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Abstract

Quantum theory has an epistemic horizon, i.e. exact values cannot be assigned
simultaneously to incompatible physical quantities. As shown by Spekkens’ toy
theory, positing an epistemic horizon akin to Heisenberg’s uncertainty principle in a
classical mechanical setting also leads to a plethora of quantum phenomena. We in-
troduce a deterministic theory—nomic toy theory—in which information gathering
agents are explicitly modelled as physical systems. Our main result shows the pres-
ence of an epistemic horizon for such agents. They can only simultaneously learn
the values of observables whose Poisson bracket vanishes. Therefore, nomic toy
theory has incompatible measurements and the complete state of a physical system
cannot be known. The best description of a system by an agent is via an epistemic
state of Spekkens’ toy theory. Our result reconciles us to measurement uncertainty
as an aspect of the inseparability of subjects and objects. Significantly, the claims
follow even though nomic toy theory is essentially classical. This work invites fur-
ther investigations of epistemic horizons, such as the one of (full) quantum theory.
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1 Introduction

Whenever an agent cannot obtain a complete account of a physical phenomenon, we
shall speak of an epistemic horizon. A standard example is the Heisenberg uncer-
tainty principle. Its qualitative consequence is that, given two incompatible measure-
ments' of a quantum system, an agent can only be certain about the outcome of at
most one of the measurements. There is a multitude of ways in which uncertainty
about a physical system, and thus an epistemic horizon, can emerge.

Sources of epistemic horizons. One potential source of uncertainty arises in cha-
otic systems, which exhibit high sensitivity to initial conditions. Unpredictability
of such systems follows due to the unavoidable inaccuracy of any specification of
boundary conditions (see, for instance, Batterman (1993)).

Learning about a non-chaotic system may still be intractable because of techno-
logical limits to measurement precision. Moreover, its behaviour may be unpredict-
able as a result of its astronomical computational complexity. In both cases, the lack
of knowledge an agent has about the system is connected to practical considerations
contingent on technological advances.

Logical paradoxes present another source of epistemic horizons. Self-referential
reasoning has been employed to establish links with undecidability, uncomputability,
and randomness (Svozil, 2019; Szangolies, 2018; Dalla Chiara, 1977). For example,
the work of Bendersky et al. suggests that quantum randomness must be uncomput-
able (Bendersky et al., 2017). A similar conclusion was drawn in Del Santo and Gisin
(2019), based on the idea of finite representability.

In the context of the theory of general relativity, it has been claimed that there is an
upper bound on information density. See, for instance, Bekenstein’s result express-
ing the maximum amount of information in a bounded system (Bekenstein, 1981).
Thus, an epistemic horizon can arise from the nature of spacetime itself for agents of
bounded size.

There are also more exotic possibilities. In Everettian Quantum Mechanics and
Many Worlds interpretations of quantum theory, all possible outcomes of a given
measurement actually happen and are experienced independently in parallel worlds.
Nevertheless, our single-world experience carries a self-locating uncertainty, which
leads to uncertainty about the outcome that can be described probabilistically (Barrett
etal., 2010).

In a causally indeterministic world there is a fundamental epistemic horizon. This
means that events need not be pre-determined by preceding conditions together with
the laws of nature (Hoefer, 2024).

Yet another source of uncertainty is the nature of dynamical laws. For instance, in
an extreme scenario of a physical theory with two types of systems without coupling,
a system of one type cannot learn about the behaviour of systems of the other type
when learning is mediated by interactions. A remote yet far-reaching example is the
part of the Universe we will never interact with, which includes all systems beyond
the horizon from which no information can reach us.

! Two measurements of a quantum system described by a Hermitian operator are incompatible if the opera-
tors do not commute.
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Still, even in the presence of non-trivial interactions, learning faces limitations. In
this work we study an epistemic horizon in the context of a specific physical theory
introduced below as nomic toy theory. In particular, we prove that in this theory, one
physical system can only obtain constrained information about another. Similar to
quantum theory, measurements in nomic toy theory can exhibit incompatibility. Their
outcomes cannot be known simultaneously by agents modelled as systems within the
theory. The nature of interactions of nomic toy theory thus impacts the information
gathering activities of agents and entails fundamental limits to what can be known
about the world.

Dynamical epistemic horizons. In classical mechanics the values of the positions
and momenta of all particles at a certain time, together with the physical laws, are
purported to fully determine their entire future (and past) values. Moreover, so the
story goes, the values at a given time can be precisely measured. A principal artic-
ulation of such causal determinism is the omniscient intellect of Laplace’s demon
(Laplace, 1814; Hoefer, 2024).

In Newtonian physics one often ignores an explicit account of measurement
interactions and that they necessarily disturb the system being measured (Barad
2007, Chapter 3). This is traditionally justified by stipulating that the disturbance
is determinable and thus can be accounted for. Adjusting one’s measurement record
based on known disturbance—if indeed possible—allows an agent to acquire arbi-
trary information about a system. Particularly in the context of quantum theory, mea-
surements are said to introduce disturbance. Heisenberg’s uncertainty relations were
interpreted by himself as originating from an inevitable measurement disturbance:
Whatever pre-determines the outcome of a measurement of a particle is inadvertently
disturbed by its interaction with the apparatus (Heisenberg, 1925).2

Based on complementarity, i.e. the existence of mutually exclusive experimen-
tal arrangements, Niels Bohr argued that the measurement disturbance in quantum
theory cannot be accounted for. According to him, this is due to discontinuous quan-
tum jumps (Bohr, 1937). Thus, the discrete nature of measurement interactions spoils
determinism and predictability.’

One perspective on our work is that it provides an account of uncertainty in Spe-
kkens’ toy theory (which reproduces stabiliser states in quantum theory (Pusey, 2012;
Catani & Browne, 2017)) in terms of dynamical measurement disturbance. In a nut-
shell, there is a classical theory—the ontological model of Spekkens’ toy theory—
whose deterministic laws entail an epistemic horizon. In this sense, Heisenberg’s
original interpretation of uncertainty can be said to apply in the case of stabiliser
quantum theory.

Spekkens’ toy theory. In 2004 Robert Spekkens conceived of a toy theory based
on the so-called knowledge-balance principle: “If one has maximal knowledge, then

2However, this early account of Heisenberg’s uncertainty is but one possible interpretation. The proper-
ties that determine an individual measurement result need not exist in a quantum world. In particular,
it is unclear whether a single particle can be said to possess properties of position and momentum prior
to measurement (see, for example, Fankhauser (2022, Section 6.1)). Thus, one cannot straightforwardly
argue that such properties (since they do not exist) would be disturbed in a measurement.

3 Later, Heisenberg in part conceded to Bohr’s views and acknowledged complementarity as the source of
uncertainty (cf. Wheeler and Zurek (1983) on Heisenberg’s postscript to his uncertainty article).
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for every system, at every time, the amount of knowledge one possesses about the
ontic state of the system at that time must equal the amount of knowledge one lacks”
(Spekkens, 2007) (cf. similar in-principle restrictions on the detectable amount of
information by Brukner and Zeilinger (2003)). The idea was to construct a theory
in which (at least some) quantum states can be viewed as epistemic as opposed to
ontic. That is, they would represent states of incomplete knowledge about a physical
system instead of different states of physical reality. The theory is essentially clas-
sical, because it admits a deterministic non-contextual ontological model.* Specifi-
cally, its kinematics is given by phase spaces of classical particles and its dynamics
preserves the phase space structure. Epistemic states of the toy theory arise from the
ontic states via an epistemic restriction called classical complementarity: Two linear
observables on the phase space can be jointly known only if their Poisson bracket
vanishes. The toy theory qualitatively reproduces a large part of the operational pre-
dictions of quantum theory (Spekkens 2016, Table 2). For instance, it can recover the
complete behaviour of states and measurements in the stabiliser subtheory of quan-
tum theory, whose states are eigenstates of products of Pauli operators. With respect
to the epistemic restriction of Spekkens’ theory we ask the following question: Can
uncertainty in a physical theory arise without imposing an a priori restriction on the
acquisition of knowledge?

We give an affirmative answer. Namely, inspired by Hausmann et al. (2023), we
provide a deterministic physical theory—nomic toy theory—and show that agents
are limited in the amount of information they can gather. The limitation derives from
the dynamics of nomic toy theory and a definition of information gathering agents
modelled within the theory. Furthermore, the epistemic horizon we derive precisely
matches the postulated epistemic restriction of Spekkens’ toy theory. This is interest-
ing since Spekkens’ toy theory includes no formal account of how agents acquire
knowledge and what is the source of the limitation. To our knowledge, our work
constitutes the first account of an a posteriori epistemic horizon arising from dynami-
cal laws.

Paper overview. We proceed as follows. First, in Sect. 2, we define nomic toy
theory, its ontic state space, the notion of a toy system, the characterisation of agents,
as well as the dynamics and the notion of a measurement. In Sect. 3 we present the
main result, which represents a fundamental epistemic horizon in nomic toy theory.
There, we also relate our work to Spekkens’ toy theory, which is shown to arise
as the epistemic counterpart of our nomic toy theory (Sect. 3.3). We furthermore
comment on the possibility of self-measurement in Sect. 3.2. The findings are sum-
marised in Sect. 4, where we also comment on the relationship to quantum and clas-
sical uncertainty more generally, and provide an outlook on related issues such as
multi-agent scenarios and the participatory nature of the observer. Appendix A con-
tains the details of a position and momentum measurement in nomic toy theory. In
Appendix B we provide supplementary material on Spekkens’ toy theory, including
several new proofs. For additional details on this toy theory, closely related to our
nomic toy theory, we refer the reader to Spekkens (2016), Hausmann et al. (2021).

4¢f. also Catani et al. (2023) on classicality in quantum theory.
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2 Nomic toy theory

To formulate our result on an epistemic horizon emerging from deterministic phys-
ical laws, we introduce nomic toy theory in which the subject-object relationship
can be studied.’ The key feature of nomic toy theory is that it explicitly models the
agent performing the measurement as a physical system in the theory. Given the ontic
state space (a classical phase space), deterministic dynamics (via symplectic maps),
as well as a definition of the agent, the theory contains restrictions on what can be
known about physical systems.

We first introduce the state space and dynamics of toy systems (Sect. 2.1) and
elaborate on their properties in Sect. 2.2, to then define toy subjects within the theory
(Sect. 2.3). In Sect. 2.4 we define measurements between subjects and objects as a
physical interaction. Finally, Sect. 2.5 discusses what kind of information can be
learned by a toy subject about a toy object via such interactions. An arbitrary learn-
able property is provided by the notion of a fixed variable (Definition 2.7). However,
as we show in the crucial Proposition 2.10, the same information is carried by the
smaller set of measurable variables (Definition 2.9).

2.1 Toy systems

The formalism of physical states in nomic toy theory closely follows that of ontic
states in Spekkens’ toy theory (cf. Appendix B.1, Hausmann et al. (2021) and Haus-
mann et al. (2023, Appendix A)). We begin with a description of the kinematics of

nomic toy theory and the definition of a physical system.

Definition 2.1 A physical system V' in nomic toy theory (a toy system) is specified
by a symplectic vector space V.

We can also think of it as the phase space of a classical particle. Namely, V is a

2n-dimensional F-vector space® with an orthonormal basis {1, - . ., ¢n, P1,- -, Pn}-
It is furthermore equipped with a symplectic form w : V x V — F given by
0o 1,
a- (9, %) 0

in matrix form in the above basis, where 1,, is the 7 X n identity matrix. In particular,
we have

w(z,y) = 2" Qy = (z,), )

>The use of the word nomic is motivated by the theory’s emphasis on law-like interactions between an
agent and another physical system.

%For a continuous toy system, F is R, while for a discrete d-level system, it is Z,, in which case it is a
field only if d is a prime. For degrees of freedom with other finite cardinalities, one can instead consider
V to be a Z4-module.
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where vectors are represented as columns, z” is the transpose of x, and (, ) is the
canonical inner product.

A physical state of the toy system (an ontic state) is then specified by an element of
V.

The choice of dynamics of the theory is inspired by the Hamiltonian formula-
tion of classical mechanics. In particular, its time evolution via Hamiltonian flow is
always a symplectomorphism—a map between symplectic manifolds that preserves
the symplectic structure. For the manifolds considered here, i.e. symplectic affine
spaces, there are two basic types of such transformations. One can be represented by
a linear map V — W which preserves the symplectic form. The other corresponds
to an affine map V — V that translates each state by a chosen vector in V. These
are exactly the allowed transformations of ontic states in Spekkens’ toy theory. The
choice of dynamics of nomic toy theory is thus compatible with the epistemic restric-
tion of Spekkens’ toy theory (see Lemma B.3 and Proposition B.2 for a proof).

For a symplectic vector space V, the symplectic maps V — V form the symplectic
group, whose matrix representation is

Sp(V) := {M € GL(V) | MTQM = Q}, 3)

where GL(V) is the set of the invertible linear maps of type V. — V.

We thus define the group of reversible transformations of a given toy system in
nomic toy theory to be the affine symplectic group: Its elements are pairs (¢,v) of a
symplectic map t € Sp(V) and a vector v € V, which compose via

(s,u) o (t,v) = (sot,u+s(v)). 4)

As we can see, the dynamical evolution of ontic states in nomic toy theory is deter-
ministic. That is, a given reversible transformation (¢, v) acts uniquely on ontic states
via z — t(z) + v.

2.2 Properties of toy systems

To facilitate our formal derivation of the epistemic horizon in nomic toy theory, we
discuss several properties of toy systems in this section. Our main theorem (Theo-
rem 3.1) later establishes which of these properties can be acquired by a toy subject
through a measurement interaction (see Sect. 2.4). In particular, there are properties
that cannot be learned in this way and thus lie beyond the epistemic horizon.

Our notion of a variable is intended to model an arbitrary property of a toy system
(at a particular point in time’). On the other hand, a Poisson variable is a special
property which, as we prove later in Theorem 3.1, is measurable by toy subjects.
Table 1 provides an overview of the different kinds of properties of toy systems.

7 Note that the notion of time is implicit but of no particular relevance for the results. It only matters that
a transformation connects a pre-measurement state to a post-measurement state.
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Table 1 Summary of the three different types of properties of a toy system V. Note that every functional
is a Poisson variable

Property Type Values Extra conditions
Variable Z Function V — Z Set Z -

Poisson variable Z Linear map V — Z Vector space Z 70727 =0
Functional Z Linear map V. — F Scalar F -

Definition 2.2 Let V' be a toy system with symplectic vector space V. A function
Z 'V — 7 is termed a variable of V, where Z is the set of values of the variable. A
variable is termed Poisson if Z is an F-vector space and Z is a linear map that satisfies

z0zT =, 6)

where (2 is the matrix representation of the symplectic form.
Every variable induces a partition

{Z7'(z) |z €2} (6)

of the set V of ontic states. Variables that induce the same partition are considered
to be equivalent. Note that Poisson variables are valued in a vector space, whose
dimension tells us about the potential number of independent scalar properties it can
describe. An important special case is when the dimension is 1, in which case we
speak of a functional V — F. Such a linear map automatically satisfies Eq. (5).

For any basis {zi}?;nll(z) of a vector space Z, we can think of an arbitrary linear map
Z : V — Z as a set of functionals {Z; }, where Z; is given by 2} Z in matrix form. In
this representation, Eq. (5) says that every pair of these functionals must have vanish-
ing Poisson bracket, i.e.

w(z],zZ])=2,92Z] =0 @)

holds for all i and all j. Therefore, Poisson variables precisely correspond to proper-
ties which, in Spekkens’ toy theory, are assumed to be knowable about the toy system.
While this epistemic horizon is traditionally postulated in Spekkens’ toy theory, we
derive it in nomic toy theory.

Remark 2.3 To see the connection to epistemic states of Spekkens’ toy theory (Appen-
dix B), note that the set of vectors { Z1'} spans an isotropic subspace of V. Together
with a value of Z, it thus specifies an epistemic state. The support of this epistemic
state is an element of the partition from (6).

A canonical example of a Poisson variable is the projection of V onto the n-dimen-
sional subspace spanned by the g; basis vectors. It satisfies Eq. (5) because we have
w(gi, q;) = 0 for all i and all j. In other words, the symplectic form vanishes on this
subspace. The highest dimension of a subspace with this property is #. The following
standard concept generalises such a maximal Poisson variable.
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Definition 2.4 An n-dimensional subspace Q of a symplectic vector space V, on
which the symplectic form w vanishes, is called a Lagrangian subspace.

For any Lagrangian subspace, the associated projection () : V. — Q is a Poisson vari-
able. Moreover, by Darboux’s Theorem, there is a basis of its orthogonal comple-
ment P := Q7 in which the symplectic form has the canonical form of Eq. (1) with
respect to the decomposition V= Q & P.

2.3 Toy subjects

Physical theorising is often done from an omniscient point of view external to the
world. That is, one introduces a theoretical domain of discourse—the physical world
together with some law-like behaviour—to explain the phenomena that are directly
observable through empirical data. For instance, according to an omniscient being
like Laplace’s demon the future and past of the world is completely fixed if the laws
are deterministic.

However, observations of phenomena necessarily occur within the world. There-
fore, every physical theory requires in addition an epistemology that stipulates what
can be known, e.g. about the physical world. That is, intuitively, we need to specify
what the empirical data can and cannot signify about the physical world.

And so it may happen that the two perspectives disagree. Even if the omniscient
viewpoint contains no fundamental uncertainty about all details of the world, an
internal agent could be bound to epistemic limitations. Whether the omniscient view
is or is not conceivable, it may be unreachable for any agent as a result of the dynami-
cal constraints of the world in which the agent operates. To study this tension, let us
introduce the notion of agents in nomic toy theory. Note that we do not place any
anthropocentric constraints on these, our agents are part of nature in the same way
that their objects of study are. Since our agents are decidedly minimal and may not
fulfil elaborate requirements for agency (van Lier, 2023; McGregor et al., 2024), we
also call them toy subjects.

We only have two basic desiderata. Firstly, a toy subject is a physical systems of
the same kind as any object to be observed and interacted with.® That is, an informa-
tion gathering subject is an arbitrary toy system as introduced in Sect. 2.1.

Secondly, a toy subject ought to include a specification of its ‘knowledge’ vari-
ables. These are manifest properties of the subject that represent the directly acces-
sible empirical data on which the subject’s knowledge supervenes. The dynamics of
nomic toy theory, in turn, dictates what the manifest variables of the subject can and
cannot signify about the ontic properties of an object with which the subject interacts.

Definition 2.5 A toy subject is a toy system A equipped with a Lagrangian subspace
Q of the symplectic vector space A. The associated Poisson variable Q : A — Q is
called the manifest variable of the subject.

8See also Hausmann et al.’s more operational approach to modelling the memory register of an agent as
a toy bit (Hausmann et al., 2023).
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An example of a toy subject is a simple pointer apparatus. The manifest variable
would be the value on a scale or the angle of a pointer needle. Inspired by such
example, we call the manifest variable @) of A the position of A and its complemen-
tary variable P the momentum of A. Even though we do not assume what type of
degrees of freedom the manifest ones are, we label them as ‘positions’ for the sake
of simplicity.

Throughout this work we refer to subjects also as ‘agents’. However, we do not
intend the above definition of toy subjects to fully capture the complexities of agency,
which may include qualities of awareness, intention, or free will. Indeed, both pas-
sive measurement devices and active agents with awareness can satisfy our purpose-
fully minimal definition, which allows for broad applicability of our results.

In either case, when we speak of the subject’s knowledge we merely refer to the
information stored in its manifest variable. The measurement of another toy system
by the subject (as discussed later in Sect. 2.4) is conceptualized as an interaction
between the two systems and thus does not require any ‘agency’ on the part of the
subject. Finally, for a toy subject to learn about another system means that it ‘obtains
information’ by virtue of changes in its manifest variable. The epistemic horizon we
derive (Theorem 3.1) is therefore a limitation on the possible acquisition of informa-
tion via interactions.

The crucial property of a toy subject defined above is that its knowledge super-
venes on its manifest variable. Importantly, it is a variable associated to a Lagrangian
subspace of its own ontic state space. Therefore, the toy subject does not have direct
access to the value of its own momentum variable P. This has implications for the
feasibility of measurements that the toy subject can implement. In particular, given
a specific value ¢ of the position variable (), the toy subject can perform a measure-
ment of another toy system conditionally, i.e. so that its own position prior to the
measurement has value ¢g. On the other hand, we cannot grant it the power to fix its
own momentum value before the measurement interaction since there is no a priori
way for the toy subject to know its own momentum. We discuss measurements in
more detail in Sect. 2.4.

One may be tempted to view the restriction on a toy subject’s access to its own
ontic state as a kind of epistemic horizon (on self-knowledge rather than on knowl-
edge of the world). However, this is not fully justified. Even if an agent has no direct
access to some of its own degrees of freedom, it could still learn about them indi-
rectly. Whether this is possible or not depends on the dynamical laws of the world in
which the agent operates. We discuss toy subjects measuring their own momentum in
the context of nomic toy theory in Sect. 3.2.

Nevertheless, the fact that the knowledge of a toy subject supervenes on a Poisson
variable (Definition 2.2) rather than its ontic state is a key ingredient in our derivation
of the epistemic horizon in Sect. 3.1. Other agents, such as ones with direct access
to their own ontic state, would be able to break the epistemic horizon of nomic toy
theory.
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2.4 Measurement interactions

Let us now turn to the discussion of how a toy subject A may learn about a toy system
S by virtue of interacting with it. To distinguish S from A, we call such S the toy
object.

We model this potential acquisition of knowledge as a process in nomic toy theory
(Fig. 1), which transforms the joint system of S and A denoted by S & A. The joint
ontic state space is given by the direct sum S & A, which carries a canonical symplec-
tic structure induced by those of S and A. For more details on joint systems as well as
joint and marginal states in Spekkens’ toy theory, see Appendix B.2.

We also assume that the toy subject A is in a ‘ready state’ prior to the process, i.e.
its position variable ) has a definite value. Since the value of @ is already assumed
to be directly accessible to A (see Sect. 2.3), this presents no additional assumption.

Definition 2.6 Given a toy system S and a toy subject A (with manifest variable @),
a measurement of S by A is a pair of a ready state, specified by a value of @), and a
reversible transformation m : S® A — S @ A of nomic toy theory.

That is, m is given by an affine symplectic map

Tz Mz +v (8)

where x,v € S @ A and M is a symplectic matrix.

The assumption that the measurement process is governed by reversible transforma-
tions does not pose any loss of generality if we assume that all irreversible transfor-
mations can be dilated to a reversible one with larger output (cf. Appendix B.3). Any
information obtained by the irreversible process could then also be learned via its
reversible dilation.

Interaction m :
Toy object S : Toy subject A

Qs, P Variable of S measured by A 0, 0,

Variable of S beyond A’s
epistemic horizon

Epistemic horizon

PP,

Fig. 1 A toy subject A with two manifest variables Q1 and Q2 gathers information about a toy object
S via a measurement interaction m. Due to the physical nature of the measurement process, the subject
can only acquire information about compatible variables. That is, its internal perspective (indicated in
the white box) has an epistemic horizon, by which the toy subject can learn some properties but not
others. In contrast, the external omniscient perspective (gray box) features the complete joint descrip-
tion of both the toy object and subject. See also Fig. 2
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2.5 Measurable properties of toy systems

Regarding measurement interactions in nomic toy theory, we are concerned with the
following question: Which variables Z : S — Z can be measured by the toy subject
A via a measurement as in Definition 2.6? Our model of learning presumes that the
toy subject A only has direct access to its own manifest variable (). That is, there
should be a way to extract the value of Z prior to the measurement from the value of
@ after the measurement. The following definition formalises this notion.

Definition 2.7 Given a measurement m of a toy object S by a toy subject A and a
variable Z of S, we say that Z is fixed by m if there exists a function f: Q — Z
satisfying

Z(s) = foQom(s+p) )

forall s € Sand all p € P.

Here, Z(s) is the value of the Z variable before the measurement took place, while
@ o m(s + p) is the subject’s position after the measurement. Note that o denotes, as
usual, the composition of functions.

The fact that Eq. (9) is required to hold for every p expresses the assumption that
the subject cannot use any direct information about its own initial momentum to learn
about Z.

Note that the initial value of @), which has a definite value because the subject
enters the interaction in a ready state, is hidden in the choice of f. Specifically, let gy
be the initial poistion of the toy subject A. Given a function f’ satisfying

Z(s)=foQom(s+qo+Dp) (10)
for all s and all p, one can define a new function
f(@) = f'(g+ Qom(q)), (11)

which, by linearity of m and @), satisfies Eq. (9). Thus, there is no loss of generality
in setting go = 0 in Definition 2.7. However, the fact that the suitable f depends non-
trivially on gy means that assuming the toy subject to enter the interaction in a ready
state is necessary.

Let us decompose the measurement interaction’s matrix form into blocks with respect
toV=S®Q®Pvia

Mss Msq Msp
M= |Mqgs Mqq Mqp|, (12)
Mps Mpq Mpp

where, for example, Mqp is the block that acts as the linear map P — Q.

@ Springer
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Definition 2.8 Given the notation from Eq. (12), the subspace im (Mqp) of Q pro-
vides the contingent manifest variable given by the orthogonal projection onto this
subspace and denoted by C' : Q — C. Its orthogonal complement in Q) specifies the
free manifest variable denoted by ' : Q — F.

Here, im (Mqp) denotes the image of the map Mqp. The value of the contingent
manifest variable after the transformation m depends on the initial momentum of A,
which motivates its name. On the other hand, the value of the free manifest variable
after the measurement m is independent of the initial momentum of A.

Thus, by definition we have Q = F @& C. Furthermore, if we write the symplectic
matrix M of the transformation in a block form with respect to the decomposition

SEA=SaFaCaP, (13)

then the block Mpp vanishes by definition.

Among all the variables fixed by a given measurement, there is an essentially unique
most discerning (i.e. most informative) one, as we show in Proposition 2.10 below.
It is the variable s — F' o m(s), which is a linear map S — F that is given by Mg
in matrix form.

Definition 2.9 The variable measured by a measurement m is the linear map
Mpgg : S — F, where I is the free manifest variable. A variable Z : S — 7 is called
measurable if it is measured by some transformation in nomic toy theory.

The next proposition shows that any variable fixed by a measurement can be extracted
from the variable measured by it. Therefore, considering variables that are fixed by
some measurement does not give the agent any more information about the system
than merely restricting attention to variables of the form Mps. This result justifies our
identification of the set of measurable variables as representing all properties of a toy
object that a toy subject can acquire through a measurement interaction.

Proposition 2.10 If Z is a variable fixed by a measurement m, then there is a function
f + F = Z such that for each s € S we have

Z(s) = f(Mrss). (14)

Proof Without loss of generality, we can assume that m is a linear map, so that
m(z) = Mz for any vector x € S @ A. This is because affine shifts do not affect
whether a variable is fixed by a measurement.

The fact that Z is fixed by m means that there is a function f : F — Z satisfying

Eq. (9). Using the notation from Eq. (12) and that Myp vanishes by the definition of
the free manifest variable F, we thus have
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Z(s) = f(Mps s + Mcs s + Mcp p) (15)

forall s € Sand all p € P.
Since Mcp is surjective by the definition of the contingent manifest variable C, there
is a ps € P that satisfies

Mcp ps = —Mcs s (16)

for a given value of s. Choosing p to be p, in Eq. (15) thus completes the proof.

3 Epistemic horizons from deterministic laws

We are now ready to present our main result (Theorem 3.1), which derives a limita-
tion on the toy subject’s abilities to learn about toy objects. Specifically, we show
that a variable is measurable (Definition 2.9) if and only if it is a Poisson variable
(Definition 2.2) in nomic toy theory (Sect. 3.1). In Sect. 3.2, we comment on why
our agents know nothing about the object prior to learning and how this assumption
can be justified with measurement disturbance. We also discuss a model of a toy
subject measuring its own momentum and show that it does not break the epistemic
horizon—unlike an agent that would have direct access to its own ontic state. Since
Poisson variables in nomic toy theory are exactly those that can be known in Spe-
kkens’ toy theory, we conclude in Sect. 3.3 that Spekkens’ toy theory is the epistemic
counterpart of nomic toy theory.

3.1 Constraints on information acquisition

Recall that Poisson variables can be thought of as a collection of functionals with
mutually vanishing Poisson brackets. Since the Poisson bracket of generic function-
als does not vanish, this implies that not all properties of a toy system can be known
simultaneously by an agent in the theory.

With all the definitions introduced in Sect. 2, we can now state our main theorem.

Theorem 3.1 A variable is measurable in nomic toy theory if and only if it is a Pois-
son variable.

Moreover, by Proposition 2.10, the only variables fixed by some measurement in
nomic toy theory are those that can be written as a function of some Poisson variable.
We illustrate this phenomenon in Fig. 2.

Proof We split the proof into two parts.

Part I: Poisson variables are measurable. In the first part, given any collection
of compatible components of a Poisson variable, we construct a transformation that
implements their joint measurement. That is, we consider an arbitrary Poisson vari-
able Z : S — Z of the toy system .S (see Definition 2.2). Recall that Z can be decom-
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Fig. 2 The epistemic horizon ‘experienced’ by the toy subject is akin to the situation in which the
subject would wear glasses that only let vertically polarised light or horizontally polarised light go
through. The positioning of the glasses determines whether interaction m or m/ takes place. The prop-
erties of the toy object are analogous to unpolarised light, which can be decomposed into vertical and
horizontal components. The toy subject can choose the orientation of glasses, but cannot observe the
toy object without the glasses

posed as a set of components (functionals) as {Zi}?i:"f(z). By definition, it satisfies
the compatibility equation

ZQsZ" =0, (17
which can be interpreted as saying that its components have mutually vanishing Pois-

son brackets, i.e. they satisfy w(Z], Z]) = 0 forall i and /.
We then specify the phase space of the toy subject to be A = Q @ P, where Q is
defined to be Z—the vector space of possible values of Z. Here, we demand Q to be
a Lagrangian subspace of A, which thus uniquely fixes P and the symplectic structure
on A. The manifest variable of the toy subject A is chosen to be the projection map
A—Q.

We now construct a transformation m : S @ A — S @ A that measures the Pois-
son variable Z. It is the linear transformation given as a matrix by

1 0 Qg7
M=z 1 0 (18)
00 1
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in the block form relative to the decomposition. A specific example of the above
matrix for the case of a position measurement can be found below.

Note that we have Mqp = 0, which implies F' = Q, and Mqg = Z. Thus, by Defini-
tion 2.9, the transformation m measures 7 if it is indeed a valid transformation in
nomic toy theory. To show that it is, we have to prove that it is a symplectic matrix,
i.e. that M7 QM = Q holds. The left-hand side of this equation gives

Qs 0 0
0 0 1 ) (19)
0 -1 zQgz"

which is indeed equal to 2, provided that 7 is a Poisson variable satisfying Eq. (17).
Part II: Measurable variables are Poisson variables. In the second part of the
proof, we show that no other variables can be measured by valid transformations in
nomic toy theory.

Our task is to show that if Z is measurable, then it must be Poisson, which means
proving

Z0s77 =0, (20)

since the fact that Z is a linear map follows from the definition of measurable
variables.

Consider now a measurement m where the toy subject A is given by the symplectic
vector space Q @ P where Q is its manifest variable. Moreover, the linear part of m
is denoted by M with blocks denoted with respect to the decomposition from (13).
The fact that m is a transformation in nomic toy theory means that M is a symplectic
matrix. Moreover, the transpose of every symplectic matrix is also symplectic, i.e. we
have MQMT = Q. Extracting the FF block out of this set of 16 equations, we find

MypsQs Mg — Mpp (Myp + Mpc)” + (Mpp + Mpc) Mip = 0. (21)
Since Mpp is the zero matrix by Definition 2.8, this implies
Mrps§s My = 0, (22)
which is what we wanted to show, concluding the proof of Theorem 3.1. d
Note that every functional is a Poisson variable. Theorem 3.1 thus implies that
every functional is measurable. Furthermore, by the construction in the first part of
the proof, a 2-dimensional subject suffices to measure it.
3.1.1 An example of a position measurement
Let us illustrate the construction of the measurement of a generic Poisson variable

Z with a concrete example. To this end, consider both the toy object S and the toy
subject A to be 2-dimensional, i.e. each one comes with a single position and a single
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momentum degree of freedom. Moreover, we choose Z to be the position variable of
S, which is a functional in this case. In matrix form, Z is given by

1 0 (23)

in the {gs, ps} basis of S.
Before the measurement, the initial joint state of S & A is denoted by

U1
(%
v= |, 24

V4

in the {gs,ps, qa,pa} basis of S @® A. On the other hand, the measurement inter-
action from the proof of Theorem 3.1 is in general given by the matrix M from
Eq. (18). Substituting the position variable from (23) for Z in this expression gives

0
~1

o |- 25)
1

OO
oo O
OO O

Thus, the post-measurement ontic state of the joint system is

(26)

We notice two crucial features. First, if the toy subject A is initially in a ready state,
i.e. if v3 has a definite value, then the manifest variable after the measurement encodes
the initial position of S given by v;. This illustrates one role of our assumption that
the agent’s manifest variable be fixed prior to the measurement.

Secondly, there is a back-reaction on the object’s momentum—the conjugate variable
to the measured position of .S. In particular, its value after the measurement is dis-
turbed by a value that equals the initial momentum of the toy subject A. This distur-
bance highlights the role of our assumption that the toy subject cannot directly know
its own momentum. If it did, the measurement disturbance could be accounted for.

Let us discuss both of these points in more detail now.

3.2 A couple of caveats

Our claim that the learning of an agent in nomic toy theory is limited by an epistemic
horizon hinges on the following caveat.
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3.2.1 The relevance of (no) a priori knowledge

We assume that, prior to any measurement, the agent possesses no knowledge about
the state of the toy object S. Indeed, imagine that, on the contrary, the following is
true: The agent A is composed of two subsystems, i.e. we have A = A; @ Ay where
each A; is a toy subject with an associated manifest variable Q;. At time #; (labelling
that the measurement process is yet to occur), the value of the manifest variable Q1
encodes the momentum of S and, importantly, the agent A knows that this is the case.
Furthermore, As is in a ready state (see Definition 2.6).

Then, applying the transformation m, : S@® Ay — S® A, given by Eq. (18),
where Z is the position variable of .S, enables A5 to learn the position of S. Since the
state of A; is unchanged by this transformation, at time ¢, (labelling that the trans-
formation has occurred) we have the following situation: The manifest variable ¢); at
time ¢ encodes the momentum of S at time ¢; and the manifest variable Q5 at time
to encodes the position of S at time ¢;. In conjunction, at time t5, the agent A has a
complete specification of the ontic state of S' at time ¢; and thus breaks the purported
epistemic horizon.

However, it is natural to assume that the agent has no knowledge of the toy object’s
state initially. After all, we are interested in deriving fundamental bounds on the learn-
ing capabilities of the agent. Any pre-existing knowledge should be accounted for by
an explicit process that allows A to obtain information. Hence, we can circumvent
the above caveat on grounds that the acquisition of information invariably involves
an interaction with the physical world. This justifies our assumption that toy subjects
possess no a priori knowledge of the state of the toy object.

3.2.2 Measurement disturbance

But how can we be certain that the knowledge of the object’s momentum by A; could
not be accounted for by an explicit process in nomic toy theory? Abstractly, this fol-
lows from Theorem 3.1.

More concretely, consider a measurement m, : S ® Ay — S @ A; that is applied
before m, and given by Eq. (18), where Z is now the momentum of S (see Fig. 3).
That is, m,, encodes the momentum of S at time ¢( (labelling that the measurement
m,, is yet to occur) into the manifest variable ()1 at time ¢;. One can check that the
momentum of S is unaffected by m,, and thus the manifest variable (), at time ¢;
also coincides with the momentum of S at time ¢y. See Appendix A for the explicit
computations.

The issue is that m,, disturbs the position of the toy object .S by a shift that depends
on the (unknown) momentum of A; at time tg. As a result, the subsequent transfor-
mation m, encodes the position of S at time ¢;, rather than the one at time ¢y, into
the manifest variable Q)2. The composed process mq 0 m, is therefore no counter-
example to Theorem 3.1. Nevertheless, our discussion shows that the toy subject A
can, at time ¢, have perfect knowledge of the ontic state of the toy object S at time
t1! This is in line with the fact that also the ontic state in Spekkens’ toy theory can
be perfectly known given both pre- and post-selection (Hausmann et al., 2023). It is
worth mentioning that the same is true in quantum mechanics.
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Fig.3 Attime g, both subjects are in a ready state with Q1 = Q2 = 0. Then, the toy subject A; mea-
sures the toy object S, so that the initial value of the object’s momentum gets encoded into the manifest
variable Q1. At the same time, the toy object’s position gets disturbed by an amount that depends on
the initial momentum P of the toy subject A1. Subsequently, the other toy subject Az interacts with S,
so that the object’s position at time ¢1 gets encoded into the manifest variable Q2. During this interac-
tion, the object’s momentum is disturbed by an amount that depends on the initial momentum of Ag

Nevertheless, neither the ontic state of .S at time ¢y nor the one at time t9 is com-
pletely known to A. That is, it is still true that the subject A cannot at any time encode
a previously unknown ontic state of the object S that it possesses at that very same
time. The transformation m,, applied between times ¢ and ¢; disturbs the position of
S, while the transformation m, applied between times ¢; and 2 disturbs the momen-
tum of S. The results we derive in this paper rule out the possibility that after a mea-
surement (time ¢5 above), A would know the ontic state of .S before the measurement
(time ¢y above), which is what we call learning. The fact that A may have sufficient
information to determine the value of incompatible variables at an intermediate time
during the measurement is not ruled out by the epistemic horizon we derive.

3.2.3 Self-measurement of toy subjects

The reason why A cannot access the initial position of .S in the above example is its
disturbance by the initial momentum of A;, which is unknown. But could a toy sub-
ject measure its own momentum and with this information correct for the disturbance?

As it turns out, such a self-measurement is implicitly accounted for by Theo-
rem 3.1. Our main result therefore gives an abstract argument why measuring one’s
own momentum cannot break the epistemic horizon.

This stems from measurement disturbance again. Specifically, imagine a further
toy subject A that measures the momentum of A; before time t(. This measurement
disturbs the position of A; by a shift that depends on the (unknown) initial momen-
tum of As. As a result, the momentum of S is no longer fixed by m,,. Self-measure-
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ment thus does not resolve the issue, the source of the uncertainty has been merely
shifted from the initial momentum of A; to that of A3. One could imagine introduc-
ing further pointers to measure initial momenta, but this inevitable leads to an infinite
regress that does not stabilise to a reliable knowledge of the relevant parameters.
Our analysis of nomic toy theory implies that an epistemic horizon exists also
in classical mechanics, given the assumption that agents modelled as mechanical
systems can only directly access their own manifest variable (Definition 2.5). In con-
trast, traditional accounts claim that in classical mechanics arbitrary measurement
precision can be achieved and that both position and momentum can be recorded
simultaneously (see, for instance, Solé et al. (2016)). However, a closer look at these
arguments reveals that this holds only under the assumption that the initial momen-
tum of the measurement apparatus is known—in line with our discussion above.

3.3 Spekkens’ toy theory as the epistemic counterpart of the nomic toy theory

In this section we briefly discuss the connection between measurable variables in
nomic toy theory and epistemic states in Spekkens’ toy theory (Spekkens, 2016).

While agents are not explicitly modelled as physical systems in Spekkens’ toy
theory, its epistemic restriction is introduced to specify what a hypothetical agent
could learn about a physical system.

Ontic states and the associated reversible transformations in Spekkens’ toy theory
match those of nomic toy theory. While the latter posits no a priori notion of epis-
temic states, these are explicitly specified in Spekkens’ toy theory (see our descrip-
tion in Appendix B for more details). Specifically, each epistemic state corresponds
to the value of a variable that can be known according to the epistemic restriction
in Spekkens’ toy theory (and vice versa). Among these ‘knowable’ variables, the
scalar-valued ones are called quadrature functionals. A generic one, an affine map
f:V — F, can be written as

fi=aiq{ +bip] +-- +anqg. +bupl +c, 27)

where {q1,...,qn,P1,---,Dn} is the chosen orthonormal basis of the phase space
V and a;, b;, c are all scalars in the field F. As far as the resulting epistemic state is
concerned, we can assume ¢ = 0 without loss of generality (cf. our notion of equiva-
lence of variables introduced in Sect. 2.2).

Generic (vector-valued) linear variable can be identified as a collection of quadrature
functionals. The epistemic restriction of Spekkens’ toy model says that such a col-
lection is jointly knowable if and only if the Poisson bracket of each pair of them
vanishes, i.e. { f1, f2} = 0 in Spekkens’ standard notation for quadrature functionals.
The theory postulates that variables whose value can be known are precisely Poisson
variables in nomic toy theory as introduced in Definition 2.2. Furthermore, as we
show in Proposition 2.10 and Theorem 3.1, Poisson variables in nomic toy theory
coincide with those properties of toy systems that can be learned by a toy subject
within the world. In this way, the epistemic restriction of Spekkens’ toy theory arises
from two ingredients:
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(1) the allowed transformations of ontic states introduced in Sect. 2.1 (which coin-
cide for nomic and Spekkens’ toy theories), and

(2) the specification of information gathering agents and identification of their directly
accessible information in the form of manifest variables (Definition 2.5).While
nomic toy theory does not come with a pre-specified epistemology, the second
ingredient allows us to derive an epistemic horizon for the model of toy sub-
jects used in this article. Doing so, we find that the derived epistemic aspects
of subjects in nomic toy theory coincide—at least as far as epistemic states are
concerned—with the posited epistemic horizon in Spekkens’ toy theory.

4 Conclusions

Let us now discuss implications of our results and related questions in the foundations
of physics so as to put things into a broader perspective. We discuss the significance
of our work for the relationship of internal and external observers, representational-
ism, the subject-object split and the reality of unobserved properties (Sect. 4.1). We
also comment on the relationship of nomic toy theory to quantum theory, and a pos-
sible view of physical phenomena that supersedes the subject-object separability. We
then conclude with an outlook on future directions of study in Sect. 4.2.

4.1 Discussion
4.1.1 Internal versus external perspective

Theorem 3.1 can be interpreted as describing a relationship of two distinct perspec-
tives. One is the omniscient view that specifies the precise ontic state of every system
in toy world, akin to the meticulous vision of the entire state of the toy universe by
Laplace’s demon. This view is by definition from ‘outside’, i.e. external to the world.
Conversely, there is an internal perspective as experienced by an embedded toy sub-
ject. This view is shown to be limited relative to the omniscient one. As we prove,
a subject in toy theory cannot learn the precise ontic state of another toy system by
interacting with it. The best description it can have is an epistemic state, which neces-
sarily retains uncertainty about the precise ontic state (see Appendix B.1 for details).

4.1.2 Subject-object inseparability

The derived epistemic horizon emphasises the participatory nature of the subject in
the theory. It shows that the physically allowed information gathering activities of an
agent affect the knowledge it can have about an object. This challenges the old divide
between the subject and object. That is, our approach highlights that the standard
notions of measurement, representability, and epistemology are intimately bound up.
Relatedly, in Russo (2000) Russo builds on the ontoepistemology of Barad (2007)
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and the constructionist approach of Floridi (2011) to argue for an epistemology of
techno-scientific practice.’

Moreover, the construction of a toy subject measuring itself (Sect. 3.2) introduces
the possibility of self-reference, which in turn makes the knowledge of a toy subject
liable to logical paradoxes. It is conceivable that our results could be linked to a logi-
cal argument about the impossibility for an observer to describe itself from within
the world. In particular, recall that the crucial Definition 2.5 of toy subjects specifies
what a toy subject knows about its own ontic state as well as how its knowledge is
manifested in its ontic state. Relatedly, Ismael presents an argument for the instabil-
ity in an embedded agent’s ability to know the future due to self-reference (Ismael,
2023).

So it could be argued, perhaps, that what is ‘real’ to one subject is not ‘real’ to
another. Furthermore, does it make sense for the subject to speak of a world as being
separate from itself? What would a measurement outcome signify if we take the
participatory nature of the subject seriously and abandon an observation-independent
reality? What is the new referent of measurement? In other words, what supersedes
the subject-object split?

4.1.3 Epistemic horizons and their implications for ontology

The idea that a physical theory may operate under the premise of an observer-depen-
dent description is not new. Several interpretations of quantum theory take a similar
stance, such as the non-realist (Fuchs and Schack, 2013; Rovelli, 1996; Faye, 2019),
pragmatist (Healey, 2012), or Everett (1957) approaches.

Nomic toy theory gives an explicit account of the interdependency of subjects
and objects. It invites us to study whether subjects are justified to posit the existence
of ontic states that are only ‘visible’ from an omniscient perspective. Even though
subjects in nomic toy theory are faced with an epistemic horizon, this limitation is
compatible with a deterministic and classical description. Can the same be said for
other kinds of subjective experiences featuring an epistemic horizon, such as the one
of quantum theory? Are there operational theories whose predictions rule out the
possibility that their epistemic horizon stems from the dynamical laws of a classical
ontic theory?

Making these questions precise requires a careful construction of a more general
framework than our investigation of nomic toy theory and its symplectic dynamics.
With it, one may hope to classify the kinds of epistemic horizons that could arise
based on the allowed subject-object interactions just like the one we derive in this
paper. Similar efforts have been successful in the framework of ontological models
(a.k.a. hidden variable models), in which one can formally derive the operational
consequences of metaphysical assumptions such as Bell locality (Bell and Aspect,
2004) and non-contextuality (Kochen and Specker, 1967).

Importantly, the fact that the operational consequences of both are violated by
behaviours of quantum systems constrains the possible underlying physical reality.

®We thank an anonymous reviewer for drawing our attention to Russo’s work.
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Answering the questions from previous paragraphs would likely constitute an analo-
gous step in understanding quantum theory and its viable interpretations.

4.1.4 Relation to interpretations of quantum theory

Although we do not provide answers to the questions posed in the previous para-
graphs, it is worthwhile to mention that a version of an observer-dependent realism
aligns with the spirit of relational and QBist approaches to quantum mechanics (Rov-
elli, 1996; Fuchs and Schack, 2013). See also Barad’s agential realism (Barad, 2007)
and the quantum holism of Ismael and Schaffer (2020).

For instance, relational quantum mechanics purports that the notion of a subject
has no metaphysical significance—any physical system could be one. Moreover, it
emphasises “the way in which one part of nature manifests itself to any other single
part of nature” (Rovelli et al., 2021, p. 67). In this view, properties of an object are
relative to another system which interacts (and thus measures) the object. This reso-
nates with the notion of the observer-dependent epistemic state in nomic toy theory.

Relational quantum mechanics, as well as many other interpretations, effectively
posit that quantum properties do not exist prior to measurement or that there is no
way to consistently describe them (see, for instance, Wheeler’s participatory nature
(Wheeler & Zurek, 1983, pp. 182-213). This is in contrast with the ontic status of
unobservable variables in Spekkens’ toy theory (and thus also nomic toy theory).
There, we have an epistemic horizon featuring unpredictability, uncertainty, and
complementarity, even though all properties of systems exist and have definite val-
ues at all times (at least from the omniscient perspective featuring the full ontic state
description). From a toy subject’s perspective, however, the view is very similar
to one invoking participatory ‘realism’. The subject-object divide can be therefore
called into question even given a deterministic physical theory.

Furthermore, recall the intuition that the epistemic horizon of nomic toy theory is
connected to the uncontrollable initial momentum of toy subjects, which introduces
an unpredictable disturbance of the toy object (Sect. 3.2). This implies that a toy
subject measuring position after a measurement of momentum (Fig. 3) may find a dif-
ferent position value than a toy subject measuring position prior to the measurement
of momentum. More generally, Theorem 3.1 implies that there is no simultaneous
measurement of both position and momentum—they are incompatible. In quantum
theory, the incompatibility structure of observables leads to contextuality Kochen and
Specker (1967). In contrast, Spekkens’ toy theory is non-contextual. In this case, the
incompatibility can be seen merely as an expression of measurement disturbance (see
also the more general arguments in Erba et al. (2024)).

It is noteworthy that even full quantum theory can be given an ontological model
in which measurement interactions entail disturbance—e.g. the de Broglie-Bohm
theory (dBBT) (Bohm and Hiley, 1993). Part of the ontology of dBBT consists of
particles like in nomic toy theory. However, dBBT also incorporates the quantum
wave-function which can be seen as the analogue of the epistemic state from Spe-
kkens’ toy theory. In dBBT it is used to determine particles’ trajectories as well as
the initial distribution of their positions. This is in contrast to nomic toy theory where
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both the initial configurations and dynamics of particles are independent of epistemic
states.

Studying epistemic horizons, i.e. defining measurable variables and characteris-
ing a subject’s information-gathering capabilities within dBBT, in parallel with our
investigations here, would be a promising direction for future research.

4.1.5 Limitations on predictability

We suspect that our result also implies that a toy subject cannot prepare the toy object
in a fixed ontic state. Intuitively, this would follow from the fact that in order to pre-
pare an exact ontic state, a subject would need to perform a measurement that signi-
fies the preparation of this state. But as we have shown such a measurement process
does not exist (a similar claim was proven by Hausmann et al. (2023) in the context
of Spekkens’ toy theory).

4.2 Summary and outlook

We have used nomic toy theory—an essentially classical theory—to propose an
explicit account of the source of the epistemic horizon in Spekkens’ toy theory. Sub-
jects in nomic toy theory can only ever ascertain a coarse-grained description of
objects in the world, namely one in terms of the epistemic states of Spekkens’ toy
theory. We attribute the source of the fundamental uncertainty to the nature of inter-
actions between subjects and objects. Specifically, the learning process governed by
such an interaction is invariably connected to a disturbance of the object, which pre-
vents the subject from learning the complete state of the object.

At first glance, our result may be surprising in light of the claims that Newtonian
mechanics should in principle allow for arbitrarily precise measurements of the prop-
erties of a classical particle. Bear in mind that Liouville’s theorem in Hamiltonian
mechanics implies preservation of phase space volume, but does not rule out arbi-
trary stretching and squeezing of a phase space volume such that conjugate variables
become simultaneously sharply defined. However, we suspect that our result could
be related to the claims of de Gosson on the relationship of symplectic geometry
and quantum uncertainty principles (de Gosson, 2009). Basically, de Gosson derived
an analogue of the quantum Robertson—Schrodinger inequality from the symplectic
properties of the phase space alone. This essentially implies that Heisenberg’s uncer-
tainty relations already hold in Hamiltonian mechanics for all pairs of conjugate posi-
tion and momentum variables.

Why does it seem that some aspects of quantum uncertainty can be explained
in terms of Hamiltonian mechanics? Do uncertainty relations really have such an
analogue in classical physics? Can the epistemic horizon in nomic toy theory be
restated as a classical uncertainty relation akin to Heisenberg’s uncertainty principle
in quantum theory? We hope that our analysis will serve as a toy example to facilitate
explorations of those pertinent questions.

For instance, one may study the role of hidden variables in quantum theory. Our
result derives the consequences of positing a specific classical ontology for the learn-
ing capabilities of internal agents. Not all underlying ontic models may lead to the
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same information gathering capabilities of agents. Thus, the empirically observed
epistemic horizon could potentially be used to rule out the ontological models that do
not reproduce it. More on this is found in the “implications for ontology” part of the
Discussion (Sect. 4.1).

A related question concerns the development of ontological models motivated
and evaluated from within nomic toy theory. That is, one may investigate what kind
of ontologies are consistent with the experience of an epistemically restricted toy
subject. Is there a way to differentiate among them based on desiderata such as par-
simony or naturalness? In a nutshell, what would such a subject conclude about the
ontology underlying the phenomena observed? See also a potential link to problems
about bootstrapping and reliabilist epistemology (Goldman and Beddor, 2021).

As one possibility, one could look at nomic toy theory in an Everettian setting
where pointer states are not single valued. Could a many-worlds ontology lead to a
single-world experience of the toy subject (Barrett et al., 2010, Chapter 2)? It would
be interesting to study the problem of Everettian probabilities in this context (Barrett
et al., 2010, Chapter 3). There may also exist connections to more elaborate models
of agents such as those in Shrapnel et al. (2023).

In the future we also wish to shed light on multi-agent scenarios. A recent attempt
to try to view quantum theory as an integration of perspectives of agents subject to
the epistemic horizon of Spekkens’ toy theory has been explored in Braasch Jr and
Wootters (2022). It is particularly interesting to look at what different subjects can
communicate intersubjectively (see also related ideas in the context of Spekkens’
toy model Hausmann et al. (2023)). This may perhaps allow novel insights into the
intricacies of many recently studied Wigner’s friend type scenarios as well as no-go
claims on ‘observer-independent facts’ (Wigner, 1961; Bong et al., 2020; Frauchiger
and Renner, 2018; Lawrence et al., 2023; Brukner, 2018; Ormrod and Barrett, 2022).
See also the reviews in Adlam (2024), Schmid et al. (2023), Brukner (2022) and more
general results on quantum epistemic boundaries (Fankhauser, 2023).

We also leave open the question whether the participatory nature of the agent in
our toy theory entails a more parsimonious account of the physical world. Could
there exist a new relational physical state of the world relative to the internal observ-
ers of the theory describing the subject and object jointly? Such an account would go
beyond the traditional subject-object split and take inseparability seriously.

Appendix A: Composing position and momentum measurements

Here, we give additional details on the attempted construction of a joint measurement
of position and momentum from Sect. 3.2. Specifically, we consider three toy sys-
tems—S, A, and Ax—each of which has one position and one momentum degree
of freedom. Moreover, the latter two are toy subjects with their positions acting as
manifest variables (see Fig. 3).

The joint system A; & S @ As starts out at time ¢, in the ontic state denoted by
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o= (i), = (), = (),

in the {q1, p1,qs,Ps, q2, P2} basis of A1 & S @ As.
The first interaction m,, is a measurement of the momentum of S by the toy sub-
ject Aj. Just as at the end of Sect. 3.1, we substitute the matrix form

0 1) 29)

of the momentum variable into Eq. (18) to obtain the matrix form of m,,:

(30)

OO
o~ OO
_—OoO o

where one ought to be careful that the subject and object are now in reverse order
compared to Eq. (18). Here, we merely write its action on A; & S. The action on the
full joint state space is then via M, ® 1,,.

At time ¢, i.e. once the interaction m,, has taken place, the joint state of all three
toy systems is thus

Uy +u U + Us U
u(t1>=( "z 4) @( s 3) @ (ui) - (1)
A1 S A2

As we can see, the manifest variable of A; now encodes the initial momentum of S,
provided that A; started out in a ready state. Furthermore, the position of S has been
disturbed by the initial momentum of A;.

The second step of the composite transformation depicted in Fig. 3 is a measure-
ment my of the position of S by the toy subject A,. Its matrix form is as in Eq. (25):

0
-1

M, = 0 |- (32)
1

OO
oo O
OO O

After this interaction, at time ¢-, the full ontic state is

Uy +u U2 + Us Ug +us +u
u@z):( " 4>A @(uiui)s@( e 5)A SNCE)
1 2

If we assume the ready states of the toy subjects have vanishing manifest variables,
this reduces to
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Uy U + U3 Uz + u3
<u2>A1 N <u4 - uG)S ® ( Us >A2 . 34

The values of the manifest variables at time ¢y are thus u4 and us + w3 respectively.
The former encodes the correct momentum of S at times ¢y and t1, while the latter
encodes the correct position of S at times ¢; and ¢o.

Appendix B: Supplementary material on Spekkens’ toy theory

As we mention throughout the text, nomic toy theory shares both the kinematics and
dynamics with Spekkens’ toy theory (Spekkens, 2007). This is not an accident. We
are specifically interested in the latter because it features both an epistemic restric-
tion as well as deterministic dynamics at the ontic level. As we discuss in Sect. 3.3,
our results show that the epistemic restriction of Spekkens’ toy theory coincides with
the epistemic horizon of nomic toy theory that we derive. To make this precise, we
provide a description of the epistemic level of Spekkens’ toy theory here including
several auxilliary results. Our presentations closely follows that of Hausmann et al.
(2021). For additional details on Spekkens’ toy theory, see (Spekkens, 2016; Catani
and Browne, 2017).

B.1 Systems in Spekkens’ toy theory

The ontic state space of a system V' is a symplectic vector space V, just as we discuss
in Sect. 2.1.

Remark B.1 Ifthe underlying field of V is that of real numbers, we obtain continuous
toy systems. Basic finite systems are associated with an integer d. Their ontic state
space is a (symplectic) Z ;-module, which is a vector space if d is a prime power. Other
finite systems can be obtained as composites of the basic ones (see Appendix B.2.1).

For a linear subspace W of V, we can define the symplectic complement

W = {veV]wW,v)=0} (35)

where

w(W,v) =0 <= w(z,v)=0 VozeW. (36)
Such a subspace W is

e asymplectic subspace if W N'W = {0},

e isotropic if W C WY, i.e. if the symplectic form vanishes on W, and

e Lagrangian if W = W®, i.e. if it is a maximal isotropic subspace (cf. Defini-
tion 2.4). An epistemic state of Spekkens’ toy theory (U, a) is specified by an
isotropic subspace U of V and a vector a € V. Via an isomorphism of V and its
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Fig.4 While the ontic state a is an Ontic state space of toy system
element in the ontic state space of the »

toy system, the support of an epistemic
state (U, a) is a collection of such ele-

ments, namely those given by Eq. (38). Reversible transformation
After a reversible transformation, these Ontic state a --

are transformed to another collection

(U’,a’) given by Eq. (40), where a’ is

the image of @ under the transforma- Q
tion. In the figure, U is the position J

variable and U’ is the momentum
variable

<----- Epistemic state (U’, a’)

X

Epistemic state (U, a)

dual V*, the subspace U is interpreted as consisting of those functionals whose
values are known. Alternatively, we can think of U as the set of values of the
orthogonal projection U : V — U. This is an isotropic variable if and only if U
is isotropic.

The vector a is interpreted as one of the ontic states that is deemed possible by
this epistemic state.
It fixes the value of any functional v € U to be

(u,a) (37)

where (_, ) is the canonical inner product on V. Thus, the set of all ontic states that
are possible according to the epistemic state (U, a) is

U, :={ve V| (ua)= (u,v) VueU}ZUL—I-a, (38)

where U™ is the orthogonal complement of U. In other words, the possible ontic
states must share the value of the variable U. We call U, the support of the epistemic
state (U, a). Note that it is an affine subspace of V. We do not distinguish between
epistemic states that have the same support. An epistemic state (U, a) is called pure
if U is Lagrangian.

The reversible transformations of Spekkens’ toy theory form the affine symplectic
group (Sect. 2.1) and act on ontic states via the canonical action. That is, its elements
are pairs (t,v) of a symplectic map ¢t € Sp(V) and a vector v € V, which compose
via

(s,u) o (t,v) = (sot,u+s(v)). (39)
A given reversible transformation (¢, v) then acts on ontic states via x — t(z) + v.
The following proposition shows that epistemic states are mapped to epistemic

states under affine symplectic transformations and derives Equation (A.3) from
Hausmann et al. (2023).

Proposition B.2 Let (f,v) be an affine symplectic map on a symplectic vector space
V and let U, be the support of an epistemic state (U,a). The affine subspace
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f(Uy) + v, which is the image of U, under (f,v), coincides with the support of the
epistemic state

(1" W), f@) +v). (40)

Proof First, let us show that (40) is indeed an epistemic state. To this end, note that
the inverse of any symplectic matrix M € Sp(V) is given by

Mt =0TMTQ. (41)

Therefore, f~17 is given by
F ) = —QFQ (42)
where F' is the matrix representation of f. In particular, it is also a symplectic map.

By Lemma B.3 proven below, the image of U under f 1" is an isotropic subspace
and (40) is thus an epistemic state.

The rest of the proof establishes that f(U,) + v is the support of this epistemic state.
We have

fUo) +v={f(2) +v | (u,a) = (u,z) YueU} (43)

by definition. Let us denote f(z) + v by w, so that we have z = f~!(w — v). Then,
the right-hand side of Eq. (43) is the set of all w € V satisfying

(u,a) = <Ua f_l(w—v)> VueU. (44)

Since we have f7f -7 = I, the left-hand side of Eq. (44) is equal to either side of

(T @) = (£ ), f(@)), (45)

while the right-hand side of Eq. (44) is

<f*1T(u),w 7v>. (46)

Thus we obtain

fU) +v= {w ‘ <f_1T(u),f(a) +U> = <f_1T(u),w> Yuée U}, 47)
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which is the support of the epistemic state in (40). O

Therefore, reversible transformations preserve the set of epistemic states. In other
words, if a function f : V. — V maps (the support of) some epistemic state to a subset
of V that is not (the support of) an epistemic state, then f is not a valid reversible
transformation. For example, this directly implies Corollary 1 (Restrictions on condi-
tional transformations: example) in Hausmann et al. (2023).

Lemma B.3 Symplectic maps preserve the set of isotropic subspaces. That is, if
f:V = Vis a symplectic map and W is an isotropic subspace of V, then f(W) is
also an isotropic subspace.

This is a standard result, we give the proof for completeness.
Proof Note that a subspace W is isotropic if and only if the implication

veW = wxv)=0 VeeW (48)

holds. Moreover, since f is bijective, we have y € f(W) if and only if y = f(v) for
some v € W. Thus we have

y € f(W) = w(x,f_l(y)) =0 VoeeWw (49)
—= w2, () =0 Vze (W) (50)
— w(zy =0 Vze f(W) (51)

where the last equivalence holds because f~! is itself symplectic. In conclusion,
f(W) is isotropic. O

Note, furthermore, that symplectic maps in Sp(V) act transitively on the Lagrang-
ian Grassmanian (Calegari (2022), Lemma 1.12).

B.2 Description of multiple systems in Spekkens’ toy theory

B.2.1 Joint states
Each ontic state of the joint (bipartite) system is given by a pair of ontic states from
each of the components respectively. Its underlying vector space is thus the direct

product of the individual ones, which is isomorphic to their direct sum.

Definition B.4 Given two toy systems (Vi,w;) and (Va,ws), the joint system
describing their composite is given by (V1 @ Vo, w1 @ wo).

Every jointontic statev € V := V; & V3 has aunique decomposition v = vy + ve
for v; € V;. Moreover, there are linear projections V; : V. — V,, such that V; maps v
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to v;. Similarly, for any choice of epistemic states (Uy, aq), and (Uz, a2) of V; and
V3, respectively, the joint state of Vi @ Vs is the epistemic state (U @ Uz, a1 + a9)
with support!”

(U1 @ Us)™ + a1 + az = (Uf + a1) ® (U2L + az) : (52)

These constitute the so-called product states of the joint system.
Besides product states, there are also correlated joint states. As an example, con-
sider the joint system of two toy bits with its epistemic state given by

span _1|>

0
0

Aol |- (53)
0

It is a state for which both the positions and momenta of the two systems are perfectly
correlated. Its support is the subset of (Z3)* given by

(54

[=ReNeNen)
—Oo RO
OO
=

B.2.2 Reduced states

Appendix B.2.1 describes global states of multiple systems. For any such global
state, we can marginalize any of its subsystems to obtain the local description of the
remaining subsystems. This notion also appears in Definition 2.6 of pointer-preserv-
ing measurements.

Definition B.5 Given a possibilistic state'!p of a composite system Vi @ Vo, its V;
-marginal (also referred to as the reduced state to V;) is the image of p under the
projection V;.

Whenever p is the support of an epistemic state (U, a), we can find its marginal
by projecting a and restricting the set of known functionals in U to the local ones.

Proposition B.6 (Marginals of epistemic states) Consider an epistemic state (U, a) of
the composite V. = V1 @ Va. Then the V1-marginal of its support is the support of
the epistemic state of V1 given by

10Note that on the right-hand side, UZ.l refers to the orthogonal complement of U; within V;, as opposed
to the left-hand side, where it denotes the orthogonal complement in V.

WA possibilistic state of a toy system is a subset of its underlying vector space of ontic states. Key exam-
ples of possibilistic states are supports of epistemic states.
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(UNVy, Vi(a)). (55)

Proof The V-marginal of (the support of) (U, a) is
Vi(Ut) + Vi(a), (56)
while the support of the epistemic state in (55) is
(UNV1)™ + Vi(a), (57)
where the orthogonal complement is within V; here. The task is to show that these
two affine subspaces of V; coincide. Writing expression (57) instead in terms of the
orthogonal complement within V, we thus have to show
Vi(UH) = (UNnVy) NV, (58)
It is an elementary fact that (U N Vl)J‘ =Ut+ Vf holds, see for example (Haus-
mann et al. 2023, Lemma B.3). Therefore, we can rewrite the right-hand side of

Eq. (57) as

(UL + Vf) AV, (59)

which can be further simplified as follows
(Ut +vi)nvi= (WUt e vi)nv, (60)
=W (Uh), (61)

because V; (U™) is a subspace of V; and V7 is orthogonal to V. Thus, we get the
desired equality. 0

B.3 General physical transformations
Section 2.1 introduces the reversible transformations of nomic toy theory (which are
identical to those of Spekkens’ toy theory). A generic physical transformation may

also involve discarding of subsytems, and as a result become irreversible.

Definition B.7 A physical transformation between two toy systems given by sym-
plectic vector spaces V and W respectively is an affine symplectic map V — W.
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Proposition B.8 An affine map f : V — W is a physical transformation if and only
if there is a decomposition V= W & W=, a reversible transformation f € Sp(V),
and an w € W satisfying

f(v)=Wo f(v) +w, (62)

where W : V. — W is the symplectic, orthogonal projection of W & W onto W.

Proof The “if” direction is immediate. For the “only if” part, note that since the sym-
plectic form is non-degenerate and the symplectic part of f preserves it, the image of
fmust coincide with W. Thus, by the first isomorphism theorem, we have

W= V/ker(f)7 (63)

which implies V.= W @ W as symplectic vector spaces, since ker(f) = W is
necessarily a symplectic subspace.

Now we can let f := flw @ Ty, which satisfies Eq. (62). 0

One of the consequences of Proposition B.8 is that the dimension of V cannot be
smaller than the dimension of W. Another is that every physical transformation has a
reversible dilation given by v — f(v) + w.

B.4 Measurable variables in nomic toy theory are copyable

Definition B.9 A variable Z is an information variable if there is a reversible trans-
formation f : V@&V — V & V and an epistemic state (U, a) of V/, satisfying

Z(v) @ Z(v) = (Z® Z)o f(v+x) (64)

for every ontic state v € V and every ontic state x in the support of (U, a).
In other words, information variables carry information that can be copied.

The following result says that a variable is copyable if and only if it is a collection
of functionals whose Poisson brackets vanish. Together with Theorem 3.1, it entails
that a variable in nomic toy theory is measurable if and only if it is an information
variable.

Proposition B.10 A variable is an information variable if and only if it is a Poisson
variable.

Proof First of all, let us show that if Z : V — Z is a Poisson variable, then it is an
information variable, i.e. that it is copyable.
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To this end, we denote the vector space (ker(Z ))l & S/ker(2) by D and the isomor-
phism arising from the first isomorphism theorem by K : D — im(Z). Since Z is a
Poisson variable, D must be an isotropic subspace of V.

The copying of Z is then achieved by the transformation M : V&V — V @ V intro-
duced in Eq. (18) and using K~'Z : V — D instead of its Mqp component. It is
symplectic for the same reason as in the proof of Theorem 3.1, i.e. by virtue of Z
being a Poisson variable. Applying this M to an arbitrary ready state input, written

v
(0) (65)
xr

inthe V@ D @ ker(Z) decomposition, gives
T (7—1\T
s+ QvZ (K ) T
sp ) (66)
x

Here, sp denotes K ! Zs, which is the orthogonal projection of s onto D. Applying
the variable Z & Z to the output state yields

Z(s+ovz” (K a) = Zs (67)

in the first instance of V and

Z(sp +x)=Zs (68)

in the second instance. Equation (67) follows because of the property ZQyZ7 =0
satisfied by every Poisson variable. Equation (68) is a consequence of Zx = 0 (since
x is in the kernel of Z) and Zsp = Zs (since sp is the orthogonal projection of s onto
D). As a result, we have shown that Z is an information variable.

Let us now prove the converse. Namely, we assume that Z is an information variable.
Then the copying transformation, composed with applying Z to the second instance
of V, is a transformation that measures Z. Therefore, by Theorem 3.1, Z is a Poisson
variable. O

B.5 Pointer-preserving measurements
For any value a of the position @) of a toy subject A, we can associate an epistemic
state (Q, a) of Spekkens’ toy theory, called a pointer state of A. The name comes

from the fact that we think of the manifest variable of the toy subject also as a pointer
of a measurement apparatus.
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A specific class of measurements in nomic toy theory are those that preserve
pointer states. As we show in Remark B.13 below, they have the special property that
the contingent manifest variable is trivial. In particular, for a pointer-preserving mea-
surement, the post-measurement manifest variable of A is independent of its initial
momentum, as a result of the property Mqp = 0. For this reason, they are transfor-
mations that measure the variable Mqg (see Definition 2.9). The characterisation of
pointer-preserving measurements from Remark B.13 says that they satisfy an addi-
tional property, namely that Mpp is non-degenerate. This suggests that there may be
other transformations besides pointer-preserving measurements that also measure the
variable Mqs.

Definition B.11 A pointer-preserving measurement consists of an affine sym-
plectic transformation m : S@® A — S @ A and a Lagrangian subspace Q of A,
such that for every s € S, the associated map A — A given by the composite (here,
A:S® A — A denotes the projection map)

A

A S SeA—"—SoA A 69)
ar— s+ar— m(s+a)— Ao m(s+a)

maps (the support of) each pointer state (Q, a) to that of another pointer state (Q, a’).

Proposition B.12 (Characterisation of pointer-preserving measurements) Let M be
the matrix representation of the linear part of the transformationm above. Then the
following are equivalent:

(i) m and Q make up a pointer-preserving measurement.
(ii) Given q € A, we have MTq € S® Q ifand only if ¢ € Q.

Proof Let us analyse how a pointer state (Q,a) is transformed by the respective
maps in the composite (69). After the first step, adjoining the ontic state s to the
possibilistic state P + @ (note that we have P = Q7 by definition of the momentum
variable) leads to the possibilistic state'?

(S+Q,s+a) withsupport (PNA)+a+s. (70)

By Proposition B.2 (extended from epistemic states to all possibilistic state that are
affine subspaces), the possibilistic state after the measurement interaction m is

((7) s+ Q), mls +a). ()

12Note that here we use the same notation for possibilistic states as for epistemic states. That is, for any
subspace U (which need not be isotropic), the possibilistic state associated to (U, a) is UT + a. This nota-
tion works for any possibilistic state that is an affine subspace.
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which becomes

([T S+ QI NA, Aom(s +a)) (72)

after the marginalization to A via the projection A : S@ A — A. Thus, the condition
that this is another pointer state amounts to

Q=[(M") (S +Q]NnA. 73)
The inclusion of Q within the right hand side is equivalent to
€Q = MT¢esaqQ. (74)
The reverse inclusion, on the other hand, is equivalent to
geAand MTgeSaQ = q¢e€Q, (75)
so that the result follows. O

Remark B.13 Note that if we write M in block form as in Eq. (12), then condition
(ii) says that

e Mqgp: P — Qisequal to 0, and
e Mpp : P — P is non-degenerate.

Proof First, consider an arbitrary ¢ € Q, so that in this block form we have
0 M§sq
MTqg=M"q)| = Meoq | - (76)
0 Mqpq

Thus M7Tq is an element of S @ Q if and only if Mqp vanishes.

On the other hand, consider an arbitrary @ € A with components aq and ap in Q and
P respectively. Then, using Mqp = 0, we have

MTa=M" (aq | = | Mg aq + MEyap |, (77)
ap Mgp ap

so that the implication

MTaeS®eQ = acQ (78)
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becomes
Mipap =0 = ap=0. (79)

This implication is satisfied if and only if ML, is non-degenerate, which is equiva-
lent to Mpp itself being non-degenerate. g

Acknowledgements We thank two anonymous reviewers for helpful comments. This research was funded
in whole/in part by the Austrian Science Fund (FWF) 10.55776/Y1261. For open access purposes, the
author have applied a CC BY public copyright license to any author accepted manuscript version arising
from this submission.

Funding Open access funding provided by University of Innsbruck and Medical University of Innsbruck.

Declarations
Conflict of interest Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licen
ses/by/4.0/.

References

Adlam, E. (2024). What does ‘(non)-absoluteness of observed events’ mean? Foundations of Phys-
ics,54(1), 13. https://doi.org/10.1007/s10701-023-00747-1

Barad, K. (2007). Meeting the universe halfway: Quantum physics and the entanglement of matter and
meaning. Duke University Press.

Barrett, J., Kent, A., Saunders, S., & Wallace, D. (2010). Many worlds? Everett, quantum theory, and real-
ity. Oxford University Press.

Batterman, R. W. (1993). Defining chaos. Philosophy of Science,60(1), 43—66. https://doi.org/10.1086/2
89717

Bekenstein, J. D. (1981). Universal upper bound on the entropy-to-energy ratio for bounded systems.
Physical Review D,23, 287-298. https://doi.org/10.1103/PhysRevD.23.287

Bell, J. S., & Aspect, A. (2004). On the Einstein—Podolsky—Rosen paradox (pp. 14-21). Cambridge Uni-
versity Press.

Bendersky, A., Senno, G., de la Torre, G., Figueira, S., & Acin, A. (2017). Nonsignaling deterministic
models for nonlocal correlations have to be uncomputable. Physical Review Letters, 118, 130401. htt
ps://doi.org/10.1103/PhysRevLett.118.130401

Bohm, D., & Hiley, B. J. (1993). The undivided universe: An ontological interpretation of quantum theory.
Routledge.

Bohr, N. (1937). Causality and complementarity. Philosophy of Science,4(3), 289-298. https://doi.org/1
0.1086/286465

Bong, K., Utreras-Alarcon, A., Ghafari, F., Liang, Y., Tischler, N., Cavalcanti, E. G., Pryde, G. J., & Wise-
man, H. M. (2020). A strong no-go theorem on the Wigner’s friend paradox. Nature Physics,16(12),
1199-1205. https://doi.org/10.1038/s41567-020-0990-x

@ Springer



Synthese (2025) 205:136 Page 37 0f38 136

Braasch, W. F., Jr., & Wootters, W. K. (2022). A classical formulation of quantum theory? Entropy,24(1),
137. https://doi.org/10.3390/e24010137

Brukner, C. (2018). A no-go theorem for observer-independent facts. Entropy,20(5), 350. https://doi.org/
10.3390/e20050350

Brukner, C. (2022). Wigner’s friend and relational objectivity. Nature Reviews Physics,4(10), 628—630.
https://doi.org/10.1038/s42254-022-00505-8

Brukner, C., & Zeilinger, A. (2003). Information and fundamental elements of the structure of quantum
theory (pp. 323-354). Springer. https://doi.org/10.1007/978-3-662-10557-3_21

Calegari, D. (2022). Notes on symplectic topology [lecture notes]. Retrieved from: https://math.uchicago.
edu/~dannyc/courses/symplectic_topology 2022/symplectic_topology notes.pdf

Catani, L., & Browne, D. E. (2017). Spekkens’ toy model in all dimensions and its relationship with
stabiliser quantum mechanics. New Journal of Physics,19(7), 073035. https://doi.org/10.1088/136
7-2630/aa781c

Catani, L., Leifer, M., Schmid, D., & Spekkens, R. W. (2023). Why interference phenomena do not capture
the essence of quantum theory. Quantum, 7, 1119. https://doi.org/10.22331/q-2023-09-25-1119. ISSN
2521-327X.

Dalla Chiara, M. L. (1977). Logical self reference, set theoretical paradoxes and the measurement problem
in quantum mechanics. Journal of Philosophical Logic,6(1), 331-347. https://doi.org/10.1007/bf00
262066

de Gosson, M. A. (2009). The symplectic camel and the uncertainty principle: The tip of an iceberg? Foun-
dations of Physics,39(2), 194-214. https://doi.org/10.1007/s10701-009-9272-2

Del Santo, F., & Gisin, N. (2019). Physics without determinism: Alternative interpretations of classical
physics. Physical Review A,100, 062107. https://doi.org/10.1103/PhysRevA.100.062107

Erba, M., Perinotti, P., Rolino, D., & Tosini, A. (2024). Measurement incompatibility is strictly stronger
than disturbance. Physical Review 4,109(2), 022239. https://doi.org/10.1103/physreva.109.022239

Everett, H. (1957). “Relative state” formulation of quantum mechanics. Review of Modern Physics,29,
454-462. https://doi.org/10.1103/RevModPhys.29.454

Fankhauser, J. (2022). Observability and predictability in quantum and post-quantum physics. Ph.D. the-
sis, University of Oxford.

Fankhauser, J. (2023). Epistemic boundaries and quantum indeterminacy: What local observers can (not)
predict. https://doi.org/10.48550/arXiv.2310.09121.

Faye, J. (2019). Copenhagen interpretation of quantum mechanics. In E. N. Zalta (Ed.), The Stanford
encyclopedia of philosophy. Metaphysics Research Lab, Stanford University, Winter 2019 edition.

Floridi, L. (2011). A defence of constructionism: Philosophy as conceptual engineering. Metaphiloso-
phy,42(3), 282-304. https://doi.org/10.1111/j.1467-9973.2011.01693.x

Frauchiger, D., & Renner, R. (2018). Quantum theory cannot consistently describe the use of itself. Nature
Communications,9(1), 1-10. https://doi.org/10.1038/s41467-018-05739-8

Fuchs, C. A., & Schack, R. (2013). Quantum-Bayesian coherence. Review of Modern Physics,85, 1693—
1715. https://doi.org/10.1103/RevModPhys.85.1693

Goldman, A., & Beddor, B. (2021). Reliabilist epistemology. In E. N. Zalta, editor, The Stanford encyclo-
pedia of philosophy. Metaphysics Research Lab, Stanford University, Summer 2021 edition.

Hausmann, L., Nurgalieva, N., & del Rio, L. (2021). A consolidating review of Spekkens’ toy theory.
arXiv:2105.03277.

Hausmann, L., Nurgalieva, N., & del Rio, L. (2023). Toys can’t play: Physical agents in Spekkens’ theory.
New Journal of Physics,25(2), 023018. https://doi.org/10.1088/1367-2630/acb3ef

Healey, R. (2012). Quantum theory: A pragmatist approach. British Journal for the Philosophy of Sci-
ence,63(4), 729-771. https://doi.org/10.1093/bjps/axr054

Heisenberg, W. (1925). Uber quantentheoretische Umdeutung kinematischer und mechanischer Beziehun-
gen. Zeitschrift fiir Physik,33(1), 879—-893. https://doi.org/10.1007/BF01328377

Hoefer, C. (2024). Causal determinism. In E. N. Zalta, U. Nodelman (Eds.), The Stanford encyclopedia of
philosophy. Metaphysics Research Lab, Stanford University, Summer 2024 edition.

Ismael, J. (2023). The open universe: Totality, self-reference and time. Australasian Philosophical Review.
https://doi.org/10.1080/24740500.2022.2155200

Ismael, J., & Schaffer, J. (2020). Quantum holism: Nonseparability as common ground. Synthese, 197,
4131-4160. https://doi.org/10.1007/s11229-016-1201-2

Kochen, S., & Specker, E. (1967). The problem of hidden variables in quantum mechanics. Journal of
Mathematics and Mechanics,17, 59-87.

Laplace, P. S. (1814). Essai philosophique sur les probabilities. Courcier. http://eudml.org/doc/203193.

@ Springer



136 Page 38 of 38 Synthese (2025) 205:136

Lawrence, J., Markiewicz, M., & Zukowski, M. (2023). Relative facts of relational quantum mechanics
are incompatible with quantum mechanics. Quantum,7, 1015. https://doi.org/10.22331/q-2023-05-2
3-1015

McGregor, S., timorl, & Virgo, N. (2024). Formalising the intentional stance: Attributing goals and beliefs
to stochastic processes. https://doi.org/10.48550/arXiv.2405.16490.

Ormrod, N., & Barrett, J. (2022). A no-go theorem for absolute observed events without inequalities or
modal logic. arXiv:2209.03940.

Pusey, M. F. (2012). Stabilizer notation for Spekkens’ toy theory. Foundations of Physics,42, 688-708.
https://doi.org/10.1007/s10701-012-9639-7

Rovelli, C. (1996). Relational quantum mechanics. International Journal of Theoretical Physics,35(8),
1637-1678. https://doi.org/10.1007/BF02302261

Rovelli, C., Segre, E., & Carnell, S. (2021). Helgoland. Allen Lane.

Russo, F. (2000). Techno-scientific practices: An informational approach. Rowman & Littlefield
Publishers.

Schmid, D., Ying, Y., & Leifer, M. (2023). A review and analysis of six extended Wigner’s friend argu-
ments. arXiv:2308.16220.

Shrapnel, S., Evans, P. W., & Milburn, G. J. (2023). Stepping down from mere appearance: Modelling the
‘actuality’ of time.[SPACE]https://doi.org/10.1080/24740500.2023.2285008

Solé, A., Oriols, X., Marian, D., & Zanghi, N. (2016). How does quantum uncertainty emerge from deter-
ministic Bohmian mechanics? Fluctuation and Noise Letters,15(03), 1640010. https://doi.org/10.11
42/50219477516400101

Spekkens, R. W. (2007). Evidence for the epistemic view of quantum states: A toy theory. Physical Review
A,75,032110. https://doi.org/10.1103/PhysRevA.75.032110

Spekkens, R.W. (2016). Quasi-quantization: Classical statistical theories with an epistemic restriction. In
Quantum theory: informational foundations and foils (pp. 83—135). Springer. https://doi.org/10.100
7/978-94-017-7303-4_4.

Svozil, K. (2019). Physical (4)Causality. Springer.

Szangolies, J. (2018). Epistemic horizons and the foundations of quantum mechanics. Foundations of
Physics,48(12), 1669-1697. https://doi.org/10.1007/s10701-018-0221-9

van Lier, M. (2023). Introducing a four-fold way to conceptualize artificial agency. Synthese,201(3), 85.
https://doi.org/10.1007/s11229-023-04083-9

Wheeler, J., & Zurek, W. (1983). Quantum theory and measurement. Princeton University Press.

Wigner, E. P. (1961). Remarks on the mind-body question. In I. J. Good (Ed.), The scientist speculates.
Heineman.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



