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Abstract
Dual-unitary brickwork circuits are an exactly-solvable model for many-body
chaotic quantum systems, based on 2-site gates which are unitary in both the
time and space directions. Prosen has recently described an alternative model
called dual-unitary interactions round-a-face, which we here call clockwork,
based on 2-controlled 1-site unitaries composed in a non-brickwork struc-
ture, yet with many of the same attractive global properties. We present a
2-categorical framework that simultaneously generalizes these two existing
models, and use it to show that brickwork and clockwork circuits can interact
richly, yielding new types of generalized heterogeneous circuits. We show
that these interactions are governed by quantum combinatorial data, which we
precisely characterize. These generalized circuits remain exactly-solvable and
we show that they retain the attractive features of the original models such
as single-site correlation functions vanishing everywhere except on the causal
light-cone. Our framework allows us to directly extend the notion of solvable
initial states to these biunitary circuits, and we show these circuits demonstrate
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maximal entanglement growth and exact thermalization after finitely many
time steps.

Keywords: many-body quantum dynamics, unitary circuits,
biunitary connections

1. Introduction

The dynamics of isolated many-body quantum systems remains a complex problem, and exact
solutions are both scarce and typically non-representative of the chaotic dynamics of generic
quantum systems. In recent years unitary circuit models have gained intense attention as a
paradigmatic model of unitary many-body dynamics governed by local interactions [1–8].
Such circuits mimic the dynamics generated by a local Hamiltonian on a one-dimensional
lattice, with the ‘dynamics’ of a unitary circuit taking place in discrete time.

A special class of dual-unitary circuits was recently identified, characterized by the prop-
erty that the bulk dynamics remains unitary when exchanging the roles of space and time [9,
10]. This duality endows the circuits with many remarkable properties, including analytically
tractable correlation dynamics [9, 11–14], out-of-time-order correlators [15, 16], and maximal
entanglement growth [11, 17–19].While exactly-solvable many-bodymodels typically require
integrability and hence non-chaotic dynamics, these dual-unitary models are in a sense ‘max-
imally chaotic’, allowing some generic features of quantum many-body chaos to be studied
exactly [20–28].

Most recent studies of dual-unitary dynamics have focused on 2-site dual-unitary gates
arranged in a regular brickwork pattern. An alternative model has recently been proposed by
Prosen [29] who showed that dual-unitary interactions could also be arranged ‘round-a-face’,
a model we here name clockwork4, with a circuit representation in terms of 1-site unitaries
controlled by both adjacent systems. We illustrate these circuits as follows:

(1)

These models have been shown to have similar global properties, supporting notions of
unitarity along both the time (vertical) and space (horizontal) direction, and with vanishing
single-site correlation functions everywhere except on the causal light cone. A common gen-
eralization is therefore strongly suggested, and indeed Prosen writes ‘it is an interesting open
question if one can find mappings between [brickwork and clockwork] circuit models on an
abstract level’.

Here we present such a generalization based on biunitary connections, algebraic structures
with a variety of applications in 2-categorical linear algebra. We reason about these structures
using the shaded calculus [30–32], a powerful graphical system analogous to traditional tensor
notation, but with the added feature of shadings assigned to certain diagram regions. In the
simplest representation scheme, these shadings represent the assignment of a finite indexing

4 Since the hands of a clock go round-a-face.
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set to the region, and any wires and vertices that border the region are then indexed by that
set. If any particular region is left unshaded, that means the region is assigned a 1-element set;
in this way the shaded calculus subsumes the traditional tensor notation, since the wires and
vertices bordering such a region become trivially indexed. For every shaded calculus diagram
we can compute a traditional representation in tensor notation; this is a nontrivial process
which increases the apparent circuit complexity, since we must add controlled gates to encode
the indexing behavior.

Full details of the shaded calculus must wait until section 2.2. However, we can already
use the shaded calculus to give a clear intuitive sense of our main results. Imposing for now
spacetime homogeneity, there are two possible shaded circuit structures, either completely
unshaded or completely shaded, as follows:

(2)

Both these diagrams are drawn in the shaded calculus, which we indicate by using circles
for the vertices, to contrast with the conventional circuit diagrams where we draw vertices
as squares. Diagram (2)(a) is a degenerate case of the shaded calculus since every region is
trivially shaded; it can therefore be interpreted directly as an ordinary tensor diagram, yielding
the traditional brickwork circuit (1)(a). In contrast, diagram (2)(b) has nontrivial shading, and
computing its associated tensor representation gives precisely the clockwork circuit (1)(b).

This shaded calculus representation therefore yields a structural unification of the brickwork
and clockworkmodels; while as conventional circuits they have very different structures, in the
shaded calculus their representation is uniform, with 4-valent vertices stacked in a brickwork
pattern. Furthermore, the dual unitarity property, which requires different definitions in the
conventional brickwork and clockwork cases, is unified by the single concept of biunitarity in
the shaded calculus representation.

However, our scheme offers more than notational unification, since spacetime homogeneity
is not a requirement. Dropping this condition allows us to explore a rich family of exactly-
solvable circuits, which can include more complex interaction patterns and geometries, which
have not previously been described. As a first example, we consider a simple diagonal bound-
ary between clockwork and brickwork regions, giving on the left the shaded calculus repres-
entation, and on the right the conventional circuit model:

(3)

This describes a dynamical boundary between a clockwork region on the left of each pic-
ture, and a brickwork region on the right, separated by a boundary which moves left-to-right
over time. In the diagram on the left, along the diagonal boundary, we see a new sort of biunit-
ary vertex, with two adjacent shaded regions in its neighborhood, and two adjacent unshaded
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regions. Previous results on biunitary connections tell us that such a vertex encodes the data of
a quantum Latin square5 [33], combinatorial objects of recent interest in quantum foundations.
It follows that quantum Latin squares precisely characterize the dynamics of this clockwork-
brickwork boundary.

Other interesting phenomena are possible. Here we begin at early times with a spatially
homogeneous brickwork circuit, but at a certain spacetime point P an operator inserts a clock-
work region, the boundaries of which then propagate left and right along the causal light cone:

(4)

At point P we see another shading pattern around the biunitary vertex, with one shaded and
three unshaded regions. These biunitaries have been characterized as corresponding to unitary
error bases6 [34, 35], another important quantum combinatorial structure, introduced origin-
ally by Werner [36] for classifying quantum teleportation protocols.

A further scenario we are able to precisely characterize is the reflection of two incident
boundaries with opposite velocities:

(5)

Here the biunitarity property implies that the central reflection point is described by a com-
plex Hadamard matrix, a result originally demonstrated by Jones in his work on subfactor
theory [32].

Another new possibility suggested by our approach is the construction of homogeneous
circuits with a regular shading pattern, such as the following, which makes further use of the
Hadamard biunitary:

(6)

5 A quantum Latin square is an n-by-n grid of elements of the Hilbert spaceCn, such that every row and column yields
an orthonormal basis (see definition 2.6).
6 A unitary error basis is family of unitary matrices which form an orthogonal basis of the operator space.
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Circuits of this form already appeared in the literature as ad hoc decompositions of unitary
circuits representing the ‘self-dual kicked Ising model’ [10, 20, 25, 37–39]. Using the shaded
calculus, we see that this decomposition originates naturally from biunitarity, and the relation-
ship to brickwork and clockwork circuits is made clear.

These phenomena can be combined in any spacetime orientation, to produce heterogeneous
circuits with rich global structure, such as the following:

(7)

We stress that both the shaded calculus and the biunitarity are known concepts (see e.g.
[30]). In this work we show how dual-unitary gates and dual-unitary interactions round-a-face,
the building blocks of brickwork and clockwork circuits respectively, can be naturally repres-
ented in the shaded calculus and included within the framework of biunitarity from which
they were hitherto missing. In this way we can make use of known results on other biunit-
ary connections to construct a unified framework—encompassing both families of circuits as
well as extending them through the introduction of known biunitary connections. We directly
extend a wide range of results in the context of many-body quantum dynamics to the intro-
duced biunitary circuits. Crucially, we show that all circuits produced by these techniques
all satisfy a range of attractive properties relating to correlation functions and entanglement
growth already known for the conventional brickwork and/or clockwork models. To achieve
this, the key insight is a new definition of solvable initial state appropriate for the shaded
calculus, generalizing the standard notion of solvable matrix product state for conventional
brickwork dual-unitary circuits. These solvable initial states allow us to derive exact results
for entanglement dynamics of biunitary shaded circuits, and to prove that biunitary circuits
exhibit exact thermalization after a finite number of time steps. In particular, we obtain solv-
able initial states for clockwork circuits, where no such construction or results on entanglement
growth were known so far.

1.1. Outline

In section 2 we introduce the shaded calculus and define biunitary brickwork circuits, focusing
on the use of the graphical calculus to systematically and easily construct dual-unitary circuits,
and present a dictionary between the shaded notation and the corresponding circuit represent-
ation. Section 3 reviews relevant results from dual-unitary circuits on the dynamics of correla-
tions, namely that single-site correlation functions vanish everywhere except on the light cone,
which we show to hold more generally for biunitary circuits. In section 4 we define solvable
initial states for these biunitary circuits, showing that the resulting dynamics in discrete time
results in exact thermalization after a finite number of time steps, and fully characterize these
initial states for different circuits. In section 5 we discuss the restrictions on the local Hilbert
space dimensions enforced by heterogeneous circuit structures. Section 6 presents outstanding
questions and an outlook. In appendix we provide an explicit parameterization of composite
biunitaries arising in periodic heterogeneous structure.

5
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2. Shaded calculus and biunitarity

2.1. Introduction to the shaded calculus

In the graphical notation for linear algebra, tensors and tensor composites are represented in
Penrose notation [40], as also popularized in the tensor network literature [41]. From the cat-
egorical perspective, the resulting diagrams can be interpreted as string diagrams for the pivotal
monoidal category Hilb of finite-dimensional Hilbert spaces [42, 43]. In this notation, wires
represent Hilbert spaces, and vertices represent linear maps between them, such that wiring
diagrams represents composite linear maps. Diagrams such as the following are standard:

(8)

This denotes a composite of tensorsU, V,W, with the indices a through h taken to represent
basis elements of certain Hilbert spaces, whose dimensions are usually left implicit. Vertices
represent complex numbers indexed by labels of adjacent wires; for example, the numbers
Va,d,f represent the coefficients of the linear map V. There is an implicit sum over the index
values of the closed wires d,e, f, and a direct sum over the remaining open wires, which gives
the input and output Hilbert spaces of the composite.

Our work uses the shaded tensor calculus, which adds the feature of shaded regions. This is
an instance of the planar graphical calculus for the dagger pivotal 2-category 2Hilb of finite-
dimensional 2–Hilbert spaces [43, 44], describing the theory of linear algebraic structures
that can be composed in the plane, and also reflected and rotated (see introductions [42, 43]
and research articles [30, 45–48]). The shaded calculus is not as well-known as the traditional
tensor notation, and so we introduce it carefully here. In an effort to demonstrate the simplicity
of this notation, we choose a presentation that emphasizes its similarity to the traditional tensor
calculus, avoiding explicit higher-categorical machinery.

An example of the shaded calculus is given in expression (9)(a), as follows:

(9)

6
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This example has blue and red shaded regions, with parameters p and q respectively. These
parameters are valued in some finite index set, determined by the dimension of the region,
which we usually leave implicit. As with the conventional tensor notation discussed above,
vertices represent complex numbers indexed by adjacent index labels, which can now include
region indices as well as wire indices. The example above represents tensors (Uq)a,b, Vp,q and
(Wp)b,c, where here we distinguish region indices by placing them within brackets, a notation
which will be helpful later. Note that only bare wires carry an index; wires bordering shaded
regions do not7. Again in common with the tensor calculus, we implicitly sum over paramet-
ers labeling closed regions, and take a direct sum over parameters labeling open regions8.
Unshaded regions can be considered to be trivially indexed over the 1-element set.

As a result, the data of diagram (9)(a) can be equivalently expressed in traditional tensor
notation as a family of controlled operators, which we show as diagram (9)(b). Regions in
the shaded diagram are now denoted as wires, which we draw here in the same color, and
vertices bordering the region are controlled by the corresponding wire. The control wires allow
precisely the same indexing behavior as encoded by the shaded diagram. However, note that
when the shaded region is entirely within the input of a vertex, such as the region labeled q in
the input of V above, then this is treated in the circuit representation as an input wire with no
control; outputs behave similarly.

The benefits of the shaded calculus include the simplicity of the representation, and the
stronger compositional properties, which we exploit heavily in this article. Of course, the tra-
ditional controlled tensor notation remains preferable in some instances, in particular where
the connectivity is non-planar.

The present article studies the behavior of 4-valent vertices with a variety of shading pat-
terns. Using the techniques described above, any such shaded vertex can be directly represented
as a controlled operator, and we will frequently make use of such a representation.

2.2. Biunitary circuits

In this section, we review relevant results from [30] and define biunitarity for general vertices.
We explicitly define the five biunitary building blocks of biunitary circuits: dual unitaries,
unitary error bases, complexHadamardmatrices, quantumLatin squares, and quantum crosses.
We then show how circuits of biunitary connections can be systematically constructed using
the graphical calculus, in such a way that the resulting circuit is unitary along both the time
and space direction.

Definition 2.1. A biunitary is defined as a vertex U

(10)

7 A natural generalization of this calculus allows all wires to carry an index, including those wires bordering shaded
regions, giving the full expressivity of the 2-category 2Hilb. However here we work entirely within a simpler fragment
of the theory.
8 Note that both regions in example (9)(a) are open; we will see examples of closed regions below.
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with a conjugate vertex U†, such that these satisfy the ordinary notion of (vertical) unitarity

(11)

as well as a notion of horizontal unitarity:

(12)

The constant λ can be uniquely determined from the biunitary and generally corresponds
to a power of the local Hilbert space dimension q. We will typically omit such factors in our
diagrams, such that all graphical equalities hold up to a scalar factor.

2.3. Quantum structures as biunitaries

Here we unpack the definition of biunitarity for the different shading patterns and connec-
tions relevant for this work. In each case we describe the quantum combinatorial object that
the biunitary corresponds to, and show explicitly how it is represented in controlled tensor
notation.

2.4. Dual-unitary gates

For a biunitary with no regions shaded, we obtain the ordinary tensor network concept of dual-
unitary gate. These are two-site unitary matrices with matrix elements Uab,cd represented as
follows9:

(13)

For such a linear map to be biunitary, a necessary condition is that wires c,b have the
same dimension, and wires a,d also have the same dimension. In this work we will make
the simplifying assumption that all four wires have the same dimension when writing down
explicit summations, but our results do not depend on this assumption. For a discussion of
dual-unitary gates where the wires have different dimensions, we refer the reader to [49].

9 We denote matrix elements with commas and parentheses where this helps to make the circuit representation more
transparent.

8



J. Phys. A: Math. Theor. 57 (2024) 335301 P W Claeys et al

Vertical unitarity directly corresponds to unitarity of U, as follows:

(14)

For dual-unitary gates both notions of vertical unitarity are equivalent since U†U= 1 and
UU† = 1 are equivalent. Horizontal unitarity implies that Ũab,cd := Ubd,ac, the dual operator,
is also unitary:

(15)

The other notion of horizontal unitarity is again equivalent.

Circuit representation. When representing biunitary circuits in terms of unitary gates, these
vertices are denoted as two-site unitary gates and will be written as follows:

(16)

2.5. Unitary error bases

Biunitary vertices with a single shaded region correspond to unitary error bases, important
quantum algebraic structures defined as follows.

Definition 2.2 (Knill [50]). A unitary error basis (UEB) is a complete orthogonal family of
q× q unitary matrices {Ua ∈ U(q)|a= 1 . . .q2}, where orthogonality is with respect to the
trace (Frobenius) norm: Tr(U†

aUb) = qδab.

UEBs have found numerous applications in quantum information theory, discovered by
Werner to underlie quantum teleportation [36] as well as dense coding and error correction
procedures [50, 51]. We characterize UEBs via biunitaries as follows.

9
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Lemma 2.3 (Vicary [34, 35]). Unitary error bases are precisely biunitaries with the following
shading pattern:

(17)

For such a vertex to be biunitary, a necessary condition is that the wires must carry the same
dimension q, and the shaded region must carry the dimension q2.

Proof. The vertical unitarity conditions correspond to each Ua being a unitary matrix:

(18)

The other vertical unitarity condition is equivalent. The first horizontal unitarity condition
guarantees the completeness of this basis, where we sum over the index corresponding to the
closed region:

(19)

The second horizontal unitarity condition returns the trace-orthonormality of the different
matrices, as follows:

(20)

Alternatively, we can define Ũa,bc = (Ua)bc as a linearmap Ũ ∈ Cq2×q2 , and these conditions
imply that Ũ is also unitary (note that a= 1 . . .q2 whereas b,c= 1 . . .q). Let us briefly comment
on the restoration of the prefactors of q (see [34, 35] for details). All prefactors can be directly
obtained using only the unitarity of Ua. For equation (20) the unitarity implies Tr(U†

aUa) =
Tr(1) = q, returning the prefactor q in the right-hand side. In equation (19) we can set a= c

and b= d and sum over both indices, in which case we obtain
∑q2

e=1Tr(U
†
eUe) = q3 for the

10
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left-hand side and q× q2 from the right-hand side, where the factor q2 originates from the
summations over a and b. This verifies that all prefactors are correct.

Circuit representation. The representation of a shaded calculus diagram as a controlled tensor
network depends on the orientation of the shaded region. If the shaded region is on the left or
right side we obtain a control wire, but not if it is above or below:

(21)

In the equation on the left the gray square hence represents a unitary matrix Ua ∈ U(q)
drawn from aUEBwith the wire a acting as a control parameter. In the equation on the right the
gray square conversely acts as the unitary matrix Ũ ∈ U(q2) defined above. Biunitarity implies
unitarity in the circuit representation irrespective of the orientation of the shaded region.

2.6. Hadamard matrices

Here we investigate the definition of Hadamard structures via biunitaries.

Definition 2.4. A Hadamard matrix is a matrix U ∈ Cq×q, which is proportional to a unitary
matrix, such that every matrix entry has modulus 1. It follows that UU† = U†U= q1.

In the shaded calculus, they are represented as biunitaries with two opposite shaded regions.

Lemma 2.5 (Jones [32]). Hadamard matrices are precisely biunitaries with the following
shading pattern:

(22)

For such a vertex to be biunitary, a necessary condition is that the regions a and b must have
the same dimension.

Proof. Vertical unitarity fixes all matrix elements to have modulus one:

(23)

11
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Both vertical unitarity conditions are equivalent. The two horizontal unitarity conditions fix
these matrices to be proportional to unitary matrices, where now λ= q, e.g.:

(24)

This completes the proof.

Circuit representation. In the language of quantum circuits, a complex Hadamard matrix with
vertical shaded regions corresponds to a 2-controlled phase Ua,b with a,b acting as control
parameters. A complex Hadamard matrix with horizontal shaded regions corresponds to a
one-site unitary gate U/

√
q, and both are represented by

(25)

Biunitarity again implies unitarity in the circuit representation irrespective of the orientation
of the shaded region.

2.7. Quantum Latin squares

Biunitaries can also be used to give a definition of quantum Latin square, as we now explore.

Definition 2.6. (Musto and Vicary [33]) For a q-dimensional Hilbert spaceH, a quantum Latin
square (QLS) is a square grid of states {Qa,b ∈ H |a,b= 1 . . .q}, such that each row and column
yields an orthonormal basis.

Lemma 2.7 (Jones [32]). Quantum Latin squares are precisely biunitaries with two adjacent
shaded regions:

(26)

For such a vertex to be biunitary, a necessary condition is that the wire and both regions all
have the same dimension q.

12
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Proof. The first vertical unitarity equation gives completeness of the elements of each row:

(27)

The second vertical unitarity returns the orthonormality of the elements of each row:

(28)

Horizontal unitarity leads to the corresponding relations for the columns of U.

Circuit representation. When representing a quantum Latin square as a circuit element, the
control wire corresponds to the shaded region which is oriented to the side. The possible circuit
elements are therefore as follows, depending on the orientation of the biunitary:

(29)

(30)

In all cases, the corresponding gate represented by a gray square acts as a 1-controlled unit-
ary gate∈ U(q). The horizontal wire corresponds to a control parameter, fixing the unitary gate
to act as the unitarity transformation set by the appropriate row a (column b) of the quantum
Latin square for the top (bottom) two diagrams. All orientations again lead to a valid unitary
circuit representation.

2.8. Quantum crosses

The final combinatorial structure we will consider is the quantum cross.

Definition 2.8. On a q-dimensional Hilbert spaceH, a quantum cross is a collection of q2 unit-
ary matrices {Ua,c ∈ U(H)|a,c= 1 . . .q}with matrix elements (Ua,c)b,d, such that the matrices
Ũb,d with matrix elements (Ũb,d)a,c = (Ua,c)b,d are also unitary.

Quantum crosses correspond precisely to the DUIRF gates of Prosen [29, section III.C], and
we can characterize them in terms of biunitaries as follows.

13
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Lemma 2.9. Quantum crosses are precisely biunitaries with all regions shaded:

(31)

For such a vertex to be biunitary, a necessary condition is for opposite regions to have the same
dimension.

Proof. Vertical unitarity corresponds to ordinary unitarity of the matrices Ua,b:

(32)

Horizontal unitarity corresponds to unitarity of the matrices Ũ given in definition 2.8:

(33)

Both vertical unitarity conditions and both horizontal unitarity conditions are again equi-
valent. This completes the proof.

Circuit representation. When interpreting quantum crosses as circuit components, we obtain
single-site double-controlled unitary gates where the 2 outer wires correspond to control para-
meters, i.e.

(34)

For this orientation a,c act as two control parameters, fixing the single-site gate to act as
Ua,c. The gate will again be unitary irrespective of orientation, with the two horizontal shaded
regions always acting as control parameters fixing a single-site unitary gate.

14
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2.9. Three shaded regions

The above examples fully exhaust all biunitary connections: either no shaded regions, a single
shaded region, or four shaded regions. The only remaining option would be a biunitary with
three shaded regions, having the following graphical form:

(35)

However, the vertical unitarity condition implies that the region labeled b has dimension 1,
and so this region is in fact unshaded, and we recover the Hadamard shading pattern.

2.10. Completeness

To conclude this section, we note that all possible biunitaries for local Hilbert space dimension
q= 2 are fully known. In this case a complete parameterizationwas given for dual-unitary gates
by Bertini et al [9], and for quantum crosses by Prosen [29]. For q= 2 the unitary error bases
are equivalent to the Pauli basis [52], and complex Hadamard matrices are equivalent to the
Fourier matrices [53]. In a 2× 2 quantum Latin square a single vector can be freely chosen,
after which orthonormality fixes all other vectors up to phase.

For Hilbert space dimensions larger than 2 complete parametrizations of general biunitary
connections remain absent in all cases. However, biunitaries for a larger Hilbert space can
be systematically constructed: the diagonal composition of biunitaries is again biunitary, such
that it is possible to compose biunitaries with a specific shading pattern out of other biunitaries
which may have a different shading pattern. Such constructions are the main topic of [30], and
were already used in [26] to construct specific classes of dual-unitary gates.

2.11. Biunitary circuits

The introduction of these different biunitaries now allows us to present the main result of this
work. Dual-unitary ‘brickwork’ circuits are circuits of dual-unitary gates, which we take to be
arranged with the specified space-time indexing:

(36)

These circuits are unitary when acting along the vertical direction and acting along the hori-
zontal direction, which has drastic consequences when we interpret these circuits as describing
unitary dynamics of a discrete lattice x (horizontal direction) along a discrete time t (vertical
direction). Every layer of dual-unitary gates can be interpreted as describing a single time step,

15
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and the resulting dynamics is exactly solvable [9]. We now generalize this notion to biunitary
circuits.

Definition 2.10. A biunitary circuit is a brickwork circuit constructed from biunitary vertices.

For convenience, we represent these biunitary circuits with a transparent gray background,
with the implicit assumption that every vertex is biunitary.

(37)

In practice, biunitary circuits can be directly constructed by taking a brickwork diagram and
introducing shading patterns following a tiling pattern consistent with biunitarity. All bound-
aries between shaded and unshaded regions must correspond to one of the presented biunitary
connections, which prohibits the appearance of vertices bordering on three shaded regions. We
emphasize that the transparent gray background can indicate both a shaded or an unshaded
region, with the only restriction being that all vertices are biunitary.

These circuits are again unitary both along the vertical and horizontal direction. This prop-
erty is a direct consequence of the fact that arbitrary finite diagonal composites of biunitar-
ies are again biunitary [30]. The described shading patterns guarantee that all biunitaries are
arranged in such a way that all compositions are diagonal compositions, such that the total
circuit is biunitary and can be seen as a dual-unitary transformation. This property is imme-
diately clear from the graphical notation: biunitary circuits represent unitary transformations
by construction, as implied by the fact that every biunitary connection can be represented as a
(controlled) unitary, and rotating the circuits by 90◦ returns an equally valid biunitary circuit,
which is hence also unitary.

We illustrate some possible shading patterns below, combined with their representation as a
quantum circuit consisting of (controlled) unitary gates. A fully unshaded circuit corresponds
to a brickwork circuit of dual-unitary gates. A fully shaded circuit corresponds to a circuit com-
posed of 2-controlled 1-qubit gates, returning the previously studied dual-unitary interactions
round-a-face (clockwork) circuits:

(38)

16
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Dual unitary clockwork and brickwork circuits can be ‘glued’ together by including a diag-
onal boundary of quantum Latin squares, here corresponding to a boundary of 1-controlled
1-site gates:

(39)

The intersection of two such boundaries corresponds to a unitary error basis. If the shaded
region lies along the top or bottom the UEB corresponds to a unitary gate mapping two q-
dimensional wires to a single q2-dimensional wire:

(40)

If the shaded region of the unitary basis lies along the left or right side it corresponds to a
1-controlled 1-site unitary:

(41)

Note that purely horizontal wires correspond to ‘control’ parameters for the bordering unit-
aries, whereas all wires with a vertical components are either the input or output of a (possibly
controlled) unitary gate. Both in the shaded calculus and in the unitary gate representation
biunitary circuits are clearly mapped to biunitary circuits when exchanging the role of time
and space, i.e. when rotating the full circuit by 90◦.

Note that the requirement that all vertices are biunitary introduces constraints on the pos-
sible Hilbert space dimensions represented by either the wires or the shaded regions—it is
possible for such circuits to be over-constrained, in which case (part of) the circuit can trivi-
alize, with all Hilbert space dimensions forced to equal one. A discussion of these constraints
is postponed to section 5.
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2.12. Periodic biunitary circuits

As one final example we consider a circuit with a regular shading pattern, periodic in both time
and space. We choose the simplest example of a checkerboard pattern of shaded regions:

(42)

The resulting unitary circuit is composed purely out of complex Hadamard matrices. Due
to the periodicity of the circuit a unit cell can be defined, and in both sides of equation (42) two
different choices of unit cell have been marked, each consisting of four complex Hadamard
matrices.

Depending on the choice of unit cell these circuits can be reinterpreted as either brickwork
or clockwork circuits, constructed out of composite dual-unitary gates or composite quantum
crosses respectively. Crucially, all these composite objects are guaranteed to be biunitary since
diagonal composites of biunitaries are again biunitary [30]. The shading pattern of the compos-
ite object fixes the kind of biunitary, here dual-unitary gates and quantum crosses respectively.
In the first case, the four complex Hadamard matrices in the unit cell can be grouped together
as a dual-unitary gate, as follows10:

(43)

In the second case, the four complex Hadamard matrices compose into a quantum cross:

(44)

Here we have extended the notation of black circles to correspond to tensors which are only
nonzero if all connecting wires agree:

(45)

Note that this notation is consistent with the use of black circles to indicate connections
between control wires and controlled unitary gates.

10 This construction of dual-unitary gates out of complex Hadamard matrices also appears in [26], generalizing pre-
vious constructions from [12, 49, 54].
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Circuits of the above form are prevalent in the literature on dual-unitary gates, where they
appear as decompositions of the self-dual kicked Ising model [10, 25, 37–39]. This decompos-
ition is typically argued from the explicit parametrization of the dual-unitary gate representing
the kicked Ising model, whereas here it is directly apparent from the underlying biunitary cir-
cuit construction. Explicit parametrizations are given in appendix for completeness.

3. Light-cone correlations

One of the main characteristics of dual-unitary circuits is that all ultralocal correlation coeffi-
cients vanish everywhere except on the edge of a causal light cone, where they can be efficiently
calculated. This property has led to dual-unitary circuits being termed ‘exactly solvable’. The
proof for dual-unitary gates is purely graphical and depends on the horizontal and vertical
unitarity of the building blocks [9]. The introduction of the shaded calculus allows this proof
to be extended to general biunitary circuits.

Definition 3.1 (operator at a given site). For an operator ρ ∈ Cq×q, and some choice of site
x ∈ N according to the indexing convention of (36), we define ρ(x) as the operator ρ acting at
site x, as follows:

(46)

In the second line the black circle represents ρ and we have used the convention from figure 37.
Any biunitary circuit represents a unitary operator U , with the number of rows in the biunit-

ary circuit equal to the number of discrete time steps. From now on, we will introduce the
number of time steps as an additional label t and write Ut.

Definition 3.2. At integer coordinates x, t, we define the correlation function as follows:

cρσ (x, t)≡ ⟨U†
t ρ(0) Utσ (x)⟩ ≡ Tr

[
U†
t ρ(0) Utσ (x)

]
/Tr [1] (47)

The trace indicates that these correlation functions are taken w.r.t. the maximally mixed state,
also known as the infinite-temperature state, ⟨O⟩= Tr(O)/Tr(1).

Note that we here assume that the wires on sites 0 and x do not border a shaded region and
represent a free index, i.e. the initial and final operators act on a Hilbert space represented by
a wire (as opposed to a shaded region). In the case where either the initial or final operator
act on a Hilbert space represented by a shaded region, the proof is fully analogous. In the
graphical notation, it is then possible to interpret equation (46) as a two-site operator acting on
the Hilbert spaces represented by the two neighboring shaded regions of the black circle. Any
statements about single-site operators acting on wires can be directly translated to two-site
operators acting on shaded regions (as also implicit in [29], where exact results are presented
for correlation functions of two-site local operators for DUIRF models).

Without loss of generality we take both ρ and σ to be traceless. Otherwise we can redefine
ρ→ ρ−Tr(ρ)/Tr(1)×1 and similar for σ, and use the linearity of the correlation function
in ρ and that the correlation functions for the identity 1(x) = 1 are trivially constant since
U†
t 1(x)Ut = U†

t Ut = 1.
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Theorem 3.3. The infinite-temperature correlation functions vanish everywhere except on the
edge of the causal light cone: cρσ(x, t) = 0 unless |x|= t, t− 1.

Proof. The proof proceeds graphically using the shaded calculus. In order to represent the
biunitary circuits in full generality, we again represent Ut as a biunitary circuit with a transpar-
ent gray background, whereas we represent U†

t as the corresponding circuit with a transparent
red background, again with the convention that every region in the above circuit can either be
shaded or not and assuming that every vertex is biunitary. Graphically,

(48)

Here we have represented ρ as a black circle. In these circuits we will only ever contract
each biunitary connection U with the corresponding U†, so we have made the labels implicit.
Through the repeated use of vertical unitarity, the above circuit can be simplified by first elim-
inating pairs of biunitary connections U and U† in the first row, and subsequently repeating
this simplification, to yield the following:

(49)

This operator acts nontrivially only within the ‘hourglass’ shape and acts as the identity
everywhere else. The support grows linearly in the number of time steps, representing the
causal structure of unitary brickwork circuits. Note that this property only depends on the
vertical unitarity. For |x|> t the argument immediately follows from the above representation
of U†

t ρ(0)Ut, which acts as the identity on the support of σ(x), and hence:

cρσ (|x|> t, t)≡ Tr
[
U†
t ρ(0) Utσ (x)

]
= Tr

[
U†
t ρ(0) Ut

]
Tr [σ (x)] = Tr(ρ)Tr(σ) = 0 . (50)
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For |x|< t− 1 the correlations vanish due to the additional horizontal unitarity. The trace is
represented by dashed lines at the top of the bottom, where we assume periodic boundary con-
ditions connecting the wires and regions at the top and bottom of the diagram. Representing
σ as a black circle with support inside the causal light cone of ρ, a single application of hori-
zontal unitarity can be used to remove the rightmost biunitaries and simplify the corresponding
diagrams as follows:

(51)

These diagrams can be further ‘telescoped’ using horizontal unitarity until the initial oper-
ator ρ is encountered:

(52)

As such, Tr(ρ) is again going to factorize out and the correlation function vanishes,
cρσ(|x|< t− 1) = 0.

Exactly on the edge of the causal light cone the correlations can be calculated using the
approach outlined in [9, 15], using vertical unitarity to simplify the circuits as follows:
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(53)

Finally we obtain the following:

(54)

The result for |x|= t− 1 is analogous. Expressions of the above form can be efficiently
calculated since the total number of biunitaries only grows linearly with the number of time
steps (see again [9, 15]).

We emphasize that all graphical manipulations are identical to the known derivations for
dual-unitary brickwork circuits. The innovation here is to observe that the traditional proof
extends to this more general case, thanks to the expressiveness of the shaded calculus. As a
result, all such circuits will give rise to the light-cone dynamics of correlations functions that
is characteristic of dual-unitary circuits.

4. Entanglement dynamics

4.1. Solvable states

Important properties of dual-unitary gates include maximal entanglement growth and exact
thermalization to an infinite-temperature state after a finite number of time steps [10, 11, 17–
19, 55, 56]. However, exact calculations of the entanglement growth and thermalization are
restricted to special ‘solvable’ initial states [11]. In this section, we first extend the notion of
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solvable states to general biunitary circuits, and subsequently use these to present exact results
for entanglement dynamics and to prove that biunitary circuits exhibit exact thermalization
after a finite number of time steps.

We first define the solvability of local tensors acting as building blocks for solvable states
defined on the full lattice.

Definition 4.1. A solvable tensor is defined as a vertex N , where all regions can again be
shaded or not,

(55)

with a conjugate vertex N †, such that the following conditions hold:

(i) These satisfy a notion of horizontal unitarity:

(56)

(ii) The transfer matrix E(N ) constructed out of N and N † as

(57)

can be rescaled to have a unique eigenvalue λ with largest absolute value λ= 1 and
with algebraic multiplicity 1, with corresponding left and right eigenstates following from
equation (56) as follows:

(58)

This definition is a direct generalization of the definition of solvable matrix product states
from [11], now taking into account different possible shadings of the vertex. As will be illus-
trated below, the first condition generically implies the second one.

A state for the full lattice can be constructed out of a set of solvable tensors as follows:

Here we have made the labels N implicit and again introduced a transparent gray back-
ground to indicate that every region in the above state can either be shaded or not, with the
implicit assumption that every vertex corresponds to a solvable tensor. The resulting biunitary
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circuit dynamics of such a state can be represented in the following manner, with the restric-
tion that the shading pattern of the initial state matches the shading pattern of the biunitary
circuit:

(59)

4.2. Entanglement entropy

Quantum thermalization and entanglement is encoded in the reduced density matrix ρA(t) for
a subsystem A, which is defined by tracing out all degrees of freedom from the complement of
A in the density matrix. Graphically, the reduced density matrix can be represented as follows:

(60)

Here we have chosen the subsystem A to consist of 4 neighboring wires, and have restricted
the circuit to t= 4 time steps. The dashed lines in the complement A again indicate connections
between the top region and the bottom region corresponding to the partial trace. The exact
system size will also depend on whether the regions are shaded or not (in the example above,
either 4 wires or 5 shaded regions). However, the reduced density matrix (60) and the following
derivation hold irrespective of whether the subsystem consists of shaded or unshaded regions.
Only the specific operator realization and the Hilbert space of the subsystem A will depend on
the choice of shading.

Theorem 4.2. For a subsystem A consisting of ℓ neighboring wires, the reduced density matrix
on A for an initial solvable state evolved using a biunitary circuit for t discrete time steps equals
the identity operator on A for t⩾ ℓ/2, i.e.

ρA (t⩾ ℓ/2) = 1A/qA ,

where qA is the dimension of the Hilbert space of the subsystem A in the circuit representation.
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This result is known as thermalization: after sufficiently long time evolution, the reduced
density matrix for a subsystem A attains a stationary value in which all information about the
initial state is lost. Biunitary circuits hence exhibit exact thermalization of a subsystem A after
t= ℓ/2 time steps. The entanglement entropy, defined as SA(t) =−Tr[ρA(t) ln(ρA(t))], reaches
its maximal value of

SA (t⩾ ℓ/2) = ln(qA) .

Since the reduced density matrix equals the identity, this model has a flat entanglement spec-
trum [10], indicating that all Rényi entropies S(n)A (t), defined as

S(n)A (t) =
1

1− n
lnTr

[
ρA (t)

n]
, (61)

reach the same maximal value of S(n)A (t⩾ ℓ/2) = ln(qA),∀n ∈ N.

Proof. The proof can again be made purely graphical and follows the same steps as the deriv-
ation of Piroli et al [11], with the shaded regions here giving greater generality. We here illus-
trate the proof for the setup of equation (60), and extensions to different time steps and sub-
systems A follow directly. Using vertical unitarity of the vertices, equation (60) can first be
simplified to yield:

(62)

To the left and right, the effect of the environment now consists of the repeated application of
the transfer matrix E(N ) from equation (57). Since the environment is infinite, we can replace
the transfer matrix by a projector on the leading eigenspace, which here is nondegenerate and
with corresponding eigenstates defined in equation (58). Introducing these eigenstates, the
above expression simplifies as follows, where we have also moved all connecting wires along
the top/bottom to the sides for clarity:

(63)
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Using the solvability of the initial state, the horizontal contractions can be propagated along
the initial state, using first the solvability condition and then the horizontal unitarity of the
vertices in the circuit:

This procedure can be repeated to eliminate all vertices originating from the initial state,
leading to the following:

(65)

All remaining vertices can be removed using vertical unitarity, resulting in a final expression
for the reduced density matrix as follows:

(66)

The correct prefactor can be recovered by noting that Tr[ρA(t)] = 1.

The condition t⩾ ℓ/2 arises from the necessity to fully propagate the horizontal contrac-
tions along the initial state, which is only possible after sufficiently many time steps. To illus-
trate this condition, consider a subsystem of size ℓ= 8 and t= 2 time steps, where a similar
derivation can be performed:

(67)
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The expression on the right hand side can no longer be simplified. For each time step we
can perform a single contraction along the horizontal direction removing a two-site solvable
tensor, resulting in the condition t⩾ ℓ/2. However, such an expression can still be used to
calculate the entanglement entropy: equation (67) corresponds to a unitary transformation of
an operator acting nontrivially on ℓ− 2t wires and acting as the identity on the remaining 2t
wires. The nonzero values in the entanglement spectrum are hence given by the eigenvalues of
this operator. While this eigenspectrum is typically nontrivial, it can be obtained in the scaling
limit where ℓ, t→∞ while the ratio ℓ/t is kept fixed using the approach from [11]. The result
will depend on the specific choice of circuit, with examples given below [see equations (76)
and (86)].

4.3. Examples of solvable states and entanglement dynamics

In this subsection we consider the two limiting cases of brickwork and clockwork circuits as
well as the intermediate dynamical boundary construction and explicitly construct solvable
states as matrix product states (MPSs). The explicit representation as matrix product states
guarantees that these states are area-law entangled [41] (the entanglement SA does not scale
with the size of A but rather with the size of the boundary A, i.e. is constant in one dimension),
to be contrasted with the volume-law entanglement of the steady-state reduced density matrix
(the entanglement scales with the size of A).

4.3.1. Matrix product states. For completeness, we briefly recall the definition of matrix
product states (see e.g. [41]). A two-site shift invariant matrix product state for a system of L
sites with local Hilbert space dimension q can be written as

|Ψ({A} ,{B})⟩=
q∑

{ij}

Tr
[
A(i1)B(i2)A(i3)B(i4) . . .

]
|i1, i2 . . . iL⟩, (68)

parametrized in terms of a sets of matrices {A(i)|i = 1 . . .q}, {B(i)|i = 1 . . .q}with dimensions
χ ×χ. The dimension χ is known as the bond dimension and determines an upper bound on
the entanglement between lattice subsystems. Crucially, if χ is a constant the entanglement
entropy of any subsystem does not scale with subsystem size.

The amplitudes in thewave function can be graphically expressed by introducing the tensors

(69)

which results in:

(70)
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4.3.2. Brickwork circuits. For purely dual-unitary circuits the definition of solvable tensors
by construction reproduces the notion of exactly solvable matrix product states [11]. Since
there are no shaded areas, these tensors have four indices and we can write:

(71)

The indices b,c correspond to the physical Hilbert space with e.g. dimension q, whereas
the indices a,d correspond to an auxiliary Hilbert space that we take to have bond dimension
χ. The corresponding initial state is immediately expressed as a matrix product state. For con-
venience we take all N to be identical, resulting in a translationally invariant state, although
this is not a necessary restriction:

(72)

(73)

This expression corresponds to a matrix product state (69) with N (i,j) = A(i)B( j). The first
solvability condition can be written as:

(74)

Such states have been extensively analyzed in [11], and we here repeat the main results. The
condition (56) corresponds to unitarity of the matrixW with matrix elementsWab,cd =N (b,c)

ad .
As such, solvable state are uniquely parametrized by unitary matrices acting on Cq⊗Cχ. The
second condition typically needs to be checked on a case by case basis and corresponds to
injectivity of the corresponding MPS. Explicit parametrization for different bond dimensions
χ= 1 and χ= 2 were presented in [11], and for χ= 1 injectivity is guaranteed whereas for
χ= 2 the non-injective states form a set of measure zero. As such, the first condition (56) is
the more stringent one.

The time-evolved state can be represented in the shaded calculus and in tensor network
notation respectively as:

(75)

As shown in [11], the entanglement entropy for a subsystem of size ℓ and local Hilbert space
dimension q can be calculated in the scaling limit where ℓ, t→∞ for a finite ratio ℓ/t= ζ,
using expressions of the form (67), where it was shown to take the universal form

lim
ℓ,t→∞
ℓ/t=ζ

SA (t)/ℓ=min
(
2, ζ−1

)
log(q) . (76)

28



J. Phys. A: Math. Theor. 57 (2024) 335301 P W Claeys et al

The entanglement entropy grows with the maximal possible slope of 2 log(q), characteristic
of dual-unitary circuits [18].

4.3.3. Clockwork circuits. Our construction directly allows for the construction of solvable
initial states for clockwork circuits, which we introduce here. Since all regions are now shaded,
the tensors N are parametrized by three indices, and we write:

(77)

We take all indices to correspond to dimension q, since these will correspond to physical
indices in the tensor network representation. The first solvability conditions are as follows:

(78)

(79)

These conditions can be directly seen to be equivalent to the unitarity of the matrices
N (b),∀b. As such, solvable states for clockwork circuits are parametrized by a set of unit-
ary matrices {N (b) ∈ U(q)|b= 1 . . .q}.

For any such set of unitary matrices the additional condition on the transfer matrix (57) is
generically satisfied. This can be understood from an explicit construction: the matrix elements
of the q× q transfer matrix E(N ) are defined from equation (57) as

E(N )ac =
1
q

q∑
b=1

[
N (b)
ac

]∗
N (b)
ac =

1
q

q∑
b=1

∣∣∣N (b)
ac

∣∣∣2 (80)

where we have rescaled E(N ) by a factor q. Due to the unitarity of the individual matrices
N (b) this is a doubly stochastic matrix. Doubly stochastic matrices are guaranteed to have
leading eigenvalue 1, with corresponding (left and right) eigenvectors v satisfying vc = 1,∀c,
consistent with equation (58). Furthermore, if all matrix elements are positive the Perron–
Frobenius theorem guarantees the nondegeneracy of this leading eigenvalue. Nonapplicability
of the Perron–Frobenius theorem would require zero matrix elements in the transfer matrix,
i.e. E(N )ac = 0, in turn requiring the corresponding matrix element to vanish in all unitary
matrices and N (b)

ac = 0,∀b. As such, generic sets of unitary matrices result in solvable initial
states.

Explicitly writing out the corresponding state results in the following, where for conveni-
ence we have again taken all N to be identical:

(81)

(82)
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This state can be rewritten as an exact MPS by introducing auxiliary tensors

(83)

where the second tensor serves to take care of the threefold appearances of the indices i2, i4, . . .
in the argument of the summation. These correspond to the A and B tensors in equation (69),
resulting in the equivalent MPS representation:

(84)

The time-evolved state can be represented in the shaded calculus and in tensor network
notation respectively as follows:

(85)

The entanglement entropy for a subsystem of size ℓ and local Hilbert space dimension q
can again be calculated in the scaling limit where ℓ, t→∞ for a finite ratio ℓ/t= ζ, using
expressions of the form (67):

lim
ℓ,t→∞
ℓ/t=ζ

SA (t)/ℓ=min
(
2, ζ−1

)
log(q) (86)

Since the derivation for the entanglement entropy is similar to the known derivation for dual-
unitary circuits [11], we here only sketch the outline. The Rényi entropies (61) can be calcu-
lated from Tr[ρA(t)n], the graphical expression of which contains contractions of the transfer
matrix (57). In the scaling limit the transfer matrix can be replaced by the projector on its lead-
ing eigenstates and all contractions explicitly evaluated, resulting in an expression for the trace
as q(2t+2)(1−n), in turn giving the result for the presented entanglement entropy. Clockwork
circuits reproduce the maximal entanglement growth of dual-unitary brickwork circuits.

4.3.4. Hybrid circuits. More general biunitary circuits typically require solvable states com-
bining shaded and unshaded regions. The corresponding tensors in the initial state are largely
similar to the ones in the clockwork circuits. With two shaded regions, the tensorsN are again
parametrized by three indices, and we write

(87)
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and the conditions for solvability are formally equivalent to those for equation (77):

(88)

(89)

As such, the corresponding states can again be parametrized by a set of unitary matrices
and be represented as a matrix product state. Considering e.g. the case of a diagonal moving
boundary between the two regions, we find that:

(90)

5. Restrictions on the Hilbert space dimension

As already mentioned, the inclusion of unitary error bases introduces relations between the
different Hilbert space dimensions. These restrictions can be illustrated by considering a dual-
unitary brickwork circuit where a clockwork wedge has been inserted:

(91)

Such diagrams now consist of both dual-unitary gates, quantum crosses, quantum Latin
squares, and a single unitary error basis. When represented in terms of unitary gates, this
circuit is represented as follows:

(92)
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The introduction of unitary error bases introduces restrictions on the local Hilbert spaces,
since in this example the UEB has two wires of dimension q coming in and a single wire of
dimension q2 coming out. However, circuits where wires carry different Hilbert spaces can
still be considered, as also argued in [49] for dual-unitary brickwork circuits.

The general restrictions on the dimensions of Hilbert spaces imposed by each biunitary can
be formulated as follows (see also section 2.3): for dual-unitary gates, diametrically opposite
wires must have the same dimension; for quantum crosses, opposite shaded regions must have
the same dimension; for a quantum Latin square, the wire must have the same dimension as
both shaded regions; for a Hadamard matrix, both shaded regions have the same dimension.
For a UEB, the wires must have the same dimension as each other, and the shaded region must
have the dimension of the product space.

In the above example, if we label the incoming wires in the UEB with Hilbert space dimen-
sions q, then the outcoming shaded region must have dimension q2. Since the UEB borders on
a QLS, where both the two shaded regions and the single wire have the same dimension, this
determines the Hilbert space dimensions of all wires bordering on a QLS to have dimension q2.
The quantum cross bordering the UEB similarly enforces all shaded regions inside the wedge
to have dimension q2, as illustrated below.

(93)

5.1. Trivialization

Note that it is possible to have restrictions where the only consistent solution is to have a
large part of the local Hilbert spaces to be one-dimensional, in which case part of the circuit
trivializes. We illustrate one such a circuit below:

(94)

In this example, the quantum crosses and Latin squares force the shaded regions to have the
same dimension within each rectangle. The UEBs in the middle of the picture require n2 = m
and m2 = n, for which the only integer solution is m= n= 1.

6. Discussion and outlook

Through the use of a 2-categorical framework we have introduced biunitary circuits, unify-
ing the notions of dual-unitary brickwork and interactions round-a-face (clockwork) circuits.
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While in this work we focused on the dynamics of correlation functions and entanglement,
we expect that general results for dual-unitary circuits can be extended to biunitary circuits.
The presented proofs in this work could be performed purely graphically, without any specific
reference to the underlying parametrization of the biunitaries. Fixing specific parametriza-
tions and corresponding circuit realizations should allow additional results on dual-unitary
circuits to be extended to biunitary circuits, where it can be expected that any ‘generic’ choice
of biunitaries will lead to similar results as for ‘generic’ dual-unitary circuits. Specifically,
dual-unitary circuits have gained special attention in the context of quantum chaos because
of exact calculations of e.g. the spectral form factor [20, 21] and the spectral function [23]
indicating chaotic behavior. We expect that similar calculations are possible for biunitary cir-
cuits, which would establish the connection between biunitary circuits and random matrix
theory. Furthermore, while generic parametrizations of dual-unitary gates will generally lead
to chaotic quantum dynamics, it is possible to fine-tune the underlying gates such that the full
circuit is no longer chaotic and systematic parametrizations of dual-unitary gates remain an
active topic of research [9, 13, 49, 54, 57–61]. It is still an open question how parametrizations
of these new biunitary connections can influence the level of ergodicity and the corresponding
diagnostics of quantum chaos. Additionally, exact results on operator spreading in (perturbed)
dual-unitary brickwork circuits should have direct analogs in the presented biunitary circuits
[15–17, 55, 62].

Similarly, measurement schemes inspired by biunitarity have already allowed for exact
studies of the interplay of dual-unitary dynamics with projective measurements [56] and
established further connections with random matrix theory through deep thermalization [25–
27, 63]. Exact calculations of the latter depended on the definition of solvable measurement
schemes as an extension of solvable initial states preserving spatial unitarity, and it is an open
question how to extend these solvable measurement schemes to general biunitary circuits.
This question is especially relevant given the possible connection with measurement-based
quantum computation enabled by dual-unitarity [39].

There are several natural avenues along which to explore generalizations of the circuits
described here, including the effects of lattice symmetries [64–66], discrete conformal sym-
metry [67], random geometries [68], open systems [69], and higher dimensions [70, 71]. On
the level of biunitarity, it is possible to further extend the biunitary building blocks and include
controlled families of biunitary connections [30]. Such biunitaries can similarly be included in
the presented construction and would correspond to the propagation of classical information.
We leave the study of such circuits to future work.
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Appendix. Explicit parametrizations of composite biunitaries

In this appendix we provide some explicit parametrizations for the composite biunitary con-
nections discussed in section 2.12. The dual-unitary gates from equation (43) are written as

(95)

While the four complex Hadamard matrices can be chosen to be different, we will focus on
the case where these are identical. For q= 2 the simplest complex Hadamard matrix is given
by

H=
1√
2

(
1 1
1 −1

)
. (96)

The resulting dual-unitary gate has matrix elements Uab,cd = q×HabHbdHdcHca, which eval-
uates to

U=
1
2


1 1 1 −1
1 −1 1 1
1 1 −1 1
−1 1 1 1

 . (97)

These dual-unitary gates have the special properties that they are both Clifford gates and result
in ‘matchgate’ circuits that can be mapped to free fermions [72, 73]. The resulting circuit
corresponds to the self-dual kicked Ising model at the integrable point [10, 25, 37–39]. Note
that this gate is by construction not just dual-unitary, but self-dual: Ũ= U.

The quantum cross from equation (44) is constructed as

(98)

Expressed in matrix elements (Ua,c)b,d = q×
∑

eHaeHbeHceHde, the different matrices
evaluate to

U0,0 = U1,1 =

(
1 0
0 1

)
, U1,0 = U0,1 =

(
0 1
1 0

)
. (99)

More involved biunitary connections follow from dressing the complex Hadamard matrix with
a phase, e.g. taking

H=
1√
2

(
1 eiϕ

1 −eiϕ
)
, (100)
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with the resulting dual-unitary gate given by

U=
1
2


1 e2iϕ eiϕ −eiϕ
eiϕ −eiϕ e2iϕ e4iϕ

1 e2iϕ −eiϕ eiϕ

−eiϕ eiϕ e2iϕ e4iϕ

 , (101)

and the quantum cross by

U0,0 = U1,1 = e2iϕ
(

cos2ϕ −i sin2ϕ
−isin2ϕ cos2ϕ

)
, U1,0 = U0,1 = e2iϕ

(
−i sin2ϕ cos2ϕ
cos2ϕ −isin2ϕ

)
.

(102)

For a generic phase the resulting circuit now corresponds to the self-dual kicked Ising model
away from the integrable point.
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