(astro) classification of events uploaded to GraceDB
during the MDC with FAR less than two per day. Events with an end time within ±1 second of
an injection are classified as either BNS, NSBH, or BBH using a neutron star mass boundary of
3.0M�. Events that do not correspond in time with an injection are all classified as terrestrial.

We will briefly discuss the performance of the p(astro) in the MDC using the Sankey
diagram in Fig. 5.15. The diagram is read from left to right. The width of each source
band on the left corresponds to Nsource, the number of recovered events in each source
class: BNS, NSBH, BBH, and terrestrial. The terrestrial events are any candidates
uploaded to GraceDB which do not coincide in time with an injection. The width of each
band on the right is the sum of recovered p(source). This diagram gives an indication of
the relative misclassification between sources.

For BNS injections, we find that p(BNS) accounts for 90.3% of the recovered probabil-
ities, while p(NSBH) accounts for 9.7%. The recovered BBH and terrestrial probabilities
of BNS injections are negligible. This indicates that BNS signals were most commonly
mistaken as NSBH. For NSBH injections, we find p(NSBH) is 64.1% of the recovered
p(astro), p(BBH) makes up 33.8%, and p(BNS) makes up just 2.10%. There is a sig-
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nificant amount of misclassification between BNS and NSBH signals. However, the
misclassification is asymmetrical with very few NSBH injections being assigned high
p(BNS) whereas many more BNS injections are assigned a high p(NSBH). The large
proportion of NSBH signals assigned high p(BBH) is even more concerning as these
represent potentially electromagnetically bright signals which might not be followed up by
astronomers due to the apparent high probability of originating from a BBH merger. This
misclassification is an ongoing area of study and corrections to the p(astro) calculation
which mitigate this effect are discussed in [269]. The p(astro) calculation performs very
well for BBH classification, with 100% recovered p(BBH).

5.3.3.4 Latency performance

Figure 5.16. Upload latency, defined as the difference between the GPS time of upload to
GraceDB and the event coalescence time, in seconds.

Fig. 5.16 shows a histogram of the upload latency for all recovered injections on
GraceDB. The upload latency is defined as the difference between the time the event
appears on GraceDB and the event coalescence time. The distribution is bimodal as
a result of the built-in 4 second geometric wait time between uploads, discussed in
Sec. 5.2.1. The first peak in the upload latency distribution is at 8− 9 seconds and the
second peak is at 13− 14 seconds. This shows that the GstLAL pipeline is able to keep
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up with filtering data in real time and regularly produce gravitational wave candidates
within O(10) seconds of the coalescence time.

Figure 5.17. Cumulative distribution of event upload latencies. The orange (blue) curve
shows the distribution of latencies for the first event uploaded with FAR higher (lower) than
the public alert threshold. The dashed lines show the location of the 90th percentile for each
distribution.

The 4 second wait time in the event aggregation is implemented in order to reduce
the total number of uploads by waiting a long enough time to collect many triggers across
background bins before making an upload. Even though there is no built-in wait time
for the first event upload, subsequent uploads are necessarily delayed by this method.
If an event with FAR below the alert threshold comes after the first upload it can be
delayed by at least 4 seconds. Fig. 5.17 shows the cumulative distribution of upload
latency for the first events above and below the alert threshold for each superevent in the
MDC. We find that the low FAR event uploads are significantly delayed by the event
aggregation process. After identifying this issue in the MDC we plan to make changes to
the aggregation scheme in order to reduce the latency of alert quality uploads before the
start of O4.
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5.4 Conclusion
GstLAL is a matched-filtering based gravitational wave search pipeline, which is operated
in a low-latency configuration in order to identify signals within seconds of their arrival.
We have introduced the gw-lts software as a useful auxiliary tool for characterizing the
performance of such an analysis in real time. We have presented the performance of
the GstLAL pipeline on a mock data challenge consisting of 40 days HLV data from O3
along with an injection campaign of simulated BNS, NSBH, and BBH signals.

Within the MDC data we recover 9 previously published gravitational wave candidates
at the one per hour FAR threshold. As only five of these were identified by the GstLAL
pipeline in low-latency in O3, we have demonstrated an improvement in the pipeline’s
signal recovery. We attribute this improvement to several incremental updates to the
likelihood ratio computation [111] and the new method of removing signals from the
background as introduced in [5]. During the MDC, we find only one candidate which,
if uploaded during O4, would likely be retracted. The candidate is identified in only
a single detector and we expect that increasing the penalty applied to single detector
candidates in the likelihood ratio would reduce our recovery of such spurious signals in
the future. We have detailed the results of the injection campaign including efficiency of
signal recovery across the parameter space, accuracy of estimated parameters, search
sensitivity, sky localization and source classification accuracy, and typical latencies.

The configuration and performance of the GstLAL pipeline as described in Sec. 5.3
is a close approximation to what will be used in the fourth observing run of the LVK
Collaboration. However, since the conclusion of the MDC used in this paper, work has
been ongoing and several areas for possible improvements have been identified. These
changes in configuration and the corresponding improvements in performance are given
in Appendix 5.4.
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Appendix A: GstLAL performance with updated O4 con-
figuration
In this section, we demonstrate the performance of the GstLAL pipeline using an
updated configuration. The improved performance in this updated run are attributed to
the following areas of development, which proceeded after the conclusion of the MDC
presented in Sec. 5.3.

The analytic SNR-ξ2 signal model used in the likelihood ratio ranking statistic has
now been tuned to use a more optimal allowed mismatch region, which is wider for the
high SNR region of parameter space. This change is expected to improve the recovery
efficiency for very loud signals.

The presence of non-Gaussian noise transients, known as glitches, in the strain data
has long been a problem for gravitational wave searches. integrated Data Quality (iDQ)
is a machine-learning based algorithm used to assign probabilities of the presence of a
glitch in a segment of strain data [88]. In the O3 offline analysis, iDQ was incorporated
into the GstLAL ranking statistic as a means of reducing the significance of candidates
found during particularly glitchy stretches of data. Although it is no longer used in the
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ranking statistic, it is now possible to use iDQ state information as a gate on the strain
data, so that segments of data with a high glitch probability will be excluded from the
filtering. This should mitigate the negative effects of non-Gaussian data and is expected
to result in fewer retraction level candidates and an improved 〈V T 〉. Although the iDQ
gate was used in the MDC analysis presented here, the feature is still under development
and is not planned for use in the O4 production configuration.

As mentioned in Sec. 5.3.3.3, the p(astro) performance in the BNS and NSBH region
of the parameter space was sub-optimal in the MDC, with a significant amount of
misclassification between the two source types, as well as NSBH misclassification as
BBH. It is imperative that sources including a neutron star are not falsely classified
as BBHs since this may discourage astronomers from following up these potentially
electromagnetically bright signals. Since the conclusion of the MDC analysis presented
in this paper, work has been ongoing toward improving the p(astro) source classification.
This effort is discussed in more detail in [269].

Finally, as discussed in Sec. 5.3.3.4, we have made improvements to the event aggre-
gation method to ensure that events with FAR below the public alert threshold will be
uploaded with as little latency as possible. By adjusting the geometric cadence factor
in the aggregator and removing the wait time for these low FAR events we expect a
reduction in the latency of these uploads by up to several seconds.

We re-analyze the final two weeks of the MDC data using the updated pipeline
configuration in order to demonstrate the effect on the pipeline performance. The “initial
run” presented in Sec. 5.3 was analyzed from 03-15-2023 to 03-28-2023 and the “updated
run” was analyzed from 04-24-2023 to 05-07-2023. These runs correspond to identical
stretches of O3 replay data with the same injections present in each.

Fig. 5.18 shows the decisive SNR time-series for all injections within the two week
span. There are several high SNR injections missed by the initial analysis (upper panel)
but found in the updated analysis (lower panel). This indicates an improvement as a
result of the widened mismatch region of the SNR-ξ2 signal model. Table 5.7 compares
the injection efficiencies between the two runs. For the BNS and NSBH regions the
efficiency is comparable, while there is a 6% improvement in the BBH efficiency from
0.84 in the initial run to 0.90 in the updated run.

Fig. 5.19 and Fig. 5.20 show the improvements in event upload latency between the
two runs. The histogram in Fig. 5.19 shows that upload latencies for the updated run
are shifted slightly lower overall with respect to the initial run, while the lower edge
remains the same. This is expected as the improvements focused on lowering the latency
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Figure 5.18. Time-series of injected decisive SNR for injections with component masses and
spins within the O4 template bank in the initial run, 03-15-2023 to 03-28-2023 (upper panel)
and updated run 04-24-2023 to 05-07-2023 (lower panel). Dark blue circles indicate injections
that were recovered below a 2 per day FAR threshold. Orange crosses and light blue points
indicate injections not recovered below this FAR threshold, where orange crosses are injections
with decisive SNR > 8.0. Times on the horizontal axis are GPS times shifted to the original
O3 epoch.

of subsequent uploads by reducing the geometric cadence factor from 4 seconds to 2
seconds. Fig. 5.20 shows a similar improvement in upload latency for events below the
public alert threshold. We find a 2.54 second reduction in the 90th percentile on upload
latency for events with FAR below the public alert threshold, from 14.58 seconds in the
initial run to 12.04 seconds in the updated run. This indicates a significant improvement
in the latency of alert-quality candidates.

Fig. 5.21 is a Sankey diagram showing the p(astro) classification performance in
the updated run. The initial results showed a significant amount of misclassification
between BNS and NSBH as well as between NSBH and BBH injections. Here we find
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BNS NSBH BBH ALL
initial run 0.95 0.71 0.84 0.84
updated run 0.93 0.72 0.90 0.86

Table 5.7. Injection efficiencies as defined in Eq. 5.6 computed using a FAR threshold of
2.31 × 10−5 Hz to count “found” injections. The “initial run” is the same as presented in
Sec. 5.3 and the “updated run” uses the configuration improvements described in this section.
Source categories are defined in Table 5.2 and “ALL” combines injections from the three source
categories.

Figure 5.19. Histogram of event upload latencies for the initial run (orange) and updated
run (blue).

20.2% of recovered BNS being classified as NSBH and only 6.83% of recovered NSBH
being classified as BBH. While the updated run shows more confusion between BNS
and NSBH, we see that the confusion between NSBH and BBH is significantly reduced.
This is considered as an overall improvement, since the classification more accurately
indicates whether a source may be electromagnetically bright, which is more likely the
case for BNS and NSBH mergers as opposed to BBH. The reason for this improvement
is as follows.

Throughout the p(astro) calculation, misclassification of sources are assumed to be
the result of Gaussian noise fluctuations causing a gravitational wave signal to match
better with templates that are further away in parameter space than the one that would
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Figure 5.20. Cumulative distribution of event upload latencies for the initial run (solid lines)
and updated run (dashed lines). The orange (blue) curves show the distribution of latencies
for the first event uploaded with FAR higher (lower) than the public alert threshold. The 90th
percentile on the upload latency of high FAR candidates in the initial (updated) run is 10.30
(9.86) seconds. The 90th percentile on the upload latency of low FAR candidates in the initial
(updated) run is 14.58 (12.04) seconds.

recover it in the absence of noise [208,269]. In the initial run, this probability of template
migration was estimated while making several simplistic assumptions some of which
were later found to be inaccurate. In particular, the geometry of the template bank
was modeled as a 4-dimensional unit sphere and the observed SNR assumed to be a
single Gaussian distributed real number [208]. In reality however, the geometry of the
bank is sufficiently more complex than that of a spherical surface. Furthermore, due
to the two-phase matched filtering process, the observed SNR is actually a complex
number whose real and imaginary parts can be thought of as independent Gaussians.
Marginalizing over the unknown signal phase leads to the absolute value of the SNR
having a distribution that is broader than the Gaussian of [208].

Both of these ambiguities can cause an under-estimation of misclassification by the
model of ref. [208], leading to the p(astro) calculation confidently classifying, e.g. an
NSBH as a BBH even at low SNR. A detailed re-modeling of the misclassification with
realistic noise distributions and accurate representations of template bank geometry is
beyond the scope of this paper and is part of an ongoing investigation.
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Hence, to avoid strongly misclassifying potential electromagnetically bright sources,
we instead construct a pessimistic model of noise induced template migration by assuming
that the noise degrees of freedom are entirely contained in the signal manifold [269].
Implementing this model in the updated run leads to a significant improvement in the
classification of simulated sources that have the potential to be electromagnetically
bright. Further improvements in classification are expected to result upon changing the
population model in Eq. (5.11) with the true distribution of source parameters [269].

Figure 5.21. Sankey diagram showing p(astro) classification of events uploaded to GraceDB
during the updated run from 04-24-2023 to 05-07-2023. Events with an end time within ±1
second of an injection are classified as either BNS, NSBH, or BBH using a neutron star mass
boundary of 3.0M�. Events that do not correspond in time with an injection are all classified
as terrestrial.
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Chapter 6 |
The fourth observing run

6.1 Introduction
The first three observing runs of the Advanced LIGO and Virgo detectors saw the
successful beginning of the era of gravitational wave astronomy. This period included
the first detections of gravitational waves from a merging binary black hole (BBH) [12],
binary neutron star (BNS) [66], and neutron star–black hole binary (NSBH) [115]. As
the detectors continue to undergo upgrades, they reach closer to the design sensitivity
and the rate of gravitational wave detection is increased substantially. Therefore, with
the onset of the fourth observing run we enter a new era of gravitational wave astronomy
where we begin to uncover populations of GW sources and study their bulk properties.
While there is still much to learn by studying gravitational waves from individual events,
we can gain even more insight by observing diverse populations of signals from many
different sources. This type of population study will continue beyond O4 into future
observing runs and eventually culminate with the operation of next generation detectors
such as the Einstein Telescope [75] and Cosmic Explorer [76] which are expected to be
sensitive to every merging binary in the observable universe.

The first part of LIGO’s fourth observing run (O4a) took place from 24 May 2023
15:00:00 UTC to 16 January 2024 15:00:00 UTC [286]. These eight months of observation
saw the detection of 81 new highly significant gravitational wave candidates, each
consistent with mergers of neutron star–black hole binaries and binary black holes. These
candidates were disseminated to the public via automated GCN notices with typical
latencies of 25− 30 seconds, measured with respect to the GW merger time. In addition,
O4a included over 1500 low significance candidates which were communicated to the
public in low-latency to enable broad sub-threshold EM follow up campaigns. We do not
identify any significant EM counterparts of the GW candidates in O4a.
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This run followed a period of about three years of detector commissioning since
the end of the third observing run in March 2020. This commissioning break included
several critical upgrades to the LIGO Hanford and Livingston detectors resulting in
a significantly improved sensitivity. This is discussed in Sec. 6.2. During O4a, the
Virgo detector was undergoing continued commissioning and did not participate in the
observing run, however it is planned to join the run in the second part of the fourth
observing run (O4b) [286]. The KAGRA detector joined O4 for a short period in the
beginning of the run, however since its sensitivity only reached a BNS inspiral range of
∼ 1 Mpc, the data was not analyzed by the participating search pipelines [59, 60,286].

In addition to detector upgrades, the break between O3 and O4 allowed for continued
development of the search pipelines and other analyses which produce metadata associated
with GW candidates in low-latency. Particularly, the developments of the GstLAL search
pipeline towards O4a, which was a major portion of my dissertation work, is discussed
in Chapter 5 [5,107,111,113]. While GstLAL has allowed for candidates identified in only
a single detector since O2 [104], several of the other modeled search pipelines expanded
functionality to allow for single detector candidates for the first time in O4. This
development was crucial for O4a, since with only the two LIGO detectors in operation
the coincident duty cycle was naturally less than in previous observing runs when Virgo
also participated.

Methods for early warning detection of gravitational waves from BNS systems have
been under development for many years [92, 287–289]. Several of the modeled search
pipelines, including GstLAL, operated an early warning configuration for the first time
in O4a. These analyses aim to enable rapid EM follow-up campaigns towards multi-
messenger detection of gravitational waves and short GRBs. The prospects for early
warning detection and the localization of such candidates on the sky depends heavily
on the detector network in operation: the number of detectors participating and their
sensitivities as well as the joint duty cycle. Given these factors, the number of early
warning detections expected in O4 may be . 1 per year [290, 291] and indeed these
searches did not produce any significant detections in O4a. However the development
of this infrastructure is still crucial to enable multi-messenger astronomy and operating
these searches will ensure that we are prepared for the next BNS merger event.

In this chapter I will focus on results from the all sky searches for gravitational waves
in O4a, i.e. searches for gravitational waves consistent with CBC signals from merging
neutron stars and black holes in the range of ∼ 1− 200M�. As a member of the LVK
Collaboration, much of my research time was dedicated to the operation of the GstLAL
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Figure 6.1. Estimated median BNS inspiral range of LIGO Hanford (red), LIGO Livingston
(blue), and KAGRA over one hour time segments in O4a. The KAGRA data is shown in the
inset axis as it was only observing for the first ∼ 20 days of the run and its sensitivity is much
less than that of the LIGO detectors. O4a data is taken from the public GstLAL inspiral
range estimated by the GW Interferometer Status (GWIStat) [292]. The markers on the right
axis indicates median values for each of the previous observing runs, O1 – O3b, as measured
by the SenseMonitor [293] BNS inspiral range. Although the GstLAL inspiral range and the
SenseMonitor range differ in their technical implementations, they are expected to agree to
within a few percent.

low-latency search pipeline and my work directly contributed to the many gravitational
wave candidates identified to date. In Sec. 6.3 I will give an overview of the public results
from O4a, focusing on the performance of the GstLAL search pipeline in Sec. 6.4. I will
conclude in Sec. 6.5 with an outlook towards the second part of the fourth observing run,
O4b.

6.2 Detectors
In O4a, both the LIGO Hanford and Livingston detectors were observing, while the
Virgo detector was commissioning [286]. KAGRA joined the run for a period of about 3
weeks, followed by a period of extended commissioning. There were several key upgrades
made to the LIGO detectors between O3 and O4 which led to significantly improved
sensitivity and data quality. The sensitivity throughout O4a, as measured by the BNS
inspiral range is shown in Fig. 6.1 for LIGO Hanford and Livingston [59, 60, 171, 172].
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The median inspiral range over the duration of the run was ∼ 145 Mpc and ∼ 155 Mpc
for LIGO Hanford and Livingston, respectively. Further, the increasing trend in the
range demonstrates continual improvements over the duration of the run.

The sensitivity improvements are owed to increased input power and the implemen-
tation of frequency dependent squeezing [294]. Increasing the laser power leads to a
reduction in high frequency shot noise [37]. In O3b, the LIGO Hanford and Livingston
detectors operated with 34 W and 40 W, respectively [3]. Ahead of O4a, the input power
in the detectors was nearly doubled to 60 W and 68 W for LIGO Hanford and Livingston,
respectively [294]. Further, since any defects in the test masses can cause diminishing
returns on sensitivity gains from the increased power, test masses at both detectors were
replaced ahead of the observing run.

Quantum noise presents a fundamental limit for the LIGO and Virgo detector
sensitivity in a broad frequency band from O(10− 103) Hz [37,39,50]. This manifests
as shot noise at high frequencies (above about 80 Hz) and radiation pressure noise at
low frequencies (below about 80 Hz). Prior to O3, frequency independent squeezing was
implemented which reduced the quantum noise at high frequencies (due to uncertainty in
the phase quadrature of the electromagnetic field) at the cost of increased quantum noise
at low frequencies (due to uncertainty in the amplitude quadrature) [175,181,182,295].
The development and implementation of frequency dependent squeezing in the break
between O3 and O4a allowed for the reduction of quantum noise across the bandwidth.
With this improvement, the low frequency radiation pressure noise is significantly reduced.
This led to an improvement in the BNS inspiral range of 15− 18% [53].

Reduction of technical noise was another goal for O4a. Particularly, further improve-
ments were made to reduce noise artifacts caused by light scattering [294]. This is one
of the main sources of glitches in LIGO data, therefore these upgrades led to improved
data quality.

6.3 Public results
In O4a, there were six search pipelines operating in low-latency. These included the
four modeled searches: GstLAL [111,113], MBTAOnline [196], PyCBC Live [296] and
SPIIR [200] as well as two unmodeled searches: cWB [194, 297] and oLIB [298]. The
modeled searches broadly look for gravitational wave signals consistent with mergers of
neutron stars and black holes, covering component mass ranges of ∼ 1M� for the lightest
neutron stars to O(100)M� for heavy black holes. The unmodeled searches do not make
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Low Significance High Significance
modeled searches unmodeled searches

FAR Threshold 2 per day 1 per 5 months 1 per 4 years
Num. Candidates 1624 88 1

Table 6.1. Summary of alerts in O4a from all sky searches. There were three FAR thresholds:
2 per day for low significance alerts, 1 per 5 months for high significance alerts from modeled
searches, and 1 per 4 years for high significance alerts from unmodeled searches. Throughout
O4a there were 1624 low significance alerts, 88 high significance alerts from modeled searches,
and 1 high significance alert from an unmodeled search.

assumptions about the waveform morphology and in principle may be sensitive to a wide
array of potential short-duration transient GW sources. All searches upload gravitational
wave candidates to GraceDB1, which are grouped together by their coalescence times
into superevents. As mentioned in Sec. 4.4, the superevents are assigned an identifier
with naming convention SYYMMDD indicating the date of upload. There were multiple
thresholds used for sending public alerts in O4. These are outlined in Table 6.1 [156].

For the first time in O4a, the LVK Collaboration released low significance alerts for
candidates which passed a FAR threshold of 2 per day. For each of these candidates,
an automated GCN notice was produced. The notices include trigger timing and FAR
estimates, sky localization estimates from Bayestar [157], and for triggers originating
from modeled searches, source classification and EM counterpart probabilities [270,299].
There were 1624 low significance alerts produced throughout the duration of O4a.

The FAR threshold for high significance alerts depends on the search which produced
the candidate. For candidates originating from modeled searches, i.e. candidates expected
to be consistent with CBC sources, the public alert FAR threshold was 1 per 5 months.
This FAR threshold includes a trials factor on the number of searches. For CBC
candidates, the trials factor was 4 + 1 [156] which accounts for the four modeled search
pipelines plus The Rapid, on-source VOEvent Coincident Monitor (Raven)2, which
searches for coincidences between GW candidates and external EM triggers. FARs
estimated by the individual search pipelines are multiplied by the trials factor before
being compared to the threshold of 1 per 5 months. This means that in order to achieve
the desired rate of false alarms, i.e. one per five months, the effective false alarm rate
per pipeline is one per ten months. There were 88 high significance alerts corresponding
to CBC candidates in O4a.

1https://gracedb.ligo.org/
2https://lscsoft.docs.ligo.org/raven/
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For candidates originating from the unmodeled searches, cWB and oLIB, the public
alert FAR threshold was 1 per 4 years. This includes a trials factor of 2 + 1 accounting
for the two searches and Raven [156]. This more strict FAR threshold was chosen to
be more conservative to reflect our uncertainty about as yet undetected sources for
transient GW bursts. There was 1 high significance alert associated with a candidate
from the unmodeled search cWB in O4a, however as described below this candidate was
subsequently determined unlikely to be astrophysical in origin and retracted.

For high significance alerts, an initial automated GCN notice was produced similar
to that for the low significance alerts, however these alerts are additionally followed
up with in depth source parameter inference, manual vetting by the Rapid Response
Team (RRT), and detailed data quality checks [270]. The parameter inference is used to
produce updated sky localizations which are released in subsequent GCN notices. Once
the candidate is validated by human vetting, a GCN circular is produced to announce
the detection.

If the candidate is determined to be instrumental or terrestrial in origin, the RRT
can choose to retract it to reflect our doubt that it has an astrophysical origin. This is
announced via GCN notice. Retractions are expected in low-latency gravitational wave
detection for a few reasons. First, the LIGO detectors are highly dynamic instruments;
as opposed to the stable operation of many EM telescopes, scientists at the LIGO sites
are constantly tweaking the detector configuration, even throughout an observing run.
This can lead to great successes as indicated by the continual improvement in sensitivity
throughout the observation run, shown in Fig. 6.1. However, this also means that the
detector noise characteristics are subject to change as often as on weekly timescales. This
can lead to new and unexpected noise sources or glitch classes at any time, posing a
problem for GW search algorithms in characterizing the background. Secondly, many
retractions come from times when only a single detector was operating (or when only a
single detector participated in the detection). Historically, GW searches did not allow
for such single-detector candidates and coincidence among at least two detectors was
a requirement. If GW searches can accurately identify signals in a single detector we
gain a significant improvement in duty cycle and corresponding detection rate. Notably,
the GstLAL configuration which allowed for ranking of single detector candidates in O2
was crucial in the low-latency detection of GW170817 [66]. The ability to identify single-
detector candidates has clear science outcomes, albeit at the risk of greater uncertainties
in significance and a higher possibility of false alarms.

Still, one of the performance goals in O4a was to reduce the number of retractions. In
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Figure 6.2. Histogram of p(astro) values for the 88 high significance alerts in O4a. The 7
retracted candidates are shown in blue; the remaining 81 are shown in orange.

O4a, there were 73, compared to 8 in O3a and 16 in O3b. Among these, S231112ag [304],
S230712a [305], and S230708bi [306] were identified only by GstLAL. These will be
discussed in more detail in Sec. 6.4. S230830b [307] and S230715bw [308] were identified
below the FAR threshold only by SPIIR. Both candidates were identified as coinci-
dent in LIGO Hanford and Livingston data and retracted due to data quality issues.
S230808i [309] was identified by the cWB pipeline in LIGO Hanford and LIGO Livingston
data. This was the only high significance alert from an unmodeled search in O4a. Despite
having a low FAR of 6.9× 10−11 Hz (about one per 500 years), it was retracted due to
being considered as having low significance by pipeline experts. S230622ba [310] was
identified by MBTA with a modest significance in LIGO Hanford and Livingston data.
The FAR was estimated as 5.18× 10−8 Hz (about 1− 2 per year). The candidate was
retracted after data quality checks identified the presence of a glitch near the signal.

6.3.1 Source classification

In addition to the FAR of public candidates, we compute and release the p(astro) as a
measure of the candidate significance. The p(astro) is computed independently by each
search pipeline, and as mentioned in Chapter 4 this calculation requires an estimate of

3Here, I am only considering the alerts from all sky searches. This excludes 4 retracted Early Warning
candidates [300–303].
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the background of noise triggers as well as the foreground signal distribution [205–210]. .
Following [3], we can estimate the purity of a set of candidates by summing the p(astro)
and dividing by the total number of candidates. This gives an estimate of the proportion
of candidates in the set we can expect to be astrophysical, or conversely the fraction of
contamination by terrestrial artifacts. The purity of O4a public alerts is estimated as:

purity =
∑
N−R p(astro)

N
, (6.1)

where N = 88 is the total number of public alerts and R = 7 is the number of alerts
which were retracted in low-latency. We do not include the retracted candidates in
the p(astro) sum as we do not expect these candidates to originate from astrophysical
sources. This can also be thought of as taking p(astro) = 0 for retracted candidates.
We find a purity of 0.88 in O4a, or correspondingly a contamination fraction of about
0.12, indicating ∼ 10 noise candidates. These include the 7 retracted candidates and ∼ 2
candidates likely to originate from noise in the remaining 81.

Fig. 6.2 shows a histogram of the p(astro) values for all high significance alerts. The
figure shows that most of the non-retracted candidates had p(astro) ∼ 1, indicating a
high likelihood of being astrophysical in origin. Although, there are several low p(astro)
outliers which may be the most likely candidates to have originated from noise, as
expected from the contamination fraction above. We find that many of the retracted
candidates had high p(astro) > 0.80. This suggests that these candidates were caused
by rare noise artifacts which our background and foreground models were not able to
account for.

Information about the masses of GW candidates is not released to the public in
low-latency. Still, it is important for astronomers to have an insight to the sources of the
public GW candidates so that they can prioritize their observations according to which
candidates are most likely to have EM counterparts. To this end, we provide the mulit-
component p(astro) as a course-grained mass estimate [205,206,269,311]. This formalism
assumes that the occurrence of noise and astrophysical events are independent Poisson
processes. In O4a, we take a conservative boundary of 3M� to distinguish neutron
star components and black holes components [156]. That is, p(BNS) represents the
probability that a candidate has both masses < 3M�, p(BBH) represents the probability
that a candidate has both masses > 3M�, and p(NSBH) represents the probability that
a candidate has only its primary mass > 3M�. By summing these probabilities over
all the 81 not-retracted high significance candidates in O4a, we can find estimates of
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Figure 6.3. The p(astro) source classification for the 81 non-retracted candidates in O4a. Each
slice represents the p(source) over all candidates, where source ∈ {BNS,NSBH,BBH,Noise}.
The source categories BNS, NSBH, BBH are constructed based on a neutron star mass cut of
3M�.

the number candidates with sources of each category. Fig. 6.3 shows a pie chart of the
multi-component p(astro). We find that most of the candidates are consistent with BBH
origins, ∼ 1 may be consistent with an NSBH origin, ∼ 2 are likely to originate from
noise, and probably none originate from a BNS. The candidate which was most likely to
originate from an NSBH was S230529ay [312] (now, GW230529 [63]). This candidate is
discussed in more detail in Sec. 6.3.3 along with a highly significant NSBH candidate,
S230518h [313], which was detected during the engineering run ahead of O4a.

6.3.2 Sky localization

The sky localization capabilities in O4a suffered from having only two detectors in the
observing network. As mentioned previously, the Virgo detector was commissioning
during O4a so only LIGO Hanford and LIGO Livingston could be used to to localize
candidates. This led to overall worse sky localizations than what was observed in previous
observing runs, namely O3. The CDF of 90% credible sky area for all 81 high significance
not retracted candidates in O4a is shown in Fig. 6.4. The distributions highlight the
difference in sky localization capabilities when a candidate is identified in a single detector
versus in a pair of detectors.

The best localized candidate in O4a was S230627c [314] with a 90% credible sky area
of 82 deg2. The worst localized candidates in O4a were all identified in only a single
detector, as indicated by Fig. 6.4. This is expected and comparable to the previous
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Figure 6.4. CDF of 90% credible area for the 81 not retracted high significance alerts
in O4a. The blue curve includes candidates identified in all combinations of the detector
network, including those candidates only identified in a single detector – LIGO Hanford or
LIGO Livingston. The green curve excludes single detector candidates, showing only candidates
identified in both LIGO Hanford and LIGO Livingston. The 90th percentiles for each distribution
are indicated by the vertical dashed lines at ∼ 24, 500 deg2 and ∼ 3950 deg2 for all candidates
and only HL candidates, respectively.

observing run [3].
In addition to the 2D sky localization, the 3D localization is an important quantity

for host galaxy identification. The 3D localization depends on the estimated luminosity
distance. The distribution of all estimated luminosity distances for high significance not
retracted candidates in O4a is shown in Fig. 6.5. The luminosity distances observed in
O4a are consistent with those in previous observing runs. However, these are low-latency
estimates and certainly subject to change following detailed parameter inference offline.
To date, the closest candidate observed by the LVK Collaboration is still GW170817
at only ∼ 40 Mpc. The closest candidates in O4a were probably GW230529 [63, 312],
S230627c, and S230814ah [315] at 197± 62.0 Mpc , 291± 64.0Mpc , and 330± 105Mpc ,
respectively. These distances are comparable to that of GW200115 [115]. The furthest
candidates observed in O4a were probably S230922q [316] and S231119u [317] with
luminosity distances of 6.65 ± 2.35Gpc and 6.60 ± 2.56Gpc , respectively. These are
most likely closer than GW190403, which is probably the farthest source in GWTC-3 to
date [3, 138].
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Figure 6.5. Estimated luminosity distances in Mpc for the 81 not retracted high significance
alerts in O4a. The candidates are arranged on the horizontal axis by their order of detection.
The blue markers indicate the mean luminosity distance estimate with errors bars indicating
±1 standard deviation. For context, the estimated luminosity distances of notable events from
previous observing runs are indicated: GW170817 – the first BNS detection and closest observed
source at 40.0 Mpc [66], GW200115 – the first confident NSBH detection at 290 Mpc [115],
GW150914 – the first detection of GWs from a BBH merger at 410 Mpc [12], and GW190403 –
probably the furthest event detected to date [138].

6.3.3 NSBH candidates

There were three candidates which had significant probabilities of originating from an
NSBH source. The first of these, S230518h [313], was observed during the engineering
run prior to the start of O4a in both LIGO Hanford and LIGO Livingston data. Despite
this, the data around the time of the event was confirmed to have good quality and
there is no evidence of excessive noise which would cast doubt upon the astrophysical
nature of the event. This candidate had p(NSBH) of 0.86 , which was the highest
among all candidates in O4a. However, it was identified as having < 0.01 probability
of having remnant mass outside the final compact object [299]. This is a useful metric
to indicate the likelihood that the candidate has an EM counterpart. The negligible
p(Has Remnant Mass) is consistent with the lack of coincident EM observations for this
event. This is not unexpected for NSBH events as the presence of EM emission will be
highly dependent on the source intrinsic properties [219–221,318–322]. If the mass ratio
is too high, the neutron star may plunge directly into the black hole without producing
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any EM counterpart.
The candidate GW230529ay [63,312] was observed in LIGO Livingston data with a

FAR of 6× 10−3 per year. It had a p(NSBH) of 0.62 , making it the most likely NSBH
candidate in O4a (after the engineering run candidate, S230518h). This candidate was
identified as having masses 3.6+0.8

−1.2 and 1.4+0.6
−0.2 M� [63]. This is the first observation of

a compact object with mass confidently constrained to the lower mass gap, 3− 5 M�.
Historically it has not been clear whether compact objects can exist in this mass range,
being more massive than typical neutron stars and lighter than observed x-ray black
holes [166,167,235,237,323,324]. This observation definitively fills the lower mass gap
and parameter estimation finds that the primary mass is most likely a very light black
hole. The existence of such a source will have implications for expected NSBH merger
rates, the BH mass distribution, and the fraction of NSBH mergers expected to produce
EM counterparts. Particularly, such a low mass black hole merging with a neutron star
may have a higher probability of producing EM emission than a system with a more
extreme mass ratio [219–221,318–322]. However, in the case of GW230529 only LIGO
Livingston was observing at the time and therefore the candidate’s 90% credible sky area
was very large at 24, 534 deg2 . This large sky area would have made it difficult for many
astronomers to perform detailed follow up efforts and indeed no EM counterpart was
identified.

Finally, S230627c [314], which was the best localized candidate in O4a, had relatively
high p(NSBH) of 0.49 , making it an event of particular interest for EM follow up.
This candidate was identified by all six search pipelines in LIGO Hanford and LIGO
Livingston data. It had a very low FAR of 0.01 per year. Despite the high p(NSBH),
it was identified as having a < 0.01 probability of including at least one neutron star,
p(Has NS). It is likely that S230627c’s source is a BBH with a secondary mass in the
lower mass gap, but it is not possible to make a conclusive statement.

6.4 GstLAL performance
As described in Chapter 5, a significant portion of dissertation work has involved the
preparation of the GstLAL inspiral search pipeline towards O4a [113]. This work
culminated in the incredible performance of the pipeline throughout O4a. The main
goals of the GstLAL search pipeline ahead of O4a were as follows: (i) demonstrate state
of the art sensitivity across the CBC parameter space, (ii) produce high purity results by
reducing false alarms, and (iii) achieve extremely low latencies to enable multi-messenger
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SID Inst. FAR (yr−1) p(BNS) p(NSBH) p(BBH) p(terrestrial) GCN
S230630am HL 2.4× 10−8 < 0.01 < 0.01 0.98 0.02 [325]
S230704f HL 2.8× 10−9 < 0.01 < 0.01 > 0.99 < 0.01 [326]
S230706ah† HL 4.3× 10−8 < 0.01 < 0.01 0.97 0.03 [327]
S230708t HL 4.3× 10−8 < 0.01 < 0.01 0.97 0.03 [328]
S230708cf HL 1.6× 10−8 < 0.01 < 0.01 0.99 0.01 [329]
S230726a L 3.8× 10−14 < 0.01 < 0.01 > 0.99 < 0.01 [330]
S230729z HL 3.4× 10−9 < 0.01 < 0.01 > 0.99 < 0.01 [331]
S230802aq H 2.2× 10−8 < 0.01 0.06 0.90 0.03 [332]
S230807f HL 7.1× 10−8 < 0.01 < 0.01 0.95 0.05 [333]
S230814ah L 1.8× 10−21 < 0.01 < 0.01 > 0.99 < 0.01 [315]
S230822bm HL 2.6× 10−8 < 0.01 < 0.01 0.98 0.02 [334]
S230825k HL 2.4× 10−9 < 0.01 < 0.01 > 0.99 < 0.01 [335]
S230831e HL 2.0× 10−8 < 0.01 < 0.01 0.98 0.02 [336]
S230911ae H 1.9× 10−12 < 0.01 < 0.01 > 0.99 < 0.01 [337]
S230930al HL 7.4× 10−9 < 0.01 < 0.01 > 0.99 < 0.01 [338]
S231005ah HL 2.0× 10−9 < 0.01 < 0.01 > 0.99 < 0.01 [339]
S231008ap HL 1.5× 10−9 < 0.01 < 0.01 > 0.99 < 0.01 [340]
S231014r HL 1.0× 10−8 < 0.01 < 0.01 > 0.99 < 0.01 [341]
S231020bw HL 3.5× 10−10 < 0.01 < 0.01 > 0.99 < 0.01 [342]
S231029y L 2.2× 10−10 < 0.01 < 0.01 > 0.99 < 0.01 [343]
S231113bb HL 5.6× 10−8 < 0.01 < 0.01 0.96 0.04 [344]
S231119u HL 7.4× 10−8 < 0.01 < 0.01 0.95 0.05 [317]
S231129ac HL 1.8× 10−8 < 0.01 < 0.01 0.99 0.01 [345]
S231231ag H 8.4× 10−15 < 0.01 < 0.01 > 0.99 < 0.01 [346]
S240104bl† H 3.6× 10−17 < 0.01 < 0.01 > 0.99 < 0.01 [347]
S240109a H 7.3× 10−9 < 0.01 < 0.01 > 0.99 < 0.01 [348]

Table 6.2. High significance candidates in O4a found significantly only by the GstLAL search
pipeline. Candidates in bold are those for which GstLAL was the only search pipeline to
contribute a trigger; other candidates were found by additional pipelines but with FAR above
the high significance threshold, i.e. 1 per 5 months. The two candidates indicated with a
dagger (†) were identified by only one of the GstLAL checkerboarded analyses. The instruments
observing at the time of the candidate are indicated using single-letter identifiers (H for LIGO
Hanford and L for LIGO Livingston). These are not necessarily the same instruments that
contributed triggers associated with the candidate. The FARs are given in inverse years. The
last column gives the GCN circular.
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followup.
The GstLAL search pipeline contributed a significant trigger to 80 out of the 81 high

significance not retracted candidates. This demonstrates the sensitivity of the search
throughout the parameter space. The only high significance not retracted candidate
which was not found significantly by GstLAL was S231123cg [349]. This candidate was
identified with high significance by the modeled search, PyCBC Live and unmodeled
search, cWB. It was identified in coincidence in LIGO Hanford and LIGO Livingston
data with a FAR of about 0.01 per year and a p(BBH) of > 0.99 . The corresponding
GstLAL trigger had marginal significance, with FAR between the thresholds of 2 per day
and 1 per 5 months. If astrophysical, this candidate has parameters which are likely
outside of the GstLAL template bank. This is currently thought to be the reason why the
GstLAL candidate had lower significance. The significance as estimated by the GstLAL
search pipeline may be expected to fluctuate as a result of further offline GstLAL analyses,
particularly re-ranking candidates against the global O4a background. Therefore, it
remains to be seen whether GstLAL will identify this candidate as part of the next
catalog update, GWTC-4.

Among the 80 candidates identified with high significance by the GstLAL search
pipeline, 26 were found significantly only by GstLAL. These are listed in Table 6.2
along with the instruments observing at the time of each candidate, their FARs and
p(astro) source classifications as estimated by GstLAL, and the corresponding GCN
circulars. As indicated in bold in the table, these include 9 candidates where GstLAL
was the only pipeline to contribute a trigger. These are all candidates identified in only
a single detector (with the exception of S231020bw). Other modeled pipelines (e.g.,
PyCBC Liveand MBTAOnline) allowed single detector candidates for the first time in
O4a. However, these pipelines place a constraint on the signal duration for single detector
candidates, i.e. only signals longer than some minimum duration will be considered in
single detector time. This is done to reduce the chance of falsely identifying a glitch as a
signal, since glitches are typically short in duration and difficult to distinguish from high
mass BBH signals, especially without the test of coincidence. On the other hand, the
GstLAL search pipeline makes no minimum duration cut on single detector candidates.
Therefore, as indicated by the p(BBH) in Table 6.2 all of these are consistent with BBH
mergers.

The remaining 17 candidates in Table 6.2 had triggers from the various other pipelines,
but none which met the high significance threshold of 1 per 5 months. These candidates
were all identified as coincident signals in LIGO Hanford and LIGO Livingston data.
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Again, all of these candidates are consistent with originating from BBH mergers. This
excess of BBH signals detected by GstLAL will certainly inform our understanding of
black hole mass and spin distributions as well as merger rates in subsequent publications.

Towards the second goal of reducing false alarms, I will discuss the three GstLAL
retractions in O4a: S231112ag [304], S230712a [305], and S230708bi [306]. In O3a and
O3b respectively, there were 6 and 8 retracted GstLAL candidates. Therefore, compared
to the 3 in O4a, the retraction rate has reduced significantly from ∼ 1 (∼ 1.6) per month
in O3a (O3b) to only ∼ 0.3 per month in O4a.

S231112ag [304] and S230708bi [306] were both identified as single detector candidates
in LIGO Livingston data even though LIGO Hanford was also observing at the time.
Given its signal parameters and the lack of coincidence, S231112ag was difficult to
distinguish from a glitch and thus retracted. The data near S230708bi was determined to
be consistent with a known class of instrumental artifacts. It is likely that both of these
candidates were consistent with rare instrumental artifacts which were not captured
in the background histograms at the time of their detections. However, being single
detector candidates during times when two detectors were observing, both of these
triggers were included in the background histograms after their own detection. This
means that subsequent similar candidates would be down-weighted in significance given
their representation in the background. This demonstrates how the GstLAL search
pipeline learns detector noise properties throughout its low-latency operation. Both of
these candidates are expected to be heavily down-weighted in significance when ranked
against the global O4a background offline.

S230712a [305] was identified in both LIGO Hanford and LIGO Livingston data.
This candidate was identified during a time of instability in the GstLAL search pipeline
due to transient computing failures. The trigger is thought to have been produced at
a time when the PSD estimation had not yet settled (i.e. O(sec) after job start-up,
see Chapter 2 – Sec. 2.2 and Sec. 2.7) which falsely inflated its significance. Further, the
trigger was not reproducible when re-analyzing the surrounding data in an offline mode.
Therefore the candidate was determined to be caused by a rare computational instability
and not consistent with a signal.

Towards the goal of producing extremely low-latency alerts in O4a Fig. 6.6 shows a
histogram of reported latencies of GstLAL candidates compared to candidates from the
other search pipelines. The latency is defined as, tGDB − tc, i.e. the difference between
the measured coalescence time and the GPS time at which the candidate is uploaded to
GraceDB. The minimum upload latency from GstLAL was 12.1 sec compared to 14.2
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Figure 6.6. Upload latency (defined as the difference between the event coalescence time
and the GPS time of upload to GraceDB. GstLAL latencies are shown in blue, all other
modeled search latencies (i.e. PyCBC Live, MBTAOnline, and SPIIR) are shown in orange,
and unmodeled search latencies (i.e. cWB and oLIB) are shown in green. There are outliers
above 250 seconds in each distribution which are not shown. The inset axis compares GstLAL
latencies to other modeled search latencies in the range of 10− 30 seconds.

sec for all other modeled search pipelines. This indicates that GstLAL was often the first
search pipeline to report a candidate event. However, the maximum upload latencies of
87.4 and 28.8 sec for GstLAL and other modeled search pipelines respectively show that
GstLAL has a larger spread in its latencies. This is a known feature of the pre-aggregation
across background bins done by the pipeline (see Sec. 2.7 and Sec. 5.3.3.4) [113].

As described in Sec. 5.1 of Chapter 5 [113] and [107], the GstLAL search pipeline was
operated as two analyses on separate computing clusters with a checkerboarded template
bank. These were affectionately nicknamed as the “Edward” analysis which ran on the
computing cluster at the California Institute of Technology and the “Jacob” analysis
which ran on the computing cluster at the Pennsylvania State University’s Institute for
Computational and Data Sciences (ICDS). The construction of the bank using the binary
tree geometric placement method of [58] makes it natural to split the full template bank
into two redundant checkerboards, i.e. each checkerboard has distinct templates but both
cover the full parameter space with similar effectualness.

We nominally expect both checkerboarded analyses to produce the same candidate list.
However, differences can arise due to transient issues such as computing outages at each
cluster and weekly staggered maintenance downtime for each analysis [113]. In O4a there
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Figure 6.7. Fractional difference between the SNR of O4a GstLAL candidates as seen by the
Edward (ρE) and Jacob (ρJ) checkerboard analyses. The SNRs are taken from the minimum
FAR candidate in each analysis. Negative (positive) values, shown in orange (blue) indicate
that the SNR measured by the Jacob (Edward) analysis was greater.

Figure 6.8. The chirp mass of the template producing the minimum FAR candidate in the
Edward analysis (ME) vs in the Jacob analysis (MJ). The color bar indicates the difference,
ME −MJ . The grey dashed line indicates the diagonal, i.e. ME = MJ . Axis ticks are
removed to obscure the exact values of the chirp masses recovered as at the time of writing,
this is proprietary information.

were three candidates identified in GstLAL only by the Edward analysis (S240104bl [347],
S230731an [350], and S230706ah [327]) and one candidate identified only by the Jacob
analysis (S230814r [351]). S240104bl and S230706ah occurred during scheduled downtimes
for the Jacob analysis. Further, these candidates were both identified significantly only
by GstLAL; these are indicated with a dagger (†) in Table 6.2. S230731an (S230814r)
occurred during a time of instability due to transient computing failures in the Jacob
(Edward) analysis. These examples demonstrates the importance of running GstLAL as
two redundant analyses on separate computing clusters. Without checkerboarding, these
candidates may have been missed by GstLAL or altogether.
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We expect that both checkerboarded analyses will produce similar results in terms of
SNR recovery and estimated source parameters. Fig. 6.7 shows the fractional difference
in SNR of the minimum FAR trigger in each analysis,

(ρE − ρJ)
ρE

. (6.2)

The mean difference is about −0.11% with 43 events having a higher SNR as measured
by the Jacob analysis compared to 34 with a higher SNR from the Edward analysis 4. As
expected, Fig. 6.8 shows that the source parameters as estimated by each checkerboard
are largely consistent. The higher variation at larger masses is expected as it is well
known that in this regime, where signals have a very short inspiral duration in the
sensitive frequency band, theMc is less well measured. Therefore, slight fluctuations in
background statistics produced by the different templates may be expected to have a
significant effect on which template produces the lowest FAR. Additionally, there is a
much lower density of templates required to achieve the desired minimal match [107] at
high masses, meaning that the difference in chirp mass of neighboring templates before
the checkerboarding will have been much larger. Therefore, for a given signal at high
mass the best matching template in one checkerboarded bank may have a significantly
different chirp mass than in the other. Overall, these results confirm the expectation
that both checkerboarded analyses will demonstrate similar sensitivity and performance
across the parameter space.

6.5 Conclusion
This chapter presents results from the first part of LIGO, Virgo, and KAGRA’s fourth
observing run, O4a. In this time, there were 88 high significance alerts issued automat-
ically via GCN notice. This number of detections is nearly as many as were detected
in all three of the past observing runs combined [3], representing an incredible success
owed to the detector upgrades bringing improved sensitivity as well as the developments
in the search algorithms made throughout the commissioning break prior to the run.
These observations represent a significant increase in the total population of GW signals
observed to date and will certainly bring new insights to our understanding of the universe
for years to come. Studying these populations will allow us to more carefully determine
the mass and spin distributions of black holes and neutron stars, the channels through

4This indicates a very slight preference for Team Jacob.
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which these objects form binaries, and their merger rates throughout the cosmic history.
Of the 88 alerts issued, 87 originated from one or more of the modeled searches for

gravitational waves from CBC sources and 1 originated from an unmodeled search for
transient GW “bursts”. We estimate a purity among these alerts of ∼ 88%, corresponding
to a contamination from terrestrial or instrumental artifacts of ∼ 12%. This indicates
an expected ∼ 10 noise events, including 8 which were retracted in low-latency. Further
offline re-analysis of the data will allow us to more carefully validate these candidates
and determine their origins and source properties. These will be published in the next
update to the Gravitational Wave Transient Catalog, GWTC-4.

Following a short commissioning break, the second part of the fourth observing run
(O4b) commenced in April 2024 and at the time of writing is expected to continue for
approximately ten months until February 2025 [286]. One of the most exciting prospects
for this continued run is the addition of Virgo, which is expected to observe with a
BNS inspiral range of ∼ 55 Mpc [286]. This addition will bring an improvement to the
sky localization capabilities of the GW detector network, improving our prospects for
identifying EM counterparts to potential BNS and NSBH observations [352].
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Chapter 7 |
Archival searches for stellar-mass
binary black holes in LISA

This chapter is a reprint of [353].
Stellar-mass binary black holes will sweep through the frequency band of the Laser

Interferometer Space Antenna (LISA) for months to years before appearing in the audio-
band of ground-based gravitational-wave detectors. One can expect several tens of
these events up to a distance of 500 Mpc each year. The LISA signal-to-noise ratio
for such sources even at these close distances will be too small for a blind search to
confidently detect them. However, next generation ground-based gravitational-wave
detectors, expected to be operational at the time of LISA, will observe them with signal-
to-noise ratios of several thousands and measure their parameters very accurately. We
show that such high fidelity observations of these sources by ground-based detectors help
in archival searches to dig tens of signals out of LISA data each year.

7.1 Introduction and background
The discovery of GW150914 [12] by the Advanced Laser Interferometer Gravitational-
wave Observatory (LIGO) [37] and the continued detections of stellar mass binary black
holes [138,164,354] by Advanced LIGO and Virgo [39] set the stage for observing such
systems with the Laser Interferometer Space Antenna (LISA) [355] when it comes online.
GW150914 is the result of the merger of a pair of 36+5

−3M� and 31+3
−4M� black holes at a

distance of 440+150
−170 Mpc [164]. The companion masses are larger than what was initially

thought possible from stellar evolution [356] (see, however, [357]). It therefore earned
the adjective heavy for black holes in the mass range ∼ [20M�, 100M�] now routinely
observed by LIGO and Virgo [138,164,358–361]. Such heavy binary black holes (hBBHs)
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within ∼ 1 Gpc could also be visible in the LISA band [355] at an earlier stage in their
evolution, albeit with a signal-to-noise ratio (SNR) of a few.

The search for stellar-mass binary black holes in LISA data could take formidable
number of templates ∼ 1030–40 templates (faster chirping binaries requiring greater
number of templates) and the associated computational resources [362]. The false alarm
rate due to the large number of templates [363] would mean that only a handful of nearby
sources with SNRs greater than ∼ 15 might be detected for a p-value of 10−3. Note,
however, that third generation (3G) ground-based observatories, such as the Einstein
Telescope [71,364] and the Cosmic Explorer [365], operating at the same time as LISA
would observe these sources some months to years after the signal passes the LISA band,
with far greater SNRs compared to those in LISA and determine the source parameters
to a good accuracy. Narrowing down the source parameters by ground-based detectors
should then help in archival searches for such systems in LISA data by reducing the
parameter space and, hence, the number of templates to ∼ 1012 while also decreasing
the associated false alarm rates and computational costs. Current estimates still require
an SNR threshold of ∼ 8 [366] to ∼ 14 [362].

Multiband observations of hBBH systems in LISA and ground-based detectors would
greatly benefit the science return of these observatories [367–377]. This is because the
parameter degeneracies that are present in the later part of the system’s evolution in
ground-based detectors could be resolved by observing the earlier part of the system’s
evolution in LISA. Several authors [368–372, 378] have demonstrated that this can
principally yield tests of general relativity orders of magnitude better than what would
be possible with either detector or detector-network by itself. What is critical to making
that science possible is to unambiguously detect the signals in the LISA band.

In this paper we will show that 3G observatories will pin down the parameters of
hBBH systems well enough to reduce the number of templates required for matched-filter
searches to detect such systems in LISA data to a mere few × 104 as opposed to previous
estimates of ∼ 1012. This means that it will be possible to identify hBBH signals in
LISA data with an SNR of 4 or more with a p-value of 10−2 or better. This will increase
the number of sources that will be available for joint observation by both space-borne
and ground-based observatories and hence enhance the science return of multiband
observations.

The rest of the paper is organized as follows: In Sec. 7.2, we will compute for the joint
hBBH population expected to be observed the visibility and measurement capabilities of
3G observatories. We will discuss, in particular, the uncertainties in the sky localizations,
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masses, and spins of the companion black holes—parameters that would need to be
searched for in LISA data. In Sec. 7.3, we show how the problem of assessing LISA’s
performance in observing binary black holes can be mapped to the audio-frequency band.
This is possible since there is no mass scale in general relativity: waveforms from binary
black holes of different total mass will all look exactly the same as long as all other
parameters remain the same except for a rescaling of time. This helps in using tools
that have been developed for the analysis of ground-based detectors such as the LSC
Algorithm Library [379]. In Sec. 7.4, we will estimate the number of templates required
to search for hBBH systems in LISA data using the knowledge of parameter accuracies
from 3G observatories. We will use two complementary methods to compute the number
of templates. The first method works out the invariant volume of the signal manifold over
the relevant range of parameters and then divides it by the fraction of volume covered by
each template. This gives the minimal number of templates required for archival searches.
In a realist data analysis pipeline, however, one needs to make a choice of templates
based on a template placement algorithm [380]. We will use one such algorithm [381] to
get a more realistic estimate of the number of templates. In Sec. 7.4.4, we characterize
the efficiency of the template bank by computing the overlap of hBBH waveforms with
random parameters maximized over the set of templates in the template bank. We will
also discuss in Sec. 7.5 the distribution of the SNRs of the sub-population of sources
that will be observed by both LISA and 3G observatories. We conclude in Sec. 7.6 with
a summary of the results and future plans.

7.2 Stellar Mass Binary Black Holes in 3G Observatories
3G detectors like Cosmic Explorer (CE) and the Einstein Telescope (ET) will observe
stellar-mass binary black holes all the way up to redshifts of ∼ 10–50 [74, 382, 383],
depending on the intrinsic parameters of the source such as its masses and spins, as well
as extrinsic parameters such as the position of the source on the sky and the orientation
of the binary’s orbit relative to the observer’s line of sight. LISA could observe a small
fraction of such systems if they are within ∼ 1 Gpc [355], but digging them out of the
background noise in a blind search will take formidably large computational resources
due to the large number of matched filters needed to cover the full parameter space of
masses, spins, and sky position [362]. CE and ET will observe binary black holes that
are this close with SNRs of several hundreds to several thousands and determine their
parameters with extremely good precision. Such high-fidelity observations will narrow
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Figure 7.1. The plot shows the distribution of the 181 hBBHs with a LISA SNR ρLISA ≥ 4,
the two axes show the masses of the companions in both panels. In the left plot, color bar is
the 3G SNR ρ3G and the size of circles depict the LISA SNR ρLISA; in the right plot, color bar
is the luminosity distance DL and the size of the circles represent the effective spin parameter
χeff .

down the search space in the LISA frequency band, which greatly reduces both the
computational resources required but also the background noise from the large number
of templates needed in a blind search.

In this Section, we will begin with the visibility of stellar-mass binary black holes
in ground-based detectors and then go on to describe the precision with which the
parameters can be measured. We shall show that all of the parameters but the chirp
mass will be measured by a network of 3G observatories with an accuracy better than
LISA which implies that it will only be necessary to construct templates in chirp mass
for LISA.

7.2.1 Visibility

In order to assess what systems will be observable by both LISA and a network of 3G
detectors, we simulated a population of 5× 105 hBBHs which are uniformly distributed
in co-moving volume up to a redshift of z = 10. The companion masses are chosen to
follow a power law [280] for the larger companion m1 ∈ [5M�100M�], p(m1) ∝ m−α1 with
exponent α = 1.6, and a uniform distribution in [5M�,m1] for the lighter companion
m2 [384]. The companion spins are assumed to be aligned or anti-aligned with the orbital
angular momentum, and are drawn from a Gaussian distribution with 0 mean and a
standard deviation of 0.1. Our choice of spin distribution is motivated by the source
parameters of the 10 gravitational-wave detections of binary black holes reported in
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GWTC-1 [164]. The root mean square χeff of these 10 events is 0.13, or excluding the
high spin event GW170729, only 0.08.

We calculated the SNR, ρLISA, in LISA with the estimated power spectral density
(PSD) provided in Ref. [385] and by marginalizing over the angular dependencies of
the signal. We found 181 of the simulated signals to be visible in LISA with ρLISA ≥ 4
and used these systems as candidates for our 3G-assisted archival search study for LISA
data [371]. We will justify this choice of SNR in Sec. 7.5. Our choice for a 3G network
consists of one ET and two CEs located at fiducial sites in Cascina (Italy), Idaho (USA),
and New South Wales (Australia), respectively. The detector sensitivities are set to ET-D
for the ET detector and CE1 (40 km, compact-binary optimized) for the two CEs [386].

The left panel of Fig. 7.1 shows the distribution of the 3G network SNR ρ3G and
ρLISA against the companion masses of the binaries for the 181 systems. All signals will
be detected with SNRs of order ∼ 1000 in 3G, a few reaching values almost 10 times as
large. The left panel also confirms the expectation that loud hBBH events in the LISA
band produce loud signals in CE and ET detectors. The right panel presents in a similar
fashion the distribution of the luminosity distance, DL, and effective spin parameter,
χeff = (m1χ1 + m2χ2)/M [387, 388], indicating that most of the systems are found at
luminosity distances . 1 Gpc.

We draw attention, in particular, to the visibility of hBBH in LISA. The rate for
hBBH systems is constrained by the rate of BBH mergers whose up-to-date value is
R = 23.8+14

−8.7 Gpc−3 yr−1 [138,389]. Thus, if we take into account that only a fraction f
of the binaries contain at least one heavy black hole (> 20M�), where

f ' 1.9
∫ 100M�

20M�
dm1m

−1.6
1

∫ m1

5M�
dm2

1
m1 − 5M�

' 0.32, (7.1)

and 1.9 is the normalization factor, we obtain a median rateRhBBH = f R = 7.6 Gpc−3 yr−1

for hBBH merger. Although heavier binaries can be seen to a greater distance their
relatively lower prevalence means that it is more likely that we will observe lighter
binaries in LISA more frequently. The detection of lighter binaries in LISA is also aided
by the large SNRs and high fidelity measurements of the 3G network. We also note that
the hBBH systems are likely to have larger mass ratios, which is due to the power-law
distribution of the primary companion and flat-distribution of the secondary. The large
mass ratio is also responsible for low effective spins of hBBH systems as seen in the right
panel of Fig. 7.1.
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Figure 7.2. The plot shows the probability and cumulative density functions of the measure-
ment error for the nine parameters of interest for the 181 binary black hole mergers that can
be detected in the archival search of LISA data after they are identified and measured in the
3G data. We simulated 100 realizations for the sky location and binary orientation angles to
show the range of parameter errors to be expected from 3G networks.

7.2.2 Measurability

Next, we want to assess the quality of the parameter estimation that a 3G network can
achieve. This crucial information allows us to perform the archival search more efficiently
by decreasing the dimension and volume of the parameter space for a template search.

We perform this assessment with gwbench [386], a Python package that implements
the well-known Fisher information [233,234,390] formalism, and estimate the 1σ-error
bounds for each of the 181 systems. The formalism provides an analytical approximation
of the Gaussian noise likelihood around its maximum and thus allows us to estimate the
measurement errors σλi =

√
Σii on a set of parameters λ from the covariance matrix Σ

in the likelihood:
P (λ) ∼ e−

1
2 Σ−1

ij ∆λi∆λj . (7.2)

Given a model for the detector response h̃(f ;λ), we can calculate the covariance matrix
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as the inverse of the Fisher information matrix Γ

Σ−1
ij ≡ Γij = 〈∂λih̃(f ;λ), ∂λj h̃(f ;λ)〉. (7.3)

The scalar product between two waveforms h̃(f ;λ1) and g̃(f ;λ2) is defined as

〈h̃(λ1), g̃(λ2)〉 = 2
∫ ∞

0

h̃(f,λ1) g̃∗(f,λ2) + c.c.

Sh(f) df. (7.4)

where g̃∗ denotes the complex conjugate of g̃. Note that although the limits in the integral
range from 0 to ∞, in reality the detector noise power spectral density Sh(f) outweighs
the signal power outside a finite frequency range [f1, f2] and often the waveform itself will
have no support above a frequency fcut = f(λ) determined by its intrinsic parameters.
Thus, the integral gets most of its support over a finite range of frequency [f1, f2].

The error bounds that a network of several detectors can achieve are readily computed
via the network Fisher matrix

Γnet =
∑
d

Γd, (7.5)

which is the sum of the Fisher matrices Γd for all the detectors in the network. Hence,
given a detector response model, we calculate all the detector Fisher matrices and invert
their sum to obtain the network covariance matrix from which we extract the desired
error bounds.

Lastly, we perform two sanity checks to avoid including faulty numerical data. We
first disregard any Fisher matrix Γ whose condition number cΓ = eM/em exceeds a
threshold value of 1015 to avoid inverting matrices that are ill-conditioned for this
numerical task. eM and em are the maximum and minimum eigenvalues of Γ. Further,
we scrutinize all inversions, if any calculated error bound is smaller than the inversion
error ε = ||Σ ·Γ− I||max. Here, I and || · ||max represent the identity and maximum matrix
norm, respectively.

The loudness of the hBBH signals in CE and ET detectors allows us to make use
of waveform models that include higher-order spherical harmonic modes which capture
more physical information and thus increase the accuracy of the parameter estimation.
For this purpose we applied the Fisher formalism to the lalsimulation waveform
IMRPhenomHM [391] for the full set of 11 parameters: chirp mass M, symmetric mass
ratio η, the aligned components of the companion spins χ1,z and χ2,z, luminosity distance
DL, coalescence time tc, phase of coalescence φc, inclination angle ι, right ascension
α, declination δ, and polarization angle ψ. IMRPhenomHM is an aligned-spin waveform
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model that does not include the spin components perpendicular to the orbital angular
momentum of the binary, thus our Fisher analysis is four parameters short of the standard
15-parameter analyses.

Since we marginalized over the four angles for the calculation of the LISA SNRs,
we randomly sampled 100 realizations of each angle for each of the 181 systems and
performed the Fisher analysis on these 181 × 100 parameter sets. The resulting error
bounds are shown in Fig. 7.2, where we show the errors on right ascension and declination
combined in the 90%-credible sky area Ω90 and omitted the error for phase of coalescence.

The LISA parameter estimation has been explored with the Fisher formalism in
[355] for signals with ρLISA > 8. The study reports the following bounds for the
majority of its 1000 simulated events: ∆M/M ∈ [10−7, 4 × 10−6] peaked at ∼ 10−6,
∆η/η ∈ [6×10−4, 3×10−2] peaked at ∼ 8×10−3, ∆tc ∈ [10−1, 7×101] peaked at ∼ 3×100,
and Ω90 ∈ [2 × 10−2, 4 × 100] peaked at ∼ ×10−1. In Ref. [392], the LISA parameter
estimation has been explored for GW150914-like systems, with SNR ρLISA ≈ 10 − 13.
The study quotes fractional error inM < 10−4 to below 10−6. For our population of
hBBH we find that LISA will constrain the chirp mass even better than 3G observatories.
We note that if this were not the case, we would only require a single template to dig
out the hBBH from LISA data.

Comparing our error bounds to these estimates we can clearly see that a network of
CE and ET observatories will outperform LISA for the estimation of most parameters:
our 90% values are either well below (tc) or of the order of (Ω90) the lower bound of the
reported ranges. The exceptions are the chirp mass and symmetric mass ratio which
benefit from the long, many-cycle signals in the LISA band: the fractionalM errors in
the LISA band are better or the same compared to the 3G bounds and if we scale our
absolute errors in η to relative errors—i.e. multiplication with factors between 4 to 17 in
the case of our binaries with η ∈ [0.06, 0.25]—we obtain roughly the same ranges (the
3G network performs better on the lower end). Thus, LISA can only improve the chirp
mass measurement, without adding significant information to the estimation of η.

There are two caveats to this comparison that favor the 3G results even more: The
cited study performed the Fisher analysis only for six parameters which positively biases
their results in comparison to our analysis over 11 parameters. Further, their reported
errors come from a louder population with ρLISA > 8, whereas most of our signals have
SNRs lower than that. The events considered in their study would result in even louder
3G events, as seen in Fig. 7.1, and thus better error estimates.

In conclusion, our findings show that a 3G network allows to estimate the parameters
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of hBBHs with such high fidelity that we can assume most parameters to be known and
focus the archival searches onM only.

7.3 Mapping the LISA data analysis problem to the audio
band
The LSC Algorithm Library (LALSuite) [379] has many data analysis tools such as
compact binary waveform models, template placement algorithms, filtering routines, etc.,
that are extremely useful, sometimes critical, in evaluating data analysis problems such
as the ones explored in this paper. LALSuite was developed primarily for the analysis of
data from LIGO and Virgo interferometers that operate in the audio frequency band
from 1 Hz to 10 kHz. Unfortunately, some of the algorithms do not readily work at
frequencies below 1 Hz and the effort required to rewrite the algorithms for the LISA band,
∼ 100µHz to 100 mHz, would be formidable. Luckily, it is possible to scale the LISA
problem into the audio band owing to the fact that the fundamental quantity of interest,
namely the strain measured by the gravitational-wave detectors which represents the
change in proper length between ‘free’ test masses in response to a passing gravitational
wave, has no physical dimension.

To illustrate the required scaling, let us consider gravitational waves emitted by an
inspiraling binary system composed of a pair of black holes, but the argument would
work no matter what type of source we consider. Furthermore, for the sake of clarity, we
will consider the lowest order post-Newtonian (PN) waveform [203,393] (often referred
to as the ‘Newtonian’ waveform) from a binary system composed of non-spinning black
holes. However, the arguments follow through irrespective of the PN order. At the
Newtonian order, the strain response of an interferometer to gravitational waves from a
binary system composed of black holes of masses (m1,m2) at a luminosity distance DL

is given by

h(t) = 4GηM
c2DL

(
πGMf(t)

c3

)2/3

cos
(
π
∫ t

t0
f(t) dt

)
(7.6)

where M = (m1 +m2) is the total mass of the system, η = m1m2/M
2 is the symmetric

mass ratio, and f(t) is the instantaneous gravitational-wave frequency:

f(t) = f0

(
1− t− t0

τ

)−3/8
. (7.7)

Here t0 is a fiducial time when the frequency of the gravitational wave is f0 and τ, called
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the chirp time, is the duration of the signal from a time when its frequency was f0 until
the frequency (in this approximation) diverges1 and the two black holes merge:

τ = 5
256 η

GM

c3

(
c3

π GMf0

)8/3

. (7.8)

The chirp time of a binary of total mass 100M�, equal component masses (so that
η = 1/4), and starting frequency of 12 mHz would be 5 years. Chirp time is a sharp
function of the total mass as well as the starting frequency. A signal starting from a
frequency that is a factor 2 (10) smaller would last a factor ∼ 6.3 (respectively, 464)
longer.

From Eq. (7.8), we can compute the duration ∆t spent by the binary starting at
frequency f1 at time t1 and reaching frequency f2 at time t2:

∆t ≡ t2 − t1 = 5
256 η

GM

c3

(
c3

π GMf1

)8/3
1−

(
f1

f2

)8/3
 . (7.9)

If f2 � f1, the second term in the equation above will be negligible, and ∆t will essentially
be the same as the chirp time starting at frequency f1:

∆t ' 5
256 η

GM

c3

(
c3

π GMf1

)8/3

. (7.10)

We choose the starting frequency f1 for the stellar mass binary black holes in the mass
range observed by LISA, such that the signal lasts for a fixed duration in the LISA band.
For a given ∆t, the starting frequency f1 depends on the total mass and mass ratio of
the binary:

f1(M, η) = c3

π GM

[
5

256 η
GM

c3∆t

]3/8

. (7.11)

The left half of Fig. 7.3 shows the starting frequency f1 as a function of total mass and
mass ratio q = m1/m2 for m1 > m2; f1 is greatest for systems with small total mass but
large mass ratio and smallest for systems with large total mass, but small mass ratio.
Over the total mass range of [30, 130] M� the lower frequency cutoff is never smaller
than 5 mHz and can be as large as 45 mHz at the lower end of the mass range and
upper range of the mass ratio. The upper frequency cutoff for integration is chosen to be
f2 = 1 Hz.

1In reality, the merger occurs when the horizons of the two black holes merge which happens at a
finite frequency but this is not relevant to our discussion.
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Figure 7.3. Left: Contour plot of the starting frequency for stellar mass binary black holes
that last 5 years in the LISA band. The starting frequency scales with the mass ratio of each
system and inversely with the total mass, as indicated by the colored contours, where the values
of starting frequency are shown in mHz. The grey dots mark the positions of the 181 hBBHs
for which we performed Fisher analysis in a 3G network to obtain parameter error estimates.
The size of the dots represents the corresponding LISA SNR, ρLISA.
Right: LISA’s amplitude noise spectral density (ASD)

√
Sh(f) is plotted before (red solid

line) and after (red dashed line) applying frequency scaling with α = 104. Also shown are
the amplitude spectra

√
f |h̃(f)| for a GW150914-like (in orange) and GW190521-like (yellow)

systems at a distance of 500 Mpc with signal-to-noise ratio of 4.8 and 16, respectively. The
integration time is assumed to be 5 years in the LISA band which translates to 1.54× 105 s in
the audio band.

Our goal is to scale up the frequency from LISA’s observing band to the audio band
of ground-based detectors. Scaling up frequencies by a factor of α = 104 would bring the
lowest starting frequencies up to 50 Hz and the largest starting frequencies up to 450 Hz.
This is the scaling we will use in this paper. An integration time of ∆tLISA = 5 yr in the
LISA band would correspond to an integration time of ∆taudio = ∆tLISA/α ' 1.58×104 s.

We can see from Eq. (7.6) that gravitational-wave strain would remain unchanged if
we simultaneously scale up the frequency by factor of α and scale down the chirp time,
the total mass, and the luminosity distance by the same factor. Therefore, the signal
would now last for a much shorter period of ∆t/α with exactly the same amplitude as
before but at a higher frequency. The SNR of the scaled up signal, but with a scaled up
LISA noise spectral density SLISA

h (f), will also be the same as before. To see this, recall
that the expectation value of the SNR of a signal is given by:

ρ2(f1, f2) = 4<
∫ f2

f1

|h̃(f)|2
SLISA
h (f) df, (7.12)

where h̃(f) ≡
∫∞
−∞ h(t) exp(2πift) dt is the Fourier transform of the gravitational-wave
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strain. Changing the variable f → ν = αf would scale down the Fourier mode strain
by a factor of α, h̃(f) → h̃(αf)/α, and similarly the LISA noise PSD SLISA

h (f) →
SLISA
h (αf)/α ≡ Saudio

h (αf)/α. Thus the SNR remains unchanged:

ρ2(ν1, ν2) = 4<
∫ ν2

ν1

|h̃(αf)|2/α2

Saudio
h (αf)/α αdf. (7.13)

The scaled version of the LISA noise PSD Saudio
h (ν)/α is shown in the right hand panel

of Fig. 7.3.
In summary, the required scaling transformation are to:

1. Scale up the frequency: f → αf.

2. Scale down the time duration, total mass and distance: τ → τ/α, M →M/α, and
DL → DL/α.

3. Transform the LISA power-spectral density into the audio band, i.e. Saudio
h (f) =

1
α
SLISA
h (f/α).

7.4 Template banks for archival searches
In this section we present the number of templates required to detect hBBH in the LISA
band by matched filtering. We use accuracies on the masses obtained from parameter
estimation in 3G detectors. We use two independent methods to calculate template bank
numbers. The first method assumes the metric in order to place templates, which would
provide a minimum on the number of templates required. As a check on this method, we
also calculate the number of templates using a stochastic placement algorithm, which
overestimates the required number of templates.

7.4.1 Metric method

7.4.1.1 Metric on the signal manifold

The number of templates required for a search can be found using the geometric formu-
lation of signal analysis [55, 380, 390]. The scalar product (7.4) can be used to define
waveforms or signals of unit norm. A signal is said to be of unit norm if its scalar product
with itself is unity and will be denoted by â : 〈â, â〉 = 1.
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In the geometric formalism, the overlap O or match between two ‘nearby’ normalized
signals ĥ(λ) and ĥ(λ+ ∆λ) with slightly different parameters λ and λ+ ∆λ is given by:

O(λ,∆λ) ≡ 〈ĥ(λ), ĥ(λ+ ∆λ)〉 ≈ 1− gαβ dλα dλβ, (7.14)

where gαβ is the metric on the signal manifold [55,390]:

gαβ ≡ −
1
2
∂2O(λ,∆λ)
∂λα∂λβ

∣∣∣∣∣
∆λ=0

= 〈ĥα, ĥβ〉, ĥα ≡
∂ĥ

∂λα
. (7.15)

When signals are nearby, in the sense that their overlap is close to unity, Eq. (7.14) is
a good approximation for the overlap and the quantity d`2 = gαβ dλα dλβ—the proper
distance between them—obeys d`� 1. Thus, two normalized signals at a proper distance
of d` from each other have an overlap of 1− d`2.

7.4.1.2 Minimal match and lower limit on the number of search templates

To filter signals out of data we must choose a bank of templates in the parameter space
of interest such that any signal buried in the data within this parameter space has its
overlap larger than a certain value called the minimal matchM with at least one template
in the bank. Of course, this requirement can be met by populating the parameter space
with a dense set of templates but a higher density of templates would demand a greater
computational cost. Thus, the density of templates must be chosen so that it is as sparse
as possible while assuring minimal match with every signal in the parameter space of
interest.

If λk, k = 1, . . . N, denotes the parameters of the templates in the bank then for a
signal with arbitrary parameters λ the template bank must satisfy the following condition:

max
k
〈ĥ(λ), ĥ(λk)〉 ≥M, (7.16)

the equality in the above equation giving the optimal number of templates. So we must
choose the proper distance such that

d`2 = gαβ dλα dλβ = (1−M). (7.17)

Given that the optimum matched filter signal-to-noise ratio that one can hope to achieve
for a signal is ρ2

opt = 〈h, h〉, the above condition assures that the fractional drop in the
signal-to-noise ratio between an arbitrary signal and the closest template in the bank is
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no more than ε ≡ 1−M called the maximum mismatch, i.e. ρ ≥ ερopt.

Given the minimal match M how many templates are needed to cover the parameters
with the smallest number of templates? This is the problem of template placement and to
some extent the answer depends on what type of lattice is used to place the templates on
the signal manifold. We will discuss a specific template placement algorithm used in this
work in the next Section. We can get a lower limit on the number of templates needed
by computing the total proper volume of the signal space divided by the fraction of
volume covered by each template. Assuming that each template covers a proper volume
dV = d`N = (1−M)N/2, where N is the dimension of the parameter space, the smallest
number of templates NT needed is:

NT = V

dV = 1
(1−M)N/2

∫ λmax

λmin

√
g dNλ, (7.18)

where g = det |gαβ| . The above estimate assumes that the templates are placed on a
square lattice. The number of templates can be smaller with a more efficient lattice, e.g.
a hexagonal lattice in two-dimensions, but this is unimportant for our considerations.

7.4.1.3 Newtonian approximation to number of templates

The orbital velocity of a stellar mass binary black hole of total mass M and gravitational-
wave frequency fGW is very small in the LISA frequency band compared to the speed of
light (for clarity we include factors of G and c in the equation below):

v

c
≡
(
πGMf

c3

)1/3

' 0.025
(

M

102M�

)1/3 (
fGW

10 mHz

)1/3

. (7.19)

For such a non-relativistic orbit the PN expansion parameter defined by x ≡ v2/c2 '
6.2× 10−4, meaning stellar-mass binary black holes in the LISA frequency band are in
the adiabatic regime. The dynamics of such a system is essentially described by the
Newtonian approximation (or 0 PN) given in Eqs. (7.7) and (7.8). In the stationary phase
approximation the Fourier transform of the waveform in Eq. (7.6) is given by [394]:

h(f) = A

DL

f−7/6 exp [2πiftC − iφC + iψ(f)] , (7.20)

where tC is a fiducial time giving the time of arrival of the signal at the detector (the
epoch at which the GW frequency reaches a pre-defined value), φC is a constant phase of
the signal, and ψ(f) is the PN approximation to the signal’s phase evolution given at
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the leading “Newtonian order” by:

ψ(f) = 3
128(πMf)5/3 . (7.21)

At the leading order the phase depends only on the chirp massM and not the mass
ratio. It is useful to define a new parameter ξ ≡ (3/128)(πM)−5/3, so that the phase is
linear in this new parameter: ψ(f) = ξf−5/3. The parameter space of the signal consists
of λ = (tC , φC , ξ). It turns out that the overlap O can be analytically maximized over the
phase φC by using two quadrature filters, leaving just two parameters. Because of the
analytic maximization over phase, the expression for the metric in the two-dimensional
space of λ = (tC , ξ) takes the form [55,380]:

gαβ = 1
2 (J [ψαψβ]− J [ψα]J [ψβ]) , (7.22)

where ψα ≡ ∂ψ(f)/∂λα, and J is a functional of its argument defined for any function
a(f) by

J [a(f)] ≡ 1
ρ2 〈f

−7/3, a(f)〉 (7.23)

As is well known, maximizing the overlap O over the parameter tC is easily accomplished
in the Fourier domain [395] and one needs a discrete lattice of templates only for the
remaining one parameter ξ. The metric in the ξ-dimension is quite simply: G22 =
g22 − g2

21/g11. Substituting for the various elements of the metric gαβ and simplifying one
finds:

G22 = 1
2

[
J17 − J2

12 −
(J9 − J4J12)2

J1 − J2
4

]
(7.24)

where for any k, the moment Jk is given by Jk ≡ 〈f−k/3, 1〉. In this notation the SNR is
ρ2 = J7. G22 is demonstrably constant (in any case all one-dimensional spaces are flat)
and ξ is already a Cartesian coordinate. The spacing between templates is constant in ξ
and from Eq. (7.17) we have

d`2 = G22 dξ2 = 1−M ⇒ dξ =
√

1−MM

G22
(7.25)

Finally, the number of templates can be found using Eq. (7.18):

NT =
√

G22

(1−M)(ξmax − ξmin). (7.26)
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Figure 7.4. Left: For a hBBH source with component masses constrained by 3G to
m1 = 22.84892 and m2 = 16.93702 M� the template (green) and injection (blue) component
masses are shown for a 3.5 PN template bank. Chirp mass contours are indicated by the
black lines. Right: For the same source, the injection component masses are shown with the
one-dimensional Newtonian template component masses.

In the next section we will compute the number of templates found using a template
placement algorithm and compare it with the one found in this section.

7.4.2 Stochastic template placement algorithm

When the metric on the waveform manifold is not known exactly and cannot be approxi-
mated, we use a brute force approach [396,397] to construct the template bank. In this
method, the template bank is built by proposing templates in the desired parameter
space until sufficient coverage is reached. For each proposed template, λprop, the fitting
factor (which is the maximum match of the proposed template with the templates in
the bank) is calculated. If the fitting factor is greater than the minimal match required,
we reject the proposed template and continue with a new proposal; if it is less than the
required minimal match, we add the proposed template to our bank.

This method can get computationally expensive, but there are tricks we can employ
to be able to use it in practice. One such trick is to define the “neighborhood" of the
proposed templates. It can be defined in terms of a parameter chosen by the user, we
used the chirp time for our purposes. When used, the fitting factor is calculated only for
the templates in the neighborhood (set in form of units of the neighborhood parameter
by the user), λi, where i : 1−N for N templates near the proposal.

Another technique we use is to iteratively lower the frequency step in the calculation
of the match [398]. The value of frequency spacing used in the match integral (Eq. (7.4))
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is usually chosen to be 1/L, where L is the closest power-of-2 greater than the length of
the waveforms. This is required to measure the overlap between two waveforms in a time
window of L s. But for the bank generation, we are interested in the maximum overlap
between waveforms, which occurs near the time point corresponding to 0 displacement
for two waveforms aligned at their peak amplitude. Therefore, we can increase the value
of frequency spacing, df , which greatly reduces the cost of calculating the match. We
can check if our chosen value for df is good enough by iteratively calculating matches
by reducing df by half. If the last two overlaps agree to within 1%, we use that value
or if (1− (match)) is large, we continue to the next template. For our banks, we first
calculate the matches with df = 2.0. If the mismatch is large, i.e.

(1−match) > 0.05 + (1−M), (7.27)

where M = 0.98 is the minimum required match for template placement, then we move on
to the next neighboring template λi+1. Otherwise, we decrease the value of df → df/2
and calculate the match again. We continue iteratively decreasing df until the last two
matches converge, ∣∣∣matchdf −matchdf/2

∣∣∣ < 0.001×matchdf . (7.28)

Once convergence is reached, if the match < M we add the proposal λprop to the template
bank.

7.4.3 Number of templates

Using the stochastic placement algorithm, we calculate a template bank for each of the
181 hBBH sources, with component mass ranges constrained by 3G capabilities. These
template banks use 3.5 PN TaylorF2 [394, 399–404] waveforms. The lower frequency
cut-off for the signals ranges from 14.2–30.5 mHz with an upper frequency cut-off of 150
mHz. Scaling this to the audio band, we produce template banks with frequencies in the
range of 142–1500 Hz. We use a minimal match of M = 0.98 for the template placement
algorithm.

The left panel of Fig. 7.4 shows an example template bank in (m1,m2) space for a
source of m1 = 22.85M�, m2 = 16.94M�, and flow = 305.44 Hz, after scaling to the
audio band. Fig. 7.5 shows the relationship between the source signal-to-noise ratio and
the number of templates in the bank. The plot shows that the sources which require the
largest number of templates are those for which both the LISA and CE signal-to-noise
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Figure 7.5. The number of templates from the stochastic placement algorithm is plotted
against the LISA SNR, ρLISA for each source. The color bar indicates the CE SNR, ρCE .
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Figure 7.6. For 181 hBBH sources we plot the number of templates required for the minimal
match condition,M = 0.98 calculated using the metric approach for one-dimensional Newtonian
template banks (horizontal axis) and the number of 3.5 PN templates found using the stochastic
placement algorithm (vertical axis). The color bar indicates the lower frequency cutoff, after
scaling to the audio band. For a linear fit, NT,stochastic = m×NT,metric, we find m = 1.30

ratio is small.
The cumulative distribution of stochastic placement template bank sizes for all 181

sources is shown in the top left panel of Fig. 7.7. The 50th percentile and 90th percentile
bank sizes are 3.4 × 103 and 1.95 × 104 templates, respectively. The mean bank size,
NT = 8.02× 103 with a standard deviation of 9.70× 102. The smallest bank has only 218
templates while the largest bank has 9.88× 104 templates. These bank sizes demonstrate
a significant improvement from previous estimates of O(1012) templates.
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Using the metric placement method, we again calculate template banks for each
of the same 181 hBBH sources. The upper and lower frequency cut-offs are the same
for these banks as for the template banks generated with the stochastic placement
algorithm. We again require a minimal match, M = 0.98. The right panel of Fig. 7.4
shows the Newtonian template bank for the same source as shown on the left. This figure
demonstrates that the Newtonian template banks are truly one-dimensional, where each
template in (m1, m2) space is projected onto a line parameterized by the chirp mass,
M. The figure shows chirp mass contours indicated by the black lines. Using the one
dimensional template bank it is clear that while component masses may not necessarily
be tightly constrained by LISA, the chirp mass will be recovered very well. For this
source, the two-dimensional bank had 2.3× 103 templates and the one-dimensional bank
had 1.4× 103 templates. Therefore, the line in Fig. 7.4 is very densely packed.

The cumulative distribution of Newtonian template bank sizes is shown in the bottom
left panel of Fig. 7.7. Here, the mean bank size is 6.2 × 103 templates. The 50th and
90th percentile bank sizes are 2.5× 103 and 1.5× 104 respectively.

A comparison of stochastic placement and metric method template bank sizes is given
in Fig. 7.6. We find that NT,2D ≈ 1.3×NT,1D. The two-dimensional PN template banks
are about 1.3 times the size of the one-dimensional Newtonian template banks made
using the metric method. Therefore, by using Newtonian template banks we can achieve
an even further decrease in the computational cost required to dig signals out of the
LISA data.

7.4.4 Efficiency of the Template Bank

To determine the bank efficiencies, we filter 1000 3.5 PN waveform injections against
each bank to find the best matching templates. For each of the two-dimensional banks,
we calculate the efficiency twice – first, using the 3.5 PN approximation in the match
calculation and again using only the Newtonian approximation. A summary of all the bank
efficiency calculations performed is given in Table 7.1. The top right panel of Fig. 7.7 shows
the cumulative distribution of matches for each of the two-dimensional template banks,
where green lines show matches calculated with the Newtonian template approximation
and blue lines show matches calculated with the 3.5 PN template approximation. The
mean 10th percentile match for both sets are indicated by the vertical lines. These
results demonstrate that using the Newtonian approximation in the match calculation is
sufficient for our purposes.

This result is further proven by the one-dimensional Newtonian template bank
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Figure 7.7. Top Left: The plot shows the cumulative distribution of the 3.5 PN template
bank sizes. The vertical lines indicate, from left to right, the 50th percentile, mean, and
90th percentile bank sizes. The bins are evenly spaced in log. Bottom Left: The cumulative
distribution of one-dimensional Newtonian template bank sizes. Top Right: The plot shows the
cumulative distribution of mismatches of 1000 injections with each 3.5 PN template bank. In the
match calculation, we use the Newtonian approximation (green) and the 3.5 PN approximation
(blue). The vertical lines indicate the mean 10th percentile match for both sets of template
banks. The position of the mean 10th percentile match value for 3.5 PN approximation has
been artificially shifted to the left by 0.0005 so that the two lines are distinguishable. Bottom
Right: The cumulative distribution of mismatches for one-dimensional Newtonian template
banks.

efficiencies, shown in the bottom right panel of Fig. 7.7. As indicated by Table 7.1, for
this set of bank efficiency calculations we use the Newtonian approximation both in the
template waveforms and in the match calculation. Each of the three sets of bank efficiency
calculations performed over the 181 hBBH systems had mean 10th-percentile matches
M > 0.98, so we conclude that these template banks will be effective in recovering hBBH
signals from LISA data.
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λT λinj Match approx. M(P10)
3.5 PN (2D) 3.5 PN 3.5 PN 0.989± 7.6× 10−4

3.5 PN (2D) 3.5 PN 0 PN 0.989± 8.7× 10−4

0 PN (1D) 3.5 PN 0 PN 0.985± 1.5× 10−3

Table 7.1. A summary of the bank efficiency calculations done. The first column indicates
the PN order of the template waveforms, and in parenthesis the dimensionality of the template
banks. The second column similarly shows the PN order of the injected waveforms, highlighting
that we have always used 3.5 PN injection waveforms. The third column shows the PN order
used in the calculation of the match between template and injected waveforms. The last column
shows the mean 10th percentile match across all 181 hBBH sources. The one standard deviation
error is quoted.

7.5 Visibility of stellar-mass BBH in LISA
We now calculate, for template banks of O(102)−O(105) templates, the minimal signal-
to-noise ratio required to claim a detection in a matched filter search. We first assume
that we have a segment of data consisting only of noise, d(t) = n(t). If we filter this data
with one template, the SNR would be a random value which, for a Gaussian background,
follows the Rayleigh distribution [362]:

p(ρ) = ρ exp
(
−ρ2

2

)
. (7.29)

The probability of obtaining a value of ρ greater than some threshold ρthr can be computed
by integrating the distribution above the threshold,

p(ρ > ρthr) =
∫ ∞
ρthr

ρ exp
(
−ρ2

2

)
dρ = exp

(
−ρ2

thr
2

)
. (7.30)

We would like to find the value of ρthr above which we can confidently claim a detection.
The false alarm probability (FAP) is then the chance of finding ρ > ρthr in the noise
hypothesis. We can choose an acceptable value of FAP, say 10−2 and use Eq. (7.30) to
solve for ρthr:

ρthr =
√
−2 ln FAP. (7.31)

Therefore, with FAP = 10−2 the threshold is ρthr ≈ 3.0. However, the above discussion
assumes that we filter the data with only one template. With NT templates, the FAP is
the probability that at least one template has ρ > ρthr. First, consider the probability
that none of the NT templates have ρ > ρthr, that is (1 − p(ρ > ρthr))NT . The FAP is
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the compliment of this, or
FAP = 1− (1− p)NT . (7.32)

For very small p, we can approximate this as FAP ≈ 1− (1− p ·NT ) = p(ρ > ρthr) ·NT .
We see that the number of templates becomes a trials factor on the false alarm probability.
We must then scale down our required FAP by the number of templates in Eq. (7.31),

ρthr =
√
−2 ln FAP

NT

. (7.33)

Finally, using FAP = 10−2 and NT = 102−105, we find a threshold SNR of ρthr = 4.3–5.7.
This is a significant improvement over the previously quoted ρthr = 14 [362] or ρthr = 8
quoted in Ref. [366]. The lower threshold further improves the feasibility of archival
matched-filter searches in LISA, increasing the number of detectable stellar mass binary
black holes in LISA by a factor of ∼ 6.

7.6 Conclusions and Future Directions
The simultaneous operation of third generation ground-based gravitational-wave observa-
tories, such as the Einstein Telescope and Cosmic Explorer, and a space-based detector,
LISA, provides a unique opportunity for multiband observations of stellar-mass and
intermediate-mass binary black hole inspirals and mergers. Such multiband observations
greatly improve the bounds one can place on general relativity and alternative theories
of gravity [368, 370–372]. However, the computational cost required to dig the signals
out of LISA data in a blind search would be formidable, requiring signal-to-noise ratios
greater than 14 to make confident detections.

We have shown that 3G observatories would constrain most of the signal parameters—
the component masses, spins, sky position, and time of coalescence—so tightly that
it would be possible to carry out the search for these signals over a vastly reduced
parameter space in LISA data. Indeed, high fidelity measurements enabled by the 3G
observatories considered in this paper imply that archival searches in LISA data require
only a one-dimensional template bank over the binary’s chirp mass—the only parameter
that is measured better by LISA than 3G observatories. Thus, the volume of parameter
space necessary to search over is greatly reduced. With template banks containing only
102–105 templates, archival searches in LISA are feasible for signals of SNR as low as
∼ 4–6. This would allow for the possibility of O(100) multiband gravitational-wave

163



detections per year, a number that can vastly improve the quality of tests of general
relativity that can be performed by 3G observatories or LISA by themselves [371,372].

We have made several implicit approximations in this study that would need to be
reexamined to ascertain that the principal conclusions of this paper remain valid. Firstly,
we have assumed that the observed binaries would have negligible residual eccentricity
when their signals enter the LISA sensitivity band. This is true for most binaries that
spend millions of years to slowly spiral-in and merge during which radiation reaction
tends to circularize the orbits. However, black hole binaries that form in rich clusters
could have non-negligible eccentricities when LISA observes them. 3G observatories
should be able to constrain residual eccentricities to a pretty good accuracy which could
then be used to reduce the search space. Even if the eccentricity in the audio band of 3G
observatories is vanishingly small it will be possible to evolve the orbits back and limit
the search parameter space in the LISA band. Eccentricity will likely be a parameter
that would not be measured very well by 3G observatories (as any residual eccentricity
would have largely decayed) and LISA will likely constrain it better.

Secondly, we have assumed that companion black hole spins are aligned with the orbital
angular momentum of the system. Spin-orbit and spin-spin couplings will significantly
alter the orbital evolution only when spins are large and misaligned with the orbit. This
will be a relatively small part of the parameter space. Moreover, spin effects occur at
higher PN orders and are measured better by 3G observatories than LISA. It is, however,
important to confirm that precessional effects are negligible in archival searches especially
since they are cumulative effects and the signals spend many more cycles in the LISA
band than they do in the audio band.

Finally, if the binaries live in a gas-rich environment then the inertial drag could
accelerate the rate at which the companions spiral in. Such drags might not be relevant
when the binaries enter the audio band of 3G detectors and hence it would not be possible
to correct for the presence of environment. In the same spirit, we have not included any
ultra-light boson clouds or other fields that might surround the companion black holes
in the low-frequency phase of the evolution. This could alter the orbital evolution but
would not be relevant at later stages [405,406].

While not all of these effects are equally important, it is necessary to investigate the
cost of including them in an archival search as they could potentially reveal important
mechanisms in play in the formation, evolution, and environments of stellar-mass and
intermediate-mass black hole binaries.
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Chapter 8 |
Conclusion

8.1 Summary
Black holes and neutron stars are some of the most extreme objects in the known
universe, containing the entire mass of our sun in the radius of a metropolitan area.
When these objects orbit one another, their extreme densities cause them to dynamically
bend the space and time around them sending ripples across space known as gravitational
waves [15]. These gravitational waves siphon energy from the binary causing the two
objects to inspiral until they eventually merge. The effect of these waves as they travel
throughout the Universe is to cause distances between fixed points to oscillate, although
the strain induced is typically on the order of 10−21 or smaller. Still, we can detect
these faint signals using a network of laser interferometers across the world, which act
as extremely precise rulers. The interferometric gravitational wave detectors known as
LIGO, Virgo and KAGRA transformed our understanding of the universe by directly
detecting gravitational waves from merging black holes for the first time in 2015 [12].
Gravitational waves from compact binary mergers give us a new window through which
to observe the universe, allowing us to push the boundaries of what we know about
fundamental physics, astrophysics, and cosmology. For example, gravitational waves
have allowed us to put Einstein’s theory of general relativity to the test more than one
hundred years later. Through gravitational waves, we can learn about how, when, and
where in the universe black holes and neutron stars are formed from stellar collapse
and how matter behaves under the most extreme conditions. Even more lucrative is
the opportunity to observe the same astrophysical event with both gravitational and
electromagnetic radiation, which is possible when a gamma ray burst accompanies the
merger. This is the object of the burgeoning field of multi-messenger astronomy, which
was kickstarted with the now famous merging pair of neutron stars, GW170817, along
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with its coincident gamma ray burst, GRB170817A [66,67,407].
Much of my dissertation work has focused on the development and operation of

the low-latency GstLAL inspiral search pipeline [4, 111–113]. In Chapter 2, I detail
the methods of this search pipeline in its most up to date form, at the time of writing.
Further, I give an overview of the technical software implementation to describe how the
pipeline was operated in the fourth observing run.

In Chapter 3, I discuss a novel strategy for the joint detection of sub-threshold
gravitational waves and gamma ray bursts. One of the most enlightening detections
we have made is the joint observation of gravitational waves from GW170817 and
electromagnetic radiation from GRB170817A [67]. By observing the same system with
both gravitational waves and electromagnetic radiation we can learn much more than
would be possible with either messenger alone. By searching for gravitational waves
on a day-to-day basis and making detections as rapidly as possible we can increase our
chances of making a multi-messenger observation overall. However, to enable deep follow
up, we must be able to precisely identify where on the sky a gravitational wave signal
originated from. Our best chance of achieving this is when a GRB is associated with the
merger, since the localization abilities of GRB telescopes such as Swift are much better
than what we can achieve with gravitational waves alone. As we have seen over several
years of observation, the chances of finding a loud gravitational wave event associated
with strong GRB emissions are very slim. For this reason, I have led an effort to leverage
“sub-threshold” candidates. These are possible gravitational wave events with relatively
low significance. By using these sub-threshold events to trigger targeted sub-threshold
GRB searches with the Swift telescope, we can search for coincident events too quiet to
be detected in either instrument alone [154]. In this way, we can benefit from Swift’s
localization abilities, even for quiet gravitational wave signals or weak GRB emission,
and enable follow up observations all across the electromagnetic spectrum. This kind of
collaborative approach may be the key to detecting the next multi-messenger event.

While multi-messenger astronomy focuses on the science potential of multiple observa-
tions of a single event, many other areas of study rely upon analysis of large populations
of diverse signals. The Gravitational Wave Transient Catalog (GWTC-3) includes all
detections made throughout each observing run to date [?, 138, 164,165]. These catalogs
are produced by re-analyzing the data after the observing run has ended. In Chapter 4,
I overview my contributions to the production of this catalog and the approximately 70
black hole and neutron star mergers added to it during LIGO and Virgo’s third observing
run (O3) [?, 138]. Building up this catalog of diverse gravitational wave signals is critical
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for answering long standing questions of astrophysics. For example, how often do pairs
of black holes and neutron stars merge? How and where are these binaries formed?
What are the bulk properties of the populations of these objects in the universe? As we
transition from analysis on an event-by-event basis to analysis on populations of events,
we can start to constrain the answers to these questions, but a full understanding will
only come with more detections.

Much of my work has focused on improving the GstLAL low-latency search pipeline
towards LIGO and Virgo’s fourth observing run (O4) which took place from May 2023
– January 2024 [113]. This work is given in Chapter 5. I developed a software suite to
quantify and monitor the real-time performance of any compact binary gravitational wave
search [283]. With this software, rich performance metrics are available for visualization
via live web-based dashboards and mining via machine-readable databases. Using this
software, we can understand the performance of the analysis and predict its behavior and
sensitivity in the presence of astrophysical signals. This work led to the incredible success
of the search in O4a, which I present in Chapter 6. We have seen detection rates more
than double, with 81 new highly significant gravitational wave candidates. In addition, I
analyze the performance of the GstLAL search pipeline individually, demonstrating its
significant contribution to the overall success of the run.

As we look forward to the coming years of observation, it’s important to prepare
methods for gravitational wave detection with next-generation detectors. The Laser
Interferometer Space-based Antenna (LISA) is a detector planned to launch into orbit
around the sun in the next decade [78]. With isolation from the environmental noise of
Earth, LISA will be extremely sensitive to the very early portions of compact binary
inspirals, where LIGO and Virgo are completely blind. This means that binary black
hole mergers will sweep through LISA’s sensitive frequency band long before we detect
them on the ground. In Chapter 7, I present results of a study where we find that it
will be computationally infeasible to detect these signals in LISA’s data with a blind
search, however we can perform targeted archival searches for them after their detection in
ground-based detectors [353,362]. My work has demonstrated that this method could lead
to tens of black hole merger detections in LISA each year. By observing these signals in
both the low and high frequency bands of space-based and ground-based interferometers,
we can glean more information about their sources than would be possible in either
instrument alone.
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8.2 Future directions
Although the rate of growth in the field of gravitational wave astronomy has been
unprecedented, there is still much to learn and many open questions remain. The O(100)
gravitational wave detections so far have come along with surprises and unexpected
new information about the universe and this trend will surely continue as we build up
larger catalogs. Already, the second part of the fourth observing run (O4b) is ongoing.
This run is expected to last for approximately ten months bringing the full duration
of O4 to 18 months. This is by far the longest observing run by the LIGO, Virgo,
and KAGRA Collaboration to date. Paired with the advances in detector sensitivity,
O4 will cover a much larger sensitive time-volume than any previous run and this will
come along with a corresponding increase in detections. In O4b, we look forward to the
possibility of detecting the next multi-messenger BNS, especially with the possibility of
an early-warning detection. There are still regions of the CBC parameter space which
have yet to be fully probed: the upper mass gap where pair-instability supernova predict
a dearth of black holes, the heavy IMBH mass region, or systems with high or un-aligned
spin to name a few. Detections in any of these areas would bring a wealth of new
possibilities for study and surely uncover new information about the universe.

Having nearly doubled the size of the existing catalog, the new gravitational wave
observations from O4a presented in this dissertation will bring advances in our under-
standing of physics in many areas. By adding to the population, we will be able to
reduce uncertainty in estimated merger rates and mass and spin populations [62]. With
improved sensitivities, we expect observed signals in O4a and beyond to become louder
in the LIGO and Virgo data than previous observing runs, leading to better tests of
waveform accuracy and general relativity [65,254,255]. The extended sub-threshold list of
candidates presents opportunities for deep targeted follow-up for coincident GRBs [408].
These are just a few examples of the studies that can be done using our gravitational
wave detections. We look forward to many years of continued detection with LIGO,
Virgo, and KAGRA and all the understanding and surprises that they bring.
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