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List of symbols by order of appearance in the manuscript, note that most of the symbols in the 

manuscript will be labelled by the subscript 1 for the front side and 2 for backside : 

𝐸𝑐 The conduction band edge 

𝑇 Absolute temperature 

𝑛𝑖 The intrinsic electron density 

𝑁𝑐 The effective density of states in the conduction band 

𝑁𝑣 The effective density of states in the valence band 

𝐸𝑔 The intrinsic silicon midgap 

𝑘 Boltzmann constant 

𝐸𝐹 Fermi energy level 

LDD Lightly doped drain structures 

𝑞 Elementary charge 

𝐹𝑠 The surface electric field 

𝜆2𝐷 The electrostatic screening length 

𝑔 The valley degeneracy 

𝑚𝑙 Longitudinal effective mass for electron 

𝑚0 Electron rest mass 

𝐴2𝐷 The 2-D density of states 

𝑛𝑖𝑛𝑣 The electron  

∆𝐸 The energetic band tail 

𝑇𝑠 The saturation temperature 

𝑆𝑆(T) The subthreshold slope function 

V𝑔 The gate bias (subscript 1 for front and 2 for back) 

V𝑓𝑏 The flat band voltage (subscript 1 for front and 2 for back) 

V𝑠 The surface potential (subscript 1 for front and 2 for back) 

V0 The midgap energy level 

𝑄𝑑 The depletion charge 

Cit The interface trap capacitance 

C𝑜𝑥 The oxide capacitance (subscript 1 for front and 2 for back) 

C𝑑 The depletion capacitance 

Csi The silicon film capacitance 

𝑓(𝐸, 𝐸𝐹) The Fermi distribution function 



𝑁(𝐸, ∆𝐸) The electronic density of states function 

𝑇𝑒𝑓𝑓(𝑇) The effective temperature function 

𝜎(𝐸𝐹 , ∆𝐸) The conductivity function 

𝑊 The width of the device 

𝐿 The length of the device 

𝐸𝐹𝑠 The Fermi level at the source point 

𝐸𝐹𝑑 The Fermi level at the drain point 

𝐷(𝐸𝐹 , 𝑇𝑠) The diffusivity function 

𝜇𝑛(𝑄) The electronic mobility function 

𝑡𝑜𝑥1 The front oxide thickness 

𝑡𝑠𝑖 The silicon film thickness (body) 

𝑡𝑜𝑥2 The Back oxide (BOX) thickness 

𝜀𝑠𝑖 Permittivity of silicon film 

𝜀0 Permittivity of vacuum 

𝜀𝑜𝑥 Permittivity of oxide 

∆𝜙𝑔 
The work function difference between the corresponding gate and the silicon 

film 

Ψ Electronic wave function 

𝑣 Valley index 

𝑙 Energy level index 

ℰ𝑣,𝑙 Subband energy corresponding to energy level 𝑙, and valley 𝑣 

𝑔𝑣 The degeneracy of valley 𝑣 

𝑚𝑑𝑜𝑠,𝑣 The electron density of states mass corresponding to the valley 𝑣 

𝑉𝑠
𝑣,𝑙

 The electrostatic potential matrix (not well indicated) 

ℏ The normalized Planck constant 

𝐴2𝑑𝑣 The 2-D density of states corresponding to the valley 𝑣 

𝑉(𝑥) The potential spatial function 

𝐶𝑔𝑐(𝑉𝑔1) The gate to channel capacitance function 

𝐸0,0 The ground subband (unprimed valley) 

𝐸0,1 The second subband (unprimed valley) 

𝐸1,0 The third subband (primed valley) 

𝑄𝑖𝑛𝑣(𝑉𝑔1) The inversion charge density function 



𝜙𝑖𝑚 The quasi-Fermi level 

𝐸𝑒𝑓𝑓 The effective electric field 

𝑄𝑔 The gate charge density 

𝑄𝑐𝑝𝑙 The coupling charge density 

𝛥𝑉(𝑄𝑔1,2 ) The quantum shift function  

𝑄𝑜𝑓𝑓𝑠𝑒𝑡 The offset charge density 

𝜒𝑠 The subband potential 

𝑉𝑠
0 The surface potential initial guess 

𝜀1(V𝑠) The error correction function 

𝜇𝑒𝑓𝑓 The effective mobility 

𝛼𝑚 
The classical linearization coefficient i.e. with respect to the surface potential 

and computed at the middle point 

𝜆𝑠𝑟𝑐 The linearization coefficient computed at the source point 

𝜆𝑠𝑎𝑡 The linearization coefficient computed at the drain point 

𝑣𝑠𝑎𝑡 The saturation velocity 

Cs1 The parasitic capacitance laying between the front gate and the source side 

Cs2 The parasitic capacitance laying between the back gate and the source side 

Cd1 The parasitic capacitance laying between the front gate and the drain side 

C𝑑2 The parasitic capacitance laying between the back gate and the drain side 

𝐶𝑜𝑥
𝑒𝑓𝑓

 The altered oxide capacitance in the case of a 2-D electrostatic scheme 

𝑉𝑔
𝑒𝑓𝑓

 The altered gate bias in the case of a 2-D electrostatic scheme 

𝑅𝑠 The parasitic resistance in the source side 

𝑅𝑑 The parasitic resistance in the drain side 
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Conventionally, quantum computers consist of two parts: a quantum processor that comprises 

a set of qubits, and a classical electronic interface part required to perform the control and 

readout of quantum states. Factually, in order to preserve the compactness and reliability of the 

quantum computer and to ensure a reduced signal latency, the qubits were implemented in the 

cryogenic chamber along with the classical electronic interface so as to ensure the higher 

accuracy and the lower noise of the signals provided by these control/readout electronics. 

Owing to the back biasing feature, FDSOI transistors can regulate the threshold voltage, require 

low voltage supply, making them consequently able to exhibit low power consumption, which 

make them a good candidate for cryogenic operation. 

The designing of reliable and optimized circuits for deep cryogenic operation requires suitable 

compact models to be embedded in the process design kit packages. Several efforts including 

this thesis are going on currently in order to provide such models. Nonetheless, the realization 

of standard compact models that are mature enough still requires longer time and further 

endeavors. 

To tackle such task two approaches have been adopted by the research community.  The first 

approach consists of adapting existing standard models for deep cryogenic operation. Such 

adaptation is made using empirical solutions in order to improve their accuracy and 

predictability in cryogenic operation. Such approach comes along with a lot of advantages, 

since these standard models contain already all the additional effects and features and are 

numerically robust. However, these advantages come along with the limitations that these 

standard models are not adapted for cryogenic operation, namely because they consider a 3D 

gas of electrons and use Maxwell-Boltzmann (MB) statistics to describe their distribution. The 

second approach consists of building physics-based models aimed for cryogenic operation from 

scratch. Such choice allows to overpass the limitations of the first approach, for instance, 2-D 

electron gas along with the use of Fermi-Dirac (FD) statistics can be considered initially. 

Nevertheless, these models are not mature enough to be implemented in Process Design Kits 

(PDK). 

Expressly, the key stone into developing mature and suitable compact models is to understand 

the underlying physics that rules the MOS transistor behavior at cryogenic temperatures. For 

this end, in the frame of the present thesis we explore the different physical effects that manifest 

in transistors operating at cryogenic temperature such as the statistics that describe the electron 

distribution at these conditions, the subthreshold slope saturation at low temperature, and the 

mobility law evolution.  

In our study, three levels of modeling are performed. The first one consists of the self-consistent 

solution of Poisson and Schrödinger (PS) equations. Such PS simulations are a useful tool for 

understanding the physics that governs FDSOI transistors down to deep cryogenic 

temperatures. The second level of modeling is presented by the numerical model which meant 

to be a solid background for the development of the analytical model. The third level of 

modeling is of an analytical nature. Expressly, the PS simulations certify the charge and current 

solutions predicted by the numerical model, which in turn certifies the same predicted solutions 

by the analytical compact model. 

Correspondingly, in the introduction chapter, i.e. Chapter one, we will be exposing the frame 

from which emerges the challenge that we are trying to solve throughout this thesis. 

Accordingly, the components of a quantum computer are exposed along with the reasons the 

electronic interface needs to be located in the cryogenic chamber. Then, we will be discussing 

the justifications for the choice of CMOS technology and precisely the FDSOI transistors as 

the ultimate candidate to be implemented in the classical interface for deep cryogenic 
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temperature operation. In this context, the urgent demand for compact models describing the 

operation of FDSOI devices at cryogenic temperatures emerges as it is a crucial element for the 

process-design kits to assemble reliable and optimized circuits.  To produce such compact 

models one can seek two approaches, the first one starts from existing standard compact models, 

which are originally built for room temperature operation and uses empirical formulas in order 

to adapt them to cryogenic temperature operation. The second approach considers building 

fully-physics based compact models that are dedicated for cryogenic device operation. Indeed, 

in the frame of the present thesis we pursue the second approach. 

In the course of the Chapter that uncovers the underlying physics that reigns the device behavior 

at deep cryogenic operation i.e. Chapter two of the thesis, we pave the way to justify some 

principal assumptions and choices that have to be made subsequently. Chiefly, the Maxwell-

Boltzmann (MB) approximation validity down to cryogenic temperatures is discussed by the 

exposition of the reasons for which it does not hold in our present study and the reasons why it 

can be retained in some specific situations. Such discussion will be followed by the 

demonstration of the exponential band tails exhibited by the two-dimensional density of states. 

Ensuing, we expose two approaches to compute the subthreshold slope saturation manifested 

at deep cryogenic temperatures. In the same frame, we propose a description of the conductivity 

function through the use of the Kubo-Greenwood integral along with the diffusivity function in 

the degenerate statistics regime. Such exposition will be accompanied by the exhibition of the 

bell-shape mobility law that rules the electronic mobility at cryogenic temperatures. At the end 

of this chapter, we present an appealing effect that has been observed experimentally for back-

biased FDSOI transistors and propose a legitimate explanation. 

In the third chapter, dedicated to the exposition of the performed Poisson-Schrödinger 

simulations, we display an in-situ analysis of the band diagrams along with the subbands 

population mechanism appropriate for FDSOI structure operating at deep cryogenic 

temperatures. Such simulations were curiously performed as well at the 𝑇 → 0𝐾 limit. 

Correspondingly, we expose the electrostatic parameter curves namely the gate-to-channel 

capacitance curves that exhibit an appealing two-plateaus behavior for back-biased FDSOI 

structures. At the end of this chapter, the simulated gate-to-channel capacitance curves are 

confronted to collected C-V measurements in order to be validated. 

The fourth chapter is dedicated to the development of a numerical model that is aimed to the 

keystone for the compact model development. Such numerical model would be based on a 

system of two coupled charge equations. The establishment of such system would be 

accompanied by certain choices concerning the charge coupling term and the quantum shift 

function. In this frame, we propose an extended form of the quantum shift function that is 

suitable for different geometrical configurations and for back-biased structures. At the end of 

this chapter, mathematical expressions that describe the numerical integrals involved for the 

computation of the drain current in the case of Fermi-Dirac statistics are presented. 

In the course of the Fifth chapter, dedicated to the development of the required compact model, 

we range from the presented system of coupled equations in order to get an exact analytical 

solution for the surface potentials. Such solution is derived through a step-by-step technique 

that considers the application of a number of error correction steps. Similarly, closed-form 

analytical expressions were demonstrated for the diffusion current computation directly, 

however, concerning the drift current computation we presented a two-slope inversion charge 

linearization technique applicable for back-bias structures that considers the computation of the 

respective slopes at the source and saturation ends. Finally, a few short channel effects were 

implemented to the core model such as the velocity saturation, the DIBL and charge sharing 

phenomena, and the parasitic resistance effects. 



 

 

 

  

 

Chapter 1: Introduction 
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In his document published in 1982 [1], Richard Feynman proposed the idea of a computer that 

“will do exactly the same as nature”, i.e. a new kind of computer that imitates the physical laws 

of quantum mechanics like superposition or entanglement, i.e. a “quantum computer”. Quantum 

computers can solve real world NP-complete problems1 proficiently, such as efficient search in 

extremely large datasets, factorization of large integers in their prime factors, simulations of 

quantum systems for the optimization of drug synthesis, materials and industrial chemical 

processes [2]. 

In a quantum computer, standard logic bits are replaced by quantum bits (qubits), whose states 

can be represented as a point on the surface of a three-dimensional sphere, the so-called Bloch 

sphere. In this concept, standard logic ‘1’ and ‘0’ are replaced by quantum states |0> and |1>, 

and are manipulated, so as to exploit the fundamental phenomena of quantum mechanics for 

computation. Qubits can exist in a superposition of both states |0> and |1> simultaneously, 

which results in a computing power that doubles with every additional qubit, thus resulting in 

a massive speedup with respect to traditional computers. For example, it has been estimated 

that the state of a 50-qubit system, which corresponds to about one petabits, cannot be stored in 

the memory of the world’s most powerful computers today [2]. 

In its fundamental core, a quantum computer comprises: 

• A quantum processor, which consists of a set of qubits. 

• A classical electronic interface required to perform the control and readout of 

quantum states.  

Given that each qubit technology/implementation has its own strengths and weaknesses, the 

discussion is still ongoing about the choice of a standard qubit to build a large-scale quantum 

computer. Due to their similar nanofabrication techniques to those used in the microelectronics 

industry, silicon spin qubits and superconducting qubits or the so-called “Solid-state qubits” are 

probably the best choices for scalability (see Figure 1). The advantages of the superconducting 

qubits are their simple fabrication and easy control; but size-wise they are very large compared 

to silicon qubits, the formers are of the order of micrometers whereas the latter of the order of 

nanometers; they need lower operating temperature, 10mK for superconducting qubits 

compared to 100mK for silicon qubits. On the other hand, silicon qubits have finer compatibility 

to microelectronics industry than superconducting qubits, but they are more susceptible to 

defects, disorders or strains, invoking a long-lasting endeavor to determine the right operating 

voltages [3]. 

 

Figure 1. Solid-state qubits: to the left a spin qubit, to the right a superconductive qubit [4]. 

 
1 The name "NP-complete" is short for "nondeterministic polynomial-time complete". In this name, 

"nondeterministic" refers to nondeterministic Turing machines, a way of mathematically formalizing the idea of a 

brute-force search algorithm. Polynomial time refers to an amount of time that is considered "quick" for a 

deterministic algorithm to check a single solution, or for a nondeterministic Turing machine to perform the whole 

search. "Complete" refers to the property of being able to simulate everything in the same complexity class. 
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In the framework of the MOS-Quito project, CEA-Leti has developed its own qubit; a silicon-

on-insulator nanowire field-effect transistor with two gates G1 and G2 (see Figure 2). The 

superposition and entanglement of the electron spins under the gates set the quantum 

information, spin-resonance techniques are used to control or “rotate” the spins by sending 

nanoseconds voltage pulses and GHz microwave bursts to the gates G1 and G2. RF 

reflectometry is commonly used to read-out the spin states of the qubit by connecting an LC-

network to the gate [5]. 

Quantum states can be very easily disrupted by the heat generated vibrations, which must be 

eliminated for the quantum states to manifest. Thus, the quantum processor must be cooled 

down to deep cryogenic temperatures, typically between 10 – 100 mK.  

The lifetime of a quantum state, so-called the coherence time, only lasts for a very short time, 

normally in the order of nanoseconds or microseconds in best cases [6]. Such periods are not 

long enough to execute any practical computation. Hence, they need to be maintained longer, a 

task supervised by the classical electronic interface.  

 

Figure 2. (a) Scheme of the CEA-Leti qubit [5]. (b) Colorized transmission electron microscopy image of the device along a 

longitudinal cross-sectional plane. Scale bar, 50 nm [7]. 

Considering the qubit sensitivity, the classical electronic interface needs to grant the following 

extremely challenging specifications [2]:  

• Accuracy: to ensure the optimum operation of the quantum processors, the 

electronic signals feeding the qubits must be highly accurate in terms of 

amplitude, timing, frequency and phase.  

• Noise: the electronic signals feeding the qubits must transmit very limited noise, 

to guarantee the non-alteration of the quantum states. 

• Bandwidth: Controlling solid-state qubits is done through the generation of 

microwave bursts ranging from few GHz to tens GHz, in addition to the current 

and voltage pulses of tens MHz. 

Moreover, to transcend the short coherence time, information redundancy has been proposed 

through the error correction techniques, by implementing the quantum information in a large 

number of qubits, i.e. trading off the simplicity of the system by its reliability, making the 

threshold of number of qubits required to perform practical computations even higher [2].  

In essence, the classical interface must take care of two functions, the execution of the quantum 

algorithm and the fidelity of the computation beyond coherence time. High fidelity conveys 

that the quantum-controller needs to bring back the qubits to its initial state with a probability 

of 99.99% [4]. In addition, the latency of the error-correction loop must be lower than the qubit 

coherence time. 
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A generic control and readout platform is composed of several subsystems, a multiplexing and 

demultiplexing amplification matrix or the switch matrix, an I-to-V converter, a low pass filter, 

analog to digital conversion ADC components and digital to analog conversion DAC 

components [2], [8]. The switch matrix is a key component that directs a particular waveform 

to a particular qubit based on its digital address, it is placed close to the qubits, to avoid latency 

and synchronization problems if it propagates on a path comparable to its wavelength [6].  

At first, the qubits were implemented in a Helium dilution chamber, while the control/readout 

electronics were kept at a distance at room temperature. The connection between the two is 

realized through a number of physical wires, and each qubit is controlled solely. This might be 

practical for simpler prototype systems where the number of qubits is below 100 [4], and 

compactness is not required. The limitations of this implementation are basically due to the 

thermal load of the large number of cables, and the latency of the error-correction loop. The 

result would be a big, expensive, unpractical quantum computer with low reliability [2]. Thus, 

such an approach cannot be maintained for a large-scale quantum computer with big density of 

qubits.  

Scaling up the number of qubits requires a new approach, one that can ensure a compact design, 

while satisfying all thermal requirements, and improving reliability and debuggability of the 

overall system [4]. Such needs are attained if the classical logic interfaces are located in the 

cryogenic chamber, which would be accompanied with the advantages of an enhanced clock 

speed, an improved noise performance, a reduced signal latency/timing errors, and larger 

bandwidth [6]. In such an installation (see Figure 3), the long wiring can be removed from the 

system and replaced by interconnects, and the control and readout of multi-qubits will be 

performed simultaneously in proximity [8], resulting in a more compact and more reliable 

system [2]. Nonetheless, this approach will add another constraint to the classical interface 

performance, the power dissipation constraint. 

 

Figure 3. Schematic representation of the two approaches. 

The thermal budget due to the power dissipation has to be within the thermal absorption limits 

of the refrigeration system. Taking advantage of the different distribution of thermal budget 

across the system, the control architecture can be placed at a certain stage of temperature [4]. 

A feasible control platform power dissipation of 30 mW, making it operating at liquid helium 

temperature (LHT) i.e. 4.2K [6]. 

Based on what has been said previously, the choice of technology for constructing this layer of 

classical control is largely dictated by its functionality at very low temperatures, its high speed 

and compactness. The electronic devices that have shown functionality at cryogenic 

temperatures are JFETs, HEMTs, superconducting devices based on Josephson junction, 

compound semiconductors, and CMOS transistors.  Regarding the low power consumption, 
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integration of billions of transistors on a single chip, and the very mature industrial technology, 

CMOS is the chosen candidate [2], [4], [6], [8]. 

 

The quest for understanding the underlying device’s physics at cryogenic temperatures has 

started decades ago [9]. Some physical phenomena that are dominant at room temperature 

become non-dominant at cryogenic temperature, and equivalently, some physical phenomena 

that were of minor importance at room temperature become dominant at cryogenic 

temperatures, those physical phenomena will be discussed in detail in Chapter 3.  

Bulk CMOS operating at cryogenic temperatures is characterized by an increase in the threshold 

voltage due to the carrier freeze-out, and by some kink effects that are caused by the dopant 

freeze-out. Nonetheless, those kink effects are either reduced or absent in a more mature and 

refined CMOS technologies such as the FDSOI technology. In comparison to bulk CMOS, 

FDSOI transistors can perform an in-situ control of the threshold voltage due to its back biasing, 

a low power consumption due to its low voltage supply, and a low variability due to the undoped 

silicon channel [10], which could offer the optimum cryogenic device performance [11].  

Compact models describing the operation of MOS devices at cryogenic temperatures are crucial 

for the designing of reliable and optimized circuits. Nowadays, process-design kits lack models 

for all devices at deep cryogenic temperatures, whether it is a MOSFET, a qubit, or a passive 

device. The task of building compact models for cryogenic operation needs to be tackled 

urgently, mainly because today’s circuit simulations fail to function as expected down to 

cryogenic temperatures. Consequently, excessive simulations are needed to be done to account 

for the changes in different parameters. 

There are two approaches to deal with this task, the first one is to take existing standard compact 

models, which are originally built for room temperature operation and try to adapt them to 

cryogenic temperature operation through empirical formulas. This approach does not require a 

long time but as the underlying physics at cryogenic temperatures is not the same as at room 

temperature, the result would be non-physical compact models that would be very limited. Such 

approach can be adopted when the resources (whether human or budget or time) are limited. It 

should be noted that for this approach the circuit performance is not guaranteed, and they are 

designed with a non-negligible degree of uncertainty.  

The second approach, which is a research approach and the one we choose in the frame of this 

thesis, is to build fully-physics based compact models that are dedicated for cryogenic device 

operation. Such an approach is more time consuming and the process of developing appropriate 

compact models is progressive, starts with a core model that predicts the long channel transistor 

behavior, followed by continuous add-ons/improvements for different effects such as small 

transistors effects, access resistances, self-heating effects, to name a few. Compared to the first 

approach, this approach should be less risky and the output design-wise is much more 

appropriate and precise. 

1.1 State-of-the-art of standard compact models at cryogenic temperatures: 

Current standard compact models can scale down to liquid Nitrogen temperature 77K, but at 

liquid Helium temperature 4.2K and below some discontinuities start appearing in the moderate 

inversion region. This is due to two things basically, the lacking/incorrect modeling of the 

device physics at this range of temperatures (as it was not initially planned for this aim), and 

the numerical issues generated by the very large arguments of the exponential functions used 

in the Maxwell-Boltzmann statistics, leading to their explosion and the model’s crashing. 

Moreover, at cryogenic temperatures, the Maxwell-Boltzmann approximation is not valid 

anymore; the intrinsic carrier concentration 𝑛𝑖 becomes extremely small (they are found to be 
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lying outside the range of the IEEE double precision 10−308 → 10308; for example at 4.2K, 

𝑛𝑖 = 10−678 𝑐𝑚−3), resulting in enormous arithmetic underflows in the implemented analytical 

expressions [12]. 

Efforts to models the operation of CMOS transistors started prior to the need for quantum 

cryogenic controllers [13], [14]. Figure 4 for example exposes the simulations obtained using 

the BSIM model versus the experimental data measured at 100K of an NMOSFET. This deficit 

of modelling the transistor’s behavior at this temperature is due to the inappropriate projection 

of the built-in temperature dependences of the BSIM model. Such projections are not valid 

down to this range of temperatures [14]. 

 
 

Figure 4. 100 K measured and simulated drain-to-source current versus gate-to-source and drain-to-source voltage curves of 

the N-MOSFET with W/L = 15.6 μm/0.16 μm [14]. 

 

Subsequent to the emergence of a quantum controller need, modelling efforts were held 

predominately in the four axes; each one will be discussed and highlighted hereafter. 

❑ The EKV MOSFET model: 

The EKV MOSFET is a simplified charge-based model that can be used for advanced CMOS 

technologies, and require four parameters to fit the 𝐼𝑑 − 𝑉𝑔 transfer characteristics: the slope 

factor 𝑛, the specific current-per-square parameter 𝐼𝑠𝑝𝑒𝑐, the threshold voltage parameter 𝑉𝑇0, 

and the velocity saturation parameter 𝐿𝑠𝑎𝑡 [15]. In such a model, the concept of inversion 

coefficient IC, a parameter that quantifies the channel’s inversion, is introduced to replace the 

overdrive voltage. Both the normalized transconductance efficiency 𝑔𝑚 𝐼𝑑⁄   and the normalized 

output conductance 𝑔𝑑𝑠 𝐼𝑑⁄   are found to be dependent of the inversion coefficient [15]. This 

IC-based methodology has been proved valid for back-biased FDSOI transistors at room 

temperature [16].  

At cryogenic temperatures on the other hand, the major increase of the slope factor parameter 

n at 4.2K is attributed to the interface-trapping phenomenon, followed by a small adjustment to 

introduce the change in the subthreshold slope induced by the back-gate biasing. The threshold 

voltage shift due to the incomplete ionization, a phenomenon that characterize doped CMOS 

technologies at low temperatures (this effect will be discussed in Chapter III), as well as the 

threshold voltage shift due to the back-gate biasing and the Fermi-Dirac shifting are captured 

in the 𝑉𝑇0 model parameter adjustments, and the 𝐿𝑠𝑎𝑡 parameter decreases at 4.2K because of 

the reduced phonon scattering. The normalized transconductance efficiency design-

methodology is proved still valid for FDSOI transistors at 4.2K [17]. 

The published modeling works of the 28 nm FDSOI transistor based on the EKV MOSFET 

model [17], [18] do not account in an intrinsic manner for Fermi-Dirac statistics, do not 
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demonstrate the C-V characteristics of the transistor, and deals only with singular channel 

operation. 

  

  
Figure 5. Transfer characteristics of a long (to the left) and a 28 nm short nMOS down to 4.2K, the simulations are done 

using the EKV-MOSFET model. 

❑ The MOS11/PSP models: 

PSP is a physical surface-potential-based standard compact model for bulk MOSFET transistors 

that gives an accurate description of currents, charges and their higher order derivatives, an 

important feature for RF circuit designs [19]. The core model includes the computation of the 

surface potentials at both the source and drain ends, the terminal charges, and the intrinsic drain 

current accounting for the symmetric linearization method. The model contains two 

distinguished set of parameters, a global parameters set that consider the geometry 

dependencies, and a local parameters set that facilitates the parameter extraction procedure [20]. 

The PSP model is only certified down to the temperature of 218.15K. For liquid helium 

temperature operation, temperature-dependent model parameters need to be extracted from the 

LHT measurements, some of which need to be modified while others are zeroed. For the 

MOS11 models on the other hand, and besides the temperature-dependent extraction, additional 

electrical components need to be implemented in the model in order to consider LHT device 

behavior. For example, the kink effects observed in the 160 nm CMOS devices are taken into 

account by adding a non-linear resistor in series with the bulk terminal [21], [22]. Two examples 

of the output characteristics are shown in Figure 6, and a summary of the modified parameters 

is listed in Table 1. 
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Figure 6. Output characteristics of a 160 nm nMOS (left), and 40 nm nMOS (right). Measurements at 300K (dotted line), 

measurement at 4K (solid lines), and the MOS11/PSP model (dashed lines). 

 

MOS11 parameters for 160 nm CMOS 

BETSQR VFBR THESRR THESATR THERR A1R 

A2R A3R SDIBLO ALPR KOR  

PSP parameters for 40 nm CMOS 

FACTUO DELVTO THEMUO THESATO RSW1 CFL 

ALPL MUEO FBET1    
Table 1. MOS11 and PSP Modified parameters for 160 nm and 40 nm NMOS [21]. 

❑ The BSIM model: 

Berkeley Short-channel IGFET Model (BSIM) is an industry standard compact SPICE model. 

BSIM is in fact a family of models that evolved along with the evolution of transistor’s 

structure. BSIM-IMG (Independent Multi-Gate) is a surface potential-based for SOI/FDSOI 

MOSFETs, where the front and back surface potentials are derived simultaneously by solving 

Poisson’s equation for different combinations of biases. BSIM-CMG (Common Multi-Gate) is 

a surface-potential based model for multi-gate MOSFETs (like FinFETs) that considers 

arbitrary channel cross-section shape. Once the computation of the surface potentials is 

performed, it is followed by the computation of the correspondent charges, capacitances, and 

terminal currents. 

The BSIM models were reformulated to allow their operation at cryogenic temperatures. A new 

temperature dependent charge density model is proposed, taking into account the band tail 

states, threshold voltage, mobility, and current saturation. The results are shown in Figures 7 & 

8 [23].  



 

10 

 

 
Figure 7. Transfer characteristics of a 28 nm FDSOI MOSFET (EOT = 1.7 nm, and back gate EOT = 25 

nm), the simulations were done using the BSIM model. 

 
Figure 8. Output characteristics of a FINFET for different gate biases, T = 8 k for the left and T = 77 K for 

the right. 

 

 

  

As for the drawbacks, the BSIM compact models are based on Maxwell-Boltzmann statistics, 

the impact of Fermi-Dirac statistics is emulated by considering an effective temperature instead,   

and a threshold voltage correction is added to the gate voltage term.  

❑ The L-UTSOI model: 

L-UTSOI is a standard surface-potential-based compact model dedicated to FDSOI MOSFET 

technologies with low-doped channel, developed at CEA-Leti and previously named Leti-

UTSOI. The model accounts for the creation of a strong inversion layer at both interfaces of the 

silicon body, the so-called “dual-channel operation”, and gives an accurate description of the 

currents, charges and their derivatives in all bias-configurations [24]. Moreover, the model 

reproduces accurately the normalized transconductance efficiency 𝑔𝑚 𝐼𝑑⁄ , a valuable feature 

for RF applications [24], [25]. Solving the dual-channel operation equations is challenging 

mathematically, as the integration of Poisson’s equation with boundary conditions (the model 

consider volume inversion of only mobile charges following the Maxwell-Boltzmann statistics) 

leads to a set of equations involving either hyperbolic or trigonometric functions. The coupling 

of the two interfaces is expressed through a charge-dimensioned quantity, that can be either real 

(hyperbolic mode) if the interfaces are actually coupled, or imaginary (trigonometric mode) if 

the interfaces are decoupled [25]. 

At cryogenic temperatures, the L-UTSOI model cannot reproduce the I – V or C – V 

characteristics, and crashes sometimes if the temperature is below 173K. The temperature 

dependence of the parameters needs to be cancelled and a temperature-offset parameter is 

added, the rest of the parameters are fixed to work at 4K only. 

Adapting the L-UTSOI model for deep cryogenic temperature on the other hand will result to 

a model produced C – V characteristics that seem to be good, as shown in Figure 9. However, 



 

11 

 

the model produced transport characteristics especially for positive back-biases which are not 

accurate, as shown in Figures 10, 11 & 12. The kink that the transfer characteristics show in 

Figure 11 is due to the Intersubband scattering, a phenomenon that is not manifested in higher 

temperatures but is found to be present at cryogenic temperatures for FDSOI transistors (more 

on that in Chapter 3). Empirical modifications have been introduced to the mobility law 

accounting for its degradation. Such an approach allows a better description of the kink effect 

and the produced transfer curves are more accurate. Moreover, to recapture for the inaccuracy 

observed in the output characteristics, Figure 10, a non-linear access resistance with 

symmetrical values at source and drain side is added. Such an approach has been introduced in 

other models, such as Leti-HSP [26], but its physical origin at cryogenic temperatures is not 

well understood. 

 
Figure 9. Gate to channel capacitance as a function of 

front gate bias for a 10 µm X 10 µm FDSOI nMOS (EOT1 

= 1.2 nm, EOT2 = 25 nm), at 4K. L-UTSOI simulations are 

in solid lines and experimental data in dotted lines. 

 
Figure 10. Output characteristics for a 10 µm X 10 µm 

FDSOI nMOS (EOT1 = 1.2 nm, EOT2 = 25 nm), at 4K. L-

UTSOI simulations are in solid lines and experimental data 

in dotted lines. 

 

 
Figure 11. Transfer characteristics (𝑉𝑑𝑠 = 0.05 𝑉) for a 

10 µm X 10 µm FDSOI nMOS (EOT1 = 1.2 nm, EOT2 = 

25 nm), at 4K. L-UTSOI simulations are in solid lines and 

experimental data in dotted lines. 

 
Figure 12. Transfer characteristics (𝑉𝑑𝑠 = 0.9 𝑉) for a 10 

µm X 10 µm FDSOI nMOS (EOT1 = 1.2 nm, EOT2 = 25 

nm), at 4K. L-UTSOI simulations are in solid lines and 

experimental data in dotted lines. 

 

To summarize, even though the previous works seem to fit the experimental results of the 

transistor characterizations at cryogenic temperature, they all share the empirical-adaptation 

aspect of pre-existing compact models. As a result, Fermi-Dirac statistics, a fundamental aspect 

of electrons at those temperatures is either absent or post-emulated.  

Moreover, neither of the FDSOI cryogenic operation published works demonstrate in an 

extensive manner the transistor electrostatics characteristics that is to say the electrostatic 

surface potentials for both interfaces, and the C – V curves. Likewise, the Fermi-Dirac statistics 
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need to be considered in the transport part in the drain current derivation and not only in the 

electrostatics part. Furthermore, most of the published works maintain the RT mobility laws 

and adapt them to cryogenic behavior by modifying/adding fitting parameters or considering a 

constant mobility in the linear regime [17], [27], but none considers introducing a proper 

mobility law dedicated for MOSFETs operating at cryogenic temperatures [28]. 

Besides, numerical simulations are an important step that must precede the development of an 

analytical model and that will serve as a solid ground for the validation of its 

results/approximations. No numerical simulation has been held in such conditions, whether the 

simulation of the electrostatics at equilibrium, or electronic transport out of equilibrium. The 

use of such simulations is very important and necessary for the development of compact 

models. Firstly, because those simulations take very limited approximation and allow the 

demonstration of some quantities that are unachievable through experimentation, or they can 

be very handy when the experimental data required to calibrate the compact models are not 

available. In the frame of this work, Poisson-Schrodinger simulations of the FDSOI structure 

at cryogenic temperatures and accounting for Fermi-Dirac statistics were held to exploit and 

understand the device’s electrostatics primarily, and then the simulations were held with the 

introduction of a quasi-Fermi level term to analyze the transport aspect of the device. 

The scope of this thesis therefore, is to exploit the device’s physics of FDSOI transistors down 

to deep cryogenic temperatures and to develop an appropriate core compact model. Such work 

would be the foundation into a compact model that is suitable for spice simulations. 

For such work, we will be facing the following challenges: 

• Understanding the underlying physics. 

• Considering the dual channel operation of back-biased FDSOI transistor, which comes 

with its own challenges as we have the co-existence of two coupled interfaces. 

• The compact model must work for all regions of operation, whether in weak, moderate, 

or strong inversion, with a smooth transition between them. 

• The model needs to work for different configurations. That includes geometrical 

configurations, such as the oxides thicknesses, the silicon channel thickness, the channel 

length and width. The model needs to work for all biases configuration, in other words 

for a negative, null or a positive back bias. Finally, even though the model is dedicated 

for cryogenic operation, it must cover a good range of temperatures.  
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Whereas in the previous chapter we detailed the technological aspects from which emerges the 

challenges that we are trying to solve with this thesis, the physical features, which should be 

our starting point, were not discussed. Thusly, the microscopic physical aspects are detailed in 

this chapter, the exposition of those aspects is put in order; i.e. the electrostatic-based 

parameters are discussed firstly, followed by the study of the transport-based parameters. 

It should be noted that for some physical entities such as the carrier density 𝑛𝑖𝑛𝑣, both the 

physical and the numerical aspects are discussed. Such approach is necessary, as historically 

low temperature device modeling was considered extremely difficult, implicating, in first 

instance, our lack of understanding for the physical phenomena that appears at those conditions 

and the corresponding assumptions that have to be made, and in second instance, the numerical 

implementation that follows. Both of these two aspects are equally important. 

Some choices that are made for the rest of this thesis must be discussed in this chapter, such as 

the statistics used to describe the carriers distribution at cryogenic temperatures, the number of 

inversion channels involved in the electrostatic control or the transport phenomenon, the 

mobility law and the scattering mechanisms involved. 

Moreover, in this chapter we consider the conduction band edge 𝐸𝑐 as the energy potential 

reference, i.e. it will be represented by the point 0 in the equations/graphs hereafter.  

1.1 Electrostatic-based physical parameters  

1.1.1 Maxwell-Boltzmann approximation 

In this section, the Maxwell-Boltzmann (MB) approximation validity down to cryogenic 

temperatures is investigated. Whereas some published literature emphasized on the non-validity 

of Maxwell-Boltzmann approximation down to cryogenic temperatures [1], [2], others argued 

its usage [3], [4]. To give an overall view of such aspect, the ongoing arguments in the scientific 

community on the validity of MB approximation at deep cryogenic temperatures will be 

specified first, followed by the reasons we believe the MB approximation does not hold at 

cryogenic temperatures and must be replaced by full Fermi-Dirac statistics. 

To better address this debate, one must discern between the physical, the numerical, and the 

practical aspect of this subject. From a numerical viewpoint, the numerical overload in the 

exponential functions due to the very small 𝑇 is expected and inevitable. In addition, the 

intrinsic carrier concentration take very small values at deep cryogenic temperatures and 

becomes null at the 0K limit, following 𝑛𝑖 = √𝑁𝑐 . 𝑁𝑣 . 𝑒𝑥𝑝(−𝐸𝑔 2. 𝑘. 𝑇⁄ ) [5],(note that even 

𝑁𝑐 and 𝑁𝑣 are temperature dependent, but such detail is irrelevant to our approach as will be 

shown). The scaling of intrinsic carrier concentrations down to deep cryogenic temperatures is 

not obvious; a number of solution has been proposed to surmount such problem [6], [7]. The 𝑛𝑖 
arithmetic underflow and the numerical limitations are tackled according to [3], [8] by using a 

variable arithmetic precision. Such approach is sound only if the non-explosion of the 

exponential factors is assured. Typically, 𝑛𝑖 would be zero at the 𝑇 → 0𝐾 limit and takes 

extremely small values at deep cryogenic temperatures, for example, Figure 1 taken from [9] 

reveals that 𝑛𝑖 values can go as low as 10−278 𝑐𝑚−3 at deep cryogenic temperatures, which is 

not meaningful. 
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Figure 1. The evolution of intrinsic carrier concentration 𝑛𝑖 in silicon with temperature [9]. 

Jointly, at 0 K temperature, Fermi distribution function 𝑓(𝐸, 𝐸𝐹) = 1 (1 + exp⁡(𝐸 − 𝐸𝐹 𝑘𝑇⁄ ))⁄  

would be a step function, but a strict step function would lead to zero mobile carrier, which is 

inconsistent with the observed correct functioning of MOS transistors at deep cryogenic 

temperatures. However, the study performed on LDD structures [2] at low temperatures 

demonstrated the fallacy of such description, as in such structure, the series resistance rise up 

enormously because of the non-degenerate doping level at the LDD region, hence, the channel 

is deactivated.  Nonetheless, when high enough electric fields are provided, either through the 

gate or the drain biasing, sufficiently impurity field ionization happens, resulting in a big 

reduction of the series resistance with biasing [2]. In other words, and in a more general case, 

even though the low temperature condition does not provide the required thermal energy for 

the electrons to be activated and open the inversion channel, high enough electric fields take 

charge of this task, and provide sufficient electrons to open the inversion channel [10], [11]. 

The physical viewpoint is addressed through two sub-levels; the first one is by inspecting the 

doping level, while the second one discusses the relative position of the Fermi level. Indeed, 

the assumption of holding the MB approximation is applicable in some specific cases where 

the doping level is very high, sometimes just below the degenerate limit and for temperatures 

down to 100mK when partial ionization is present1. Reason being that partial ionization would 

maintain the non-degeneracy of highly doped semiconductors, thus the MB approximation 

validity [3], [4]. 

In our case , the partial ionization argument does not maintain for an apparent reason, as being 

that though the channel doping is indispensable for bulk MOSFETs, it is not for ultrathin FDSOI 

architecture, where the doping is only considered as another degree of freedom to control the 

𝑉𝑡ℎ control of the device [12], [13] . Thus, the argument of maintaining the MB approximation 

due to the presence of partial ionization for highly doped channels does not hold, and the only 

remaining source of electrons to the channel is through the diffusion from source and drain 

regions.  

 

1 The doping concentration is presumably fully ionized in room temperature, such assumption does not hold for 

low temperature simulation. Instead, the partial ionization is described using the next two formulas:  

𝑁𝐷
+ = 𝑁𝐷. (1 + 2. 𝑒𝑥𝑝 (

𝐸𝐹𝑛 − 𝐸𝐷
𝑘𝑇

))

−1

, 𝑁𝐴
+ = 𝑁𝐴. (1 + 4. 𝑒𝑥𝑝 (

𝐸𝐴 − 𝐸𝐹𝑝
𝑘𝑇

))

−1
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Primarily, from a physical viewpoint as well, the best way to settle this debate is by analyzing 

the relative position of the quasi-Fermi level with respect to the conduction band edge. In such 

context, we have three main cases; each case is characterized by its own statistics: 

• If the Fermi level is situated deep in the band gap region i.e. 𝐸𝐹 ≪ 0, then the Maxwell-

Boltzmann approximation prevails [14] . 

• If the Fermi level crosses the conduction band edge to some extent i.e. 𝐸𝐹 ≥ 0, then the 

Maxwell-Boltzmann is not valid anymore and the electrons distribution is described by 

the Fermi-Dirac statistics [14], [15]. 

• If the Fermi level is well above the conduction band edge i.e. 𝐸𝐹 ≫ 0, then the metallic 

behavior dominates and the electron statistics become fully degenerate [14], [15]. 

This is better illustrated in Figure 2, where the electron density is shown as a function of the 

difference between the Fermi level and the conduction band edge. Figure 2 indicates that at 

very low temperatures the electron density becomes very dependent to small changes of the 

Fermi level, meaning that MB approximation leads to huge overestimation of carrier densities 

as soon as the Fermi energy exceeds the band edge energy i.e. 𝐸𝐹 − 𝐸𝑐 = 0. It is worth noting 

that the overestimation of carrier density will inevitably propagate to all density dependent 

quantities, the drain current principally. 

 

Figure 2. Electron density as a function of the relative position of Fermi level with respect to the conduction band edge for 

different temperatures. Solid lines: Fermi-Dirac statistics, dashed lines: Maxwell-Boltzmann approximations. The fully 

degenerate limit (T = 0K) is plotted for comparison [1]. 

Another reason to keep the MB statistics is from a practical viewpoint. Considering the Poisson-

Boltzmann equation as the standard starting point to calculate the corresponding electrostatics 

at deep cryogenic temperatures, [4] chooses to stick with the MB approximation to keep the 

model analytical along with its computational efficiency, with the assumption that Fermi-Dirac 

statistics would necessitate a numerical integration [4], [8]. In fact, as we will see in Chapter 5, 

the use of complete Fermi-Dirac statistics would not impede the development of an explicit 

model. Contrariwise, using Fermi-Dirac statistics inherent to cryogenic consideration have the 

advantage of the explicit formulation in both strong and weak inversions in a 2D system. 

Furthermore, since the simulation at the 0K temperature are impossible with both Fermi-Dirac 

and Boltzmann statistics due to the infinitely large 1 𝑘𝑇⁄ , the Fermi-Dirac integral function 

should be replaced by a Heaviside function. This approach is coherent physically as the 

Heaviside function emulates perfectly the fully degenerate metallic statistics. 
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1.1.2 Quantization of the inversion layer 

When a strong electric field is applied perpendicularly to the surface of the silicon channel, the 

electronic system forms two-dimensional energy bands called “subbands”. Each subband 

corresponds to a quantized motion normal to the surface, with a continuum for motion in the 

plane parallel to the surface. Meaning that for an Si (100) surface, the perpendicular  direction 

will be assisted by two valleys, which present the highest mass for electrons in motion, whereas 

the two parallel directions will be assisted by four valleys, which present the lowest masses for 

electrons in motion [16], [17] . The quantization effect becomes more accentuated for low-

temperature operation compared to room temperature operation [15], [18], [19]. To support 

such statement we have calculated the subband energetic positions on a 10 nm silicon layer of 

an FDSOI transistor by solving Schrödinger and Poisson equations self-consistently, without 

taking into account image charge and exchange-correlation contributions (full analysis will be 

reported in Chapter 3). The calculations were performed for ten subbands, one ground and nine 

excited subbands. However, as will be shown in 1.1.6, the electrons reside entirely in the three 

first subbands at cryogenic temperatures. We can see according to Figure 3, that the lower the 

temperature is, the higher the separation between the first and second subbands, and 

respectively between the second and third subbands becomes, signifying a more pronounced 

quantum effects as stated by [15], [18], [19] . 

 

Figure 3. The energetic separation of the first three subbands as a function of temperature for a back-biased FDSOI 

structure. 

Another subject that should be pointed out in the context of cryogenic temperatures modelling 

is the thickness of the inversion layer at those temperatures compared to room temperature.  

From a classical viewpoint, the turning point, a parameter dependent on the temperature, is 

much closer to the interface for lower temperatures, following 𝑘𝐵𝑇/𝑞𝐹𝑠 in the simplest 

approximation [15]. Such formula suggests that the lower the temperature is, the narrower the 

potential well is, yielding to an accentuated quantization.  
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A better way of explaining this might be through the introduction of the concept of the 

electrostatic screening length 𝜆2𝐷, a length that characterizes the distance over which any local 

perturbation of the electric potential can be attenuated by the free-electron charge of the two-

dimensional inversion layer. According to [20], 𝜆2𝐷 takes a constant value of about 3⁡𝐴° either 

at low temperature or at high carrier concentration i.e. when the degenerate statistics dominate. 

With the quantum confinement, the inversion layer is not located strictly at the interface 

between the silicon body and the oxide, but a few Angstroms away because of the dark space 

effect. This has to be accounted for, but it does change the fact that the inversion layer is thin 

enough for the charge sheet approximation to be valid. Thusly, the charge sheet approximation 

[21], usually used in room temperature compact models, can also be considered as suitable for 

cryogenic temperature compact models, promoting a reasonable employment of this 

approximation in the sections dedicated to the numerical and analytical models (Chapter 4 & 

5). 

1.1.3 The two-dimensional density of electrons 

The next physical parameter to be addressed is the density of states (DOS). As a direct 

consequence of the existence of a two-dimensional electron system, the attributed density of 

states is two-dimensional. The two-dimensional DOS is independent of energy 𝐸, and is given 

by Eq 2.1 and the electrons density is given by the integral demonstrated in Eq 2.2. In the 

absence of disorder, the density of states function is null below the energy level 𝐸0 and becomes 

constant at 𝐸0 and for higher energies. For the 〈100〉 oriented Silicon film, the valley pair 

pointing in the 〈100〉 direction, which has a degeneracy of 𝑔 = 2, have a longitudinal mass 

𝑚𝑙 = 0.91⁡.𝑚0 and a transverse mass 𝑚𝑡 = 0.19⁡.𝑚0.  Note that, hereafter, when the DOS is 

treated as constant entity, it will be called 𝐴2𝐷.Concretely, if we inject the density of states in 

the integral given by Eq 2.2 to establish the expression of electrons density, we find  Eq 2.3 . 

Note that, assuming we are at the absolute zero limit 𝑇 = 0𝐾, the direct analytical development 

of Eq 2.2 gives 𝑛𝑖𝑛𝑣(𝐸𝐹 , 𝑇) = 𝐴2𝐷. 𝐸𝐹 , such expression depicted by a Heaviside function 

represent the typical fully degenerate metallic behavior. 

 
𝑁(𝐸) =

𝑔.𝑚𝑑𝑜𝑠
∗

𝜋ℏ2
 

Eq 2.1 

 𝑛𝑖𝑛𝑣(𝐸𝐹 , 𝑇) = ∫ 𝑁(𝐸).⁡⁡𝑓(𝐸, 𝐸𝐹)
𝐸𝐹

𝐸𝐶

𝑑𝐸 
Eq 2.2 

 𝑛𝑖𝑛𝑣(𝐸𝐹 , 𝑇) = 𝑘𝑇. 𝐴2𝐷. ln⁡ (1 + exp⁡ (
𝐸𝐹
𝑘𝑇

)) 
Eq 2.3 

In spite of this, in reality, the 2D subband is not a mere step function but it exhibits a band tail 

of states [22], [23]. The origin of such band tails is believed to be due to the potential-

fluctuation-induced from crystalline disorder, residual impurities and strain, surface roughness 

etc. [22]–[24]. 

The best way to describe the band tail extension ∆𝐸 is through an exponential decrement of the 

DOS, following Eq 2.4, which is demonstrated through Figure 4. Note that this expression 

describes continuously the DOS function above and below the conduction band edge. We can 

see that if the energy level 𝐸 is positive, Eq 2.4 is reduced to the 2D DOS term i.e. 𝐴2𝐷, and 

when the energy level is negative, the exponential decrement of the 2D DOS is present. In 

contrast to the expression proposed by [23], where two different expressions were given to 

describe both of the DOS regions.  
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 𝑁(𝐸, ∆𝐸) =
𝐴2𝐷

1 + ⁡𝑒𝑥𝑝(−𝐸 ∆𝐸⁄ )
 

Eq 2.4 

 

Figure 4. Electronic density of states behavior in the presence of a band tail extension, the 0-point being the band edge. 

 

Actually, the band tail extension ∆𝐸 = 𝑘. 𝑇𝑠 is a finite characteristic temperature that we cannot 

go below (a behavior that will be demonstrated in the next section). In other words, this is 

equivalent to say that our system has an inherent physical limit.  

 

1.1.4 The subthreshold slope saturation 

The band tail of states becomes intriguing if one is interested on what happens in the 

subthreshold region. Such band tails are believed to be the origin of the saturation of the 

subthreshold slope 𝑆𝑆 = 𝑑𝑉𝑔 𝑑𝑙𝑛(𝐼𝑑)⁄  demonstrated at cryogenic temperatures [22], [23]. 

There are two approaches to calculate the drain current involved in the subthreshold slope 

derivation. The first one supposes a proportionality between the drain current and the carrier 

density, such approach is the one used here. The second approach considers directly the 

electronic conductivity, and the transport in the 2D subband is described using the Kubo-

Greenwood formalism [22].  

The virtue of the first approach is that, assuming the electronic mobility is constant, the 

subthreshold slope is directly found as a function of the electron density, i.e. 𝑆𝑆 =
𝑑𝑉𝑔 𝑑𝑙𝑛(𝐼𝑑)⁄ = 𝑑𝑉𝑔 𝑑𝑙𝑛(𝑛𝑖𝑛𝑣)⁄ . Therefore, the subthreshold slope can be written as in Eq 2.5.  

 𝑆𝑆 = ⁡
𝑑Vg

𝑑𝑙𝑛(𝑛𝑖𝑛𝑣)
=
𝑑Vg

𝑑Vs
.

𝑑Vs
𝑑𝑙𝑛(𝑛𝑖𝑛𝑣)

=
𝑑Vg

𝑑Vs
.
𝑛𝑖𝑛𝑣
𝑞

.
𝑑𝐸𝐹
𝑑𝑛𝑖𝑛𝑣

 
Eq 2.5 

 

As the subthreshold slope is computed in the weak inversion regime where the electron density 

is neglected, the gate charge conservation of a single gate FDSOI transistor (which is also valid 

for bulk MOS transistors) is as follows: 

 Cox. (Vg − Vfb − Vs) = 𝑄𝑑(Vs) + Cit. (Vs − V0) 
Eq 2.6 

The total derivative of Eq 2.6 gives: 
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 Cox. (dVg − dVs) = 𝑑𝑄𝑑(Vs) + Cit. dVs 
Eq 2.7 

 

Where Cit = 𝑞. Nit is the interface trap capacitance, and V0 is the channel Fermi potential. 

Considering that by definition the depletion capacitance is Cd = 𝑑𝑄𝑑(Vs) dVs⁄ . It should be 

noted that, in the case of an FDSOI structure, the depletion capacitance is the equivalent 

capacitance of the silicon film capacitance Csi and the back oxide capacitance Cox2 in series, 

i.e. Cd = Csi. Cox2 (Csi + Cox2)⁄  . So after rearranging the equation, we have: 

 dVg

dVs
=
Cox + Cd + Cit

Cox
 

Eq 2.8 

On the other hand, the expression of 𝑑𝑛𝑖𝑛𝑣 𝑑𝐸𝐹⁄  can be derived from Eq 2.2, yielding to: 

 𝑑𝑛𝑖𝑛𝑣
𝑑𝐸𝐹

= ∫ 𝑁(𝐸, ∆𝐸).⁡⁡(−
𝜕𝑓

𝜕𝐸
(𝐸, 𝐸𝐹))

+∞

−∞

𝑑𝐸 
Eq 2.9 

Thus, by substitution in Eq 2.5 we have: 

 
𝑆𝑆(𝑇) =

1

𝑞
.

∫ 𝑁(𝐸, ∆𝐸).⁡⁡𝑓(𝐸, 𝐸𝐹)
+∞

−∞
𝑑𝐸

∫ 𝑁(𝐸, ∆𝐸).⁡⁡(−
𝜕𝑓
𝜕𝐸

(𝐸, 𝐸𝐹))
+∞

−∞
𝑑𝐸

.
Cox + Cd + Cit

Cox
 

Eq 2.10 

Eq 2.10 can be reduced depending on statistics, into 
𝑘𝑇𝑠

𝑞
.
Cox+Cd+Cit

Cox
 for degenerate statistics i.e. 

for the limit 𝑇 ≪ 𝑇𝑠 and into 
𝑘𝑇

𝑞
.
Cox+Cd+Cit

Cox
 for Boltzmann statistics i.e. for the limit 𝑇 ≫ 𝑇𝑠. 

Using Eq 2.10, the dependence of the subthreshold slope with temperature is illustrated in 

Figure 5. We can see the linear dependence at high temperature (𝑇 > 𝑇𝑠) where the band tail 

influence on the whole DOS is negligible, and the saturation at low temperature (𝑇 < 𝑇𝑠) where 

the band tail is significant to the DOS with degenerate statistics, where 𝑇𝑠 represents the 

transition between the plateau and the linear regions. 

Note that, depending on technology, 𝑇𝑠 lies in the range 30⁡ → 50⁡𝐾. Strictly speaking, for 28 

nm bulk CMOS transistor technology it was found to be 46K [3], for 28 nm FDSOI transistor 

technology it was found to be 35K [23]. 
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Figure 5. Temperature dependence of the subthreshold slope for two different band tails. 

Likewise, an effective temperature function can be extracted by multiplying Eq 2.10 by the 

term q. Cox Cox + Cd + Cit⁄  , yielding to Eq 2.11 that gives the real temperature for 𝑇 > 𝑇𝑠, and 

gives the saturation temperature if 𝑇 < 𝑇𝑠, as demonstrated in Figure 6. Such expression is 

advantageous as it reproduces the 𝑆𝑆(𝑇) saturation without the need of introducing a band tailed 

DOS but rather an effective temperature for the system. Such effective temperature approach is 

suitable for the development of the analytical model in Chapter 5. 

 
𝑇𝑒𝑓𝑓(𝑇) =

∫ 𝑁(𝐸, ∆𝐸).⁡⁡𝑓(𝐸, 𝐸𝐹)
+∞

−∞
𝑑𝐸

∫ 𝑁(𝐸, ∆𝐸).⁡⁡(−
𝜕𝑓
𝜕𝐸

(𝐸, 𝐸𝐹))
+∞

−∞
𝑑𝐸

 
Eq 2.11 

 

 

Figure 6. Effective temperature function plot for two different band tails. 
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1.1.5 Band gap widening: 

The band gap 𝐸𝑔 is another physical aspect that has to be taken into consideration in the case 

of deep cryogenic temperatures. Band gap widening at low temperatures is an effect that has 

been agreed upon in literature [25], [26], though varied expressions has been proposed to obtain 

its corresponding value, we choose to work with the expression given by Eq 2.12, proposed in 

[25], though it should be noted that all expressions gives the same value of 1.17 eV at 4K.  

 𝐸𝑔 = 1,17𝑒𝑉 + 1,059⁡. 10−6𝑒𝑉. (𝑇) − 6,05⁡. 10−7𝑒𝑉. (𝑇)2 Eq 2.12 

 

1.1.6 Single subband approximation: 

At the zero temperature limit, within the usual gate biasing range,  and provided the Fermi level 

is above the band edge, only the lowest energy level i.e. the ground subband is occupied. This 

postulate is extended, and sometimes for the sake of simplicity, for non-zero low temperatures. 

Such approximation is widely accepted and agreed on in literature [15], [20]. To support this 

interpretation we have calculated the electronic distribution 𝑛𝑖𝑛𝑣(𝑥) and the conduction band 

structure including the subbands positions by solving Schrödinger and Poisson equations self-

consistently. As stated before, the calculations were performed for ten subbands, one ground 

and nine excited subbands. However, as shown in Figure 7, at the 𝑉𝑔1 = 1𝑉 limit, for a negative 

as well as for a null back-bias 100⁡% of the carriers occupy only the ground subband 

(unprimed), the other subbands are left completely empty. Instead, for a positive back-bias 

71.82⁡% of the carriers resides in the ground subbands, 21.92⁡% in the second subband 

(unprimed), and 6.25⁡% in the third subband (primed). 
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Figure 7.The fraction of the inversion charge populating each of the first four subbands of a 10 nm silicon film of an FDSOI 

structure for:  (𝑎):⁡𝑉𝑔2 = −3⁡𝑉, (𝑏) ∶ ⁡ 𝑉𝑔2 = 0⁡𝑉, (𝑐) ∶ ⁡⁡ 𝑉𝑔2 = +3⁡𝑉 

 

Therefore, for an SOI structure with thick silicon film, when a positive voltage is applied to 

both the front and back gates, potential wells are generated at both sides and the electrons are 

confined at both Si-SiO2 interfaces. These electrons contribute to the conductance 

independently due to their big enough spatial separation. This case is presented in Figure 8. b. 

On the other hand, when the silicon film is very thin, both front and back interfaces reinforce 

the confinement of each other, yielding to a very large energy separation between the subbands. 

Consequently, the second subband becomes very high energetically and inaccessible, or with a 

very limited contribution, this case is presented in Figure 8. a. There is a third case presented in 

Figure 8. c, where the front and back interfaces couple to form the lowest two subbands. In this 

intermediate regime, the two subbands are energetically close enough, so that strong 

interactions between them are expected. Moreover, since the energy position of these two 

subbands is controlled via front and back gate biases, 𝑉𝑔1 and 𝑉𝑔2, depending on their values 

there will be situations where the two first subbands are very close, generating very strong 

interactions, as will be discussed in 1.2.4. 

Correspondingly, as an additional argument, the spatial distribution of electrons populating 

each of the subbands for the three structures discussed in Figure 8 are shown in Figure 9. We 

can see clearly that even though for the 3 nm case the volume inversion is very present [27], 

the 10 nm and the 16 nm structures demonstrate two separated inversion layers. 
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Figure 8.The conduction band structure along with the energetic positions of the first four subbands for very large, very thin, 

and medium silicon thicknesses⁡𝑉𝑔1 = 1⁡𝑉, 𝑉𝑔2 = 3⁡𝑉 , (𝑎):⁡𝑡𝑠𝑖 = 3⁡𝑛𝑚, (𝑏) ∶ 𝑡𝑠𝑖 = 10⁡𝑛𝑚, (𝑐) ∶ ⁡ 𝑡𝑠𝑖 = 16⁡𝑛𝑚, Fermi level 

is presented by the dashed line. 

 

  

(a) (b) 

(c) 

(a) (b) 
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Figure 9. The spatial electron distribution attributed to the four first subbands along with the total electron distribution 𝑉𝑔1 =

1⁡𝑉, 𝑉𝑔2 = 3⁡𝑉, (𝑎):⁡𝑡𝑠𝑖 = 3⁡𝑛𝑚, (𝑏) ∶ 𝑡𝑠𝑖 = 10⁡𝑛𝑚, (𝑐) ∶ ⁡ 𝑡𝑠𝑖 = 16⁡𝑛𝑚 

Provided that the occupation of the two lowest subbands represents 93.74⁡% of the carriers 

(Figure 9), and that only these two lowest subbands are found below the Fermi level in Figure 

8, hereafter, and in the process of the compact model development, only two subbands will be 

considered. These two lowest subbands will be treated as the front and back layers, such choice 

will be further approved by the gate-to-channel curves behavior shown in Chapter 3. 

Insofar only the electrostatic physical parameters have been discussed. In the second part of the 

chapter we will address the electronic transport coefficients in a 2D system, i.e. the 

conductivity, the diffusivity and the mobility. Such parameters are evaluated using the Kubo-

Greenwood integral, by summing the parallel contribution of each subband and neglecting the 

intervalley scattering, at first order [2]. Presumably, the outstanding transport parameter that 

needs to be discussed is the mobility law, as it is of great importance for the modeling of both 

the transfer and output characteristics of the MOSFET device. 

1.2 Transport physical parameters 

1.2.1 The conductivity function 

The Kubo-Greenwood formalism is a good start for the study of the MOSFET inversion layer 

transport properties, as it allows the computation of the transport parameters from the metallic 

regime to the semiconductor regime [20]. Generally, the macroscopic inversion layer sheet 

conductivity 𝜎 of an electronic system is obtained from the energy conductivity function 𝜎𝐸(𝐸) 
by the Kubo-Greenwood integral, following Eq 2.13 [20]. In this equation, 𝑓 is the Fermi 

function, and 𝜎𝐸(𝐸) is related to the energy mobility function 𝜇(𝐸) according to the Cohen’s 

formula: 𝑑𝜎𝐸(𝐸) = 𝑞. 𝜇(𝐸). 𝑁(𝐸). 𝑑𝐸 [28], with 𝐸 being the carrier kinetic energy.  

 𝜎(𝑇, 𝐸𝐹) = ∫ 𝜎𝐸(𝐸). (−
𝜕𝑓

𝜕𝐸
(𝐸, 𝐸𝐹))

+∞

−∞

𝑑𝐸 Eq 2.13 

Considering the band tails in the DOS function and a constant mobility 𝜇(𝐸) = 𝜇0 in the 

aforementioned Cohen’s formula, and integrating the energy conductivity function over all the 

energy range, the macroscopic conductivity function emerges, following Eq 2.14 .  

 𝜎(𝐸𝐹 , ∆𝐸) = 𝑞. 𝐴2𝐷. 𝜇0. ∆𝐸. 𝑙𝑛(1 + 𝑒𝑥𝑝(𝐸𝐹 ∆𝐸⁄ )) 
Eq 2.14 

  
 

Using Eq 2.14 the conductivity function is plotted in Figure 10, we can see clearly that the 

conductivity has the same behavior as the density of states in the first approach, as it exhibits 

an exponential tail below the band edge associated with that of the density of states. Note just 

(c) 
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as well, the continued increase of the conductivity function above the band edge, an expected 

behavior due to the increase of the carrier kinetic energy [22].  

 

Figure 10. The conductivity function with exponential band tail (𝜇0 = 0.1⁡𝑚2 𝑉𝑠⁄ ⁡, ∆𝐸 = 3⁡𝑚𝑒𝑉) 

In an equivalent manner to 1.1.4, the subthreshold slope 𝑆𝑆(𝑇) can be computed by direct 

consideration of the electronic conductivity. Note that the assumed proportionality between the 

drain current and the carrier density in the first approach is not valid at low temperatures when 

the statistics becomes degenerate [22], [29]. 

Our starting point for the second approach is the drain current equation of a MOSFET within 

the gradual channel approximation, given by Eq 2.15, 𝑦 being the space dimension that varies 

from source to drain. 

 𝐼𝑑 = 𝑊. 𝑞. 𝜎(𝑇, 𝐸𝐹).
𝑑𝐸𝐹
𝑑𝑦

 
Eq 2.15 

Considering 𝐸𝐹𝑠 the Fermi level at the source point, and 𝐸𝐹𝑑 the Fermi level at the drain point 

i.e. 𝐸𝐹𝑑 = 𝐸𝐹𝑠 − 𝑞𝑉𝑑𝑠 , 𝑉𝑑𝑠 being the drain voltage, and after integration over 𝑦 between source 

and drain, we get: 

 𝐼𝑑 =
𝑊

𝑞𝐿
∫ [∫ 𝜎𝐸(𝐸). (−

𝜕𝑓

𝜕𝐸
(𝐸, 𝐸𝐹))

+∞

−∞

𝑑𝐸]

𝐸𝐹𝑑

𝐸𝐹𝑠

𝑑𝐸𝐹 
Eq 2.16 

Leading to, after some manipulation: 

 𝐼𝑑 =
𝑊

𝑞𝐿
[∫ 𝜎𝐸(𝐸). 𝑓(𝐸, 𝐸𝐹𝑠)

+∞

−∞

𝑑𝐸 − ∫ 𝜎𝐸(𝐸). 𝑓(𝐸, 𝐸𝐹𝑑)
+∞

−∞

𝑑𝐸] 
Eq 2.17 

 

Following the same steps as before 1.1.4, one obtains the second expression of the 𝑆𝑆(𝑇): 

𝑆𝑆(𝑇) =
∫ 𝜎𝐸(𝐸). 𝑓(𝐸, 𝐸𝐹𝑠)
+∞

−∞
𝑑𝐸 − ∫ 𝜎𝐸(𝐸). 𝑓(𝐸, 𝐸𝐹𝑑)

+∞

−∞
𝑑𝐸

∫ 𝜎𝐸(𝐸). (−
𝜕𝑓
𝜕𝐸

(𝐸, 𝐸𝐹𝑠))
+∞

−∞
𝑑𝐸 − ∫ 𝜎𝐸(𝐸). (−

𝜕𝑓
𝜕𝐸

(𝐸, 𝐸𝐹𝑑))
+∞

−∞
𝑑𝐸

.
Cox + Cd + Cit

𝑞. Cox
 

 

Eq 2.18 
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Provided we are in the saturation region of weak inversion i.e. when 𝑉𝑑𝑠 ≫ 𝑘𝑇 𝑞⁄  or 𝑉𝑑𝑠 ≫
𝑘𝑇𝑠 𝑞⁄ , the drain-side terms in Eq 2.21 and Eq 2.18 vanish, leading the next reduced form of 

the subthreshold slope: 

 
𝑆𝑆(𝑇) =

∫ 𝜎𝐸(𝐸). 𝑓(𝐸, 𝐸𝐹𝑠)
+∞

−∞
𝑑𝐸

∫ 𝜎𝐸(𝐸). (−
𝜕𝑓
𝜕𝐸

(𝐸, 𝐸𝐹𝑠))
+∞

−∞
𝑑𝐸

.
Cox + Cd + Cit

𝑞. Cox
 

 

Eq 2.19 

The next figure compares the temperature dependence of the subthreshold swing as given by 

the two approaches in the weak inversion configuration, i.e. by Eq 2.10 and Eq 2.19. The two 

approaches were calculated with the same band tail extension (∆𝐸 ≈ 5⁡𝑚𝑒𝑉 i.e. 𝑇𝑠 ≈ 60⁡𝐾) 

and considering a constant mobility function. Note that in this configuration, both the density 

of states and the conductivity function are proportional to 𝑒𝑥𝑝(𝐸 ∆𝐸⁄ ) yielding to a perfect 

match between the two approaches, as illustrated in Figure 11. 

 
Figure 11. The subthreshold slope dependence with temperature as given by the carrier density approach and the 

conductivity approach. 

One must not ignore that, all of this is true because we considered a constant mobility, as 

transport for localized states in the band tail might exist, making Eq 2.18 describing a more 

general case, as it considers a mobility function of energy. Generally, one shall distinguish 

between two cases, the case where the disorder is absent, for which the mobility edge 𝐸𝑐 does 

coincide with the band edge 𝐸0, only delocalized electrons contribute to the conduction. The 

case where the disorder is present, for which the two edges 𝐸𝑐 and 𝐸0 do not coincide, and a 

mobility edge does exist. Besides the delocalized electrons above 𝐸0 , we also have localized 

electrons below 𝐸0, which are believed to have a negligible contribution to the total 

conductivity, but rather, they might contribute to the total current by the so-called hoping 

conduction [15].  

Nevertheless, it is worth noting that, from a practical viewpoint, the band tails are extracted by 

measuring the drain current variation with 𝑉𝑔. On the other hand, it can be extracted for example 

by integrating the gate-to-channel capacitance over the gate voltage in the weak inversion 

region, but such approach lacks the sufficient dynamic range for the accurate extraction of the 

band tail extension from the derivative of 𝑛𝑖𝑛𝑣(𝑉𝑔) curves, making it less practical [22]. 
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Although as a consequence of the existence of band tails in the DOS function, the conductivity 

function takes the same form, no physical condition decree that the two functions has the same 

length of band tails. In other words, the case where ∆𝐸(𝑛𝑖𝑛𝑣) > ∆𝐸(𝜎𝐸(𝐸)) may exist, meaning 

that some states do not have the same opportunity to contribute to the transport like the rest of 

the states.  

1.2.2 The diffusivity function: 

Another mechanism that dominates in the subthreshold region is the electron diffusion. Such 

parameter is crucial for the understanding of the MOSFET operation in this regime. According 

to Einstein’s relation, and within the assumption of a constant mobility, the electron diffusivity 

should decrease with temperature, following Eq 2.20. Such relation is valid with the 

consideration of Boltzmann statistics [29]. In the case of Fermi-Dirac statistics, the electron 

diffusivity is given by the so-called generalized Einstein relation, Eq 2.21. Finally, in the case 

of full degeneracy i.e. metallic statistics, and considering we have a single 2D subband, the 

electron density can be directly given by 𝑛 = 𝐴2𝐷. 𝐸𝐹, and the electron diffusivity will be given 

by Eq 2.22  [29]. 

 𝑞. 𝐷 = 𝜇. 𝑘𝑇 
Eq 2.20 

 
𝑞. 𝐷 = 𝜇. 𝑛.

𝜕𝐸𝐹
𝜕𝑛

 Eq 2.21 

 𝑞. 𝐷 = 𝜇. 𝐸𝑓 
Eq 2.22 

 

To obtain the variation of the diffusivity with inversion charge density in a single 2D subband, 

i.e. in the case of Fermi-Dirac statistics, Eq 2.23 is injected in Eq 2.21, yielding to the expression 

in Eq 2.24. This variation is illustrated in Figure 12, where at high temperatures the electron 

diffusivity demonstrates a linear dependence with temperature, whereas at low temperatures the 

electron diffusivity saturates to a constant value given by 𝑞. 𝐷 = 𝜇. 𝐸𝐹. Therefore, metallic 

statistics governs the electron diffusivity at low temperatures, and the classical Einstein relation 

is inadequate [29]. 

 𝑛𝑖𝑛𝑣(𝐸𝑓, 𝑇) = 𝑘𝑇. 𝐴2𝐷. ln⁡ (1 + exp⁡ (
𝐸𝐹
𝑘𝑇

)) 
Eq 2.23 

 𝐷 =
𝜇

𝑞
.
𝑛

𝐴2𝐷
.

𝑒
𝑛

𝑘𝑇.𝐴2𝐷

(𝑒
𝑛

𝑘𝑇.𝐴2𝐷 − 1)

 
Eq 2.24 
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Figure 12. the diffusivity function dependence on temperature in both the linear scale (a) and log scale (b) of the temperature 

axes, the simulation is made for three different 2D electrons densities (as shown in the legend). 

Accounting for an energy density of states with an exponential band tail, i.e. Eq 2.3 and the 

electrons density is given by Eq 2.3, where 𝑇0 is a characteristic temperature, so as when 𝑇 ≪
𝑇𝑠, the energy density of states and electrons density are always given by Eq 2.3  & Eq 2.3 , 

whatever the real temperature is. Thus, using the definition given by Eq 2.21, the corresponding 

diffusivity can be established as in Eq 2.25. Using this equation, Figure 13.a. illustrates the 

variation of the diffusivity with Fermi level for a constant mobility. We can see clearly that if 

the Fermi level is well above the conduction band edge i.e. 𝐸𝐹 ≫ 0, the diffusivity varies 

linearly with the Fermi level in accordance with the metallic statistics predicted by 𝑞. 𝐷 = 𝜇. 𝐸𝐹. 

Whereas, for 𝐸𝐹 ≪ 0, the diffusivity saturates at the value 𝐷 = 𝜇. 𝑘𝑇𝑠 𝑞⁄  but with 𝑇0 playing 

the role of temperature. Figure 13. b & c illustrate the variation of diffusivity with electron 

density in both linear and log scale. 

 𝐷(𝐸𝐹 , 𝑇𝑠) =
𝜇. 𝑘𝑇𝑠
𝑞

. ln (1 + exp (
𝐸𝐹
𝑘𝑇𝑠

)) . (1 + exp (−
𝐸𝐹
𝑘𝑇𝑠

)) Eq 2.25 

 

 
 

Figure 13. The diffusivity function dependence on 2D electrons density (a) and on the Fermi level (b). 

The reliability of the assumption of a constant mobility might be debatable, as it seems too 

simplistic at first sight and need to be examined. To this end, using the relation in Eq 2.24 we 

(a) 
(b) 
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derived the experimental diffusivity from typical experimental effective mobility data obtained 

by split C-V technique on 28nm FDSOI MOSFETs, to produce the curves in Figure 14. As 

demonstrated in the figure, even though the effective mobility is not constant versus electron 

density, the overall variation of the associated Diffusivity exhibits a linear trend versus electron 

density. Such behavior is well fitted by the metallic statistics limit of 𝑞. 𝐷 = 𝜇. 𝐸𝑓 computed 

with a constant mobility. 

  
Figure 14. a) Experimental (symbols) variation of effective mobility 𝜇𝑒𝑓𝑓 with 2D carrier density n at T = 4.2 K and T = 200 

K. Typical 𝜇𝑒𝑓𝑓 experimental data from 10⁡𝜇𝑚⁡ × 10𝜇𝑚 28 nm FDSOI MOSFET with 1.8 nm EOT gate oxide, 7 nm silicon 

and 30 nm bottom oxide. b) Corresponding experimental (symbols) variation of diffusivity D with 2D carrier density n at T = 

4.2 K and T = 200 K. The diffusivity D is calculated using Eq 2.24. The dashed lines show the linear trends obtained for a 

constant mobility (Resp. μ= 0.108 and 0.05 m²/Vs) using the metallic statistics limit of Eq 2.22.  

Thus, the assumption of constant mobility for the diffusion computation is justified and can be 

kept. Hereby, in the section dedicated for the drain current integration in Chapter 5, the mobility 

is retained constant for the computation of the diffusion current component and considered as 

a function of inversion charges for the computation of the drift current component. 

 

1.2.3 The mobility function: 

The room temperature mobility law has been comprehensively documented for decades and 

many physical mechanisms were given to explain it [30]. With respect to low temperature 

modeling, almost all of the modeling works that has been published retain the physical laws 

used for room temperature operation and adapt them for deep cryogenic operation [31], [32]. It 

has been known for decades so far that the mobility laws used for room temperature modeling 

are not valid for cryogenic temperatures [2], [33].  

The mobility law 𝜇(𝑄𝑖𝑛𝑣) is given directly by the different scattering mechanisms manifested 

at any given structure or temperature. This is widely known as the Mathienssen’s rule, where 

the mobility law is the inverse of the sum of different scattering contributions. The main 

scattering mechanisms that govern the inversion layer mobility in a MOSFET are the Coulomb, 

surface roughness, and phonon scattering modes [2]. Although the Coulomb and the surface 

roughness mechanisms prevail at low temperatures, the phonon scattering is not present. The 

Coulomb scattering rate is inversely proportional to the impurity charge density and has a linear 

variation with energy [2].  

(a) (b) 
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According to Stern [34], combining Coulomb and surface roughness scatterings result in a bell-

shaped behavior of the mobility law, such thesis was confirmed by the ensuing studies [2], [35], 

[36].  The generalized mobility law is given by [2], [33], [37]: 

 

𝜇𝑛(𝑄) =
𝜇𝑚𝑎𝑥 ⁡(

𝑄
𝑄𝑐
)
𝑛−2

1 + (
𝑄
𝑄𝑐
)
𝑛−1  

Eq 2.26 

 

Where 𝜇𝑚𝑎𝑥 is the maximum effective mobility, 𝑄𝑐 is the critical inversion charge that 

characterize the mobility reduction, and the exponent 𝑛 ranges from 3 to 2 as the temperature 

ranges from very low to room temperature [2].  

At cryogenic temperatures, the exponent n is equal to 3, and the mobility law is given by the 

expression in Eq 2.27. Indeed, the Coulomb scattering that rules the (𝑄 𝑄𝑐⁄ ) behavior, and the 

surface roughness scattering that rules the (𝑄𝑐 𝑄⁄ )   behavior. 

 
𝜇𝑛(𝑄) =

𝜇𝑚𝑎𝑥⁡

(
𝑄
𝑄𝑐
) + (

𝑄𝑐
𝑄
)
 Eq 2.27 

 

With the discussion of the mobility and the conductivity of DG-MOSFET or FDSOI-MOSFET, 

arises the subject of the number of transport layers involved at low temperature. One can say 

as a direct conclusion from the electrostatic part, that in the case of a back-biased FDSOI there 

is two layers involved in the conduction, and the overall conduction is the sum, in other words, 

the total current is the sum of the two front and back currents, such approach will be conducted 

in Chapter 5. 

 

1.2.4 Yet another scattering mechanism: 

Considering Coulomb scattering and surface roughness scattering as the only scattering 

mechanisms that prevails at deep cryogenic temperatures is largely true for a bulk MOSFET 

assuming that only one subband involved in transport. However, for a back biased FDSOI, one 

cannot ignore the interaction between the two subbands, since such interaction gives birth to an 

additional scattering mechanism, the so-called “inter-subband scattering” [10], [38]. 

The starting point concerning this discussion should be the subband interaction mentioned 

formerly, as the decrement in the drain current observed in the experimental curves of transfer 

characteristics for a back-biased 28 nm FDSOI transistor at a temperature of 4.2K, Figure 15, 

cannot be explained by a mere sum of conduction from two subbands, but suggests that a 

subbands interplay took place.  

According to [39], for the intersubband scattering to occur two conditions must be satisfied. 

The first one concerns the temperature which should be low enough compared to ∆𝐸 𝑘⁄ . The 

second condition concerns the drain voltage which should be not much larger than ∆𝐸 𝑞⁄ . By 

definition, the intersubband scattering is absent if only one subband is occupied, which in our 

case is in the subthreshold region. As the front gate voltage is increased, the onset of the second 

subband occurs and it starts becoming populated, and the scattering occurs. Therefore, as 

conclusion, intersubband scattering should occur every time a new subband is populated [39]. 
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Figure 15. The transfer characteristics of a back-biased FDSOI transistor measured at temperature T = 4.2 K, the 

demonstrated oscillations corresponds to the Intersubband scattering phenomena. 

Poisson-Schrodinger simulations allowed us to inspect such behavior from an electrostatic point 

of view, as illustrated in Figure 16 below. One can clearly see that at the intersubband scattering 

effect appears when the energetic separation between the first two subbands is lower than 

20⁡𝑚𝑒𝑉, supporting the subbands interaction interpretation. 

 

Figure 16. The corresponding energetic separation between the first subband plotted along with the output characteristic in 

the case of a back bias of 𝑉𝑔2 = 3𝑉. 
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Every built model is based on some approximations that are meant to make the calculations 

feasible, easier, faster, or are used in some cases where incomplete information are known about 

a physical process. Depending on the level of modeling, such approximations make the 

predictions of the model differ from real measurements. Strictly speaking, each time an 

approximation is added, the model needs to be examined to justify such choice.  

In our study, three levels of modeling are performed. The first one is of a numerical nature, 

which is based on the self-consistent solution of Poisson and Schrödinger equations. Such 

model is based on the so-called “effective mass approximation”. These numerical simulations 

give us the chance to understand the electrostatic behavior of the FDSOI transistor exhibited in 

a C-V measurement. We shall call these numerical simulations simply as “PS simulations”, in 

order to distinguish them from the following level model, of a numerical nature as well. In the 

second level of modeling, more approximations are made but the model is still on the numerical 

nature. This model will be referred to hereafter as “the numerical model”. The third level of 

modeling is of an analytical nature, and a multitude of approximations is introduced on this 

level, the model will be referred to hereafter as “the analytical compact model”. 

Expressly, the PS simulations are used to validate the charge and current solutions predicted by 

the numerical model, which in turn is used to validate the same predicted solutions by the 

analytical compact model. Note that, in the frame of our work, PS simulations are a useful tool 

for understanding the physics that governs FDSOI transistors down to deep cryogenic 

temperatures. Nevertheless, for the purpose of not diverging from the aim of the study, none of 

the numerical aspects of the simulations are detailed, one should  refer to [1]–[3] for such end.  

Furthermore, PS simulation results will also be comparison to collected data from C-V 

measurement, constructing a first checkpoint in the development process of our analytical 

compact model. 
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1.1 The simulation procedure: 

Our Poisson-Schrödinger (PS) solver is based on a Python program solving self-consistently 

the Schrödinger and Poisson equations stated subsequently for an undoped FDSOI structure 

down to deep cryogenic temperatures and accounting for Fermi-Dirac statistics. Indeed, several 

published works have performed Poisson-Schrödinger simulations (PS) in bulk or FDSOI 

MOSFETs at room or low temperatures [1], [4], [5], but not down to very low temperatures. 

Simulations for temperatures less than 2K for example are lacking in literature.  

Typical FDSOI structure used for PS simulation is shown in Figure 1, illustrating the stack 

composed of a front oxide of 1 𝑛𝑚 thickness, the silicon film (body) of 7 𝑛𝑚 thickness, and a 

buried oxide (BOX) of  25 𝑛𝑚 thickness. The front and back metal gates along with the highly 

doped regions of source and drain are illustrated as well. Note that, hereafter, the front and back 

silicon-oxide interfaces will be given the subscripts 1 and 2 respectively in the different 

mathematical equations. 

 

Figure 1. Typical scheme of an FDSOI structure. 

Considering an isotropic and parabolic conduction band, the effective mass approximation 

states that the behavior of an electron of mass 𝑚0 in the crystal’s potential is akin to an electron 

of an effective mass 𝑚𝑒 for which the wave function is a Bloch function. Such electron of mass 

𝑚𝑒 moves in a periodic crystal lattice supposedly empty of ions. In other words, the crystal 

potential is substituted by the fact that the electron has an effective mass 𝑚𝑒 different from the 

free electron mass 𝑚0 [6].  

For a 〈100〉 silicon-oriented structure, the calculations were performed for six valleys, a couple 

of unprimed valleys parallel to the confinement orientation, and two couples of primed valleys 

in the transverse plane perpendicular to the confinement orientation. For each series of valleys 

(primed and unprimed), ten subbands are arbitrarily considered in our case, one ground and 

nine excited subbands.  The barrier height between the channel and both the front and back gate 

oxides is set to 3.1 𝑉, and the relative confinement effective mass of both the front and back 

gate oxides is set to 0.5. 

The calculations are performed by solving two coupled non-linear partial differential equations 

(i.e. Poisson and Schrodinger equations) along with their boundary conditions. For most 

boundary value problems, the exact analytical solution is very difficult if not impossible to find 

except for some very special cases. Mainly, numerical methods based on iteration methods are 

used to find the solution. 

O 

y 
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The Poisson equation is a differential equation of the second order that relates the electrostatic 

potential to the total carrier density. Such equation is solved using two boundary conditions 

with respect to the displacement field, as stated in Eq 3.1: 

 
{

𝛻(𝜀𝑟𝛻𝑉𝑠) = −𝑞. 𝑛𝑖𝑛𝑣(𝑥) 𝜀0⁄

𝜀𝑜𝑥1(𝑑𝑉𝑠 𝑑𝑥⁄ )0− = 𝜀𝑠𝑖(𝑑𝑉𝑠 𝑑𝑥⁄ )0+

 𝜀𝑜𝑥2(𝑑𝑉𝑠 𝑑𝑥⁄ )(𝑡𝑜𝑥1+𝑡𝑠𝑖)− = 𝜀𝑠𝑖(𝑑𝑉𝑠 𝑑𝑥⁄ )(𝑡𝑜𝑥1+𝑡𝑠𝑖)+
 

Eq 3.1 

 

The front and back surface potentials are deduced using the boundary definitions 𝑉𝑠(𝑡𝑜𝑥1) =

𝑉𝑠1, and 𝑉𝑠(𝑡𝑜𝑥1 + 𝑡𝑠𝑖) = 𝑉𝑠2, and the boundary conditions of the electrostatic potential in the 

gates are given by 𝑉𝑠(0) = 𝑉𝑔1 − ∆𝜙𝑔1, and 𝑉𝑠(𝑡𝑜𝑥1 + 𝑡𝑠𝑖 + 𝑡𝑜𝑥2) = 𝑉𝑔2 − ∆𝜙𝑔2. Note that in 

this work, we consider for the sake of simplicity midgap gates i.e. we choose a null front and 

back gate work functions ∆𝜙𝑔1,2 with respect to midgap channel material. 

The Schrödinger equation is solved in both the silicon film and oxides regions, with boundary 

conditions guaranteeing the electron wave function continuity at the Si/SiO2 interfaces, as stated 

in Eq 3.2. Such equation is solved for each subband within the effective mass approximation 

considering the electron envelope wave function [6]. 

 

{
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∂
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+∞

−∞
= 1

 
Eq 3.2 

It should be noted that the x coordinates start from the oxide edge and not from the oxide/film 

interface, and that an electron wave function penetrates in the oxides. 

Finally, in order to finalize the package, one more equation is needed; namely, the total charge 

density, which is computed from the sum of contribution of all subbands, following: 

 

𝑛𝑖𝑛𝑣(𝑥) =∑∑𝑔𝑣𝐴2𝑑𝑣𝑘𝑇. 𝐹0 (
𝐸𝐹 − 𝐸𝑣,𝑙
𝑘𝑇

) .
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𝑙=0

1

𝑣=0

|𝜓𝑣,𝑙(𝑥)|
2
 Eq 3.3 

The self-consistency of the calculations is achieved by using the following algorithm:  

1. The Poisson equation is first solved with 𝑛𝑖𝑛𝑣(𝑥) = 0 as an initial condition.  

2. The resulting potential distribution is fed into the Schrödinger equation to calculate the 

electronic wave functions and their corresponding energy levels, which represent the 

Eigen states and the Eigen values of Schrödinger’s equations respectively. 

3. Using this information, the electron concentration 𝑛𝑖𝑛𝑣(𝑥) is calculated using Eq 3.3. 

4. The electron concentration is then re-introduced in the Poisson equation and a Newton-

Raphson iteration process is used until convergence of the electron concentration is 

attained.  

5. An error calculation step is performed between the electronic density obtained from the 

previous and the current iterations, if the convergence criterion for a variation of 

electronic density is satisfied, the convergence criterion is reached. Otherwise, the 

algorithm starting from step 2 is repeated until convergence is attained. 
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1.2 Appropriate keys for the interpretation of simulation results: 

It was noticed that the overall electrostatic behavior exhibited by the different physical entities 

such as the surface potentials, the inversion charge and its derivative i.e. the gate to channel 

capacitance, can be attributed to the principal effects discussed in this section. These appealing 

effects are better stated beforehand the simulation results demonstration, as they provide the 

necessary tools to explain the different behaviors and tendencies in the subsequent sections. 

The present section is divided into two parts, a first part where we discuss back and front 

channel openings along with the evolution of back biasing. And a second part where we discuss 

the so-called “through the silicon coupling”, that characterizes thin silicon films in the case of 

positive back bias configurations. 

1.2.1 Back and front channels openings: 

The openings of the back and front channels respectively are two main events that occur 

recurrently throughout this type of study and are the source of the major reported behaviors of 

the electrostatic parameters. Certainly, the existence of both channels is only true for positive 

back bias configurations, as for null and negative back bias configurations only the activation 

of the front channel is envisioned.  

Comprehensively, the back channel opening corresponds to the onset of the first subband, and 

the front channel opening corresponds to the creation of the front potential well. Such 

attributions are only exclusively true for cryogenic temperature operation, as for higher 

temperatures several subbands are populated.  

Such interpretation is confirmed by the exposition of electrostatic parameter curves along with 

the corresponding conduction band diagrams, to formulate a good approach for understanding 

these two main events. For example, one of the direct consequences of these two main events 

is the two-plateau behavior exhibited by the 𝐶𝑔𝑐 curves in the case of positive back bias 

configurations. With two different elevations in two different polarizations, the variations of 

the gate-to-channel capacitance 𝐶𝑔𝑐(𝑉𝑔1) = 𝑑𝑄𝑖𝑛𝑣 𝑑⁄ 𝑉𝑔1 with front gate voltage for various 

back gate bias, reveals the early onset of back inversion channel followed by the front channel 

opening for 𝑉𝑔2 = +3𝑉, as shown in Figure 2. The correspondence between the polarizations 

of the back and front channel openings and the dual elevations in the 𝐶𝑔𝑐 curves substantiate 

our interpretation. Further, this front channel opening should never be confused with the second 

subband onset, for those two events happen in two different polarizations.  

Planely, one can see clearly from the comparison of Figure 2 and Figure 3 below, that the onset 

of the first subband of the unprimed valley 𝐸0,0 (presented by the blue color) corresponds to the 

first elevation of the gate-to-channel capacitance curve. Note that, without loss of generality, 

midgap gates are considered in this study (as stated before), our potential’s reference is indeed 

the position of Fermi level in the source, and the population of different subbands is activated 

once they reach the Fermi level and go beneath it.  

The second elevation on the other hand is attributed to the creation of the front potential 
well, allowing the displacement of a portion of the electron gas to the indicated well. Such front 
potential well creation is followed by the onset of the second subband of the unprimed valley 
𝐸0,1, presented by the orange color in the Figure. 

The onset of the third subband on the other hand is presented by the undulation noticed 
beyond the polarization 𝑉𝑔1 = 0.8 𝑉, such undulation is due to the difference of the valley 

masses since the third subband 𝐸1,0 belongs to the primed valleys series characterized by a 
different mass. 
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Figure 2. Gate-to-channel capacitance curves as a function of front gate bias and for different back bias 

(tox=1nm, tbox=25nm, tsi=10nm, T=4K). 

  

First subband onset Front potential well creation 
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Figure 3. Captured moment of the onset of the first, second and third subband, as well as the creation of the front potential 

well for: Vg2=3V tox=1nm, tbox=25nm, tsi= 7 nm, T = 4K. 

Otherwise, in the case of a negative or a null back bias, the electrostatic configuration permits 
the creation of a single potential well at the front interface, in which the totality of the inversion 
charge is confined when the onset of the ground subband is achieved, making the gate-to-
channel curves exhibit only one plateau. Note that the roundedness feature exhibited by the 

𝐶𝑔𝑐(𝑉𝑔1)  curves between the two plateaus is due to through-the-silicon coupling between the 

front gate and the back channel inversion layer discussed in the next section. Such interpretation 
will be further confirmed with the posterior study of the gate-to-channel curves performed for 
different silicon thicknesses. 

In a related manner, we analyze the behavior of the remaining electrostatic parameters when 

variating the back bias polarization, as such behaviors are consistent with the formerly 

displayed Figures. Firstly, in Figure 4 we display the inversion charge curves as a function of 

front gate voltage at temperature 𝑇 = 4 𝐾, for a negative, null and a positive back bias.  

  
Figure 4. Inversion charge as a function of front gate voltage and for three different back biases, in both the linear and the 

log scale. 

Note above all, the threshold voltage dependence on back biasing, which is basically due to the 

onset of the first subband. Expressly, the onset of the first subband happens first in the case of 

positive back bias because the positive polarization from the two sides (front and back) lowers 

the first subband, in comparison to the null or negative back biases.  

Second subband onset Third subband onset 
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Moreover, Figure 5 demonstrates the front surface potential as a function of front gate voltage 

and for different back biases. Naturally, the positive back bias curve present three limbs 

compared to the two limbs presented by the null and negative back bias curves. Note as well 

that, once the onset of the first subband occurs for null and negative back bias curves they join 

up the positive back bias curve in the strong inversion region. 

 

Figure 5. Front surface potential as a function of front gate voltage and for three different back biases. 

Likewise, Figure 6 demonstrates the back surface potential as a function of front gate voltage 

and for different back biases. Despite the expected two limbs behavior, where the first limb 

characterizes the weak inversion region before the first subband onset, and the second limb 

characterize the strong inversion region after the first subband onset, note the earlier saturation 

of the curve corresponding to positive back bias, ensued by the one corresponding to the null 

than then negative back bias.  

 

Figure 6. Back surface potential as a function of front gate voltage and for three different back biases 
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1.2.2 Through the silicon coupling: 

In addition to the onset of the different subbands, the behavior of the electron gas inside the 

silicon film is addressed in this section. In Figure 7 is illustrated the band diagram across the 

stack and the electron density profile in the channel obtained from PS simulation at T=4K and 

for a given bias condition. Severely, only the ground subband (green line) is presented here.  

 

  

 
Figure 7. Typical band diagram and total electron distribution from PS simulation for a FDSOI structure (Vg1=1V, tox1=1nm, 

tox2= 25nm, tsi= 7nm, Vg2 = -3, 0, +3V, T=4K). 

From the previous Figure, one can discern that when the applied back bias is negative, the 

structure presents a single quantum well and the electron gas resides mostly in the front side of 

the film. When the applied back bias is null, the physics is very similar except that a portion of 

the electron gas is not pulled away from the backside due to the absence of the negative 

polarization and can now reside in the backside of the film. When on the other hand a positive 

back bias is applied, the structure presents a two coupled quantum wells and since the applied 

polarization is positive from the two sides, the electron gas is pulled in the two directions. It 

should be noted that this displacement of the electron gas from the back side to the front side 

in the confinement direction is due to the “less strict” confinement behavior exhibited by the 

device in the case of the co-existence of two quantum wells i.e. in the case of positive back 

biasing. 

Previously we showed in 2.1.6 that for extremely thin silicon films (𝑡𝑠𝑖 = 3 − 5 𝑛𝑚) only one 

inversion layer is manifested in the so-called volume inversion mode, and that for moderately 

thin and larger silicon films (𝑡𝑠𝑖 ≥ 6 𝑛𝑚) the device displays two inversion layers that could be 

overlapped or not, depending on the film thickness. Yet, no particular indication was given for 

the overlap of the two inversion layers present in moderately thin silicon film geometries. Such 
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overlap of the two inversion charges present for positive back biases is the source of the 

exhibited roundness by the gate-to-channel curves between the two plateaus. Since, thinner 

silicon films are at once characterized by stronger through-the-silicon front and back channel 

coupling and an accentuated roundness between the two plateaus. Evolution of gate-to-channel 

curves with silicon thickness listed thereafter will further confirm this interpretation. 

 

Figure 8. Electron distrubution in the channel for a thin silicon film: tsi=7nm presented by the red line, and a 

thick silicon film: tsi = 16 nm presented by the blue dashed line (tox=1nm, tbox=25nm, T=4K, Vg1=0.73V, 

Vg2=+3V). 

As shown in Figure 8 captured in the electrostatic symmetry configuration, when the silicon 

film is wide enough (𝑡𝑠𝑖 = 16 𝑛𝑚), the two inversion charges are spatially separated and the 

overlap is nonexistent. In the case of a thin silicon film (𝑡𝑠𝑖 = 7 𝑛𝑚) the two inversion layers 

are so close and overlap in the mid-region of the film. In first instance, throughout this chapter, 

we will study the effect of the existence of this overlap region on the electrostatic behavior of 

the device. Subsequently, for the numerical and the analytical model, the charge dwelling in the 

overlap region will be considered as a coupling charge, resulting from the capacitive coupling 

between the two interfaces.  

1.3 Simulation results for different temperatures and silicon thicknesses: 

To get the most of PS simulations, an extensive exhibition of the influence of different 

configurations, such as the silicon channel thickness in this context, as well as the temperature, 

are presented in this section. Generally, the electrostatic parameters demonstrate correspondent 

responses to each configuration’s variation. Such responses can be consistently explained using 

the interpretations discussed in 1.2. 

1.3.1 The evolution with temperature: 

In a correlated manner to section 1.1, our PS simulations were even made possible at the 𝑇 →

0 𝐾 limit by replacing the 𝐹0 Fermi-Dirac integral function by a Heaviside function. Such 

choice will allow us to emulate the fully degenerate metallic statistics. For temperatures other 

than the 𝑇 → 0 𝐾 limit, we retain the classical 𝐹0 Fermi-Dirac integral function.  

tsi = 7 nm 

tsi = 16 nm 
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Figure 9 shows the variations of the inversion charge 𝑄𝑖𝑛𝑣 in the silicon channel as a function 

of front gate voltage 𝑉𝑔1 with a back bias 𝑉𝑔2 = +3𝑉, obtained from PS simulations for various 

temperatures T = 0 – 60 K. 

 

Figure 9. Inversion charge as a function of front gate voltage for different temperatures (tox1 =1nm, tox2 = 25nm, tsi= 7nm, 

Vg2= +3V). 

Figure 9 suggests that the lower the temperature is, the steeper the subthreshold slope is, which 
in turn guarantees a faster transition of the transistor between the off and on states. Another 
direct by-product of the steeper subthreshold slope is the shallow moderate inversion region 
that lessens as the temperature lowers, until its total vanishing at the  𝑇 → 0 𝐾 limit.  

Finally, it should be noted that this study does not consider the band tail states exhibited by the 

density of states function as discussed in 2.1.3 (previous chapter), allowing therefore the 

attainment of an ideal subthreshold slope in the 𝑇 → 0 𝐾 limit. Undeniably, such perfect 

subthreshold swing will never be observed in reality due to the subthreshold slope saturation 

discussed in the preceding chapter.  

Supplementary information that PS simulations could provide is the charge centroid position 

evolution as the temperature lowers. Figure 10 shows such evolution from room temperature to 

deep cryogenic temperature T = 1 K. Since such information goes along with the dark space 

width evolution when the temperature decreases, such behavior confirms the expected 

emphasized confinement at lower temperatures. Note that, the dark space width will be 

thereafter (in Chapter 5) an inherent key to describe the quantum effects throughout an 

appropriate quantum shift function. 
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Figure 10. Charge centroid position in the silicon film as a function of temperature (tox1=1nm, tox2=25nm, tsi=10nm, 

Vg2=+3V, Vg1=0.3V) 

Moreover, Figure 11 demonstrates 𝑄𝑖𝑛𝑣(𝑉𝑔1) curves for different temperatures and for two 

different silicon thicknesses at positive back bias. Indeed, the curves corresponding to the 

silicon thickness 𝑡𝑠𝑖 = 10 𝑛𝑚 show an elbow at  𝑉𝑔1 = 0.6 𝑉 which starts becoming visible for 

temperatures lower than 20K. 

 

Figure 11. Inversion charge curves as a function of front gate voltage, computed for different temperatures, and for two 

different silicon thicknesses. 

The elbow characterizes the opening of the front channel and the consequent transition of the 

electron gas (populating the first subband) from the back channel to the front one. Likewise, 

this elbow characterizes this transition only at very low temperatures, due to the fact that at such 

temperatures only one subband is populated, compared to higher temperatures where several 

subbands are populated, as shown in Figure 12, making such transition to occur in a smoother 

way. 
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Note the shallower elbow for 𝑡𝑠𝑖 = 7 𝑛𝑚 silicon film compared to the 𝑡𝑠𝑖 = 10 𝑛𝑚, that is due 

in first place to the lower barrier that the electron gas has to overreach to attain the front side 

for the 𝑡𝑠𝑖 = 7 𝑛𝑚 case. The height of the barrier exhibited by the conduction band in the middle 

of the silicon film depends fundamentally on two factors, the silicon film thickness, and the 

applied front and back polarization. 

Note as well that, this transition occurs only for positive back bias configurations, because in 

those configurations the electron gas is less confined in the front potential well (relatively to 

the null and negative back bias configurations), and its displacement in the confinement 

direction is allowed once the front potential well is created. Thusly, the elbow is definitely not 

observed for null or negative back biases for at these configurations only the front potential 

well is created, and the electron gas is more confined in the corresponding potential well. 

  
Figure 12. Demonstration of multi-subband population at T = 300 K. 

Finally, one should point to the fact that this elbow will be the source of many numerical 

problems, at first instance, on the computation of the gate to channel capacitance in Chapter 4. 

The transcending of such numerical problems requires a special inspection phase, as will be 

discussed thereafter. 

Figure 13 demonstrates the influence of temperature on the 𝐶𝑔𝑐(𝑉𝑔1) curves; one can see the 

influence of temperature on the shape of the gate-to-channel curves. 
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Figure 13. Gate to channel curves as a function of front gate voltage, and for different temperatures, (tox1=1nm, tox2=25nm, 

tsi=10nm, Vg2=+3V). 

Manifestly, the lower the temperature, the more straight elevations we have, and the corners 
become more abrupt. Such effect can be due equivalently to the inversion charges overlapping 
in the middle of the film one more time, since this overlapping in the middle of the film is more 
present for higher temperatures as shown in Figure 14. In other words, lowering the temperature 
has a similar effect (with an inferior scale) to making the silicon film larger. 

 

Figure 14. Electron gas profile for different temperatures, and for a positive back bias 

In a similar manner, the front and back surface potentials as functions of the front gate voltage 

are extracted from the simulations results and presented in Figure 15. 
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Figure 15. Front surface potential as a function of front gate voltage, for three different temperatures and for a null and a 

positive back bias. 

One can see from analyzing the previous Figure, that in the case of a positive applied back bias, 

the front surface potential exhibits three limbs and two elbows, which manifest in the equivalent 

polarizations to the corresponding onset of first subband and creation of front channel elbows 

exhibited by the inversion charge in Figure 11. Note that for higher temperatures, these elbows 

vanish, and the surface potential drops due to the less present inversion charge in the close-to-

interface region (as, for higher temperatures the device exhibit more volume inversion 

behavior). 

If on the other hand the applied back bias is null, no creation of a second well is expected, thusly 

the curves exhibit only one elbow, which corresponds to the onset of the first subband. 

Equivalently, Figure 16 demonstrates the back surface potential as a function of front gate 

voltage for three different temperatures. At odds with the front surface potential, the back 

surface potential exhibits two limbs. Note that the onset of the first subband designates the 

threshold i.e. the limit between the weak inversion region, presented by the linear trend, and the 

strong inversion region, presented by the saturated trend. Note as well, the smoother transition 

between the two trends compared to the abrupt one at cryogenic temperature. Such behavior is 

principally due to the number of subband involved in the transition. For instance, only one 

subband at the cryogenic temperature, and several ones for room temperature. 
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Figure 16. Back surface potential as a function of front gate voltage, for three different temperatures, and for a null and a 

positive back bias. 

 

1.3.2 The evolution with silicon thickness: 

Remaining in the positive back bias configuration, the influence of variating the silicon 

thickness on the behavior of the inversion charge is illustrated in Figure 17. Note the first 

subband onset dependence on silicon thickness. This is an expected effect, due to the energetic 

rise of the first subband when the film thickness is reduced. Moreover, as shown in Figure 17, 

the creation of the front potential well happens at the same polarization independently of the 

silicon thickness. Such effect is foreseeable as well, due to the fact that the bending of the 

conduction band depends only on the applied electric field and not on the film thickness. 

 

Figure 17. Inversion charge as a function of front gate voltage and for four different silicon thicknesses. 
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Note that although the creation of the second potential well manifests on the same polarization 

for all silicon thicknesses, the onset of the second subband is accordingly a function of silicon 

thickness, signifying that the onset of the second subband will happen in a rather higher 

polarization for thinner silicon films, as shown in Figure 18. 

 
 

Figure 18. Captured moment of onset of the second subband, for 𝑡𝑠𝑖 = 10 𝑛𝑚 (left Figure) and 𝑡𝑠𝑖 = 7 𝑛𝑚 (right Figure). 

Likewise, in Figure 19 is reported the impact of silicon channel thickness on the 𝐶𝑔𝑐(𝑉𝑔1) 
characteristics at T=4K and for a positive back bias 𝑉𝑔2 = +3𝑉, demonstrating a delayed 

opening of the gate-to-channel curves for reduced silicon thickness, due to the delayed onset of 
the first subband. 

Note also the significant rounding exhibited before front channel opening for 𝑡𝑠𝑖 = 7𝑛𝑚, 
which can be explained by the higher carrier profile overlap between the back and front 
interface electron distributions as 𝑡𝑠𝑖 is reduced. In contrast, for larger 𝑡𝑠𝑖 values, the overlap is 
decreased, so that front and back channels are better separated. 

 

Figure 19. Gate to channel capacitance as a function of front gate voltage and for four different silicon thicknesses. 
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In a similar manner to Figure 19, the impact of the silicon channel thickness on the front surface 

potential at T = 4 K and for a positive back bias 𝑉𝑔2 = +3𝑉 is reported in Figure 20. 

One can see from analyzing Figure 20, that the onset of the first subband happens earlier for 

larger silicon films compared to the thinner ones, yielding to a shorter first limb of the 𝑉𝑠1(𝑉𝑔1) 

curves. On the other hand, engendering a shorter second limb for thinner silicon films is due to 

the fact that the third limb stays rather unaffected to the variation of silicon film thickness. This 

can be explained by the drop of silicon film capacitance for larger silicon films, making the 

back surface potential less affected by the front gate bias. Note that, in such geometrical 

configuration, similar behavior is expected by the front surface potential if we study the 

influence of variating the back gate bias while keeping the front gate bias positive. 

 

Figure 20.  Front surface potential as a function of front gate voltage and for four different silicon thicknesses. 

Similarly, Figure 21 reports the effect of variating the silicon channel thickness on the back 

surface potential at T = 4 K and for a positive back bias 𝑉𝑔2 = +3𝑉. Note the dependence of 

the threshold point (the limit between the linear and the saturated trends) on the silicon film 

thickness, i.e. the threshold happens earlier to larger films compared to the thinner ones. Note 

as well that the curve corresponding to 𝑡𝑠𝑖 = 7𝑛𝑚 presents a minute increase before joining the 

other curves at the same polarization that characterizes the opening of the front potential well. 

Such particular trend is due to the strong through-the-silicon coupling exhibited at this silicon 

thickness, allowing the perception of the opening of the front potential well by the back surface 

potential. 
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Figure 21. Back surface potential as a function of front gate voltage and for four different silicon thicknesses. 

1.4 Comparison to the C-V measurements: 

In order to give credence to the performed PS simulations, their corresponding 𝐶𝑔𝑐(𝑉𝑔1) results 

need to be validated by comparison to experimental data. For this reason that the pre-last section 

of this chapter should be the exposition of the gate-to-channel behavior predicted by the model 

to the C-V measurements. 
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Figure 22. Experimental validation of the simulated gate to channel curves as a function of front gate voltage and for 

different back biases and for a temperature of 4.2 K. 

Figure 22 demonstrates the good agreement between PS simulations (solid lines) and the 

measured data (symbols) for several back biases 𝑉𝑔2 = −3,−2…4 𝑉. Indeed, the back bias 

influence can be well described by the simulations down to the temperature T = 4.2 K and the 

two-plateau behavior predicted earlier by the PS simulations is well embodied in the 

measurements as well. Substantially, the threshold voltage dependence on back biasing along 

with the change in the 𝐶𝑔𝑐(𝑉𝑔1) curves slope are well described by PS simulations. 

Note that in accordance with the measurements, the simulations were performed for a GO1 

FDSOI MOSFET, by considering an equivalent front oxide thickness EOT1 of 1.2 nm. Note as 

well that the gate work functions, which were considered null earlier, are modified in 

accordance with measurements. The front gate function is found to be −0.1 𝑉, and the back 

gate function is found to be 0.5 𝑉, which is consistent with the well located below the buried 

oxide in the tested capacitance. 

On top of that, the chosen AC level for the measurements becomes a significant parameters at 

the cryogenic temperatures range, as its influence becomes ostensible on the slope of the first 

elevation of the 𝐶𝑔𝑐(𝑉𝑔1) curves. For the present measurements an AC level of 40 mV was 

chosen, with a frequency of 100 KHz. 
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Figure 23. Experimental validation of the simulated gate to channel curves as a function of front gate voltage and for 

different back biases and for a temperature of 20K. 

 

Figure 24. Experimental validation of the simulated gate to channel curves as a function of front gate voltage and for 

different back biases and for a temperature of 50K. 
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Figure 25. Experimental validation of the simulated gate to channel curves as a function of front gate voltage and for 

different back biases and for a temperature of 100K. 

1.5 Expanding the 1-D PS solver to the non-equilibrium conditions: 

At this point, one should introduce the notion of the quasi-Femi level 𝜙𝑖𝑚 that describes the 

population of the electrons throughout the channel when the system is displaced from its 

equilibrium condition, i.e. when an external voltage is applied to the drain terminal. Such notion 

is considerably practical, as it allows using the same equations that describes the electron 

density in the equilibrium condition cases, to the non-equilibrium ones. 

Expanding the 1-D PS solver goes back to introducing the quasi-Fermi level in Eq 3.3, such 

that it emerges as in Eq 3.4, and the inversion charge is now computed in several points 

throughout the silicon channel. 

 

𝑛(𝑥) =∑∑𝑔𝑗𝐴2𝑑𝑗𝑘𝑇. 𝐹0 (
𝐸𝐹 − 𝐸𝑙,𝑣 − 𝜙𝑖𝑚

𝑘𝑇
) .

9

𝑙=0

1

𝑣=0

|𝜓𝑣,𝑙(𝑥)|
2
 Eq 3.4 

Moreover, the procedure of obtaining the current information consists of integrating the 

computed inversion charge at each step of the quasi-Fermi level vector, as shown in Eq 3.5. 

Nonetheless, such information is still valuable for validating the drift current component 

obtained by the numerical model in Chapter 4. 

 
𝐼𝑑𝑡𝑜𝑡𝑎𝑙 =

𝑊

𝐿
𝜇𝑛∫ 𝑄𝑖𝑛𝑣(𝑉𝑔1, 𝑉𝑔2, 𝜙𝑖𝑚).

𝑉𝑑

0

𝑑𝜙𝑖𝑚 Eq 3.5 

Note that, the mobility law is indeed not included in this procedure. Thusly we consider a 

constant mobility and, for the sake of simplicity and without loss of generality, we consider 
(𝑊 𝐿⁄ ). 𝜇𝑛 = 1. 
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Figure 23 illustrates the computed transfer characteristics 𝐼𝑑 = 𝑓(𝑉𝑔1) in the linear regime, i.e. 

for  𝑉𝑑 = 0.05 𝑉, and the saturated regime, i.e. for 𝑉𝑑 = 1𝑉, as well as the output characteristics 

𝐼𝑑 = 𝑓(𝑉𝑑), for the indicated FDSOI transistor at the temperature 𝑇 = 4 𝐾. 

 

 

  

 
Figure 23. Computed Transfer and output characteristics of FDSOI transistor at T = 4K. 
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We dedicate this chapter for the development of a numerical model that is at odds with the prior 

PS simulation of simplistic nature. Such model halfway between the PS simulations and the 

analytical compact model is crucial for the development of the latter, as it establishes the general 

equations involved in the charge and current computations. 

Our numerical model is dedicated to undoped long channel FDSOI devices operating at 

cryogenic temperatures and includes certain approximations, namely the charge sheet, the 

triangular well, and the gradual channel ones. Such approximations are meant to make the 

model simpler and computationally efficient. The criterion for each approximation once 

included in the model, is the model ability to predict the device characteristics with enough 

accuracy. 

Expressly, this introductory section is dedicated to the discussion of each of the above-

mentioned approximations, their corresponding justifications and advantages/limitations. 

Following, a brief introduction of a smoothing method meant for connecting functions with 

respect to a particular abscissa point is presented. 

The charge sheet approximation compresses the inversion layer into a conducting plane of zero 

thickness, where the conductivity is controlled by the electron density per unit area, denoting 

the loss of all information that describe the charge spatial distribution in the x direction [1]. 

Such approximation has the advantage of leading into a very simple algebraic formula 

concerning the charge or the current of long channel devices that applies across all regimes, i.e. 

from weak to moderate and to strong inversion regime, without any clamping or parameter 

changing, and without any manifesting discontinuities in the charges, currents, or their 

respective derivatives. The second advantage is its straightforward extension to two-dimension 

device analysis; as such analysis will be needed for the implementation of short channel effects 

that will be addressed in chapter 5. 

In contrast to the numerical solution of the Schrödinger differential equation where its 

application to any potential profile 𝑉(𝑥) is feasible, for a simpler numerical model, the potential 

shape 𝑉(𝑥) which originally has a semi-parabolic shape, has to be approximated. Our choices 

are limited to triangular or square potential well approximations. One can deduce based on the 

potential profiles demonstrated in the previous chapter that the front and back interfaces are 

better approximated using the asymmetric triangular well approach. Square well 

approximations on the other hand are more suitable for ultra-thin film or heterostructures of 

different semiconductors [2].  

The triangular potential well approximation is widely used in the MOSFET modelling 

community. Such approximation considers an asymmetric triangular potential well, with an 

infinite vertical barrier at 𝑥 = 𝑡𝑜𝑥1, and a barrier that varies linearly for 𝑥 > 𝑡𝑜𝑥1 in the front 

interface case, equivalently, an infinite barrier at 𝑥 = 𝑡𝑜𝑥1 + 𝑡𝑠𝑖 and a barrier that varies linearly 

for 𝑥 < 𝑡𝑜𝑥1 + 𝑡𝑠𝑖 in the back interface case. According to [3], owing to the absence of a 

depletion depth, such approximation is even more justified in the case of undoped films. 

Such approach approximates the gradually changing slope of the electrostatic potential 𝑉(𝑥) 
into a constant slope using the notion of effective electric field 𝐸𝑒𝑓𝑓1,2. Whereas in the case of 

Poisson-Schrödinger simulation, the electron energies and states are established by solving 

Schrödinger equation based on the corresponding boundary conditions, in the case of triangular 

well approximation approach, these eigenstates are given by the analytical solutions to the Airy 

functions, as expressed in Eq 4.1 [3], [4]: 

 𝐸𝑖1,2 = (
ℏ2

2𝑚𝑒
)

1 3⁄

(
3𝜋𝑞𝐸𝑒𝑓𝑓1,2

2
(𝑖 +

3

4
))

2 3⁄

 Eq 4.1 
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Where the index 𝑖 corresponds to the different populated subbands. Indeed, in our case only the 

ground subbands are considered, furthermore, such equation can be expressed by the mean of 

the gate charge densities, as in Eq 4.2.  

 𝐸01,2 = 𝑞. (
9. 𝜋. ℏ

8. 𝜀𝑠𝑖 . √2.𝑚𝑐𝑜𝑛𝑓. 𝑞
)

2 3⁄

. 𝑄𝑔1,2
2 3⁄  

Eq 4.2 

Indeed, this approximation does not provide the carrier distribution profile nor the inversion 

layer centroid. However, it is rather advantageous in our case because it is computationally 

simple to implement, as it involves only the power function of the gate charge function [5]. 

The gradual channel approximation assumes that the potential along the channel varies 

gradually and in a suitable way for the 1-D electrostatic solution to be valid. Accordingly, such 

approximation enables the partition of the 2-D problem encountered in device modeling into 

two separate 1-D problems, the electrostatic 1-D problem in the 𝑥 direction, and the conduction 

down the channel 1-D problem in the 𝑦 direction [1]. 

Supplementary, and for proper operation in circuit simulators, the expressions used in our 

model should be at least 𝐶1 continuous, or ideally 𝐶∞ continuous. However, in practice, the 

current and charge expressions for different bias, temperature or geometrical configurations can 

be different due to the differing physics in each configuration and thus the chosen 

approximations to describe that physics. On top of this, different operational inversion regions, 

i.e. weak-moderate and strong inversion regions, may have different expressions as well.  

On that account, employing piecewise smooth functions is a deliberate way in order to obtain 

globally continuous functions, such approaches are found consistently in the field of 

semiconductor device modelling. For instance, in the published work [6], a generalized 

formalism generating such piecewise smooth functions is presented. Such smoothing method 

which is meant for connecting globally continuous piecewise functions 𝑓𝑖(𝑥), in the vicinity of 

abscise coordinates 𝑥𝑖, in order to get an infinitely differentiable functions, i.e. the resulting 

piecewise function can be evaluated at ]−∞,+∞[ and are 𝐶∞, and the final function 𝐹(𝑥) can 

be obtained by simply summing up all piecewise functions [6]. Ultimately, a state-of-the-art 

implementation of such method will be demonstrated in section 1.1.4. 

1.1 The Charge numerical model: 

1.1.1 The classical starting set of transcendent coupled equations: 

One of the inherent features of SOI devices is that the electrical properties of the back interface 

are influenced by the ones at the front one [7]. Such coupling between the two interfaces will 

result in a feedback mechanism, where the surface potential is controlled not only by the 

adjacent gate but also by the opposite one [8], [9]. That is to say, modifying the back-gate bias 

directly changes the back surface potential and indirectly changes the front interface properties; 

reciprocally, since the front interface potential was altered, this in turn will cause an additional 

change of the back-channel potential [9]. In our mathematical formalism, this can be interpreted 

by the fact that the surface potential at one interface is a function of the applied bias on the 

opposite interface and vice versa i.e. 𝑉𝑠1 = 𝑓(𝑉𝑔1, 𝑉𝑔2) and 𝑉𝑠2 = 𝑓(𝑉𝑔1, 𝑉𝑔2). This is expressly 

due to the electrostatics that generates two-coupled quantum wells DCQW, which consist of 

two 2D electrons gases that are spatially close enough and energetically separated by a 

relatively narrow barrier. Thusly, the studied system will have an additional degree of freedom 

[10], [11]. Such additional degree of freedom produced by the DCQW will be manifested in 

our system of fundamental equations, as an extra degree of complexity, i.e. an extra capacitive 

coupling term must be taken into consideration, in addition to the gates and inversion charges 

terms in order to fully model the system. 
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From an electrostatic point of view, the coupling term can be derived in the subthreshold regime 

considering the capacitive scheme of the stack, as illustrated in Figure 1. This simple scheme 

considers the three capacitances of the system in series, i.e. the front oxide, silicon film, and 

back oxide capacitances. Such capacitive scheme is initially derived in the weak inversion 

mode, and will be rather then extended to the moderate and strong inversion modes [9]. 

 

Figure 1. The capacitor scheme of a long channel FDSOI transistor 

Therefore, in our approach we model this coupling charge presented in the system using the 

silicon film capacitance. Such simple method is quite advantageous for a compact modelling 

approach, as it describes in a reasonable manner the coupling of the two interfaces, and allows 

to model the coupling with linear terms, as will be demonstrated in the starting set of equations 

[9]. Indeed, our choice of the coupling term is convenient, as it allows a good description of the 

coupling charges for thin silicon films where 𝐶𝑠𝑖 becomes large, and equivalently for larger 

silicon films where 𝐶𝑠𝑖 becomes small reflecting the negligible amount of coupling charge 

present in these configurations. Finally, it should be noted that such coupling of surface 

potentials is undoubtedly reflected as a coupling of threshold voltages as well [7]. 

Accordingly, if we consider the typical scheme of an FDSOI structure presented in Chapter 3 

and apply the charge conservation principle to the first and second interfaces respectively, we 

will acquire that the charge in the front gate equals the inversion charge of the first interface, 

plus the coupling charge. Equivalently, the charge in the second gate will be equal to the 

inversion charge of the second interface minus the coupling charge, as featured in Eq 4.3: 

 {
𝑄𝑔1 = −𝑄𝑖𝑛𝑣1 + 𝑄𝑐𝑝𝑙
𝑄𝑔2 = −𝑄𝑖𝑛𝑣2 − 𝑄𝑐𝑝𝑙

 
Eq 4.3 

Regarding the closed-form mathematical expressions of the gate charge terms, and the coupling 

charge term, they are expressed using: 

 
{
𝑄𝑔1,2 = 𝐶𝑜𝑥1,2. (𝑉𝑔1,2 − 𝑉𝑓𝑏1,2 − 𝑉𝑠1,2)

𝑄𝑐𝑝𝑙 = 𝐶𝑠𝑖 . (𝑉𝑠1 − 𝑉𝑠2)
 Eq 4.4 

Concerning the inversion charge expression we preliminarily choose its formulation within the 

classical assumption, as described in Eq 4.5. Such expression suggests that we consider having 

two delta functions representing the front and back inversion charges, which start populating 

once the edge of the conduction band taps the Fermi level. 
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−𝑄𝑖𝑛𝑣1,2 = 𝑞𝑘𝑇𝐴2𝑑  𝑙𝑛 (1 + 𝑒𝑥𝑝 (

𝑉𝑆1,2 − 𝑉0 − 𝜙𝑖𝑚
𝑘𝑇

)) Eq 4.5 

The flat band voltage 𝑉𝑓𝑏1,2 takes into account the potential drop inside the corresponding oxide 

due to the difference of work functions between the silicon channel and the gate metal, along 

with the consideration of the different interface trap charges. One should emphasize that, 

without loss of generality, we consider the midgap, represented here by the term 𝑉0, as our 

chosen potential reference. 

Essentially, by solving the system of coupled equations we mean finding the corresponding 

values of the Fermi level, or in our context of the front and back surface potentials (𝑉𝑠1, 𝑉𝑠2), 
for each variation of the applied bias to the front and back gates respectively, i.e. the couple 

(𝑉𝑔1, 𝑉𝑔2). 

Note that in our system of coupled equations, we have three terms that are linear with respect 

to 𝑉𝑆1 and 𝑉𝑆2, the corresponding 𝑄𝑔1, 𝑄𝑔2, and 𝑄𝑐𝑝𝑙, and two non-linear terms with respect to 

𝑉𝑆1 and 𝑉𝑆2, the corresponding 𝑄𝑖𝑛𝑣1 and 𝑄𝑖𝑛𝑣2. Considering the transcendental nature or our 

equations, they require the application of some numerical method in order to be solved, such 

approach is the one we follow in this chapter. Subsequently, in Chapter 5 we seek into 

succeeding to find a procedure that permits their transformation into algebraic equations. 

Our system of coupled equations is solved using a python script that calls the fsolve function 

from the scipy.optimize package. Such function employs Powell’s method for roots findings, 

a procedure that is performed for each bias configuration until the convergence is achieved [12]. 

Manifestly, in order to converge to the roots, a starting set of initial values for both the front 

and back surface potentials is needed, a suitable initial guess in our case is the silicon film 

midgap implemented in the form of the (𝑉0, 𝑉0) list. 

Thus far, only the classical form of our system of coupled equations is considered, which can 

be plainly solved and provide the classical solutions. Nonetheless to obtain the exact solutions, 

a further step must be completed, the incorporation of the quantum shift function. 

1.1.2 The incorporation of the quantum shift function: 

Such quantum shift function incorporation is achieved by the simple substitution of Eq 4.5 by 

Eq 4.6 in our system of coupled equations i.e. Eq 4.3. 

 −𝑄𝑖𝑛𝑣1,2 = 𝑞𝑘𝑇𝐴2𝑑  𝑙𝑛 (1 + 𝑒𝑥𝑝 (
𝑉𝑆1,2 − 𝑉0 − 𝜙𝑖𝑚 − 𝛥𝑉(𝑄𝑔1,2 )

𝑘𝑇
)) 

Eq 4.6 

 𝛥𝑉(𝑄𝑔1,2 ) = 𝛽𝑄𝑀. 𝑄𝑔1,2 
2/3 

Eq 4.7 

 𝛽𝑄𝑀 = (
9. 𝜋. ℏ

8. 𝜀𝑠𝑖 . √2.𝑚𝑐𝑜𝑛𝑓. 𝑞
)

2 3⁄

 Eq 4.8 

where the prefactor 𝛽𝑄𝑀 encompasses all the constant coefficients that appear in Eq 4.2 . Such 

approach suggests that we consider having two delta functions representing the front and back 

inversion charges. However, in contrast to the classical approach, the condition for different 

subbands to start being populated is for the Fermi level to reach the energy levels of these 

subbands.  

Primarily, owing to our lack of information of the quantum shift function behavior in the 

negative gate charge region an even function of the gate charge is commonly considered in 
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literature, for instance, the absolute value function. Undeniably, the resulting function is 

continuous and differentiable everywhere, however, for the 𝑄𝑔1,2 = 0 configuration, the 

corresponding electrostatic quantities and their respective derivative functions present a 

numerical pathology. 

1.1.3 The manifested numerical pathology: 

Curiously, it was found that the modelling of quantum mechanical effects with the mere 

assumption of an infinite triangular potential well at the film-oxide interface, i.e. the general 

2/3 power of the quantum shift function, can result in an unappealing behavior of the surface 

potentials, which will in turn propagates to the inversion charges, and becomes significant in 

the behavior of the corresponding first-order derivative i.e. the gate-to-channel capacitance. 

Such singularity is manifested around the point where the slope of the potential profile function 

𝑉(𝑥) is reversed, i.e. the zero-gate-charge point. Figure 2 depicts the displayed numerical 

pathology in various electrostatic quantities. It should be noted that such numerical pathology 

is manifest primarily in the positive back bias configuration. 

In Figure 2 the different electrostatic quantities are presented as functions of front gate voltage. 

Seemingly, the singularity (designated by the red dotted ellipses) is manifested in the front 

surface potential, total inversion charge density, and the gate-to-channel curves for a back bias 

of 𝑉𝑔2 = +3𝑉. 
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Figure 2. Front and back surface potentials, total inversion charge density, and gate-to-channel curves as functions of front 

gate bias; the singularity is indicated by the red dotted ellipses. 

Comprehensibly the 2 3⁄  power law is not sufficient to describe the manifested physics in the 

negative gate charge region, nor around the zero-gate-charge configuration within the moderate 

inversion region. One of the employed solutions proposed in literature [13] is the shown 

sensibility of the model outputs on the attributed precision to the rational power of the Airy 

function in its float format. Such values depend as well on the designated interface, as different 

values can be given to the front and back interfaces. Such modification of Airy’s function is 

explained in literature [13] by the degree of penetration of the electronic wave function in the 

oxide barrier. 

It was found indeed that such approach is functional, though not practical. As even though we 

get rid of the singularity presented around the zero electric field configuration by modifying the 

power values, those same values depend on the oxide and silicon thicknesses. Such dependence 

is undesirable for us, firstly because the model is not robust geometrical-configurations-wise 

and secondly because in our study the symmetry front-back-interface wise must be preserved. 

As an initial remedy to the numerical pathology that one envisages is the inclusion of gate 

charge offset in the 𝛥𝑉(𝑄𝑔1,2) expression, following Eq 4.9. Such infinitesimal offset charge 

becomes functional once we pass by the null-gate-charge point. 

 𝛥𝑉(𝑄𝑔1,2 ) = 𝛽𝑄𝑀. |𝑄𝑔1,2 + 𝑄𝑜𝑓𝑓𝑠𝑒𝑡|
2/3

 
Eq 4.9 

Figure 3 comprehends the different electrostatic quantities as functions of front gate voltage 

computed using the Equations: Eq 4.9, Eq 4.6, and Eq 4.3. Note the vanished numerical 

pathology ascribed to the existence of the charge offset term 𝑄𝑜𝑓𝑓𝑠𝑒𝑡. 
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Figure 3. Front and back surface potentials, total inversion charge density, and gate-to-channel capacitance curves as 

functions of front gate bias computed using the Equations: Eq 4.9, Eq 4.6, and Eq 4.3. 

Moreover, as an alternative remedy we examined the effect of the inclusion of the 𝛥𝑉(𝑄𝑔1,2) 

expressions in the coupling term 𝑄𝑐𝑝𝑙, as in Eq 4.10.  

 𝑄𝑐𝑝𝑙 = 𝐶𝑠𝑖 . [(𝑉𝑠1 − 𝛥𝑉(𝑄𝑔1)) − (𝑉𝑠2 − 𝛥𝑉(𝑄𝑔2))] 
Eq 4.10 

In Figure 4 we present the different electrostatic quantities as functions of the front gate voltage 

using the Equations: Eq 4.10, Eq 4.7, Eq 4.6, and Eq 4.3. Noticeably, regardless of the aptitude 

of such approach into eliminating the numerical pathology and allowing more numerical 

stability around the zero-gate-charge point, it provides a better description of the roundness of 

the gate-to-channel curves manifested between the back and front channel openings. 
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Figure 4. Front and back surface potentials, total inversion charge density, and gate-to-channel capacitance curves as 

functions of front gate bias computed using the Equations: Eq 4.10, Eq 4.7, Eq 4.6, and Eq 4.3. 

However, it was found that, either attempts intended to overcome the pathology does not fully 

solve the problem, as the model remains susceptible for numerical pathologies when we change 

the geometrical configuration, for instance, the silicon film thickness or the front oxide 

thickness, implying the non-validity of such approaches. Hence, in the next section we follow 

a special approach in order to find an inherent remediation for such pathology. 

1.1.4 The extended quantum shift function: 

In order to transcend such numerical pathology, we rely on a reverse path approach stemmed 

from the PS simulation data. Methodically, starting form PS simulation results, and from Eq 

4.6 we can practically predict the behavior of the quantum shift function 𝛥𝑉(𝑄𝑔1,2 ). Such 

function can be expressed in terms of the front/back surface potentials and front/back inversion 

charge densities respectively as in Eq 4.11. 

 
𝛥𝑉(𝑄𝑔1,2 ) = 𝑉𝑆1,2 − 𝑉0 − 𝑘𝑇. 𝑙𝑛 (𝑒𝑥𝑝 (

−𝑄𝑖𝑛𝑣1,2
𝑞𝑘𝑇𝐴2𝐷

) − 1) Eq 4.11 
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Note that, whereas the front/back surface potentials information along with the front/back gate 

charges information are provided by PS simulation, the latter gives the total inversion charge 

density without discerning the front and back components. Accordingly, in order to get that 

information, the inversion charge needs to be apportioned between the front and back interfaces 

with respect to the gate charges densities. Generally, we should effectively have the following 

three cases: 

• If 𝑄𝑔1 > 0 and 𝑄𝑔2 < 0, then: 𝑄𝑖𝑛𝑣1 = 𝑄𝑖𝑛𝑣 and 𝑄𝑖𝑛𝑣2 = 0. 

• If 𝑄𝑔1 < 0 and 𝑄𝑔2 > 0, then: 𝑄𝑖𝑛𝑣1 = 0 and 𝑄𝑖𝑛𝑣2 = 𝑄𝑖𝑛𝑣. 

• If 𝑄𝑔1 > 0 and 𝑄𝑔2 > 0, then: 𝑄𝑖𝑛𝑣1 = −𝑄𝑔1 and 𝑄𝑖𝑛𝑣2 = −𝑄𝑔2. 

Therefore, the front and back inversion charge densities can be expressed in terms of front and 

back gate charges following Eq 4.12: 

 

{
 
 

 
 𝑄𝑖𝑛𝑣1 = (𝑄𝑔1 + 𝑄𝑔2).

𝑚𝑎𝑥(𝑄𝑔1, 0)

𝑚𝑎𝑥(𝑄𝑔1, 0) + 𝑚𝑎𝑥(𝑄𝑔2, 0)

𝑄𝑖𝑛𝑣2 = (𝑄𝑔1 + 𝑄𝑔2).
𝑚𝑎𝑥(𝑄𝑔2, 0)

𝑚𝑎𝑥(𝑄𝑔1, 0) + 𝑚𝑎𝑥(𝑄𝑔2, 0)

 
Eq 4.12 

 

Finally, Figure 5 demonstrates the comprehensive trend of the front quantum shift function as 

a function of the front gate voltage ∆𝑉(𝑄𝑔1) in the case of a positive back bias configuration.  

 

Figure 5. Front Quantum shift expression as a function of front gate charge in the case of a positive back bias, derived 

numerically and from PS data. 

Noticeably, the plotted function manifests two distinctive regions, a linear region associated 

with the negative gate charges, and a 2/3 power region associated with the positive gate charges. 

Whereas the 2/3 power behavior can be directly attributed to the presence of an asymmetric 

triangular potential well in the strong inversion region, allowing the use of Airy’s function 

solutions [3], [4], the linear behavior is seemingly inherent to the weak inversion charge where 

the gate charge densities are minor. 
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Therefore, in order to establish a global quantum shift function that describes the whole region 

of gate charge densities, we must primarily define two functions to describe the linear and the 

2/3 power regions separately, then succeed into building the whole block through the 

implementation of the formalism described in [6]. 

First, the linear region can be expressed plainly by introducing a prefactor to the gate charge 

densities as in Eq 4.13.The slope of the linear region is found to be a function of the silicon film 

thickness, capacitance, and an extra smoothing parameter 𝑑𝑘𝑠, which represents the dark space. 

In this context, the parameter 𝛾 is equivalent to the notion of effective silicon thickness 𝐶𝑠𝑖𝑒𝑓𝑓 =

𝜀𝑠𝑖 𝑡𝑠𝑖𝑒𝑓𝑓⁄ , where 𝑡𝑠𝑖𝑒𝑓𝑓 is the on-hand silicon thickness after excluding the dark space i.e. 

𝑡𝑠𝑖𝑒𝑓𝑓 = 𝑡𝑠𝑖 − 𝑑𝑘𝑠 , leading after some rearrangements to the expression in Eq 4.14. 

 𝛥𝑉𝑛𝑒𝑔(𝑄𝑔1,2) = (1 𝛾⁄ ). 𝑄𝑔1,2  
Eq 4.13 

 𝛾 = 𝐶𝑠𝑖 (1 −  (𝑑𝑘𝑠 𝑡𝑠𝑖⁄ ))⁄  
Eq 4.14 

Ensuing, the 2/3 power dependence of the quantum shift function is given directly using the 

Airy’s function solution, following Eq 4.15. In addition, and in order to better fit the PS 

simulations, 𝛽𝑄𝑀 can be moderately reduced through the multiplication by a factor ≈ 0.8. 

 𝛥𝑉𝑝𝑜𝑠(𝑄𝑔1,2) = 𝛽𝑄𝑀. 𝑄𝑔1,2 
2/3 

Eq 4.15 

Heretofore, we have two distinctive mathematical expressions to describe the quantum shift 

function in both regions. Such piecewise bi-regional function has to be connected smoothly in 

order to obtain a fully differentiable global function. 

In order to build our global function, the first step is the smooth clamping of each primary 

function. Hence, we use the assistance of two auxiliary functions that incorporate the smoothing 

parameter 𝛿𝑄𝑔, following Eq 4.16. Factually, 𝑄𝑛𝑒𝑔(𝑄𝑔1,2, 𝛿𝑄𝑔) smoothly clamps 𝑄𝑔1,2 to the 

upper limit 𝑄𝑔1,2 = 0 when 𝑄𝑔1,2 increases from −∞ to +∞. On the other hand, 

𝑄𝑝𝑜𝑠(𝑄𝑔1,2, 𝛿𝑄𝑔) smoothly clamps 𝑄𝑔1,2 to the lower limit 𝑄𝑔1,2 = 0 when 𝑄𝑔1,2 increases 

from −∞ to +∞. 

 

{
 
 

 
 𝑄𝑛𝑒𝑔(𝑄𝑔1,2 ) =

1

2
. (𝑄𝑔1,2 −√𝑄𝑔1,2 

2 + 𝛿𝑄𝑔
2)

𝑄𝑝𝑜𝑠(𝑄𝑔1,2 ) =
1

2
. (𝑄𝑔1,2 +√𝑄𝑔1,2 

2 + 𝛿𝑄𝑔
2)

 
Eq 4.16 

Decidedly, the two primary functions 𝛥𝑉𝑛𝑒𝑔(𝑄𝑔1,2) and 𝛥𝑉𝑝𝑜𝑠(𝑄𝑔1,2) have to be connected 

with respect to the abscissa axis in the vicinity of null gate charge point i.e. 𝑄𝑔1,2 = 0. the 

approach proposed by [6] allows such finality. 

Expressly, in our case, the global function is 𝛥𝑉(𝑄𝑔1,2), the two primary functions are 

𝛥𝑉𝑛𝑒𝑔(𝑄𝑔1,2) and 𝛥𝑉𝑝𝑜𝑠(𝑄𝑔1,2) respectively, the connection of the two functions is made in the 

vicinity of the null gate charge point i.e. 𝑄𝑔1,2 = 0, the same smoothing parameter 𝛿𝑄𝑔 is used 

for both lower and upper limit functions. The final function is defined as the direct sum of the 

two piecewise functions, following Eq 4.17: 

 𝛥𝑉(𝑄𝑔1,2) = 𝛥𝑉𝑛𝑒𝑔(𝑄𝑔1,2) + 𝛥𝑉𝑝𝑜𝑠(𝑄𝑔1,2) 
Eq 4.17 
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Furthermore, the constant terms, (𝛿𝑄𝑔 2⁄ ) for the linear region, and −(𝛿𝑄𝑔 2⁄ )
2/3

 for the 2/3 

power region, are added to ensure that the result is null when the gate charge density is null, 

following Eq 4.18. Note that, unreservedly, such expression of the potential quantum shift 

function is suitable for all geometrical configurations. 

𝛥𝑉(𝑄𝑔1,2 , 𝛿𝑄𝑔)

=
1

𝛾
. (𝑄𝑛𝑒𝑔(𝑄𝑔1,2 ) +

𝛿𝑄𝑔
2
)

+ 𝛽𝑄𝑀. (𝑄𝑝𝑜𝑠(𝑄𝑔1,2 )
2/3

− (
𝛿𝑄𝑔
2
)

2/3

) 

 

Eq 4.18 

Finally, using Eq 4.18, we can reproduce the quantum shift function behavior in the case of a 

positive back bias configuration predicted by PS results using the surface potentials and the 

gate charge densities provided by the numerical model. A comparison between the produced 

plots is illustrated in Figure 6 for two different silicon thicknesses. 

Plainly, the function described in Eq 4.18 does well in reproducing the trend exhibited by the 

function 𝛥𝑉(𝑄𝑔1 ) derived from PS simulations, especially regarding the smooth transition 

between the linear and the 2/3 power behaviors. 

  
Figure 6. Front Quantum shift expression as a function of front gate charge in the case of a positive back bias, derived 

numerically and from PS data, for two different silicon thicknesses. 

Before initiating the section dedicated to the comparison between the numerical model results 

and the ones provided by PS simulations using two approaches that are distinctive to the 

aforementioned one, it should be noted that since the PS simulations solve Schrodinger equation 

in the entire meshed system, i.e. the silicon film alongside the wave function penetration zones, 

such computation return the total inversion charge profile in the silicon film, without any prior 

distinction between the front and back inversion charge densities. 

In order to compute these two densities starting from PS data we have two approaches: 

• The first approach splits the silicon film into two equilateral halves, where the inversion 

charge that dwells between 𝑥 = 𝑡𝑜𝑥1 and 𝑥 = 𝑡𝑜𝑥1 + 𝑡𝑠𝑖 2⁄  is purported to be the front 
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inversion charge, and the inversion charge that dwells between 𝑥 = 𝑡𝑜𝑥1 + 𝑡𝑠𝑖 2⁄  and 

𝑥 = 𝑡𝑜𝑥1 + 𝑡𝑠𝑖 is purported to be the back inversion charge. 

• The second approach exploit the front and back surface potentials provided by the PS 

simulations and evaluate the front and back inversion charge densities using the gate 

charge and coupling charge terms  as indicated in the equations Eq 4.3 and Eq 4.4. 

Figure 7 incorporate the front and back inversion charges curves as a function of front gate bias 

evaluated using both of these approaches. Indeed, owing to the coupling term the front and back 

inversion charge densities are misestimated using the gate charge densities. 

 

Figure 7. Front and back inversion charges curves as a function of front gate bias evaluated using both of the 

aforementioned approaches. 

In this comparative study we adhere to the second approach as it includes the coupling term 

conjecture. This choice is due principally to the fact that the coupling term will be included in 

the analytical compact model starting set of equations as well and secondarily to the fact that 

either the numerical or the analytical compact models do not provide the profile of electrons 

throughout the silicon film.  

1.1.5 Numerical charge model validation by comparison to PS results: 

Undoubtedly, a comparison stage where the results given by the numerical model are exposed 

to the ones provided by PS simulations in order to validate the former is vital in such study. 

Thusly, in this section we explore such comparison regarding the various electrostatic 

quantities. The comparison is performed for two different silicon thicknesses 𝑡𝑠𝑖 = 7 𝑛𝑚 and 

𝑡𝑠𝑖 = 10 𝑛𝑚 in order to establish the numerical robustness of the numerical model regarding 

various geometrical configurations. 

Decidedly, in the list of Figures, Figure 8 to Figure 12, we present the front surface potential, 

back surface potential, front inversion charge, back inversion charge, and gate-to-channel 
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capacitance curves as functions of front gate voltage obtained by numerical computation is 

exposed to the curves provided by PS simulations.  

Such Figures show an overall agreement between the numerical results and PS simulation 

results, further underlying the pertinence of our numerical model. Some inaccuracies with 

respect to PS simulation results are exhibited by the numerical model mostly in the moderate 

and strong inversion regions, which can be attributed to the series of approximations that had 

to be done in order to build such model, in addition to the smoothing functions and parameters 

that can play a role in such inaccuracies as well. 

 
 

Figure 8. Front surface potential curves as functions of front gate voltage for three different back biase, two different silicon 

thicknesses, and for a temperature of 4 K, the solid lines represent the numerical model results and symbols represent the PS 

simulation results. 

  

  
Figure 9. Back surface potential curves as functions of front gate voltage for three different back biases, two different silicon 

thicknesses, and for a temperature of 4 K, the solid lines represent the numerical model results and symbols represent the PS 

simulation results. 
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Figure 10. Front inversion charge density curves as functions of front gate voltage for three different back biases, two 

different silicon thicknesses, and for a temperature of 4 K, the solid lines represent the numerical model results and symbols 

represent the PS simulation results. 

 
 

Figure 11. Back inversion charge density curves as functions of front gate voltage for three different back biases, two 

different silicon thicknesses, and for a temperature of 4 K, the solid lines represent the numerical model results and symbols 

represent the PS simulation results. 
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Figure 12. Gate-to-channel capacitance curves as functions of front gate voltage for three different back biases and two 

different silicon thicknesses, the solid lines represent the numerical model results and symbols represent the PS simulation 

results. 

1.2 The Current numerical model: 

We describe in this part the long channel drain current calculation, assuming an infinite 

saturation velocity and in the frame of the gradual channel approximation. Such calculations 

are computed for the front and back channels separately based on the prior separation of 

inversion charges, then the total current will be straightforwardly the sum of the front and back 

currents. 

1.2.1 The drift-diffusion numerical model: 

Similarly to [14], we start from the general drain current equation expressed in Eq 4.19. The 

mobility located originally inside the integral can have two forms in our study. Firstly, we 

consider an effective constant mobility 𝜇𝑒𝑓𝑓 averaged throughout the inversion charge and the 

channel length, in which case the mobility term 𝜇𝑒𝑓𝑓 can be displaced outside the integral. 

Ensuing, we consider the bell-shaped mobility law exhibited in Chapter 2. 

 
𝐼𝑑1,2 = −

𝑊

𝐿
.∫ 𝜇𝑛1,2.  𝑄𝑖𝑛𝑣1,2(𝑦).

𝑑𝜙𝑖𝑚
𝑑𝑦

(𝑦)
𝐿

0

. 𝑑𝑦 Eq 4.19 

Using Eq 4.6 the closed-from expression of the term 𝑑𝜙𝑖𝑚 𝑑𝑦⁄  can be derived, as in Eq 4.20. 

 
𝑑𝜙𝑖𝑚
𝑑𝑦

 =  
𝑑𝑉𝑠1,2
𝑑𝑦

−
𝑑𝛥𝑉(𝑄𝑔1,2 )

𝑑𝑦
−  

𝑘𝑇

𝑞 𝑁2𝐷
 

1

1 −  𝑒
−𝑄𝑖𝑛𝑣1,2
𝑞 𝑁2𝐷

 
𝑑𝑄𝑖𝑛𝑣1,2
𝑑𝑦

 
Eq 4.20 

Hereupon, we identify the term 𝜒𝑠 1,2 = 𝑉𝑠 1,2 − ∆𝑉(𝑄𝑔1,2 ) representing the potential of the 

corresponding subband, doing so, the drift and diffusion terms are uncovered, as in Eq 4.21. 

 
𝑑𝜙𝑖𝑚
𝑑𝑦

 =  
𝑑𝜒𝑠 1,2

𝑑𝑦
−  

𝑘𝑇

𝑞 𝑁2𝐷
 

1

1 −  𝑒
−𝑄𝑖𝑛𝑣1,2
𝑞 𝑁2𝐷

 
𝑑𝑄𝑖𝑛𝑣1,2
𝑑𝑦

 
Eq 4.21 

The next step will be to inject Eq 4.21 in the general drain current equation Eq 4.19, followed 

by switching the integral boundaries initially defined along the electrical length of the channel 
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into the corresponding evaluations of 𝜒𝑠 1,2 and 𝑄𝑖𝑛𝑣1,2 in the source and drain ends respectively, 

resulting in Eq 4.22. 

 

{
 
 

 
 𝐼𝑑𝑟𝑖𝑓𝑡1,2 = ∫ 𝜇𝑛.  𝑄𝑖𝑛𝑣(𝑉𝑠)

𝜒s1,2𝑑𝑟𝑛

𝜒s1,2𝑠𝑟𝑐

. 𝑑𝜒𝑠

𝐼𝑑𝑖𝑓𝑓1,2 = ∫  𝑄𝑖𝑛𝑣. (
𝑘𝑇

𝑞 𝑁2𝐷
 

1

1 −  𝑒
−𝑄𝑖𝑛𝑣1,2
𝑞 𝑁2𝐷

 𝑑 𝑄𝑖𝑛𝑣)  
𝑄inv1,2𝑑𝑟𝑛

𝑄inv1,2𝑠𝑟𝑐

 
Eq 4.22 

For both the effective mobility and the mobility law conditions a numerical algorithm is made 

to perform the numerical calculations. Such algorithm considers the one-dimensional numerical 

integration along a quasi-Fermi level vector that increases monotonously along the channel with 

uniform segments, starting from the source point where 𝜙𝑖𝑚 = 0, to the drain point where 

𝜙𝑖𝑚 = 𝑉𝑑. In fact, the subband potential and the inversion charge that correspondingly vary 

gradually along the channel, are computed in each step 𝑗. 

Regarding the drift component of the current, the computation is performed using the 

trapezoidal rule, where for each quasi-Fermi level segment [𝜙𝑖𝑚𝑗 , 𝜙𝑖𝑚𝑗+1] the integrated 

function 𝑄𝑖𝑛𝑣1,2(𝜒𝑠1,2) is interpolated by a polynomial of degree-one passing through the points 

(𝜒𝑠1,2𝑗 , 𝑄𝑖𝑛𝑣1,2 (𝜒𝑠1,2𝑗)) and (𝜒𝑠1,2𝑗+1, 𝑄𝑖𝑛𝑣1,2 (𝜒𝑠1,2𝑗+1)), allowing to approximate the drift 

integral using the formula in Eq 4.23. The term 𝑄𝑖𝑛𝑣1,2𝑗,𝑚𝑒𝑑 designate the median value of the 

corresponding inversion charge in the segment [𝑗, 𝑗 + 1]. 

Nevertheless, the integral concerning the diffusion component is performed with respect to the 

dimensionless quantity 𝑢1,2 = 𝑄𝑖𝑛𝑣1,2 𝑞 𝑁2𝐷⁄ , which is evaluated at the source and drain ends 

just as well, following the expression in Eq 4.23. The integration is performed with the help of 

the quad function from the scipy.integrate package; such function uses a technique from the 

FORTRAN’s library Quadpack. Since in our case we compute a finite integral, the integration 

is performed using a Clenshaw-Curtis method, which according to the official Scipy open 

source website it uses Chebyshev moments [12]. 

 

{
 
 

 
 
𝐼𝑑𝑟𝑖𝑓𝑡1,2 ≅ −

𝑊

𝐿
. 𝜇𝑒𝑓𝑓1,2. ∑ (𝜒𝑠1,2𝑗+1 − 𝜒𝑠1,2𝑗)

𝑗𝑚𝑎𝑥

𝑗=0

. 𝑄𝑖𝑛𝑣1,2𝑗,𝑚𝑒𝑑

𝐼𝑑𝑖𝑓𝑓1,2 =
𝑊

𝐿
. 𝑘𝑇𝑞 𝑁2𝐷 . 𝜇𝑒𝑓𝑓1,2. 𝑘𝑇𝑞 𝑁2𝐷 . ∫

𝑢1,2
1 − 𝑒−𝑢1,2

𝑑𝑢
𝑢1,2𝑑𝑟𝑛

𝑢1,2𝑠𝑟𝑐

 
Eq 4.23 

In the case of a bell-shaped mobility law, the expressions laid out in Eq 4.23 are plainly 

reformed through the implantation of the corresponding function, as in Eq 4.24.  

{
 
 
 
 

 
 
 
 
𝐼𝑑𝑟𝑖𝑓𝑡1,2 ≅ −

𝑊

𝐿
. 𝜇𝑚𝑎𝑥1,2. ∑

𝑄𝑖𝑛𝑣1,2𝑗,𝑚𝑒𝑑
𝑄𝑐
⁄

1 + (
𝑄𝑖𝑛𝑣1,2𝑗,𝑚𝑒𝑑

𝑄𝑐
⁄ )

2 . (𝜒𝑠1,2𝑗+1 − 𝜒𝑠1,2𝑗)

𝑖𝑚𝑎𝑥

𝑖=0

. 𝑄𝑖𝑛𝑣1,2𝑗,𝑚𝑒𝑑

𝐼𝑑𝑖𝑓𝑓1,2 =
𝑊

𝐿
. 𝑘𝑇𝑞 𝑁2𝐷 . 𝜇𝑚𝑎𝑥1,2. ∫

𝑄𝑖𝑛𝑣1,2𝑗,𝑚𝑒𝑑
𝑄𝑐
⁄

1 + (
𝑄𝑖𝑛𝑣1,2𝑗,𝑚𝑒𝑑

𝑄𝑐
⁄ )

2 .
𝑢1,2

1 − 𝑒−𝑢1,2
𝑑𝑢

𝑢1,2𝑑𝑟𝑛

𝑢1,2𝑠𝑟𝑐

 

 

Eq 4.24 
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As the introduction of the mobility law is peculiar to the present numerical model so far (such 

law is not incorporated in the PS simulations), we first present the computed transfer and output 

characteristics using the bell-shaped mobility law in this section, permitting the performance of 

comparison to PS results in the next one. 

Figure 13 illustrates the computed transfer characteristics 𝐼𝑑 = 𝑓(𝑉𝑔1) in the linear regime, i.e. 

for  𝑉𝑑 = 0.05 𝑉, and the saturated regime, i.e. for 𝑉𝑑 = 1𝑉, as well as the output characteristics 

𝐼𝑑 = 𝑓(𝑉𝑑), obtained by the numerical model employing the bell-shaped mobility law. 

 

  
Figure 13. Transfer and output characteristics computed for three different back biases using the numerical model with the 

incorporation of the bell-shaped mobility law. 

Equivalently, the respective derivatives of the transfer and output characteristics obtained by 

the numerical model i.e. the conductance and transconductance curves are illustrated in Figure 

14. Note the appealing shape of the transconductance in the linear regime, which resembles the 

one established by the gate-to-channel curves. 
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Figure 14. Conductance and transconductance curves computed for three different back biases using the numerical model 

with the incorporation of the bell-shaped mobility law. 

 

1.2.2 Numerical current model validation by comparison to PS results: 

Equivalently to the section 1.1.5, in this final section and through Figure 15 we expose the 

computed transfer characteristics 𝐼𝑑 = 𝑓(𝑉𝑔1) in the linear regime, i.e. for  𝑉𝑑 = 0.05 𝑉, and 

the saturated regime, i.e. for 𝑉𝑑 = 1𝑉, as well as the output characteristics 𝐼𝑑 = 𝑓(𝑉𝑑), obtained 

by the numerical model against the ones obtained by PS simulations in the case of a constant 

mobility. Likewise, we notice an overall agreement between the numerical results and PS 

simulation results, with some inaccuracies that could be attributed to the relative error 

manifested in the approximation concerning the drift current integral in Eq 4.23, in addition to 

the pre-mentioned chosen approximations and smoothing functions. 
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Figure 15. Transfer and output characteristics curves computed using a constant mobility and for three different back biases 

and two different silicon thicknesses, the solid lines represent the numerical model results and symbols represent the PS 

simulation results. 

In summary, we presently have a starting set of equations suitable for an accurate description 

of the electrostatic quantities in our system, such as the surface potentials, inversion charges, 

and gate-to-channel capacitance. The numerical robustness of this charge model is guaranteed 

by the employment of an engineered form of the quantum shift function which allows a better 

description of its behavior in the negative and positive gate charge regions, in addition to a 

smooth transitions between the two regions. The model is subsequently compared to the 

obtained results from PS simulations for two different silicon thicknesses in order to be 

validated. Justifiably, the built numerical charge model is suitable for all geometrical and back-

bias configurations. 

Moreover, and on this basis, we developed a drift-diffusion numerical current model using the 

gradient of the quasi-Fermi level along the channel, and assuming initially a constant effective 

mobility, a configuration that allowed us to compare our results to the pre-obtained PS ones, 

ensuingly, the mobility bell-shaped law was employed in the model permitting its potential us 

to validate the analytical compact model results. 

Indeed, the present chapter allowed us to establish a strong and consistent ground that we can 

use to build our analytical compact charge and current models in the next one. 
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This chapter will present the final stage of our study, in which we seek to develop an analytical 

charge and current models for FDSOI MOS transistors operating at cryogenic temperatures 

basing ourselves on the established numerical model in Chapter 4. 

There are essentially three approaches to the compact modeling of MOS transistors [1]: 

• The threshold-voltage-based approach which had its wide usage previously in models 

such as MOS Model 9, BSIM 3, and BSIM 4.  

• The charge-based approach, employed for instance in the EKV model 

• The surface-potential-based approach, employed for instance in the PSP and the L-

UTSOI models. Such approach has become the conventional approach employed by the 

compact modelling community for both bulk and SOI devices. 

Regarding the surface-potential-based approach, which is the approach we follow in the present 

work, the traditional scheme comprises the integration of the Poisson equation in the channel 

region, which with the help of the boundary conditions at the Si-SiO2 interface will generate 

the surface potential equation. Subsequently, the surface potentials are used to evaluate the 

terminal charges and the drain current, respectively [1]. 

Moreover, a good compact model must incorporate many attributes that have been elaborated 

meticulously in the renowned book within the compact modeling community [2]. Here, we cite 

for instance the ones we will aim to satisfy in the present work: 

• The model should provide continuous results for currents and charges and their 

respective derivatives regarding each terminal voltage, guaranteeing thusly the 

numerical convergence of the model inside the circuits simulators where the non-linear 

Kirchhoff current law equations are solved commonly using the Newton-Raphson 

algorithm which requires smooth models to function effectively. 

• The equations involved in the formalism of the model as well as the model parameters 

need to be physically based as much as possible. 

• It should guarantee a smooth transition between the weak-, moderate-, and strong-

inversion operation regions. 

• It should meet the demands over large bias ranges. 

• It should meet the demands over the temperature range of interest. 

• The model should have as few parameters as possible, which should be linked to the 

device geometry and fabrication process parameters as strongly as possible. 

• It should be able to predict the behavior accurately using any combination of channel 

width and length values. 

• The model should be symmetric for symmetric devices; for instance, with this notion 

for an FDSOI device, we refer to the source-drain symmetry and the front-back interface 

symmetry. Whereas the structure of the device is not symmetric in the x direction (as 

front and back oxides does not have the same thickness), the model has to be flexible 

for an eventual switch of front-back gates usage. 

• Finally, the model should be computationally efficient and numerically robust. 

Furthermore, the development of any analytical compact model passes by two big stages: 

• The derivation of the core model: we mean by that the charge model as well as the 

current model for long channel devices 

• The implementation of various effects like add-ons or corrections. Those post-

implemented effects can be very wide, such as small transistor effects, self-heating 

effect, the effect of doping, access resistances, parasitic capacitances, saturation 

velocity, channel length modulation, mechanical stress effects, impact ionization effect, 

gate leakage, inner fringe capacitance, GIDL… 
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Note that, generally the core model remains unaltered, and the implementation of the effects 

happens gradually. In this respect, the compact model has to be improved in a continuous 

manner. 

In this framework, we partition this chapter into two parts, a first part where we explain the 

buildout steps for a long channel model, starting by the elaboration of an initial guess for the 

surface potentials, from which the exact solution is engendered after a number of error 

correction steps, paving the way for a robust charge model. Subsequently, an analytical long 

channel drift-diffusion drain current is derived for both configurations, the constant effective 

mobility one and the bell-shaped mobility law one, taking into consideration the manifestation 

of the pinch-off points. Built on that, the incorporation of the short channel effects is reached 

in the second part. Such effects include the velocity saturation, the parasitic resistances, the 

DIBL, the threshold voltage roll-off, and the subthreshold slope degradation effects. Naturally, 

the results of the presented model are compared to experimental data as a final validation step 

in each of the two parts.  

Note that, from now onwards, since the surface potentials 𝑉𝑠1,2 are given the subscript 𝑠, we 

refer to the potential at the source end using the subscript 𝑠𝑟𝑐 as in 𝑉𝑠𝑟𝑐, and to the potential at 

the drain end using the subscript 𝑑𝑟𝑛 as in 𝑉𝑑𝑟𝑛. Equivalently, the front and back inversion 

charges at the source and drain terminals will be referred to as 𝑄𝑖𝑛𝑣1,2𝑠𝑟𝑐 and 𝑄𝑖𝑛𝑣1,2𝑑𝑟𝑟𝑛 

respectively. 

1.1 The Charge analytical model: 

1.1.1 The surface potential initial guess derivation: 
In this section we detail the necessary steps to develop a suitable analytical formulation of the 

front and back surface potentials. To this end, we start from our system of coupled equations 

recalled below in Eq 5.1 and written in its spread format as in Eq 5.2. It should be noted that at 

this stage, we seek the initial guesses of surface potentials in its classical form implying that the 

front and back quantum shift functions are not involved in Eq 5.2. 

 
{
𝑄𝑔1 = −𝑄𝑖𝑛𝑣1 + 𝑄𝑐𝑝𝑙
𝑄𝑔2 = −𝑄𝑖𝑛𝑣2 − 𝑄𝑐𝑝𝑙

 

Eq 5.1 

 

 

{
 
 

 
 𝐶𝑜𝑥1. (𝑉𝑔1 − 𝑉𝑓𝑏1 − 𝑉𝑠1) = 𝑞𝑘𝑇𝐴2𝑑 𝑙𝑛 (1 + 𝑒𝑥𝑝 (

𝑉𝑆1 − 𝑉0 − 𝜙𝑖𝑚
𝑘𝑇

)) + 𝐶𝑠𝑖 . (𝑉𝑠1 − 𝑉𝑠2)

𝐶𝑜𝑥2. (𝑉𝑔2 − 𝑉𝑓𝑏2 − 𝑉𝑠2) = 𝑞𝑘𝑇𝐴2𝑑 𝑙𝑛 (1 + 𝑒𝑥𝑝 (
𝑉𝑆2 − 𝑉0 − 𝜙𝑖𝑚

𝑘𝑇
)) − 𝐶𝑠𝑖 . (𝑉𝑠1 − 𝑉𝑠2)

 Eq 5.2 

 

As indicated formerly, using the Fermi-Dirac statistics inherent to cryogenic consideration have 

the advantage of the explicit formulation in both strong and weak inversions, since in the weak 

inversion mode the terms labeling the inversion charge densities are abolished, leading to the 

expressions illustrated in Eq 5.3: 

 𝐶𝑜𝑥1,2. (𝑉𝑔1,2 − 𝑉𝑓𝑏1,2 − 𝑉𝑠1,2) = ±𝐶𝑠𝑖 . (𝑉𝑠1 − 𝑉𝑠2) 
Eq 5.3 

 

Correspondingly, in the strong inversion mode the asymptotic behavior of these terms can be 

depicted using the following pattern: 

 𝑞𝑘𝑇𝐴2𝑑  𝑙𝑛 (1 + 𝑒𝑥𝑝 (
𝑉𝑆1,2 − 𝑉0 − 𝜙𝑖𝑚

𝑘𝑇
)) → 𝑞𝐴2𝑑(𝑉𝑆1,2 − 𝑉0 − 𝜙𝑖𝑚) 

Eq 5.4 

 

Yielding to the expressions illustrated in Eq 5.5, note that presently both mathematical 

expressions are composed of linear terms exclusively. 

 
𝐶𝑜𝑥1,2. (𝑉𝑔1,2 − 𝑉𝑓𝑏1,2 − 𝑉𝑠1,2)

= 𝑞𝐴2𝑑(𝑉𝑆1,2 − 𝑉0 − 𝜙𝑖𝑚) ± 𝐶𝑠𝑖 . (𝑉𝑠1 − 𝑉𝑠2) 

Eq 5.5 
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Moreover, and accounting for the dual channel operation, each of the front and back interfaces 

can be in the weak or strong inversion mode, thusly, four combinations are conceivable 

depending on the applied bias on each gate, as detailed below: 

• 1st case: when the front interface is in the weak inversion mode, and the back interface 

is in the weak inversion mode as well, this configuration will be entitled simply as the 

“weak-weak” configuration and given the subscript “ww”. 

• 2nd case: when the front interface is in the strong inversion mode, and the back interface 

is in the weak inversion mode, this configuration will be entitled simply as the “strong-

weak” configuration and given the subscript “sw”. 

• 3rd case: when the front interface is in the weak inversion mode, and the back interface 

is in the strong inversion mode, this configuration will be entitled simply as the “weak-

strong” configuration and given the subscript “ws”. 

• 4th case: when the front interface is in the strong inversion mode, and the back interface 

is in the strong inversion mode as well, this configuration will be entitled simply as the 

“strong-strong” configuration and given the subscript “ss”. 

Consonantly, the mathematical statements describing each of the aforementioned asymptotic 

cases are: 

• In the weak inversion / weak inversion case: 

 
{
𝐶𝑜𝑥1. (𝑉𝑔1 − 𝑉𝑓𝑏1 − 𝑉𝑠1) = 𝐶𝑠𝑖 . (𝑉𝑠1 − 𝑉𝑠2)

𝐶𝑜𝑥2. (𝑉𝑔2 − 𝑉𝑓𝑏2 − 𝑉𝑠2) = −𝐶𝑠𝑖 . (𝑉𝑠1 − 𝑉𝑠2)
 

Eq 5.6 

 

• In the strong inversion / weak inversion case: 

 
{
𝐶𝑜𝑥1. (𝑉𝑔1 − 𝑉𝑓𝑏1 − 𝑉𝑠1) = 𝑞𝐴2𝑑(𝑉𝑆1 − 𝑉0 − 𝜙𝑖𝑚) + 𝐶𝑠𝑖 . (𝑉𝑠1 − 𝑉𝑠2)

𝐶𝑜𝑥2. (𝑉𝑔2 − 𝑉𝑓𝑏2 − 𝑉𝑠2) = −𝐶𝑠𝑖 . (𝑉𝑠1 − 𝑉𝑠2)
 

Eq 5.7 

 

• In the weak inversion / strong inversion case: 

 
{

𝐶𝑜𝑥1. (𝑉𝑔1 − 𝑉𝑓𝑏1 − 𝑉𝑠1) = 𝐶𝑠𝑖 . (𝑉𝑠1 − 𝑉𝑠2)

𝐶𝑜𝑥2. (𝑉𝑔2 − 𝑉𝑓𝑏2 − 𝑉𝑠2) = 𝑞𝐴2𝑑(𝑉𝑆2 − 𝑉0 − 𝜙𝑖𝑚) − 𝐶𝑠𝑖 . (𝑉𝑠1 − 𝑉𝑠2)
 

Eq 5.8 

 

• In the strong inversion / strong inversion case: 

 
{
𝐶𝑜𝑥1. (𝑉𝑔1 − 𝑉𝑓𝑏1 − 𝑉𝑠1) = 𝑞𝐴2𝑑(𝑉𝑆1 − 𝑉0 − 𝜙𝑖𝑚) + 𝐶𝑠𝑖 . (𝑉𝑠1 − 𝑉𝑠2)

𝐶𝑜𝑥2. (𝑉𝑔2 − 𝑉𝑓𝑏2 − 𝑉𝑠2) = 𝑞𝐴2𝑑(𝑉𝑆2 − 𝑉0 − 𝜙𝑖𝑚) − 𝐶𝑠𝑖 . (𝑉𝑠1 − 𝑉𝑠2)
 

Eq 5.9 

 

For the purpose of obtaining the analytical expressions of the front and back surface potential 

initial guesses, labeled 𝑉𝑠1
0  and 𝑉𝑠2

0  respectively, we first need to write all the asymptotic cases 

in a more compact form. In order to do so, we will have to define two auxiliary terms 𝐶𝑜𝑥1,2
∗  

and 𝑉𝑔1,2
∗ , which will have different expressions depending on whether the corresponding 

interface is in weak or strong inversion, following Eq 5.10 in the case where the front or back 

interface is in weak inversion, and Eq 5.11 in the case where the front or back interface is in 

strong inversion. 

 
{

𝐶𝑜𝑥1,2
∗ = 𝐶𝑜𝑥1,2

𝑉𝑔1,2
∗ = 𝑉𝑔1,2 − 𝑉𝑓𝑏1

 

Eq 5.10 
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{

𝐶𝑜𝑥1,2
∗ = 𝐶𝑜𝑥1,2 + 𝑞𝐴2𝑑

𝑉𝑔1,2
∗ =

𝐶𝑜𝑥1,2(𝑉𝑔1,2 − 𝑉𝑓𝑏1) + 𝑞𝐴2𝑑  (𝑉0 + 𝜙𝑖𝑚)

𝐶𝑜𝑥1,2
∗

 Eq 5.11 

 

Accordingly, we can see from equations Eq 5.6 to Eq 5.9 that by adding the two equations of 

each configuration the coupling terms cancel out, this allows us to get each equation of our 

system with only one unknown as in Eq 5.12: 

 

{
𝐶𝑜𝑥1
∗ (𝐶𝑜𝑥2

∗ + 𝐶𝑠𝑖)𝑉𝑔1
∗ + 𝐶𝑠𝑖𝐶𝑜𝑥2

∗ 𝑉𝑔2
∗ = ((𝐶𝑜𝑥1

∗ + 𝐶𝑠𝑖)(𝐶𝑜𝑥2
∗ + 𝐶𝑠𝑖) − 𝐶𝑠𝑖

2) 𝑉𝑠1

𝐶𝑜𝑥2
∗ (𝐶𝑜𝑥1

∗ + 𝐶𝑠𝑖)𝑉𝑔2
∗ + 𝐶𝑠𝑖𝐶𝑜𝑥1

∗ 𝑉𝑔1
∗ = ((𝐶𝑜𝑥2

∗ + 𝐶𝑠𝑖)(𝐶𝑜𝑥1
∗ + 𝐶𝑠𝑖) − 𝐶𝑠𝑖

2) 𝑉𝑠2
 

Eq 5.12 

 

Such arrangement will result in the direct analytical compact expressions of 𝑉𝑠1
0  and  𝑉𝑠2

0 , as 

depicted in Eq 5.13: 

 

{
 
 
 

 
 
 
𝑉𝑠1
0 =

(
1
𝐶𝑠𝑖

+
1
𝐶𝑜𝑥2
∗ )𝑉𝑔1

∗ +
1
𝐶𝑜𝑥1
∗ 𝑉𝑔2

∗

1
𝐶𝑠𝑖

+
1
𝐶𝑜𝑥2
∗ +

1
𝐶𝑜𝑥1
∗

𝑉𝑠2
0 =

(
1
𝐶𝑠𝑖

+
1
𝐶𝑜𝑥1
∗ )𝑉𝑔2

∗ +
1
𝐶𝑜𝑥2
∗ 𝑉𝑔1

∗

1
𝐶𝑠𝑖

+
1
𝐶𝑜𝑥1
∗ +

1
𝐶𝑜𝑥2
∗

 

Eq 5.13 

 

At this stage, we have obtained four surface potential expressions corresponding to the four 

asymptotic cases described previously. Correspondingly, the initial guess is obtained as a 

smooth minimum function of the four asymptotic cases described in Eq 5.13. 

Thereafter, a sequence of error corrections is applied to the surface potential terms in order to 

converge to the exact solutions. The iterative scheme presented in Eq 5.14 permits to get a new 

value of 𝑉𝑠1 and 𝑉𝑠2 each time we apply the corrections using  𝜀1(𝑉𝑠1) and 𝜀2(𝑉𝑠2). In our case, 

such operation needs to be done four times before the convergence to the exact values is 

achieved. Note that for the very first calculation the value of the terms 𝑉𝑠1
𝑜𝑙𝑑 and 𝑉𝑠2

𝑜𝑙𝑑 is 

plainly the initial guesses 𝑉𝑠1
0  and 𝑉𝑠2

0  respectively. Moreover, it should be noted that such 

iterative procedure does not use any loops, but rather its analytical expressions is repeated four 

times until convergence to the exact solution is achieved. 

 
{
𝑉𝑠1

𝑛𝑒𝑤 = 𝑉𝑠1
𝑜𝑙𝑑 +  𝜀1(𝑉𝑠1

𝑜𝑙𝑑)

𝑉𝑠2
𝑛𝑒𝑤 = 𝑉𝑠2

𝑜𝑙𝑑 +  𝜀2(𝑉𝑠2
𝑜𝑙𝑑)

 
Eq 5.14 

 

Decidedly, our next quest is to derive the analytical expressions of the errors 𝜀1 and 𝜀2. In order 

to do so, we reinstate the quantum shift functions within the inversion charge density terms, 

into which a First-order Taylor expansion is applied. Correspondingly, we replace all the 𝑉𝑠1 

and 𝑉𝑠2 terms in our system of coupled equations by the relationship 𝑉𝑠1,2 = 𝑉𝑠1,2
0 +  𝜀1,2, 

yielding to the terms 𝑄𝑖𝑛𝑣1,2(𝑉𝑠1,2
0 +  𝜀1,2) into which the first-order Taylor expansion is applied 

in the vicinity of 𝜀1,2 = 0 and with the assumption that the error terms 𝜀1,2 are infinitesimal 

quantities relatively to the 𝑉𝑠1,2 terms, as depicted in : 

 
𝑄𝑖𝑛𝑣1,2(𝑉𝑠1,2

0 +  𝜀1,2) = 𝑄𝑖𝑛𝑣1,2(𝑉𝑠1,2
0 ) +

𝜕𝑄𝑖𝑛𝑣1
𝜕𝑉𝑆1

(𝑉𝑠1,2
0 ). 𝜀1,2 

Eq 5.15 

 



 

84 

 

Note that, by rearranging our system of equations, we can define two residual error terms, which 

represent the residual error from each equation in the system as depicted in Eq 5.16: 

 
{
𝑅1 = 𝐶𝑜𝑥1. (𝑉𝑔1 − 𝑉𝑓𝑏1 − 𝑉𝑠1) + 𝐶𝑠𝑖 . (𝑉𝑠2 − 𝑉𝑠1) − 𝑄𝑖𝑛𝑣1(𝑉𝑠1, 𝜙𝑖𝑚)

𝑅2 = 𝐶𝑜𝑥2. (𝑉𝑔2 − 𝑉𝑓𝑏2 − 𝑉𝑠2) + 𝐶𝑠𝑖 . (𝑉𝑠1 − 𝑉𝑠2) − 𝑄𝑖𝑛𝑣2(𝑉𝑠2, 𝜙𝑖𝑚)
 

Eq 5.16 

 

Doing so, after some additional rearrangements, the resulting system is composed of two 

equations that are both linear to the unknowns 𝜀1 and 𝜀2, as depicted in Eq 5.17: 

 

{
  
 

  
 
𝑅1 = (𝐶𝑜𝑥1 +

𝜕𝑄𝑖𝑛𝑣1
𝜕𝑉𝑠1

(𝑉𝑠1
0 , 𝜙𝑖𝑚𝑟𝑒𝑓) + 𝐶𝑠𝑖 (1 −

𝜕∆𝑉

𝜕𝑉𝑠1
(𝑉𝑠1

0 )))𝜀1 − 𝐶𝑠𝑖 (1 −
𝜕∆𝑉

𝜕𝑉𝑠2
(𝑉𝑠2

0 )) 𝜀2

𝑅2 = (𝐶𝑜𝑥2 +
𝜕𝑄𝑖𝑛𝑣2
𝜕𝑉𝑠2

(𝑉𝑠2
0 , 𝜙𝑖𝑚𝑟𝑒𝑓) + 𝐶𝑠𝑖 (1 −

𝜕∆𝑉

𝜕𝑉𝑠2
(𝑉𝑠2

0 )))𝜀2 − 𝐶𝑠𝑖 (1 −
𝜕∆𝑉

𝜕𝑉𝑠1
(𝑉𝑠1

0 )) 𝜀1

 

Eq 5.17 

 

We also choose to label some terms from Eq 5.17 by using the designation described in Eq 5.18 

and Eq 5.21, as such choice will allow us to write the analytical expressions of 𝜀1 and 𝜀2 in its 

most compact form: 

 

{
 
 

 
 𝐶𝑠𝑖 1 = 𝐶𝑠𝑖 (1 −

𝜕∆𝑉

𝜕𝑉𝑆1
(𝑉𝑠1

0 ))

𝐶𝑠𝑖 2 = 𝐶𝑠𝑖 (1 −
𝜕∆𝑉

𝜕𝑉𝑆2
(𝑉𝑠2

0 ))

 

Eq 5.18 

 

 

{
 
 

 
 𝐶𝑅1 = 𝐶𝑜𝑥1 +

𝜕𝑄𝑖𝑛𝑣1
𝜕𝑉𝑆1

(𝑉𝑠1
0 , 𝜙𝑖𝑚) + 𝐶𝑠𝑖 1

𝐶𝑅 2 = 𝐶𝑜𝑥2 +
𝜕𝑄𝑖𝑛𝑣2
𝜕𝑉𝑆2

(𝑉𝑠2
0 , 𝜙𝑖𝑚) + 𝐶𝑠𝑖 2

 

Eq 5.19 

 

Indeed, the application of First-order Taylor expansion requires the respective derivative of the 

inversion charge density terms 𝑄𝑖𝑛𝑣1,2(𝑉𝑠1,2, 𝜙𝑖𝑚𝑟𝑒𝑓) with respect to the surface potentials 𝑉𝑆1,2, 

which will be detailed ensuingly. Moreover, note that such procedure remains of electrostatic 

nature, therefore the variation of different quantities with respect to the quasi-Fermi level along 

the channel is disregarded. 

Firstly, the expressions of 𝜕𝑄𝑖𝑛𝑣1,2(𝑉𝑠1,2) 𝜕Vs1,2⁄  can be directly given by Eq 5.21, which 

reveals that the computation of 𝜕𝑄𝑖𝑛𝑣1,2(𝑉𝑠1,2) 𝜕Vs1,2⁄  comes back to the computation of 

𝜕∆V(Qg1,2) 𝜕Vs1,2⁄ . Note that subsequently, for the sake of preserving the compact form of our 

equations at will, we designate the arguments of the exponential function, originally allocated 

to the front/back interfaces separately, as simply 𝐴𝑟𝑔1 and 𝐴𝑟𝑔2. 

 𝜕𝑄𝑖𝑛𝑣1,2(𝑉𝑠1,2)

𝜕Vs1,2
= 𝑞𝐴2𝑑  

𝑒𝐴𝑟𝑔1,2

1 + 𝑒𝐴𝑟𝑔1,2
(1 −

𝜕∆V(Qg1,2)

𝜕Vs1,2
) 

Eq 5.20 

 

Correspondingly, for the computation of d∆V(Qg1,2) dVs1,2⁄ , we can use the equivalence 

presented in Eq 5.21, considering that initially the quantum shifts are defined as functions of 

gate charge densities. As doing so we only need to get the derivatives of d∆V(Qg1,2) with 

respect to their plain variable Qg1,2, then we multiply the out-come by the derivatives of Qg1,2 

with respect to Vs1,2 i.e. by dQg1,2 dVs1,2⁄ =  −Cox1,2. 



 

85 

 

 
𝜕∆V(Qg1,2)

𝜕Vs1,2
= −Cox1,2

𝜕∆V(Qg1,2)

𝜕Qg1,2
  

Eq 5.21 

 

Consonantly, we call back the definition of ∆V(Qg1,2) : 

ΔV(Qg1,2 ) = (1 γ⁄ ). (Qneg(Qg1,2 ) + (
δQg

2
))

+ βQM. ((Qpos(Qg1,2 ))
2/3

− (
δQg

2
)

2/3

) 

 

Eq 5.22 

 

Where the closed-form of the functions Qneg(Qg1,2 ) and Qpos(Qg1,2 ) are given by: 

 

{
 
 

 
 Qneg(Qg1,2 ) =

1

2
. (Qg1,2 −√Qg1,2 

2 + δQg
2)

Qpos(Qg1,2 ) =
1

2
. (Qg1,2 +√Qg1,2 

2 + δQg
2)

 

Eq 5.23 

 

Accordingly, the derivative of the expression of ΔV(Qg1,2 ) presented in Eq 5.22 is: 

 𝜕∆V(Qg1,2)

𝜕Qg1,2
= (1 γ⁄ )

dQneg(Qg1,2 )

dQg1,2

+ 
2

3
. βQM.

dQpos(Qg1,2 )

dQg1,2
.

1

Qpos
1/3(Qg1,2 )

 

Eq 5.24 

 

With the respective derivatives of Qneg(Qg1,2 ) and Qpos(Qg1,2 ) given by Eq 5.25: 

 

{
 
 
 
 

 
 
 
 dQneg(Qg1,2 )

dQg1,2
= 0.5

(

 1 − 
Qg1,2

√Qg1,2 
2 + δQg

2
)

 

dQpos(Qg1,2 )

dQg1,2
= 0.5

(

 1 + 
Qg1,2

√Qg1,2 
2 + δQg

2
)

 

 

Eq 5.25 

 

Such expressions can be rearranged to be written as in Eq 5.26: 

 

{
 
 

 
 
dQneg(Qg1,2 )

dQg1,2
= 0.5 (1 − 

Qg1,2

Qpos(Qg1,2 ) − Qneg(Qg1,2 )
)

dQpos(Qg1,2 )

dQg1,2
= 0.5 (1 + 

Qg1,2

Qpos(Qg1,2 ) − Qneg(Qg1,2 )
)

 

Eq 5.26 

 

Thusly, by injecting the expressions given by Eq 5.26 into Eq 5.24 we will have the final closed-

form expression of d∆V(Qg1,2) dQg1,2⁄  presented in Eq 5.27: 
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d∆V(Qg1,2)

dQg1,2
= (1 γ⁄ ) 0.5 (1 − 

Qg1,2

Qpos(Qg1,2 ) − Qneg(Qg1,2 )
) 

+ 
2

3
. βQM. 0.5 (1 + 

Qg1,2

Qpos(Qg1,2 ) − Qneg(Qg1,2 )
) .

1

Qpos
1/3(Qg1,2 )

 

 

Eq 5.27 

 

Finally, using the definitions depicted in Eq 5.19 and Eq 5.18 and the expressions presented in 

Eq 5.17, we can get to the compact closed-form of the error corrections 𝜀1,2 as illustrated in Eq 

5.28. 

 

{
 

 𝜀1 =
𝐶𝑠𝑖 2𝑅2 + 𝐶𝑅 2𝑅1
𝐶𝑅1𝐶𝑅2 − 𝐶𝑠𝑖 2 𝐶𝑠𝑖 1

𝜀2 =
𝐶𝑠𝑖 1𝑅1 + 𝐶𝑅 1𝑅2
𝐶𝑅2𝐶𝑅1 − 𝐶𝑠𝑖 1 𝐶𝑠𝑖 2

 

Eq 5.28 

 

 

Accordingly, the kinetics of the convergence of the front/back surface potentials starting from 

the initial guesses and reaching the exact numerical solution is depicted in Figure 1.Note that, 

the small segment of the curves that does not change along with iterations is attributed to the 

δQg parameter that becomes significant around the zero-gate-charge point. 
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Figure 1. the kinetics of the convergence of the front/back surface potentials throughout the four steps of error correction. 

1.1.2 Analytical charge model validation by comparison to numerical 

results: 
As per usual, before proceeding further, our analytical charge model needs to be validated first 

by confronting its results, whether it is for the surface potentials or the inversion charge 

densities, to the exact solution obtained through numerical calculations. 

In Figure 2 we expose the front and back surface potential curves as a function of front gate 

voltage and for different back biases obtained by analytical calculations to the numerical 

solution. 

  
Figure 2. Front and back surface potential curves as functions of front gate voltage for three different back biases, the solid 

red lines represent the numerical model results, and the blue dashed ones represent the analytical model results. 

Equivalently, in Figure 3 we expose the front and back surface potential densities as functions 

of front gate voltage and for different back biases obtained by analytical calculations to the 

numerical solution. 
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Figure 3. Front and back inversion density curves as functions of front gate voltage for three different back biases, the solid 

red lines represent the numerical model results, and the blue dashed ones represent the analytical model results. 

Analogously, Figure 4 demonstrates the good agreement between the numerical 𝐶𝑔𝑐 curves 

(solid red lines) and the ones obtained through analytical calculations (blue dashed curves) for 

three different back biases. 

 

Figure 4. Gate-to-channel capacitance curves as functions of front gate voltage for three different back biases, the solid red 

lines represent the numerical model results, and the blue dashed ones represent the analytical model results. 

Clearly, we have a notable good agreement between the curves analytically computed and the 

ones obtained through numerical calculations for all back bias configurations, which validates 

our analytical charge model and paves the way for us to go to the next section. 

1.2 The analytical drain current model: 

In this section, we describe the long channel drain current calculation within an infinite 

saturation velocity assumption. Equivalently to the procedure detailed in Chapter 4, the general 

form of a drain current equation is first recalled by Eq 5.29, for which the derivation of the 
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closed form expression of the slope of the quasi-Fermi level gives birth to the diffusion and 

drift integral terms. The derivation of the analytical expression for integrals is detailed in the 

next two sections separately. 

 
𝐼𝑑1,2 = −

𝑊

𝐿
.  ∫ 𝜇𝑒𝑓𝑓.  𝑄𝑖𝑛𝑣1,2(𝑦).

𝑑𝜙𝑖𝑚
𝑑𝑦

(𝑦)
𝐿

0

. 𝑑𝑦 

Eq 5.29 

 

Prior to the derivation of the analytical expression for the diffusion and drift integrals, one 

additional information is essential and needs to be discussed here, the so called “pinch-

off/saturation” point. Expressly, when the drain bias is relatively small, i.e. we reside in the 

linear region, the inversion charge density at the drain end of the channel is moderately lower 

than the inversion charge density at the source end. As we increase the drain bias (for a fixed 

gate bias), the current increases until it reaches its maximum value, the drain current saturation 

limit 𝐼𝑑,𝑠𝑎𝑡, but the inversion charge density at the drain side decreases until finally it vanishes 

when the applied drain bias reaches the value 𝑉𝑑,𝑠𝑎𝑡. In other words, the surface potential 

saturates at the drain end of the channel when the drain current saturation occurs. This 

phenomenon is called pinch-off and is illustrated in Figure 5 [3]. 

 

Figure 5. scheme Illustrating the pinch-off point. 

When 𝑉𝑑 increases beyond saturation, the pinch-off point moves toward the source, but the 

drain current remains essentially the same. This is because for 𝑉𝑑 > 𝑉𝑑,𝑠𝑎𝑡 the voltage at the 

pinch-off point remains at 𝑉𝑑,𝑠𝑎𝑡 and the current will always follow the equivalence illustrated 

by Eq 5.30 [3]: 

 
∫ 𝐼𝑑,𝑠𝑎𝑡 . 𝑑𝑦
𝐿𝑠𝑎𝑡

0

= 𝜇𝑒𝑓𝑓.𝑊.∫ (−𝑄𝑖𝑛𝑣(𝜙𝑖𝑚))
𝑉𝑑,𝑠𝑎𝑡

0

𝑑𝜙𝑖𝑚 

Eq 5.30 

 

Note that, according to the generic current equation and in order to maintain the current 

continuity throughout the channel, the decrease of the inversion charge 𝑄𝑖𝑛𝑣 at the drain side 

must be accompanied by an increase of the term 𝑑𝜙𝑖𝑚 𝑑𝑦⁄ . When 𝑉𝑑 reaches 𝑉𝑑,𝑠𝑎𝑡, we have 

𝑄𝑖𝑛𝑣 = 0 and correspondingly 𝑑𝜙𝑖𝑚 𝑑𝑦⁄ = ∞. This implies that the electric field in the y 

direction changes more rapidly than the field in the x direction, and the gradual channel 

approximation breaks down in this region [3]. Extensively, beyond the pinch-off point electrons 

are no longer confined to the surface channel, and a two-dimensional analysis of the device is 

necessary for the region between the pinch-off point and the drain point [3]. 
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Expressly, one should point out that since for the dual channel operation we have two pinch-

off points, the designated point considered hereafter in the calculation of 𝑄inv1,2𝑠𝑎𝑡 and 𝜒s1,2𝑠𝑎𝑡 

corresponds to the pinch-off voltage of the strongest channel. 

1.2.1 The diffusion current component computation: 
Regarding the diffusion term integral the mobility is maintained constant. Such choice is 

justified in our study as we already established in Section 1.2.2. Therefore, the hereabouts 

derivation of the diffusion current component will be implemented in either derivation of drain 

current, the one with effective mobility and the one with the mobility function. 

Firstly, we recall our established formula of the diffusion integral: 

 
𝐼𝑑𝑖𝑓𝑓1,2 =

𝑊

𝐿
. 𝜇𝑒𝑓𝑓1,2. ∫  𝑄𝑖𝑛𝑣. (

𝑘𝑇

𝑞 𝑁2𝐷
 

1

1 −  𝑒
−𝑄𝑖𝑛𝑣1,2
𝑞 𝑁2𝐷

 𝑑 𝑄𝑖𝑛𝑣)  
𝑄inv1,2𝑑𝑟𝑛

𝑄inv1,2𝑠𝑟𝑐

 
Eq 5.31 

 

Which can be reformulated using the dimensionless quantity 𝑢1,2 = 𝑄𝑖𝑛𝑣1,2 𝑞 𝑁2𝐷⁄  and written 

in the next form: 

 𝐼𝑑𝑖𝑓𝑓1,2 =
𝑊

𝐿
. 𝜇𝑒𝑓𝑓1,2. 𝑘𝑇𝑞 𝑁2𝐷 . ∫

𝑢1,2
1 − 𝑒−𝑢1,2

𝑑𝑢
𝑢1,2𝑑𝑟𝑛

𝑢1,2𝑠𝑟𝑐

 
Eq 5.32 

 

Considering the indefinite nature of the above-stated integral, the best approach is to 

approximate it by a definite one, to which an analytical solution exists, following: 

 ∫
𝑢1,2

1 − 𝑒−𝑢1,2
𝑑𝑢

𝑢1,2𝑑𝑟𝑛

𝑢1,2𝑠𝑟𝑐

≅ ∫ (𝑢 +  𝑒−
𝑢
𝑟) 𝑑𝑢

𝑢1,2𝑑𝑟𝑛

𝑢1,2𝑠𝑟𝑐

=
𝑢1,2𝑑𝑟𝑛

2

2
−
𝑢1,2𝑠𝑟𝑐

2

2
− 𝑟 𝑒−

𝑢1,2𝑑𝑟𝑛
𝑟 + 𝑟 𝑒−

𝑢1,2𝑠𝑟𝑐
𝑟  

Eq 5.33 

 

Figure 6 compares the numerical and the analytical approximated solutions of the diffusion 

integral with 𝑟 = 1.8, the constant 𝑟 is chosen meticulously with the aim of minimizing the 

relative error between the analytical approximated solution of the integral and the numerical 

exact one.  

  

  
Figure 6. Comparison between numerical (red lines) and analytical (blue triangles) calculations of the diffusion term integral. 
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1.2.2 The drift current component computation: 

At odds with the diffusion term integral, the drift term integral has two different integrals for 

the effective mobility and the mobility function cases. The general expression of drift current 

integral is recalled in Eq 5.34. 

 
𝐼𝑑𝑟𝑖𝑓𝑡1,2 = ∫  𝑄𝑖𝑛𝑣(𝑉𝑠)

𝜒s1,2𝑑𝑟𝑛

𝜒s1,2𝑠𝑟𝑐

. 𝑑𝜒𝑠 
Eq 5.34 

 

At this point we need to implement an additional approximation that allows us to simplify the 

inversion charge expression involved in the drift current integral. Expressly, to realize an 

analytical calculation of the drift integral described in Eq 5.34, we need to analyze the 

dependence of −𝑄𝑖𝑛𝑣 with 𝜒𝑠, as detailed in the next section. 

1.2.2.1 The inversion charge linearization technique: 

Figure 7 illustrates the dependence of inversion charge densities −𝑄𝑖𝑛𝑣1,2 with the 

corresponding subband potential 𝜒𝑠1,2 for three different back biases. We can see from Figure 

7 that the dependence is typically linear in the case of null and negative back biases. Whereas, 

due to the dual channel operation in the case of positive back bias configuration it presents two 

distinguishable slopes behavior. 
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Figure 7. The dependence of inversion charge densities −𝑄𝑖𝑛𝑣1,2 with the corresponding subband potential 𝜒𝑠1,2 for three 

different back biases. 

Generally, the conventional methodical procedure to address the drift current computation 

challenge in literature is the inversion charge linearization technique. Such technique is referred 

to in [4] as the “Symmetric linearization method” and its comprehensive form is used in the 

formulation of the SP and PSP models.  

According to [5], the inversion charge linearization technique approximates the inversion 

charge by its First-order Taylor expansion in the vicinity of the potential middle point, as 

exhibited in Eq 5.35: 

 𝑄𝑖𝑛𝑣1,2 = 𝑄𝑖𝑛𝑣1,2𝑚 + 𝛼1,2𝑚 . (𝑉𝑠1,2 − 𝑉1,2𝑚  ) 
Eq 5.35 

 

Where: 

 

{
 
 

 
 𝛼1,2𝑚 =

𝜕𝑄𝑖𝑛𝑣1,2
𝜕𝑉𝑠1,2

|
𝑉𝑠1,2=𝑉s1,2𝑚

𝑉s1,2𝑚 =
𝑉1,2𝑠𝑟𝑐 + 𝑉1,2𝑑𝑟𝑛

2

 

Eq 5.36 

 

𝑉𝑠𝑚 is the surface potential midpoint that allows the approximation of the inversion charge by 

a one-slope line throughout the quasi-Fermi level. Note that the linear inversion charge 

approximation is appropriate to the analytical model in addition to the already taken 

approximation for the numerical model development, implying a relative error between the 

analytical drain current and the numerical computed one, as we will see later. 

In contrast to the aforementioned works [4], [5]  where the linearization of the inversion charge 

is performed with respect to the surface potentials 𝑉𝑠1,2, in our case such linearization is 

performed with respect to the subband potentials 𝜒𝑠1,2. 

Moreover, in the case of double channel operation, due to the explicit two-slope behavior in the 

positive back configuration, we cannot use the mere all-over linearization of the inversion 

charge to obtain a drain current expression that is valid in all regimes. Instead, and 

correspondingly to the L-UTSOI model [6], we compute the slope of the −𝑄𝑖𝑛𝑣(𝜒𝑠) curves in 

the source and saturation points respectively, then we approximate −𝑄𝑖𝑛𝑣 for the integral 

calculation as the maximum value of two linear functions of 𝜒𝑠, named −𝑄𝑖𝑛𝑣𝑙𝑖𝑛 and −𝑄𝑖𝑛𝑣𝑙𝑖𝑛
̃  

and defined respectively in the source and saturation ends by the expression in Eq 5.37.  
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{
−𝑄𝑖𝑛𝑣𝑙𝑖𝑛 1,2 = −𝑄1,2𝑠𝑟𝑐 + 𝜆1,2𝑠𝑟𝑐(𝜒𝑠1,2 − 𝜒s1,2𝑠𝑟𝑐)

−𝑄𝑖𝑛𝑣𝑙𝑖𝑛 1,2
̃ =−𝑄1,2𝑠𝑎𝑡 + 𝜆1,2𝑠𝑎𝑡(𝜒𝑠1,2 − 𝜒s1,2𝑠𝑎𝑡) 

 
Eq 5.37 

 

Where the slopes  𝜆1,2𝑠𝑟𝑐 and 𝜆1,2𝑠𝑎𝑡 are defined as the derivatives of the inversion charge 

densities with respect to the subband potential at the source and saturation side respectively: 

 

{
 
 

 
 𝜆1,2𝑠𝑟𝑐 =

𝜕𝑄𝑖𝑛𝑣1,2
𝜕𝜒𝑠1,2

|
𝜒𝑠1,2=𝜒s1,2𝑠𝑟𝑐

𝜆1,2𝑠𝑎𝑡 =
𝜕𝑄𝑖𝑛𝑣1,2
𝜕𝜒𝑠1,2

|
𝜒𝑠1,2=𝜒s1,2𝑠𝑎𝑡

 

Eq 5.38 

 

Doing so, we now have a two-part piecewise linear inversion charge functions. As a 

consequence, our drift integral throughout the channel will be performed in two parts, where 

the first part is computed form the source point the intersection point, and the second part is 

computed from the intersection point to the saturation point, as described in Eq 5.39: 

 

{
 
 
 
 
 

 
 
 
 
 

∫  𝑄𝑖𝑛𝑣(𝜒𝑠). 𝑑𝜒𝑠

𝜒s1,2𝑠𝑎𝑡

𝜒s1,2𝑠𝑟𝑐

= 𝐼𝑑𝑟𝑖𝑓𝑡 1,2𝑝𝑎𝑟𝑡1 + 𝐼𝑑𝑟𝑖𝑓𝑡 1,2𝑝𝑎𝑟𝑡2

𝐼𝑑𝑟𝑖𝑓𝑡 1,2𝑝𝑎𝑟𝑡1 = ∫ (𝑄1,2𝑠𝑟𝑐, + 𝜆1,2𝑠𝑟𝑐,(𝜒𝑠1,2 − 𝜒s1,2𝑠𝑟𝑐)) . 𝑑𝜒𝑠

𝜒s1,2𝑖𝑛𝑡

𝜒s1,2𝑠𝑟𝑐

𝐼𝑑𝑟𝑖𝑓𝑡 1,2𝑝𝑎𝑟𝑡2 = ∫ (𝑄1,2𝑠𝑎𝑡 + 𝜆1,2𝑠𝑎𝑡(𝜒𝑠1,2 − 𝜒s1,2𝑠𝑎𝑡)) . 𝑑𝜒𝑠

𝜒s1,2𝑠𝑎𝑡

𝜒s1,2𝑖𝑛𝑡

 

Eq 5.39 

 

Therefore, in order to perform the drift current piece-wise calculation the value of the subband 

potential at the intersection point needs to be established. The closed-form of 𝜒s1,2𝑖𝑛𝑡 can be 

derived directly by satisfying the equality of the two expressions in Eq 5.37 since such point 

corresponds to the intersection of the two slopes. Such equality which will convey us the 

expression in Eq 5.40: 

 
𝜒s1,2𝑖𝑛𝑡 =

(𝑄1,2𝑠𝑎𝑡  − 𝑄1,2𝑠𝑟𝑐) + (𝜆1,2𝑠𝑟𝑐 . 𝜒s1,2𝑠𝑟𝑐  − 𝜆1,2𝑠𝑎𝑡 . 𝜒s1,2𝑠𝑎𝑡)

𝜆1,2𝑠𝑟𝑐  − 𝜆1,2𝑠𝑎𝑡
 

Eq 5.40 

 

Therefore, the calculation of the drift component of the drain current consists of the following 

sequence: 

• Computation of the subband potentials and inversion charge densities at the source end 

for both the front and back interfaces. 

• Computation of the subband potentials and inversion charge densities at pinch-off end 

for both the front and back interfaces. 

• Computation of the inversion charges derivative 𝜆1,2 (the charge linearization slopes) at 

the source and saturation points respectively. 

• Computation of the drift current using Eq 5.39. 



 

95 

 

Indeed, as can be seen in the aforementioned procedure sequence, this approach requires the 

computation of the derivative of −𝑄𝑖𝑛𝑣 with respect to 𝜒𝑠 at both the source and drain sides, 

such derivation will be detailed in the next section. 

1.2.2.2 Derivation of the inversion charge linearization slopes: 

In this part, our focal point would be to obtain the closed-form expressions of the inversion 

charge linearization slopes, following our approach of computing the slope at the source and 

saturation points respectively. It should be noted that such derivation is established for a fixed 

front and back biasing values, leaving 𝜙𝑖𝑚 as the only variable (variating thusly 𝜒𝑠1,2) 

throughout the channel, i.e. what we compute factually is the term 
𝑑𝑄𝑖𝑛𝑣1,2 𝑑𝜙𝑖𝑚⁄

𝑑𝜒𝑠1,2 𝑑𝜙𝑖𝑚⁄
. 

Foremostly, and for the sake of preserving the compact form of our equations at will, we 

designate the arguments of the exponential function, originally allocated to the front and back 

interfaces separately, as simply 𝐴𝑟𝑔1 and 𝐴𝑟𝑔2 following: 

 
𝐴𝑟𝑔1,2 =

𝑉𝑠 1,2 −  𝑉0 −  𝜙𝑖𝑚 − ∆𝑉(𝑄𝑔1,2 )

𝑘𝑇
 

Eq 5.41 

 

Since by definition the gate charges are functions of 𝑉𝑠 1,2 and not of 𝜒𝑠 1,2, we need to compute 

the derivatives with respect to 𝑉𝑠 1,2 in first place, then transform the output following the 

equivalence depicted in Eq 5.42: 

 𝑑𝑄𝑖𝑛𝑣1,2
𝑑𝜒𝑠1,2

=
𝑑𝑄𝑖𝑛𝑣1,2
𝑑𝑉𝑠1,2

.
1

𝑑𝜒𝑠1,2
𝑑𝑉𝑠1,2
⁄

=
𝑑𝑄𝑖𝑛𝑣1,2
𝑑𝑉𝑠1,2

.
1

1 −
𝑑∆𝑉(𝑄𝑔1,2)

𝑑𝑉𝑠1,2
⁄

 Eq 5.42 

 

The 𝑑𝑄𝑖𝑛𝑣1,2 𝑑𝑉𝑠1,2⁄  term can be formulated in the next manner: 

 𝑑𝑄𝑖𝑛𝑣1,2
𝑑𝑉𝑠1,2

=
𝑑𝑄𝑖𝑛𝑣1,2
𝑑𝜙𝑖𝑚

.
𝑑𝜙𝑖𝑚
𝑑𝑉𝑠1,2

= 𝑞 𝐴2𝐷  (
𝑑𝑉𝑠1,2
𝑑𝜙𝑖𝑚

− 1 −
𝑑∆𝑉(𝑄𝑔1,2)

𝑑𝜙𝑖𝑚
)

𝑒𝐴𝑟𝑔1,2

1 + 𝑒𝐴𝑟𝑔1,2  
 

Eq 5.43 

 

Which can be rearranged to be written as: 

 
𝑑𝑄𝑖𝑛𝑣1,2
𝑑𝑉𝑠1,2

= 𝑞 𝐴2𝐷  (1 −
𝑑∆𝑉(𝑄𝑔1,2)

𝑑𝑉𝑠1,2
−

1

𝑑𝑉𝑠1,2
𝑑𝜙𝑖𝑚
⁄

) 
𝑒𝐴𝑟𝑔1,2

1 + 𝑒𝐴𝑟𝑔1,2  
  

Eq 5.44 

 

By analyzing the expression of Eq 5.44 we can see that the computation of the two intermediary 

d∆V(Qg1,2) dVs1,2⁄  and 𝑑𝑉𝑠1,2 𝑑𝜙𝑖𝑚⁄  terms is needed in order to get to the final expression of 

𝑑𝑄𝑖𝑛𝑣1,2 𝑑𝜒𝑠1,2⁄ , since we already have the closed-form expression of d∆V(Qg1,2) dVs1,2⁄  from 

the procedure of surface potential error expression procedure, we proceed into the derivation of 

an analytical expression of 𝑑𝑉𝑠1,2 𝑑𝜙𝑖𝑚⁄  in the next paragraph. 

For the computation of  𝑑𝑉𝑠1,2 𝑑𝜙𝑖𝑚⁄ we start from our starting set of equations: 
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{
 
 

 
 𝐶𝑜𝑥1. (𝑉𝑔1 − 𝑉𝑓𝑏1 − 𝑉𝑠1) = 𝑞𝑘𝑇𝐴2𝐷 𝑙𝑛 (1 + 𝑒𝑥𝑝 (

𝑉𝑆1 − 𝑉0 − 𝜙𝑖𝑚
𝑘𝑇

)) + 𝐶𝑠𝑖 . (𝑉𝑠1 − 𝑉𝑠2)

𝐶𝑜𝑥2. (𝑉𝑔2 − 𝑉𝑓𝑏2 − 𝑉𝑠2) = 𝑞𝑘𝑇𝐴2𝐷 𝑙𝑛 (1 + 𝑒𝑥𝑝 (
𝑉𝑆2 − 𝑉0 − 𝜙𝑖𝑚

𝑘𝑇
)) + 𝐶𝑠𝑖 . (𝑉𝑠2 − 𝑉𝑠1)

 Eq 5.45 

 

We derive both equations with respect to the quasi-Fermi level 𝜙𝑖𝑚: 

{
 
 

 
 −𝐶𝑜𝑥1

𝑑𝑉𝑠1
𝑑𝜙𝑖𝑚

= 𝑞 𝐴2𝐷  (
𝑑𝑉𝑠1
𝑑𝜙𝑖𝑚

− 1 −
𝑑∆𝑉(𝑄𝑔1)

𝑑𝜙𝑖𝑚
)

𝑒𝐴𝑟𝑔1

1 + 𝑒𝐴𝑟𝑔1  
+ 𝐶𝑠𝑖 . (

𝑑𝑉𝑠1
𝑑𝜙𝑖𝑚

−
𝑑𝑉𝑠2
𝑑𝜙𝑖𝑚

)

−𝐶𝑜𝑥2
𝑑𝑉𝑠2
𝑑𝜙𝑖𝑚

= 𝑞 𝐴2𝐷  (
𝑑𝑉𝑠2
𝑑𝜙𝑖𝑚

− 1 −
𝑑∆𝑉(𝑄𝑔2)

𝑑𝜙𝑖𝑚
)

𝑒𝐴𝑟𝑔2

1 + 𝑒𝐴𝑟𝑔2  
+ 𝐶𝑠𝑖 . (

𝑑𝑉𝑠2
𝑑𝜙𝑖𝑚

−
𝑑𝑉𝑠1
𝑑𝜙𝑖𝑚

)

 

 

Eq 5.46 

 

Then, we replace 
𝑑∆𝑉(𝑄𝑔1,2)

𝑑𝜙𝑖𝑚
 by 

𝑑∆𝑉(𝑄𝑔1,2)

𝑑𝑉𝑠1,2

𝑑𝑉𝑠1,2

𝑑𝜙𝑖𝑚
 and rearrange the equations: 

{
 
 

 
 [𝐶𝑜𝑥1 + 𝐶𝑠𝑖 + 𝑞 𝐴2𝐷  (1 −

𝑑∆𝑉(𝑄𝑔1)

𝑑𝑉𝑠1
)

𝑒𝐴𝑟𝑔1

1 + 𝑒𝐴𝑟𝑔1  
]
𝑑𝑉𝑠1
𝑑𝜙𝑖𝑚

= 𝑞 𝐴2𝐷  
𝑒𝐴𝑟𝑔1

1 + 𝑒𝐴𝑟𝑔1 
+ 𝐶𝑠𝑖 .

𝑑𝑉𝑠2
𝑑𝜙𝑖𝑚

[𝐶𝑜𝑥2 + 𝐶𝑠𝑖 + 𝑞 𝐴2𝐷  (1 −
𝑑∆𝑉(𝑄𝑔2)

𝑑𝑉𝑠2
)

𝑒𝐴𝑟𝑔2

1 + 𝑒𝐴𝑟𝑔2  
]
𝑑𝑉𝑠2
𝑑𝜙𝑖𝑚

= 𝑞 𝐴2𝐷  
𝑒𝐴𝑟𝑔2

1 + 𝑒𝐴𝑟𝑔2 
+ 𝐶𝑠𝑖 .

𝑑𝑉𝑠1
𝑑𝜙𝑖𝑚

 

 

Eq 5.47 

 

We call the terms residing between the brackets 𝐶1 and 𝐶2 respectively: 

 

{
 
 

 
 𝐶1 = Cox1 + Csi + 𝑞 𝐴2𝐷  (1 −

𝑑∆𝑉(𝑄𝑔1)

dVs1
)

𝑒𝐴𝑟𝑔1

1 + 𝑒𝐴𝑟𝑔1  

𝐶2 = Cox2 + Csi + 𝑞 𝐴2𝐷  (1 −
𝑑∆𝑉(𝑄𝑔2)

dVs2
)

𝑒𝐴𝑟𝑔2

1 + 𝑒𝐴𝑟𝑔2  

 

Eq 5.48 

 

And the terms representing activation functions as 𝑠1 and 𝑠2 respectively: 

 

{
 

 𝑠1 = 𝑞 𝐴2𝐷
𝑒𝐴𝑟𝑔1

1 + 𝑒𝐴𝑟𝑔1  

𝑠2 = 𝑞 𝐴2𝐷
𝑒𝐴𝑟𝑔2

1 + 𝑒𝐴𝑟𝑔2  

 

Eq 5.49 

 

We thusly can write our system of equations in the next form: 

 

{
 

 𝐶1
𝑑𝑉𝑠1
𝑑𝜙𝑖𝑚

= 𝑠1 + Csi.
𝑑𝑉𝑠2
𝑑𝜙𝑖𝑚

   (1)

𝐶2
𝑑𝑉𝑠2
𝑑𝜙𝑖𝑚

= 𝑠2 + Csi.
𝑑𝑉𝑠1
𝑑𝜙𝑖𝑚

   (2)

 

Eq 5.50 

 

At this point the 𝑑𝑉𝑠1 𝑑𝜙𝑖𝑚⁄  term can be obtained by a simple summation of equation (1) from 

the previous system multiplied by 𝐶2, and equation (2) from the previous system multiplied by 

𝐶𝑠𝑖, yielding: 

 
𝐶1𝐶2  

𝑑𝑉𝑠1
𝑑𝜙𝑖𝑚

= 𝑠1𝐶2 + Csi𝑠2 + Csi
2.
𝑑𝑉𝑠1
𝑑𝜙𝑖𝑚

 

Eq 5.51 

 



 

97 

 

⇒ 
𝑑𝑉𝑠1
𝑑𝜙𝑖𝑚

=
𝑠1𝐶2 + Csi𝑠2

𝐶1𝐶2 − Csi
2 

 

Correspondingly, the 𝑑𝑉𝑠2 𝑑𝜙𝑖𝑚⁄  term can be obtained by a simple summation of equation (1) 
from the previous system multiplied by 𝐶𝑠𝑖, and equation (2) from the previous system 

multiplied by 𝐶1, giving: 

 
𝐶1𝐶2  

𝑑𝑉𝑠2
𝑑𝜙𝑖𝑚

= Csi𝑠1 + C1𝑠2 + Csi
2.
𝑑𝑉𝑠2
𝑑𝜙𝑖𝑚

 

⇒ 
𝑑𝑉𝑠2
𝑑𝜙𝑖𝑚

=
𝑠2𝐶1 + Csi𝑠1

𝐶1𝐶2 − Csi
2 

 

 

Eq 5.52 

 

We thereby have attained the closed-form expression of both the terms 𝑑𝑉𝑠1 𝑑𝜙𝑖𝑚⁄  and 

𝑑𝑉𝑠2 𝑑𝜙𝑖𝑚⁄ . Finally, the closed-form expression of the linearization slopes can be directly 

expressed following Eq 5.53: 

 

{
 
 

 
 
𝑑𝑄𝑖𝑛𝑣1
𝑑𝑉𝑠1

= 𝑠1 (1 −
𝑑∆𝑉(𝑄𝑔1)

𝑑𝑉𝑠1
−
𝐶1𝐶2 − Csi

2

𝑠1𝐶2 + Csi𝑠2
) 

𝑑𝑄𝑖𝑛𝑣2
𝑑𝑉𝑠2

= 𝑠2 (1 −
𝑑∆𝑉(𝑄𝑔2)

𝑑𝑉𝑠2
−
𝐶1𝐶2 − Csi

2

𝑠2𝐶1 + Csi𝑠1
)

 

Eq 5.53 

 

Employing the closed-form expressions of the linearization slopes and the linear form of the 

inversion charge densities presented in Eq 5.37, the front and back inversion charges 

linearization is verified in Figure 8. We can see that the applied expressions describe adequately 

the inversion charge throughout the subband potential range and for all back biases. 
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 q  

Figure 8. The linear approximation of the inversion charge densities −𝑄𝑖𝑛𝑣1,2 as functions of subband potential 𝜒𝑠1,2 for 

three different back biases, the blue dashed line represents the first expression in Eq 5.37, and the green dashed line 

represents the second one. 

Moreover, in order to sustain the numerical stability of our model amid the drift drain current 

calculations, we introduce the concept of effective points, defined as, For the front and back 

subband potentials: 

 𝜒s1,2𝑒𝑓𝑓1 = min(𝜒𝑠1,2, 𝜒s1,2𝑖𝑛𝑡) , 𝜒s1,2𝑒𝑓𝑓2 = min(𝜒𝑠1,2, 𝜒s1,2𝑠𝑎𝑡)   
Eq 5.54 

 

In a similar manner, we define the effective gate charge densities that will be useful for the 

computation of the drift integral in the case of a mobility function, following expressions in Eq 

5.55. 

 𝑄inv1,2𝑒𝑓𝑓1 = min(𝑄𝑖𝑛𝑣1,2, 𝑄inv1,2𝑖𝑛𝑡) , 𝑄inv1,2𝑒𝑓𝑓2 = min(𝑄𝑖𝑛𝑣1,2, 𝑄inv1,2𝑠𝑎𝑡)   
Eq 5.55 

 

Such effective points are chosen to ensure the logical coherence of the integral boundaries, in 

case 𝜒s1,2𝑖𝑛𝑡 or 𝜒s1,2𝑠𝑎𝑡 take irrational values, for instance, due to the  denominator term in the 

expression of 𝜒s1,2𝑖𝑛𝑡 term, sometimes when 𝜆1,2𝑠𝑟𝑐 → 𝜆1,2𝑠𝑎𝑡, the 𝜒s1,2𝑖𝑛𝑡 value might be found 

beyond the 𝜒s1,2𝑠𝑎𝑡 value, such configuration is unappealing. Accordingly, the use of such 

definition of effective points constitutes a good way to circumvent such numerical instability. 

Thusly, the integration boundaries adopted formerly, i.e. between the source point and the 

intersection point for the first part of integration, and between the intersection point and the 
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saturation point for the second part of integration, are supplanted using the sequence from the 

source point to the first effective point for the first part of integration, and from the first effective 

point to the second effective point for the second part of integration. 

Correspondingly, and considering a constant effective mobility along the channel, the final 

analytical expression of the drift current can be directly derived, yielding Eq 5.56: 

 
𝐼𝑑𝑟𝑖𝑓𝑡1,2 =

𝑊

𝐿
. 𝜇𝑒𝑓𝑓1,2. (𝑄1,2𝑠𝑟𝑐,(𝜒s1,2𝑖𝑛𝑡 − 𝜒s1,2𝑠𝑟𝑐)

+ 0.5𝜆1,2𝑠𝑟𝑐,(𝜒s1,2𝑖𝑛𝑡 − 𝜒s1,2𝑠𝑟𝑐)
2

+ 𝑄1,2𝑠𝑎𝑡(𝜒s1,2𝑠𝑎𝑡 − 𝜒s1,2𝑖𝑛𝑡) + 0.5𝜆1,2𝑠𝑎𝑡(𝜒s1,2𝑒𝑓𝑓2

+ 𝜒s1,2𝑒𝑓𝑓1 − 2𝜒s1,2𝑠𝑎𝑡,)(𝜒s1,2𝑒𝑓𝑓2 − 𝜒s1,2𝑒𝑓𝑓1) ) 

Eq 5.56 

 

Considering on the other hand the bell shape mobility law described in Eq 5.57, the analytical 

expression of the drift current with a mobility function will be as in Eq 5.58: 

 𝜇𝑛(𝑄𝑖𝑛𝑣1,2) =
𝜇𝑚𝑎𝑥1,2

𝑄𝑖𝑛𝑣1,2
𝑄𝑐1,2

+
𝑄𝑐1,2
𝑄𝑖𝑛𝑣1,2

 Eq 5.57 

 

 

 

𝐼𝑑𝑟𝑖𝑓𝑡1,2 =
𝑊

𝐿
.𝑄𝑐1,2. ( 

𝜇𝑚𝑎𝑥1,2
𝜆1,2𝑠𝑟𝑐

. (𝑄𝑐1,2. 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑄1,2𝑠𝑟𝑐
𝑄𝑐1,2

)

− 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑄1,2𝑒𝑓𝑓1
𝑄𝑐1,2

) + (𝑄1,2𝑒𝑓𝑓1 − 𝑄1,2𝑠𝑟𝑐))

+ 
𝜇𝑚𝑎𝑥1,2
𝜆1,2𝑠𝑎𝑡

. (𝑄𝑐1,2. 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑄1,2𝑒𝑓𝑓1
𝑄𝑐1,2

)

− 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑄1,2𝑒𝑓𝑓2
𝑄𝑐1,2

) + (𝑄1,2𝑒𝑓𝑓2 − 𝑄1,2𝑒𝑓𝑓1))) 

Eq 5.58 

 

 

Finally, it should be noted that based on the discussion performed in Chapter 2, we include also 

the effective temperature using the expression illustrated by Eq 5.59:  

 

𝑇𝑒𝑓𝑓(𝑇, 𝑇0) = 𝑇0. (1 + 𝛼. 𝑙𝑛 (1 + exp (
𝑇 − 𝑇0
𝛼. 𝑇0

))) 
Eq 5.59 

 

Thusly, we have discussed the different aspects concerning the long channel transistor model 

development, allowing us to address the short channel effects that would be addressed as add-

ons to the core model as we will see in the next section. 

1.3 Short channel MOSFET current model: 

Certain physical phenomena are negligible in large dimensions devices but become more 

significant in determining the behavior of the MOSFET in the case of devices with reduced 

dimensions. As the transistor channel length is reduced, the electrostatic control of the source 

and drain zones increases and preponderate that of the gates. Such 2-D electrostatic effects 

generate a degradation of the transistor subthreshold slope, a linear threshold voltage decrease, 
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also known as the roll-off effect, and an increased sensitivity of the threshold voltage to the 

drain bias, also known as the DIBL effect.  

All these aforementioned effects can be modeled by considering the transistor as a simple 

capacitive network, such capacitive modeling is true in the weak inversion regime, then, this 

approach was extended as an approximative one into the strong inversion regime as well, such 

choice is justified by our need for fast computation for the consideration of the 2-D analysis, 

which necessitates numerical computations otherwise. 

Note that, in order to preserve the consistency of our model, the aim is to always keep the long 

channel model (the core model) and implement the short channel effects as suitable 

modifications. Thusly, the so-far designated short channel effects are introduced by modifying 

the device geometry and applied biases according prior to surface potential calculations as it 

will be demonstrated afterwards. 

Moreover, when we apply an electric field upon the silicon channel, the mobile carriers are 

accelerated and gain a drift velocity that overlays their random thermal motion [3]. Note that, 

such velocity of the electrons does not increase indefinitely under field acceleration, since they 

are scattered repeatedly and lose their gained energy after each inelastic collision. At low 

electric fields, the drift velocity 𝑣𝑑 is proportional to the electric field strength 𝐸, with the 

mobility 𝜇 as the proportionality constant 𝑣𝑑 = 𝜇. 𝐸, where the mobility is proportional to the 

time interval between collisions and inversely proportional to the effective mass of electrons 

[3]. 

Nonetheless, note that the above-stated linear velocity-field relationship is valid only when the 

electric field is not too high. For at high fields, the average carrier energy increases, and carriers 

lose their energy by optical phonon emission nearly as fast as they gain it from the field, 

engendering a decrease of the mobility as the field increases until eventually the drift velocity 

reaches a limiting value, such mechanism is called velocity saturation [3].  

1.3.1 Implementation of velocity saturation effect: 

Comprehensively, when the drain voltage increases in a long channel device, the drain current 

first increase, then becomes saturated at a voltage equals to 𝑉𝑑,𝑠𝑎𝑡 with the onset of the pinch-

off at the drain side.  

Comparatively, in a short channel device, the saturation of drain current may occur at a much 

lower voltage due to this velocity saturation effect, implying a saturation current 𝐼𝑑,𝑠𝑎𝑡 that is 

detached from the 1/𝐿 dependence depicted in Eq 5.60 and Eq 5.61 for long channel devices. 

In other words, the drain current saturates due to either pinch-off or velocity saturation at the 

drain, the reported value of the velocity saturation in literature is around 𝑣𝑠𝑎𝑡 ≈ 7 −
8 . 104 𝑚/𝑠. 

According to [7], the drain current saturation can be derived through the velocity saturation by 

considering the maximum attainable value by the conductivity in the channel, as depicted by 

Eq 5.60: 

 𝜎𝑚𝑎𝑥1,2 = 𝑊.𝐶𝑜𝑥1. 𝑣𝑠𝑎𝑡 
Eq 5.60 

 

In the present work, we choose to carry out an equivalent description to define an upper limit 

of the drain current as featured in Eq 5.61, where the designated charge density is the uttermost 

value in the silicon channel i.e. the one at the source side. 

 𝐼𝑑1,2𝑠𝑢𝑝 = 𝑊.𝑄𝑠𝑟𝑐1,2. 𝑣𝑠𝑎𝑡 
Eq 5.61 
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Such upper limit of the drain current 𝐼1,2𝑠𝑢𝑝 is then implemented into the model through the 

application of the Matthiessen rule between it and the initial drain current of the corresponding 

interface obtained from the long channel supposition, as in Eq 5.62: 

 
𝐼𝑑1,2𝑓𝑖𝑛𝑎𝑙 = 𝐼1,2𝑠𝑢𝑝. [1 + (𝐼𝑑1,2

𝑙𝑜𝑛𝑔 𝐼𝑑1,2𝑠𝑢𝑝⁄ )
−𝑚
]
−1 𝑚⁄

 

Eq 5.62 

 

 

1.3.2 Implementation of the DIBL and charge sharing effects: 

In this part, for the sake of simplification, we consider our system of equations in the weak 

inversion configuration i.e., without the mobile charges. Considering firstly, the familiar 1-D 

system of equations: 

 
{
𝐶𝑜𝑥1. (𝑉𝑔1 − 𝑉𝑓𝑏1 − 𝑉𝑠1) = 𝐶𝑠𝑖 . (𝑉𝑠1 − 𝑉𝑠2)

𝐶𝑜𝑥2. (𝑉𝑔2 − 𝑉𝑓𝑏2 − 𝑉𝑠2) = 𝐶𝑠𝑖 . (𝑉𝑠2 − 𝑉𝑠1)
 

Eq 5.63 

 

After some rearrangement, we can write the 1-D system of equations in the format illustrated 

in Eq 5.64. This format of the system of equations will serve as a reference to which will be 

comparing the equivalent system of equations in when 2-D electrostatics are applied. 

 

{
 

 
𝐶𝑜𝑥1
𝐶𝑠𝑖

. (𝑉𝑔1 − 𝑉𝑓𝑏1) + 𝑉𝑠2 = (1 +
𝐶𝑜𝑥1
𝐶𝑠𝑖

) . 𝑉𝑠1

𝐶𝑜𝑥2
𝐶𝑠𝑖

. (𝑉𝑔2 − 𝑉𝑓𝑏2) + 𝑉𝑠1 = (1 +
𝐶𝑜𝑥2
𝐶𝑠𝑖

) . 𝑉𝑠2

 Eq 5.64 

 

If we consider the 2D system of equations on the other hand, the charge conservation principle 

in this case must be rather applied to the capacitive scheme presented in Figure 9. 

 

Figure 9. The capacitive scheme of a 2-D electrostatic analysis for an FDSOI structure. 

Where the correspondent charge conservation equations are given by: 

{
Cox1(Vg1 − Vfb1 − Vs1) + [Cs1(Vsrc + V0) − Cs1Vs1] + [Cd1(Vd + V0) − Cd1Vs1] = Csi(Vs1 − Vs2)

Cox2(Vg2 − Vfb2 − Vs2) + [Cs2(Vsrc + V0) − Cs2Vs2] + [Cd2(Vd + V0) − Cd2Vs2] = Csi(Vs2 − Vs1)
 

Eq 5.65 

 

Where within the supposition of a perfectly symmetric scheme, the four capacitances Cs1, Cs2, 

Cd1, and Cd2are identical, and adhere to the following definition: 
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Cs1 = 𝜀𝑠𝑖
𝑊
𝑡𝑠𝑖

2⁄

𝐿
2⁄

= 𝜀𝑠𝑖𝑊
𝑡𝑠𝑖
𝐿

 

Eq 5.66 

 

Thusly, if we compare the 2-D electrostatic short channel system of equations given by Eq 5.65 

to its equivalent 1-D long channel one given by Eq 5.64, after nullifying the four capacitances 

Cs1, Cs2, Cd1, and Cd2, we recognize that the surface potentials can still be computed using the 

long channel approach, rather, the front and back oxide capacitances, and the front and back 

applied gate biases, are altered into new effective values given by Eq 5.67, where source bias 

is set as a reference i.e. Vsrc = 0: 

 

{
  
 

  
 𝐶𝑜𝑥1,2

𝑒𝑓𝑓
= 𝐶𝑜𝑥1,2. (1 +

Cs1,2 + Cd1,2
𝐶𝑜𝑥1,2

)

𝑉𝑔1,2
𝑒𝑓𝑓

=
𝑉𝑔1,2 +

Cd1,2
𝐶𝑜𝑥1,2

. (Vd + V0) +
Cs1,2
𝐶𝑜𝑥1,2

. V0

(1 +
Cs1,2 + Cd1,2

𝐶𝑜𝑥1,2
)

 

Eq 5.67 

 

Correspondingly, the implementation of these effects into our model is made through the use 

of these effective oxide capacitances and applied gate biases. Note that this modification must 

be included in the pinch-off point computation as well as this one depends on the corresponding 

values of 𝑉𝑔1,2 and 𝐶𝑜𝑥1,2 as well. 

Note furthermore that, the method presented in this section will encompass the impact of the 

DIBL effect along with the subthreshold slope degradation, and the threshold voltage roll-down. 

Such collation of the impact of supposedly several effects is due to the fact that these effects 

have the same physical origin.  

1.3.3 Implementation of the parasitic resistance effect: 

Each discussion we have raised in the present study considered only the intrinsic part of the 

transistor which leads the behavior of the transistor; parasitic resistances on the other hand 

belong to the extrinsic part that connects the intrinsic part to other devices of an integrated 

circuit [2]. The impact of this extrinsic part can be seen in a general decreasing of the device 

performance for instance; such impact becomes palpable as the dimension of the device are 

reduced [2]. Several components form the extrinsic part, such as the parasitic resistances and 

the parasitic capacitances; the discussion of the parasitic resistances is alone considered in the 

present work. 

In our approach, we will consider a simple scheme with two access parasitic resistances, one at 

the source side and the other at the drain side as in Figure 10, where the intrinsic part of our 

device is depicted by the rectangle in the middle. In this simplistic scheme we consider the 

effect of the parasitic resistances is delimited to the front gate oxide alone. 

There are several components to the source and drain series resistances such as the contact 

resistance 𝑅𝑐𝑜, the current spreading resistance 𝑅𝑠𝑝 that depends on the source/drain junction 

depth and the inversion layer thickness, the channel resistance 𝑅𝑐ℎ, and the sheet resistance 𝑅𝑠ℎ 

that is usually small in comparison to 𝑅𝑐ℎ. 
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Figure 10. simple scheme representing two access parasitic resistances and the corresponding altered biases. 

In the next paragraph we will cover a direct method in order to implement the parasitic 

resistances effect in our model. Such method ranges from the linear regime for the 

implementation of the corresponding resistances, which will be then generalized to other 

regimes. 

Therefore, starting from the linear regime one can assume that such introduction of parasitic 

resistances transforms the actual applied bias into altered ones as in (𝑉𝑔𝑠, 𝑉𝑑𝑠)
𝑅𝑠
→ (𝑉𝑔𝑠

′, 𝑉𝑑𝑠
′), 

where the set (𝑉𝑔𝑠
′, 𝑉𝑑𝑠

′) is depicted by the voltage drops due to these resistances, as in Eq 5.68: 

 
{

𝑉𝑔1
′ = 𝑉𝑔1 − 𝑅𝑠𝐼𝑑

𝑉𝑑
′ = 𝑉𝑑 − (𝑅𝑠 + 𝑅𝑑)𝐼𝑑

 

Eq 5.68 

 

Thereupon, we replace the drain bias featured in the general drain current by its respective 

altered bias, as shown in  Eq 5.69: 

 
𝐼𝑑 =

𝑊

𝐿
𝜇𝑛(𝑄)𝑄𝑖𝑛𝑣𝑉𝑑

′ 

Eq 5.69 

 

Yielding to, after replacing 𝑉𝑑
′ by its explicit expression: 

 
𝐼𝑑 =

𝑊

𝐿
𝜇𝑛(𝑄)𝑄𝑖𝑛𝑣(𝑉𝑑 − (𝑅𝑠 + 𝑅𝑑)𝐼𝑑) 

Eq 5.70 

 

Which gives, within the consideration of symmetric source and drain access resistances: 

 
𝐼𝑑 =

𝑊

𝐿
𝜇𝑛(𝑄)𝑄𝑖𝑛𝑣𝑉𝑑 −

𝑊

𝐿
𝜇𝑛(𝑄)𝑄𝑖𝑛𝑣2𝑅𝑠𝐼𝑑 

Eq 5.71 

 

Where the drain current can be written as a function of the rest quantities as in: 

 
𝐼𝑑 =

𝐼𝑑
0

1 +
𝑊
𝐿
𝜇𝑛(𝑄)𝑄𝑖𝑛𝑣2𝑅𝑠

 
Eq 5.72 

 

Where 𝐼𝑑
0 =

𝑊

𝐿
𝜇𝑛(𝑄)𝑄𝑖𝑛𝑣𝑉𝑑 is the obtained drain current prior to the implementation of the 

parasitic resistances. 

Accordingly, Eq 5.72 can be rearranged to be written as in Eq 5.73, as this format can support 

the allegation of an altered mobility law. 
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𝐼𝑑 =

𝑊

𝐿

𝜇𝑛(𝑄)

1 +
𝑊
𝐿
𝜇𝑛(𝑄)𝑄𝑖𝑛𝑣2𝑅𝑠

𝑄𝑖𝑛𝑣𝑉𝑑 
Eq 5.73 

 

Correspondingly, the altered mobility law 𝜇𝑛(𝑄)
′ will be given by Eq 5.74: 

 
𝜇𝑛(𝑄)

′ =
𝜇𝑛(𝑄)

1 +
𝑊
𝐿
𝜇𝑛(𝑄)𝑄𝑖𝑛𝑣2𝑅𝑠

 

Eq 5.74 

 

Such altered mobility law can be also written in the format given by Eq 5.75: 

 
𝜇𝑛(𝑄)

′ =
1

1
𝜇𝑛(𝑄)

+
𝑊
𝐿
𝑄𝑖𝑛𝑣2𝑅𝑠

 

Eq 5.75 

 

Which yields to Eq 5.76, after replacing the original mobility law 𝜇𝑛(𝑄) by its closed from 

expression. 

 𝜇𝑛(𝑄)
′ =

𝜇𝑚𝑎𝑥 

𝑄𝑐
𝑄
+
𝑄
𝑄𝑐
+
2𝑊𝜇𝑚𝑎𝑥1,2𝑄𝑖𝑛𝑣1,2𝑅𝑠

𝐿

 

Eq 5.76 

 

Note that this approach is Comparable to the one used in both the PSP and the UTSOI1 models, 

where the parasitic resistance effect is implemented in via the inclusion of an additional term 

to the mobility degradation factors i.e., the Coulomb scattering and surface roughness scattering 

degradation factors in our case. Finally, note that 𝑅𝑠 is an adjustable parameter, which 

equivariantly to L-UTSOI model, takes the typical values of the order 𝑅𝑠 = 60Ω for a channel 

width of 1𝜇𝑚 in the present study. Note as well that recognizing that this is just a first order 

approximation which is not necessarily valid in high nonlinear regimes, we choose to adopt this 

𝑅𝑠 inclusion approach and extend it to the nonlinear regime of operation, as in PSP and L-

UTSOI models for simplification. 

 

1.4 Comparison of the analytical model results to the experimental data: 

In this section, we will be exposing the analytical model results to the collected experimental 

data for three different FDSOI structures with the same width 𝑊 = 1𝜇𝑚 and channel lengths 

of 𝐿 = 1𝜇𝑚, 𝐿 = 120 𝑛𝑚 and 𝐿 = 30 𝑛𝑚 respectively.  

Expressly, the experimental data fitting in our case is essentially based on the choice of a set of 

the parameters 𝑉𝑓𝑏1,2, 𝜇𝑚𝑎𝑥1,2, 𝑄𝑐1,2 for long channel transistors and the parameters 

𝑉𝑓𝑏1,2, 𝜇𝑚𝑎𝑥1,2, 𝑄𝑐1,2, 𝑅𝑠, 𝑣𝑠𝑎𝑡, 𝑚 for short channel transistors. Outstandingly, in some cases as 

we will see thereafter, we will be bounded to an attribution of a set of parameters to each back 

bias configuration. Such customized treatment could have been redeemed by a standard 

parameter extraction phase; however such task would necessitate an extensive study for this 

aim, which is beyond the scope of the present work. 

Regarding the exposition of the analytical model results to experimental data for long channel 

transistor, the first challenge that we will be facing is finding a way to emulate the intersubband 

scattering that appears in the linear 𝐼𝑑(𝑉𝑔1) characteristics. Such challenge is not evident as 

such effect is ascribed to subbands interaction (as already illustrated) appearing during the 

transport phase, making it an appropriate quantum mechanical phenomenon. Engineering a 

compact model formula that perfectly describes such effect in a physics-based way is 
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imperceptible and has never been addressed in literature. For such reasons, in this part we will 

be seeking the approach described in the next paragraph to emulate such effect. 

As an overall analysis regarding the intersubband scattering, one can say that a big portion of 

the electrons that were originally in the back side of the film, swing to the front side of the film, 

and as the mobility in the back is improved compared to the one in the front (due to high-k 

oxide in the front), the charge that at first see the back improved mobility, see after the transition 

the front deteriorated mobility, leading to a decrease of the total mobility of the system, this is 

what explains the drain current decrease and the negative transconductance. Plainly, to explicit 

this effect in our model we considered that the maximum value of the mobility in the back 

channel is in itself dependent on the mean value of the front inversion charge, in a way that the 

more front inversion charge we have the less back mobility we have. 

Thusly, to depict the signature of such mechanism through the alteration of the back mobility 

in the present work we use the expression presented in Eq 5.77:  

 
𝜇𝑚𝑎𝑥2
∗ = 𝜇𝑚𝑎𝑥1,2 . exp (

− 𝑄1 𝑚𝑒𝑑
𝑄𝑟𝑒𝑓

) 

Eq 5.77 

 

Where 𝜇𝑚𝑎𝑥2
∗  is the reduced back-channel mobility, 𝑄1 𝑚𝑒𝑑 =

𝑄1 𝑠𝑟𝑐+ 𝑄1 𝑑𝑟𝑛

2
 is the median value 

of front inversion charge, and 𝑄𝑟𝑒𝑓𝑏 is a fitting parameter that controls the hump. 

Note that, whereas the front and back flat band voltages, front and back upper values of the 

mobilities along with the inversion charge parameter 𝑄𝑟𝑒𝑓 take values that are independent of 

the back bias, in this case 𝑉𝑓𝑏1 = −0.09 𝑉, 𝑉𝑓𝑏2 = 0.65 𝑉, 𝜇𝑚𝑎𝑥1 = 0.95 𝑚
2 𝑉. 𝑠⁄ , 𝜇𝑚𝑎𝑥2 =

4.84𝑚2 𝑉. 𝑠⁄   ,𝑄𝑟𝑒𝑓 = 10.6 ∗ 10
−4 𝐶/𝑚2; 𝑄𝑐1, 𝑄𝑐2 are treated as functions of the back-bias 

𝑉𝑔2 as depicted in the following plots: 

  
Figure 11. Parameters 𝑄𝑐1 and 𝑄𝑐2 as functions of the back bias. 

Note as well that, such typical approach of parameter attribution is unique for the linear transfer 

characteristics long channel transistor where the intersubband scattering effect is present and is 

conserved for the saturated transfer characteristics and the output characteristics with weaker 

ensuing accuracy. 

Accordingly, the following Figures illustrate the analytical model results in comparison to the 

experimental data for long channel transistor of channel length 𝐿 = 1𝜇𝑚, for different back 

biases, with respect to the linear and saturated transfer characteristics, and the output 

characteristics. 
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Figure 12. The linear transfer characteristics of long channel transistor (𝐿 = 1𝜇𝑚 and 𝑊 = 1𝜇𝑚) for different back biases: 

experimental data (to the left) compared to the analytical model results (to the right). 

 

 
 

Figure 13. The saturated transfer characteristics of long channel transistor (𝐿 = 1𝜇𝑚 and 𝑊 = 1𝜇𝑚) for different back 

biases: experimental data (to the left) compared to the analytical model results (to the right). 
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Figure 14. The output characteristics of long channel transistor (𝐿 = 1𝜇𝑚 and 𝑊 = 1𝜇𝑚) for different back biases: 

experimental data (to the left) compared to the analytical model results (to the right). 

On the other hand, such effect is not present in the short channel transistors i.e. 𝐿 = 120 𝑛𝑚 

and 𝐿 = 30 𝑛𝑚 in the present study. For instance, regarding the 𝐿 = 120 𝑛𝑚 short channel 

transistor, the analytical model results produced in Figure 15, Figure 16, and Figure 17 using 

the following set of parameters: 𝑉𝑓𝑏1𝑉 = −0.09 𝑉, 𝑉𝑓𝑏2 = 0.65 𝑉, 𝜇𝑚𝑎𝑥1 = 0.04 𝑚
2 𝑉. 𝑠⁄ , 

𝜇𝑚𝑎𝑥2 = 0.25 𝑚
2 𝑉. 𝑠⁄   ,𝑄𝑟𝑒𝑓 = 10

3 𝐶/𝑚2; 𝑄𝑐1 = 20 ∗ 10
−4𝐶/𝑚2, 𝑄𝑐2 = 20 ∗ 10

−4𝐶/𝑚2. 

 

 

 
 

Figure 15. The linear transfer characteristics of short channel transistor (𝐿 = 120 𝑛𝑚 and 𝑊 = 1𝜇𝑚) for different back 

biases: experimental data (to the left) compared to the analytical model results (to the right). 
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Figure 16. The saturated transfer characteristics of short channel transistor (𝐿 = 120 𝑛𝑚 and 𝑊 = 1𝜇𝑚) for different back 

biases: experimental data (to the left) compared to the analytical model results (to the right). 

 

  

Figure 17. The output characteristics of short channel transistor (𝐿 = 120 𝑛𝑚 and 𝑊 = 1𝜇𝑚) for different back biases: 

experimental data (to the left) compared to the analytical model results (to the right). 

Moreover, using the following values of parameters: 𝑉𝑓𝑏1 = −0.09 𝑉, 𝑉𝑓𝑏2 = 0.65 𝑉, 𝜇𝑚𝑎𝑥1 =

0.08 𝑚2 𝑉. 𝑠⁄ , 𝜇𝑚𝑎𝑥2 = 0.46 𝑚
2 𝑉. 𝑠⁄  ,𝑄𝑟𝑒𝑓 = 10

3 𝐶/𝑚2; 𝑄𝑐1 = 5 ∗ 10
−4 𝐶/𝑚2 and 𝑄𝑐2 =

10−3 𝐶/𝑚2, the next plots are produced for short channel transistor of 𝐿 = 30 𝑛𝑚 channel 

length, as depicted in Figure 18, Figure 19, and Figure 20. 
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Figure 18. The linear transfer characteristics of short channel transistor (𝐿 = 30 𝑛𝑚 and 𝑊 = 1𝜇𝑚) for different back 

biases: experimental data (to the left) compared to the analytical model results (to the right). 

 

 
 

Figure 19. The saturated transfer characteristics of short channel transistor (𝐿 = 120 𝑛𝑚 and 𝑊 = 1𝜇𝑚) for different back 

biases: experimental data (to the left) compared to the analytical model results (to the right). 
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Figure 20. The output characteristics of short channel transistor (𝐿 = 30 𝑛𝑚 and 𝑊 = 1𝜇𝑚) for different back biases: 

experimental data (to the left) compared to the analytical model results (to the right). 

Indeed, the parameter values given in this last section are not claimed to be the ultimate ones, 

but rather such choice of parameter values is only meant to give us the opportunity to inspect 

the current outputs of our analytical model, offering a semi-quantitative analysis of our model 

results with respect to the experimental data. Further parameter optimization would require 

more work, going beyond the term of this thesis. 

To summarize, we succeeded in the course of the present chapter to give a detailed step-by-step 

demonstration of our analytical model, starting from the derivation of the surface potentials 

initial guesses to the iterative process of error corrections yielding to the corresponding exact 

solutions. Accordingly, we exhibited an adapted two-slope method of the inversion charge 

linearization technique in order to be utilized in the drift current computation. Consistently, we 

derived the closed-form analytical solutions of both the diffusion and drift current integrals. 

Subsequently, the short channel effects were implemented as add-ons to the long channel 

model, allowing the exposition of its results to the collected experimental data for both the short 

and long channel transistors. 
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Conventionally, quantum computers consist of two parts: a quantum processor that comprises 

a set of qubits, and a classical electronic interface part required to perform the control and 

readout of quantum states. In order to acquire a more compact and more reliable system the 

classical logic interfaces needs to be established in the cryogenic chamber, resulting in the 

desirable aspects of an enhanced clock speed, an improved noise performance, a reduced signal 

latency/timing errors, and larger bandwidth. Based on the qubit sensitivity, the classical 

electronic interface needs to meet some precise conditions such as low temperature 

functionality, signal accuracy, high speed, low transmitted noise, and the generation of specific 

microwave bandwidths. In comparison to bulk CMOS, FDSOI transistors could offer the ideal 

cryogenic device performance already, making it a very good candidate for such task. However, 

process-design kits lack models describing the operation of MOS devices at cryogenic 

temperatures. Building compact models for cryogenic operation is crucial and needs to be 

tackled urgently. This is where the present thesis emerges as a venture to satisfy such need. 

To tackle such task two approaches have been adopted by the research community.  The first 

approach consists of adapting existing standard models for deep cryogenic operation. Such 

adaptation is made using empirical solutions in order to improve their accuracy and 

predictability in cryogenic operation. Such approach comes along with a lot of advantages, 

since these standard models contain already all the additional effects and features and are 

numerically robust. However, these advantages come along with the limitations that these 

standard models are not adapted for cryogenic operation, namely because they consider a 3D 

gas of electrons and use MB statistics to describe their distribution. The second approach 

consists of building a physics-based models aimed for cryogenic operation from scratch. Such 

choice allows to overpass the limitations of the first approach. For instance, 2-D electron gas 

along with the use of FD statistics can be considered initially. Nevertheless, these models are 

not as of now mature enough to be implemented in PDK’s. 

Addressing the task of building compact models suitable for cryogenic operation has to deal 

with two challenges, our lack of understanding for the physical phenomena that appears at those 

conditions and the numerical management of different mathematical expressions that describes 

such physical phenomena. 

Accordingly, in the course of the present thesis, we discussed the Maxwell-Boltzmann 

approximation validity down to cryogenic temperatures via the exposition of the reasons we 

believe the MB approximation does not hold at cryogenic temperatures and must be traded by 

full Fermi-Dirac statistics. Indeed the choice of maintaining the MB approximation is 

applicable in some specific cases where the doping level beneath the degenerate limit and was 

preserved for numerical reasons considering that the implementation of Fermi-Dirac statistics 

would necessitate a numerical integration. Nonetheless, considering the relative position of the 

quasi-Fermi level which could traverse slightly the conduction band edge i.e. 𝐸𝑓 ≥ 0, the MB 

approximation becomes inaccurate, and the electrons distribution is described by the Fermi-

Dirac statistics. 

Concerning the numerical integration argument, we demonstrated in the course of this thesis 

that the use of complete Fermi-Dirac statistics does not imply a numerical integration process 

due to the 2D subband systems, restraining thusly the development of an explicit model. If 

anything, using Fermi-Dirac statistics inherent to cryogenic consideration have the advantage 

of the explicit mathematical formulation in both strong and weak inversions. 

In addition to the existence of a two-dimensional electron system allowing the use of the charge 

sheet approximation, we demonstrated the 2D subband is not a mere step function, but it 

exhibits a band tail of states, proposing thusly a suitable continuous expression that describes 

the exponential decrement of the 2D DOS. Accordingly, two approaches to compute the 

subthreshold slope saturation were presented, along with a description of the conductivity 
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function employing the Kubo-Greenwood integral using with the diffusivity function in the 

degenerate statistics regime. Primarily, in the course of this thesis, we exposed the bell-shape 

mobility law that involves only the Coulomb and surface roughness mechanisms, not including 

the phonon scattering that does not prevail at cryogenic temperatures. Correspondingly, based 

on a solid electrostatic ground provided by PS simulations the origin of the intersubband 

scattering effect observed experimentally on the linear transfer characteristics of back-biased 

FDSOI structures was demonstrated. It was found that such effect is attributed to the narrow 

energetic separation that exists between the first two subbands, promoting thusly the subbands 

interaction hypothesis. 

Moreover, based on Poisson-Schrödinger simulations, we confirmed our assumption of 

considering only the population of two subbands for FDSOI structures operating at deep 

cryogenic temperatures. Along with that, electrostatic parameter curves were exposed with the 

corresponding conduction band diagrams and an in-situ analysis of the population of different 

subbands for the FDSOI structure. Such approach allowed us to portrait the behavior manifested 

by the different electrostatic parameters, into two main event, namely the openings of the back 

and front channels. One appealing consequence of these two main events is the two-plateau 

behavior exhibited by the 𝐶𝑔𝑐 curves in the case of positive back bias configurations. 

Furthermore, the performed gate-to-channel PS simulations were validated by comparison to 

collected C-V measurements.  

Additionally, we presented an expanded version of the 1-D PS solver via the introduction of an 

extra dimension representing the quasi-Fermi level. Distinctly, we conducted PS simulations as 

well at the 𝑇 → 0𝐾 limit. Such task was made possible through the replacement of the Fermi-

Dirac integral function by a Heaviside function, since such function emulates perfectly the fully 

degenerate metallic statistics. 

Consistently, in the framework of this thesis, we presented a system of two coupled charge 

equations that involve a charge coupling term and a quantum shift function using the Airy 

solution function. The use of Airy’s solution function commonly comes along with an inherent 

numerical pathology manifested around the null gate charge configuration. Hence, an extended 

form of the quantum shift function is established through the application of a technique 

generating a globally continuous function originating from piecewise smooth functions. 

Accordingly, the numerical current outputs were presented based on numerical integration 

formalisms that consider Fermi-Dirac statistics. 

Starting from the presented system of coupled equations, the surface potentials solution is 

derived through a step-by-step technique ranging from initial guesses via the application of a 

number of error correction steps. Such approach is a good proof of the noncompulsory of the 

numerical integration when Fermi-Dirac statistics are applied. Moreover, closed from analytical 

expressions were demonstrated for diffusion and drift current computations along with a two-

slope inversion charge linearization technique applicable for back-bias structures that considers 

the computation of the respective slopes at the source and saturation ends. Finally, a few short 

channel effects were implemented to the core model such as the velocity saturation, the DIBL 

and charge sharing, and the parasitic resistance effects. In each step, the model results were 

confronted to either PS simulations or experimental data in order to be validated. 

Accordingly, one should emphasize that during the required years for the development of the 

presented model, the coherence of the model was privileged over the accuracy. Expressly, no 

non-homogenous expressions have been coerced in the model as customized truncation to get 

to describe certain operation regimes. Furthermore, the consolidation of each single step in the 

numerical and analytical model development process was a priority, in other word, 

strengthening the numerical stability of the model along with attributing a physical significance 

to the different involved elements was a requisite. Note as well that the number of the involved 
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parameters (in exception with the adopted expression to describe the intersubband scattering 

effect) was kept limited, a selection that is commonly considered as a bonus feature for compact 

models. Namely, such choice of consolidation process implicates more devotion of time and 

efforts for such consolidation process, which could be inconspicuous in exposition works of 

this nature, in comparison to other more appealing processes that could have expeditious results. 

Above all, the model presented here could be claimed as suitable for different geometrical, 

back-biasing and temperature configurations, particularly the dual channel operation mode 

manifested in the case of positive back biases that could be very challenging. Indeed, it should 

be pointed out that since the model development presented in the course of this thesis is a first 

attempt, it is not considered as a mature model yet. Nevertheless, for a first endeavor, it is the 

choice of privileging the coherence and the numerical stability of the model that should have 

been taken, since it allows the establishment of solid foundations, based on which upcoming 

efforts and improvements could be built. 

In this context, the aforementioned two approaches must certainly not be treated as independent 

endeavors, as the quintessential approach to achieve mature compact models for cryogenic 

operation is to ensure a mutual feedback between the two approaches mentioned formerly. That 

is to say, the second approach can provide new understanding of physical phenomena at its very 

fundamental level, enabling the derivation of mathematical formalisms that are consistent with 

the physics of cryogenic operation on firsthand, and are numerically stable for these conditions 

on second hand. In reverse, the first approach can supply some convenient and ready-to-use 

formalisms to be implemented for cryogenic operation, certain short channel effects for 

instance. 

Furthermore, and as manifested in the course of the present thesis, some conveyed cryogenic 

physical phenomena of quantum mechanical nature, such as the intersubband scattering, still 

need supplementary fundamental investigation. As the fulfillment of such fundamental studies 

paves the way for the attainment of closed-form analytical expressions that are independent of 

any device geometry or back biasing configuration. 

Based upon the present thesis, additional efforts are foreseeable, namely the study of the PMOS 

device behavior and the implementation of additional short channel effects. Additionally, future 

efforts to enhance the accuracy of the model with respect to the experimental data are needed 

as well. Furthermore, the model presented here was built on the Python environment which 

implies the need to transform it into the Verilog-A language in order for it to be subject of some 

genuine tests in circuit simulators. 
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