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Abstract
Quantum theory has an epistemic horizon, i.e. exact values cannot be assigned 
simultaneously to incompatible physical quantities. As shown by Spekkens’ toy 
theory, positing an epistemic horizon akin to Heisenberg’s uncertainty principle in a 
classical mechanical setting also leads to a plethora of quantum phenomena. We in-
troduce a deterministic theory—nomic toy theory—in which information gathering 
agents are explicitly modelled as physical systems. Our main result shows the pres-
ence of an epistemic horizon for such agents. They can only simultaneously learn 
the values of observables whose Poisson bracket vanishes. Therefore, nomic toy 
theory has incompatible measurements and the complete state of a physical system 
cannot be known. The best description of a system by an agent is via an epistemic 
state of Spekkens’ toy theory. Our result reconciles us to measurement uncertainty 
as an aspect of the inseparability of subjects and objects. Significantly, the claims 
follow even though nomic toy theory is essentially classical. This work invites fur-
ther investigations of epistemic horizons, such as the one of (full) quantum theory.
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1 Introduction

Whenever an agent cannot obtain a complete account of a physical phenomenon, we 
shall speak of an epistemic horizon. A standard example is the Heisenberg uncer-
tainty principle. Its qualitative consequence is that, given two incompatible measure-
ments1 of a quantum system, an agent can only be certain about the outcome of at 
most one of the measurements. There is a multitude of ways in which uncertainty 
about a physical system, and thus an epistemic horizon, can emerge.

Sources of epistemic horizons. One potential source of uncertainty arises in cha-
otic systems, which exhibit high sensitivity to initial conditions. Unpredictability 
of such systems follows due to the unavoidable inaccuracy of any specification of 
boundary conditions (see, for instance, Batterman (1993)).

Learning about a non-chaotic system may still be intractable because of techno-
logical limits to measurement precision. Moreover, its behaviour may be unpredict-
able as a result of its astronomical computational complexity. In both cases, the lack 
of knowledge an agent has about the system is connected to practical considerations 
contingent on technological advances.

Logical paradoxes present another source of epistemic horizons. Self-referential 
reasoning has been employed to establish links with undecidability, uncomputability, 
and randomness (Svozil, 2019; Szangolies, 2018; Dalla Chiara, 1977). For example, 
the work of Bendersky et al. suggests that quantum randomness must be uncomput-
able (Bendersky et al., 2017). A similar conclusion was drawn in Del Santo and Gisin 
(2019), based on the idea of finite representability.

In the context of the theory of general relativity, it has been claimed that there is an 
upper bound on information density. See, for instance, Bekenstein’s result express-
ing the maximum amount of information in a bounded system (Bekenstein, 1981). 
Thus, an epistemic horizon can arise from the nature of spacetime itself for agents of 
bounded size.

There are also more exotic possibilities. In Everettian Quantum Mechanics and 
Many Worlds interpretations of quantum theory, all possible outcomes of a given 
measurement actually happen and are experienced independently in parallel worlds. 
Nevertheless, our single-world experience carries a self-locating uncertainty, which 
leads to uncertainty about the outcome that can be described probabilistically (Barrett 
et al., 2010).

In a causally indeterministic world there is a fundamental epistemic horizon. This 
means that events need not be pre-determined by preceding conditions together with 
the laws of nature (Hoefer, 2024).

Yet another source of uncertainty is the nature of dynamical laws. For instance, in 
an extreme scenario of a physical theory with two types of systems without coupling, 
a system of one type cannot learn about the behaviour of systems of the other type 
when learning is mediated by interactions. A remote yet far-reaching example is the 
part of the Universe we will never interact with, which includes all systems beyond 
the horizon from which no information can reach us.

1 Two measurements of a quantum system described by a Hermitian operator are incompatible if the opera-
tors do not commute.
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Still, even in the presence of non-trivial interactions, learning faces limitations. In 
this work we study an epistemic horizon in the context of a specific physical theory 
introduced below as nomic toy theory. In particular, we prove that in this theory, one 
physical system can only obtain constrained information about another. Similar to 
quantum theory, measurements in nomic toy theory can exhibit incompatibility. Their 
outcomes cannot be known simultaneously by agents modelled as systems within the 
theory. The nature of interactions of nomic toy theory thus impacts the information 
gathering activities of agents and entails fundamental limits to what can be known 
about the world.

Dynamical epistemic horizons. In classical mechanics the values of the positions 
and momenta of all particles at a certain time, together with the physical laws, are 
purported to fully determine their entire future (and past) values. Moreover, so the 
story goes, the values at a given time can be precisely measured. A principal artic-
ulation of such causal determinism is the omniscient intellect of Laplace’s demon 
(Laplace, 1814; Hoefer, 2024).

In Newtonian physics one often ignores an explicit account of measurement 
interactions and that they necessarily disturb the system being measured (Barad 
2007, Chapter 3). This is traditionally justified by stipulating that the disturbance 
is determinable and thus can be accounted for. Adjusting one’s measurement record 
based on known disturbance—if indeed possible—allows an agent to acquire arbi-
trary information about a system. Particularly in the context of quantum theory, mea-
surements are said to introduce disturbance. Heisenberg’s uncertainty relations were 
interpreted by himself as originating from an inevitable measurement disturbance: 
Whatever pre-determines the outcome of a measurement of a particle is inadvertently 
disturbed by its interaction with the apparatus (Heisenberg, 1925).2

Based on complementarity, i.e. the existence of mutually exclusive experimen-
tal arrangements, Niels Bohr argued that the measurement disturbance in quantum 
theory cannot be accounted for. According to him, this is due to discontinuous quan-
tum jumps (Bohr, 1937). Thus, the discrete nature of measurement interactions spoils 
determinism and predictability.3

One perspective on our work is that it provides an account of uncertainty in Spe-
kkens’ toy theory (which reproduces stabiliser states in quantum theory (Pusey, 2012; 
Catani & Browne, 2017)) in terms of dynamical measurement disturbance. In a nut-
shell, there is a classical theory—the ontological model of Spekkens’ toy theory—
whose deterministic laws entail an epistemic horizon. In this sense, Heisenberg’s 
original interpretation of uncertainty can be said to apply in the case of stabiliser 
quantum theory.

Spekkens’ toy theory.  In 2004 Robert Spekkens conceived of a toy theory based 
on the so-called knowledge-balance principle: “If one has maximal knowledge, then 

2 However, this early account of Heisenberg’s uncertainty is but one possible interpretation. The proper-
ties that determine an individual measurement result need not exist in a quantum world. In particular, 
it is unclear whether a single particle can be said to possess properties of position and momentum prior 
to measurement (see, for example, Fankhauser (2022, Section 6.1)). Thus, one cannot straightforwardly 
argue that such properties (since they do not exist) would be disturbed in a measurement.

3 Later, Heisenberg in part conceded to Bohr’s views and acknowledged complementarity as the source of 
uncertainty (cf. Wheeler and Zurek (1983) on Heisenberg’s postscript to his uncertainty article).
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for every system, at every time, the amount of knowledge one possesses about the 
ontic state of the system at that time must equal the amount of knowledge one lacks” 
(Spekkens, 2007) (cf. similar in-principle restrictions on the detectable amount of 
information by Brukner and Zeilinger (2003)). The idea was to construct a theory 
in which (at least some) quantum states can be viewed as epistemic as opposed to 
ontic. That is, they would represent states of incomplete knowledge about a physical 
system instead of different states of physical reality. The theory is essentially clas-
sical, because it admits a deterministic non-contextual ontological model.4 Specifi-
cally, its kinematics is given by phase spaces of classical particles and its dynamics 
preserves the phase space structure. Epistemic states of the toy theory arise from the 
ontic states via an epistemic restriction called classical complementarity: Two linear 
observables on the phase space can be jointly known only if their Poisson bracket 
vanishes. The toy theory qualitatively reproduces a large part of the operational pre-
dictions of quantum theory (Spekkens 2016, Table 2). For instance, it can recover the 
complete behaviour of states and measurements in the stabiliser subtheory of quan-
tum theory, whose states are eigenstates of products of Pauli operators. With respect 
to the epistemic restriction of Spekkens’ theory we ask the following question: Can 
uncertainty in a physical theory arise without imposing an a priori restriction on the 
acquisition of knowledge?

We give an affirmative answer. Namely, inspired by Hausmann et al. (2023), we 
provide a deterministic physical theory—nomic toy theory—and show that agents 
are limited in the amount of information they can gather. The limitation derives from 
the dynamics of nomic toy theory and a definition of information gathering agents 
modelled within the theory. Furthermore, the epistemic horizon we derive precisely 
matches the postulated epistemic restriction of Spekkens’ toy theory. This is interest-
ing since Spekkens’ toy theory includes no formal account of how agents acquire 
knowledge and what is the source of the limitation. To our knowledge, our work 
constitutes the first account of an a posteriori epistemic horizon arising from dynami-
cal laws.

Paper overview. We proceed as follows. First, in Sect. 2, we define nomic toy 
theory, its ontic state space, the notion of a toy system, the characterisation of agents, 
as well as the dynamics and the notion of a measurement. In Sect. 3 we present the 
main result, which represents a fundamental epistemic horizon in nomic toy theory. 
There, we also relate our work to Spekkens’ toy theory, which is shown to arise 
as the epistemic counterpart of our nomic toy theory (Sect. 3.3). We furthermore 
comment on the possibility of self-measurement in Sect. 3.2. The findings are sum-
marised in Sect. 4, where we also comment on the relationship to quantum and clas-
sical uncertainty more generally, and provide an outlook on related issues such as 
multi-agent scenarios and the participatory nature of the observer. Appendix A con-
tains the details of a position and momentum measurement in nomic toy theory. In 
Appendix B we provide supplementary material on Spekkens’ toy theory, including 
several new proofs. For additional details on this toy theory, closely related to our 
nomic toy theory, we refer the reader to Spekkens (2016), Hausmann et al. (2021).

4 cf. also Catani et al. (2023) on classicality in quantum theory.
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2 Nomic toy theory

To formulate our result on an epistemic horizon emerging from deterministic phys-
ical laws, we introduce nomic toy theory in which the subject-object relationship 
can be studied.5 The key feature of nomic toy theory is that it explicitly models the 
agent performing the measurement as a physical system in the theory. Given the ontic 
state space (a classical phase space), deterministic dynamics (via symplectic maps), 
as well as a definition of the agent, the theory contains restrictions on what can be 
known about physical systems.

We first introduce the state space and dynamics of toy systems (Sect. 2.1) and 
elaborate on their properties in Sect. 2.2, to then define toy subjects within the theory 
(Sect. 2.3). In Sect. 2.4 we define measurements between subjects and objects as a 
physical interaction. Finally, Sect. 2.5 discusses what kind of information can be 
learned by a toy subject about a toy object via such interactions. An arbitrary learn-
able property is provided by the notion of a fixed variable (Definition 2.7). However, 
as we show in the crucial Proposition 2.10, the same information is carried by the 
smaller set of measurable variables (Definition 2.9).

2.1 Toy systems

The formalism of physical states in nomic toy theory closely follows that of ontic 
states in Spekkens’ toy theory (cf. Appendix B.1, Hausmann et al. (2021) and Haus-
mann et al. (2023, Appendix A)). We begin with a description of the kinematics of 
nomic toy theory and the definition of a physical system.

Definition 2.1 A physical system V  in nomic toy theory (a toy system) is specified 
by a symplectic vector space V.

We can also think of it as the phase space of a classical particle. Namely, V is a 
2n-dimensional F-vector space6 with an orthonormal basis {q1, . . . , qn, p1, . . . , pn}. 
It is furthermore equipped with a symplectic form ω : V × V → F  given by

 
Ω =

(
0 �n

−�n 0

)
 (1)

in matrix form in the above basis, where �n is the n × n identity matrix. In particular, 
we have

 ω(x, y) = xT Ωy = ⟨x, Ωy⟩, (2)

5 The use of the word nomic is motivated by the theory’s emphasis on law-like interactions between an 
agent and another physical system.

6 For a continuous toy system, F  is R, while for a discrete d-level system, it is Zd, in which case it is a 
field only if d is a prime. For degrees of freedom with other finite cardinalities, one can instead consider 
V to be a Zd-module.
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where vectors are represented as columns, xT  is the transpose of x, and ⟨ , ⟩ is the 
canonical inner product.
A physical state of the toy system (an ontic state) is then specified by an element of 
V.

The choice of dynamics of the theory is inspired by the Hamiltonian formula-
tion of classical mechanics. In particular, its time evolution via Hamiltonian flow is 
always a symplectomorphism—a map between symplectic manifolds that preserves 
the symplectic structure. For the manifolds considered here, i.e. symplectic affine 
spaces, there are two basic types of such transformations. One can be represented by 
a linear map V → W which preserves the symplectic form. The other corresponds 
to an affine map V → V that translates each state by a chosen vector in V. These 
are exactly the allowed transformations of ontic states in Spekkens’ toy theory. The 
choice of dynamics of nomic toy theory is thus compatible with the epistemic restric-
tion of Spekkens’ toy theory (see Lemma B.3 and Proposition B.2 for a proof).

For a symplectic vector space V, the symplectic maps V → V form the symplectic 
group, whose matrix representation is

 Sp(V) :=
�

M ∈ GL(V)
�� MT ΩM = Ω

�
, (3)

where GL(V) is the set of the invertible linear maps of type V → V.
We thus define the group of reversible transformations of a given toy system in 
nomic toy theory to be the affine symplectic group: Its elements are pairs (t, v) of a 
symplectic map t ∈ Sp(V) and a vector v ∈ V, which compose via

 (s, u) ◦ (t, v) =
(
s ◦ t, u + s(v)

)
. (4)

As we can see, the dynamical evolution of ontic states in nomic toy theory is deter-
ministic. That is, a given reversible transformation (t, v) acts uniquely on ontic states 
via x �→ t(x) + v.

2.2 Properties of toy systems

To facilitate our formal derivation of the epistemic horizon in nomic toy theory, we 
discuss several properties of toy systems in this section. Our main theorem (Theo-
rem 3.1) later establishes which of these properties can be acquired by a toy subject 
through a measurement interaction (see Sect. 2.4). In particular, there are properties 
that cannot be learned in this way and thus lie beyond the epistemic horizon.

Our notion of a variable is intended to model an arbitrary property of a toy system 
(at a particular point in time7). On the other hand, a Poisson variable is a special 
property which, as we prove later in Theorem 3.1, is measurable by toy subjects. 
Table 1 provides an overview of the different kinds of properties of toy systems.

7 Note that the notion of time is implicit but of no particular relevance for the results. It only matters that 
a transformation connects a pre-measurement state to a post-measurement state.
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Definition 2.2 Let V  be a toy system with symplectic vector space V. A function 
Z : V → Z is termed a variable of V, where Z is the set of values of the variable. A 
variable is termed Poisson if Z is an F-vector space and Z is a linear map that satisfies

 ZΩZT = 0, (5)

where Ω is the matrix representation of the symplectic form.
Every variable induces a partition

 
�

Z−1(x)
�� x ∈ Z

�
 (6)

of the set V of ontic states. Variables that induce the same partition are considered 
to be equivalent. Note that Poisson variables are valued in a vector space, whose 
dimension tells us about the potential number of independent scalar properties it can 
describe. An important special case is when the dimension is 1, in which case we 
speak of a functional V → F . Such a linear map automatically satisfies Eq. (5).

For any basis {zi}dim(Z)
i=1  of a vector space Z, we can think of an arbitrary linear map 

Z : V → Z as a set of functionals {Zi}, where Zi is given by zT
i Z in matrix form. In 

this representation, Eq. (5) says that every pair of these functionals must have vanish-
ing Poisson bracket, i.e.

 ω(ZT
i , ZT

j ) = ZiΩZT
j = 0 (7)

holds for all i and all j. Therefore, Poisson variables precisely correspond to proper-
ties which, in Spekkens’ toy theory, are assumed to be knowable about the toy system.
While this epistemic horizon is traditionally postulated in Spekkens’ toy theory, we 
derive it in nomic toy theory.

Remark 2.3 To see the connection to epistemic states of Spekkens’ toy theory (Appen-
dix B), note that the set of vectors {ZT

i } spans an isotropic subspace of V. Together 
with a value of Z, it thus specifies an epistemic state. The support of this epistemic 
state is an element of the partition from (6).

A canonical example of a Poisson variable is the projection of V onto the n-dimen-
sional subspace spanned by the qi basis vectors. It satisfies Eq. (5) because we have 
ω(qi, qj) = 0 for all i and all j. In other words, the symplectic form vanishes on this 
subspace. The highest dimension of a subspace with this property is n. The following 
standard concept generalises such a maximal Poisson variable.

Table 1 Summary of the three different types of properties of a toy system V. Note that every functional 
is a Poisson variable

Property Type Values Extra conditions

Variable Z Function V → Z Set Z –

Poisson variable Z Linear map V → Z Vector space Z ZΩZT = 0
Functional Z Linear map V → F Scalar F –

1 3
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Definition 2.4 An n-dimensional subspace Q of a symplectic vector space V, on 
which the symplectic form ω vanishes, is called a Lagrangian subspace.

For any Lagrangian subspace, the associated projection Q : V → Q is a Poisson vari-
able. Moreover, by Darboux’s Theorem, there is a basis of its orthogonal comple-
ment P := Q⊥, in which the symplectic form has the canonical form of Eq. (1) with 
respect to the decomposition V = Q ⊕ P.

2.3 Toy subjects

Physical theorising is often done from an omniscient point of view external to the 
world. That is, one introduces a theoretical domain of discourse—the physical world 
together with some law-like behaviour—to explain the phenomena that are directly 
observable through empirical data. For instance, according to an omniscient being 
like Laplace’s demon the future and past of the world is completely fixed if the laws 
are deterministic.

However, observations of phenomena necessarily occur within the world. There-
fore, every physical theory requires in addition an epistemology that stipulates what 
can be known, e.g. about the physical world. That is, intuitively, we need to specify 
what the empirical data can and cannot signify about the physical world.

And so it may happen that the two perspectives disagree. Even if the omniscient 
viewpoint contains no fundamental uncertainty about all details of the world, an 
internal agent could be bound to epistemic limitations. Whether the omniscient view 
is or is not conceivable, it may be unreachable for any agent as a result of the dynami-
cal constraints of the world in which the agent operates. To study this tension, let us 
introduce the notion of agents in nomic toy theory. Note that we do not place any 
anthropocentric constraints on these, our agents are part of nature in the same way 
that their objects of study are. Since our agents are decidedly minimal and may not 
fulfil elaborate requirements for agency (van Lier, 2023; McGregor et al., 2024), we 
also call them toy subjects.

We only have two basic desiderata. Firstly, a toy subject is a physical systems of 
the same kind as any object to be observed and interacted with.8 That is, an informa-
tion gathering subject is an arbitrary toy system as introduced in Sect. 2.1.

Secondly, a toy subject ought to include a specification of its ‘knowledge’ vari-
ables. These are manifest properties of the subject that represent the directly acces-
sible empirical data on which the subject’s knowledge supervenes. The dynamics of 
nomic toy theory, in turn, dictates what the manifest variables of the subject can and 
cannot signify about the ontic properties of an object with which the subject interacts.

Definition 2.5 A toy subject is a toy system A equipped with a Lagrangian subspace 
Q of the symplectic vector space A. The associated Poisson variable Q : A → Q is 
called the manifest variable of the subject.

8 See also Hausmann et al.’s more operational approach to modelling the memory register of an agent as 
a toy bit (Hausmann et al., 2023).
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An example of a toy subject is a simple pointer apparatus. The manifest variable 
would be the value on a scale or the angle of a pointer needle. Inspired by such 
example, we call the manifest variable Q of A the position of A and its complemen-
tary variable P  the momentum of A. Even though we do not assume what type of 
degrees of freedom the manifest ones are, we label them as ‘positions’ for the sake 
of simplicity.

Throughout this work we refer to subjects also as ‘agents’. However, we do not 
intend the above definition of toy subjects to fully capture the complexities of agency, 
which may include qualities of awareness, intention, or free will. Indeed, both pas-
sive measurement devices and active agents with awareness can satisfy our purpose-
fully minimal definition, which allows for broad applicability of our results.

In either case, when we speak of the subject’s knowledge we merely refer to the 
information stored in its manifest variable. The measurement of another toy system 
by the subject (as discussed later in Sect. 2.4) is conceptualized as an interaction 
between the two systems and thus does not require any ‘agency’ on the part of the 
subject. Finally, for a toy subject to learn about another system means that it ‘obtains 
information’ by virtue of changes in its manifest variable. The epistemic horizon we 
derive (Theorem 3.1) is therefore a limitation on the possible acquisition of informa-
tion via interactions.

The crucial property of a toy subject defined above is that its knowledge super-
venes on its manifest variable. Importantly, it is a variable associated to a Lagrangian 
subspace of its own ontic state space. Therefore, the toy subject does not have direct 
access to the value of its own momentum variable P . This has implications for the 
feasibility of measurements that the toy subject can implement. In particular, given 
a specific value q of the position variable Q, the toy subject can perform a measure-
ment of another toy system conditionally, i.e. so that its own position prior to the 
measurement has value q. On the other hand, we cannot grant it the power to fix its 
own momentum value before the measurement interaction since there is no a priori 
way for the toy subject to know its own momentum. We discuss measurements in 
more detail in Sect. 2.4.

One may be tempted to view the restriction on a toy subject’s access to its own 
ontic state as a kind of epistemic horizon (on self-knowledge rather than on knowl-
edge of the world). However, this is not fully justified. Even if an agent has no direct 
access to some of its own degrees of freedom, it could still learn about them indi-
rectly. Whether this is possible or not depends on the dynamical laws of the world in 
which the agent operates. We discuss toy subjects measuring their own momentum in 
the context of nomic toy theory in Sect. 3.2.

Nevertheless, the fact that the knowledge of a toy subject supervenes on a Poisson 
variable (Definition 2.2) rather than its ontic state is a key ingredient in our derivation 
of the epistemic horizon in Sect. 3.1. Other agents, such as ones with direct access 
to their own ontic state, would be able to break the epistemic horizon of nomic toy 
theory.
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2.4 Measurement interactions

Let us now turn to the discussion of how a toy subject A may learn about a toy system 
S by virtue of interacting with it. To distinguish S from A, we call such S the toy 
object.

We model this potential acquisition of knowledge as a process in nomic toy theory 
(Fig. 1), which transforms the joint system of S and A denoted by S ⊕ A. The joint 
ontic state space is given by the direct sum S ⊕ A, which carries a canonical symplec-
tic structure induced by those of S and A. For more details on joint systems as well as 
joint and marginal states in Spekkens’ toy theory, see Appendix B.2.

We also assume that the toy subject A is in a ‘ready state’ prior to the process, i.e. 
its position variable Q has a definite value. Since the value of Q is already assumed 
to be directly accessible to A (see Sect. 2.3), this presents no additional assumption.

Definition 2.6 Given a toy system S and a toy subject A (with manifest variable Q), 
a measurement of S by A is a pair of a ready state, specified by a value of Q, and a 
reversible transformation m : S ⊕ A → S ⊕ A of nomic toy theory.

That is, m is given by an affine symplectic map

 x �→ Mx + v (8)

where x, v ∈ S ⊕ A and M  is a symplectic matrix.
The assumption that the measurement process is governed by reversible transforma-
tions does not pose any loss of generality if we assume that all irreversible transfor-
mations can be dilated to a reversible one with larger output (cf. Appendix B.3). Any 
information obtained by the irreversible process could then also be learned via its 
reversible dilation.

Fig. 1 A toy subject A with two manifest variables Q1 and Q2 gathers information about a toy object 
S via a measurement interaction m. Due to the physical nature of the measurement process, the subject 
can only acquire information about compatible variables. That is, its internal perspective (indicated in 
the white box) has an epistemic horizon, by which the toy subject can learn some properties but not 
others. In contrast, the external omniscient perspective (gray box) features the complete joint descrip-
tion of both the toy object and subject. See also Fig. 2
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2.5 Measurable properties of toy systems

Regarding measurement interactions in nomic toy theory, we are concerned with the 
following question: Which variables Z : S → Z can be measured by the toy subject 
A via a measurement as in Definition 2.6? Our model of learning presumes that the 
toy subject A only has direct access to its own manifest variable Q. That is, there 
should be a way to extract the value of Z prior to the measurement from the value of 
Q after the measurement. The following definition formalises this notion.

Definition 2.7 Given a measurement m of a toy object S by a toy subject A and a 
variable Z of S, we say that Z is fixed by m if there exists a function f : Q → Z 
satisfying

 Z(s) = f ◦ Q ◦ m(s + p) (9)

for all s ∈ S and all p ∈ P.
Here, Z(s) is the value of the Z variable before the measurement took place, while 
Q ◦ m(s + p) is the subject’s position after the measurement. Note that ◦ denotes, as 
usual, the composition of functions.

The fact that Eq. (9) is required to hold for every p expresses the assumption that 
the subject cannot use any direct information about its own initial momentum to learn 
about Z.

Note that the initial value of Q, which has a definite value because the subject 
enters the interaction in a ready state, is hidden in the choice of f . Specifically, let q0 
be the initial poistion of the toy subject A. Given a function f ′ satisfying

 Z(s) = f ′ ◦ Q ◦ m(s + q0 + p) (10)

for all s and all p, one can define a new function

 f(q) := f ′(q + Q ◦ m(q0)
)
, (11)

which, by linearity of m and Q, satisfies Eq. (9). Thus, there is no loss of generality 
in setting q0 = 0 in Definition 2.7. However, the fact that the suitable f  depends non-
trivially on q0 means that assuming the toy subject to enter the interaction in a ready 
state is necessary.
Let us decompose the measurement interaction’s matrix form into blocks with respect 
to V = S ⊕ Q ⊕ P via

 
M =

(
MSS MSQ MSP
MQS MQQ MQP
MPS MPQ MPP

)
, (12)

where, for example, MQP is the block that acts as the linear map P → Q.
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Definition 2.8 Given the notation from Eq. (12), the subspace im (MQP) of Q pro-
vides the contingent manifest variable given by the orthogonal projection onto this 
subspace and denoted by C : Q → C. Its orthogonal complement in Q specifies the 
free manifest variable denoted by F : Q → F.

Here, im (MQP) denotes the image of the map MQP. The value of the contingent 
manifest variable after the transformation m depends on the initial momentum of A, 
which motivates its name. On the other hand, the value of the free manifest variable 
after the measurement m is independent of the initial momentum of A.

Thus, by definition we have Q = F ⊕ C. Furthermore, if we write the symplectic 
matrix M  of the transformation in a block form with respect to the decomposition

 S ⊕ A = S ⊕ F ⊕ C ⊕ P, (13)

then the block MFP vanishes by definition.
Among all the variables fixed by a given measurement, there is an essentially unique 
most discerning (i.e. most informative) one, as we show in Proposition 2.10 below. 
It is the variable s �→ F ◦ m(s), which is a linear map S → F that is given by MFS 
in matrix form.

Definition 2.9 The variable measured by a measurement m is the linear map 
MFS : S → F, where F  is the free manifest variable. A variable Z : S → Z is called 
measurable if it is measured by some transformation in nomic toy theory.

The next proposition shows that any variable fixed by a measurement can be extracted 
from the variable measured by it. Therefore, considering variables that are fixed by 
some measurement does not give the agent any more information about the system 
than merely restricting attention to variables of the form MFS. This result justifies our 
identification of the set of measurable variables as representing all properties of a toy 
object that a toy subject can acquire through a measurement interaction.

Proposition 2.10 If Z is a variable fixed by a measurement m, then there is a function 
f : F → Z such that for each s ∈ S we have

 Z(s) = f (MFS s) . (14)

Proof Without loss of generality, we can assume that m is a linear map, so that 
m(x) = Mx for any vector x ∈ S ⊕ A. This is because affine shifts do not affect 
whether a variable is fixed by a measurement.

The fact that Z is fixed by m means that there is a function f : F → Z satisfying 
Eq. (9). Using the notation from Eq. (12) and that MFP vanishes by the definition of 
the free manifest variable F, we thus have
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 Z(s) = f
(
MFS s + MCS s + MCP p

)
(15)

for all s ∈ S and all p ∈ P.
Since MCP is surjective by the definition of the contingent manifest variable C, there 
is a ps ∈ P that satisfies

 MCP ps = −MCS s (16)

for a given value of s. Choosing p to be ps in Eq. (15) thus completes the proof.  □

3 Epistemic horizons from deterministic laws

We are now ready to present our main result (Theorem 3.1), which derives a limita-
tion on the toy subject’s abilities to learn about toy objects. Specifically, we show 
that a variable is measurable (Definition 2.9) if and only if it is a Poisson variable 
(Definition 2.2) in nomic toy theory (Sect. 3.1). In Sect. 3.2, we comment on why 
our agents know nothing about the object prior to learning and how this assumption 
can be justified with measurement disturbance. We also discuss a model of a toy 
subject measuring its own momentum and show that it does not break the epistemic 
horizon—unlike an agent that would have direct access to its own ontic state. Since 
Poisson variables in nomic toy theory are exactly those that can be known in Spe-
kkens’ toy theory, we conclude in Sect. 3.3 that Spekkens’ toy theory is the epistemic 
counterpart of nomic toy theory.

3.1 Constraints on information acquisition

Recall that Poisson variables can be thought of as a collection of functionals with 
mutually vanishing Poisson brackets. Since the Poisson bracket of generic function-
als does not vanish, this implies that not all properties of a toy system can be known 
simultaneously by an agent in the theory.

With all the definitions introduced in Sect. 2, we can now state our main theorem.

Theorem 3.1 A variable is measurable in nomic toy theory if and only if it is a Pois-
son variable.

Moreover, by Proposition 2.10, the only variables fixed by some measurement in 
nomic toy theory are those that can be written as a function of some Poisson variable. 
We illustrate this phenomenon in Fig. 2.

Proof We split the proof into two parts.

Part I: Poisson variables are measurable. In the first part, given any collection 
of compatible components of a Poisson variable, we construct a transformation that 
implements their joint measurement. That is, we consider an arbitrary Poisson vari-
able Z : S → Z of the toy system S (see Definition 2.2). Recall that Z can be decom-
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posed as a set of components (functionals) as {Zi}dim(Z)
i=1 . By definition, it satisfies 

the compatibility equation

 ZΩSZT = 0, (17)

which can be interpreted as saying that its components have mutually vanishing Pois-

son brackets, i.e. they satisfy ω(ZT
i , ZT

j ) = 0 for all i and j.

We then specify the phase space of the toy subject to be A = Q ⊕ P, where Q is 
defined to be Z—the vector space of possible values of Z. Here, we demand Q to be 
a Lagrangian subspace of A, which thus uniquely fixes P and the symplectic structure 
on A. The manifest variable of the toy subject A is chosen to be the projection map 
A → Q.

We now construct a transformation m : S ⊕ A → S ⊕ A that measures the Pois-
son variable Z. It is the linear transformation given as a matrix by

 
M =

(
� 0 ΩSZT

Z � 0
0 0 �

)
 (18)

Fig. 2 The epistemic horizon ‘experienced’ by the toy subject is akin to the situation in which the 
subject would wear glasses that only let vertically polarised light or horizontally polarised light go 
through. The positioning of the glasses determines whether interaction m or m′ takes place. The prop-
erties of the toy object are analogous to unpolarised light, which can be decomposed into vertical and 
horizontal components. The toy subject can choose the orientation of glasses, but cannot observe the 
toy object without the glasses
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in the block form relative to the decomposition. A specific example of the above 
matrix for the case of a position measurement can be found below.
Note that we have MQP = 0, which implies F = Q, and MQS = Z. Thus, by Defini-
tion 2.9, the transformation m measures Z if it is indeed a valid transformation in 
nomic toy theory. To show that it is, we have to prove that it is a symplectic matrix, 
i.e. that MT ΩM = Ω holds. The left-hand side of this equation gives

 

(ΩS 0 0
0 0 �

0 −� ZΩSZT

)
, (19)

which is indeed equal to Ω, provided that Z is a Poisson variable satisfying Eq. (17).
Part II: Measurable variables are Poisson variables. In the second part of the 
proof, we show that no other variables can be measured by valid transformations in 
nomic toy theory.

Our task is to show that if Z is measurable, then it must be Poisson, which means 
proving

 ZΩSZT = 0, (20)

since the fact that Z is a linear map follows from the definition of measurable 
variables.
Consider now a measurement m where the toy subject A is given by the symplectic 
vector space Q ⊕ P where Q is its manifest variable. Moreover, the linear part of m 
is denoted by M  with blocks denoted with respect to the decomposition from (13). 
The fact that m is a transformation in nomic toy theory means that M  is a symplectic 
matrix. Moreover, the transpose of every symplectic matrix is also symplectic, i.e. we 
have MΩMT = Ω. Extracting the FF block out of this set of 16 equations, we find

 MFSΩSMT
FS − MFP (MFF + MFC)T + (MFF + MFC) MT

FP = 0. (21)

Since MFP is the zero matrix by Definition 2.8, this implies

 MFSΩSMT
FS = 0, (22)

which is what we wanted to show, concluding the proof of Theorem 3.1.  □
Note that every functional is a Poisson variable. Theorem 3.1 thus implies that 

every functional is measurable. Furthermore, by the construction in the first part of 
the proof, a 2-dimensional subject suffices to measure it.

3.1.1 An example of a position measurement

Let us illustrate the construction of the measurement of a generic Poisson variable 
Z with a concrete example. To this end, consider both the toy object S and the toy 
subject A to be 2-dimensional, i.e. each one comes with a single position and a single 
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momentum degree of freedom. Moreover, we choose Z to be the position variable of 
S, which is a functional in this case. In matrix form, Z is given by

 (1 0) (23)

in the {qS, pS} basis of S.
Before the measurement, the initial joint state of S ⊕ A is denoted by

 

v =




v1
v2
v3
v4


 (24)

in the {qS, pS, qA, pA} basis of S ⊕ A. On the other hand, the measurement inter-
action from the proof of Theorem 3.1 is in general given by the matrix M  from 
Eq. (18). Substituting the position variable from (23) for Z in this expression gives

 

M =




1 0 0 0
0 1 0 −1
1 0 1 0
0 0 0 1


 . (25)

Thus, the post-measurement ontic state of the joint system is

 

Mv =




v1
v2 − v4
v1 + v3

v4


 . (26)

We notice two crucial features. First, if the toy subject A is initially in a ready state, 
i.e. if v3 has a definite value, then the manifest variable after the measurement encodes 
the initial position of S given by v1. This illustrates one role of our assumption that 
the agent’s manifest variable be fixed prior to the measurement.
Secondly, there is a back-reaction on the object’s momentum—the conjugate variable 
to the measured position of S. In particular, its value after the measurement is dis-
turbed by a value that equals the initial momentum of the toy subject A. This distur-
bance highlights the role of our assumption that the toy subject cannot directly know 
its own momentum. If it did, the measurement disturbance could be accounted for.

Let us discuss both of these points in more detail now.

3.2 A couple of caveats

Our claim that the learning of an agent in nomic toy theory is limited by an epistemic 
horizon hinges on the following caveat.
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3.2.1 The relevance of (no) a priori knowledge

We assume that, prior to any measurement, the agent possesses no knowledge about 
the state of the toy object S. Indeed, imagine that, on the contrary, the following is 
true: The agent A is composed of two subsystems, i.e. we have A = A1 ⊕ A2 where 
each Ai is a toy subject with an associated manifest variable Qi. At time t1 (labelling 
that the measurement process is yet to occur), the value of the manifest variable Q1 
encodes the momentum of S and, importantly, the agent A knows that this is the case. 
Furthermore, A2 is in a ready state (see Definition 2.6).

Then, applying the transformation mq : S ⊕ A2 → S ⊕ A2 given by Eq. (18), 
where Z is the position variable of S, enables A2 to learn the position of S. Since the 
state of A1 is unchanged by this transformation, at time t2 (labelling that the trans-
formation has occurred) we have the following situation: The manifest variable Q1 at 
time t2 encodes the momentum of S at time t1 and the manifest variable Q2 at time 
t2 encodes the position of S at time t1. In conjunction, at time t2, the agent A has a 
complete specification of the ontic state of S at time t1 and thus breaks the purported 
epistemic horizon.

However, it is natural to assume that the agent has no knowledge of the toy object’s 
state initially. After all, we are interested in deriving fundamental bounds on the learn-
ing capabilities of the agent. Any pre-existing knowledge should be accounted for by 
an explicit process that allows A to obtain information. Hence, we can circumvent 
the above caveat on grounds that the acquisition of information invariably involves 
an interaction with the physical world. This justifies our assumption that toy subjects 
possess no a priori knowledge of the state of the toy object.

3.2.2 Measurement disturbance

But how can we be certain that the knowledge of the object’s momentum by A1 could 
not be accounted for by an explicit process in nomic toy theory? Abstractly, this fol-
lows from Theorem 3.1.

More concretely, consider a measurement mp : S ⊕ A1 → S ⊕ A1 that is applied 
before mq  and given by Eq. (18), where Z is now the momentum of S (see Fig. 3). 
That is, mp encodes the momentum of S at time t0 (labelling that the measurement 
mp is yet to occur) into the manifest variable Q1 at time t1. One can check that the 
momentum of S is unaffected by mp and thus the manifest variable Q1 at time t1 
also coincides with the momentum of S at time t0. See Appendix A for the explicit 
computations.

The issue is that mp disturbs the position of the toy object S by a shift that depends 
on the (unknown) momentum of A1 at time t0. As a result, the subsequent transfor-
mation mq  encodes the position of S at time t1, rather than the one at time t0, into 
the manifest variable Q2. The composed process mq ◦ mp is therefore no counter-
example to Theorem 3.1. Nevertheless, our discussion shows that the toy subject A 
can, at time t2, have perfect knowledge of the ontic state of the toy object S at time 
t1! This is in line with the fact that also the ontic state in Spekkens’ toy theory can 
be perfectly known given both pre- and post-selection (Hausmann et al., 2023). It is 
worth mentioning that the same is true in quantum mechanics.
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Nevertheless, neither the ontic state of S at time t0 nor the one at time t2 is com-
pletely known to A. That is, it is still true that the subject A cannot at any time encode 
a previously unknown ontic state of the object S that it possesses at that very same 
time. The transformation mp applied between times t0 and t1 disturbs the position of 
S, while the transformation mq  applied between times t1 and t2 disturbs the momen-
tum of S. The results we derive in this paper rule out the possibility that after a mea-
surement (time t2 above), A would know the ontic state of S before the measurement 
(time t0 above), which is what we call learning. The fact that A may have sufficient 
information to determine the value of incompatible variables at an intermediate time 
during the measurement is not ruled out by the epistemic horizon we derive.

3.2.3 Self-measurement of toy subjects

The reason why A cannot access the initial position of S in the above example is its 
disturbance by the initial momentum of A1, which is unknown. But could a toy sub-
ject measure its own momentum and with this information correct for the disturbance?

As it turns out, such a self-measurement is implicitly accounted for by Theo-
rem 3.1. Our main result therefore gives an abstract argument why measuring one’s 
own momentum cannot break the epistemic horizon.

This stems from measurement disturbance again. Specifically, imagine a further 
toy subject A3 that measures the momentum of A1 before time t0. This measurement 
disturbs the position of A1 by a shift that depends on the (unknown) initial momen-
tum of A3. As a result, the momentum of S is no longer fixed by mp. Self-measure-

Fig. 3 At time t0, both subjects are in a ready state with Q1 = Q2 = 0. Then, the toy subject A1 mea-
sures the toy object S, so that the initial value of the object’s momentum gets encoded into the manifest 
variable Q1. At the same time, the toy object’s position gets disturbed by an amount that depends on 
the initial momentum P1 of the toy subject A1. Subsequently, the other toy subject A2 interacts with S, 
so that the object’s position at time t1 gets encoded into the manifest variable Q2. During this interac-
tion, the object’s momentum is disturbed by an amount that depends on the initial momentum of A2
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ment thus does not resolve the issue, the source of the uncertainty has been merely 
shifted from the initial momentum of A1 to that of A3. One could imagine introduc-
ing further pointers to measure initial momenta, but this inevitable leads to an infinite 
regress that does not stabilise to a reliable knowledge of the relevant parameters.

Our analysis of nomic toy theory implies that an epistemic horizon exists also 
in classical mechanics, given the assumption that agents modelled as mechanical 
systems can only directly access their own manifest variable (Definition 2.5). In con-
trast, traditional accounts claim that in classical mechanics arbitrary measurement 
precision can be achieved and that both position and momentum can be recorded 
simultaneously (see, for instance, Solé et al. (2016)). However, a closer look at these 
arguments reveals that this holds only under the assumption that the initial momen-
tum of the measurement apparatus is known—in line with our discussion above.

3.3 Spekkens’ toy theory as the epistemic counterpart of the nomic toy theory

In this section we briefly discuss the connection between measurable variables in 
nomic toy theory and epistemic states in Spekkens’ toy theory (Spekkens, 2016).

While agents are not explicitly modelled as physical systems in Spekkens’ toy 
theory, its epistemic restriction is introduced to specify what a hypothetical agent 
could learn about a physical system.

Ontic states and the associated reversible transformations in Spekkens’ toy theory 
match those of nomic toy theory. While the latter posits no a priori notion of epis-
temic states, these are explicitly specified in Spekkens’ toy theory (see our descrip-
tion in Appendix B for more details). Specifically, each epistemic state corresponds 
to the value of a variable that can be known according to the epistemic restriction 
in Spekkens’ toy theory (and vice versa). Among these ‘knowable’ variables, the 
scalar-valued ones are called quadrature functionals. A generic one, an affine map 
f : V → F , can be written as

 f := a1qT
1 + b1pT

1 + · · · + anqT
n + bnpT

n + c, (27)

where {q1, . . . , qn, p1, . . . , pn} is the chosen orthonormal basis of the phase space 
V and aj , bj , c are all scalars in the field F . As far as the resulting epistemic state is 
concerned, we can assume c = 0 without loss of generality (cf. our notion of equiva-
lence of variables introduced in Sect. 2.2).
Generic (vector-valued) linear variable can be identified as a collection of quadrature 
functionals. The epistemic restriction of Spekkens’ toy model says that such a col-
lection is jointly knowable if and only if the Poisson bracket of each pair of them 
vanishes, i.e. {f1, f2} = 0 in Spekkens’ standard notation for quadrature functionals. 
The theory postulates that variables whose value can be known are precisely Poisson 
variables in nomic toy theory as introduced in Definition 2.2. Furthermore, as we 
show in Proposition 2.10 and Theorem 3.1, Poisson variables in nomic toy theory 
coincide with those properties of toy systems that can be learned by a toy subject 
within the world. In this way, the epistemic restriction of Spekkens’ toy theory arises 
from two ingredients: 
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(1) the allowed transformations of ontic states introduced in Sect. 2.1 (which coin-
cide for nomic and Spekkens’ toy theories), and

(2) the specification of information gathering agents and identification of their directly 
accessible information in the form of manifest variables (Definition 2.5).While 
nomic toy theory does not come with a pre-specified epistemology, the second 
ingredient allows us to derive an epistemic horizon for the model of toy sub-
jects used in this article. Doing so, we find that the derived epistemic aspects 
of subjects in nomic toy theory coincide—at least as far as epistemic states are 
concerned—with the posited epistemic horizon in Spekkens’ toy theory.

4 Conclusions

Let us now discuss implications of our results and related questions in the foundations 
of physics so as to put things into a broader perspective. We discuss the significance 
of our work for the relationship of internal and external observers, representational-
ism, the subject-object split and the reality of unobserved properties (Sect. 4.1). We 
also comment on the relationship of nomic toy theory to quantum theory, and a pos-
sible view of physical phenomena that supersedes the subject-object separability. We 
then conclude with an outlook on future directions of study in Sect. 4.2.

4.1 Discussion

4.1.1 Internal versus external perspective

Theorem 3.1 can be interpreted as describing a relationship of two distinct perspec-
tives. One is the omniscient view that specifies the precise ontic state of every system 
in toy world, akin to the meticulous vision of the entire state of the toy universe by 
Laplace’s demon. This view is by definition from ‘outside’, i.e. external to the world. 
Conversely, there is an internal perspective as experienced by an embedded toy sub-
ject. This view is shown to be limited relative to the omniscient one. As we prove, 
a subject in toy theory cannot learn the precise ontic state of another toy system by 
interacting with it. The best description it can have is an epistemic state, which neces-
sarily retains uncertainty about the precise ontic state (see Appendix B.1 for details).

4.1.2 Subject-object inseparability

The derived epistemic horizon emphasises the participatory nature of the subject in 
the theory. It shows that the physically allowed information gathering activities of an 
agent affect the knowledge it can have about an object. This challenges the old divide 
between the subject and object. That is, our approach highlights that the standard 
notions of measurement, representability, and epistemology are intimately bound up. 
Relatedly, in Russo (2000) Russo builds on the ontoepistemology of Barad (2007) 
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and the constructionist approach of Floridi (2011) to argue for an epistemology of 
techno-scientific practice.9

Moreover, the construction of a toy subject measuring itself (Sect. 3.2) introduces 
the possibility of self-reference, which in turn makes the knowledge of a toy subject 
liable to logical paradoxes. It is conceivable that our results could be linked to a logi-
cal argument about the impossibility for an observer to describe itself from within 
the world. In particular, recall that the crucial Definition 2.5 of toy subjects specifies 
what a toy subject knows about its own ontic state as well as how its knowledge is 
manifested in its ontic state. Relatedly, Ismael presents an argument for the instabil-
ity in an embedded agent’s ability to know the future due to self-reference (Ismael, 
2023).

So it could be argued, perhaps, that what is ‘real’ to one subject is not ‘real’ to 
another. Furthermore, does it make sense for the subject to speak of a world as being 
separate from itself? What would a measurement outcome signify if we take the 
participatory nature of the subject seriously and abandon an observation-independent 
reality? What is the new referent of measurement? In other words, what supersedes 
the subject-object split?

4.1.3 Epistemic horizons and their implications for ontology

The idea that a physical theory may operate under the premise of an observer-depen-
dent description is not new. Several interpretations of quantum theory take a similar 
stance, such as the non-realist (Fuchs and Schack, 2013; Rovelli, 1996; Faye, 2019), 
pragmatist (Healey, 2012), or Everett (1957) approaches.

Nomic toy theory gives an explicit account of the interdependency of subjects 
and objects. It invites us to study whether subjects are justified to posit the existence 
of ontic states that are only ‘visible’ from an omniscient perspective. Even though 
subjects in nomic toy theory are faced with an epistemic horizon, this limitation is 
compatible with a deterministic and classical description. Can the same be said for 
other kinds of subjective experiences featuring an epistemic horizon, such as the one 
of quantum theory? Are there operational theories whose predictions rule out the 
possibility that their epistemic horizon stems from the dynamical laws of a classical 
ontic theory?

Making these questions precise requires a careful construction of a more general 
framework than our investigation of nomic toy theory and its symplectic dynamics. 
With it, one may hope to classify the kinds of epistemic horizons that could arise 
based on the allowed subject-object interactions just like the one we derive in this 
paper. Similar efforts have been successful in the framework of ontological models 
(a.k.a. hidden variable models), in which one can formally derive the operational 
consequences of metaphysical assumptions such as Bell locality (Bell and Aspect, 
2004) and non-contextuality (Kochen and Specker, 1967).

Importantly, the fact that the operational consequences of both are violated by 
behaviours of quantum systems constrains the possible underlying physical reality. 

9 We thank an anonymous reviewer for drawing our attention to Russo’s work.
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Answering the questions from previous paragraphs would likely constitute an analo-
gous step in understanding quantum theory and its viable interpretations.

4.1.4 Relation to interpretations of quantum theory

Although we do not provide answers to the questions posed in the previous para-
graphs, it is worthwhile to mention that a version of an observer-dependent realism 
aligns with the spirit of relational and QBist approaches to quantum mechanics (Rov-
elli, 1996; Fuchs and Schack, 2013). See also Barad’s agential realism (Barad, 2007) 
and the quantum holism of Ismael and Schaffer (2020).

For instance, relational quantum mechanics purports that the notion of a subject 
has no metaphysical significance—any physical system could be one. Moreover, it 
emphasises “the way in which one part of nature manifests itself to any other single 
part of nature” (Rovelli et al., 2021, p. 67). In this view, properties of an object are 
relative to another system which interacts (and thus measures) the object. This reso-
nates with the notion of the observer-dependent epistemic state in nomic toy theory.

Relational quantum mechanics, as well as many other interpretations, effectively 
posit that quantum properties do not exist prior to measurement or that there is no 
way to consistently describe them (see, for instance, Wheeler’s participatory nature 
(Wheeler & Zurek, 1983, pp. 182–213). This is in contrast with the ontic status of 
unobservable variables in Spekkens’ toy theory (and thus also nomic toy theory). 
There, we have an epistemic horizon featuring unpredictability, uncertainty, and 
complementarity, even though all properties of systems exist and have definite val-
ues at all times (at least from the omniscient perspective featuring the full ontic state 
description). From a toy subject’s perspective, however, the view is very similar 
to one invoking participatory ‘realism’. The subject-object divide can be therefore 
called into question even given a deterministic physical theory.

Furthermore, recall the intuition that the epistemic horizon of nomic toy theory is 
connected to the uncontrollable initial momentum of toy subjects, which introduces 
an unpredictable disturbance of the toy object (Sect. 3.2). This implies that a toy 
subject measuring position after a measurement of momentum (Fig. 3) may find a dif-
ferent position value than a toy subject measuring position prior to the measurement 
of momentum. More generally, Theorem 3.1 implies that there is no simultaneous 
measurement of both position and momentum—they are incompatible. In quantum 
theory, the incompatibility structure of observables leads to contextuality Kochen and 
Specker (1967). In contrast, Spekkens’ toy theory is non-contextual. In this case, the 
incompatibility can be seen merely as an expression of measurement disturbance (see 
also the more general arguments in Erba et al. (2024)).

It is noteworthy that even full quantum theory can be given an ontological model 
in which measurement interactions entail disturbance—e.g. the de Broglie-Bohm 
theory (dBBT) (Bohm and Hiley, 1993). Part of the ontology of dBBT consists of 
particles like in nomic toy theory. However, dBBT also incorporates the quantum 
wave-function which can be seen as the analogue of the epistemic state from Spe-
kkens’ toy theory. In dBBT it is used to determine particles’ trajectories as well as 
the initial distribution of their positions. This is in contrast to nomic toy theory where 
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both the initial configurations and dynamics of particles are independent of epistemic 
states.

Studying epistemic horizons, i.e. defining measurable variables and characteris-
ing a subject’s information-gathering capabilities within dBBT, in parallel with our 
investigations here, would be a promising direction for future research.

4.1.5 Limitations on predictability

We suspect that our result also implies that a toy subject cannot prepare the toy object 
in a fixed ontic state. Intuitively, this would follow from the fact that in order to pre-
pare an exact ontic state, a subject would need to perform a measurement that signi-
fies the preparation of this state. But as we have shown such a measurement process 
does not exist (a similar claim was proven by Hausmann et al. (2023) in the context 
of Spekkens’ toy theory).

4.2 Summary and outlook

We have used nomic toy theory—an essentially classical theory—to propose an 
explicit account of the source of the epistemic horizon in Spekkens’ toy theory. Sub-
jects in nomic toy theory can only ever ascertain a coarse-grained description of 
objects in the world, namely one in terms of the epistemic states of Spekkens’ toy 
theory. We attribute the source of the fundamental uncertainty to the nature of inter-
actions between subjects and objects. Specifically, the learning process governed by 
such an interaction is invariably connected to a disturbance of the object, which pre-
vents the subject from learning the complete state of the object.

At first glance, our result may be surprising in light of the claims that Newtonian 
mechanics should in principle allow for arbitrarily precise measurements of the prop-
erties of a classical particle. Bear in mind that Liouville’s theorem in Hamiltonian 
mechanics implies preservation of phase space volume, but does not rule out arbi-
trary stretching and squeezing of a phase space volume such that conjugate variables 
become simultaneously sharply defined. However, we suspect that our result could 
be related to the claims of de Gosson on the relationship of symplectic geometry 
and quantum uncertainty principles (de Gosson, 2009). Basically, de Gosson derived 
an analogue of the quantum Robertson–Schrödinger inequality from the symplectic 
properties of the phase space alone. This essentially implies that Heisenberg’s uncer-
tainty relations already hold in Hamiltonian mechanics for all pairs of conjugate posi-
tion and momentum variables.

Why does it seem that some aspects of quantum uncertainty can be explained 
in terms of Hamiltonian mechanics? Do uncertainty relations really have such an 
analogue in classical physics? Can the epistemic horizon in nomic toy theory be 
restated as a classical uncertainty relation akin to Heisenberg’s uncertainty principle 
in quantum theory? We hope that our analysis will serve as a toy example to facilitate 
explorations of those pertinent questions.

For instance, one may study the role of hidden variables in quantum theory. Our 
result derives the consequences of positing a specific classical ontology for the learn-
ing capabilities of internal agents. Not all underlying ontic models may lead to the 
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same information gathering capabilities of agents. Thus, the empirically observed 
epistemic horizon could potentially be used to rule out the ontological models that do 
not reproduce it. More on this is found in the “implications for ontology” part of the 
Discussion (Sect. 4.1).

A related question concerns the development of ontological models motivated 
and evaluated from within nomic toy theory. That is, one may investigate what kind 
of ontologies are consistent with the experience of an epistemically restricted toy 
subject. Is there a way to differentiate among them based on desiderata such as par-
simony or naturalness? In a nutshell, what would such a subject conclude about the 
ontology underlying the phenomena observed? See also a potential link to problems 
about bootstrapping and reliabilist epistemology (Goldman and Beddor, 2021).

As one possibility, one could look at nomic toy theory in an Everettian setting 
where pointer states are not single valued. Could a many-worlds ontology lead to a 
single-world experience of the toy subject (Barrett et al., 2010, Chapter 2)? It would 
be interesting to study the problem of Everettian probabilities in this context (Barrett 
et al., 2010, Chapter 3). There may also exist connections to more elaborate models 
of agents such as those in Shrapnel et al. (2023).

In the future we also wish to shed light on multi-agent scenarios. A recent attempt 
to try to view quantum theory as an integration of perspectives of agents subject to 
the epistemic horizon of Spekkens’ toy theory has been explored in Braasch Jr and 
Wootters (2022). It is particularly interesting to look at what different subjects can 
communicate intersubjectively (see also related ideas in the context of Spekkens’ 
toy model Hausmann et al. (2023)). This may perhaps allow novel insights into the 
intricacies of many recently studied Wigner’s friend type scenarios as well as no-go 
claims on ‘observer-independent facts’ (Wigner, 1961; Bong et al., 2020; Frauchiger 
and Renner, 2018; Lawrence et al., 2023; Brukner, 2018; Ormrod and Barrett, 2022). 
See also the reviews in Adlam (2024), Schmid et al. (2023), Brukner (2022) and more 
general results on quantum epistemic boundaries (Fankhauser, 2023).

We also leave open the question whether the participatory nature of the agent in 
our toy theory entails a more parsimonious account of the physical world. Could 
there exist a new relational physical state of the world relative to the internal observ-
ers of the theory describing the subject and object jointly? Such an account would go 
beyond the traditional subject-object split and take inseparability seriously.

Appendix A: Composing position and momentum measurements

Here, we give additional details on the attempted construction of a joint measurement 
of position and momentum from Sect. 3.2. Specifically, we consider three toy sys-
tems—S, A1, and A2—each of which has one position and one momentum degree 
of freedom. Moreover, the latter two are toy subjects with their positions acting as 
manifest variables (see Fig. 3).

The joint system A1 ⊕ S ⊕ A2 starts out at time t0 in the ontic state denoted by
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u(t0) =

(
u1
u2

)

A1

⊕
(

u3
u4

)

S
⊕

(
u5
u6

)

A2

 (28)

in the {q1, p1, qS, pS, q2, p2} basis of A1 ⊕ S ⊕ A2.
The first interaction mp is a measurement of the momentum of S by the toy sub-

ject A1. Just as at the end of Sect. 3.1, we substitute the matrix form

 (0 1) (29)

of the momentum variable into Eq. (18) to obtain the matrix form of mp:

 

Mp =




1 0 0 1
0 1 0 0
0 1 1 0
0 0 0 1


 , (30)

where one ought to be careful that the subject and object are now in reverse order 
compared to Eq. (18). Here, we merely write its action on A1 ⊕ S. The action on the 
full joint state space is then via Mp ⊕ �A2 .

At time t1, i.e. once the interaction mp has taken place, the joint state of all three 
toy systems is thus

 
u(t1) =

(
u1 + u4

u2

)

A1

⊕
(

u2 + u3
u4

)

S
⊕

(
u5
u6

)

A2

. (31)

As we can see, the manifest variable of A1 now encodes the initial momentum of S, 
provided that A1 started out in a ready state. Furthermore, the position of S has been 
disturbed by the initial momentum of A1.

The second step of the composite transformation depicted in Fig. 3 is a measure-
ment mq  of the position of S by the toy subject A2. Its matrix form is as in Eq. (25):

 

Mq =




1 0 0 0
0 1 0 −1
1 0 1 0
0 0 0 1


 . (32)

After this interaction, at time t2, the full ontic state is

 
u(t2) =

(
u1 + u4

u2

)

A1

⊕
(

u2 + u3
u4 − u6

)

S
⊕

(
u2 + u3 + u5

u6

)

A2

. (33)

If we assume the ready states of the toy subjects have vanishing manifest variables, 
this reduces to
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(
u4
u2

)

A1

⊕
(

u2 + u3
u4 − u6

)

S
⊕

(
u2 + u3

u6

)

A2

. (34)

The values of the manifest variables at time t2 are thus u4 and u2 + u3 respectively. 
The former encodes the correct momentum of S at times t0 and t1, while the latter 
encodes the correct position of S at times t1 and t2.

Appendix B: Supplementary material on Spekkens’ toy theory

As we mention throughout the text, nomic toy theory shares both the kinematics and 
dynamics with Spekkens’ toy theory (Spekkens, 2007). This is not an accident. We 
are specifically interested in the latter because it features both an epistemic restric-
tion as well as deterministic dynamics at the ontic level. As we discuss in Sect. 3.3, 
our results show that the epistemic restriction of Spekkens’ toy theory coincides with 
the epistemic horizon of nomic toy theory that we derive. To make this precise, we 
provide a description of the epistemic level of Spekkens’ toy theory here including 
several auxilliary results. Our presentations closely follows that of Hausmann et al. 
(2021). For additional details on Spekkens’ toy theory, see (Spekkens, 2016; Catani 
and Browne, 2017).

B.1 Systems in Spekkens’ toy theory

The ontic state space of a system V  is a symplectic vector space V, just as we discuss 
in Sect. 2.1.

Remark B.1 If the underlying field of V is that of real numbers, we obtain continuous 
toy systems. Basic finite systems are associated with an integer d. Their ontic state 
space is a (symplectic) Zd-module, which is a vector space if d is a prime power. Other 
finite systems can be obtained as composites of the basic ones (see Appendix B.2.1).

For a linear subspace W of V, we can define the symplectic complement

 Wω := {v ∈ V | ω(W, v) = 0} (35)

where

 ω(W, v) = 0 :⇐⇒ ω(x, v) = 0 ∀x ∈ W. (36)

Such a subspace W is

 ● a symplectic subspace if Wω ∩ W = {0},
 ● isotropic if W ⊆ Wω, i.e. if the symplectic form vanishes on W, and
 ● Lagrangian if W = Wω, i.e. if it is a maximal isotropic subspace (cf. Defini-

tion 2.4). An epistemic state of Spekkens’ toy theory (U, a) is specified by an 
isotropic subspace U of V and a vector a ∈ V. Via an isomorphism of V and its 
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dual V∗, the subspace U is interpreted as consisting of those functionals whose 
values are known. Alternatively, we can think of U as the set of values of the 
orthogonal projection U : V → U. This is an isotropic variable if and only if U 
is isotropic.

The vector a is interpreted as one of the ontic states that is deemed possible by 
this epistemic state.

It fixes the value of any functional u ∈ U to be

 ⟨u, a⟩ (37)

where ⟨_, _⟩ is the canonical inner product on V. Thus, the set of all ontic states that 
are possible according to the epistemic state (U, a) is

 Ua :=
�

v ∈ V
�� ⟨u, a⟩ = ⟨u, v⟩ ∀ u ∈ U

�
= U⊥ + a, (38)

where U⊥ is the orthogonal complement of U. In other words, the possible ontic 
states must share the value of the variable U . We call Ua the support of the epistemic 
state (U, a). Note that it is an affine subspace of V. We do not distinguish between 
epistemic states that have the same support. An epistemic state (U, a) is called pure 
if U is Lagrangian.

The reversible transformations of Spekkens’ toy theory form the affine symplectic 
group (Sect. 2.1) and act on ontic states via the canonical action. That is, its elements 
are pairs (t, v) of a symplectic map t ∈ Sp(V) and a vector v ∈ V, which compose 
via

 (s, u) ◦ (t, v) =
(
s ◦ t, u + s(v)

)
. (39)

A given reversible transformation (t, v) then acts on ontic states via x �→ t(x) + v.
The following proposition shows that epistemic states are mapped to epistemic 

states under affine symplectic transformations and derives Equation (A.3) from 
Hausmann et al. (2023).

Proposition B.2 Let (f, v) be an affine symplectic map on a symplectic vector space 
V and let Ua be the support of an epistemic state (U, a). The affine subspace 

Fig. 4 While the ontic state a is an 
element in the ontic state space of the 
toy system, the support of an epistemic 
state (U, a) is a collection of such ele-
ments, namely those given by Eq. (38). 
After a reversible transformation, these 
are transformed to another collection 
(U′, a′) given by Eq. (40), where a′ is 
the image of a under the transforma-
tion. In the figure, U is the position 
variable and U ′ is the momentum 
variable

 

1 3

Page 27 of 38   136 



Synthese         (2025) 205:136 

f(Ua) + v, which is the image of Ua under (f, v), coincides with the support of the 
epistemic state

 

(
f−1T (U), f(a) + v

)
. (40)

Proof First, let us show that (40) is indeed an epistemic state. To this end, note that 
the inverse of any symplectic matrix M ∈ Sp(V) is given by

 M−1 = ΩT MT Ω. (41)

Therefore, f−1T
 is given by

 f−1T (v) = −ΩF Ωv (42)

where F  is the matrix representation of f . In particular, it is also a symplectic map. 

By Lemma B.3 proven below, the image of U under f−1T
 is an isotropic subspace 

and (40) is thus an epistemic state.

The rest of the proof establishes that f(Ua) + v is the support of this epistemic state. 
We have

 f(Ua) + v =
�

f(x) + v
�� ⟨u, a⟩ = ⟨u, x⟩ ∀ u ∈ U

�
 (43)

by definition. Let us denote f(x) + v by w, so that we have x = f−1(w − v). Then, 
the right-hand side of Eq. (43) is the set of all w ∈ V satisfying

 ⟨u, a⟩ =
⟨
u, f−1(w − v)

⟩
∀ u ∈ U. (44)

Since we have fT f−1T = �  the left-hand side of Eq. (44) is equal to either side of

 

⟨
fT f−1T (u), a

⟩
=

⟨
f−1T (u), f(a)

⟩
, (45)

while the right-hand side of Eq. (44) is

 

⟨
f−1T (u), w − v

⟩
. (46)

Thus we obtain

 
f(Ua) + v =

�
w

���
⟨

f−1T (u), f(a) + v
⟩

=
⟨

f−1T (u), w
⟩

∀ u ∈ U
�

, (47)

,
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which is the support of the epistemic state in (40).  □
Therefore, reversible transformations preserve the set of epistemic states. In other 

words, if a function f : V → V maps (the support of) some epistemic state to a subset 
of V that is not (the support of) an epistemic state, then f  is not a valid reversible 
transformation. For example, this directly implies Corollary 1 (Restrictions on condi-
tional transformations: example) in Hausmann et al. (2023).

Lemma B.3 Symplectic maps preserve the set of isotropic subspaces. That is, if 
f : V → V is a symplectic map and W is an isotropic subspace of V, then f(W) is 
also an isotropic subspace.

This is a standard result, we give the proof for completeness.

Proof Note that a subspace W is isotropic if and only if the implication

 v ∈ W =⇒ ω(x, v) = 0 ∀ x ∈ W (48)

holds. Moreover, since f  is bijective, we have y ∈ f(W) if and only if y = f(v) for 
some v ∈ W. Thus we have

 y ∈ f(W) =⇒ ω
(
x, f−1(y)

)
= 0 ∀ x ∈ W  (49)

 ⇐⇒ ω
(
f−1(z), f−1(y)

)
= 0 ∀ z ∈ f(W)  (50)

 ⇐⇒ ω (z, y) = 0 ∀ z ∈ f(W)  (51)

where the last equivalence holds because f−1 is itself symplectic. In conclusion, 
f(W) is isotropic.  □

Note, furthermore, that symplectic maps in Sp(V ) act transitively on the Lagrang-
ian Grassmanian (Calegari (2022), Lemma 1.12).

B.2 Description of multiple systems in Spekkens’ toy theory

B.2.1 Joint states

Each ontic state of the joint (bipartite) system is given by a pair of ontic states from 
each of the components respectively. Its underlying vector space is thus the direct 
product of the individual ones, which is isomorphic to their direct sum.

Definition B.4 Given two toy systems (V1, ω1) and (V2, ω2), the joint system 
describing their composite is given by (V1 ⊕ V2, ω1 ⊕ ω2).

Every joint ontic state v ∈ V := V1 ⊕ V2 has a unique decomposition v = v1 + v2 
for vi ∈ Vi. Moreover, there are linear projections Vi : V → Vi, such that Vi maps v 
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to vi. Similarly, for any choice of epistemic states (U1, a1), and (U2, a2) of V1 and 
V2 respectively, the joint state of V1 ⊕ V2 is the epistemic state (U1 ⊕ U2, a1 + a2) 
with support10

 
(U1 ⊕ U2)⊥ + a1 + a2 =

(
U⊥

1 + a1

)
⊕

(
U⊥

2 + a2

)
. (52)

These constitute the so-called product states of the joint system.
Besides product states, there are also correlated joint states. As an example, con-

sider the joint system of two toy bits with its epistemic state given by

 


 span








1
0

−1
0


 ,




0
1
0

−1








,




0
0
0
0





 . (53)

It is a state for which both the positions and momenta of the two systems are perfectly 
correlated. Its support is the subset of (Z2)4 given by

 








0
0
0
0


 ,




0
1
0
1


 ,




1
0
1
0


 ,




1
1
1
1








. (54)

B.2.2 Reduced states

Appendix B.2.1 describes global states of multiple systems. For any such global 
state, we can marginalize any of its subsystems to obtain the local description of the 
remaining subsystems. This notion also appears in Definition 2.6 of pointer-preserv-
ing measurements.

Definition B.5 Given a possibilistic state11ρ of a composite system V1 ⊕ V2, its Vi

-marginal (also referred to as the reduced state to Vi) is the image of ρ under the 
projection Vi.

Whenever ρ is the support of an epistemic state (U, a), we can find its marginal 
by projecting a and restricting the set of known functionals in U to the local ones.

Proposition B.6 (Marginals of epistemic states) Consider an epistemic state (U, a) of 
the composite V = V1 ⊕ V2. Then the V1-marginal of its support is the support of 
the epistemic state of V1 given by

10 Note that on the right-hand side, U⊥
i  refers to the orthogonal complement of Ui  within Vi, as opposed 

to the left-hand side, where it denotes the orthogonal complement in V.
11 A possibilistic state of a toy system is a subset of its underlying vector space of ontic states. Key exam-
ples of possibilistic states are supports of epistemic states.
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(
U ∩ V1, V1(a)

)
. (55)

Proof The V1-marginal of (the support of) (U, a) is

 V1
(
U⊥)

+ V1(a), (56)

while the support of the epistemic state in (55) is

 (U ∩ V1)⊥ + V1(a), (57)

where the orthogonal complement is within V1 here. The task is to show that these 
two affine subspaces of V1 coincide. Writing expression (57) instead in terms of the 
orthogonal complement within V, we thus have to show

 V1
(
U⊥)

= (U ∩ V1)⊥ ∩ V1. (58)

It is an elementary fact that (U ∩ V1)⊥ = U⊥ + V⊥
1  holds, see for example (Haus-

mann et al. 2023, Lemma B.3). Therefore, we can rewrite the right-hand side of 
Eq. (57) as

 

(
U⊥ + V⊥

1

)
∩ V1, (59)

which can be further simplified as follows

 

(
U⊥ + V⊥

1

)
∩ V1 =

(
V1

(
U⊥)

⊕ V⊥
1

)
∩ V1  (60)

 = V1
(
U⊥)

,  (61)

because V1
(
U⊥)

 is a subspace of V1 and V⊥
1  is orthogonal to V1. Thus, we get the 

desired equality.  □

B.3 General physical transformations

Section 2.1 introduces the reversible transformations of nomic toy theory (which are 
identical to those of Spekkens’ toy theory). A generic physical transformation may 
also involve discarding of subsytems, and as a result become irreversible.

Definition B.7 A physical transformation between two toy systems given by sym-
plectic vector spaces V and W respectively is an affine symplectic map V → W.
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Proposition B.8 An affine map f : V → W is a physical transformation if and only 
if there is a decomposition V ∼= W ⊕ W⊥, a reversible transformation f̃ ∈ Sp(V) , 
and an w ∈ W satisfying

 f(v) = W ◦ f̃(v) + w, (62)

where W : V → W is the symplectic, orthogonal projection of W ⊕ W⊥ onto W.

Proof The “if” direction is immediate. For the “only if” part, note that since the sym-
plectic form is non-degenerate and the symplectic part of f preserves it, the image of 
f must coincide with W. Thus, by the first isomorphism theorem, we have

 W ∼= V/ker(f), (63)

which implies V = W ⊕ W⊥ as symplectic vector spaces, since ker(f) = W⊥ is 
necessarily a symplectic subspace.

Now we can let f̃ := f |W ⊕ �W⊥ , which satisfies Eq. (62).  □

One of the consequences of Proposition B.8 is that the dimension of V cannot be 
smaller than the dimension of W. Another is that every physical transformation has a 
reversible dilation given by v �→ f̃(v) + w.

 B.4 Measurable variables in nomic toy theory are copyable

Definition B.9 A variable Z is an information variable if there is a reversible trans-
formation f : V ⊕ V → V ⊕ V and an epistemic state (U, a) of V , satisfying

 Z(v) ⊕ Z(v) = (Z ⊕ Z) ◦ f(v + x) (64)

for every ontic state v ∈ V and every ontic state x in the support of (U, a).
In other words, information variables carry information that can be copied.

The following result says that a variable is copyable if and only if it is a collection 
of functionals whose Poisson brackets vanish. Together with Theorem 3.1, it entails 
that a variable in nomic toy theory is measurable if and only if it is an information 
variable.

Proposition B.10 A variable is an information variable if and only if it is a Poisson 
variable.

Proof First of all, let us show that if Z : V → Z is a Poisson variable, then it is an 
information variable, i.e. that it is copyable.
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To this end, we denote the vector space 
(
ker(Z)

)⊥ ∼= S/ker(Z) by D and the isomor-
phism arising from the first isomorphism theorem by K : D → im(Z). Since Z is a 
Poisson variable, D must be an isotropic subspace of V.

The copying of Z is then achieved by the transformation M : V ⊕ V → V ⊕ V intro-
duced in Eq. (18) and using K−1Z : V → D instead of its MQP component. It is 
symplectic for the same reason as in the proof of Theorem 3.1, i.e. by virtue of Z 
being a Poisson variable. Applying this M to an arbitrary ready state input, written

 

(
v
0
x

)
 (65)

in the V ⊕ D ⊕ ker(Z) decomposition, gives

 


s + ΩVZT

(
K−1)T

x
sD
x


 , (66)

Here, sD denotes K−1Zs, which is the orthogonal projection of s onto D. Applying 
the variable Z ⊕ Z to the output state yields

 
Z

(
s + ΩVZT

(
K−1)T

x
)

= Zs (67)

in the first instance of V and

 Z(sD + x) = Zs (68)

in the second instance. Equation (67) follows because of the property ZΩVZT = 0 
satisfied by every Poisson variable. Equation (68) is a consequence of Zx = 0 (since 
x is in the kernel of Z) and ZsD = Zs (since sD is the orthogonal projection of s onto 
D). As a result, we have shown that Z is an information variable.

Let us now prove the converse. Namely, we assume that Z is an information variable. 
Then the copying transformation, composed with applying Z to the second instance 
of V, is a transformation that measures Z. Therefore, by Theorem 3.1, Z is a Poisson 
variable.  □

B.5 Pointer-preserving measurements

For any value a of the position Q of a toy subject A, we can associate an epistemic 
state (Q, a) of Spekkens’ toy theory, called a pointer state of A. The name comes 
from the fact that we think of the manifest variable of the toy subject also as a pointer 
of a measurement apparatus.
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A specific class of measurements in nomic toy theory are those that preserve 
pointer states. As we show in Remark B.13 below, they have the special property that 
the contingent manifest variable is trivial. In particular, for a pointer-preserving mea-
surement, the post-measurement manifest variable of A is independent of its initial 
momentum, as a result of the property MQP = 0. For this reason, they are transfor-
mations that measure the variable MQS (see Definition 2.9). The characterisation of 
pointer-preserving measurements from Remark B.13 says that they satisfy an addi-
tional property, namely that MPP is non-degenerate. This suggests that there may be 
other transformations besides pointer-preserving measurements that also measure the 
variable MQS.

Definition B.11 A pointer-preserving measurement consists of an affine sym-
plectic transformation m : S ⊕ A → S ⊕ A and a Lagrangian subspace Q of A, 
such that for every s ∈ S, the associated map A → A given by the composite (here, 
A : S ⊕ A → A denotes the projection map)

 

A s⊕1−−−−→ S ⊕ A m−−−−−→ S ⊕ A A−−−−−−→ A
a �−→ s + a �−→ m(s + a) �−→ A ◦ m(s + a)

 (69)

maps (the support of) each pointer state (Q, a) to that of another pointer state (Q, a′).

Proposition B.12 (Characterisation of pointer-preserving measurements) Let M  be 
the matrix representation of the linear part of the transformationm above. Then the 
following are equivalent: 

(i) m and Q make up a pointer-preserving measurement.
(ii) Given q ∈ A, we have MT q ∈ S ⊕ Q  if and only if q ∈ Q.

Proof Let us analyse how a pointer state (Q, a) is transformed by the respective 
maps in the composite (69). After the first step, adjoining the ontic state s to the 
possibilistic state P + a (note that we have P = QT  by definition of the momentum 
variable) leads to the possibilistic state12

 
(
S + Q, s + a

)
 with support 

(
P ∩ A

)
+ a + s. (70)

By Proposition B.2 (extended from epistemic states to all possibilistic state that are 
affine subspaces), the possibilistic state after the measurement interaction m is

 

((
MT

)−1(S + Q), m(s + a)
)

, (71)

12 Note that here we use the same notation for possibilistic states as for epistemic states. That is, for any 
subspace U (which need not be isotropic), the possibilistic state associated to (U, a) is UT + a. This nota-
tion works for any possibilistic state that is an affine subspace.
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which becomes

 

([(
MT

)−1(S + Q)
]

∩ A, A ◦ m(s + a)
)

 (72)

after the marginalization to A via the projection A : S ⊕ A → A. Thus, the condition 
that this is another pointer state amounts to

 Q =
[(

MT
)−1(S + Q)

]
∩ A. (73)

The inclusion of Q within the right hand side is equivalent to

 q ∈ Q =⇒ MT q ∈ S ⊕ Q. (74)

The reverse inclusion, on the other hand, is equivalent to

 q ∈ A and MT q ∈ S ⊕ Q =⇒ q ∈ Q, (75)

so that the result follows.  □

Remark B.13 Note that if we write M  in block form as in Eq. (12), then condition 
(ii) says that

 ● MQP : P → Q is equal to 0, and
 ● MPP : P → P is non-degenerate.

Proof First, consider an arbitrary q ∈ Q, so that in this block form we have

 

MT q = MT

(0
q
0

)
=




MT
QSq

MT
QQq

MQPq


 . (76)

Thus MT q is an element of S ⊕ Q if and only if MQP vanishes.

On the other hand, consider an arbitrary a ∈ A with components aQ and aP in Q and 
P respectively. Then, using MQP = 0, we have

 

MT a = MT

( 0
aQ
aP

)
=




MT
QS aQ + MT

PS aP
MT

QQ aQ + MT
PQ aP

MT
PP aP


 , (77)

so that the implication

 MT a ∈ S ⊕ Q =⇒ a ∈ Q (78)
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becomes

 MT
PP aP = 0 =⇒ aP = 0. (79)

This implication is satisfied if and only if MT
PP is non-degenerate, which is equiva-

lent to MPP itself being non-degenerate.  □
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