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Abstract

In this thesis we discuss exact, non-perturbative results achieved using su-
perconformal index technique in supersymmetric gauge theories with four su-
percharges (which is N' = 1 supersymmetry in four dimensions and N = 2
supersymmetry in three).

We use the superconformal index technique to test several duality conjectures
for supersymmetric gauge theories. We perform tests of three-dimensional mirror
symmetry and Seiberg-like dualities.

The purpose of this thesis is to present recent progress in non-perturbative
supersymmetric gauge theories in relation to mathematical physics. In particu-
lar, we discuss some interesting integral identities satisfied by basic and elliptic
hypergeometric functions and their relation to supersymmetric dualities in three
and four dimensions.

Methods of exact computations in supersymmetric theories are also applicable

to integrable statistical models, which we discuss in the last chapter of the thesis.
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Zusammenfassung

In dieser Arbeit behandeln wir exakte, nicht-perturbative Ergebnisse, die mit-
hilfe der superkonformen Index-Technik, in supersymmetrischen Eichtheorien mit
vier Superladungen (d. h. N=1 Supersymmetrie in vier Dimensionen und N=2
in drei Dimensionen) gewonnen wurden.

Wir benutzen die superkonforme Index-Technik um mehrere Dualitits Ver-
mutungen in supersymmetrischen Eichtheorien zu testen. Wir fithren Tests der
dreidimensionalen Spiegelsymmetrie und Seiberg dhnlicher Dualitdten durch.

Das Ziel dieser Promotionsarbeit ist es moderne Fortschritte in nicht-perturba-
tiven supersymmetrischen Eichtheorien und ihre Beziehung zu mathematischer
Physik darzustellen. Im Speziellen diskutieren wir einige interessante Identitaten
der Integrale, denen einfache und hypergeometrische Funktionen geniigen und
ihren Bezug zu supersymmetrischen Dualitédten in drei und vier Dimensionen.

Methoden der exakten Berechnungen in supersymmertischen Eichtheorien sind
auch auf integrierbare statistische Modelle anwendbar. Dies wird im letzten Ka-

pitel der vorliegenden Arbeit behandelt.
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1 Introduction

Supersymmetry and dualities

Supersymmetry is a powerful idea in theoretical physics, which provides a non-trivial
extension of the Poincare algebra. It transforms bosons into fermions and vice versa.
Nowadays, supersymmetry is one of the key tools for high energy physics research

beyond the Standard Model of particle physics.

Supersymmetry cannot be an exact symmetry of Nature. No one has ever seen a
supersymmetric particle and so far no experimental evidence for supersymmetry has
been discovered at the Large Hadron Collider and Tevatron. However the possibility

that the world is supersymmetric at high energies attracts attention of scientists.

On the other hand the supersymmetric theories play role of a theoretical laboratory for
studying non-perturbative effects in realistic theories, in particular they are an excellent
technical playground for Quantum Chromodynamics. Supersymmetric gauge theories
exhibit some of the same non-perturbative phenomena as Quantum Chromodynamics,

such as confinement, chiral symmetry breaking, etc [6, 7, 8, 9].

In recent years, there have been extensive studies on exactly calculable quantities of su-
persymmetric gauge theories in diverse dimensions [10, 11, 12, 13, 14, 15, 16, 17, 18, 19|
due to the use of the supersymmetric localization technique [20]. This technique enables
us to compute exact quantities such as superconformal indices, partition functions on
compact manifolds, Wilson loops, 't Hooft loops, surface operators and so on. These
exact results gave a new and fresh look to the old and challenging problems. This

thesis is mainly devoted to one of such exact quantities — the superconformal index.

In the case of a supersymmetric field theory one can generalize the Witten index [21]
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by including global symmetries of a theory commuting with a particular supercharge
[22, 23, 24]. The superconformal index is a regularized index for the d-dimensional
supersymmetric theory on S¢ x S* which counts short multiplets that cannot combine
into long ones. For a d-dimensional supersymmetric theory the superconformal index

is schematically defined as follows
I{t:}) = Te(=1)"e O " (1.1)

where the trace is taken over the Hilbert space on S¢°!, F; are generators for global
symmetries that commute with @ and Q1, and ¢; are additional regulators correspond-

ing to the global symmetries.

The superconformal index has some properties that make it useful for studying super-
symmetric theories. For insatance, since the superconformal index is invariant under
renormalization group flow, it can be computed for weakly coupled theories and it must
be the same in the strongly coupled regime. The main application of the superconfor-
mal index is checking supersymmetric dualities and providing non-trivial evidences for
them [25, 26, 27, 28, 29, 30, 31].

In the 1990’s Seiberg [32] and many others (e.g. [33, 34, 35, 36, 37, 38]) found a
non-trivial quantum equivalence between different supersymmetric theories, called su-
persymmetric duality. To be more precise it was shown that two or more different
theories may describe the same physics in the far infrared limit, i.e. an observer test-
ing the low energy physics (or physics at long distances) cannot distinguish the dual

theories!.

The supersymmetric duality was first constructed [32] for four-dimensional N = 1
gauge theory with matter in the fundamental representation. Later many examples of
dualities have been found with complicated matter content, different gauge and flavor

groups in different dimensions.

The basic example of supersymmetric duality [32] is an SU(N..) “electric” gauge theory
with Ny flavors of quarks which possesses a dual description in terms of Ny “magnetic”

flavors of quarks charged under SU(N; — N,) gauge group? in the so-called conformal

1Tt is worth mentioning that supersymmetric dual theories are not identical, but they give rise to
the same physics at long distances.
2In this case the gauge singlets of the dual theory interact with the flavors via the superpotential



window %Nc < Ny < 3N,. These two theories flow to the same infrared fixed point.

It is worth mentioning that before the superconformal index technique the main con-
sistency check for the conjectured supersymmetric dualities were the 't Hooft anomaly
matching conditions [39, 40]. These conditions require that the values of the triangle
anomalies corresponding to the global symmetries must coincide for the dual theories.
Unfortunately, the anomaly matching is insufficient [41, 42] to check supersymmetric
duality. There are cases when 't Hooft anomaly conditions of non-dual theories coinci-
dentally match®, interestingly that the superconformal indices of such theories do not
coincide [43].

There is an interesting observation made in [44] that the 't Hooft anomaly matching
conditions for dual theories are related to SL(3, Z) modular transformation properties
of the kernels of dual superconformal indices written as an integral over Coulomb
branch moduli for a gauge group of the theory. There is also a recent observation
that the central charges a and ¢ [45], their difference ¢ — a [46, 47] for N' = 1 and
2a — ¢ conformal anomaly [48] for ' = 2 theories can be obtained directly from the

superconformal index.

Over the last ten years supersymmetric dualities for theories with different number
of supersymmetric charges in different dimensions have been subjected to several new
checks including the matching of sphere partition functions, superconformal indices,

lens indices etc.

Supersymmetric duality has now become a key tool for studying strongly coupled effects
and for this reason it is worthy learning this subject. It appears in many different gauge
and superstring theories. The physical origin of supersymmetric duality is still unclear.
Hopefully, study of dualities via superconformal indices may shed light on the dynamics
of strongly coupled gauge theories and on the nature of supersymmetric duality itself.

In the thesis supersymmetric duality plays a crucial role.

Integrability

Integrability is a beautiful phenomenon which plays a very important role in theoretical

physics. One of the key structural elements leading to integrability is the Yang-Baxter

term.
3For instance, for the N' = 1 SO(N) theory with a traceless symmetric tensor R—anomalies of the
UV and IR theories match, however these theories are not dual.
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equation
ng(u — U) ng(u) Rzg(v) = Rgg(v) ng(u) ng(u — U)

where the operators R;;(u) act in the tensor product V®@ V ® V of some vector space
V. Study of solutions of this equation has led to major breakthroughs in many areas
of physics and mathematics including quantum field theory, knot theory, string theory,

statistical physics, etc.

Recently, there has been observed connections of integrable statistical models to su-
persymmetric gauge theories [49, 50, 51, 52, 53] and special functions [4, 54]. One of
such connections is a correspondence between quiver gauge theories and integrable lat-
tice models such that the integrability emerges as a manifestation of supersymmetric
dualities [49, 55, 50, 56]. Particularly, superconformal indices of N = 1 quiver gauge
theories can be identified with partition functions of two-dimensional exactly solvable

statistical mechanics models in the context of this correspondence.

This relationship has led to construction of new exactly solvable models of statisti-
cal mechanics, namely the Yang-Baxter equation was solved in terms of new special

functions [4].

Mathematical results inspired by physics

There exist interesting relations between exact results in supersymmetric gauge theories
and different branches of mathematics including knot theory [57, 28], integrability
[49, 50, 56, 58, 4, 51, 52|, quantum groups [59], cluster algebras [60, 61], invariants
of 3-manifolds [62, 57] and so on. In particular, computations of partition functions
for supersymmetric dual theories in different dimensions lead to many new results for

special functions of hypergeometric type.

In the thesis we will mainly focus on basic and elliptic hypergeometric functions. The
theory of elliptic hypergeometric functions is quite a new research area in mathematics.
The first example of the elliptic analogues of hypergeometric series was discovered
about 20 years ago by Frenkel and Turaev [63] in the context of elliptic 6j-symbol [64].
This family of functions is the top level of hypergeometric functions [65]. Recently
they have attracted attention of physicists since they proved to be a useful tool in

theoretical and mathematical physics.

The entry of elliptic hypergeometric integral identities into high energy physics oc-



curred in 2008 when Dolan and Osborn observed [25] that the superconformal index
can be expressed in terms of elliptic hypergeometric integral. Matching of supercon-
formal indices of supersymmetric dual theories lead to various complicated integral
identities for the elliptic hypergeometric integrals [26, 27, 66, 28, 67, 68, 69]. Some of

them were known earlier, but most of them has not been proven yet.

There is a similar story for three-dimensional supersymmetric gauge theories. Namely
three-dimensional superconformal index can be expressed in terms of basic hypergeo-
metric integrals and three-dimensional sphere partition function has a form of hyper-

bolic hypergeometric integral [1, 3, 29, 70, 31].

The thesis is organized as follows:

e Chapter 2 is devoted to several aspects of four-dimensional N = 1 Super-Yang-
Mills theory including supersymmetric algebra, supersymmetric Lagrangians, su-
perconformal algebra and superconformal index technique. Note that the mate-

rial in this chapter is collected from various sources.

e In Chapter 3we review the basic aspects of three-dimensional N = 2 super-
symmetric theories with focus on the necessary elements for the superconformal
index computations. We also discuss relationship between the computation of the
partition function on the three-sphere and the four-dimensional superconformal

index.

e Chapter 4 contains a review of the multiple duality for ' =1 SP(2) SQCD. We
discuss the possibility of global symmetry enhancement of strongly coupled gauge
theories, in particular for we show that for a four-dimensional N' = 1 SQCD with
3 flavors the explicit SU(6) global symmetry is enhanced to an Eg symmetry in
the presence of 5d hypermultiplets. We also show connections between indices of

different theories in three and four dimensions.

e Chapter 5 contains mainly unpublished results. Using superconformal index
technique we study three-dimensional Seiberg-like dualities and a particular kind
of duality called mirror symmetry and present explicit expressions of supercon-
formal indices for certain supersymmetric dual theories in terms of basic hyper-

geometric integrals.

e Chapter 6 entirely dedicated to the relationship between supersymmetric du-
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alities and quantum integrable models. The investigation is restricted to two-
dimensional spin models from statistical physics side and to three-dimensional
supersymmetric gauge theories from other side of the correspondence. We present
a new solution of the star-triangle relation and other forms of Yang-Baxter equa-
tion in terms of the basic hypergeometric integral. The new solution corresponds
to the generalized superconformal index of certain three-dimensional NV = 2 su-

persymmetric gauge theory.

e Our notations for the special functions we use are summarized in Appendix A.



2 N =1 SUSY in Four Dimensions

In this chapter, we summarize several aspects of four-dimensional N/ = 1 Super-Yang-
Mills theories including supersymmetric algebra, supersymmetric Lagrangians, super-

conformal algebra.

We especially review aspects of superconformal indices in four dimensions. The super-
conformal index was introduced [24, 23, 22| as a nontrivial generalization of the Witten
index [21], which counts BPS states in superconformal field theories in curved space-
time [71]. The index is one of the useful tools in the study of non-perturbative char-
acteristics of supersymmetric gauge theories. It provides a justification of the known
supersymmetric dualities [23, 24, 25, 26, 27, 72, 68, 67, 28, 73] and holographic dualities
[22, 74, 75, 76, 77, 78, 79]. Moreover one can use the index technique to discover new
dualities [26], to study inclusion of surface and line operators [80, 81, 82, 83, 84], to
get 't Hooft anomaly matching condition for dual theories [67, 44], to obtain new and

interesting mathematical structures [27, 85, 28] etc.

This chapter is mostly for setting up basic terminology for the rest of the thesis.

2.1 The supersymmetry algebra

Let us recall below some basic notions of supersymmetry algebra. We use the supersym-

metry conventions of [86]. The metric has the following signature 7,,, = diag(1, —1, —1, —1).

In four dimensions the Lorentz group has six generators: three generators J; of the

group of rotations in three dimensions and three boosts K; along three spatial directions
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with the following commutation relations:

(i, J;] = i€indi (2.1)
(K, K] = —iegndy (2.2)
[JZ', KJ] = iﬁiijj . (23)

The Poincare group contains Lorentz transformations and translations:
t — " = A’ + o (2.4)

Translations do not commute with Lorentz transformations. If we denote the Lorentz

generators as My; = K; and M;; = €;,Ji, then the Poincare algebra becomes:

[P,u? Pl/] = O ) 2 5
(M, Mpo) =19,y Mps — igupMyo — i9ue M, + 194 My, (2.6)
[Mp,w Pp] = _igpupu + ingP# . (27)

The universal cover of the Lorentz group is SL(2,C). The elements M € SL(2,C') are
automorphisms of a spinor space. Let 1), be an arbitrary element (called spinor) of

the spinor space. Consider an SL(2, C')-transformation of 1,:
Vo = Vo = My, (2.8)

It is the fundamental representation of SL(2,C). The conjugate representation is
defined by

Vo — U = M . (2.9)

One can enlarge the Poincare algebra by generators that transform either as undotted

spinors QY or as dotted spinors QY under the Lorentz group and that commute with

10



2.2 4d N = 1 supersymmetric theory

translations:
[P/M g] =0
[Puv g] =0
[Muw Qév] = Z(Juu)gQéV
(M, QY] = i(0,u)3Q) (2.10)

The only possibility that the algebra does not require extra generators is found to be
the algebra [87, 86]

{QL, Q1) = 2(04), s PH0" (2.11)
{QL, Q4 = eap 2", (2.12)
{QL, Q1Y = ;32" (2.13)
here Z!/ = —Z7! commute with all generators of supersymmetry algebra and called

central charges.

There are no central charges in A/ = 1 supersymmetry algebra , therefore we have [86]

{Qa, Qs} =200 P, (2.14)
{Qa,Qs} =0, (2.15)
{Qs, Qs =0. (2.16)

The supersymmetry generators commute with the momentum operator P, and hence,
with P?. Therefore, all states in a given representation of the algebra have the same
mass. For a theory to be supersymmetric, it is necessary that its particle content form

a representation of the above algebra.

2.2 4d N = 1 supersymmetric theory

11
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2.2.1 Superspace and superfields

In order to make a local realization of supersymmetry it is convenient to use the super-
space formalism. Superspace is obtained by adding four spinor coordinates 6%,0, to
the set of spacetime coordinates z#. The generator of supersymmetric transformations

in superspace with transformation parameters & and ¢ is then given by
§*Qa + Ed@a (2.17)

To make consistency with the algebra of supersymmetry superspace transformations

are chosen to be

= o =2t + 00" —ilah (2.18)
0—0=0+¢, (2.19)
00 =0+¢. (2.20)

Action of the supercharges on (x, ) can be written as follows:

Qa - ;:a - iagdgd 8# ) (2'21)

— 0
Qd v + iﬁaagd 8 . (2.22)
0 8
These supercharges satisfy the anti-commutation relations
{Qaa@d} = 21’0‘5@ ay, . (223)

It is easy to see that 9/90 and 9/00 are not invariant under the transformations (2.18)-
(2.20). Therefore, one needs to introduce the super-covariant derivatives. A standard

choice of new derivatives is provided by

D, = (,;Za +iot, 0, (2.24)
D, = _a(zd — 0”070, . (2.25)

12



2.2 4d N = 1 supersymmetric theory

They satisfy the following anti-commutation relations

{Da, D} = —2ic", 0, (2.26)
{Da,Qa} =0, (2.27)
{Qa,Ds} =0 (2.28)

Quantum fields transform as components of a superfield defined on superspace, H(x, 6, 0).
Since the 6 coordinates are anti-commuting, the Taylor expansion of H(x,#,6) in
odd coordinates is finite, the most general superfield can always be expanded in the

fermionic variables

H(x,0,0) = f(x)+0y(x) + 0&(x) + 00m(x) + 00n(x) + 00" 0v, ()
= +000)(x) + 000v(2) + 0000d(x) | (2.29)
where the coefficients of the expansion are the component fields.

To recover irreducible representations one must impose constraints on the superfields.
There are two different NV = 1 irreducible multiplets in four dimensions: the chiral

multiplet and the vector multiplet.

The chiral multiplet is represented by a superfield ®, satisfying the following constraint

Dg®=0. (2.30)
Note that for
y" =" +1io"0 | (2.31)
we have
Day" =0, 2.32)
Db’ =0. (2.33)

Therefore, any function of (y, ) is a chiral superfield. The chiral superfield can be

expanded in terms of components in the following way

D(y,0) = d(y) + V200 (y) + 00F (y) , (2.34)

13
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where ¢ and ¢ are the fermionic and scalar components, respectively and F' is an

auxiliary field.

Similarly, an anti-chiral superfield satisfies the following condition
D,®' =0 (2.35)
and it can be expanded as
o (y",0) = o' (y") + V200(y') + 60 F " (y1) (2.36)
where, y*t = a# — ilo"0.
The vector multiplet is defined by a real scalar superfield
V=V (2.37)
It can be expanded, in the Wess-Zumino gauge and gets the following form
V = —00"0A, + i6*0X — i0 O\ + ;02920. (2.38)

In this gauge
1 _
V= §AMA“9202 and V3 =0. (2.39)

The Wess-Zumino gauge breaks supersymmetry keeping the gauge symmetry of the
Abelian gauge field A,. The abelian field strength is given by a combination

1

W, = —ZEQDQV : (2.40)
__ 1 _
W, = —1D2de. (2.41)

The non-Abelian gauge field strength is defined by the superfield

1
W, = §D2e2vDa6_2V (2.42)

and transforms as

W, — W, = e ™ W,e™ (2.43)

14



2.2 4d N = 1 supersymmetric theory

where A = A*T*? is a chiral superfield and T* are chosen in the group representation

carried by chiral superfields.

2.2.2 Supersymmetric Lagrangians

The most general A/ = 1 supersymmetric Lagrangian for the scalar multiplet is given
by
ﬁ:/d%K@@U+/fmw®+/me@y (2.44)

Recall that the #-integrals pick up the highest component of the superfield as the

integration formulas for Grassmann variables read [d20 6> =1 and [d?0 0 = 1.

In terms of the non-holomorphic function called Kahler potential K (®, (IDT), the metric
in field space is given by ¢¥ = 9?°K/ (9<I>i8<1>§, therefore the target space for chiral

superfields is always a Kahler space.

We can include the gauge coupling constant and the 6 parameter in the Lagrangian in

the following form

1
ﬁzm%Tﬂ/fMWWQ
AT
1 a rapy a frapy 11 ana ya _j B
= _@FMVF —+ 327T2FNVF + ?(51) DY —i)\% Dli)\ ), (245>

where, 7 = 0/27 + 4mi/g*.
Then the full ' = 1 supersymmetric gauge invariant Lagrangian as

_
_7T

+/ﬁw%@w4%»+/fmm+/fmﬁ. (2.46)

r ImG%/fMWWQ

15



2 N =1 SUSY in Four Dimensions

In terms of the component fields, the Lagrangian (2.46) becomes

1 a prauy 0 a Trauv i a 3¢ 1 ana
£ :—TQQF/“/F‘LL +327T2FMVFu —E)\ O"MDH)\ +2792D D

+ (Ou¢ — iAST9) T (0" — i A" T ) — D*¢'T"¢
— 1o (Outp — iALT ) + F'F
oW 1 9*°W

s Trpaya T p_
+< Z\/§¢T)\w—|—a¢F 2 9999

Y + h.c.) .

(2.47)

Here, W stands for the scalar component of the superpotential. The auxiliary fields F'

and D“ can be eliminated by using their equations of motion:

Y
F=5 (2.48)
D* = g*(¢'T"¢) . (2.49)

The terms involving these fields give rise to the scalar potential

2 1 ana
V=|FP g DD (2.50)

Using the supersymmetry algebra it is easy to show that the Hamiltonian is a positive
semi-definite operator and that the ground state has zero energy if and only if it is
supersymmetry invariant. The equation (2.50) means that the supersymmetric ground
state configuration is such that

F=D"=0. (2.51)

2.2.3 N =1 superconformal algebra

In this section we outline the construction of the A/ = 1 superconformal algebra in four

dimensions. The section will mainly follow the exposition in [25, 27].

We consider an N = 1 superconformal field theory on S3 x R. The N = 1 superconfor-
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2.2 4d N = 1 supersymmetric theory

mal group in four—dimensions is SU (2, 2|1) group, which has the following generators':

Ji, L— Lorentz rotations

P,, Qa, QQs— Supertranslations
As in any conformal invariant field theory, one also has superconformal generators

K,, Sa, Ss— Special superconformal transformation

H— Dilatations
The action is invariant under

R— U(1)g rotations. (2.52)

Supercharges satisfy the anticommutator relations (2.14)-(2.16). The superconformal

charges obey the following relations

(3%, 5%} = 2% (2.53)
{55 =0, (2.54)
{S*, SP1 = 0. (2.55)

The cross-anti-commutators of (), and S, have the form
{Q.. 51 =0, {5*,Q,} =0, (2.56)
while
8 6 Lepp 358
{QOHS } =4 Ma + §5aH+ Z(saR )

& — —a 1 .. 3 .
{57,Qs) =4 (Mg — 303 + 45;;R> : (2.57)

IFor more details, see [27].
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2 N =1 SUSY in Four Dimensions

The bosonic and fermionic generators cross-commute as

1 _
M2.Q,) = 85Qu — 3000, M. Q] =0,
[Moffa S’y] = _(stﬁ + ;55577 [Maﬁagfy] =0,
—— G el 1 ey
(M, Q)] =0, [Mp,Q:] = —05Q; + 555 i
—d R — R G
(M, 57 =0, [M5,5"] = 615" — 55637,
[Paﬁ'a S'Y] = 53@57 [Pa/j’a §'y] = 52@047
[K,Q,] = 675", [KY,Q,] = 6557,

1 — 1
[Ha Qa] = 5@07 [Hv Qd] = §Qd’
1 — 1 5a

[H,5% = ~35% [H,5"] = 5" (2.58)

The R-charge commutes with the bosonic generators, while it has non-trivial commu-

tators with the supercharges and their superconformal partners

[R7 Qd] = _QOM [Ra@o'z] = @da
[R,S%] = S* [R,§]=-3" (2.59)

2.3 Witten index

We start by giving a very brief introduction to the Witten index. More details on the
subject can be found in the original paper of Witten [21] and in the review papers
(88, 89].

For concreteness let us consider a supersymmetric quantum mechanics. Generators of

the supersymmetry algebra satisfy following relations

{Q.Q}={Q",Q"} =0, (2.60)

and

{Q,Q"} =2H . (2.61)
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2.3 Witten index

Supersymmetry is unbroken if there is at least one state with vanishing energy, i.e.
the vacuum state is annihilated by a supersymmetry generator. Indeed, just from the
supersymmetry algebra one can see that the Hamiltonian is positive definite and if a
state is annihilated by the Hamiltonian H, then it is also annihilated by the supercharge

Q@
Q0)=0 = Eue=0. (2.62)

In 1982 Witten suggested [21] an elegant and effective way of characterizing sponta-
neous supersymmetry breaking. He introduced a topological invariant of the theory
which tells us whether supersymmetry is broken or not. This topological invariant,
called the Witten index, is defined as follows

Iy = TI“H:O(—l)F> (2.63)

where F is the fermion number which takes value 0 on bosons and 1 on fermions? and
{(=1)F,Q} = 0. The trace is taken over all states in the Hilbert space of the theory.
The index computes the difference between the numbers of bosonic and fermionic
ground states. If Iy # 0 then supersymmetry is unbroken, since supersymmetry is

unbroken if there is at least one state with vanishing energy.

The index can be defined also in the following way
Iy = Tr(—1)Fe P . (2.64)

It is 8 — independent for the one—dimensional supersymmetric quantum mechanics,
because of the discrete spectrum of the Hamiltonian. In fact, due to pairing of non—
zero states, contributions of bosonic and fermionic states to the index cancel each other,

since they have the opposite (—1)%.

Note that the Witten index is an analogue of the Atiyah-Singer index [90].

2For instance, F' can be taken to be twice the spin.
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2 N =1 SUSY in Four Dimensions

2.4 Superconformal index

We are now in a position to introduce the central object in the thesis — the superconfor-
mal index. The d-dimensional superconformal index is a generalization of the Witten
index?® defined on S% ' x R. It is a nontrivial function of flavor and superconformal

fugacities [23, 22, 24]. One can define the superconformal index as [22, 78]
1({t;}) = Tr(=1)Fe QLU T 4 | (2.65)

where @, Q' are the supercharges with H = {Q,Q'}, F; are generators of global
symmetries which commute with @ and QT, and ¢; are the corresponding fugacities
(additional regulators). The trace in the definition of the index is over the Hilbert
space of the theory on a (d — 1)-dimensional sphere S?! where d is dimension of
the spacetime. The states with H # 0 come in pair and cancel out because of the
factor (—1)¥", therefore the superconformal index is S-independent and counts states
with H = 0. The index does not depend on coupling constants of the theory and it is

invariant under marginal deformations of the theory.

Let us consider the A/ = 1 superconformal theory in four dimensions. To construct
the superconformal index we pick up one supercharge, for example, the supercharge
@1 and its conjugate S*. They satisfy the following relation

{Q1, 5" = —2(H —2J; - ‘;’R) . (2.66)

Then one defines the superconformal index in the following way

rank F

I<y7t7{f]}) = Tr(_1>Fy2J3tR€Zj=1 ijj . (267)

Here (—1)" is the fermion number operator, t® and y*/* are additional regulators with
t| < 1 and |y| < 1, f; is the chemical potential for a group F, where F' is a flavor

group with maximal torus generators Fj, j =1,..., rank F'and R = H — %R.

According to the Romelsberger prescription [24] for N = 1 theory with a weakly-

coupled description one can write the full index via the so-called “plethystic” exponen-

3The original Witten index for supersymmetric gauge theories gives the dual Coxeter number for
the gauge group.

20



2.4 Superconformal index

tial [91] by integrating over the gauge group?

- 1 : n n n n

I(y,t, {t:}) = /G dp(g) exp (Z ;Hd(y 2 t)) (2.68)
¢ n=1

where du(g) is the G—invariant Haar measure and ind(y, t, z,t;) is the index for single

particle states.

Dolan and Osborn realized [25] that the exponential sum in (2.68) can be evaluated
using elliptic Gamma function
20 ] _ ylpitlgitl

T(zip,q) = []

1,j=0

— gl < 1, 2.69
i Pl gl (2.69)
and as a result the superconformal index can be expressed in terms of elliptic hyper-

geometric integrals.

The four-dimensional superconformal index is a powerful tool to test Seiberg—like du-
alities in N' =1 [24, 25, 26, 27, 28|, S—dualities in N’ = 2 [72, 73] and N = 4 [72, 68]
supersymmetric theories and has an elegant mathematical structure described by the

theory of elliptic hypergeometric integrals [92].

We will work out the explicit expression of a single letter index and the full supercon-

formal index for several cases.

2.4.1 Calculating the index

In [23, 24] Romelsberger introduced a simple procedure for explicit computation of
the superconformal index. According to his prescription, to obtain the superconformal
index one should first compute a single letter index ind({f;}) summing over all the

fields contributing to the index.

Therefore let us first compute a single letter index. We start with the Lagrangian for
the bosonic field in the free chiral multiplet of the R-charge ¢ [23, 24]

3q — 2

)¢ — 40tV otoMe — 6T | (2.70)

30— 2
Ly = (9 — i~

)¢T(at +1

4Since we are interested in gauge invariant physical observables.
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2 N =1 SUSY in Four Dimensions

(L)

where the space derivatives o, have the following form in terms of the Euler angles

(91, ¢2, ¢3)
a%L) = c0S 90y, + 2111 22 Ops — sin ¢ cot 910, , (2.71)
aéL) = sin ¢20y, + C?; 22 Opy — €OS g cOt P10y, , (2.72)
o5 = 8y, . (2.73)

Let us expand the sacalar field ¢ in spherical harmonics
¢ = Z ¢j»j3733}/}7j3733' (274)
jaj37j3

where the sum is taken over the quantum numbers of SO(4) angular momenta and
4 >0, |js],|73] < j. Then the Lagrangian (2.70) is given by

3 3q—2
_ i q ; i
Ly = Z ((at — 1 >¢”3 ]3( p +i—— 9 )¢j1j3733 - (2.7 + ) ¢”3 J3¢j,j3,j3> .
jaj3:j3
(2.75)
We want to compute the following index for the boson in the chiral multiplet
Tr(—1)F 720 (2.76)

Hence, consider the following Hamiltonian

3¢ —2 3¢ —2
= iy 2 O L Vi |
H¢ N Z (Hj’j?”j?’H]}jsJ:a a ZTHj,jS,j3¢J jags T i ¢] a7 ]]3 s
7,J3:J3
+(2j + 1)1 J3¢j,j3,;3>, (2.77)

the R—charge

= i

= —1iq Z ( JuajsPigads ¢“3 s 333 ]3) ) (2.78)

3,373
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2.4 Superconformal index

and the angular momentum over S* (= SU(2) x SU(2))

= T
= —4 Z J3 ( GianjsPigads ~ ij a3 ”3 33) ; (2.79)
3,J3.J3
= T
=t Z I ( gusdsPias — ¢j 3,73 ”3 j3> . (2.80)
J,33:J3

Here we used the canonical momenta

ijijjS — (at )¢] ]3 j3 (2.81)
and its Hermitian conjugate
3q— 2
T -
]:[j7j3).]3 (at + Z 2 )¢],]37j3 . (282)
We define the ladder operators as
ay ;. :#(HT L Hi(2j+1)0) (2.83)
1,5.33:J3 47 4 2\ dndsids ’ '
1
L= - (94 T
Oiisis = 5T (11, 5,5, + (25 + 1)o') . (2.84)
Then in terms of the ladder operators one finds that
3 . T -
Ry+2J5== > (a+ 233)( 1 o o Mdidds %,j,jg,jgaz,j,js,jg)- (2.85)
j)j37.73
73 - T .
Jo=— 2 J3< @y s s M gisds %,j,jg,jgamjs,jg)- (2.86)
J:J3 ]3

Plugging (2.85) and (2.86) into (2.76), we obtain the desired contribution of the bosonic

part to the superconformal index

J3/2 .
Zf LY, U Z TRRFE Z yQJs (2.87)
J3=0 Ja=—js/2

T-wma-5

(2.88)
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2 N =1 SUSY in Four Dimensions

Similarly, one can calculate the fermionic contribution to the index

21
f tv y,u) = — 2.89
W) = - (259
starting from the following Lagrangian
_ —9 - 1 .
Ly = iy° (80 + i3q ) W — 20y (UEL) + 8eijk”yjk) Y (2.90)

and by expanding the spinor v in spinor spherical harmonics. Then a free chiral

multiplet contributing to the superconformal index is given by

td — 24
(1—ty)(1-3)

f@(ta%u) = (2.91)

Now let us consider the contribution of the gauge multiplet. First, we need to fix the
gauge. In this case we choose the temporal gauge Ay = 0 on S x R. In order to get

gauge-invariant physical states we impose Gauss’ law constraint for a gauge symmetry.

The supersymmetric Lagrangian describing the gauge multiplet is
1 Y0
Lg = ? 4trf0ifoi — 8757“.71']'./_';']' + ZtT’)\’}/ D())\
- 1 )
—2itr vy’ <Dl- + Seijk”y]k) A — trD2>, (2.92)

where A is the chiral fermion, D is the real auxiliary field and A, is the gauge field

A= Agdt + Ao, (2.93)

and
.m:;@&—éQ%+m&—&%y (2.94)
Fi = 5014 — 0P At e + Ay — AjA) (2.95)
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2.4 Superconformal index

and the right invariant 1-forms on SU(2) are given by the following form

J(IR) = COoS ¢odp + sin ¢g sin ¢1d s , (2.96)
02y = sin gadepy + oS o sin Gy deps | (2.97)
TRy = cos prdes + ds . (2.98)

Then the contribution of a free abelian vector multiplet to the superconformal index
is (for details, see [24, 93])

20 —t(y + )

I-ty)(1-1)

frlty) = (2.99)

In the case of non—abelian gauge theory with gauge group GG one obtains that a single

letter index for vector multiplet has the following form

g = ot 2.100
fV( 7yvg)_ (1—ty)(1—§) Xad](g)' ( : )

Now we introduce new parameters p = ty and ¢ = ty~!. Then the single letter particle

states index gets the following form

. 2pg—p—q
ind(p, ¢, 2, y) = m)@dj(é)
R;/2

Xeri (WXRai(2) — 00 X R, ;W)X Ao (2)
(I-p)(1—-q) '

+> (pa) (2.101)
J
The first term in (2.101) represents the contribution of the gauge superfields lying in
the adjoint representation of the gauge group GG.. The sum over j corresponds to the
contribution of chiral matter superfields ¢; transforming in the gauge group represen-
tations R¢ ; and flavor group representations Rp; where R; are the field R-charges.
The functions Xaq4(2), Xre;(y) and xr,,;(2) are the characters of the corresponding
representations, where z and y are the set of complex eigenvalues of matrices realizing

G and F, respectively.

Finally, the full index is formed by summing over multiparticle states, i.e. by inserting
the single letter index into the “plethystic” exponential PE[.] [94, 91] and integrating
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2 N =1 SUSY in Four Dimensions

over the gauge group in order to get gauge—invariant quantity

| dnlg) PE[ind({t:})] . (2.102)

where p(g) is the invariant Haar measure and the plethystic exponential is defined as

PE[f(x;)] = exp (i f(x?f,xg,)) . (2.103)

n=1 n

2.4.2 Extended supersymmetry

For the sake of completeness we write down the superconformal index for four-dimensional
N = 2 and N = 4 theories, althoug they will not be discussed in the thesis. Rather
than discussing the full algebra of these theories, we will give only one particular rela-

tion in order to define the superconformal index.

N =2 theory

The superconformal index of a four-dimensional N = 2 SCFT is

t

L, y—o = Tr(=1)" (
bq

) pti g B T el (2.104)
where j1 o are the Cartans of the Lorentz SU(2); x SU(2), isometry of S*, r is the
U(1), generator, and R the SU(2)g generator of R-symmetries. The fugacities a; stand
for flavor symmetry. Only the states with

{Q", QY =E—2j—2R+7r =0 (2.105)

contribute to the index. The single letter indices of the hypermultiplet and the vector
multiplet have the following form

\/g _ pg
ind} v—o(p, ¢, a) = ( i _(a+a), (2.106)

1—-p)(1—q)
pq
. D q 5t
lndv = (p7 Q7t) = - - + ! .
4d,N=2 l-p 1-q (1-p-gq
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2.4 Superconformal index

N = 4 theory

For the construction of the superconformal index for four-dimensional N = 4 Super-

Yang-Mills we need the following anti-commutation relation

3 1
2{Q",Q} = E—2j, — gf = Bo = SR, (2.107)
where E is the energy, j; (and j3) is the angular momentum corresponding to the
rotation around S%, and R}, denotes three generators of Cartan subalgebra of SO(6)
R-symmetry in the SU(4) notation. Then one can define the superconformal index as
follows

Lig, w—a(t,y, v, w) = Te(—1)F e Pg2Em 2 Rey e (2.108)

where H = 2{Q", Q} and recall that only the states with H = 0 contribute to the index.
Here t,y,v and w are the additional regulators. The index (2.108) counts the number
of 1/16 BPS states in the theory. An explicit computation of the superconformal index

for a given gauge group gives the following result [22]

Lig n=a(t,y,v,w) = /d,u(g)PE [indyg n=a(t, y, v, w)Xaaj (G)] , (2.109)
with

: 2o+ 1w+ w/v) —3(y+1/y) — t'(w+ 1/v + v/w) + 2t°
1nd4d,./\f=4(t> Y,v, U)) = (1 — yt3)<1 — y_ltg) )
(2.110)

where dj(g) is the invariant Haar measure and x,q4(G) is the character of the adjoint

representation of the corresponding gauge group G. The single letter index (2.110) is
the character of the PSU(1,2|3) subalgebra of the PSU(2,2|4) space-time symmetry
which commutes with @ and QT = S [95].
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3 N =2 SUSY in Three Dimensions

In this chapter we briefly review kinematics and dynamics of three-dimensional N =
2 supersymmetric gauge theories, including supersymmetry algebra, supersymmetric
action, mirror symmetry etc. The main attention is devoted to the superconformal
index and three-dimensional dualities. The subject is very broad, and we only cover

the basics needed to obtain our results in the next chapters.

3.1 3d N =2 supersymmetric theories

The three-dimensional N' = 2 gauge theory can be obtained by reducing the four—
dimensional N = 1 supersymmetry. We review aspects of N' = 2 supersymmetric
gauge theories in three dimensions and introduce the notation used in the thesis. In
this chapter we will closely follow the treatment in [96, 97, 36, 37, 98, 99] (see also
Appendices in [100, 101]).

3.1.1 Conventions

The Clifford algebra for a 2 + 1 - dimensional space with metric g, is

v wt = 29, (3.1)
s W] = =2 (3.2)
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3 N =2 SUSY in Three Dimensions

As a convenient representation we choose the matrices v* as follows

(g =ioe, (P)g=03 (1*)5=01, (3.3)

where «, 5 are spinor indices in the defining representation of SL(2,R). Spinor indices

are contracted, raised and lowered with the anti-symmetric matrix Cyg

0 —1
Cop = —Cpo = C7 = (Z 0 ) : (3.4)

We will work in Euclidean space and consider the theories on S? x S! and on a squashed
S3,

3.1.2 N =2 SUSY Algebra

Besides the ordinary generators of the Poincare algebra the three-dimensional N = 2
SUSY algebra as for N = 1 SUSY in four dimensions has four real supercharges. These

supercharges can be combined into a complex supercharge and its Hermitian conjugate

Qo and Q, , (3.5)
where « is a spinor index which runs from 1 to 2(= N'). The part of the N'= 2 SUSY

algebra involving the supercharges can be written as [36]

{Qaa QB} = {Qm@ﬁ} =0 5 (36)

{Qa, @5} = 2’}/353 + 2i€a52 s (37)

where the bosonic generator P, is the momentum generator, Z is a central charge which
can be thought of as the reduced component of four-dimensional momentum. The
automorphism group of the algebra is U(1) R—symmetry which rotates the supercharges
as

[Ran] = —Qa - (38)

In case of superconformal symmetry we have two additional bosonic generators: special

30



3.1 3d N = 2 supersymmetric theories

conformal transformations K, and dilatations D, and two fermionic generators: S,
and S,. The N = 2 superconformal algebra in three dimensions takes the form of the

following supergroup’ [14]
SO(3,2)cont X SO(2)r € OSp(2[4) . (3.9)
In Euclidean signature this turns into?
SO(4,1)cont X SO(2)g € OSP(2/2,2) . (3.10)

The first factor here is the conformal group and the second one is the R-symmetry.
Note that in the superconformal case the algebra has a distinguished R—-symmetry.

The important relation of the superconformal algebra for our purposes is
{Qa, S5} = MV, 7 )as + 220D — 2c0pR . (3.11)
In particular we will use the following commutation relation

{Q1, 51} =2D —2R —2j3 . (3.12)

3.1.3 Multiplets

Supersymmetry representations of 3d N/ = 2 theories are closely related to represen-
tations of A/ = 1 theories in four-dimensions and they can be directly obtained by

dimensional reduction.

A way to obtain irreducible representations is to impose constraints on superfields. In

order to do so it is useful to define supercovariant derivatives:

0 _
_ T
D, = 2. (70)a0, (3.13)
_ 0 ]
Da = 870—06 — Z(’y’“@)oﬂu . (314)

Note that SO(3,2) = USp(4) and SO(2) = U(1).
ZNote that SO(4,1) = USp(2,2).

31



3 N =2 SUSY in Three Dimensions

The simplest type of a constrained superfield is the chiral multiplet ® that satisfies the
following constraint

D,® = 0. (3.15)

As a function on the superspace it can be expanded in terms of the components: a

complex scalar field ¢, a complex Dirac fermion ¢, an auxiliary complex scalar F’

® = ¢(y) +V200(y) + 0°F(y), (3.16)

where 6 is a Grassman coordinate and y* = x* + i0c"6.

The so-called vector multiplet consists of a real scalar field o, a vector field A4,, a
complex Dirac fermion A, a real auxiliary scalar field D, and its expansion in Wess-

Zumino gauge is given by
_ - _ _ 1 .-
V = —ifo — 07'0A; +i0*0\ — 020\ + 592920; : (3.17)

Unlike the four-dimensional A = 1 counterpart, the three-dimensional N’ = 2 vector
superfield carries components which may acquire vacuum expectation values that form

the Coulomb branch of the moduli space.

It is useful to define the so-called linear multiplet whose lowest component is a scalar

field

Y= DD,V . (3.18)
It satisfies the following equations
DD, = DD, % =0, (3.19)
and
»=xt. (3.20)

3.1.4 Supersymmetric actions

In this section we summarize actions for matter and gauge superfields.

e From a vector superfield V' (3.17) one can make the gauge-invariant combination
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3.1 3d N = 2 supersymmetric theories

W, = —iDZG*VDaeV to construct the Yang-Mills action. Then the classical

Yang-Mills kinetic terms for vector multiplets take the following form
1
Syag = ?/d% 20 (T W,W° + c.c.) (3.21)
g
1 3 1 ij i 2 i
:2/der(4FijF + Y090 + D —l—)\”y@i)\).
Y

where the trace is performed over the fundamental representation. One may use
an equivalent description in terms of the linear superfield 3 (3.18) for which the

action is

1 3, 74 1o
Syni = 92/61 rd'y T S? (3.22)
This is completely equivalent to (3.21) once the d*f integral is performed.

In three dimensions the Yang-Mills action is not the only gauge invariant com-
bination of the gauge fields. We also may have the Chern-Simons term which is

given by
k 3 ijk (A 2 T

where k € Z is the Chern-Simons level. In the abelian case it can be written in

the following simple form

k
Ses = 1 / &z d'9 TreV., (3.24)
m

In the case of abelian theory we can also add Fayet-Iliopoulos term to the action

Spr = / Brdio v, (3.25)

where £ is the Fayet-Iliopoulos parameter. This term can also be written via the

vector and linear multiplets
Spr = / Bz d9 SV (3.26)

where ¥ has a scalar component ¢ = ¢ and the rest components are turned off.
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3 N =2 SUSY in Three Dimensions

e The action for chiral superfields ® is given by
Senieal = / P d0 K (®, 1) + / dx [POW(®) +c.c] (3.27)

with the Kihler potential K (®, ®') and superpotential W (®). In particular, for
SUSY gauge theories the Kahler potential is ®eV®f. One can expand it and

obtain the kinetic term

Lin. = |20 + ¢'0%¢ +i¢" Do + i’y Dy — ipTaep
+igTATy —ipfhg + | F|”, (3.28)

where &; is the Dirac operator.

e There are two different types of mass terms one may write for a chiral superfield.
First we can get mass terms from non-zero vacuum expectation value of the scalar
component of background vector multiplet. By modifying the Kéhler potential
we get

/ Prd'0em? ot (3.29)

This mass is known as a real mass. It gives a mass to matter multiplets. We also

can write down a holomorphic mass adding a quadratic term to the superpotential

Wine = me®® . (3.30)

This mass is known as a complex mass and it is the analog of the usual mass

term in four dimensions. The real mass breaks parity while the complex mass

does not. The physical mass of the chiral multiplet is m = /m3 + mé.

3.2 3d N =2 mirror symmetry

Let us now turn to the so-called mirror symmetry in three-dimensional N' = 2 super-
symmetric gauge theories. Three dimensional mirror symmetry was first introduced
for NV = 4 supersymmetric gauge theories in [38] and was extended to N' = 2 gauge
theories resulting from supersymmetry breaking in A" = 4 theories [36]. The simplest

example of N' = 2 mirror symmetry is the duality between supersymmetric quantum

34



3.2 3d N' = 2 mirror symmetry

electrodynamics with one flavor and the free Wess-Zumino theory [38, 36, 102].

These two theories are defined in the UV region and flow to the same IR fixed point:

e The N = 2 supersymmetric quantum electrodynamics has one flavor consisting

of two chiral fields @, @ and one vector multiplet V. This theory possesses extra

U(1) global symmetries: one is the topological U(1);, and the other is the flavor

symmetry U(1) 4.

U) | UMy | U(M)a

Q| +1 0 +1

Q| -1 0 +1

Charges in the SQED.

o free Wess-Zumino model is the theory containing three chiral fields ¢, ¢, and S

interacting through the superpotential W = GSq. This theory has two U(1)
global symmetries, named U(1)y and U(1),4 [31].

Charges in the free Wess-Zumino theory.

UMy | U(M)a
X| +1 | +1
Y| -1 | +1
Z| 0 —2

In the context of mirror symmetry, we can identify U(1); and U(1)4 of the supersym-

metric quantum electrodynamics with U(1)y and U(1)4 of the Wess-Zumino model,

respectively. The currents J, associated with each U(1)4 are mapped with flipping

the sign.

SQED Wess-Zumino

U(l)A < U(l)A
JA A —JA

Mirror duality.
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3 N =2 SUSY in Three Dimensions

3.3 Superconformal index

In this section, we introduce basic facts related to the three-dimensional superconformal

index technique. The presentation closely follows that in [30, 29, 31].

The concept of the superconformal index was first introduced for four dimensional
theories in [23, 22] and later extended to other dimensions. The superconformal index of
a three—dimensional A/ = 2 superconformal field theory is a twisted partition function
defined on S? x S as follows [103, 79, 30]

g, {t:}) = Tr | (-1)Fe QR T4l (331)

where
e the trace is taken over the Hilbert space of the theory on S2.

e | plays a role of the fermion number which takes values zero on bosons and one
on fermions. In presence of monopoles one needs to refine this number by shifting
it by e x m, where e and m are electric charge and magnetic monopole charge,

respectively. See [57, 104] for a discussion of this issue in more details.

e A is the energy (or conformal dimension via radial quantization), j3 is the third

component of the angular momentum on S2, R is the R-charge.
e [ is the charge of global symmetry with fugacity ;.

e () is a certain supersymmetric charge in three-dimensional N = 2 superconformal
algebra with quantum numbers A = % and j3 = —% and R = 1. The supercharges

Q" = S and Q satisfy the following anti-commutation relation?

{Q.5t=A-R—js. (3.32)

Only BPS states with A — R— j3 = 0 contribute to the superconformal index, therefore
the index is S-independent, but becomes a non-trivial function of the fugacities t; and q.
The superconformal index counts the number of BPS states weighted by their quantum

numbers.

3The full algebra can be found in many places, see e.g., [105].
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3.3 Superconformal index

The superconformal index can be computed exactly by the localization technique [20]

and it takes the form of the following matrix integral [79, 30]

rankF’
[(Q7 {tz}> /‘W Sggewoq%fo H t?Oj
meZ J
e 1 rankG dZ'
- pind(z 7, 4% . 3.33
oo [ Jmcr o] T, 6

The sum in the formula is to be understood as a sum over magnetic fluxes on the
two-sphere

1
= — | F 3.34
" 2m /52 ’ ( )

where m parametrizes the GNO charge of the monopole configuration?, in the examples

we consider in the thesis it runs over integers.

The prefactor |[W,,,| = [IF_,(rankG;)! is the order of the Weyl group of G which is
“broken” by the monopoles into the product Gy x Gy X ... Gg. For instance, in case of
U(N) gauge group |W,,| =TT N,!.

The term
21

S8 = o [tros(A0dA® — 4040 40) (3.35)
T

is the contribution of the Chern—Simons term if the action contains such term and the

term

= —= Z > |p(m (3.36)

® peRy

is the 1-loop correction to the Chern—Simons term. The trog stands for the trace
containing the Chern—Simons levels, £ is the Chern-Simons level and 3 g and 3 ,cg,
are sums over all chiral multiplets and all weights of the representation Rg, respectively.
We give the contributions (3.35) and (3.36) for completeness, in all our examples we

will consider theories without the Chern-Simons term.

The term qp; in (3.33) is the zero-point contribution to the energy

Goj (m :_,sz )f5(®) . (3.37)

® peERg

4The operators creating magnetic fluxes are not completely understood yet, for details, see e.g., [79].

37



3 N =2 SUSY in Three Dimensions

In addition, there is a contribution from the Casimir energy of the ground state [79]
1 r .
eo(m) = itr(—l) (A +73) . (3.38)

This quantity on a two-sphere with magnetic flux m takes the following form

olm) = 5301~ 8a) 3 [p(m)] — 5 3 Jam) (339

] pERs aeG

where "o represents summation over all roots of G, and Ag is the superconformal

R-charge of the chiral multiplet ®, a(m) are the positive roots of the gauge group G.

One can calculate the single letter index

ind(z,t,¢;m) = — Y _ eio9) gzlatm)] (3.40)
acG
slo(m)|+5As Lp(m)|+1-1Ag

£33 e [T a2 — e [0 '
j

¢ peERs i q 1_q

Here the first term gives the contribution of the vector multiplets and the second line
is the contribution of matter multiplets, labeled by ®. The index j runs over the
rank of the flavor symmetry group. Given the single letter index it is a combinatorical
problem [94, 91] to compute the full multi-letter index. The result is given by the

so-called “plethystic” exponential

> 1

exp <Z —ind(z",t", q”;m)) : (3.41)
n=1 n

For instance, let us consider the N' = 2 theory with U(N) gauge group. In this case

the chiral multiplet ® with R-charge r in the fundamental representation of the gauge

group contributes to the single-letter index as

N £ mil o lml
D E Lk SR (LOF S (3.42)
i=1 L—q l—gq

After the “plethystic” exponential one obtains the contribution of the chiral multiplets
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3.3 Superconformal index

to the index

N (-t @) 1,
t ;
[l m i (343

i=1 (q%"' 2 tf(é)ZiQQ)oo

Similarly the contribution of the vector multiplet to the single-letter index is

Y ghlmemlE (3.44)

i.5=1 0, N, i%j %
and the multi-letter index gets the following form
|mi7mj‘ Zi |m2—m]|

q_ Zl§i<j§N 2 H (1 -2

i:jzlz-"vN’ Z;é.]

(3.45)

Our main interest is the so-called generalized superconformal index which includes
integer parameters corresponding to global symmetries. In [31] Kapustin and Willett
pointed out that one can generalize the superconformal index of 3d N/ = 2 theory by
considering the theory in a non—trivial background gauge field coupled to the global
symmetries of the theory. As a result the superconformal index includes new discrete
parameters for global symmetries and we do not sum over these parameters. In case of

the generalized superconformal index the contribution (3.43) has the following form

r m; |+ f(P)n
rankG (q17§+7‘ ‘ 2“ ) t—f(d))z—l

H L Q)0

|m;+£(2)n| ’

=1 (¢t H ).

(3.46)

where the parameters n; are new discrete variables. It is convenient to express the

index as a product of contributions from chiral and vector multiplets

rankG dz:
i

Ha At () = Y f 11

‘Zgauge(zzﬁ my; Q> H Z@(Zz‘7 my; tm Na,; Q) :
i=1 P

2miz;
(3.47)
Note that we do not write the contribution of the Chern—Simons term, since in this

thesis we consider theories without this term.

It is worth to mention that the three-dimensional superconformal index can be con-
structed from the so-called holomorphic blocks [106] due to its factorization property
[29, 107, 108]. It is possible to obtain the factorized superconformal index directly from

the localization technique via the so-called Higgs branch localization [109, 110].
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3 N =2 SUSY in Three Dimensions

3.4 Supersymmetric partition function on a squashed

3-sphere

In this section we review some aspect concerning the partition function on a squashed

three sphere® Sp.

Localization is the most general technique to compute supersymmetric partition func-
tions and it was first used in [20] for the partition function on S* of N' = 2 four
dimensional theories. The case of a three dimensional sphere was first studied in [10]
for N' > 2. The extension to N/ = 2 was done in [14, 12] for a round sphere and in [13]

for a squashed sphere.

The general structure of the partition function on the squashed sphere has the following

form

rankG ) umzz? ritz;
7 = 1/ . B e
W1 1 /Wiy
H;iqu YO (WA + pj(2) + p(p); wi, wo)
Ha€R+ 7(2) (04(2)7 Wi, w2) 7(2) (—Oé(Z), w1, w2)

(3.48)

The integral is performed over the Cartan subgroup of the gauge group. It is parame-
terized by the diagonal entries of the real scalar z in the gauge group. The exponential
receives contributions from the classical action, from the Chern-Simons term at level &
and from the real Fayet,Ailliopoulos parameter &. The factor of inverse |W| represents

the order of the Weyl group of gauge group.

The hyperbolic gamma functions y? in (3.48) are obtained by computing the one
loop superdeterminants of the vector and matter multiplets. The hyperbolic gamma

function can be written as

riBy ()2 (€T G G)
<€27riu/w1 : q)

2miw1 Jwa —27iws Jwi

with g=e , qg=e ,
(3.49)

7(2)(u;w1,w2) =e€

SPreserving a U(1)? isometry of the original SO(4) of the round case.
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3.4 Supersymmetric partition function on a squashed 3-sphere

where Bjo(u;w) is the second order Bernoulli polynomial,

—— e — et —+ —+ . (3.50)

The contribution of the vector multiplet corresponds to the denominator of (3.48) and
it is parameterized by the positive roots of the algebra. Actually the Vandermonde
determinant in the measure exactly cancels the one loop determinant of the vector

multiplet.

The contribution of the matter multiplet is the last term in the numerator of (3.48).
Each term corresponds to the contribution of the j-th chiral multiplet with R charge
A;. Each chiral multiplet is in the corresponding representation of the gauge group G

with weight p;(2) and in the corresponding representation of the flavor group F, with

weight p;(u).
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3 N =2 SUSY in Three Dimensions

3.5 Compactification of 4d N = 1 gauge

theories on S!

The reduction of four-dimensional supersymmetric field theories on R x S to three—
dimensional supersymmetric theories on R? with the same amount of supersymmetric
charges was proposed in [111]. Later Dolan et al. found [112] the procedure which
reduces four-dimensional N = 1 superconformal index to three-dimensional N = 2
partition function® (see also [113, 114]). A compelling physical argument for this
reduction has been provided in [104] (see also [115]). The essential step in the reduction

scheme is scaling of chemical potentials in the following way

p = 2 g e i 2mivay (3.51)
Then 3d partition function on squashed three sphere can be achieved by taking v — 0
limit of 4d superconformal index. Geometrically, we consider 4d SCFT on a S® x S*,
the limit v — 0 shrinks S* to zero and gives rise to a three—dimensional supersymmetric
theory with the same amount of supercharges on squashed S?, where b is a squashing
parameter. From the perspective of special functions this reduction brings elliptic

gamma functions to hyperbolic gamma functions [116]

F(€27ri'uz; eQﬂivwl’ eQﬂ'ivwg) vio e*ﬂi(2zf(w1+w2))/24vw1w2,7(2) (Z, Wi, W2) ) (352)

On the level of partition functions one can see that there is a duality in three di-
mensions coming from four-dimensional duality by this reduction procedure. However
obtaining the right duality in three dimensions is more tricky. The main issue that
the reduction procedure and renormalization group flow from ultraviolet to infrared
does not commute with each other, because of presence of anomalous U(1) symmetry
in four-dimensional N/ = 1 supersymmetric gauge theories. One needs to break that
symmetry in 3d. The correct duality can be obtained by adding monopole operator to
the 3d Lagrangians. To be more precise we need to add the effective superpotential
W = nX to the Lagrangian of electric theory and W = 77X to the magnetic theory,

where X is a monopole operator and 7 is the 4d instanton factor.

6This reduction works for any number of supercharges.
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3.5 Compactification of 4d N = 1 gauge
theories on S*

3.5.1 Dualities for SP(2N) gauge group

Now let us consider some examples. We start from the duality for 4d supersymmetric
theory with the SP(2N) group introduced by Intriligator [33]. The matter content of

electric and magnetic theories are given below in tables, respectively:

SP(2N) | SU(2N) U(1)g
Q| f oo =1- G
X TA 1 25 = KL—H

Matter content of the electric theory with the R charge assignment.

SP(2N) | SU(2Ny) U(1)r
T ot 2(N+K
q f f 2r=1- (1(<+1)N)f
Y Ta 1 25 =
M, 1 Ta 2r; = 258 — AN

Matter content of the magnetic theory with the R charge assignment.

where j=1,..., K, and N=K(N; —2) - N, K =1,2,...

Defining U = (pq)* = (pq)ﬁ, we find the following superconformal indices for these
theories [27]

N N
P;DP)o\q5 4) 0 _
Ip = (;]VEV,)F(U;p, )R (3.53)
D(Uz NN (st N ol
X/ H ( 111 1]1 2.4) H = &922] £,9) H d?] ;
TN | iSien [(z; 25D, q) Jabr F(zj :D,q) i 2miz;
N (4 AN . K
Iy = wF(U;Z% q)N H H F(Ul_lsisj;p, q) (3.54)
2NN 1=11<i<j<2N;
- oy - -
y /~ 1 F(Uilil;p, 9) ﬂ I/ L(Us, "2, q) ﬁ dz;
™ 1<i<j<N [(z" 275 p,q) j=1 I'(z%:p, q) iy 2miz;
where the balancing condition reads as follows
2N
(3.55)

U2(N+K) H s = (pq)Nf '
=1
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3 N =2 SUSY in Three Dimensions

Using the asymptotic formula (3.52) for the elliptic gamma function one can proceed
with the reduction of superconformal indices for a dual pair presented above. Let
us reparameterize the variables in (3.53) and (3.54) in the following way p = e*™1,
q=-ce , 8 = XMV o= ¥ with ¢ = 1,...,2Ny, j = 1,...,N. Then after

taking the limit v — 0, which assumes pg — 1, one obtains”

2mivwe

. -t 2N
ITed 1 7(w1+w2)N71 /100 /y( Il(ifiulj:uj) ﬁ Hz:lf ’y(aiiuj) duj (3 56)
2V oo iyen  V(FwEw) o v(¥2w) e
1
= ()Y T I 2ensare) (3.57)
2N N1 I=1 1<i<j<2N;

N 2N
/m I V(G i) ﬁni:{ V(2 —autu;) ﬁ
v (fuitu;) i v(£2u;) e ‘/—OJMQ’

1<z<]<N

with the following balancing condition

AN+ K)
(w14 w2) 24> ;= Np(wr + ws) . (3.58)
(K+ ]‘ =1

Here we use the following notation v(z) = 7 (zw1,2) and conventions v(a.b) = v(a)7(b),
7 (atu) = Y(atu)y(o—u).

Let us consider now QoN, = &+ al, QoNp—1 = & — aS and take the limit S — oo,

then I%? and I7%¢ become

1 w w N Q(Nf—l)
g = 1 7(“1+W2)N—1 /100 ’7( Ilfilziuliuj) H | ) V(O‘ii“j) duj (3 59)
N K+ . : .
2N NI —i00 1 <ij<n ’y(iuiiw) j=1 ’)/(iQUj) iy/w1ws
“J tw 2N42K 141 2(Nyp—1)
ZM - 2]’;{']\” Il(+12 U <w1+w2 ( T)_Zizl o (360)
x H 11 7((1 1)“’}{1“;2+ai+aj)
1=11<i<j<2(N;—1)
i wlTwa ﬁ Q(Nfil) wqtw ﬁ
% /100 H ’7( KTH iuliu]) H Hi:l ’}/( }{112 faiiuj) duj
—ioco 1§i<j§ﬁ V(iuiiuj) j=1 V(iQuj) =1 1 /o1ws
2
"We omit the same divergent coefficients exp ( 2mi(— 1+2{fvw€j52]\(71fg) )(W1+w2))
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3.5 Compactification of 4d N = 1 gauge

theories on S*

To obtain these expressions we used the inversion relation 7(zwi+w2—2) = 1 and the

asymptotic formulas

just

: B3 2 (u;w1,w2)
Jig e 1)

1, for argw; < arg u < arg wy + T,

Jim 67%32’2(“;‘”’“2)7@) =1, forargw, —7 <argu < arg ws . (3.61)

Note that the balancing condition is absent. Expressions (3.59) and (3.60) reproduces
the partition functions of 3d N' = 2 supersymemtric field theories [14, 12]. Equality of
(3.59) and (3.60) gives us the duality for the 3d N’ = 2 supersymmetric gauge theories

with the matter content presented in the below tables:

SP(2N) | SURNy —1)) |UM)a | U()r

Q f f 1 1
X | Ty 1 0 |2/(K+1)

Matter content of the electric theory with the R charge assignment.

SP(2(K(N;—2)—N)) | SU2(N;—1)) | UWa |UMDr(G=1,...,K)
q / f ~1 ok
T T 1 0 e
Y; 1 1 —2(Ny —1) | 4N, — 820
M; 1 Ty 2 1+24=L

Matter content of the magnetic theory with the R charge assignment.

One can proceed with the reduction of flavors and take the limit QaN;—2 —> OO after
which one gets the equality for partition functions of the Chern-Simons theories. Let
us set Ny — Ny — 2, then the electric theory is 3d N = 2 Chern-Simons theory with
k = 1/2 and the magnetic theory is 3d N/ = 2 Chern-Simons theory with k = —1/2.

Now one can proceed further in integrating out the quarks by taking further limits
s; — 00. As the result one gets the extension for Kutasov-Schwimmer duality [117] in
three dimensions: the electric theory is 3d N/ = 2 Chern-Simons theory with SP(2N)
gauge group and level k (such as Ny + k is even), Ny quarks (which can be also odd
[118]), a chiral superfield X in adjoint representation, and the magnetic theory is 3d
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3 N =2 SUSY in Three Dimensions

N = 2 Chern-Simons theory with SP(K (N + 2(k — 1)) — 2N) gauge group and level
—k, Ny quarks,a chiral superfield in adjoint representation of the gauge group, mesons

in T4 representation of SU(Ny) flavor symmetry group.

We now consider different limit for the equality between (3.56) and (3.57). Let us
reparameterize the parameters in the following way «; — a; + p, QitN; = QipN; —
i, i =1,..., Ny and take the limit © — oo after which one gets (for K = 1 it coincides
with the expression by Bult [116])

I = (e [ ] (3.62)
E - N"y A —ioco j:li W19 '
N
P)/(wDLw i(“z Uj N
e el 1] EICRR
1<icjen TV Fws j=1i=1
and
1 ~ K Ny ioco N du:
IX;dU( ) — (eatea) N= 1H H (-1 L2 Lot )/ H —L
Nl K+l i i5e T —ico o 1y/Wiws
,y(w1+w (ui “J NN
K+1 K w w w w
X H (1( - ) H H’y }(:127ai7uj,%7ai+]\]f+uj'>, (363)
1<icj<n  FwTH) et
where the balancing condition reads
N
N+ K !
(w1 + (UQ)Q K1 + Z(Ozl + ai+Nf) = Nf(wl + (UQ) . (364)
i=1
Now considering the following reparametrization
a1 =&+, an, =& —V, N1 =& —p, oy, =&+ UV (3.65)

with the following limit ;1 — oo and v — oo one can obtain the corresponding partition

functions.
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4 Extended global symmetries for
supersymmetric gauge theories

In this Chapter using a superconformal index technique we show evidence of a global

symmetry enhancement of a supersymmetric gauge theory.

The superconformal index of a theory with a flavor group F has the Weyl group
symmetry W (F'). The Weyl symmetry of the flavor group refers to the symmetry
with respect to the exchange of the flavors defined in the suitable representation of the
flavor group. In cases when the theory has a hidden symmetry, the coefficients in the
decomposition of the superconformal index into characters of the flavor group give the
sums of dimensions of irreducible representations of the larger symmetry group. One
can use this property to study global symmetry enhancement in supersymmetric gauge

theories.

In our example the superconformal index of four-dimensional N' = 1 SQCD with flavor
group SU(6) has the Weyl group of the exceptional root system FEg. It means that
the theory with flavor group SU(6) can be extended to Eg symmetry. Indeed this
is a manifestation of the four-dimensional boundary model coupled to the free five-

dimensional hypermultiplet with the enhanced Fg flavor symmetry [2].

In [26] Spiridonov and Vartanov reduced 4d ' = 1 Super-Yang-Mills with SU(2) gauge
group with 8 quarks to 6 quarks and found that the index of the reduced theory has
W (Es) symmetry. After this reduction in the dual theories they realized additional
SU(2) global symmetries, the appearance of which was unclear to the authors. In this

work we give the explanation of this extended symmetry by coupling of original Ny = 3
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4 Extended global symmetries for supersymmetric gauge theories

theory to free 5d hypermultiplets'. This coupling bring us to Eg global symmetry. Since
we have Ejg global symmetry group, in different phases it produces us additional SU(2)
or U(1) groups in dualities found in [26].

At the same time this Eg symmetry can be obtained by restricting two parameters in
combined 4d/5d index considered by Dimofte and Gaiotto [119].

4.1 Multiple duality for SP(2) gauge group

In this section we consider multiple duality phenomenon for 4d N' = 1 theory with
SP(2) gauge group® with Np = 4 flavors. The duality was established in [26] and
interpreted in [120]. It was shown that these dual theories are associated with the orbit
of W(E;)-Weyl symmetry group. The total number of dualities is 72 = 1+35+ 35+ 1.

One can classify them in four different groups in the following way [26].

The electric theory has one chiral scalar multiplet belonging to the fundamental repre-
sentations (denoted as f) of SP(2) and SU(8), and the vector multiplet in the adjoint
representation (denoted as adj) of the gauge group. The field content with global

charges is given in Table 1.

SP2) | SU®) [ U()x

Q| f f
V| adj 1

Table 1. Matter content of the electric theory with the R charge assignment.

DO [ [

The superconformal index of the electric theory is

Is = (p;p)oo(q;Q)oo/HleF((pQ)l/”‘yizil;p,Q) dz (4.1)
b 2 T I'(z*%p, q) 2miz '

Note that we use the subscript F for the flavor and the subscript f for the number of quarks.

2This is a special case of a theory with SP(N.) gauge group and N; flavors of matter in the
fundamental representation considered in [34]. Such theory is qualitatively similar to SU(N,)
gauge theories with matter in the fundamental representation considered in Chapter 2. In case of
N. = 2 one can consider the theory as SU(2) gauge theory since SP(2) ~ SU(2).
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4.1 Multiple duality for SP(2) gauge group

The fugacities of SU(8) flavor group y; obey the following balancing condition

I:Iyi =1. (4.2)

It is clear that the numerator comes from the eight chirals and eight anti—chirals, while

the rest comes from the SU(2) gauge multiplet and the Haar measure.

The first type of dual magnetic theory is the theory which was found by Csaki et al.
in [35]. There are 35 dual theories of this type and all of them have SU(4), x SU(4), X
U(1)p global symmetry. The field content contains two scalar chiral multiplets in the
fundamental representation of the SP(2) gauge group, a gauge field in the adjoint
representation of the SP(2) gauge group, and two singlets in the antisymmetric tensor
representations of the corresponding SU(4) flavor symmetry group. The field content
of the theory is summarized in Table 2.

SP2) | sU@4) | sUu@) [ U)s | U
q| f 1 —1 i
il J | 1 !
M| 1 Ta 1 2 :
M| 1 1 Ty | -2 1
V| adj 1 1 0 !

Table 2. Matter content of the first dual theory.

The superconformal index for these dual theories has the following form

;7)o@ q)oo 1 .

Iy = (2( II T(wa)z2vyisp.a) ] T(pa)zviysip, q)
1<i<j<4 5<i<j<8
1 1

X/ [T D((pg) 1o 2y:z s p, @) T T((pg) T 0%yizt s pog) dz

T ['(2%2%;p,q) 2miz

(4.3)
where v is a fugacity of U(1)p

v = YY1Y293Y1, v = YYsUsyrls - (4.4)

The second type is the original Seiberg dual theory [32] with SU(2) gauge group
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4 Extended global symmetries for supersymmetric gauge theories

and SU(4) x SU(4) x U(1)p x U(1)g flavor group, one singlet in the fundamental
representation of SU(4) and all other matter content is the same as the theory above.
The field content of the model is summarized in Table 3.

SP(2) | SUM4) | SU4) | U)g | U()g
q | f f 1 1 i
q 1 f —1 :
M 1 f f 0 :
V| adj 1 1 0 !

Table 3. Matter content of the second dual theory.

The superconformal index is

Iy = W l:[ l:[ T((pq) 2 yiys 1, ) (4.5)

x / [T T((pg) vy 24 p, ) TIEs T((pg) o2y 24 p,q) dz
T ['(2%2;p, q) oz

The third type of magnetic dual theory was considered by Intriligator and Pouliot in
[34]. This theory has SU(8) flavor symmetry group and SU(2) gauge group. The
field content contains a chiral scalar multiplet in the fundamental representation of
the gauge group and antisymmetric representation of the flavor symmetry group, a
gauge field in the adjoint representation of the gauge group and one singlet in the
antisymmetric tensor representation of flavor group. The field content of the model is

summarized in Table 4.

SP(2) | SU) | U(1)r
q f f i
M| o1 Ty 1
vV adj 1 %

Table 4. Matter content of the third dual theory.
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4.2 Enhanced flavor symmetry

The superconformal index of this type is

: ; ; S T((pg)iy; 2% p,q) dz
1) = PG 0)eo T((pa) 2y 0, 4 /Hl:l Lo (46
M 2 1§i1;[j§8 ((pa) J ) T ['(z*2;p,q) 2miz (4.6)

More detailed explanations about these dual theories can be found in the original paper
[26] and also in [120].

The equality of all four indices follows from the following identity [92]

[<t17---7t8;p7 Q) - H F(tjtkapa Q)F(tj+4tk+4;pa Q) [(317"-738;]77 q)v (47)
1<j<k<4
where the complex variables s;, |s;| < 1, are given in terms of ¢; (j =1,...,8),
sj=p 'y, j=1,2,3,4, s;=pt;, j=D5,6,7,8, (4.8)

P \/t1t2t3t4 _ pq
Pq t5telrls

4.2 Enhanced flavor symmetry

All 72 dual theories are associated with the orbit of the W (E7) Weyl group. Using
this fact Spiridonov and Vartanov speculated in [26], that the superconformal index
may have global symmetry group E7. In fact, Dimofte and Gaiotto explicitly showed
in [119] that the theories in question, when coupled to 5d hypermultiplet, have an
enhanced symmetry group E7. In order to show this, they added the 5d hypermultiplet

contributions with a specific boundary condition to the index

1 1 (P P)oo (43 @)oo
1<i<j<8 (\/p_CI(SiSj)_l;pa Q)OO 2
+

dz T, D(¢/pgsiz=;p, q)
2miz [(2*2p,q) '

Lya/sd, Np=4 =

(4.9)

where the term .

1§i1;[j§8 (\/W(Sisj)_1§p7 Q)OO

(4.10)
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4 Extended global symmetries for supersymmetric gauge theories

corresponds to a 5d hypermultiplet [121]. By setting all fugacities to 1 and redefining
p = t3y, ¢ = t3y~! one can easily read off the F; symmetry of the index by expanding

the last expression in powers of ¢ and y
Ligjsa, Np—s = 1 + 56t° + 1463t° + 3002t°y + ... , (4.11)

where the coefficients 56 and 1463 are the dimensions of the irreducible representations
of F; with highest weight [0, 0, 0,0, 0,0, 1] and [0, 0,0, 0,0, 0, 2], respectively and 3002 =
15390,0,0,0,0,1,0] + 14630,0,0,0,0,0,21°-

Remarkably, the new index is invariant under the transformation of the fugacities to

their duals and the expression (4.7) becomes [119]

I(tla"'ytS;p’Q):[(Sla"wSS;p?q)‘ (412)

If we set syss = /pg in (4.9) one gets the reduction® of the index from Np = 4
to Ngp = 3. When we apply this reduction for the integrals I](\}) and Ij(\ﬁ), setting
5455 = /pq and s7sg = /pq, respectively, we end up with the flavor group SU(3); x
SU(3), xU (1) g xU(1)qqa for I\ and the flavor group SU(4) x SU(2)x SU(2)aaax U (1) 5
for I](\i). The observation that one gets additional symmetries such as SU(2)q4q4 and
U(1)aaa in the reduced theories, suggests that the reduced theories may also have larger
symmetry than SU(6), in fact Eg flavor symmetry. Indeed it is possible to show this by
adding the 5d hypermultiplet contribution to the index and apply reduction procedure.

The new reduced index is

1
Lygs5a, Np=3 = H 2 1 1
1<i<j<6 ((]9(1)35i S §P7Q>Ooz’=1
X (p,p)oo(q,q)oo% dz I, T({/pgsiz™;p, q)
2 2 ‘

4.13
iz I'(2%2;p, q) (4.13)

~1/125. . The balancing condition

-1

Note that we have redefined the fugacities s; — (pq)
is [I_, s; = 1. Now by setting all fugacities to 1 and redefining p = 3y and ¢ = %y

3To find dimensions of irreducible representations of Lie algebras one can use
http://www-math.univ-poitiers.fr/~maavl/LiE/form.html

4One needs to use the reflection identity for an elliptic Gamma function I'(z;p, ¢)T'(pgz~1;p,q) = 1
(see Appendix for details).
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4.3 Reduction of 4d superconformal index to a 3d partition function

one can read off the Eg symmetry of the index
Ligssa, np—s = 1+ 277 + 378" + 3653t° + 27t°(y ' +y) + . .. (4.14)

The coefficient 27 is the dimension of the irreducible representation of Fg with highest
weight [1,0,0,0,0,0] and

378 = 351(0,0,1,0,0,0] + 27[1,0,0,0,0,0] (4.15)
3653 = 3003[3,070707070} + 650[17070707071]. (416)

4.3 Reduction of 4d superconformal index to a 3d

partition function

There is a reduction scheme [112, 113, 114] (also see [115, 104, 122, 55, 1]) of the
superconformal index for a 4d supersymmetric theory to the partition function for a 3d
theory considered in Chapter 3. Let us do this procedure for the index (4.13), following

[112]. First we reparameterize

__2mivwy __2mivwe __2mivu 2mivay 2mivary

p=e y g=¢ 2=, sp=e , w=e : (4.17)

and use the asymptotic formula for the elliptic gamma functions. Recall that in the

limit v — 0 the elliptic gamma function reduce to hyperbolic gamma function

F(627rivz; 627rivw17 e27rivw2) vio e—wi(?z—(wl+w2))/24vw1w2,y(2) (Z, Wi, CUQ) . (418)
In the limit v — 0 we also have
1
(210 Qoo — (4.19)

v=0 Iy (u; wy, wo) 7

where I'y(u; wy, we) is the Barnes double Gamma function (see Appendix for its defini-

tion and for useful properties).

To go further let us apply the limit v — 0 to the index (4.13) and use the asymp-

totic formula above. We have also used the reflection identity and some asymptotic
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4 Extended global symmetries for supersymmetric gauge theories

formulas for (% ( ) function (see Appendix). Here and below we will use the short-
hand notations v (a, b; wy, wy) = 7 (a;wy, wa) ¥ (b;wi, ws), and ¥ (a £ u;wy,wy) =

Y@ (a + u;wy, we) P (a — u; wi,wy). Finally we arrive at
Lujsa = emrren/izenp, (4.20)

where

Iyysa = H PQ(QA + wa ity )HFQ( w1 +w2 (aiim))

1<i<j<6 2
U T oy (a21)
1 /w1ws YO (£2u; wy, ws) . '
If one considers
a5 = 51 + (IS, g = 52 - CLS, (422)

and applies the additional limit S — oo, then the final answer gives an expression for
the partition function of 3d N'=2 SYM theory [14, 12, 13]

where

- w1 + wa

3d/4d — P2(7 — & — &)

w1 +w w +w
X H FQ( ! 5 2 CYZ—f—Oz] )HFQ( ! 2 (Oéi:ta7))
1<i<j<4
14/w1ws 7(2)(i2U;W1,W2) . .

and for w; = —

F:<_€1 5Z7T§1_52_”T§2>(w+i)+(m_4)<i+w)2_m

3 3
5 15
~Yinet 252 + (2 _ Z;) (02 + 02+ a3 + a2 +5¢2 — 2,6+ 8a) . (4.25)

From the physical point of view this reduction corresponds to adding mass terms to
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4.4 Reduction to Ny = 4

two quark supermultiplets and then integrating them out by sending their masses to
infinity. As one can see, this theory has 4 quarks, one chiral field in the antisymmetric

representation of the gauge group, and contributions from a 5d hypermultiplet.

4.4 Reduction to Ny =4

In [119] it was shown that three-dimensional N = 2 SQCD with Ny = 6 has SO(12)
symmetry. The authors obtained the superconformal index of the 3d theory by reduc-
tion from 4d N = 1 theory with Ny = 4 inspired by [123]. We will now demonstrate
that the superconformal index for the 3d N' = 2 SQCD with 4 quarks has SO(10)

symmetry group.

The expression for the superconformal index of the electric 3d N' = 2 supersymmetric
theory with an arbitrary number of flavors N; and fugacities s;, ¢;, (i = 1,..., Ny) is
[29]

Ny

Ly, = ] 1 g Nrlk/2

1 —1 _1_
ap=1 (qzta Sp 761) keZ
o0

N _ 1
. d= ﬁ (@ /2g M2 e ) (g 2gM 2R 2611 gy (4.36)
2miz (@ 12q /241K 28271 ) o (a2 24K 28,25 q) o :

with the balancing conditions ]_[(]lvzf1 to, = 1 and Hi\zl sq = 1. It is clear that by taking

a=gq: for N ¢ =4 (8 quarks), we obtain the following expression

4
1
I3q = H Z q|k|

1o 1.1,
a,b=1 (QQta Sp 7Q) keZ
o0

e ﬂ (¢4 g 22 2 q) e (g4 2HFIR 67270 ) oo (427)
27z ok (o I ) (3 s g
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4 Extended global symmetries for supersymmetric gauge theories

One can rewrite this index in the following form [119]

1 H 1
(q%f1f2f3f4f5f6§Q) 1<z<j<6( 2 f 1f )

X = Z ?{ _ M2y H A 1 — gt 3lFH (g fizth) L

(2 T+l k 1
2 ez 27”Z i=1 1— g +alga f4

[3d,Nf=6 =

. (4.28)

where f; = t;/\/titatzsy and fiy3 = s;\/titatzsy (i = 1,2,3). The reduction of super-
conformal indices in 3d is similar to the 4d case. For the result of this section, we set
fsfe = q% which reduces the index of the theory with 6 quarks to the index of the
theory with 4 quarks

("% @)oo 1 . 1
(Qf1f2f3f4,) 1<z1;[]<4< 2 fi 1f ,Q> zHl(qéfi_lq}Wﬂ;Q)

Y e e VS
k| £2 el =g T
- )
Z%2mz —eF >Hfl 1

keZ i=1 —q

L34, N ;=4

o

r+§|k|+ifizi1 ’ (4.29)

where the term (qé; ¢)s 18 @ monopole contribution.

Note that we have chosen the representation (4.28) of the index because it is closely
related to the three-dimensional A/ = 2 partition function (4.24). This procedure can
be repeated for the initial expression of the superconformal index (4.28) in a similar
way. Now one can read off the SO(10)-invariant operator content of the theory by

expanding the last expression in powers of ¢ and setting all fugacities to 1
I =1+ 16¢"3 4 136¢*® + 816¢ + 3892¢*% + . .. (4.30)
The coefficients are related to the dimensions of irreducible representations of SO(10)

16 is the dimension of the spinor representation of SO(10) (
136 = 54(2,0,0,0,0] T 45(0,1,0,0,0 + 16(0,0,0,1,00 T 10[1,0,0,0,0] + 1[0,0,0,0,0] (4.32
816 = 320(1,1,0,0,0 + 210(0,0,0,1,1] + 144[1,0,0,1,0) + 126(0,0,0,2,00 + 16(0,0,0,1,0] (
3892 = 2772/0,0,0,4,0) T 945(1,0,1,0,00 + 120(0,0,1,0,0] + 94(2,0,0,0,0] + 1[0,0,0,0,0]- (
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4.5 Remarks, conclusions and perspective work

4.5 Remarks, conclusions and perspective work

e 4d N = 1 Super-Yang-Mills theory with SU(2) gauge group and 4 flavors has
many duals whose superconformal indices are equal due to the Weyl group sym-
metry W(E7) [26]. This phenomenon was interpreted in [119] as a manifestation

of a boundary 5d/4d model with the enhanced F; global symmetry group.

e We studied the dualities of four-dimensional SU(2) supersymmetric QCD with
three flavors and three-dimesional supersymmetric QCD with four quarks. Fol-
lowing the ideas of [26, 119] we found that a certain marginal deformation of the
theory with three quark flavors can have the full Fg flavor symmetry if coupled

to a set of free Hd hypermultiplets.

e For the three—dimensional supersymmetric QCD with four quarks we provide the

evidence of SO(10) global symmetry.

e We also showed the connection between four-dimensional superconformal in-
dex and three-dimensional sphere partition function of the corresponding three—
dimensional theory by performing dimensional reduction of the four—dimensional

theory.

e It would be interesting to extend the global symmetry enhancement to full su-
perconformal indices of SP(2N) and SU(N) gauge group theories with 4 flavors

and some additional matter fields.

e Following these ideas one can also study the Weyl group symmetry transforma-
tions for elliptic hypergeometric integrals via global symmetry enhancement of
a corresponding supersymmetric theory. In particular, it would be interesting
to find a 4d N' = 1 theory with enhanced flavor symmetry Eg and an elliptic

hypergeometric integral with W (Eg) symmetry transformation.
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5 Basic hypergeometry of 3d dualities

In this section we study superconformal indices of three-dimensional N/ = 2 super-
symmetric dualities [38, 124, 125, 126]. As we mentioned before the superconformal
index technique is one of the main tools for establishing and checking supersymmetric

dualities.

Here we consider only confining theories [127], i.e. the theories whose infrared limit can
be described in terms of gauge invariant composites (mesons and baryons) and without
dual quarks. There are definitely more confining supersymmetric theories in three
dimensions (for recent discussions see [101, 128]), we restrict our attention to samples
of theories with U(1) (supersymmetric electrodynamics) and SU(2) (supersymmetric
quantum chromodynamics) gauge symmetry. Note that similar works for NV = 1
supersymmetric gauge theories in four-dimensions were intensively studied in [25, 27,
23).

In our examples we give only the necessary input to compute the superconformal index
and do not discuss other aspects of dual theories. As for many other dualities in physics,
systematic proofs of supersymmetric dualities are absent and the superconformal index
computations do not constitute a proof of the duality. There are other important
arguments for three-dimensional supersymmetric dualities, i.e. study of superpotentials
for interactions among chiral multiplets [104], brane construction (see e.g, [126, 129]),

contact terms (see e.g., [130, 131]), etc.

The 't Hooft anomaly matching conditions [132] which played a central role in checking
Seiberg dualities [32] for A' = 1 supersymmetric gauge theories become useless in three
dimensions, since unlike four-dimensional gauge theories, in three dimensions there are

no chiral anomalies. In three dimensions it is possible to have a classical Chern-Simons
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5 Basic hypergeometry of 3d dualities

term which breaks parity and one can use the matching condition [36] for the parity
anomaly [133, 134], however conditions for discrete anomalies are weaker than those

for continuous anomalies.

It is worth to mention that there are other powerful methods very much in the spirit
of the superconformal index such as study of partition functions on sphere [12, 135],
squashed sphere [13, 15, 112, 1, 136], lens space [137, 138, 55, 139] and others.

In what follows, we omit the R—charges for chiral multiplets, since the superconformal
indices of dual theories match for arbitrary assignment of the R-charge [30]. The
correct R—charges for matter fields in the infrared fixed points can be obtained by the

so-called Z—extremization procedure [14].

The matching of superconformal indices for dual pairs were studied mainly by expand-
ing in terms of fugacities [30, 140, 141, 142] and only in a few works [29, 31, 3, 5]

authors give rigorous proofs of the index identities.

5.1 3d dualities via superconformal index technique

Example 1.

Let us consider a theory A and its low-energy description theory B which can be

described purely in terms of composite gauge singlets.

e Theory A: Supersymmetric Quantum Chromodynamics with SU(2) gauge group
and SU(6) flavor group, chiral multiplets in the fundamental representation of
the gauge group and the flavor group, the vector multiplet in the adjoint rep-
resentation of the gauge group. Note that in case of SU(2) gauge theories the
fundamental and antifundamental representations are equivalent, therefore we
have SU(6) flavor group rather than SU(3) x SU(3) x U(1).

e Theory B: no gauge symmetry, fifteen chiral multiplets in the totally antisym-

metric tensor representation of the flavor group.

This duality was considered in [123] where the authors presented the sphere partition

functions for dual theories. It is analogues to the four-dimensional duality for similar
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5.1 3d dualities via superconformal index technique

theories [25] and can be obtained by dimensional reduction.

Using the group-theoretical data it is straightforward to compute explicitly the gen-
eralized superconformal indices, and due to the supersymmetric duality we find the

following basic hypergeometric integral identity

)3 7{ g1l (1 = ghml2) (1 — gl o=2) ()3 i (g = T (- g
oper’ 47rzz

Inj+ml Inj—mi
_ 1+ 1 14— z.
\n +m| |n m| (q 2 7.2 q 2 ;j, q)oo

6
H S ’
|nj+m\ |nJ m|

(@7 a2, 7 2@

Ingtnsl | | ( L g )oo

1 n;+n; n;+n 2 a, a

R | T T (1)
1<j<k<6 (¢ = ajar; @)

with the balancing conditions

6

6

[[ai=q and > n;=0. (5.2)
i=1 i=1

This identity describes confinement without breaking of the chiral symmetry [127].

The left side of the expression (5.1) contains the contributions of twelve chirals and a

vector multiplet, while the right hand side includes the contribution of fifteen chirals.

From the fact that all the physical degrees of freedom of Theory B are gauge invariant

there is no any integration on the right hand side.

The balancing conditions (5.2) are imposed by the effective superpotential and the the-
ories described above are dual only in the presence of certain superpotentials. We refer
the interested reader to [104] for more details related to the study of superpotentials

for three-dimensional dualities.

For visual clarity, in (5.1) we used the absolute values of monopole charges as in
the definition of the superconformal index. By eliminating the absolute values of the
monopole charges one can rewrite the expression (5.1) as the integral identity presented

in [143, 5] and formulate the following theorem:

Theorem. Let a; be generic numbers and N; integers satisfying a;---as = ¢ and

61



5 Basic hypergeometry of 3d dualities

0. Then

Ni+ -+ Ng

§ I s ) (0
- S (qNitm 2z, gNiT a5 ) 2) o qmzm 2miz

- N ) ) . .
H?'=1 q( 2])aj-v'7 1< <k<6 (a;arg™ ) o
In order to get (5.1) from (5.3) one may use the following formula [57]
0o 1 _ its|m|+1l, —1 L, ) 00 1 _ gi—smtl -1
l—gq T (—gh)sOntim SOt I l—¢q z (5.4)

1 -1
im0 1—gtamlz i—o 1—4q'"2™z

One also needs to use balancing conditions (5.2) when deals with such expression as

I (ajan)™ ™™ =ai™ (a1az. .. aﬁ)%”1 cag™(aqay . .. ag)%”6 (5.5)
1< <k<6
=11 a?nj (aras . .. ag)> 2n (5.6)
j=1
2n;
j=1

The most intriguing physical interpretation of the formula (5.1) stems from the role it
plays as a star-triangle relation [54, 4] for a certain two-dimensional statistical model.
We will discuss this subject in Chapter 6.

The integral identity (5.1) can be obtained by reduction [144, 55, 54] from the similar
indentity for four-dimenional lens indices. In [54] such reduction was made in the

context of integrable statistical models.

The issue of the ¢ — 1 limit of (5.1) was discussed in [54]. This limit also has an
interpretation in terms of exactly solvable statistical models [145]. From the viewpoint
of supersymmetric dualities such reduction [16] gives the equality of the sphere partition

functions of dual two-dimensional NV = (2, 2) supersymmetric gauge theories.
Example 2.

Our next example is again a supersymmetric quantum chromodynamics with a weakly

coupled magnetic dual.
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5.1 3d dualities via superconformal index technique

e Theory A: Supersymmetric Quantum Chromodynamics with SU(2) gauge group
and four flavors, chiral multiplets in the fundamental representation of the gauge
group and the flavor group, the vector multiplet in the adjoint representation of

the gauge group.

e Theory B: no gauge degrees of freedom, with six mesons and a singlet chiral
field.

According to the supersymmetric duality we have the following integral identity for

the generalized superconfromal indices

) ?{ & (1 gM22)(1 — g™z2) (—g)3 Zima(H3=+ 5 4m)
ez ) 2miz
. N 4 njtm| +m| In;—m| (q1+ In; +m\ 1 q1+ |nj;MI ’e q)
_ 4 ; "7, 74’_” CL'Z’ R o0
x 272 H ’ e T o ’
=1 (q 2 ajz,q 2 ?]; Q)oo
+n i n; 4 n;|— 4 n;
= (_q)%21§j<kﬁ4 | ]; £ 72?:1 n’iq_ | lel | (a1a2a3a4) IZ’ZI |2 Zl:l
DM Inj+np|
(q oh a1a2a3a4)oo _ InitnlH(nitng) (QH E - aj_lalzl; Q)oo
it T
(q” i=1 /(a1a2a3a4))oo 1<j<k<4 (q 2 ajak39)oo

(5.8)

The ordinary index of the theory A is considered in Chapter 4 in the context of global

symmetry enhancement [2, 119].

Note that one can deform the dual theories from Example 1 by adding mass terms
for some of the quarks. After integrating out one flavor (massive modes) the theory
with four flavors confines with chiral symmetry breaking [4, 146] if we keep a certain
superpotential for the theory giving the balancing conditions similar to (5.2). Here the

theory A has no superpotential and therefore we obtain the duality (5.8).

There is more general integral identity presented in [143]:
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5 Basic hypergeometry of 3d dualities

Theorem. For a; and b; generic,

§ L ) ()
G (q™/2bjz,q7™/?b; /%) 0 gmzim 271z
_ 2(b1b2b3b4)00 H (Q/a/]ak‘)oo (5 9)

(q/a1a2a304)00 1<j<k<4 (b;br)

m=—0oQ

One can obtain the integral identity (??) from (5.9) by choosing the fugacities b; = ¢™a;
and using the formula (5.4).

Example 3

In contrast to four-dimensions, there exist supersymmetric dualities for abelian gauge
theories in three dimensions. For details of these dualities see e.g., [147, 38]. Below we

consider two examples of such dualities.

e Theory A: d = 3 N = 2 supersymmetric electrodynamics with U(1) gauge
symmetry and six chiral multiplets, half of them transforming in the fundamental
representation of the gauge group and another half transforming in the anti-

fundamental representation.

e Theory B: no gauge degrees of freedom, nine gauge invariant “mesons” trans-

forming in the fundamental representation of the flavor group.

The supersymmetric duality leads to the following identity for the generalized super-

conformal indices

2 fzdz' S N e
Tz

meZ
3 et (@M (002) 7 @)oo (01T 2/050)s
X a; b; [mytm] [ng—m]
1 (¢ 2 azi)o ¢ 2 (bi/7¢)w
m+n;]
3 lmi+n;l 3 Imitnjl (glt e 1b -1 00
:(_Q>%Zi’j:1 2 H((Iibj)i T e mi+nj<a i) +4) : (5.10)
i,j=1 (q 2 aibjSQ)oo

where the fugacities a; and b; stand for the flavor symmetry SU(3) x SU(3), z is the
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5.1 3d dualities via superconformal index technique

fugacity for the U(1) gauge group and the balancing conditions are

3

3 3 3
Hai:Hbi:q% and Zni:Zmi:O. (5.11)
i=1 i=1 i=1 i=1
In [3] we showed that the ordinary superconformal indices, obtained by setting m; =
n; =0 for i = 1,...,3, match and in [70] we presented the identity (5.27) without a

proof.

By eliminating the absolute values of the monopole charges one can rewrite the ex-
pression (5.1) as the integral identity presented in [143] and formulate the following

theorem

Theorem. Let a;, b; be generic numbers and M;, N; integers satisfying ajasas =
bibobs = ¢'/% and My + My + Mz = Ny + Ny + N3 = 0. Then

i j'{ﬁ (¢ fa;z, ¢ ™22 /bj)oe (—1)™ dz
j=1 (qMi+ml2q;z, qNi=m/2b; [ 2) 0 2%™ 2miz

B H?:l q(]\/zlj>+(1\;j)aj.v[jb;.vj g k=1 (ajbquj+Nk)oo

The identity (5.10) takes the form of (5.12) by using the formula (5.4).
Example 4.

Let us consider another example of abelian duality, namely the well-known XYZ/SQED
mirror symmetry [126, 37, 36]

e Theory A: N = 2 supersymmetric quantum electrodynamics, with a single

U(1) vector multiplet and two chiral multiplets charged oppositely under the
gauge group.

e Theory B: free Wess—Zumino theory with three chiral multiplets. This theory
often is called the XYZ model in the literature.

In this example we wish to turn on contribution to the generalized superconformal

index of the topological symmetry U(1); which is not explicit in the Lagrangian. This
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5 Basic hypergeometry of 3d dualities

hidden symmetry is generated by the current
Jt = e"PE,, . (5.13)

The current J* is topologically conserved due to the Bianchi identity.

In this case we have a special duality called mirror symmetry which exchanges the
Coulomb branch of a theory with the Higgs branch of its mirror dual and vice versa.

The duality implies the following mathematical identity [31]

ls¥ml | 3
$1,,-1 leFml 2

Z% dz ans(qizilafl)w (Z o ?Sim‘ 7Q)oo

' 1
sz 2miz (zHlag 2 T1;q)0

41 ImEnly 3 -2 1
awrlg 2 i) (a qlmHQaQ)oo

S awtl) T

)—2\m\ (

(8% -
(alw*g ™ g)n (024135 )

(5.14)

where the fugacity a and the monopole charge m denote the parameters for the axial
U(1)a symmetry, w and n denote the parameters for the topological U(1); symmetry
and the discrete parameter s stands for the magnetic charge corresponding to the U(1)
gauge group. Here we explicitly write the R-charges of chiral multiplets. Due to the
permutation symmetry of the superpotential W = @Sq for the theory B, where ¢, q, S
are three chiral multiplets of the theory, one can fix the R-charges. The identity (5.14)

was proven only for the case m = 0 in [31].

The similar identity for ordinary superconformal indices, obtained by setting n = m =
0 was presented in [30, 29], proven in [29] and interpreted as an integral pentagon

relation in [3].

One can also consider this duality as a mirror symmetry between N’ = 4 supersymmet-
ric electrodynamics with a single flavor and its dual theory with a free hypermultiplet.
Then the equality (5.14) takes the following form

1 _q IsFm| 3
a)2|m| (a2q|m|+2 ; Q)oo dz peg s(qizila—l)‘sizml (Zila/ 1q 2 ta ; Q)oo
T 1 y stm
(04_2q|m|+§§Q)oo sz 2miz (zﬂozq‘ > l*i;q)oo

bty P (aw*'q" "+ g)uc

[mtn|

1
(a2 1 g)s

(5.15)
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5.2 Integral pentagon identities

5.2 Integral pentagon identities

Since a three-dimensional superconformal index can be expressed in terms of basic hy-
pergeometric integrals [148, 65], by studying supersymmetric dualities one can get new
identities for this type of special functions [5, 3, 70, 29, 31]. In this section we consider
a special type of such identities, namely five term relations or the so-called pentagon
identities which can be interpreted as the 2-3 Pachner move [149, 150] for triangulated
3-manifolds. The pentagon relations are interesting from different aspects, see for in-
stance [151, 3, 152, 85, 153, 154, 155, 156, 157, 158]. Here we present some examples

of integral pentagon relations relevant to the three-dimensional superconformal index.

5.2.1 Pentagon identity for hyperbolic hypergeometric functions

First we discuss some aspects of the paper [85] which are useful for the considerations

in the next subsections. Let us consider the beta integral [159, 92]

(DiD)oo(@3 D)oo [ TI_y Dtizs p, )T (tiz " s p,q) dz .
2. 3 —= ][ Tit;p.9), (516)
2 T (2% p,q)T'(27%p,q) 2miz i
where t;, 7 =1,...,6 are complex parameters with the balancing condition H?:1 t; =

pq. This is the integral identity we discussed in Chapter 4. From the physical point of
view the integral on the left hand side of the expression (6.1) is the index of the 4d N =
1 electric theory with SU(2) gauge group and Np = 3 flavors, chiral scalar multiplets
in the fundamental representation of the flavor group, while the expression on the right
side is the index for the dual magnetic theory with chirals in the antisymmetric tensor

representation of the flavor group.

Using the reduction procedure discussed in Chapter 3 (for more details, see [116]), it is
straightforward to derive the integral identity for hyperbolic hypergeometric fucntions
[85, 49|

100 du
@ (q: — - @) (p. . _ @ (g 4+ b.- 517
/_iOOZHl7 (@i —u; w1, wa)y (1+U7W17W2)i oo w“lv (@; +bj;wi,wa), ( )

with the balancing condition 3%, (a; + b;) = w; + ws.
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5 Basic hypergeometry of 3d dualities

Let us introduce the following function

v (@ w1, w2 )Y@ (y; wi, wo)

B —
(z,y) Y (z + y; wi, wo)

(5.18)

Then from the expression (5.17) one can easily see that the function B(z,y) satisfies

the pentagon identity [85]

ico 3 d
/ T Bla: — u, b + 1) — e = Blay + by, as + by)B(ay + by, az + b)), (5.19)

—ioco ;1 1. /W1W2

5.2.2 Pentagon identities for basic hypergeometric functions

Our main interest is the five-term relation for the superconformal index. Such relations
are interesting from the following point of view. There is a recently proposed relation
called 3d — 3d correspondence [57, 62] (see also [160, 161, 162, 163]) in similar spirit of
the AGT correspondence [164]. This correspondence translates the ideal triangulation
of the 3-manifold into mirror symmetry for three-dimensional supersymmetric theories.
Independence of the corresponding 3-manifold invariant on the choice of triangulation
corresponds to the equality of superconformal indices of mirror dual theories [57]. In

this context the identity (5.29) encodes a 3-2 Pachner move for 3-manifolds.
One can express the superconformal index via the so-called tetrahedron index [57]
0 1 _ qi—%m-i—l —1

Iym,z] = ] ———, with |¢[<landme Z. (5.20)
i 1—q72"2

In this subsection we will mainly express the index in terms of this function.
Example 1.

Let us consider the d = 3 N' = 2 supersymmetric quantum electrodynamics with U(1)

gauge group and one flavor. The superconformal index of the theory is [30, 29, 3]

> fmz R ATEAE F AL (5.21)

meZ

where the integration is over the unit circle with positive orientation. For simplicity
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5.2 Integral pentagon identities

we switched off! the topological symmetry U(1) .

The dual theory is the free Wess-Zumino theory? [38, 126, 36] with three chiral mul-
tiplets ¢, G, S interacting through the superpotential®> W = §Sq. The index of this

theory has a simpler form, since we do not need to integrate over the gauge group,
3
L = (Z,00;4])" . (5.22)

As we have already discussed in this Chapter, these two theories are dual under the
mirror symmetry, i.e. under exchange of the Higgs and the Coulomb branches*. The

mirror duality leads to the following integral pentagon identity [3, 70]

Z 7{2mz " Iy [m; q/ I]I[ m; ql/ﬁ | = (Iq[O;q1/3])3 ) (5.23)

meZ

This is the first example of a pentagon identity for the tetrahedron index. The math-
ematical proof of the identity can be found in [29)].

The tetrahedron index can be written in the following form:

=> I(m,e)z* (5.24)

where

Z(m,e) = i (5.25)

=3 (le[—e

) ( )TH-e

This index was introduced in [57]. This function is also interesting from a mathematical

( 1) q%n(n-‘rl) (n+ e)ym
) (q

m\»—t

point of view, see e.g. [165, 166]. The index Z(m,e) obeys the following pentagon

1See, for instance, [29, 31]. We consider the influence of the topological U(1); symmetry to the
index in the next chapter, where we define the so-called generalized superconformal index.

2In the literature this theory sometimes is called the XYZ model.

3The permutation symmetry of the superpotential fixes the R-charges, but one can write the index
for more general R-charge like in [30].

4In three-dimenisonal supersymmetric theories the Coulomb and the Higgs branch are both hyper-
Kahler manifolds.
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5 Basic hypergeometry of 3d dualities

identity [57]

I(m1 — €9, el)I(mg — €1, 62)

= Z q€3I(m1, e+ 63)I(m2, € + 63)I<m1 + Mo, 63). (526)
€3

A proof of the identity (5.26) is given in the Appendix of [165]. This pentagon relation
is a counterpart of the integral pentagon identity (5.23). In order to distinguish between
this type of relation and the identity of the form (5.23) we use the terminology “the

integral pentagon identity” for the latter one.

The analogue of the pentagon identity (5.23) in terms of the generalized superconformal

index is the following pentagon identity

Z / 2 m |s— m\+\s+m| Z2n swm q4 I [S + m;qiaz—l]zq[s o m,OéZqi]
seZ 7”2
(n—7|7"7"|+‘m+nl) —-m n+2m ln -1, -1 o1 L 9
= (-1) P w gLy [m; q4a w |y [—m; gt o Wl [2m; g2 o,

where we switched on the background gauge field coupled to the topological U, (1)
global symmetry. Here ov and m denote the parameters for the axial U(1)4 symmetry,
w and n denote the parameters for the topological U;(1) symmetry and the discrete

parameter s stands for magnetic charge.
Example 2

For another example, we consider the duality mentioned in Example 3 of previous
section. Namely, the electric theory is the d = 3 N/ = 2 superconformal field theory
with U(1) gauge symmetry and six chiral multiplets, half of them transforming in the
fundamental representation of the gauge group and another half transforming in the
anti-fundamental representation. Its mirror dual is a theory with nine chirals and
without gauge degrees of freedom (the gauge symmetry is completely broken). The

supersymmetric duality leads to the following identity

3 3
Z %27?22 Z>73mi:1_[12 —m,qe &, ] Zy[m, q miz ] = z’,jl—:[1zq[07q3§mj] , (5.27)

meZ

where the fugacities & and 7; stand for the flavor symmetry SU(3) x SU(3) and the
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5.2 Integral pentagon identities

balancing condition is Hf‘zl & = H?:l 1n; = 1. Note that we dropped the topological
symmetry U(1);. The identity (5.27) was introduced in [3]|, to where we refer the

reader for the details and the mathematical proof of it.

Following [3] we introduce a new function

Z,m,a] Z,[—m,b]

B[m’ a7 b] = Iq[o’ ab] )

(5.28)

and rewrite the equality (5.27) in terms of this function. The final result is a new

integral pentagon identity in terms of B[m;a,b] functions

3
Z f 27mz z>*3m 1:[1 B[m7 fiz’l, 7712] - B[Oa 517]27 53771} B[O, 527”]1, 53772] (529)

meZ

where we have redefined the flavor fugacities & — q Y% and n; — ¢ '/5n; and the

new balancing condition is [[}_, & = [T7_; m = q.

We can write the analogue of the pentagon identity (5.28) in terms of the generalized
superconformal index. We have already presented the integral identity for generalized

superconformal indices for this duality in previous section. The result is

Z % % ? 1(‘mi;'m|+|"i;m|)zfzf:1(‘mi;'m|,|”i;m|)
ez 27?22

y ﬁ _|mi;-m\b_|ni;m| (q1+lmi;m\ (aiz)_l; Q)oo (q1+\ni;m\z/bi;q)oo

a; i |mi+m| [nj—m|
i=1 (2 azig)e ¢ 7 (bi/%9)x
L <3 Imi+n;| 3 I+ <q1+\mi-20-nj| (a'b,)fl. C])
— (_q)52i,j:1 2 (aibj)_f e 1Y 2700 (5.30)
i,j=1 (7 aibj; @)oo

Following [3] we introduce a new function

Il Il Intm| o, _ m] [ntm|

B.la,n;b,m] = (—q) % T q 2 2 (ab) 2

1+ |n+m| )

(ab)‘ ;q)oo

and rewrite the equality (5.27) in terms of this function. We obtain the following

X (5.31)

[n] Im|

(cﬁa; 7)oo (q 2 b; (J) (q
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5 Basic hypergeometry of 3d dualities

integral pentagon identity in terms of B functions

dz 3 .
Z }{ HB[aiz,ni—f—m; bz~ ,m; —m]

ey 2MiZ

= Blaiby, n1 + ma; azby;ns + my| Blasby, ny + my; agbe, ng + ms) | (5.32)

with the balancing conditions (5.11).

5.3 Remarks, conclusions and perspective work

72

e Similarly to four-dimensional dualities, equality of the superconformal indices for

dual theories in three dimensions leads to new non-trivial integral identities [3,
29]. Here we presented novel integral identities for basic hypergeometric integrals.
More concretely, we studied the generalized superconformal index of s-confining
theories in three dimensions that has a form of basic hypergeometric integral.
This kind of result is crucially important for better understanding of the structure
of three-dimensional supersymmetric dualities. For the most part of identities,
the corresponding dualities are known in the literature but the checks of these
dualities using the superconformal index technique is new. The proof of the

integral identities will be presented in [5].

e We presented the so-called pentagon identities. Such identities are especially

interesting from the geometrical point of view. Geometrically, the interpreta-
tion of the pentagon relation is the 3 — 2 Pachner move, which relates different

decompositions of a polyhedron with five ideal vertices into ideal tetrahedra.

The results presented in this chapter rely on some physics computations. They
are meant to motivate the mathematical constructions to be developed later

[5, 167).



6 Integrability

In this chapter, we describe a connection between integrable statistical models and su-
persymmetric dualities. The investigation is restricted to two-dimensional spin models
from statistical physics side and to three-dimensional supersymmetric gauge theories

from other side of the correspondence. This correspondence leads to many new results.

Special functions [168] are key mathematical objects in the construction of new inte-
grable models of lattice statistical physics and quantum field theory, see e.g. [154, 169,
170, 171,172, 173, 174, 175, 176, 56, 58, 49, 54, 145, 177, 178, 179]. Quantum integrable
systems and related Yang-Baxter equations and quantum algebras [180, 181, 182, 183]
have been investigated for a long time in relation to plain hypergeometric functions,
their g-analogues and elliptic functions. Fairly recently the third class of transcen-
dental functions of hypergeometric type called elliptic hypergeometric functions has
been discovered [159, 92], which strongly extended the database of classical special

functions. The cornerstone of the latter functions is the following elliptic beta integral

Theorem (Spiridonov [159]). Let ti,..., %6, p,q € C with |t4],..., |ts], |p|, |¢| < 1 and
?thj = pq. Then
PiD)oo(€; @)oo [ Ty D(tiz%5p,q) dz
ir) 2( ) / pl (ﬂ. )2 —= 1l Tit;pa), (6.1)
T (Z Py Q> TZ  q<i<j<6

where I'(2;p, ¢) = (g2 0, @)oo/ (230, @)oo (21D, @)oo = [155—0(1 — 207 ¢"), is the elliptic
gamma function and T is the unit circle of positive orientation.

The first physical application of elliptic hypergeometric integrals consisted in the in-
terpretation of some of them as wave functions or normalizations of wave functions in

particular quantum mechanical problems [92]. The most important known application
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6 Integrability

of identity (6.1) was found in [25] in the context of A" = 1 supersymmetric field theories
within which it has the meaning of the equality of superconformal indices [22, 23, 24] in
Seiberg dual theories [184, 32]. Indeed, the integral on the left-hand side of the equality
(6.1) is the superconformal index of the 4d N' = 1 supersymmetric gauge theory with
SU(2) gauge group and Np = 6 flavors, chiral scalar multiplets in the fundamental
representation of the flavor group SU(6), while the expression on the right side is the
superconformal index for the dual theory without gauge degrees of freedom and the
chiral fields in the 15-dimensional totally antisymmetric tensor representation of the
same flavor group. In other words, the elliptic beta integral is the manifestation of the

s-confinement phenomenon in gauge theories [184].

We present a new solution of the star-triangle relation and other forms of Yang-Baxter
equation in terms of the basic hypergeometric identity presented in [143, 5]. We relate
the Yang-Baxter equations to three-dimensional supersymmetric dualities. The new
solution corresponds to the generalized superconformal index of certain 3d N = 2
superconformal gauge theory having a distinguished form due to the contribution of
monopoles [30, 31, 79, 29]. Detailed presentation of this correspondence is given in the

last section.

6.1 Two-dimensional integrable lattice models

There have been many developments in the statistical mechanics of lattice models since
Onsager,Ads famous solution [185] of the Ising model in 1944. Some two-dimensional

examples of integrable lattice models are

e Hard-hexagon model [186]

Fateev-Zamodchikov model [187] (the case N=2 gives the Isig model)

Kashiwara-Miwa model [188]

chiral Potts model [189, 190, 191]

Faddeev-Volkov model [192, 193]

Recently Bazhanov and Sergeev [179, 176, 175] introduced an integrable spin model on

a planar lattice, which generalizes all integrable lattice models mentioned above. Later
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6.2 Star-triangle relation and 3d index

Spiridonov [49] interpreted the Bazhanov-Sergeev model in terms of four-dimensional
N =1 quiver gauge theories. The relation to supersymmetric gauge theory was further
developed by Yamazaki [50, 56, 144], who constructed the most general solution [56]

containing the Bazhanov-Sergeev model as a special case.

6.2 Star-triangle relation and 3d index

6.2.1 Notation and definitions

For ¢,z € C, |q| < 1, we define the infinite g-product
(z10)0 = [I(1—2¢"). (6.2)

k=0

The (normalized) ¢g-gamma function of Jackson has the form [194, 65]

1
[(z;q) = ET (6.3)
Denote
(@,0;0)00 = (4;Q)oc(b; Doy (a2 @)oo := (am; @)oo (ax ™5 @)oo (6.4)

with a similar convention for other generalized gamma functions in (6.1) and other

relations below.
We need the following ¢-hypergeometric identity.

Theorem. (Rosengren [143, 5]) Let aq,...,a6,q € C and integers Ny,..., Ny € Z,
satisfy the constraints |a;l,[q| < 1, and [T)_, a; = ¢, >5_; N; = 0. Then

3 / ﬁ (CIH%?l.Zaql_%fj;Q)oo (1—qm2%)(1—qm272) dz
ez /T il (quJ’%ajz,qu_%%; )oo qmzm 2miz
2 aita;t q)ee
- H (qa; a; 5 q) (6.5)

N H?zl q<N2j)CL§Vj 1<j<k<6 (Nt Nkajar; q)oo’
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6 Integrability

where T is the unit circle of positive orientation.

This is a g-beta sum-integral associated with 3d superconformal indices (see Chapter

5). The proof of the theorem is presented in [5].

Let us define the following generalized g-gamma function as a combination of four

g-gamma functions and 2™ and a™:

14ntm 1 p4nom o,
2 an 2 aaq)oo

(¢

I (a,n;z,m) = 0z — , (6.6)
arz™(q 2 az,q 7 %q)
where a,z € C and n,m € Z.
Lemma. One has the following inversion relation:
Ly(a,n;z,m)Ly(b,—n;2,m) =1, ab=q. (6.7)

Proof. Consider the explicit form of the indicated product of I',-functions after the

substitution b = ¢/a:

Ly(a,n;z,m)ly (L, —n; 2, m)

n+m n—m —n+m —n—m
_ qn (q1+ 2 E7q1+ 2 qu %7(] 2 (J/Z;Q)oo (6 8)
Z2ma2n (q""’Tmaz’ qn—z'm %7 q1+_n2+m§’ q1+—n2—7n a712’ q N
Using the relation (a;¢)oe = (1 — @)(aq;q)so, for n > m > 0 we can rewrite this

expression as

qn n+ﬁfl 1 — azqi—(m—i-n)/Q nfﬁfl 1 — a—lzqi+1+(n—m)/2 . 6.9
22mg2n pir 1— a—lz—lqi+1—(m+n)/2 =0 1— aZ—lqi—i—(n—m)/Q -+ ( . )

For other possible values of the integers n and m one gets the same result due to the

properties of g-Pochhammer symbols.

Now we can rewrite the above ¢-beta sum-integral in the following compact form.

i+
1 L=l

: (q a;'a; q)o
S [ Calagnsimm)ldnl = e [T ™0 (60)
=1

mezZ "’ j= j=10

i 1<j<k<e  (¢T2 ajak;Q)eo
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6.2 Star-triangle relation and 3d index

where H?:1 a; = q, ?:1 n; = 0, and

6.2.2 Bailey lemma and the star-triangle relation

Let us define the D-function as a product of two generalized ¢—gamma functions
D(t;a,n;z,m) = Fq(q%t’la, n;z, m)Fq(q%t’lcfl, —n;z,m). (6.11)

It is easy to show that the function D satisfies the following properties

1

D(t™;a,n;2,m) =
(75 a,m;2,m) D(t;a,n;z,m)

(6.12)

and
D(1;a,n;z,m) = 1. (6.13)

Let us introduce the integral-sum operator of the following form

M pmomfo(2) = it 2 P / 2] Ty (Y, £n: 2,m) fn (2), (6.14)

qt meZ

where we used the following short-hands

T, (ta*', 4+n;2,m) : = [ (tw,n; 2, m)Ty(tz™", —n; 2,m)

= D(¢"*t7 Y 2,05 2,m) (6.15)

and f,(z) is an arbitrary sequence of holomorphic functions.

We note that the following permutational symmetries hold true

D, (tz™!, 4n; z,m) = T (tz"', £m; 2, n), (6.16)
D(t;a,n;z,m) = D(t; z,m;a,n). (6.17)
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6 Integrability

Following the original integral generalization [195, 92] of the Bailey chains techniques

[168], we introduce the notion of Bailey pairs in the present context.

Definition. We say that two sequences of functions a,,(z;t) and 5,,(2;t), of com-
plex variables z and ¢ and discrete variable m form a Bailey pair with respect to the

parameter ¢ if they are related by the integral-sum transform (6.14),
Bn(x;t) = M(t)znzmtm(2;t). (6.18)

Here we assume that |tz|, |t/z]| < 1 and other regions of parameters are reached by the

analytical continuation.

Bailey lemma. Suppose we have a particular Bailey pair ay(z;t), Bk (z; t) with respect

to the parameter t. Then the sequences of functions

aj(z;st) = D(s;y, Lo, k) (a5 ), (6.19)
Bri(w;st) = D™y, b2, k)M(S) g ke D(sty, 1 2,m) B2 1), (6.20)

where s,y € C,[ € Z are arbitrary new parameters, form a Bailey pair with respect to

the parameter st.

Proof. Let us substitute primed sequences into the relation
B (w; st) = M(st)wyk;x,jag(a:; st) (6.21)

and use the inversion D(t™%y,l;x, k) = 1/D(t;y,l;x,k). This yields the operator
identity

M(S)w,k;z,m D(Stu Y, la Z, m)M(t>Z,m;x,j - D(tv Y, l7 w, k)M(St)w,k;x,jD<S; Y, lu x, .])
(6.22)
known as the star-triangle relation. It is a straightforward consequence of the Rosen-

gren g-beta sum-integral. First we compute the expression on the left-hand side of
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6.2 Star-triangle relation and 3d index

(6.22)
(s*,t%q) wt! i 1 —1, 41 7.
o7 gt 3 g) 2o, Jena] Talow™h b zm) L (5t) My s 2,m)

xZ/dm x Ty(tz, £m; 2, §)

JEL

__<§ﬁz/dxz/jpw%mﬂmwM] (6.23)

(q8_2 qt 2 ]EZ meZ

where we used the permutational symmetry of I' -function and have denoted

1/2
S
a; = sw, n1:k7 ag = —, n2:_k7 az = 1 y> n3:la
w st
q1/2
ay=——, ng=—l, as=tr, ns=7j, ag=—, nNg= —J. (6.24)
sty T

The balancing conditions hold true
I[Ie =4, (6.25)
6
> n;=0, (6.26)

and we can apply the above formula (6.10) for computing the integral over measure

[d,,z]. This yields the expression

1+k+41 1+k—1 1—k+1 1—k—1
wy? w? v

twy; q)
1+k+l 1+k—1 1—k+l1 1—k—1

2k, ,21 wy w Yy 1 .

w2y (g2 52 g w7 fugs @)

(2% q ((FE L e ek e e

X —— 137 2 : stw:p’q stw’q stm’q st’q
T stw —kti gtg  —EEI g

q5—2t 2 ) % w%g;zy (¢"% stwa, q b g7z 22 g7 2hig)

1tl+i 1tl-j ¢ 1-1+j sy —l— .
(¢ = y;,q T g g sy )
E2E 1+zfj T—it; —1—;
21 2 yw Y T 1.
2% (g > Log Sy,q = @)

= D(t;y,; w, k)]\/[(st)w,k;mD(s, y, Ly, 9), (6.27)

—J

which proves the required identity.
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We note that the derived solution of the star-triangle relation resembles structurally a
different solution obtained in [54]. We stress that the parameters y and [ are dummy
variables in this construction, i.e. at each step of the walk along the lattice of Bailey

pairs one can introduce further new parameters y,l — ¢/, I’ —

6.2.3 Coxeter relations and the vertex type Yang-Baxter equation

Consider elementary transposition operators s;, 7 = 1,...,5, acting on six parameters
t= (tl, ce ,tﬁ)i
Sj(. .. ,tj,tj+1, .. ) == ( .. ,tj+1,tj, .. ) (628)

They generate the permutation group &g characterized by the Coxeter relations

2 . .
s; =1, sis5=s;58; for [i—j|>1, s;5j415; = 85415511 (6.29)

Define now five operators S;(t), j = 1,...,5, acting on the three-index functions of

three complex variables f, n,n4(21, 22, 23):

[S1(6) flnsmains (21, 22, 23) := M (t1/t2) 21 m1szam frmmam (2, 22, 23),
[S2(t) [y nams (21, 22, 23) := D(ta/ts; 21,n1; 22, 12) fry mams (21, 22, 23).
[S3(6) flns nains (21, 22, 23) 1= M (t3/t4) 25,m052,m 1 mns (21, 2, 23),
[S4(t) g noms (21, 22, 23) = D(t4/t5; 22, Mo 23, 13) fry mams (215 22, 23),
[S5.(t) fln1,nains (21, 22, 23) := M (t5/t6) 29ms52m frr maim (21, 22, 2),

We stress that all these operators depend on the ratios of parameters, S;(t) = S;(¢;/t;11).
Let us prove that for an appropriate space of test functions the operators S; gener-
ate the group Gg, provided their sequential action is defined via a cocycle condition
S;Sk := S;j(sk(t))Sk(t). For this it is necessary to verify the Coxeter relations

S2 = 1, SZS] = SJSI for ‘Z —j’ > 1, Sij+1Sj = Sj+1SjS]’+1. (630)

J

Indeed, the latter relations are equivalent to algebraic properties of the Bailey lemma

entries, in complete analogy with the elliptic hypergeometric case [177]. It is sufficient
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6.2 Star-triangle relation and 3d index

to establish them for S; and Sy, others will follow by the symmetry. So, we have
S% == SQ(SQt)SQ(t) = D(tg/tg, Z1,N15 29, ng)D(tg/tg, Z1,MN715 292, TLQ) =1. (631)

A substantially more complicated relation is needed for S;:

[S%f]n( ) = [S1(s1t)S1(t) fln(z) (6.32)
= M(t~ )wnzmM(t)z,M;y,jfj(w

=3 [l - =?)

x> / m?] Tt 2™ £n; 2, m)D, (by™, £7; 2,m)
meZ
= fn(x)7 )
or S} =, where t = {I.
First, we claim that
M(1) =, (6.33)

or

M(1>z,m;y,jfj(y) = fm(z) (634>

for the holomorphic test functions satisfying the reflection symmetry f_,,(y7!) =
fm(y). This fact follows from the residue calculus. For ¢ — 1 two pairs of poles
approach the integration contour in M (t), . ;f;(y) from two sides and pinch it. To
resolve the singularity it is necessary to compute two residues which leads to the ex-
pression (f,,(2) + f_m(271))/2, and the reflection symmetry reduces it to one term.
We now substitute in the star-triangle relation (6.22) the constraint st = 1. Using the
inversion relation for D-function and D(1; 21, nq; 29, n2) = 1, the D-terms disappear on
both sides and we obtain M (t~1)M(t) =.
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Finally,

S152S1 = Si(s251t)Sa(s1t)S1(t)
= M(%)zl,nl;z,mD(%; 22,123 2, m)M(%)zmw
= 59515
= Sa(s159t)S1(52t)S2(t)
= D(; 21,115 22,m2) M (1) 21 s D (325, 55 22, n2), (6.35)

which is precisely the star-triangle relation.

Consider the tensor product of three infinite-dimensional (equal or different) spaces
1 ®2 ®3 and associate with each space ; a pair of variables: the spectral parameter u;
and the spin variable g;, respectively. Define R-operators R;x(u;, gi|ug, gx) acting in a
non-trivial way in the subspace ;®; with the unity operator action in its complement.
The vertex type YBE has the form

Ria(u1, g1|ug, g2) Ruis(ui, g1|us, g3) Ros(ua, g2|us, g3) (6.36)
= R23(U27 92|U3, 93) Rls(ub 91|U37 93) R12(u17 91\“2, 92).

Actually, the R-operators depend on the difference of spectral parameters,
Rix (s, gi|uk, gr) = Rig(u; — UJ‘), (6.37)

where we omitted dependence on the spin variables. Using this notation we can rewrite

YBE in the more conventional form
ng(u — ’U) ng(u — U)) R23(U - U)) = RQg(’U — w) ]ng(u - U}) Ru(ﬂ — ’U), (638)

where u = uy,v = ug, w = uz. It is convenient to single out the permutation operators
from the R-operator
Rix(u) = Py, Rig(u), (6.39)

where the operator Py interchanges the spaces, Py (V; ® Vi) = V, ® V;. Removing
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6.2 Star-triangle relation and 3d index

these permutation operators from the Yang-Baxter equation (6.36) yields the relation

Ros(u1, g1|uz, g2) Ria(u1, g1]us, g3) Ras(us, g2|us, g3)
= Rua(ug, g2lus, g3) Rag(u1, g1]us, g3) Ria(ur, g1|us, g2), (6.40)

where one sees only two R-operators, Ris and Ros.

Let us fix the spaces ; as copies of the infinite bilateral sequences of meromorphic
functions f;(z), j € Z. Then the triple tensor product of interest takes the form
1 ®2 ®3 = fry nams(21, 22, 23). Define now the composite operators acting in this space
Ria(t),

Ria(t) = Ria(t1, ..., t4) = Sa(s15352t) S1(s352t) S3(sat) Sa(t) (6.41)
= Sy(t1/ta)S1(t1/t3)Sa(t2/ts) Sa(ta/ts),

and Rgg(t),
Rgg(t) = Rgg(tg, e ,tﬁ) = 84(8385S4t) 83(858413) S5($4t) S4(t) (642)
= S4(t3/t6) Sg(tg/tg)) S5(t4/t6) S4(t4/t5)
Denoting
t172 — 6—7ri(u:|:91)’ t374 — e—m(vzl:gg)’ t5,6 _ 6—772‘(111:|:gg)7 (643)
one can identify
Ria(t) = Ria(u, g1]v, g2), (6.44)
Ras(t) = Ras(v, g2|w, g3) (6.45)

and check that these operators depend only on the difference of spectral parameters

u — v and v — w, respectively.

Theorem. The R-operators (6.41) and (6.42) satisfy the vertex type Yang-Baxter
relation (6.40).

Proof. Substituting the explicit forms of the R-operators into equality (6.40), we come
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to the relation

54535554 - 52515352 - 54535554 = 52515352 + 54535554 + 52515352, (6.46)
which is easily checked using only the cubic Coxeter relations for operators S; in com-
plete analogy with the cases considered in [196, 177].
6.2.4 A new two-dimensional solvable lattice model

Let us apply the operator relation (6.22) to a product of the Kronecker and Dirac
delta-functions which remove integration over the z-variable and summation over the

index j. This yields the functional star-triangle relation of the form

1
S [ om0 Wea(a, 3, m)Waso g, i ) Weo(w, s, m)

meEZ
= x(a,D)Wy(z, ; 9, F)We_as(, j;w, )Wa(y, k; w, 1), (6.47)
where
W, (z,j;u,m) = Fq(e%i(“’éﬂi“)), e M — ¢ (6.48)
and
(1 _ qm€4m'u)(1 _ qm6747riu)
Pm (1) 20" (6.49)
4mia 4mib ,—4mi(a+b).

(e—4mia_ e—4mib_gedmi(ath); gy
We now define a two-dimensional lattice model associated with this relation. Con-
sider a honeycomb lattice with the spins denoted by labels x,u,w, etc which seat in
vertices. Each spin has a discrete internal degree of freedom denoted as m, j, k, [, etc
(the monopole number). Neighboring spins (z,7) and (u,m) interact along the edges
connecting them with the energy determined by the Boltzmann weight W, (z, j; u, m).
The function p,,(u) describes the self-energy of spins, and ¢ is called the crossing pa-
rameter. In this picture the “integration-plus-summation” in the star-triangle relation
(6.47) means computation of the partition function for an elementary star-shaped cell

with contributions coming from all possible values of the continuous spin u sitting in
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6.2 Star-triangle relation and 3d index

the central vertex and all possible values of the magnetic charge m. The honeycomb
lattice can be transformed using the star-triangle relation to triangular and square

lattices.

Compose now N x M sized two-dimensional square lattice of spins and associate with
each horizontal edge the weight W,(z, j;u,m) and with the vertical one the weight
We_o(, j;u,m). Then the partition function of such homogeneous spin system with

the internal spin energy p,,(u) has the form

J = Z/ MHW Uy M5 Uiy My HWg o(Ug, My uy, my Hpm ug)dug, (6.51)

ZNM (i kl
)

where the first product is taken over the horizontal edges (i7), the second product goes
over all vertical edges (k,1), and the third product (in s) is taken over all internal ver-
tices of the lattice. Then one can consider the thermodynamical limit of infinite lattice,

N, M — oo, and look for the free energy per spin k(a) found from the asymptotics

Za) = e~ VMrla), (6.52)

Conjecturally, similar to the models considered in [174, 179, 49], the value of k(a) can
be found using the reflection method [197]. Namely, one renormalizes the Bolztmann
weights

W (z, j;u,m) = W, (z, j;u,m) (6.53)

1
m(a)

and chooses the multiplier m(a) in such a way that the star-triangle relation takes the

form
> / P (W We_a(, 510, m) Wy (y, s 1, ) We_p (w, 1w, m)du
meZ
= Wb(l’, j; Y, k)WE—a—b(xa j; w, Z)Wa(y> k; w, l) (654)
Then,
_ NM
Z(a) N e m(a)™ ™, (6.55)
or
k(a) = —logm(a). (6.56)
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Such a transformation of star-triangle relation requires

m(§ — a)m(§ — bym(a +b)

= b )
which is possible if m(a) satisfies the equation
m(a) (™79 )
| —1, 6.58
i€ —a) (o7 g) (0:5%)
o ~ami(ate)
ma+ €)= Voo, (. (6.59)

(647ria : Q)oo

Introduce the following infinite product

f@:p,q) = (250, ) (a2 ™" P, @), J;f?;f’qq)) = (qg‘ (;)2” .

(6.60)

We note that this is the product of the numerator and denominator of the elliptic

gamma function. One has the following inversion relation

f@™hp.q) = f(paz;p. q). (6.61)
Define the composite function

f(@p\/pa; p*, q)

pu(z;p,q) = : (6.62)
f(x/pg;p?, q)
It satisfies the equations
—1,1/21/2.
-1 —1 (JZ p q ) )oo

. : —1 . . = ) 6.63
wzp, Oz pq) =1, p(ep,qulp z;p,q) (o 4% g) (6.63)

Using these relations we can set

2 dmia . ,—Amia. , 2

mla) = p(e¥;q,q) = 0TI T ) (6:6)

(q647ria’ q26—47ria; q, q2)oo
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6.2 Star-triangle relation and 3d index

and see that this function satisfies the unitarity condition

m(—a) = (6.65)

and the key starting equation (6.59). So, —logm(a) provides the explicit expression
for the free energy per spin of the discussed two-dimensional “spin" model. For the

model with the Boltzmann weights (6.53) the free energy is equal to zero.

6.2.5 Star-star relations and an IRF model Boltzmann weight

There is the ,Atlnteraction round a face model,At (IRF) version of spin models for
which four spins round a face of the lattice interact with each other. This interaction
can be determined by the energy of face e(abcd) (or by the Boltzmann weigths Wpeq)
depending on spins a, b, ¢, d. In the integrable case the Boltzmann weights satisfy the
IRF type Yang,AiBaxter equation. The hard hexagon model [186], the cyclic solid-on-
solid model[198, 199, 200, 201, 202] and the restricted solid-on-solid model [194] are
examples of the integrable IRF models.

Note that the IRF model considered in this subsection and vertex model from subsec-

tion 6.3.3 are equivalent to each other!.

First we consider the simplest consequence of the Bailey chain of identities for sums of ¢-
hypergeometric integrals described above following the elliptic hypergeometric pattern
[195]. For this we use the evident explicit Bailey pair, following from the integration

formula (6.10). Namely, let us choose

4
am(z,t) = H Ly(aj,ng;z,m), (6.66)

J=1

where a; are arbitrary parameters. Substituting this expression into the integral trans-

4 -1

formation (6.18), imposing the constraint Z?Zl n; = 0, and choosing t* = qllj a5,

!There are interesting equivalence relations between IRF and vertex models in the literature, see e.g.
[203, 204, 205].
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we derive from the Rosengren identity [143] that

n-+nk
1+ -2 -1, -1,
1 (q 2 aj Qy, 7Q)oo
2')’Lj njt+ng

4
e o ay” icjar<a (@77 ajar; @)oo

ﬁn(x§ t) =

i R I
L2 ol it

o
q
X H ni»n n;
j=1

nj—n 1,1
2 a; U)o

(6.67)

(077 ajte,q”7 ajta~'q)u

We now take definitions of the Bailey lemma entries (6.19) and (6.20) and substi-
tute them into the relation (3 (w; st) = M (st)y pej0;(x; st). This yields the following

explicit symmetry transformation law

ni+ng n'+4+nk+4
~ . 1+ -2 -1 -1 14 L==__fr2 1 -1 .
1% . o V(Q7 n; q) (q 2 aj ag 4 2 aj+4ak+4’ Q)oo 6.68
(a‘7 n; q) - 8 a]??zj H nj+ng nji4+tng g ) ( . )
7 1sj<k=d (77 ajar, g~ 2 40k 145 q) oo

j=1
where
8 8 8
Vieng) =3 [T[Tlapnizmldez],  [[o=c Yn=0 (669)
mez” T j=1 j=1 j=1
and the following notation for the parameters is used
a5 = stw, nse=tk, ars=q"%s 'y, ngg =+l (6.70)
as well as
a; =ta;, j=1,2,3,4, a; =t "'a;, j=25,6,7,8. (6.71)
Remind also the balancing condition #? H?zl a; = q.

Conjecture. Let us take the V-function, whose parameters a;,n; satisfy only the
balancing conditions indicated in the definition (6.69) and an additional constraint

Z?Zl n; = 0. Then we conjecture that it satisfies the symmetry transformation (6.68),

aj =¢ea;, j=1,2,3,4 e = q = a5a6a7a8- (672)
C~L] - 5_1tj7 j - 5767778 ’ 1020304 q

where
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6.2 Star-triangle relation and 3d index

Indeed, using the relation

l—m/QZ—l; m/2 1+m/22—1;

(4 Do _ 4" (g @)oo
(22 q)0  (=2)" (€722 Qo

, meZ, (6.73)

one can verify that a repetition of the transformation (6.68), (6.72) returns back the
original V-function, i.e. we deal with a reflection. The map a; — a; is the key
reflection extending the Weyl group Sg of the root system A; to the Weyl group of
the exceptional root system E7. However, because of the presence of integers n; and
the constraint Z?Zl n; = 0 we do not have the full W (E7) symmetry of the V-function
yet. Interestingly, even in this reduced case the Bailey chains techniques yields the
symmetry transformation (6.68) only when a pair of integers is forced to take particular
values n; +n; = np +mn = 0, ¢ # j # k # [, which contrasts with the elliptic
hypergeometric V-function case [206, 92].

Consider a 2d checkerboard lattice [207] where each “black" site has four “white" neigh-
bours and, vice versa, each “white" site has four “black" neighbours. Ascribe to each
edge connecting the white and black sites the Boltzmann weight W,,, (6.48) with arbi-
trary parameters a; subject to the constraint 2?21 a; = 2£. An IRF model is obtained
when we integrate out the one-color lattice spins. The Boltzmann weight of the cor-
responding elementary “cell" containing four vertices determines the energy of this
square face. It is given obviously by a special case of the general V-function intro-
duced above when all integer variables n; are paired by the relation ng;_1 + ng; = 0.
Then, completely similarly to [49], the symmetry transformation (6.68) has now the
interpretation as a star-star relation [207]. As shown by Baxter [208] knowledge of the

star-star relations automatically leads to the Yang-Baxter equation for IRF models.
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6.2.6 IRF Yang-Baxter equation with spectral parameter

The Yang-Baxter equation for IRF models associated with 3d superconformal indices

has the following form

a,A b B ¢,C d,D
Z /dHh Rt41t63 Rt63t25
frer, h,H ¢, C h,H e FE
e,E fF b,B h H
X Rt25t41 f Z / dHh Rt63t25
h,H a,A frer, a,A f, F

d,D hH £ F hH
74
X Rt25t41 ( C,C b,B ) Rt41t25 ( €,E de ) ) (6 7 )

where we introduced for convenience the shorthand notation for spectral parameters

tij = (ti,t;). The following statistical weight satisfies this equation

a,A b,B (g3 (n/1)"2,q5 (r/m) ,q o
Ron1)n,r) ( ) = T 3 / (]

a3 (/02,45 (r/m)% Q)ee it

l

(
z
x Fq<q%faﬂ,iA;z,k>rq<q Db Bz k)
X Ty 2 052, WD (qF a1, £D;2 ). (6.75)

It is substantially equal to the V-function (6.69) with particular constraints on the
integers n = (£ A, £B,+C,+D).

For showing that function (6.75) describes a solution of equation (6.74) we use a special
case of identity (6.10) associated with the star-triangle relation

Z/ mz| T (qﬁt/sajEl +A;z,m)l (qﬁs/rbjEl +B;z,m)l’ (qﬁr/tcjEl +C5z,m)

_ @ t/9) s (s/r) P (/1) % 0o
(t/5)2.0% (s/7)2, 43 (r/1)% @)
(qé /sctt +£C;a, A)T q(qés/tbﬂ,:lzB;c, ). (6.76)

Fq(q%t/raﬂ, +A;b,B)

(t
1
3

2
3
(
We now form the following composite function defined by 6 integrations and 6 discrete
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summations

m;EZL

F(
Ly
Ly
Ty
Ly

6
> /H[dmz] (qﬁtl/?%fi +F; 26,m6) Ty (q0ts/t125 ", £me; 21,m1)
i—1

étg/tﬁail :l:A thl) Fq( % 1/t222 ,j:mg,zl,ml)
1 1
qots/t1b™" £ B; 20, ma)To(q5ta/tsz5 ", £ma; 22, mo)
1 1
q5t4/tgc :i:C 23,m3)Fq(q5 3/t4zf1,:|:m4;23,m3)
s

1

6

qots/tsd™, £D; z4, my)T q(q ta)ts22t, £ms; 24, my)
)T )

1
6
1
q 6/t46i1,:|:E; 25, M5 q( 6t 5/t6z6ﬂ,:|:m6;z5,m5 . (677)

Then we integrate over zy, z3, and 25 and sum over my, mg, and ms, i.e. use the

star-triangle relation (6.76) for the expressions indicated in the square brackets below

Z /deZ dm4z dmaz] q(q%tl/tSfi17:tF; Z6am6)

ma,m4,meEZ

X Fq<qét3/t1bi1, :|:B, zZ9, mQ)Fq(q%t5/t3dil, :tD7 24, m4)
S [l Talabto /g, me; 21,m1)

mi1€EZ

X

X Fq(q%tQ/tGaﬂ, :l:A, 21, ml)Fq(q%tl/tgzzﬂ, :l:mz, Z1, m1>:|

Z /dm3Z q6t2/t3753 7j:m37z27m2>

ms3€Z

1 1
X Fq(q6 t4/t20i1, +C'; z3,m3) (g8 t3/t4sz1, +my; 23, m3)]

|: Z /dm5Z q6t4/t525 7j:m57z4am4)

ms€EZ

1
X Fq(qﬁtG/t4ei1,:i:E;z5,m5)Fq(qﬁt5/tﬁzéﬂ,j:mﬁ;z5,m5)].
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As a result, we obtain

(45 (te/t1) 2, 45 (ta/ta) 2, 45 (11 /t2) 2, 45 (ta/t5) 2, 45 (t2/t3) 2, 45 (5 /t6) "% @)oo
(45 (to/t1)2 5 (t3/ta)?, g5 (t1/12)2, 45 (ta/t5)2, 45 (ta/t3)?, 45 (5 /6)2; @)oo
(q%(fﬁ/t4)_27qgl(t4/t2)_2=611%(752/756)_2;Q)oo /[dm ldon2][done 2]

(q3(te/ta)?, g5 (ta/t2)?, 45 (t2/t6)* Voo momamser ’ ) ’

x I'y(q® 1tlfﬂ +F; 26, me)1, (q?»z:ejEl +FE; z4,my)Ty, (qi’rzejEl +F; z5,mg)
X Fq(ﬁij a*!, £A; 25, me)L (qéi; at!, £A; 22,m2)rq(qgabﬂ,iB;ZQ,m2)
X Fq(qéiz 0, 22,m2)Fq(q§Zcﬂ,iC; z4,m4)Fq(qé§5dﬂ,iD;Z4,m4)
x Fq(qéizzglvima;@,mz)r (qézﬁ , m; 22, ma)T (qéz:Zéﬂ,ime;zzx,mA:) :

Finally, we apply the inverse triangle-star relation to the last line product of I';—
functions in the square brackets and obtain the left-hand side expression in equation
(6.74). The right-hand side expression of this IRF Yang-Baxter equation is obtained
after performing first the integrations over z, z4, 25 and summations over mo, My, Mg

and an application of a similar triangle-star transformation.

6.2.7 Star-triangle relation from supersymmetric duality

We now want to describe the two-dimensional solvable lattice models discussed above in
the context of supersymmetric dualities for three-dimensional A/ = 2 supersymmetric
gauge theories. The duality we study is very similar to the initial Seiberg duality for
N = 1 four-dimensional supersymmetric quantum chromodynamics, we have already

discussed this duality in Chapter 5. The following two theories are dual to each other
[5]:

e Theory A: SU(2) gauge group with Ny = 6 flavors, chiral multiplets in the
fundamental representation of the flavor group SU(6) and in the fundamental

representation of the gauge group.

e Theory B: without gauge degrees of freedom and the chiral fields (gauge-invariant

“mesons”) in the 15-dimensional totally antisymmetric tensor representation of
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6.2 Star-triangle relation and 3d index

the flavor group.

More precisely, the first interacting gauge fields theory flows in the infrared limit to the
second one. This duality was considered in [123]. The authors calculated the three—
dimensional ellipsoid partition functions for dual theories by applying the reduction
procedure of [112; 114, 113] to the models considered in [27].

e, Q/\

[

Figure 6.1: Duality of quiver diagrams.

The ordinary superconformal index of the “theory A” with enhanced symmetry was
presented in [119] (see also [2] for the Ny = 4 case and [3, 70] for the similar theory with
the broken gauge group). The duality between theories A and B leads to the equality
of corresponding superconformal indices expressed by the following g-hypergeometric
identity [5]

6 (qtFHE L gl q) d
—|m| a2’ aj’ 1/ |m| 2 Im| <
q _ — 1—¢"2%)(1—gq ,
n;Z/ H (q?y"‘Tajz’qTJ"'%%;Q)oo ( )( )27TZZ

1 1+%+Tka._1a_1; oo
- 1 (7272 a5 0 5 ) (6.78)

T E
=19 1<jckes (@2 T2 ajar; @)oo

with the balancing condition

6 6
[[e;=¢ and > n;=0. (6.79)
j=1

=1

This condition is imposed by the effective superpotential W = nX for the theory A,

where X is a monopole operator and 7 is the four-dimensional instanton factor, which
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breaks a part of the symmetry (for details, see [104]). Using the relation [57]

© | _ qif%erlZ—l L L) L (i © | _ qur%\m\JrlZ—l
11 — = (—q2)2mHmh =z (mtimD T - (6.80)
=0 1—q72"z =0 1- ql+2‘m‘2

one can obtain the g-beta sum-integral (6.5) from (6.78).

Similarly, the full symmetry transformation (6.68) is a consequence of a duality of two
3d theories with Ny = 8. One can guess that there exist proper analogs of all elliptic
hypergeometric integral identities described in [27, 28, 67] for sums of ¢-hypergeometric
integrals associated with 3d dualities. Actually, the latter dualities are easily found
using the reduction of 4d superconformal indices to 3d partition functions [112] which

naturally leads to conjectural equalities of corresponding 3d superconformal indices.

By breaking the flavor symmetry to SU(2) x SU(2) x SU(2) in (6.78) we obtain the
star-triangle relation (6.76). Then the expression (6.75) corresponds to the generalized
superconformal index of a 3d N' = 2 theory with the gauge group G = SU(2) and
the flavor group F' = SU(2) x SU(2) x SU(2) x SU(2). In this picture, the IRF-type
Yang-Baxter equation (6.74) is nothing else than the equality of superconformal indices
of two dual 3d N = 2 supersymmetric quiver gauge theories presented in Fig. 1, where
the boxes correspond to SU(2) flavor subgroups and the circles represent SU(2) gauge

subgroups.

We note that relation (6.32) describes the chiral symmetry breaking similarly to the 3d

partition function case [146]. Indeed, it assumes the following sum-integral evaluation

Z /[dmz] Fq(flxﬂ, j:n;z,m)l“q(tyﬂ, +j;2,m)

mEZ
_ 0(dy + ¢a)0nrjo + (dy — ¢a)dn—jo (6.81)

71— @y (1 — gy (1 —12)(1 —t72)’

where y = ¥ and x = €™ and §(¢) is the periodic Dirac delta function with
period 1, (¢ + 1) = J(¢). On the left-hand side of equality (6.81) we have the 3d
superconformal index of a theory with SU(2) gauge group and Ny = 4 chiral fields with
the naive flavor group SU(2) x SU(2). However, as follows from the the right-hand side
expression, the true flavor group is (SU(2) x SU(2))aiay and the superconformal index

has, actually, a non-zero support only on the corresponding subset of fugacities. This
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is precisely the manifestation of chiral symmetry breaking in confining theories similar
to the 3d partition functions case [146]. A more detailed and rigorous consideration of
this relation between indices and spontaneous breaking of global symmetries is needed,
in particular, for the case when one has originally the full naive SU(4) flavor group
which is broken to SP(4) group.

6.3 Remarks, conclusions and perspective work

e We presented a new solution to the star-triangle relation (Yang-Baxter equation)
expressed in terms of basic hypergeometric functions. The new solution corre-
sponds to a new solvable two-dimensional lattice model of statistical mechanics.
In contrast to the Ising model, its spin variables take continuous and discrete

values.

e One obtains the Kels model [145, 54] when a temperature-like parameter ¢ tends

to one in our solution.

e We describe the chiral symmetry breaking in terms of the delta-function singu-

larities in superconformal indices for particular values of fugacities.

e It turns out that R matrix is dictated by some quantum group?. We wish to
elucidate the origin of our solution in the framework of the representation theory

of quantum group.

e There are a lot of attempts to extend the idea of integrability to three-dimensional
lattice models. The Yang-Baxter equation in this case takes the form of the so-
called tetrahedron equation by Zamolodchikov. It would be interesting to extend
the relationship between supersymmetric dualities and integrable models and find

a solution of the tetrahedron equation in this context.

2Roughly speaking, the quantum group is a “deformation” of a universal enveloping algebra of some
Lie algebra. Almost all known solutions have been included in the quantum group scheme.

95






7 Appendix

7.1 Notations

For all special functions we use the notation that multiple parameters or £, F signs

in the part before the semicolon indicate a product of functions. For instance,

(@, 0; oo = (a5 @)oo (b: @)oo (7.1)
L(z%p.q) = T(zp,¢)l(z 5 p,q) (7.2)

The contours of all integrals appearing in the thesis are deformations of the unit circle
serving to ensure that certain poles are kept inside the contour, while others are left

outside.

7.2 Elliptic gamma function

In most of the formulas used in the thesis we arrived at the expressions in terms of
elliptic gamma functions. For such reason we give here a definition and some properties

of this function, which is appropriate generalization of Jacobi modular function.

The elliptic gamma function is a meromorphic function of three complex variables with
double infinite product [209]

2m((1+])7’+(1+z)0 w)

D(u;T,0) ﬁ (7.3)

— e2mi(jT+iotu)
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Here u,o0,7 € C and Im7,Imo > 0. For our later purposes it is convenient to do the

following reparametrization

p= BQMT, q= 627ru7’ 5= 627rzu' (74)

For generalizations of this function, see [210, 211, 212].

The elliptic gamma function satisfies many interesting properties such as symmetry

under exchange of parameters p and ¢

I'(zp,q) =T(z4,p), (7.5)
the functional relations
I(gzp,q) = 0(zp)I' (20, 9), (7.6)
L(pzip,q) = 0(z¢)T (20, q) (7.7)
and the reflection property
I'(zp,q) F(%;p, q)=1. (7.8)

Here 6(z, q) is the theta function defined by

0zp) = [0 — =P (1 — =) (7.9)

=0

It is related to the Jacobi theta functions. For instance, the first Jacobi theta function

can be written as

01(7]2) = —ig"*y" (¢, )by~ @), (7.10)

01(7]2) = —ig"By A TT(1 = ¢*)(1 — yg*) (1 — y'¢" ), with y = &*™= (7.11)
k=1

(7.12)

98



7.3 Elliptic hypergeometric functions

Th elliptic Gamma function is an automorphic form of degree 1 associated to a 2-

cocycle and it has an SL(3, Z) modular property [213] based on the following relations
Fu+7,7,7+0)(u,7+0,0) = I'(u,7,0), (7.13)

zZ— 0

F( _ eiﬂQ(z,T,a)F(

: ) T'(z;7,0) (7.14)

1
7

SHES
SHE!
Q|+
219

T

Note that the elliptic gamma function is related to the Barnes multiple gamma function

of order three [214]. Probably this relationship has connection to its modular property.

7.3 Elliptic hypergeometric functions

Elliptic hypergeometric integrals represent the top known level of special functions
of hypergeometric type. They describe superconformal indices of four-dimensional
supersymmetric gauge field theories and partition functions of certain two-dimensional

spin systems.

A good reference for this subject is the book [215] by Gasper and Rahman and a review
article [92] by Spiridonov. See also [159, 216, 206, 92].

Let ¢, be complex numbers. Consider a formal power series!

> e (7.15)
n=0
Depending on the following ratio
Cntl (7.16)
Cn

we define three family of hypergeometric functions.
Definition. The series (7.15) is called
e an ordinary hypergeometric series if (7.16) is a rational function of n;

e a basic hypergeometric (or simply g-hypergeometric) series if (7.16) is a trigono-

'We call it “formal” since we are not interested in the convergence of the series.
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7 Appendix

metric function of n;
e an elliptic hypergeometric series if (7.16) is an elliptic function of n.

The integral representations of hypergeometric functions can be defined similarly. For
instance, a contour integral [ A(u)du is called elliptic hypergeometric integral? if the
meromorphic kernel A(u) is the solution of the following first order finite difference
equation

A(u+a) = h(u; b, c)A(u) , (7.17)

where a € C and h(u; b, ¢) is an elliptic function with periods b, ¢ € C and Im(b/c) # 0.

To give an example of an elliptic hypergeometric integral, let us consider the elliptic
beta integral. Spiridonov [159] has evaluated the following integral as an elliptic analog

of the Euler beta integral®.

Theorem (Spiridonov). Let ty,...,ts,p,q € C with [t4],...,|ts|, |pl,|¢| < 1. Then
PiP)oo(d @)oo [ TIi=y T(tizsp, )T (tiz™"5p,q) dz
i)l ee [ M U202 50.0) & pggg), (rg)
2 T I'(z%p, )T (272 p, q) 2miz 1<i<j<6

where the unit circle T is taken in the positive orientation and we imposed the balancing

condition H?Zl t; = pq.

Limits of the elliptic beta integral lead to many identities for hypergeometric integrals
(92, 219, 216, 220, 221, 222]. For instance, if we take the limit p — 0 then (7.18)

reduces to the Nassrallah-Rahman trigonometric beta integral [223]*

5 t1totstat
(4, 9)os /<zn§:1ti,q>oo<z1 it Do Qo272 @)oo dz_ TH (PR 0)u
2 T 2 (ti2)eo(tiz ™ oo 2miz [Ti<icj<s(tits, @)oo
(7.19)

2Similarly one can make a definition for multivariative case.

3There is a vast literature on g-beta integrals. The interested reader is referred to [217, 218].

“Note that the integral identity presented here was observed by Rahman in [224] as a special case of
the integral found in [223]. This integral is an extension of the well-known Askey—Wilson integral
[225]. If we let the ¢ tend to 1 one obtains the corresponding ordinary hypergeometric function.
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7.4 Barnes double Gamma function

7.4 Barnes double Gamma function

The Barnes double Gamma function T's(u;wy,ws) is defined as

log Ty (z;a,b) = (5(0; a, b, z) + log p2(a,b), (7.20)
where
G(siab,z) = > (am+bn+z)° (7.21)
m,n=0
log p2(a,b) = — lim (¢3(0;a,b,z) + log x) (7.22)

There is also the integral representation of this function

[y(z;a,b) = exp (217” ‘/CH t(i_i (eloi()?f):;fyzt)dt) : (7.23)

where v is the Euler constant and the Hankel contour C'y starts and finishes near the

point 400, turning around the half-axis [0, c0) anticlockwise.

Useful reference for specific details is [226].

7.5 Hyperbolic gamma-function

The hyperbolic gamma function is defined as

riBy ()2 (€T G 4)
(627riu/w1 : q)

2miw1 Jwa —2miws [wi

with g=e , qg=e ,
(7.24)

VP (w501, w0) = €

where Bjo(u;w) is the second order Bernoulli polynomial,

—— (7.25)
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7 Appendix

The reflection identity for a hyperbolic gamma-function is as follows
’}/(2)(27(,()1 + Wo — Z;w17w2) = ]-)

and the asymptotic formulas are

mi

le e Brawwr) @) (-5 wy) =1, for arg wy < arg u < arg wy + 7,
uU—00

ILm 6_%32*2(“;“1’“2)7(2)(%wl,w2) =1, forargw; —m <argu < arg ws.
U—00

(7.26)

(7.27)
(7.28)

There are different notations and modifications of hyperbolic Gamma function, rela-

tions between some of them can be found in [227, 49] (also see the appendix of [228]).
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