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List of symbols by order of appearance in the manuscript, note that most of the symbols in the
manuscript will be labelled by the subscript 1 for the front side and 2 for backside :

E. The conduction band edge
Absolute temperature
n; The intrinsic electron density
N, The effective density of states in the conduction band
N, The effective density of states in the valence band
E, The intrinsic silicon midgap
k Boltzmann constant
Er Fermi energy level
LDD Lightly doped drain structures
q Elementary charge
F, The surface electric field
Aap The electrostatic screening length
g The valley degeneracy
m; Longitudinal effective mass for electron
my Electron rest mass
A,p The 2-D density of states
Niny The electron
AE The energetic band tail
T The saturation temperature
SS(T) The subthreshold slope function
Vg The gate bias (subscript 1 for front and 2 for back)
/2 The flat band voltage (subscript 1 for front and 2 for back)
V The surface potential (subscript 1 for front and 2 for back)
Vo The midgap energy level
Qg4 The depletion charge
Cit The interface trap capacitance
Cox The oxide capacitance (subscript 1 for front and 2 for back)
Cy The depletion capacitance
Cg The silicon film capacitance
f(E,ER) The Fermi distribution function




N(E,AE) The electronic density of states function
Terr(T) The effective temperature function
o(Eg, AE) The conductivity function
w The width of the device
L The length of the device
Epg The Fermi level at the source point
Erg The Fermi level at the drain point
D(Eg,T,) The diffusivity function
pn(Q) The electronic mobility function
tox1 The front oxide thickness
ts The silicon film thickness (body)
tox2 The Back oxide (BOX) thickness
i Permittivity of silicon film
& Permittivity of vacuum
Eox Permittivity of oxide
A, The work function difference betweip the corresponding gate and the silicon
ilm
¥ Electronic wave function
% Valley index
l Energy level index
Epl Subband energy corresponding to energy level [, and valley v
9y The degeneracy of valley v
Maosv The electron density of states mass corresponding to the valley v
Al The electrostatic potential matrix (not well indicated)
h The normalized Planck constant
Ay The 2-D density of states corresponding to the valley v
V(x) The potential spatial function
Coc(Vy1) The gate to channel capacitance function
Eoo The ground subband (unprimed valley)
Eo, The second subband (unprimed valley)
Eyp The third subband (primed valley)

Qinv (Vgl)

The inversion charge density function




bim The quasi-Fermi level
Eerr The effective electric field
Qq The gate charge density
Qcp The coupling charge density
AV (Q412) The quantum shift function
Qoffset The offset charge density
Xs The subband potential
V0 The surface potential initial guess
g (V) The error correction function
Herr The effective mobility
o The classical linearization coefficient i.e. Wit_h respect to the surface potential
m and computed at the middle point
Agre The linearization coefficient computed at the source point
Asar The linearization coefficient computed at the drain point
Veat The saturation velocity
Cqq The parasitic capacitance laying between the front gate and the source side
Cso The parasitic capacitance laying between the back gate and the source side
Cqq The parasitic capacitance laying between the front gate and the drain side
Cyz The parasitic capacitance laying between the back gate and the drain side
celr The altered oxide capacitance in the case of a 2-D electrostatic scheme
I@ef 4 The altered gate bias in the case of a 2-D electrostatic scheme
R, The parasitic resistance in the source side

The parasitic resistance in the drain side







General Context



Conventionally, quantum computers consist of two parts: a quantum processor that comprises
a set of qubits, and a classical electronic interface part required to perform the control and
readout of quantum states. Factually, in order to preserve the compactness and reliability of the
quantum computer and to ensure a reduced signal latency, the qubits were implemented in the
cryogenic chamber along with the classical electronic interface so as to ensure the higher
accuracy and the lower noise of the signals provided by these control/readout electronics.
Owing to the back biasing feature, FDSOI transistors can regulate the threshold voltage, require
low voltage supply, making them consequently able to exhibit low power consumption, which
make them a good candidate for cryogenic operation.

The designing of reliable and optimized circuits for deep cryogenic operation requires suitable
compact models to be embedded in the process design kit packages. Several efforts including
this thesis are going on currently in order to provide such models. Nonetheless, the realization
of standard compact models that are mature enough still requires longer time and further
endeavors.

To tackle such task two approaches have been adopted by the research community. The first
approach consists of adapting existing standard models for deep cryogenic operation. Such
adaptation is made using empirical solutions in order to improve their accuracy and
predictability in cryogenic operation. Such approach comes along with a lot of advantages,
since these standard models contain already all the additional effects and features and are
numerically robust. However, these advantages come along with the limitations that these
standard models are not adapted for cryogenic operation, namely because they consider a 3D
gas of electrons and use Maxwell-Boltzmann (MB) statistics to describe their distribution. The
second approach consists of building physics-based models aimed for cryogenic operation from
scratch. Such choice allows to overpass the limitations of the first approach, for instance, 2-D
electron gas along with the use of Fermi-Dirac (FD) statistics can be considered initially.
Nevertheless, these models are not mature enough to be implemented in Process Design Kits
(PDK).

Expressly, the key stone into developing mature and suitable compact models is to understand
the underlying physics that rules the MOS transistor behavior at cryogenic temperatures. For
this end, in the frame of the present thesis we explore the different physical effects that manifest
in transistors operating at cryogenic temperature such as the statistics that describe the electron
distribution at these conditions, the subthreshold slope saturation at low temperature, and the
mobility law evolution.

In our study, three levels of modeling are performed. The first one consists of the self-consistent
solution of Poisson and Schrddinger (PS) equations. Such PS simulations are a useful tool for
understanding the physics that governs FDSOI transistors down to deep cryogenic
temperatures. The second level of modeling is presented by the numerical model which meant
to be a solid background for the development of the analytical model. The third level of
modeling is of an analytical nature. Expressly, the PS simulations certify the charge and current
solutions predicted by the numerical model, which in turn certifies the same predicted solutions
by the analytical compact model.

Correspondingly, in the introduction chapter, i.e. Chapter one, we will be exposing the frame
from which emerges the challenge that we are trying to solve throughout this thesis.
Accordingly, the components of a quantum computer are exposed along with the reasons the
electronic interface needs to be located in the cryogenic chamber. Then, we will be discussing
the justifications for the choice of CMOS technology and precisely the FDSOI transistors as
the ultimate candidate to be implemented in the classical interface for deep cryogenic



temperature operation. In this context, the urgent demand for compact models describing the
operation of FDSOI devices at cryogenic temperatures emerges as it is a crucial element for the
process-design kits to assemble reliable and optimized circuits. To produce such compact
models one can seek two approaches, the first one starts from existing standard compact models,
which are originally built for room temperature operation and uses empirical formulas in order
to adapt them to cryogenic temperature operation. The second approach considers building
fully-physics based compact models that are dedicated for cryogenic device operation. Indeed,
in the frame of the present thesis we pursue the second approach.

In the course of the Chapter that uncovers the underlying physics that reigns the device behavior
at deep cryogenic operation i.e. Chapter two of the thesis, we pave the way to justify some
principal assumptions and choices that have to be made subsequently. Chiefly, the Maxwell-
Boltzmann (MB) approximation validity down to cryogenic temperatures is discussed by the
exposition of the reasons for which it does not hold in our present study and the reasons why it
can be retained in some specific situations. Such discussion will be followed by the
demonstration of the exponential band tails exhibited by the two-dimensional density of states.
Ensuing, we expose two approaches to compute the subthreshold slope saturation manifested
at deep cryogenic temperatures. In the same frame, we propose a description of the conductivity
function through the use of the Kubo-Greenwood integral along with the diffusivity function in
the degenerate statistics regime. Such exposition will be accompanied by the exhibition of the
bell-shape mobility law that rules the electronic mobility at cryogenic temperatures. At the end
of this chapter, we present an appealing effect that has been observed experimentally for back-
biased FDSOI transistors and propose a legitimate explanation.

In the third chapter, dedicated to the exposition of the performed Poisson-Schrodinger
simulations, we display an in-situ analysis of the band diagrams along with the subbands
population mechanism appropriate for FDSOI structure operating at deep cryogenic
temperatures. Such simulations were curiously performed as well at the T — 0K limit.
Correspondingly, we expose the electrostatic parameter curves namely the gate-to-channel
capacitance curves that exhibit an appealing two-plateaus behavior for back-biased FDSOI
structures. At the end of this chapter, the simulated gate-to-channel capacitance curves are
confronted to collected C-VV measurements in order to be validated.

The fourth chapter is dedicated to the development of a numerical model that is aimed to the
keystone for the compact model development. Such numerical model would be based on a
system of two coupled charge equations. The establishment of such system would be
accompanied by certain choices concerning the charge coupling term and the quantum shift
function. In this frame, we propose an extended form of the quantum shift function that is
suitable for different geometrical configurations and for back-biased structures. At the end of
this chapter, mathematical expressions that describe the numerical integrals involved for the
computation of the drain current in the case of Fermi-Dirac statistics are presented.

In the course of the Fifth chapter, dedicated to the development of the required compact model,
we range from the presented system of coupled equations in order to get an exact analytical
solution for the surface potentials. Such solution is derived through a step-by-step technique
that considers the application of a number of error correction steps. Similarly, closed-form
analytical expressions were demonstrated for the diffusion current computation directly,
however, concerning the drift current computation we presented a two-slope inversion charge
linearization technique applicable for back-bias structures that considers the computation of the
respective slopes at the source and saturation ends. Finally, a few short channel effects were
implemented to the core model such as the velocity saturation, the DIBL and charge sharing
phenomena, and the parasitic resistance effects.



Chapter 1: Introduction



In his document published in 1982 [1], Richard Feynman proposed the idea of a computer that
“will do exactly the same as nature”, i.e. a new kind of computer that imitates the physical laws
of quantum mechanics like superposition or entanglement, i.e. a “quantum computer”. Quantum
computers can solve real world NP-complete problems? proficiently, such as efficient search in
extremely large datasets, factorization of large integers in their prime factors, simulations of
quantum systems for the optimization of drug synthesis, materials and industrial chemical
processes [2].

In a quantum computer, standard logic bits are replaced by quantum bits (qubits), whose states
can be represented as a point on the surface of a three-dimensional sphere, the so-called Bloch
sphere. In this concept, standard logic ‘1’ and ‘0’ are replaced by quantum states |[0> and |1>,
and are manipulated, so as to exploit the fundamental phenomena of quantum mechanics for
computation. Qubits can exist in a superposition of both states |0> and |1> simultaneously,
which results in a computing power that doubles with every additional qubit, thus resulting in
a massive speedup with respect to traditional computers. For example, it has been estimated
that the state of a 50-qubit system, which corresponds to about one petabits, cannot be stored in
the memory of the world’s most powerful computers today [2].

In its fundamental core, a quantum computer comprises:

e A quantum processor, which consists of a set of qubits.
e A classical electronic interface required to perform the control and readout of
quantum states.

Given that each qubit technology/implementation has its own strengths and weaknesses, the
discussion is still ongoing about the choice of a standard qubit to build a large-scale quantum
computer. Due to their similar nanofabrication techniques to those used in the microelectronics
industry, silicon spin qubits and superconducting qubits or the so-called “Solid-state qubits” are
probably the best choices for scalability (see Figure 1). The advantages of the superconducting
qubits are their simple fabrication and easy control; but size-wise they are very large compared
to silicon qubits, the formers are of the order of micrometers whereas the latter of the order of
nanometers; they need lower operating temperature, 10mK for superconducting qubits
compared to 100mK for silicon qubits. On the other hand, silicon qubits have finer compatibility
to microelectronics industry than superconducting qubits, but they are more susceptible to
defects, disorders or strains, invoking a long-lasting endeavor to determine the right operating
voltages [3].

Superconducting circuits

Semiconductor quantum dots

Figure 1. Solid-state qubits: to the left a spin qubit, to the right a superconductive qubit [4].

1 The name "NP-complete" is short for "nondeterministic polynomial-time complete”. In this name,
"nondeterministic” refers to nondeterministic Turing machines, a way of mathematically formalizing the idea of a
brute-force search algorithm. Polynomial time refers to an amount of time that is considered "quick" for a
deterministic algorithm to check a single solution, or for a nondeterministic Turing machine to perform the whole
search. "Complete" refers to the property of being able to simulate everything in the same complexity class.
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In the framework of the MOS-Quito project, CEA-Leti has developed its own qubit; a silicon-
on-insulator nanowire field-effect transistor with two gates G1 and G2 (see Figure 2). The
superposition and entanglement of the electron spins under the gates set the quantum
information, spin-resonance techniques are used to control or “rotate” the spins by sending
nanoseconds voltage pulses and GHz microwave bursts to the gates G1 and G2. RF
reflectometry is commonly used to read-out the spin states of the qubit by connecting an LC-
network to the gate [5].

Quantum states can be very easily disrupted by the heat generated vibrations, which must be
eliminated for the quantum states to manifest. Thus, the quantum processor must be cooled
down to deep cryogenic temperatures, typically between 10 — 100 mK.

The lifetime of a quantum state, so-called the coherence time, only lasts for a very short time,
normally in the order of nanoseconds or microseconds in best cases [6]. Such periods are not
long enough to execute any practical computation. Hence, they need to be maintained longer, a
task supervised by the classical electronic interface.

(b)

Si
Source &=
BTN OPolySi @ SiOz/HfO-
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Figure 2. (a) Scheme of the CEA-Leti qubit [5]. (b) Colorized transmission electron microscopy image of the device along a
longitudinal cross-sectional plane. Scale bar, 50 nm [7].

Considering the qubit sensitivity, the classical electronic interface needs to grant the following
extremely challenging specifications [2]:

e Accuracy: to ensure the optimum operation of the quantum processors, the
electronic signals feeding the qubits must be highly accurate in terms of
amplitude, timing, frequency and phase.

¢ Noise: the electronic signals feeding the qubits must transmit very limited noise,
to guarantee the non-alteration of the quantum states.

e Bandwidth: Controlling solid-state qubits is done through the generation of
microwave bursts ranging from few GHz to tens GHz, in addition to the current
and voltage pulses of tens MHz.

Moreover, to transcend the short coherence time, information redundancy has been proposed
through the error correction techniques, by implementing the quantum information in a large
number of qubits, i.e. trading off the simplicity of the system by its reliability, making the
threshold of number of qubits required to perform practical computations even higher [2].

In essence, the classical interface must take care of two functions, the execution of the quantum
algorithm and the fidelity of the computation beyond coherence time. High fidelity conveys
that the quantum-controller needs to bring back the qubits to its initial state with a probability
of 99.99% [4]. In addition, the latency of the error-correction loop must be lower than the qubit
coherence time.



A generic control and readout platform is composed of several subsystems, a multiplexing and
demultiplexing amplification matrix or the switch matrix, an I-to-V converter, a low pass filter,
analog to digital conversion ADC components and digital to analog conversion DAC
components [2], [8]. The switch matrix is a key component that directs a particular waveform
to a particular qubit based on its digital address, it is placed close to the qubits, to avoid latency
and synchronization problems if it propagates on a path comparable to its wavelength [6].

At first, the qubits were implemented in a Helium dilution chamber, while the control/readout
electronics were kept at a distance at room temperature. The connection between the two is
realized through a number of physical wires, and each qubit is controlled solely. This might be
practical for simpler prototype systems where the number of qubits is below 100 [4], and
compactness is not required. The limitations of this implementation are basically due to the
thermal load of the large number of cables, and the latency of the error-correction loop. The
result would be a big, expensive, unpractical quantum computer with low reliability [2]. Thus,
such an approach cannot be maintained for a large-scale quantum computer with big density of
qubits.

Scaling up the number of qubits requires a new approach, one that can ensure a compact design,
while satisfying all thermal requirements, and improving reliability and debuggability of the
overall system [4]. Such needs are attained if the classical logic interfaces are located in the
cryogenic chamber, which would be accompanied with the advantages of an enhanced clock
speed, an improved noise performance, a reduced signal latency/timing errors, and larger
bandwidth [6]. In such an installation (see Figure 3), the long wiring can be removed from the
system and replaced by interconnects, and the control and readout of multi-qubits will be
performed simultaneously in proximity [8], resulting in a more compact and more reliable
system [2]. Nonetheless, this approach will add another constraint to the classical interface
performance, the power dissipation constraint.

Before Now

T=300K
Electronic interface

T=4K Electronic interface

Quantum processor

Figure 3. Schematic representation of the two approaches.

Quantum processor

The thermal budget due to the power dissipation has to be within the thermal absorption limits
of the refrigeration system. Taking advantage of the different distribution of thermal budget
across the system, the control architecture can be placed at a certain stage of temperature [4].
A feasible control platform power dissipation of 30 mW, making it operating at liquid helium
temperature (LHT) i.e. 4.2K [6].

Based on what has been said previously, the choice of technology for constructing this layer of
classical control is largely dictated by its functionality at very low temperatures, its high speed
and compactness. The electronic devices that have shown functionality at cryogenic
temperatures are JFETs, HEMTS, superconducting devices based on Josephson junction,
compound semiconductors, and CMOS transistors. Regarding the low power consumption,



integration of billions of transistors on a single chip, and the very mature industrial technology,
CMOS is the chosen candidate [2], [4], [6], [8].

The quest for understanding the underlying device’s physics at cryogenic temperatures has
started decades ago [9]. Some physical phenomena that are dominant at room temperature
become non-dominant at cryogenic temperature, and equivalently, some physical phenomena
that were of minor importance at room temperature become dominant at cryogenic
temperatures, those physical phenomena will be discussed in detail in Chapter 3.

Bulk CMOS operating at cryogenic temperatures is characterized by an increase in the threshold
voltage due to the carrier freeze-out, and by some kink effects that are caused by the dopant
freeze-out. Nonetheless, those kink effects are either reduced or absent in a more mature and
refined CMOS technologies such as the FDSOI technology. In comparison to bulk CMOS,
FDSOI transistors can perform an in-situ control of the threshold voltage due to its back biasing,
a low power consumption due to its low voltage supply, and a low variability due to the undoped
silicon channel [10], which could offer the optimum cryogenic device performance [11].

Compact models describing the operation of MOS devices at cryogenic temperatures are crucial
for the designing of reliable and optimized circuits. Nowadays, process-design kits lack models
for all devices at deep cryogenic temperatures, whether it is a MOSFET, a qubit, or a passive
device. The task of building compact models for cryogenic operation needs to be tackled
urgently, mainly because today’s circuit simulations fail to function as expected down to
cryogenic temperatures. Consequently, excessive simulations are needed to be done to account
for the changes in different parameters.

There are two approaches to deal with this task, the first one is to take existing standard compact
models, which are originally built for room temperature operation and try to adapt them to
cryogenic temperature operation through empirical formulas. This approach does not require a
long time but as the underlying physics at cryogenic temperatures is not the same as at room
temperature, the result would be non-physical compact models that would be very limited. Such
approach can be adopted when the resources (whether human or budget or time) are limited. It
should be noted that for this approach the circuit performance is not guaranteed, and they are
designed with a non-negligible degree of uncertainty.

The second approach, which is a research approach and the one we choose in the frame of this
thesis, is to build fully-physics based compact models that are dedicated for cryogenic device
operation. Such an approach is more time consuming and the process of developing appropriate
compact models is progressive, starts with a core model that predicts the long channel transistor
behavior, followed by continuous add-ons/improvements for different effects such as small
transistors effects, access resistances, self-heating effects, to name a few. Compared to the first
approach, this approach should be less risky and the output design-wise is much more
appropriate and precise.

1.1 State-of-the-art of standard compact models at cryogenic temperatures:

Current standard compact models can scale down to liquid Nitrogen temperature 77K, but at
liquid Helium temperature 4.2K and below some discontinuities start appearing in the moderate
inversion region. This is due to two things basically, the lacking/incorrect modeling of the
device physics at this range of temperatures (as it was not initially planned for this aim), and
the numerical issues generated by the very large arguments of the exponential functions used
in the Maxwell-Boltzmann statistics, leading to their explosion and the model’s crashing.

Moreover, at cryogenic temperatures, the Maxwell-Boltzmann approximation is not valid
anymore; the intrinsic carrier concentration n; becomes extremely small (they are found to be
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lying outside the range of the IEEE double precision 107398 — 103°8; for example at 4.2K,
n; = 10778 ¢m™3), resulting in enormous arithmetic underflows in the implemented analytical
expressions [12].

Efforts to models the operation of CMOS transistors started prior to the need for quantum
cryogenic controllers [13], [14]. Figure 4 for example exposes the simulations obtained using
the BSIM model versus the experimental data measured at 100K of an NMOSFET. This deficit
of modelling the transistor’s behavior at this temperature is due to the inappropriate projection
of the built-in temperature dependences of the BSIM model. Such projections are not valid
down to this range of temperatures [14].
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Figure 4. 100 K measured and simulated drain-to-source current versus gate-to-source and drain-to-source voltage curves of
the N-MOSFET with W/L = 15.6 um/0.16 um [14].

Subsequent to the emergence of a quantum controller need, modelling efforts were held
predominately in the four axes; each one will be discussed and highlighted hereafter.

 The EKV MOSFET model:

The EKV MOSFET is a simplified charge-based model that can be used for advanced CMOS
technologies, and require four parameters to fit the I, — V;; transfer characteristics: the slope
factor n, the specific current-per-square parameter Iy, the threshold voltage parameter Vr,
and the velocity saturation parameter L, [15]. In such a model, the concept of inversion
coefficient IC, a parameter that quantifies the channel’s inversion, is introduced to replace the
overdrive voltage. Both the normalized transconductance efficiency g,,/1; and the normalized
output conductance g,,/1; are found to be dependent of the inversion coefficient [15]. This
IC-based methodology has been proved valid for back-biased FDSOI transistors at room
temperature [16].

At cryogenic temperatures on the other hand, the major increase of the slope factor parameter
n at 4.2K is attributed to the interface-trapping phenomenon, followed by a small adjustment to
introduce the change in the subthreshold slope induced by the back-gate biasing. The threshold
voltage shift due to the incomplete ionization, a phenomenon that characterize doped CMOS
technologies at low temperatures (this effect will be discussed in Chapter I11), as well as the
threshold voltage shift due to the back-gate biasing and the Fermi-Dirac shifting are captured
in the V;,, model parameter adjustments, and the L., parameter decreases at 4.2K because of
the reduced phonon scattering. The normalized transconductance efficiency design-
methodology is proved still valid for FDSOI transistors at 4.2K [17].

The published modeling works of the 28 nm FDSOI transistor based on the EKV MOSFET
model [17], [18] do not account in an intrinsic manner for Fermi-Dirac statistics, do not



demonstrate the C-V characteristics of the transistor, and deals only with singular channel
operation.
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Figure 5. Transfer characteristics of a long (to the left) and a 28 nm short nMOS down to 4.2K, the simulations are done
using the EKV-MOSFET model.

Q The MOS11/PSP models:

PSP is a physical surface-potential-based standard compact model for bulk MOSFET transistors
that gives an accurate description of currents, charges and their higher order derivatives, an
important feature for RF circuit designs [19]. The core model includes the computation of the
surface potentials at both the source and drain ends, the terminal charges, and the intrinsic drain
current accounting for the symmetric linearization method. The model contains two
distinguished set of parameters, a global parameters set that consider the geometry
dependencies, and a local parameters set that facilitates the parameter extraction procedure [20].

The PSP model is only certified down to the temperature of 218.15K. For liquid helium
temperature operation, temperature-dependent model parameters need to be extracted from the
LHT measurements, some of which need to be modified while others are zeroed. For the
MOS11 models on the other hand, and besides the temperature-dependent extraction, additional
electrical components need to be implemented in the model in order to consider LHT device
behavior. For example, the kink effects observed in the 160 nm CMOS devices are taken into
account by adding a non-linear resistor in series with the bulk terminal [21], [22]. Two examples
of the output characteristics are shown in Figure 6, and a summary of the modified parameters
is listed in Table 1.
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Figure 6. Output characteristics of a 160 nm nMOS (left), and 40 nm nMOS (right). Measurements at 300K (dotted line),

measurement at 4K (solid lines), and the MOS11/PSP model (dashed lines).

MOS11 parameters for 160 nm CMOS
BETSQR VFBR THESRR THESATR THERR AlR
A2R A3R SDIBLO ALPR KOR
PSP parameters for 40 nm CMOS
FACTUO DELVTO THEMUO THESATO RSW1 CFL
ALPL MUEO FBET1

Table 1. MOS11 and PSP Modified parameters for 160 nm and 40 nm NMOS [21].

O The BSIM model:

Berkeley Short-channel IGFET Model (BSIM) is an industry standard compact SPICE model.
BSIM is in fact a family of models that evolved along with the evolution of transistor’s
structure. BSIM-IMG (Independent Multi-Gate) is a surface potential-based for SOI/FDSOI
MOSFETSs, where the front and back surface potentials are derived simultaneously by solving
Poisson’s equation for different combinations of biases. BSIM-CMG (Common Multi-Gate) is
a surface-potential based model for multi-gate MOSFETSs (like FinFETSs) that considers
arbitrary channel cross-section shape. Once the computation of the surface potentials is
performed, it is followed by the computation of the correspondent charges, capacitances, and
terminal currents.

The BSIM models were reformulated to allow their operation at cryogenic temperatures. A new
temperature dependent charge density model is proposed, taking into account the band tail
states, threshold voltage, mobility, and current saturation. The results are shown in Figures 7 &
8 [23].
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As for the drawbacks, the BSIM compact models are based on Maxwell-Boltzmann statistics,
the impact of Fermi-Dirac statistics is emulated by considering an effective temperature instead,
and a threshold voltage correction is added to the gate voltage term.

0 The L-UTSOI model:

L-UTSOI is a standard surface-potential-based compact model dedicated to FDSOlI MOSFET
technologies with low-doped channel, developed at CEA-Leti and previously named Leti-
UTSOI. The model accounts for the creation of a strong inversion layer at both interfaces of the
silicon body, the so-called “dual-channel operation”, and gives an accurate description of the
currents, charges and their derivatives in all bias-configurations [24]. Moreover, the model
reproduces accurately the normalized transconductance efficiency g,,/1;, a valuable feature
for RF applications [24], [25]. Solving the dual-channel operation equations is challenging
mathematically, as the integration of Poisson’s equation with boundary conditions (the model
consider volume inversion of only mobile charges following the Maxwell-Boltzmann statistics)
leads to a set of equations involving either hyperbolic or trigonometric functions. The coupling
of the two interfaces is expressed through a charge-dimensioned quantity, that can be either real
(hyperbolic mode) if the interfaces are actually coupled, or imaginary (trigonometric mode) if
the interfaces are decoupled [25].

At cryogenic temperatures, the L-UTSOI model cannot reproduce the I — V or C — V
characteristics, and crashes sometimes if the temperature is below 173K. The temperature
dependence of the parameters needs to be cancelled and a temperature-offset parameter is
added, the rest of the parameters are fixed to work at 4K only.

Adapting the L-UTSOI model for deep cryogenic temperature on the other hand will result to
a model produced C — V characteristics that seem to be good, as shown in Figure 9. However,
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the model produced transport characteristics especially for positive back-biases which are not
accurate, as shown in Figures 10, 11 & 12. The kink that the transfer characteristics show in
Figure 11 is due to the Intersubband scattering, a phenomenon that is not manifested in higher
temperatures but is found to be present at cryogenic temperatures for FDSOI transistors (more
on that in Chapter 3). Empirical modifications have been introduced to the mobility law
accounting for its degradation. Such an approach allows a better description of the kink effect
and the produced transfer curves are more accurate. Moreover, to recapture for the inaccuracy
observed in the output characteristics, Figure 10, a non-linear access resistance with
symmetrical values at source and drain side is added. Such an approach has been introduced in
other models, such as Leti-HSP [26], but its physical origin at cryogenic temperatures is not
well understood.
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To summarize, even though the previous works seem to fit the experimental results of the
transistor characterizations at cryogenic temperature, they all share the empirical-adaptation
aspect of pre-existing compact models. As a result, Fermi-Dirac statistics, a fundamental aspect
of electrons at those temperatures is either absent or post-emulated.

Moreover, neither of the FDSOI cryogenic operation published works demonstrate in an
extensive manner the transistor electrostatics characteristics that is to say the electrostatic
surface potentials for both interfaces, and the C — V curves. Likewise, the Fermi-Dirac statistics
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need to be considered in the transport part in the drain current derivation and not only in the
electrostatics part. Furthermore, most of the published works maintain the RT mobility laws
and adapt them to cryogenic behavior by modifying/adding fitting parameters or considering a
constant mobility in the linear regime [17], [27], but none considers introducing a proper
mobility law dedicated for MOSFETS operating at cryogenic temperatures [28].

Besides, numerical simulations are an important step that must precede the development of an
analytical model and that will serve as a solid ground for the validation of its
results/approximations. No numerical simulation has been held in such conditions, whether the
simulation of the electrostatics at equilibrium, or electronic transport out of equilibrium. The
use of such simulations is very important and necessary for the development of compact
models. Firstly, because those simulations take very limited approximation and allow the
demonstration of some quantities that are unachievable through experimentation, or they can
be very handy when the experimental data required to calibrate the compact models are not
available. In the frame of this work, Poisson-Schrodinger simulations of the FDSOI structure
at cryogenic temperatures and accounting for Fermi-Dirac statistics were held to exploit and
understand the device’s electrostatics primarily, and then the simulations were held with the
introduction of a quasi-Fermi level term to analyze the transport aspect of the device.

The scope of this thesis therefore, is to exploit the device’s physics of FDSOI transistors down
to deep cryogenic temperatures and to develop an appropriate core compact model. Such work
would be the foundation into a compact model that is suitable for spice simulations.

For such work, we will be facing the following challenges:

e Understanding the underlying physics.

e Considering the dual channel operation of back-biased FDSOI transistor, which comes
with its own challenges as we have the co-existence of two coupled interfaces.

e The compact model must work for all regions of operation, whether in weak, moderate,
or strong inversion, with a smooth transition between them.

e The model needs to work for different configurations. That includes geometrical
configurations, such as the oxides thicknesses, the silicon channel thickness, the channel
length and width. The model needs to work for all biases configuration, in other words
for a negative, null or a positive back bias. Finally, even though the model is dedicated
for cryogenic operation, it must cover a good range of temperatures.
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Chapter two:
The underlying
physics at
Cryogenic
temperatures



Whereas in the previous chapter we detailed the technological aspects from which emerges the
challenges that we are trying to solve with this thesis, the physical features, which should be
our starting point, were not discussed. Thusly, the microscopic physical aspects are detailed in
this chapter, the exposition of those aspects is put in order; i.e. the electrostatic-based
parameters are discussed firstly, followed by the study of the transport-based parameters.

It should be noted that for some physical entities such as the carrier density n;,,, both the
physical and the numerical aspects are discussed. Such approach is necessary, as historically
low temperature device modeling was considered extremely difficult, implicating, in first
instance, our lack of understanding for the physical phenomena that appears at those conditions
and the corresponding assumptions that have to be made, and in second instance, the numerical
implementation that follows. Both of these two aspects are equally important.

Some choices that are made for the rest of this thesis must be discussed in this chapter, such as
the statistics used to describe the carriers distribution at cryogenic temperatures, the number of
inversion channels involved in the electrostatic control or the transport phenomenon, the
mobility law and the scattering mechanisms involved.

Moreover, in this chapter we consider the conduction band edge E. as the energy potential
reference, i.e. it will be represented by the point 0 in the equations/graphs hereafter.

1.1 Electrostatic-based physical parameters
1.1.1 Maxwell-Boltzmann approximation

In this section, the Maxwell-Boltzmann (MB) approximation validity down to cryogenic
temperatures is investigated. Whereas some published literature emphasized on the non-validity
of Maxwell-Boltzmann approximation down to cryogenic temperatures [1], [2], others argued
its usage [3], [4]. To give an overall view of such aspect, the ongoing arguments in the scientific
community on the validity of MB approximation at deep cryogenic temperatures will be
specified first, followed by the reasons we believe the MB approximation does not hold at
cryogenic temperatures and must be replaced by full Fermi-Dirac statistics.

To better address this debate, one must discern between the physical, the numerical, and the
practical aspect of this subject. From a numerical viewpoint, the numerical overload in the
exponential functions due to the very small T is expected and inevitable. In addition, the
intrinsic carrier concentration take very small values at deep cryogenic temperatures and
becomes null at the OK limit, following n; = \/N,.N,.exp(— E,;/2.k.T) [5],(note that even
N, and N,, are temperature dependent, but such detail is irrelevant to our approach as will be
shown). The scaling of intrinsic carrier concentrations down to deep cryogenic temperatures is
not obvious; a number of solution has been proposed to surmount such problem [6], [7]. The n;
arithmetic underflow and the numerical limitations are tackled according to [3], [8] by using a
variable arithmetic precision. Such approach is sound only if the non-explosion of the
exponential factors is assured. Typically, n; would be zero at the T — 0K limit and takes
extremely small values at deep cryogenic temperatures, for example, Figure 1 taken from [9]
reveals that n; values can go as low as 107278 ¢m ™3 at deep cryogenic temperatures, which is
not meaningful.
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Figure 1. The evolution of intrinsic carrier concentration n; in silicon with temperature [9].

Jointly, at 0 K temperature, Fermi distribution function f(E, Er) = 1/(1 + exp (E — Er/kT))
would be a step function, but a strict step function would lead to zero mobile carrier, which is
inconsistent with the observed correct functioning of MOS transistors at deep cryogenic
temperatures. However, the study performed on LDD structures [2] at low temperatures
demonstrated the fallacy of such description, as in such structure, the series resistance rise up
enormously because of the non-degenerate doping level at the LDD region, hence, the channel
is deactivated. Nonetheless, when high enough electric fields are provided, either through the
gate or the drain biasing, sufficiently impurity field ionization happens, resulting in a big
reduction of the series resistance with biasing [2]. In other words, and in a more general case,
even though the low temperature condition does not provide the required thermal energy for
the electrons to be activated and open the inversion channel, high enough electric fields take
charge of this task, and provide sufficient electrons to open the inversion channel [10], [11].

The physical viewpoint is addressed through two sub-levels; the first one is by inspecting the
doping level, while the second one discusses the relative position of the Fermi level. Indeed,
the assumption of holding the MB approximation is applicable in some specific cases where
the doping level is very high, sometimes just below the degenerate limit and for temperatures
down to 100mK when partial ionization is present’. Reason being that partial ionization would
maintain the non-degeneracy of highly doped semiconductors, thus the MB approximation
validity [3], [4].

In our case , the partial ionization argument does not maintain for an apparent reason, as being
that though the channel doping is indispensable for bulk MOSFETS, it is not for ultrathin FDSOI
architecture, where the doping is only considered as another degree of freedom to control the
V.1, control of the device [12], [13] . Thus, the argument of maintaining the MB approximation
due to the presence of partial ionization for highly doped channels does not hold, and the only
remaining source of electrons to the channel is through the diffusion from source and drain
regions.

! The doping concentration is presumably fully ionized in room temperature, such assumption does not hold for
low temperature simulation. Instead, the partial ionization is described using the next two formulas:

-1 -1
Epp, — E E,—E
=1 2o (EE2)) = (7))
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Primarily, from a physical viewpoint as well, the best way to settle this debate is by analyzing
the relative position of the quasi-Fermi level with respect to the conduction band edge. In such
context, we have three main cases; each case is characterized by its own statistics:

e If the Fermi level is situated deep in the band gap region i.e. Er < 0, then the Maxwell-
Boltzmann approximation prevails [14] .

e If the Fermi level crosses the conduction band edge to some extent i.e. Er = 0, then the
Maxwell-Boltzmann is not valid anymore and the electrons distribution is described by
the Fermi-Dirac statistics [14], [15].

e If the Fermi level is well above the conduction band edge i.e. Er > 0, then the metallic
behavior dominates and the electron statistics become fully degenerate [14], [15].

This is better illustrated in Figure 2, where the electron density is shown as a function of the
difference between the Fermi level and the conduction band edge. Figure 2 indicates that at
very low temperatures the electron density becomes very dependent to small changes of the
Fermi level, meaning that MB approximation leads to huge overestimation of carrier densities
as soon as the Fermi energy exceeds the band edge energy i.e. Er — E. = 0. It is worth noting
that the overestimation of carrier density will inevitably propagate to all density dependent
quantities, the drain current principally.
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Figure 2. Electron density as a function of the relative position of Fermi level with respect to the conduction band edge for
different temperatures. Solid lines: Fermi-Dirac statistics, dashed lines: Maxwell-Boltzmann approximations. The fully
degenerate limit (T = OK) is plotted for comparison [1].

Another reason to keep the MB statistics is from a practical viewpoint. Considering the Poisson-
Boltzmann equation as the standard starting point to calculate the corresponding electrostatics
at deep cryogenic temperatures, [4] chooses to stick with the MB approximation to keep the
model analytical along with its computational efficiency, with the assumption that Fermi-Dirac
statistics would necessitate a numerical integration [4], [8]. In fact, as we will see in Chapter 5,
the use of complete Fermi-Dirac statistics would not impede the development of an explicit
model. Contrariwise, using Fermi-Dirac statistics inherent to cryogenic consideration have the
advantage of the explicit formulation in both strong and weak inversions in a 2D system.

Furthermore, since the simulation at the OK temperature are impossible with both Fermi-Dirac
and Boltzmann statistics due to the infinitely large 1/kT, the Fermi-Dirac integral function
should be replaced by a Heaviside function. This approach is coherent physically as the
Heaviside function emulates perfectly the fully degenerate metallic statistics.
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1.1.2 Quantization of the inversion layer

When a strong electric field is applied perpendicularly to the surface of the silicon channel, the
electronic system forms two-dimensional energy bands called “subbands”. Each subband
corresponds to a quantized motion normal to the surface, with a continuum for motion in the
plane parallel to the surface. Meaning that for an Si (100) surface, the perpendicular direction
will be assisted by two valleys, which present the highest mass for electrons in motion, whereas
the two parallel directions will be assisted by four valleys, which present the lowest masses for
electrons in motion [16], [17] . The quantization effect becomes more accentuated for low-
temperature operation compared to room temperature operation [15], [18], [19]. To support
such statement we have calculated the subband energetic positions on a 10 nm silicon layer of
an FDSOI transistor by solving Schrodinger and Poisson equations self-consistently, without
taking into account image charge and exchange-correlation contributions (full analysis will be
reported in Chapter 3). The calculations were performed for ten subbands, one ground and nine
excited subbands. However, as will be shown in 1.1.6, the electrons reside entirely in the three
first subbands at cryogenic temperatures. We can see according to Figure 3, that the lower the
temperature is, the higher the separation between the first and second subbands, and
respectively between the second and third subbands becomes, signifying a more pronounced
quantum effects as stated by [15], [18], [19] .
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Figure 3. The energetic separation of the first three subbands as a function of temperature for a back-biased FDSOI
structure.

Another subject that should be pointed out in the context of cryogenic temperatures modelling
is the thickness of the inversion layer at those temperatures compared to room temperature.

From a classical viewpoint, the turning point, a parameter dependent on the temperature, is
much closer to the interface for lower temperatures, following kgzT/qF, in the simplest
approximation [15]. Such formula suggests that the lower the temperature is, the narrower the
potential well is, yielding to an accentuated quantization.
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A Dbetter way of explaining this might be through the introduction of the concept of the
electrostatic screening length A, a length that characterizes the distance over which any local
perturbation of the electric potential can be attenuated by the free-electron charge of the two-
dimensional inversion layer. According to [20], A, takes a constant value of about 3 A° either
at low temperature or at high carrier concentration i.e. when the degenerate statistics dominate.

With the quantum confinement, the inversion layer is not located strictly at the interface
between the silicon body and the oxide, but a few Angstroms away because of the dark space
effect. This has to be accounted for, but it does change the fact that the inversion layer is thin
enough for the charge sheet approximation to be valid. Thusly, the charge sheet approximation
[21], usually used in room temperature compact models, can also be considered as suitable for
cryogenic temperature compact models, promoting a reasonable employment of this
approximation in the sections dedicated to the numerical and analytical models (Chapter 4 &
5).

1.1.3 The two-dimensional density of electrons

The next physical parameter to be addressed is the density of states (DOS). As a direct
consequence of the existence of a two-dimensional electron system, the attributed density of
states is two-dimensional. The two-dimensional DOS is independent of energy E, and is given
by Eq 2.1 and the electrons density is given by the integral demonstrated in Eq 2.2. In the
absence of disorder, the density of states function is null below the energy level E, and becomes
constant at E, and for higher energies. For the (100) oriented Silicon film, the valley pair
pointing in the (100) direction, which has a degeneracy of g = 2, have a longitudinal mass
m; = 0.91.m, and a transverse mass m, = 0.19.m,. Note that, hereafter, when the DOS is
treated as constant entity, it will be called A,j.Concretely, if we inject the density of states in
the integral given by Eq 2.2 to establish the expression of electrons density, we find Eq 2.3.

Note that, assuming we are at the absolute zero limit T = 0K, the direct analytical development
of Eq 2.2 gives n;,,(Er, T) = A,p. Ep , such expression depicted by a Heaviside function
represent the typical fully degenerate metallic behavior.

g'm:los Eq2.1

N(E) =

(E) ==—3

Ef
Niny (Ep, T) = f N(E). f(E,Er)dE Eq2.2

Ec

E

Niny(Ep, T) = kT.Azp.1n <1 + exp (ﬁ)) Eq 2.3

In spite of this, in reality, the 2D subband is not a mere step function but it exhibits a band tail
of states [22], [23]. The origin of such band tails is believed to be due to the potential-
fluctuation-induced from crystalline disorder, residual impurities and strain, surface roughness
etc. [22]-[24].

The best way to describe the band tail extension AE is through an exponential decrement of the
DOS, following Eq 2.4, which is demonstrated through Figure 4. Note that this expression
describes continuously the DOS function above and below the conduction band edge. We can
see that if the energy level E is positive, Eq 2.4 is reduced to the 2D DOS term i.e. A,j, and
when the energy level is negative, the exponential decrement of the 2D DOS is present. In
contrast to the expression proposed by [23], where two different expressions were given to
describe both of the DOS regions.
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Azp Eq 2.4
1+ exp(—E/AE)

N(E,AE) =
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Figure 4. Electronic density of states behavior in the presence of a band tail extension, the 0-point being the band edge.

Actually, the band tail extension AE = k. Ty is a finite characteristic temperature that we cannot
go below (a behavior that will be demonstrated in the next section). In other words, this is
equivalent to say that our system has an inherent physical limit.

1.1.4 The subthreshold slope saturation

The band tail of states becomes intriguing if one is interested on what happens in the
subthreshold region. Such band tails are believed to be the origin of the saturation of the
subthreshold slope SS = dV,/dIn(I;) demonstrated at cryogenic temperatures [22], [23].
There are two approaches to calculate the drain current involved in the subthreshold slope
derivation. The first one supposes a proportionality between the drain current and the carrier
density, such approach is the one used here. The second approach considers directly the
electronic conductivity, and the transport in the 2D subband is described using the Kubo-
Greenwood formalism [22].

The virtue of the first approach is that, assuming the electronic mobility is constant, the
subthreshold slope is directly found as a function of the electron density, i.e. SS =
av,/din(ly) = dV,/dIn(n;y,,). Therefore, the subthreshold slope can be written as in Eq 2.5.

dV, dVg  dVy  dVg ny, dEp Eq2.5

SS = = . = . .
din (ninv) st dln (ninv) dvs q dninv

As the subthreshold slope is computed in the weak inversion regime where the electron density
is neglected, the gate charge conservation of a single gate FDSOI transistor (which is also valid
for bulk MOS transistors) is as follows:

Eq2.6
Cox- (Vg — Vi, — Vs) = Qq(Vs) + Gt (Vs - VO)

The total derivative of Eq 2.6 gives:
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Eq 2.7
Cox- (Vg — dVy) = dQu (Vi) + Cir. dVs !

Where C;; = q.Nj; is the interface trap capacitance, and V,, is the channel Fermi potential.

Considering that by definition the depletion capacitance is C4 = dQ,(Vs)/dVs. It should be
noted that, in the case of an FDSOI structure, the depletion capacitance is the equivalent
capacitance of the silicon film capacitance Cg; and the back oxide capacitance C,y, In series,
i.e. Cqg = Cg;i. Coxa/(Cgi + Cox2) - So after rearranging the equation, we have:

dVg _ Cox + Cd + Cit Eq28
st B COX

On the other hand, the expression of dn;,,,,/dEr can be derived from Eq 2.2, yielding to:

dninv_ oo af Eq 2.9
iE. _f_oo N(E,AE). | === (E, Eg) | dE

Thus, by substitution in Eq 2.5 we have:

SS(T) = 1 J15 N(E,AE). f(E,Ef)dE  Coy + Cq + Gt Eq2.10
9 [ N(E,AE). (— % (E, EF)> dE Cox
. . . . kT Cox+Cq+Cit . - .
Eq 2.10 can be reduced depending on statistics, into PR for degenerate statistics i.e.

for the limit T « T and into ’;—T@ for Boltzmann statistics i.e. for the limit T > T.
(0)-¢

Using Eq 2.10, the dependence of the subthreshold slope with temperature is illustrated in

Figure 5. We can see the linear dependence at high temperature (T > T,) where the band tail

influence on the whole DOS is negligible, and the saturation at low temperature (T < T,) where

the band tail is significant to the DOS with degenerate statistics, where T represents the

transition between the plateau and the linear regions.

Note that, depending on technology, T lies in the range 30 — 50 K. Strictly speaking, for 28
nm bulk CMOS transistor technology it was found to be 46K [3], for 28 nm FDSOI transistor
technology it was found to be 35K [23].
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Figure 5. Temperature dependence of the subthreshold slope for two different band tails.

Likewise, an effective temperature function can be extracted by multiplying Eq 2.10 by the
term q. Cox/Cox + Cq + C;; , yielding to Eq 2.11 that gives the real temperature for T > T, and
gives the saturation temperature if T < T, as demonstrated in Figure 6. Such expression is
advantageous as it reproduces the SS(T') saturation without the need of introducing a band tailed
DOS but rather an effective temperature for the system. Such effective temperature approach is
suitable for the development of the analytical model in Chapter 5.

[*° N(E,AE). f(E, Er) dE —
Ters(T) = T oF
J_ N(E,AE). (—a—E(E, EF)> dE

— T, =30K Ts=60K
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Figure 6. Effective temperature function plot for two different band tails.
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1.1.5 Band gap widening:

The band gap Ej is another physical aspect that has to be taken into consideration in the case

of deep cryogenic temperatures. Band gap widening at low temperatures is an effect that has
been agreed upon in literature [25], [26], though varied expressions has been proposed to obtain
its corresponding value, we choose to work with the expression given by Eq 2.12, proposed in
[25], though it should be noted that all expressions gives the same value of 1.17 eV at 4K.

E, = 1,17eV 4+ 1,059.10 %eV.(T) — 6,05.10"eV. (T)? Eg2.12

1.1.6 Single subband approximation:

At the zero temperature limit, within the usual gate biasing range, and provided the Fermi level
is above the band edge, only the lowest energy level i.e. the ground subband is occupied. This
postulate is extended, and sometimes for the sake of simplicity, for non-zero low temperatures.
Such approximation is widely accepted and agreed on in literature [15], [20]. To support this
interpretation we have calculated the electronic distribution n;,,,(x) and the conduction band
structure including the subbands positions by solving Schrédinger and Poisson equations self-
consistently. As stated before, the calculations were performed for ten subbands, one ground
and nine excited subbands. However, as shown in Figure 7, at the V,; = 1V limit, for a negative

as well as for a null back-bias 100 % of the carriers occupy only the ground subband
(unprimed), the other subbands are left completely empty. Instead, for a positive back-bias
71.82 % of the carriers resides in the ground subbands, 21.92 % in the second subband
(unprimed), and 6.25 % in the third subband (primed).
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Figure 7.The fraction of the inversion charge populating each of the first four subbands of a 10 nm silicon film of an FDSOI
structure for: (a): Vg = =3V, (b) : Vg =0V, (c): Vg =+3V

Therefore, for an SOI structure with thick silicon film, when a positive voltage is applied to
both the front and back gates, potential wells are generated at both sides and the electrons are
confined at both Si-SiO2 interfaces. These electrons contribute to the conductance
independently due to their big enough spatial separation. This case is presented in Figure 8. b.
On the other hand, when the silicon film is very thin, both front and back interfaces reinforce
the confinement of each other, yielding to a very large energy separation between the subbands.
Consequently, the second subband becomes very high energetically and inaccessible, or with a
very limited contribution, this case is presented in Figure 8. a. There is a third case presented in
Figure 8. ¢, where the front and back interfaces couple to form the lowest two subbands. In this
intermediate regime, the two subbands are energetically close enough, so that strong
interactions between them are expected. Moreover, since the energy position of these two
subbands is controlled via front and back gate biases, V,; and V;,, depending on their values
there will be situations where the two first subbands are very close, generating very strong
interactions, as will be discussed in 1.2.4.

Correspondingly, as an additional argument, the spatial distribution of electrons populating
each of the subbands for the three structures discussed in Figure 8 are shown in Figure 9. We
can see clearly that even though for the 3 nm case the volume inversion is very present [27],
the 10 nm and the 16 nm structures demonstrate two separated inversion layers.
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Figure 8.The conduction band structure along with the energetic positions of the first four subbands for very large, very thin,

and medium silicon thicknesses V; = 1V, V2, =3V, (a): ts; = 3nm, (b) : ty; = 10 nm, (c) : ty; = 16 nm, Fermi level
is presented by the dashed line.
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Figure 9. The spatial electron distribution attributed to the four first subbands along with the total electron distribution V ;; =
1V, Vg =3V, (@)t =3nm, (D) : tz; =10nm, (c) : ty; =16 nm

Provided that the occupation of the two lowest subbands represents 93.74 % of the carriers
(Figure 9), and that only these two lowest subbands are found below the Fermi level in Figure
8, hereafter, and in the process of the compact model development, only two subbands will be
considered. These two lowest subbands will be treated as the front and back layers, such choice
will be further approved by the gate-to-channel curves behavior shown in Chapter 3.

Insofar only the electrostatic physical parameters have been discussed. In the second part of the
chapter we will address the electronic transport coefficients in a 2D system, i.e. the
conductivity, the diffusivity and the mobility. Such parameters are evaluated using the Kubo-
Greenwood integral, by summing the parallel contribution of each subband and neglecting the
intervalley scattering, at first order [2]. Presumably, the outstanding transport parameter that
needs to be discussed is the mobility law, as it is of great importance for the modeling of both
the transfer and output characteristics of the MOSFET device.

1.2 Transport physical parameters
1.2.1 The conductivity function

The Kubo-Greenwood formalism is a good start for the study of the MOSFET inversion layer
transport properties, as it allows the computation of the transport parameters from the metallic
regime to the semiconductor regime [20]. Generally, the macroscopic inversion layer sheet
conductivity o of an electronic system is obtained from the energy conductivity function oz (E)
by the Kubo-Greenwood integral, following Eq 2.13 [20]. In this equation, f is the Fermi
function, and o (E) is related to the energy mobility function u(E) according to the Cohen’s
formula: dog(E) = q.u(E).N(E).dE [28], with E being the carrier kinetic energy.

+0o0 0

o(T,Ep) = j oz (E). (—% (E, EF)> dE Eq2.13
Considering the band tails in the DOS function and a constant mobility u(E) = u, in the
aforementioned Cohen’s formula, and integrating the energy conductivity function over all the
energy range, the macroscopic conductivity function emerges, following Eq 2.14 .

0(Ep, AE) = q. Ayp. to. AE. In(1 + exp(Er/AE)) Eq2.14

Using Eq 2.14 the conductivity function is plotted in Figure 10, we can see clearly that the
conductivity has the same behavior as the density of states in the first approach, as it exhibits
an exponential tail below the band edge associated with that of the density of states. Note just
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as well, the continued increase of the conductivity function above the band edge, an expected
behavior due to the increase of the carrier kinetic energy [22].
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Figure 10. The conductivity function with exponential band tail (4, = 0.1 m?/Vs ,AE = 3 meV)

In an equivalent manner to 1.1.4, the subthreshold slope SS(T) can be computed by direct
consideration of the electronic conductivity. Note that the assumed proportionality between the
drain current and the carrier density in the first approach is not valid at low temperatures when
the statistics becomes degenerate [22], [29].

Our starting point for the second approach is the drain current equation of a MOSFET within
the gradual channel approximation, given by Eq 2.15, y being the space dimension that varies
from source to drain.

dEF Eq2.15
Iy =W.q.0(T,Ep).—
d F dV

Considering Er¢ the Fermi level at the source point, and Er, the Fermi level at the drain point
i.e. Erqg = Epg — qVys , V4 being the drain voltage, and after integration over y between source
and drain, we get:

Epq

2 (e,

Leading to, after some manipulation:

Eq2.17

W +e e
I, = q_LU_oo 05 (E). f(E, Ers) dE — j_oo 0g(E). f(E, Era) dEl

Following the same steps as before 1.1.4, one obtains the second expression of the SS(T):

+co

[*2 0p(E). f(E, Eps) dE — [ 05 (E). f(E, Era) dE Cont Cy+ Gy
[ a5 (E). (—%(E, EFS)) dE — [** 65 (E). (_g_g (E, EFd)) Jg 4-Cox Eq2.18

SS(T) =

—00
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Provided we are in the saturation region of weak inversion i.e. when V¢ > kT /q or Vs >
kT,/q, the drain-side terms in Eq 2.21 and Eq 2.18 vanish, leading the next reduced form of
the subthreshold slope:

400
o (E). f(E,Ers) dE C,. +C4+C:
SS(T) _ f—oo E( ) f( FS) 0X d it

177 o). (- 5 (B Ep))ap FCon

Eqg2.19

The next figure compares the temperature dependence of the subthreshold swing as given by
the two approaches in the weak inversion configuration, i.e. by Eq 2.10 and Eq 2.19. The two
approaches were calculated with the same band tail extension (AE = 5meV i.e. Ty = 60 K)
and considering a constant mobility function. Note that in this configuration, both the density
of states and the conductivity function are proportional to exp(E/AE) yielding to a perfect
match between the two approaches, as illustrated in Figure 11.
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Figure 11. The subthreshold slope dependence with temperature as given by the carrier density approach and the
conductivity approach.

One must not ignore that, all of this is true because we considered a constant mobility, as
transport for localized states in the band tail might exist, making Eq 2.18 describing a more
general case, as it considers a mobility function of energy. Generally, one shall distinguish
between two cases, the case where the disorder is absent, for which the mobility edge E,. does
coincide with the band edge E,, only delocalized electrons contribute to the conduction. The
case where the disorder is present, for which the two edges E,. and E, do not coincide, and a
mobility edge does exist. Besides the delocalized electrons above E, , we also have localized
electrons below E,, which are believed to have a negligible contribution to the total
conductivity, but rather, they might contribute to the total current by the so-called hoping
conduction [15].

Nevertheless, it is worth noting that, from a practical viewpoint, the band tails are extracted by
measuring the drain current variation with 17;. On the other hand, it can be extracted for example
by integrating the gate-to-channel capacitance over the gate voltage in the weak inversion
region, but such approach lacks the sufficient dynamic range for the accurate extraction of the
band tail extension from the derivative of n;,,,(V;) curves, making it less practical [22].
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Although as a consequence of the existence of band tails in the DOS function, the conductivity
function takes the same form, no physical condition decree that the two functions has the same
length of band tails. In other words, the case where AE (n;,,,,) > AE (o5 (E)) may exist, meaning
that some states do not have the same opportunity to contribute to the transport like the rest of
the states.

1.2.2 The diffusivity function:

Another mechanism that dominates in the subthreshold region is the electron diffusion. Such
parameter is crucial for the understanding of the MOSFET operation in this regime. According
to Einstein’s relation, and within the assumption of a constant mobility, the electron diffusivity
should decrease with temperature, following Eq 2.20. Such relation is valid with the
consideration of Boltzmann statistics [29]. In the case of Fermi-Dirac statistics, the electron
diffusivity is given by the so-called generalized Einstein relation, Eq 2.21. Finally, in the case
of full degeneracy i.e. metallic statistics, and considering we have a single 2D subband, the
electron density can be directly given by n = A,p. Er, and the electron diffusivity will be given
by Eq 2.22 [29].

4.D = KT Eq 2.20

qD=/in-aa% Eq2.21

4.D = wE Eq2.22
= . Ef

To obtain the variation of the diffusivity with inversion charge density in a single 2D subband,
i.e. in the case of Fermi-Dirac statistics, Eq 2.23 is injected in Eq 2.21, yielding to the expression
in Eq 2.24. This variation is illustrated in Figure 12, where at high temperatures the electron
diffusivity demonstrates a linear dependence with temperature, whereas at low temperatures the
electron diffusivity saturates to a constant value given by q.D = u. Er. Therefore, metallic
statistics governs the electron diffusivity at low temperatures, and the classical Einstein relation
is inadequate [29].

E
ninv(Ef, T) = kT.A,p.1In (1 + exp (ﬁ)) Eq2.23

n
pon ekT-Azp Eq2.24

D=-. :
q Azp (eﬁ—l)
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Figure 12. the diffusivity function dependence on temperature in both the linear scale (a) and log scale (b) of the temperature
axes, the simulation is made for three different 2D electrons densities (as shown in the legend).

Accounting for an energy density of states with an exponential band tail, i.e. Eq 2.3 and the
electrons density is given by Eq 2.3, where T, is a characteristic temperature, so as when T «<
T, the energy density of states and electrons density are always given by Eq 2.3 & Eq 2.3,
whatever the real temperature is. Thus, using the definition given by Eq 2.21, the corresponding
diffusivity can be established as in Eq 2.25. Using this equation, Figure 13.a. illustrates the
variation of the diffusivity with Fermi level for a constant mobility. We can see clearly that if
the Fermi level is well above the conduction band edge i.e. Ex > 0, the diffusivity varies
linearly with the Fermi level in accordance with the metallic statistics predicted by g. D = u. Eg.
Whereas, for Er « 0, the diffusivity saturates at the value D = u.kT,/q but with T, playing
the role of temperature. Figure 13. b & c illustrate the variation of diffusivity with electron
density in both linear and log scale.

1 kT, Ep Ep
D(Eg,T,) = dn{1+exp(—)).(1+exp(—— Eq2.25
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Figure 13. The diffusivity function dependence on 2D electrons density (a) and on the Fermi level (b).

The reliability of the assumption of a constant mobility might be debatable, as it seems too
simplistic at first sight and need to be examined. To this end, using the relation in Eq 2.24 we
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derived the experimental diffusivity from typical experimental effective mobility data obtained
by split C-V technique on 28nm FDSOI MOSFETS, to produce the curves in Figure 14. As
demonstrated in the figure, even though the effective mobility is not constant versus electron
density, the overall variation of the associated Diffusivity exhibits a linear trend versus electron
density. Such behavior is well fitted by the metallic statistics limit of g. D = u. E; computed

with a constant mobility.
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Figure 14. a) Experimental (symbols) variation of effective mobility p.rr with 2D carrier density nat T = 4.2 K.and T = 200
K. Typical p. s experimental data from 10 ym x 10pum 28 nm FDSOI MOSFET with 1.8 nm EOT gate oxide, 7 nm silicon
and 30 nm bottom oxide. b) Corresponding experimental (symbols) variation of diffusivity D with 2D carrier density nat T =
4.2 Kand T = 200 K. The diffusivity D is calculated using Eq 2.24. The dashed lines show the linear trends obtained for a
constant mobility (Resp. = 0.108 and 0.05 m?/Vs) using the metallic statistics limit of Eq 2.22.

Thus, the assumption of constant mobility for the diffusion computation is justified and can be
kept. Hereby, in the section dedicated for the drain current integration in Chapter 5, the mobility
is retained constant for the computation of the diffusion current component and considered as
a function of inversion charges for the computation of the drift current component.

1.2.3 The mobility function:

The room temperature mobility law has been comprehensively documented for decades and
many physical mechanisms were given to explain it [30]. With respect to low temperature
modeling, almost all of the modeling works that has been published retain the physical laws
used for room temperature operation and adapt them for deep cryogenic operation [31], [32]. It
has been known for decades so far that the mobility laws used for room temperature modeling
are not valid for cryogenic temperatures [2], [33].

The mobility law p(Q;,,) is given directly by the different scattering mechanisms manifested
at any given structure or temperature. This is widely known as the Mathienssen’s rule, where
the mobility law is the inverse of the sum of different scattering contributions. The main
scattering mechanisms that govern the inversion layer mobility in a MOSFET are the Coulomb,
surface roughness, and phonon scattering modes [2]. Although the Coulomb and the surface
roughness mechanisms prevail at low temperatures, the phonon scattering is not present. The
Coulomb scattering rate is inversely proportional to the impurity charge density and has a linear
variation with energy [2].
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According to Stern [34], combining Coulomb and surface roughness scatterings result in a bell-
shaped behavior of the mobility law, such thesis was confirmed by the ensuing studies [2], [35],
[36]. The generalized mobility law is given by [2], [33], [37]:

n-2
Hmax (Q_c) Eq2.26

1+ (Q%)"‘l

.un(Q) =

Where 4, 1S the maximum effective mobility, Q. is the critical inversion charge that
characterize the mobility reduction, and the exponent n ranges from 3 to 2 as the temperature
ranges from very low to room temperature [2].

At cryogenic temperatures, the exponent n is equal to 3, and the mobility law is given by the
expression in Eq 2.27. Indeed, the Coulomb scattering that rules the (Q/Q.) behavior, and the
surface roughness scattering that rules the (Q./Q) behavior.

_ Hmax

@)+ (@)

With the discussion of the mobility and the conductivity of DG-MOSFET or FDSOI-MOSFET,
arises the subject of the number of transport layers involved at low temperature. One can say
as a direct conclusion from the electrostatic part, that in the case of a back-biased FDSOI there
is two layers involved in the conduction, and the overall conduction is the sum, in other words,
the total current is the sum of the two front and back currents, such approach will be conducted
in Chapter 5.

Eq2.27

1.2.4 Yet another scattering mechanism:

Considering Coulomb scattering and surface roughness scattering as the only scattering
mechanisms that prevails at deep cryogenic temperatures is largely true for a bulk MOSFET
assuming that only one subband involved in transport. However, for a back biased FDSOI, one
cannot ignore the interaction between the two subbands, since such interaction gives birth to an
additional scattering mechanism, the so-called “inter-subband scattering” [10], [38].

The starting point concerning this discussion should be the subband interaction mentioned
formerly, as the decrement in the drain current observed in the experimental curves of transfer
characteristics for a back-biased 28 nm FDSOI transistor at a temperature of 4.2K, Figure 15,
cannot be explained by a mere sum of conduction from two subbands, but suggests that a
subbands interplay took place.

According to [39], for the intersubband scattering to occur two conditions must be satisfied.
The first one concerns the temperature which should be low enough compared to AE /k. The
second condition concerns the drain voltage which should be not much larger than AE /q. By
definition, the intersubband scattering is absent if only one subband is occupied, which in our
case is in the subthreshold region. As the front gate voltage is increased, the onset of the second
subband occurs and it starts becoming populated, and the scattering occurs. Therefore, as
conclusion, intersubband scattering should occur every time a new subband is populated [39].
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Figure 15. The transfer characteristics of a back-biased FDSOI transistor measured at temperature T = 4.2 K, the
demonstrated oscillations corresponds to the Intersubband scattering phenomena.

Poisson-Schrodinger simulations allowed us to inspect such behavior from an electrostatic point
of view, as illustrated in Figure 16 below. One can clearly see that at the intersubband scattering
effect appears when the energetic separation between the first two subbands is lower than
20 meV, supporting the subbands interaction interpretation.
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Figure 16. The corresponding energetic separation between the first subband plotted along with the output characteristic in
the case of a back bias of V;, = 3V.
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Chapter Three:
Polsson-
Schrodinger
simulations



Every built model is based on some approximations that are meant to make the calculations
feasible, easier, faster, or are used in some cases where incomplete information are known about
a physical process. Depending on the level of modeling, such approximations make the
predictions of the model differ from real measurements. Strictly speaking, each time an
approximation is added, the model needs to be examined to justify such choice.

In our study, three levels of modeling are performed. The first one is of a numerical nature,
which is based on the self-consistent solution of Poisson and Schrddinger equations. Such
model is based on the so-called “effective mass approximation”. These numerical simulations
give us the chance to understand the electrostatic behavior of the FDSOI transistor exhibited in
a C-V measurement. We shall call these numerical simulations simply as “PS simulations”, in
order to distinguish them from the following level model, of a numerical nature as well. In the
second level of modeling, more approximations are made but the model is still on the numerical
nature. This model will be referred to hereafter as “the numerical model”. The third level of
modeling is of an analytical nature, and a multitude of approximations is introduced on this
level, the model will be referred to hereafter as “the analytical compact model”.

Expressly, the PS simulations are used to validate the charge and current solutions predicted by
the numerical model, which in turn is used to validate the same predicted solutions by the
analytical compact model. Note that, in the frame of our work, PS simulations are a useful tool
for understanding the physics that governs FDSOI transistors down to deep cryogenic
temperatures. Nevertheless, for the purpose of not diverging from the aim of the study, none of
the numerical aspects of the simulations are detailed, one should refer to [1]-[3] for such end.

Furthermore, PS simulation results will also be comparison to collected data from C-V
measurement, constructing a first checkpoint in the development process of our analytical
compact model.
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1.1 The simulation procedure:

Our Poisson-Schrodinger (PS) solver is based on a Python program solving self-consistently
the Schrodinger and Poisson equations stated subsequently for an undoped FDSOI structure
down to deep cryogenic temperatures and accounting for Fermi-Dirac statistics. Indeed, several
published works have performed Poisson-Schrédinger simulations (PS) in bulk or FDSOI
MOSFETSs at room or low temperatures [1], [4], [5], but not down to very low temperatures.
Simulations for temperatures less than 2K for example are lacking in literature.

Typical FDSOI structure used for PS simulation is shown in Figure 1, illustrating the stack
composed of a front oxide of 1 nm thickness, the silicon film (body) of 7 nm thickness, and a
buried oxide (BOX) of 25 nm thickness. The front and back metal gates along with the highly
doped regions of source and drain are illustrated as well. Note that, hereafter, the front and back
silicon-oxide interfaces will be given the subscripts 1 and 2 respectively in the different
mathematical equations.

Voo T

Front gate

)

.= 1nm

si = 7 nm

1 ot [}

Box tgox = 25 nm

oV,

Figure 1. Typical scheme of an FDSOI structure.

Considering an isotropic and parabolic conduction band, the effective mass approximation
states that the behavior of an electron of mass m, in the crystal’s potential is akin to an electron
of an effective mass m, for which the wave function is a Bloch function. Such electron of mass
m, moves in a periodic crystal lattice supposedly empty of ions. In other words, the crystal
potential is substituted by the fact that the electron has an effective mass m, different from the
free electron mass m, [6].

For a (100) silicon-oriented structure, the calculations were performed for six valleys, a couple
of unprimed valleys parallel to the confinement orientation, and two couples of primed valleys
in the transverse plane perpendicular to the confinement orientation. For each series of valleys
(primed and unprimed), ten subbands are arbitrarily considered in our case, one ground and
nine excited subbands. The barrier height between the channel and both the front and back gate
oxides is set to 3.1 V/, and the relative confinement effective mass of both the front and back
gate oxides is set to 0.5.

The calculations are performed by solving two coupled non-linear partial differential equations
(i.e. Poisson and Schrodinger equations) along with their boundary conditions. For most
boundary value problems, the exact analytical solution is very difficult if not impossible to find
except for some very special cases. Mainly, numerical methods based on iteration methods are
used to find the solution.
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The Poisson equation is a differential equation of the second order that relates the electrostatic
potential to the total carrier density. Such equation is solved using two boundary conditions
with respect to the displacement field, as stated in Eq 3.1:

V(e VVs) = — q-ninv(x)/go
Eox1(dVe/dx)o- = Egi(dVS/dx)O+ Eq3.1
€ox2 (d[/;/dx)(tox1+tsi)_ = & (dvs/dx)(tox1+tsi)+

The front and back surface potentials are deduced using the boundary definitions V,(t,,;) =
Vg1, and Vi (t,q + ts;) = Vs, and the boundary conditions of the electrostatic potential in the
gates are given by V;(0) = Vy1 — Adgq, and Vs(toxq + tsi + toxz) = Vg — Adpg,. Note that in
this work, we consider for the sake of simplicity midgap gates i.e. we choose a null front and
back gate work functions A¢, , with respect to midgap channel material.

The Schrddinger equation is solved in both the silicon film and oxides regions, with boundary
conditions guaranteeing the electron wave function continuity at the Si/SiOz interfaces, as stated
in Eq 3.2. Such equation is solved for each subband within the effective mass approximation
considering the electron envelope wave function [6].

mconfv(x) 0x

X Am y,, (x) =0 Eq3.2
Aim y,, (x) =0
+ 00 2

\ f—oo |l/)v,l(x)| dx =1

It should be noted that the x coordinates start from the oxide edge and not from the oxide/film
interface, and that an electron wave function penetrates in the oxides.

( 2
_%%(;_lp:l(x)> - qV(x)wv,l(x) = Ev,llpv,l(x)

Finally, in order to finalize the package, one more equation is needed; namely, the total charge
density, which is computed from the sum of contribution of all subbands, following:

iy (1) = Z Z GozaokT Fo (Fm) [y 0] s

v=0 l=

The self-consistency of the calculations is achieved by using the following algorithm:

1. The Poisson equation is first solved with n;,,,(x) = 0 as an initial condition.

2. The resulting potential distribution is fed into the Schrodinger equation to calculate the
electronic wave functions and their corresponding energy levels, which represent the
Eigen states and the Eigen values of Schrodinger’s equations respectively.

3. Using this information, the electron concentration n;,,, (x) is calculated using Eq 3.3.

4. The electron concentration is then re-introduced in the Poisson equation and a Newton-
Raphson iteration process is used until convergence of the electron concentration is
attained.

5. An error calculation step is performed between the electronic density obtained from the
previous and the current iterations, if the convergence criterion for a variation of
electronic density is satisfied, the convergence criterion is reached. Otherwise, the
algorithm starting from step 2 is repeated until convergence is attained.
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1.2 Appropriate keys for the interpretation of simulation results:

It was noticed that the overall electrostatic behavior exhibited by the different physical entities
such as the surface potentials, the inversion charge and its derivative i.e. the gate to channel
capacitance, can be attributed to the principal effects discussed in this section. These appealing
effects are better stated beforehand the simulation results demonstration, as they provide the
necessary tools to explain the different behaviors and tendencies in the subsequent sections.
The present section is divided into two parts, a first part where we discuss back and front
channel openings along with the evolution of back biasing. And a second part where we discuss
the so-called “through the silicon coupling”, that characterizes thin silicon films in the case of
positive back bias configurations.

1.2.1 Back and front channels openings:

The openings of the back and front channels respectively are two main events that occur
recurrently throughout this type of study and are the source of the major reported behaviors of
the electrostatic parameters. Certainly, the existence of both channels is only true for positive
back bias configurations, as for null and negative back bias configurations only the activation
of the front channel is envisioned.

Comprehensively, the back channel opening corresponds to the onset of the first subband, and
the front channel opening corresponds to the creation of the front potential well. Such
attributions are only exclusively true for cryogenic temperature operation, as for higher
temperatures several subbands are populated.

Such interpretation is confirmed by the exposition of electrostatic parameter curves along with
the corresponding conduction band diagrams, to formulate a good approach for understanding
these two main events. For example, one of the direct consequences of these two main events
is the two-plateau behavior exhibited by the C,. curves in the case of positive back bias
configurations. With two different elevations in two different polarizations, the variations of
the gate-to-channel capacitance Cgc(Vgl) = dQiny/d Vg4, with front gate voltage for various
back gate bias, reveals the early onset of back inversion channel followed by the front channel
opening for V,, = +3V, as shown in Figure 2. The correspondence between the polarizations
of the back and front channel openings and the dual elevations in the C,. curves substantiate

our interpretation. Further, this front channel opening should never be confused with the second
subband onset, for those two events happen in two different polarizations.

Planely, one can see clearly from the comparison of Figure 2 and Figure 3 below, that the onset
of the first subband of the unprimed valley E , (presented by the blue color) corresponds to the
first elevation of the gate-to-channel capacitance curve. Note that, without loss of generality,
midgap gates are considered in this study (as stated before), our potential’s reference is indeed
the position of Fermi level in the source, and the population of different subbands is activated
once they reach the Fermi level and go beneath it.

The second elevation on the other hand is attributed to the creation of the front potential
well, allowing the displacement of a portion of the electron gas to the indicated well. Such front
potential well creation is followed by the onset of the second subband of the unprimed valley
E, 1, presented by the orange color in the Figure.

The onset of the third subband on the other hand is presented by the undulation noticed
beyond the polarization V;; = 0.8 V, such undulation is due to the difference of the valley
masses since the third subband E;, belongs to the primed valleys series characterized by a
different mass.
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Figure 2. Gate-to-channel capacitance curves as a function of front gate bias and for different back bias
(tox=1nm, tyox=25nm, t=10nm, T=4K).
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Figure 3. Captured moment of the onset of the first, second and third subband, as well as the creation of the front potential
well for: Vg2=3V tox=1nm, thox=25nm, ts= 7 nm, T = 4K.

Otherwise, in the case of a negative or a null back bias, the electrostatic configuration permits
the creation of a single potential well at the front interface, in which the totality of the inversion
charge is confined when the onset of the ground subband is achieved, making the gate-to-
channel curves exhibit only one plateau. Note that the roundedness feature exhibited by the
Cgc(Vgl) curves between the two plateaus is due to through-the-silicon coupling between the
front gate and the back channel inversion layer discussed in the next section. Such interpretation
will be further confirmed with the posterior study of the gate-to-channel curves performed for
different silicon thicknesses.

In a related manner, we analyze the behavior of the remaining electrostatic parameters when
variating the back bias polarization, as such behaviors are consistent with the formerly
displayed Figures. Firstly, in Figure 4 we display the inversion charge curves as a function of
front gate voltage at temperature T = 4 K, for a negative, null and a positive back bias.
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Figure 4. Inversion charge as a function of front gate voltage and for three different back biases, in both the linear and the
log scale.

Note above all, the threshold voltage dependence on back biasing, which is basically due to the
onset of the first subband. Expressly, the onset of the first subband happens first in the case of
positive back bias because the positive polarization from the two sides (front and back) lowers
the first subband, in comparison to the null or negative back biases.
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Moreover, Figure 5 demonstrates the front surface potential as a function of front gate voltage
and for different back biases. Naturally, the positive back bias curve present three limbs
compared to the two limbs presented by the null and negative back bias curves. Note as well
that, once the onset of the first subband occurs for null and negative back bias curves they join
up the positive back bias curve in the strong inversion region.
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Figure 5. Front surface potential as a function of front gate voltage and for three different back biases.

Likewise, Figure 6 demonstrates the back surface potential as a function of front gate voltage
and for different back biases. Despite the expected two limbs behavior, where the first limb
characterizes the weak inversion region before the first subband onset, and the second limb
characterize the strong inversion region after the first subband onset, note the earlier saturation
of the curve corresponding to positive back bias, ensued by the one corresponding to the null
than then negative back bias.
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Figure 6. Back surface potential as a function of front gate voltage and for three different back biases
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1.2.2 Through the silicon coupling:

In addition to the onset of the different subbands, the behavior of the electron gas inside the
silicon film is addressed in this section. In Figure 7 is illustrated the band diagram across the
stack and the electron density profile in the channel obtained from PS simulation at T=4K and
for a given bias condition. Severely, only the ground subband (green line) is presented here.
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Figure 7. Typical band diagram and total electron distribution from PS simulation for a FDSOI structure (Vg1=1V, toxxt=1nm,
toxe= 25nm, tsi= 7nm, Vg2 = -3, 0, +3V, T=4K).

From the previous Figure, one can discern that when the applied back bias is negative, the
structure presents a single quantum well and the electron gas resides mostly in the front side of
the film. When the applied back bias is null, the physics is very similar except that a portion of
the electron gas is not pulled away from the backside due to the absence of the negative
polarization and can now reside in the backside of the film. When on the other hand a positive
back bias is applied, the structure presents a two coupled quantum wells and since the applied
polarization is positive from the two sides, the electron gas is pulled in the two directions. It
should be noted that this displacement of the electron gas from the back side to the front side
in the confinement direction is due to the “less strict” confinement behavior exhibited by the
device in the case of the co-existence of two quantum wells i.e. in the case of positive back
biasing.

Previously we showed in 2.1.6 that for extremely thin silicon films (t;; = 3 — 5 nm) only one
inversion layer is manifested in the so-called volume inversion mode, and that for moderately
thin and larger silicon films (t;; = 6 nm) the device displays two inversion layers that could be
overlapped or not, depending on the film thickness. Yet, no particular indication was given for
the overlap of the two inversion layers present in moderately thin silicon film geometries. Such
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overlap of the two inversion charges present for positive back biases is the source of the
exhibited roundness by the gate-to-channel curves between the two plateaus. Since, thinner
silicon films are at once characterized by stronger through-the-silicon front and back channel
coupling and an accentuated roundness between the two plateaus. Evolution of gate-to-channel
curves with silicon thickness listed thereafter will further confirm this interpretation.
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Figure 8. Electron distrubution in the channel for a thin silicon film: ts=7nm presented by the red line, and a
thick silicon film: ts; = 16 nm presented by the blue dashed line (tox=1nm, toox=25nm, T=4K, V4:=0.73V,
Vgo=+3V).

As shown in Figure 8 captured in the electrostatic symmetry configuration, when the silicon
film is wide enough (t;; = 16 nm), the two inversion charges are spatially separated and the
overlap is nonexistent. In the case of a thin silicon film (t;; = 7 nm) the two inversion layers
are so close and overlap in the mid-region of the film. In first instance, throughout this chapter,
we will study the effect of the existence of this overlap region on the electrostatic behavior of
the device. Subsequently, for the numerical and the analytical model, the charge dwelling in the
overlap region will be considered as a coupling charge, resulting from the capacitive coupling
between the two interfaces.

1.3 Simulation results for different temperatures and silicon thicknesses:

To get the most of PS simulations, an extensive exhibition of the influence of different
configurations, such as the silicon channel thickness in this context, as well as the temperature,
are presented in this section. Generally, the electrostatic parameters demonstrate correspondent
responses to each configuration’s variation. Such responses can be consistently explained using
the interpretations discussed in 1.2.

1.3.1 The evolution with temperature:

In a correlated manner to section 1.1, our PS simulations were even made possible at the T —
0 K limit by replacing the F, Fermi-Dirac integral function by a Heaviside function. Such
choice will allow us to emulate the fully degenerate metallic statistics. For temperatures other
than the T — 0 K limit, we retain the classical F, Fermi-Dirac integral function.
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Figure 9 shows the variations of the inversion charge Q;,,, in the silicon channel as a function
of front gate voltage V,; with a back bias V;, = +3V, obtained from PS simulations for various
temperatures T = 0 — 60 K.
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Figure 9. Inversion charge as a function of front gate voltage for different temperatures (tox1 =1nm, toxe = 25nm, ts= 7nm,

Figure 9 suggests that the lower the temperature is, the steeper the subthreshold slope is, which
in turn guarantees a faster transition of the transistor between the off and on states. Another
direct by-product of the steeper subthreshold slope is the shallow moderate inversion region
that lessens as the temperature lowers, until its total vanishing atthe T — 0 K limit.

Finally, it should be noted that this study does not consider the band tail states exhibited by the
density of states function as discussed in 2.1.3 (previous chapter), allowing therefore the
attainment of an ideal subthreshold slope in the T — 0 K limit. Undeniably, such perfect
subthreshold swing will never be observed in reality due to the subthreshold slope saturation
discussed in the preceding chapter.

Supplementary information that PS simulations could provide is the charge centroid position
evolution as the temperature lowers. Figure 10 shows such evolution from room temperature to
deep cryogenic temperature T = 1 K. Since such information goes along with the dark space
width evolution when the temperature decreases, such behavior confirms the expected
emphasized confinement at lower temperatures. Note that, the dark space width will be
thereafter (in Chapter 5) an inherent key to describe the quantum effects throughout an
appropriate quantum shift function.
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Figure 10. Charge centroid position in the silicon film as a function of temperature (tox;=1nm, toxx=25nm, t=10nm,
V92:+3V, V91203V)

Moreover, Figure 11 demonstrates Q;,,,(Vy,) curves for different temperatures and for two
different silicon thicknesses at positive back bias. Indeed, the curves corresponding to the
silicon thickness t;; = 10 nm show an elbow at V,;; = 0.6 V which starts becoming visible for
temperatures lower than 20K.
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Figure 11. Inversion charge curves as a function of front gate voltage, computed for different temperatures, and for two
different silicon thicknesses.

The elbow characterizes the opening of the front channel and the consequent transition of the
electron gas (populating the first subband) from the back channel to the front one. Likewise,
this elbow characterizes this transition only at very low temperatures, due to the fact that at such
temperatures only one subband is populated, compared to higher temperatures where several
subbands are populated, as shown in Figure 12, making such transition to occur in a smoother
way.
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Note the shallower elbow for t;; = 7 nm silicon film compared to the t,; = 10 nm, that is due
in first place to the lower barrier that the electron gas has to overreach to attain the front side
for the t,; = 7 nm case. The height of the barrier exhibited by the conduction band in the middle
of the silicon film depends fundamentally on two factors, the silicon film thickness, and the
applied front and back polarization.

Note as well that, this transition occurs only for positive back bias configurations, because in
those configurations the electron gas is less confined in the front potential well (relatively to
the null and negative back bias configurations), and its displacement in the confinement
direction is allowed once the front potential well is created. Thusly, the elbow is definitely not
observed for null or negative back biases for at these configurations only the front potential
well is created, and the electron gas is more confined in the corresponding potential well.
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Figure 12. Demonstration of multi-subband population at T = 300 K.
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Finally, one should point to the fact that this elbow will be the source of many numerical
problems, at first instance, on the computation of the gate to channel capacitance in Chapter 4.
The transcending of such numerical problems requires a special inspection phase, as will be
discussed thereafter.

Figure 13 demonstrates the influence of temperature on the Cgc(Vgl) curves; one can see the
influence of temperature on the shape of the gate-to-channel curves.
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Figure 13. Gate to channel curves as a function of front gate voltage, and for different temperatures, (toxx=1nm, tox=25nm,
tsi:].Oﬂm, Vg2:+3V)

Manifestly, the lower the temperature, the more straight elevations we have, and the corners
become more abrupt. Such effect can be due equivalently to the inversion charges overlapping
in the middle of the film one more time, since this overlapping in the middle of the film is more
present for higher temperatures as shown in Figure 14. In other words, lowering the temperature
has a similar effect (with an inferior scale) to making the silicon film larger.

— T=4K T=100K —— T=300K

le—6

Carrier concentration (1/nm?3)

4] é t;I- é é lIO 12
x (nm)

Figure 14. Electron gas profile for different temperatures, and for a positive back bias

In a similar manner, the front and back surface potentials as functions of the front gate voltage
are extracted from the simulations results and presented in Figure 15.
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Figure 15. Front surface potential as a function of front gate voltage, for three different temperatures and for a null and a
positive back bias.

One can see from analyzing the previous Figure, that in the case of a positive applied back bias,
the front surface potential exhibits three limbs and two elbows, which manifest in the equivalent
polarizations to the corresponding onset of first subband and creation of front channel elbows
exhibited by the inversion charge in Figure 11. Note that for higher temperatures, these elbows
vanish, and the surface potential drops due to the less present inversion charge in the close-to-
interface region (as, for higher temperatures the device exhibit more volume inversion
behavior).

If on the other hand the applied back bias is null, no creation of a second well is expected, thusly
the curves exhibit only one elbow, which corresponds to the onset of the first subband.

Equivalently, Figure 16 demonstrates the back surface potential as a function of front gate
voltage for three different temperatures. At odds with the front surface potential, the back
surface potential exhibits two limbs. Note that the onset of the first subband designates the
threshold i.e. the limit between the weak inversion region, presented by the linear trend, and the
strong inversion region, presented by the saturated trend. Note as well, the smoother transition
between the two trends compared to the abrupt one at cryogenic temperature. Such behavior is
principally due to the number of subband involved in the transition. For instance, only one
subband at the cryogenic temperature, and several ones for room temperature.
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Figure 16. Back surface potential as a function of front gate voltage, for three different temperatures, and for a null and a
positive back bias.

1.3.2 The evolution with silicon thickness:

Remaining in the positive back bias configuration, the influence of variating the silicon
thickness on the behavior of the inversion charge is illustrated in Figure 17. Note the first
subband onset dependence on silicon thickness. This is an expected effect, due to the energetic
rise of the first subband when the film thickness is reduced. Moreover, as shown in Figure 17,
the creation of the front potential well happens at the same polarization independently of the
silicon thickness. Such effect is foreseeable as well, due to the fact that the bending of the
conduction band depends only on the applied electric field and not on the film thickness.
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Figure 17. Inversion charge as a function of front gate voltage and for four different silicon thicknesses.
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Note that although the creation of the second potential well manifests on the same polarization
for all silicon thicknesses, the onset of the second subband is accordingly a function of silicon
thickness, signifying that the onset of the second subband will happen in a rather higher
polarization for thinner silicon films, as shown in Figure 18.
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Figure 18. Captured moment of onset of the second subband, for t;; = 10 nm (left Figure) and t;; = 7 nm (right Figure).

Likewise, in Figure 19 is reported the impact of silicon channel thickness on the CgC(Vgl)
characteristics at T=4K and for a positive back bias V,, = +3V, demonstrating a delayed

opening of the gate-to-channel curves for reduced silicon thickness, due to the delayed onset of
the first subband.

Note also the significant rounding exhibited before front channel opening for t;; = 7nm,
which can be explained by the higher carrier profile overlap between the back and front
interface electron distributions as tg; is reduced. In contrast, for larger t; values, the overlap is
decreased, so that front and back channels are better separated.
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Figure 19. Gate to channel capacitance as a function of front gate voltage and for four different silicon thicknesses.
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In a similar manner to Figure 19, the impact of the silicon channel thickness on the front surface
potential at T = 4 K and for a positive back bias V,;, = +3V is reported in Figure 20.

One can see from analyzing Figure 20, that the onset of the first subband happens earlier for
larger silicon films compared to the thinner ones, yielding to a shorter first limb of the V¢, (V)
curves. On the other hand, engendering a shorter second limb for thinner silicon films is due to
the fact that the third limb stays rather unaffected to the variation of silicon film thickness. This
can be explained by the drop of silicon film capacitance for larger silicon films, making the
back surface potential less affected by the front gate bias. Note that, in such geometrical
configuration, similar behavior is expected by the front surface potential if we study the
influence of variating the back gate bias while keeping the front gate bias positive.
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Figure 20. Front surface potential as a function of front gate voltage and for four different silicon thicknesses.

Similarly, Figure 21 reports the effect of variating the silicon channel thickness on the back
surface potential at T = 4 K and for a positive back bias V,, = +3V. Note the dependence of
the threshold point (the limit between the linear and the saturated trends) on the silicon film
thickness, i.e. the threshold happens earlier to larger films compared to the thinner ones. Note
as well that the curve corresponding to t;; = 7nm presents a minute increase before joining the
other curves at the same polarization that characterizes the opening of the front potential well.
Such particular trend is due to the strong through-the-silicon coupling exhibited at this silicon
thickness, allowing the perception of the opening of the front potential well by the back surface
potential.
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Figure 21. Back surface potential as a function of front gate voltage and for four different silicon thicknesses.
1.4 Comparison to the C-V measurements:

In order to give credence to the performed PS simulations, their corresponding CgC(Vgl) results

need to be validated by comparison to experimental data. For this reason that the pre-last section
of this chapter should be the exposition of the gate-to-channel behavior predicted by the model
to the C-V measurements.
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Figure 22. Experimental validation of the simulated gate to channel curves as a function of front gate voltage and for
different back biases and for a temperature of 4.2 K.

Figure 22 demonstrates the good agreement between PS simulations (solid lines) and the
measured data (symbols) for several back biases V,, = —3,—2...4 V. Indeed, the back bias
influence can be well described by the simulations down to the temperature T = 4.2 K and the
two-plateau behavior predicted earlier by the PS simulations is well embodied in the
measurements as well. Substantially, the threshold voltage dependence on back biasing along
with the change in the C,.(V,;,) curves slope are well described by PS simulations.

Note that in accordance with the measurements, the simulations were performed for a GO1
FDSOI MOSFET, by considering an equivalent front oxide thickness EOT1 of 1.2 nm. Note as
well that the gate work functions, which were considered null earlier, are modified in
accordance with measurements. The front gate function is found to be —0.1 V, and the back
gate function is found to be 0.5 V, which is consistent with the well located below the buried
oxide in the tested capacitance.

On top of that, the chosen AC level for the measurements becomes a significant parameters at
the cryogenic temperatures range, as its influence becomes ostensible on the slope of the first
elevation of the Cgc(Vgl) curves. For the present measurements an AC level of 40 mV was
chosen, with a frequency of 100 KHz.

55



— V= -2V — Vp=-2V —— Vp= -2V
— ng= -2V — Vg2=1V — ng=4V
— V=1V — Vgp=2V

0.020 1
0.015
s
Ug’ 0.010
0.005 H
ol J‘J
cooo{ +4sbeHIHNN Wl

¢
-0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Vgl(v)

Figure 23. Experimental validation of the simulated gate to channel curves as a function of front gate voltage and for
different back biases and for a temperature of 20K.
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Figure 24. Experimental validation of the simulated gate to channel curves as a function of front gate voltage and for
different back biases and for a temperature of 50K.
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Figure 25. Experimental validation of the simulated gate to channel curves as a function of front gate voltage and for
different back biases and for a temperature of 100K.

1.5 Expanding the 1-D PS solver to the non-equilibrium conditions:

At this point, one should introduce the notion of the quasi-Femi level ¢, that describes the
population of the electrons throughout the channel when the system is displaced from its
equilibrium condition, i.e. when an external voltage is applied to the drain terminal. Such notion
is considerably practical, as it allows using the same equations that describes the electron
density in the equilibrium condition cases, to the non-equilibrium ones.

Expanding the 1-D PS solver goes back to introducing the quasi-Fermi level in Eq 3.3, such
that it emerges as in Eq 3.4, and the inversion charge is now computed in several points
throughout the silicon channel.

1 9
E _El, —¢ 2
n(x) zz AZdjkT.F0< dl k;" Lm>-|¢v,l(x)| Eq 3.4
=0 [=0

Moreover, the procedure of obtaining the current information consists of integrating the
computed inversion charge at each step of the quasi-Fermi level vector, as shown in Eq 3.5.
Nonetheless, such information is still valuable for validating the drift current component
obtained by the numerical model in Chapter 4.

w
Idtotal = I:unfo va( g1 gZ' (]—')lm) dpim Eq3.5

Note that, the mobility law is indeed not included in this procedure. Thusly we consider a
constant mobility and, for the sake of simplicity and without loss of generality, we consider

W/L).u, =
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Figure 23 illustrates the computed transfer characteristics I; = f (V) in the linear regime, i.e.

for V; = 0.05 V, and the saturated regime, i.e. for VV; = 1V, as well as the output characteristics
1; = f(V,), for the indicated FDSOI transistor at the temperature T = 4 K.
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Figure 23. Computed Transfer and output characteristics of FDSOI transistor at T = 4K.
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Chapter 4:
The numerical
model



We dedicate this chapter for the development of a numerical model that is at odds with the prior
PS simulation of simplistic nature. Such model halfway between the PS simulations and the
analytical compact model is crucial for the development of the latter, as it establishes the general
equations involved in the charge and current computations.

Our numerical model is dedicated to undoped long channel FDSOI devices operating at
cryogenic temperatures and includes certain approximations, namely the charge sheet, the
triangular well, and the gradual channel ones. Such approximations are meant to make the
model simpler and computationally efficient. The criterion for each approximation once
included in the model, is the model ability to predict the device characteristics with enough
accuracy.

Expressly, this introductory section is dedicated to the discussion of each of the above-
mentioned approximations, their corresponding justifications and advantages/limitations.
Following, a brief introduction of a smoothing method meant for connecting functions with
respect to a particular abscissa point is presented.

The charge sheet approximation compresses the inversion layer into a conducting plane of zero
thickness, where the conductivity is controlled by the electron density per unit area, denoting
the loss of all information that describe the charge spatial distribution in the x direction [1].
Such approximation has the advantage of leading into a very simple algebraic formula
concerning the charge or the current of long channel devices that applies across all regimes, i.e.
from weak to moderate and to strong inversion regime, without any clamping or parameter
changing, and without any manifesting discontinuities in the charges, currents, or their
respective derivatives. The second advantage is its straightforward extension to two-dimension
device analysis; as such analysis will be needed for the implementation of short channel effects
that will be addressed in chapter 5.

In contrast to the numerical solution of the Schrodinger differential equation where its
application to any potential profile V (x) is feasible, for a simpler numerical model, the potential
shape V (x) which originally has a semi-parabolic shape, has to be approximated. Our choices
are limited to triangular or square potential well approximations. One can deduce based on the
potential profiles demonstrated in the previous chapter that the front and back interfaces are
better approximated using the asymmetric triangular well approach. Square well
approximations on the other hand are more suitable for ultra-thin film or heterostructures of
different semiconductors [2].

The triangular potential well approximation is widely used in the MOSFET modelling
community. Such approximation considers an asymmetric triangular potential well, with an
infinite vertical barrier at x = t,,4, and a barrier that varies linearly for x > t,,, in the front
interface case, equivalently, an infinite barrierat x = t,,, + tg; and abarrier that varies linearly
for x < t,., + tg In the back interface case. According to [3], owing to the absence of a
depletion depth, such approximation is even more justified in the case of undoped films.

Such approach approximates the gradually changing slope of the electrostatic potential V (x)
into a constant slope using the notion of effective electric field E, ¢, ,. Whereas in the case of
Poisson-Schrodinger simulation, the electron energies and states are established by solving
Schrédinger equation based on the corresponding boundary conditions, in the case of triangular
well approximation approach, these eigenstates are given by the analytical solutions to the Airy
functions, as expressed in Eq 4.1 [3], [4]:

2/3
W\ (3nqEerpia (. 3
Euz =\zm, 2 <‘+Z> Fq41
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Where the index i corresponds to the different populated subbands. Indeed, in our case only the
ground subbands are considered, furthermore, such equation can be expressed by the mean of
the gate charge densities, as in Eq 4.2.

9.m.h 2/3 2/3 Eq 4.2
' Qg1,2

EO == q.(
12 8. &si- /2. Meons-q

Indeed, this approximation does not provide the carrier distribution profile nor the inversion
layer centroid. However, it is rather advantageous in our case because it is computationally
simple to implement, as it involves only the power function of the gate charge function [5].

The gradual channel approximation assumes that the potential along the channel varies
gradually and in a suitable way for the 1-D electrostatic solution to be valid. Accordingly, such
approximation enables the partition of the 2-D problem encountered in device modeling into
two separate 1-D problems, the electrostatic 1-D problem in the x direction, and the conduction
down the channel 1-D problem in the y direction [1].

Supplementary, and for proper operation in circuit simulators, the expressions used in our
model should be at least C* continuous, or ideally C* continuous. However, in practice, the
current and charge expressions for different bias, temperature or geometrical configurations can
be different due to the differing physics in each configuration and thus the chosen
approximations to describe that physics. On top of this, different operational inversion regions,
i.e. weak-moderate and strong inversion regions, may have different expressions as well.

On that account, employing piecewise smooth functions is a deliberate way in order to obtain
globally continuous functions, such approaches are found consistently in the field of
semiconductor device modelling. For instance, in the published work [6], a generalized
formalism generating such piecewise smooth functions is presented. Such smoothing method
which is meant for connecting globally continuous piecewise functions f;(x), in the vicinity of
abscise coordinates x;, in order to get an infinitely differentiable functions, i.e. the resulting
piecewise function can be evaluated at |—oo, +oo[ and are C*, and the final function F(x) can
be obtained by simply summing up all piecewise functions [6]. Ultimately, a state-of-the-art
implementation of such method will be demonstrated in section 1.1.4.

1.1 The Charge numerical model:
1.1.1 The classical starting set of transcendent coupled equations:

One of the inherent features of SOI devices is that the electrical properties of the back interface
are influenced by the ones at the front one [7]. Such coupling between the two interfaces will
result in a feedback mechanism, where the surface potential is controlled not only by the
adjacent gate but also by the opposite one [8], [9]. That is to say, modifying the back-gate bias
directly changes the back surface potential and indirectly changes the front interface properties;
reciprocally, since the front interface potential was altered, this in turn will cause an additional
change of the back-channel potential [9]. In our mathematical formalism, this can be interpreted
by the fact that the surface potential at one interface is a function of the applied bias on the
opposite interface and vice versai.e. Vg, = f(Vy1,V,2) and Vs = £(Vy1, V2 ). This is expressly
due to the electrostatics that generates two-coupled quantum wells DCQW, which consist of
two 2D electrons gases that are spatially close enough and energetically separated by a
relatively narrow barrier. Thusly, the studied system will have an additional degree of freedom
[10], [11]. Such additional degree of freedom produced by the DCQW will be manifested in
our system of fundamental equations, as an extra degree of complexity, i.e. an extra capacitive
coupling term must be taken into consideration, in addition to the gates and inversion charges
terms in order to fully model the system.
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From an electrostatic point of view, the coupling term can be derived in the subthreshold regime
considering the capacitive scheme of the stack, as illustrated in Figure 1. This simple scheme
considers the three capacitances of the system in series, i.e. the front oxide, silicon film, and
back oxide capacitances. Such capacitive scheme is initially derived in the weak inversion
mode, and will be rather then extended to the moderate and strong inversion modes [9].

Front gate

Vg1-Yrb1

Back gate

Figure 1. The capacitor scheme of a long channel FDSOI transistor

Therefore, in our approach we model this coupling charge presented in the system using the
silicon film capacitance. Such simple method is quite advantageous for a compact modelling
approach, as it describes in a reasonable manner the coupling of the two interfaces, and allows
to model the coupling with linear terms, as will be demonstrated in the starting set of equations
[9]. Indeed, our choice of the coupling term is convenient, as it allows a good description of the
coupling charges for thin silicon films where C,; becomes large, and equivalently for larger
silicon films where Cg; becomes small reflecting the negligible amount of coupling charge
present in these configurations. Finally, it should be noted that such coupling of surface
potentials is undoubtedly reflected as a coupling of threshold voltages as well [7].

Accordingly, if we consider the typical scheme of an FDSOI structure presented in Chapter 3
and apply the charge conservation principle to the first and second interfaces respectively, we
will acquire that the charge in the front gate equals the inversion charge of the first interface,
plus the coupling charge. Equivalently, the charge in the second gate will be equal to the
inversion charge of the second interface minus the coupling charge, as featured in Eq 4.3:

{le = —Qmn + Qcpl Eq 4.3
ng = —Qinv2 — Qcpl

Regarding the closed-form mathematical expressions of the gate charge terms, and the coupling
charge term, they are expressed using:

{Qng = Cox1,2- (Vg1,2 - Vfb1,2 - Vsl,Z)
Eq 4.4

Qcpl = Csi- (V51 — Vi2)
Concerning the inversion charge expression we preliminarily choose its formulation within the
classical assumption, as described in Eq 4.5. Such expression suggests that we consider having

two delta functions representing the front and back inversion charges, which start populating
once the edge of the conduction band taps the Fermi level.
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Eq4.5

V12— Vo — ¢im)>

_Qinvl,z = qkTAZd In <1 + exp ( kT

The flat band voltage V,, , takes into account the potential drop inside the corresponding oxide
due to the difference of work functions between the silicon channel and the gate metal, along
with the consideration of the different interface trap charges. One should emphasize that,
without loss of generality, we consider the midgap, represented here by the term V,, as our
chosen potential reference.

Essentially, by solving the system of coupled equations we mean finding the corresponding
values of the Fermi level, or in our context of the front and back surface potentials (V,4, Vs,),
for each variation of the applied bias to the front and back gates respectively, i.e. the couple

(Vg1 Vg2)-

Note that in our system of coupled equations, we have three terms that are linear with respect
to Vs, and Vs, the corresponding Qg44, @42, and Q.,;, and two non-linear terms with respect to
Vs, and Vs,, the corresponding Q;,,,; and Q. Considering the transcendental nature or our
equations, they require the application of some numerical method in order to be solved, such
approach is the one we follow in this chapter. Subsequently, in Chapter 5 we seek into
succeeding to find a procedure that permits their transformation into algebraic equations.

Our system of coupled equations is solved using a python script that calls the fsolve function
from the scipy.optimize package. Such function employs Powell’s method for roots findings,
a procedure that is performed for each bias configuration until the convergence is achieved [12].
Manifestly, in order to converge to the roots, a starting set of initial values for both the front
and back surface potentials is needed, a suitable initial guess in our case is the silicon film
midgap implemented in the form of the (V,, V) list.

Thus far, only the classical form of our system of coupled equations is considered, which can
be plainly solved and provide the classical solutions. Nonetheless to obtain the exact solutions,
a further step must be completed, the incorporation of the quantum shift function.

1.1.2 The incorporation of the quantum shift function:

Such quantum shift function incorporation is achieved by the simple substitution of Eq 4.5 by
Eq 4.6 in our system of coupled equations i.e. Eq 4.3.

Vsi2 = Vo = $im — AV(Qq12) Eq 4.6
—Qinp12 = qkTAy; In| 1+ exp( IZL‘ g
Eq4.7
AV(Qg12) = Boum-Qg12 2/3
B ( 9.m.h )2/3
o= Eq4.8
8. gSi'\/W

where the prefactor S,,, encompasses all the constant coefficients that appear in Eq 4.2 . Such
approach suggests that we consider having two delta functions representing the front and back
inversion charges. However, in contrast to the classical approach, the condition for different
subbands to start being populated is for the Fermi level to reach the energy levels of these
subbands.

Primarily, owing to our lack of information of the quantum shift function behavior in the
negative gate charge region an even function of the gate charge is commonly considered in
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literature, for instance, the absolute value function. Undeniably, the resulting function is
continuous and differentiable everywhere, however, for the @4, = 0 configuration, the
corresponding electrostatic quantities and their respective derivative functions present a
numerical pathology.

1.1.3 The manifested numerical pathology:

Curiously, it was found that the modelling of quantum mechanical effects with the mere
assumption of an infinite triangular potential well at the film-oxide interface, i.e. the general
2/3 power of the quantum shift function, can result in an unappealing behavior of the surface
potentials, which will in turn propagates to the inversion charges, and becomes significant in
the behavior of the corresponding first-order derivative i.e. the gate-to-channel capacitance.
Such singularity is manifested around the point where the slope of the potential profile function
V(x) is reversed, i.e. the zero-gate-charge point. Figure 2 depicts the displayed numerical
pathology in various electrostatic quantities. It should be noted that such numerical pathology
is manifest primarily in the positive back bias configuration.

In Figure 2 the different electrostatic quantities are presented as functions of front gate voltage.
Seemingly, the singularity (designated by the red dotted ellipses) is manifested in the front
surface potential, total inversion charge density, and the gate-to-channel curves for a back bias
of Vy, = +3V.
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Figure 2. Front and back surface potentials, total inversion charge density, and gate-to-channel curves as functions of front
gate bias; the singularity is indicated by the red dotted ellipses.

Comprehensibly the 2/3 power law is not sufficient to describe the manifested physics in the
negative gate charge region, nor around the zero-gate-charge configuration within the moderate
inversion region. One of the employed solutions proposed in literature [13] is the shown
sensibility of the model outputs on the attributed precision to the rational power of the Airy
function in its float format. Such values depend as well on the designated interface, as different
values can be given to the front and back interfaces. Such modification of Airy’s function is
explained in literature [13] by the degree of penetration of the electronic wave function in the
oxide barrier.

It was found indeed that such approach is functional, though not practical. As even though we
get rid of the singularity presented around the zero electric field configuration by modifying the
power values, those same values depend on the oxide and silicon thicknesses. Such dependence
is undesirable for us, firstly because the model is not robust geometrical-configurations-wise
and secondly because in our study the symmetry front-back-interface wise must be preserved.

As an initial remedy to the numerical pathology that one envisages is the inclusion of gate
charge offset in the AV(le_z) expression, following Eq 4.9. Such infinitesimal offset charge
becomes functional once we pass by the null-gate-charge point.

Eq 4.9
AV(le,z) = Bom- |Qg1,2 + Qoffset|2/3 !

Figure 3 comprehends the different electrostatic quantities as functions of front gate voltage
computed using the Equations: Eq 4.9, Eq 4.6, and Eq 4.3. Note the vanished numerical
pathology ascribed to the existence of the charge offset term Qg ffset-
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Figure 3. Front and back surface potentials, total inversion charge density, and gate-to-channel capacitance curves as
functions of front gate bias computed using the Equations: Eq 4.9, Eq 4.6, and Eq 4.3.

Moreover, as an alternative remedy we examined the effect of the inclusion of the AV(QgLZ)
expressions in the coupling term Q.,,;, as in Eq 4.10.

Qcpt = Cy;- [( AV(QQI)) ( AV(ng))] Eq 4.10

In Figure 4 we present the different electrostatic quantities as functions of the front gate voltage
using the Equations: Eq 4.10, Eq 4.7, Eq 4.6, and Eq 4.3. Noticeably, regardless of the aptitude
of such approach into eliminating the numerical pathology and allowing more numerical
stability around the zero-gate-charge point, it provides a better description of the roundness of
the gate-to-channel curves manifested between the back and front channel openings.
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Figure 4. Front and back surface potentials, total inversion charge density, and gate-to-channel capacitance curves as
functions of front gate bias computed using the Equations: Eq 4.10, Eq 4.7, Eq 4.6, and Eq 4.3.

However, it was found that, either attempts intended to overcome the pathology does not fully
solve the problem, as the model remains susceptible for numerical pathologies when we change
the geometrical configuration, for instance, the silicon film thickness or the front oxide
thickness, implying the non-validity of such approaches. Hence, in the next section we follow
a special approach in order to find an inherent remediation for such pathology.

1.1.4 The extended quantum shift function:

In order to transcend such numerical pathology, we rely on a reverse path approach stemmed
from the PS simulation data. Methodically, starting form PS simulation results, and from Eq

4.6 we can practically predict the behavior of the quantum shift function AV(QQLZ). Such
function can be expressed in terms of the front/back surface potentials and front/back inversion
charge densities respectively as in Eq 4.11.

_Qinvl,z
AV(le,Z) = VSl,Z - VO - kT ln (exp (m) - 1) Eq4.11
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Note that, whereas the front/back surface potentials information along with the front/back gate
charges information are provided by PS simulation, the latter gives the total inversion charge
density without discerning the front and back components. Accordingly, in order to get that
information, the inversion charge needs to be apportioned between the front and back interfaces
with respect to the gate charges densities. Generally, we should effectively have the following
three cases:

o If Qg1 >0 and Qg2 <0, then: Qiny1 = Qinw and Qnyz = 0.
e IfQy <0andQy, > 0,then: Qinyy = 0and Qinyz = Qiny-
e IfQy >0and Qg >0, then: Qinyy = —Qg1 AN Qinyz = — Q2.

Therefore, the front and back inversion charge densities can be expressed in terms of front and
back gate charges following Eq 4.12:

max(le, 0)

max(le, O) + max(ng, O) Eq4.12
max(ng, 0)

max(le, O) + max(ng, O)

Qinvl = (le + ng)-

Qinvz = (le + ng)-

Finally, Figure 5 demonstrates the comprehensive trend of the front quantum shift function as
a function of the front gate voltage AV(le) in the case of a positive back bias configuration.
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Figure 5. Front Quantum shift expression as a function of front gate charge in the case of a positive back bias, derived
numerically and from PS data.

Noticeably, the plotted function manifests two distinctive regions, a linear region associated
with the negative gate charges, and a 2/3 power region associated with the positive gate charges.
Whereas the 2/3 power behavior can be directly attributed to the presence of an asymmetric
triangular potential well in the strong inversion region, allowing the use of Airy’s function
solutions [3], [4], the linear behavior is seemingly inherent to the weak inversion charge where
the gate charge densities are minor.
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Therefore, in order to establish a global quantum shift function that describes the whole region
of gate charge densities, we must primarily define two functions to describe the linear and the
2/3 power regions separately, then succeed into building the whole block through the
implementation of the formalism described in [6].

First, the linear region can be expressed plainly by introducing a prefactor to the gate charge
densities as in Eq 4.13.The slope of the linear region is found to be a function of the silicon film
thickness, capacitance, and an extra smoothing parameter dks, which represents the dark space.
In this context, the parameter y is equivalent to the notion of effective silicon thickness Csieff =

Ssi/tsieff, where Lsieyrs is the on-hand silicon thickness after excluding the dark space i.e.

toigrp = tsi — dks , leading after some rearrangements to the expression in Eq 4.14.

Moy (Qg12) = /7). Qg1 Fa

Yy = Csi/(1 - (dks/tsi))

Ensuing, the 2/3 power dependence of the quantum shift function is given directly using the
Airy’s function solution, following Eq 4.15. In addition, and in order to better fit the PS
simulations, f,), can be moderately reduced through the multiplication by a factor ~ 0.8.

Eq4.14

Eq 4.15
AVpos(le,Z) = ﬁQM- Qg1,2 2/3

Heretofore, we have two distinctive mathematical expressions to describe the quantum shift
function in both regions. Such piecewise bi-regional function has to be connected smoothly in
order to obtain a fully differentiable global function.

In order to build our global function, the first step is the smooth clamping of each primary
function. Hence, we use the assistance of two auxiliary functions that incorporate the smoothing
parameter 5@, following Eq 4.16. Factually, Qneg(Qng,6Qg) smoothly clamps Qg , to the
upper limit Qgq, =0 when Qgq, increases from —oo to +oo. On the other hand,
Qpos(Qg1,2,6Q,) smoothly clamps Qg , to the lower limit Q,,, = 0 when Q,,, increases
from —oo to +oo0.

1 2
Qneg(le.Z ) - Qg12 — \/ Q12" +6Q3 Eq4.16
1 ’
Lons(le,z ) = E <Qg1,2 + le,z 2 + 6Qé>

Decidedly, the two primary functions 4V;,.,(Q41.2) and AV,,s(Q41) have to be connected
with respect to the abscissa axis in the vicinity of null gate charge point i.e. Q4,, = 0. the
approach proposed by [6] allows such finality.

Expressly, in our case, the global function is AV(Qng), the two primary functions are
AVneg(Qg12) and AV;,0(Qy41.2) respectively, the connection of the two functions is made in the
vicinity of the null gate charge pointi.e. Q4;, = 0, the same smoothing parameter §Q, is used

for both lower and upper limit functions. The final function is defined as the direct sum of the
two piecewise functions, following Eq 4.17:

AV(le,z) = AVneg(Qng) + AVPOS(Qng) Eq4.17
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Furthermore, the constant terms, (6Q4/2) for the linear region, and —((SQg/Z)Z/3 for the 2/3

power region, are added to ensure that the result is null when the gate charge density is null,
following Eq 4.18. Note that, unreservedly, such expression of the potential quantum shift
function is suitable for all geometrical configurations.

4V (Qg1,2.6Qg)
1 60
= ; <Qneg(Qg1,2 ) + Tg>

5 2/3
+ ﬁQM- (ons(le,Z )2/3 - <%> )

Eq4.18

Finally, using Eq 4.18, we can reproduce the quantum shift function behavior in the case of a
positive back bias configuration predicted by PS results using the surface potentials and the
gate charge densities provided by the numerical model. A comparison between the produced
plots is illustrated in Figure 6 for two different silicon thicknesses.

Plainly, the function described in Eq 4.18 does well in reproducing the trend exhibited by the
function AV(le) derived from PS simulations, especially regarding the smooth transition
between the linear and the 2/3 power behaviors.
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Figure 6. Front Quantum shift expression as a function of front gate charge in the case of a positive back bias, derived
numerically and from PS data, for two different silicon thicknesses.

Before initiating the section dedicated to the comparison between the numerical model results
and the ones provided by PS simulations using two approaches that are distinctive to the
aforementioned one, it should be noted that since the PS simulations solve Schrodinger equation
in the entire meshed system, i.e. the silicon film alongside the wave function penetration zones,
such computation return the total inversion charge profile in the silicon film, without any prior
distinction between the front and back inversion charge densities.

In order to compute these two densities starting from PS data we have two approaches:

e The first approach splits the silicon film into two equilateral halves, where the inversion
charge that dwells between x = t,,; and x = t,,, + t5;/2 is purported to be the front
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inversion charge, and the inversion charge that dwells between x = ¢t,,, + t;;/2 and
X =ty + t; 1S purported to be the back inversion charge.

e The second approach exploit the front and back surface potentials provided by the PS
simulations and evaluate the front and back inversion charge densities using the gate
charge and coupling charge terms as indicated in the equations Eq 4.3 and Eq 4.4.

Figure 7 incorporate the front and back inversion charges curves as a function of front gate bias
evaluated using both of these approaches. Indeed, owing to the coupling term the front and back
inversion charge densities are misestimated using the gate charge densities.
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FDSOI transistor
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Figure 7. Front and back inversion charges curves as a function of front gate bias evaluated using both of the
aforementioned approaches.

In this comparative study we adhere to the second approach as it includes the coupling term
conjecture. This choice is due principally to the fact that the coupling term will be included in
the analytical compact model starting set of equations as well and secondarily to the fact that
either the numerical or the analytical compact models do not provide the profile of electrons
throughout the silicon film.

1.1.5 Numerical charge model validation by comparison to PS results:

Undoubtedly, a comparison stage where the results given by the numerical model are exposed
to the ones provided by PS simulations in order to validate the former is vital in such study.
Thusly, in this section we explore such comparison regarding the various electrostatic
quantities. The comparison is performed for two different silicon thicknesses t;; = 7 nm and
t; = 10 nm in order to establish the numerical robustness of the numerical model regarding
various geometrical configurations.

Decidedly, in the list of Figures, Figure 8 to Figure 12, we present the front surface potential,
back surface potential, front inversion charge, back inversion charge, and gate-to-channel
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capacitance curves as functions of front gate voltage obtained by numerical computation is
exposed to the curves provided by PS simulations.

Such Figures show an overall agreement between the numerical results and PS simulation
results, further underlying the pertinence of our numerical model. Some inaccuracies with
respect to PS simulation results are exhibited by the numerical model mostly in the moderate
and strong inversion regions, which can be attributed to the series of approximations that had
to be done in order to build such model, in addition to the smoothing functions and parameters
that can play a role in such inaccuracies as well.
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Figure 8. Front surface potential curves as functions of front gate voltage for three different back biase, two different silicon
thicknesses, and for a temperature of 4 K, the solid lines represent the numerical model results and symbols represent the PS
simulation results.
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Figure 9. Back surface potential curves as functions of front gate voltage for three different back biases, two different silicon
thicknesses, and for a temperature of 4 K, the solid lines represent the numerical model results and symbols represent the PS
simulation results.
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Figure 10. Front inversion charge density curves as functions of front gate voltage for three different back biases, two
different silicon thicknesses, and for a temperature of 4 K, the solid lines represent the numerical model results and symbols
represent the PS simulation results.
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Figure 11. Back inversion charge density curves as functions of front gate voltage for three different back biases, two
different silicon thicknesses, and for a temperature of 4 K, the solid lines represent the numerical model results and symbols
represent the PS simulation results.
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Figure 12. Gate-to-channel capacitance curves as functions of front gate voltage for three different back biases and two
different silicon thicknesses, the solid lines represent the numerical model results and symbols represent the PS simulation
results.

1.2 The Current numerical model:

We describe in this part the long channel drain current calculation, assuming an infinite
saturation velocity and in the frame of the gradual channel approximation. Such calculations
are computed for the front and back channels separately based on the prior separation of
inversion charges, then the total current will be straightforwardly the sum of the front and back
currents.

1.2.1 The drift-diffusion numerical model:

Similarly to [14], we start from the general drain current equation expressed in Eq 4.19. The
mobility located originally inside the integral can have two forms in our study. Firstly, we
consider an effective constant mobility u. ¢ averaged throughout the inversion charge and the

channel length, in which case the mobility term u.r, can be displaced outside the integral.
Ensuing, we consider the bell-shaped mobility law exhibited in Chapter 2.

dd)im
dy
Using Eq 4.6 the closed-from expression of the term d¢;,,,/dy can be derived, as in Eq 4.20.

L
Iy, = - f Un12- Qinvi2 (V). (»).dy Eq 4.19
0

d¢im _ stl,Z _ dAV(le,Z ) _ kT 1 innvl,Z Eq4.20
dy dy dy q Nap “Qmviz gy
1— e a9N2p

Hereupon, we identify the term ys1, = Vg1, — AV(QgLZ) representing the potential of the
corresponding subband, doing so, the drift and diffusion terms are uncovered, as in Eq 4.21.

d¢im _ d)(s 12 kT 1 innvl,Z Eq4.21

- N. _Qinvl,z
dy dy  qNp _ Zpmr dy

The next step will be to inject EQ 4.21 in the general drain current equation Eq 4.19, followed
by switching the integral boundaries initially defined along the electrical length of the channel
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into the corresponding evaluations of x; 1 ; and Q1 » in the source and drain ends respectively,
resulting in Eq 4.22.

( Xs1,24,m
| Idriftl,z = tn- Qiny(Vs) . dxs
Xs1,25r¢ Eq4.22
Qinv1,2 4, kT 1
Idiff1,2 = Qiny- qN —Qinviz d Qiny
Qinv1,2gy¢ 2D 1— ¢ dNap

For both the effective mobility and the mobility law conditions a numerical algorithm is made
to perform the numerical calculations. Such algorithm considers the one-dimensional numerical
integration along a quasi-Fermi level vector that increases monotonously along the channel with
uniform segments, starting from the source point where ¢;,,, = 0, to the drain point where
¢:n = V4. In fact, the subband potential and the inversion charge that correspondingly vary
gradually along the channel, are computed in each step ;.

Regarding the drift component of the current, the computation is performed using the
trapezoidal rule, where for each quasi-Fermi level segment [d)imj, ¢imj +1] the integrated

function Q1 2 ()(51,2) is interpolated by a polynomial of degree-one passing through the points

(Xsl,sz Qinv1,2 (Xs1,2j)) and <X51,2j+1' Qinv1,2 (Xs1,2j+1)>, allowing to approximate the drift

integral using the formula in Eq 4.23. The term Qim,l,zj med designate the median value of the
corresponding inversion charge in the segment [j,j + 1].

Nevertheless, the integral concerning the diffusion component is performed with respect to the
dimensionless quantity u; , = Qiny12/q N2p, Which is evaluated at the source and drain ends
just as well, following the expression in Eq 4.23. The integration is performed with the help of
the quad function from the scipy.integrate package; such function uses a technique from the
FORTRAN’s library Quadpack. Since in our case we compute a finite integral, the integration
is performed using a Clenshaw-Curtis method, which according to the official Scipy open
source website it uses Chebyshev moments [12].

jmax
. w
larifr12 = — 7 Heffiy Z (Xs1,2j+1 - Xs1,2j) . Qinm,z]-,med Eq4.23
j=0
w Uq,2drn u1,2
Laiffi2 = T kTq Nop-Uefri,2- kTq Np. 1_ etz

Uq,2s1C

In the case of a bell-shaped mobility law, the expressions laid out in Eq 4.23 are plainly
reformed through the implantation of the corresponding function, as in Eq 4.24.

imax Qim’l'zj,med

w c
Li.: ~

drift1,2 = I -.umaxl_z-

i=0 1 <Qi”’71'2j,med/ >
+
Qc

Qinvl,zj’med/
Qc

7 (Xs1,2j+1 - Xs1,2j) Qinv1,2;

jmed

Eq4.24

w U1,2drn u1,2
laigr12 = 77 KTq Nop- Hmam’z'f

. ——du
Uq,2s7¢C Qinvl,zjmed/ 2] —e 12
1+ :
Qc
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As the introduction of the mobility law is peculiar to the present numerical model so far (such
law is not incorporated in the PS simulations), we first present the computed transfer and output
characteristics using the bell-shaped mobility law in this section, permitting the performance of

comparison to PS results in the next one.

Figure 13 illustrates the computed transfer characteristics I; = f(V,4) inthe linear regime, i.e.
for V; = 0.05 V, and the saturated regime, i.e. for VV; = 1V, as well as the output characteristics
1; = f(V,), obtained by the numerical model employing the bell-shaped mobility law.
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Figure 13. Transfer and output characteristics computed for three different back biases using the numerical model with the
incorporation of the bell-shaped mobility law.

Equivalently, the respective derivatives of the transfer and output characteristics obtained by
the numerical model i.e. the conductance and transconductance curves are illustrated in Figure
14. Note the appealing shape of the transconductance in the linear regime, which resembles the

one established by the gate-to-channel curves.
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Figure 14. Conductance and transconductance curves computed for three different back biases using the numerical model
with the incorporation of the bell-shaped mobility law.

1.2.2 Numerical current model validation by comparison to PS results:

Equivalently to the section 1.1.5, in this final section and through Figure 15 we expose the
computed transfer characteristics I; = f (V) in the linear regime, i.e. for V; = 0.05V, and
the saturated regime, i.e. for V; = 1V, as well as the output characteristics I; = f(V;), obtained
by the numerical model against the ones obtained by PS simulations in the case of a constant
mobility. Likewise, we notice an overall agreement between the numerical results and PS
simulation results, with some inaccuracies that could be attributed to the relative error
manifested in the approximation concerning the drift current integral in Eq 4.23, in addition to
the pre-mentioned chosen approximations and smoothing functions.
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Figure 15. Transfer and output characteristics curves computed using a constant mobility and for three different back biases
and two different silicon thicknesses, the solid lines represent the numerical model results and symbols represent the PS
simulation results.

In summary, we presently have a starting set of equations suitable for an accurate description
of the electrostatic quantities in our system, such as the surface potentials, inversion charges,
and gate-to-channel capacitance. The numerical robustness of this charge model is guaranteed
by the employment of an engineered form of the quantum shift function which allows a better
description of its behavior in the negative and positive gate charge regions, in addition to a
smooth transitions between the two regions. The model is subsequently compared to the
obtained results from PS simulations for two different silicon thicknesses in order to be
validated. Justifiably, the built numerical charge model is suitable for all geometrical and back-
bias configurations.

Moreover, and on this basis, we developed a drift-diffusion numerical current model using the
gradient of the quasi-Fermi level along the channel, and assuming initially a constant effective
mobility, a configuration that allowed us to compare our results to the pre-obtained PS ones,
ensuingly, the mobility bell-shaped law was employed in the model permitting its potential us
to validate the analytical compact model results.

Indeed, the present chapter allowed us to establish a strong and consistent ground that we can
use to build our analytical compact charge and current models in the next one.
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Chapter 5:
The analytical
model



This chapter will present the final stage of our study, in which we seek to develop an analytical
charge and current models for FDSOI MOS transistors operating at cryogenic temperatures
basing ourselves on the established numerical model in Chapter 4.

There are essentially three approaches to the compact modeling of MOS transistors [1]:

e The threshold-voltage-based approach which had its wide usage previously in models
such as MOS Model 9, BSIM 3, and BSIM 4.

e The charge-based approach, employed for instance in the EKV model

e The surface-potential-based approach, employed for instance in the PSP and the L-
UTSOI models. Such approach has become the conventional approach employed by the
compact modelling community for both bulk and SOI devices.

Regarding the surface-potential-based approach, which is the approach we follow in the present
work, the traditional scheme comprises the integration of the Poisson equation in the channel
region, which with the help of the boundary conditions at the Si-SiO2 interface will generate
the surface potential equation. Subsequently, the surface potentials are used to evaluate the
terminal charges and the drain current, respectively [1].

Moreover, a good compact model must incorporate many attributes that have been elaborated
meticulously in the renowned book within the compact modeling community [2]. Here, we cite
for instance the ones we will aim to satisfy in the present work:

e The model should provide continuous results for currents and charges and their
respective derivatives regarding each terminal voltage, guaranteeing thusly the
numerical convergence of the model inside the circuits simulators where the non-linear
Kirchhoff current law equations are solved commonly using the Newton-Raphson
algorithm which requires smooth models to function effectively.

e The equations involved in the formalism of the model as well as the model parameters
need to be physically based as much as possible.

e It should guarantee a smooth transition between the weak-, moderate-, and strong-
inversion operation regions.

e It should meet the demands over large bias ranges.

e It should meet the demands over the temperature range of interest.

e The model should have as few parameters as possible, which should be linked to the
device geometry and fabrication process parameters as strongly as possible.

e It should be able to predict the behavior accurately using any combination of channel
width and length values.

e The model should be symmetric for symmetric devices; for instance, with this notion
for an FDSOI device, we refer to the source-drain symmetry and the front-back interface
symmetry. Whereas the structure of the device is not symmetric in the x direction (as
front and back oxides does not have the same thickness), the model has to be flexible
for an eventual switch of front-back gates usage.

¢ Finally, the model should be computationally efficient and numerically robust.

Furthermore, the development of any analytical compact model passes by two big stages:

e The derivation of the core model: we mean by that the charge model as well as the
current model for long channel devices

e The implementation of various effects like add-ons or corrections. Those post-
implemented effects can be very wide, such as small transistor effects, self-heating
effect, the effect of doping, access resistances, parasitic capacitances, saturation
velocity, channel length modulation, mechanical stress effects, impact ionization effect,
gate leakage, inner fringe capacitance, GIDL...
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Note that, generally the core model remains unaltered, and the implementation of the effects
happens gradually. In this respect, the compact model has to be improved in a continuous
manner.

In this framework, we partition this chapter into two parts, a first part where we explain the
buildout steps for a long channel model, starting by the elaboration of an initial guess for the
surface potentials, from which the exact solution is engendered after a number of error
correction steps, paving the way for a robust charge model. Subsequently, an analytical long
channel drift-diffusion drain current is derived for both configurations, the constant effective
mobility one and the bell-shaped mobility law one, taking into consideration the manifestation
of the pinch-off points. Built on that, the incorporation of the short channel effects is reached
in the second part. Such effects include the velocity saturation, the parasitic resistances, the
DIBL, the threshold voltage roll-off, and the subthreshold slope degradation effects. Naturally,
the results of the presented model are compared to experimental data as a final validation step
in each of the two parts.

Note that, from now onwards, since the surface potentials V, , are given the subscript s, we
refer to the potential at the source end using the subscript src as in V,,.., and to the potential at
the drain end using the subscript drn as in Vg ,.,. Equivalently, the front and back inversion
charges at the source and drain terminals will be referred to as Qinvi2g,, and Qiny12 drm

respectively.

1.1 The Charge analytical model:

1.1.1 The surface potential initial guess derivation:

In this section we detail the necessary steps to develop a suitable analytical formulation of the
front and back surface potentials. To this end, we start from our system of coupled equations
recalled below in Eq 5.1 and written in its spread format as in Eq 5.2. It should be noted that at
this stage, we seek the initial guesses of surface potentials in its classical form implying that the
front and back quantum shift functions are not involved in Eq 5.2.

Eg5.1
{le = —Qinv1 + Ocpr |
ng = —Qinvz — Qcpl
Vs1 = Vo — ¢i
(Coxl- (Vgl - Vfbl - Vsl) = qkTAZd In <1 + exp (%)) + Csi- (Vsl - VSZ)
Eq5.2
VSZ - VO - ¢
Coxz- (ng - Vbe - VSZ) = qkTAZd In <1 + exp (Tlm) - Csi- (Vsl - Vsz)

As indicated formerly, using the Fermi-Dirac statistics inherent to cryogenic consideration have
the advantage of the explicit formulation in both strong and weak inversions, since in the weak
inversion mode the terms labeling the inversion charge densities are abolished, leading to the
expressions illustrated in Eq 5.3:

Coxl,z- (Vgl,z - Vfb1,2 - Vsl,z) = +Ci. (V51 — VSZ)

Correspondingly, in the strong inversion mode the asymptotic behavior of these terms can be
depicted using the following pattern:

VSl,Z - VO - ¢

( %T lm) - qua(Vs1,2 — Vo — ¢im)

Yielding to the expressions illustrated in Egq 5.5, note that presently both mathematical
expressions are composed of linear terms exclusively.

Cox1,2- (Vgl,z - Vfb1,2 - VSl,Z) Eq 5.5
= qAza(Vs12 = Vo — dim) % Csie (Vo1 — Viz)

Eq5.3

Eq5.4

qkTA,4 In (1 + exp
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Moreover, and accounting for the dual channel operation, each of the front and back interfaces
can be in the weak or strong inversion mode, thusly, four combinations are conceivable
depending on the applied bias on each gate, as detailed below:

e 1% case: when the front interface is in the weak inversion mode, and the back interface
is in the weak inversion mode as well, this configuration will be entitled simply as the
“weak-weak” configuration and given the subscript “ww”.

e 2" case: when the front interface is in the strong inversion mode, and the back interface
is in the weak inversion mode, this configuration will be entitled simply as the “strong-
weak” configuration and given the subscript “sw”.

e 3" case: when the front interface is in the weak inversion mode, and the back interface
is in the strong inversion mode, this configuration will be entitled simply as the “weak-
strong” configuration and given the subscript “ws”.

e 4" case: when the front interface is in the strong inversion mode, and the back interface
is in the strong inversion mode as well, this configuration will be entitled simply as the
“strong-strong” configuration and given the subscript “ss”.

Consonantly, the mathematical statements describing each of the aforementioned asymptotic
cases are:

e |n the weak inversion / weak inversion case:

{ Cox1- (Vgl - Vfbl - Vsl) = Cgi- (V51 — V2) Eq56
Coxz- (ng - Vsz - Vsz) = —Csi- (V51 — Vs2)

¢ Inthe strong inversion / weak inversion case:

{Coxl- (Vgl - Vfbl - Vsl) = qAZd(V51 - VO - (pim) + Csi- (Vsl - Vsz) Eq5.7
Coxa- (ng - Vsz - VSZ) = —Csi. (Vs1 — VSZ)

e In the weak inversion / strong inversion case:

{ Cox1- (Vgl - Vfbl - Vsl) = Cgi- (V51 — Vi2) Eq538
Con- (ng - Vsz - Vsz) = qAZd(VSZ - VO - ¢im) - Csi- (Vsl - VSZ)

e In the strong inversion / strong inversion case:

{Coxl- (Vgl - Vfbl - sl) = qAZd(V51 - VO - ¢im) + Csi- (Vsl - VSZ) Eq59
Coxz- (ng - Vsz - Vsz) = qAZd(VSZ - VO - (pim) - Csi- (Vsl - Vsz)

For the purpose of obtaining the analytical expressions of the front and back surface potential
initial guesses, labeled V. and V3 respectively, we first need to write all the asymptotic cases
in a more compact form. In order to do so, we will have to define two auxiliary terms C;, ,
and Vg, ,, which will have different expressions depending on whether the corresponding
interface is in weak or strong inversion, following Eq 5.10 in the case where the front or back
interface is in weak inversion, and Eq 5.11 in the case where the front or back interface is in
strong inversion.

{ ox12 = Cox1,2 £q5.10

g*1,2 = Vg1,2 - Vfb1
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* —
ox1,2 = Cox12 + qAz2q

x Coxl,z (Vg1,2 - Vfb1) + C[AZd (VO + ¢im) Eq5.11
g1,2 —

*
Coxl,z

Accordingly, we can see from equations Eq 5.6 to Eq 5.9 that by adding the two equations of
each configuration the coupling terms cancel out, this allows us to get each equation of our
system with only one unknown as in Eq 5.12:

C;xl(chz + Csi) g*l + CsiC;xZ g*2 = ((C;xl + Csi)(chz + Csi) - Cszi) Vsl Eq 5.12
C;xZ(C;xl + Csi) g*z + CsiCoxa g*l = ((C;xz + Csi)(chl + Csi) - Cszi) Vso

Such arrangement will result in the direct analytical compact expressions of VS and V3, as
depicted in Eq 5.13:

( (1 1) oyl
Vo = ¢ Coxz) 90" Couy 72
ot 1 + 1 + 1 Eq5.13
) Ci" G Com
(1 1 )V* 1 3
o - \Csi o Coxz
s2 1 n 1 n 1
\ Ci " Con1 Coxa

At this stage, we have obtained four surface potential expressions corresponding to the four
asymptotic cases described previously. Correspondingly, the initial guess is obtained as a
smooth minimum function of the four asymptotic cases described in Eq 5.13.

Thereafter, a sequence of error corrections is applied to the surface potential terms in order to
converge to the exact solutions. The iterative scheme presented in Eq 5.14 permits to get a new
value of V;; and V;, each time we apply the corrections using &; (Vs;) and &,(Vs,). In our case,
such operation needs to be done four times before the convergence to the exact values is
achieved. Note that for the very first calculation the value of the terms V,,°'¢ and V,,°% is
plainly the initial guesses V. and VS respectively. Moreover, it should be noted that such
iterative procedure does not use any loops, but rather its analytical expressions is repeated four
times until convergence to the exact solution is achieved.

new old old Eq5.14
{Vsl =V + (Vs ™) q
d ld
V2" =V + £,(V”™)

Decidedly, our next quest is to derive the analytical expressions of the errors ; and &,. In order
to do so, we reinstate the quantum shift functions within the inversion charge density terms,
into which a First-order Taylor expansion is applied. Correspondingly, we replace all the V,,
and V,, terms in our system of coupled equations by the relationship Vs;, = V&, + €12,
yielding to the terms Q1 - (VS"L2 + 81,2) into which the first-order Taylor expansion is applied
in the vicinity of & , = 0 and with the assumption that the error terms &, , are infinitesimal
quantities relatively to the V;, , terms, as depicted in :

Eq5.15
val

valZ(Vle + €12) = Q1 2(VS, 2) + (V12) €12

83



Note that, by rearranging our system of equations, we can define two residual error terms, which
represent the residual error from each equation in the system as depicted in Eq 5.16:

{Rl = Coxr (Vgl - Vfbl - VSI) + Csi- Vsz = Vs1) — Qinwr Vs, Pim) Fq5.16
RZ Coxz- (ng - Vsz - VSZ) + Csi- (Vsl - Vsz) - Qinvz (VSZ' d)im)

Doing so, after some additional rearrangements, the resulting system is composed of two
equations that are both linear to the unknowns &, and &,, as depicted in Eq 5.17:

90
R, = <Cox1 + (Vso1 (blmref) + Cm( v ( 1))) & —Cg ( V., ( 2)) € Eq5.17
s1 S

inv oAV
lRZ = ( ox2 T Q 2 ( 527 ¢Lmref) + CSI.( - Wz(vsoz)>> & —Cy < v 1( 1)) &

We also choose to label some terms from Eq 5.17 by using the designation described in Eq 5.18
and Eq 5.21, as such choice will allow us to write the analytical expressions of &; and &, in its
most compact form:

Csi1 = Csi( Ve, ( 1)) Eq5.18
oAV
kCSiZ =Cy (1 (’)VS — (V. 2))
2
( aQ
Cr1 = Cox1 + a;‘nvl ( ¢im) + Ciq Eq5.19
S1

Cro = Coxz + aQ‘l/nVZ ( ¢Lm) + Csi2
52
Indeed, the application of First-order Taylor expansion requires the respective derivative of the
inversion charge density terms Q1 - (VSLZ, ¢>imref) with respect to the surface potentials Vs, ,,
which will be detailed ensuingly. Moreover, note that such procedure remains of electrostatic
nature, therefore the variation of different quantities with respect to the quasi-Fermi level along
the channel is disregarded.

Firstly, the expressions of dQn,12(Vs12)/0Vs1, can be directly given by Eq 5.21, which
reveals that the computation of aQinvl,z(Vsl,Z) /aVSL2 comes back to the computation of
0AV(QgL2)/6VSLZ. Note that subsequently, for the sake of preserving the compact form of our

equations at will, we designate the arguments of the exponential function, originally allocated
to the front/back interfaces separately, as simply Arg, and Arg,.

9Qinv12(Vs1,2) _ eT912 aAV(Qng) £4 520
We, 172811 eAran ( 0V, >

Correspondingly, for the computation of dAV(le,Z)/dVSLZ, we can use the equivalence

presented in Eq 5.21, considering that initially the quantum shifts are defined as functions of

gate charge densities. As doing so we only need to get the derivatives of dAV(QgLZ) with

respect to their plain variable Qg », then we multiply the out-come by the derivatives of Qg ;

with respect to Vg, , i.e. by dQgq,/dVsy 2 = —Cox2-

84



0AV(Qgra) _ o 0AV(Qg12) Eqs21
V51,2 oo 0Qg1,2

Consonantly, we call back the definition of AV(Qg ;) :

0
AV(Qg1z) = (1/v). (Qneg(Qng) n (%))

+ Bom- ((ons(Qng ))2/3 - (%fﬁ)

Eq5.22

Where the closed-form of the functions Qpeg(Qg1,2 ) and Qpos(Qg12 ) are given by:

1
(Qneg(le,Z ) = E <Qg1,2 - ng1,2 ? + 8Q§> Eq5.23
1 ’
ons(le,Z ) = E (le,z + le,z 2 + 8Q§>

Accordingly, the derivative of the expression of AV(QgL2 ) presented in Eq 5.22 is:

aA;I(gQng) ) W

g1,2 g1,2
EB deos(le,Z) 1
37M dQgiz "Qpos*(Qguz)

With the respective derivatives of Qpeg(Qg1,2 ) and Qpos(Qg12 ) given by Eq 5.25:

Eq5.24

‘
dQneg(le,z )

=05|1-
ngl,Z

2
Qg2 " +6Qg Fq5.25

Qpos(Qr2) _ o[ 44

dQ
\ g1.2 Qg1,2 ‘+ 8Q3

Such expressions can be rearranged to be written as in Eq 5.26:

Eq 5.26

dQneg(le,Z ) — 05 (1 . Qg1,2 )
d‘le,Z ons(le,Z ) - Qneg(le,Z )
deos(le,Z ) ( le,Z )
———==05(1+
ngl,Z ons(le,Z ) - Qneg(le,Z )

Thusly, by injecting the expressions given by Eq 5.26 into Eq 5.24 we will have the final closed-
form expression of dAV(Qg; ,)/dQgy , presented in Eq 5.27:
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dav(Qg15) < Qg1 >
————=(1/y)0.5(1—-
ngl,Z ( /Y) ons(le,Z ) - Qneg(le,Z )

+ E.B u-0.5 <1 + Qg2 ) !
3 Q ons(le,Z ) - Qneg(le,Z ) onsl/3 (le,z )

Eq5.27

Finally, using the definitions depicted in Eq 5.19 and Eq 5.18 and the expressions presented in
Eq 5.17, we can get to the compact closed-form of the error corrections ¢ , as illustrated in Eq
5.28.

e = Csi2Ry + CroRy
Cr1Crz — Csi2 Csiq

g, = Csi1R1 + Cr1R;
Cr2Cr1 — Csi1 Cyi2

Eq5.28

Accordingly, the kinetics of the convergence of the front/back surface potentials starting from
the initial guesses and reaching the exact numerical solution is depicted in Figure 1.Note that,
the small segment of the curves that does not change along with iterations is attributed to the
8Qg parameter that becomes significant around the zero-gate-charge point.
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Figure 1. the kinetics of the convergence of the front/back surface potentials throughout the four steps of error correction.

1.1.2 Analytical charge model validation by comparison to numerical
results:

As per usual, before proceeding further, our analytical charge model needs to be validated first

by confronting its results, whether it is for the surface potentials or the inversion charge

densities, to the exact solution obtained through numerical calculations.

In Figure 2 we expose the front and back surface potential curves as a function of front gate
voltage and for different back biases obtained by analytical calculations to the numerical
solution.
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Figure 2. Front and back surface potential curves as functions of front gate voltage for three different back biases, the solid
red lines represent the numerical model results, and the blue dashed ones represent the analytical model results.

Equivalently, in Figure 3 we expose the front and back surface potential densities as functions
of front gate voltage and for different back biases obtained by analytical calculations to the
numerical solution.
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Figure 3. Front and back inversion density curves as functions of front gate voltage for three different back biases, the solid
red lines represent the numerical model results, and the blue dashed ones represent the analytical model results.
Analogously, Figure 4 demonstrates the good agreement between the numerical Cg. curves

(solid red lines) and the ones obtained through analytical calculations (blue dashed curves) for
three different back biases.
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Figure 4. Gate-to-channel capacitance curves as functions of front gate voltage for three different back biases, the solid red
lines represent the numerical model results, and the blue dashed ones represent the analytical model results.

Clearly, we have a notable good agreement between the curves analytically computed and the
ones obtained through numerical calculations for all back bias configurations, which validates
our analytical charge model and paves the way for us to go to the next section.

1.2 The analytical drain current model:

In this section, we describe the long channel drain current calculation within an infinite
saturation velocity assumption. Equivalently to the procedure detailed in Chapter 4, the general
form of a drain current equation is first recalled by Eq 5.29, for which the derivation of the

89



closed form expression of the slope of the quasi-Fermi level gives birth to the diffusion and
drift integral terms. The derivation of the analytical expression for integrals is detailed in the
next two sections separately.

d¢im Eq 5.29
.d
& (»).dy

Prior to the derivation of the analytical expression for the diffusion and drift integrals, one
additional information is essential and needs to be discussed here, the so called “pinch-
oft/saturation” point. Expressly, when the drain bias is relatively small, i.e. we reside in the
linear region, the inversion charge density at the drain end of the channel is moderately lower
than the inversion charge density at the source end. As we increase the drain bias (for a fixed
gate bias), the current increases until it reaches its maximum value, the drain current saturation
limit I, 4¢, but the inversion charge density at the drain side decreases until finally it vanishes
when the applied drain bias reaches the value V; s4.. In other words, the surface potential
saturates at the drain end of the channel when the drain current saturation occurs. This
phenomenon is called pinch-off and is illustrated in Figure 5 [3].

w L
1d1,2 = -7 f Uerf- Qinvl,z(y)-
0

L

g1l

Vd > Vd,sat

Front gate

BOX

Figure 5. scheme Illustrating the pinch-off point.

When V,; increases beyond saturation, the pinch-off point moves toward the source, but the
drain current remains essentially the same. This is because for V; > V, ¢4, the voltage at the
pinch-off point remains at V, ¢, and the current will always follow the equivalence illustrated
by Eq 5.30 [3]:

Vdsat Eq5.30

Lsat
f Id,sat- dy = Uerf- w. f (_Qinv(d)im)) dpim
0 0

Note that, according to the generic current equation and in order to maintain the current
continuity throughout the channel, the decrease of the inversion charge Q;,,, at the drain side
must be accompanied by an increase of the term d¢;,,,/dy. When V; reaches V, ¢,¢, We have
Qiny» = 0 and correspondingly d¢;,,/dy = o. This implies that the electric field in the y
direction changes more rapidly than the field in the x direction, and the gradual channel
approximation breaks down in this region [3]. Extensively, beyond the pinch-off point electrons
are no longer confined to the surface channel, and a two-dimensional analysis of the device is
necessary for the region between the pinch-off point and the drain point [3].
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Expressly, one should point out that since for the dual channel operation we have two pinch-
off points, the designated point considered hereafter in the calculation of Qiyy1,2,,, and xs12,,,

corresponds to the pinch-off voltage of the strongest channel.

1.2.1 The diffusion current component computation:

Regarding the diffusion term integral the mobility is maintained constant. Such choice is
justified in our study as we already established in Section 1.2.2. Therefore, the hereabouts
derivation of the diffusion current component will be implemented in either derivation of drain
current, the one with effective mobility and the one with the mobility function.

Firstly, we recall our established formula of the diffusion integral:

w Qinvi2g, kT 1 Eq5.31
-.ueffl,z- inv- N —Qinviz d Qinv
Qinv1,2src¢ q N2p Nopr
) 1— e a4N2p

Which can be reformulated using the dimensionless quantity w; , = Q;ny12/9 Nop and written
in the next form:

Laiff1,2 = L

Ui, Eq5.32

w U1,2drn
Liiff12 = T-Hefsz- kTq Nzu-j —=—du

-u
—_ e 1,2
U1,2src

Considering the indefinite nature of the above-stated integral, the best approach is to
approximate it by a definite one, to which an analytical solution exists, following:

U1,2drn Uq o U1,2drn u
— du= (u + e T) du

— e U2

U1,2src Uq,2src

5 5 Eq5.33
U1,2drn U,2s7c _M12drn _Ma2sre
= > - > —re r +re r

Figure 6 compares the numerical and the analytical approximated solutions of the diffusion
integral with r = 1.8, the constant r is chosen meticulously with the aim of minimizing the
relative error between the analytical approximated solution of the integral and the numerical
exact one.
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Figure 6. Comparison between numerical (red lines) and analytical (blue triangles) calculations of the diffusion term integral.
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1.2.2 The drift current component computation:

At odds with the diffusion term integral, the drift term integral has two different integrals for
the effective mobility and the mobility function cases. The general expression of drift current
integral is recalled in Eq 5.34.

X512 4pm Eq5.34
Idriftl,z = Qinv(Vs) Ldxs
Xs1,2grc
At this point we need to implement an additional approximation that allows us to simplify the
inversion charge expression involved in the drift current integral. Expressly, to realize an
analytical calculation of the drift integral described in Eq 5.34, we need to analyze the
dependence of —Q;,,,, With y, as detailed in the next section.

1.2.2.1 The inversion charge linearization technique:

Figure 7 illustrates the dependence of inversion charge densities —Q;u,1, With the
corresponding subband potential y,, , for three different back biases. We can see from Figure

7 that the dependence is typically linear in the case of null and negative back biases. Whereas,
due to the dual channel operation in the case of positive back bias configuration it presents two
distinguishable slopes behavior.
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Figure 7. The dependence of inversion charge densities —Q;,,,,; » With the corresponding subband potential x; , for three
different back biases.

Generally, the conventional methodical procedure to address the drift current computation
challenge in literature is the inversion charge linearization technique. Such technique is referred
to in [4] as the “Symmetric linearization method” and its comprehensive form is used in the
formulation of the SP and PSP models.

According to [5], the inversion charge linearization technique approximates the inversion
charge by its First-order Taylor expansion in the vicinity of the potential middle point, as
exhibited in Eq 5.35:

Eq5.35
Qinvi2 = Qinvi2,, T A1,2,,- (Ver2 — Vi, )
Where:
a _ aQinvl,Z Eq 5.36
1.2m — " a1, qo.
m aVsl,z

Vs1,2=Vs1,21p,

Vizge T Vi240m
L Vsl,Zm = 2 4

V. is the surface potential midpoint that allows the approximation of the inversion charge by
a one-slope line throughout the quasi-Fermi level. Note that the linear inversion charge
approximation is appropriate to the analytical model in addition to the already taken
approximation for the numerical model development, implying a relative error between the
analytical drain current and the numerical computed one, as we will see later.

In contrast to the aforementioned works [4], [5] where the linearization of the inversion charge
is performed with respect to the surface potentials V, ,, in our case such linearization is
performed with respect to the subband potentials y; ,.

Moreover, in the case of double channel operation, due to the explicit two-slope behavior in the
positive back configuration, we cannot use the mere all-over linearization of the inversion
charge to obtain a drain current expression that is valid in all regimes. Instead, and
correspondingly to the L-UTSOI model [6], we compute the slope of the —Q;,,,,(xs) curves in
the source and saturation points respectively, then we approximate —Q;,,,, for the integral
calculation as the maximum value of two linear functions of x,, named —Q;,,,,, and —@;;lm
and defined respectively in the source and saturation ends by the expression in Eq 5.37.
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—Qinvyin12 = ~Q126c T A2, (Xs12 — Xs1,2m) Eq5.37

_valm 12 = Q12,0 T /11,25(”()(51,2 - Xs1,25at)

Where the slopes 4;,__and 4,,_ . are defined as the derivatives of the inversion charge
densities with respect to the subband potential at the source and saturation side respectively:

_ aQinvl,z
L2src = 0Xs1o Eq 5.38
"7 T Xs1,2Xs1,25p¢
_ aQinvl,Z
P2sat T 9y
s1,

Xs1,2=Xs1,254¢

Doing so, we now have a two-part piecewise linear inversion charge functions. As a
consequence, our drift integral throughout the channel will be performed in two parts, where
the first part is computed form the source point the intersection point, and the second part is
computed from the intersection point to the saturation point, as described in Eq 5.39:

( Xs125q¢
f Qinv(Xs)-dXs = larift 12,0001 + larift 120012
Xs1,2src
Xs1,2ipt Eq 5.39
S larife 12p0re1 j (QLZSTQ + Al,zm, (Xs1,2 - Xs1,2m)) dyxs
Xs1,2sr¢
Xs1,25q¢
Larife 12,072 = f (Q1,zsat + Al,zsat()(m,z - Xsl,Zsat)) dxs
\ Xs1,2

int

Therefore, in order to perform the drift current piece-wise calculation the value of the subband
potential at the intersection point needs to be established. The closed-form of xg,, . can be
derived directly by satisfying the equality of the two expressions in Eq 5.37 since such point

corresponds to the intersection of the two slopes. Such equality which will convey us the
expression in Eq 5.40:

— (erzsat — Ql'zsrc) + (/‘Ll'zsrc')(szljzsrc — /‘Ll'zsat'XSLZsat) Eq 540

Xs1,2i —

M2ge — Mgy

Therefore, the calculation of the drift component of the drain current consists of the following
sequence:

e Computation of the subband potentials and inversion charge densities at the source end
for both the front and back interfaces.

e Computation of the subband potentials and inversion charge densities at pinch-off end
for both the front and back interfaces.

e Computation of the inversion charges derivative 4, , (the charge linearization slopes) at
the source and saturation points respectively.

e Computation of the drift current using Eq 5.39.
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Indeed, as can be seen in the aforementioned procedure sequence, this approach requires the
computation of the derivative of —Q;,,,, with respect to y, at both the source and drain sides,
such derivation will be detailed in the next section.

1.2.2.2 Derivation of the inversion charge linearization slopes:

In this part, our focal point would be to obtain the closed-form expressions of the inversion
charge linearization slopes, following our approach of computing the slope at the source and
saturation points respectively. It should be noted that such derivation is established for a fixed
front and back biasing values, leaving ¢;, as the only variable (variating thusly x;; )
innvl,Z/d¢im

throughout the channel, i.e. what we compute factually is the term .
dxs1,2/A®im

Foremostly, and for the sake of preserving the compact form of our equations at will, we
designate the arguments of the exponential function, originally allocated to the front and back
interfaces separately, as simply Arg, and Arg, following:
Eq5.41
Vs 1,2 VO - d)im - AV(le,Z)
kT
Since by definition the gate charges are functions of Vg, , and not of y; ; ,, we need to compute

the derivatives with respect to V4, in first place, then transform the output following the
equivalence depicted in Eq 5.42:

Argi, =

innvl,Z — innvl,Z 1 — innvl,Z 1 Eq5.42
dxs12 dVsy 2 “dxs12 V1, . 1— dAV(le,z)/ .
dVSl,Z dvsllz
The dQiny1.2/dVs, , term can be formulated in the next manner:
innvl,Z — innvl,Z dd)im Eq5.43
Wz dpm Ve "
(s V(@) et
- 47 dd)im d¢im 1447912
Which can be rearranged to be written as:
Eq5.44
dQinviz _ A _ dAV(le,Z) _ 1 eron2
dVs1, 1 £2p dVs AVs1,2 1+ e4r912
d¢im

By analyzing the expression of Eq 5.44 we can see that the computation of the two intermediary
dAV(le,z) /dVgy 5 and dVy, ,/dey, terms is needed in order to get to the final expression of
dQinv12/dXs12, Since we already have the closed-form expression of dAV(QgLZ) /dVs, , from

the procedure of surface potential error expression procedure, we proceed into the derivation of
an analytical expression of dV;, ,/d ¢, in the next paragraph.

For the computation of dVy, ,/d ¢, we start from our starting set of equations:
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Vo1 = Vo — &
{Coxl- (Vgl —Vip1 — Vs1) = qkTA,p In <1 + exp (sz) + Csio (V1 — Vi)

VSZ - VO - ¢
Con- (ng - Vsz - Vsz) = qkTAZD n <1 + exp (sz) + Csi- (Vsz - Vsl)

Eq5.45

We derive both equations with respect to the quasi-Fermi level ¢;,,:

o W <st1 . dAV(Qg1)> eATa1 si-(dVﬂ _&)
ddim ddim ddim 1+ edro dbim ddim Eq 5.46
_Cm& ot <&_ . dAV(ng)> eAT9> . Csi-(&_ stl)
d¢im d¢im d¢im 1+ eAr9: d¢im d¢im

dAv dAv dv. .
(9912) (9912) AVsrz 5y g rearrange the equations:
d¢im stl,Z d¢im

Then, we replace

( dAV(le) edr91 1 dvy e Vs
C Ci+qd,, [1- =qA i

![ oxt ¥ st T B ( AV JTHem 0 Ay 10 T o Uiy eqsar

{

dAV(Qq2)\ ™92 | dVi, _ 4 ic
T+ 02 Ay 1022 T4 Ao U dgpy,

Coxz + Csi + q AZD (1 - stz

We call the terms residing between the brackets C; and C, respectively:
dav(Qg)) _e*ro:
€1 =Cox1 +Csi + qAzp (1 TTav., )1 oA Eq5.48

dAV(Qg,)\ e“m9:
kcz = Cox2 + C5i + g 43p <1 - v, 1 + eAr9z

And the terms representing activation functions as s; and s, respectively:
Eq5.49

eArgl

$1=q Azp 1+ ohror
eArgz
S2 =4 A0 T oarg,

We thusly can write our system of equations in the next form:

o D _ s+ csi.% (1) Eq5.50
dd)im d¢im

Vg, Ve,
CZ d¢lm =5 + CSi' d¢Lm (2)

At this point the dV, /d ¢, term can be obtained by a simple summation of equation (1) from
the previous system multiplied by C,, and equation (2) from the previous system multiplied by

C;, yielding:
Eq5.51

dv. dv,
Clcz _Sl = 5162 + CSiSZ + CSiz.d(p_fl
m

d¢im
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dVs1 510 + G5
d¢im C,C; — Csi2

Correspondingly, the dV;,/d®;,, term can be obtained by a simple summation of equation (1)
from the previous system multiplied by C,;, and equation (2) from the previous system
multiplied by C;, giving:

dVs,

= Csisl + C152 + CSiZ'W
im

Eq5.52
dVs, 530 + G54

dpim  C,C, — Ci®

We thereby have attained the closed-form expression of both the terms dV,/d¢,,, and
dV,,/d¢,,. Finally, the closed-form expression of the linearization slopes can be directly
expressed following Eq 5.53:

dQunvr _ [, dBV(Qg1)  CiCp = Csi” -
V., 1 dvy, $,C, + CqiS, 4>
innvZ =g 1— dAV(QgZ) _ C1CZ - Csi2
dv, 2 av,, s,Cy + Cgi5q

Employing the closed-form expressions of the linearization slopes and the linear form of the
inversion charge densities presented in Eq 5.37, the front and back inversion charges
linearization is verified in Figure 8. We can see that the applied expressions describe adequately
the inversion charge throughout the subband potential range and for all back biases.
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Figure 8. The linear approximation of the inversion charge densities —Q;,,,,1 » as functions of subband potential y; , for
three different back biases, the blue dashed line represents the first expression in Eq 5.37, and the green dashed line
represents the second one.

Moreover, in order to sustain the numerical stability of our model amid the drift drain current
calculations, we introduce the concept of effective points, defined as, For the front and back
subband potentials:

Eq5.54
Xs1,2¢pp1 = mm()(st;Xstint)'Xs1,zeff2 = mln(){g1,2,)(s1,zsat)

In a similar manner, we define the effective gate charge densities that will be useful for the

computation of the drift integral in the case of a mobility function, following expressions in Eq
5.55.

Eq 5.55
Qinvl,zeff1 = min(Qinvl,Zr Qinvl,zint) ’ Qinvl,Zeffz = min(Qinm,z; Qinvl,zsat)

Such effective points are chosen to ensure the logical coherence of the integral boundaries, in
Case Xs1,2,,, OF Xs1,2,, take irrational values, for instance, due to the denominator term in the

expression of g5, . term, sometimes when 4,5 — A, ,_ , the xsq1 5. value might be found
beyond the g, , value, such configuration is unappealing. Accordingly, the use of such
definition of effective points constitutes a good way to circumvent such numerical instability.

Thusly, the integration boundaries adopted formerly, i.e. between the source point and the
intersection point for the first part of integration, and between the intersection point and the
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saturation point for the second part of integration, are supplanted using the sequence from the
source point to the first effective point for the first part of integration, and from the first effective
point to the second effective point for the second part of integration.

Correspondingly, and considering a constant effective mobility along the channel, the final
analytical expression of the drift current can be directly derived, yielding Eq 5.56:

W
Lirift12 = T-ueffl,z- (Q1,2m, (Xsl,zint - )(s1,2m)
+ 0.541 2, (Ks1,20n, — Xs1,2¢.0)°
+ Q12,0 (Xs1,2000 = Xs1,2ne) + 0.541,2,4, (Xs1,205

Eq5.56

+ Xs1,205p1 — 2Xs1,25at,)()(s1,2eff2 - Xs1,zeff1)

Considering on the other hand the bell shape mobility law described in Eq 5.57, the analytical
expression of the drift current with a mobility function will be as in Eq 5.58:

Hmax1,2
tn(Qinv,,) = 7 Eq 557
’ le’1,2 ch,z
+
ch,z Qinvl‘z
w HUmax1,2 Q1,2
IdTiftl,Z = T . ch’z. A . ch,z. arctan e
1,25rc c1,2
Q1,2,
“effi
—arctan <W + (Q1,zeff1 - Ql.zm) Eq 5.58
HUmax1,2 Qllzeffl
+ | Qcqp-arctan | ———
1,25q¢ c1,2
Q1,2,
2eff2

Finally, it should be noted that based on the discussion performed in Chapter 2, we include also
the effective temperature using the expression illustrated by Eq 5.59:

T —T,
Teff(T; To) =To.| 1 + a.ln <1 + exp ( o 0)) Eq 5.59
10

Thusly, we have discussed the different aspects concerning the long channel transistor model
development, allowing us to address the short channel effects that would be addressed as add-
ons to the core model as we will see in the next section.

1.3 Short channel MOSFET current model:

Certain physical phenomena are negligible in large dimensions devices but become more
significant in determining the behavior of the MOSFET in the case of devices with reduced
dimensions. As the transistor channel length is reduced, the electrostatic control of the source
and drain zones increases and preponderate that of the gates. Such 2-D electrostatic effects
generate a degradation of the transistor subthreshold slope, a linear threshold voltage decrease,
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also known as the roll-off effect, and an increased sensitivity of the threshold voltage to the
drain bias, also known as the DIBL effect.

All these aforementioned effects can be modeled by considering the transistor as a simple
capacitive network, such capacitive modeling is true in the weak inversion regime, then, this
approach was extended as an approximative one into the strong inversion regime as well, such
choice is justified by our need for fast computation for the consideration of the 2-D analysis,
which necessitates numerical computations otherwise.

Note that, in order to preserve the consistency of our model, the aim is to always keep the long
channel model (the core model) and implement the short channel effects as suitable
modifications. Thusly, the so-far designated short channel effects are introduced by modifying
the device geometry and applied biases according prior to surface potential calculations as it
will be demonstrated afterwards.

Moreover, when we apply an electric field upon the silicon channel, the mobile carriers are
accelerated and gain a drift velocity that overlays their random thermal motion [3]. Note that,
such velocity of the electrons does not increase indefinitely under field acceleration, since they
are scattered repeatedly and lose their gained energy after each inelastic collision. At low
electric fields, the drift velocity v, is proportional to the electric field strength E, with the
mobility u as the proportionality constant v; = u. E, where the mobility is proportional to the
time interval between collisions and inversely proportional to the effective mass of electrons

[3].

Nonetheless, note that the above-stated linear velocity-field relationship is valid only when the
electric field is not too high. For at high fields, the average carrier energy increases, and carriers
lose their energy by optical phonon emission nearly as fast as they gain it from the field,
engendering a decrease of the mobility as the field increases until eventually the drift velocity
reaches a limiting value, such mechanism is called velocity saturation [3].

1.3.1 Implementation of velocity saturation effect:

Comprehensively, when the drain voltage increases in a long channel device, the drain current
first increase, then becomes saturated at a voltage equals to V, ¢, With the onset of the pinch-
off at the drain side.

Comparatively, in a short channel device, the saturation of drain current may occur at a much
lower voltage due to this velocity saturation effect, implying a saturation current I ¢, that is
detached from the 1/L dependence depicted in Eq 5.60 and Eq 5.61 for long channel devices.
In other words, the drain current saturates due to either pinch-off or velocity saturation at the
drain, the reported value of the velocity saturation in literature is around vy, =~ 7 —
8.10* m/s.

According to [7], the drain current saturation can be derived through the velocity saturation by
considering the maximum attainable value by the conductivity in the channel, as depicted by
Eq 5.60:

Eq5.60
Omax1,2 = W.Cox1-Vsar

In the present work, we choose to carry out an equivalent description to define an upper limit
of the drain current as featured in Eq 5.61, where the designated charge density is the uttermost
value in the silicon channel i.e. the one at the source side.

Eq5.61

a1z, = W.Qsrc12- Vsat

P
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Such upper limit of the drain current Il'zsup is then implemented into the model through the

application of the Matthiessen rule between it and the initial drain current of the corresponding
interface obtained from the long channel supposition, as in Eq 5.62:

Eq 5.62

long —my~1/m
lavz i = Tz [1 + (Id1,2 /Id1,25up) ]

1.3.2 Implementation of the DIBL and charge sharing effects:

In this part, for the sake of simplification, we consider our system of equations in the weak
inversion configuration i.e., without the mobile charges. Considering firstly, the familiar 1-D
system of equations:

Eq 5.63
{Coxl- (Vgl - Vfbl - Vsl) = Cy;. (Vsl - Vsz)
Coxz- (ng - Vsz - Vsz) = Cy;- (Vsz - Vsl)

After some rearrangement, we can write the 1-D system of equations in the format illustrated
in Eq 5.64. This format of the system of equations will serve as a reference to which will be
comparing the equivalent system of equations in when 2-D electrostatics are applied.

Cox1 Cox1
g" (Vg1 = Vipr) + Vg = (1 + g" ).Vsl

si si Eq 5.64
Con

C
. (ng - Vsz) + VSl = (1 + OxZ) 'VSZ

Csi Csi

If we consider the 2D system of equations on the other hand, the charge conservation principle
in this case must be rather applied to the capacitive scheme presented in Figure 9.

Front gate

Coxz BOX

Back gate

Figure 9. The capacitive scheme of a 2-D electrostatic analysis for an FDSOI structure.

Where the correspondent charge conservation equations are given by:

Eq 5.65

{Coxl(vgl - Vfbl - Vsl) + [Csl(vsrc + VO) - Cslvsl] + [Cdl(vd + VO) - Cdlvsl] = Csi(vsl - Vsz)
Coxz (ng - Vsz - Vsz) + [Csz (Vsrc + VO) - Cszvsz] + [Cdz(vd + VO) - CdZVsz] = Csi(vsz - Vsl)

Where within the supposition of a perfectly symmetric scheme, the four capacitances Cg4, Cs,,
Cq1, and Cgy,are identical, and adhere to the following definition:
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¢ Eq 5.66
—W Sl/z =¢ W&
Si L/ — ©si L
2

Thusly, if we compare the 2-D electrostatic short channel system of equations given by Eq 5.65
to its equivalent 1-D long channel one given by Eq 5.64, after nullifying the four capacitances
Cs1, Cqo, Cq1, and Cy,, We recognize that the surface potentials can still be computed using the
long channel approach, rather, the front and back oxide capacitances, and the front and back
applied gate biases, are altered into new effective values given by Eq 5.67, where source bias
is set as a reference i.e. V.. = 0:

Cs1=¢

( Cs1,2 + Ca12
ClL, = Coxra- <1 e
0x1,2 Eq 5.67
Cq C

< Vgl,Z +Ci.(Vd+Vo)+Cvsi.V0

Veff — 0x1,2 0x1,2

g1.2 (1 + Cs12 + Cd1,2>
\ Cox1,2

Correspondingly, the implementation of these effects into our model is made through the use
of these effective oxide capacitances and applied gate biases. Note that this modification must
be included in the pinch-off point computation as well as this one depends on the corresponding
values of V4 , and Cyyq » as well.

Note furthermore that, the method presented in this section will encompass the impact of the
DIBL effect along with the subthreshold slope degradation, and the threshold voltage roll-down.
Such collation of the impact of supposedly several effects is due to the fact that these effects
have the same physical origin.

1.3.3 Implementation of the parasitic resistance effect:

Each discussion we have raised in the present study considered only the intrinsic part of the
transistor which leads the behavior of the transistor; parasitic resistances on the other hand
belong to the extrinsic part that connects the intrinsic part to other devices of an integrated
circuit [2]. The impact of this extrinsic part can be seen in a general decreasing of the device
performance for instance; such impact becomes palpable as the dimension of the device are
reduced [2]. Several components form the extrinsic part, such as the parasitic resistances and
the parasitic capacitances; the discussion of the parasitic resistances is alone considered in the
present work.

In our approach, we will consider a simple scheme with two access parasitic resistances, one at
the source side and the other at the drain side as in Figure 10, where the intrinsic part of our
device is depicted by the rectangle in the middle. In this simplistic scheme we consider the
effect of the parasitic resistances is delimited to the front gate oxide alone.

There are several components to the source and drain series resistances such as the contact
resistance R.,, the current spreading resistance Ry, that depends on the source/drain junction

depth and the inversion layer thickness, the channel resistance R, and the sheet resistance R,
that is usually small in comparison to R;,.
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\Ias‘

Vas
Figure 10. simple scheme representing two access parasitic resistances and the corresponding altered biases.

In the next paragraph we will cover a direct method in order to implement the parasitic
resistances effect in our model. Such method ranges from the linear regime for the
implementation of the corresponding resistances, which will be then generalized to other
regimes.

Therefore, starting from the linear regime one can assume that such introduction of parasitic
resistances transforms the actual applied bias into altered ones as in (Vs, Vys) > (Vas' s Vas'),
S

!

where the set (l{qs , Vds’) is depicted by the voltage drops due to these resistances, as in Eq 5.68:

{ V' = V0 — Rl Eq 5.68
Vy'=Va— (Rs + Ryl

Thereupon, we replace the drain bias featured in the general drain current by its respective
altered bias, as shown in Eq 5.69:

Eq 5.69
W !
Iy = Tﬂn(Q)Qiand

Yielding to, after replacing V,;" by its explicit expression:
Eq5.70
w
Iy = T.un(Q)Qinv(Vd — (Rs + RpIy)

Which gives, within the consideration of symmetric source and drain access resistances:

Eq5.71
w w
Iy = T.un(Q)Qiand - Tﬂn(Q)QinvZRsld
Where the drain current can be written as a function of the rest quantities as in:
1;° Eq5.72

Id = W
1+ Tﬂn(Q)QinvZRs

Where 1,° = %un(Q)Qiand is the obtained drain current prior to the implementation of the
parasitic resistances.

Accordingly, Eq 5.72 can be rearranged to be written as in Eq 5.73, as this format can support
the allegation of an altered mobility law.
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W 1 (Q) Eq5.73
=TTW QinvVa
1+ T:un(Q)QinUZRS

Correspondingly, the altered mobility law w,,(Q)" will be given by Eq 5.74:

Ia

) Eq5.74
/ U
.un(Q) = W =
1+ Tﬂn(Q)QinvZRs
Such altered mobility law can be also written in the format given by Eq 5.75:
Eq5.75

1
Q) =——

ﬂn(Q) + T QinvZRs

Which vyields to Eq 5.76, after replacing the original mobility law u,,(Q) by its closed from
expression.

Eq5.76

.un(Q)’ =

Hmax
& + Q + ZW”maxl,ZQinvl,ZRs

Q  Q L

Note that this approach is Comparable to the one used in both the PSP and the UTSOI1 models,
where the parasitic resistance effect is implemented in via the inclusion of an additional term
to the mobility degradation factors i.e., the Coulomb scattering and surface roughness scattering
degradation factors in our case. Finally, note that R is an adjustable parameter, which
equivariantly to L-UTSOI model, takes the typical values of the order R, = 60 for a channel
width of 1um in the present study. Note as well that recognizing that this is just a first order
approximation which is not necessarily valid in high nonlinear regimes, we choose to adopt this
R inclusion approach and extend it to the nonlinear regime of operation, as in PSP and L-
UTSOI models for simplification.

1.4 Comparison of the analytical model results to the experimental data:

In this section, we will be exposing the analytical model results to the collected experimental
data for three different FDSOI structures with the same width W = 1um and channel lengths
of L = 1um, L = 120 nm and L = 30 nm respectively.

Expressly, the experimental data fitting in our case is essentially based on the choice of a set of
the parameters Vipg o, Umax1,2) @c1,2 fOr long channel transistors and the parameters
Vib1,2) Mmax1,20 Qc1,20 Ry Vsae, m Tor short channel transistors. Outstandingly, in some cases as
we will see thereafter, we will be bounded to an attribution of a set of parameters to each back
bias configuration. Such customized treatment could have been redeemed by a standard
parameter extraction phase; however such task would necessitate an extensive study for this
aim, which is beyond the scope of the present work.

Regarding the exposition of the analytical model results to experimental data for long channel
transistor, the first challenge that we will be facing is finding a way to emulate the intersubband
scattering that appears in the linear I;(V;,) characteristics. Such challenge is not evident as
such effect is ascribed to subbands interaction (as already illustrated) appearing during the
transport phase, making it an appropriate quantum mechanical phenomenon. Engineering a
compact model formula that perfectly describes such effect in a physics-based way is
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imperceptible and has never been addressed in literature. For such reasons, in this part we will
be seeking the approach described in the next paragraph to emulate such effect.

As an overall analysis regarding the intersubband scattering, one can say that a big portion of
the electrons that were originally in the back side of the film, swing to the front side of the film,
and as the mobility in the back is improved compared to the one in the front (due to high-k
oxide in the front), the charge that at first see the back improved mobility, see after the transition
the front deteriorated mobility, leading to a decrease of the total mobility of the system, this is
what explains the drain current decrease and the negative transconductance. Plainly, to explicit
this effect in our model we considered that the maximum value of the mobility in the back
channel is in itself dependent on the mean value of the front inversion charge, in a way that the
more front inversion charge we have the less back mobility we have.

Thusly, to depict the signature of such mechanism through the alteration of the back mobility
in the present work we use the expression presented in Eq 5.77:

Eq5.77

* _ - Ql med
HUmax2 = .umaxl,z - €Xp
Qref

Where u;,4.2 1S the reduced back-channel mobility, Q; ;eq = M is the median value

of front inversion charge, and Q,.., is a fitting parameter that controls the hump.

Note that, whereas the front and back flat band voltages, front and back upper values of the
mobilities along with the inversion charge parameter Q... take values that are independent of

the back bias, in this case Vpy = —0.09 V, Vyyp = 0.65V, tmaxr = 0.95 m? /V.S, a2 =
4.84m? /V.s ,Qres = 10.6 x 10™* C/m?; Q.4, Q, are treated as functions of the back-bias
Vy2 as depicted in the following plots:
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Figure 11. Parameters Q., and Q., as functions of the back bias.

Note as well that, such typical approach of parameter attribution is unique for the linear transfer
characteristics long channel transistor where the intersubband scattering effect is present and is
conserved for the saturated transfer characteristics and the output characteristics with weaker
ensuing accuracy.

Accordingly, the following Figures illustrate the analytical model results in comparison to the
experimental data for long channel transistor of channel length L = 1um, for different back
biases, with respect to the linear and saturated transfer characteristics, and the output
characteristics.
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Figure 12. The linear transfer characteristics of long channel transistor (L = 1um and W = 1um) for different back biases:
experimental data (to the left) compared to the analytical model results (to the right).
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Figure 13. The saturated transfer characteristics of long channel transistor (L = 1um and W = 1um) for different back
biases: experimental data (to the left) compared to the analytical model results (to the right).
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On the other hand, such effect is not present in the short channel transistors i.e. L = 120 nm
and L = 30 nm in the present study. For instance, regarding the L = 120 nm short channel
transistor, the analytical model results produced in Figure 15, Figure 16, and Figure 17 using
the following set of parameters: Vs,V = —0.09V, Vp,, = 0.65V, Upmaxr = 0.04 m? /V.s,
Hmaxz = 0.25 m? /V.s ,Qper = 10° C/m?; Qpy = 20 ¥ 107*C/m?, Q. = 20  107*C/m>.
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Figure 17. The output characteristics of short channel transistor (L = 120 nm and W = 1um) for different back biases:
experimental data (to the left) compared to the analytical model results (to the right).

Moreover, using the following values of parameters: V;,; = —0.09 V, Vs, = 0.65V, gy =

0.08 m? /V.s, hmaxz = 0.46 m? /V.s Qe = 10° C/m?; Q;; = 5+ 107* C/m? and Q;,

1073 C/m?, the next plots are produced for short channel transistor of L = 30 nm channel
length, as depicted in Figure 18, Figure 19, and Figure 20.
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Figure 18. The linear transfer characteristics of short channel transistor (L = 30 nm and W = 1um) for different back
biases: experimental data (to the left) compared to the analytical model results (to the right).
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Figure 19. The saturated transfer characteristics of short channel transistor (L = 120 nm and W = 1um) for different back
biases: experimental data (to the left) compared to the analytical model results (to the right).
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Figure 20. The output characteristics of short channel transistor (L = 30 nm and W = 1um) for different back biases:
experimental data (to the left) compared to the analytical model results (to the right).

Indeed, the parameter values given in this last section are not claimed to be the ultimate ones,
but rather such choice of parameter values is only meant to give us the opportunity to inspect
the current outputs of our analytical model, offering a semi-quantitative analysis of our model
results with respect to the experimental data. Further parameter optimization would require
more work, going beyond the term of this thesis.

To summarize, we succeeded in the course of the present chapter to give a detailed step-by-step
demonstration of our analytical model, starting from the derivation of the surface potentials
initial guesses to the iterative process of error corrections yielding to the corresponding exact
solutions. Accordingly, we exhibited an adapted two-slope method of the inversion charge
linearization technique in order to be utilized in the drift current computation. Consistently, we
derived the closed-form analytical solutions of both the diffusion and drift current integrals.
Subsequently, the short channel effects were implemented as add-ons to the long channel
model, allowing the exposition of its results to the collected experimental data for both the short
and long channel transistors.
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Conclusion
and
perspectives



Conventionally, quantum computers consist of two parts: a quantum processor that comprises
a set of qubits, and a classical electronic interface part required to perform the control and
readout of quantum states. In order to acquire a more compact and more reliable system the
classical logic interfaces needs to be established in the cryogenic chamber, resulting in the
desirable aspects of an enhanced clock speed, an improved noise performance, a reduced signal
latency/timing errors, and larger bandwidth. Based on the qubit sensitivity, the classical
electronic interface needs to meet some precise conditions such as low temperature
functionality, signal accuracy, high speed, low transmitted noise, and the generation of specific
microwave bandwidths. In comparison to bulk CMQOS, FDSOI transistors could offer the ideal
cryogenic device performance already, making it a very good candidate for such task. However,
process-design Kits lack models describing the operation of MOS devices at cryogenic
temperatures. Building compact models for cryogenic operation is crucial and needs to be
tackled urgently. This is where the present thesis emerges as a venture to satisfy such need.

To tackle such task two approaches have been adopted by the research community. The first
approach consists of adapting existing standard models for deep cryogenic operation. Such
adaptation is made using empirical solutions in order to improve their accuracy and
predictability in cryogenic operation. Such approach comes along with a lot of advantages,
since these standard models contain already all the additional effects and features and are
numerically robust. However, these advantages come along with the limitations that these
standard models are not adapted for cryogenic operation, namely because they consider a 3D
gas of electrons and use MB statistics to describe their distribution. The second approach
consists of building a physics-based models aimed for cryogenic operation from scratch. Such
choice allows to overpass the limitations of the first approach. For instance, 2-D electron gas
along with the use of FD statistics can be considered initially. Nevertheless, these models are
not as of now mature enough to be implemented in PDK’s.

Addressing the task of building compact models suitable for cryogenic operation has to deal
with two challenges, our lack of understanding for the physical phenomena that appears at those
conditions and the numerical management of different mathematical expressions that describes
such physical phenomena.

Accordingly, in the course of the present thesis, we discussed the Maxwell-Boltzmann
approximation validity down to cryogenic temperatures via the exposition of the reasons we
believe the MB approximation does not hold at cryogenic temperatures and must be traded by
full Fermi-Dirac statistics. Indeed the choice of maintaining the MB approximation is
applicable in some specific cases where the doping level beneath the degenerate limit and was
preserved for numerical reasons considering that the implementation of Fermi-Dirac statistics
would necessitate a numerical integration. Nonetheless, considering the relative position of the
quasi-Fermi level which could traverse slightly the conduction band edge i.e. Er > 0, the MB
approximation becomes inaccurate, and the electrons distribution is described by the Fermi-
Dirac statistics.

Concerning the numerical integration argument, we demonstrated in the course of this thesis
that the use of complete Fermi-Dirac statistics does not imply a numerical integration process
due to the 2D subband systems, restraining thusly the development of an explicit model. If
anything, using Fermi-Dirac statistics inherent to cryogenic consideration have the advantage
of the explicit mathematical formulation in both strong and weak inversions.

In addition to the existence of a two-dimensional electron system allowing the use of the charge
sheet approximation, we demonstrated the 2D subband is not a mere step function, but it
exhibits a band tail of states, proposing thusly a suitable continuous expression that describes
the exponential decrement of the 2D DOS. Accordingly, two approaches to compute the
subthreshold slope saturation were presented, along with a description of the conductivity
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function employing the Kubo-Greenwood integral using with the diffusivity function in the
degenerate statistics regime. Primarily, in the course of this thesis, we exposed the bell-shape
mobility law that involves only the Coulomb and surface roughness mechanisms, not including
the phonon scattering that does not prevail at cryogenic temperatures. Correspondingly, based
on a solid electrostatic ground provided by PS simulations the origin of the intersubband
scattering effect observed experimentally on the linear transfer characteristics of back-biased
FDSOI structures was demonstrated. It was found that such effect is attributed to the narrow
energetic separation that exists between the first two subbands, promoting thusly the subbands
interaction hypothesis.

Moreover, based on Poisson-Schrédinger simulations, we confirmed our assumption of
considering only the population of two subbands for FDSOI structures operating at deep
cryogenic temperatures. Along with that, electrostatic parameter curves were exposed with the
corresponding conduction band diagrams and an in-situ analysis of the population of different
subbands for the FDSOI structure. Such approach allowed us to portrait the behavior manifested
by the different electrostatic parameters, into two main event, namely the openings of the back
and front channels. One appealing consequence of these two main events is the two-plateau
behavior exhibited by the C,. curves in the case of positive back bias configurations.
Furthermore, the performed gate-to-channel PS simulations were validated by comparison to
collected C-V measurements.

Additionally, we presented an expanded version of the 1-D PS solver via the introduction of an
extra dimension representing the quasi-Fermi level. Distinctly, we conducted PS simulations as
well at the T — 0K limit. Such task was made possible through the replacement of the Fermi-
Dirac integral function by a Heaviside function, since such function emulates perfectly the fully
degenerate metallic statistics.

Consistently, in the framework of this thesis, we presented a system of two coupled charge
equations that involve a charge coupling term and a quantum shift function using the Airy
solution function. The use of Airy’s solution function commonly comes along with an inherent
numerical pathology manifested around the null gate charge configuration. Hence, an extended
form of the quantum shift function is established through the application of a technique
generating a globally continuous function originating from piecewise smooth functions.
Accordingly, the numerical current outputs were presented based on numerical integration
formalisms that consider Fermi-Dirac statistics.

Starting from the presented system of coupled equations, the surface potentials solution is
derived through a step-by-step technique ranging from initial guesses via the application of a
number of error correction steps. Such approach is a good proof of the noncompulsory of the
numerical integration when Fermi-Dirac statistics are applied. Moreover, closed from analytical
expressions were demonstrated for diffusion and drift current computations along with a two-
slope inversion charge linearization technique applicable for back-bias structures that considers
the computation of the respective slopes at the source and saturation ends. Finally, a few short
channel effects were implemented to the core model such as the velocity saturation, the DIBL
and charge sharing, and the parasitic resistance effects. In each step, the model results were
confronted to either PS simulations or experimental data in order to be validated.

Accordingly, one should emphasize that during the required years for the development of the
presented model, the coherence of the model was privileged over the accuracy. Expressly, no
non-homogenous expressions have been coerced in the model as customized truncation to get
to describe certain operation regimes. Furthermore, the consolidation of each single step in the
numerical and analytical model development process was a priority, in other word,
strengthening the numerical stability of the model along with attributing a physical significance
to the different involved elements was a requisite. Note as well that the number of the involved
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parameters (in exception with the adopted expression to describe the intersubband scattering
effect) was kept limited, a selection that is commonly considered as a bonus feature for compact
models. Namely, such choice of consolidation process implicates more devotion of time and
efforts for such consolidation process, which could be inconspicuous in exposition works of
this nature, in comparison to other more appealing processes that could have expeditious results.

Above all, the model presented here could be claimed as suitable for different geometrical,
back-biasing and temperature configurations, particularly the dual channel operation mode
manifested in the case of positive back biases that could be very challenging. Indeed, it should
be pointed out that since the model development presented in the course of this thesis is a first
attempt, it is not considered as a mature model yet. Nevertheless, for a first endeavor, it is the
choice of privileging the coherence and the numerical stability of the model that should have
been taken, since it allows the establishment of solid foundations, based on which upcoming
efforts and improvements could be built.

In this context, the aforementioned two approaches must certainly not be treated as independent
endeavors, as the quintessential approach to achieve mature compact models for cryogenic
operation is to ensure a mutual feedback between the two approaches mentioned formerly. That
is to say, the second approach can provide new understanding of physical phenomena at its very
fundamental level, enabling the derivation of mathematical formalisms that are consistent with
the physics of cryogenic operation on firsthand, and are numerically stable for these conditions
on second hand. In reverse, the first approach can supply some convenient and ready-to-use
formalisms to be implemented for cryogenic operation, certain short channel effects for
instance.

Furthermore, and as manifested in the course of the present thesis, some conveyed cryogenic
physical phenomena of quantum mechanical nature, such as the intersubband scattering, still
need supplementary fundamental investigation. As the fulfillment of such fundamental studies
paves the way for the attainment of closed-form analytical expressions that are independent of
any device geometry or back biasing configuration.

Based upon the present thesis, additional efforts are foreseeable, namely the study of the PMOS
device behavior and the implementation of additional short channel effects. Additionally, future
efforts to enhance the accuracy of the model with respect to the experimental data are needed
as well. Furthermore, the model presented here was built on the Python environment which
implies the need to transform it into the Verilog-A language in order for it to be subject of some
genuine tests in circuit simulators.
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