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Abstract
In this work we explore the estimation and control of

a particle accelerator simulation of the 800 MeV linac at
Los Alamos National Lab. We use a convolution neural
network model with a low dimensional latent space to pre-
dict the phase space projections of the beam and beam loss,
which are mapped from accelerator settings. In deploying
the model, we assume phase space predictions cannot be
measured but beam loss can, and we apply a feedback using
the error in beam loss prediction to tune the latent space.
With beam loss and phase space predictions well correlated,
we apply constrained optimization techniques, simultaneous
with phase space prediction, to control the beam phase space
while keeping beam loss from reaching unsafe levels.

INTRODUCTION
In the field of control engineering, recent work has ex-

plored safe extremum seeking. Extremum seeking (ES) in
its classical form is designed to solve optimization prob-
lems, using a perturbation to dither control parameters while
taking measurements of the objective function in order to
compute gradients. Work in [1, 2] proposed designs which
are guaranteed to be “practically” safe – meaning that safety
violations can be made arbitrarily small with a choice of
design parameters. This means that it approximately solves
the constrained optimization problem

min
𝜃 (𝑡 )

𝐽 (𝜃 (𝑡)) s.t. ℎ(𝜃 (𝑡)) ≥ 0 for all 𝑡 ∈ [0,∞). (1)

We achieve ℎ(𝜃 (𝑡)) ≥ 𝑂 (𝜖) for any small 𝜖 for all time,
and 𝐽 (𝜃 (𝑡)) tending to an arbitrarily small neighborhood of
the optimum. Here the function ℎ is a measured metric of
safety, and 𝐽 is the measured objective. System safety is a
priority for any large accelerator facility. Spilled beam is an
important metric of safety as a misguided beam can cause
damage to the accelerator and irradiate components, causing
operational downtime, financial losses, and unsafe working
conditions for personnel. Recently, safe extremum seeking
has shown usefulness at LANSCE [3] demonstrating, both in
simulation and on an experiment of the actual beamline, that
it can tune various accelerator settings while maintaining
low levels of beam loss.

In [4] an early approach to adaptive machine learning
(ML) was demonstrated combining a deep neural network
(NN) with extremum seeking [5] for automatic shaping of
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the longitudinal phase space of intense electron beams in
the LCLS FEL. Recently an adaptive latent space tuning-
based approach has been developed which utilizes a bounded
adaptive feedback extremum seeking algorithm [6] directly
within the low-dimensional latent space of an autoencoder
convolutional NN [7] in order to track in real-time the time-
varying 6D phase space of charged particle beams at the
HiRES accelerator at LBNL and also at FACET-II at SLAC.
It has been shown that this adaptive latent space tuning
method makes generative NNs for predicting a beam’s 6D
phase space more robust and physically consistent for ex-
trapolation further beyond that span of their training data
than what is possible with traditional ML approaches that
rely on brute-force re-training [8]. The work of [9] also
demonstrated that a latent space encoding is also useful for
prediction of phase space projections at future times, given
a sufficient set of prior projections.

In this work we seek to blend these two tools 1) safe
extremum seeking for safe tuning of the beam 2) latent space
tuning for estimation of phase space projections. The work
in latent space tuning has been shown to be an effective
diagnostic tool, which is able to generate an estimation of a
hard-to-measure quantity like 6D phase space. We adapt the
tools used in latent space tuning approaches, and incorporate
them into the work of [1, 2] which guarantees safe behavior
when performing control. The control objective will be
to minimize 𝐽, defined by the closeness of the estimated
phase space with a desired phase space. The safety metric
ℎ is defined such that the measured beam loss is below a
threshold.

Methods using ML and other techniques have been used in
the past to both tune the beam and estimate various quantities
about the beam or the accelerator itself (sometimes referred
to as “diagnostics”). Safety was addressed in [10], which
presented a Bayesian optimization based method to tune
beamlines at PSI, incorporating the safety metric in a statis-
tical sense using the underlying Bayesian framework. Other
accelerator tuning algorithms span reinforcement learning
(RL) based sample efficient methods [11], a modification of
the Nelder-Mead simplex method [12], and a FPGA imple-
mented RL based controller for fast implementation on the
booster magnet power supply at Fermilab [13].

METHODS
Latent Space Estimation

A diagram of the proposed scheme is presented in Fig. 1.
The estimator block runs in realtime on a pretrained NN, and
generates an estimate of both the phase space projections
ŷps and the anticipated beam losses ŷbl. The 54 dimensional
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| |ŷ𝑝𝑠 − y𝑝𝑠,𝑑𝑒𝑠 | |
subj. to ℎ(y𝑏𝑙) ≥ 0

Safe Extremum Seeking
Controller

Figure 1: Diagram of the estimation and safe ES scheme.
The phase space (PS) generator and the beam loss (BL) gen-
erator are decoder style networks, mapping from a latent
variable z to estimates ŷps and ŷbl. The value ybl is the mea-
sured beam loss which is used in both generate an estimate
ŷps and in performing the safe control actions.

vector x are various accelerator setting data consisting of
magnet strengths, RF phases, and RF amplitudes. The 7
dimensional latent vector z encodes the vector x in order to
generate the outputs ŷbl and ŷps. We gather a data set of x
values and labels ybl, yps in order to train this NN.

Under the assumption that the outputs are well correlated
and using the known beam loss measurement ybl, we solve
the problem minz | |ybl − ŷbl | | to generate ŷps without access
to x on deployment. Here the norm defined is actually a
weighted norm based on data sensitivity of vector elements
from the training data set. The estimation scheme is based on
work [4, 7]. Once an estimate is found, the safe ES controller
seeks to drive the estimate ŷps to a desired value yps,des by
tuning accelerator settings 𝜃 (selected from the settings used
to gather x to pretrain the NN), while maintaining beam loss
below a threshold 𝑏th [%]. After a step of safe ES is taken,
the new beam loss is measured and the estimator solves
to find a best ŷps – this happens iteratively. Note that the
estimation problem happens quickly as the inference times
of the NN are on the order of milliseconds for single data
points, and efficient on GPUs for a larger number of data
points.

The vector ybl, given as a percentage, is a 48 dimensional
vector of beam loss [%] at various locations on the beamline
and the last downstream monitor will measure a total loss of
ybl,48, so we define the safety constraint measurement as

ℎ = 𝑏th − ybl,48, (2)

for some positive fraction (threshold) 𝑏th. We use 𝑏th = 0.20
and therefore ℎ = 1 corresponds to 19 % beam loss.

Safe Extremum Seeking Control
The version of safe ES we consider is the algorithm in [2,

3], discretizing time from continuous to discrete steps. The
vector 𝜃 is a set accelerator settings one wishes to tune, a
subset of the accelerator settings used to generate x. The
quantities∇𝐽 (𝜃𝑛),∇ℎ(𝜃𝑛) are estimates of gradients of func-
tions of the constrained optimization problem in (1), now
discretized. The function 𝐽 is an error defined by the close-
ness of two images (these are the desired as estimated lon-
gitudinal phase space projection for this study), shown as
| |ŷps − yps,des | | in the safe ES block in Fig. 1. This norm
which is actually performed involves element wise scaling
by a log transformation before an MSE calculation between
ŷps and yps,des.

The safe ES dynamics are essentially described as

𝜃𝑛+1 =𝜃𝑛 + 𝑘 (−∇𝐽 (𝜃𝑛)︸    ︷︷    ︸
Gradient Descent of the Objective

+
Gradient Ascent of the Safety︷      ︸︸      ︷

𝛼∇ℎ(𝜃𝑛)) . (3)

So the vector, 𝜃, is imparted with gradient descent dy-
namics acting on the objective function and gradient ascent
dynamics acting on the safety function. The quantity 𝛼 is a
non-negativ scalar function defined as

𝛼 := min{| |∇ℎ(𝜃𝑛) | |−2, 𝑀+}×
max{∇𝐽 (𝜃𝑛)𝑇∇ℎ(𝜃𝑛) − 𝑐ℎ(𝜃𝑛), 0} ≥ 0, (4)

≈ max{∇𝐽 (𝜃𝑛)𝑇∇ℎ(𝜃𝑛) − 𝑐ℎ(𝜃𝑛), 0}
| |∇ℎ(𝜃𝑛) | |2

,

for 𝑀+ ≫ 0. It turns “on/off" to determine whether to
consider safety and how much to consider it. The gradient
of a function describes the direction steepest increase, and
the term 𝛼 therefore provides the corrective action which
enforces safety such that ℎ(𝜃𝑛) ≥ 0 approximately for all 𝑛.

At every step 𝑛 a series of the forward difference steps
(equal to the dimensions 𝜃) are conducted to compute gradi-
ent estimates. For any given step the latent space estimate
searches 3000 points for the best ŷps based on the concurrent
beam loss measurement (approximately 3 seconds inference
time on a RTX A6000 GPU using a modified grid search).

RESULTS
We consider HPSim [14] as a model of the accelerator at

LANSCE, running 131072 macroparticles along the beam-
line up to approximately 800 MeV. The set of accelerator
settings are a vector of 54 values which are comprised of:
22 quadrupole magnet strengths in the LEBT, 12 quadrupole
magnet strengths in the so called “ramp” section between
modules 5 and 10, and modules 1-10 phase and amplitude
values. The beam loss values are measured as a fraction
of the total particles to lost particles after each of the 48
total modules in the linac. The phase space images are a
histogram of the particles on a 256x256 grid in each of the
15 unique projections of 6D phase space for 𝑥, 𝑦, 𝑥𝑝 , 𝑦𝑝 , 𝜙,
and 𝐸 . The boundaries of the grid are ± 3 cm in 𝑥 and 𝑦, ±
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Figure 2: Estimates of the longitudinal phase space projection, showing the NN output with the accelerator settings known,
and the estimate when performing latent space tuning using 3000 samples of z to solve minz | |ybl − ŷbl | |. The data point is
selected from the test set. Plots are given in high contrast color, with 90 %+ particles close to the yellow centroid.

Figure 3: The metric 𝐽, the closeness between the desired
and estimated longitudinal phase space image, and ℎ, the
difference between 20 % and the total beam loss.

Figure 4: The parameter vector, corresponding to Module
1/2 amplitude and Module 1/2 phase, normalized to values
between 0 and 1.

10 mrad in 𝑥𝑝 and 𝑦𝑝, ± 60 deg + 𝜙ref in 𝜙, ±1.013𝐸ref in
𝐸 . The reference particle coordinates (for the average accel-
erator setting vector) in 𝐸 and 𝜙 are 𝐸ref and 𝜙ref . All data
is normalized between 0 and 1 based on the range of values
encountered in 1200 runs (20 % validation) of HPSim sam-
pled at different accelerator settings, which are uniformly
sampled in range of accelerator settings.

In Fig. 1 depicted are three neural networks. The en-
coder is made up of 6 dense layers, with between 128 and
32 neurons, with an output of 7 – the dimension of z. The
phase space generator consists of 15 identical architecture
branches, consisting of 4 dense layers, and 4 convolutional
layers and a sigmoid output activation. The beam loss gener-
ator consists of 7 dense layers, each having 48 neurons and
the final layer with a sigmoid output activation.

From the test set x, we choose a longitudinal phase space
projection as the desired output yps,des. We then perturb
2 RF phase and 2 RF amplitude setting and apply the frame-
work in Fig. 1. We generate forward difference estimates of
the gradients in the safe ES algorithm (3), eliminating the
need for perturbation frequencies shown in the original work
of [2]. Fig. 2 shows the phase space estimation performance
for a data point collected from the test set.

In Fig. 3 and Fig. 4 a trajectory is shown for a marginally
unsafe initial condition, close to ℎ = 0. In 200 steps an
optimum value of 𝐽 is found constrained to the safe set with
approximately less that 20 % beam loss. During tuning,
no knowledge of the other 50 accelerator parameters were
known to the latent space estimator.

CONCLUSION
We hope to expand this work in the future to consider

all 15 phase space projection predictions as part of the con-
trol objective and refine the decoder generating phase space
estimates. We show that safe ES can be utilized, working to-
gether with a ML based diagnostic tool, to track an unknown
quantity while also maintaining system safety.
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