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Probing the Dark Universe with Gravitational Waves

Antonio Enea Romano 1,2

1 Instituto de Física, Universidad de Antioquia, Medellín 050010, Colombia; antonioenea.romano@ligo.org
2 ICRANet, Piazza della Repubblica 10, 65122 Pescara, Italy

Abstract: Gravitational waves (GWs) are expected to interact with dark energy and dark matter,

affecting their propagation on cosmological scales. To model this interaction, we derive a gauge-

invariant effective equation and action valid for all GW polarizations. This is achieved by encoding

the effects of GW interactions at different orders of perturbation into a polarization-, frequency-, and

time-dependent effective speed. The invariance of perturbations under time-dependent conformal

transformations and the gauge invariance of GWs allow us to derive the unitary gauge effective

action in any conformally related frame, thereby clarifying the relationship between the Einstein and

Jordan frames. Tests of the polarization and frequency dependencies in the propagation time and

luminosity distance of different GW polarizations allow us to probe the dark Universe, which acts as

an effective medium, modeled by the GW effective speed.

Keywords: gravitational waves; effective speed; gravitational luminosity distance

1. Introduction

The direct observation of gravitational waves (GWs) by the Laser Interferometer
Gravitational-Wave Observatory (LIGO) and Virgo has initiated the era of GW astron-
omy [1]. These observations are consistent with general relativity (GR) predictions, but
even in GR, tensor modes are expected to acquire a frequency- and polarization-dependent
effective speed [2] due to interactions with other fields—an effect that can be tested via
multimessenger observations across different bands and by measuring the luminosity
distance of different polarizations modes.

To study the effects of GW interactions, we generalize the effective speed
approach [2–4]—originally derived for tensor modes—to include all possible GW polariza-
tions, including gauge-invariant scalar and vector modes. We derive a general effective
propagation equation and action, which can be applied to model-independent analyses
of the effects of interactions between different GW polarizations, or between GWs and
other fields [5], such as dark matter or dark energy. In this effective approach, other fields
and GW polarizations act as an effective medium for each GW polarization, which conse-
quently propagates with a frequency- and time-dependent effective speed. The effective
speed encodes interaction effects that are conceptually analogous to those described by
the modified dispersion relation for electromagnetic waves (EMW) propagating through a
plasma [6,7]. This effective approach is particularly suitable for model-independent analy-
sis of observational data, predicting that the GW speed cij and the gravitational luminosity
distance may depend on the frequency and polarization of GWs.

2. Effective Speed of Arbitrary GW Polarization

GWs hij propagating in the z-direction [8], can be decomposed into different polariza-
tions as

hij =





hS + h+ h× hV1

h× hS − h+ hV2

hV1 hV2 hL



 , (1)

where h+ and h× are the tensor modes, hV1,2 the vector polarizations, and hS and hL the
transverse and longitudinal scalar modes. Note that the gauge has not been fully fixed
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in the above equation, and this can lead to GW modes which depend on the observer
frame [9]. We will resolve this ambiguity in the next section, in which we will obtain the
effective action for gauge-invariant GWs.

In order to show the general applicability of the effective speed approach [2], let us
consider for example this ansatz for the modified GW propagation equation [10]

h′′ij + (2 + ν)Hh′ij + (c2
gk2 + m2a2)hij = Πij(hij, hpq, φm) , (2)

Lm(φm, hij) = 0 , (3)

where ν accounts for a modification of the friction term, cg for an modified propagation
speed, m is an effective mass, Πij is the source term associated with the self-interaction,
interaction with other fields or other GWs polarizations hpq, φm denotes abstractly other
fields interacting with GWs, and Lm is the differential operator corresponding to the
equation of motion (EOM) of each φm. We can rewrite Equation (2) as

h′′ij + 2Hh′ij + k2hij = Πij − νHh′ij −
[

(c2
g − 1)k2 + m2a2

]

hij = a2Π
e f f
ij , (4)

where we have defined the effective anisotropic stress tensor Π
e f f
ij as an effective source

term on the right-hand side of the GW propagation equation in the theory of general
relativity, and we have used units in which 8πG = c = 1. The above equation shows that
any solution of the modified GW propagation equation can be obtained as the solution of
the GR equation with an appropriately defined source term.

Let us denote with a hat a solution ĥij of Equation (4), and with Π̂
e f f
ij the quantity

obtained from substituting in Π
e f f
ij the solutions of the equations of motions, including

ĥij, implying

ĥ′′ij + 2Hĥ′ij + k2ĥij − a2Π̂
e f f
ij = 0 . (5)

The above equation can be manipulated as following

ĥ′′ij + 2Hĥ′′ij − a2Π̂
e f f
ij + k2ĥij =

(ĥ′ija
2)′

a2
−

(

∫ η
a4(η′)Π̂ij(η

′)e f f dη′
)′

a2
+ k2ĥij =

1

a2

[

a2ĥ′ij

(

1 −
ĝij

ĥ′ij

)]′
+ k2ĥij =

1

a2

(

a2ĥ′ij
c2

ij

)′

+ k2ĥij (6)

where we have defined [2] the effective polarization, momentum and time dependent
speed cij as

c2
ij(η, k) =

(

1 −
ĝij

ĥ′ij

)−1
, ĝij =

1

a2

∫ η
a4(η′)Π̂e f f

ij (η′) dη′ , (7)

and η′ denotes a dummy variable of integration. In the above manipulation we used
the first fundamental theorem of calculus to write the source term as the derivative of its
indefinite integral

a4(η)Π̂
e f f
ij (η) =

(

∫ η
a4(η′)Π̂e f f

ij (η′)dη′
)′

, (8)

and this implies that the lower limit of the integral in the definition of ĝij is not physically
relevant, i.e., this is not a non-local quantity involving the integration over an infinite time
range, but it only involves the indefinite integral of the source term.

Equation (6) can finally be written as

ĥ′′ij + 2
( a′

a
−

c′ij
cij

)

ĥ′ij + k2c2
ij ĥij = 0 , (9)
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showing that c2
ij is indeed the quantity playing the role of effective speed. In the above

equations a hat denotes quantities obtained by substituting the solutions ĥij, φ̂m of the

system of coupled differential equations given in Equations (2) and (3), i.e., Π̂
e f f
ij is just a

function of space-time coordinates after the substitution, which accounts for the integrated
modified propagation effects. Equation (7) shows that each polarization mode hij can
have a different frequency and time dependent effective speed, depending on the effective

anisotropic stress tensor Π̂
e f f
ij , evaluated along the propagation path.

For a set of initial conditions consistent with those used to obtain ĥij, Equation (9)

gives by construction the same solution ĥij. Solutions of Equation (9) corresponding to
different initial conditions are not of physical relevance, such as for example hij = 0. Any
solution of Equation (2), or any other ansatz which can be manipulated to put it in the
form given in Equation (4), can always be obtained by solving the effective Equation (9),
with the effective speed defined in Equation (7). This effective approach is convenient to
relate the modified propagation effects to observations, because the GW-EMW luminosity
distance ratio is related to the effective speed ratio [2], making the effective equation useful
for model independent observational data analysis.

3. Einstein Frame Definition

In the previous section, we did not explictly specify the frame in which the ansatz (2)
is given, since our goal was to give an example of the general applicability of the effective
speed approach. In order to derive a general effective action, without assuming any ad
hoc ansatz, it is important to clarify the relation between the Einstein and Jordan frames.
We defined the Jordan frame Lagrangian of a modified gravity theory with Jordan frame
matter-coupling (JMC) as

LJMC =
√

gJ

[

Ω2RJ + LMG
J + Lmatter

J (gJ)
]

, (10)

where LMG and Lmatter are, respectively, the modified gravity and matter Lagrangians.
After performing a conformal transformation gE = Ω2gJ, in the Einstein frame we have

LJMC =
√

gE

[

RE + LMG
E + Lmatter

E (Ω−2gE)
]

. (11)

Note that while the tensor modes speed cT is invariant under conformal transforma-
tions, it is not invariant under disformal transformations, allowing to define a combination
of disformal, conformal and coordinate transformations taking to a frame [11] in which
cT = 1. Note nevertheless that the ratio cT/c between the speed of gravitational and
electromagnetic waves is disformal invariant, implying that, if cT/c is time dependent, in
the cT = 1 frame the speed of light is time dependent. For this reason, while the cT = 1
frame is useful to study the resilience of inflationary predictions [11], we define the Einstein
frame as that in which the coefficient of the Ricci scalar and the speed of light are constant,
and not the cT = 1 frame, in agreement with the definition adopted in [12] for example.

4. Gauge-Invariant Gravitational Waves

For the purpose of understanding the role played by gauge transformation it is conve-
nient to interpret the GW polarization tensor defined in Equation (1) in terms of cosmo-
logical perturbations theory [13–15]. Since tensor perturbations are gauge invariant at first
order, we will just consider scalar and vector perturbations. Using the scalar-vector-tensor
(SVT) decomposition [13], the scalar and vector perturbations of the flat FRW line element
can be written as

ds2 = (1 + 2Φ)dt2 − 2a(t)
(

B,i + Si

)

dxidt − a2(t)
[

(1 − 2Ψ)δij + 2(E,ij + F(i,j))
]

dxidxj , (12)
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where Si and Fi are the vector perturbations, satisfying Si,i = Fi,i = 0, and Φ, B, Ψ, E are the
scalar perturbations. Applying the SVT decomposition to an infinitesimal time and space
translation, we obtain

t → t + T , (13)

xi → xi + βi + δijβ,j . (14)

where βi and β are, respectively, the vector and scalar part of the infinitesimal space
translation, satisfying βi,i = 0, and T is the infinitesimal time translation.

Under the above infinitesimal coordinate transformations the metric tensor transfor-
mations implies the gauge transformations for the perturbations [15]

Si → Si + aβ̇i , (15)

Fi → Fi − βi , (16)

Φ → Φ − Ṫ , (17)

B → B + a−1T − aβ̇ , (18)

E → E − β , (19)

Ψ → Ψ + HT . (20)

while scalar fields transform as
δφ → δφ − φ̇ T . (21)

Note that the above gauge transformations have a purely geometrical origin, i.e., they
are independent of the specific theory, since they are simply a direct consequence of
the fact that the metric and the energy-momentum tensor transform as tensors under a
coordinate transformation. This allows us to obtain a gauge-invariant definition of GW
polarizations valid in any gravity theory, since the SVT decomposition of a tensor is also
purely geometrical, and is not based on assuming any symmetry of the action defining the
theory. In other words, gauge transformations are just a manifestation of general covariance,
which any theory should satisfy, and correspond to the Lagrangian not containing any
free tonsorial index, i.e., being a coordinate invariant. By comparing Equation (1) with the
spatial part of the perturbed metric, we obtain:

hS = 1 − 2Ψ , hL = 1 − 2Ψ + E,zz , (22)

hV1 = −Fx,z , hV2 = −Fy,z , (23)

from which we obtain the gauge transformations of the GW polarizations

hS → hS − 2HT , (24)

hL → hL − 2HT − β,zz , (25)

hV1 → hV1 + βx,z , (26)

hV2 → hV2 + βy,z . (27)

We can now use the above gauge transformations to define gauge-invariant GW polariza-
tions. It is convenient to fix the Einstein gauge (EG), defined by the condition

∇µ
(

hµν −
1

2
hg0

µν

)

= 0 (28)

where g0
µν denotes the background metric, h = habg0

ab is the trace of hab, and the covariant
derivative is with respect to the background metric. The above gauge fixing condition
gives a set of four differential equations which can be solved to obtain the infinitesimal
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translations necessary to switch to the EG. Denoting the solutions of the gauge fixing
equations as {TE, βE, βE

i }, we can define the gauge invariant GWs polarizations h̄ij

h̄S = hS − 2HTE , (29)

h̄L = hL − 2HTE − βE
,zz , (30)

h̄V1 = hV1 + βE
x,z , (31)

h̄V2 = hV2 + βE
y,z , (32)

which are gauge invariant by construction, and we will call EGWs. We are denoting with
a bar the gauge invariant quantities EGWs defined above, while tensor modes are gauge
invariant a first order in perturbations, i.e., h× = h̄×, h+ = h̄+. Some residual gauge
freedom is present even after fixing the EG [16], but we will not use it, since our main
purpose is to define gauge invariant variables satisfying a wave equation, and imposing
the EG is enough to achieve this, as we will show in the next section.

5. Gauge-Invariant Gravitational Waves Equation

The field equations of a generic JMC modified gravity theory defined by the action (10)
can be written in the Einstein frame as

GE,µν = Ttot
E,µν , (33)

where E denotes the Einstein frame, Ttot
E,µν is the sum of terms associated with the matter

fields, the modified gravity fields, and their interaction with matter due to the non minimal
coupling of matter with the Einstein frame metric. The linearized perturbed Einstein
equations with respect to a curved background [8] in the Einstein gauge read

□ψµν + 2RB
µανβψαβ = 2δTµν + 2RB α

(µ
ψν)α − RB ψµν + g0

µνRαβ
B

ψαβ , (34)

where ψµν = h̄µν − 1
2 h̄g0

µν. The general form of the equation without fixing the Einstein
gauge can be found for example in [17,18]. From the above equation we obtain

□h̄µν = δT
e f f
µν , (35)

where the d’Alambert operator is defined with respect to the background metric and δT
e f f
µν

is an effective energy-stress (ES) tensor given by the sum of the matter ES tensor, and other
terms involving GWs, the Ricci tensor, and possible additional fields related to the gravity
modification. Equation (35) is quite general, since it is valid for any theory which admits an
Einstein frame formulation, for a general background metric, and as mentioned earlier, the
definitions of the gauge invariant variables is even more general, since it does not assume
any form of the action, and the EG can be fixed even for a background different from the
FRW solution.

Note that the transverse traceless (TT) gauge cannot be imposed in a generic curved
space [16], and the scalar and vector modes cannot be gauged away in a generic modified
gravity theory, since this is only possible in vacuo, but the extra fields associated with the
gravity modification act as an effective source in the r.h.s. of Equation (35), which in general
is not zero even in absence of matter fields. In GR, assuming a flat background, and in
vacuo, the effective source term is zero, because the Ricci and Riemann tensors are zero.
This allows use the residual gauge freedom to set h̄ = 0, and fix the TT gauge, in which
only the two tensor modes survive.

Considering a FRW background, following a method similar to the one used in the
previous section, an effective equation for the gauge invariant GWs can be derived from
Equation (35)

h̄′′ij + 2
( a′

a
−

c′ij
cij

)

h̄′ij + k2c2
ij h̄ij = 0 , (36)
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where

c2
ij(η, k) =

(

1 −
ĝij

ˆ̄h′ij

)−1
, ĝij =

1

a2

∫

a4δT
e f f
ij dη , (37)

Note that, contrary to the previous section derivation, which was based on assuming a non
gauge invariant ansatz for the GWs propagation equation, the effective equation above is
gauge invariant by construction and is quite general, since it can be obtained for any theory
which admits an Einstein frame formulation (Appendix A).

6. Generalization to Higher Order in Perturbations

Note that the gauge invariant quantities EGWs and Equation (35) are defined at linear

order in perturbations, and at higher order new gauge invariant variables h̄
(i)
µν can be

defined [19–21]. The expansion of the Einstein Equation (33) will give new equations which
can always be put in the canonical form

□h̄
(i)
µν = δT

(i)e f f
µν , (38)

by appropriately defining the effective perturbed ES tensor δT
(i)e f f
µν , even if the d’Alambert

operator does not appear explicitly, by adding it on both sides of the expanded equations.
We have fixed the gauge by imposing the condition

∇µ
(

h̄
(i)
µν −

1

2
h̄(i)g0

µν

)

= 0 , (39)

where g0
µν denotes the background metric, h̄(i) = h̄

(i)
µν g0,µν is the trace of h̄

(i)
µν , and the

covariant derivative represents the background metric. This effective equation allows to
interpret GWs at any order in perturbations as the solutions of a wave equation with an
appropriately defined source term. Since the d’Alambert operator is defined with respect
to the same background metric in all these equations, the equations can be summed to give

□h̄
(N)
µν = δT

(N)e f f
µν . (40)

where we have defined the summed GWs and ES tensor perturbations

h̄
(N)
µν =

N

∑
i=1

h̄
(i)
µν , T

(N)e f f
µν =

N

∑
i=1

δT
(i)e f f
µν . (41)

Note that h̄
(N)
µν are the physically observable GWs, given by the sum of the contribu-

tions from different orders in perturbations. From Equation (40), similarly to what shown
in the previous section for linear perturbations, it is possible to define an effective speed,

equation, and action for the summed GWs h̄
(N)
µν . Note that this effective speed is not simply

the sum of the effective speeds corresponding to perturbations equations at different orders,
due to the coupling between perturbations at different orders. After solving the system
of coupled differential equations for the perturbations equations at all relevant orders,

the solutions ˆ̄h
(i)
µν can be substituted to obtain T̂

(N)e f f
µν , from which the effective speed and

equation can be obtained

h̄
(N)′′

ij + 2
( a′

a
−

c′ij
cij

)

h̄
(N)′

ij + k2c2
ij h̄

(N)
ij = 0 , (42)

c2
ij(η, k) =

[

1 −
ĝij

ˆ̄h
(N)′
ij

]−1

, ĝij =
1

a2

∫

a4δT̂
(N)e f f
ij dη . (43)

The effective speed is encoding in a single quantity all the interaction effects between differ-
ent GWs polarizations, and between GWs and other fields, up to order N in perturbations.



Universe 2024, 10, 426 7 of 11

7. Effective Lagrangian and Metric

The Lagrangian corresponding to Equation (42) is

Le f f
h =

a2

c2
ij

[

(

h̄
(N)′

ij

)2
+ k2c2

ij

(

h̄
(N)
ij

)2
]

, (44)

generalizing to scalar and vector modes the tensor perturbations effective action [2]. The
effective method can also be applied in physical space, and it can be shown that [2] the
effective Lagrangian can be obtained from the GR Lagrangian density

LGR
h = a2

[

h′2ij − c2(∇hij)
2
]

=
√

−g(∂µhij∂
µhij) , (45)

via the transformation

a → αij =
a

ĉij
, c → ĉij , hij → h̄

(N)
ij , (46)

where we have denoted with c the speed of light, to avoid ambiguity, and the space effective
sound speed ĉij(η, xi) [2], is defined in terms of the physical space effective ES tensor, not

of its Fourier transform. Note that cij(η, k) is not the Fourier transform of ĉij(η, xi) [2]. The
physical space effective action is

Le f f
h =

√

−geff(∂µhij∂
µhij) , (47)

where the effective metric is

ds2
e f f = geff

µνdxµdxν = a2
[

ĉijdη2 − δmm

ĉij
dxmdxm

]

, (48)

from which the EOM are given in terms of the d’Alembert operator

□hij =
1

√

−geff
∂µ

(

√

−geff∂µhij

)

= 0 . (49)

In this effective geometrical description, the effects of the interactions of GWs are encoded
in the effective metric, and in the eikonal approximation, the solutions of the EOM are
geodesics in the effective curved space corresponding to the effective metric.

8. Jordan Frame Effective Action

Cosmological perturbations with respect to a flat FRW background are invariant
under time dependent conformal transformations, since they correspond to a scale factor
redefinition a = Ω ã, which has no effects on the perturbations

ds2 = a2
[

(ηµν + δgµν)dxµdxν
]

= Ω2(η)ã2
[

(ηµν + δgµν)dxµdxν
]

. (50)

The gauge invariant GWs do not depend on the coordinate choice by definition, and can in
particular be evaluated in the unitary gauge, defined by δφ = 0, in which the conformal
factor Ω becomes a function of time only. Using the conformal and gauge invariance of the
GWs h̄ij, we can obtain the Jordan frame effective action in the unitary gauge

Le f f

h̄
=

Ω2(η)ã2

ĉ2
ij

[

h̄′2ij − ĉ2
ij(∇h̄ij)

2
]

= M̂2
ij ã

2
[

h̄′2ij − ĉ2
ij(∇h̄ij)

2
]

. (51)

where we have defined M̂ij = Ω/ĉij. Note that the coefficient of the Ricci scalar in the

action is playing the role of effective Planck mass, but in the literature M̂ij is sometime
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called effective Planck mass, which is correct only for luminal modified gravity theories,
when ĉij = 1 and M̂ = Ω does not depend on polarization.

Formally the effective approach we derived assuming an Einstein frame formulation,
can also be applied to a generic modified gravity theory [22], by appropriately defining
and effective ES tensor, allowing to recast the fields equation in an Einstein-like form.

9. Polarization and Frequency Dependency of the Luminosity Distance

After Defining the Effective Scale Factor

αij =
a

cij
, (52)

Equation (42) can be re-written as

h̄
(N)′′

ij + 2
α′ij
αij

h̄
(N)′

ij + k2c2
ij h̄

(N)
ij = 0 , (53)

from which we obtain

χ′′
ij +

(

cijk
2 −

α′′ij
αij

)

χij = 0 , (54)

where we have defined h̄
(N)
ij = χij/αij. In the sub-horizon limit α′′ij/αij is negligible, and

the amplitude of h̄
(N)
ij is proportional to 1/αij, giving [2]

dGW
ij

dEM
L

(z) =
a(z)

αij(z)

αij(0)

a(0)
=

cij(z, k)

cij(0, k)
, (55)

where we have used dGW
ij = r αij(0)/αij(z), dEM

L = r a(0)/a(z), assuming (1 + z) =

a(0)/a(z), i.e., that matter is minimally coupled to the Einstein frame metric.
If matter is minimally coupled to the Jordan frame metric, Equation (53) is still valid,

due to the conformal invariance of GWs, but the relation between the scale factor and α
is modified

αij =
a

cij
=

Ωã

cij
, (56)

implying that

dGW
ij

dEM
L

(z) =
ã(z)

αij(z)

αij(0)

ã(0)
=

cij(z, k)

cij(0, k)

Ω(0)

Ω(z)
=

Mij(0, k)

Mij(z, k)
, (57)

where we have used dGW
ij = r αij(0)/αij(z), dEM

L = r ã(0)/ã(z), assuming (1 + z) =

ã(0)/ã(z), i.e., that matter is minimally coupled to the Jordan frame metric.
Note that independently of the type of matter-gravity coupling, the GWs luminosity

distance is predicted to be frequency and polarization dependent.

10. Observational Implications

The frequency and polarization dependency of the effective speed implies that differ-
ent polarizations of GWs emitted by the same source at different frequencies can spend
different times to reach the observer. This effect could be detected by comparing the
time delay between the detection of different GWs polarizations with different obser-
vatories, operating at different frequencies, and can be observed even in absence of an
electromagnetic counterpart.
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Another observable effect is the polarization and frequency dependency of the GW
luminosity distance. For theories with matter minimally coupled to the Jordan frame metric
the GW luminosity distance is related to the Mij ratio

dGW
ij (z) =

Mij(0, k)

Mij(z, k)
dEM

L (z) , (58)

while for theories minimally coupled to the Einstein frame is related to the effective
speed ratio

dGW
ij (z) =

cij(0, k)

cij(z, k)
dEM

L (z) . (59)

Time delay observations allow to constrain at different frequencies the ratio between the
speed of different GWs polarizations

rc
ijpq(k, z) =

cij(k, z)

cpq(k, z)
, (60)

while the GWs waveform, which are inversely proportional to the GW luminosity distance,
allow us to constrain the corresponding distance ratio

rd
ijpq(k, z) =

dGW
ij (z)

dGW
pq (z)

. (61)

For multimessenger events, additional constraints can be set on cij(k, z)/c and

dGW
ij (z)/dEM

L (z).

For GWs propagating in vacuum according to GR, only tensor modes are expected,
and there should not be any redshift, frequency or polarization dependency, i.e., c×(k, z) =
c+(k, z) = c and dGW

× (z) = dGW
+ (z) = dEM

L (z) at any frequency. If the effective ES tensor
defined in Equation (41) is not negligible along the GW propagation, either because of GWs
interaction with matter fields, or due to the effects of gravity modification, other polariza-
tions modes could be detected and the corresponding speed and luminosity distance could
be constrained observationally using time delay and GWs waveform observations. These
observations can be used to probe the dark Universe by its interaction with GWs, modeled
by the effective GWs speed.

11. Possible Applications

The effective speed approach is based on the theory of cosmological perturbations
and the SVT decomposition, without assuming any specific physical scenario. The gen-
eral applicability of this method stems from the broad assumptions made to derive the
effective speed. Specifically, by appropriately defining the effective anisotropic stress
tensor, we should always be able to express the GW propagation equation in the form
given by Equation (4). As an example, we can consider the interaction between GWs
and free-streaming neutrinos, which is known to induce a damping effect [23] due to the
anisotropic stress tensor. At linear order, this can be written in a simple form as the integral
of the product of a kernel function and h′ij. For GW–neutrino interactions, second-order

perturbations of the anisotropic stress tensor have also been computed [24], which could be
used to calculate higher-order contributions to the effective speed using Equation (43). The
method can also be applied to modified gravity theories. For example, in scenarios such
as those presented in [6,7], a damping effect occurs due to the coupling between different
GW polarizations and other fields, extending the results obtained in [2,22] to include other
polarizations and higher-order perturbations. Given its generality, the effective speed
can also be used for model-independent analysis of observational data, such as searching
for possible deviations from GR or, more generally, modeling the effects of interactions
between GWs and other fields, or among different GW polarizations. In this context, some
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general phenomenological ansatz for cij(k, η) can be made, whose parameters can then be
constrained through observational data analysis. We leave this for future work.

12. Conclusions

We have derived a gauge-invariant effective equation and action for GWs, encoding
the effects of interaction at different orders of perturbations theory into a polarization-,
frequency-, and time-dependent effective speed. The invariance of perturbations under
time-dependent conformal transformations and the gauge invariance of GWs allows us to
obtain the unitary gauge effective action in any conformally related frame. The propagation
time and luminosity distance of different GW polarizations, emitted at different frequencies
and redshifts by dark or bright sirens, provide an opportunity to probe interactions with
other fields, particularly those involving the dark Universe. The interaction of GWs with
other fields can induce polarization- and frequency-dependent propagation time delays,
as well as differences in the luminosity distance ratio between gravitational and electro-
magnetic sources. By combining observations from GW detectors operating at different
frequencies, it will be possible to test this polarization and frequency dependency. To
connect the effective approach with theoretical models, it will be important to compute
the effective GW speed for different dark matter and dark energy theories, allowing us
to constrain these theories using luminosity distance and time delay observations. More-
over, the effective speed approach could be used for model-independent data analysis by
making some general phenomenological ansatz for cij(k, η), whose parameters can then be
constrained through data analysis.
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Appendix A. Application to Generic Theories

The effective approach we derived assuming an Einstein frame formulation, can
also be applied to a generic theory by appropriately defining an effective energy-stress
tensor [22], according to

F[ĝµν] = Tµν[ĝµν, φ̂i] , Mi[φ̂i] = 0 , (A1)

Gµν[ĝµν] = T̂
e f f
µν , (A2)

T̂
e f f
µν (xρ) = Tµν[ĝµν, φ̂i]− F[ĝµν] + Gµν[ĝµν] . (A3)

In the above equations, F and Mi correspond to the gravity and matter field equations,

{ĝµν, φ̂i} denote the solutions of Equation (A1), and T̂
e f f
µν is obtained by substituting

the solutions into T
e f f
µν . The solutions of Equation (A2) are by construction also solu-

tions of Equation (A1), and the effective approach can be applied to the perturbations of
Equation (A2).
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