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Abstract

The spin vector of a particle injected into a perfectly

aligned storage ring precesses about the vertically-orientated

guide field. In the presence of an Electric Dipole Moment

(EDM), the spin precession axis acquires a proportional ra-

dial component. However, in an imperfect ring, rotational

magnet misalignments induce a radial component to the spin

precession axis, related to the Magnetic Dipole Moment

(MDM). In the Frequency Domain Method, this additional

precession is dealt with by consecutively injecting the beam

in opposite directions, and constructing the EDM estimator

as the sum of the clockwise and counter-clockwise vertical

plane precession frequencies. Since the radial MDM com-

ponent changes sign when the magnetic field direction is

reversed, it cancels in the sum, leaving only the EDM effect.

In order to reproduce the guide field magnitude with a preci-

sion sufficient for the cancellation of the MDM effect, we

propose to calibrate the guide field via the horizontal plane

precession frequency. In the present work we describe the

algorithm of the field flipping procedure, and do a numerical

simulation.

SPIN DYNAMICS IN A STORAGE RING

The dynamics of a spin-vector s in a magnetic field B and

an electrostatic field E is described by the Thomas-BMT

equation. Its generalized version, accounting for the effect

of the particle’s electric dipole moment, can be written in

the rest frame as:

ds

dt
= s × (ΩMDM +ΩEDM ) , (1a)

where the magnetic (MDM) and electric (EDM) dipole mo-

ment angular velocities ΩMDM and ΩEDM

ΩMDM =
q

m

[
GB −

(
G −

1

γ2 − 1

)
E × β

c

]
, (1b)

ΩEDM =
q

m

η

2

[
E

c
+ β × B

]
. (1c)

In the above equations, m, q, G = (g−2)/2 are, respectively,

the mass, charge, and anomalous magnetic moment of the

particle; β = v0/c is its normalized speed; γ its Lorentz-factor.

The EDM factor η is defined by the equation d = η
q

2mc
, in

which d is the particle EDM, s its spin.

∗ alexaksentyev@gmail.com

BNL FROZEN SPIN METHOD

The original method for the measurement of the electric

dipole moment of an elementary particle was first proposed

by the Storage Ring EDM Collaboration [1] of Brookhaven

National Laboratory. In the proposed method, [2] a

longitudinally-polarized beam is injected into a storage ring

designed on the basis of the Frozen Spin (FS) concept: by

applying a radial electric field Er =
GBycβγ

2

1−Gβ2γ2 , [2, p. 10]

the MDM component in (1a) is set to zero: ΩMDM = 0.

Then, any tilting of the beam polarization vector out of the

horizontal plane is attributed to the presence of an EDM;

specifically, the vertical component Py grows as

Py = P
Ωedm

Ω
sin (Ωt + Θ0) ≈ PΩEDM · t,

where Ω =

√
Ω

2
EDM

+Ω
2
MDM

. [2, p. 8]

This method has two inherent weaknesses, due to the 
smallness of the hypothesized EDM value: a) the expected 
polarization tilt angle after 1,000 seconds is on the order of 
microradians, [2] which makes for difficult polarime-

try [3, p. 6] and b) the main systematic effect,Ωsyst ≈
μ 〈Ey 〉

cβγ2

(μ being the MDM of the particle) [2, p. 10] must be reduced

to less than ΩEDM if one is to measure the polarization tilt

angle. The systematic error is caused by accelerator element

alignment error. For a practical value of 100μm of element

installation uncertainty, this means a Ωsyst on the order of

50 rad/sec. [4]

Both these problems can be mitigated if the net spin pre-

cession frequency is used as the EDM observable.

FREQUENCY DOMAIN METHOD

The Frequency Domain Methodology (FDM) [4] was de-

signed specifically to address the problem of element align-

ment uncertainty. The FS condition condition is fulfilled

as in the BNL method; however, instead of the polarization

tilt angle, the combined MDM+EDM precession frequency

is measured in two cases: once when the beam is injected

clockwise, and once counter-clockwise. The EDM-effect is

extracted by comparing the measured frequencies. When

the guide field polarity is reversed B �→ −B, β �→ −β, and

E �→ E, precession frequency components change thus:

Ω
CW/CCW
x = Ω

MDM ,CW/CCW
x +Ω

EDM ,CW/CCW
x ,

Ω
MDM ,CW
x = −ΩMDM ,CCW

x ≡ ΩMDM
x ,

Ω
EDM ,CW
x = Ω

EDM ,CCW
x ≡ ΩEDM

x , (2a)
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and the EDM estimator

Ω̂
EDM
x :=

1

2

(
Ω
CW
x +Ω

CCW
x

)
(2b)

= Ω
EDM
x +

1

2

(
Ω

MDM ,CW
x +Ω

MDM ,CCW
x

)
︸������������������������������������︷︷������������������������������������︸

ε→0

.

(2c)

In order to guarantee that ε is less than the required EDM

measurement precision, i.e. that equation (2a) holds with

sufficient accuracy, a guide field flipping algorithm has been

devised, that uses the horizontal plane precession frequency

as a means to calibrating the guide field.

CALIBRATION ALGORITHM

The goal of flipping the direction of the guide field is to

accurately reproduce the radial component of the MDM spin

precession frequency due to element misalignment.

Let T denote the set of all trajectories that a particle might

follow in the accelerator. T = S
⋃

F , where S is the set

of all stable trajectories, F are all trajectories such that if a

particle gets on one, it will be lost from the bunch.

Calibration is done in two phases:

1. In the first phase, the guide field value is set so that the

beam particles are injected onto trajectories t ∈ S.

2. In the second phase, it is fine-tuned further, so as to

fulfill the FS condition in the horizontal plane: by doing

this, we select the subset S|Ωy=0 ⊂ S of trajectories for

which Ωy = 0.

Spin tune (and hence precession frequency) is an injec-

tive function of the effective Lorentz-factor γe f f [5], which

means Ωy(γ
1
e f f

) = Ωy(γ
2
e f f

) → γ1
e f f
= γ2

e f f
. The trajec-

tory space T is partitioned into equivalence classes accord-

ing to the value of γe f f : trajectories characterized by the

same γe f f are equivalent in terms of their spin dynamics

(possess the same spin tune and invariant spin axis direc-

tion), and hence belong to the same equivalence class. Since

Ωy(γe f f ) is injective, there exists a unique γ0
e f f

at which

Ωy(γ
0
e f f

) = 0:

[Ωy = 0] = [γ0
e f f ] ≡ S|Ωy=0.

If the lattice didn’t use sextupole fields for the suppression

of decoherence, S|Ωy=0 would be a singleton set. We have

shown in [5] that if sextupoles are utilized, then ∃D ⊂ S

such that ∀t1, t2 ∈ D: νs(t1) = νs(t2), n̄(t1) = n̄(t2). By

adjusting the guide field strength we equate D = S|Ωy=0,

and hence S|Ωy=0 contains multiple trajectories. 1

1 Strictly speaking, even if sextupoles are used there remains some negligi-

ble dependence of spin tune on the particle orbit length (linear decoher-

ence effects, cf. [5]). Because of that, the equalities for spin tune and n̄

are approximate, and the set S |Ωy=0 should be viewed as fuzzy: we will

consider trajectories for which |Ωy | < δ for some small δ as belonging

to [Ωy = 0].

Therefore, once we ensured that the beam polarization

does not precess in the horizontal plane, all of the beam

particles have γ0
e f f

, equal for the CW and CCW beams.

SIMULATION

In order to confirm that the proposed calibration procedure

works, we need to show that:

1. S|CW
Ωy=0

= S|CCW
Ωy=0

, that is Ωy = 0 for the same set of

trajectories (equivalently, the same γe f f ) in the CW

and CCW cases.

2. ∀t1, t2 ∈ S|CCW
Ωy=0

: νs(t1) = νs(t2), n̄(t1) = n̄(t2), i.e., the

same sextupole fields reduce decohrerence in the CW

and CCW beams.

We do this by first computing the function νs(z) (where

z is the particle’s horizontal, vertical, or momentum offset

from the reference particle) for the CW and CCW beams; and

then compute their discrepancy ε(z) = νCW
s (z) − νCCW

s (z).

If the discrepancy is small in a wide range of z, then

1. sextupole decoherence suppression works for both

beams without gradient value change;

2. spin tune (respectively γe f f ) is equal for both beams,

and hence their Spin Wheels roll at the same rate.

In the simulation, we use an imperfect FS lattice [6], in

which the E+B spin rotator elements are tilted about the optic

axis by angles α ∼ N(0,5 · 10−4) radians. The simulation is

repeated three times; each time only one sextupole family is

turned on.

The beam’s kinetic energy is 270.00 MeV. We compute

third-order Taylor expansions of the spin and orbital transfer

maps.

The main body of the simulation consists in the follow-

ing: using the TSS [7, p. 41] procedure of COSY Infinity

we compute the νs and n̄ third-order Taylor expansions for

the lattice traversed in the forward direction. Then, using

the combinations of procedures MR and SMR [8, p. 233],

we reverse the lattice’s orbital and spin transfer maps, and

compute νs and n̄ for the reversed lattice (as it is seen by the

counter-circulating beam).

RESULTS

In Fig. 1 are shown the νs and n̄y dependencies on the

particle’s vertical offset from the reference orbit, when the

corresponding sextupoles are operational. Specifically, in

Fig. 1a one can observe that there’s a difference between

the CW and CCW beams in the values of spin tune and

invariant spin axis vertical component for trajectories de-

viating from the reference orbit. Figure 1b indicates that

if one can make the difference between the CW and CCW

particle’s horizontal plane precession frequencies smaller

than 10−7 rad/sec, the difference between their vertical plane

precession frequencies will be smaller than 10−8 rad/sec.

This confirmes that the equalization of the vertical plane
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(a) Spin tune and invariant spin axis dependencies on the particle

vertical offset from the reference orbit.

(b) Difference between the CW and CCW radial plane precession

frequencies vs the corresponding horizontal plane frequencies (cal-

ibration plot).

Figure 1: Simulation results for the decoherence caused by

vertical plane betatron motion.

MDM precession frequencies of counter-circulating beams

by means of equalizing their horizontal plane precession

frequencies is a viable technique.

In Fig. 2 you see the calibration plots when we varied the

horizontal offset, and the momentum offset.
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