
THÈSE DE DOCTORAT DE
SORBONNE UNIVERSITÉ

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par

Rocco Mora

Pour obtenir le grade de

DOCTEUR de SORBONNE UNIVERSITÉ

Algebraic techniques for decoding Reed-Solomon codes
and cryptanalyzing McEliece-like cryptosystems

soutenue publiquement le 7 avril 2023

devant le jury composé de :

Jean-Pierre Tillich Inria de Paris Directeur
Ayoub Otmani Université de Rouen Rapporteur
Daniel Smith-Tone NIST, University of Louisville Rapporteur
Magali Bardet Université de Rouen Examinatrice
Alain Couvreur Inria de Saclay Examinateur
Vincent Neiger Sorbonne Université Examinateur
Joachim Rosenthal University of Zurich Examinateur
Nicolas Sendrier Inria de Paris Examinateur

Contents

Contents i

List of Tables v

Introduction (Français) vii

Introduction xv

1 Preliminaries 1
1.1 Algebraic Coding theory . 3

1.1.1 Error-correcting codes . 3
1.1.2 Bounds on codes . 7
1.1.3 Reed-Solomon codes . 10
1.1.4 Subfield subcodes of RS codes: alternant and Goppa codes . 15
1.1.5 Product and square of codes 18

1.2 Code-based cryptography . 21
1.2.1 Public key cryptography . 21
1.2.2 Quantum computing in a nutshell 22
1.2.3 Post-quantum cryptography 22
1.2.4 Hard problems from coding theory 25
1.2.5 McEliece’s scheme . 27
1.2.6 Niederreiter’s scheme . 29
1.2.7 Other code-based PKE frameworks and schemes 31
1.2.8 Digital signatures: definitions and main approaches 33
1.2.9 Cryptanalysis on code-based schemes 38

1.3 Gröbner Bases . 43
1.3.1 Monomial orderings . 44
1.3.2 Polynomial reduction and Gröbner bases 46
1.3.3 Buchberger’s algorithm: a first method to compute Gröbner

bases . 48
1.3.4 The Macaulay matrix . 50
1.3.5 Advanced Gröbner basis algorithms and solving strategies . . 53
1.3.6 The Hilbert series . 56
1.3.7 Regular and semi-regular sequences 58
1.3.8 Systems with a special shape: application to coding theory

and cryptography . 59

2 Decoding of Reed-Solomon codes with Gröbner bases 61

i

2.1 Introduction . 62
2.2 Power decoding . 63
2.3 The Algorithm . 67
2.4 A partial explanation of the algebraic behavior 69

2.4.1 Correcting up to the Sudan bound in polynomial time 69
2.4.2 Decoding up to the Johnson radius 72
2.4.3 Proof of Theorem 2.1 . 74

2.5 Experimental Results . 77
2.6 Conclusions . 78

3 The square of the dual of alternant and Goppa codes 81
3.1 Introduction . 82

3.1.1 A distinguisher for high-rate alternant and Goppa codes . . . 82
3.1.2 Our contribution . 83

3.2 The relationship between the distinguisher of [Fau+11; Fau+13] and
the square code construction . 85

3.3 A general result about the square of a trace code 89
3.4 Alternant case with eA = 0 and Goppa case with eG = 0 93
3.5 Alternant case with eA > 0 . 94
3.6 Goppa case with r ≥ q − 1 . 95
3.7 Conclusions . 100

4 An attack on high-rate random alternant codes 103
4.1 Introduction . 105
4.2 Notation and prerequisites . 110

4.2.1 Shortening and alternant codes 110
4.2.2 Conductors and filtrations . 111
4.2.3 Base field extension and alternant codes 111

4.3 The filtration . 113
4.3.1 Proof of Theorem 4.1 . 114
4.3.2 Complexity of computing the filtration 118
4.3.3 What is wrong with Goppa codes? 120

4.4 Algebraic cryptanalysis . 124
4.4.1 The algebraic modeling from [Fau+13] 125
4.4.2 Reducing the number of solutions 126
4.4.3 The algorithm for q odd . 132
4.4.4 Theoretical and experimental validation of the algebraic

algorithm . 133
4.4.5 Differences in the q = 2s case 140
4.4.6 Limitations of the algebraic cryptanalysis approach: higher

orders and Goppa codes . 146
4.5 Interlacing the algebraic recovering with the filtration 148
4.6 Conclusions . 150

5 Enhancing the distinguisher by shortening the dual code 151
5.1 Introduction . 152
5.2 Experimental results . 153
5.3 A direct sum decomposition of the shortened dual code 158

ii

5.4 A decomposition for the square code 162
5.4.1 Empirical dimensions of the square code summands and their

intersections . 162
5.4.2 A partial explanation for the square of the shortened code . . 166

5.5 Conclusions . 171

Conclusion 173

Bibliography 177

iii

List of Tables

1.1 Breakdown of NIST post-quantum candidates for each round and category. 25
1.2 McEliece’s scheme . 28
1.3 Niederreiter’s scheme . 30
1.4 CFS signature . 36
1.5 Comparison of ISD workfactor exponents for several algorithms. 40

2.1 Experimental results for a [n, k]q = [64, 27]64 RS-code. System (2.3)
contains 26 variables pi. Johnson’s bound is t = 23. 78

2.2 Experimental results for a [n, k]q = [256, 63]256 RS-code. System (2.3)
contains 62 variables pi. Johnson’s bound is t = 130. 78

2.3 Experimental results for a [n, k]q = [37, 5]61 RS-code. System (2.3)
contains 4 variables pi. Johnson’s bound is t = 24, Gilbert-Varshamov’s
bound is t = 28. 79

3.1 Comparison between Classic McEliece and smallest distinguishable code
rates. 84

3.2 Square code dimensions when the square coincides with the dual of the
small alternant code. 101

4.1 Summary of polynomial time attacks on McEliece schemes based on
alternant codes with the conditions to apply them. 109

5.1 Square code dimensions. Parameters: (q, r,m, n) = (17, 15, 2, 289) 154
5.2 Square code dimensions. Parameters: (q, r,m, n) = (17, 15, 2, 278) 154
5.3 Square code dimensions. Parameters: (q, r,m, n) = (17, 17, 2, 289) 155
5.4 Square code dimensions. Parameters: (q, r,m, n) = (17, 18, 2, 289) 155
5.5 Square code dimensions. Parameters: (q, r,m, n) = (17, 19, 2, 289) 155
5.6 Square code dimensions. Parameters: (q, r,m, n) = (3, 5, 7, 2187) 155
5.7 Square code dimensions. Parameters: (q, r,m, n) = (3, 6, 7, 2187) 156
5.8 Square code dimensions. Parameters: (q, r,m, n) = (3, 7, 7, 2187) 156
5.9 Square code dimensions. Parameters: (q, r,m, n) = (3, 8, 7, 2187) 156
5.10 Square code dimensions. Parameters: (q, r,m, n) = (3, 9, 7, 2187) 156
5.11 Square code dimensions. Parameters: (q, r,m, n) = (3, 10, 7, 2187) 156
5.12 Square code dimensions. Parameters: (q, r,m, n) = (2, 7, 13, 8192) 157
5.13 Square code dimensions. Parameters: (q, r,m, n) = (2, 8, 13, 8192) 157
5.14 Square code dimensions. Parameters: (q, r,m, n) = (2, 9, 13, 8192) 157
5.15 Square code dimensions. Parameters: (q, r,m, n) = (2, 10, 13, 8192) . . . 157
5.16 Dimensions of codes for the square code decomposition. Parameters:

(q, r,m, n) = (17, 15, 2, 289) . 163

v

5.17 Dimensions of codes for the square code decomposition. Parameters:
(q, r,m, n) = (17, 15, 2, 278) . 164

5.18 Dimensions of codes for the square code decomposition. Parameters:
(q, r,m, n) = (17, 17, 2, 289) . 164

5.19 Dimensions of codes for the square code decomposition. Parameters:
(q, r,m, n) = (17, 19, 2, 289) . 165

5.20 Dimensions of codes for the square code decomposition. Parameters:
(q, r,m, n) = (3, 8, 7, 2187) . 165

vi

Introduction (Français)

Le contexte
Les codes correcteurs d’erreurs linéaires sont le leitmotiv de ce manuscrit. Un
code linéaire C est défini comme un sous-espace vectoriel sur un corps fini F. En
particulier, la longueur du code est le nombre n tel que C est un sous-espace de
Fn. La dimension du code est le nombre k qui exprime la dimension de C en tant
que sous-espace de F. Le rapport k/n est le rendement du code. L’autre notion
clé d’un code linéaire est la distance minimale dmin, définie comme la plus petite
distance possible entre deux éléments, appelés mots de code, dans le code. Différentes
définitions peuvent être adoptées pour calculer une distance. La métrique la plus
courante est celle dite de Hamming : la distance de deux vecteurs est le nombre de
coordonnées dans lesquelles ils diffèrent.

La notion de codes correcteurs d’erreurs (linéaires ou non) trouve son origine
dans la sous-branche de la théorie de l’information appelée théorie des codes, à la
frontière entre les mathématiques discrètes, l’informatique et les télécommunications,
et qui a maintenant plus de 70 ans d’histoire. Ils ont été introduits à l’origine par
Richard Hamming aux Bell Telephone Laboratories pour supprimer et/ou détecter
les erreurs survenant dans les calculatrices mécaniques. Le problème central de la
théorie des codes est donc ce qu’on appelle le "problème du décodage", qui peut être
énoncé de la manière suivante. Étant donné un code linéaire C ⊆ Fn et un vecteur
y = c + e ∈ Fn, où c ∈ C et le vecteur e ∈ Fn obéit à une certaine distribution qui
dépend du canal de communication, trouver efficacement c. Cependant, le problème
du décodage d’un code linéaire (aléatoire) générique est bien connu pour appartenir
à la classe de complexité algorithmique NP-complet. La plupart des efforts déployés
dans ce contexte ont donc été orientés vers la recherche de codes ayant une structure
spécifique et qui, par conséquent, admettent des algorithmes de décodage efficaces.

À cet égard, plusieurs familles de codes ont été découvertes en l’espace d’une
décennie environ à partir de 1950 : les codes de Hamming, de Reed-Muller (RM), de
Bose-Chauduri-Hocquenghem (BCH) et de Reed-Solomon (RS), qui portent tous le
nom de leur inventeur. Ces familles, et bien d’autres, peuvent être classées dans la
catégorie des codes algébriques. En effet, elles sont caractérisées par des codeurs et
des décodeurs, c’est-à-dire par des algorithmes permettant respectivement de coder
et de décoder un message, basés sur des propriétés algébriques. En d’autres termes,
leur structure mathématique permet de concevoir des algorithmes spécifiques qui
atteignent de très bonnes capacités de correction d’erreurs et qui sont également très
efficaces. En outre, les codes algébriques bénéficient généralement de représentations
plus compactes que les codes aléatoires.

Depuis le début de la seconde moitié du 20ème siècle, la théorie algébrique du

vii

codage est toujours restée un domaine extrêmement actif tant dans le monde de la
recherche que dans les applications industrielles, en raison de ses nombreux avantages.
Une liste incomplète des applications réelles des codes mentionnés comprend les
communications par téléphone mobile, les transmissions spatiales (certains d’entre
eux ont été utilisés pour des missions de la NASA), le stockage de données (lecteurs
de CD et de DVD, lecteurs USB et disques), les codes barres bidimensionnels ou la
cryptographie.

Décodage des codes de Reed-Solomon
Considérons par exemple un code de Reed-Solomon. De manière informelle, il est
défini comme l’ensemble des évaluations polynomiales des composantes d’un vecteur
x ∈ Fn, où les polynômes sur F avec un degré strictement limité par un entier positif
k. La valeur k coïncide avec la dimension du code.

Du point de vue du décodage, la notion de distance minimale joue un rôle essentiel.
Supposons qu’un message codé soit transmis et que ce que nous recevons soit y ∈ Fn.
Nous voulons le décoder par rapport à un code linéaire C utilisé pour coder le
message. Supposons également qu’il existe un mot-code c ∈ C dont la distance par
rapport à y est inférieure à la moitié de la distance minimale du code dmin. Par
définition de la distance minimale et de l’inégalité triangulaire, on obtient que tout
autre mot du code c′ dansC diffère de y par plus de dmin/2 coordonnées. Ainsi, c
est le mot du code le plus proche de y et il est unique. Pour cette raison, la valeur
dmin/2 est appelée rayon de décodage unique. Dans un canal de communication où
la probabilité qu’une position unique soit mal reçue est suffisamment faible, c est le
mot du code qui a le plus de chances de coïncider avec le message codé original. Un
algorithme qui produit un tel mot de code est en effet appelé décodeur à maximum
de vraisemblance.

Cependant, nous ne disposons a priori d’aucune information sur le mot du code
le plus proche de y et le calcul de la distance de y pour tout élément de C prend un
temps exponentiel dans la dimension du code.

Malgré cela, il existe un algorithme efficace, l’algorithme de Berlekamp-Welch
[WB86], qui peut corriger efficacement les erreurs dans un code de Reed-Solomon
jusqu’au rayon de décodage unique. Bien entendu, il exploite la structure algébrique
des codes RS et utilise de manière cruciale l’interpolation de Lagrange pour
reconstruire le mot de code envoyé. L’algorithme de Berlekamp-Welch est encore
plus impressionnant si l’on tient compte du fait que les codes de Reed-Solomon sont
des codes maximum distance séparable (MDS). Cela signifie qu’ils atteignent ce qu’on
appelle la borne de Singleton et ont donc la plus grande distance minimale possible
pour un code de même dimension et de même longueur.

Mais l’histoire ne s’arrête pas là. Le rayon de décodage unique garantit l’unicité
dans le pire des cas. Mais même au-delà du rayon de décodage unique, la plupart du
temps, il n’y a qu’un ou quelques mots de code dans la distance assignée. Dans un
article révolutionnaire datant de 1997, qui a valu à son auteur le prix Nevanlinna,
Sudan a modifié l’algorithme de Berlekamp-Welch en un algorithme de décodage
en liste. [Sud97], i.e. dans un décodeur qui produit une liste de mots de code dans
un rayon donné, que nous appelons le rayon de Sudan, de y qui est plus grand
que dmin/2 pour les codes à haut rendement. Peu après, Guruswami et Sudan ont
encore amélioré l’algorithme [GS99], élargissant le rayon de décodage pour tout code

viii

RS jusqu’à la limite de Johnson, qui délimite la plage où la liste des solutions est
polynomialement bornée.

Plus récemment, d’autres approches de décodage ont été proposées. Parmi elles,
nous mentionnons le power decoding [SSB10; Nie14; Nie18], dont les équations clés
seront étudiées, d’un point de vue algébrique, dans cette thèse.

Cryptographie à base de codes et codes de Goppa
L’un des principaux défis de la cryptographie consiste à concevoir des techniques
permettant de protéger les messages et les données des adversaires, afin que seuls
l’expéditeur et le destinataire prévu puissent les lire. La cryptographie moderne fait
un usage intensif des mathématiques et de l’informatique théorique. En particulier,
les algorithmes cryptographiques s’appuient fortement sur des hypothèses de difficulté
calculatoire, c’est-à-dire sur les hypothèses selon lesquelles des problèmes spécifiques
ne peuvent être résolus efficacement (où "efficacement" signifie généralement "en
temps polynomial"). En d’autres termes, les schémas cryptographiques sont conçus
de manière à ce qu’il soit prouvé ou raisonnablement impossible de les casser sans
résoudre un problème de calcul difficile. Des exemples de ces problèmes sont la
factorisation des entiers ou le logarithme discret, tous deux largement adoptés en
cryptographie.

Au début de cette introduction, nous avons mentionné la difficulté prouvée de
décoder un code aléatoire. Cela n’a pas échappé à l’attention des chercheurs. Le
premier schéma basé sur la difficulté d’un problème emprunté à la théorie des codes,
i.e. appartenant à cryptographie à base de codes, est le cryptosystème de McEliece
[McE78], qui remonte à 1978, quelques mois seulement après la publication du schéma
de chiffrement RSA [RSA78]. Avec ses quelque 45 ans d’histoire, c’est aussi l’un des
précurseurs de la cryptographie à clé publique. Les systèmes qui appartiennent à
cette catégorie sont caractérisés par deux clés, une privée et une publique. Toute
personne possédant cette dernière est capable de crypter un message, mais seuls ceux
qui connaissent la clé privée peuvent décrypter le texte chiffré.

Malgré un accueil initial mitigé du cryptosystème de McEliece de la part de
la communauté académique, en faveur d’autres schémas à clé publique, celui-ci a
plus récemment connu un regain d’intérêt. Ceci est en partie dû à l’émergence de
l’information quantique. En effet, il existe des algorithmes quantiques qui peuvent
résoudre de manière exponentiellement plus rapide certains problèmes de calcul
employés en cryptographie. Par exemple, l’algorithme de Shor peut factoriser de
grands entiers et calculer le logarithme discret en temps polynomial. Par conséquent,
dans un avenir proche, l’ordinateur quantique pourrait être capable de casser presque
tous les systèmes utilisés aujourd’hui dans la pratique. Le système cryptographique
de McEliece, et plus généralement l’ensemble du domaine de la cryptographie à base
de codes, est unanimement considéré comme n’étant pas vulnérable aux attaques
quantiques. En d’autres termes, il est considéré comme une alternative à résistance
quantique et est un candidat de cryptographie post-quantique. L’Institut national
des normes et de la technologie (NIST) des États-Unis a lancé en 2016 un processus
d’évaluation et de normalisation des systèmes de cryptage à clé publique post-
quantiques. L’inconvénient du schéma McEliece est la taille énorme de la clé, par
rapport à d’autres algorithmes cryptographiques, ce qui restreint l’éventail des
applications possibles. D’un autre côté, il possède des procédures d’encodage et de

ix

décodage extrêmement rapides et a survécu à une longue histoire de cryptanalyse.
Pour ces raisons, Classic McEliece [Alb+20] a été admis au quatrième tour du
concours du NIST [Ala+22] et on pense qu’il est prêt pour la normalisation.

Nous avons dit que la cryptographie basée sur le code s’appuie sur des problèmes
difficiles de la théorie du codage, comme le problème du décodage. Cependant,
dans des constructions comme le schéma de McEliece, le récepteur légitime doit
être capable de décoder le texte chiffré envoyé. On ne sait pas s’il est possible d’y
parvenir, même avec la clé privée, si le code utilisé est aléatoire. En d’autres termes,
le code doit être choisi dans une famille dotée d’un algorithme de décodage efficace.
Celui-ci est ensuite masqué de telle sorte que, sans connaître la clé privée, il n’est
pas possible d’appliquer le décodeur. La proposition originale de McEliece suggère
l’utilisation de codes binaires de Goppa, une sous-classe des codes alternants.
Ces derniers sont la restriction à un sous-corps des codes Reed-Solomon généralisés
(ou plus brièvement GRS), une extension des codes RS. Plusieurs autres familles
ont été recommandées et étudiées, au fil des ans, comme les codes GRS eux-mêmes.
Cependant, la plupart de ces variantes de McEliece ont ensuite été attaquées avec
succès. Au contraire, les codes de Goppa ont résisté à la cryptanalyse jusqu’à présent,
car les meilleures attaques connues à ce jour sont des algorithmes génériques de
décodage de codes aléatoires et ont donc une complexité exponentielle.

Quoi qu’il en soit, il convient de souligner que les preuves de sécurité connues pour
le cryptosystème de McEliece reposent sur deux hypothèses. La première, comme
déjà expliqué, est que le décodage d’un code linéaire générique est difficile. La seconde
est que les codes de Goppa se comportent comme des codes aléatoires. Pour être plus
précis, nous disons que le Goppa distinguishing problem, qui demande de discriminer
si un ensemble de vecteurs est la base d’un code de Goppa ou d’un code aléatoire,
est intraitable du point de vue informatique. Les codes de Goppa se comportent en
fait comme des codes aléatoires sous de nombreux aspects et pendant de nombreuses
années, la croyance en cette hypothèse était robuste. Cependant, il y a environ 10
ans, un distingueur en temps polynomial, c’est-à-dire un algorithme qui résout le
problème de distinguer, a été présenté [Fau+13]. Le contexte où il est efficace est
cependant limité : il ne fonctionne que pour un code de Goppa, et plus généralement
un code alternant, dont le rendement est assez élevé. En particulier, elle ne s’applique
pas au McEliece classique, mais elle soulève tout de même quelques inquiétudes
quant à la plausibilité de l’hypothèse de difficulté de distinguer un code de Goppa.
De plus, elle invalide la preuve de sécurité d’autres schémas, tels que la signature
numérique CFS [CFS01], qui est effectivement construite sur des codes de Goppa à
haut rendement. Dans tous les cas, les auteurs de [Fau+13] ont laissé les problèmes
d’atténuer davantage les contraintes du distingueur et de le transformer en attaque
comme problèmes ouverts. Dans ce manuscrit, nous aborderons le distingueur de
plusieurs points de vue, nous en donnerons un meilleur aperçu et nous tenterons de
relever les deux défis mentionnés.

Bases de Gröbner
Contrairement à un système linéaire, la résolution d’un système polynomial multivarié
est généralement difficile. Les principaux outils qui s’avèrent utiles à cet effet sont les
bases de Gröbner introduites par Buchberger en 1965 [Buc65], ainsi qu’un algorithme
simple pour les calculer. D’autres algorithmes plus avancés ont été découverts par la

x

suite (par exemple [Fau+93; Fau99; Fau02]) et les bases de Gröbner représentent
toujours un domaine de recherche florissant. Étant donné un système de polynômes
f1, . . . , fm définissant un système d’équations, les algorithmes de bases de Gröbner
produisent récursivement de nouveaux polynômes appartenant à l’idéal généré par
les polynômes initiaux I = ⟨f1, . . . fn⟩. L’idée principale est qu’ils généralisent la
division polynomiale au cas non linéaire multivarié. En particulier, elles permettent
de réduire un polynôme par rapport à un ensemble de polynômes de telle sorte que
le reste ne dépende pas de l’ordre dans lequel les éléments de l’ensemble sont traités.
Une base de Gröbner est en effet un ensemble générateur d’un idéal polynomial
où toutes les réductions complètes d’un polynôme par la base produisent le même
résultat. Cela peut dépendre de l’ordre monomial associé à l’anneau de polynômes.

Lorsque le système est affine, certaines combinaisons polynomiales des polynômes
générés jusqu’à un certain point par un algorithme de base de Gröbner conduisent à
des polynômes de petit degré. Lorsque cela se produit, on dit qu’une ou plusieurs
chutes de degré se sont produites. Les chutes de degré sont souvent critiques dans
la résolution d’un système. En effet, en raison de leur degré exceptionnellement
bas, elles peuvent déclencher une chaîne d’autres chutes de degré après avoir été
multipliées par d’autres monômes/polynômes, qui fournissent finalement une base
de Gröbner. De là, il est possible de dériver la variété V (I) correspondant à l’idéal
I, dont les éléments sont les solutions de notre système multivarié. Les algorithmes
de base de Gröbner ont une complexité exponentielle lorsqu’ils sont appliqués à la
grande majorité des idéaux. Néanmoins, la résolution de certains systèmes spécifiques
peut être réalisée en temps pratique (parfois même en temps polynomial dans les
paramètres), en exploitant leur structure spéciale.

Dans ce manuscrit, les bases de Gröbner servent d’appareil technique pour aborder
plusieurs problèmes issus de la théorie algébrique du codage et de la cryptographie.
Plus précisément, le problème du décodage des codes RS peut être modélisé comme
la résolution d’un système multivarié, dont la solution fournit directement le message
codé sans positions en erreur. De même, le problème de la récupération de la clé
privée dans le schéma de McEliece basé sur des codes alternants/de Goppa peut
être exprimé par un système polynomial, dont la solution est la clé privée ou un
équivalent. De plus, pour les codes alternants à haut rendement, le système devient
plus facile à résoudre. Dans un cadre cryptographique, ce type d’analyse prend
le nom de cryptanalyse algébrique et est devenu ces dernières années l’un des
principaux outils pour inspecter la sécurité des schémas à base de codes, des schémas
multivariés ainsi que certains chiffrements symétriques.

Contributions
Nous allons maintenant énumérer brièvement les contributions de cette thèse, chapitre
par chapitre.

Chapitre 2.

Nous étudions un système algébrique bien connu qui modélise le problème de décodage
des codes RS (ou de manière équivalente GRS) à l’aide de méthodes de base de
Gröbner. Le système est bilinéaire, c’est-à-dire qu’il est linéaire par rapport à deux
blocs dans lesquels les variables sont réparties. Une littérature riche a été développée

xi

pour les systèmes bilinéaires génériques, mais le calcul d’une base de Gr öbner
devrait toujours avoir une complexité exponentielle pour les paramètres ciblés. Nous
prouvons que ce n’est pas le cas pour la modélisation du décodage de Reed-Solomon,
où même un algorithme de base de Gröbner simplifié s’exécute en temps polynomial
jusqu’au même rayon de décodage atteint par l’algorithme de Sudan. Nous montrons
que les nouveaux polynômes obtenus à partir du calcul de la base de Gröbner sont
strictement liés au power decoding [Nie14; Nie18]. Il s’agit d’une approche alternative
par rapport aux décodeurs de liste cités précédemment. Sa version améliorée atteint
le même rayon de décodage que l’algorithme de Guruswami-Sudan, c’est-à-dire le
rayon de Johnson. Cela suggère que notre approche pourrait fonctionner même
au-delà de la borne de Sudan. À cet égard, nous montrons expérimentalement que,
pour certains paramètres, notre méthode peut corriger un certain nombre d’erreurs
jusqu’à et même légèrement au-delà de la borne de Johnson. Ce faisant, nous dérivons
également de nouvelles identités polynomiales dans un seul bloc de variables qui ne
sont pas exploitées par la stratégie de power decoding.

Publication associée: Magali Bardet, Rocco Mora et Jean-Pierre Tillich,
Decoding Reed-Solomon codes by solving a bilinear system with a Gröbner basis
approach, International Symposium in Information Theory 2021 [BMT21].

Chapitre 3.

Le distingueur à haut rendement pour les codes alternants et de Goppa a été
présenté à l’origine dans [Fau+13] comme le rang exceptionnellement petit d’une
matrice construite à partir d’une base du code alternant/de Goppa. Pour être précis,
aucune borne supérieure ou inférieure pour ce rang n’était donnée, mais seulement des
explications algébriques basées sur des heuristiques. Grâce au lien donné dans [MP12],
le distingueur peut être étudié de manière équivalente en termes de dimension du
carré du dual du code alternant/de Goppa. Le carré d’un code est une construction
de la théorie des codes qui a déjà été utilisée avec succès pour distinguer et/ou
attaquer d’autres schémas à base de codes, par exemple, des variantes du schéma
de McEliece basé sur des codes GRS [Cou+14]. Dans notre cas, ce point de vue
alternatif permet de prouver une borne supérieure pour la dimension du code carré
cible, rendant ainsi le distingueur plus rigoureux. De plus, notre preuve couvre le
cas des codes de Goppa non binaires, pour lesquels [Fau+13] n’a fourni que des
preuves empiriques. Les bornes supérieures sont serrées pour tous les paramètres et
correspondent aux résultats expérimentaux. Afin de prouver les bornes supérieures,
nous trouvons également de nouveaux résultats concernant la structure du produit
et du carré des sous-codes sur de sous-corps en général et des codes alternants/de
Goppa en particulier. Ce chapitre est donc ambivalent : il peut être considéré comme
une contribution à la théorie algébrique du codage mais, étant donné l’intérêt bien
connu de cette famille de codes en cryptographie, il peut également présenter un
intérêt pour cette dernière.

Publication associée: Magali Bardet, Rocco Mora et Jean-Pierre Tillich, On
the dimension and structure of the square of the dual of a Goppa code, Designs, Codes
and Cryptography [MT22].

xii

Chapitre 4.
Parfois, le distingueur peut être transformé en attaque. En cryptographie à base de
codes, c’était le cas des codes GRS [Cou+14]. Il n’était pas clair si le distingueur
de [Fau+13] aurait pu être exploité pour casser des instances de code alternant/de
Goppa à haut rendement du schéma de McEliece. Plusieurs attaques ont été trouvées
sur des variantes liées aux codes de Goppa. Parmi elles, on peut citer les codes de
Goppa quasi-cycliques et quasi-dyadiques [Fau+10b; GL09] ou les Wild Goppa codes
[COT14a; FPP14]. La cryptanalyse algébrique a joué un rôle clé dans certains de ces
exemples. En effet, la structure supplémentaire caractérisant le code sous-jacent a
permis de réduire considérablement le nombre de variables dans le système multivarié
modélisant le problème de récupération des clés. Cependant, aucune attaque n’était
connue pour les codes alternants/de Goppa non structurés, même à rendement élevé.
Dans ce chapitre, nous montons une attaque en temps polynomial qui fonctionne
contre les codes alternants aléatoires binaires ou ternaires. L’algorithme se compose
de deux parties. Tout d’abord, une filtration de codes alternants d’ordre décroissant,
c’est-à-dire une séquence de codes alternants dont chacun est contenu dans le suivant,
est calculée de manière itérative. Une fois qu’un code alternant d’ordre 3 est produit,
la modélisation algébrique connue est mise en place. Dans la deuxième partie de
l’attaque, nous fournissons un algorithme de base de Gröbner efficace et adapté à
ce système spécifique. À partir de la variété associée à l’idéal généré par la base de
Gröbner, une clé équivalente à la clé privée est récupérée. L’explication théorique est
complétée par du code implémenté dans MAGMA. De manière assez surprenante,
l’attaque ne fonctionne pas sur les codes de Goppa, même s’ils forment une sous-
classe des codes alternants. Nous donnons également un aperçu des problèmes qui
empêchent une adaptation directe du résultat aux codes de Goppa.

Publication associée: Magali Bardet, Rocco Mora et Jean-Pierre Tillich,
Polynomial time key-recovery attack on high rate random alternant codes, Preprint
[BMT23].

Chapitre 5.
Nous présentons une méthode qui permet d’améliorer le distingueur pour les codes
alternants et de Goppa à haut rendement. Notre stratégie est cohérente avec la
présentation donnée au Chapitre 3, car elle exploite également la construction du
code carré. Cependant, nous l’améliorons en raccourcissant d’abord le code dual et
en calculant ensuite le carré. Nous illustrons empiriquement que cette modification
diminue le rendement minimal de code distinguable pour certains paramètres. En
particulier, d’après nos expériences, cette stratégie semble être plus efficace pour
les petits degrés d’extension et les grandes tailles de corps, et les codes alternants
aléatoires sont plus affectés par cette approche que les codes de Goppa. Les résultats
empiriques sont complétés par une explication algébrique partielle de la dimension
du code carré qui en résulte.

xiii

Introduction

The context
Linear error-correcting codes are the leitmotif of this manuscript. A linear code
C is defined as a vector subspace over a finite field F. In particular, the code length
is the number n such that C is a subspace of Fn. The code dimension is the number
k that expresses the dimension of C as an F-subspace. The ratio k/n is the code
rate. The other key notion of a linear code is the minimum distance dmin, defined as
the smallest possible distance between two elements, called codewords, in the code.
Different definitions can be adopted for computing a distance. The most common
metric is the so-called Hamming metric: the distance of two vectors is the number
of coordinates in which they differ.

The notion of error-correcting codes (either linear or not) finds its origins in that
sub-branch of information theory called coding theory, on the border among discrete
mathematics, computer science and electrical engineering, and now boasting a history
of more than 70 years. They were originally introduced by Richard Hamming at
Bell Telephone Laboratories to remove and/or detect errors occurring in mechanical
calculators. The central problem of coding theory is thus the so-called decoding
problem, which can be stated in the following way. Given a linear code C ⊆ Fn

and a vector y = c + e ∈ Fn, where c ∈ C and the vector e ∈ Fn obeys to some
distribution that depends on the communication channel, find efficiently c. However,
the decoding problem for a generic (random) linear code is well known to belong to
the NP-complete computational complexity class. Much of the effort spent in this
context has therefore been directed toward finding codes with a specific structure
and which, consequently, admit efficient decoding algorithms.

In this respect, several families of codes have been discovered within approximately
a decade starting from 1950: Hamming, Reed-Muller (RM), Bose-Chauduri-
Hocquenghem (BCH) and Reed-Solomon (RS) codes, all of them taking the names
from their inventors. These families, and many others, can be categorized as algebraic
codes. Indeed, they are characterized by encoders and decoders, i.e. by algorithms
to encode and decode a message respectively, based on algebraic properties. In
other words, their mathematical structure allows to design specific algorithms that
achieve very good error-correcting capabilities and that are also highly efficient. In
particular, these decoders deal with the problem of solving linear or algebraic
equations. Furthermore, algebraic codes typically benefit from more compact
representations than random codes.

Since the beginning of the second half of the 20th century, algebraic coding
theory has always remained an extremely active field both in the research world and
in industrial applications, because of its many advantages. An incomplete list of real-

xv

life applications of the mentioned codes includes mobile phone communications, space
transmissions (some of them have been used for NASA missions), data storage (CDs
and DVDs players, USB and disk drives), two-dimensional bar codes, cryptography.

Decoding of Reed-Solomon codes
Let us consider for instance a Reed-Solomon code. Informally speaking, this is defined
as the set of component-wise evaluations on a vector x ∈ Fn of all polynomials over
F with degree strictly upper bounded by a positive integer k. The value k coincides
with the dimension of the code.

From the point of view of decoding, the notion of minimum distance plays a key
role. Suppose an encoded message is transmitted and what we receive is y ∈ Fn. We
want to decode it with respect to a linear code C used for encoding the message.
Let us also assume that there exists a codeword c ∈ C whose distance from y
is smaller than half the code minimum distance dmin. By definition of minimum
distance and triangular inequality, we obtain that any other codeword c′ ∈ C differs
from y by more than dmin/2 coordinates. Thus, c is the closest codeword to y
and it is unique. For this reason, the value dmin/2 is the so-called unique decoding
radius. In a communication channel where the probability for a single position to be
wrongly received is low enough, c is the codeword which more likely coincides with
the original encoded message. An algorithm that outputs such a codeword is indeed
called maximum likelihood decoder.

However, a priori we do not have any information about what is the closest
codeword to y and computing the distance from y for any element of C takes
exponential time in the code dimension.

In spite of that, there exists an efficient algorithm, the Berlekamp-Welch algorithm
[WB86], that can efficiently correct errors in a Reed-Solomon code up to the unique
decoding radius. Of course, it exploits the algebraic structure of RS codes and makes
use in a crucial way of Lagrange interpolation to reconstruct the sent codeword.
Berlekamp-Welch algorithm is even more impressive in light of the fact that Reed-
Solomon codes are maximum distance separable (MDS) codes. This means that they
attain the so-called Singleton bound and have therefore the largest possible minimum
distance for a code of the same dimension and length.

This is not the end of the story, though. The unique decoding radius guarantees
uniqueness in the worst case. But even beyond the unique decoding radius, most
of the times there is just one or few codewords within the assigned distance. In
a groundbreaking paper from 1997, which earned its author a Nevanlinna prize,
Sudan modified the Berlekamp-Welch algorithm in a list-decoding algorithm [Sud97],
i.e. in a decoder that outputs a list of codewords within a given radius, that we
call Sudan’s radius, from y that is larger than dmin/2 for high-rate codes. Shortly
after, Guruswami and Sudan further improved the algorithm [GS99], enlarging the
decoding radius for any RS code up to the Johnson bound, which delimits the range
where the list of solutions is polynomially bounded.

More recently, alternative decoding approaches have been proposed. Among
them, we mention power decoding [SSB10; Nie14; Nie18], whose key equations will
be studied, from an algebraic point of view, in this thesis.

xvi

Code-based cryptography and Goppa codes
One of the main challenges cryptography deals with is to design techniques to keep
messages and data secure from adversaries, enabling only the sender and the intended
receiver to read them. Modern cryptography makes extensive use of mathematics and
theoretical computer science. In particular, cryptographic algorithms heavily rely on
computational hardness assumptions, i.e. on the hypotheses that specific problems can
not be solved efficiently (where “efficiently” usually means “in polynomial time”). In
other words, cryptographic schemes are designed in such a way that it is provably or
reasonably impossible to break them without solving a hard computational problem.
Examples of these problems are the integer factorization or the discrete logarithm,
both widely adopted in cryptography.

At the beginning of this introduction, we mentioned the provable difficulty of
decoding a random code. This has not escaped the attention of researchers. The
first scheme based on the hardness of a problem borrowed from coding theory,
i.e. belonging to code-based cryptography, is the McEliece cryptosystem [McE78],
which dates back to 1978, after only few months from tehe publication of the RSA
encryption scheme [RSA78]. With its approximately 45 years of history, this is
also one of the forerunners of public-key cryptography. Systems that belong to this
category are featured by two keys, a private and a public one. Anyone with the
latter is capable of encrypting a message but only those who know the private key
can decrypt the ciphertext.

Despite an initial mild reception of the McEliece cryptosystem from the academic
community, in favor of other public-key schemes, this has more recently experienced
renewed interest. This is partially due to the emergence of quantum information.
Indeed, there exist quantum algorithms that can solve exponentially faster some
computational problems employed in cryptography. For instance, Shor’s algorithm
can factor large integers and compute the discrete logarithm in polynomial time.
Therefore, in the near future, quantum computer could be capable of breaking
almost all the schemes used nowadays in practice. McEliece cryptosystem, and more
in general the whole field of code-based cryptography, is unanimously believed not
to be vulnerable to quantum attacks, though. In other words, it is considered a
quantum-resistant alternative and is a candidate of post-quantum cryptography. The
U.S. National Institute of Standards and Technology (NIST) launched a process
to evaluate and standardize quantum-resistant public-key cryptosystems in 2016.
The drawback of the McEliece scheme is the huge key size, compared to other
cryptographic algorithms, which restricts the range of possible applications. On the
other hand, it has extremely fast encoding and decoding procedures and survived a
long history of cryptanalysis. For these reasons, Classic McEliece [Alb+20] has been
admitted to the fourth round of NIST competition [Ala+22] and is believed to be
ready for standardization.

We have said that code-based cryptography relies on hard problems from coding
theory, like the decoding problem. However, in constructions like the McEliece
scheme, the legitimate receiver must be able to decode the sent ciphertext. It is not
known whether it is possible to achieve this, even with the private key, if the code
used is random. In other words, the code must be chosen from a family equipped
with an efficient decoding algorithm. This is then masked in such a way that, without
knowing the private key, it is not possible to apply the decoder. The original proposal

xvii

from McEliece suggests the use of binary Goppa codes, a subclass of alternant
codes. The latter are the restriction to a subfield of generalized Reed-Solomon (or
more briefly GRS) codes, an extension of RS codes. Several other families have been
recommended and studied, over the years, like GRS codes themselves. Most of these
McEliece-like variants have then been successfully attacked, though. Instead, Goppa
codes resisted cryptanalysis up to now, because the best attack known so far are
generic algorithms for decoding random codes and thus have exponential complexity.

Anyway, we should still emphasize that the known security proof for the McEliece
cryptosystem rely on two assumptions. The first one, as already explained, is that
decoding a generic linear code is hard. The second is that Goppa codes behave like
random codes. To be more accurate, we say that the Goppa distinguishing problem,
which asks to discriminate whether a set of vectors is the basis of a Goppa code or
a random code, is computationally intractable. Goppa codes actually behave like
random codes under many aspects and for many years the belief in this assumption
was robust. However, approximately 10 years ago, a polynomial-time distinguisher,
i.e. an algorithm that solves the distinguishing problem, was presented [Fau+13]. The
context where it is effective, however, it is limited: it only works for a Goppa code,
and more in general an alternant code, whose rate is enough high. In particular,
it does not apply to Classic McEliece, but it still raises some concerns about the
plausibility of the distinguishing hardness assumption. Moreover, it invalidates the
security proof of other schemes, such as the digital signature CFS [CFS01], which is
indeed built upon high-rate Goppa codes. In any case, the authors of [Fau+13] left
as open problems to further mitigate the constraints of the distinguisher and to turn
it into an attack. In this manuscript, we will approach the distinguisher from several
points of view, give a better insight into it and try to tackle both the mentioned
challenges.

Gröbner bases
Differently from a linear system, solving a multivariate polynomial system is generally
difficult. The main tools that come in handy for this purpose are Gröbner bases,
introduced by Buchberger in 1965 [Buc65], together with a simple algorithm to
compute them. Later, other more advanced algorithms were discovered (for instance
[Fau+93; Fau99; Fau02]) and still Gröbner bases represent a thriving field of research.
Given a system of polynomials f1, . . . , fm defining a system of equations, Gröbner
bases algorithms recursively produce new polynomials belonging to the ideal generated
by the initial polynomials I = ⟨f1, . . . fn⟩. The key idea is that they generalize the
polynomial division to the multivariate non-linear case. In particular, they allow
to reduce a polynomial with respect to a set of polynomials in such a way that
the remainder does not depend on the order in which the elements of the set are
processed. A Gröbner basis is indeed a generating set of a polynomial ideal where
all the complete reductions of a polynomial by the basis produce the same result.
This can depend on the monomial order associated to the polynomial ring.

When the system is affine, some polynomial combinations of the polynomials
generated up to some point by a Gröbner basis algorithm lead to low-degree
polynomials. Whenever this happens, we say that one or more degree falls occurred.
Degree falls are often critical in the resolution of a system. Indeed, because of
their unusually low degree, they can trigger a chain of other degree falls after being

xviii

multiplied by other monomials/polynomials, which ultimately provide a Gröbner
basis. From this, it is possible to derive the variety V (I) corresponding to the
ideal I, whose elements are the solutions of our multivariate system. Gröbner
basis algorithms have exponential complexity when applied to the great majority
of ideals. Nevertheless, solving some specific systems can be achieved in practical
time (sometimes even polynomial time in the parameters), by exploiting their special
structure.

In this manuscript, Gröbner bases serve as a technical apparatus for addressing
several problems stemming from algebraic coding theory and cryptography. More
precisely, the decoding problem of RS codes can be modeled as solving a multivariate
system, whose solution directly provides the encoded message without positions in
error. Similarly, the problem of recovering the private key in the McEliece scheme
based on alternant/Goppa codes can be expressed by a polynomial system, whose
solution is the private key or an equivalent one. Moreover, for high-rate alternant
codes, the system becomes easier to solve. In a cryptographic setting, this kind
of analysis takes the name of algebraic cryptanalysis and has become in recent
years one of the leading tools for inspecting the security of code-based schemes,
multivariate schemes as well as some symmetric ciphers.

Contributions
We now briefly list the contributions of this thesis, chapter by chapter.

Chapter 2.

We study a well-known algebraic system that models the decoding problem referred
to RS (o equivalently GRS) codes using Gröbner basis methods. The system is
bilinear, i.e. it is linear with respect to two blocks in which variables are split. A
rich literature has been developed for generic bilinear systems, but computing a
Gröbner basis should still have exponential complexity for the targeted parameters.
We prove that this is not the case for Reed-Solomon decoding modeling, where even a
simplified Gröbner basis algorithm runs in polynomial time up to the same decoding
radius reached by Sudan’s algorithm. We show that the new polynomials obtained
from the Gröbner basis computation are strictly related to power decoding [Nie14;
Nie18]. This is an alternative approach with respect to the list decoders cited before.
Its improved version attains the same decoding radius as the Guruswami-Sudan
algorithm, i.e. Johnson’s radius. This suggests that our approach could work even
beyond Sudan’s bound. In this regard, we experimentally show that, for some
parameters, our method can correct a number of errors up to and even slightly
beyond Johnson’s bound. By doing so, we also derive new polynomial identities in
only one block of variables that are not exploited by the power decoding strategy.

Related publication: Magali Bardet, Rocco Mora and Jean-Pierre Tillich,
Decoding Reed-Solomon codes by solving a bilinear system with a Gröbner basis
approach, International Symposium in Information Theory 2021 [BMT21].

xix

Chapter 3.

The high-rate distinguisher for alternant and Goppa codes was originally presented
in [Fau+13] as the unusually small rank of a matrix built from a basis of the
alternant/Goppa code. To be precise, neither upper nor lower bounds for this rank
were given, but only algebraic explanations based on heuristics. Thanks to the
link given in [MP12], the distinguisher can be equivalently studied in terms of the
dimension of the square code of the dual of the alternant/Goppa code. The square
of a code is a coding theory construction that has already been successfully used
to distinguish and/or attack other code-based schemes, for instance, variants of the
McEliece scheme based on GRS codes [Cou+14]. In our case, this alternative point
of view permits to prove an upper bound for the target square code dimension, thus
making the distinguisher more rigorous. Moreover, our proof covers the case of
non-binary Goppa codes, for which [Fau+13] only provided empirical evidence. The
upper bounds are tight for all parameters and match experimental results. In order
to prove the upper bounds, we also find new results concerning the structure of the
product and square of subfield subcodes in general and of alternant/Goppa codes in
particular. Hence, this chapter is ambivalent: it can be framed as a contribution to
algebraic coding theory but, given the well-known interest of this family of codes in
cryptography, it can be of interest in the latter as well.

Related publication: Magali Bardet, Rocco Mora and Jean-Pierre Tillich, On
the dimension and structure of the square of the dual of a Goppa code, Designs, Codes
and Cryptography [MT22].

Chapter 4.

Sometimes distinguisher can be turned into an attack. In code-based cryptography,
this was the case of GRS codes [Cou+14]. Whether the distinguisher from [Fau+13]
could have been exploited to break high-rate alternant/Goppa code instances of the
McEliece scheme was not clear. Several attacks have been found on variants related to
Goppa codes. Among them, we mention quasi-cyclic and quasi-dyadic Goppa codes
[Fau+10b; GL09] or Wild Goppa codes [COT14a; FPP14]. Algebraic cryptanalysis
played a key role in some of these examples. This is because the additional structure
characterizing the underlying code allowed to reduce significantly the number of
variables in the multivariate system modeling the key-recovery problem. However,
no attacks were known for non-structured alternant/Goppa codes, even at a high
rate. In this chapter, we mount a polynomial-time attack that works against binary
or ternary random alternant codes. The algorithm consists of two parts. First, a
filtration of alternant codes of decreasing order, i.e. a sequence of alternant codes
each one contained in the following, is computed iteratively. Once an alternant code
of order 3 is produced, the known algebraic modeling is set up. In the second part of
the attack, we provide an efficient Gröbner basis algorithm that is adapted to this
specific system. From the variety associated with the ideal generated by the Gröbner
basis, a key equivalent to the private one is recovered. The theoretical explanation
is complemented by some code implemented in MAGMA. Quite surprisingly, the
attack does not work on Goppa codes, even though they form a subclass of alternant
codes. We also give insight into the issues that prevent a direct adaptation of the
result to Goppa codes.

xx

Related publication: Magali Bardet, Rocco Mora and Jean-Pierre Tillich,
Polynomial time key-recovery attack on high rate random alternant codes, Preprint
[BMT23].

Chapter 5.
We present a method that enhance the distinguisher for high-rate alternant and
Goppa codes. Our strategy is consistent with the presentation given in Chapter 3,
as it also exploits the square code construction. However, this is improved by first
shortening the dual code and then computing the square. We empirically illustrate
that this tweak decreases the minimum distinguishable code rate for some parameters.
In particular, from our experiments this strategy seems to be more effective for small
extension degrees and large field sizes, and random alternant codes are more impacted
by this approach than Goppa codes are. The empirical results are complemented by
a partial algebraic explanation of the arising square code dimension.

xxi

Publications

[BMT21] Magali Bardet, Rocco Mora, and Jean-Pierre Tillich. “Decoding Reed-
Solomon codes by solving a bilinear system with a Gröbner basis
approach”. In: 2021 IEEE International Symposium on Information
Theory (ISIT). Melbourne, Australia, July 2021, pp. 872–877 (cit. on
pp. xii, xix).

[MT22] Rocco Mora and Jean-Pierre Tillich. “On the dimension and structure
of the square of the dual of a Goppa code”. In: Designs, Codes and
Cryptography (2022), pp. 1–22 (cit. on pp. xii, xx).

[BMT23] Magali Bardet, Rocco Mora, and Jean-Pierre Tillich. “Polynomial time
key-recovery attack on high rate random alternant codes”. In: preprint
(2023) (cit. on pp. xiii, xxi).

xxiii

Notation

We gather here as a reminder some non-standard notation regarding codes and
vectors that is encountered in the manuscript.

Schur’s product and square of vectors and codes. We sometime imply
the symbol ⋆ in the product of vectors (see Definition 1.18), in order to ease the
readability. More precisely, we can denote with cd the product c ⋆ d. In the same
spirit, we sometimes denote the component-wise division of two vectors with c

d ,
the component-wise evaluation of a polynomial P : F → K in c with P (c) and
the component-wise product c∗a of c with itself a − 1 times with ca. Regarding
codes, Schur’s power of codes C ∗a should not be confused with C ql , which is the set
(actually the code) whose elements are cql ’s such that c ∈ C ⊆ Fqm .

Subfield subcodes and extension of a code over a field extension. The
subfield subcode over Fq of a code C ⊆ Fn

qm is denoted with C|Fq
. On the other hand,

we use the notation CFqm to write the Fqm-linear span of a code C ⊆ Fn
q in Fn

qm .
Shortening of vectors. If x = (xi)i∈J1,nK and I is a subset of positions, we

denote by x
qI the vector x

qI
def= (xi)i∈J1,nK\I . In particular, we do not contract the

indexes but we still associate the original index to each remaining coordinate. When
there is just one position i in I we simply write x

qi.
Reduction of a vector. With c

C→ d we mean that d can be obtained from c
by adding a suitable element of C ⊆ Fn and multiplying by some element in F, i.e.
this is equivalent to c− λd ∈ C for a suitable element λ in F.

xxv

Chapter1Preliminaries

In this preliminary chapter, we review all the fundamental concepts that will be
needed for understanding the results contained in this manuscript. The material
included within this chapter is part of a well-established theory, more or less recent,
from several domains and the greater emphasis put on certain topics naturally
reflects the focus of this thesis. In any case, this treatment does not contain original
contributions, to whom all the next following part of the manuscript is dedicated,
instead. The current chapter has a tripartite structure. Indeed, in accordance with
the topics presented in the introduction, we will provide basics about algebraic coding
theory, code-based cryptography and Gröbner bases. In particular, we will start
by recalling definitions and notions in coding theory, with particular attention on
GRS codes and related families, as well as on some standard constructions of codes.
Then we will clarify the general aim of public key and post-quantum cryptography,
before moving to schemes based on codes, from both the viewpoints of cryptology
and cryptanalysis. Finally, we will see how Gröbner basis techniques can be deployed
in the context of solving polynomial systems, with an accent on some applications
from coding theory and cryptography.

Contents
1.1 Algebraic Coding theory . 3

1.1.1 Error-correcting codes 3
1.1.2 Bounds on codes . 7
1.1.3 Reed-Solomon codes . 10
1.1.4 Subfield subcodes of RS codes: alternant and Goppa codes 15
1.1.5 Product and square of codes 18

1.2 Code-based cryptography . 21
1.2.1 Public key cryptography 21
1.2.2 Quantum computing in a nutshell 22
1.2.3 Post-quantum cryptography 22
1.2.4 Hard problems from coding theory 25
1.2.5 McEliece’s scheme . 27
1.2.6 Niederreiter’s scheme . 29
1.2.7 Other code-based PKE frameworks and schemes 31
1.2.8 Digital signatures: definitions and main approaches . . . 33
1.2.9 Cryptanalysis on code-based schemes 38

1.3 Gröbner Bases . 43
1.3.1 Monomial orderings . 44

1

2 Chapter 1. Preliminaries

1.3.2 Polynomial reduction and Gröbner bases 46
1.3.3 Buchberger’s algorithm: a first method to compute

Gröbner bases . 48
1.3.4 The Macaulay matrix 50
1.3.5 Advanced Gröbner basis algorithms and solving strategies 53
1.3.6 The Hilbert series . 56
1.3.7 Regular and semi-regular sequences 58
1.3.8 Systems with a special shape: application to coding theory

and cryptography . 59

1.1. Algebraic Coding theory 3

1.1 Algebraic Coding theory
With the Third Industrial Revolution several technologies arose in the context of
digital communications, for instance the possibility of transmitting information (in
the shape of bits) through a channel or store it on some digital support. Both these
procedures require methods to protect the information from errors. The latter might
indeed occur either during the transmission over a noisy channel or because of the
natural deterioration of physical supports.

To this end, error-correcting codes come to the rescue. We will give the
proper definition of these objects further, but informally the idea consists in adding
redundant bits to each piece of information we want to send or store, so that if some
bits are altered, the other ones allow to detect (or even better correct) the errors. We
can let the birth of coding theory (and more in general information theory) match
with the seminal work of Shannon in 1948 [Sha48].

Probably the easiest example one may think of to perform the task mentioned
above is through a parity bit. Imagine we want to transmit a string of bits of fixed
length. Instead, we send the string to which we append an additional bit, whose
value equals the sum (mod 2) of the values of the original string bits. Then the sum
(mod 2) of all bits for any string crafted in this way will always be 0. Therefore if
a bit was altered during the transmission, we will be able to detect it, as the sum
of the string bits becomes 1. However, this stratagem does not find which bit was
modified and therefore can not be used to correct the error.

More efficient techniques to correct errors require more advanced mathematical
tools, especially when dealing with algebraic linear codes, which are central in this
manuscript. Hence we are now going to introduce the necessary vocabulary.

1.1.1 Error-correcting codes
Let A an alphabet of size q, i.e. a set of q distinct symbols. This alphabet is used
to code information. We denote with An the set of n-tuples with entries in A. A
non-empty subset C of An is a code, the cornerstone of this section. If q = 2 we
call it a binary code, if q = 3 a ternary code etc. If |C | = 1 we say that C is a trivial
code.

Definition 1.1 (Hamming distance/Hamming weight). Let x,y ∈ An. The
Hamming distance d(x,y) between x and y is defined as

d(x,y) def= |{i ∈ J1, nK | xi ̸= yi}|.

The Hamming weight wt pxq of x is defined as

wt pxq
def= d(x,0).

It is easy to check that the function of Definition 1.1 verifies all the conditions for
being a metric. This is the most common metric used in coding theory, because it
represents a good measure for the error resulting from the transmission of a message
through a noisy channel. However, there exist other metrics for specific kind of codes
(and alphabets) such as the Lee metric or the rank metric. Afterwards, we will give
more details about the latter.

We might be interested in minimizing distance and weight over a subset of An.

4 Chapter 1. Preliminaries

Definition 1.2 (Minimum distance/minimum weight). Given a metric d and the
corresponding weight function wt, the minimum distance of a non-trivial code C
is

d(C) def= min{d(c,d) | c,d ∈ C , c ̸= d}.

The minimum weight of C is

wt pC q
def= min{wt pcq | c ∈ C , c ̸= 0}.

A code C ⊆ An with M elements and minimum distance d is called an (n,M, d)
code, or (n,M) code without specifying the distance. Given a nonnegative integer r
and a vector x ∈ An, we define the ball of radius r centered in x as

Br(x) def= {y ∈ An | d(x,y) ≤ r}.

For the metrics considered here, the volume of a sphere does not depend on its
center. Thus we can define the volume of any sphere of radius r in An, where
|A| = q as a function in r, n and q, and we denote it with Vq(n, r). A straightforward
computation shows that, for the Hamming metric,

Vq(n, r) =
{
|Br(0)| = ∑r

i=0
`

n
i

˘

(q − 1)i, r ≤ n
qn, r > n.

The next quantity describes how much information a code is carrying.

Definition 1.3 (Code rate). Let |A| = q and C ⊂ An be a code. The information
rate R of C is defined as

R
def=

logq|C |
n

.

We now want to construct codes with some algebraic structure. We then proceed
to define linear codes. The alphabet A considered for these codes is a finite field Fq.

Definition 1.4 (Linear code). Let q be a prime power, k a nonnegative integer
and n ≥ k a positive integer. A q-ary linear code C is a linear subspace of Fn

q of
dimension k and is called an [n, k] code. if d is the code distance, then C is also
called an [n, k, d] linear code.

From now on, whenever writing C ⊂ Fn
q , we will imply that C is a q-ary code,

unless otherwise stated.
We can now revisit the previous definitions in the case of a linear code. The

cardinality of a q-ary [n, k, d] linear code C is qk. Therefore C is a (n, qk, d) code
and its information rate is R = k

n . Moreover

Proposition 1.1. For a linear code C , minimum distance and minimum weight
coincide.

Proof. The thesis follows because vector spaces are closed under addition and each
element has inverse:

d(C) = min
c,d∈C

d(c,d) = min
c,d∈C

d(c− d,0) = min
c,d∈C

w(c− d) = min
x∈C

w(x) = wt pC q .

1.1. Algebraic Coding theory 5

Linear subspaces can be succinctly described by their basis. The generator matrix
of a code embodies this feature.

Definition 1.5 (Generator matrix). Let C be an [n, k] linear code. A generator
matrix G of C is a k × n matrix whose rows are a basis of C .

If G is a generator matrix for C ⊂ Fn
q , then C = {xG | x ∈ Fn

q }. A generator
matrix is evidently not unique. However there is a natural form for it. We say that
G is in systematic form if G = [Ik | P], where Ik is the k × k identity matrix
and P a k × (n− k) matrix. If it is possible to row-reduce G in this way, then the
first k positions are called information symbols and J1, kK is an information set.
This is not always the case, as the column submatrix of G corresponding to the first
k positions might not be full rank. However, by linear algebra, there must exist a
subset S of J1, nK of cardinality k such that S is an information set. In other words,
any linear code is equivalent to a code which admits a generator matrix in systematic
form.

Definition 1.6 (Equivalent codes). Let C1,C2 ∈ Fn
q be two [n, k] linear codes. We

say that C1 and C2 are equivalent codes, and write C1 ∼ C2, if there exists a
permutation σ over J1, nK such that

σ(C1) def= {(cσ−1(i))i∈J1,nK | c ∈ C }

is equal to C2.

Definition 1.7 (Dual code). Let C ⊂ Fn
q be a linear code. Its dual code C ⊥ is

defined as
C ⊥ def= {d ∈ Fn

q | ∀c ∈ C , ⟨c,d⟩ = 0},

where ⟨c,d⟩ is the inner product of c and d.

The notion of dual code of C must not be confused with the one of dual vector
space, i.e. the space of linear forms on C . The dual code C ⊥ is obviously a linear
code. In particular, if C is an [n, k] code, then C ⊥ is an [n, n − k] code. We also
remark that C ⊥ is not the orthogonal complement in the sense of vector spaces over
R. Due to the fact that the field characteristic is different from 0, it is possible
that C ∩ C ⊥ ̸= {0} and it may even occur that C = C ⊥. A code C with the latter
property is called self-dual.

Definition 1.8 (Parity-check matrix). Let C be an [n, k] linear code. A parity-
check matrix H of C is an (n− k)× n matrix whose rows are a basis of C ⊥.

It readily follows from the definition of parity-check matrix and linearity that

c ∈ C ⇐⇒ cHT = 0.

This also implies that
GHT = 0. (1.1)

We will see how Equation (1.1) allows to set up an algebraic model when the code
generators are vectors of polynomial evaluations.

6 Chapter 1. Preliminaries

Moreover, if G = [Ik | P] is the generator matrix of an [n, k] systematic linear
code C , then the corresponding parity-check matrix is H = [−P T | In−k]. Indeed
the parity-check matrix defined in this way satisfies Equation (1.1) and the number
of rows (which are clearly linearly independent) equals the dimension of C ⊥.

Definition 1.9 (Syndrome). Let C ⊂ Fn
q be a linear code with parity-check matrix

H. For any x ∈ Fn
q , xHT is called the syndrome of x.

Looking at C as a subgroup of Fn
q , the latter can be decomposed into [Fn

q : C] =
qn−k cosets. The notion of syndrome is involved in the definition of cosets. In
particular, x and y belong to the same coset if they have the same syndrome, i.e.

x− y ∈ C ⇐⇒ xHT = yHT .

We can identify a natural representative for each coset as the vector e with
minimal weight in that coset, and we call it coset leader. We remark that the coset
leader is not necessarily unique. To explain its usefulness, suppose we want to decode
a received word y with respect to a code C ∈ Fn

q . Let us make two assumptions.
The first one is that the errors occur with the same probability p for any bit and
that they are independent events. This is the case for transmissions over a q-ary
symmetric channel, a common communication model in information theory. Then we
assume that any codeword c has the same probability 1/|C | of being sent. The goal
is to perform maximum likelihood (ML) decoding, i.e. finding the codeword
c ∈ C which maximizes P(c sent | y received). If d(c,y) = d, with our assumptions
we have

P(c sent | y received) = (1− p)n−d

ˆ

p

q − 1

˙d

.

If we also take p < q−1
q , maximum likelihood decoding coincides with minimum

distance decoding, which aims at finding a codeword c ∈ C with minimum distance
from y. Then y = c + e, where e is (one of) the coset leader(s) of the same coset of
y. Since

yHT = (c + e)HT = cHT + eHT = eHT ,

one can find c = y − e looking at a precomputed table of size qn−k, mapping eHT

to e. Minimum distance decoding using a lookup table is also known as syndrome
decoding.

We conclude this quick introduction to linear codes with some classical procedures
to contruct new codes from existing ones.

Definition 1.10. Given a code C ⊆ Fn and a subset I ⊆ J1, nK, the punctured
code PctI pC q and the shortened code ShI pC q over I are defined respectively as

PctI pC q =
{

(ci)i∈J1,nK\I | c ∈ C
}
,

ShI pC q =
{

(ci)i∈J1,nK\I | ∃ c = (ci)i∈J1,nK ∈ C s.t. ∀ i ∈ I, ci = 0
}
.

For the sake of simplicity, when I = {i}, we denote the punctured and the
shortened codes in I with Pcti pC q and Shi pC q respectively.

Shortening and puncturing combine with the dual operator in a reciprocal way:

1.1. Algebraic Coding theory 7

Proposition 1.2 ([HP03, Theorem 1.5.7]). Let C be a linear code of length n and
I ⊂ J1, nK. Then

ShI

´

C ⊥
¯

= PctI pC q
⊥ and PctI

´

C ⊥
¯

= ShI pC q
⊥ .

1.1.2 Bounds on codes
Given a q-ary (n,M, d) code, the size M gives an indication (depending on the length
n) of the code efficiency, while d express the error-correction capability. We could
list the following desirable properties for an (n,M, d)-code:

1. large M : many messages can be encoded;

2. large d: many errors can be corrected;

3. small n: the transmission is fast.

It is therefore clear that, for a fixed length n, values of both M and d as large as
possible are highly desirable for error-correction purposes. Finding good codes from
this point of view is an hard task even regardless of equipped encoding/decoding
algorithms and this represents a wide research area in coding theory. Unfortunately
there are some inviolable limits, as M and d can not be arbitrarily large at the same
time. In other words, a compromise between the transmission rate and the relative
error-correction can not be avoided. In this section we will review some classic upper
bounds as well as some lower bounds.

Definition 1.11. Let A be an alphabet of size q. Given n and d, we denote with
Aq(n, d) the largest possible size M for which there exists an (n,M, d)-code over A.
In other words,

Aq(n, d) def= max{M | ∃(n,M, d)-code over A}.

Any (n,Aq(n, d), d)-code over A is called an optimal code.

Note that the value Aq(n, d) depends only on the size of A but not on A itself.
Determining Aq(n, d) is a difficult challenge. As a matter of fact, this problem is
known as main coding theory problem.

We have an analogous definition when we restrict to linear codes.

Definition 1.12. Let q be a prime power. Given n and d, we denote with Bq(n, d)
the largest possible size qk for which there exists an [n, k, d]-code over Fq. In other
words,

Bq(n, d) def= max{qk | ∃[n, k, d]-code over Fq}.

We quote some extremal (in)equalities for these numbers, without proof.

Proposition 1.3 (Ling Xing Theorem 5.1.7). Let q ≥ 2 be a prime power. Then

1. ∀d ∈ J1, nK, Bq(n, d) ≤ Aq(n, d) ≤ qn;

2. Bq(n, 1) = Aq(n, 1) = qn;

8 Chapter 1. Preliminaries

3. Bq(n, n) = Aq(n, n) = q;

A list of upper and lower bounds (and sometimes exact values) of Aq(n, d) for
several q, n and d is maintained in [Gra07]. Before moving to the actual bounds,
let us briefly and informally recall Shannon’s theorem (or Shannon’s limit), which
addresses the question of the limit of error correction. In particular, it wonders what
is the optimal error correction for a given noisy channel. Let Hq be the entropy
function

Hq(x) def=
{

0, x = 0
x logq(q − 1)− x logq(x)− (1− x) logq(1− x), 0 < x ≤ (q − 1)/q.

Given a channel which transmits symbols of a q-ary alphabet and alters each symbol
with independent probablity p, Shannon’s limit asserts that for any R < 1−Hq(p)
there always exists a code C (not necessarily linear) whose rate is R and such that
the probability of a wrong decoding is exponentially small. On the other hand, if
R > 1−Hq(p) the decoding failure will always be lower bounded by some strictly
positive constant.

1.1.2.1 Gilbert-Varshamov bound
We start with a lower-bound, called the Gilbert-Varshamov bound.

Theorem 1.1 (Gilbert-Varshamov bound). Let n, d ∈ N, d ≤ n. Then

Aq(n, d) ≥ qn

Vq(n, d− 1) = qn∑d−1
i=0

`

n
i

˘

(q − 1)i
.

Proof. Let C be an (n,M, d) maximal code. Hence for any word x in An, there
exists at least a codeword in C whose distance from x is strictly less than d. In
other words ⋃

c∈C Bd−1(c) = An. By summing all the sphere volumes, we obtain
that |C | · Vq(n, d− 1) ≥ |An| = qn.

The proofs shows that it is possible to construct a code which attains Gilbert-
Varshamov bound by starting from a codeword c and iteratively adding new
codewords with distance at least d from all the previously picked codewords. Of
course such a code is not necessarily linear. However, it turns out that this additional
requirement does not represent a crucial restriction.

Theorem 1.2 (Gilbert-Varshamov bound for linear codes). Let n, k, d ∈ N, k ≤ n.
If Vq(n, d− 1) < qn−k+1, then there exists a q-ary [n, k, d] code.

Gilbert-Varshamov bound has also an asymptotic counterpart. Given a q-ary
code C ∈ An with relative distance δ, we first define

α(δ) def= lim sup
n→∞

Aq(n, δn)
n

.

Then

Theorem 1.3 (Asymptotic Gilbert-Varshamov bound). Let 0 ≤ δ ≤ (q−1)/q. Then

α(δ) ≥ 1−Hq(δ).

1.1. Algebraic Coding theory 9

1.1.2.2 Upper bounds

The simplest upper bound is instead the so called Singleton bound, for which we
present both a generic description and its specialization for linear codes.

Theorem 1.4 (Singleton bound). Let q > 1 an integer, and d, n two intgers such
that 1 ≤ d ≤ n. Then

Aq(n, d) ≤ qn−d+1.

In particular, any [n, k, d]-code over Fq must satisfy

k ≤ n− d+ 1.

Proof. Let C be an (n,M, d)-code over A, with |A| = q, such that M = Aq(n, d).
We consider the code C ′ ⊆ An−d+1 of length n− d+ 1 constructed by removing the
last d− 1 coordinates from all the codewords of C . Since the distance of C is d, all
the codewords are still different, i.e. C ′ contains M codewords too. But then

Aq(n, d) = M = |C ′| ≤ |A|n−d+1 = qn−d+1.

It readily follows that, if C is an [n, k, d]-code, then qk ≤ qn−d+1, i.e. k ≤ n−d+1.

An [n, k, d] linear code which attains Singleton bound, i.e. for which k = n−d+1,
is called maximum distance separable (MDS for short) code. A remarkable
family of MDS codes is given by (generalized) Reed-Solomon codes.

Subtler arguments may lead to tighter upper bounds with respect to the
Singleton bound. An example is given by the Hamming bound, also known as
sphere packing bound. On the other hand additional hypotheses may be needed. We
just mention the Plotkin bound, which is only applicable to a small range of values of
d, namely when d is relatively large compared to n. The Griesmer bound instead is
applicable to linear codes only. We postpone the discussion on another upper bound,
called Johnson’s bound, to the section about RS codes decoding.

Figure 1.1 compares some of the main bounds, in their asymptotic formulation.
The colored area is enclosed within the Gilbert-Varshamov bound curve from below,
and the Hamming bound and Plotkin bound curves from above. Finding codes which
beat Gilbert-Varshamov bound, i.e. in the colored zone, is a big open problem. The
common belief was that such codes do not even exist until the beginning of 80’s. In
other words, it was speculated that the Gilbert-Varshamov bound was asymptotically
optimal. However, a family of codes with such parameters was found for the first
time in 1982 by Tsfasman, Vladut and Zink [TVZ82], by making use of techniques
borrowed from algebraic geometry. This happened after the discoveries of Goppa
about constructing codes from algebraic curves [Gop71]. For more information
regarding algebraic geometry codes we refer the reader to [TV13] or [CR21]. In
[TVZ82], the existence of codes exceeding Gilbert-Varshamov bound was proven for
any field Fq, with q ≥ 49 a square. However, for instance families of binary codes
with the same feature are still not known and it is not even clear whether they could
exist or not.

10 Chapter 1. Preliminaries

0.0 0.2 0.4 0.6 0.8 1.0
relative distance

0.0

0.2

0.4

0.6

0.8

1.0

ra
te

 R

Singleton bound
Plotkin bound
Hamming bound
Gilbert-Varshamov bound

Figure 1.1: Comparison among some classical lower and upper bounds. The grey
area is guaranteed to contain codes.

1.1.3 Reed-Solomon codes
Reed-Solomon codes are a family of algebraic codes with excellent decoding
capabilities and many other interesting features. It is no coincidence that these
codes have been chosen for many real-life applications, sometimes in conjunction
with other codes. A non exhaustive list of them includes satellite communications
and space transmission (for instance in several NASA missions), bar code (QR codes
and others) or data storage (such as CDs, DVDs or Blu-ray discs). They are named
after Reed and Solomon, who discovered them in 1960 in their seminal work [RS60].
The attraction for these codes stems from the fact that they benefit from extremely
efficient decoding algorithms.

We start by defining (generalized) Reed-Solomon codes and reviewing some classic
results that shed light on the rich structure of this family and that will be useful in
the next chapters. Then we will give an overview on some decoding algorithms that
are specific for Reed-Solomon codes.

One of the possible ways to describe Reed-Solomon codes is to look at them as
evaluation code. This is, incidentally, the original view from Reed and Solomon.

Definition 1.13 (Reed-Solomon code). Let x = (x1, . . . , xn) ∈ Fn be a vector of
pairwise distinct entries. The [n, r] Reed-Solomon (RS) code with support x is

RSk(x) def= {(P (x1), . . . , P (xn)) | P ∈ F[z],degP < k}

Therefore, an RS code can be succinctly described by a vector, rather than a
matrix. For a fixed x, the RS code of prescribed dimension is indeed unique. However
it is possible to obtain equivalent (but different) RS codes by permuting the vector
x coordinates.

Especially for cryptograhic purposes, it will be worthwhile to consider a larger
family of codes, which was instead introduced by Delsarte in [Del75]:

1.1. Algebraic Coding theory 11

Definition 1.14 (Generalized Reed-Solomon code). Let x = (x1, . . . , xn) ∈ Fn be
a vector of pairwise distinct entries and y = (y1, . . . , yn) ∈ Fn a vector of nonzero
entries. The [n, k] generalized Reed-Solomon (GRS) code with support x and
multiplier y is

GRSk(x,y) def= {(y1P (x1), . . . , ynP (xn)) | P ∈ F[z],degP < k}

In the following, whenever two vectors x and y play the role of, respectively,
support and multiplier for a (generalized) Reed-Solomon code, we will omit that
they have the same length n and they respect the corresponding constraints.
Remark 1.1. An [n, k] RS code is an [n, k] GRS code where the multiplier is a
non-zero constant vector.
Remark 1.2. The maximal length for a (generalized) Reed-Solomon code is forced to
be smaller than the field size, since the support coordinates must be different. Thus,
long RS codes require a large field size. Furthermore, we say that the Reed-Solomon
code GRSk(x,y) is of full-length if n = |F|, i.e. if the set of coordinates coincides
with F.
Remark 1.3. Since polynomials of bounded degree are generated by monomials up to
that degree, we have

GRSk(x,y) def=
〈

(y1x
i
1, . . . , ynx

i
n) | 0 ≤ i < k

〉
F
.

Therefore a generator matrix for GRSk(x,y) is given by the following rectangular
Vandermonde-like matrix:

V k(x,y) def=

»

—

—

—

–

y1 . . . yn

y1x1 . . . ynxn
...

y1x
k−1
1 . . . ynx

k−1
n

fi

ffi

ffi

ffi

fl

. (1.2)

As we have anticipated, GRS codes meet the Singleton bound:

Proposition 1.4 (p. 94 , [LX04]). The code GRSk(x,y) is an [n, k, n − k + 1]
code. Hence it is an MDS code.

Moreover, the dual of a GRS code is also a GRS code, where the support and
the multiplier are related to the ones of the primal code. In order to explicit such
relation we introduce the polynomial

πx(z) def=
n∏

i=1
(z − xi) ∈ F[z].

Proposition 1.5 (Theorem 4, p. 304, [MS86]). Let GRSk(x,y) be a GRS code of
length n. Its dual is also a GRS code. In particular

GRSk(x,y)⊥ = GRSn−k(x,y⊥),

where
y⊥ def=

ˆ

1
π′

x(x1)y1
, . . . ,

1
π′

x(xn)yn

˙

and π′
x is the derivative of πx.

12 Chapter 1. Preliminaries

1.1.3.1 Decoding algorithms for RS codes

As already said, RS codes comes with very efficient decoding algorithms, which are
able to exploit their strong algebraic structure. The Berlekamp-Welch algorithm
[WB86] allows to uniquely decode whenever no more than half of the minimum
distance errors occur. Such a threshold coincides with the error correction radius 1−R

2 ,
since Reed-Solomon codes are MDS codes. After this work, decoding Reed-Solomon
codes beyond the error-correction radius has been a long-standing open problem
in algebraic coding theory. This was eventually solved by Madhu Sudan in 1997
[Sho97] who discovered an algebraic decoder that works up to a fraction of errors
1−

?
2R (which we will call the Sudan radius from now on). Shortly after, this

result was even improved by Venkatesan Guruswami and Madhu Sudan in [GS98]
with a decoder that works up to the Johnson radius 1−

?
R.

Remark 1.4. Any decoding algorithm for Reed-Solomon codes can be adapted
to a decoder for generalized Reed-Solomon codes. Indeed, assume we receive a
vector v = c + e = (v1, . . . , vn), for some c = (c1, . . . , cn) ∈ GRSk(x,y) and
wt peq ≤ t. Then c′ def= (c1y

−1
1 , . . . , cny

−1
n) ∈ RSk(x). It is then enough to compute

(v1y
−1
1 , . . . , vny

−1
n) from v and apply the decoding algorithm for RSk(x). Since

wt
`

(e1y
−1
1 , . . . , eny

−1
n)

˘

= wt peq ≤ t, the decoder recovers c′, from which c can be
immediately obtained. That is the reason why in the following we will simply focus
on RS codes rather than GRS codes, without loss of generality. Since we got rid off
the multiplier vector, we come back to usual notation where y = c + e represents
the received word, for some c = (c1, . . . , cn) ∈ RSk(x) and wt peq ≤ t.

We present now a simplified version of Berlekamp-Welch algorithm.
Let E def= {i ∈ J1, nK | ei ̸= 0}, i.e. the set of error positions and define the error

locator polynomial as
Λ(X) def= Πi∈E(X − xi) ∈ F[X].

The error locator polynomial Λ is monic and deg(Λ) = |E| = t, so Λ = Xt+∑t−1
j=0 λiX

i.
By construction, its t roots are the x coordinates corresponding to E. Moreover,
the sought codeword c is, by definition of RS codes, the evaluation vector in x
coordinates of some polynomial P with deg(P) < k, i.e. c = (P (x1), . . . , P (xn)).
Therefore, two cases may occur:

• i ∈ E: then Λ(xi) = 0.

• i /∈ E: then yi = ci + ei = ci = P (xi).

It can be readily checked that both cases imply

yiΛ(xi) = P (xi)Λ(xi), (1.3)

which hence holds for all i ∈ J1, nK. We can look at the polynomial equation (1.3) as
a system of equations obtained by equating the corresponding coefficients of left and
right hand sides. Indeed, while xi’s and yi’s are known, the coefficients of both Λ
and P are unkwown and can be set as variables. The product P (xi)Λ(xi) provides
quadratic coefficients in the unknowns, and in particular they are bilinear if we split
the variables in the sets of P ’s coefficients and Λ’s coefficients. In any case, the

1.1. Algebraic Coding theory 13

system is not linear. However we can perform a linearization, by defining an auxiliary
polynomial:

g
def= P · Λ

and picking g’s coefficients as new variables. Hence Equation (1.3) translates into

∀i ∈ J1, nK, yiΛ(xi) = g(xi).

Such a system clearly has a solution, which is the one derived from c and e. Let us
now count the number of unknowns and compare it with the dimension of the arising
system. The error locator provides t variables, while deg(g) = deg(P)+deg(Λ) = k+t,
thus we have to add other k+ t+ 1 variables, for a total of k+ 2t+ 1. In this setting,
once the linear system is set up, it is reasonable to find a unique solution whenever
n ≥ k+2t+1. In other words, the error correction capacity of the algorithm coincides
with

t =
⌊
n− k − 1

2

⌋
.

In relative terms, the error correction capacity is 1−R
2 , where R is the code rate. The

linear algebra part of the algorithm turns out to be the most expensive to do. In the
unique decoding regime, the number of unknowns is upper bounded by n and thus
the cost amounts to O(nω) is the linear algebra constant and this term dominates
the overall complexity of the Berlekamp-Welch algorithm. In fact, P can then be
determined through Euclidean division of g with respect to Λ with cost O(tk) and c
is obtained by evaluating P in all xi’s in O(kn).

Remark 1.5. The other standard method to makes use of the Euclidean algorithm
instead of linear algebra and yields an improved complexity of O(n2). However, this
would require some care about the details. So we gave preference to the simplicity
and immediacy of the linear algebra approach, which is too often ignored in textbooks
and presentations.

The Berlekamp-Welch algorithm is already enough to make RS codes a really
special family for error-correction purposes. Nevertheless, it has been non-
constructively proved the existence of codes with decoding algorithm correcting
errors with weight up to 1−R− ϵ(q), with ϵ(q)→ 0 for q →∞, i.e. twice the value
of the algorithm just described.

Although Berlekamp-Welch fails to work above half the minimum distance, it
always outputs a unique codeword in the regime for which it is designed. On the other
hand, an enhanced correction capability comes for a price: the resulting algorithm
will output a list of candidate solutions rather than a unique solution. These
decoders are called list-decoding algorithms and the fraction 1−R is known as
list-decoding capacity. This optimal error-correction has been asymptotically attained
in a breakthrough paper from Guruswami and Rudra [GR06] for a family constructed
upon RS codes, namely folded Reed-Solomon codes.

One might still think that these algorithms are totally useless; for instance if the
output list contains all (or almost all) the codewords, the problem of correcting an
error would definitely not be solved. We will see that the decoder becomes relevant
if the decoding radius is such that the list size is only polynomial in the code length.
In this case, we highlight two facts that make list decoders worthy of study:

14 Chapter 1. Preliminaries

• If the output list is short enough, it can be efficiently sorted with respect to
the distance from the received word, then the closest word is the solution to
the maximum likelihood decoding problem. Even if such a word is not unique,
we still obtain some useful information in case a retransmission is possible.

• The bounds on the list size for these algorithms refer to a worst-case scenario.
In practice, most of the time these decoders output a list with just one (or very
few) elements.

The decoding radius for which the list size is polynomially bounded can be
determined, and it is known as Johnson’s radius.

Theorem 1.5 (Johnson’s bound). Let C ∈ Fn
q be an [n, k, d] q-ary code, and let

δ = d/n be the relative distance. Then the Johnson radius ρ is defined as

ρ
def=

ˆ

1− 1
q

˙

˜

1−

d

1− qδ

q − 1

¸

and for any y ∈ Fn
q ,

|{c ∈ C | d(y, c) ≤ ρn}| ≤ qdn = O(qn2).

Remark 1.6. The Johnson radius depends on the field size q of C . In the extremal
binary case we get

ρ = 1−
?

1− 2δ
2 ,

while for q →∞
ρ→ 1−

?
1− δ.

In the latter case, if C is also an MDS code, then

ρ→ 1−
?
R,

R being the code rate. This is the case for instance of a sequence of RS codes, for
which a length growing to ∞ implies a field size tending to ∞ as well.

The first step towards efficient list-decoding algorithms is due to Sudan, who
proposed the first polynomial time decoder of this type in 1997 [Sho97]. Despite not
reaching an error correction capacity corresponding to the Johnson bound, its work
was a huge breaktrough in algebraic coding theory, which earned him a Nevanlinna
prize.

The core idea consists in translating the decoding problem in terms of a root
finding problem on a bivariate polynomial vanishing on several points, which can be
solved through linear algebra. For a sequence of RS codes, with length growing to
∞ and constant rate R, the asymptotic list size from Sudan’s algorithm is

1− ρ
R

,

where ρ is the relative decoding radius. Prescribing that the arising linear system
has more variables than equations (which guarantees the existence of solutions) leads
to an asymptotic decoding radius of

ρ = 1−
?

2R.

1.1. Algebraic Coding theory 15

In order to improve on the Berlekamp-Welch algorithm, the code rate must then
be low enough, so that 1 −

?
2R ≥ 1−R

2 . A straightforward computation shows
that asymptotically Sudan’s algorithm outperforms Berlekamp-Welch algorithm for
R Æ 0.1716. We also mention that the complexity of the algorithm is dominated by
the linear algebra part and is therefore given by O(nω).

In [GS99], Guruswami and Sudan improved the Sudan algorithm. In particular
they generalized it in such a way that it now takes into account some multiplicity
constraints. Finally the Guruswami-Sudan algorithm manages to achieve the
asymptotic Johnson bound ρ = 1 −

?
R. Contrarily to the previous list decoder,

this one always improves the correction capability upon half the minimum distance,
since 1 −

?
R > 1−R

2 for any rate R. Despite being polynomial time, the decoder
has a much higher complexity than e.g. Sudan’s algorithm. Nonetheless, several
improvements have been studied, eventually leading to a complexity of Õ(vωsn)
[Cho+15] (where Õ() indicates that we omit polylogarithmic terms), which makes
possible practical implementations.

0.0 0.2 0.4 0.6 0.8 1.0
rate R

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

de
co

di
ng

 ra
di

us

Berlekamp-Welch
Sudan
Guruswami-Sudan

Figure 1.2: Comparison Reed-Solomon decoders radii. Note that Sudan improves
upon Berlekamp-Welch only for low rates, whereas Guruswami-Sudan radius is
always above Berlekamp-Welch radius.

1.1.4 Subfield subcodes of RS codes: alternant and Goppa
codes

The problem with Reed-Solomon codes is that long codes need to be defined over
big fields. In order to keep the field size constant, while preserving the decoding
algorithms and (some of) the nice properties of RS codes, alternant codes have been
introduced. Informally, these are subcodes of RS codes where only the codewords
lying over a subfield are taken.

In the context of subfield subcodes we will often consider a finite field Fqm and

16 Chapter 1. Preliminaries

its subfield Fq. It is therefore useful to fix a basis of Fqm over Fq:

{α0, . . . , αm−1}.

We will also make use of a normal basis

{β, βq, . . . , βqm−1}

whenever fruitful.
The field trace operator, from now on simply called trace, is a map that allows

to map elements from Fqm to its subfield Fq.

Definition 1.15 (Trace). Given the finite field extension Fqm/Fq, we define the
trace map TrFqm /Fq

:Fqm → Fq for all x ∈ Fqm as

TrFqm /Fq
(x) =

m−1∑
i=0

xqi
.

The definition extends component-wise to vectors x ∈ Fn
qm :

TrFqm /Fq
(x) = (TrFqm /Fq

(x1), . . . ,TrFqm /Fq
(xn))

and consequently to codes C ⊆ Fqm

TrFqm /Fq
(C) = {TrFqm /Fq

(c) | c ∈ C }.

We remark that if C = ⟨ ci | 1 ≤ i ≤ k ⟩Fqm
then TrFqm /Fq

(C) is a linear code
over Fq and

TrFqm /Fq
(C) =

〈
TrFqm /Fq

(αjci) | 0 ≤ j < m, 1 ≤ i ≤ k
〉
Fq

.

Essentially, multiplying the generators of C inside the trace by each element αj of
the extension field basis takes into account the fact that C is a code over Fqm , while
TrFqm /Fq

(C) is defined over the subfield Fq. So, if dimFqm C = k then we typically
expect dimFq TrFqm /Fq

(C) = mk. A counterexample is given when TrFqm /Fq
(C)

coincides with the ambient space, since the dimension clearly can not exceed the
code length. From now on, we will omit the extension field Fqm/Fq and simply write
Tr, whenever the former is clear from the context.

Delsarte’s theorem is a classical result linking a trace code to a subfield subcode,
i.e. the intersection of a code with the vector space defined by a subfield.

Theorem 1.1 (Delsarte’s theorem, [Del75]). Let C be a code over Fqm. Then

(C|Fq
)⊥ = Tr(C ⊥),

where C|Fq

def= C ∩ Fq denotes the subfield subcode over Fq of C .

Notation 1.1. Although the code dimension is usually denoted with k, in this context
it will be replaced by r. This choice is done in compliance with a significant part of
the literature on Goppa codes for code-based cryptography, where r indicates the
degree of a Goppa polynomial, the latter being a notion related to the dimension.
By extension, the same notation will be used for GRS codes and generic alternant
codes.

1.1. Algebraic Coding theory 17

An alternant code can be defined as the subfield subcode of a GRS code:

Definition 1.16 (Alternant code). Let n ≤ qm, for some positive integer m. Let
GRSr(x,y) be the GRS code over Fqm of dimension r with support x ∈ Fn

qm and
multiplier y ∈ (F∗

qm)n. The alternant code with support x and multiplier y and
degree r over Fq is

Ar(x,y) def= GRSr(x,y)⊥ ∩ Fn
q .

The integer m is called extension degree of the alternant code.

Remark 1.7. By Proposition 1.5 we immediately infer that an alternant code is the
subfield subcode of a GRS code:

Ar(x,y) def= GRSn−r(x,y⊥) ∩ Fn
q .

Notation 1.2. We use the same notation as in [MS86] and use the dimension r and
the multiplier y of the dual GRS code, which turns out to be more convenient in our
setting.

It can be verified that the alternant code Ar(x,y) of length n has dimension
lower bounded by n − rm and minimum distance striclty larger than r. In other
words, it is a [n,≥ n − rm,≥ r + 1] code. Since GRSn−r(x,y⊥) is a supercode
with respect to Ar(x,y), the same decoding algorithms used for GRS codes can be
adopted for the corresponding alternant codes. This comes at the price of a scaling
of the decoding radius proportional to the extension degree m. In particular, a
polynomial-time decoder which works up to half the minimum distance for the former
code provides a polynomial time decoding algorithm for the family of alternant codes
essentially up to n−(n−r)

2 = r
2 errors. We observe that for m = 1 an alternant code is

simply a GRS code. Therefore from now on we will always assume m > 1.
From Delsarte’s theorem (Theorem 1.1) and by duality,

Ar(x,y)⊥ =
´

GRSr(x,y)⊥ ∩ Fn
q

¯⊥

= Tr
´

(GRSr(x,y)⊥)⊥
¯

= Tr p GRSr(x,y)q . (1.4)

The dimension of an alternant code of order r built upon an extension field of degree
m has therefore dimension at least n− rm. There exists a subclass of alternant codes
which is particularly attractive for cryptographic purposes:

Definition 1.17. Let x ∈ Fn
qm be a support vector and Γ ∈ Fqm [z] a polynomial of

degree r such that Γ(xi) ̸= 0 for all i ∈ {1, . . . , n}. The Goppa code of degree r with
support x and Goppa polynomial Γ is defined as

G (x,Γ) def= Ar(x,y),

where y
def=

´

1
Γ(x1) , . . . ,

1
Γ(xn)

¯

.

The reason why binary Goppa codes are preferable to instantiate McEliece-like
schemes is that, if the Goppa polynomial has no multiple roots, there exists a
polynomial time algorithm to decode up to r errors. This follows directly from

18 Chapter 1. Preliminaries

Theorem 1.2. [Pat75] Let G (x,Γ) be a binary Goppa code with the Goppa polynomial
Γ of degree r and square-free. Then

G (x,Γ) = G (x,Γ2) = A2r(x,y),

where yi
def= 1

Γ(xi)2 for all 1 ≤ i ≤ n.

It follows from Theorem 1.2 that a square-free binary Goppa code is a [n,≥
n− rm,≥ 2r + 1] code. It is enough to apply the decoding algorithm for alternant
codes on A2r(x,y), thus correcting 2r

2 = r errors. In a cryptographic framework, this
becomes relevant because it permits to choose better trade-offs between key-size and
security level and design more competitive parameters. Moreover, a more efficient
algorithm, which also corrects up to r errors, can be designed for binary Goppa
codes. This is called Patterson’s algorithm [Pat75].

1.1.5 Product and square of codes
The next operation we are going to introduce is a binary operator on codes which
could be perceived as an artificial and innatural notion. However, it will find
application in code-based cryptography, leading to both distinguishers and attacks
on several schemes relying on structured codes.

First we define a binary operator on vectors defined over the same field and with
the same length, called component-wise product or (Schur’s product).

Definition 1.18 (Component-wise product of vectors). The component-wise product
of two vectors a, b ∈ Fn is defined as

a ⋆ b
def= (a1b1, . . . , anbn).

Remark 1.8. GRS codes can be conveniently generated by vectors that are component-
wise products of x and y.

Schur’s product can then be naturally extended to codes.

Definition 1.19 (Product of codes). The component-wise product of codes
C ,D over F with the same length n is defined as

C ⋆D
def= ⟨ c ⋆ d | c ∈ C ,d ∈ D ⟩F .

If C = D , we call C ⋆2 def= C ⋆ C the square code of C .

A generating set for C ⋆D over F can be constructed by taking the k1k2 products
between the generators of C = ⟨ c1, . . . , ck1 ⟩F and D = ⟨d1, . . . ,dk2 ⟩F, specifically

{ci ⋆ dj | 1 ≤ i ≤ k1, 1 ≤ j ≤ k2}

is a generating set for C ⋆ D . However, this is not always a basis, as some linear
dependencies can occur among the products. For instance when C ∩D ̸= {0}, some
of the above elements are obviously redundant. In the extreme case, i.e. when
C = D , the square code dimension is much smaller than k2, where k = dimF C .
This is a consequence of the commutative property of the component-wise product:
ci ⋆ cj = cj ⋆ ci. Thus we can give the following folklore result appearing for instance
in [Cas+15].

1.1. Algebraic Coding theory 19

Proposition 1.6. Let C be a linear code over F of dimension k and length n. Then

dimFq C ⋆2 ≤ min
ˆ

n,

ˆ

k + 1
2

˙˙

.

More in general if dimFq C = k1,dimFq D = k2 and dimFq (C ∩D) = k∩, then

dimFq C ⋆D ≤ min
ˆ

n, k1k2 −
ˆ

k∩
2

˙˙

as the generator products coming from the intersection must be counted only once.
For a random linear code C whose square does not fill the full space, the dimension

of its square code is
`

k+1
2

˘

with high probability [Cas+15], where k is the dimension
of C . More precisely, we have the following result:

Theorem 1.3 ([Cas+15], Theorem 2.3). Let n:N 7→ N be such that n(k) ≥
`

k+1
2

˘

for all k ∈ N and let s:N 7→ N be defined as s(k) def= n(k)−
`

k+1
2

˘

. Then there exists
a constant c ∈ R>0 such that for k large enough,

P
ˆ

dim C ⋆2 =
ˆ

k + 1
2

˙˙

≥ 1− 2−cs(k),

where C is chosen uniformly at random among the [n(k), k] codes over F.

Moreover, if the code length does not exceed
`

k+1
2

˘

then the square code fills the
ambient space Fn with high probablity. Namely,

Theorem 1.4 ([Cas+15], Theorem 2.5). There exist two constants (depending on
the field size q) c, c′ ∈ R>0 such that, if for all k ∈ N, n : N 7→ N satisfies

k ≤ n(k) ≤ c
ˆ

k + 1
2

˙

,

then for k large enough

P
`

C ⋆2 = Fn
q

˘

≥ 1− 2−c′s(k),

where C is chosen uniformly at random among the [n(k), k] codes over Fq.

However, there exist families of codes for which the inequality in Proposition 1.6
is strict. By computing the square code one can therefore determine with good
probability if the original code belongs to such families or not. Generalized Reed-
Solomon codes represent an example of such behavior and turn out to display a very
peculiar property with respect to the component-wise/Schur product [Wie10].

Proposition 1.7. Let GRSk(x,y) be a GRS code with support x, multiplier y and
dimension k. We have GRSk(x,y)⋆2 = GRS2k−1(x,y2). Hence, if k ≤ n+1

2 ,

dimFqm (GRSk(x,y))⋆2 = 2k − 1.

20 Chapter 1. Preliminaries

This follows on the spot from the fact that the square of a GRSk(x,y) can be
written as

GRSk(x,y)⋆2 =
〈

(xay) ⋆ (xby) | 0 ≤ a, b < k
〉
Fqm

=
〈

xa+by2 | 0 ≤ a, b < k
〉
Fqm

=
〈

xcy2 | 0 ≤ c < 2k − 1
〉
Fqm

.

Note that the square code dimension is here 2k − 1, i.e. it is linear in k and not
quadratic. This implies that (generalized) RS codes up to a constant rate can be
distinguished from random. In particular it is required that 2k − 1 < n, yielding
a distinguishable rate R in the interval [0, 1/2]. Furthermore, since the dual of a
(generalized) Reed-Solomon code is again a (generalized) Reed-Solomon code, it
turns out that this algebraic class is distinguishable for any rate. Indeed, if R > 1/2,
it is possible to square the dual code and check whether its dimension lies below the
code length.

For other families, it may happen that a distinguisher of this kind still exist
but only occur for certain rates. For instance Wild Goppa codes (i.e. Goppa codes
with additional properties) are distinguishable in the case of a quadratic extension.
Secondly all Goppa codes (and more in general alternant codes) are distinguishable
whenever the rate is high enough. Interestingly enough, in the latter case the
distinguishing property does not hold for the primal code but for its dual code.
However the maximum distinguishable rate is not constant, as the dimension of
the square code of the dual code is still quadratic with respect to the dual code
dimension. We will explain this more involved behaviour regarding alternant codes
in the Chapter 3.

1.2. Code-based cryptography 21

1.2 Code-based cryptography
1.2.1 Public key cryptography
Cryptography (from Ancient Greek (romanized): kryptós "hidden", and graphein,
"to write") is the science of keeping information secret and ensuring secure
communications. One of the greatest and most beautiful revolutions in its history is
the so-called public-key cryptography or asymmetric cryptography, first introduced
in the breakthrough work of Diffie and Hellman [DH76] in 1976. Before that and
starting probably in Ancient Egypt, about 4000 years ago, cryptography underwent
multiple transformations and inspired studying and solving problems, mathematical
and otherwise, which sometimes even transcended the mere application of hiding
a message. It has been a central figure in wars (from Roman times through World
War II, until the present days) and has partially contributed to the development of
information theory and computation.

Since the dawn of what is considered modern cryptography, following Shannon’s
seminal work [Sha48], it was clear that a secure system has to be based on
computationally difficult mathematical problems and such hardness must be formalized
by a model which states the security level one wants to reach. Nevertheless, until
the second half of the 1970s, no one knew how to answer a fundamental issue: is it
possible to secure secret communication between two entities that have never met
and exchanged information before? Such a question seemed out of reach and even
counterintuitive, hardly anyone in fact believed that it had an affirmative answer.
On the other hand, the interest in it was growing year by year along with the number
of companies and banks that used computers and their services and consequently
needed to exchange massive amounts of information internally or to their customers,
through insecure channels. This required physically distributing keys to trusted
people, and while this was feasible for military purposes it soon became untenable
for civil use.

This obstacle was finally overcome by the aforementioned article from Diffie
and Hellman. They theorized the existence of a trapdoor one-way function, i.e. of a
function that is easy to compute but difficult to inverse, unless one knows a secret
(rightly the trapdoor). However, they had been unable to find a practical example of
such a function. Two years later, in 1978, Rivest, Shamir and Adleman suggested
to instantiate the trapdoor with the exponention modulo a product of large prime
numbers, thus proposing the first public-key cryptosystem: RSA [RSA78], called in
this way from the initials of their names.

Over the years, the number of trapdoor functions for instantiating asymmetric
cryptosystems has multiplied, and nowadays the palette of primitives is extremely rich,
embracing several difficult mathematical problems. In parallel to the development
of the technology, new needs and challenges have emerged to which public key
cryptography is trying to respond. We cite for example multiparty computation,
which allows communication between multiple users with different roles and remains
secure even if some of them are malicious. Or again (fully) homomorphic encryption,
which permits to perform computations on encrypted data without having to decrypt
them before, an extremely useful feature when working with sensible storaged data.
Finally we talk about post-quantum cryptography to refer to the study of primitives
that remain secure even against the threat of quantum computers.

22 Chapter 1. Preliminaries

1.2.2 Quantum computing in a nutshell
Quantum computing is an emerging technology and its study started in the 1980’s
as a subfield of quantum physics. Quantum computers are devices whose operations
exploit the laws of quantum mechanics, such as superposition, interference and
entanglement. For a deeper tratment on the topic, the reader can refer to the renown
textbook from Nielsen and Chuang [NC02].

The basic unit for computation in classical computer are the bits, which can
assume only two states, 0 or 1. In quantum computers these are replaced by qubits.

Definition 1.20 (Qubit). A qubit is a two-dimensional quantum-mechanical system
whose state |ψ⟩ is an element of the two-dimensional Hilbert spaceH ≡ C2 represented
by a linear combination of the computational basis states |0⟩ and |1⟩, i.e.

|ψ⟩ = α|0⟩+ β|1⟩, s.t. |α|2 + |β|2 = 1,

where α, β ∈ C are called probability amplitudes.

A quantum circuit is the quantum counterpart of classical circuits and uses a
fixed number of qubits intialized to |0⟩.

Differently from classical computation, where the states registered on the bits can
be read at any time without affecting them, quantum measurement is an irreversible
operation which gains information on a single qubit but collapses the state. If the
state of a qubit is |ψ⟩ = α|0⟩+ β|1⟩, measuring it will result in the state |0⟩ with
probability |α|2 or |1⟩ with probability |β|2.

We want to give a coincise insight of intrinsic pontentialities of quantum computing
which are missing in classical systems. What really distinguishes qubits from bits is
a phenomenon called quantum entanglement, that can be contemplated when at least
two qubits are considered. This property means that some qubits are correlated.
A quantum register is a system made of multiple qubits. For instance, a qauntum
register of two qubits is spanned by 22 basis states, denoted |00⟩, |01⟩, |10⟩, |11⟩. Now
consider the two entangled qubits in the so called Bell state:

1
?

2
(|00⟩+ |11⟩).

Because of what said before, a measurement of the state will end up in either the
state |00⟩ or the state |11⟩, both with probability 1

?
22 = 1

2 . Now suppose we start
measuring the first qubit and we observe the state |0⟩. Then, we have the certitude
that the measurement of the second qubit will also give the state |0⟩ (and viceversa).
This can not be explained by classical physics.

The implications of this new model of computation are various and fall in the
fields of computational biology, chemistry, cryptography, machine learning etc. In the
following we will focus on a particular aspect of the impact of quantum computers
in cryptography.

1.2.3 Post-quantum cryptography
Public-key cryptosystems used currently mainly rely on the integer factorization
(RSA) and discrete logarithm over a finite field (DSA) or an elliptic curve (ECDSA)
problems.

1.2. Code-based cryptography 23

While efficient classical algorithms to tackle these problems are not known, a
quantum computer would be able to solve them in polynomial time thanks to a
quantum algorithm found by Peter Shor in 1994 [Sho94]. We remark that this
algorithm actually solves the Hidden Subgroup Problem for finite abelian groups
[Joz01] of which integer factorization and discrete logarithm can be seen as particular
subinstances.

Nowadays, designing quantum-secure schemes has become one of the main
trends in asymmetric cryptography. Shor’s algorithm is indeed a huge breakthrough
with potential serious consequences for digital security, even though the algorithm
requires large and reliable quantum computers to be run, which do not exist yet.
However, in the last decade, big companies such as IBM, Google, Microsoft, D-Wave,
Rigetti etc., started heavily financed research projects for developing large scale
quantum computers. Right now, the experimental quantum computers realized by
these companies definitely lack of sufficient power processing to break any classic
cryptosystem. Indeed there are several physical and engineering difficulties to
overcome depending on the different possible technologies adopted, e.g. ion traps,
transmons or topological quantum computer. Without going into details, since an
in-depth discussion is beyond the scope of this document, we just say that various
computing models have been theorized, such as quantum logic gates, adiabatic
quantum computation or quantum annealing.

Note that quantum computers obey the Church-Turing thesis, and thus can
solve exactly the same problems that can be attacked by a classical computer. On
the other side, for certain problems, the former can have significantly lower time
complexities than the latter, even when considering supercomputers. This feature is
sometimes called quantum supremacy.

As already said we are still far from quantum computers becoming a real world
technology, and it is not even certain that quantum computers will ever reach the
point where they can break classical schemes like RSA. However the cryptographic
community for some time now started working on new primitives that are believed to
be quantum-safe, both in the designing and cryptanalysis sides, in order to stave off
the quantum threat. The reason is that the post-quantum transition is a slow process,
which demands a joint effort from multiple personalities with different expertise. The
realization of a quantum computer before quantum-safe cryptographic schemes get
properly studied and deployed would have terrible consequences and we can not take
such a risk.

The interest in studying quantum-secure schemes is reflected by the choice from
the American National Institute of Standards and Technologies (NIST) to announce
in 2016 a standardization procedure for post-quantum cryptography, then launched
in the late 20171. NIST competition consisted so far of three rounds, after which
one public-key encryption/key-establishment algorithm (PKE/KEM for short) and
three digital signature algorithms were selected in 2022. Currently a fourth round is
ongoing for schemes that are considered secure and/or promising but need further
investigation.

We can identify multiple hard problems that are believed not to be substantially
more vulnerable against quantum computers than against classical ones. We can

1https://csrc.nist.gov/projects/post-quantum-cryptography.

https://csrc.nist.gov/projects/post-quantum-cryptography

24 Chapter 1. Preliminaries

gather them in five families which we briefly describe. For a more complete overview
on post-quantum cryptography, see e.g. [BBD].

Lattice-based cryptography. A lattice is defined as a discrete subgroup of Rn.
Some hard problems related to this object can be defined, for instance the Shortest
Vector Problem (SVP for short), either in its exact or approximated form, which
asks to determine the vector of smallest norm lying in the lattice. Or the Closest
Vector Probem (CVP for short), where a point in the lattice with minimal distance
from a given point is sought. A classic cryptosystem based on the hardness of lattice
problems is NTRU [HPS98]. More recently, another computational problem called
Learning With Error (LWE for short) [Reg05], for which Regev won the Gödel prize,
and its variants have been used as hardness assumption for PKEs [Pei14].

At present, lattice-based schemes are the ones which achieve better overall
performance, for what concern both PKEs and digital signatures. This is confirmed
by NIST standardization process (see Table 1.1). Moreover, lattices represents the
main solution to advanced form of encryption, e.g. Fully Homomorphic Encryption
(FHE for short) [Gen09].

Code-based cryptography. Cryptography based on error-correcting codes is
by far the oldest quantum-safe alternative. As a matter of fact, McEliece proposed
a cryptosystem of this kind back in 1978 [McE78], the same year of RSA. It was
based on the difficulty of decoding a random linear code (an NP-complete problem).
Unfortunately, the drawback of this scheme are its very large public key (in the order
of one thousand times larger than RSA), reason why it did not receive much attention
from the community at the time. However, it has been revalued in more recent times
thanks to the fact that it is believed to be quantum-resistant. Because of its age, it
is nowadays considered one of the most trusted schemes in terms of security. New
frameworks and techniques have also been discovered since then, leading to new and
more efficient code-based schemes. We will discuss this family of cryptosystems in
much deeper detail in the rest of this subsection.

Multivariate cryptography. This includes the primitives based on multivariate
(typically quadratic) polynomial systems over a finite field. Solving systems of
multivariate equations is proven to be NP-complete and the best generic techniques,
i.e. Gröbner basis algorithms (see Section 1.3), have exponential complexity.

The first multivariate scheme, from Matsumoto and Imai, is called C* [MI88]
and dates back to 1988. Although it has been broken in [Pat95], C* inspired other
cryptosystems relying on similar ideas, such as Hidden Field Equation (HFE for
short) [Pat96], Balanced Oil & Vinegar [Pat97] and Unbalanced Oil & Vinegar (UOV
for short) [KPG99]. Despite not being extremely competitive on the PKE side,
multivariate cryptography is an excellent approach for building digital signatures
as it provides the shortest signatures among all post-quantum alternatives. On the
other hand, recent catastrophic key-recovery attacks [Beu22; TPD21; Bae+21] on
the third round NIST candidates Rainbow and GeMSS demonstrate how difficult it
is to design long-term secure multivariate schemes. This is related to the hardness
of understanding the real power of Gröbner bases computation, as new algebraic
modelings and strategies appeared.

Isogeny-based cryptography. This is the youngest family of quantum-safe
primitives. These are based on the hardness of finding isogenies between supersingular
elliptic curves. An analogue of Diffie-Hellman key-exchange, called Supersingular
Isogeny Diffie-Hellman (SIDH for short), has first been proposed by Jao and De Feo

1.2. Code-based cryptography 25

1st Round 2nd Round 3rd Round Standards+4th Round
KEMs Sig.s Overall KEMs Sig.s Overall KEMs Sig.s Overall KEMs Sig.s Overall

Lattice-based 21 5 26 9 3 12 3+2 2+0 5+2 1+0 2+0 3+0
Code-based 17 2 19 7 0 7 1+2 0+0 1+2 0+3 0+0 0+3
Multivariate 2 7 9 0 4 4 0+0 1+1 1+1 0+0 0+0 0+0
Hash-based 0 3 3 0 2 2 0+0 0+2 0+2 0+0 0+1 0+1

Other 5 2 7 1 0 1 0+1 0+0 0+1 0+1 0+0 0+1
Total 45 19 64 17 9 26 4+5 3+3 7+8 1+4 2+1 3+5

Table 1.1: Breakdown of NIST post-quantum candidates for each round and category.
KEMs stands for “key encapsulation mechanisms/encryption schemes”, while Sig.s
is an abbreviation for signatures. Round 3 is split into “finalists+alternates”. Other
includes isogeny-based cryptography.

[JF11]. These primitives offer the smallest key-sizes of all post-quantum families,
but they require to perform very heavy computations, leading to a number of cycles
that is over one order of magnitude larger than the other alternatives. Although
we can count on previous contributions from the elliptic curve cryptography (ECC)
community, as there are partial intersections, this relatively fresh field still needs and
deserves much more study. This is evidenced by very recent and devastating attacks
on isogenies [CD22], [MM22], [Rob22].

Hash-based cryptography. We conclude with the family of cryptographic
schemes relying on the security of hash functions. Hash-based cryptography is
particularly devised to design digital signatures but also for protocols such as zero-
kwnoledge proofs with advanced features. A precursor of hash-based schemes can
be identified in Lamport’s signature [Lam79]. Since hash-based schemes exploits
one-time signature schemes, even combining several of them as building blocks, the
former can be used to sign securely only a limited amount of messages.

We remark that, despite relying sometimes on very different hard problems,
these families are not always completely unconnected. For instance multivariate
and some code-based schemes are united by the fact that can be both attacked
with algebraic techniques (this manuscript indeed address the field of algebraic
cryptanalysis on code-based cryptosystems). On another plane, some studies have
been recently dedicated to adapt and carry over techniques from lattice-based to
code-based cryptography (and viceversa) [DDW22], [BCD22], [Deb+22].

1.2.4 Hard problems from coding theory
Code-based cryptography finds its roots in 1978 in the seminal work of McEliece
[McE78]. The security of this PKE relies indeed on the hardness of decoding a
random linear code. We now define the search version of the problem.

Problem 1.1 (Generic decoding (GD) problem). Given a matrix G ∈ Fk×n, y ∈ Fn

and w ∈ N, find a vector e ∈ Fn, such that wt peq ≤ w and y − e = mG for some
m ∈ Fk.

The term generic refers to the fact that G is interpreted as the generator matrix
of a random (linear) code. For binary linear codes, the decision version of the

26 Chapter 1. Preliminaries

problem, i.e. the one where is only asked whether such e exists, has been proven to
be NP-hard [BMT78] by reducing Three-dimensional Matching, another problem
known to be NP-complete, to it. It is easy to see that the decoding problem is also
in NP. Thus it is NP-complete. A fortiori, the search version is NP-complete, too.
The proof has then been generalized to any field size in [Bar94].
Remark 1.9. The proof in [BMT78] only shows the hardness of GD problem in the
worst case. However, it is believed to be difficult in the average case, too.

Problem 1.1 has a dual version, called Syndrome decoding problem, which is the
one typically adopted. Again we provide the search version of the problem.

Problem 1.2 (Syndrome decoding (SD) problem). Given a matrix H ∈ F(n−k)×n,
s ∈ Fn−k and w ∈ N, find a vector e ∈ Fn, such that wt peq ≤ w and eHT = s.

Notice that finding a codeword of bounded weight in a code, a major problem in
coding theory which is NP-complete too, can be readily seen as an instantiation of
SD problem.

Problem 1.3 (Bounded weight Codeword problem). Given a matrix H ∈ F(n−k)×n

and w ∈ N, find a nonzero vector c ∈ Fn, such that wt pcq ≤ w and cHT = 0.

For the sake of the presentation, we have ignored a subtlety about the McEliece
framework. As it will become more clear in the next subsection, the aforementioned
scheme is not exactly based on GD/SD problems. Indeed, since a specific code C
must be chosen, the weight w here is naturally bounded by the error correction
capacity of C . This leads to the definition of another variant of SD problem:

Problem 1.4 (Bounded Syndrome decoding (BSD) problem). Given a matrix
H ∈ F(n−k)×n, s ∈ Fn−k, d ∈ N such that every set of d columns of H is linearly
independent and w =

⌊
d−1

2

⌋
, find a vector e ∈ Fn, such that wt peq ≤ w and eHT = s.

This problem is believed to be NP-hard [Bar94] but, differently from syndrome
decoding, is likely not in NP.
Remark 1.10. For all the problems introduced, one could consider the corresponding
variants where the sought vector must have weight equal to w, instead of less or
equal. These variants live in the same complexity class as their original counterpart.
One side of the reduction is completely obvious. If we are able to find (when it exists)
a codeword with weight w and satisfying the problem equation, the repeating the
process up to weight w̄, will solve the “less or equal” version of the problem.

So far, we implicitly considered problems on codes endowed with the Hamming
metric. We will now adapt the GD and SD problems to the rank metric. In
particular, the definitions adopted in the literature mirror the use of codes in rank-
metric cryptography. Indeed, in this setting the codes employed are linear codes over
an extension field Fqm of degree m of Fq. The codewords can be seen as elements
of Fn

qm but also as matrices in Fm×n
q . In particular, a vector x = (x1, . . . , xn) ∈ Fn

qm

corresponds to
Mat(x) def= (xi,j)i,j ∈ Fm×n

q ,

where xj = ∑m
i=1 bixi,j for any j ∈ J1, nK and for a fixed basis (b1, . . . , bm) of Fqm/Fq.

Then we define the weight in the rank metric as wtRank pxq
def= Rank(Mat(x)).

Note that this distance does not depend on the choice of the basis.

1.2. Code-based cryptography 27

Problem 1.5 (Rank decoding (RD) problem). Given a matrix G ∈ Fk×n
qm of rank

k, y ∈ Fn
qm and w ∈ N, find a vector e ∈ Fn

qm, such that wtRank peq ≤ w and
y − e = mG for some m ∈ Fk

qm.

Problem 1.6 (Rank Syndrome decoding (RSD) problem). Given a matrix H ∈
F(n−k)×n

qm of rank n − k, s ∈ Fn−k
qm and w ∈ N, find a vector e ∈ Fn

qm, such that
wtRank peq ≤ w and eHT = s.

We conlude with a more recent problem on rank-metric, introduced in [Gab+16].

Problem 1.7 (Rank Support Learning (RSL) problem). Given a matrix H ∈
F(n−k)×n

qm of rank n− k and the product EHT , where E ∈ FN×n
qm is such that all its

entries belong to a subspace V ⊆ Fqm of dimension w ∈ N, find V .

RSL problem essentially consists of N RSD instances eiH
T = s sharing a

common support V of dimension w. This problem has an analogue in the Hamming
metric, called Support Learning problem, but it seems to have much more relevance
in the rank-metric setting. Indeed, it is a versatile problem which, differently from
many other problems, allows to devise code-based primitives whose security is based
only on its difficulty.

1.2.5 McEliece’s scheme
The structure of McEliece’s PKE is fairly standard as it starts with the key-generation
and then consists of encryption and decryption. We now describe it in its general
form, e.g. without specifying the underlying code.

First of all, Alice chooses an [n, k] code Csec ∈ Fn
q that can efficiently decode

up to w errors with a decoding algorithm D which exploits the knowledge of the
generator matrix Gsec. The representation of the secret code is given by this matrix
and hence it can not be safely shared, because it would reveal the algebraic shape of
Csec and how to decode it. To hide the structure, Alice first applies a scrambling to
it, i.e. she chooses at random S ∈ GLk(Fq) and a permutation matrix P ∈ GLn(Fq)
and computes Gpub = SGsecP . The goal is to produce a generator matrix Gpub of
a code Cpub that seems random to someone not knowing Gsec. Therefore Gpub and
w are public, while P ,Gsec and S are kept secret.

It is now the turn for Bob to encrypt a message m ∈ Fk
q . He first encodes it by

multiplying with Gpub and then adds a random error vector e ∈ Fn
q of weight up to

w to it. Thus, he sends the cipher c = mGpub + e back to Alice. For a potential
eavesdropper Eve, recovering the original message m would require to decode Cpub,
which is supposed to be an NP-complete problem.

On the other hand, Alice, being in possession of the secret key, can compute

cP −1 = mSGsec + eP −1.

Since P is a permutation matrix, wt
`

eP −1˘

= wt peq ≤ w. Hence, Alice can use the
decoding algorithm D to retrieve mS and thus recover m by multiplying with S−1.

The McEliece scheme is sketched in Table 1.2.

28 Chapter 1. Preliminaries

ALICE BOB

Key generation

• Choose a linear code Csec ⊆ Fn
q

of dimension k equipped with a
decoding algorithm D correcting
up to w errors. Let Gsec be a k×n
generator matrix of Csec.
• Sample randomly S ∈ GLk(Fq)
and an n× n permutation matrix
P .
• Compute Gpub = SGsecP .
Public key: P = (Gpub, w)
Secret key: S = (Gsec,S,P) P−−−−→

Encryption

• Choose a message m ∈ Fk
q and

a random error vector e ∈ Fn
q of

weight up to w.
c←−−−− • Compute c = mGpub + e.

Decryption

• Compute cP −1 = mSGsec +
eP −1.
• Decode mSGsec + eP −1 using
D and recover mS.
• Compute (mS)S−1 = m.

Table 1.2: McEliece’s scheme

Remark 1.11. As observed in [Cou19], this historical presentation, which dates back
to McEliece’s article [McE78], might lead to some misunderstanding. Primarily
because for most of the code families F , if C ∈ F , then also the image of C through a
permutation of coordinates is inside the same family F . This is the case for instance
of Reed-Solomon codes and their subfield subcodes (alternant and Goppa codes). In
other words, specifying P mistakenly prompts that all the orbits of F with respect to
the symmetric group have a canonical representative. On the other side, the matrix
S suggests that codes always have a canonical generator matrix and that from the
latter a decoding algorithm can be reconstructed. However, this is often not the
case. Our attack on high-rate alternant codes (see Chapter 4) is illustrative of these
misconceptions. We do not aim to recover S and P but rather to find a secret s
(not necessarily unique) which describes the code structure. Despite sticking to the
classical description, we therefore deem it appropriate to outline the scheme from an
alternative viewpoint.

• F is a family of [n, k] codes.

1.2. Code-based cryptography 29

• S is a set of secrets.

• C :S → F is a surjective map sending secrets into codes: s 7→ C (s).

• C (s) is equipped with a decoding algorithm D(s), for any s ∈ S.

• The secret key is some s ∈ S, while the public key is (G, w), where G is a
generator matrix of C (s).

• The message m ∈ Fk
q is encrypted into mG + e, where e ∈ Fn

q is sampled
randomly among vectors of weight at most w.

• The message m is recovered from mG + e by applying D(s).

1.2.6 Niederreiter’s scheme
The Niederreiter framework [Nie86] is the dual counterpart of the McEliece one.
Indeed the parity-check matrix of a code is used instead of the generator matrix,
hence it refers to Problem 1.2 rather than Problem 1.1. The original proposal built
upon GRS codes, and this has been broken after 6 years by Sidelnikov and Shestakov
attack [SS92] and then again in [Cou+13], [Cou+14] with different techniques.
However, the weakness of the scheme could be always traced back to the family
of GRS codes. In other words, it is not an inherent flaw of the framework, the
latter being provably equivalent to the McEliece one [LDW94]. As a matter of
fact, the Niederreiter version, instantiated with binary Goppa codes, is the one one
used in Classic McEliece [Alb+20]. The latter is an evolution of the Niederreiter
scheme, designed to achieve indistiguishability under adaptive chosen ciphertext
attack (IND-CCA2) thanks to a well-known tight conversion from one-way chosen
plaintext attack (OW-CPA) security, and currently taking part at the fourth round
of NIST competition. Again, and even more so in light of the above, we are going to
give a description of Niederreiter’s scheme that is unfettered by any specific class of
codes.

As in the McEliece scheme, Alice chooses an [n, k] code Csec ∈ Fn
q equipped with

a decoding algorithm D that can efficiently decode up to w errors. She also applies a
scramble, this time to a parity-check matrix Hsec, i.e. she samples at random a matrix
S ∈ GLn−k(Fq) and an n×n permutation matrix P and computes Hpub = SHsecP ,
which is the parity-check matrix of a code Cpub ∈ Fn

q . The secret is then represented
by Hsec,S and P , while Alice publishes Hpub (and the value w).

Bob can encrypt a message m ∈ Fn
q of weight up to w as its syndrome through

the parity-check matrix Hpub. Hence, the cipher is given by c = mHT
pub. Recall

that, differently from McEliece’s scheme, no error vector is added, but the message
itself has the weight constraint. Therefore a generic message needs to be mapped
into the set of weight-≤ w vectors through a function ϕn,w:Fl

q 7→ Wn,w, where
Wn,w

def= {e ∈ Fn
q | wt peq ≤ w} and l def=

⌊
logq(|Wn,w|)

⌋
. The eavesdropper Eve must

solve the problem of syndrome decoding in order to retrieve the message m, but this
is NP-hard and only exponential time algorithms are known to tackle it.

Alice, on the other hand, has access to the private key. Consequently, she is able
to compute

S−1cT = HsecP mT ,

30 Chapter 1. Preliminaries

ALICE BOB

Key generation

• Choose a linear code Csec ⊆ Fn
q

of dimension k equipped with a
decoding algorithm D correcting
up to w errors. Let Hsec be a
(n − k) × n generator matrix of
Csec.
• Sample randomly S ∈
GLn−k(Fq) and an n × n
permutation matrix P .
• Compute Hpub = SHsecP .
Public key: P = (Hpub, w)
Secret key: S = (Hsec,S,P) P−−−−→

Encryption

• Choose a message m ∈ Fn
q of

weight up to w.
c←−−−− • Compute c = mHT

pub.
Decryption

• Compute S−1cT = HsecP mT .
• Decode S−1cT = HsecP mT

using D and recover P mT .
• Compute m = (P −1(P mT))T .

Table 1.3: Niederreiter’s scheme

and, since wt
`

P mT
˘

= wt
`

mT
˘

≤ w, recover first P mT with the decoding
algorithm D and finally m = (P −1(P mT))T .

The Niederreiter scheme is summarized in Table 1.3. [center bob and encryption]
Since the McEliece and the Niederreiter schemes are provably equally secure,

we may wonder if there are some difference for what concerns the performance.
In McEliece’s cyrptosystem the key sizes is given by the number of entries of the
k × n generator matrix Gpub times the bit size of each entry, which depends on
the finite field q. Hence the key size is kn log2(q) bits. Instead in Niederreiter’s
cyrptosystems the (n− k)×n parity-check matrix Hpub can be put systematic form,
thus avoiding storing a (n − k) × (n − k) identity submatrix. Hence the key size
becomes k(n− k) log2(q) bits, which is a relevant enhancement especially when the
code rate is relatively high.

On the other hand mapping the messages through ϕn,w slows down both
encryption and decryption. This drawback, however, vanishes if one wants to
send random strings, because these can be obtained as H(e) for some hash function
H.

1.2. Code-based cryptography 31

1.2.7 Other code-based PKE frameworks and schemes
Despite not being object ot this manuscript, it is wortwhile to mention some
alternatives to McEliece’s and Niederreiter’s schemes. Their security relies on
two hypotheses. The first one is the hardness of the general decoding problem (or
the syndrome decoding problem for the dual version). As already seen, this is a
well-studied mathematical problem, considered intractable. The second one depends
on the specific class of codes used, e.g. Goppa codes, and therefore could be weaker.
For instance, the contributions of this manuscript essentially disclaim the second
hypothesis for the choice of high-rate alternant codes offering a polynomial time
attack, and severely questioned it a much more general setting for both alternant
and Goppa codes through a new distinguisher.

It is therefore natural to wonder if it is possible to eliminate upstream this second
hypothesis. Alekhnovich positively answered to this question in a seminal work
from 2003 [Ale03]. Alekhnovich’s scheme relies indeed solely on the hardness of
the general decoding algorithm, i.e. it comes with a security proof. There exist two
main variants of the Alekhnovich cryptosystem. In both of them the attacker is
required to distinguish a random vector from an erroneous codeword of a given code
C , in order to recover the message. This comes with two main drawbacks from the
efficiency point of view. First of all sending n bits is needed to encrypt just one bit.
Furthermore, the public key size is quadratic in the ciphertext length. The latter
defect is the most difficult to work around and hence it is the one which makes the
original Alekhnovich’s scheme impratical.

The quasi-cyclic framework, introduced in [Agu+18], is inspired by Alekhnovic’s
scheme, as it also makes public an initial code, endowed with an efficient decoding
algorithm up to some value w. It also fixes the large key-size issue from Alekhnovich’s
scheme, because it allows to represent the keys in a more compact way. Several
modern code-based schemes are built upon this framework, among them we mention
the NIST candidates HQC [Agu+21] and RQC [Agu+20].

Essentially a message is encrypted in a codeword and then a large error is added,
so that the error correcting capability is not high enough to decode the received word.
However, Alice can use the private key to remove part of the error. The word obtained
after this step is then expected to be decodable. The framework takes its name from
the fact that an auxiliary code with a random double circulant parity-check matrix
is used. We recall, however, that the decryption is probabilistic and deleting part of
the error does not guarantee to make the resulting word decodable. In this case we
speak about decoding failure rate (DFR for short), i.e. the probability that the added
error does not permit to retrieve the original message. The DFR is inherent to the
framework and therefore the aim is to design schemes that have a decoding failure
rate as low as possible. In order to prevent some kind of attacks exploiting the DFR,
it becomes desirable to experimentally or theoretically upper bound it with the value
2−λ, where λ is the number of security bits. However, this is often a difficult task.

The security of the quasi-cyclic framework does not rely on the indistiguishability
of the quasi-cyclic code, as this is publicly available. On the other hand, the syndrome
decoding problem is known to be NP-hard for random code, but not for codes with
a quasi-cyclic structure. In particular it is a long standing open problem to obtain
search to decision reductions for this problem in the case of structured codes. Despite
some progress in this direction, e.g. [BCD22], borrowing and adapting techniques

32 Chapter 1. Preliminaries

from lattice-based cryptography, a lot of work still deserves to be devoted to this
matter.

We have seen several frameworks that can be instantiated in the world of code-
based PKEs. Differently from digital signatures, code-based cryptography has been
the stage for many proposals, attacks, tweaks and refinements since McEliece’s
seminal work. Most notably, McEliece/Niederreiter framework has been instantiated
with a variety of different classes of codes. We try to gather a list of some major
ideas developed in the long journey of code-based cryptology, aware of the fact that
this will be inevitably incomplete.

As already said, Niederreiter’s original scheme relied on GRS codes, but was
broken by Sidelnikov-Shestakov attack. Nevertheless, several attempts to repair the
scheme were proposed [BL05; Wie06; BL11; Bal+11; Bee+18; KRW19], in order to
keep the same family of algebraic codes but avoid the aforementioned attack. Indeed,
GRS codes can correct a much bigger amount of errors than binary Goppa codes,
thus providing better parameters. Most of these variants however suffer from the
same weakness, namely the fact that GRS codes are distinguishable from random
linear codes thanks to the square code construction, which eventually has led to as
many breakings [Wie10; Cou+14; LR20; CL22].

In parallel, some efforts were made in choosing families which keep some of the
properties of Reed-Solomon codes, although different. For instance, RS codes can be
interpreted as algebraic geometry codes over a line. The adaptation to different curves
led to a new scheme with features inherited from RS codes [JM96]. Reed-Muller
codes also generalize Reed-Solomon codes and their use in the McEliece frameworks
has been suggested [Sid94]. Gabidulin codes are the natural analogue of RS codes
for the rank metric, and GPT [GPT91], the first rank-based cryptosystem, is built
from them. For all the listed variants, the supposedly hidden structure has been
leaked [CMP14; MS07; Ove08].

Additionally, alternative versions of Goppa codes, aiming at more compact keys,
have been pointed out. Some examples include quasi-cyclic Goppa codes [Ber+09]
or quasi-dyadic Goppa codes [MB09; BLM11]. Another stratagem was to move to
alphabets of larger size, as in the case of non-binary Wild Goppa codes [BLP10].
These proposals have been cryptanalyzed mostly using algebraic methods [Fau+10b;
Fau+14b; FPP14] similar to the ones presented in this work. Alternatively, the
Goppa structure has been used in conjunction with convolutional codes [LJ12], but
then broken in [LT13].

A promising family for building efficient and secure PKEs is given by codes whose
parity-check matrix is sparse. They are called Low-Density Parity-Check (LDPC for
short) codes (introduced by Gallager [Gal63] in a context unrelated to cryptography)
or Moderate-Density Parity-Check (MDPC for short) codes. When instead the
code admits a sparse generator matrix, it is called Low-Density Generator-Matrix
(LDGM for short) code. Since the number of non-zero positions for a dual basis is
small, it is enough (in the binary case) to store them instead of the full vector of
coordinates. Thus these codes benefit from a compact representation. Moreover, they
are equipped with efficient probabilistic decoders. The fact that they do not have
algebraic structure makes them appreciated in cryptography. However, the matrix
sparsity led to severe flaws. Indeed, the permutation matrix used to mask the secret
parity-check matrix representation in Niederreiter-like schemes leads to a public key
that still has low density. This is a weakness that has been exploited to cryptanalyze

1.2. Code-based cryptography 33

several early proposals [MRA00; OTD08]. The idea of [BBC08] is to replace the
permutation matrix with a denser transformation matrix. In this way the density of
the public parity-check matrix increases providing an MDPC code. However, the
MDPC matrix is not random in this case, as it is obtained from the product of two
LDPC matrices. The authors of [Apo+20] took advantage of this additional structure
to practically break the second round NIST candidates LEDAcrypt [Bal+19]. In
[Mis+13], instead, it has been proposed to consider directly MDPC codes, thus
avoiding the weakness of LDPC codes without adding any structure to the public key.
An example of this approach is the scheme BIKE [Ara+17], based on quasi-cyclic
MDPC codes, which advanced to the fourth round of NIST standardization process.
Its encryption algorithm can be seen as the analog in the Hamming metric of NTRU
[HPS98] and they are believed to have the same security. The family of codes with
sparse parity-check matrices has also a counterpart in the rank-based cryptography,
the so called Low-Rank Parity-Check (LRPC for short) codes [Gab+13].

1.2.8 Digital signatures: definitions and main approaches
A digital signature aims at verifying the authenticity and integrity of digital
messages/documents. This means that if a digital signature is valid then the receiver
can expect the message to be created by a legitimate sender (authenthicity) and
that no one altered the message during its transmission (integrity) with very high
probability. A digital signature consists of three phases:

1. key generation;

2. signing;

3. verification.

In particular a signature scheme involves two parties: a prover, that has to prove his
identity, and a verifier which verifies the prover’s identity. The prover first construct
a secret key S and a public one P, sharing the latter. Then, using S, he creates a
signature s for the message m that he wants to transmit and appends the former to
the latter. Thus the verifier can read the message m and ensure the prover legitimacy
by checking that the signature is consistent with the message and the public key P.
Regarding the notion of integrity, we introduce a third party, called impersonator,
who tries to act as a prover and to deceive the verifier, without however knowing
the secret key S. If he alters the message he also needs to modify the signature, but
the verifier will not discover the tampering with very low probability, called cheating
probability or soundness error, using again P.

The existence of code-based digital signatures has remained an open problem for
long time. The CFS signature [CFS01] from Courtois, Finiasz and Sendrier, which
is of particular interest in this manuscript, represents a forerunner in this context.
However its construction requires unacceptably large public key that prevents it from
being competitive against other signature schemes. Nevertheless, it has remained
essentially unbroken for more than 20 years. In recent times, many code-based
signatures have been proposed with better performances. In order to depict CFS
and mention modern alternatives, we need to recall the main approaches in which
these signatures are classified, though we remark that they do not cover the totality
of schemes.

34 Chapter 1. Preliminaries

Fiat-Shamir

Fiat and Shamir introduced a method to turn an identification scheme into a signature
in 1986 [FS87]. An identification scheme is a protocol where the prover wants to
convince the verifier that he knows a secret. It generally has the following structure:

• The prover sends to the verifier a piece of information, called commitment;

• The verifier sends to the prover a challenge;

• The prover returns an answer to the challenge;

• The verifier checks whether the answer is consistent with the commitment and
the challenge.

The Fiat-Shamir transform makes use of the identification scheme protocol but allows
to avoid the interaction with the verifier. The challenge is indeed directly derived
by applying a hash function to the commitment. Consequently, the prover does not
choose the value for the challenge.

Hash and sign

The hash and sign approach is the one used in, e.g. , CFS. In general, a public-key
encryption function can be transformed into a signature for a message m through
the following steps:

1. Hash m using some hash function H;

2. Decrypt H(m) as if it were a ciphertext of the PKE;

3. Append the decryption to the message.

The verifier just needs to apply the public encryption function to the message and
check that the result coincides with the appended signature. While this can be
done by everyone, forging a signature requires to invert the trapdoor function of the
corresponding PKE. The main difficulty behind hash and sign protocols is to find
instances for which a solution e for the syndrome decoding problem eHT = s can
be found for a non-negligible proportion of all vectors s and an efficient decoding
algorithm exists at the same time. We will see CFS signature achieves this result.

MPC-in-the-head

The MPC-in-the-head approach is a more recent paradigm [Ish+07] which borrows
from multi-party computation (MPC) protocols to build zero-knowlegde proofs.
Initially considered of theoretical interest only, it became a practical alternative
thanks to Picnic post-quantum signature [Cha+20]. By reducing the soundness
interest, it allows to significantly decrease the signatures size with respect to early
Fiat-Shamir based proposals, such as Stern’s protocol.

1.2. Code-based cryptography 35

1.2.8.1 CFS signature

As for Niederreiter scheme, a digital signature can be built exploiting the hardness
of syndrome decoding problem, thanks to the hash and sign framework. However,
the construction requires to find an error vector with weight w ≤ d−1

2 , corresponding
to a syndrome. While it is impossible to hash into decodable syndromes only, the
prover can hash into the space of all syndromes instead. Therefore the document is
not always decodable. There exist multiple workarounds to circumvent this. The
solution we are going to describe consists in appending a counter to the document
and repeat until the hashed value is decodable. So the counter is also part of the
signature.

Still this technique is expensive and to make it practical the underlying code
must fullfil some requirements. First of all the density of decodable syndromes in
the set of all syndromes must be high enough. Secondly, the covering radius must be
close to the decoding capability. Hence, for almost every known families of codes,
this construction is precluded. A remarkable counterexample is given by high-rate
Goppa codes, for which such errors exist for a non-negligible proportion of syndromes.
CFS scheme [CFS01], proposed by Courtois, Finiasz and Sendrier in 2001, builds
exactly upon these codes. Because of the special emphasis this manuscript has on
(high-rate) Goppa codes and McEliece-like constructions, we are going to detail the
workflow of CFS.

During the key generation phase, the prover chooses a parity-check matrix
Hsec ∈ F(n−k)×n

2 of a binary code (in practice a high-rate Goppa code), equipped
with a decoding algorithm D that can efficiently decode up to w errors. Then he
samples a random matrix S ∈ GLn−k(F2) and a random n× n permutation matrix
P and computes Hpub = SHsecP . The secret key is then given by S = (Hsec,S,P)
and the shared public key by P = (Hpub, w).

Regarding the signing, given a message m, the prover first hashes m with a given
hash function H. Then he iterates over the integers until he finds i ∈ N such that
mi

def= H([H(m) | i]) (where [· | ·] denotes a padding) is decodable, i.e. there exists
an error vector e such that wt peq ≤ w and eHT

pub = mi. This can be done easily
by the prover, as he knows the secret code representation Hpub and therefore can
retrieve eP T from the relation eP T HT

sec = mi(ST)−1. The signature for m thus
becomes [e | i].

For the verifier it remains to check whether eHT
pub = H([H(m) | i]). If the

answer is positive he accepts the signature as valid, otherwise he does not.
The hash procedure needs to be repeated until a proper error vector is found.

The average number of attempts required equals the ratio between the number of
decodable syndromes

`

n
w

˘

and the number of all syndromes 2mw, thus it can estimated,
for a full length Goppa code, with

`

n
w

˘

2mw
=

`2m

w

˘

2mw
≈

(2m)w

t!
2mw

≈ 1
w! .

The parameters originally suggested for binary Goppa codes to be used in CFS are:
weight error w = 9, extension degree m = 16 and length n = 216. But these values
are too low to prevent a generalized birthday’s paradox attack. Larger parameters
can be chosen, but since these do not scale well, they soon lead to a huge public key.

36 Chapter 1. Preliminaries

PROVER VERIFIER

Key generation

• Choose a linear code Csec ⊆ Fn
q

of dimension k equipped with a
decoding algorithm D correcting
up to w errors. Let Hsec be a
(n − k) × n generator matrix of
Csec.
• Sample randomly S ∈
GLn−k(Fq) and an n × n
permutation matrix P .
• Compute Hpub = SHsecP .
• Choose an hash function H.
Public key: P = (Hpub, w,H)
Secret key: S = (Hsec,S,P) P−−−−→

Signing

• Choose a message m and hash
it with H.
•For i ∈ N

- Compute mi = H([H(m) |
i]).

- If ∃e ∈ Fn
q such that

wt peq ≤ w ∧ eHT
pub = mi

then
Output [e | i] as signature. [e|i]−−−−−−→

Signing

• If eHT
pub = H([H(m) | i]) then

accept else reject.

Table 1.4: CFS signature

1.2. Code-based cryptography 37

In this manuscript, we will focus instead on a different weakness of algebraic nature,
namely the distinguishability of high-rate Goppa codes.

1.2.8.2 Other code-based signatures: historical proposals and recent
contributions

The first code-based scheme is due to Stern [Ste93], then improved in [Vér96]. It has
the advantage of being based only on the decoding problem and the Fiat-Shamir
construction. These signatures have small public keys, however the authenticity is
guaranteed with only constant probability (the soundness error is 2/3 for Stern’s
scheme). It is therefore necessary to repeat the protocol many times to increase
the mentioned probability, thus yielding large signatures (in the order of hundreds
of kilobits) [AGS11]. In the case of lattices, these inherent weakness has been
overcome by Lyubachevsky in [Lyu09] who managed to combine the independent
binary challenges in a single challenge. As a consequence a remarkable saving in the
key size is achieved. However, the same framework does not work equally well when
lattices are replaced by codes. There have been several attempts in this direction,
for instance the NIST proposal RaCoSS [Fuk+17] is based on a public matrix with
columns formed by low-weight syndromes. After NIST call, other schemes came out:
[Per18] relies on quasi-cyclic codes, in [Son+20] private key matrix rows have weight
below GV bound instead of fixed weight and [LXY20] employs rejection sampling
instead of trapdoors. All of them have been broken though, respectively by [Xag18;
SBC19; Ara+21; Bal+21]. For now, Durandal scheme [Ara+19] seems to be the only
one to be able to adapt Lyubachevsky’s framework to codes. What entirely differs
here is the metric: Durandal is a rank-metric scheme. The security relies indeed on
a specific problem for this metric and thus needs further analysis.

Another early code-based scheme is KKS [KKS97; KKS05], with following
improvements [BMS11; GS12]. However, even ignoring the cryptanalysis of [OT11],
the only application they could have is as one-time signature, due to the attack
contained in [COV07].

CFS is related to the conventional decoding problem, where is asked to find an
error with minimum weight satisfying the syndrome equation. Other schemes used
the relaxed requirement of finding an error with weight sufficiently low, but not
necessarily minimal. This was done in [Bal+13] with LDGM codes, in [Gli+14] with
convolutional codes and in the NIST first round candidate pqsigRM [Lee+17] with
modified Reed-Muller codes. All of these have been succesfully attacked, respectively
in [PT16; MP16] and in an official comment on the pqc-forum2.

The Wave scheme [DST19] is also a recent up-and-coming signature that makes use
of the hash and sign protocol and relies on the NP-complete problem of distinguishing
generalized (U,U +V) codes. Wave resolves a notoriously difficult issue that appears
in the regime where the syndrome decoding problem eHT = s has several solutions.
In this case, the decoding algorithm may output a particular solution that is not
random among the set of solutions. This can leak some information and several
cryptosystems have been broken exploiting it. To avoid this serious weakness in
hash-and-sign signature schemes, it is necessary to use one-way trapdoor functions

2available at https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/round-1/official-comments/pqsigRM-official-comment.pdf

38 Chapter 1. Preliminaries

such that the inversion algorithm samples from all possible preimages according to
an appropriate distribution that can not be statistically distinguished. The first
collection of trapdoor functions that are many-to-one (i.e. every output has several
preimages) was found in the context of lattice-based cryptography in [GPV08]. The
strategy followed in [GPV08] has been adapted to WAVE. Indeed, a tight security
reduction has been given, replacing the lattice assumption used in [GPV08] with the
difficulty of the decoding problem.

With the exception of Durandal, all the systems listed so far fall in the setting of
Hamming metric. However, some other rank metric schemes are worthy of a mention.
Among them, there are the RankSign [Gab+14] submitted to NIST process but then
broken [DT18], and MURAVE [LT20].

With regards to MPC-in-the-head approach, some zero-knowledge schemes have
been proposed for the syndrome decoding problem [GPS22; FJR21; Bid+22; FJR22].
In particular a soundness error 1/N is achieved (instead of a constant one as in
Stern’s scheme). As a consequence, a dramatic drop of the signature size is obtained.

Finally, a digital signature which does not fall in the above classification is
LESS-FM [Bar+21], which instead relies on the Linear Code Equivalence problem.

To summarize, some technical issues penalized the early development of code-
based signature schemes and prevented them to be competitive with respect to, e.g. ,
lattices. It is not a coincidence that no signatures based on error correcting codes
have passed the first round of NIST competition. However, in recent years, and in
particular after the starting of the standardization process, many new constructions
and proposals came out. Some have already been broken but other are very promising
and may have a central role in the upcoming NIST call for digital signatures schemes.

1.2.9 Cryptanalysis on code-based schemes
In this subsection we review the main strategies to attack cryptosystems based on
codes. We can distinguish two fundamental approaches:

1. Message recovery attacks;

2. Key recovery attacks.

Such distinction is actually more general and applies to other kind of cryptosystems,
too. The first ones aim at inverting the encryption without discovering a trapdoor.
The second consist in determining a private key (either Alice’s or an equivalent one)
and use it to decipher any message in the same way as Alice would.

Regarding code-based schemes, the first class of attacks is mainly represented
by a family of combinatorial algorithms which go under the name of Information
Set Decoding (ISD for short) algorithms. Instead, key recovery attacks tipically
exploit properties that are specific to the class of codes through which a system is
instantiated.

Indeed, the McEliece framework shows that Alice needs to decode a known linear
code in order to retrieve the original message m sent by Bob. This necessity raises
the problem of choosing a linear code that is equipped with an efficient decoding
algorithm. In light of Section 1.1, such a code is therefore not random, but it should
arguably have some structure. For instance, the original proposal from McEliece

1.2. Code-based cryptography 39

uses binary Goppa codes, which can be decoded with Patterson’s algorithm. Thus,
McEliece and Niederreiter-like cryptosystems actually rely on two assumptions:

1. Decoding a random linear code is hard;

2. Distinguishing the public code from a random code is unfeasible.

The first assumption clearly does not depend on the code chosen. Non-structural
attacks simply assume that the public code is random. On the other side, the goal
of structural attacks is to benefit from the second assumption being false in some
cases. In this setting, we say that there exists a distinguisher between the chosen
code and a random one. Although a distinguisher does not necessarily implies a flaw,
it usually diminishes the confidence in a cryptosystems because an attacker could
be able to recover the secret key thanks to the particular structure of the code. So
the distinction “message recovery vs. key recovery” attacks almost coincide with
“non-structural vs. structural” attacks.

Addressing the topic of structural attacks briefly is impossible, since they are
usually extremely specific to the scheme and to the family of codes employed. We
therefore leave to the next chapters a more in-depth explanation of some of these
techniques, namely square-code based attacks on GRS codes related families and
algebraic attacks. We proceed instead with a very high-level overview of ISD
algorithms.

Information set decoding.
Non-structural attacks are clearly more general, as they could work regardless of
the chosen code. For this reason, ISD algorithms, the primary representatives of
the message recovery approach, are used to design the parameters of code-based
schemes. In other words, the key size must be selected in a way to thwart these
attacks, depending on the desired security level. Therefore they must be considered
attacks in a broad sense only. Indeed, although the key size are currently chosen in
order to counter their threat their average complexity is exponential, both in the
classical and quantum settings. More precisely it can be estimated by the workfactor

q(α(R,w,q)+o(1))n,

where α(R,w, q) is a function depending on the code rate R, the relative distance
w and the field size q (and on the specific algorithm). Not only these kind of
algorithms remained exponential but the exponent α(R,w, q) barely improved over
approximately 60 years. Table 1.2.9 outlines how the asymptotic exponent decreased
since the seminal work of Prange in 1962 [Pra62], for Gilbert-Varshamov relative
distance ωGV and in the binary case q = 2.

The exponent can be further improved if we have access to a quantum computer.
Indeed, in the quantum setting we can exploit Grover’s algorithm, which provides a
speed up for the problem of unstructured search, a very common subroutine appering
in ISD algorithms too. However, the speed up is at most quadratic, therefore even
the best quantum ISD algorithm [KT17] can not bring the workfactor exponent
below half the classical one.

We now provide the basic idea behind ISD algorithm, describing Prange’s
algorithm. For more information the reader can refer to e.g. [Deb19], [Bal+19].

40 Chapter 1. Preliminaries

Algorithm max0≤R≤1 α(R,wGV , 2)
Prange [Pra62] 1962 0.1207
Stern [Ste88] 1988 0.1166

Dumer [Dum91] 1991 0.1164
MMT [MMT11] 2011 0.1114
BJMM [Bec+12] 2012 0.1019

MO [MO15] 2015 0.0966

Table 1.5: Comparison of ISD workfactor exponents for several algorithms.

Let H ∈ F(n−k)×n
q be a parity-check matrix of a code C , s ∈ Fn−k

q a syndrome
and w ∈ N. The goal is to find an error vector e ∈ Fn

q such that wt peq = w and
eHT = s. Therefore we have n− k linear equations (one for each row of H) and n
unknowns (the entries of e). One possible strategy to solve this underdetermined
linear system is to make n− (n− k) = k bets. In other words, a subset of positions
I ⊂ J1, nK, |I| = k, is chosen and the corresponding coordinates of e are guessed.
Since e has small weight, the most probable outcome is that the restriction eI is the
null vector. Thus, we guess eI = 0 and solve the linear system e

qI
HT

qI
= s of n− k

equations in n−k unknowns. Here e
qI

denotes the vector e restricted to J1, nK\ I and
H

qI
the submatrix of H with only the columns indexed by J1, nK \ I. The algorithm

iterates until a good I is found.
The cost of the algorithm is given by the product of the cost of one iteration

times the inverse of its success probability. Indeed, the algorithm is expected to
iterate several times since finding an information set I for which a solution is such
that eI = 0 is not a likely event. Since |J1, nK \ I| = n− k, the number of vectors of
weight w with support in J1, nK \ I is

`

n−k
w

˘

(q − 1)w. On the other hand there are
`

n
w

˘

(q − 1)w vectors of weight w without other constraints. Therefore the success
probability of one iteration is

`

n−k
w

˘

(q − 1)w

`

n
w

˘

(q − 1)w
=

`

n−k
w

˘

`

n
w

˘ .

The cost of one iteration is dominated by solving the linear system, which can be
perfomed with (n− k)2n operations over Fq, even though more involved algorithms
can be used for this routine. Overall, the total cost of Prange’s algorithms is

(n− k)2n

`

n
ω

˘

`

n−k
ω

˘

operations over Fq. With respect to brute-force attacks, where on the opposite
the information set is fixed and the algorithm iterates over all the possible weight
distribution, ISD method clearly achieves better results.
Remark 1.12. For some instances we can predict that Prange’s algorithm is not going
to find a suitable error vector, regardless of the number of iterations. For instance
suppose that the intersection of all information sets is not empty. Then, if a position
in this intersection belongs to the support of the sought error vector, the latter can
not be found using Prange’s algorithm. The mentioned case, however, is highly
unlikely, at least for random codes.

1.2. Code-based cryptography 41

Modern ISD algorithms improve Prange’s basic version by assuming a more
likely weight distribution of the error vector. For instance, they search for a subset
I ⊂ J1, nK, such that wt peIq = p≪ w. In this way better trade-offs between number
of iterations and cost of one iterations, eventually optimizing the involved parameters,
can be obtained.

It’s appropriate to remember that there exist variants of ISD algorithms designed
for metrics different from Hamming, such as the Lee metric [HW20], [CDE21] or
the rank metric [CS96; OJ02]. In the latter case, however, recent algebraic methods
[Bar+20a; Bar+20b] have outperformed the combinatorial techniques.

There exist also alternative strategies to decode random linear codes. Among
them we have generalized birthday algorithm, first proposed by Wagner [Wag02],
which is especially suitable for decoding problems with many solutions, or statistical
decoding [Jab01], which recently managed to outperform ISD algorithms for low
rates [Car+22].

Structural attacks
The most efficient key-recovery attack for the original McEliece was given in [LS01]
and essentially lies in guessing the Goppa polynomial and the support up to
permutation, trying all the possibilities. The verification step consists in solving a
code equivalence problem which is often easy with the help of the support splitting
algorithm [Sen00]. Even in this case, the complexity exponential and the exponent
is even bigger than the one obtained from ISD algorithms. This is why message
recovery attacks are considered as the main threat against McEliece-Goppa, and
consequently the parameters are chosen in order to thwart them.

More in general, it is not easy to describe which algorithms fall into the catgory
of structural attacks, as they must be typically designed ad hoc, depending precisely
on the structure of the underlying family of codes. A historical representative of
key-recovery attacks that work on a specific class of codes is the Sidelnikov-Shestakov
attack [SS92] on GRS codes. Besides that, we can still find some similarities between
examples of these attacks and isolate two classes that have successfully pushed the
state-of-the-art of this kind of cryptanalysis:

• Square code attacks: we have already defined Schur’s product and square of
codes in Section 1.1.5. The key idea is that some families of codes have a
square code of dimension smaller than what is expected with high-probability
from random codes (see Theorems 1.3 and 1.4). In other words, these attacks
belong to the category of distinguisher attacks. We already showed that this is
what happens for GRS codes, but the list is much longer. Among the families
of codes that suffer from the square-code distinguisher, in addition to GRS
codes and some variants [Cou+14], we can mention: GRS subcodes [Wie10],
wild Goppa codes over quadratic extensions [COT14b], algebraic geometry
codes [CMP14; CMP17], GRS codes with random entries [CLT19], subspace
subcodes of GRS codes [CL22].

• Algebraic cryptanalysis: the key-recovery problem is modeled by an algebraic
system: finding its solutions implies breaking the scheme. This is typically
achieved by Gröbner bases and linearization techniques, which will be
introduced in the next subsection. This kind of analysis received a lot of

42 Chapter 1. Preliminaries

attention in the last years in several domains. For instance, concerning code-
based cryptography, it recently completely outperformed combinatorial attacks
in rank-metric, where it now defines benchmark standards. On another topic,
the McEliece scheme’s variants based on structured Goppa codes witnessed
some important developments in this sense. For instance, quasi-cyclic and
quasi-dyadic Goppa codes [Fau+10b] or Wild Goppa codes [FPP14] have been
attacked by solving multivariate polynomial systems.

We will show how a combination of these two macro-categories leads to an attack
on unstructured high-rate alternant codes. We postpone to Chapter 4 a deeper
treatment, when all the necessary background will have been introduced.

1.3. Gröbner Bases 43

1.3 Gröbner Bases
Among the mathematical problems considered hard, solving a system of multivariate
polynomial equations has always received a lot of attention from mathematicians,
both in ancient and modern times. The problem can be reinterpreted in terms
of finding a “good” representation of a polynomial ideal. Even the easier ideal
membership problem put a strain on algebraists and some believed it was not even
decidable.

Gröbner bases represent a powerful tool in computer algebra to study polynomials
ideals. They have been introduced by Buchberger in 1965 in his Ph.D. thesis [Buc65]
and take the name from his advisor. Several questions on the algebra of polynomials
ideals may arise from applications. As announced above, two of the main problems
that can be addressed through Gröbner basis are the following.

Problem 1.8 (Solving a polynomial system). Given a set of (multivariate)
polynomials fi : K[x1, . . . , xn] 7→ K, 1 ≤ i ≤ m, find all the common solutions
of the system 

f1(x1, · · · , xn) = 0
...

fm(x1, · · · , xn) = 0
. (1.5)

From a geometric point of view, this is related to determining the affine variety

V (f1, . . . , fm) = V K(f1, . . . , fm) = {a ∈ Kn | ∀i ∈ J1,mK, fi(a) = 0}.

Problem 1.9 (Ideal Membership problem). Given an ideal I = ⟨ f1, . . . , fm ⟩ ⊆
K[x1, . . . , xn] and a polynomial f ∈ K[x1, . . . , xn], determine whether f ∈ I.

From a geometric point of view, this is related to determining whether the
algebraic variety V (f1, . . . , fm) is contained in V (f).

For readability reasons, in this section we will often denote the multivariate
polynomial ring K[x1, . . . , xn] with K[x], where x = (x1, . . . , xn), implying that there
are n unknowns.
Remark 1.13. In both problems, the geometric counterpart refers to affine variety
with respect to the algebraic closure of a field K. For several applications in coding
theory and cryptology, our interest is restricted to zeros lying in the finite field K
itself (or in some subfield/finite extension). Since finite fields are not algebraically
closed, we will rather refer to the algebraic variety

V K(f1, . . . , fm) = {a ∈ Kn | ∀i ∈ J1,mK, fi(a) = 0}.

The computation of a Gröbner basis can be interpreted as a generalization of two
elementary algorithms of Algebra. The first one is the Gaussian elimination (or row-
reduction) algorithm, mainly used for solving linear systems. The problem of solving
polynomial systems is then a generalization of the former, where the polynomial
equations can have a larger degree. The second algorithm is the univariate polynomial
division in K[x]. Thanks to it, we can for instance figure out if a univariate polynomial
belongs to an ideal. Again, the ideal membership problem generalizes this question
to multivariate polynomial rings.

44 Chapter 1. Preliminaries

In both cases, the notion of ordering of terms plays a central role. For Gaussian
elimination, we need to specify an order for the variables. According to it, the matrix
echelonized by the algorithm is determined by a specific permutation of columns. For
univariate polynomial division, the term ordering is implicit: the higher the degree
the larger the monomial term.

1.3.1 Monomial orderings
Ordering of terms takes on even greater importance when we deal with multivariate
non-linear polynomials. This is a delicate problem because we want to preserve some
desirable properties. In particular, we would like to order the monomials appearing
in any possible polynomial, i.e. we want a total order. Moreover, it has to behave
naturally with respect to the multiplication. These requirements lead to the following
definition.

Definition 1.21. A monomial ordering >mon on K[x1, . . . , xn] is a relation on
Nn such that:

1. >mon is a total ordering on Nn, i.e. for any α, β ∈ Nn, exactly one of the
following occurs:

α>monβ, α<monβ, α = β.

2. For any α, β, γ ∈ Nn, α>monβ ⇒ α+ γ>monβ + γ.

3. >mon is a well-ordering on Nn, i.e. every non-empty subset of Nn has a smallest
element with respect to >mon .

We also denote with ≥mon the relation α≥monβ
def⇐=⇒ α>monβ ∨ α = β.

Remark 1.14. We defined an ordering as a relation Nn, i.e. on sequences of natural
numbers. So, why is it called monomial ordering? Given a polynomial ring
K[x1, . . . , xn] and an element α = (α1, . . . , αn) ∈ Nn, we can naturally identify

Nn ∋ α↔ xα def= xα1
1 · . . . x

αn
n ∈ K[x1, . . . , xn].

Hence a relation on Nn can be equivalently seen as a relation on the monomials of
K[x1, . . . , xn]. In the following, we will likewise write α>monβ or xα>monxβ with
the same meaning.

The usefulness of Condition 3 of Definition 1.21 can be explained by the next
proposition:

Proposition 1.8. An order relation > on Nn is a well-ordering if and only if every
strictly decreasing sequence

α(1) > α(2) > . . .

in Nn eventually terminates.

There exist several order relations on Nn that satisfy all the 3 conditions and
are therefore valid monomials orderings. We now define some of the most common
orderings. Some of them will be extensively used in the next chapters.

1.3. Gröbner Bases 45

Definition 1.22 (Lexicographic order/Lex order). Let α = (α1, . . . , αn), β =
(β1, . . . , βn) ∈ Nn. We say that α>lexβ if there exists i ∈ J1, nK such that:

1. ∀1 ≤< i, αj = βj ;

2. αi > βi.

Remark 1.15. Lex order owes its name to word ordering used in dictionaries with
which the analogy is evident.
Remark 1.16. Reordering the indexes leads to different lex orders. In particular, for
n variables, there exist n! lex orders.

The following order is also helpful to define what is called the grevlex order later.

Definition 1.23 (Reverse Lexicographic order/Revlex order). Let α = (α1, . . . , αn), β =
(β1, . . . , βn) ∈ Nn. We say that α>revlexβ if there exists i ∈ J1, nK such that:

1. ∀i < j ≤ n, αj = βj ;

2. αi < βi.

With lex and revlex orders, a monomial of total degree 1 can be larger than
another monomial of a much higher degree. In many contests, we may want to take
into account the total degree of monomials. This leads to the following two orders,
but first, we denote with |α| def= ∑n

i=1 αi.

Definition 1.24 (Graded Lex order/Glex order). Let α = (α1, . . . , αn), β =
(β1, . . . , βn) ∈ Nn. We say that α>glexβ if

|α| > |β| ∨ p|α| = |β| ∧ α>lexβq .

Definition 1.25 (Graded Reverse Lex order/Grevlex order). Let α = (α1, . . . , αn), β =
(β1, . . . , βn) ∈ Nn. We say that α>grevlexβ if

|α| > |β| ∨ p|α| = |β| ∧ α>revlexβ.q

Despite being less intuitive, there exist both theoretical and empirical evidence
that grevlex order leads in many cases to the best computation complexity for a
Gröbner basis. Even when a lex basis is sought, the usual practical approach is to
first compute a grevlex basis and then rely on another algorithm (e.g. FGLM or the
Gröbner Walk) to transit between two different bases.

It is also possible to define a class of orders where variables are split into blocks
and then other orders (as the previous ones) are used on the blocks. For the sake of
simplicity, we are going to give the definition in the case of two orders only.

Definition 1.26 (Block order/Elimination order). Let α = (α1, . . . , αn), β =
(β1, . . . , βn) ∈ Nn. Let >1 and >2 two monomial orders on Ni and Nn−i respectively.
We say that xα >(>1,>2) xβ if

x(α1,...,αi) >1 x(β1,...,βi) ∨
´

(α1, . . . , αi) = (β1, . . . , βi) ∧ x(αi+1,...,αn) >2 x(βi+1,...,βn)
¯

.

46 Chapter 1. Preliminaries

The order above is of interest because it allows elimination, which corresponds
to projection in the geometric viewpoint.

Finally, we show another class of orders, where a different weight is attributed to
each variable.

Definition 1.27 (Weighted order). Let α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Nn.
Let >mon be a monomial order and ω = (ω1, . . . , ωn) ∈ Nn. We say that α >ω β if

x(ω1α1,...,ωnαn)>monx(ω1β1,...,ωnβn).

It can be readily verified that all of them are well-defined monomials orderings.
We conclude the subsection by giving some terminology for multivariate

polynomials.

Definition 1.28. Let f(x) = ∑
α cαxα ∈ K[x1, . . . , xn] and >mon a monomial order.

• The multidegree of f is multideg(f) def= max{α ∈ Nn | cα ̸= 0}, where the
maximum is taken with respect to >mon .

• The total degree (or simply degree) of f is deg(f) def= max{|α| ∈ Nn | cα ̸= 0}.

• The leading coefficient of f is LC(f) = cmultideg(f) ∈ K.

• The leading monomial of f is LM(f) = xmultideg(f).

• The leading term of f is LT (f) = LC(f)LM(f).

From these definitions, it is straightforward to verify, given f, g ∈ K[x1, . . . , xn],
f, g ̸= 0, that

• LC(fg) = LC(f)LC(g), LM(fg) = LM(f)LM(g) and LT (fg) = LT (f)LT (g);

• If f + g ̸= 0, then LM(fg)≤mon max(LM(f), LM(g)). Moreover if LM(f) =
LM(g) then LM(fg) = max(LM(f), LM(g)).

1.3.2 Polynomial reduction and Gröbner bases
In the univariate polynomial ring K[x] all the ideals are generated by one polynomial.
In particular, I(f1, . . . , fs) = I(gcd(f1, . . . , fs)) and the greatest common divisor is
iteratively computed through euclidean division. How this generalizes in the case of
many variables? We have already highlighted that one of the algorithms Gröbner
bases techniques deal with is multivariate polynomial division. With the knowledge
acquired in the previous subsection, we are now ready to introduce the polynomial
reduction in Algorithm 1.1.

The remainder r outputted by Algorithm 1.1 is sometimes referred as a normal
form of f modulo F and denoted by r = f̄F ,

Remark 1.17. A normal form depends in general on how the elements of F are
ordered.

1.3. Gröbner Bases 47

Algorithm 1.1 Polynomial reduction
Input

f A polynomial.
F = [f1, · · · , fm] an (ordered) sequence in K[x]
>mon A monomial order.

q1, . . . , qm ← 0
r ← 0
p← f
while p ̸= 0 do

i← 1
div← false
while i ≤ m ∧ div = false do

if LT (fi) | LT (p) then
qi ← qi + LT (p)

LT (fi)

p← p− LT (p)
LT (fi)fi

div← true
else

i← i+ 1
if div = false then

r ← r + LT (p)
p← p− LT (p)

Output q1, dots, qm, r.

Definition 1.29. Let {0} ̸= I ⊆ K[x1, . . . , xn] be an ideal and >mon a monomial
order. We define:

LT (I) def= {t | ∃f ∈ I \ {0} s.t. LT (f) = t}

We also denote by ⟨LT (I) ⟩ the ideal generated by LT (I).

Theorem 1.6 (Hilbert basis theorem, Theorem 4 p. 77, [CLO15]). Every ideal
I ⊆ K[x1, . . . , xn] is generated by a finite set.

From a geometric perspective, the Hilbert basis Theorem says that the affine
variety of an ideal can be defined by a finite set of polynomial equations.

Proposition 1.9 (Proposition 9 p. 81, [CLO15]). Let I = ⟨ f1, . . . , fs ⟩. Then
V (I) = V (f1, . . . , fs).

We can now define rigorously a Gröbner basis.

Definition 1.30 (Gröbner basis). Let >mon be a monomial order on the polynomial
ring K[x1, . . . , xn]. A finite set G = {g1, . . . , gs} of an ideal {0} ≠ I ⊆ K[x1, . . . , xn]
is a Gröbner basis if

⟨LT (g1), . . . , LT (gs) ⟩ = ⟨LT (I) ⟩ .

Equivalently, G is a Gröbner basis if for every f ∈ I, there exists 1 ≤ i ≤ s such
that LT (gi) | LT (f). As a consequence of Theorem 1.6, we have

48 Chapter 1. Preliminaries

Corollary 1.1 (Corollary 6 p. 78, [CLO15]). Every ideal I ⊆ K[x1, . . . , xn] has a
Gröbner basis with respect to a fixed monomial order >mon. Moreover, every Gröbner
basis of I is a basis of I.

Even though not all the bases of I satisfy the conditions for being a Gröbner
basis, the latter is not unique, even for a fixed monomial order. On the other hand
and differently from the remainder with respect to generic ordered sets, the normal
form can be proven to be unique. In other words, if G is a Gröbner basis, a normal
form of f modulo G does not depend on the order of the basis elements. Thus, the
notion of Gröbner basis permits to unambiguously extend the division remainder to
the multivariate setting.

Furthermore, we have

Corollary 1.2 (Corollary 2 p. 84, [CLO15]). Let G = {g1, . . . , gs} be a Gröbner
basis for an ideal I ⊆ K[x1, . . . , xn]. A polynomial f ∈ K[x1, . . . , xn] lies in I if and
only if the remainder on division of by f by G is 0.

Corollary 1.2 shows one of the applications of Gröbner bases we have anticipated.
Indeed, if a Gröbner basis is known, this result allows to solve the ideal membership
problem by computing a normal form and checking whether it is the null polynomial
or not.

1.3.3 Buchberger’s algorithm: a first method to compute
Gröbner bases

The following definition is a key ingredient for the original Buchberger’s algorithm.

Definition 1.31 (S-polynomial). Let f, g ∈ K[x1, . . . , xn] be nonzero polynomials
and xα = lcm(LM(f), LM(g)). The S-polynomial of f and g is defined as

S(f, g) def= xα

LT (f)f −
xα

LT (g)g.

The S-polynomial is essentially a polynomial combination of f and g which
ensures the cancellation of leading terms, a step at the core of any Gröbner basis
algorithm. Indeed we have

LT

ˆ

xα

LT (f)f
˙

= xα

LT (f)LT (f) = xα = xα

LT (g)LT (g) = LT

ˆ

xα

LT (g)g
˙

.

S-polynomials are also used to decide whether a basis is Gröbner.

Theorem 1.7 (Buchberger’s Criterion/S-pair criterion, Theorem 6 p. 86, [CLO15]).
A basis G = {g1, . . . , gv} of the polynomial ideal I is a Gröbner basis of I if and
only if, for all 1 ≤ i < j ≤ v, the remainder on division of S(gi, gj) by G is 0.

Remark 1.18. The sufficient and necessary condition from Buchberger’s Criterion is
sometimes taken as the definition of a Gröbner basis.

1.3. Gröbner Bases 49

Algorithm 1.2 Buchberger’s algorithm
Input

F = {f1, . . . , fs} Generating set.
G← F
P ← {{f, g} | f, g ∈ G, f ̸= g}
repeat

pair $← P
P ← P \ {pair}
r ← S(f, g)G′

if r ̸= 0 then
G← G ∪ {r}
P ← P ∪ {{r, f} | f ∈ G}

until P = ∅
Output G.

We are now ready to present the constructive counterpart of Corollary 1.1,
i.e. Buchberger’s algorithm for computing a Gröbner basis.

Buchberger’s algorithm always terminates and outputs a Gröbner basis. However,
it is hard to estimate the complexity of the algorithm. In Algorithm 1.3.3, pairs are
selected in a random order among those available at the current step. However, it is
possible to order them by degree: pairs with a smaller degree are chosen first.

Definition 1.32. Let I = ⟨ f1, . . . , fm ⟩ be an ideal of homogeneous polynomials. A
finite set G = {g1, . . . , gs} ⊂ I is a d-Gröbner basis (or Gröbner basis truncated
at degree d) of I if:

• ⟨ g1, . . . , gs ⟩ = I,

• ∀gi, gj ∈ G s.t. deg(S(gi, gj)) ≤ d, S(gi, gj)G = 0,

• ∀f ∈ I s.t. deg(f) ≤ d, f is top-reducible modulo G.

Thus, in the case of a homogeneous set F , if we stop the computation of
Algorithm 1.3.3 at degree d, we obtain a d-Gröbner basis.

We now come back to the problem of non-uniqueness of Gröbner bases. In order
to guarantee uniqueness, we need to ask for additional properties.

Definition 1.33. A reduced Gröbner basis of a polynomial ideal I is a Gröbner
basis of I such that:

• ∀g ∈ G, LC(g) = 1,

• ∀g ∈ G, no monomial of g belongs to ⟨LT (G \ {g}) ⟩.

Theorem 1.8 (Theorem 5 p. 93, [CLO15]). Let I be a nonzero polynomial ideal.
Then I has a reduced Gröbner basis and this is unique.

We deduce that the reduced Gröbner basis also solves the problem of determining
whether two ideals are the same. Indeed, it suffices to compute the reduced Gröbner
bases of the two generating sets and check if they are equal.

50 Chapter 1. Preliminaries

1.3.4 The Macaulay matrix
We are now going to introduce Gröbner basis from a different perspective, which will
ultimately clarify the link with linear algebra.

Definition 1.34 (Macaulay Matrix [Mac94]). Let F = {f1, . . . , fm} ⊂ K[x] such
that deg(fi) = di. Let d be a positive integer and >mon a graded monomial order.
The Macaulay matrix Mac>mon (F, d) of F in degree d with respect to the order >mon
is a matrix whose rows are each indexed by a polynomial mjfi, for all the input
polynomials fi’s and all the monomials mj ’s of degree ≤ d− di, and whose columns
are indexed by all the monomials of degree ≤ d, sorted in decreasing order. The
entry corresponding to the row indexed by mjfi and column indexed by ml is the
coefficient of ml in mjfi. In particular, if fi = ∑

α aαxα and ml = xβ, then the
corresponding entry of Mac>mon (F, d) is aβ:

ml

Mac>mon (F, d) = mjfi

»

—

—

–

...
· · · aβ · · ·

...

fi

ffi

ffi

fl

.

Example 1.1. Let F = {f1, f2}, with f1(x1, x2) = x2
1 + x1x2 + x2

2 − x1 + 2 and
f2(x1, x2) = x2

1 − 2x1x2 + x2 + 1 ∈ K[x1, x2]. Then

Mac>mon (F, 3) =

x3
1 x2

1x2 x1x2
2 x3

2 x2
1 x1x2 x2

2 x1 x2 1
»

—

—

—

—

—

–

fi

ffi

ffi

ffi

ffi

ffi

fl

x1f1 1 1 1 0 −1 0 0 2 0 0
x2f1 0 1 1 1 0 −1 0 0 2 0
f1 0 0 0 0 1 1 1 −1 0 2
x1f2 1 −2 0 0 0 1 0 1 0 0
x2f2 0 1 −2 0 0 0 1 0 1 0
f2 0 0 0 0 1 −2 0 0 1 1

.

Remark 1.19. When computing a Macaulay matrix, a practical measure to reduce
the complexity consists in considering the column submatrix of nonzero columns,
i.e. removing the columns such that the corresponding monomial does not appear
in any polynomial indexing a row. This expedient is beneficial if one wants to do
operations on it (e.g. Gaussian elimination) and becomes especially relevant when
the arising Macaulay matrix is sparse.

Linear combinations of Mac>mon (F, d) rows can easily be read as linear
combinations of the mjfi’s, hence as polynomial combinations of the fi’s. Therefore
we can translate key operations such as multivariate polynomial reduction in terms
of Gaussian elimination. Indeed, Lazard showed in [Laz83] that, when the degree d
is large enough, the Macaulay matrix in degree d provides a Gröbner basis. Let us
first look at the homogeneous case.

Theorem 1.9 (Lazard’s Theorem, [Laz83]). Let F = {f1, . . . , fm} ⊂ K[x] be a set
of homogeneous polynomials. There exists a degree D such that the polynomials
corresponding to the rows of the row-echelon form of Mac>mon (F, d) form a Gröbner
basis of I(F) with respect to >mon.

1.3. Gröbner Bases 51

Lazard’s Theorem clearly provides a method for computing a Gröbner basis.
Indeed, we can compute D-Gröbner bases of increasing degree D (starting from
maxi(di)) until the row-echelon form is a Gröbner basis (this can be checked
efficiently). Differently from Buchberger’s algorithm, this strategy is also useful
to estimate the cost of a Gröbner basis computation. Indeed, given the minimum
degree D for which the row-echelon form of Mac>mon (F,D) is a Gröbner basis, we
can roughly infer a computational cost from row-reduction algorithms.

Even in the non-homogeneous case, this result implies that there exists an integer
D0, such that for all D ≥ D0, a truncated D-Gröbner basis, computed through
Algorithm 1.3, is a Gröbner basis. Indeed, it is possible to reduce the affine case
to the homogeneous one by applying a homogenization. More precisely, if d is the
degree of an affine polynomial P (x1, . . . , xn), the polynomial becomes homogeneous
by introducing a new variable x0 and applying the map

ϕ: K[x1, . . . , xn] 7→ K[x0, x1, . . . , xn]
P (x1, . . . , xn) → P ′(x0, x1, . . . , xn) = xd

0P (x1
x0
, . . . , xn

x0
).

We can imagine to compute the Macaulay matrix for a homogenized system and
then to specialize the set of polynomials corresponding to the reduced rows through
the map

ψ: K[x0, x1, . . . , xn] 7→ K[x1, . . . , xn]
P ′(x0, x1, . . . , xn) → P (x1, . . . , xn) = P ′(1, x1, . . . , xn).

Hence, Macaulay matrices can be used to mimic a D-Gröbner basis computation
for non-homogeneous systems, too. To this extent, Algorithm 1.3 represents a very
simple and illustrative demonstration.

Algorithm 1.3 D-Gröbner Basis
Input

D Maximal degree.
F = {f1, · · · , fm} ∈ K[x] set of polynomials.
>mon A graded monomial order.

repeat
F ← Pol(EchelonForm(Mac>mon (F,D))) ▷ Pol(M) returns the polynomials

represented by the rows of M
until dimK ⟨F ⟩K has not increased. ▷ ⟨F ⟩K is the K-vector space spanned by
the elements in F ⊆ K[x] seen as vectors of K
Output F .

Remark 1.20. The space generated by F and output by Algorithm 1.3 should not be
confused with the space of polynomials in I(F) of degree at most D. Indeed, while
trivially ⟨F ⟩K ⊆ I(F), it is possible that some polynomials of degree at most D in
I(F), are not produced by the initial basis {f1, . . . , fm} with computation restricted
at degree D.

The degree D from Lazard’s Theorem is called the solving degree of the affine
system F . If F is homogeneous, then D is also called degree of regularity. Let M (d)

n

52 Chapter 1. Preliminaries

be the set of monomials in n variables of degree d. By elementary combinatorics we
have

|M (d)
n | =

ˆ

n+ d− 1
d

˙

.

From this, a simple complexity bound can be established

Proposition 1.10 ([BFS15]). Let D be the solving degree of the system F =
{f1, . . . , fm} ⊂ K[x1, . . . , xn]. For n,m → ∞, the number of arithmetic operations
in K needed to reduce a Macaulay matrix at degree D and thus computing a Gröbner
basis of I(F) with respect to a graded monomial ordering is upper bounded by:

• If F is homogeneous:
O

ˆ

mD

ˆ

n+D − 1
D

˙ω˙

,

• If F is affine:
O

ˆ

m

ˆ

n+D

D

˙ω˙

,

where ω is the linear algebra constant.

The reason why Algorithm 1.3 iterates the computation of a Macaulay matrix at
the same degree can be explained thanks to the notion of degree fall.

Definition 1.35 (Degree fall). A degree fall for the sequence f1, . . . , fm ∈ K[x] is
a polynomial combination ∑m

i=1 gifi ̸= 0 that satisfies

s
def= deg

m∑
i=1

gifi < max
i∈J1,mK

deg gifi.

We say that ∑m
i=1 gifi is a degree fall of degree s.

Remark 1.21. Note that the definition loses its meaning if the system f1, . . . , fm is
homogeneous. Indeed deg ∑m

i=1 gifi < maxi∈J1,mK deg gifi implies ∑m
i=1 gifi = 0 in

this case, thus the degree fall degenerates into what is called a syzygy.

Definition 1.36 (Syzygy). Given a sequence f1, . . . , fm of polynomials in K[x], a
syzygy is a sequence g1, . . . , gm of polynomials in K[x1, . . . , xn] such that

m∑
i=1

gifi = 0.

In other words, a syzygy is the tuple of coefficients of a polynomial combination
that is identically 0.
Remark 1.22. The set of all possible syzygies for f1, . . . , fm forms a submodule
Syz(f1, . . . , fm) ⊂ K[x]m.

Notice that syzygies always exist: for any i ̸= j we have

fifj − fjfi.

Such relations determine the so-called trivial syzygies.

1.3. Gröbner Bases 53

A degree fall occurs if all the monomials of higher degree disappear, thus revealing
an element of low degree in the ideal. Because of this, in the affine setting Gröbner
basis algorithms benefit from degree falls when the basis is computed with respect to
a graded order. Indeed, whenever a degree fall occurs, new low-degree polynomials
can be computed by multiplying it by several monomials. This potentially triggers a
chain of other degree falls.

Furthermore, the study of degree falls is at the core of the analysis of Gröbner
basis calculations. Understanding them enables not only to get estimates of the
complexity but also to design better algorithms for specific systems.

1.3.5 Advanced Gröbner basis algorithms and solving strate-
gies

Several algorithms build upon the Macaulay matrix, whether they call it by this
name or not. For several years since its publication, cryptographers have preferred
to use XL algorithm [Cou+00], which is nothing but an adapted version of Lazard’s
method. This phenomenon can be explained by the fact that Gröbner bases were
known very little in the past by the large majority of cryptographers. The idea
of XL consists of row-reducing a Macaulay matrix in such a way that a univariate
polynomial appears. XL algorithm can be simulated by a Gröbner basis algorithm
and extensive studies over finite fields [Ars+04] suggest that its complexity is not
better. For instance, the degree that needs to be reached during the computation is
never smaller than that for a Gröbner basis. Moreover, the matrix size can be huge
compared to other algorithms in matricial form.

Probably the most used algorithm nowadays is F4 introduced by Faugère in
[Fau99]. This is also the algorithm implemented in the MAGMA software that
is mainly used in the experiments of this thesis. The detailed description of F4
goes beyond the scope of this presentation, but we will try to highlight the main
improvements with respect to Algorithm 1.3.3.

In Buchberger’s algorithm there are a couple of degrees of freedom:

1. choosing the pair of polynomials for which the S-polynomial is computed;

2. choosing an element from a list of reductors when reducing a polynomial with
respect to a list of polynomials.

Different choices may lead to substantial discrepancies in the time complexity, and
some possible strategies have been studied [Gio+91]. The manner in which F4 tackles
the first issue is by not doing any choice. In particular, instead of selecting a pair of
polynomials, a subset of pairs is chosen and handled simultaneously by constructing
a matrix containing all the reductions. In other words, the issue is postponed to
the second step of the algorithm, where Gaussian elimination is performed on the
matrix.

The so-called normal strategy for the selection of the subset of pairs exploits the
notion of d-Gröbner bases. More precisely, at each step, the pairs of minimal degree
are selected. This stratagem permits to handle and take advantage of the degree falls
occurring during the computation in affine systems. Indeed, whenever a polynomial
combination produces a new polynomial of a degree lower than the Macaulay matrix

54 Chapter 1. Preliminaries

degree, the algorithm F4 will construct matrices of lower degree in the next step, in
order to exploit the information obtained. This is a critical add-on with respect to
the basic Lazard’s algorithm in an affine context.

The algorithm can be further refined and improved. For instance, it is also
possible to add Buchberger’s criterion to achieve better performance. Finally, some
specific algorithms have been dedicated to speeding up the linear algebra part [FL10].

The main efficiency issue with this algorithm is that, when row-reducing a
Macaulay matrix, many linear combinations of rows are expected to become the zero
row (e.g. those coming from the trivial syzygies). Their computation is therefore
useless, as they do not provide any information. The F5 algorithm [Fau02] is
an evolution of F4, which avoids this unnecessary computation, at least when the
sequence is regular. The idea is to compute degree by degree and equation by equation
the d-Gröbner bases of {fs}, {fs−1, fs}, . . . , {f1, . . . , fs}. This requires associating
a label, called signature, to each polynomial, i.e. to each matrix row. Even though
the asymptotic complexity does not change, this allows in practice to save a huge
amount of time, around 90% of it, thus gaining a magnitude order with respect to
its predecessor. In [BFS15] a complexity bound for F5 has been established, too.
Moreover, for some classes of systems ((semi)-regular systems), all the reductions to
zero are removed. An implementation of F5 can be found in [Fin10], together with
F4. F5 inspired numerous variants based on signature and the interested reader can
find in [CF17] an attempt to gather and classify several advances in this direction.

As already mentioned, the Gröbner basis algorithms based on the notion of
Macaulay matrix are applied to graded monomial orderings. For polynomial-solving
purposes, one then needs to move to a basis with respect to a different order. For
0-dimensional ideals, this can be done through FGLM algorithm from Faugère,
Gianni, Lazard and Mora [Fau+93]. Although the description of the algorithm goes
beyond the scope of this manuscript, we provide its computational complexity.

Theorem 1.10 (FGLM algorithm, [Fau+93]). Let I ⊂ K[x] be a 0-dimensional
ideal and G1 its Gröbner basis with respect to a monomial order >1. Then FGLM
algorithm computes a Gröbner basis G2 for a monomial order >2 in O(n deg(I)3)
operations on K, given G1 as input.

Indeed, the algorithm corresponds to a linear change of basis and can be done
by linear algebra. Thus, its complexity can be further reduced to O(n deg(I)ω)
(2 ≤ ω < 2.3727 is the linear algebra exponent) by using fast linear algebra [Fau+14a].
There are also other changing order algorithms (such as Gröbner walks) that are less
efficient but do not require the ideal to be 0-dimensional. For our purposes, FGLM
algorithm is part of the best strategy. Indeed, we can sum up the comprehensive
strategy to solve an algebraic system over a finite field in Algorithm 1.3.5.

The purpose of computing a Gröbner basis with respect to a lexicographic order
can be explained by the following result which highlights the shape of a lex basis.

Proposition 1.11 (Shape of a lex basis). Let I ⊂ K[x] be a 0-dimensional ideal.

1.3. Gröbner Bases 55

Then a lexicographic Gröbner basis G>lex of I can be written as

G>lex =

{ g1,1(x1, . . . , xn),
...

g1,s1(x1, . . . , xn),
g2,1(x2, . . . , xn),

...
gn−1,sn−1(xn−1, xn),

gn(xn) }.

(1.6)

In particular, the polynomial gi,sj depends on the last n− i+ 1 variables only.
Moreover, the smallest polynomial gn depends on xn only. Such a polynomial is
unique up to a constant factor because in the univariate case ideals are generated by
one polynomial.

Thanks to its structure, the lex basis allows to compute the variety associated
with a 0-dimensional ideal. The solution coordinates can be found iteratively starting
from the last. Indeed, for any element which lies in the variety, the last coordinate
must be a root of the univariate polynomial gn. Finding roots of a univariate
polynomial can be done efficiently over a finite field. Once these values have been
found, they can substitute the corresponding variables in the other elements of the
basis. In this way, the polynomials gn−1,j will only depend on xn−1. The process can
be carried on iteratively, finding the common roots of the univariate polynomials for
all the valid partial specializations and specializing again. Algorithm 1.4 formalizes
this explanation. We keep the same notation as in Proposition 1.11.

Algorithm 1.4 Finding the solution from a lexicographic basis
Input

G Lexicographic basis of an ideal I ⊂ Fq[x].
Output

VFqm (G) Algebraic variety over the extension field Fqm

Vn ← {an ∈ Fqm | gn(an) = 0} ▷ Find the roots of gn(xn) over Fqm

for i ∈ {n− 1, . . . , 1} do
Vi ← ∅
for (ai+1, . . . , an) ∈ Vi+1 do

T ← Fqm

for j ∈ J1, siK do
if gi,j(ai, ai+1, . . . , an) ̸≡ 0 then

T ← T ∩ {ai ∈ Fqm | gi,j(ai, ai+1, . . . , an) = 0}
Vi ← {(ai, ai+1, . . . , an) ∈ Fn−i+1

qm | ai ∈ T}
Output V1

Remark 1.23. The extension field Fqm is not necessarily proper, meaning that we
may be interested in solutions that lie in the same field as the polynomial equations.
This will be for instance the case of the Reed-Solomon decoding problem modeling
of Chapter 2. Instead, regarding the modelings for alternant and Goppa codes, we
will assume that the subfield subcode structure is not trivial, i.e. that m ≥ 2.

56 Chapter 1. Preliminaries

Algorithm 1.5 Resolution of an algebraic system over a finite field generating a
0-dimensional ideal

Input
Fq Finite field.
F = {f1, . . . , fm} ∈ Fq[x] Algebraic system.

Output
VFqm (F) Algebraic variety over the extension field Fqm

1. Compute the grevlex basis G>grevlex using F4 or F5.
2. Compute the lex basis

G>lex = {g1,1, . . . g1,s1 , g2,1, . . . , gn−1,sn−1 , gn}

from G>grevlex using FGLM. ▷ see (1.6)
3. Use Algorithm 1.4 with input G>lex to find VFqm (F).

If instead we assume that the system has a unique solution x̄ = (x̄1, . . . , x̄n),
then the shape of a reduced Gröbner basis further simplifies and it does not depend
on the chosen order.

Proposition 1.12. Let I ⊆ K[x] be a radical ideal whose variety contains a single
element x̄ = (x̄1, . . . , x̄n). Then, for any monomial order, the reduced Gröbner basis
is

G = {x1 − x̄1, . . . , xn − x̄n}.

A proof of this result can be found for instance in [Bar04].

1.3.6 The Hilbert series
Given d ∈ N, we denote K[x]d = {f ∈ K[x] | deg(f) = d}. This is a K-vector space
with basis the degree-d monomials in n variables M (d)

n , thus it has dimension
`

n+d−1
d

˘

.
Moreover, given an ideal I,

Id
def= I ∩K[x1, . . . , xn]d

is a K-vector space, too.

Definition 1.37 (Hilbert function). Let I ⊂ K[x] be a homogeneous polynomial
ideal. The Hilbert function of K[x]/I is defined as

HFK[x]/I(d) def= dimK(K[x]d/Id) = dimK(K[x]d)− dimK(Id).

Hence the dimension of Id as a K-vector space can be readily computed knowing
the Hilbert function and vice versa.

Definition 1.38 (Hilbert series). Let I ⊂ K[x1, . . . , xn] be a homogeneous
polynomial ideal. The Hilbert series of K[x]/I is the generating sequence of
HFK[x]/I , i.e.

HSK[x]/I(z) def=
∑
d≥0

HFK[x]/I(d)zd.

1.3. Gröbner Bases 57

Theorem 1.11. Given a homogeneous polynomial ideal I ⊂ K[x1, . . . , xn], the
Hilbert series of K[x]/I is a rational fraction and its irreducible form can be written
as

N(z)
(1− z)d

, N(1) ̸= 0,

where d = dim(I), N ∈ Z[z] and N(1) is the degree of V (I).

Remark 1.24. If I is 0-dimensional, then HSK[x]/I(z) = N(z) is a polynomial and
HSK[x]/I(1) equals the number of zeros counted with multiplicities.
Remark 1.25. The Hilbert series of K[x1, . . . , xn] is

HSK[x1,...,xn](z) = 1
(1− z)n

.

Theorem 1.12. Let I ⊂ K[x] be a homogeneous polynomial ideal. There exists a
degree d0 such that, for any d ≥ d0, HFK[x]/I(d) is a polynomial, called Hilbert
polynomial, and we say that d0 is the dimension of I, denoted dim(I). The smallest
integer d0 verifying this property is called index of regularity. The dimension of
I, denoted with dim(I), is defined as the degree of the Hilbert polynomial.

Remark 1.26. The dimension of I can be defined in equivalent ways and then proved
to coincide with the degree of the Hilbert polynomial. For the sake of simplicity, we
do not provide here alternative definitions.

For 0-dimensional ideals, the index of regularity can be read from the Hilbert
polynomial:

Proposition 1.13 (Corollary 1.66, [Spa12]). Let I ⊂ K[x] be a homogeneous
0-dimensional polynomial ideal. Then

ireg = deg(HSK[x]/I) + 1.

The following proposition gives an upper bound for the index of regularity:

Proposition 1.14 (Macaulay’s bound, [Laz83]). Let f1, . . . , fm be a sequence of
homogeneous polynomials. If I = ⟨ f1, . . . , fm ⟩ is 0-dimensional, then

ireg = 1 +
m∑

i=1
(deg(fi)− 1).

For affine polynomial systems, [Bar04] generalizes the notion of index of regularity
to any polynomial ideal, defining the degree of regularity for an affine polynomial
system under the condition that the generating ideal is 0-dimensional.

Proposition 1.15. Let f1, . . . , fs be a sequence of polynomials in K[x]. If
dim

´〈
fh

1 , . . . , f
h
s

〉¯

= 0, then dim(⟨ f1, . . . , fs ⟩) = 0.

Definition 1.39 (Degree of regularity). Let f1, . . . , fs be a sequence of polynomials
in K[x]. If dim

´〈
fh

1 , . . . , f
h
s

〉¯

= 0, we define the degree of regularity dreg of

f1, . . . , fs as the index of regularity of
〈
fh

1 , . . . , f
h
s

〉
.

For homogeneous 0-dimensional ideals, the index of regularity coincides with
the degree of regularity. Thus, Macaulay’s bound becomes an upper bound on the
complexity of computing a Gröbner basis.

58 Chapter 1. Preliminaries

1.3.7 Regular and semi-regular sequences
We present here a class of sequences for which the Hilbert series, and consequently a
complexity estimate of the Gröbner basis computation, is known in advance. For
some homogeneous sequences, called regular sequences, the only syzygies are the
trivial ones: fifj − fjfi. The formal definition, which turns out to be equivalent to
the characterization just mentioned, is the following.

Definition 1.40 (Regular sequence). A sequence f1, . . . , fm of homogeneous
polynomials in K[x] is said a regular sequence if ∀i ∈ J2,mK, ∀g ∈ K[x],

g · fi ∈ ⟨ f1, . . . , fi−1 ⟩ ⇒ g ∈ ⟨ f1, . . . , fi−1 ⟩ .

A sequence f1, . . . , fm is regular if the sequence of the homogeneous parts of highest
degree fh

1 , . . . , f
h
m is.

Remark 1.27. A necessary condition for f1, . . . , fm to be regular is that m ≤ n.
The Hilbert series of a regular sequence is determined:

Proposition 1.16 ([Bar04]). The sequence f1, . . . , fm ∈ K[x], m ≤ n, is regular if
and only if

HSK[x]/⟨ f1,...,fm ⟩(z) =
∏m

i=1(1− zdeg(fi))
(1− z)n

.

The notion of regular sequence has been extended to the overdetermined case,
where there are more equations than variables, i.e.m > n, in [Bar04; BFS04;
Bar+05]. The relevance of such generalization can be appreciated for instance in
the cryptographic context, where systems arising from algebraic modelings typically
have more equations than variables.

Definition 1.41 (Semi-regular sequence). A sequence f1, . . . , fm of homogeneous
polynomials in K[x] is said a semi-regular sequence if ∀i ∈ J2,mK, ∀g ∈ K[x],

g · fi ∈ ⟨ f1, . . . , fi−1 ⟩ ∧ deg(gfi) < ireg(⟨ f1, . . . , fm ⟩)⇒ g ∈ ⟨ f1, . . . , fi−1 ⟩ .

Remark 1.28. In [Bar04; Bar+05], the notion of semi-regularity has been adapted to
systems containing field equations, in the specific case q = 2.

Analogously to regular sequences, the Hilbert series not only is known, but it
also characterizes semi-regular sequences.

Proposition 1.17 (Proposition 3.2.5, [Bar04]). A sequence f1, . . . , fm ∈ K[x1, . . . , xn],
m > n, is semi-regular if and only if

HSK[x]/⟨ f1,...,fm ⟩(z) =
«∏m

i=1(1− zdeg(fi))
(1− z)n

ff

,

where [S] ∈ N[[z]] denotes the power series obtained by truncating S ∈ Z[[z]] at its
first non-positive coefficient.

Remark 1.29. If S ∈ Z[[z]] has a non-positive coefficient, then [S] ̸= S, and hence [S]
is truncated into a polynomial.

1.3. Gröbner Bases 59

We have seen in Section 1.3.6 that it is possible to derive a complexity estimate
for computing a Gröbner basis, in the case of a homogeneous system, through the
notion of index of regularity. The existence of degree falls makes it more difficult
for affine systems. The next proposition shows that, under some conditions, the
complexity bound can be extended to affine systems. This explains why semi-regular
sequences are so relevant. Recalling Definition 1.39 about the degree of regularity of
an affine sequence, we have

Proposition 1.18 (Proposition 6, [Bar+05]). Let F = {f1, . . . , fm} ⊆ K[x1, . . . , xn]
be an affine sequence of polynomials such that the sequence fh

1 , . . . , f
h
m is semi-regular,

where fh
i denotes the homogeneous part of fi of highest degree. Then, the number

of arithmetic operations in K to compute a Gröbner basis of I(F) with respect to a
graded monomial ordering is upper bounded by

O
ˆ

m · dreg
ˆ

n+ dreg − 1
dreg

˙ω˙

,

where ω is the linear algebra constant.

It has been observed experimentally that systems are “almost always” semi-
regular. This expected behavior has been formally conjectured in [Frö85], but proven
only in a few special cases. For an infinite field K, the formal meaning of “almost
always” is “outside a Zariski proper closed subset of the space of coefficients”, the
latter considered as algebraically independent formal parameters. This is the so-called
genericity assumption under which properties of generic systems can be proven. If
K is a finite field, the probability that a system is semi-regular is given by ratio
between semi-regular systems and all systems. For what concerns this manuscript,
this assumption will be intended as the expected behavior for random systems (i.e. for
random coefficients) with a specific shape.

1.3.8 Systems with a special shape: application to coding
theory and cryptography

Algebraic coding theory and cryptanalysis are two of the many fields of application of
Gröbner basis techniques. The contributions of the present dissertation fall exactly
within these frameworks.

A common feature of these two applications is that the polynomial systems we
study are typically defined over a finite field Fq. While the preliminary results we have
presented in this section hold for any coefficient field K, additional properties can be
exploited when K has positive characteristic. Indeed, in the case where K = Fq, we
might be interested in finding solutions over the field itself rather than its closure.
In this case, the standard strategy consists in adding the field equations xq

i − xi to it.
However, for all the systems considered in this work, the sought solutions belong to
finite fields of large size, as they are support and multiplier vectors of large field size
GRS codes or of alternant codes. Therefore they do not benefit from adding field
equations, as their degree is too big. Instead, we now briefly review some known
results on Gröbner basis for systems with a special shape. More precisely, we focus
on a case study that is related to the work presented in Chapter 2 of this thesis:
bilinear systems.

60 Chapter 1. Preliminaries

1.3.8.1 Affine bilinear systems
A multi-homogeneous polynomial is a polynomial homogeneous with respect to
each block in which the unknowns are partitioned. For instance, a bi-homogeneous
polynomial f ∈ K[x1, . . . , xnx , y1, . . . , yny] (K[x,y] from now on) of bidegree (d1, d2)
is such that

∀λ, µ ∈ K, f(λx1, . . . , λxnx , µy1, . . . , µyny) = λd1µd2f(x1, . . . , xnx , y1, . . . , yny).

A bilinear polynomial is a bi-homogeneous polynomial of bidegree (1, 1), and a system
F = {f1, . . . , fm} is bilinear if f1, . . . , fm are bilinear.

Several investigations, both on the theoretical and experimental sides, showed
that bilinear systems behave better than quadratic systems with the same number of
equations and unknowns. In particular, the syzygy module is well-understood. We
summarize the main results proved in [FSS11; Spa12] and related to a generic affine
bilinear system {f1, . . . , fm}, m ≤ nx + ny, generating the ideal I(bil):

• They enjoy a property of regularity that extends the standard definition to
bi-homogeneous systems and that is called bi-regularity.

• Define the Hilbert bi-series (an analog of the Hilbert series for bi-homogeneous
ideal) as

HSK[x,y]/I(bil)(z1, z2) def=
∑

(d1,d2)∈N2

dimK

´

K[x,y]d1,d2/I
(bil)
d1,d2

¯

zd1
1 zd2

2 ,

where I(bil)
d1,d2

def= K[x,y]d1,d2 ∩ I. Then

HSK[x,y]/I(bil)(z1, z2) = (1− z1z2)m +Nm(z1, z2) +Nm(z2, z1)
(1− z1)nx+1(1− z2)ny+1 ,

with

Nm(z1, z2) =
«

m−ny−1∑
l=1

(1− z1z2)m−ny−1−lz1z2(1− z2)ny+1

·

˜

1− (1− z1)l
ny+1∑
k=1

z
ny+1−k
1

ˆ

l + ny − k
ny + 1− k

˙

¸ff

.

• The degree of regularity dreg is upper bounded by

dreg(I(bil)) ≤ nx + ny + 1,

which is obtained by rewriting Macaulay’s bound. Moreover, for a 0-dimensional
affine bilinear system with m = nx + ny,

dreg(I(bil)) ≤ min(nx + 1, ny + 1).

Therefore, under genericity assumptions, the number of arithmetic operations
in K to compute a grevlex basis of an affine bilinear system f1, . . . , fnx+ny ∈
K[x,y] is upper bounded by

O
ˆ

min(nx, ny) · (nx + ny)
ˆ

nx + ny +min(nx + 2, ny + 2)
min(nx + 2, ny + 2)

˙ω˙

,

which is polynomial as long as the size of one block is fixed.

Chapter2Decoding of Reed-Solomon codes
by solving a bilinear system with a

Gröbner basis approach
In this chapter, we study the bilinear system already introduced in Section 1.1.3.1
that models the decoding problem for a Reed-Solomon code. We will address its
resolution by using Gröbner basis techniques and exploiting the key-equations that
identify the generalized power decoding algorithm. In this particular case, these
computations are much more efficient than for generic bilinear systems with the
same number of unknowns and equations, where these techniques have exponential
complexity. We explain why the calculation of a Gröbner basis permits to solve the
decoding problem in polynomial time up to the Sudan radius. Moreover, beyond
this radius these techniques recover automatically polynomial identities that are at
the heart of improvements of the power decoding approach for reaching the Johnson
decoding radius. They also allow to derive new polynomial identities in only one
block of variables that can be used to derive new algebraic decoding algorithms for
Reed-Solomon codes. We experimentally compare our approach with power decoding
algorithm and provide numerical evidence that our method sometimes allows to
correct efficiently slightly more errors than the Johnson radius.

Contents
2.1 Introduction . 62
2.2 Power decoding . 63
2.3 The Algorithm . 67
2.4 A partial explanation of the algebraic behavior 69

2.4.1 Correcting up to the Sudan bound in polynomial time . 69
2.4.2 Decoding up to the Johnson radius 72
2.4.3 Proof of Theorem 2.1 . 74

2.5 Experimental Results . 77
2.6 Conclusions . 78

61

62 Chapter 2. Decoding of Reed-Solomon codes with Gröbner bases

2.1 Introduction
Decoding a large number of errors in Reed-Solomon codes. In Section [RS
decoding] we reviewed the Berlekamp-Welch algorithm for decoding Reed-Solomon
codes up to the error-correction radius 1−R

2 . We also offered an overview of classical
list-decoding algorithms, which respond to the long-standing open problem from
algebraic coding theory of decoding Reed-Solomon codes beyond half the minimum
distance. We mentioned, in particular, Sudan’s decoder, which works up to a fraction
of errors 1 −

?
2R (the so-called Sudan radius) and the subsequent improvement

from Guruswami and Sudan [GS98], which pushed the decoding up to the Johnson
radius 1 −

?
R. This represents in a sense the limit for such decoders since these

decoders are list decoders that output all codewords up to this radius and beyond
this radius the list size is not guaranteed to be polynomial anymore. However, if
we do not insist on having a decoder that outputs all codewords within a certain
radius, or if we just want a decoder that is successful most of the time on the q-ary
symmetric channel of crossover probability p, then we can still hope to have an
efficient decoder beyond this bound. Moreover, it is even interesting to investigate if
there are decoding algorithms of subexponential complexity above the radius 1−

?
R.

As already mentioned in Remark 1.4, we recall that decoding t errors for the
code GRSk(x,y) from a received word r = (r1, . . . , rn) is equivalent to decoding
the same amount of errors for RSk(x). Therefore, without loss of generality, we can
restrict our attention to the decoding problem for the k- dimensional Reed-Solomon
code of length n over Fq with support x = (xi)1≤i≤n ∈ Fn

q :

RSk(x) = {(P (xi))1≤i≤n : P ∈ Fq[X], degP < k}.

We call d = n− k + 1 the code’s minimum distance (recalling that Reed-Solomon
codes are MDS codes).

Since we do not need to reserve a symbol for the multiplier vector, we adhere to
the practice of denoting the received word by y = (yi)1≤i≤n.

A Gröbner basis approach. Our approach for decoding is to model the
problem by an algebraic system and then solve it with Gröbner bases techniques.
At first sight, it might seem that this approach is not new in this setting: such
techniques have already been used here, mainly to solve algebraic systems involved
in the Guruswami-Sudan approach [LO06; LO08; AK11; Tri10; ZS10; Han18]. They
were used up to now on systems where such techniques are expected to run efficiently
just because the number of variables was very small for instance: for instance [LO06;
LO08; AK11; Tri10] consider only two variables X and Y corresponding to the
variables of the interpolation polynomial which is sought.

The approach followed in this chapter is different. Let e be the weight-t error
vector and E its support, i.e. the set of positions in error. Then the error locator is
defined as usual

Λ(X) def=
∏
i∈E

(X − xi).

From this, we can write the bilinear system with unknowns the coefficients pi

of the polynomial P (X) = ∑k−1
i=0 piX

i corresponding to the codeword that was sent
and the coefficients λj of the error locator polynomial Λ(X) = Xt + ∑t−1

j=0 λjX
j if we

2.2. Power decoding 63

assume that there were t errors. We have n bilinear equations in the k + t variables
pi’s and λj ’s coming from the n relations P (xℓ)Λ(xℓ) = yℓΛ(xℓ), ℓ ∈ J1, nK, namely

k−1∑
i=0

t∑
j=0

xi+j
ℓ piλj =

t∑
j=0

yℓx
j
ℓλj , ℓ ∈ J1, nK and λt = 1. (2.1)

Gröbner basis techniques: a simple and automatic way for obtaining a
polynomial time algorithm in our case. Standard Gröbner bases techniques
can be used to solve this system. However, if we use directly the estimates for
solving generic bilinear systems of Section 1.3.8.1 we would expect an exponential
computational complexity. Nevertheless, Gröbner basis techniques solve typically in
polynomial time this specific decoding problem when the fraction of errors is below
the Sudan radius. This is explained in Section 2.4.1. The reason why the Gröbner
basis approach works in polynomial time is related to power-decoding [SSB10; Nie14]
and can be explained by similar arguments. However, the nice thing about this
Gröbner basis approach is that the algorithm itself is very simple and could be
ideally given without any reference to power decoding (or the Sudan algorithm).
The computation of the Gröbner basis reveals degree falls which are instrumental for
its very low complexity. Understanding these degree falls can be explained by the
polynomial equations used by power decoding. However, this simple algorithm also
appears to be very powerful beyond the Sudan bound: experimentally it seems that
it is efficient up to the Johnson radius and that it is even able to correct more errors
in some cases than the refinement of the original power decoding algorithm [Nie18]
(which reaches asymptotically the Johnson radius). This is demonstrated in Section
2.5.

Understanding the nice behavior of the Gröbner basis approach.
Moreover, trying to understand theoretically why this algorithm behaves so well,
is not only explained by the polynomial relations which are at the heart of the
power decoding approach, but it also reveals new polynomial relations that are not
exploited by the power decoding approach as shown in Section 2.4. In other words,
this approach not only gives an efficient algorithm but also exploits other polynomial
relations. It seems fruitful to understand and describe them, this namely paves the
road towards new algebraic decoders of Reed-Solomon codes.

Notation. Throughout this chapter, we will use the following notation. For a
polynomial Q(X) = ∑m

i=0 qiX
i, coeff pQ(X), Xsq stands for the coefficient qs of Xs in

Q(X). For two polynomials Q(X) and G(X), rQ(X)sG(X) stands for the remainder
of Q(X) divided by G(X). Finally let Q(X) be a polynomial whose coefficients
belong to a multivaraite polynomial ring K[u] and F a vector space of polynomials
of K[u]. We say that Q ∈coef F if all the coefficients of Q belong to F .

2.2 Power decoding
In Section 1.1.3.1, we reviewed the Berlekamp-Welch algorithm for decoding Reed-
Solomon codes up to half the minimum distance and we recalled that this can
be adapted to obtain list decoders, namely the Sudan and the Guruswami-Sudan
algorithms, which improve the error correction capability up to the Sudan bound
and the Johnson bound respectively. Alternative methods to decode RS codes exist

64 Chapter 2. Decoding of Reed-Solomon codes with Gröbner bases

and we are now going to recall the Power Decoding strategy, whose key-equations
play a central role in the Gröbner basis analysis of this chapter. Power decoding
has been originally proposed by Schmidt, Sidorenko and Bossert [SSB10]. In its
original form, this algorithm was designed for low-rate RS codes, as it can decode the
same number of errors as Sudan’s algorithm. On the other hand, the approach from
[SSB10] presents a one-pass algorithm, i.e. it processes the input data only once and
accomplishes the decoding by solving a simultaneous shift-register problem, which
is especially suitable for hardware implementations. We also remark that power
decoding has been adapted to several codes related to the Reed-Solomon family, such
as interleaved RS codes.

While the Guruswami-Sudan algorithm, by taking into account the multiplicity
parameter, enhances Sudan’s, it has been an open problem for several years whether
the same upgrade was possible for power decoding. This question has been positively
answered by Nielsen in 2018 [Nie18], who generalized the key equations used in this
approach, eventually reaching a decoding radius that is almost the same as that of
the Guruswami-Sudan algorithm. Contrarily to the latter, this new method removes
the final root-finding step. Moreover, it always returns a closest codeword. Therefore,
beyond half the minimum distance, it will fail for a few error patterns (for which it
outputs either no result or a wrong result) but the probability of decoding failure is
not easy to analyze. Indeed it has been tightly upper bounded for a specific choice
of parameters, while for other ones [Nie18] only provides experimental results.

In the rest of this section, we will recall the key equations used for power decoding
as presented in [Nie18] and which fraction of errors they allow to correct.

As already mentioned in Remark 1.4, decoding t errors for the code GRSk(x,y)
from a received word r = (r1, . . . , rn) is equivalent to decoding the same amount of
errors for RSk(x). Therefore, without loss of generality, we can restrict our attention
to the decoding problem for the k- dimensional Reed-Solomon code of length n over
Fq with support x = (xi)1≤i≤n ∈ Fn

q :

RSk(x) = {(P (xi))1≤i≤n : P ∈ Fq[X], degP < k}.

We call d = n− k + 1 the code’s minimum distance (recalling that Reed-Solomon
codes are MDS codes).

Since we do not need to reserve a symbol for the multiplier vector, we adhere to
the practice of denoting the received word by y = (yi)1≤i≤n. The vector e represents
the weight-t error vector and E its support, i.e. the set of positions in error. Then
the error locator is defined as usual

Λ(X) def=
∏
i∈E

(X − xi). (2.2)

We also introduce two other crucial polynomials. The first one is the interpolation
polynomial with respect to the received values, i.e. the unique polynomial R(X) of
degree ≤ n− 1 such that

∀i ∈ J1, nK, R(xi) = yi.

The second is
G(X) def= Πn

ℓ=1(X − xℓ).
Note that these two polynomials are immediately computable by the receiver.
Moreover, G can be precomputed because it does not depend on the received
word but only on the support x.

2.2. Power decoding 65

The first relation among all these polynomials is nothing but a rewriting of the
key equation implicit in Gao’s decoder [Gao03]:

Λ(X)R(X) ≡ Λ(X)P (X) mod G(X). (2.3)

This is a non-linear equation in the unknowns Λ and P . The strategy adopted by the
algorithm is to linearize the equation: Λ and ΛP are replaced by λ and ψ respectively,
leading to

λR ≡ ψ mod G. (2.4)

Equation (2.4) is now linear, however there exist infinitely many solutions. Since ψ
is a substitute for ΛP and deg(ΛP) ≤ deg(Λ) + (k − 1), one can further restrict the
solutions by adding the constraint

deg(λ) + k − 1 ≥ deg(ψ).

Then we solve for such λ and ψ, with λ monic and of minimal degree and we hope
that this weaker relation still contains λ = Λ as a solution. This is indeed the case
every time t < d

2 . The decoding then terminates with the computation of P = ψ/λ.
However, whenever the number of errors exceeds half the minimum distance, this
approach never works.

Nevertheless, Gao’s key equations can be powered to enable an improved correction
capability for some parameters.

Lemma 2.1 (Simply powered key-equations [Nie18], Lemma 2.2). Let u ∈ N∗, then

ΛRu = ΛP u mod G. (2.5)

Proof. We have

ΛP u = Λ(R+(P −R))u = ΛRu +Λ(P −R)
˜

u∑
i=1

ˆ

u

i

˙

(P −R)i−1

¸

≡ ΛRu mod G,

where the equivalence at the end follows from the fact that Λ(P−R) ≡ 0 mod G.

Again the non-linear equation can be linearized by replacing Λ and ΛP u’s with λ
and ψu’s respectively, thus obtaining for any u ∈ N∗,

λRu ≡ ψu mod G. (2.6)

Similarly to what has been done before, the additional condition

deg(λ) + u(k − 1) ≥ deg(ψu) (2.7)

is required to be fulfilled. In this case, the arising question is for which finite set of
values u these powered equations should be considered. Equation (2.7) naturally
answers this question. Indeed, whenever deg(λ) + u(k − 1) ≥ n, Equation (2.6) is
satisfied for any λ by setting ψu = λR mod G. The equations which restricts the
space of solutions for λ are therefore those for u ∈ J1, q1K, where

q1
def= max{u : t+ (k − 1)u ≤ n− 1} =

⌊
n− t− 1
k − 1

⌋
. (2.8)

66 Chapter 2. Decoding of Reed-Solomon codes with Gröbner bases

Hence, we seek λ, ψ1, . . . , ψq1 satisfying (2.6) and (2.7) and with λ monic and of
minimal degree. After finding the linear variables, P = ψ1/λ is computed. The
difference between available coefficients and constraints gives the maximum number
of decodable errors:

t ≤ q1
q1 + 1n−

q1
2 (k − 1)− q1

q1 + 1 , (2.9)

which asymptotically approaches the so-called Sudan’s radius 1−
?

2R, corresponding
to error-correction radius achieved by Sudan’s algorithm. Indeed, let ρ = t

n be the
relative radius. When n → ∞, then q1 to

n−t
k = 1−ρ

R , and therefore Equation (2.9)
gives, after dividing by n,

ρ→
ˆ

1− 1
q1

˙

− q1
2 R

⇐⇒ ρ→ 1− R

1− ρ −
1− ρ

2
⇐⇒ 2ρ(1− ρ)− 2(1− ρ) + (1− ρ)2 → −2R
⇐⇒ (1− ρ)2 → 2R
⇐⇒ ρ→ 1−

?
2R.

To reach Johnson’s radius, though, it is necessary to take the multiplicity for the
error evaluator polynomial Ω into consideration:

Ω(X) def= −
∑
i∈E

eiζi

∏
j∈E\{i}

(X − xj),

where ζi = ∏
j ̸=i(xi − xj)−1. Alternatively, the error evaluator polynomial can be

defined as the unique polynomial of degree ≤ t− 1 such that

Ω(xi) = −ei, for all i ∈ J1, nK for which ei ̸= 0. (2.10)

From (2.3) we know that G must divide Λ(P − R). It can be readily checked
that the quotient coincides with Ω:

Λ(X)(P (X)−R(X)) = Ω(X)G(X). (2.11)

Additionally, this relation is used in the generalization of power decoding to
derive further identities:

Proposition 2.1 ([Nie18], Theorem 3.1). For any s, u ∈ N∗, u ≥ s,

Λ(X)sP (X)u =
u∑

i=0

`

Λ(X)s−iΩ(X)i
˘

ˆ

u

i

˙

R(X)u−iG(X)i u ∈ J1, s− 1K,

(2.12)

Λ(X)sP (X)u ≡
s−1∑
i=0

`

Λ(X)s−iΩ(X)i
˘

ˆ

u

i

˙

R(X)u−iG(X)i mod G(X)s u ≥ s.

(2.13)

2.3. The Algorithm 67

Proof. Since Λ(P −R) = ΩG, we obtain

ΛsP u = Λs(R+ (P −R))u =
u∑

i=0

ˆ

u

i

˙

Λs(P −R)iRu−i =
u∑

i=0

ˆ

u

i

˙

Λs−iΩiRu−iGi,

which is the thesis for u < s. For u ≥ s, it is enough to notice that all the summands
of index i ≥ s equal 0 modulo Gs.

This time the linearization is carried out by replacing Λs−iΩi, i ∈ J0, s− 1K and
ΛsP u’s with λi’s and ψu’s respectively. As for simply powered key equations, the
maximum power u is naturally bounded by

qs
def= max{u : st+ u(k − 1) ≤ sn− 1} =

⌊
s(n− t)− 1

k − 1

⌋
.

Indeed it is readily seen that taking larger values of u increases the number of variables
in the linear system more than it does for the number of available coefficients and
thus it is not cost-effective. The resulting linear system is therefore

ψu = ∑u
i=0 λi

``

u
i

˘

Ru−iGi
˘

, u ∈ J1, s− 1K
ψu = ∑s−1

i=0 λi

``

u
i

˘

Ru−iGi
˘

mod Gs, u ∈ Js, qsK,

to which the “degree contraints”

deg(λ0) ≥ deg(λi) + i, i ∈ J1, s− 1K
deg(λ0) ≥ deg(ψu) +−u(k − 1), u ∈ J1, qsK.

are added. As in the previous cases, a solution such that λ0 is monic and of minimal
degree. The decoding concludes by computing P = ψ1/λ0.

Given the multiplicity degrees s and v, the decoding radius of this generalized
power decoding approach turns out to be

tpow(s, v) = 2v − s+ 1
2(v + 1) n− v

2s(k − 1)− v

s(v + 1) . (2.14)

Whenever the number of errors is below the Johnson radius, calculations analogous
to those done before for the Sudan radius show that there are infinitely many choices
of s and v such that the power decoding algorithm can correct them (and the best
choice of v for a fixed s is clearly qs). Advanced subroutine algorithms allow to
achieve an overall complexity of power decoding of Õ(vωsn) [RS16], matching the
best realization of Guruswami-Sudan algorithm. In [Nie18] the decoding failure is
also studied, but this is not our main concern here.

2.3 The Algorithm
We will assume in the following that the polynomial ideal I generated by the affine
bilinear equations, generically called fi’s, is radical, meaning that whenever there is
a polynomial f and a positive integer s such that fs is in I, then f is in I. For finite
fields, bringing in the system the field equations ensures that the ideal is radical.
Although field equations are not effective in this case, as the field size for RS codes
must be very large, namely not smaller than the block length, the ideal radicality

68 Chapter 2. Decoding of Reed-Solomon codes with Gröbner bases

is still usually verified. Moreover, in a large part of this work, we also expect the
algebraic system (2.1) to have a unique solution. Indeed, while this is guaranteed
only up for error correction up to half the minimum distance, this seems to be the
typical case when the number of errors is below the Gilbert-Varshamov bound. In
such a case, Proposition 1.12 says that the reduced Gröbner basis of the ideal I is
given by linear polynomials and in each of them only one variable appears.

The algorithm we use, in its simplest form, consists of computing a truncated
Gröbner basis in degree D of the affine bilinear system (2.1), for some integer D.
We have seen that this can be done by iteratively computing the row echelon forms
of Macaulay matrices w.r.t to a graded monomial order. Despite not being the best
option in terms of efficiency, we will still refer to Algorithm 1.3. It will indeed come
in handy several times during this chapter to prove results about the membership
of polynomials to some linear spaces. In particular, the monomial order chosen is
>grevlex as this usually achieves the best performance and no evidence suggests the
opposite for this specific system. By Lazard’s Theorem, we have the guarantee that
if D is large enough, then the D-Gröbner basis is in fact a Gröbner basis.

However, we noticed that the aforementioned approach is not the most efficient
(unless t ≤ n−k

2 where direct row echelonization (2.1) is enough) because during the
Gaussian elimination process we have a sequence of degree falls which are instrumental
for computing a Gröbner basis by staying at a very small degree. This is evident if
we use for instance Faugère’s F4 algorithm on (2.1)).

We recall that a degree fall of degree s is a polynomial combination ∑m
i=1 gifi ̸= 0

of the fi’s which satisfies

s
def= deg

m∑
i=1

gifi <
mmax

i=1
deg gifi.

The simplest example of such a degree fall occurs in (2.1) when t < n − k.
Here there are linear combinations of the bilinear equations of (2.1) giving linear
equations. This can be verified by linearization, i.e. by performing the change of
variables zs

def= ∑
i,j:i+j=s piλj in (2.1) and getting the system

t+k−1∑
s=0

xs
ℓzs =

t∑
j=0

yℓx
j
ℓλj , ℓ ∈ J1, nK. (2.15)

In other words, by eliminating the zs’s in these equations we obtain linear equations
involving only the λi’s. When t ≤ n−k

2 there are enough such equations to recover
from them the λi’s and by substituting for them in (2.1) the pi’s by solving again a
linear system. We will see in the next section that there is a parallel between this
linearization and the one used in power decoding, which follows from the equivalence
of the corresponding bilinear systems. Despite the described procedure is in its
essence already known and much more efficient algorithms for solving this system
exist, it is still interesting to notice that the Gröbner basis approach already yields a
polynomial time algorithm for the particular bilinear system (2.1), while for a large
range of parameters this would be exponential for generic bilinear systems with the
same number of unknowns and equations as (2.1), see Section 1.3.8.1.

A less trivial degree fall behavior is obtained in the case the fraction of errors is
at most Sudan’s radius. Here, after substituting for the λi’s which can be expressed

2.4. A partial explanation of the algebraic behavior 69

as linear functions of the other λi’s by using the aforementioned linear equations
involving the λi’s we obtain new bilinear equations f ′

1, · · · , f ′
m. It turns out that we

can perform linear combinations on these f ′
i ’s to eliminate the monomials of degree

2 in them and derive new linear equations involving only the λi’s. This is proved
in Subsection 2.4.1. This process can be iterated and there are typically enough
such linear equations to recover the λi’s in this way as long as t is below or equal to
the Sudan decoding radius. As explained above, this allows us to recover the right
codeword by plugging the values for λi in (2.1) and solving the corresponding linear
system in the pi’s. This will be described more thoroughly again in Subsection 2.4.1.

This behavior shows that we can decode up to the Sudan decoding radius with
constant degree D = 2, thus implying a polynomial-time algorithm. However, when
the number of errors becomes bigger, D = 2 is not enough to exhibit more degree
falls. The latter appear already starting from D = 3 and we will explain why they
are instrumental to the generalization of the power decoding approach of [Nie18]
decoding up to the Johnson radius. In light of this and for some range of parameters,
we will also propose an alternative algorithm that directly computes the degree falls
and exploits them from the very beginning.

2.4 A partial explanation of the algebraic behavior
2.4.1 Correcting up to the Sudan bound in polynomial time
The efficiency of Algorithm 1.3 is already demonstrated by the fact that choosing
D = 2 in it corrects in polynomial time as many errors as Sudan’s algorithm.
Choosing D = 2 means that we just keep the equations of degree 2 and try to
produce new linear equations by linear combinations of the equations of degree 2
aiming at eliminating the degree 2 monomials. The efficiency of this algorithm is
related to power decoding [SSB10]: the algorithm finds automatically the linear
equations exploited by the power decoding approach. We can show that the system
originated by the key equation implicit in Gao’s decoder is equivalent to the one which
interpolates the received values. We first need to recall the following preliminary
lemma.

Lemma 2.2. For any polynomial Q(X) ∈ Fq[X] of degree < n, the coefficients of Q
can be expressed as linear combinations of Q(x1), · · · , Q(xn).

Proof. This fact is just a consequence that Q coincides with its interpolation
polynomial on the points (aℓ, Q(aℓ)) and that this interpolation polynomial is given
by

Q(X) =
n∑

ℓ=1
Q(xℓ)

Πj ̸=ℓ(X − aj)
Πj ̸=ℓ(xℓ − xj) .

From the previous lemma, it follows that

Proposition 2.2. The bilinear systems (2.1) and (2.3) are equivalent: (2.3) can be
obtained from linear combinations of (2.1) and vice versa.

70 Chapter 2. Decoding of Reed-Solomon codes with Gröbner bases

Proof. We start by proving that (2.3) can be derived from (2.1). If we bring in

Q(X) def= P (X)Λ(X)−R(X)Λ(X)
S(X) def= Q(X) mod G(X),

then

• (2.1) amounts to write Q(aℓ) = 0 for ℓ in J1, nK and to express the Q(xℓ)’s as
quadratic forms in the λi’s and the pj ’s.

• Since Q(xℓ) = S(xℓ) for all ℓ in J1, nK and since S is of degree < n we can use the
previous fact and express its coefficients linearly in terms of the S(xℓ) = Q(xℓ)’s.

• Since (2.3) is nothing but expressing that the coefficients of S(X) are all
equal to 0, we obtain that the equations of (2.3) can be obtained from linear
combinations of the equations of (2.1).

Conversely, since S(xℓ) can be written as a linear combination of the coefficients of
S(X), the quadratic equations in the λi’s and the pi’s obtained by writing S(xℓ) = 0
are linear combinations of the quadratic equations given by (2.3). These equations
S(xℓ) = 0 coincide with the equations in (2.1), since Q(xℓ) = S(xℓ) for all ℓ in
J1, nK.

The point of using (2.3) is that

• These equations are more convenient to work with to understand what is going
on algebraically during the Gröbner basis calculations.

• They give directly n − k − t + 1 linear equations, since (i) the coefficient of
S(X) of degree d ∈ Jt + k, n − 1K coincides with the coefficient of the same
degree in −R(X)Λ(X) mod G(X) since

1. Λ(X)P (X) is of degree ≤ t+ k − 1;
2. the coefficient of S(X) of degree t + k − 1 is equal to pk−1 −

coeff
´

rΛ(X)R(X)sG(X) , X
t+k−1

¯

because Λ(X) is monic and of degree
t.

This motivates the use of the following modeling.

Modeling 2.1 (Modeling for decoding Reed-Solomon codes).
System:

{coeff
´

rΛ(X)P (X)− Λ(X)R(X)sG(X) , X
u
¯

= 0 | u ∈ J0, n− 1K}

Unknowns: k unknowns pi’s, i ∈ J0, k− 1K,+ t unknowns λj, j ∈ J0, t− 1K (since Λ
is monic, λt = 1).

Equations: n equations of which:

• t+ k − 1 affine bilinear equations in the blocks of coefficients pi’s and λj’s;

• n− t− k − 2 affine linear equations in the coefficients λi’s;

2.4. A partial explanation of the algebraic behavior 71

• 1 affine linear equation in the coefficients λi’s and pk−1.

We can now prove that

Proposition 2.3. Let q1 be defined as in Equation (2.8). All affine functions in
the λi’s of the form coeff

´

“

Λ(X)Rj(X)
‰

G(X) , X
u
¯

for j ∈ J1, q1K and u ∈ Jt+ (k −
1)j + 1, n− 1K are in the linear span of the 2-Gröbner basis for the bilinear system
(2.1).

Remark 2.1. The fact that these are indeed affine functions follows on the spot from
generalizing the degree considerations above: Λ(X)P (X)j is of degree ≤ t+ (k− 1)j.

Proof. Let us refer to Algorithm 1.3 for the computation of a truncated Gröbner
basis in the affine case. In particular we are interested in the set F and the subspace
spanned by it. The space ⟨F ⟩Fq

contains initially (and therefore all the time) the
space of affine functions in the λi’s generated by

coeff
´

r−Λ(X)R(X)sG(X) , X
u
¯

= coeff
´

rΛ(X)P (X)− Λ(X)R(X)sG(X) , X
u
¯

,

for all u ∈ Jt+ k, n− 1K. Now proceed by induction on j, and assume that at some
point the space generated by F contains the linear span of the affine functions

coeff
´

“

−Λ(X)Rj(X)
‰

G(X) , X
u
¯

= coeff
´

“

Λ(X)P (X)j − Λ(X)R(X)j
‰

G(X) , X
u
¯

,

for all u ∈ Jt+ (k − 1)j + 1, n− 1K where j is some integer in the interval J1, q1 − 1K.
Note that

`

ΛP j+1 − ΛRj+1˘

mod G (2.16)
=

`

P (ΛP j − ΛRj) +Rj(ΛP − ΛR)
˘

mod G

=
`

P (ΛP j − ΛRj mod G) +Rj(ΛP − ΛR mod G)
˘

mod G. (2.17)

We use the equality between the polynomials (2.16) and (2.17) to claim that their
coefficients should coincide for all the degrees Jt + (j − 1)(k − 1), n − 1K. Note
now that after the elimination of variables performed so far, this makes that all
coefficients of degree in Jt+ (k − 1)j + 1, n− 1K in ΛP j − ΛRj mod G vanish, since
they were affine functions by the induction hypothesis and become 0 after the variable
elimination step. This implies that ΛP j − ΛRj mod G becomes a polynomial of
degree ≤ t+ (k−1)j after elimination of variables. Therefore P (ΛP j −ΛRj mod G)
is a polynomial of degree ≤ t+ (k − 1)(j + 1). From the equality of the polynomials
(2.16) and (2.17), this implies that the coefficient of degree u in

`

ΛP j+1 − ΛRj+1˘

mod G coincides with the coefficient of the same degree in (Rj(ΛP − ΛR mod G))
mod G for u in Jt+ (k−1)(j+ 1) + 1, n−1K. We observe now that the last coefficient
is nothing but a linear combination of the coefficients of ΛP −ΛR mod G, which are
precisely the initial polynomial equations. Since the polynomial

`

ΛP j+1 − ΛRj+1˘

mod G has all its coefficients that are affine functions in the λi’s by Remark 2.1 for
all the degrees u ∈ Jt+ (k − 1)(j + 1) + 1, n− 1K we obtain that after the Gaussian
elimination step, ⟨F ⟩Fq

contains the space generated by these aforementioned affine
functions. This proves the proposition by induction on j.

72 Chapter 2. Decoding of Reed-Solomon codes with Gröbner bases

These linear equations that we produce coincide exactly with the linear equations
produced by the power decoding approach [SSB10] and this allows us to correct
as many errors as the power decoding approach based on the same assumption,
namely that they are all independent, which is actually the typical scenario. However,
contrarily to power decoding that is bound to make such an assumption to work, the
Gröbner basis is more versatile, as it allows to decode even without this assumption
as explained in Section 2.5.

2.4.2 Decoding up to the Johnson radius
Equations (2.12) and (2.13) generalize power decoding to decode up to the Johnson
radius by bringing in the “error evaluator” polynomial Ω(X) defined in (2.10).
Interestingly enough, our Gröbner basis approach also exhibits degree falls of degree
s that are related to (2.12) and (2.13). This can be understood by using an equivalent
definition of the error evaluator polynomial Ω as

Ω def= −ΛR÷G. (2.18)

We can prove that the definitions of Ω from (2.10) and (2.18) are actually equivalent.
Indeed, once Ω’s coefficients are written in functions of Λ’s coefficients, (2.11) holds
with definition (2.18).

Proposition 2.4. The coefficients of Ω def= −ΛR÷G. are affine functions of the λi’s.
Moreover, if t ≤ n− k, Λ(P −R) = ΩG.

Proof. The polynomial Ω(X) = ∑t−1
i=0 ωiX

i is determined by the linear constraints
coeff pΛR+ ΩG, dq = 0, for d ∈ Jn, n+ t− 1K, which translate into the system

t−1∑
i=d−n

ωigd−i = −
t∑

j=d−n+1
λjrd−j | λt = gn = 1, d ∈ Jn, n+ t− 1K

 ,

where we adopt the notation Λ(X) = ∑n−1
i=0 λiX

i, R(X) = ∑n−1
i=0 riX

i, G(X) =∑n
i=0 giX

i (with λt = gn = 1 because Λ and G are monic). We observe that
in the equation ∑t−1

i=d−n ωigd−i = −∑t
j=d−n+1 λjrd−j , only the coefficients of Ω

corresponding to degree at least d− n appear. Therefore, the ωi coefficients can be
recursively retrieved in reverse order (i.e. from the largest to the smallest index) from
the previous system as

ωt−1 = −rn−1,
ωl = −∑t

j=l+1 λjrd−j −
∑t−1

i=l+1 ωigd−i.

As long as t ≤ n−k, (2.11) follows from (2.18) and (2.3). Indeed rΛRsG = ΛP . This
follows from (2.3) and t+ k − 1 ≤ n− 1 implying that ΛP = ΛR mod G. This and
(2.18) then imply that ΛR = −ΩG + ΛP which is obviously equivalent to (2.11),
i.e. Λ(P −R) = ΩG.

From these considerations, note that if we equate the coefficients of the
polynomials in (2.12) for all the degrees in Jst + u(k − 1) + 1, st + u(n − 1)K and
in (2.13) for all the degrees in Jst + u(k − 1) + 1, s(n − 1)K, the coefficient of the
left-hand term vanishes and the coefficient in the righthand term is a polynomial of

2.4. A partial explanation of the algebraic behavior 73

degree s in the λi’s (this follows from the fact that the coefficients of Ω are affine
functions in those λi’s). This gives polynomial equations in the λi’s of degree s. In a
sense, they can be viewed as generalizations at degree s of the linear equations that
are produced by a truncated Gröbner basis at degree D = 2. These equations are
actually produced as degree falls that are in the linear span of intermediate sets F
produced in Algorithm 1.3 when D = s+ 1. At the same degree, other degree falls
of degree s also occur. To explain this point it makes sense to bring in the notation
for the right-hand term in (2.12) and (2.13). Let us define

χ(s, u) def=
u∑

i=0

ˆ

u

i

˙

Λs−iRu−iΩiGi = Λs−u pΛR+ ΩGq
u if u < s,

χ(s, u) def=
«

s−1∑
i=0

ˆ

u

i

˙

Λs−iRu−iΩiGi

ff

Gs

if u ≥ s

We also let χ(s, u)H be the polynomial where we dropped all the terms of degree
≤ ts+u(k−1) in χ(s, u), i.e. if χ(s, u) = ∑

i aiX
i, then χ(s, u)H = ∑

i>ts+u(k−1) aiX
i.

The degrees corresponding to the non-identically null coefficients of χ(s, u)H are
exactly the same above the degree of the left-hand sides in (2.12) and (2.13).

Theorem 2.1. Let FD = ⟨F ⟩Fq where F is the set output by Algorithm 1.3 with the
bilinear system (2.3) and degree D as inputs. We have for all nonnegative integers s,
s′, u ≤ qs, u′ ≤ qs′

χ(s, u)H ∈coef Fs+1 (2.19)
χ(s, u)χ(s′, u′)− χ(s+ s′, u+ u′) ∈coef Fs+s′+1. (2.20)

where P ∈coef Fv (where P is a polynomial with coefficients that are polynomials in
the λi’s and the pi’s) means that all the coefficients of P belong to Fv.

We point out a couple of observations:

1. The algebraic manipulations used in the proof of Proposition 2.1 involved only
polynomial additions, multiplications and division remainders. This implies
that the coefficients of (2.12) and (2.13) belong to the ideal generated by the
bilinear system. In addition, Λ(P−R)’s factors in the right-hand side summands
were replaced with ΩG’s factors whenever possible. All these operations can
be reinterpreted as polynomial combinations of the equations of the original
bilinear system (2.3), thus answering the ideal membership problem.

2. It is of course clear that χ(s, u)χ(s′, u′)− χ(s+ s′, u+ u′) belongs to the ideal
generated by the polynomial equations (2.12) and (2.13) since they basically
come from the identity (ΛsP u)(Λs′

P u′) = (Λs+s′
P u+u′).

The two points above imply that χ(s, u)χ(s′, u′) − χ(s + s′, u + u′) belongs to the
ideal generated by the bilinear system (2.3) as well. In principle we should expect to
find out such equations at degree s+ s′ + u+ u′, because they are originated by the
identity (ΛsP u)(Λs′

P u′) = (Λs+s′
P u+u′), whose left and right-hand sides have this

degree.
What is somehow surprising is that these equations are discovered at a rather

small degree Gröbner basis computation. In particular, we can rigorously upper
bound the degree with the value s+ s′ + 1, and experimentally they already appear

74 Chapter 2. Decoding of Reed-Solomon codes with Gröbner bases

from computations at degree s+ s′ in some cases, i.e. at their same degree. Moreover,
these equations only involve the λi’s. By inspection of the behavior of the Gröbner
basis computation, it seems that the linear equations that we produce later on
are first produced by degree falls only involving these equations of degree s. It is
therefore tempting to change the Gröbner basis decoding procedure strategy: instead
of feeding Algorithm 1.3 with the initial system (2.1) or (2.3) we run it with the
equations of degree s given by Theorem 2.1. Once we have recovered the λi’s in
this way we recover the pi’s by solving a linear system as explained earlier. In the
next section, the behavior of this strategy on non-trivial examples will be explained.
Theorem 2.1 is proved in the following subsection.

2.4.3 Proof of Theorem 2.1
It will be convenient here to notice that χ(s, s) has a slightly simpler expression
which avoids the reduction modulo Gs.

Lemma 2.3.
χ(s, s) = (ΛR+ ΩG)s.

Proof. χ(s, s) is defined as

χ(s, s) def=
«

s−1∑
i=0

ˆ

s

i

˙

Λs−iRs−iΩiGi

ff

Gs

=
«

s∑
i=0

ˆ

s

i

˙

Λs−iRs−iΩiGi

ff

Gs

= r(ΛR+ ΩG)ssGs

= (ΛR+ ΩG)s

It will also be helpful to observe that χ(s, u) and χ(s, u+ 1) are related by the
following identity

Lemma 2.4.
χ(s, u)P − χ(s, u+ 1) = Λs−u−1(ΛR+ ΩG)u pΛP − ΛR− ΩGq for u ∈ J0, s− 1K

rχ(s, u)P − χ(s, u+ 1)sGs =
«

pΛP − ΛR− ΩGq

s−1∑
i=0

ˆ

u

i

˙

Λs−1−iRu−iΩiGi

ff

Gs

for u ∈ Js, qs − 1K.

Proof. For u ∈ J0, s− 1K we have (for the case u = s− 1 we use Lemma 2.3 for the
term χ(s, u+ 1)):

χ(s, u)P − χ(s, u+ 1) = Λs−uP (ΛR+ ΩG)u − Λs−u−1P (ΛR+ ΩG)u+1

= Λs−u−1(ΛR+ ΩG)u pΛP − ΛR− ΩGq .

For u ∈ Js, qs − 1K we observe that

rχ(s, u)P sGs =
«

P
s−1∑
i=0

ˆ

u

i

˙

Λs−iRu−iΩiGi

ff

Gs

=
«

ΛP
s−1∑
i=0

ˆ

u

i

˙

Λs−1−iRu−iΩiGi

ff

Gs

(2.21)

2.4. A partial explanation of the algebraic behavior 75

and

(ΛR+ ΩG)
s−1∑
i=0

ˆ

u

i

˙

Λs−1−iRu−iΩiGi =
s−1∑
i=0

ˆ

u

i

˙

Λs−iRu+1−iΩiGi +
s−1∑
i=0

ˆ

u

i

˙

Λs−1−iRu−iΩi+1Gi+1

= ΛsRu+1 +
ˆ

u

s− 1

˙

Ru−s+1ΩsGs

+
s−1∑
i=1

ˆˆ

u

i

˙

+
ˆ

u

i− 1

˙˙

Λs−iRu+1−iΩiGi

=
ˆ

u

s− 1

˙

Ru−s+1ΩsGs +
s−1∑
i=0

ˆ

u+ 1
i

˙

Λs−iRu+1−iΩiGi

This implies

χ(s, u+ 1) =
«

(ΛR+ ΩG)
s−1∑
i=0

ˆ

u

i

˙

Λs−1−iRu−iΩiGi

ff

Gs

. (2.22)

The second equation of the lemma follows directly from (2.21) and (2.22).

A last lemma will be helpful now

Lemma 2.5. For all nonnegative integers s and u < qs

χ(s, u)P − χ(s, u+ 1) ∈coef Fs+1 (2.23)
χ(s, u+ 1)H ∈coef Fs+1. (2.24)

Proof. We will prove this lemma by induction on u. For u ≤ s− 1 we observe from
Lemma 2.4 that

χ(s, u)P − χ(s, u+ 1) = Λs−u−1(ΛR+ ΩG)u pΛP − ΛR− ΩGq (2.25)
∈coef Fs+1

The last point follows from the fact that (2.25) implies that the coefficients of
χ(s, u)P − χ(s, u+ 1) are clearly in the space spanned by S once we multiply the
original fi’s (i.e. the coefficients of ΛP − ΛR − ΩG) by all monomials of degree
≤ s− 1) because the coefficients of Λs−u−1(ΛR + ΩG)u are polynomials of degree
≤ s− 1 in the λi’s.

This also implies that χ(s, u+ 1)H ∈coef Fs+1, since degχ(s, u)P = ts+ u(k− 1).
Now let us assume that χ(s, u − 1)P − χ(s, u) ∈coef Fs+1 and χ(s, u)H ∈coef Fs+1,
for some s ≤ u < qs. From Lemma 2.4, we know that

rχ(s, u)P − χ(s, u+ 1)sGs =
«

pΛP − ΛR− ΩGq

s−1∑
i=0

ˆ

u

i

˙

Λs−1−iRu−iΩiGi

ff

Gs

.

Therefore
rχ(s, u)P − χ(s, u+ 1)sGs ∈coef Fs+1

since clearly

pΛP − ΛR− ΩGq

s−1∑
i=0

ˆ

u

i

˙

Λs−1−iRu−iΩiGi ∈coef Fs+1.

76 Chapter 2. Decoding of Reed-Solomon codes with Gröbner bases

By the induction hypothesis χ(s, u)H ∈coef Fs+1 and such coefficients have degree
s, then the coefficients corresponding to degrees > ts+ (u+ 1)(k − 1) of χ(s, u)P
belong to Fs+1 too. Since rχ(s, u)P − χ(s, u+ 1)sGs = rχ(s, u)P sGs − χ(s, u+ 1), it
follows that

χ(s, u)P − χ(s, u+ 1) ∈ Fs+1.

Thus, we also have χ(s, u+ 1)H ∈ Fs+1.

We are ready now to prove Theorem 2.1.

Proof of Theorem 2.1. We proceed by induction on u1 and u2. We first observe that
we trivially have χ(s1, 0)χ(s2, 0)− χ(s1 + s2, 0) ∈coef Fs1+s2+1 since

χ(s1, 0)χ(s2, 0)− χ(s1 + s2, 0) = Λs1Λs2 − Λs1+s2 = 0.

Now assume that we have

χ(s1, u1)χ(s2, u2)− χ(s1 + s2, u1 + u2) ∈coef Fs1+s2+1,

for some positive integers s1 and s2 and non-negative integers u1 < qs1 and u2 ≤ qs2 .
Since χ(s1, u1)χ(s2, u2) and χ(s1 + s2, u1 + u2) are polynomials where all coefficients
are polynomials in the λi’s of degree ≤ s1 + s2, we also have

P pχ(s1, u1)χ(s2, u2)− χ(s1 + s2, u1 + u2)q ∈coef Fs1+s2+1. (2.26)

By Lemma 2.5 we know that

Pχ(s1, u1)− χ(s1, u1 + 1) ∈coef Fs1+1.

This implies

Pχ(s1, u1)χ(s2, u2)− χ(s1, u1 + 1)χ(s2, u2) ∈coef Fs1+s2+1. (2.27)

On the other hand, still by Lemma 2.5, we have

Pχ(s1 + s2, u1 + u2)− χ(s1 + s2, u1 + u2 + 1) ∈coef Fs1+s2+1. (2.28)

From (2.27) and (2.28) we derive that

−Pχ(s1, u1)χ(s2, u2)+χ(s1, u1+1)χ(s2, u2)+Pχ(s1+s2, u1+u2)−χ(s1+s2, u1+u2+1) ∈coef Fs1+s2+1
(2.29)

(2.29) and (2.26) imply that

χ(s1, u1 + 1)χ(s2, u2)− χ(s1 + s2, u1 + u2 + 1) ∈coef Fs1+s2+1.

This proves the theorem by induction (the induction on u2 follows directly from the
fact we can exchange the role of u1 and u2).

2.5. Experimental Results 77

2.5 Experimental Results
In this section, we compare the behavior of a D-Gröbner basis computation on the
bilinear system (2.3), with a system involving equations in the λj ’s only. We give
examples where Johnson’s bound is attained and passed.

The systems in λj ’s we use contains equations χ(s, u)H and some relations
χ(s, u)χ(s′, u′)− χ(s+ s′, u+ u′). Experimentally, they are linearly dependent from
χ(s+s′−1, u+u′)χ(1, 0)−χ(s+s′, u+u′) and χ(s, qs)H (we recall that χ(1, 0) = Λ).
Moreover, χ(s − 1, u)χ(1, 0) mod Gs−1 = χ(s, u) mod Gs−1, so we will consider
equations Ms,u defined by

pχ(s− 1, u)χ(1, 0)− χ(s, u)q÷Gs−1. (Ms,u)

We do not add equations that are polynomially dependent from χ(s, qs)H orMs+1,qs

at degree at most D, and thus unnecessary for the computation.
Tables 2.1, 2.2 and 2.3 show results for [n, k]q taking values [64, 27]64, [256, 63]256

and [37, 5]61. The column #λj indicates the number of remaining λj ’s after
elimination of the linear ones from the χ(1, ∗)H relations. The column “Eq” indicates
the equations used. The column “#Eq” contains the degrees of the equations1.

We do our experiments using the GroebnerBasis(S,D) function in the computer
algebra system magma v2.25-6. The practical complexity C is given by the magma
function ClockCycles. For instance, on our machine with an Intel® Xeon® 2.00GHz
processor, 230.9 clock cycles are done in 1 second, 236.8 in 1 minute and 242.7 in 1
hour. “Max Matrix” indicates the size of the largest matrix during the process. The
complexities include the computation of the equations χ(i, j)H and Mi,j that could
be improved.

For systems where the number of remaining λj ’s is small compared to the number
of pi’s, e.g. Table 2.1 or Table 2.2, it is clearly interesting to compute a Gröbner
basis for a system containing only polynomials in λj ’s: even if the maximal degree
D is larger than for the bilinear system, the number of variables is much smaller
and the computation is faster. For instance for [n, k]q = [64, 27]64 in Table 2.1, on
Johnson bound t = 23 the Gröbner basis for the bilinear system requires more than
6 hours of computation and 47 GB of memory, whereas the computation in λj ’s only
takes less than a second. For t = 24 we couldn’t solve the bilinear system directly,
whereas the system in λj ’s only solves in less than a minute.

Table 2.2 gives an example where the number of λj ’s variables is quite large,
but still smaller than the number of pi’s. The benefit of using equations in λj ’s
only is clear. We can appreciate even more the experimental results from Table 2.2
if compared with the error-correction in for a multiplicity parameter equal to the
maximal degree reached during the Gröbner basis computation. For instance, a
[n, k]q = [256, 63]256 GRS code can correct with our approach up to 120 errors
by staying at degree 2, and thus by using only key-equations corresponding to
multiplicity not higher than 2. On the other hand⌊

max
v

tpow(2, v)
⌋

= ⌊tpow(2, 4)⌋ = 116,

i.e. using key-equations of degree at most 2, power decoding corrects in this case 4
errors less than 2-Gröbner basis.

12:45 means that the system contains 45 equations of degree 2.

78 Chapter 2. Decoding of Reed-Solomon codes with Gröbner bases

Table 2.1: Experimental results for a [n, k]q = [64, 27]64 RS-code. System (2.3)
contains 26 variables pi. Johnson’s bound is t = 23.

t #λj Eq. #Eq. D Max Matrix C
19 1 (2.3) 2:45 2 65× 57 222.2

χ(2, 3)H 2:11 2 45× 28 223.7

20 3 (2.3) 2:46 3 1522× 1800 226.5

χ(2, 3)H 2:9 2 47× 28 224.4

21 5 (2.3) 2:47 3 1711× 2889 227.1

χ(2, 3)H + χ(3, 4)H 2:7, 3:24 3 66× 56 226.8

22 7 (2.3) 2:48 4 31348× 35972 236.1

χ(2, 3)H + χ(3, 4)H 2:5, 3:21 4 271× 283 227.6

23 9 (2.3) 2:49 5 428533× 406773 245.4

χ(2, 3)H + M3,3 2:4, 3:22 5 1466× 1641 230.1

24 11 (2.3) 2:50 ≥ 6 – –
M3,3 2:1, 3:23 7 28199× 23536 235.8

Table 2.2: Experimental results for a [n, k]q = [256, 63]256 RS-code. System (2.3)
contains 62 variables pi. Johnson’s bound is t = 130.

t #λj Eq. #Eq. D Max Matrix C
120 36 (2.3) 2:182 3 20023× 128018 238.0

χ(2, 3)H 2:85 2 119× 703 234.5

121 39 (2.3) 2:183 3 21009× 143741 238.9

M2,2 2:111 3 9780× 8517 235.0

122 42 (2.3) 2:184 3 22050× 160434 239.7

M2,2 2:113 3 4858× 14189 235.3

123 45 (2.3) 2:185 3 23112× 178090 240.1

M2,2 2:115 3 5289× 17295 235.8

124 48 (2.3) 2:186 ≥ 4 – –
M2,2 +
M4,6

2:117, 3:1,
4:189

4 164600× 270725 245.2

On the contrary, Table 2.3 shows that for a small value of k compared to the
number of λj ’s, the maximal degree for the bilinear system is smaller than the one
for a system involving only λj ’s, but the total number of variables is almost the same,
hence it is more interesting to solve directly the bilinear system. Moreover, here
computing the Mi,j equations (that are equations in λj ’s of degree i) takes time.
Note that, for t ≥ 26 we may have several solutions: the Gröbner basis computation
performs a list decoding and returns all the solutions.

2.6 Conclusions
This chapter shows why a Gröbner basis computation on the bilinear system (2.3) for
decoding a Reed-Solomon code is of polynomial complexity below Sudan’s radius. The
Gröbner basis computation reveals polynomial equations of small degree involving
only the coefficients λi of the error locator polynomial, i.e. they do not depend on

2.6. Conclusions 79

Table 2.3: Experimental results for a [n, k]q = [37, 5]61 RS-code. System (2.3)
contains 4 variables pi. Johnson’s bound is t = 24, Gilbert-Varshamov’s bound is
t = 28.

t #λj Eq. #Eq. D Max Matrix C
24 12 (2.3) 2:28 3 1065× 1034 226.0

M2,3 2:37 3 454× 454 228.0

25 15 (2.3) 2:29 3 2520× 1573 228.0

χ(2, 5)H+
χ(3, 8)H+
M2,2 + M3,5

2:25,
3:40

4 3193× 3311 234.3

26 18 (2.3) 2:30 4 20446× 15171 233.1

χ(2, 5)H+
M2,2 + M3,5
+ M4,8

2:25,
3:37,
4:37

5 38796× 22263 238.1

27 21 (2.3) 2:31 4 27366× 24894 236.0

the block of pi’s variables. These polynomial equations are derived by manipulations
of power decoding key-equations [Nie18]. We give a theorem explaining why these
polynomial relations are obtained at a surprisingly small degree. This is a first step
for understanding why the Gröbner basis approach still works well beyond the Sudan
radius and is successful by staying at a small degree. We have also explored an
alternative strategy, namely feeding directly the initial system with some of the
aforementioned polynomial relations before running a Gröbner basis algorithm. This
results in some cases in a considerable complexity gain. We have considered some
of the examples given in [Nie18] and shown that the latter can be outperformed
by our Gröbner basis approach when comparing the Gröbner basis degree with the
multiplicity parameter used in the power decoding algorithm. Especially for small
parameters, we experimentally demonstrated that it can still be effective slightly
beyond Johnson’s bound, which is a no-go for power decoding, for any possible
multiplicity. This means that the power decoding approach does not fully take
advantage of the polynomial equations and some of the information provided by
key-equations (2.13) and (2.12) is lost after linearization. At the same time, breaking
the barrier of Johnson’s bound encourages further research on decoding techniques
based on polynomial equation solving. Moreover, even above the unique decoding
radius and contrarily to the power decoding approach, the Gröbner basis computation
is also able to compute all solutions. This approach opens new roads for decoding
algebraically a Reed-Solomon code.

Chapter3On the dimension the square of the
dual of alternant and Goppa codes

In this chapter, we revisit a distinguisher for high-rate alternant and Goppa codes
through a new approach, namely by studying the dimension of square codes. This
partially solves the Goppa Code Distinguishing (GD) problem, which asks to
distinguish efficiently a generator matrix of a Goppa code from a randomly drawn
one. We provide here a rigorous upper bound for the dimension of the square of
the dual of an alternant or Goppa code, while the previous approach only provided
algebraic explanations based on heuristics. Moreover, for Goppa codes, our proof
extends to the non-binary case as well, thus providing an algebraic explanation for
the distinguisher which was missing up to now. All the upper bounds are tight
and match experimental evidence. Our work also introduces new algebraic results
about products of trace codes in general and of dual of alternant and Goppa codes
in particular, clarifying their square code structure. For instance, we will show that
the square of the dual of a Goppa code is contained into the dual of an alternant
code of large degree, and for some parameters they even coincide. In Chapter 4 we
will see how some of these structural results can serve for cryptanalysis purposes.

Contents
3.1 Introduction . 82

3.1.1 A distinguisher for high-rate alternant and Goppa codes 82
3.1.2 Our contribution . 83

3.2 The relationship between the distinguisher of [Fau+11; Fau+13]
and the square code construction 85

3.3 A general result about the square of a trace code 89
3.4 Alternant case with eA = 0 and Goppa case with eG = 0 93
3.5 Alternant case with eA > 0 . 94
3.6 Goppa case with r ≥ q − 1 . 95
3.7 Conclusions . 100

81

82 Chapter 3. The square of the dual of alternant and Goppa codes

3.1 Introduction
3.1.1 A distinguisher for high-rate alternant and Goppa codes
In Section 1.2.5 we have described the McEliece encryption scheme [McE78], the
oldest code-based cryptosystem, dating back to 1978. It benefits from very fast
encryption and decryption algorithms and has very small ciphertexts. Despite the
very general framework of this quantum-safe cryptosystem, we are here interested
in its original version, the one built upon the family of binary Goppa codes, or
the generalized variant based on alternant codes over any field. We also recall the
existence of the CFS scheme [CFS01], a code-based digital signature, which relies on
high-rate Goppa codes. The reasons why Goppa codes should belong to such a rate
regime have already been explained in Section 1.2.8.1.

We have also had a high-level overview of message-recovery attacks, which consist
in inverting the McEliece encryption without finding a trapdoor but making use of
general decoding algorithms. Despite being the primary threat to consider when
designing parameters, they have exponential complexity, even with a quantum
speedup, and it is unlikely that future improvements would lead to a complete break
of the McEliece scheme.

Therefore the original McEliece cryptosystem [McE78] based on binary Goppa
codes remains, after more than forty years, the oldest unbroken quantum-secure
public-key cryptosystem.

If one hopes for a polynomial (or even a subexponential) time attack, it will be
presumably necessary to exploit the non-random structure of the secret code. As
already explained in the preliminaries, the other macro-family of attacks is made by
key-recovery attacks, where the intruder seeks to recover the private key. For this
purpose, the first step is being able to detect the presence of this special structure
from the public key. For a long time it was widely believed that even this simpler
task of distinguishing efficiently a generator matrix of a Goppa code from a randomly
drawn generator matrix with non-negligible probability was unfeasible. This is the
so-called Goppa Code Distinguishing (GD) problem as introduced by the authors of
[CFS01]. The nice feature of this problem is that it is possible to devise a security
proof for the McEliece scheme based solely on the intractability of this problem and
decoding a generic linear code [Sen10]. The belief about GD problem hardness was
justified by the fact that Goppa codes behave like random codes in many aspects.
For instance, they asymptotically meet the Gilbert-Varshamov bound, their weight
distribution is roughly the same as those of random codes and they generally have a
trivial permutation group. The absence of significant breakthroughs in key-recovery
attacks also strengthened the idea that the Goppa Code distinguishing problem is
difficult. This problem was used for a long time as a problem that basically captures
the hardness of recovering the private key of a Goppa code.

However, this belief was severely questioned in [Fau+11; Fau+13] which gave a
polynomial time algorithm that distinguishes between Goppa codes (or more generally
alternant codes) and random ones from their generator matrices at least for very high
rate codes. It is based on the kernel of a linear system related to an algebraic system
that encodes the key-recovery problem for the McEliece cryptosystem instantiated
with alternant or Goppa codes. Indeed, it was shown to have an unexpectedly high
dimension. This distinguisher was later on given another interpretation in [MP12],

3.1. Introduction 83

where it was proved that this dimension is related to the dimension of the square of
the dual of the public code. The algebraic explanations given in [Fau+13] do not
represent however a rigorous proof of the dimension of the kernel sought, but they rely
on heuristic considerations. Indeed, while a set of vectors is proposed as a candidate
for the kernel basis, its elements are neither proved to be independent nor a set of
generators. Although the experiments run in [Fau+13] show a regular behavior when
alternant codes are defined by picking at random support and multiplier vectors, it
is possible to artificially choose alternant codes whose kernel dimensions are even
larger than for random ones. Moreover, in the case of Goppa codes, even if a general
formula for the dimension of the kernel was provided that matches the experimental
evidence, an algebraic explanation was only provided in the case of binary Goppa
codes with square-free Goppa polynomials. This explanation crucially relies on
Theorem 1.2. Clearly, this approach does not generalize to non-binary Goppa codes.

There exist already many examples where a distinguisher has then been turned
into an attack. In the code-based cryptography setting, this is for instance the case
for GRS codes. The uncommon dimension of the square of a GRS code leads to a
successful key recovery for several proposed variants of the McEliece cryptosystem
built upon this family of codes for any rate [Cou+14]. Despite the strong relationship
between generalized Reed-Solomon codes and alternant codes, the same attacks
cannot be carried over from the former to the latter, because of the additional
subfield subcode structure. A similar idea has been successfully exploited for Wild
Goppa codes though [COT17]. But in this case, the distinguisher is based on
considerations of the square of Goppa codes themselves, which only apply to a very
restricted class of parameters. Indeed the attack can only work for extensions of
degree m = 2 and there is no way to go beyond it, because for m > 2 the square
code fills the whole space. In our case, our distinguisher is based on squaring the
dual of a Goppa code (or an alternant code) and works for any field extension degree.

3.1.2 Our contribution
In the present article, we revisit the distinguisher for random alternant codes and
Goppa codes. We do so by exploiting the link given by [MP12]. Indeed we provide a
rigorous upper bound on the dimension of the square code of the dual of an alternant
or a Goppa code that coincides with the experiments. By using [MP12], this also
gives a lower bound on the dimension of the kernel of the matrix considered in
[Fau+13]. Together with results about the typical dimension of the square of random
codes [Cas+15], this provides the first rigorous analysis of the effectiveness of the
approach pioneered in [Fau+11], because the typical dimension of the square of a
random code is way larger than this upper-bound on the dimension of the square of
the dual of a Goppa or alternant code.

Our approach relies on several new ingredients

• a new result about the square of trace codes showing that if essentially the
square of a code is abnormally small then the square of its trace code is also
abnormally small in a certain region of parameters. Interpreting the dual of an
alternant code or a Goppa code as the trace of a generalized Reed-Solomon code
(whose dimension of the square is known to be abnormally small [Wie10]) shows

84 Chapter 3. The square of the dual of alternant and Goppa codes

Classic McEliece n m r R Largest Corresponding
parameter sets distinguishable r R

[Ber+19]
kem/mceliece348864 3488 12 64 0.77982 12 0.95872
kem/mceliece460896 4608 13 96 0.72917 12 0.96615
kem/mceliece6688128 6688 13 128 0.75120 15 0.97084
kem/mceliece6960119 6960 13 119 0.77773 16 0.97011
kem/mceliece8192128 8192 13 128 0.79688 19 0.96985

Table 3.1: Comparison between Classic McEliece and smallest distinguishable code
rates. This table provides a comparison between the parameters proposed for Classic
McEliece and the largest order r of a binary Goppa code that is distinguishable, with
the corresponding relative rate R. Such an order can be computed as the maximum
value of r for which the upper bound of the dimension of the square of a binary
Goppa code given in Corollary 3.6 (Classic McEliece uses binary Goppa codes) is
strictly smaller than min

`

n,
`

mr+1
2

˘˘

. The latter quantity is the typical dimension of
the square of a random code of the same length and dimension as the corresponding
Goppa code (see [Cas+15]). We see in this table that the code rates suggested for
Classic McEliece oscillate between 0.7 and 0.8 [Ber+19, Section 3], while for the
same length n and degree of the field extension m, the distinguisher works for rates
closer to 1, meaning that the Goppa order r must be smaller.

that the square of a dual of an alternant code or a Goppa code is abnormally
small.

• While this approach explains rigorously why alternant codes or Goppa codes
can be distinguished for extremely large rates, lower rates require a much more
delicate analysis, in particular in the Goppa case. We do so, by noticing that
the square of a trace of a code C can be interpreted as a sum of traces of
products of C with C qi (which denotes i applications of the Frobenius map to
C). In the case of Goppa codes, we show that the traces of these products turn
out to be duals of alternant codes of a remarkably low degree at least for small
values of i (see Theorem 3.3). This accounts for the remarkably low dimension
of the square of the dual of Goppa codes in all cases considered in [Fau+13].

Interestingly enough, the latter argument applies to all kinds of Goppa codes, be they
binary or not and provides now not only a rigorous explanation of the distinguisher
found in [Fau+11], but covers the non-binary Goppa code case as well. Note that
even if this approach is not able to distinguish the Goppa codes proposed in the
NIST competition as shown in Table 3.1, because it only works for very high rate
Goppa codes, this still raises the issue of whether this distinguishing approach can
be improved to lower the dimension of the Goppa codes that can be distinguished by
this approach. A better understanding of the distinguisher obtained here might help
to address this issue.

3.2. The relationship between the distinguisher of [Fau+11; Fau+13] and the
square code construction 85

3.2 The relationship between the distinguisher
of [Fau+11; Fau+13] and the square code
construction

Analogously to the square code distinguisher for GRS codes seen in Section 1.1.5, the
dual of an alternant (or Goppa) code can also be distinguished from random codes
when the primal code has a high enough rate. This phenomenon was already observed
in [Fau+11]. Here, however, the distinguisher was presented in terms of the kernel
dimension of a linear system obtained by properly linearizing the algebraic system
that encodes the key-recovery problem for the McEliece cryptosystem endowed with
alternant or Goppa codes. More precisely, let P = (pi,j) 1≤i≤k

1≤j≤n

be a generator matrix

of an [n, k] alternant (or Goppa) code C in systematic form, i.e. with its first k
columns that form an identity block. In other words, pi,i = 1 for any i ∈ J1, kK and
pi,j = 0 for any i, j ∈ J1, kK, i ̸= j. Therefore the generator matrix can be written
as P = [Ik | P ′] with P ′ = (pi,j) 1≤i≤k

k+1≤j≤n

∈ Fk×(n−k)
qm . The following linear system

turns out from the linearization of an algebraic system that models the support and
multiplier recovery problem for alternant/Goppa codes.

Modeling 3.1 (Alternant/Goppa codes modeling [Fau+13], linearized).
System:

LP
def=

 ∑
(j,j′)∈J

pi,jpi,j′Zj,j′ = 0 | i ∈ J1, kK

 , (3.1)

where J = {(j, j′) ∈ N2 | k + 1 ≤ j < j′ ≤ n}.
Unknowns:

`

n−k
2

˘

unknowns Zj,j′, (j, j′) ∈ J .
Equations: k homogeneous linear equations over the subfield Fq.

Recall from (1.2) that a generator matrix of GRSr(x,y) ⊆ Fn
qm is given by

V r(x,y) def=

»

—

—

—

–

y1 . . . yn

y1x1 . . . ynxn
...

y1x
r−1
1 . . . ynx

r−1
n

fi

ffi

ffi

ffi

fl

.

Therefore, by definition of alternant codes (see 1.16), it readily follows that

Ar(x,y) def=
{

c ∈ Fn
q | V r(x,y)cT = 0

}
(3.2)

Again, if y
def=

´

1
Γ(x1) , . . . ,

1
Γ(xn)

¯

, for some polynomial Γ of degree r, then Ar(x,y)
is a Goppa code.

In [Fau+13], the expression of Zj,j′ in terms of the variables {Xi : i ∈ J1, nK]} and
{Yi : i ∈ J1, nK]}, representing respectively the support and multiplier coordinates, is
given for field sizes in even characteristic. The computation is not given explicitly. In
the proof of the next proposition, we write down the computation that leads to the
algebraic system from [Fau+13] in the proof of the following proposition, generalizing
the formula to fields of odd characteristic.

86 Chapter 3. The square of the dual of alternant and Goppa codes

Proposition 3.1. Let X
def= {Xi, . . . , Xn} and Y

def= {Y1, . . . , Yn} be two blocks of n
unknowns each corresponding to the support and multiplier coordinates respectively of
Ar(x,y). Assume Ar(x,y) admits a systematic form and let P = [Ik | P ′] = (pi,j)i,j

be its generator matrix. Then (x,y) is a solution of the following algebraic system: ∑
(j,j′)∈J

pi,jpi,j′(Xδ
j −Xδ

j′)qℓ(YjY
qℓ

j′ X
c
jX

bqℓ

j′ − Yj′Y qℓ

j Xc
j′X

bqℓ

j) = 0

| i ∈ J1, kK, b ∈ J0, r − 2K, δ ∈ J1, r − 1− bK, c+ δqℓ ∈ J0, r − 1K
}
, (3.3)

where J = {(j, j′) ∈ N2 | k + 1 ≤ j < j′ ≤ n}. The linear system LP from
Modeling 3.1 stems from the linearization

Zj,j′
def= (Xδ

j −Xδ
j′)qℓ(YjY

qℓ

j′ X
c
jX

bqℓ

j′ − Yj′Y qℓ

j Xc
j′X

bqℓ

j),

for an arbitrary admissible choice of b, δ, b, c and ℓ.

Proof. The alternative definition of alternant codes from (3.2) implies that

V r(x,y)P T = 0r×k.

This matrix equation translates into the polynomial system
n∑

j=1
gi,jYjX

e
j = 0 | i ∈ J1, kK, e ∈ J0, r − 1K

 , (3.4)

where X
def= {Xi, . . . , Xn} and Y

def= {Y1, . . . , Yn} are two blocks of n unknowns each
corresponding to the support and multiplier coordinates respectively. Observe that
the sought vectors x and y satisfy indeed the polynomial system.

Under the assumption that P is in systematic form, the polynomial system (3.4)
can be rewritten asYiX

e
i = −

n∑
j=k+1

pi,jYjX
e
j | i ∈ J1, kK, e ∈ J0, r − 1K

 . (3.5)

It is possible to derive quadratic relations among the monomials on the left-hand
sides of the various polynomial equations from the system in (4.20):

(YiX
a
i)(YiX

b
i)qℓ = (YiX

c
i)(YiX

d
i)qℓ

, (3.6)

for any 5-tuple (a, b, c, d, ℓ) of integers such that a + bqℓ = c + dqℓ , with a, b, c, d ∈
J0, r − 1K and ℓ ∈ J0,m − 1K. Without loss of generality, we can assume that
d > b (which implies a > c). We define δ

def= d − b, hence a = c + δql. Hence
δ ∈ J1, r − 1− bK, b ∈ J0, r − 2K and c+ δql ∈ J0, r − 1K. By replacing the monomials
YiX

e
i appearing in these identities with the corresponding right-hand side expressions

of (4.20), we obtain
˜

−
n∑

j=k+1
pi,jYjX

a
j

¸ ˜

−
n∑

j=k+1
pi,jYjX

b
j

¸qℓ

=
˜

−
n∑

j=k+1
pi,jYjX

c
j

¸ ˜

−
n∑

j=k+1
pi,jYjX

d
j

¸qℓ

.

3.2. The relationship between the distinguisher of [Fau+11; Fau+13] and the
square code construction 87

By generalizing the computation done in [Fau+13] for any field size q, we get

0 =
˜

−
n∑

j=k+1
pi,jYjX

a
j

¸ ˜

−
n∑

j′=k+1
pi,j′Yj′Xb

j′

¸qℓ

−

˜

−
n∑

j=k+1
pi,jYjX

c
j

¸ ˜

−
n∑

j′=k+1
pi,j′Yj′Xd

j′

¸qℓ

=

¨

˚

˚

˝

∑
j∈Jk+1,nK
j′∈Jk+1,nK

pi,jpi,j′YjY
qℓ

j′ X
a
j X

bqℓ

j′

˛

‹

‹

‚

−

¨

˚

˚

˝

∑
j∈Jk+1,nK
j′∈Jk+1,nK

pi,jpi,j′YjY
qℓ

j′ X
c
jX

dqℓ

j′

˛

‹

‹

‚

=

¨

˝

∑
(j,j′)∈J

pi,jpi,j′(YjY
qℓ

j′ X
a
j X

bqℓ

j′ + Yj′Y qℓ

j Xa
j′X

bqℓ

j)

˛

‚+
˜

n∑
j=k+1

p2
i,jY

1+qℓ

j Xa
j X

bqℓ

j′

¸

−

¨

˝

∑
(j,j′)∈J

pi,jpi,j′(YjY
qℓ

j′ X
c
jX

dqℓ

j′ + Yj′Y qℓ

j Xa
j′X

bqℓ

j)

˛

‚−

˜

n∑
j=k+1

p2
i,jY

1+qℓ

j Xc
jX

dqℓ

j′

¸

=
∑

(j,j′)∈J

pi,jpi,j′(YjY
qℓ

j′ X
c+δqℓ

j Xbqℓ

j′ + Yj′Y qℓ

j Xc+δqℓ

j′ Xbqℓ

j − YjY
qℓ

j′ X
c
jX

bqℓ+δqℓ

j′ − Yj′Y qℓ

j Xc
j′X

bqℓ+δqℓ

j)

=
∑

(j,j′)∈J

pi,jpi,j′(Xδ
j −Xδ

j′)qℓ(YjY
qℓ

j′ X
c
jX

bqℓ

j′ − Yj′Y qℓ

j Xc
j′X

bqℓ

j).

Fix a 5-tuple (a, b, c, d, l). Then (3.3) coincides with (3.1) through the change of
variables

Zj,j′
def= (Xδ

j −Xδ
j′)qℓ(YjY

qℓ

j′ X
c
jX

bqℓ

j′ − Yj′Y qℓ

j Xc
j′X

bqℓ

j).

Assuming here and in the following that k = n − rm, the system LP has
`

n−k
2

˘

=
`

rm
2

˘

linear variables Zj,j′ ’s and k equations (one for each row of the
generator matrix P). A generic linear system (i.e. a linear system whose coefficients
are independent variables) with the same number of equations and unknowns has
a rank equal to min(k,

`

rm
2

˘

). In other words, the dimension of the solution space,
i.e. the kernel, of a generic linear system is

k −min
ˆ

k,

ˆ

rm

2

˙˙

= max
ˆ

0, k −
ˆ

rm

2

˙˙

.

This means that if we replace the pi,j ’s with random entries ri,j ’s, we would expect
the dimension of the solution space of the arising system LR not to deviate much
from the generic setting. Therefore it is reasonable to expect an analogous behavior
for LP . However, the dimension of Ker(LP) as an Fq-vector space turns out to be
much smaller in the case of high-rate Goppa or alternant codes than it is for random
codes. A conjecture for the value of dimFq Ker(LP) coinciding with experimental
evidence was given in [Fau+13] together with a convincing algebraic explanation for
alternant and binary Goppa codes.

It has been proved in [MP12] that dimFq Ker(LP) is related to the dimension of
the square of the dual code C ⊥. The rationale behind this result is quite intuitive
once a set of generators for

`

C ⊥˘⋆2 is taken. More specifically, it follows from (the
proof of) [MP12, Proposition 1] that

88 Chapter 3. The square of the dual of alternant and Goppa codes

Proposition 3.2. Let P = [Ik | P ′] = (pi,j)i,j be the generator matrix of the code
C . Then

dimF

´

C ⊥
¯⋆2

=
ˆ

dimF(C ⊥) + 1
2

˙

− dimFq Ker(LP). (3.7)

Proof. Since P is in systematic form, we can immediately derive the parity-check
matrix of C , i.e. the generator matrix of C ⊥, as H = [−P T | In−k]. Let ej ∈
Fn−k

qm , j ∈ Jk + 1, nK, be the canonical vector with respect to the index j − k. The
component-wise product of all rows of H produces the rows

(p2
j,1 . . . p

2
j,k | ej) for any j ∈ Jk + 1, nK

and
(p2

j,1 . . . p
2
j′,k | 0n−k) for any k + 1 ≤ j < j′ ≤ n.

Let R1
def= (p2

j,i) k+1≤j≤n
1≤i≤k

and R2
def= (pj,ipj′,i) k+1≤j<j′≤n

1≤i≤k

and note that Rank(R2) =

Rank(RT
2) = Rank(LP). Then

dimF

´

C ⊥
¯⋆2

= Rank

˜«

R1 In−k

R2 0
pk

2q×k

ff¸

= (n− k) + Rank pR2q

= (n− k) + Rank(LP)

= (n− k) +
ˆ

n− k
2

˙

− dimFq Ker(LP)

=
ˆ

n− k + 1
2

˙

− dimFq Ker(LP)

=
ˆ

dimF C ⊥ + 1
2

˙

− dimFq Ker(LP).

In terms of dimensions of the square codes, the formula for dimFq Ker(LP) given
in [Fau+13] together with (3.7) predicts that

Conjecture 3.1. For a generic alternant code Fq of length n and extension degree
m we have

dimFq (Ar(x,y)⊥)⋆2 = min
{
n,

ˆ

rm+ 1
2

˙

− m

2 (r − 1)
ˆ

(2eA + 1)r − 2q
eA − 1
q − 1

˙}
,

(3.8)
whereas for a generic Goppa code G (x,Γ) of length n over Fq with Goppa polynomial
Γ(X) ∈ Fqm [X] of degree r:

dim(G (x,Γ)⊥)⋆2 = min
{
n,

ˆ

rm+ 1
2

˙

− m

2 (r − 1)(r − 2)
}
, if r < q − 1 (3.9)

dim(G (x,Γ)⊥)⋆2 = min
{
n,

ˆ

rm+ 1
2

˙

− m

2 r
`

(2eG + 1)r − 2(q − 1)qeG −1 − 1
˘

}
, else,

(3.10)

3.3. A general result about the square of a trace code 89

where eA and eG are respectively defined by

eA
def= max{i ∈ N | r ≥ qi + 1} =

⌊
logq(r − 1)

⌋
(3.11)

eG
def= min{i ∈ N | r ≤ (q − 1)2qi}+ 1 =

⌈
logq

ˆ

r

(q − 1)2

˙⌉
+ 1. (3.12)

As shown in [Fau+13], these formulas agree with extensive experimental evidence.
Notice that even if [Fau+13] did not prove the validity of these formulas, it gave
algebraic explanations making them very likely. One of the aims of this chapter is to
rigorously prove that at least the ≤ inequality is ensured in (3.8), (3.9) and (3.10).

3.3 A general result about the square of a trace
code

The dual of alternant codes and Goppa codes are trace codes of GRS codes. From
Proposition 1.7 we know that square codes of GRS codes have an abnormally small
dimension. A natural question is whether or not this implies that the square of the
trace of a GRS code has itself a small dimension. More generally, this raises the
following fundamental issue of whether or not when the product of two codes C and
D over Fqm of length n is smaller than min(n,dimFqm C · dimFqm D) (which is the
dimension we expect for random codes C and D) then this property survives for
trace codes, namely do we have in this case

dimFq Tr(C) ⋆ Tr(D) < min(n,dimFq Tr(C) · dimFq Tr(D))?

This is related to open questions raised in [Ran15, p. C.4]. This is indeed the case
up to some extent, due to the following proposition:

Proposition 3.3. Let C and D be two linear codes over Fqm with the same length
n. Then

Tr(C) ⋆ Tr(D) ⊆
m−1∑
i=0

Tr
´

C ⋆Dqi
¯

, where Dqi def= {dqi | d ∈ D}.

Proof. It is readily verified that Dqi is a linear code over Fqm . Let c, d ∈ Fqm . We
have

Tr(c) · Tr(d) =
˜ ∑

0≤i≤m−1
cqi

¸

·

˜ ∑
0≤i≤m−1

dqi

¸

=
∑

0≤i≤m−1
0≤j≤m−1

cqi · dqj

=
∑

0≤j≤m−1

∑
0≤i≤m−1

cqi · dq(i+j mod m)

=
∑

0≤j≤m−1

∑
0≤i≤m−1

cqi · dqi+j

=
∑

0≤i≤m−1
Tr(c · dqi).

90 Chapter 3. The square of the dual of alternant and Goppa codes

Because the trace acts component-wise on vectors, we also have for c,d ∈ Fn
q ,

Tr(c) ⋆ Tr(d) =
∑

0≤i≤m−1
Tr(c ⋆ dqi).

Hence

Tr(C) ⋆ Tr(D) = ⟨Tr(c) ⋆ Tr(d) | c ∈ C ,d ∈ D ⟩Fq

=
〈

m−1∑
i=0

Tr
´

c ⋆ dqi
¯

| c ∈ C ,d ∈ D

〉
Fq

⊆
m−1∑
i=0

〈
Tr

´

c ⋆ dqi
¯

| c ∈ C ,d ∈ D
〉
Fq

=
m−1∑
i=0

Tr
´

C ⋆Dqi
¯

.

Note that for an Fqm-linear code C , dimFq Tr(C) ≤ min(m · dimFqm C , n), where
n is the code length of C and D , and equality generally holds. An easy corollary of
this proposition is that

Corollary 3.1. Let C and D be two Fqm-linear codes of a same length and which
are such that dimFq Tr(C) = m · dimFqm C and dimFq Tr(D) = m · dimFqm D. We
have

dimFq Tr(C) · dimFq Tr(D)− dimFq pTr(C) ⋆ Tr(D)q

≥ m ·
`

dimFqm C · dimFqm D − dimFqm (C ⋆D)
˘

Proof. We will drop in what follows the subscript indicating in the dimension if
it is taken by considering the corresponding code as an Fqm subspace or as an Fq

subspace– it will be clear from the context.
We have

dim pTr(C) ⋆ Tr(D)q ≤
m−1∑
i=0

dim Tr
´

C ⋆Dqi
¯

(by Prop. 3.3)

≤ m · dim pC ⋆Dq +
m−1∑
i=1

m · dim
´

C ⋆Dqi
¯

≤ m pdim(C ⋆D)− dim C · dim Dq +m · dim C · dim D

+m
m−1∑
i=1

dim C · dim
´

Dqi
¯

= m pdim(C ⋆D)− dim C · dim Dq +m2 dim C · dim D

= m pdim(C ⋆D)− dim C · dim Dq + dim Tr(C) · dim Tr(D).

3.3. A general result about the square of a trace code 91

Remark 3.1. In particular, this result implies that if we have two codes C and D
over Fqm for which dimFqm (C ⋆D) < dimFqm C · dimFqm D , then the same property
survives for the corresponding trace codes:

dimFq (Tr(C) ⋆ Tr(D)) < dimFq Tr(C) · dimFq Tr(D).

In the case C = D , namely if we consider square codes, Proposition 3.3 can be
refined to give

Proposition 3.4. Let C be a linear code over Fqm. We have

Tr
`

C ⋆ C qu˘

= Tr
´

C ⋆ C qm−u
¯

(3.13)

pTr(C)q
⋆2 ⊆

⌊m/2⌋∑
u=0

Tr
`

C ⋆ C qu˘

(3.14)

dimFq

´

Tr
´

C ⋆ C qm/2
¯¯

≤ m
(dimFqm (C))2

2 if m is even (3.15)

Proof. Proof of (3.13). Let c,d ∈ C . Since the trace acts component-wise on vectors
and Tr(x) = Tr

`

xqu˘

for any x ∈ Fqm and natural number u,

Tr
`

c ⋆ dqu˘

= Tr
´

(c ⋆ dqu)qm−u
¯

= Tr
´

cqm−u
⋆ dqm

¯

= Tr
´

d ⋆ cqm−u
¯

∈ Tr
´

C ⋆ C (qm−u)
¯

.

This shows that Tr
`

C ⋆ C qu˘

⊆ Tr
´

C ⋆ C qm−u
¯

. By replacing u by m − u in the
equality above, we obtain the reverse inclusion, which finishes the proof of (3.13).
Proof of (3.14).

pTr(C)q
⋆2 ⊆

m−1∑
u=0

Tr
`

C ⋆ C qu˘

(by Prop. 3.3)

⊆
⌊m/2⌋∑
u=0

Tr
`

C ⋆ C qu˘

(by (3.13)).

Proof of (3.15). Let {c1, · · · , cr} be a basis of C where r def= dim(C). The trace code
Tr

´

C ⋆ C qm/2
¯

is generated by the Tr
´

βqℓ
ci ⋆ cqm/2

j

¯

’s where {β, βq, · · · , βqm−1} is
a normal basis of Fqm and ℓ ranges over {0, · · · ,m−1} and i, j over {1, · · · , r}. Since
for any 0 ≤ ℓ ≤ m

2 − 1, 1 ≤ i, j ≤ r,

Tr
´

βqℓ
ci ⋆ cqm/2

j

¯

= Tr
´

βqℓ+ m
2 cqm/2

i ⋆ cj

¯

= Tr
´

βqℓ+ m
2 cj ⋆ cqm/2

i

¯

,

this implies that Tr
´

C ⋆ C q
m
2

¯

is generated by the (smaller) set

{Tr
´

βqℓ
ci ⋆ cqm/2

j

¯

| ℓ ∈ J0,m/2− 1K, i, j ∈ J1, rK.

This is a set of cardinality mr2

2 .

92 Chapter 3. The square of the dual of alternant and Goppa codes

Note that [Ras13] which solved the highly non-trivial open problem of constructing
a family of asymptotically good binary linear codes whose square is also asymptotically
good proves some intermediate results in it which in some sense are equivalent to
some of the results presented in this section. For instance, Proposition 4 in [Ras13]
gives a basis for the space of symmetric bilinear forms of Fqm seen as vector space of
dimension m over Fq, in terms of trace operators. In essence, our Proposition 3.4 is
nothing but a corollary of Proposition 4.

Proposition 3.4 has a corollary which is similar to Corollary 3.1, namely that

Corollary 3.2. Let C be an Fqm-linear code. We have

dimFq pTr(C)q
⋆2 ≤ m · dimFqm C ⋆2 +

ˆ

m

2

˙

`

dimFqm C
˘2
. (3.16)

Furthermore if dimFq Tr(C) = m · dimFqm C then

dimFq pTr(C)q
⋆2 −

ˆ

dimFq Tr(C) + 1
2

˙

≤ m
„

dimFqm C ⋆2 −
ˆ

dimFqm C + 1
2

˙ȷ

.

(3.17)

Proof.
Proof of (3.16): by using (3.14) of Proposition 3.4, we obtain

dim pTr(C)q
⋆2 ≤

⌊ m
2 ⌋∑

i=0
dim Tr

´

C ⋆ C qi
¯

. (3.18)

In the case of odd m, we deduce that

dim pTr(C)q
⋆2 ≤ m · dim C ⋆2 +

⌊ m
2 ⌋∑

i=1
m · dim C ⋆ C qi

= m · dim C ⋆2 +m

⌊ m
2 ⌋∑

i=1
dim C · dim C qi

= m · dim C ⋆2 + m(m− 1)
2 pdim C q

2

= m · dim C ⋆2 +
ˆ

m

2

˙

pdim C q
2 .

On the other hand, if m is even, we have

dim pTr(C)q
⋆2 ≤ m · dim C ⋆2 +

m
2 −1∑
i=1

m · dim C · dim C qi + dim Tr
´

C ⋆ C qm/2
¯

≤ m · dim C ⋆2 + m(m− 2)
2 pdim C q

2 + m(dim C)2

2
(by using (3.15) of Proposition 3.4)

= m · dim C ⋆2 +
ˆ

m

2

˙

pdim C q
2 .

3.4. Alternant case with eA = 0 and Goppa case with eG = 0 93

Proof of (3.17):

dim pTr(C)q
⋆2 −

ˆ

dim Tr(C) + 1
2

˙

≤ m · dim C ⋆2 +
ˆ

m

2

˙

pdim C q
2 −

ˆ

dim Tr(C) + 1
2

˙

(by using (3.16))

= m · dim C ⋆2 + m(m− 1)
2 pdim C q

2 −
ˆ

mdim C + 1
2

˙

= m · dim C ⋆2 +m · dim C ·
„

m− 1
2 dim C − mdim C + 1

2

ȷ

= m · dim C ⋆2 −m · dim C · dim C + 1
2

= m

„

dim C ⋆2 −
ˆ

dim C + 1
2

˙ȷ

.

Similarly to Corollary 3.1, Corollary 3.2 implies that if the dimension of a square
code C ⋆2 over Fqm is smaller than what we expect from a random code, namely
that dim

`

C ⋆2˘

<
`dim C +1

2
˘

(if
`dim C +1

2
˘

is smaller than the code length) then this
property survives for the trace code:

dim pTr(C)q
⋆2 <

ˆ

dim Tr(C) + 1
2

˙

.

3.4 Alternant case with eA = 0 and Goppa case
with eG = 0

In this section, we are going to give a first upper bound on the dimension of the
square of the dual of an alternant or Goppa code which is valid for all parameters
and is tight when eA = 0 for random alternant codes and when r < q − 1 for Goppa
codes. This will be a direct application of the general results of Section 3.3 from
which we derive:

Theorem 3.1. Let Ar(x,y) be an alternant code over Fq. Then

dimFq

´

Ar(x,y)⊥
¯⋆2
≤

ˆ

rm+ 1
2

˙

− m

2 (r − 1)(r − 2). (3.19)

Proof. We let C
def= GRSr(x,y). Note that Ar(x,y)⊥ = Tr(C). We apply Corollary

3.2 with such a C and get that

dimFq pTr(C)q
⋆2 ≤ m · dimFqm C ⋆2 +

ˆ

m

2

˙

`

dimFqm C
˘2

= m(2r − 1) + m(m− 1)r2

2 (by Proposition 1.7)

=
`

2(2r − 1) + (m− 1)r2˘ m

2
= pr(mr + 1)− (r − 1)(r − 2)q

m

2

=
ˆ

rm+ 1
2

˙

− m

2 (r − 1)(r − 2).

94 Chapter 3. The square of the dual of alternant and Goppa codes

3.5 Alternant case with eA > 0
In this section, we will show new linear relationships arising for alternant codes
(hence also for Goppa codes) of high enough order r. More precisely, the threshold
value for which new relations are guaranteed is r ≥ q + 1, i.e. eA > 0. Our main
result in this section is that

Theorem 3.2. Let Ar(x,y) be an alternant code over Fq. Then

dimFq (Ar(x,y)⊥)⋆2 ≤
ˆ

rm+ 1
2

˙

− m

2 (r − 1)
ˆ

(2eA + 1)r − 2q
eA +1 − 1
q − 1

˙

. (3.20)

Remark 3.2. Note that the upper bound on the dimension coincides with the
prediction (3.8) given for generic alternant codes. In other words, this theorem
shows that this prediction is an upper bound on the dimension and the experimental
evidence gathered in [Fau+13] actually shows that the dimensions of random alternant
codes agree with this upper bound in such a case.

The reason why we have a refinement of the upper bound of Theorem 3.1 for values
of r for which eA > 0 comes from the fact that when we apply Proposition 3.4 with
C

def= GRSr(x,y) (which is the relevant quantity here since Tr(C) = Ar(x,y)⊥)
we get terms of the form Tr

`

C ⋆ C qu˘

which will have a smaller dimension than the
generic upper bound mr2. This is due to the fact that these tr

`

C ⋆ C qu˘

’s will be
duals of alternant codes for small values of u as shown by the following lemma

Lemma 3.1. Let C
def= GRSr(x,y) and f def= ⌊logq(r)⌋. We have

Tr
`

C ⋆ C qu˘

⊆ A(r−1)(1+qu)+1(x,y1+qu)⊥ for all non-negative integers u, (3.21)
Tr

`

C ⋆ C qu˘

= A(r−1)(1+qu)+1(x,y1+qu)⊥ for all integers u in {0, · · · , f}. (3.22)

Proof. We first notice that

Tr
`

C ⋆ C qu˘

=
〈

Tr
´

αlx
a+bqu

y1+qu
¯

| 0 ≤ l < m, 0 ≤ a, b ≤ r − 1
〉
Fq

.

Clearly, the powers a + bqu are all smaller than or equal to (r − 1)(1 + qu). This
directly implies (3.21). For the equality case, we observe that we get all the powers
in {0, · · · , (r− 1)(1 + qu)} as long as r− 1 ≥ qu− 1, that is r ≥ qu which is equivalent
to u ≤ ⌊logq(r)⌋.

The previous lemma implies that

Corollary 3.3. Let C
def= GRSr(x,y). For all non-negative integers u, we have

dimFq Tr
`

C ⋆ C qu˘

≤ m((r − 1)(qu + 1) + 1).

3.6. Goppa case with r ≥ q − 1 95

When r is large enough with respect to the field size q, this corollary provides
a tighter upper bound with respect to the trivial dimFq Tr

`

C ⋆ C qu˘

≤ mr2. More
precisely, since

r ≥ qu + 1⇒ r2 ≥ r(qu + 1) ≥ (r − 1)(qu + 1) + 1

and
r ≤ qu ⇒ r2 ≤ rqu ≤ (r − 1)(qu + 1) + 1,

for any 0 ≤ u < m/2, the inequality

dimFq Tr
`

C ⋆ C qu˘

≤ m ·min
`

(r − 1)(qu + 1) + 1, r2˘

becomes

dimFq Tr
`

C ⋆ C qu˘

≤
{
m((r − 1)(qu + 1) + 1) if r > qu

mr2 else.
(3.23)

From (3.23) we obtain directly Theorem 3.2. The proof goes as follows.

Proof of Theorem 3.2. Let C
def= GRSr(x,y). Recalling that

eA
def= max{i ∈ N | r ≥ qi + 1} =

⌊
logq(r − 1)

⌋
,

we obtain

dimFq (Ar(x,y)⊥)⋆2 ≤ dimFq

⌊m
2 ⌋∑

u=0
Tr

`

C ⋆ C qu˘

(by Prop. (3.4))

≤
⌊m

2 ⌋∑
u=0

dimFq Tr
`

C ⋆ C qu˘

≤
eA∑
u=0

m((r − 1)(qu + 1) + 1) +
ˆ

m− 1
2 − eA

˙

mr2

=
ˆ

rm+ 1
2

˙

− m

2 (r − 1)
ˆ

(2eA + 1)r − 2q
eA +1 − 1
q − 1

˙

.

3.6 Goppa case with r ≥ q − 1
In the previous two sections, we found linear relationships within the individual
Tr

`

C ⋆ C qu˘

subspaces, showing that they are spanned by less than r2m vectors if r
is large enough. We will see that the dimension of some Tr

`

C ⋆ C qu˘

is even smaller
in the Goppa case with r ≥ q − 1 (see (3.25) below). Moreover, they are no more
disjoint, i.e. dimFq

`

Tr
`

C ⋆ C qu˘

∩ Tr
`

C ⋆ C qv ˘˘

> 0 for some 0 ≤ u < v ≤ eG . We
will namely prove that

Theorem 3.3. Let C
def= GRSr(x,y), where yi = 1

Γ(xi) and Γ is a polynomial of
degree r. Let us define for any positive integer v

Bv
def= Ar(qv−qv−1+1)(x,yqv+1)⊥, and B0

def= A2r−1(x,y2)⊥. (3.24)

96 Chapter 3. The square of the dual of alternant and Goppa codes

Let f def= ⌊logq(r)⌋. Then

Tr
`

C ⋆ C qv ˘

⊆ Bv for all positive integers v, (3.25)
Tr

`

C ⋆ C qu˘

= Bu for 0 ≤ u ≤ f , (3.26)
Tr pC ⋆ C q ⊆ Tr pC ⋆ C qq ⊆ . . . ⊆ Tr

`

C ⋆ C qu˘

for 0 ≤ u ≤ f . (3.27)

Before proving this theorem it will be useful to state and prove two lemmas. The
first one deals with the inclusion Tr

`

C ⋆ C qv ˘

⊆ Bv. For this, we first recall Lemma
3.1 which when applied to Goppa codes yields immediately that for all integers v we
have:

Tr
`

C ⋆ C qv ˘

⊆
{

Tr
ˆ

P (x)
Γ(x)qv+1

˙

| degP < (r − 1)(qv + 1) + 1
}

(3.28)

= A(r−1)(qv+1)+1(x,yqv+1)⊥.

On the other hand, by definition of Bv we have

Bv =
{

Tr
ˆ

P (x)
Γ(x)qv+1

˙

| degP < r(qv − qv−1 + 1)
}
. (3.29)

Depending on how q compares to r, r(qv − qv−1 + 1) might be either greater or
smaller than (r − 1)(qv + 1) + 1. The key to show the inclusion Tr

`

C ⋆ C qv ˘

⊆ Bv

will be to show that under certain conditions a codeword of the form Tr
´

P (x)
Γ(x)qv+1

¯

can be written as Tr
´

Q(x)
Γ(x)qv+1

¯

+ c for some codeword c ∈ Bv with a polynomial Q
such that degQ < degP . For performing this task we will use the following lemma.

Lemma 3.2. Let P (X) be a polynomial in Fqm [X] and consider the Euclidean
division of P by Γqv−qv−1+1: P = AΓqv−qv−1+1 + B where degB < deg Γqv−qv−1+1.
We have

Tr
ˆ

P (x)
Γ(x)qv+1

˙

= Tr
ˆ

A(x)qΓ(x)
Γ(x)qv+1

˙

+ c, for some c ∈ Bv (3.30)

degAqΓ < degP if degP < r(qv + 1). (3.31)

Proof. For the first point, we just have to observe that

Tr
ˆ

P (x)
Γ(x)qv+1

˙

= Tr
˜

A(x)Γ(x)qv−qv−1+1 +B(x)
Γ(x)qv+1

¸

= Tr
ˆ

A(x)
Γ(x)qv−1

˙

+ Tr
ˆ

B(x)
Γ(x)qv+1

˙

= Tr
ˆ

A(x)q

Γ(x)qv

˙

+ Tr
ˆ

B(x)
Γ(x)qv+1

˙

(since Tr(αq) = Tr(α) for α ∈ Fqm)

= Tr
ˆ

A(x)qΓ(x)
Γ(x)qv+1

˙

+ c with c ∈ Bv.

The last equality follows immediately from the definition of Bv (see (3.29)) and the
fact that degB < r(qv − qv−1 + 1). For the second point, let us just observe that
either A = 0 in which case (3.31) clearly holds or

degA = degP − r(qv − qv−1 + 1)

3.6. Goppa case with r ≥ q − 1 97

in which case

degAqΓ = q degP − qr(qv − qv−1 + 1) + r = q degP − r(q − 1)(qv + 1).

Clearly

degAqΓ < degP ⇔ q degP − r(q − 1)(qv + 1) < degP
⇔ degP < r(qv + 1).

A consequence of Lemma 3.2 is that

Corollary 3.4. Let Bv be the dual code defined in Equation (3.24). Then, for any
r(qv − qv−1 + 1) ≤ d ≤ r(qv + 1),

Bv = Ad(x,yqv+1)⊥ = G (x,Γqv+1)⊥.

Proof. It follows from Lemma 3.2 that, if P (X) ∈ Fqm [X] has degree strictly smaller
than r(qv + 1), then

Tr
ˆ

P (x)
Γ(x)qv+1

˙

∈ Bv.

Since
Ar(qv+1)(x,yqv+1)⊥ =

{
Tr

ˆ

P (x)
Γ(x)qv+1

˙

| degP < r(qv + 1)
}
,

we get
Bv ⊇ Ar(qv+1)(x,yqv+1)⊥.

Since Bv
def= Ar(qv−qv−1+1)(x,yqv+1)⊥ we have also trivially the reverse inclusion and

therefore
Bv = Ar(qv+1)(x,yqv+1)⊥. (3.32)

Since the coordinates of yqv+1 are the inverse of the evaluation over the xi’s of the
polynomial Γqv+1 of degree r(qv + 1), Equality (3.32) shows that Bv is the dual of a
Goppa code of degree r(qv + 1). Moreover, (3.32) implies that all the codes

Ad(x,yqv+1)⊥,

with r(qv − qv−1 + 1) ≤ d ≤ r(qv + 1), collapse into the same code Bv.

The second lemma shows that the Bv’s form a nested family of codes:

Lemma 3.3. We have for all v ≥ 0:

B0 ⊆ B1 ⊆ · · · ⊆ Bv ⊆ Bv+1 ⊆ · · ·

Proof. We will first prove that Bv ⊆ Bv+1 for v ≥ 1. Let us notice that

Bv =
〈

Tr
`

αlx
cyqv+1˘

| 0 ≤ l < m, 0 ≤ c < r(qv − qv−1 + 1)
〉
Fq

=
{

Tr
ˆ

P (x)
Γ(x)qv+1

˙

: P ∈ Fqm [X], deg(P) < r(qv − qv−1 + 1)
}

(3.33)

98 Chapter 3. The square of the dual of alternant and Goppa codes

Consider now a codeword Tr
´

P (x)
Γ(x)qv+1

¯

in Bv and let us prove that it is in Bv+1.
By (3.33) we know that

degP < r(qv − qv−1 + 1). (3.34)

Then, let us notice that

Tr
ˆ

P (x)
Γ(x)qv+1

˙

= Tr
˜

P (x)Γ(x)qv+1−qv

Γ(x)qv+1+1

¸

and that

degP (X)Γ(X)qv+1−qv
< r(qv−qv−1+1)+r(qv+1−qv) = rqv+1−rqv−1+r < r(qv+1+1).

By Corollary 3.4, Tr
´

P (x)
Γ(x)qv+1

¯

∈ Bv+1 and the thesis follows.

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. Proof of (3.25). Lemma 3.1 implies that

Tr
`

C ⋆ C qv ˘

⊆
{

Tr
ˆ

P (x)
Γ(x)qv+1

˙

: degP < (r − 1)(qv + 1) + 1
}

= A(r−1)(qv+1)+1(x,yqv+1)⊥

⊆ Ar(qv+1)(x,yqv+1)⊥

= Bv. (3.35)

Proof of (3.26). When v ≤ f , Lemma 3.1 shows that the inclusion (3.35) is an

equality. We therefore have

Tr
`

C ⋆ C qv ˘

= A(r−1)(qv+1)+1(x,yqv+1)⊥.

On the other hand, from (3.25), we know that

Tr
`

C ⋆ C qv ˘

⊆ Bv = Ar(qv−qv−1+1)(x,yqv+1)⊥. (3.36)

Observe now that r ≥ qv implies that (r − 1)(qv + 1) ≥ r(qv − qv−1 + 1)− 1, since

(r − 1)(qv + 1)− r(qv − qv−1 + 1) + 1 = (r − q)qv−1.

This shows that

Bv = Ar(qv−qv−1+1)(x,yqv+1)⊥ ⊆ A(r−1)(qv+1)+1(x,yqv+1)⊥

which combined with the reverse inclusion (3.36) proves Equality (3.26).

Proof of (3.27). This is a direct consequence of Lemma 3.3 and that the Bv’s coincide
with the Tr

`

C ⋆ C qv ˘

’s in this range from (3.26).

A direct consequence of Theorem 3.3 is that

3.6. Goppa case with r ≥ q − 1 99

Corollary 3.5. Let G (x,Γ) be a Goppa code of order r ≥ q − 1 over Fq. Then

(G (x,Γ)⊥)⋆2 ⊆ Be +
⌊m

2 ⌋∑
u=e+1

Tr
`

C ⋆ C qu˘

,

for any non-negative integer e.

We can therefore conclude that

Corollary 3.6. Let G (x,Γ) be a Goppa code of order r ≥ q − 1 over Fq. Then

dimFq (G (x,Γ)⊥)⋆2 ≤
ˆ

rm+ 1
2

˙

− m

2 r
`

(2eG + 1)r − 2(q − 1)qeG −1 − 1
˘

.

Proof. From Corollary 3.3

dimFq (G (x,Γ)⊥)⋆2 ≤ dimFq (Be) +
⌊m

2 ⌋∑
u=e+1

dimFq Tr
`

C ⋆ C qu˘

(for arbitrary e ∈ {0, · · · ,
⌊
m

2

⌋
})

≤ rm(qe − qe−1 + 1) +
ˆ

m− 1
2 − e

˙

mr2

=
ˆ

rm+ 1
2

˙

− m

2 r
`

(2e+ 1)r − 2(q − 1)qe−1 − 1
˘

.

We want now to minimize the function
`

rm+1
2

˘

− m
2 r

`

(2e+ 1)r − 2(q − 1)qe−1 − 1
˘

with respect to e. By removing the constant part in e, this becomes equivalent to
maximizing

T (e) def= er − (q − 1)qe−1

over {0, · · · ,
⌊

m
2

⌋
}. We compute the discrete derivative ∆T : e→ T (e+ 1)− T (e),

∆T (e) = T (e+1)−T (e) = ((e+1)r−(q−1)qe+1−1)−(er−(q−1)qe−1) = r−(q−1)2qe−1.

The maximum is attained at the least integer e such that ∆T (e) ≤ 0. This corresponds
to the least integer e such that e ≥ logq

´

r
(q−1)2

¯

+ 1, i.e.
⌈
logq

´

r
(q−1)2

¯

+ 1
⌉

= eG

minimizes the function T and consequently

dimFq (G (x,Γ)⊥)⋆2 ≤
ˆ

rm+ 1
2

˙

− m

2 r
`

(2eG + 1)r − 2(q − 1)qeG −1 − 1
˘

.

Remark 3.3. From the computation given in the proof of Corollary 3.6 and knowing
that the upper bound is usually an equality, we also infer that with a high probability

BeG =
eG∑

u=0
Tr

`

C ⋆ C qu˘

.

This has been verified experimentally. In other words, we expect with a very high
probability to have equality in Corollary for e = eG :

(G (x,Γ)⊥)⋆2 = BeG +
⌊m

2 ⌋∑
u=eG +1

Tr
`

C ⋆ C qu˘

. (3.37)

100 Chapter 3. The square of the dual of alternant and Goppa codes

Remark 3.4. One may also wonder if it is possible to have

(G (x,Γ)⊥)⋆2 = BeG , (3.38)

i.e. eG =
⌊

m
2

⌋
, in some range of non-degenerate parameters and while staying in the

distinguishable setting. This would reveal an even stronger structure that might be
exploited by an attacker. However, the existence of such parameters is not obvious,
as the number

`

rm+1
2

˘

− m
2 r

`

(2eG + 1)r − 2(q − 1)qeG −1 − 1
˘

decreases when eG
increases, and if the former drops below n ≤ qm, the code is no more distinguishable.
In other terms, two opposing constraints limit the regime where the equality can
be satisfied. Just to give an idea of these restrictions, note that r is bounded in the
following way ⌈

logq

ˆ

r

(q − 1)2

˙

+ 1
⌉

=
⌊
m

2

⌋
⇐⇒

⌊
m− 2

2

⌋
≥ logq

ˆ

r

(q − 1)2

˙

>

⌊
m− 4

2

⌋
⇐⇒ (q − 1)2q

m−3
2 ≥ r > (q − 1)2q

m−5
2 .

Now assume eG = m−1
2 , i.e.m odd. The distinguishability constraint gives

qm ≥ n >

ˆ

rm+ 1
2

˙

− m

2 r
`

(2eG + 1)r − 2(q − 1)qeG −1 − 1
˘

=
ˆ

rm+ 1
2

˙

− m

2 r
ˆˆ

2m− 1
2 + 1

˙

r − 2(q − 1)q
m−1

2 −1 − 1
˙

=r2m2

2 + rm

2 −
r2m2

2 + rm

2 + rm(q − 1)q
m−3

2

>m(q − 1)2q
m−5

2 (q − 1)q
m−3

2

=m(q − 1)3qm−4

⇒ m <
q4

(q − 1)3 .

This very rough approximation shows that for a fixed subfield size q, the extension
degree m is upper bounded, hence it guarantees that, for any fixed q, a finite search
provides all the good parameters. Indeed we know that the Goppa polynomial
degree must belong to a closed integer interval, namely r ∈ J

⌊
m−4

2

⌋
+ 1,

⌊
m−2

2

⌋
K.

For instance, q = 2 implies m ≤ 15. The “m even” case leads to an even
more strict constraint, because the rounding in the condition eG =

⌊
m
2

⌋
makes

eG larger. For a fixed q, replacing the admissible values of r in qm >
`

rm+1
2

˘

−
m
2 r

`

(2eG + 1)r − 2(q − 1)qeG −1 − 1
˘

provides the values of m for which the square
code equals BeG , while remaining distinguishable (for a large enough n). Table 3.2
shows all the possible values for q = 2.

3.7 Conclusions
In this chapter we revisited the distinguisher for random alternant and Goppa codes
presented for the first time in [Fau+13] through a different approach, namely using

3.7. Conclusions 101

r
2 3 5 6 9 10 17 18 19 33

m

5 30
6 63
7 105
9 405 486
11 1683 1870
13 7293 7722 8151
15 32175

Table 3.2: Square code dimensions when the square coincides with the dual of the
small alternant code. The non-empty cells correspond to the pairs (r,m) for which
Equation (3.38) holds in the binary case (q = 2) and the code is distinguishable.
The values in the cell represent the square code dimension bound given by the
distinguisher.

squares of codes. With this simple but powerful tool, we were able to provide explicitly
the linear relationships determining the distinguisher in a more straightforward way.
We managed therefore to rigorously prove a tight upper bound for the dimension of
the square of the dual of an alternant or Goppa code, while [Fau+13] only provides an
algebraic explanation which does not however represent neither an upper nor a lower
bound. Our proof is also valid in the case of the non-binary Goppa case, for which
the conjectured distinguisher is only demonstrated experimentally in [Fau+13]. By
doing this we got a unifying explanation for the behavior of all Goppa codes, which
does not make use of specific features of the binary case. In essence, the bounds we
derived were obtained by finding linear combinations within a set of generators of
the square code of the dual code. However, such linear combinations are independent
of the evaluation points, i.e. from the specific support and multiplier, because they
are a consequence of polynomial combinations of a bivariate polynomial ring whose
unknowns correspond to x and y.

Finally, we illustrated an interesting property of the structure of the square of the
dual of any Goppa code, showing that it is contained into (and sometimes coincides
with) the dual of another alternant code.

The fact that the dual of a Goppa code is the trace of a generalized Reed-Solomon
code rather than the subfield subcode of a generalized Reed-Solomon code seems
to complicate significantly the attempts to turn this distinguisher into an attack.
However, with this better understanding of the distinguisher and the square code
structure at hand, we are now ready to present a key-recovery attack that works
on random alternant codes. This is the main topic of Chapter 4. Despite some
technicalities prevent it from succeeding on Goppa codes, it reveals some serious
weaknesses at least on the 20 year old CFS signature, as the rate regime where the
attacks can be performed is exactly the same as this distinguisher.

Chapter4A polynomial-time key-recovery
attack on high-rate random

alternant codes
In this chapter, we exploit the distinguisher from Chapter 3 to devise a key-recovery
attack against high-rate alternant codes. Differently from GRS codes, their proper
subfield subcodes, i.e. alternant and Goppa codes, have never been broken, unless
they are equipped with some additional structure. The algorithm comprises two
parts. First of all, the key-recovery problem of an alternant code of big order is
simplified into that of an alternant code of smaller order. This is done through the
computation of a filtration, i.e. a sequence of alternant codes of decreasing order.
Such codes are obtained recursively with a strategy that heavily relies on the notion
and properties of square codes. Once the final alternant code of the filtration is
produced, we solve an algebraic system that models the key-recovery problem for
that code. By designing a specific algorithm based on Gröbner bases techniques, the
polynomial system can be efficiently solved if the alternant code order is equal to 3.
This requires the code to be either binary or ternary, because of the filtration step.
In addition to the high-rate condition and the constraint on the field size, this
attack is based on heuristics that require the alternant code to be sampled at
random, in order to work with high probability. In particular, the cryptanalysis fails
when applied to Goppa codes. In this case, several technical issues occur, but the
main problem is that the algorithm for computing the filtration does not succeed.
Our algorithm runs in polynomial time and is supported by an implementation in
MAGMA.

Contents
4.1 Introduction . 105
4.2 Notation and prerequisites . 110

4.2.1 Shortening and alternant codes 110
4.2.2 Conductors and filtrations 111
4.2.3 Base field extension and alternant codes 111

4.3 The filtration . 113
4.3.1 Proof of Theorem 4.1 . 114
4.3.2 Complexity of computing the filtration 118
4.3.3 What is wrong with Goppa codes? 120

4.4 Algebraic cryptanalysis . 124
4.4.1 The algebraic modeling from [Fau+13] 125
4.4.2 Reducing the number of solutions 126
4.4.3 The algorithm for q odd 132
4.4.4 Theoretical and experimental validation of the algebraic

algorithm . 133
4.4.5 Differences in the q = 2s case 140

103

104 Chapter 4. An attack on high-rate random alternant codes

4.4.6 Limitations of the algebraic cryptanalysis approach:
higher orders and Goppa codes 146

4.5 Interlacing the algebraic recovering with the filtration 148
4.6 Conclusions . 150

4.1. Introduction 105

4.1 Introduction
The McEliece scheme. We have already presented the McEliece encryption scheme
[McE78] and its main features in terms of security and performance in Section 1.2.
We have also revised the state-of-the-art cryptanalysis on it. The main threat to
its security is represented by generic decoding algorithms that go under the name
of Information Set Decoding algorithms. These techniques aim at inverting the
encryption without finding a trapdoor and, despite considerable improvements, they
have exponential complexity. From now on, we will denote the original McEliece
scheme, which is built upon the class of binary Goppa codes of rate relatively close
to 1/2, by “McEliece-binary Goppa”, since we will be interested in variations of the
McEliece cryptosystem obtained by changing the underlying code family.

We are here interested in key-recovery attacks. Efficient strategies that fall into
this category are not known against McEliece-binary Goppa. This picture changes
when considering variations on the McEliece-binary Goppa by either considering very
high rate binary Goppa codes or by moving from binary Goppa codes to nonbinary
Goppa codes over large alphabets [BLP10; BLP11]. The first modification can be
helpful to achieve particular construction, for instance, to devise signature schemes
[CFS01]. The second variation allows to decrease significantly the extension degree
m over which the (secret) support of the Goppa code is defined. Indeed, we recall
that Goppa codes are subfield subcodes of GRS codes, thus they are defined over
some finite field Fq whereas their support is defined over an extension field Fqm .
Small field extension degrees increase the decoding radius and therefore provide
better parameters for the scheme. A last class of variations includes versions of the
McEliece scheme with more structured Goppa codes, for instance quasi-cyclic codes
such as [Ber+09; Bar+17], quasi-dyadic codes such as [MB09; BLM11; Ban+17] or
Wild Goppa codes [BLP10].

The quasi-cyclic or quasi-dyadic Goppa codes could be attacked by an algebraic
modeling [Fau+10b; GL09] for the secret key which could be efficiently solved with
Gröbner bases techniques because the added structure allowed to reduce drastically
the number of unknowns of the algebraic system. By trying to solve the same
algebraic system in the case of high rate Goppa codes it was also found that Gröbner
bases techniques behaved very differently when the system corresponds to a Goppa
code instead of a random linear code of the same length and dimension. This
approach led to [Fau+11] that gave the distinguisher deeply analyzed in Chapter 3.
In some sense, the distinguisher emerges from a failed attempt at attacking high-rate
alternant/Goppa codes with linear algebra techniques.

Square code and cryptanalysis. We recall here the idea behind the structural
attack against McEliece of Niederreiter schemes based on GRS codes and proposed
in [Cou+14]. Recall that this scheme was proposed in [Nie86] and was subsequently
broken in [SS92]. Note that when the extension degree of the Goppa code is 1 (i.e.
the support of the Goppa code is defined over the same field as the Goppa code
itself), a Goppa code is indeed a GRS code, so a McEliece scheme based on a Goppa
code of extension degree 1 can be attacked with the [SS92] attack. However, this
does not seem to generalize to higher extension degrees; i.e. on McEliece schemes
based on Goppa codes in general. The point of the new attack [Cou+14], is that it
uses arguments on square codes for which there is hope that they could be applied
to a much broader class of Goppa codes. In this chapter, we will explain how an

106 Chapter 4. An attack on high-rate random alternant codes

adaptation of this construction can be used in a crucial way to mount an attack on
McEliece or Niederreiter schemes based on high-rate alternant codes.

We recall that, for a random code C , the upper-bound dim C ⋆2 ≤ min
´

n,
`

k+1
2

˘

¯

,
where k and n are respectively the dimension and length of C , is almost always an
equality [Cas+15]. Instead, the situation for GRS codes is completely different: from
Proposition 1.7 we namely have

dim C ⋆2 = min pn, 2k − 1q . (4.1)

This follows from the fact that GRS codes are evaluation codes of polynomials
of degree bounded by the GRS codes dimension k. In a sense, the square code
construction “sees” the polynomial structure of the GRS code. A key recovery
attack could be mounted as follows. Recall that it amounts here to recover from an
arbitrary generator matrix of a GRS code C = GRSk(x,y) a pair (x′,y′) satisfying
C = GRSk(x′,y′). Let us define C (i) as the subcode of the GRS code C given by

C (i) = {(yiP (xi))1≤i≤n : degP < k, x1 is a zero of order ≥ i of P} ,

then

(i) C (1) can be readily computed from C since it is the shortened code of C in
the first position.

(ii) We have in general the equality

C (i− 1) ⋆ C (i+ 1) = C (i)⋆2 (4.2)

coming from the fact that the product of two polynomials which have a zero
of order i at x1 gives a polynomial with a zero of order 2i in x1 and so does
the product of a polynomial with a zero of order i− 1 in x1 with a polynomial
which has a zero of order i+ 1 at the same place.

(iii) Solving the equation X ⋆A = B for two known linear codes A and B amounts
to solve a linear system in the case where X is the maximal code satisfying
X ⋆A ⊆ B. This is indeed the case here for A = C (i− 1) and B = C (i)⋆2.
X corresponds in such a case to the conductor of A into B which is defined as

Definition 4.1. Let C ,D ⊆ Fn be two codes. The conductor of C into D is

Cond pC ,Dq
def= {u ∈ Fn

q | u ⋆ C ⊆ D},

where u ⋆ C
def= {u ⋆ c | c ∈ C }.

It is clear that getting the conductor amounts to solve a linear system. The
two previous points show that we can therefore compute C (2) in polynomial
time, because C (1) and C (0) are known (the first is the shortened code and
the second is the code C itself). We can iterate this process and compute
recursively the decreasing set of codes C (3), C (4), · · · and stop when we get a
code of dimension 1 (i.e. C(k − 1)) which reveals a great deal of information
about the multiplier y.

4.1. Introduction 107

It is then straightforward with this approach to finish the attack to recover the whole
algebraic structure of C . Note that we have computed a decreasing set of codes

C = C (0) ⊃ C (1) ⊃ C (2) · · · ⊃ C (k − 1)

that we will call a filtration in what follows.
This approach works basically like this to attack a McEliece scheme based on

GRS codes [Cou+14], but interestingly enough it also applies to Wild Goppa codes
of extension degree 2 as shown in [COT14a]. Such schemes were indeed proposed in
[BLP10]. This extension degree corresponds to the largest extension degree where
we can expect the Goppa code to behave differently from a random linear code
with respect to the square code dimension. Roughly speaking in this case, even
if Goppa codes are subfield subcodes of GRS codes, Equality (4.2) “almost” holds
and this is sufficient to mount a similar attack. As explained in [COT14a], this
approach is bound to fail when the extension degree m is bigger than 2. However, as
observed in [MP12], even when m > 2, the square code C ⋆2 can also be of unusually
small dimension when the rate of the Goppa code is close to 1, but this time not
by taking C to be the Goppa code itself, but by choosing C to be the dual of the
Goppa code. This strongly suggests that an approach similar to [Cou+14; COT14a]
could be followed to attack McEliece schemes based on very high rate Goppa codes.
Even if the parameters of the McEliece schemes proposed in the literature are never
in the regime where the dimension of the square of the dual of the Goppa code
behaves differently from a random linear code, there is the notable exception of the
code-based signature scheme [CFS01], which is based in a crucial way on high rate
Goppa codes, and which similarly to the McEliece scheme would be broken, if we
can recover the unknown support of the Goppa code from an arbitrary generator
matrix for it. However, the fact that the dual code is actually the trace code of
a GRS code but not a subfield subcode of a GRS code loses a lot of the original
polynomial structure and seems to complicate very significantly this approach. This
is still an open problem since the problem was explicitly raised in [Fau+11].

Our contribution. In the present chapter, we make what we consider to be a
significant step in this direction. We will namely show that somewhat unexpectedly,
an equality related to (4.2) holds, when taking duals of (generic) high rate alternant
codes, but not when we take Goppa codes. This is extremely surprising because
Goppa codes are just alternant codes with a peculiar structure.

The very unusual behavior we observe in the case of a generic alternant code
Ar(x,y) is that in a certain high rate regime, if we shorten its dual in one position
i and take its square to get B

def=
`

Shi

`

Ar(x,y)⊥˘˘⋆2, where Shi pC q denotes the
code C shortened in position i, then the conductor of A into B is the dual of a
certain alternant code of degree r − 1:

Cond pA ,Bq = Ar−1(x
qi,yqi(xqi − xi))⊥.

where x
qi denotes the vector x where we have dropped the index i and A is the dual

of the shortened alternant code in position i, i.e. pShi pAr(x,y)qq
⊥. Note that this

code is actually the dual of an alternant code since pShi pAr(x,y)qq
⊥ = Ar(x

qi,yqi)
⊥

(see Proposition 4.1). In other words

Cond
ˆ

Ar(x
qi,yqi),

´

Shi

´

Ar(x,y)⊥
¯¯⋆2

˙

= Ar−1(x
qi,yqi(xqi − xi))⊥. (4.3)

108 Chapter 4. An attack on high-rate random alternant codes

This means that starting from a generic alternant code Ar(x,y) of degree r, we
can derive in polynomial time, by first computing two auxiliary codes by taking
the dual, shortening and/or computing the square A = pShi pAr(x,y)qq

⊥ and
B =

`

Shi

`

Ar(x,y)⊥˘˘⋆2, and then computing the conductor Cond pA ,Bq of A
into B, an alternant code of degree r − 1. It will appear, that there are only two
conditions to be met for performing this task:
(i) r ≥ q + 1 where q is the alphabet size of the alternant code,
(ii)

`

Shi

`

Ar(x,y)⊥˘˘⋆2 is not the full code Fn−1
q where n is the codelength of the

alternant code.
By iterating this process, we can compute in polynomial time some kind of

“filtration” of duals of alternant codes of decreasing degree

A ⊥
r = Ar(x,y)⊥

Shi1
⊇ A ⊥

r−1
Shi2
⊇ · · ·

Shir−q

⊇ Aq
⊥ (4.4)

with multipliers and support which are related to the original support and multiplier
(and from which the original support and multiplier can be easily recovered). Here

the notation A
Shi

⊇ B means that

Shi pA q ⊇ B.

What can we do with this sequence? The point is that if the degree of the alternant
code is small enough, we can compute its support and multiplier by solving a low
degree algebraic system related to the algebraic systems considered in [Fau+10b;
Fau+13]. We will detail this in the particular case where r = 3 and show that in this
case, solving the system can be performed in polynomial time with Gröbner basis
techniques. Roughly speaking the reason for this is that we have a conjunction of
factors: a very overdetermined and highly structured system which gives during the
Gröbner basis computation many new very low degree equations. We will also show
that it is possible to speed up significantly the system-solving process by introducing
in the algebraic modeling new low degree polynomial equations which are not in
the ideal of the original algebraic equations from [Fau+13] and which express the
fact that the multiplier vector has only non zero entries and the support vector has
only distinct entries. This will result in the end in a very efficient system-solving
procedure. Note that the aforementioned procedure reaches an alternant code A3
of degree 3 when the field size q is either equal to 2 or 3. In other words, we have
at the end a way to break a McEliece scheme based on binary or ternary alternant
codes as soon as

`

Shi

`

Ar(x,y)⊥˘˘⋆2 is not the full code Fn−1
q . By using the formula

given in [MT21], this is the case when

n− 1 >

ˆ

rm+ 1
2

˙

− m

2 (r − 1)
ˆ

(2e+ 1)r − 2q
e − 1
q − 1

˙

, (4.5)

where e def= max{i ∈ N | r ≥ qi + 1} =
⌊
logq(r − 1)

⌋
We give in Table 4.1 the known cases where it is possible to attack a McEliece scheme
based on alternant codes together with the new attack proposed here:

In a nutshell, our contribution can be summarized as follows

• It has been a long standing open problem after the [SS92] attack on McEliece-
GRS whether it is also possible to attack subfield subcodes of GRS codes, i.e.

4.1. Introduction 109

Table 4.1: Summary of polynomial time attacks on McEliece schemes based on
alternant codes with the conditions to apply them.

paper restriction
[SS92; Cou+14] m = 1

[COT14a] m = 2 + Wild Goppa code
this work q = 2 or q = 3, m arbitrary + high rate condition (4.5)

(does not apply in the particular case of Goppa codes)

attack McEliece-alternant or McEliece-Goppa. A first step in this direction
was made in [Cou+14] where a new attack on McEliece-GRS was derived with
a hope to generalize it to McEliece-alternant or McEliece-Goppa because it is
in essence only based on the fact that certain alternant or Goppa codes behave
differently from random codes with respect to the dimension of the square
code. This was confirmed in [COT14a] by attacking McEliece-wild Goppa in
the particular case where the extension degree m is 2, but the method used
there which uses squares of the (shortened) Goppa code is bound to fail for
higher extension degrees. Here we break for the first time the m = 2 barrier,
which was even conjectured at some point to be the ultimate limit for such
algebraic attacks to work in polynomial time and show that we can actually
attack McEliece-alternant for any extension degree m provided that the rate
of the alternant code is sufficiently large (4.5) and the field size sufficiently low
q = 2 or q = 3. Our attack is also based on square code considerations, but
this time on the dual of the alternant code. The point is that in this case the
square of the dual can also be distinguished from a random code in this regime
[Fau+11; MP12]. The attack is however more involved in this case, because
the dual loses the simple polynomial evaluation formulation of the Goppa code,
since it is in this case the trace of a GRS code and not a subfield subcode of a
GRS code. Understanding the structure of the square is more complicated as
was already apparent in Chapter 3 where we tackled such a task.

• Interestingly our attack does not work at all when the alternant code has the
additional structure of being a Goppa code. However, this work could open the
road for also attacking this subcase, in which case we could hope to break the
CFS scheme [CFS01] which operates precisely in the high rate regime where
the square of the dual of the Goppa code behaves abnormally.

• Our attack consists of two phases, the first phase computes a filtration of the
dual of the alternant code by computing iteratively conductors and the second
phase solves with Gröbner bases techniques a variation of the algebraic system
considered in [Fau+13] and recovers the support and the multiplier from the
dual of the alternant code of degree 3 we have at the end of the filtration when
q = 2 or q = 3. We improve rather significantly upon the complexity of solving
this system by adding new equations expressing the constraints on the support
(all elements are distinct) and the multipliers (all elements are nonzero). By
using certain heuristics that we confirmed experimentally we are able to prove
that the Gröbner basis computation takes polynomial time and give a complete
algebraic explanation of each step of the computation. It is likely that this

110 Chapter 4. An attack on high-rate random alternant codes

analysis could be carried over for larger constant degree alternant codes. This
would allow to break McEliece-alternant for larger field size than 3.

A proof-of-concept implementation in MAGMA of the whole attack can be found
at https://github.com/roccomora/HighRateAlternant.

4.2 Notation and prerequisites
We keep using the same notation adopted until now to denote integer intervals,
coordinates, vectors and their Schur’s products, matrices, finite fields and function
acting component-wise on vectors. Moreover, we introduce the notation to indicate
the drop of a set of positions in a vector. This will come in handy in relation to
shortened and/or punctured codes. If x = (xi)i∈J1,nK and I is a subset of positions,
we denote by x

qI the vector x
qI

def= (xi)i∈J1,nK\I . In particular, we do not contract the
indexes but we still associate the original index to each remaining coordinate. When
there is just one position i in I we simply write x

qi in this case.
In this regard, we recall the well-known fact that a shortened alternant code is

itself an alternant code.

4.2.1 Shortening and alternant codes
Proposition 4.1 (Proposition 9, [COT14a]). Let Ar(x,y) be an alternant code of
length n and I ⊆ {1, . . . , n}. Then

ShI pAr(x,y)q = Ar(x
qI ,yqI).

and its dual counterpart

Proposition 4.2. Let Ar(x,y) be an alternant code of length n and I ⊆ {1, . . . , n}.
Then

PctI

´

Ar(x,y)⊥
¯

= Ar(x
qI ,yqI)⊥.

Proof. From Proposition 4.1 and Proposition 1.2,

Ar(x
qI ,yqI)⊥ = ShI pAr(x,y)q

⊥ = PctI

´

Ar(x,y)⊥
¯

.

The same result can be articulated in the special case of Goppa codes.

Proposition 4.3 (Proposition 10, [COT14a]). Let G (x,Γ) be a Goppa code of length
n and I ⊆ {1, . . . , n}. Then

ShI pG (x,Γ)q = G (x
qI ,Γ) and PctI

´

G (x,Γ)⊥
¯

= G (x
qI ,Γ)⊥.

https://github.com/roccomora/HighRateAlternant

4.2. Notation and prerequisites 111

4.2.2 Conductors and filtrations
We have already given the definition of conductor code in the introductory section
(Definition 4.1) and said that its computation has computational complexity. We
also remark that there exists a simple closed-form expression for the conductor in
terms of the two codes involved.

Proposition 4.4 ([COT14a]). Let C ,D ⊆ Fn be two codes. Then

Cond pC ,Dq =
´

C ⋆D⊥
¯⊥

.

Proof. Let a ∈ Cond pC ,Dq, c ∈ C and d⊥ ∈ D⊥. Then

⟨a, c ⋆ d⊥⟩ =
n∑

i=1
aicid

⊥
i = ⟨a ⋆ c,d⊥⟩ = 0.

Hence Cond pC ,Dq ⊆
`

C ⋆D⊥˘⊥. The other inclusion is analogous.

Remark 4.1. Since the conductor is a linear code, if we restrict the search of vectors
a such that a ⋆ C ⊆ D to a subspace S ⊆ Fn, the solution space is simply given by
the intersection with S :

Cond pC ,Dq ∩S .

In code-based cryptanalysis, the aim of the conductor is to compute a family
of nested codes starting from the knowledge of the public code. According to the
terminology used in commutative algebra, such a family is called filtration of codes.
We already showed the filtration of GRS codes presented in [Cou+14]. Other families
of codes broken by this approach include Wild Goppa codes over quadratic extensions
[COT14a], algebraic geometry codes [CMP17] and quasi-dyadic alternant codes over
quadratic extensions from the NIST candidate DAGS [BC18].

4.2.3 Base field extension and alternant codes
It will be convenient to consider for a code defined over Fq its extension by scalars
over Fqm , meaning the following.

Definition 4.2 (extension of a code over a field extension). Let C be a linear code
over Fq. We denote by CFqm the Fqm-linear span of C in Fn

qm .

This operation goes somewhat in the opposite direction with respect to certain
constructions from Fqm to Fq, such as subfield subcodes, trace codes or even
concatenated codes. While the base field extension construction typically does
not provide any benefit in practical applications, it can still be helpful to simplify
proofs, as observed in [Ran15]. We will indeed exploit the base field extension to
significantly boil down the proof of a key theorem for the filtration attack. Indeed,
this notion comes very handy in our case, since the extension to Fqm of the dual of
an alternant code defined over Fq is a sum of m GRS codes as we are now going to
prove. We first need a technical result about the extension of scalars for a trace code.

112 Chapter 4. An attack on high-rate random alternant codes

Proposition 4.5. Let C ⊆ Fn
qm be an Fqm- linear code. Then

Tr(C)Fqm =
m−1∑
i=0

C qi
,

where C qj def= {cqj = (cqj

i)i : c ∈ C } is readily seen to be an Fqm-linear code of the
same dimension as C when C is itself an Fqm-linear code.

Proof. Take any c ∈ C . Then Tr(c) = c+cq+· · ·+cqm−1 also belongs to C +C q+· · ·+
C qm−1 . This proves that Tr(C) ⊆ ∑m−1

i=0 C qi and therefore Tr(C)Fqm ⊆
∑m−1

i=0 C qi .
On the other hand, let us prove that any C qi is a subspace of Tr(CC)Fqm for any i.
Consider an arbitrary Fq-basis α def= {α1, · · · , αm} of Fqm . Let xi

def= Tr(αic). Since

xi = αic + αq
i cq + · · ·+ αqm−1

i cqm−1

we have that

`

x1 x2 · · · xm

˘

=
´

c cq · · · cqm−1
¯

¨

˚

˚

˚

˝

α1 α2 · · · αm

αq
1 αq

2 · · · αq
m

...
...

...
...

αqm−1

1 αqm−1

2 · · · αqm−1
m

˛

‹

‹

‹

‚

loooooooooooooooomoooooooooooooooon

def= M(α)

M(α) is the Moore matrix associated to {α1, · · · , αm} and is invertible because the
αi’s are linearly independent over Fq. Therefore

´

c cq · · · cqm−1
¯

=
`

x1 x2 · · · xm

˘

M(α)−1

and therefore all the cqi are Fqm-linear combinations of the xj ’s and belong therefore
to Tr(C)Fqm . This shows that C qi ⊆ Tr(C)Fqm for any i and shows therefore the
reverse inclusion

C + C q + · · ·+ C qm−1 ⊆ Tr(C)Fqm .

Proposition 4.6. Let Ar(x,y) be an alternant code over Fq. Then
´

Ar(x,y)⊥
¯

Fqm
=

m−1∑
j=0

GRSr(x,y)qj
.

where C qj def= {cqj = (cqj

i)i : c ∈ C }.

Proof. It follows directly from Theorem 1.1 by taking C
def= GRSr(x,y) and

Proposition 4.5.

Moreover, while the behavior of the component-wise product with respect to
subfield subcodes and trace codes is quite difficult to analyze (some questions in
this regard have been partially addressed in Chapter 3, the former operates in a
natural way for base field extension. We now state some basic results about how the
extension of scalars operation acts with respect to coding theory notions such as the
generator and the parity-check matrices.

4.3. The filtration 113

Lemma 4.1 (Lemma 2.22, [Ran15]). Let C ⊆ Fn
q be a code. Then

1. The inclusion C ⊗Fq Fqm ⊆ Fn
q ⊗Fq Fqm = Fn

qm induces the identification
C ⊗Fq Fqm = CFqm .

2. if G is a generator matrix of C over Fq, then G is a generator matrix of CFqm

over Fqm.

3. if H is a parity-check matrix of C over Fq, then H is a parity-check matrix of
CFqm over Fqm.

Furthermore, the base field extension commutes with several other standard
unary and binary operators on codes.

Lemma 4.2 (Lemma 2.23, [Ran15]). Let C ,D ⊆ Fn
q be two codes. Then

1. (C ⊥)Fqm = (CFqm)⊥ ⊆ Fn
qm.

2. C ⊆ D ⇐⇒ CFqm ⊆ DFqm .

3. (C + D)Fqm = CFqm + DFqm and (C ⊕D)Fqm = CFqm ⊕DFqm .

4. (C ∩D)Fqm = CFqm ∩DFqm .

5. (C ⋆D)Fqm = CFqm ⋆DFqm .

4.3 The filtration
The main result of this section is to explain how from the code Ar = Ar(x,y), when
r ≥ q + 1 we are (generally) able to compute a sequence of alternant codes such that

A ⊥
r = Ar(x,y)⊥

Shi1
⊇ A ⊥

r−1
Shi2
⊇ · · ·

Shir−q

⊇ Aq
⊥, (4.6)

where all the alternant codes have a support that is easily derived from the support of
Ar, since it just amounts to drop some positions of the support. This is instrumental
for recovering efficiently the algebraic structure of the alternant code (i.e. the support
x and the multiplier y) in what follows. The core of this attack is the following
theorem

Theorem 4.1. Let Ar(x,y) be an alternant code such that r ≥ q + 1. Let C
def=

pShi pAr(x,y)qq
⊥ ,D

def=
`

Shi

`

Ar(x,y)⊥˘˘⋆2, for an arbitrary position i. Then

Ar−1(x
qi,yqi(xqi − xi))⊥ ⋆ C ⊆ D ,

or, equivalently,
Cond pC ,Dq ⊇ Ar−1(x

qi,yqi(xqi − xi))⊥.

Informally, given a basis of an alternant code of some degree, we expect to get
the basis of an alternant code of degree decreased by 1, under some conditions. The
latter has support and multiplier vectors related to the initial ones and is obtained
by computing a conductor code.

114 Chapter 4. An attack on high-rate random alternant codes

It turns out experimentally that we actually have equality here Cond pC ,Dq =
Ar−1(x

qi,yqi(xqi − xi))⊥ when choosing a random alternant code. It is still possible to
build artificial examples where equality does not hold. Notably, we also found that
the subfamily of Goppa codes does not meet this property either. However, if x and
y are sampled at random, we never met a case in our experiments where equality
does not hold. This leads us to state the following conjecture.

Conjecture 4.1. Let Ar(x,y) be a random alternant code over Fq, such that
r ≥ q + 1 and

`

Ar(x,y)⊥˘⋆2 is not the full code. Let C
def= pShi pAr(x,y)qq

⊥ and
D

def=
`

Shi

`

Ar(x,y)⊥˘˘⋆2, for an arbitrary position i. Then, for at least one among
r, q or m that tends to ∞,

Cond pC ,Dq = Ar−1(x
qi,yqi(xqi − xi))⊥.

with probability 1− o(1).

Remark 4.2. Note that, if x and y have been sampled at random (with the only
restrictions that xi ̸= xj and yi ̸= 0), then the same random feature (as well as
the support and multiplier constraints) is preserved for x

qi and y
qi(xqi − xi). Hence,

the plausibility of Conjecture and therefore nothing prevents from carrying on the
filtration by replacing the original random alternant code with Ar−1(x

qi,yI(x
qi−xi)).

It is clear that this conjecture, if true, allows to compute in polynomial time
the filtration (4.6), since computing conductors just amounts to solve a linear
system. The fact that when taking a random alternant code, the whole filtration
can be computed has indeed been verified experimentally. The first conductor
Ar−1 = Ar−1(x

qi1
,y

qi1
(x

qi1
− xi1))⊥ is computed by using directly Conjecture 4.1 and

we iterate the process by choosing a sequence of positions i1, i2, · · · , irq by which we
shorten. We let Is = {i1, · · · , is}. It is readily seen that we compute iteratively from
A ⊥

r−s+1
def= Ar−s+1(x

~Is−1
,y

~Is−1

∏s−1
j=1(x

~Is−1
− xij)) the code

A ⊥
r−s

def= Ar−s(x
|Is
,y

|Is

s∏
j=1

(x
|Is
− xij)).

This allows to decrease the degree of the alternant one by one. The last step ends
by using the conjecture with r = q + 1 and ends with the conductor A ⊥

q . Let us
now prove Theorem 4.1. Thus we have access to an alternant code of degree 3 when
q = 3 and, interrupting the filtration one step before, when q = 2, the latter being
the most interesting case for cryptographic applications.
Remark 4.3. Differently from the GRS codes case, where the filtration is obtained by
increasing the zero multiplicity in one single position (see the introductory section),
here we increase the number of positions where the code vanishes with multiplicity 1.

4.3.1 Proof of Theorem 4.1
It will be convenient to prove a slightly stronger result which implies Theorem
4.1. It is based on the observation that Ar−1(x

qi,yqi(xqi − xi))⊥ ⊆ Shi

`

Ar(x,y)⊥˘

.
Theorem 4.1 is indeed implied by the following slightly stronger result:

4.3. The filtration 115

Theorem 4.2. Let Ar(x,y) be an alternant code such that r ≥ q + 1. Let
C

def= pShi pAr(x,y)qq
⊥ and D ′ def= Ar−1(x

qi,yqi(xqi − xi))⊥ ⋆ Shi

`

Ar(x,y)⊥˘

, for
an arbitrary position i. Then

Ar−1(x
qi,yqi(xqi − xi))⊥ ⋆ C ⊆ D ′,

or, equivalently,
Cond

`

C ,D ′˘ ⊇ Ar−1(x
qi,yqi(xqi − xi))⊥.

To prove this theorem, it will be convenient to consider the extensions of all these
codes to Fqm , in other words, we are going to prove that

BFqm ⋆ CFqm ⊆ D ′
Fqm , (4.7)

where B
def= Ar−1(x

qi,yqi(xqi−xi))⊥. The point of doing this, is that (i) it is equivalent
to prove (4.7) because of the points 2 and 5 of Lemma 4.2, (ii) the extended codes
can be expressed as a sum of GRS codes due to Proposition 4.6.

The proof of Theorem 4.2 will proceed by following the steps below

Step 1: We first observe that the code CFqm =
´

pShi pAr(x,y)qq
⊥

¯

Fqm
=

`

Ar(x
qi,yqi)

⊥˘

Fqm

(where the last equality follows from Proposition 4.1) decomposes as
´

Ar(x
qi,yqi)

⊥
¯

Fqm
=

´

Shi

´

Ar(x,y)⊥
¯¯

Fqm
⊕

〈
y

qi

〉
Fqm

.

This is Lemma 4.3 below. This implies that

BFqm ⋆ CFqm = BFqm ⋆
´

Shi

´

Ar(x,y)⊥
¯¯

Fqm
looooooooooooooooooomooooooooooooooooooon

D ′
Fqm

+BFqm ⋆
〈

y
qi

〉
Fqm

.

Therefore in order to prove (4.7) it will be enough to prove the inclusion

BFqm ⋆
〈

y
qi

〉
Fqm
⊆ D ′

Fqm . (4.8)

Step 2: To achieve this purpose, we then prove that the extended shortened code
`

Shi

`

Ar(x,y)⊥˘˘

Fqm
contains as a subcode BFqm =

`

Ar−1(x
qi, (xqi − xi)y

qi)
⊥˘

Fqm

(Lemma (4.4)) on one hand and C0
def=

〈
yqu

i yqv

qi
− yqv

i yqu

qi
: u, v ∈ J0,m− 1K

〉
Fqm

on the other hand. Actually more is true, namely that the extended shortened
is a sum of these two subcodes but we will not need this.

Step 3: By using this, in order to prove (4.8) we will start with an element in BFqm ⋆〈
y

qi

〉
Fqm

and by adding suitable elements of BFqm ⋆C0 and B⋆2
Fqm we will show

that we end with an element in D ′
Fqm = BFqm ⋆

`

Shi

`

Ar(x,y)⊥˘˘

Fqm
.

Let us now state and prove the lemmas we have mentioned above.

Lemma 4.3.
´

Ar(x
qi,yqi)

⊥
¯

Fqm
=

´

Shi

´

Ar(x,y)⊥
¯¯

Fqm
⊕

〈
y

qi

〉
Fqm

.

116 Chapter 4. An attack on high-rate random alternant codes

Proof. Note that
`

Ar(x,y)⊥˘

Fqm
decomposes as the set of codewords A0 that are

zero in i (this is
`

Shi

`

Ar(x,y)⊥˘˘

Fqm
where we add an extra-position at i which is

always 0) plus a space of dimension 1 generated by an element of
`

Ar(x,y)⊥˘

Fqm

which is not equal to 0 at position i. y is clearly such an element and we can write
´

Ar(x,y)⊥
¯

Fqm
= A0 ⊕ ⟨y ⟩Fqm

.

By puncturing these codes at i we get our lemma.

Lemma 4.4. We have for any position i

´

Shi

´

Ar(x,y)⊥
¯¯

Fqm
⊇

´

Ar−1(x
qi, (xqi − xi)y

qi)
⊥

¯

Fqm
(4.9)

´

Shi

´

Ar(x,y)⊥
¯¯

Fqm
⊇ C0 where (4.10)

C0
def=

〈
yqu

i yqv

qi
− yqv

i yqu

qi
| u, v ∈ J0,m− 1K

〉
Fqm

. (4.11)

Proof. By using Proposition 4.6 we know that
´

Ar(x,y)⊥
¯

Fqm
=

〈
xaqℓ

yqℓ ; a ∈ J0, r − 1K, ℓ ∈ J0,m− 1K
〉
Fqm

,

´

Ar−1(x
qi, (xqi − xi)y

qi)
⊥

¯

Fqm
=

〈
x

qi
aqℓ(x

qi − xi)qℓ
yqℓ

qi
; a ∈ J0, r − 2K, ℓ ∈ J0,m− 1K

〉
Fqm

.

Observe now that
´

Shi

´

Ar(x,y)⊥
¯¯

Fqm
= Shi

ˆ

´

Ar(x,y)⊥
¯

Fqm

˙

.

Clearly xaqℓ(x − xi)qℓ
yqℓ = (xa(x − xi))qℓ

yqℓ vanishes at i and belongs to
`

Ar(x,y)⊥˘

Fqm
for a in J0, r − 2K. Therefore x

qi
aqℓ(x

qi − xi)qℓ
yqℓ

qi
belongs to

Shi

´

`

Ar(x,y)⊥˘

Fqm

¯

. This proves (4.9). Similarly yqu

i yqv − yqv

i yqu belongs
clearly to

`

Ar(x,y)⊥˘

Fqm
and vanishes at i. Hence yqu

i yqv

qi
− yqv

i yqu

qi
belongs to

Shi

´

`

Ar(x,y)⊥˘

Fqm

¯

. This proves (4.11).

Lemma 4.5. Let B
def= Ar−1(x

qi,yqi(xqi − xi))⊥ and D ′ def= B ⋆Shi

`

Ar(x,y)⊥˘

, then
if r ≥ q + 1:

BFqm ⋆
〈

y
qi

〉
Fqm
⊆ D ′.

Proof. We use the same notation as in Lemma 4.4 and observe that D0 and D1
defined below are both subcodes of D ′

Fqm :

D0
def= BFqm ⋆ C0 =

〈
x

qi
aqℓ(x

qi − xi)qℓ
´

yqu

i yqv+qℓ

qi
− yqv

i yqu+qℓ

qi

¯

| a ∈ J0, r − 2K, ℓ, u, v ∈ J0,m− 1K
〉
Fqm

D1
def= B⋆2

Fqm =
〈

x
qi
aqj+bqℓ(x

qi − xi)qj+qℓ
yqj+qℓ

qi
| a, b ∈ J0, r − 2K, j, ℓ ∈ J0,m− 1K

〉
Fqm

4.3. The filtration 117

This is a direct consequence of D ′
Fqm = BFqm ⋆

`

Shi

`

Ar(x,y)⊥˘˘

Fqm
(definition of

D ′ and Point 5 in Lemma 4.2) and Lemma 4.4. We also observe that

BFqm ⋆
〈

y
qi

〉
Fqm

=
〈

`

x
qi

˘aqℓ

(x
qi − xi)qℓ `

y
qi

˘qℓ+1 | a ∈ J0, r − 2K, l ∈ J0,m− 1K
〉
Fqm

.

Our proof strategy is to start with an element appearing in the vector span above
and by suitable additions of elements of Di (where i ∈ {0, 1}), and possibly also by
multiplying by some elements in Fqm , results at the end in an element in Di. This
will prove our lemma. We will use here the notation

u
Di→ v

to write that v can be obtained from u by adding a suitable element of Di and
multiplying by some element in Fqm , i.e. this is equivalent to u − λv ∈ Di for a
suitable element λ in Fqm . It is readily seen that for any a in J0, r − 2K, u and v in
J0,m− 1K and any polynomial P in Fqm [X] of degree ≤ r − 2 we have

P (x
qi)

qℓ(x
qi − xi)qℓ

yqℓ+qu

qi

D0→ P (x
qi)

qℓ(x
qi − xi)qℓ

yqℓ+qv

qi
(4.12)

P (x
qi)

qℓ(x
qi − xi)qℓ

y2qℓ

qi

D1→ (x
qi − xi)qℓ

y2qℓ

qi
. (4.13)

The first reduction follows by noticing that

P (x
qi)

qℓ(x
qi − xi)qℓ

yqℓ+qu

qi
= P (x

qi)
qℓ(x

qi − xi)qℓ
yqℓ

qi
y−qv

i

´

yqv

i yqu

qi
− yqu

i yqv

qi
+ yqu

i yqv

qi

¯

= d + yqu−qv

i P (x
qi)

qℓ(x
qi − xi)qℓ

yqℓ+qv

qi

where d = P (x
qi)

qℓ(x
qi − xi)qℓ

yqℓ

qi
y−qv

i

´

yqv

i yqu

qi
− yqu

i yqv

qi

¯

clearly belongs to D0. The
second reduction follows by performing the Euclidean division of P (X) by (X − xi).
We can namely write P (X) = (X − xi)Q(X) + P (xi) for a polynomial Q of degree
degP − 1. Therefore

P (x
qi)

qℓ(x
qi − xi)qℓ

y2qℓ

qi
=

`

(x
qi − xi)Q(x

qi) + P (xi)
˘qℓ

(x
qi − xi)qℓ

y2qℓ

qi

=
´

(x
qi − xi)qℓ

Q(x
qi)

qℓ + P (xi)qℓ
¯

(x
qi − xi)qℓ

y2qℓ

qi
(4.14)

= d + P (xi)qℓ(x
qi − xi)qℓ

y2qℓ

qi

where (4.14) follows from the Fq-linearity of the Frobenius action x 7→ xqℓ and
d =

´

(x
qi − xi)qℓ

Q(x
qi)

qℓ
¯

(x
qi − xi)qℓ

y2qℓ

qi
belongs obviously to D1.

Let us show the inclusion by performing for a generator xaqℓ

qi
(x

qi − xi)qℓ
yqℓ+1

qi
of

DFqm ⋆
〈

y
qi

〉
Fqm

a sequence of reductions

xaqℓ

qi
(x

qi − xi)qℓ
yqℓ+1

qi

D0→ xaqℓ

qi
(x

qi − xi)qℓ
y2qℓ

qi

D1→ (x
qi − xi)qℓ

y2qℓ

qi

118 Chapter 4. An attack on high-rate random alternant codes

The crucial argument is now the simple observation that

(x
qi − xi)qℓ =

`

(x
qi − xi)q

˘qℓ−

where ℓ− def= ℓ− 1 if ℓ > 0 and ℓ− def= m− 1 if ℓ = 0. This is a consequence of the fact
that the entries of x are in Fqm . This suggests the following sequence of reductions

(x
qi − xi)qℓ

y2qℓ

qi

D0→
`

(x
qi − xi)q

˘qℓ−

yqℓ+qℓ−

qi
=

`

(x
qi − xi)q−1˘qℓ−

(x
qi − xi)qℓ−

yqℓ−+qℓ

qi

D0→
`

(x
qi − xi)q−1˘qℓ−

(x
qi − xi)qℓ−

y2qℓ−

qi
=

`

(x
qi − xi)q−2˘qℓ−

(x
qi − xi)2qℓ−

y2qℓ−

qi
.

Note that the last reduction could be performed because the degree of the polynomial
(x

qi−xi)q−1, which is q−1, is less than or equal to r−2 by assumption on r. For the very

same reason (r ≥ q+ 1) we observe that the right-hand term
`

(x
qi − xi)q−2˘qℓ−

(x
qi −

xi)2qℓ−
y2qℓ−

qi
belongs to D1 which finishes the proof.

We are ready now to prove Theorem 4.2.

Proof of Theorem 4.2. From Lemma 4.3, we know that CFqm =
`

Ar(x
qi,yqi)

⊥˘

Fqm

can be decomposed as

CFqm =
´

Shi

´

Ar(x,y)⊥
¯¯

Fqm
⊕

〈
y

qi

〉
Fqm

.

This implies that

BFqm ⋆ CFqm = BFqm ⋆
´

Shi

´

Ar(x,y)⊥
¯¯

Fqm
looooooooooooooooooomooooooooooooooooooon

D ′
Fqm

+BFqm ⋆
〈

y
qi

〉
Fqm

= BFqm ⋆
´

Shi

´

Ar(x,y)⊥
¯¯

Fqm
(by Lemma 4.5)

= D ′
Fqm .

The equality of the extended codes over Fqm implies the equalities of the codes over
Fq which ends the proof.

4.3.2 Complexity of computing the filtration
The core of the first part of the attack consists in the computation of the conductor
from Conjecture 4.1. With the same conditions, and using Proposition 4.4, we need
to compute a basis for the linear code

´

C ⋆D⊥
¯⊥

,

where C
def= Ar(xI ,yI)⊥, D

def= ShI
`

Ar(x,y)⊥˘⋆2 for |I| = 1, starting from a
generator matrix of Ar(x,y)⊥. We can choose I = {1} and assume that the matrix
is in systematic form. In other words we analyses one iteration of the filtration,
assuming that the current alternant code length and degree are n and r respectively.

4.3. The filtration 119

An upper bound for the total cost can be roughly obtained by multiplying the cost
of the first iteration by the number of iterations.

Computing C can be done in O(1), since it is enough to drop the first position
from Ar(x,y)⊥. Moreover Sh1

`

Ar(x,y)⊥˘

can be computed in O1 too, whenever
the shortened position belongs to the chosen information set, by removing the first
row and the first column from the basis, because the first position belongs to the
information set. Then the corresponding matrix is still in systematic form. Producing
a basis for a component-wise product of two codes A and B needs the computation
of all possible pairs of basis element in A and one in B. Therefore it has a linear
cost in the length, as well as a linear cost in the dimensions of the two codes A
and B. In the case of a square code, the number of pairs to consider is roughly
halved. As a minor improvement, if the code is in systematic form, we can avoid to
compute the products in the positions corresponding to the information set for any
pair of elements in the basis, since we know them in advance. In particular, since
dimFq Sh1

`

Ar(x,y)⊥˘

= rm− 1, the cost for calculating D is given by
ˆ

rm

2

˙

· (n− rm) = O(r2m2n).

The basis obtained in this way, however, is not in systematic form. To be
more accurate, a row reduction is partially done already, because the set of vectors
arising from squares of basis vectors is already reduced. Since we want to compute
the dual code of D , we need to row reduce its generator matrix. We remark
that this D has unusual small dimension, being contained into the distinguishable
code

`

Ar(x,y)⊥˘⋆2 and its dimension is upper bounded by
`

rm+1
2

˘

−D, where D
quantifies how much the code is dinstiguishable according to Proposition 3.2, i.e.
D = m

2 (r − 1)
´

(2eA + 1)r − 2 qeA +1−1
q−1

¯

. Depending on such a value, a smaller
amount of vectors have to be reduced. For simplicity, we can bound the dimension
of D with

`

rm+1
2

˘

and consequently the complexity of the row reduction step for any
value of D with

ˆ

rm+ 1
2

˙2
n = O(r4m4n).

Computing D⊥ then has an additional cost of
ˆˆ

rm+ 1
2

˙

−D
˙

n = O(r2m2n).

Now, since dimFq D⊥ = n−
`

rm+1
2

˘

−D, the product C ⋆D⊥ can be performed in

rm

ˆ

n−
ˆ

rm+ 1
2

˙

+D

˙

· n = O(rmn2).

According to Conjecture 4.1, the component-wise product of codes obtained is an
alternant code of degree (r−1)m and length n−1, hence of dimension n−(r−1)m =
O(n). Therefore a row reduced echelon form of its generator matrix can be provided
on average in

O(nω),
where 2 ≤ ω < 3 is the constant of linear algebra. In this way the conductor can
be computed as the dual of the obtained product with an additional complexity of
O(rmn).

120 Chapter 4. An attack on high-rate random alternant codes

Therefore the cost for computing the conductor is dominated by the computation
of C ⋆D⊥ and/or the row reductions. Bearing in mind that we have r2m2 = O(n) in
the distinguishable regime, the overall complexity for one iteration of the filtration is
upper bounded by

O(n3).

If we add the costs for each iteration from alternant code degree r down to q+ 1 and
taking into account that the length decreases by only 1 at each step, we can upper
bound the total complexity with

r∑
i=q+1

(r − i)n3 = O(rn3).

4.3.3 What is wrong with Goppa codes?
Before moving to the second part of the attack, we make a short digression on how
the arguments explained so far (do not) apply to the Goppa case. The discussion
below does not represent a proof that computing a filtration is impossible for Goppa
codes, but rather an intuition about what hampers it. Goppa codes behave differently
from random alternant codes and provide counterexamples to Heuristic 4.1. The
latter should be replaced by

Heuristic 4.1. Let G (x,Γ) def= Ar(x,y) be a random Goppa code of degree r, with
r ≥ q − 1 and

`

G (x,Γ)⊥˘⋆2 being different from the full code. Choose an arbitrary
code position i and let C

def= pShi pG (x,Γ)qq
⊥ and D

def= Shi

`

Ar(x,y)⊥˘⋆2. Then,
with high probability,

Cond pC ,Dq = Ar(x
qi,yqi(xqi − xi))⊥.

Obtaining new codes, namely Ar(x
qi,yqi(xqi − xi)) for any i ∈ J1, nK, still brings

forth the question whether some standard constructions starting from this code
(e.g. shortening, squaring, intersecting it with other codes, etc.) can lead to a
different filtration. We address the question in this subsection but first, we give an
interpretation of this heuristic by looking at the dimension of the intersection of
some involved codes. We start by stating a monotonicity result about the conductor,
which follows straightforwardly from its definition (as well as from its closed-form
expression):

Proposition 4.7. Let C ,C ′,D ,D ′ ∈ Fn
q be linear codes such that C ⊆ C ′ and

D ⊇ D ′. Then
Cond pC ,Dq ⊇ Cond

`

C ′,D ′˘ .

Now we recall the special form of the parity-check subcode of a Goppa code.

Definition 4.3. Let C ⊆ Fn. The parity-check subcode of C is

rC
def= {(c1, . . . , cn) ∈ C |

n∑
i=1

ci = 0}.

4.3. The filtration 121

The linear constraint ∑n
i=1 ci = 0 appearing in the definition implies that either

all the codewords in C already satisfy it (in this case C is a parity-check code) or
the dimension of C̃ is one less than the one of C . This is even more evident when
translating the result in terms of the dual code, i.e.

rC ⊥ = C ⊥ + ⟨1 ⟩F ,

where 1 is the constant length-n word with entries 1.
The fact that the conductor arising from Heuristic 4.1 preserves the same degree

is unfortunate, since our approach heavily builds upon the fact that the degree of
the conductor decreases. Moreover, it will turn out that the code we obtain as a
conductor could have been obtained directly by shortening a suitable code. Actually,
it will turn out that for Goppa codes, there are several codes that are very close to
each other and which are obtained by various shortenings. This is summarized by
the following proposition. We will explain in what follows why this phenomenon is
the main obstacle to applying our conductor approach.

Proposition 4.8. Let G (x,Γ) def= Ar(x,y) be a Goppa code of degree r. We have
for any code positions i and j with i ̸= j:

Ar+1(x,y)⊥ = G (x,Γ)⊥ + ⟨1 ⟩Fq
(from Proposition 1, [Ber00])(4.15)

Ar(x
qi,yqi(xqi − xi))⊥ = Shi

´

Ar+1(x,y)⊥
¯

(4.16)

Shj

´

Ar(x
qi,yqi(xqi − xi))⊥

¯

= Shi

´

Ar(x
qj ,yqj(x

qj − xj))⊥
¯

. (4.17)

Proof. Proof of (4.15). (4.15) is the dual counterpart of Proposition 1, [Ber00].

Proof of (4.16).
Choose an Fq-basis {α1, · · · , αm} of Fqm . We are first going to prove that

G (x
qi,Γ)⊥ + ⟨1 ⟩Fq

= Ar(x
qi, iqy(x

qi − xi))⊥ + ⟨1 ⟩Fq
. (4.18)

Ar(x
qi,yqi(xqi − xi))⊥ =

〈
Tr

´

αjxa
qi
(x

qi − xi)y
qi

¯

| a ∈ J0, r − 1K, j ∈ J0,m− 1K
〉
Fq

=
〈

Tr
´

αjxa+1
qi

y
qi

¯

− Tr
´

αjxix
a
qi
y

qi

¯

| a ∈ J0, r − 1K, j ∈ J0,m− 1K
〉
Fq

⊆
〈

Tr
´

αjxb
qi
y

qi

¯

| b ∈ J0, rK, j ∈ J0,m− 1K
〉
Fq

= Ar+1(x
qi,yqi)

⊥

= G (x
qi,Γ)⊥ + ⟨1 ⟩Fq

On the other hand, since Γ(xi) ̸= 0, then Γ(x
qi) ̸∈

〈
xa

qi
(x

qi − xi) | a ∈ J0, r − 1K
〉
Fq

.

Therefore
〈

Γ(x
qi),x

a
qi
(x

qi − xi) | a ∈ J0, r − 1K
〉
Fq

is a vector space of dimension r+ 1
of evaluations of polynomials with degree at most r. Hence〈

Γ(x
qi),x

a
qi
(x

qi − xi) | a ∈ J0, r − 1K
〉
Fq

=
〈

xb
qi
| b ∈ J0, rK

〉
Fq

.

122 Chapter 4. An attack on high-rate random alternant codes

Since Tr
`

αjΓ(x
qi)yqi

˘

= Tr pαj · 1q ∈ ⟨1 ⟩Fq
, we get

G (x
qi,Γ)⊥ + ⟨1 ⟩Fq

=
〈

Tr
´

αjxb
qi
y

qi

¯

| b ∈ J0, rK, j ∈ J0,m− 1K
〉
Fq

⊆
〈

Tr
´

αjxa
qi
(x

qi − xi)y
qi

¯

| a ∈ J0, r − 1K, j ∈ J0,m− 1K
〉
Fq

+ ⟨1 ⟩Fq

= Ar(x
qi,yqi(xqi − xi))⊥ + ⟨1 ⟩Fq

.

Because of the last point, Shi

`

Ar+1(x,y)⊥˘

is the set of codewords of G (x,Γ)+⟨1 ⟩Fq

which evaluate to 0 at position i. Clearly the elements of Ar(x
qi,yqi(xqi−xi))⊥ viewed

as polynomial evaluations and extended canonically at position i as the linear space

{Tr py(x− xi)P (x)q : P ∈ Fqm [X], degP < r}

belong to this set. Since the all one vector does not meet this property and because
of (4.18) this implies the point (4.16).
Proof of (4.17). This is just a consequence that Shi pShj pC qq = Shj pShi pC qq

which holds for any code C . Here we apply it to C = Ar+1(x,y)⊥ and apply the
previous point:

Shi

´

Ar(x
qj ,yqj(x

qj − xj))⊥
¯

= Shi

´

Shj

´

Ar+1(x,y)⊥
¯¯

(by (4.16))

= Shj

´

Shi

´

Ar+1(x,y)⊥
¯¯

(by the previous remark)

= Shj

´

Ar(x
qi,yqi(xqi − xi))⊥

¯

(by (4.16))

We can summarize these relationships with the diagram below, where arrows
mean an inclusion of the lower code into the upper code and two arrows pointing at
the same code represent the intersection. The typical code dimensions are shown
too.

Dimension Code

rm+ 1 Ar+1(x,y)⊥

rm Ar(x,y)⊥ Ar(x
qi,yqi(xqi − xi))⊥ Ar(x

qj ,yqj(x
qj − xj))⊥

rm− 1 Shi

`

Ar(x,y)⊥˘

Shj

`

Ar(x
qi,yqi(xqi − xi))⊥˘

Shi

Shj

Shi

Shj
Shi

The inclusions shown by the picture above turn out to be equalities, due
to dimension arguments. Indeed, Ar+1(x,y)⊥ contains both Ar(x,y)⊥ and
Ar(x

qi,yqi(xqi − xi))⊥. The two latter codes do not coincide and their dimension
is only 1 less than the former code. Therefore

Ar+1(x,y)⊥ = Ar(x,y)⊥ + Ar(x
qi,yqi(xqi − xi))⊥

4.3. The filtration 123

and the same argument shows that

Ar+1(x,y)⊥ = Ar(x
qi,yqi(xqi − xi))⊥ + Ar(x

qj ,yqj(x
qj − xj))⊥

On the other hand, Shi

`

Ar(x
qi,yI(x

qi − xj))⊥˘

is contained in both Ar(x
qi,yI)⊥ and

Ar(x
qi,yI(x

qi − xi))⊥, and its dimension is only one less than the dimensions of the
two latter codes. Hence

Ar(x
qi,yI)⊥ ∩Ar(x

qi,yI(x
qi − xi))⊥ = Shi

´

Ar(x,y)⊥
¯

.

and the same argument shows that

Ar(x
qi,yI(x

qi − xi))⊥ ∩Ar(x
qi,yI(x

qi − xj))⊥ = Shi

´

Ar(x
qi,yI(x

qi − xj))⊥
¯

.

We have seen that the codes related to G (x,Γ) and that we can compute are
very close to each other. This property seems to be inherited by the square codes.
Indeed, consider the following heuristic, obtained by experimental computation.

Heuristic 4.2. Let G (x,Γ) def= Ar(x,y) be a random Goppa code of degree r, with
r ≥ q − 1. Then, with high probability,

G (x,Γ)⊥ ⊆
´

G (x,Γ)⊥
¯⋆2

. (4.19)

While counterexamples to (4.19) can be artificially constructed by choosing
appropriately Γ, we never found one in our experiments when x and Γ are sampled
at random.

Assuming that the inclusion (4.19) holds, two results readily follow.

Proposition 4.9. Let G (x,Γ) def= Ar(x,y) be a Goppa code over Fq, with r ≥ q − 1.
Assume that Equation (4.19) is satisfied. Then

´

ČG (x,Γ)⊥
¯⋆2

=
´

G (x,Γ)⊥
¯⋆2

+ ⟨1 ⟩Fq
.

Proof.
´

ČG (x,Γ)⊥
¯⋆2

=
´

G (x,Γ)⊥ + ⟨1 ⟩Fq

¯⋆2

=
´

G (x,Γ)⊥
¯⋆2

+ G (x,Γ)⊥ ⋆ ⟨1 ⟩Fq
+

´

⟨1 ⟩Fq

¯⋆2

=
´

G (x,Γ)⊥
¯⋆2

+ G (x,Γ)⊥ + ⟨1 ⟩Fq

=
´

G (x,Γ)⊥
¯⋆2

+ G (x,Γ)⊥ + ⟨1 ⟩Fq
(by (4.19))

The proposition above implies that dimFqm

´

ČG (x,Γ)⊥
¯⋆2
≤ dimFqm

`

G (x,Γ)⊥˘⋆2+
1.

As a consequence, we also have

124 Chapter 4. An attack on high-rate random alternant codes

Proposition 4.10. Let G (x,Γ) def= Ar(x,y) be a Goppa code over Fq, with r ≥ q−1.
Assume that Equation (4.19) is satisfied. Then

Cond
ˆ

ČG (x,Γ)⊥,
´

G (x,Γ)⊥
¯⋆2

˙

⊇ G (x,Γ)⊥.

Proof. We have

G (x,Γ)⊥⋆ ČG (x,Γ)⊥ = G (x,Γ)⊥⋆G (x,Γ)⊥+G (x,Γ)⊥⋆⟨1 ⟩Fq
=

´

G (x,Γ)⊥
¯⋆2

+G (x,Γ)⊥ =
´

G (x,Γ)⊥
¯⋆2

,

where the last equality follows from Equation (4.19). Hence the largest code X such
that X ⋆ ČG (x,Γ)⊥ ⊆

`

G (x,Γ)⊥˘⋆2 contains G (x,Γ)⊥.

Remark 4.4. The inclusion from Proposition 4.10 is tight, meaning that we typically
have equality within the distinguishable regime.

It follows from Proposition 4.7 that, in order to get a small conductor
Cond pC ,Dq, we need to choose large C and small D . We experimented in a
systematic way, by choosing between duals of codes we have access to, and by
eventually considering shortening and/or intersection. To give the reader an insight
of the behavior of this strategy, we just state the following experimental result, which
we expect to hold with very high probability when r ≥ q − 1 and I is small enough
(otherwise we have some degenerate behavior):

Cond
ˆ

G (x
qI ,Γ)⊥ + ⟨1 ⟩Fq

,
´

ShI

´

G (x,Γ)⊥
¯¯⋆2

˙

= ShI

´

G (x,Γ)⊥
¯

.

Thus, this kind of conductor does not provide new information.

4.4 Algebraic cryptanalysis
The previous section explains how to obtain, under some conditions, the alternant
code A3(x′,y′) with support x′ = x

qI and multiplier y′ = y
qI

`∏
i∈I(x

qI − xi)
˘

for
some I ⊆ J1, nK such that |I| = r − 3, and with length n′ = n − r + 3 and degree
3, starting from the knowledge of the length-n public code Ar(x,y). For the sake
of clarity, in this section we perform algebraic cryptanalysis on the alternant code
A3(x,y) of length n. Essentially, we can ignore the structure of y′ and the decreased
length because the filtration preserves the support and multiplier randomness and
the code distinguishability. At the end of the analysis, we will see how to get back a
support and a multiplier defining Ar(x,y) (not necessarily x and y) from a support
and a multiplier defining A3(x′,y′) (not necessarily x′ and y′). Moreover, we will
focus on the case r = 3 for the system resolution, but the algebraic modeling is more
general and makes sense for any r ≥ 3. We also remark that this section has a more
general validity in terms of field size. The full attack needs the filtration to reach
degree 3, and therefore works specifically for q = 2 or q = 3. On the other hand,
taking this part alone, we can claim a polynomial time attack on alternant codes of
degree 3 for any field size. This additional result is also original, and to the best of
our knowledge, no polynomial time attack was known on non-structured alternant
or Goppa codes even for r = 3. We also remark that in the binary case it does not
make sense to reach degree 2 through the filtration. Indeed, the smallest degree for
which alternant codes behave differently from random linear codes is r = 3, and the
analysis we are going to present in this section would not be applicable for r = 2.

4.4. Algebraic cryptanalysis 125

4.4.1 The algebraic modeling from [Fau+13]
Given the support x = (x1, . . . , xn) ∈ Fn

qm and the multiplier y = (y1 . . . , yn) ∈ Fn
qm ,

we recall from Chapter 3 the alternative definition of the alternant code Ar(x,y),
which turns out to be more suitable for this section:

Ar(x,y) def=
{

c ∈ Fn
q | V r(x,y)cT = 0

}
,

where

V r(x,y) def=

»

—

—

—

–

y1 . . . yn

y1x1 . . . ynxn
...

y1x
r−1
1 . . . ynx

r−1
n

fi

ffi

ffi

ffi

fl

.

We will adopt the notation and follow the description of the algebraic model presented
in [Fau+13]. We denote with G = (gi,j) ∈ Fk×n

q the k×n generator matrix of Ar(x,y).
Equation (1.1) thus becomes

V r(x,y)GT = 0,

which is equivalent to the following polynomial system:
n∑

j=1
gi,jYjX

e
j = 0 | i ∈ J1, kK, e ∈ J0, r − 1K

 ,

where X
def= (X1, . . . , Xn) and Y

def= (Y1, . . . , Yn) are two blocks of n unknowns, each
corresponding to the support and multiplier coordinates respectively. Observe that
the sought vectors x and y satisfy indeed the polynomial system.

We can assume, up to a permutation of columns, that G is in systematic form,
i.e. G = [Ik | P], where Ik is the identity matrix of size k and P = (pi,j) for
i ∈ J1, kK, j ∈ Jk + 1, nK. The polynomial system can be therefore rewritten asYiX

e
i = −

n∑
j=k+1

pi,jYjX
e
j | i ∈ J1, kK, e ∈ J0, r − 1K

 . (4.20)

Moreover, when the alternant code is sampled randomly, we expect that k = n− rm.
From now on, we focus on the case r = 3. The assumptions made above can be

summarized in

Assumption 4.1 (Random alternant code). We assume that A3(x,y) is in standard
form, and that its dimension satisfies k = n− rm = n− 3m.

As explained in [Fau+13], thanks to the systematic form assumption, we can get
rid of several variables and consider an algebraic system in only 2(n− k) unknowns.
For r = 3, we can choose in (3.6) the tuple (a, b, c, d, l) = (2, 0, 1, 1, 0) and get the
corresponding identity

Yi(YiX
2
i) = (YiXi)2

for i ∈ J1, kK. With this choice, the algebraic system (3.3) specializes into

126 Chapter 4. An attack on high-rate random alternant codes

Modeling 4.1 (Alternant/Goppa codes modeling [Fau+13], r = 3).
System:

S def=

 ∑
(j,j′)∈J

pi,jpi,j′YjYj′(Xj −Xj′)2 | i ∈ J1, kK

 , (4.21)

where J = {(j, j′) ∈ N2 | k + 1 ≤ j < j′ ≤ n}.
Unknowns: 2rm = 6m unknowns Xi, Yi, i ∈ Jk + 1, nK.
Equations: k = n− 3m equations over Fq of bidegree (2, 2) in (X,Y).

The rank of System (4.21) is trivially upper bounded by the number of expressions
YjYj′(Xj − Xj′)2, i.e. by |J | =

`

n−k
2

˘

. However, in the high rate regime, the
distinguisher from [Fau+13] and revisited in Chapter 3 shows that the upper bound
is tighter. We place ourselves within the distinguishable regime and we assume that
the upper bound is tight, i.e.

Assumption 4.2 (High rate regime). We assume that

• Rank(S) =
`3m

2
˘

−m ≤ k if q ≥ 3;

• Rank(S) =
`3m

2
˘

− 3m ≤ k if q = 2.

This implies that, even after the change of variables Zj,j′
def= YjYj′(Xj −Xj′)2,

the number of unknowns is larger than the number of independent equations and
linearization techniques lead to a solution space of very large dimension, which also
includes many wrong solutions. Therefore, in the following, we are going to explain
how to tackle this problem with more advanced techniques, namely Gröbner basis.

4.4.2 Reducing the number of solutions
System (4.21) contains many solutions. Some of them, including of course the actual
private key, are valid pairs of support and multiplier for the public code. Other
solutions are parasitic. The aim is to remove all the “wrong” solutions from the
system and reduce the number of good “solutions”. First of all, notice that if (x̄, ȳ)
is a valid support-multiplier pair, then for any l ∈ J1,m− 1K, (x̄ql

, ȳql) is too. This
readily follows from the fact that these pairs are obtained from (x̄, ȳ) by applying l
times the Frobenius morphism z 7→ zq component-wise and that alternant codes are
subfield subcodes defined over Fq. This is reflected within Modeling 4.1: (x̄, ȳ) is a
solution of System (4.21) if and only if (x̄ql

, ȳql) is. Therefore we can see the space
of solutions as made by blocks of m solutions related by the Frobenius map.

Furthermore, the ideal generated by S is not zero-dimensional and this is not
due to the structure highlighted so far. It will be convenient here to reduce to
this case by specializing appropriately some variables. The positive dimension of
this ideal is due in the first instance to the degrees of freedom for the support and
multiplier coordinates. In essence, this is due to the fact that a homography z 7→ az+b

cz+d ,
ad− bc ̸= 0, maps the support x of an alternant code to another support describing
the same alternant code (but possibly with a different multiplier) at the condition
that cxi + d never vanishes. When there exists a value xi of the support of the
alternant code for which cxi + d = 0, the resulting code is not an alternant code, but

4.4. Algebraic cryptanalysis 127

belongs to a slightly larger family of codes: it will be a subfield subcode of a Cauchy
code. Let us recall its definition taken from [Dür87]. Given a field F we can identify
the projective line P1(F) with F̄ def= F ∪ {∞}, where the symbol ∞ is called point at
infinity, through the map ϕ : F̄→ F2 \ {0}, ϕ(e) = (e, 1) if e ∈ F and ϕ(∞) = (1, 0).
Moreover, let F[W,Z]Hl be the set of homogeneous polynomials of degree l in two
variables W,Z. Given P ∈ F[W,Z]Hl and e ∈ F̄, we define P (e) def= P (ϕ(e)). Then

Definition 4.4 (Cauchy code). Let x
def= (x1, . . . , xn) ∈ F̄n be a vector of distinct

elements and y
def= (y1, . . . , yn) ∈ Fn be a vector of nonzero elements. Let r ∈ J0, nK.

The Cauchy code Cr(x,y) is defined as

Cr(x,y) def= {(y1P (x1), . . . , ynP (xn)) | P ∈ F[W,Z]Hr−1}.

As in the case of generalized Reed-Solomon codes, x is called a support and y a
multiplier of the Cauchy code.

If we assume xn =∞, a generator matrix of Cr(x,y) is given by
»

—

—

—

–

y1 . . . yn−1 0
y1x1 . . . yn−1xn−1 0

...
y1x

r−1
1 . . . yn−1x

r−1
n−1 yn

fi

ffi

ffi

ffi

fl

. (4.22)

On the other hand, when x ∈ Fn, i.e. when all the xi’s are different from ∞, the
Cauchy code Cr(x,y) can be easily seen as GRSr(x,y). They are also MDS codes.
Cauchy codes are then a generalization of GRS codes. Analogously subfield subcodes
of Cauchy codes generalize subfield subcodes of GRS codes, i.e. alternant codes.

One of the main results of [Dür87] was to characterize the possible supports and
multipliers of Cauchy codes. In particular, it is proven there that

Theorem 4.3. [Dür87] Let r ∈ J2, n− 2K. Then Cr(x,y) = Cr(x′,y′) if and only if
there exists a homography f(z) = az+b

cz+d (a, b, c, d ∈ F, ad−bc ̸= 0) such that x′ = f(x)
and y′ = λθ(x)r−1y where λ ∈ F \ {0} and

θ(z) = cz + d if z ∈ F and cz + d ̸= 0,
θ(z) = (ad− bc)/(−c) if z ∈ F and cz + d = 0,

θ(∞) = c if c ̸= 0,
θ(∞) = a if c = 0.

Since the elements a, b, c, d in f(z) = az+b
cz+d are defined up to a multiplication by

a nonzero scalar, Theorem 4.3 pragmatically implies that we are allowed to fix three
variables in block X and one in block Y .
Remark 4.5. A sufficient condition for the homography z 7→ az+b

cz+d to map a GRS
code into another GRS code, regardless of the support vector, is to be a linear map
z 7→ az + b, i.e. c = 0 (and d ̸= 0). It is then clear that there are only two degrees
of freedom for the support, up to multiplication by a nonzero scalar. This would
allow us to fix only 3 variables: two of them in block X and one in Y . Moreover, for
full-support GRS codes, this condition becomes necessary as well, because cxi +d = 0
for xi = −d/c.

128 Chapter 4. An attack on high-rate random alternant codes

The price to pay for the additional specialization is that now we have to eventually
handle the point at infinity. We have seen that the column corresponding to the
point at infinity in the generator matrix of a Cauchy code has a special form and this
changes for this coordinate the form of the system S given in (4.21). The problem is
that we do not know a priori which xi will be infinite. To circumvent this problem,
we choose the value xi that will be set to infinity, say xn.

Concerning which other unknowns to specialize, there exist two different options
up to a permutation of columns: either the index of the fixed Y variable also
corresponds to a fixed X variable (e.g. we fix Xn−2, Xn−1, Xn and Yn), or not
(e.g. we fix Xn−2, Xn−1, Xn and Yn−3). Both these choices lead to very comparable
performance and behavior when computing the Gröbner basis algorithm described
later in this section. We select the former option, and we fix the Y unknown with
the same index as the X variable specialized in ∞, since this choice results in a
slightly easier analysis.

Then, we have to decide the remaining three values to fix. Again, we notice that
this choice does not affect the behavior of the algorithm nor the shape of the Gröbner
basis or the number of degree falls during each step of its computation. However,
some useful expedients lead to a good choice of such values. Indeed we notice that,
specializing over the subfield Fq preserves the membership of the coefficients in S to
Fq. This brings two advantages:

1. All the operations among equations in the system become operations among
their coefficients, i.e. additions and multiplications over Fq and not over Fqm .
For instance, when computing a Gröbner basis, the computer algebra system
Magma applies direct coercion to the subfield, resulting in a practical speed
up. Instead, the same does not happen if at least one variable is fixed over
Fqm \ Fq.

2. Due to the Fq-linearity of the Frobenius action, the m solutions related by
this automorphism have the same specialization. We will be able to obtain
an algebraic variety with exactly m elements. With this specialization, all
these elements are good pairs of support and multiplier for defining the sought
alternant code. This point will become more clear once we will have described
the shape of the Gröbner basis. Being able to choose whichever solution will
also reduce the linear algebra work in the final linear part of the attack.

We remark that, since the multiplier coordinates must be different from zero, the only
choice that makes sense for any field size consists in fixing the block X unknowns in
0 and 1 and the block Y unknown in 1 (e.g. F2 = {0, 1}).

It is also convenient to opt for values that belong to the subfield Fq over which
the alternant code is defined: all the Gröbner bases computations will stay in the
subfield and this results in slightly improved computation times. To summarize, we
made the following choice (which also simplifies slightly the analysis of the Gröbner
basis computations):

Xn−2 = 0, Xn−1 = 1, Xn =∞, Yn = 1, (4.23)

4.4. Algebraic cryptanalysis 129

which results, for the r = 3 case, in the following Vandermonde matrix

V 3(X,Y) def=

»

–

Y1 . . . Yn−3 Yn−2 Yn−1 0
Y1X1 . . . Yn−3Xn−3 0 Yn−1 0
Y1X2

1 . . . Yn−3X2
n−3 0 Yn−1 1

fi

fl .

With this specialization, the system S becomes

Proposition 4.11. We can choose part of the support and multiplier as Xn−2 = 0,
Xn−1 = 1, Xn =∞, Yn = 1 and obtain the following algebraic system

S ′ def=
{∑

k+1≤j<j′≤n−3 pi,jpi,j′YjYj′(Xj −Xj′)2

+ ∑n−3
j=k+1 pi,jpi,n−2YjYn−2X2

j + ∑n−3
j=k+1 pi,jpi,n−1YjYn−1(Xj − 1)2

+pi,n−2pi,n−1Yn−2Yn−1 + ∑n−1
j=k+1 pi,jpi,nYj | i ∈ J1, kK

}
.

(4.24)

Proof. The fact that we can choose the support and the multiplier in this way follows
from the fact that homographies act 3-transitively on the projective plane and from
Theorem 4.3. To obtain the algebraic system we proceed similarly to what was done
for obtaining the algebraic system S: we write Yi(YiX

2
i) = (YiXi)2 for i ∈ J1, kK and

use this time that

Yi =
∑

k+1≤j≤n−1
pi,jYj

YiXi =
∑

k+1≤j≤n−1
pi,jYjXj

YiX
2
i =

∑
k+1≤j≤n−1

pi,jYjX
2
j + pi,n.

The arising modeling is thus given by affine degree-4 equations with 4 less
variables:

Modeling 4.2 (Alternant/Goppa codes modeling [Fau+13], specialized, r = 3).
System: S ′ as defined in (4.24).
Unknowns: 2rm−4 = 6m−4 unknowns Xi, Yj, i ∈ Jk+1, n−3K, j ∈ Jk+1, n−1K.
Equations: k = n− 3m affine equations over Fq of bidegree (2, 2) in (X,Y).

However, the set of solutions of the system S ′ given in (4.24) still contains at
least a component of positive dimension n − k − 1 = rm − 1, that corresponds to
the solutions of {Yj = 0 | k + 1 ≤ j ≤ n − 1}. The classical way to deal with the
parasite solutions Yj = 0 is to introduce to the system a new variable Tj together
with the polynomial TjYj − 1. This ensures that Yj = 0 is not a solution to the
system. However, this also adds variables to the system and increases the degree
of the polynomials during a Gröbner basis computation. The same phenomenon
occurs with the constraints Xj −Xj′ ̸= 0. We solve these problems in an easier way
in Steps (2) and (3) of the algorithm presented in the next section. We conclude
this subsection by giving more details about the strategy above and explaining the
theory behind it. The reader interested in the actual attack can skip it and directly
jump to the next subsection.

Let us recall the definition of ideal quotient (not to be confused with the quotient
with respect to an ideal) or colon ideal:

130 Chapter 4. An attack on high-rate random alternant codes

Definition 4.5 (Colon Ideal). Let I,J be two ideals of a commutative ring R, the
colon ideal I:J is defined as

I:J = {r ∈ R | rJ ⊆ I}.

The colon ideal I:J is an ideal of R, too.
In the particular case where R is a multivariate polynomial ring in block Z =

(Z1, . . . , Zl), we are going to see how the constraints p1(Z) ̸= 0, . . . , pj(Z) ̸= 0 can
be taken into account by computing I:J , where J def= ⟨ p1, . . . , pj ⟩K is the ideal
generated by p1 . . . , pj .

We also need to recall what the saturation of a polynomial ideal with respect to
another ideal is.

Definition 4.6. Let I,J ⊆ K[Z] be two ideals. The saturation I:J∞ of I with
respect to J is defined as

I:J∞ = {f ∈ K[Z] | ∀ g ∈ J , ∃n ≥ 0 s.t. fgN ∈ I}.

From a geometric point of view, saturation roughly purges the parasite solutions
that correspond to the zeros of J .

Proposition 4.12 (Theorem 10 p.203, [CLO15]). Let I,J ⊆ K[Z] be two ideals.
Then

• V (I) \ V (J) ⊆ V (I:J∞),

• if K is algebraically closed, then V (I) \ V (J) = V (I:J∞).

When I is radical, which we expect to be the case in our application, the result
above can be extended to the colon ideal:

Proposition 4.13 (Corollary 11 p. 204, [CLO15]). Let I,J ∈ K[Z] be two ideals.
If K is algebraically closed and I is radical, then

V (I) \ V (J) = V (I:J).

Note that J def= ⟨ p1, . . . , pj ⟩ = ∑j
i=1 ⟨ pi ⟩K. The next proposition reduces the

computation of a quotient ideal/saturation respectively to the intersection of quotient
ideals/saturations with respect to principal ideals.

Proposition 4.14 (Proposition 13 p. 204, [CLO15]). Let I,J1, . . . ,Jj ⊆ K[Z] be
polynomial ideals. Then

I:
j∑

i=1
Ji =

j⋃
i=1

(I:Ji),

I:
˜

j∑
i=1
Ji

¸∞

=
j⋃

i=1
(I:J∞

i).

Applying the proposition above to Ji = ⟨ pi ⟩, we readily obtain

I:J =
j⋃

i=1
(I: ⟨ pi ⟩).

Finally, the next theorem links the basis of an ideal to the basis of its saturation
with respect to a principal ideal.

4.4. Algebraic cryptanalysis 131

Proposition 4.15 (Theorem 14 p. 205, [CLO15]). Let I = ⟨ f1, . . . , fm ⟩ ⊆ K[Z]
and p ∈ K[Z]. Let Ĩ = ⟨ f1, . . . , fm, 1− T · p ⟩ ⊆ K[Z, T] where T is a new variable.

• If I ∪ ⟨ p ⟩ = ⟨h1, . . . , hl ⟩, then

I: ⟨ p ⟩ = ⟨h1/p, . . . , hl/p ⟩ .

• Let Ĩ = ⟨ f1, . . . , fm, 1− T · p ⟩ ⊆ K[Z, T]. Then

I: ⟨ p ⟩∞Fq
= Ĩ ∪K[Z].

Moreover, if G is a Gröbner basis of Ĩ with respect to an elimination order such that
T > Zi, then G ∪K[Z] is a basis of I: ⟨ p ⟩∞Fq

.

It is possible to devise an algorithm for computing a basis of a colon ideal (or
analogously of the saturation) of I = ⟨ f1, . . . , fm ⟩ with respect to J = ⟨ p1, . . . , pj ⟩
in the following way:

1. For all i ∈ J1, jK compute a basis of I ∪ ⟨ pi ⟩. We recall that the computation
of an intersection ideal can be performed by exploiting the so-called elimination
theory. More precisely, the intersection can be expressed as

I ∩ ⟨ pi ⟩ = Ti · I + (1− Ti) ⟨ pi ⟩ ∩K[Z],

where Ti is a new variable. Hence, it is enough to compute an elimination basis
of Ti · I + (1− Ti) ⟨ pi ⟩ such that Ti > Zl for any l, and take only the elements
in the basis that do not contain the variable Ti.

2. Compute separately the bases of the ideal quotients with I: ⟨ pi ⟩ using
Proposition 4.15.

3. Using elimination theory, calculate a basis of I:J by computing recursively a
basis of:

• I: ⟨ p1, p2 ⟩ = (I: ⟨ p1 ⟩) ∪ (I: ⟨ p2 ⟩).
• I: ⟨ p1, p2, p3 ⟩ = (I: ⟨ p1, p2 ⟩) ∪ (I: ⟨ p1 ⟩).
• . . .

The algorithm depicted here always allows to compute a basis of I:J in a finite
number of steps. However, this construction entails a growth of the degree in the
equations and computing a basis for an elimination order in our application is
practically out of reach.

As a workaround, we propose a method that searches for multiples of some
polynomials in the vector space generated by a system of equations instead of in the
ideal generated by the system itself. This construction does not guarantee finding
such multiples, even if they belong to the generated ideal. Nevertheless, we will show
that for our system and parameters, this strategy finds a non-trivial vector space of
multiples and produces new equations.

132 Chapter 4. An attack on high-rate random alternant codes

4.4.3 The algorithm for q odd
Let X ′ = (Xk+1, . . . , Xn−3) and Y ′ = (Yk+1, . . . , Yn−1), i.e. the two blocks of
variables of System (4.24), i.e. after specialization. For the rest of the section,
we consider the grevlex order of the monomials of Fq[X ′,Y ′] where the variables
are ordered like Xk+1 > Xk+2 > · · ·Xn−3 > Yk+1 > Yk+2 > · · · > Yn−1. We
present here the algorithm for q odd used to compute the solutions of the system
S ′ given in (4.24) that satisfy Xj −Xj′ ̸= 0 and Yj ̸= 0, under the assumption that
Rank(S ′) =

`3m
2

˘

−m ≤ k. This is equivalent to Assumption 4.2, because, even
after specialization, the terms Zj,j′ are still linearly independent.

Generic Gröbner basis algorithms are not expected to solve efficiently systems with
the same degree and same number of unknowns and equations as the one described
before. Here, however, some expedients can be taken into account to exploit the very
strong algebraic structure and specific shape of the equations involved. Hence, an ad
hoc algorithm based on Gröbner basis can be designed to recover the secret key in
this case. In particular, we agglomerate in our strategy the constraints Yj ̸= 0 and
Xj −Xj′ ̸= 0.

We will give a full and detailed explanation of this approach for the odd case,
i.e. when q is the power of an odd prime. This outline covers for instance the case
q = 3, for which a full key recovery can be achieved, thanks to the filtration of
alternant codes. The even case requires some modifications and we will briefly
mention which adjustments are needed at the end.

1. (Echelonizing step at degree 4) We compute a basis of the Fq-vector space S ′

generated by S ′. It contains 2m − 1 homogeneous linear polynomials in Y ,
that come from the choice Xn =∞ and Yn = 1 (see Proposition 4.17 for the
proof). This can be done in O(m2ω) operations in Fq by linear algebra on the
Macaulay matrix Mac({g1, · · · , gk}, 4), where ω is the linear algebra constant.

2. (Removing the Yj = 0 component) For each j ∈ Jk + 1, n− 1K, we prove that
there exists a set of 2m− 1 linearly independent polynomials in S ′ that are
multiple of Yj . As we know that our solution satisfies Yj ̸= 0, we add to the
system the set Vj of these polynomials divided by Yj (see Proposition 4.18
for details and proof). This has the effect to add (2m − 1)(3m − 1) linearly
independent polynomials of degree 3 to the system, and to remove the nonzero-
dimensional component from the solution set. Note that Step (1) corresponds
to the computation of Vn, as Yn = 1. The cost for all j is O(mω+1).

3. (Finding low-degree equations from the constraint Xj1 ̸= Xj2) For each j ∈
Jk + 1, n − 1K \ {n − 2}, we consider the vector spaces Uj,n−2 formed by
the polynomials p such that Xjp ∈ Vj + Vn−2, where Vj is the Fq-vector
space generated by Vj . We prove in Proposition 4.19 that dimFq (Uj,n−2) ≥ m.
Experimentally, this set has dimension exactly m. As we know that our solution
satisfies xj ̸= 0 = xn−2, we add to the system a basis Uj,n−2 of Uj,n−2. This
has the effect to add m(3m− 2) linearly independent polynomials of degree 2
to the system, and to remove the last spurious solutions. The cost for all j is
O(mω+1).

4. (Eliminating 2m− 1 variables Yj using the linear polynomials from Step (1))
We now eliminate 2m − 1 variables Y from the polynomials in Uj,n−2 using

4.4. Algebraic cryptanalysis 133

the 2m− 1 homogeneous linear polynomials in Y from Step (1). This step is
heuristic, but verified experimentally: we get a basis that contains an additional
affine linear polynomial in Y , so that we get in total all 2m linearly independent
linear polynomials in Yj that we can expect (see Proposition 4.16). The other
polynomials in the basis express all monomials YjXj′ linearly in terms of the
Yj ’s. The cost of this step is O(m2ω).

5. (Computing linear polynomials in the X variables) This step is proven, provided
that Step (4) occurred as described. From the coefficients of the affine linear
polynomial in Y , we can compute for each j one affine linear polynomial
expressing Xj in terms of the Y ’s: these polynomials belong to the augmented
system at degree (2, 1) in (X,Y), but we provide a trick to compute them
directly, see Proposition 4.21. The cost is O(m2).

6. (Computing the Gröbner basis) By eliminating the Xi’s from the polynomials
for YjXj′ , we get the final grevlex Gröbner basis of the system, that is

YjYj′ − L′
j,j′(Yi : i ∈ I1) j, j′ ∈ I1

Xj − L′
Xj

(Yi : i ∈ I1, 1) j ∈ Jk + 1, n− 3K
Yj − L′

Yj
(Yi : i ∈ I1, 1) j ∈ Jk + 1, n− 1K \ I1

for a set I1 ⊂ Jk + 1, n − 1K of size m − 1, where the functions L′ are affine
linear functions. This describes a variety of dimension 0 with m solutions, that
are exactly the m solutions obtained by applying the Frobenius morphism. The
cost is O(m2ω).

7. (Computing the solutions) The lex basis can be obtained using the FGLM
Algorithm from [Fau+93] with O(m4) operations in Fq, and allows to retrieve
the m solutions by factorization of a polynomial over Fq of degree ≤ m.

8. The final step consists in retrieving separately the values for Y1, . . . , Yk and
X1, . . . , Xk from (4.20) for e = 0 and e = 1. This costs O(nm) operations in
Fq. This needs to be done only once, since with the chosen specialization any
of the m solutions is a valid pair of support and multiplier coordinates, thus
we can choose arbitrarily any of them.

Note that all steps are just linear algebra, and the total complexity is polynomial in
m and n, the global cost being O(m2ω + nm) as m,n→∞.

4.4.4 Theoretical and experimental validation of the alge-
braic algorithm

We start with a property that will be useful to determine the number of linearly
independent polynomials in S ′. Recall that we assumed without loss of generality
that yn = 1.

Proposition 4.16. Let C be the Fqm linear code generated by (yk+1, . . . , yn−1) in
Fmr−1

qm . Then, under Assumption 4.1, we have

dimFq (Tr(C)) = m,

dimFq (Tr(C)⊥) = (r − 1)m− 1.

134 Chapter 4. An attack on high-rate random alternant codes

As any Fq-linear combination of the yj’s that is equal to zero provides a codeword
in Tr(C)⊥, therefore there cannot be more than (r − 1)m− 1 linearly independent
homogeneous Fq-linear polynomials in Yk+1, . . . , Yn−1 which cancel on yk+1, . . . , yn−1,
and no more than (r − 1)m linearly independent affine Fq-linear polynomials in
Yk+1, . . . , Yn−1 that cancel on (yk+1, . . . , yn−1, 1).

Equivalently, for all j ∈ Jk + 1, n − 1K, the code C ′
j ⊂ Fmr−1

qm generated by
(yk+1(xk+1 − xj)r−1, . . . , yn−1(xn−1 − xj)r−1, 1) ∈ Fmr

qm and punctured in position
j − k satisfies

dimFq (Tr(C ′
j)) = m,

dimFq (Tr(C ′
j)⊥) = (r − 1)m− 1.

Proof. If the code Ar(x,y) has dimension k = n−mr and is in standard form, then
the last n− k = mr columns of its parity-check matrix must be an information set,
i.e. the last mr columns of V r(x,y) must generate a trace code with dimension mr.
This means in particular that the first row (yk+1, . . . , yn−1, 0) must have rank weight
m, and this is the same for all r rows. Then, by elementary combination of rows,
the trace code of the following code must still have dimension m:

`

0 yk+2(xk+2 − xk+1)r−1 . . . yn−1(xn−1 − xk+1)r−1 1
˘

and this can be done for any xj instead of xk+1, hence the proposition.

Step (1): linearizing at degree 4

We linearize the set of polynomials (4.24), by replacing “polynomials” by variables,
instead of classically replacing any monomial by a new variable. The variables we
consider are:

Zj,j′ =



YjYj′(Xj −Xj′)2 ∀j, j′ ∈ Jk + 1, n− 3K, j < j′

YjYn−2X2
j ∀j ∈ Jk + 1, n− 3K, j′ = n− 2

YjYn−1(Xj − 1)2 ∀j ∈ Jk + 1, n− 3K, j′ = n− 1
Yn−2Yn−1 j = n− 2, j′ = n− 1
Yj ∀j ∈ Jk + 1, n− 3K, j′ = n.

It is easy to verify that, under Assumption 4.2, they are linearly independent.

Proposition 4.17. Let q ≥ 3. Under Assumptions 4.1 and 4.2, for any set I ⊂
Jk+ 1, n− 1K of size m such that dimFq (⟨yℓ : ℓ ∈ I⟩Fq) = m, a basis of S ′ is given by

YjYj′(Xj −Xj′)2 + Lj,j′(Yℓ : ℓ ∈ I) ∀k + 1 ≤ j < j′ ≤ n− 1
Yn−2Yn−1 + Ln−2,n−1(Yℓ : ℓ ∈ I)
Yj − Lj,n(Yℓ : ℓ ∈ I) ∀k + 1 ≤ j ≤ n− 1, j /∈ I.

(4.25)

where the Lj,j′ are linear functions of the Yℓ’s, ℓ ∈ I (note that Lj,j′ implicitly depends
on I). This basis can be computed in time O(m2ω) where ω is the constant of linear
algebra.

4.4. Algebraic cryptanalysis 135

Proof. We have
`3m

2
˘

− m polynomials in
`3m

2
˘

variables. Among the variables,
3m − 1 are of degree 1 (the Yj ’s for k + 1 ≤ j ≤ n − 1), one is of degree 2
(Zn−2,n−1 = −Yn−2Yn−1, as Xn−2 = 0 and Xn−1 = 1) and the last

`3m
2

˘

− 3m are
of degree 4. We can eliminate from the system all terms of degree 4 and 2. As the
polynomials are linearly independent, we get at least 2m− 1 linear polynomials in
the Yj ’s.

By Proposition 4.16, we have at most 2m − 1 linear relations between the
Yk+1, . . . , Yn−1, hence we have exactly 2m−1 linear polynomials in the Yj ’s expressing
any Yj in terms of the {Yℓ | ℓ ∈ I} for some I ⊂ Jk+ 1, n− 1K of size m, and all other
polynomials express the terms of degree ≥ 2 in terms of the {Yℓ | ℓ ∈ I}.

To compute the basis it is enough to compute an echelon form of a matrix of size
(
`3m

2
˘

−m)×
`3m

2
˘

, the cost is O(m2ω).

Step (2): removing the Yj = 0 component
The linear polynomials we get come from the fact that we have specialized the nth
component to xn =∞ and yn = 1. Here we show that it is equivalently possible to
introduce the constraint Yj ̸= 0 for all j ∈ Jk+ 1, n− 1K. We define the vector spaces

Vj = 1
Yj

`

S ′ ∩ Yj · Fq[X ′,Y ′]≤3
˘

, j ∈ Jk + 1, n− 1K (4.26)

that is Vj
def= ⟨h1

Yj
, . . . , hℓ

Yj
⟩Fq where {h1, . . . , hℓ} is a basis of S ′ ∩ (Yj · Fq[X,Y]≤3).

We also define

Vn = ⟨Yj − Lj,n(Yℓ : ℓ ∈ I)⟩j∈Jk+1,n−1K\I . (4.27)

Proposition 4.18. Let q ≥ 3. Under Assumptions 4.1 and 4.2,

dimFq (Vj) = 2m− 1 ∀k + 1 ≤ j ≤ n (4.28)

and any polynomial in Vj is a linear combination of the 3m− 1 terms{
Yj′(Xj −Xj′)2, j′ ∈ Jk + 1, n− 3K \ {j}
1,

where the variables are specialized as in (4.23).
We also have, for each j1, j2 ∈ Jk + 1, n− 1K with j1 ̸= j2:

dimFq (Vj1 + Vj2) = 4m− 2.

A basis Vj of Vj can be computed in time O(mω) from the basis (4.25) of S ′ and
the set of all Vj’s can be computed in time O(mω+1).

Proof. Choose any set I ⊂ Jk+ 1, n−1K of size m such that dimFq ⟨ (yℓ)ℓ∈I ⟩Fqm
= m.

Consider first the case where j /∈ I, and j ≤ n− 3. To compute Vj , we just take the
polynomials in (4.25) that contain Yj , there are 3m− 1 polynomials:{

YjYj′(Xj −Xj′)2 + Lj,j′(Yℓ : ℓ ∈ I) ∀k + 1 ≤ j′ ≤ n− 1, j′ ̸= j

Yj − Lj,n(Yℓ : ℓ ∈ I).

136 Chapter 4. An attack on high-rate random alternant codes

We have 3m − 1 linearly independent polynomials in m variables Yℓ, ℓ ∈ I, and
3m− 1 variables YjYj′(Xj −Xj′)2 and Yj . By eliminating the Yℓ : ℓ ∈ I we get at
least 2m− 1 polynomials that are multiples of Yj .

If j ∈ I, we have dimFq

〈
(yi)i∈Jk+1,n−1K\{j}

〉
Fqm
∈ {m− 1,m}. If the dimension

over Fq is m, then we can take a different set I that generates a vector space
⟨ (yℓ)ℓ∈I ⟩Fqm

of dimension m over Fq such that j /∈ I. If the dimension over Fq is
m− 1, then the linear polynomials Yj′ − Lj′,n(Yℓ : ℓ ∈ I) does not involve Yj (or we
would have a linear polynomial expressing Yj in terms of Yj′ and the Yℓ, ℓ ∈ I \ {j},
which is impossible considering that dimFq

〈
(yi)i∈Jk+1,n−1K

〉
Fqm

= m). In this case,

we take the 3m − 2 polynomials involving YjYj′(Xj − Xj′)2 for all j′ ̸= j, they
contains those 3m − 2 terms, the variable Yj and m − 1 variables Yℓ : ℓ ∈ I, ℓ ̸= j.
By eliminating the Yℓ, ℓ ∈ I, ℓ ̸= j we get at least 2m− 1 linear polynomials multiple
of Yj .

For j ∈ Jn − 2, n − 1K, it is exactly the same but with one more polynomial
involving one more variable Yn−2Yn−1.

In any case, we get at least 2m−1 polynomials involving the monomials Yj′(Xj′−
Xj)2 for j′ ∈ Jk+1, n−1K, j′ ̸= j and 1, and all those polynomials evaluate to zero on
the support and the multiplier of the code. Now, according to Proposition 4.16 with
r = 3, dimFq

〈
yk+1(xk+1 − xj)2, . . . , yn−1(xn−1 − xj)2, 1

〉
Fqm

= m, hence there can
be at most 2m−1 linear polynomials between the 3m−1 terms 1 and Yj′(Xj′−Xj)2,
j′ ∈ Jk + 1, n− 1K, j′ ̸= j.

Finally, the polynomials in two different Vj ’s are linearly independent, as the
only common monomial appearing in two different Vj ’s is 1, and the ideal is not
generated by 1.

Step (3): finding low-degree equations from the constraint Xj1 ̸= Xj2

The system given by the union of S ′ and the (3m − 1)(2m − 1) cubic equations
Vj , j ∈ Jk+1, n−1K determined at Step (2) generates a zero-dimensional ideal, whose
variety contains exactly m solutions, related by the Frobenius automorphism. It
would be enough to run a Gröbner basis for this new system, in order to retrieve the
support and multiplier. However, specifically for the q odd case, we are able to deepen
the analysis and introduce efficiently the constraints about support coordinates,
i.e.Xj1 −Xj2 ̸= 0, by computing efficiently a set of bilinear equations. The latter
does not refine the variety, nor the ideal, this one being already 0-dimensional, but
their prediction allows to speed up the computation.

Proposition 4.19. Let q be of odd characteristic. The vector space Un−2,n−1
def=

(Vn−2 + Vn−1) ∩ Fq[X,Y]≤2 contains more than m linearly independent polynomials
of degree 2, that are linear combination of the terms Yj(2Xj−1) for j ∈ Jk+1, n−1K.

Moreover, Vn−2 + Vn−1 contains an additional polynomial of degree 2 expressing
the monomial 1 in terms of the Yj(2Xj − 1) for j ∈ Jk + 1, n − 1K. We denote by
Un−2,n−1 this set of m+ 1 polynomials, and by un−2,n−1 the polynomial containing
the monomial 1.

Proof. The terms appearing in the polynomials in Vn−2 are 1, Yn−1 and YjX
2
j for

j ∈ Jk + 1, n − 3K. The ones in Vn−1 are 1, Yn−2 and YjX
2
j + Yj(1 − 2Xj), j ∈

4.4. Algebraic cryptanalysis 137

Jk + 1, n− 3K. This means that the polynomials in Un−2,n−1 can all be expressed as
linear combination of the 3m− 3 monomials YjX

2
j of degree 3, the monomial 1 of

degree 0, plus 3m− 1 terms of degree at most 2: the monomials Yn−1, Yn−2 and the
Yj(2Xj−1)’s, j ∈ Jk+1, n−3K. The dimension of the vector space Un−2,n−1 is 4m−2,
so that we get at leastm linearly independent polynomials of degree 2 in Un−2,n−1 that
are combination of 3m−1 terms (Yk+1(2Xk+1−1), . . . , Yn−3(2Xn−3−1), Yn−2, Yn−1).
In all cases, we also get an additional polynomial of degree 2 involving these 3m− 1
terms and the monomial 1, and this gives in characteristic 2 an additional affine
linear polynomial in Y .

It will turn out that the polynomial un−2,n−1 will be relevant in the next steps.
This can be generalized to the following vector spaces. For any k+ 1 ≤ j1 < j2 ≤

n− 1, define the vector space

Uj1,j2 = 1
Xj1 −Xj2

`

(Vj1 + Vj2) ∩ (Xj1 −Xj2) · Fq[X ′,Y ′]≤2
˘

(4.29)

that consists of the polynomials p such that p · (Xj1 −Xj2) ∈ Vj1 + Vj2 .

Proposition 4.20. For any k + 1 ≤ j1 < j2 ≤ n− 1, (j1, j2) ̸= (n− 2, n− 1), we
have dimFq (Uj1,j2) ≥ m, and the polynomials in Uj1,j2 are linear combination of the
following terms:

Yj(2Xj −Xj1 −Xj2), j ∈ Jk + 1, n− 1K.

Proof. The 2m− 1 polynomials in Vj1 contains the following 3m− 1 terms:
{
Yj(Xj −Xj1)2, j ∈ Jk + 1, n− 1K \ {j1}
1

It is the same for Vj2 , but we can rewrite, for j ∈ Jk + 1, n− 1K \ {j1, j2}:

Yj(Xj −Xj2)2 = Yj(Xj −Xj1)2 + Yj(2Xj −Xj1 −Xj2)(Xj1 −Xj2),

so that the 4m− 2 polynomials generating Vj1 + Vj2 can be written in terms of the
following terms:

Yj(Xj −Xj1)2 j ∈ Jk + 1, n− 1K \ {j1, j2},
1
Yj1(Xj1 −Xj2)2

Yj2(Xj1 −Xj2)2

Yj(2Xj −Xj1 −Xj2)(Xj1 −Xj2), j ∈ Jk + 1, n− 1K \ {j1, j2}.

If we eliminate the 3m − 2 first terms that are not multiple of Xj1 −Xj2 , we get
at least m linearly independent polynomials that are multiple of Xj1 −Xj2 . After
division by Xj1 −Xj2 , the polynomials are linear combination of the 3m− 1 terms
Yj(2Xj −Xj1 −Xj2) for j ∈ Jk + 1, n− 1K.

138 Chapter 4. An attack on high-rate random alternant codes

Remark 4.6. One could try to adapt to remove the Xj1 = Xj2 component, by defining
the analogous of Vj for support constraints, i.e. by computing the vector space

1
Xj1 −Xj2

`

S ′ ∩ (Xj1 −Xj2) · Fq[X ′,Y ′]≤3
˘

.

However, it can be readily verified that such vector space is simply {0}. This is
not surprising: the combinatorial arguments used to derive the dimension of Vj do
not apply here, because there are not enough terms that are divisible by Xj1 −Xj2 ,
regardless of the change of basis adopted. In other words, we can not take out the
Xj1 = Xj2 component directly from S ′ if we restrict the computation to degree
4. On the other hand, we have shown that such component can be removed if we
consider equations that are already deprived of some Yj components.

Despite the existence of a quadratic number of vector spaces Uj1,j2 , in practice, it
is sufficient to exploit the equations derived from the 3m− 2 subspaces Uℓ,n−2, ℓ ∈
Jk + 1, n− 1K \ {n− 2}, thus reducing the complexity of this step.

Heuristic 4.3. Experimentally, dim(Uj1,j2) = m and for odd q,

dimFq

⋃
ℓ∈Jk+1,n−1K\{n−2}

Uℓ,n−2 = m(3m− 2).

Step (4): eliminating 2m− 1 variables Yj using the linear polynomials from
Step (1)
This part is specific to the case q odd. Assuming Fact 4.3, the system
⊕j1∈Jk+1,n−3KUj1,n−2 contains m(3m − 2) linearly independent polynomials, and
they can all be expressed as linear combination of the monomials Yj , j ∈ Jk+1, n−1K
and YjXj′ for j ∈ Jk + 1, n− 1K and j′ ∈ Jk + 1, n− 3K.

The system Vn contains 2m − 1 homogeneous linear polynomials in the Yj ’s,
expressing the Yi’s for i /∈ I in term of the Yℓ’s for ℓ ∈ I. If we use them to eliminate
the 2m−1 variables Yi’s (i /∈ I) from the polynomials in ⊕j1∈Jk+1,n−3KUj1,n−2, we are
left with polynomials that are linear combinations of m linear monomials {Yℓ | ℓ ∈ I},
and m(3m− 3) quadratic monomials YjXj′ for j ∈ I and j′ ∈ Jk + 1, n− 3K. This
means that we have as many polynomials as monomials. However, the polynomials
now have no reason to remain linearly independent, and in fact they are not.

Experimentally, after linearization, we get one polynomial expressing each
quadratic term YjXj′ in terms of the m independent {Yℓ : ℓ ∈ I} and m reductions
to zero, as we cannot get more than 2m− 1 linear polynomials relating the Yj ’s: a
basis U of ⊕j1Uj1,n−2 modulo Vn has the shape

U def=
{
YjXj′ + Lj,j′(Yℓ : ℓ ∈ I) | j ∈ I, j′ ∈ Jk + 1, n− 3K

}
.

We can now use the polynomial un−2,n−1 from Proposition 4.19, which is a linear
combination of the monomials 1, Yn−2, Yn−1 and the Yj(2Xj−1) for j ∈ Jk+1, n−3K.
We eliminate the Yj ’s, j /∈ I using equations in Vn and the YjXj′ for j ∈ I, j′ ∈
Jk + 1, n− 3K using U and obtain a linear polynomial in the Yj ’s and 1. Note that,
as we already have 2m− 1 homogeneous polynomials between the Yj ’s, we cannot
have another homogeneous polynomial, hence this polynomial contains a nonzero
constant term.

4.4. Algebraic cryptanalysis 139

To perform the elimination and the linearization, we can perform linear algebra
on a matrix where the columns are the YjXj′ , hence Om2 columns, and the rows
are the basis for Uj,n−2 and the XiLj with Lj a linear polynomial in Vn. Hence, the
matrix has O(m2) rows and the complexity becomes O(m2ω).

Step (5): computing linear polynomials for the X variables
Proposition 4.21. Assume that a basis of ∪j ̸=n−2Uj,n−2 where the linear polynomials
from Vn have been eliminated is given by{

YjXj′ + Lj,j′(Yℓ : ℓ ∈ I, 1), for all j ∈ I, j′ ∈ Jk + 1, n− 3K,∑
j∈I ajYj − 1, with aj ∈ Fq.

(4.30)

Then the vector space generated by the polynomials (4.30) contains the polynomials

Xj′ +
∑
j∈I

ajLj,j′(Yℓ : ℓ ∈ I, 1), j′ ∈ Jk + 1, n− 3K. (4.31)

Proof. We have∑
j∈I

aj(YjXj′ + Lj,j′(Yℓ : ℓ ∈ I, 1)) = Xj′ +Xj′(
∑
j∈I

ajYj − 1) +
∑
j∈I

ajLj,j′(Yℓ : ℓ ∈ I, 1)

so that we get in the ideal generated by (4.30) one affine linear polynomial expressing
each Xj′ in terms of the monomials in {1} ∪ {Yℓ | ℓ ∈ I}.

Step (6): the final Gröbner basis
Now, if we use the polynomials in (4.31) to eliminate the Xi’s from the polynomials
in (4.30), we get one linear polynomial for each term of degree 2 in Y . Let I1 be the
set I minus one element i ∈ I such that ai ̸= 0. The final basis has the shape

YjYj′ − L′
j,j′(Yi : i ∈ I1) j, j′ ∈ I1

Xj − L′
Xj

(Yi : i ∈ I1, 1) j ∈ Jk + 1, n− 3K
Yj − L′

Yj
(Yi : i ∈ I1, 1) j ∈ Jk + 1, n− 1K \ I1

This describes a variety of dimension 0. The Hilbert series is H(t) = (m− 1)t+ 1
as #I1 = m − 1, only m monomials {1} ∪ {Yi | i ∈ I1} are not leading term of a
polynomial in the ideal. Thus, by Remark 1.24, the system has exactly m solutions,
which are precisely the m solutions obtained by applying the Frobenius morphism.
This proves that the basis is a Gröbner basis. It coincides with the basis that would
have been computed from S ′ plus the cubic equations from the Vj ’s. However, our
approach is more efficient, because it avoids unnecessary calculations.

Step (7): finding the solutions
Since the ideal is zero-dimensional, we can obtain the Gröbner basis for the
lexicographic order from the grevlex one in polynomial time, using the FGLM
algorithm [Fau+93]. The destination basis contains a polynomial where only the
smallest (non-fixed) variable, i.e.Yn−1, appears. By factoring this polynomial, we

140 Chapter 4. An attack on high-rate random alternant codes

get the m (counted with multiplicity) possible values for Yn−1 and then recover the
other variables too. In particular, when the smallest extension on Fq to which the
(n− 1)-th coordinates of the m actual ȳ solutions belong is Fqm , the lexicographic
basis is given by 

Xj +QXj (Yn−1) = 0, j ∈ Jk + 1, n− 3K
Yj +QYj (Yn−1) = 0, j ∈ Jk + 1, n− 2K
P (Yn−1) = 0

(4.32)

where P is a polynomial of degree m and QXj , QYj are polynomials of degree smaller
than the degree of P (compare with Lemma 1.11). From the factorization of the
univariate polynomial P we get its roots. We can pick one of them, replace Yn−1
with its value in the other polynomials of the lex basis and retrieve all the other
unknowns by equating those polynomials to 0.

Remark 4.7. Up to reordering the Y variables in a different way, we can always
assume to obtain the lexicographic basis as in (4.32). Indeed, if this is not the
case, then all the actual ȳ’s solutions would be defined over a proper subfield of
Fqm . But this is in contradiction with Proposition 4.16 and, consequently, with our
assumptions.

4.4.5 Differences in the q = 2s case
As anticipated, when the field characteristic is 2 we point out some discrepancies
with respect to the analysis just given. First of all, in this case the system S ′ can be
rewritten as

S ′ =

 ∑
k+1≤j<j′≤n−1

pi,jpi,j′YjYj′(X2
j +X2

j′) +
n−1∑

j=k+1
pi,jpi,nYj | i ∈ J1, kK

 .

Since the Xj ’s variables appear in the system with power 2 only, we can perform a
change of variables by defining Wj

def= X2
j , so that the system becomes

S ′
2 =

 ∑
k+1≤j<j′≤n−1

pi,jpi,j′YjYj′(Wj +Wj′) +
n−1∑

j=k+1
pi,jpi,nYj | i ∈ J1, kK

 . (4.33)

Therefore, equations in S ′
2 have bidegree (1, 2) in W

def= {W1, . . . ,Wn} and Y
respectively. This simple trick decreases the maximum degree reached by the Gröbner
basis, thus providing an effective speed up to the resolution. With this change of
variables, the adopted specialization (4.23) becomes

Wn−2 = 0, Wn−1 = 1, Wn =∞, Yn = 1. (4.34)

Other differences depend on whether q = 2 or q = 2s, s > 1. We therefore split
the discussion into two subcases.

4.4. Algebraic cryptanalysis 141

Overview for q = 2s, s > 1

1. (Echelonizing step at degree 3) The initial echelonization is analogous to the
one for q odd, with the only difference that equations have bidegree (1, 2) in
(W ,Y), i.e. total degree 3. In particular, Proposition 4.17 still holds, recalling
that the terms (Xj −Xj′)2’s can be replaced by Wj +Wj′ ’s.

2. (Removing the Yj = 0 component) we can compute the Vj ’s similarly to
what was done for the odd case. Proposition 4.18 still applies, in particular
dimFq Vj1 = 2m − 1 and dimFq Vj1 + Vj2 = 4m − 2 for all j1, j2 ∈ Jk + 1, nK,
j1 ̸= j2. The polynomials in Vj ’s, however, are now affine bilinear in (W ,Y).
On the other hand, since the mixed products Xj1Xj2 ’s disappear from S ′

2,
Proposition 4.19 must be modified in the following way.

Proposition 4.22. Let q = 2s, s > 1. The vector space Un−2,n−1
def= (Vn−2 +

Vn−1) ∩ Fq[X,Y]≤1 contains at least m+ 1 linearly independent affine linear
polynomials in Yj’s. We denote by Un−2,n−1 a (sub)set of m + 1 of these
polynomials, and by un−2,n−1 one of the polynomials containing the monomial
1. Moreover, Un−2,n−1 + Vn contains a subspace of affine linear polynomials of
dimension at least 2m.

Proof. The terms appearing in the polynomials in Vn−2 are 1, Yn−1 and YjW
2
j

for j ∈ Jk + 1, n − 3K. The ones in Vn−1 are 1, Yn−2 and YjW
2
j + Yj , j ∈

Jk+1, n−3K. This means that the polynomials in Un−2,n−1 can all be expressed
as linear combination of the 3m− 3 monomials YjX

2
j ’s, j ∈ Jk + 1, n− 3K, of

degree 3, the monomial 1 and the 3m−1 lienar monomials Yj ’s, j ∈ Jk+1, n−1K.
The dimension of the vector space Un−2,n−1 is 4m− 2, so that we get at least
m+ 1 linearly independent affine linear polynomials in Un−2,n−1. Since all the
elements in V are homogeneous, Un−2,n−1 ̸⊆ Vn. Hence Vn + Un−2,n−1 has at
least dimFq Vn + 1 = 2m linearly independent linear polynomials in Yj ’s.

Remark 4.8. Experimentally, dimFq Un−2,n−1 = m+ 1. Moreover, the subspace
of homogeneous polynomials in Uj1,j2 is contained in Vn. In other words,

dimFq (Vn + Un−2,n−1) = dimFq Vn + 1 = 2m.

Remark 4.9 explains why the other subspaces Uj1,j2 ’s have dimension m instead.

3. (eliminating 2m variables Yj ’s using linear polynomials) Let I be a set of
cardinality m such that all the Yj ’s variables are expressed in terms of {Yi | i ∈
I} and I1 ⊂ I, |I1| = m− 1, such that all the Yj ’s variables are expressed in
terms of {1}∪ {Yi | i ∈ I1}. After the elimination of all Yj in Jk+ 1, n− 1K \ I1,
the polynomials in the Vl’s can be written as a linear combination of the
(3m − 3)(m − 1) bilinear monomials WiYj , i ∈ Jk + 1, n − 3K, j ∈ I1, the
(3m−3)+(3m−1) linear variables Wi, i ∈ Jk+1, n−3K and Yj , j ∈ Jk+1, n−1K
and 1. Note that the monomials Wj ’s arise from the elimination of linear
variables because there exist affine linear equations in Vn + Un−2,n−1. This
would not happen by eliminating only the variables from the homogeneous

142 Chapter 4. An attack on high-rate random alternant codes

linear equations in Vn. Heuristically, after linearization of the (2m− 1)(3m− 1)
polynomials in ⋃n−1

j=k+1 Vj , we obtain the following set of polynomials:
YjWj′ + Lj,j′(Yℓ : ℓ ∈ I1, 1), for all j ∈ Jk + 1, n− 3K \ I1, j′ ∈ Jk + 1, n− 3K,
Wj + LWj (Yℓ : ℓ ∈ I1, 1), for all j ∈ Jk + 1, n− 3K,
Yj + LYj (Yℓ : ℓ ∈ I1, 1), for all j ∈ Jk + 1, n− 3K \ I1.

4. (computing the Gröbner basis) This step is analogous to Steps 6. By eliminating
the Wj ’s from the polynomials with leading monomials YjWj′ , we get the final
Gröbner basis of the system, that is


YjYj′ + L′

j,j′(Yℓ : ℓ ∈ I1, 1), j, j′ ∈ Jk + 1, n− 3K\, j < j′,

Wj + LWj (Yℓ : ℓ ∈ I1, 1), j′ ∈ Jk + 1, n− 3K,
Yj + LYj (Yℓ : ℓ ∈ I1), j ∈ Jk + 1, n− 1K \ I1.

Basically, the shape coincides with the grevlex basis obtained for the q odd
case, with the only exception that the Xi are replaced by Wi = X2

i ’s.

5. (Computing the solutions) Similarly to the q odd case, a lex basis is then
obtained through the FGLM algorithm and has the following shape:

Wj +QWj (Yn−1) = 0, j ∈ Jk + 1, n− 3K
Yj +QYj (Yn−1) = 0, j ∈ Jk + 1, n− 2K
P (Yn−1) = 0

6. (Recovering the support and multiplier) Since every element is a square in a
finite field of characteristic 2, we get

Wi + ai = X2
i + ai = (Xi + ?

ai)2,

i.e. we can uniquely determine the value Xi = ?
ai from the equation Wi+ai = 0.

This means that we can recover the last coordinates of a valid support from
the lex basis. Thus we can retrieve the whole support and multiplier by linear
algebra, as done in the q odd case.

Remark 4.9. At Step (3), in the odd characteristic case, we have derived low-degree
polynomials by requiring that the unknowns in the block X must differ. Not only
this step is not necessary when q = 2s, but its adaptation does not provide new
degree falls. Due to the change of variables Wi = X2

i ’s introduced, finding subspaces
of multiples of Xj−Xj′ translates into searching for multiples of Wj +Wj′ . Retracing
the proof of Proposition 4.19, we get the 4m − 2 polynomial generating Vj1 + Vj2

cam be written in terms of:

Yj(Wj +Wj1) j ∈ Jk + 1, n− 1K \ {j1, j2},
1
Yj1(Wj1 +Wj2)
Yj2(Wj1 +Wj2)
Yj(Wj1 +Wj2)2, j ∈ Jk + 1, n− 1K \ {j1, j2}.

4.4. Algebraic cryptanalysis 143

By eliminating the first 3m− 2 terms that are not multiple of Wj1 +Wj2 , we find a
subspace of dimension m of linearly independent polynomials that are multiple of
Wj1 +Wj2 . After division by the latter term, we obtain a space of dimension m of
homogeneous linear polynomials in Yj ’s. However, this subspace is experimentally
contained in Vn, thus it does not add any useful information for the algorithm.

Overview for q = 2.

When q = 2, Assumption 4.2 asserts that the rank of S ′
2 (or equivalently S ′) is

smaller than for all the other cases, namely Rank(S ′) = Rank(S ′
2) =

`3m
2

˘

− 3m.
This invalidates all the combinatorial arguments for the dimensions of Vj ’s and for
the number of degree falls. In this case, we have

Proposition 4.23. Let q = 2. Under Assumptions (4.1) and (4.2),

dimFq (Vj) ≥ m− 1 ∀k + 1 ≤ j ≤ n (4.35)

Proof. This proof requires a result that will be proved in Remark 5.4, Chapter 5,
namely that

dimFq

´

Shj

´

Ar(x,y)⊥
¯¯⋆2

≤
ˆ

3m
2

˙

−m.

Taking C
def= Pctj pAr(x,y)q, so that C ⊥ def= Shj

`

Ar(x,y)⊥˘

, it follows from
Proposition 3.2 that the subspace of S whose elements can be written without
the terms corresponding to Zj,j′ , for j′ ∈ Jk + 1, nK \ {j}, has rank

ˆ

3m− 1
2

˙

−
ˆ

3m
2

˙

+ dimFq

´

Shj

´

Ar(x,y)⊥
¯¯⋆2

≤
ˆ

3m− 1
2

˙

−
ˆ

3m
2

˙

+
ˆ

3m
2

˙

−m =
ˆ

3m− 1
2

˙

−m.

Equivalently,

dimFq (Vj) ≥ Rank(S)−
ˆˆ

3m− 1
2

˙

−m
˙

=
ˆˆ

3m
2

˙

− 3m
˙

−
ˆˆ

3m− 1
2

˙

−m
˙

= m−1.

Remark 4.10. Empirically, the lower bound from Proposition 4.23 is tight and
dimFq (Vj) = m− 1 with high probability. We will assume that the equality holds
from now on. In particular, by taking j = n, we get that the number of independent
linear equations in Yj ’s coming from row-reduction of S is m− 1.

While computing a Gröbner basis of S ′
2 plus the equations obtained from all the

Vj ’s still seems viable, we propose an alternative approach, which refines the ideal
(not the corresponding variety though) and is also more efficient.

More precisely, if we do not perform the change of variables Wj = X2
j , we can

symbolically obtain new low-degree equations from Vj , by taking into account the
identity:

(X2
i Yi)(Yi)2 = (Yi)(XiYi)2.

144 Chapter 4. An attack on high-rate random alternant codes

After expansion, this gives the system of bidegree (2, 3)

S ′′ def=

 ∑
(j,j′)∈J

pi,jpi,j′YjYj′(Yj + Yj′)(Xj +Xj′)2 = 0 | i ∈ J1, kK

 ,

where, for clarity, we do not take into account the usual specialization. In a similar
way to what done for S ′, we can define

Tj = 1
Yj

`

S ′′ ∩ Yj · Fq[X ′,Y ′]≤3
˘

, j ∈ Jk + 1, n− 1K. (4.36)

Comparing the equations in S ′ and S ′′, it is clear that∑
j∈Jk+1,nK\{ℓ}

vjYj(Xj +Xℓ)2 ∈ Vℓ ⇐⇒
∑

j∈Jk+1,nK\{ℓ}
vjYj(Yj + Yℓ)(Xj +Xℓ)2 ∈ Tℓ,

hence
dimFq Tℓ = dimFq Vℓ = m− 1.

We can split an equation in Tℓ in the following way:

∑
j∈Jk+1,nK\{ℓ}

vjYj(Yj + Yℓ)(Xj +Xℓ)2

=
∑

j∈Jk+1,nK\{ℓ}
vjY

2
j (Xj +Xℓ)2 + Yℓ

∑
j∈Jk+1,nK\{ℓ}

vjYj(Xj +Xℓ)2.

Since Yℓ
∑

j∈Jk+1,nK\{ℓ} vjYj(Xj +Xℓ)2 is in the ideal generated by S ′, we obtain the
equation ∑

j∈Jk+1,nK\{ℓ}
vjY

2
j (Xj +Xℓ)2 = 0.

Since the coefficients vj ∈ F2, by applying the Frobenius map m− 1 times, we derive∑
j∈Jk+1,nK\{ℓ}

vjY
2

j (Xj +Xℓ)2 = 0

⇐⇒

¨

˝

∑
j∈Jk+1,nK\{ℓ}

vjY
2

j (Xj +Xℓ)2 = 0

˛

‚

2m−1

= 0

⇐⇒
∑

j∈Jk+1,nK\{ℓ}
vjYj(Xj +Xℓ) = 0,

i.e. we produce (m− 1)(3m− 1) bilinear equations that are experimentally linearly
independent. We define

Uℓ
def= {

∑
j∈Jk+1,nK\{ℓ}

vjYj(Xj +Xℓ) |
∑

j∈Jk+1,nK\{ℓ}
vjYj(Xj +Xℓ)2 ∈ Vℓ}.

This is trivially a vector space and dimFq Uℓ = dimFq Vℓ = m− 1.

4.4. Algebraic cryptanalysis 145

We are now going to describe some bilinear degree falls that are crucial in solving
the system. Let us fix ℓ ∈ Jk + 1, n− 3K and consider the polynomials∑

j∈Jk+1,nK\{ℓ}
v

(ℓ)
j (X2

j +X2
ℓ)Yj ∈ Vℓ and

∑
j∈Jk+1,nK\{ℓ}

v
(ℓ)
j (Xj +Xℓ)Yj ∈ Uℓ.

By equating to 0 a polynomial combination of the two, we obtain

0 =

¨

˝

∑
j∈Jk+1,n−3K\{ℓ}

v
(ℓ)
j (X2

j +X2
ℓ)Yj + v

(ℓ)
n−2X

2
ℓ Yn−2 + v

(ℓ)
n−1(X2

ℓ + 1)Yn−1 + v(ℓ)
n

˛

‚

+Xℓ

¨

˝

∑
j∈Jk+1,n−3K\{ℓ}

v
(ℓ)
j (Xj +Xℓ)Yj + v

(ℓ)
n−2XℓYn−2 + v

(ℓ)
n−1(Xℓ + 1)Yn−1

˛

‚

=
∑

j∈Jk+1,n−3K\{ℓ}
v

(ℓ)
j Xj(Xj +Xℓ)Yj + v

(ℓ)
n−1(Xℓ + 1)Yn−1 + v(ℓ)

n .

Then, we consider the polynomials∑
j∈Jk+1,nK\{n−2}

v
(n−2)
j X2

j Yj ∈ Vn−2 and
∑

j∈Jk+1,nK\{n−2}
v

(n−2)
j XjYj ∈ Un−2.

By equating to 0 a polynomial combination of the two, we obtain

0 =

¨

˝

∑
j∈Jk+1,n−3K

v
(n−2)
j X2

j Yj + v
(n−2)
n−1 Yn−1 + v(n−2)

n

˛

‚

+Xℓ

¨

˝

∑
j∈Jk+1,n−3K

v
(n−2)
j XjYj + v

(n−2)
n−1 Yn−1

˛

‚

=
∑

j∈Jk+1,n−3K\{ℓ}
v

(n−2)
j Xj(Xj +Xℓ)Yj + v

(n−2)
n−1 (X1 + 1)Yn−1 + v(n−2)

n .

Analogously, from the polynomials∑
j∈Jk+1,nK\{n−1}

v
(n−1)
j (Xj+1)2Yj ∈ Vn−1 and

∑
j∈Jk+1,nK\{n−1}

v
(n−1)
j (Xj+1)Yj ∈ Un−1,

we get

0 =

¨

˝

∑
j∈Jk+1,n−3K

v
(n−1)
j (X2

j + 1)Yj + v
(n−1)
n−2 Yn−2 + v(n−1)

n

˛

‚

+Xℓ

¨

˝

∑
j∈Jk+1,n−3K

v
(n−1)
j (Xj + 1)Yj + v

(n−1)
n−2 Yn−2

˛

‚

=
∑

j∈Jk+1,n−3K\{ℓ}
v

(n−1)
j Xj(Xj +Xℓ)Yj +

∑
j∈Jk+1,n−3K\{ℓ}

v
(n−1)
j (1 +Xℓ)Yj + v(n−1)

n .

146 Chapter 4. An attack on high-rate random alternant codes

Hence, from Vℓ + Vn−2 + Vn−1 + XℓUℓ + XℓUn−2 + XℓUn−1, we get a set of
3(m− 1) (experimentally linearly independent) cubic polynomial, whose cubic part
can be written using only 3m − 4 terms: Xj(Xj + Xℓ)Yj , j ∈ Jk + 1, n − 3K \ {ℓ}.
Therefore , by linearization, we get (3m− 3)− (3m− 4) = 1 bilinear equation with
the following shape: ∑

j∈Jk+1,n−1K\{ℓ,n−2}
dj(Xℓ + 1)Yj + 1 = 0.

So, for any ℓ ∈ Jk+ 1, n− 3K, we predicted one bilinear degree fall occurring from the
linearization of degree 3 polynomials. Therefore, we get a total of 3m− 3 bilinear
equations that are clearly linearly independent, since each variable Xℓ appears in
only one of them. We call D the space generated by them. These degree falls are
critical in the resolution. Indeed, it is now sufficient to compute a Gröbner basis in
degree 3 of ∑

j Vj + ∑
j Uj + D to get a basis. From the very first step, 2(m − 2)

linear degree falls in X are found. After this, the recursive elimination of variables
terminates the algorithm very quickly.

The Gröbner basis shape is the same as for the q > 2 case, hence finding
the solution can be done analogously. In particular, the corresponding solutions
have multiplicity 1. This differs from the Gröbner basis that would have been
computed with the change of variables Wi = X2

i ’s and without exploiting the
identities (X2

i Yi)(Yi)2 = (Yi)(XiYi)2’s. In that case, the multiplicity of each solution
would have been 2, thus doubling the degree of the polynomials in the lex basis.

4.4.6 Limitations of the algebraic cryptanalysis approach:
higher orders and Goppa codes

We have shown in depth how to retrieve an equivalent secret key in the regime where
the filtration step permits to reduce the difficulty of the problem. On the other side,
the algebraic cryptanalysis detailed in this section illustrates why a filtration down
to degree r = 3 is needed for the algorithm to work at several steps. Indeed, our
analysis relies on estimating the dimension of subspaces and counting the expected
number of degree falls. However, these are consequences of the number of available
independent equations at a certain step, which in its turn depends on the square
code dimension. This can be observed from the very beginning of the algorithm.
Indeed, consider a random alternant code. The dimension of the vector space S
over Fq can be smaller than

`3m
2

˘

−m, leading to an equally smaller subspace Vl.
Even in the best scenario where eA as defined in (3.11) is null, i.e. when r < q + 1, a
generalization of Proposition 4.18 leads to

dimFq Vj = max
ˆˆˆ

rm

2

˙

− (r − 1)(r − 2)
2 m

˙

−
ˆ

rm− 1
2

˙

, 0
˙

= max
ˆ

rm− 1− (r − 1)(r − 2)
2 m, 0

˙

=


2m− 1 if r = 3
m− 1 if r = 4
0 if r ≥ 5

.

4.4. Algebraic cryptanalysis 147

In other terms, the subspace Vj degenerates for r ≥ 5, and even for r = 4 all the
arguments of our analysis are invalidated. This does not necessarily mean that solving
these instances becomes of exponential complexity, but the solving degree becomes
undoubtedly bigger and further steps and expedients will be required. This is why
the generalization of the whole attack to subfields of size q > 3 is not straightforward.

Similarly, even if we assume that a filtration for Goppa codes exists, the Gröbner
basis algorithm requires modifications as well, unless r < q − 1, which is the critical
point above which Goppa codes behave differently from random alternant codes
in terms of the square of the dual code. Since we are not aware of any filtration,
it is not even self-evident what the starting code of the algebraic attack could be.
One could argue that, if a filtration exists, this will reasonably provide an alternant
code that is not a Goppa code anymore and the additional problem of a different
algebraic cryptanalysis does not arise. For instance if G (x,Γ) = Ar(x,y), then
Ar−|I|(xqI ,yqI

∏
I(x

qI − xi)) is not a Goppa code. Indeed the coordinates of the
multiplier

y
qI

∏
I

(x
qI − xi) =

∏
I(x

qI − xi)
Γ(x

qI)

are the evaluation of a rational function in the coordinates of the support x
qI , with a

numerator of degree |I| and a denominator of degree r.
Interestingly enough, we can unveil an analogy with the transformation

characterizing Cauchy codes and their subfield subcodes when applied to Goppa
codes. To that end, let us consider the Goppa code G (x,Γ) = Ar(x,y) ⊆ Fn

q and
define

x′ = ax + b

cx + d
and y′ = λ(cx + d)r−1y, (4.37)

for some a, b, c, d ∈ Fqm , ad− bc ̸= 0, and λ ∈ F∗
qm . For simplicity, we also assume

cxi + d ̸= 0 for all i ∈ J1, nK. Then Ar(x′,y′) = G (x,Γ) is clearly a Goppa code,
however the support and multiplier representatives x′ and y′ do not reflect the Goppa
polynomial relation, i.e. y′ is not guaranteed to be the evaluation in x′ of the inverse
of a polynomial Γ′ of degree r. While the Goppa polynomial relation is preserved for
all linear transformations x′ = ax + b, y′ = λy, we are now going to show that it is
not, in general, an invariant. Indeed, by definition of x′, we can invert the relation
with x and obtain

x = a′x′ + b′

c′x′ + d′ ,

where
„

a′ b′

c′ d′

ȷ

=
„

a b
c d

ȷ−1
=

„

d −b
−c a

ȷ

,

thus leading to

x = dx′ − b
−cx′ + a

.

Note that

cx + d = cdx′ − bc
−cx′ + a

+ d = ad− bc
−cx′ + a

.

148 Chapter 4. An attack on high-rate random alternant codes

Hence, the coordinates of the new multiplier y′ can be formulated as the evaluation
of a rational function in the coordinates of the new support x′ as

y′ =λ(cx + d)r−1y = λ(cx + d)r−1

Γ
´

dx′−b
−cx′+a

¯ = λ(cx + d)r−1∑r
i=0 γi

´

dx′−b
−cx′+a

¯i = λ(cx + d)r−1(−cx′ + a)r∑r
i=0 γi(dx′ − b)i(−cx′ + a)r−i

= λ(ad− bc)r−1(−cx′ + a)∑r
i=0 γi(dx′ − b)i(−cx′ + a)r−i

More specifically, the reduced form of such rational function has in general a numerator
of degree 1 and a denominator of degree r, i.e.

y′ = Ax′ +B∑r
i=0 γi

′(x′)i
,

with A = −λ(ad− bc)r−1c and B = λ(ad− bc)r−1a. In particular, the condition for
x′ and y′ being related by a degree-r Goppa polynomial is A = 0 ⇐⇒ c = 0. In
this way

x′ = a

d
x + b

d
and y′ = λdr−1y,

and we get back the subset of linear transformations.
This has some consequences on some of the results provided before for alternant

codes. First of all, the property about the parity-check subcode does not hold
anymore, i.e.

Ar+1(x′,y′) ̸= ČAr(x′,y′),

and Ar+1(x′,y′) is expected to have dimension n− (r + 1)m and not n− rm− 1.
This same remark has an extra effect on the algebraic cryptanalysis of the system

originated by a Goppa code. Assume we are given a Goppa code of low degree r, so
that we can hope to model the key-recovery problem and solve it directly, without
first computing a filtration. Since we have easily access to ČG (x,Γ) = Ar+1(x,y), we
might be tempted to exploit identities involving the monomial YiX

r
i , such as

(YiX
r
i)(Yi) = (YiX

r−1
i)(YiXi).

While the secret vectors x and y are a solution of the equation above, the same
cannot be said about x′ and y′ as in (4.37), but only for those corresponding to
linear transformation, i.e. when c = 0. Making use of identities involving YiX

r
i thus

implies being allowed to specialize only 2 (instead of 3) variables in the X block
(and 1 in the Y block).

4.5 Interlacing the algebraic recovering with the
filtration

We now get back to distinguishing between the full-length vectors x and y and their
shortening due to the filtration attack. We can restore the information lost from
the filtration shortening, by simply repeating the attack twice on disjoint sets I1, I2.

4.5. Interlacing the algebraic recovering with the filtration 149

This is possible because |I1 ∪ I2| = 2(r − 3) is very small compared to n. Indeed, if
we shorten the positions corresponding to I1

def= J1, r − 3K (the order is irrelevant)
during the filtration attack, at the end of the algebraic recovering we have access to
m pairs of vectors in Fn−(r−3)

qm :

x̄I1 ’s and ȳI1

˜ ∏
i∈I1

(x̄I1 − xi)
¸

’s.

Analogously, if we shorten the positions corresponding to I2
def= J(r− 3) + 1, 2(r− 3)K

during the filtration attack, at the end of the algebraic recovering we have access to
m pairs of vectors in Fn−(r−3)

qm :

x̄I2 ’s and ȳI2

˜ ∏
i∈I2

(x̄I2 − xi)
¸

’s.

In particular, if the same specialization has been chosen, we can couple m pairs
(x̄I1 , x̄I2)’s such that the two vectors of each pair coincide on the last n− 2(r − 3)
coordinates. We can easily detect them from the last 3m coordinates, so we do not
need to solve 2m linear systems but it is sufficient to choose one pair and solve only
the 2 corresponding linear systems. In this way, we obtain a full solution x̄ for the
original problem as

x̄ = (x̄1, . . . , x̄r−3
loooooomoooooon

first r − 3 coordinates of x̄I1

, x̄r−2, . . . , x̄2(r−3)
looooooooomooooooooon

first r − 3 coordinates of x̄I2

, x̄2(r−3)+1, . . . , x̄n−3, 0, 1,∞
loooooooooooooooomoooooooooooooooon

last common coordinates of x̄I1 and x̄I2

).

By replacing the found values in the corresponding ȳI1

`∏
i∈I1(x̄I1 − xi)

˘

and
ȳI2

`∏
i∈I2(x̄I2 − xi)

˘

, we retrieve ȳI1 and ȳI2 . Similarly to what was done for
the support, we can put together the information of these two vectors and get

ȳ = (ȳ1, . . . , ȳr−3
looooomooooon

first r − 3 coordinates of ȳI1

, ȳr−2, . . . , ȳ2(r−3)
looooooooomooooooooon

first r − 3 coordinates of ȳI2

, ȳ2(r−3)+1, . . . , ȳn−1, 1
loooooooooooomoooooooooooon

last common coordinates of ȳI1 and ȳI2

).

So, a pair of valid support and multiplier has been recovered. However, x̄ /∈ Fn
qm ,

because x̄n =∞. The last question is therefore how to get a valid pair of support
and multiplier such that both are defined over Fqm , i.e. how to get the alternant
code representation. In other words, we need to determine some f ∈ GL2(Fqm) and
λ ∈ F∗

qm such that
x̄′

i = f(x̄i) ∈ Fqm , ∀i ∈ J1, nK

and
ȳ′

i = λθ(f, x̄i)r−1ȳi ∈ Fqm , ∀i ∈ J1, nK,

with θ defined as in Theorem 4.3. We observe that, since there are only n − 1
coordinates of x̄ in Fqm and n− 1 < qm, there exists at least one element x̂ ∈ Fqm

that is different from all x̄ coordinates. We also remark that x̂ ̸= 0, since x̄n−2 = 0,
so the map f on F̄qm

f
def= z

z − x̂

150 Chapter 4. An attack on high-rate random alternant codes

is induced by an element of the linear group. We have θ(f, z) = z − x̂ if z ∈ Fqm and
θ(f,∞) = 1 and we choose λ = 1. Therefore

x̄′
i = x̄i

x̄i−x̂ , i ∈ J1, n− 1K,
x̄′

n = 1,
ȳ′

i = (x̄i − x̂)r−1ȳi, i ∈ J1, n− 1K,
ȳ′

n = ȳn = 1.

We finally obtained a support and a multiplier with coordinates over Fqm that
define the public code. This concludes the key-recovery attack on high-rate random
alternant codes.
Remark 4.11. We have seen that both the filtration and the algebraic cryptanalysis
can be performed in polynomial time. In order to interlace them, we need to repeat
the full attack twice. Thus, this does not change the order of the complexity. Finally,
we move from the private key corresponding to the subfield subcode of a Cauchy
code to the one of an alternant code. This task has a negligible cost with respect to
the rest of the algorithm, requiring only O(n) operations. Therefore the total cost of
the key recovery is polynomial too.

4.6 Conclusions
We have presented a polynomial time key-recovery attack on unstructured alternant
codes of high rate. This is the first time that this family has been cryptanalyzed.
We have shown how the key-recovery problem can be reduced to that of an alternant
code of smaller code. This was done by iteratively computing conductor codes
that provided a filtration of alternant codes of decreasing order, which stops at an
order equal to the field size. This method made extensive use of the results got
in the previous chapter about the structure of the product and square of dual of
alternant codes. Once obtained the filtration, we tackled the easier version of the key-
recovery problem, namely with respect to alternant code order 3, through algebraic
cryptanalysis. More precisely, we have studied a polynomial system modeling it.
Such a system was already known and its unusually small rank explains why alternant
and Goppa codes are distinguishable in the high rate setting. However, we have
been able to solve it efficiently by designing an original method based on Gröbner
bases. The strategy and its explanation partially differ depending on the field size.
We provided a detailed description of the algorithm for odd characteristic fields and
briefly cover the tweaks needed when the field size is 2 or a higher power of 2. Finally,
we explained how the two parts of the attack can be merged as long as the field size
is small enough, namely 2 or 3. Overall, the attack succeeds with high probability
against binary and ternary random distinguishable alternant codes.

One possible research line consists in extending the algebraic attack to orders
larger than 3. This would allow to break instances with larger field sizes, because
the filtration could stop at a previous step in that case. The most interesting open
problem, however, is to adapt such an attack to the Goppa case, for which our
strategy fails in computing the filtration. This would completely break the CFS
digital signature, which indeed relies on high-rate binary Goppa codes and essentially
resisted more than 20 years of cryptanalysis.

Chapter5Enhancing the distinguisher by
shortening the dual code

In this chapter, which is meant more to raise questions rather than provide answers,
we tackle the problem of improving the distinguisher presented in Chapter 3. More
precisely, the aim is to decrease the minimum code rate for which an alternant
code is distinguishable. Following the construction presented in Chapter 3, our
method also exploits the notion of square code. However, before the computation
of the dimension of the latter, the dual of the alternant code is shortened in a set
of coordinates. The complexity of the distinguishing algorithm remains polynomial.
For some parameters, this procedure allows to enhance the distinguisher. As a
demonstration of the effectiveness of our method, we experimentally exhibit instances
that would not be distinguishable according to the approach presented in Chapter 3,
but that become such using the shortening tweak. We also illustrate how to produce
other parameters with this property and give a partial explanation of the behavior
observed empirically, based on a direct sum decomposition of the shortened dual
code.

Contents
5.1 Introduction . 152
5.2 Experimental results . 153
5.3 A direct sum decomposition of the shortened dual code 158
5.4 A decomposition for the square code 162

5.4.1 Empirical dimensions of the square code summands and
their intersections . 162

5.4.2 A partial explanation for the square of the shortened code 166
5.5 Conclusions . 171

151

152 Chapter 5. Enhancing the distinguisher by shortening the dual code

5.1 Introduction
The cryptanalysis presented in Chapter 4 turns the distinguisher for high-rate
alternant codes into a polynomial time attack. We already discussed the challenges
behind its adaptation to Goppa codes. However, another question arises from this
result. Indeed, we have revealed a weakness for non-structured subfield subcodes
of GRS codes, but within a limited range of parameters. Although the techniques
adopted, namely the computation of a filtration of alternant codes and the use of
Gröbner bases to solve multivariate algebraic systems, harshly challenge and put in
doubt the security of McEliece-like schemes based on high-rate codes, such as CFS
signature [CFS01], it barely affects the confidence in schemes like Classic McEliece
[Alb+20], where the code rate R ∈ [0.7, 0.8] for all security levels. Indeed, the attack
in Chapter 4 is strictly connected to the distinguisher from [Fau+13] and Chapter 3,
and it is subject to the same limitations. It is therefore natural to wonder whether
the distinguishable range can be extended.

Our question then downsizes to the preliminary issue of decreasing the
distinguishable threshold for the code rate. In this chapter, we propose an elementary
strategy to tackle this problem. It makes use of a standard construction in coding
theory, namely the shortening of a code, together with the computation of square
codes, the latter being already used in Chapter 3 and 4. We will show that this
technique is effective, providing parameters that can be distinguished using this
strategy and that were not known to be distinguishable before. This is the first
improvement of the approximately 10 years old distinguisher from [Fau+13].

In Chapter 4, we have also recalled the extension field formalism for linear
codes and we proved some results concerning how Shi

`

Ar(x,y)⊥˘

(or equivalently
Shi

`

Ar(x,y)⊥˘

Fqm
) decomposes in the direct sum of two codes, one being the dual

of an alternant code of order r − 1. With these tools at hand, we can now study the
effect of shortening the dual of an alternant code, with respect to its square code. We
will experimentally illustrate that this technique allows in some cases to extend the
regime for which an alternant code is distinguishable and we will give some insight
into the underlying algebraic structure.

More precisely, let us fix some parameters q, r,m and n ≤ qm. From now on, in
order to avoid confusion, we say that an [n, n− rm] alternant code Ar(x,y) ⊆ Fqm

is classically distinguishable if and only if

dimFq

´

Ar(x,y)⊥
¯⋆2

< min
ˆ

n,

ˆ

rm+ 1
2

˙˙

.

In other words, an alternant code is classically distinguishable if it is with respect to
the distinguisher proposed in [Fau+13] and largely analyzed in Chapter 4.

Indeed, for an [n, k] random code R over F, we expect, with overwhelming
probability,

dimF R⋆2 = min
ˆ

n,

ˆ

k + 1
2

˙˙

.

As a consequence, given a set of positions I ⊆ J1, nK,

dimF pShI pRqq
⋆2 ≥ min

ˆ

n− |I|,
ˆ

k − |I|+ 1
2

˙˙

5.2. Experimental results 153

with overwhelming probability. Moreover, equality holds with high probability if I
is a subset of an information set for R.

In the following, we are going to illustrate that there exist [n, n− rm] alternant
codes Ar(x,y) ⊆ Fq for which

dimFq

´

Ar(x,y)⊥
¯⋆2

= min
ˆ

n,

ˆ

rm+ 1
2

˙˙

,

i.e. that are not classically distinguishable, but such that

dimFq

´

ShI

´

Ar(x,y)⊥
¯¯⋆2

< min
ˆ

n− |I|,
ˆ

rm− |I|+ 1
2

˙˙

for appropriate choices of I, or more simply of |I|. In other words, the alternant code
becomes distinguishable, through the square code construction, after shortening the
dual code at a proper amount of coordinates. Note that, thanks to Proposition 1.2,
one can equivalently puncture the primal code and then consider the square of the
dual code.

We also remark that this simple distinguishing algorithm only requires shortening
a code and computing a square code. All these operations are well known to have
polynomial complexity.

The effectiveness of such an approach strongly depends on the parameters, being
more powerful for a small field extension m. As usual, Goppa codes may require an
ad hoc analysis, which is not given in this chapter. For this subclass of codes, we will
only show here some experimental results and notice that, since the distinguishable
region is larger, the improvement given by shortening the dual code has a more
limited impact.

5.2 Experimental results
We compute the dimension of the square code of the shortening of the dual code
with respect to sets of positions I of different cardinalities and for several choices of
the 4-tuple (q, r,m, n). We recall that the latter uniquely determines the value eA
and eG , whose definition, first given in Equations (3.11) and (3.12), is recalled here:

eA
def= max{i ∈ N | r ≥ qi + 1} =

⌊
logq(r − 1)

⌋
eG

def= min{i ∈ N | r ≤ (q − 1)2qi}+ 1 =
⌈
logq

ˆ

r

(q − 1)2

˙⌉
+ 1.

In the tables that follow we will also print the numbers n−|I| and
`

rm−|I|+1
2

˘

. The
smallest between the two is written in bold, this represents the expected dimension
for a random code with the same parameters as the alternant code. We also highlight
in red the values of the square code dimension that are distinguishable, i.e. that are
strictly smaller than the bold value in the same column.

Let us start with a small extension field, m = 2. We choose q = 17 and different
values of r. In Table 5.1, we choose (q, r,m, n) = (17, 15, 2, 289). Since r < q − 1,
alternant and Goppa codes have the same behavior.

The first column of Table 5.1 (corresponding to |I| = 0) shows that the code
is classically distinguishable. Therefore shortening the code is not useful for these

154 Chapter 5. Enhancing the distinguisher by shortening the dual code

|I| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n− |I| 289 288 287 286 285 284 283 282 281 280 279 278 277 276 275 274

`

rm−|I|+1
2

˘

465 435 406 378 351 325 300 276 253 231 210 190 171 153 136 120
dimFq

`

ShI
`

Ar(x,y)⊥˘˘⋆2 283 279 274 268 261 253 244 234 223 211 198 184 169 153 136 120
dimFq

`

ShI
`

G (x,Γ)⊥˘˘⋆2 283 279 274 268 261 253 244 234 223 211 198 184 169 153 136 120

Table 5.1: Square code dimensions. Parameters: (q, r,m, n) = (17, 15, 2, 289)

|I| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n− |I| 278 277 276 275 274 273 272 271 270 269 268 267 266 265 264 263

`

rm−|I|+1
2

˘

465 435 406 378 351 325 300 276 253 231 210 190 171 153 136 120
dimFq

`

ShI
`

Ar(x,y)⊥˘˘⋆2 278 277 274 268 261 253 244 234 223 211 198 184 169 153 136 120
dimFq

`

ShI
`

G (x,Γ)⊥˘˘⋆2 278 277 274 268 261 253 244 234 223 211 198 184 169 153 136 120

Table 5.2: Square code dimensions. Parameters: (q, r,m, n) = (17, 15, 2, 278)

parameters. However, it is already possible to discern the key point of this strategy:
shortening in |I| positions the dual code decreases the square code dimension by
more than |I|. Therefore, we can easily see the impact of shortening in play, by
keeping the same 3-tuple (q, r,m) but choosing n < dimFq

`

Ar(x,y)⊥˘⋆2 instead of
the full-length code. This is illustrated in Table 5.2 for n = 278 . We also remark
that for |I| ≥ 13, the square code behaves like a random code and thus the code
loses its distinguishable property.

Several observations are worth to be made regarding Table 5.2. First of all, we
notice that, since the code is shorter, the minimal value of |I| for which

`

rm−|I|+1
2

˘

<
|I| has increased from 7 to 8. More importantly, the alternant/Goppa code is not
classically distinguishable, as the square of the dual code coincides with the whole
ambient space Fn

q . The same occurs after shortening in one position: the square code
is simply Fn−1

q . However, due to the phenomenon observed before, starting from
|I| = 2, the square code dimension decreases below min

´

n− |I|,
`

rm−|I|+1
2

˘

¯

, thus
making the alternant/Goppa code distinguishable.

In Table 5.3 we increase r in such a way that still eA = 0, but Goppa codes
feature new quadratic relationships, i.e. eG is defined (and strictly positive). More
precisely, we consider the tuple of parameters (q, r,m, n) = (17, 17, 2, 289). The
different behavior is evident from the table. Both random alternant and Goppa codes
with these parameters are not distinguishable at the beginning, and they become
such if shortened in the right amount of positions. However, the “red window” is
wider for Goppa codes (it starts before and ends after) and, within this interval, the
square code dimension is strictly smaller than for random alternant codes.

In Tables 5.4 and 5.5, instances corresponding to the parameters (q, r,m, n) =
(17, 18, 2, 289) and (q, r,m, n) = (17, 19, 2, 289) respectively are shown. Here r ≥ q+1,
hence they are the first example where eA > 0 (in particular eA = 1).

Now, we provide some examples with a larger extension field degree m. This
allows to pick a smaller field size q and therefore increase the integer eA . In order
to better realize how fast the square code dimension drops with respect to |I|, we
choose classically distinguishable parameters. Nevertheless, we recall that starting

5.2. Experimental results 155

|I| 0 1 . . . 7 8 9 10 11 12 13 14 15 16 17
n− |I| 289 288 . . . 282 281 280 279 278 277 276 275 274 273 272

`

rm−|I|+1
2

˘

595 561 . . . 378 351 325 300 276 253 231 210 190 171 153
dimFq

`

ShI
`

Ar(x,y)⊥˘˘⋆2 289 288 . . . 282 281 280 270 256 241 225 208 190 171 153
dimFq

`

ShI
`

G (x,Γ)⊥˘˘⋆2 289 288 . . . 282 279 269 258 246 233 219 204 188 171 153

Table 5.3: Square code dimensions. Parameters: (q, r,m, n) = (17, 17, 2, 289)

|I| 0 1 . . . 9 10 11 12 13 14 15 16 17 18
n− |I| 289 288 . . . 280 279 278 277 276 275 274 273 272 271

`

rm−|I|+1
2

˘

666 630 . . . 378 351 325 300 276 253 231 210 190 171
dimFq

`

ShI
`

Ar(x,y)⊥˘˘⋆2 289 288 . . . 280 279 278 270 256 241 225 208 190 171
dimFq

`

ShI
`

G (x,Γ)⊥˘˘⋆2 289 288 . . . 280 279 269 258 246 233 219 204 188 171

Table 5.4: Square code dimensions. Parameters: (q, r,m, n) = (17, 18, 2, 289)

|I| 0 1 . . . 11 12 13 14 15 16 17 18 19 20
n− |I| 289 288 . . . 278 277 276 275 274 273 272 271 270 269

`

rm−|I|+1
2

˘

741 703 . . . 378 351 325 300 276 253 231 210 190 171
dimFq

`

ShI
`

Ar(x,y)⊥˘˘⋆2 289 288 . . . 278 277 276 270 256 241 225 208 190 171
dimFq

`

ShI
`

G (x,Γ)⊥˘˘⋆2 289 288 . . . 278 277 269 258 246 233 219 204 188 171

Table 5.5: Square code dimensions. Parameters: (q, r,m, n) = (17, 19, 2, 289)

from them, it is then possible to derive non-classically distinguishable parameters by
decreasing n, as exemplified in Table 5.2.

Tables 5.6, 5.7, 5.8, 5.9, 5.10, 5.11 illustrate the dimensions corresponding to
full-length alternant/Goppa codes with pair of extension field degree and field size
(q,m) = (3, 7) and with order r ∈ J5, 10K.

We remark that, in these examples, eA > 0 (eA = 2 for r = 10 and eA = 1
otherwise). In Table 5.1 we observe a drop of 4 = 2m of the dimension, after
shortening in a first position. In all the tables referring to the pair (q,m) = (3, 7),
that quantity decreases by 7 = m in the case of random alternant codes. We will
see in the next section that this is indeed related to the number eA . Moreover,
we experience here the first evidence of a more restricted impact of the shortening
technique on Goppa codes. Indeed, as the square code dimension is already far below
the classically distinguishable threshold, shortening the dual codes decreases the

|I| 0 1 2 3 4 5 6
n− |I| 2187 2186 2185 2184 2183 2182 2181

`

rm−|I|+1
2

˘

630 595 561 528 496 465 435
dimFq

`

ShI
`

Ar(x,y)⊥˘˘⋆2 532 525 518 507 489 465 435
dimFq

`

ShI
`

G (x,Γ)⊥˘˘⋆2 420 419 418 417 416 415 414

Table 5.6: Square code dimensions. Parameters: (q, r,m, n) = (3, 5, 7, 2187)

156 Chapter 5. Enhancing the distinguisher by shortening the dual code

|I| 0 1 2 3 4 5 6
n− |I| 2187 2186 2185 2184 2183 2182 2181

`

rm−|I|+1
2

˘

903 861 820 780 741 703 666
dimFq

`

ShI
`

Ar(x,y)⊥˘˘⋆2 728 721 714 707 699 682 659
dimFq

`

ShI
`

G (x,Γ)⊥˘˘⋆2 420 419 418 417 416 415 414

Table 5.7: Square code dimensions. Parameters: (q, r,m, n) = (3, 6, 7, 2187)

|I| 0 1 2 3 4 5 6
n− |I| 2187 2186 2185 2184 2183 2182 2181

`

rm−|I|+1
2

˘

1225 1176 1128 1081 1035 990 946
dimFq

`

ShI
`

Ar(x,y)⊥˘˘⋆2 952 945 938 931 924 917 904
dimFq

`

ShI
`

G (x,Γ)⊥˘˘⋆2 686 685 684 683 682 681 680

Table 5.8: Square code dimensions. Parameters: (q, r,m, n) = (3, 7, 7, 2187)

|I| 0 1 2 3 4 5 6
n− |I| 2187 2186 2185 2184 2183 2182 2181

`

rm−|I|+1
2

˘

1596 1540 1485 1431 1378 1326 1275
dimFq

`

ShI
`

Ar(x,y)⊥˘˘⋆2 1204 1197 1190 1183 1176 1169 1162
dimFq

`

ShI
`

G (x,Γ)⊥˘˘⋆2 840 839 838 837 836 835 834

Table 5.9: Square code dimensions. Parameters: (q, r,m, n) = (3, 8, 7, 2187)

|I| 0 1 2 3 4 5 6
n− |I| 2187 2186 2185 2184 2183 2182 2181

`

rm−|I|+1
2

˘

2016 1953 1891 1830 1770 1711 1653
dimFq

`

ShI
`

Ar(x,y)⊥˘˘⋆2 1484 1477 1470 1463 1456 1449 1442
dimFq

`

ShI
`

G (x,Γ)⊥˘˘⋆2 1008 1007 1006 1005 1004 1003 1002

Table 5.10: Square code dimensions. Parameters: (q, r,m, n) = (3, 9, 7, 2187)

|I| 0 1 2 3 4 5 6
n− |I| 2187 2186 2185 2184 2183 2182 2181

`

rm−|I|+1
2

˘

2485 2415 2346 2278 2211 2145 2080
dimFq

`

ShI
`

Ar(x,y)⊥˘˘⋆2 1729 1722 1715 1708 1701 1694 1687
dimFq

`

ShI
`

G (x,Γ)⊥˘˘⋆2 1190 1189 1188 1187 1186 1185 1184

Table 5.11: Square code dimensions. Parameters: (q, r,m, n) = (3, 10, 7, 2187)

5.2. Experimental results 157

|I| 0 1 2 3 4 5 6
n− |I| 8192 8191 8190 8189 8188 8187 8186

`

rm−|I|+1
2

˘

4186 4095 4005 3916 3828 3741 3655
dimFq

`

ShI
`

Ar(x,y)⊥˘˘⋆2 3367 3354 3341 3328 3315 3302 3289
dimFq

`

ShI
`

G (x,Γ)⊥˘˘⋆2 2093 2092 2091 2090 2089 2088 2087

Table 5.12: Square code dimensions. Parameters: (q, r,m, n) = (2, 7, 13, 8192)

|I| 0 1 2 3 4 5 6
n− |I| 8192 8191 8190 8189 8188 8187 8186

`

rm−|I|+1
2

˘

5460 5356 5253 5151 5050 4950 4851
dimFq

`

ShI
`

Ar(x,y)⊥˘˘⋆2 4277 4264 4251 4238 4225 4212 4199
dimFq

`

ShI
`

G (x,Γ)⊥˘˘⋆2 2600 2599 2598 2597 2596 2595 2594

Table 5.13: Square code dimensions. Parameters: (q, r,m, n) = (2, 8, 13, 8192)

|I| 0 1 2 3 4 5 6
n− |I| 8192 8191 8190 8189 8188 8187 8186

`

rm−|I|+1
2

˘

6903 6786 6670 6555 6441 6328 6216
dimFq

`

ShI
`

Ar(x,y)⊥˘˘⋆2 5187 5174 5161 5148 5135 5122 5109
dimFq

`

ShI
`

G (x,Γ)⊥˘˘⋆2 3042 3041 3040 3039 3038 3037 3036

Table 5.14: Square code dimensions. Parameters: (q, r,m, n) = (2, 9, 13, 8192)

square code dimension by |I| only.

We conclude this first section of examples with some binary instances within the
classically distinguishable regime. In particular, we choose full-length codes from the
pair (q,m) = (2, 13) and of order r ∈ J7, 10K. We remark that eA increases again: it
is equal to 2 for r ∈ J7, 8K and 3 for r ∈ J9, 10K. The square code dimension fall is
analogous to the ternary instances of the previous tables. More precisely, it decreases
by m for each position shortened in the random alternant code case, and by 1 for
each position shortened in the Goppa code case.

|I| 0 1 2 3 4 5 6
n− |I| 8192 8191 8190 8189 8188 8187 8186

`

rm−|I|+1
2

˘

8515 8385 8256 8128 8001 7875 7750
dimFq

`

ShI
`

Ar(x,y)⊥˘˘⋆2 6175 6162 6149 6136 6123 6110 6097
dimFq

`

ShI
`

G (x,Γ)⊥˘˘⋆2 3510 3509 3508 3507 3506 3505 3504

Table 5.15: Square code dimensions. Parameters: (q, r,m, n) = (2, 10, 13, 8192)

158 Chapter 5. Enhancing the distinguisher by shortening the dual code

5.3 A direct sum decomposition of the shortened
dual code

Although this chapter has mainly an experimental nature, we provide in this section
a partial justification about the dimension drop for the square code, caused by
shortening the dual code. In particular, we will present the dimension analysis for
some subcodes involved in the case where the code is shortened in one position only,
i.e. I = {i}, and for eA ≤ 2.

We first show that ShI
`

Ar(x,y)⊥˘

(or equivalently
`

ShI
`

Ar(x,y)⊥˘˘

Fqm
)

decomposes in the direct sum of two codes, one being the dual of an alternant
code of order r − |I|. More specifically, we prove that

Theorem 5.1. Let Ar(x,y) ⊆ Fn
q be an alternant code and let I ⊆ J1, nK be a

non-empty set of cardinality at most r. Then

ShI

´

Ar(x,y)⊥
¯

Fqm
⊇ BFqm + C0,

where
B

def= Ar−|I|(xqI ,yqI

∏
i∈I

(x
qI − xi))⊥

and

C0
def=

∑
j∈I

〈 ¨

˝

∏
i∈I\{j}

(xj − xi)qu−1(x
qI − xi)

˛

‚yqu

j y
qI − yj

¨

˝

∏
i∈I\{j}

(x
qI − xi)qu

˛

‚yqu

qI
| u ∈ J1,m− 1K

〉
Fqm

.

This theorem generalizes Lemma 4.4, to sets I that are not necessarily singletons.
Indeed, although Lemma 4.4 is already enough for understanding the partial
explanation that follows, we believe that this structural result is of interest in
itself. Moreover, it would anyway represent the first step for a complete analysis.
The next subsection is devoted to the proof of Theorem 5.1.

Proof of Theorem 5.1
We start by decomposing a GRS code in the direct sum of two linear codes in such
a way that one is identically zero over a set of positions I. With some abuse of
notation, we allow here the multiplier of GRS codes and dual of alternant codes to
have some zero coordinates. In this case, the codes are merely meant to be identically
zero in the corresponding positions.

Lemma 5.1. Let GRSr(x,y) ⊆ Fn
qm be a GRS code and let I ⊆ J1, nK be a

non-empty set of cardinality at most r. Then

GRSr(x,y) = GRSr−|I|(x,y
∏
i∈I

(x− xi))⊕ GRS|I|(x,y).

Proof. We prove separately both the inclusions of equality.
Proof of “⊇”: we first show that the two linear codes on the right-hand

side are subcodes of GRSr(x,y). For the latter code on the right-hand side,

5.3. A direct sum decomposition of the shortened dual code 159

i.e. GRS|I|(x,y), this is obvious, since it is a GRS code that shares the same
support and multiplier with GRSr(x,y) and has a smaller degree. Regarding the
code, the definition of GRS code implies that

GRSr−|I|(x,y
∏
i∈I

(x− xi)) =
〈

xa
∏
i∈I

(x− xi)y | a ∈ J0, r − |I| − 1K

〉
Fqm

.

For any a ∈ J0, r − |I| − 1K, we have

deg(xa
∏
i∈I

(x− xi)) ≤ r − 1,

hence xa ∏
i∈I(x− xi)y ∈ GRSr(x,y) from which we obtain

GRSr(x,y) ⊇ GRSr−|I|(x,y
∏
i∈I

(x− xi)).

Proof of “⊆”: Any codeword in GRSr(x,y) can be written as P (x)y for some
polynomial P ∈ Fqm [z] of degree at most r− 1, with the usual notation that extends
to vectors the evaluation of a function. Let Q,R be respectively the quotient and
remainder of P with respect to the polynomial∏

i∈I
(z − xi) ∈ Fqm [z],

so that
P (z) = Q(z) ·

∏
i∈I

(z − xi) +R(z),

with deg(Q) = deg(P)−deg(∏i∈I(z−xi)) ≤ (r−1)−|I| and deg(R) < |I|. Therefore
we have

P (x)y = Q(x)
∏
i∈I

(x− xi)y
loooooooooomoooooooooon

∈ GRSr−|I|(x,y
∏

i∈I(x−xi))

+ R(x)y
loomoon

∈ GRS|I|(x,y)

,

which proves the “⊆” inclusion.
The fact that the sum in GRSr(x,y) = GRSr−|I|(x,y

∏
i∈I(x − xi)) +

GRS|I|(x,y) is direct follows from a dimension argument: since

dimFqm GRSr−|I|(x,y
∏
i∈I

(x− xi)) = r

= (r − |I|) + |I|
= dimFqm GRSr−|I|(x,y

∏
i∈I

(x− xi)) + dimFqm GRS|I|(x,y),

the two GRS codes on the right-hand side must have a trivial intersection.

Lemma 5.1 translates, in terms of alternant codes, into

Lemma 5.2. Let Ar(x,y) ⊆ Fn
qm be an alternant code and let I ⊆ J1, nK be of

cardinality at most r. Then
´

Ar(x,y)⊥
¯

Fqm
=

˜

Ar−|I|(x,y
∏
i∈I

(x− xi))⊥

¸

Fqm

+
´

A|I|(x,y)⊥
¯

Fqm
.

160 Chapter 5. Enhancing the distinguisher by shortening the dual code

Proof. Lemma 5.1 readily implies, for any non negative integer i,

GRSr(x,y)qi = GRSr−|I|(x,y
∏
i∈I

(x− xi))qi ⊕ GRS|I|(x,y)qi
,

It is then enough to sum over i ∈ J0,m− 1K the codes in the equalities above to get
the thesis.

Remark 5.1. Under the standard assumption that
`

Ar(x,y)⊥˘

Fqm
= ⊕

i∈J0,m−1K GRSr(x,y)qi ,
the sum from Lemma 5.2 is direct:

´

Ar(x,y)⊥
¯

Fqm
=

˜

Ar−|I|(x,y
∏
i∈I

(x− xi))⊥

¸

Fqm

⊕ ´

A|I|(x,y)⊥
¯

Fqm
.

The next proposition explains how the shortening operation behaves on a sum of
two codes, one of which is identically zero in the shortened positions.

Proposition 5.1. Let C ,D ⊆ Fn be two codes. If PctI pC q = ShI pC q then

ShI pC + Dq = PctI pC q + ShI pDq .

Proof. Proof of “⊇”: From ShI pC + Dq ⊇ ShI pC q and ShI pC + Dq ⊇ ShI pDq it
follows that

ShI pC + Dq ⊇ ShI pC q + ShI pDq

= PctI pC q + ShI pDq .

Proof of “⊆”: Let s ∈ ShI pC + Dq. There exists a vector a = c+d ∈ Fn, with c ∈ C
and d ∈ D , such that s = a

qI and ai = 0 for all i ∈ I. Since PctI pC q = ShI pC q,
any codeword in C is zero over I, in particular ci = 0 for all i ∈ I. Hence, for any
position i ∈ I,

di = ai − ci = 0− 0 = 0,

which implies that d
qI ∈ ShI pDq. Thus,

s = a
qI = c

qI + d
qI ∈ ShI pC q + ShI pDq = PctI pC q + ShI pDq .

We are now ready to prove the main result.

Proof. Proof of Theorem 5.1: Observe that, since
`

Ar−|I|(x,y
∏

i∈I(x− xi))⊥˘

Fqm

is identically zero over I,

ShI

˜

Ar−|I|(x,y
∏
i∈I

(x− xi))⊥

¸

Fqm

= PctI

˜

Ar−|I|(x,y
∏
i∈I

(x− xi))⊥

¸

Fqm

= ShI

˜

Ar−|I|(x,y
∏
i∈I

(x− xi))
¸⊥

Fqm

(from Proposition 1.2)

= Ar−|I|(xqI ,xqI

∏
i∈I

(x
qI − xi))⊥

Fqm (from Proposition 4.1).

5.3. A direct sum decomposition of the shortened dual code 161

Hence, by shortening with respect to I both sides of

Ar(x,y)⊥
Fqm = Ar−|I|(x,y

∏
i∈I

(x− xi))⊥
Fqm + A|I|(x,y)⊥

Fqm ,

we obtain

ShI

´

Ar(x,y)⊥
Fqm

¯

= Ar−|I|(xqI ,xqI

∏
i∈I

(x
qI − xi))⊥

Fqm + ShI

´

A|I|(x,y)⊥
Fqm

¯

.

It remains to prove that C0 ⊆ ShI

´

A|I|(x,y)⊥
Fqm

¯

. Take a basis element of C0 as
in the definition of Theorem 5.1, i.e. fix j ∈ I and l ∈ J1,m− 1K, and consider

c0
def=

¨

˝

∏
i∈I\{j}

(xj − xi)qu−1(x
qI − xi)

˛

‚yqu

j y
qI − yj

¨

˝

∏
i∈I\{j}

(x
qI − xi)qu

˛

‚yqu

qI
∈ C0.

It follows from
¨

˝

∏
i∈I\{j}

(xj − xi)qu−1(x
qI − xi)

˛

‚yqu

j y
qI ∈ PctI

`

GRS|I|(x,y)
˘

and

yj

¨

˝

∏
i∈I\{j}

(x
qI − xi)qu

˛

‚yqu

qI
∈ PctI

`

GRS|I|(x,y)
˘qu

that
c0 ∈ PctI

´

A|I|(x,y)⊥
Fqm

¯

.

Moreover, a direct evaluation shows that the restriction of c0 to I is the null vector.
Therefore

C0 ⊂ ShI

´

A|I|(x,y)⊥
Fqm

¯

and the proof is concluded.

Remark 5.2. Experimental computations show that the equality between C0 and
ShI

´

A|I|(x,y)⊥
Fqm

¯

is expected with high probability and a dimension inspection

supports this. On one side, ShI

´

A|I|(x,y)⊥
Fqm

¯

is the shortening in |I| positions of a
code of dimension |I|m. On the other hand, we wrote C0 using |I|(m−1) = |I|m−|I|
generators. Although we have not proved their linear independence, the latter is
an extremely reasonable assumption if the alternant code has not an additional
structure.

From now on, we will make the following assumption

Assumption 5.1. In the setting of Theorem 5.1, we assume that

C0 = ShI

´

A|I|(x,y)⊥
Fqm

¯

and consequently
ShI

´

Ar(x,y)⊥
¯

Fqm
= BFqm + C0.

162 Chapter 5. Enhancing the distinguisher by shortening the dual code

5.4 A decomposition for the square code
As in the proof of Lemma 4.5, we define the codes

D0
def= BFqm ⋆ C0, D1

def=
`

BFqm

˘⋆2
,

thus extending the definition for any |I|. Moreover, we denote with D2 the square of
C0:

D2
def= C ⋆2

0 .

Thus we have

Proposition 5.2. Let Ar(x,y) ⊆ Fn
qm be an alternant code and I ⊂ J1, nK a set of

cardinality at most r. Under Assumption 5.1, we have
ˆ

ShI

´

Ar(x,y)⊥
¯

Fqm

˙⋆2
= D0 + D1 + D2.

Proof. The thesis immediately follows by using the decomposition of the shortened
code:

ˆ

ShI

´

Ar(x,y)⊥
¯

Fqm

˙⋆2
=

`

BFqm + C0
˘⋆2 = D0 + D1 + D2.

The dimension of
´

ShI
`

Ar(x,y)⊥˘

Fqm

¯⋆2
can not be computed using the

inclusion-exclusion principle, as it does not hold for the sum of three or more
vector spaces. Nevertheless, we can write

dimFqm

´

`

ShI
`

Ar(x,y)⊥˘˘

Fqm

¯⋆2
= dimFqm (D0 + D1 + D2)
= dimFqm (D0 + D1) + dimFqm D2 − dimFqm p(D0 + D1) ∩D2q

= dimFqm D0 + dimFqm D1 + dimFqm D2
−dimFqm (D0 ∩D1)− dimFqm p(D0 + D1) ∩D2q .

(5.1)
Understanding the dimensions of D0, D1 and D2 and of their mutual intersections

is therefore at the core of the comprehension of dimFqm

´

ShI
`

Ar(x,y)⊥˘

Fqm

¯⋆2
.

We will discuss these quantities in some special cases and derive upper bounds for
dimFqm

´

Shi

`

Ar(x,y)⊥˘

Fqm

¯⋆2
. Before that, we start with some examples.

5.4.1 Empirical dimensions of the square code summands
and their intersections

We come back to the examples shown in the previous section and specify the
dimensions of D0, D1 and D2 and of their intersections.

We start with the 3-tuple (q,m) = (17, 2) and r ∈ {15, 17, 19}, in Tables 5.16,
5.17, 5.18, 5.19.

In the case where r < q − 1, the analogy between alternant and Goppa codes for
what concerns square codes is mirrored in their decomposition, too. In particular, in
Table 5.16, we observe several phenomena in both cases:

5.4. A decomposition for the square code 163

|I| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A

lte
rn

an
t/

G
op

pa
BFqm 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0
C0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
D0 0 28 52 72 88 100 108 112 112 108 100 88 72 52 28 0
D1 283 250 219 190 163 138 115 94 75 58 43 30 19 10 3 0
D2 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120

D0 ∩D1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(D0 + D1) ∩D2 0 1 3 6 10 15 21 24 14 3 0 0 0 0 0 0

Table 5.16: Dimensions of codes for the square code decomposition. Parameters:
(q, r,m, n) = (17, 15, 2, 289)

• In the example of Table 5.16, dimFqm D2 =
`|I|+1

2
˘

. More generally,

dimFqm D2 ≤
ˆ

|I|(m− 1) + 1
2

˙

.

Since D2 is the square of C0, and the latter has dimension equal to |I|(m− 1),
if the equality holds it means that C0 behaves like a random code in terms of
the square code.

• The product code D0 is such that

dimFqm D0 = dimFqm BFqm · dimFqm C0,

hence it behaves as a random componentwise product.

• the intersection D0 ∩D1 trivial at least in the range of parameters where the
shortened code is distinguishable.

• At first, dimFqm (D0 + D1)∩D2 has a quadratic growth with respect to |I|, but
then it starts to decrease towards 0. This can be qualitatively explained in the
following way. For small |I|, the code D0 +D1 is a code with very big dimension.
When the code is not classically distinguishable, D0 +D1 can even be the whole
ambient space Fn−|I|

qm . Such a code contains D2, hence (D0 + D1) ∩D2 = D2.
With |I| increasing, D0 + D1 becomes smaller and smaller until, for these
parameters, the only common codewords with D2 is the null vector.

If instead, the shortened code is not distinguishable, the intersection D0 + D1
is not degenerate. Table 5.17 shows this fact for the non-classically distinguishable
parameters (q, r,m, n) = (17, 15, 2, 278). In more detail, we have seen in the previous
section that shortening the code in one position is not sufficient for these parameters.
As a result, dimFqm D0 ∩D1 = 1 > 0.

Let us now increase r. Table 5.18 refers to parameters (q, r,m, n) = (17, 17, 2, 289).
In this case, random alternant codes behave, as expected, differently from Goppa
codes, because r ≥ q − 1, thus we split the table into two parts.

Let us focus on D0 ∩D1. In both cases, such intersection is not trivial for some
values of |I|. For instance, this occurs when the shortened code is not distinguishable.
The corresponding dimensions are written in blue. For the values of |I| above the

164 Chapter 5. Enhancing the distinguisher by shortening the dual code

|I| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A

lte
rn

an
t/

G
op

pa
BFqm 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0
C0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
D0 0 28 52 72 88 100 108 112 112 108 100 88 72 52 28 0
D1 278 250 219 190 163 138 115 94 75 58 43 30 19 10 3 0
D2 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120

D0 ∩D1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(D0 + D1) ∩D2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.17: Dimensions of codes for the square code decomposition. Parameters:
(q, r,m, n) = (17, 15, 2, 278)

|I| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A
lte

rn
an

t

BFqm 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0
C0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
D0 0 32 60 84 104 120 132 140 144 144 140 132 120 104 84 60 32 0
D1 289 288 283 250 219 190 163 138 115 94 75 58 43 30 19 10 3 0
D2 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153

D0 ∩D1 0 32 56 48 38 26 12 0 0 0 0 0 0 0 0 0 0 0
(D0 + D1) ∩D2 0 1 3 6 10 15 21 24 14 3 0 0 0 0 0 0 0 0

G
op

pa

BFqm 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0
C0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
D0 0 32 60 84 104 120 132 140 144 144 140 132 120 104 84 60 32 0
D1 289 288 283 250 219 190 163 138 115 94 75 58 43 30 19 10 3 0
D2 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153

D0 ∩D1 0 32 56 48 38 26 20 18 16 14 12 10 8 6 4 2 0 0
(D0 + D1) ∩D2 0 1 3 6 10 15 13 6 0 0 0 0 0 0 0 0 0 0

Table 5.18: Dimensions of codes for the square code decomposition. Parameters:
(q, r,m, n) = (17, 17, 2, 289)

distinguishability threshold, the pattern becomes more clear. In the alternant case,
the intersection degenerates, and this is related to the fact that eA = 0. Regarding
Goppa codes,

dimFqm D0 ∩D1 = 2(r − 1− |I|).

Finally, we take r = 19, which implies eA = 1. This time, both in the alternant
and Goppa cases, the dimension of D0∩D1 has a quadratic growth for small values of
|I| and then a linear decrease. Furthermore, (D0 + D1) ∩D2 has positive dimension
even for higher values of |I|.

As done before, we now increase the extension field degree m (and decrease the
field size q). Table 5.20 gives the target dimensions for the 4-tuple (q, r,m, n) =
(3, 8, 7, 2187), which determines eA = 1. We remark that here and more in general
for high values of m, the dimension (D0 + D1)∩D2 is not non-negligible with respect
to the total square code dimension, even for |I| close to r.

5.4. A decomposition for the square code 165

|I| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
lte

rn
an

t

BFqm 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0
C0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
D0 0 36 67 96 120 140 156 168 176 180 180 176 168 156 140 120 96 68 36 0
D1 289 288 287 286 283 250 219 190 163 138 115 94 75 58 43 30 19 10 3 0
D2 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190

D0 ∩D1 0 36 67 96 118 106 92 76 58 38 32 28 24 20 16 12 8 4 0 0
(D0 + D1) ∩D2 0 1 3 6 10 15 21 28 36 45 39 30 20 9 2 2 2 2 2 0

G
op

pa

BFqm 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0
C0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
D0 0 36 67 96 120 140 156 168 176 180 180 176 168 156 140 120 96 68 36 0
D1 289 288 287 286 283 250 219 190 163 138 115 94 75 58 43 30 19 10 3 0
D2 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190

D0 ∩D1 0 36 67 96 118 106 92 76 60 54 48 42 36 30 24 18 12 6 0 0
(D0 + D1) ∩D2 0 1 3 6 10 15 21 28 34 29 23 16 8 6 6 6 6 6 6 0

Table 5.19: Dimensions of codes for the square code decomposition. Parameters:
(q, r,m, n) = (17, 19, 2, 289)

|I| 0 1 2 3 4 5 6 7 8

A
lte

rn
an

t

BFqm 56 49 42 35 28 21 14 7 0
C0 0 6 12 18 24 30 36 42 48
D0 0 294 497 616 644 616 490 294 0
D1 1204 952 728 532 364 224 105 28 0
D2 0 21 78 171 300 465 659 882 1134

D0 ∩D1 0 70 105 112 84 56 21 0 0
(D0 + D1) ∩D2 0 0 8 24 48 80 71 50 0

G
op

pa

BFqm 56 49 42 35 28 21 14 7 0
C0 0 6 12 18 24 30 36 42 48
D0 0 294 496 581 609 581 490 294 0
D1 840 734 642 515 364 224 105 28 0
D2 0 21 78 171 300 465 638 728 832

D0 ∩D1 0 196 328 322 249 145 55 0 0
(D0 + D1) ∩D2 0 14 50 108 188 290 344 217 0

Table 5.20: Dimensions of codes for the square code decomposition. Parameters:
(q, r,m, n) = (3, 8, 7, 2187)

166 Chapter 5. Enhancing the distinguisher by shortening the dual code

5.4.2 A partial explanation for the square of the shortened
code

As already mentioned before, we focus on the case I = {i} for our explanation. In
this setting, Theorem 5.1 simplifies into the inclusion

Shi

´

Ar(x,y)⊥
¯

Fqm
⊇ BFqm + C0,

where
B

def= Ar−1(x
qi, (xqi − xi)y

qi)
⊥

and
C0

def=
〈
yqu

i y
qi − yiy

qu

qi
| u ∈ J1,m− 1K

〉
Fqm

.

In this case, a dimensional argument even guarantees that the inclusion from
Theorem 5.1 is an equality and there is no need to make any assumption, except the
standard one that the dual code Ar(x,y)⊥ has dimension rm.

Proposition 5.3.
Shi

´

Ar(x,y)⊥
¯

Fqm
= BFqm + C0,

where
B

def= Ar−1(x
qi, (xqi − xi)y

qi)
⊥

and
C0

def=
〈
yqu

i y
qi − yiy

qu

qi
| u ∈ J1,m− 1K

〉
Fqm

.

Proof. From the proof of Theorem 5.1, we know that

C0 ⊆ Shi

´

A1(x,y)⊥
Fqm

¯

Since the multiplier y’s coordinates are non-zero, A1(x,y)⊥
Fqm has not identically

zero coordinates and therefore, when shortened in only one position i, its dimension
must decrease by 1. Hence

dimFqm Shi

´

A1(x,y)⊥
¯

Fqm
= m− 1 = dim C0,

which, given one inclusion, shows the equality between the two codes and concludes
the proof.

Remark 5.3. Note that the linear code C0 is the same as the one in Lemma 4.4,
despite the different definitions. Indeed,

dimFqm C0 = m− 1,

and a set of independent generators for C0 could have been obtained, for instance, by
fixing one between u or v and forcing the other index to be different. This coincides,
in fact, with the definition just adopted here.

5.4. A decomposition for the square code 167

The generic upper bounds for square and product of codes, coming from
Proposition 1.6 can be used to estimate the dimensions of D0,D1 and D2. In
particular

dimFqm C0 = m− 1 ⇒ dimFqm D2 ≤
ˆ

m

2

˙

and {
dimFqm BFqm = (r − 1)m
dimFqm C0 = m− 1

⇒ dimFqm D0 ≤ (r − 1)m(m− 1).

Regarding D1, the upper bounds about alternant codes, i.e. Theorem 3.2 provides a
finer estimate. Being careful to replace r with r − 1 in the formula, we obtain

dimFqm D1 ≤
ˆ

(r − 1)m+ 1
2

˙

− m

2 (r − 2)
˜

(2e′ + 1)(r − 1)− 2q
e′+1 − 1
q − 1

¸

,

with e′ def=
⌊
logq(r − 2)

⌋
.

In the rest of the section, we focus on the analysis of dimFqm (D0 ∩D1). In the
following technical lemma, we exhibit sets of codewords that belong to D0 ∩D1, thus
providing a lower bound on its dimension, assuming such codewords to be linearly
independent.

Lemma 5.3. Let Ar(x,y) ⊆ Fq be an alternant code, i ∈ J1, nK and D1 be defined
as above. Let eA =

⌊
logq(r − 1)

⌋
. Then

„

´

xa
qi
(x

qi − xi)2y
qi

¯qm−u

⋆ (yqm−u

i y
qi − yiy

qm−u

qi
)
ȷqℓ

∈ D0 ∩D1 (5.2)

and
„

´

xb
qi
(x

qi − xi)qu+1y
qi

¯qm−u

⋆ (yqm−u

i y
qi − yiy

qm−u

qi
)
ȷqℓ

∈ D0 ∩D1 (5.3)

for all u ∈ J1, eA K, a ∈ J0, r − 3K, b ∈ J0, r − qu − 2K, ℓ ∈ J0,m− 1K.

Proof. Proof of (5.2). Let P (z) def= za(z − xi) ∈ Fqm [z]. For any a ∈ J0, r − 3K,
deg(P) = a+ 1 ≤ r − 2. Therefore

xa
qi
(x

qi − xi)2y
qi = (x

qi − xi)P (x
qi)yqi ∈ Shi p GRSr(x,y)q ⊆ BFqm ,

from which we obtain, by applying ℓ+m− u times the Frobenius morphism z → zq,
´

xa
qi
(x

qi − xi)2y
qi

¯ql+m−u

∈ Shi p GRSr(x,y)q
qℓ+m−u

= Shi

´

GRSr(x,y)qℓ+m−u
¯

⊆ BFqm .

On the other hand, for any ℓ ∈ J0,m− 1K and u ∈ J1, eA K,

(yqm−u

i y
qi − yiy

qm−u

qi
)qℓ

= yqm−u+ℓ

i yqℓ

qi
− yqℓ

i yqm−u+ℓ

qi
∈ C0.

168 Chapter 5. Enhancing the distinguisher by shortening the dual code

Then, by definition of the component-wise product of codes,
„

´

xa
qi
(x

qi − xi)2y
qi

¯qm−u

⋆
´

yqm−u

i y
qi − yiy

qm−u

qi

¯

ȷqℓ

=
´

xa
qi
(x

qi − xi)2y
qi

¯qℓ+m−u

⋆
´

yqm−u

i y
qi − yiy

qm−u

qi

¯qℓ

∈ BFqm ⋆ C0.

We now have to show that the target vector belongs to
`

BFqm

˘⋆2, too. We observe
that, since alternant codes are Fq-stable and the square code operator preserves such
stability, it is enough to prove that

´

xa
qi
(x

qi − xi)2y
qi

¯qm−u

⋆ (yqm−u

i y
qi − yiy

qm−u

qi
) ∈

`

BFqm

˘⋆2
,

n i.e. we can ignore the Frobenius morphism z → zqℓ .
We split the star-product of codewords above in the following difference of two

star-products

xa
qi
(x

qi − xi)2y
qi ⋆ (yqm−u

i y
qi − yiy

qm−u

qi
) = xa

qi
(x

qi − xi)2y
qi ⋆ y

qm−u

i y
qi − xa

qi
(x

qi − xi)2y
qi ⋆ yiy

qm−u

qi

and treat them separately. We have

xa
qi
(x

qi − xi)2y
qi ⋆ y

qm−u

i y
qi

=yqm−u

i

´

xa
qi
(x

qi − xi)y
qi ⋆ (x

qi − xi)y
qi

¯

∈
`

BFqm

˘⋆2

and

xa
qi
(x

qi − xi)2y
qi ⋆ yiy

qm−u

qi

=yi

´

xa
qi
(x

qi − xi)y
qi ⋆ (x

qi − xi)yqm−u

qi

¯

=yi

´

xa
qi
(x

qi − xi)y
qi ⋆

`

(x
qi − xi)qu

y
qi

˘qm−u¯

∈
`

BFqm

˘⋆2
,

where the last membership follows from the fact that qu ≤ qeA ≤ r− 1 and therefore

(x
qi − xi)qu

y
qi ∈ BFqm .

Hence the target vector belongs to the intersection of BFqm ⋆ C0 and
`

BFqm

˘⋆2.
Proof of (5.3). For any b ∈ J0, r − qu − 2K, b+ qu + 1 ≤ r − 1, thus

xb
qi
(x

qi − xi)qu+1y
qi ∈ Shi p GRSr(x,y)q ⊆ BFqm ,

from which we obtain, by applying ℓ+m− u times the Frobenius morphism z → zq,
´

xb
qi
(x

qi − xi)qu+1y
qi

¯qℓ+m−u

∈ Shi p GRSr(x,y)q
qℓ+m−u

= Shi

´

GRSr(x,y)qℓ+m−u
¯

⊆ BFqm .

As already shown in the proof of (5.2), for any ℓ ∈ J0,m− 1K and u ∈ J1,m− 1K ⊇
J1, eA K,

(yqm−u

i y
qi − yiy

qm−u

qi
)qℓ ∈ C0.

5.4. A decomposition for the square code 169

Then, by definition of the component-wise product of codes,

„

´

xb
qi
(x

qi − xi)qu+1y
qi

¯qm−u

⋆
´

yqm−u

i y
qi − yiy

qm−u

qi

¯

ȷqℓ

=
´

xb
qi
(x

qi − xi)qu+1y
qi

¯qℓ+m−u

⋆
´

yqm−u

i y
qi − yiy

qm−u

qi

¯qℓ

∈ BFqm ⋆ C0.

We now have to show that the target vector belongs to
`

BFqm

˘⋆2, too. We
observe that, since alternant codes are Fq-stable, it is enough to prove that

´

xb
qi
(x

qi − xi)qu+1y
qi

¯qm−u

⋆ (yqm−u

i y
qi − yiy

qm−u

qi
) ∈

`

BFqm

˘⋆2
,

i.e. we can ignore the Frobenius morphism z → zqℓ .
We split the star-product of codewords above in the following difference of two

star-products
´

xb
qi
(x

qi − xi)qu+1y
qi

¯qm−u

⋆ (yqm−u

i y
qi − yiy

qm−u

qi
)

=
´

xb
qi
(x

qi − xi)qu+1y
qi

¯qm−u

⋆ yqm−u

i y
qi

−
´

xb
qi
(x

qi − xi)qu+1y
qi

¯qm−u

⋆ yiy
qm−u

qi

and treat them separately. We have
´

xb
qi
(x

qi − xi)qu+1y
qi

¯qm−u

⋆ yqm−u

i y
qi

=xbqm−u

qi
(x

qi − xi)1+qm−u
yqm−u

qi
⋆ yqm−u

i y
qi

=yqm−u

i

´

xb
qi
(x

qi − xi)y
qi

¯qm−u

⋆ (x
qi − xi)y

qi ∈
`

BFqm

˘⋆2

and
´

xb
qi
(x

qi − xi)qu+1y
qi

¯qm−u

⋆ yiy
qm−u

qi

=yi(x
qi − xi)

´

xb
qi
(x

qi − xi)y
qi

¯qm−u

⋆
`

(x
qi − xi)qu

y
qi

˘qm−u

=yi

´

xb
qi
(x

qi − xi)y
qi

¯qm−u

⋆
`

(x
qi − xi)qu

y
qi

˘qm−u

∈
`

BFqm

˘⋆2
.

Hence the target vector belongs to the intersection of BFqm ⋆ C0 and
`

BFqm

˘⋆2.

The total number of linear relationships found is

m
eA∑
u=1

((r − 2) + (r − qu − 1)) = m
eA∑
u=1

(2r − qu − 3).

Remark 5.4. Let A3(x,y) ⊆ F2 be a classically distinguishable random binary
alternant code of order 3. Then eA = ⌊log2(3− 1)⌋ = 1. Let us consider the square

170 Chapter 5. Enhancing the distinguisher by shortening the dual code

code of the dual code shortened in one position and let D0,D1,D2 be the codes
defined from the decomposition given before. Then we have

dimFq D0 ≤ (r − 1)m(m− 1) = 2m(m− 1),
dimFq D1 ≤

`(r−1)m+1
2

˘

− m
2 (r − 2)(r − 3) =

`2m+1
2

˘

,

dimFq D2 ≤
`(m−1)+1

2
˘

=
`

m
2

˘

,

dimFq (D0 + D1) ∩D2 ≥ 0.

(5.4)

Note that, with these parameters, the vectors proved in Lemma 5.3 to lie in D1 only
come from (5.2), since b ∈ J0, r−qu−2K, but r−qu−2 ≤ r−q−2 < 0. If we assume
that the m(r − 2) linear relationships from (5.2) are linearly independent, we obtain

dimFq D0 ∩D1 ≥ (r − 2)m. (5.5)

We can thus upper bound the square code dimension as

dimFqm

´

`

ShI
`

Ar(x,y)⊥˘˘

Fqm

¯⋆2
= dimFqm D0 + dimFqm D1 + dimFqm D2

−dimFqm (D0 ∩D1)− dimFqm p(D0 + D1) ∩D2q

≤
`2m+1

2
˘

+ 2m(m− 1) +
`

m
2

˘

−m
=

`3m
2

˘

−m.

Experimentally, the upper bound turns out to be tight and equality holds in the
distinguishable regime, meaning that all the bounds from (5.4) and (5.5) are tight
too. This result is related to the rank of in the analysis of Section for the binary
case.

Other linear relationships for eA ≥ 2
The analysis becomes more complicated as eA increases, as other linear relationships
turn out. For instance, starting from eA = 2, the dimension of D0 becomes
systematically smaller than (r − 1)(m − 1)m. Indeed, for any ℓ ∈ J0,m − 1K,
consider the three following elements of D0 that are component-wise products of
basis elements of BFqm and C0:

•
”´

(x
qi − xi)q2

y
qi

¯

⋆ (yq2

i yq
qi
− yq

i yq2

qi
)
ıqℓ

,

• −
”

`

(x
qi − xi)qy

qi

˘q
⋆ (yq2

i y
qi − yiy

q2

qi
)
ıqℓ

,

•
”

`

(x
qi − xi)y

qi

˘q2
⋆ (yq

i y
qi − yiy

q
qi
)
ıqℓ

.

It is straightforward to check that these three vectors sum to 0, providing m linear
relationships (one for each choice of ℓ) among the standard set of generators of D0.
Thus

dimFqm D0 ≤ (r − 1)m(m− 1)−m.

Moreover, for eA > 2, these linear relationships still do not capture all the structure.

5.5. Conclusions 171

What is missing?
We have seen from the experimental results of this section that the impact of
(D0 + D1)∩D2 is not negligible. The exact formula or at least a good estimate of the
latter code would help in the comprehension of the main square code. Furthermore, as
already pointed out several times, the analysis provided here is far from covering the
whole casuistry of the number dimFqm D0 ∩D1. In particular, it would be interesting
to achieve a better understanding of the dimension of the square of the shortened
dual code in the following cases:

• when eA is larger than 2,

• when the dual code is shortened on several positions,

• when the alternant code is also a Goppa code and the set of quadratic
relationships is not the same, i.e. when the Goppa polynomial degree r is
≥ q − 1.

For what concerns the latter case, even from an empirical viewpoint, it is not clear
whether specific upper bounds could be derived. Indeed, we recall that, given the
Goppa code G (x,Γ) = Ar(x,y), the code B⊥ = Ar−|I|(xqI ,

∏
i∈I(x

qI − xi)y
qI) is not

a Goppa code. Indeed, as highlighted in Chapter 4, ∏
i∈I(x

qI − xi)y
qI is a vector of

evaluations of a rational function that is not the inverse of a polynomial (of degree
r− |I|). Therefore, it remains to characterize in which range of parameters, if any, it
is possible to upper bound dimFqm

´

ShI
`

Ar(x,y)⊥˘

Fqm

¯⋆2
with a number smaller

than
dimFqm

´

G (x,Γ)⊥
¯⋆2
− |I|,

the latter not improving the classical distinguisher.

5.5 Conclusions
In this chapter, we have presented a simple technique that allows, for some parameters,
to enhance the classical distinguisher for high-rate alternant and Goppa codes from
[Fau+13]. Our strategy exploits the viewpoint of the distinguisher in terms of the
dimension of the square of the dual code and therefore it builds upon the structural
results from Chapter 3. The strategy consists in shortening the dual code and then
computing its square code. Then, the arising dimension has to be compared with
that obtained by replacing the original alternant/Goppa code with a random one
with the same parameters. If the former is smaller, then the dimension of the square
code represents a distinguisher. This procedure can be done in polynomial time.

We proposed a possible way to decompose the shortened code in such a way that
part of the algebraic structure characterizing these families of codes is preserved.
Starting from this decomposition, we provided a partial description of the dimension
of the summands in the square code. Although the analysis is not complete, this is a
first step for understanding and assessing the impact of this strategy. The chapter
is also with numerous empirical examples. In particular, we found instances of
random alternant code that are not distinguishable with the original approach form
[Fau+13], but that become such with our strategy. We also showed how to produce

172 Chapter 5. Enhancing the distinguisher by shortening the dual code

non-full-length parameters for which there exists an improvement, by decreasing the
code length. Hence, to the best of our knowledge, this is the first time the high-rate
distinguishable regime from [Fau+13] has been extended. Similar results have been
obtained for Goppa codes, but only in the case where the order is small enough
compared to the field size. In particular, no improvement is obtained for binary
Goppa codes.

We leave as an open problem the complete analysis of the square code dimension
after shortening. Solving it would shed light more rigorously on which parameters are
really distinguishable. Moreover, it might also help to develop an even wider range
distinguisher, for both alternant and Goppa codes, using more advanced techniques.

Conclusion

In this thesis, we have addressed two questions related to algebraic codes, namely
the decoding of Reed-Solomon codes through algebraic techniques and the security
of alternant and Goppa codes for cryptographic applications.

The first problem has a long history and extensive literature associated with it.
Several efficient decoders for Reed-Solomon codes have been designed. Their ancestor
is the Berlekamp-Welch algorithm that decodes uniquely up to the minimum code
distance, which, RS codes being MDS codes, is the maximum possible for fixed
parameters. This decoding radius was then improved by list decoding algorithms;
first Sudan’s and then Guruswami-Sudan’s that reach Sudan’s and Johnson’s error-
correction radii, respectively. Later, alternative methods were developed, including
the so-called power-decoding algorithm [SSB10]. It is characterized by some algebraic
equations that model the decoding problem and whose resolution leads to the
correction of errors present in the received message. In its most advanced version
[Nie18], the power-decoding strategy achieves correction performance similar to
that of the Guruswami-Sudan algorithm. In Chapter 2, we further studied these
multivariate equations. Instead of solving them by linearization, as done in the
above algorithm, we analyze them by Gröbner bases techniques. These are the main
tool for studying and solving multivariate algebraic systems, and their basics have
been recalled in the introductory Chapter 1. All key equations used by the power
decoding algorithm [Nie18] can be obtained from a subset of bilinear equations, i.e.
linear with respect to two blocks of variables. The first is given by the coefficients of
the error-locator polynomial, and the second by the coefficients of the polynomial
associated with the sent codeword. Estimates of the complexity of computing a
Gröbner basis for bilinear systems are better than those existing for random systems.
However, the system in question can be solved even more efficiently than a generic
bilinear system with the same number of equations and variables. Indeed, we have
shown that it is possible to correct in polynomial time a number of errors up to
Sudan’s radius. The algorithm is appreciable in its simplicity: all necessary key
equations are produced recursively and automatically by computing the Gröbner
basis. We have pushed our analysis beyond Sudan’s bound and through empirical
observations have brought evidence that our method allows in some cases to correct
up to and even slightly beyond Johnson’s radius, which represents a barrier for power
decoding, instead. By doing so, we derived new algebraic identities involving a single
block of variables, even trying to insert them directly into the initial system. These
appeared to be useful for the computation of degree falls crucial to solve the system.
We have thus initiated a kind of algebraic decoding of Reed-Solomon codes based on
the key equations of the power decoding algorithm. We see two possible directions
to investigate this strategy further. First, it would be interesting to fully understand

173

174 Chapter 5. Enhancing the distinguisher by shortening the dual code

the results obtained experimentally regarding the decoding when the number of
errors reaches and exceeds Johnson’s bound. A thorough study could indicate what
is the optimal strategy in choosing the initial system, i.e. which equations to choose
in the various cases in order to achieve the best efficiency in computing a Gröbner
basis. On the other hand, the discovery of new polynomial identities suggests that
different algebraic manipulations could lead to other key equations and consequently
enhance the decoding by Gröbner basis techniques.

The other topic we have addressed in this manuscript concerns the security of
Goppa codes (or more generally of alternant codes) in a cryptographic context.
Goppa codes have been used in the original proposal of the first scheme based on
codes, the McEliece cryptosystem [McE78], as well as in the CFS digital signature
[CFS01]. Approximately 45 years after its invention, McEliece’s encryption is
still considered extremely secure and the attraction for it has even increased
since it is considered a quantum-safe alternative. Currently, Classic McEliece
[ABCCGLMMMNPPPSSSTW20]has been admitted to the fourth round of the
NIST post-quantum competition and is considered ready for standardization. While
generic decoding algorithms used to design parameters in code-based cryptography
remain of exponential complexity, there is no guarantee that the special structure
of Goppa codes could not be taken into account to break the cryptosystem. Our
study draws inspiration from the high-rate distinguisher presented in [Fau+13],
which, for the first time, challenges the widely believed view that Goppa codes are
indistinguishable from random codes, only for sufficiently high rates, though. In
particular, the parameters affected by this distinguisher do not include those of
Classic McEliece (whereas those of CFS are). Furthermore, a distinguisher does not
necessarily imply the existence of a structural attack.

In this context, our work goes in several directions. First, in Chapter 3, we
revisited the distinguisher, proposing an alternative viewpoint, i.e. in terms of Schur’s
product and square of codes. While the distinguisher of [Fau+13] relies on credible
heuristics, we rigorously proved upper bounds on the size of the square code of
the dual of an alternant/Goppa code, which turns out to be smaller than that of a
random code. Moreover, these upper bounds are tight for both random alternant
and Goppa codes and for each field size, while [Fau+13] covers the non-binary Goppa
codes case only empirically.

The big open problem, however, is to convert the distinguisher into an attack. The
square code construction had previously been used to attack variants of McEliece’s
scheme based on generalized RS codes. More precisely, a filtration of Reed-Solomon
codes of decreasing dimension was computed through the conductor code with respect
to a product code. On the other hand, the subfield subcode structure of alternant
and Goppa codes poses further difficulties and hinders a direct adaptation of such
an attack. Thanks to a better understanding of the square code structure given in
Chapter 3, we have been able to find a good conductor that leads to a filtration of
random alternant codes of decreasing order. This is the first part of the cryptanalysis
described in Chapter 4. Because of technical reasons, the filtration does not succeed
when the underlying code is Goppa, though. In any case, the attack is not finished:
we are left with an alternant code of small order, down to an order equal to field
size, where the private structure, i.e. its support and multiplier, are still hidden.
Once again, Gröbner bases techniques came to the aid. We exploited them to solve
the algebraic system from [Fau+10a], which models the key-recovery problem for

5.5. Conclusions 175

alternant/Goppa codes. The key point was that decreasing the alternant code order
made the system easier to be solved. Overall, our cryptanalysis is successful against
binary or ternary random alternant codes. The small field size is needed in order
to compute a filtration down to alternant code order 3, for which the algebraic
attack becomes practical. Even if limited to the distinguishable regime, we thus have
presented the first attack on unstructured alternant codes. Previous attacks only
worked for alternant/Goppa codes with some additional properties that eventually
and crucially revealed vulnerabilities. Within, this first achievement opens the road
to future works. An obvious target is to adapt the attack to Goppa codes: such
a result would break for instance the CFS signature. To this extent, the biggest
hurdle consists in computing differently a filtration of Goppa codes or finding an
alternative way to simplify the key-recovery problem. Moreover, the Gröbner basis
algorithm would also need to be adjusted. On the other hand, even in the case of
random alternant codes, it would be interesting to extend the algebraic cryptanalysis
to orders higher than 3. This would allow to stop the filtration at a previous step
and therefore attack codes with a larger field size.

The ultimate goal remains to corroborate or dismantle the assumption of
indistinguishability of Goppa codes for rates compatible with the McEliece
cryptosystem. In Chapter 5, we addressed this topic, trying to enhance the classical
distinguisher. We have been able to decrease the minimal distinguishable rate in
some cases, by keeping the procedure of polynomial complexity. More precisely,
before computing the square of the dual of an alternant/Goppa code, we shorten it
in some amount of positions. The distinguisher is still given by the dimension of the
resulting square code. This strategy is more effective for random alternant codes
rather than Goppa codes and for big rather than small field sizes. In particular,
from our experiments, binary Goppa codes do not seem to be affected by any
improvement. This is a very preliminary work, both in terms of the theoretical
evidence provided and the magnitude of the amelioration. However, it clearly shows
that the distinguishable rate barrier is not insurmountable. Could related ideas and
more advanced techniques lead to an efficient algorithm capable of distinguishing
Goppa codes used in Classic McEliece? This question draws vital lymph from the
work presented in this manuscript. In the same way, as we have been able to devise a
distinguisher-based attack after approximately a decade since [Fau+13] was published,
a structural attack on McEliece’s scheme could eventually emerge from an improved
distinguisher.

Bibliography

[AGS11] Carlos Aguilar, Philippe Gaborit, and Julien Schrek. “A new zero-
knowledge code based identification scheme with reduced communica-
tion”. In: Proc. IEEE Inf. Theory Workshop- ITW 2011. IEEE, Oct.
2011, pp. 648–652 (cit. on p. 37).

[Agu+18] Carlos Aguilar-Melchor, Olivier Blazy, Jean-Christophe Deneuville,
Philippe Gaborit, and Gilles Zémor. “Efficient Encryption From Random
Quasi-Cyclic Codes”. In: IEEE Trans. Inform. Theory 64.5 (2018),
pp. 3927–3943 (cit. on p. 31).

[Agu+20] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux,
Olivier Blazy, Maxime Bros, Alain Couvreur, Jean-Christophe Deneuville,
Philippe Gaborit, Gilles Zémor, and Adrien Hauteville. Rank Quasi
Cyclic (RQC). Second Round submission to NIST Post-Quantum
Cryptography call. Apr. 2020 (cit. on p. 31).

[Agu+21] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux,
Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo
Persichetti, Gilles Zémor, and Jurjen Bos. HQC. Round 3 Submission to
the NIST Post-Quantum Cryptography Call. https://pqc-hqc.org/
doc/hqc-specification_2021-06-06.pdf. June 2021 (cit. on p. 31).

[AK11] Mortuza Ali and Margreta Kuijper. “A Parametric Approach to List
Decoding of Reed-Solomon Codes Using Interpolation”. In: IEEE
Transactions on Information Theory 57.10 (2011), pp. 6718–6728 (cit. on
p. 62).

[Ala+22] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang,
John Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene Peralta,
et al. “Status report on the third round of the NIST post-quantum
cryptography standardization process”. In: US Department of Commerce,
NIST (2022) (cit. on pp. x, xvii).

[Alb+20] Martin Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan
Gilcher, Tanja Lange, Varun Maram, Ingo von Maurich, Rafael Mizoczki,
Ruben Niederhagen, Edoardo Persichetti, Kenneth Paterson, Christiane
Peters, Peter Schwabe, Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai,
Martin Tomlinson, and Wang Wen. Classic McEliece (merger of Classic
McEliece and NTS-KEM. https://classic.mceliece.org. Third
round finalist of the NIST post-quantum cryptography call. Oct. 2020
(cit. on pp. x, xvii, 29, 152).

177

https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf
https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf
https://classic.mceliece.org

178 Bibliography

[Ale03] Alekhnovich, Michael. “More on Average Case vs Approximation
Complexity”. In: 44th Symposium on Foundations of Computer Science
(FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings.
IEEE Computer Society, 2003, pp. 298–307 (cit. on p. 31).

[Apo+20] Daniel Apon, Ray A. Perlner, Angela Robinson, and Paolo Santini.
“Cryptanalysis of LEDAcrypt”. In: Advances in Cryptology - CRYPTO
2020, Part III. Ed. by Daniele Micciancio and Thomas Ristenpart.
Vol. 12172. Lecture Notes in Computer Science. Springer, 2020, pp. 389–
418 (cit. on p. 33).

[Ara+17] N. Aragon, P. Barreto, S. Bettaieb, Loic Bidoux, O. Blazy, J.-C.
Deneuville, P. Gaborit, S. Gueron, T. Güneysu, C. Aguilar Melchor,
R. Misoczki, E. Persichetti, N. Sendrier, J.-P. Tillich, and G. Zémor.
BIKE. NIST Round 1 submission for Post-Quantum Cryptography. Nov.
2017 (cit. on p. 33).

[Ara+19] Nicolas Aragon, Olivier Blazy, Philippe Gaborit, Adrien Hauteville,
and Gilles Zémor. “Durandal: a rank metric based signature scheme”.
In: Advances in Cryptology - EUROCRYPT 2019 - 38th Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part
III. Vol. 11478. LNCS. Springer, 2019, pp. 728–758 (cit. on p. 37).

[Ara+21] Nicolas Aragon, Marco Baldi, Jean-Christophe Deneuville, Karan
Khathuria, Edoardo Persichetti, and Paolo Santini. “Cryptanalysis of a
code-based full-time signature”. In: Designs, Codes and Cryptography
89.9 (2021), pp. 2097–2112 (cit. on p. 37).

[Ars+04] Gwénolé Ars, Jean-Charles Faugère, Hiroshi Imai, Mitsuru Kawazoe,
and Makoto Sugita. “Comparison Between XL and Gröbner Basis
Algorithms”. In: ASIACRYPT. 2004 (cit. on p. 53).

[Bae+21] John Baena, Pierre Briaud, Daniel Cabarcas, Ray A. Perlner, Daniel
Smith-Tone, and Javier A. Verbel. “Improving Support-Minors rank
attacks: applications to GeMSS and Rainbow”. In: IACR Cryptol. ePrint
Arch., accepted for publication in CRYPTO 2022 (2021), p. 1677 (cit. on
p. 24).

[Bal+11] Marco Baldi, Marco Bianchi, Franco Chiaraluce, Joachim Rosenthal,
and Davide Schipani. Enhanced public key security for the McEliece
cryptosystem. submitted. arxiv:1108.2462v2[cs.IT]. 2011 (cit. on p. 32).

[Bal+13] Marco Baldi, Marco Bianchi, Franco Chiaraluce, Joachim Rosenthal,
and Davide Schipani. “Using LDGM Codes and Sparse Syndromes
to Achieve Digital Signatures”. In: Post-Quantum Cryptography 2013.
Vol. 7932. LNCS. Springer, 2013, pp. 1–15 (cit. on p. 37).

[Bal+19] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi,
and Paolo Santini. LEDAcrypt. Second round submission to the NIST
post-quantum cryptography call. Jan. 2019 (cit. on pp. 33, 39).

[Bal+21] Marco Baldi, Jean-Christophe Deneuville, Edoardo Persichetti, and
Paolo Santini. “Cryptanalysis of a code-based signature scheme without
trapdoors”. In: Cryptology ePrint Archive (2021) (cit. on p. 37).

Bibliography 179

[Ban+17] Gustavo Banegas, Paulo S.L.M Barreto, Brice Odilon Boidje, Pierre-
Louis Cayrel, Gilbert Ndollane Dione, Kris Gaj, Cheikh Thiécoumba
Gueye, Richard Haeussler, Jean Belo Klamti, Ousmane N’diaye, Duc Tri
Nguyen, Edoardo Persichetti, and Jefferson E. Ricardini. DAGS : Key
Encapsulation for Dyadic GS Codes. https://csrc.nist.gov/CSRC/
media/Projects/Post-Quantum-Cryptography/documents/round-
1/submissions/DAGS.zip. First round submission to the NIST post-
quantum cryptography call. Nov. 2017 (cit. on p. 105).

[Bar+05] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Bo-Yin Yang.
“Asymptotic expansion of the degree of regularity for semi-regular
systems of equations”. In: MEGA’05 – Effective Methods in Algebraic
Geometry. 2005, pp. 1–14 (cit. on pp. 58, 59).

[Bar+17] Magali Bardet, Élise Barelli, Olivier Blazy, Rodolfo Canto Torres, Alain
Couvreur, Phillipe Gaborit, Ayoub Otmani, Nicolas Sendrier, and Jean-
Pierre Tillich. BIG QUAKE. https://bigquake.inria.fr. NIST
Round 1 submission for Post-Quantum Cryptography. Nov. 2017 (cit.
on p. 105).

[Bar+20a] Magali Bardet, Pierre Briaud, Maxime Bros, Philippe Gaborit, Vincent
Neiger, Olivier Ruatta, and Jean-Pierre Tillich. “An Algebraic Attack on
Rank Metric Code-Based Cryptosystems”. In: Advances in Cryptology
- EUROCRYPT 2020 - 30th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zagreb, Croatia,
May 10-14, 2020. Proceedings. 2020 (cit. on p. 41).

[Bar+20b] Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit, Ray
Perlner, Daniel Smith-Tone, Jean-Pierre Tillich, and Javier Verbel.
“Improvements of Algebraic Attacks for solving the Rank Decoding and
MinRank problems”. In: Advances in Cryptology - ASIACRYPT 2020,
International Conference on the Theory and Application of Cryptology
and Information Security, 2020. Proceedings. 2020, pp. 507–536 (cit. on
p. 41).

[Bar+21] Alessandro Barenghi, Jean-François Biasse, Edoardo Persichetti, and
Paolo Santini. “LESS-FM: fine-tuning signatures from the code equiv-
alence problem”. In: Internationa@MiscGrassl:codetables, author =
"Grassl, Markus", title = "Bounds on the minimum distance of linear
codes and quantum codes", howpublished = "Online available at http:
// www. codetables. de ", year = "2007", note = "Accessed on 2022-
09-27" l Conference on Post-Quantum Cryptography. Springer. 2021,
pp. 23–43 (cit. on p. 38).

[Bar04] Magali Bardet. “Étude des systèmes algébriques surdéterminés. Appli-
cations aux codes correcteurs et à la cryptographie”. http://tel.archives-
ouvertes.fr/tel-00449609/en/. PhD thesis. Université Paris VI, Dec. 2004
(cit. on pp. 56–58).

[Bar94] S Barg. “Some new NP-complete coding problems”. In: Problemy
Peredachi Informatsii 30.3 (1994), pp. 23–28 (cit. on p. 26).

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/DAGS.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/DAGS.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/DAGS.zip
https://bigquake.inria.fr
http://www.codetables.de
http://www.codetables.de

180 Bibliography

[BBC08] Marco Baldi, Marco Bodrato, and Franco Chiaraluce. “A New Analysis of
the McEliece Cryptosystem Based on QC-LDPC Codes”. In: Proceedings
of the 6th international conference on Security and Cryptography for
Networks. SCN ’08. Amalfi, Italy: Springer-Verlag, 2008, pp. 246–262
(cit. on p. 33).

[BBD] Daniel J Bernstein, Johannes Buchmann, and Erik Dahmen. “Post-
Quantum Cryptography.–2009”. In: DOI: https://doi. org/10.1007/978-
3-540-88702-7 () (cit. on p. 24).

[BC18] Élise Barelli and Alain Couvreur. “An Efficient Structural Attack on
NIST Submission DAGS”. In: Advances in Cryptology - ASIACRYPT’18.
Ed. by Thomas Peyrin and Steven Galbraith. Vol. 11272. LNCS. Springer,
Dec. 2018, pp. 93–118 (cit. on p. 111).

[BCD22] Maxime Bombar, Alain Couvreur, and Thomas Debris–alazard. On
codes and learning with errors over function fields. 2022 (cit. on pp. 25,
31).

[Bec+12] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer.
“Decoding Random Binary Linear Codes in 2n/20: How 1 + 1 = 0
Improves Information Set Decoding”. In: Advances in Cryptology -
EUROCRYPT 2012. LNCS. Springer, 2012 (cit. on p. 40).

[Bee+18] Peter Beelen, Martin Bossert, Sven Puchinger, and Johan Rosenkilde.
“Structural Properties of Twisted Reed–Solomon Codes with Applica-
tions to Cryptography”. In: 2018 IEEE International Symposium on
Information Theory (ISIT). 2018, pp. 946–950 (cit. on p. 32).

[Ber+09] Thierry P. Berger, Pierre-Louis Cayrel, Philippe Gaborit, and Ayoub
Otmani. “Reducing Key Length of the McEliece Cryptosystem”. In:
Progress in Cryptology - AFRICACRYPT 2009. Ed. by Bart Preneel.
Vol. 5580. LNCS. Gammarth, Tunisia, June 2009, pp. 77–97 (cit. on
pp. 32, 105).

[Ber+19] Daniel J. Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich, Rafael
Mizoczki, Ruben Niederhagen, Edoardo Persichetti, Christiane Peters,
Peter Schwabe, Nicolas Sendrier, Jakub Szefer, and Wang Wen. Classic
McEliece: conservative code-based cryptography. https : / / classic .
mceliece.org. Second round submission to the NIST post-quantum
cryptography call. Mar. 2019 (cit. on p. 84).

[Ber00] Thierry P. Berger. “On the cyclicity of Goppa codes, parity-check
subcodes of Goppa codes and extended Goppa codes”. In: Finite Fields
Appl. 6.3 (2000), pp. 255–281 (cit. on p. 121).

[Beu22] Ward Beullens. “Breaking Rainbow Takes a Weekend on a Laptop”. In:
Advances in Cryptology - CRYPTO 2022. LNCS. Springer-Verlag, 2022
(cit. on p. 24).

[BFS04] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. “On the
complexity of Gröbner basis computation of semi-regular overdetermined
algebraic equations”. In: Proceedings of the International Conference on
Polynomial System Solving. 2004, pp. 71–74 (cit. on p. 58).

https://classic.mceliece.org
https://classic.mceliece.org

Bibliography 181

[BFS15] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. “On the
complexity of the F5 Gröbner basis algorithm”. In: J. Symbolic Comput.
70 (2015), pp. 49–70 (cit. on pp. 52, 54).

[Bid+22] Loïc Bidoux, Philippe Gaborit, Mukul Kulkarni, and Victor Mateu.
“Code-based Signatures from New Proofs of Knowledge for the Syndrome
Decoding Problem”. In: arXiv preprint arXiv:2201.05403 (2022) (cit. on
p. 38).

[BL05] Thierry P. Berger and Pierre Loidreau. “How to Mask the Structure of
Codes for a Cryptographic Use”. In: Des. Codes Cryptogr. 35.1 (2005),
pp. 63–79 (cit. on p. 32).

[BL11] Andrej Bogdanov and Chin Ho Lee. “Homomorphic encryption from
codes”. In: arXiv preprint arXiv:1111.4301 (2011) (cit. on p. 32).

[BLM11] Paulo Barreto, Richard Lindner, and Rafael Misoczki. “Monoidic codes
in cryptography”. In: Post-Quantum Cryptography 2011. Vol. 7071.
LNCS. Springer, 2011, pp. 179–199 (cit. on pp. 32, 105).

[BLP10] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. “Wild
McEliece”. In: Selected Areas in Cryptography. Ed. by Alex Biryukov,
Guang Gong, and Douglas R. Stinson. Vol. 6544. LNCS. 2010,
pp. 143–158 (cit. on pp. 32, 105, 107).

[BLP11] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. “Wild McEliece
Incognito”. In: Post-Quantum Cryptography 2011. Ed. by Bo-Yin Yang.
Vol. 7071. LNCS. Springer Berlin Heidelberg, 2011, pp. 244–254 (cit. on
p. 105).

[BMS11] Paulo S.L.M Barreto, Rafael Misoczki, and Marcos A. Jr. Simplicio.
“One-time signature scheme from syndrome decoding over generic error-
correcting codes”. In: Journal of Systems and Software 84.2 (2011),
pp. 198–204 (cit. on p. 37).

[BMT21] Magali Bardet, Rocco Mora, and Jean-Pierre Tillich. “Decoding Reed-
Solomon codes by solving a bilinear system with a Gröbner basis
approach”. In: 2021 IEEE International Symposium on Information
Theory (ISIT). Melbourne, Australia, July 2021, pp. 872–877 (cit. on
pp. xii, xix).

[BMT23] Magali Bardet, Rocco Mora, and Jean-Pierre Tillich. “Polynomial time
key-recovery attack on high rate random alternant codes”. In: preprint
(2023) (cit. on pp. xiii, xxi).

[BMT78] Elwyn Berlekamp, Robert McEliece, and Henk van Tilborg. “On the
inherent intractability of certain coding problems”. In: IEEE Trans.
Inform. Theory 24.3 (May 1978), pp. 384–386 (cit. on p. 26).

[Buc65] Bruno Buchberger. “Ein Algorithmus zum Auffinden der Basiselemente
des Restklassenringes nach einem nulldimensionalen Polynomideal”.
PhD thesis. Universitat Innsbruck, 1965 (cit. on pp. x, xviii, 43).

182 Bibliography

[Car+22] Kevin Carrier, Thomas Debris-Alazard, Charles Meyer-Hilfiger, and
Jean-Pierre Tillich. “Statistical Decoding 2.0: Reducing Decoding to
LPN”. In: Advances in Cryptology - ASIACRYPT 2022. LNCS. Springer,
2022 (cit. on p. 41).

[Cas+15] Igniacio Cascudo, Ronald Cramer, Diego Mirandola, and Gilles Zémor.
“Squares of Random Linear Codes”. In: IEEE Trans. Inform. Theory
61.3 (Mar. 2015), pp. 1159–1173. issn: 0018-9448 (cit. on pp. 18, 19, 83,
84, 106).

[CD22] Wouter Castryck and Thomas Decru. “An efficient key recovery attack
on SIDH (preliminary version)”. In: Cryptology ePrint Archive (2022)
(cit. on p. 25).

[CDE21] André Chailloux, Thomas Debris-Alazard, and Simona Etinski. “Classi-
cal and Quantum Algorithms for Generic Syndrome Decoding Problems
and Applications to the Lee Metric”. In: Post-Quantum Cryptography -
12th International Workshop, PQCrypto 2021, Daejeon, South Korea,
July 20-22, 2021, Proceedings. Ed. by Jung Hee Cheon and Jean-Pierre
Tillich. Vol. 12841. Lecture Notes in Computer Science. Springer, 2021,
pp. 44–62 (cit. on p. 41).

[CF17] Edern Christian and Jean-Charles Faugère. “A survey on signature-based
algorithms for computing Gröbner bases”. In: J. Symbolic Comput. 80
(2017), pp. 719–784 (cit. on p. 54).

[CFS01] Nicolas Courtois, Matthieu Finiasz, and Nicolas Sendrier. “How to
Achieve a McEliece-based Digital Signature Scheme”. In: Advances in
Cryptology - ASIACRYPT 2001. Vol. 2248. LNCS. Gold Coast, Australia:
Springer, 2001, pp. 157–174 (cit. on pp. x, xviii, 33, 35, 82, 105, 107,
109, 152, 174).

[Cha+20] Melissa Chase, David Derler, Steven Goldfeder, Jonathan Katz, Vladimir
Kolesnikov, Claudio Orlandi, Sebastian Ramacher, Christian Rechberger,
Daniel Slamanig, Xiao Wang, et al. The picnic signature scheme. 2020
(cit. on p. 34).

[Cho+15] Muhammad FI Chowdhury, Claude-Pierre Jeannerod, Vincent Neiger,
Eric Schost, and Gilles Villard. “Faster algorithms for multivariate
interpolation with multiplicities and simultaneous polynomial approxi-
mations”. In: IEEE Transactions on Information Theory 61.5 (2015),
pp. 2370–2387 (cit. on p. 15).

[CL22] Alain Couvreur and Matthieu Lequesne. “On the Security of Subspace
Subcodes of Reed–Solomon Codes for Public Key Encryption”. In: IEEE
Trans. Inform. Theory 68.1 (2022), pp. 632–648 (cit. on pp. 32, 41).

[CLO15] David Cox, John Little, and Donal O’Shea. Ideals, Varieties, and
algorithms: an Introduction to Computational Algebraic Geometry and
Commutative Algebra. Undergraduate Texts in Mathematics, Springer-
Verlag, New York., 2015. isbn: 978-3-319-16720-6 (cit. on pp. 47–49,
130, 131).

Bibliography 183

[CLT19] Alain Couvreur, Matthieu Lequesne, and Jean-Pierre Tillich. “Recover-
ing short secret keys of RLCE in polynomial time”. In: Post-Quantum
Cryptography 2019. Ed. by Jintai Ding and Rainer Steinwandt. Vol. 11505.
LNCS. Chongquing, China: Springer, May 2019, pp. 133–152 (cit. on
p. 41).

[CMP14] Alain Couvreur, Irene Márquez–Corbella, and Ruud Pellikaan. “A
polynomial time attack against algebraic geometry code based public key
cryptosystems”. In: Proc. IEEE Int. Symposium Inf. Theory - ISIT 2014.
June 2014, pp. 1446–1450 (cit. on pp. 32, 41).

[CMP17] Alain Couvreur, Irene Márquez–Corbella, and Ruud Pellikaan. “Crypt-
analysis of McEliece Cryptosystem Based on Algebraic Geometry Codes
and Their Subcodes”. In: IEEE Trans. Inform. Theory 63.8 (Aug. 2017),
pp. 5404–5418 (cit. on pp. 41, 111).

[COT14a] Alain Couvreur, Ayoub Otmani, and Jean-Pierre Tillich. “New Identities
Relating Wild Goppa Codes”. In: Finite Fields Appl. 29 (2014), pp. 178–
197 (cit. on pp. xiii, xx, 107, 109–111).

[COT14b] Alain Couvreur, Ayoub Otmani, and Jean-Pierre Tillich. “Polynomial
Time Attack on Wild McEliece over Quadratic Extensions”. In: Advances
in Cryptology - EUROCRYPT 2014. Ed. by Phong Q. Nguyen and
Elisabeth Oswald. Vol. 8441. LNCS. Springer Berlin Heidelberg, 2014,
pp. 17–39 (cit. on p. 41).

[COT17] Alain Couvreur, Ayoub Otmani, and Jean–Pierre Tillich. “Polynomial
Time Attack on Wild McEliece over Quadratic Extensions”. In: IEEE
Trans. Inform. Theory 63.1 (Jan. 2017), pp. 404–427. issn: 0018-9448
(cit. on p. 83).

[Cou+00] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir.
“Efficient Algorithms for Solving Overdefined Systems of Multivari-
ate Polynomial Equations”. In: Advances in Cryptology - EURO-
CRYPT 2000. Ed. by Bart Preneel. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2000, pp. 392–407. isbn: 978-3-540-45539-4 (cit. on p. 53).

[Cou+13] Alain Couvreur, Philippe Gaborit, Valérie Gautier, Ayoub Otmani,
and Jean-Pierre Tillich. “Distinguisher-Based Attacks on Public-Key
Cryptosystems Using Reed-Solomon Codes”. In: International Workshop
on Coding and Cryptography - WCC 2013. Bergen, Norway, Apr. 2013,
pp. 181–193 (cit. on p. 29).

[Cou+14] Alain Couvreur, Philippe Gaborit, Valérie Gauthier-Umaña, Ayoub
Otmani, and Jean-Pierre Tillich. “Distinguisher-based attacks on public-
key cryptosystems using Reed-Solomon codes”. In: Des. Codes Cryptogr.
73.2 (2014), pp. 641–666 (cit. on pp. xii, xiii, xx, 29, 32, 41, 83, 105, 107,
109, 111).

[Cou19] Alain Couvreur. “Codes algébriques et géométriques, applications à la
cryptographie et à l’information quantique”. Accreditation to supervise
research. Université Paris Diderot, Dec. 2019 (cit. on p. 28).

184 Bibliography

[COV07] Pierre-Louis Cayrel, Ayoub Otmani, and Damien Vergnaud. “On
Kabatianskii-Krouk-Smeets Signatures”. In: Arithmetic of Finite Fields
- WAIFI 2007. Vol. 4547. LNCS. Madrid, Spain, June 2007, pp. 237–251
(cit. on p. 37).

[CR21] Alain Couvreur and Hugues Randriambololona. “Algebraic geometry
codes and some applications”. In: A concise encyclopedia of coding
theory. CRC press, 2021. Chap. 15, pp. 307–361 (cit. on p. 9).

[CS96] Florent Chabaud and Jacques Stern. “The Cryptographic Security of the
Syndrome Decoding Problem for Rank Distance Codes”. In: Advances
in Cryptology - ASIACRYPT 1996. Vol. 1163. LNCS. Kyongju, Korea:
Springer, Nov. 1996, pp. 368–381 (cit. on p. 41).

[DDW22] Thomas Debris-Alazard, Leo Ducas, and Wessel PJ van Woerden. “An
Algorithmic Reduction Theory for Binary Codes: LLL and more”. In:
IEEE Transactions on Information Theory 68.5 (2022), pp. 3426–3444
(cit. on p. 25).

[Deb+22] Thomas Debris-Alazard, Léo Ducas, Nicolas Resch, and Jean-Pierre
Tillich. “Smoothing Codes and Lattices: Systematic Study and New
Bounds”. In: CoRR abs/2205.10552 (2022). arXiv: 2205.10552 (cit. on
p. 25).

[Deb19] Thomas Debris-Alazard. “Cryptographie fondée sur les codes : nouvelles
approches pour constructions et preuves ; contribution en cryptanalyse”.
Theses. Sorbonne Université, Dec. 2019 (cit. on p. 39).

[Del75] Philippe Delsarte. “On subfield subcodes of modified Reed-Solomon
codes”. In: IEEE Trans. Inform. Theory 21.5 (1975), pp. 575–576 (cit. on
pp. 10, 16).

[DH76] Whitfield Diffie and Martin Hellman. “New directions in cryptography”.
In: IEEE transactions on Information Theory 22.6 (1976), pp. 644–654
(cit. on p. 21).

[DST19] Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich.
“Wave: A New Family of Trapdoor One-Way Preimage Sampleable Func-
tions Based on Codes”. In: Advances in Cryptology - ASIACRYPT 2019.
LNCS. Kobe, Japan: Springer, Dec. 2019 (cit. on p. 37).

[DT18] Thomas Debris-Alazard and Jean-Pierre Tillich. A polynomial attack
on a NIST proposal: RankSign, a code-based signature in rank metric.
preprint. IACR Cryptology ePrint Archive. Apr. 2018 (cit. on p. 38).

[Dum91] Ilya Dumer. “On minimum distance decoding of linear codes”. In: Proc.
5th Joint Soviet-Swedish Int. Workshop Inform. Theory. Moscow, 1991,
pp. 50–52 (cit. on p. 40).

[Dür87] Arne Dür. “The automorphism groups of Reed-Solomon codes”. In:
Journal of Combinatorial Theory, Series A 44 (1987), pp. 69–82 (cit. on
p. 127).

https://arxiv.org/abs/2205.10552

Bibliography 185

[Fau+10a] Jean-Charles Faugère, Valérie Gauthier, Ayoub Otmani, Ludovic Perret,
and Jean-Pierre Tillich. A Distinguisher for High Rate McEliece
Cryptosystems. IACR Cryptology ePrint Archive, Report2010/331.
http://eprint.iacr.org/. 2010 (cit. on p. 174).

[Fau+10b] Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, and Jean-Pierre
Tillich. “Algebraic Cryptanalysis of McEliece Variants with Compact
Keys”. In: Advances in Cryptology - EUROCRYPT 2010. Vol. 6110.
LNCS. 2010, pp. 279–298 (cit. on pp. xiii, xx, 32, 42, 105, 108).

[Fau+11] Jean-Charles Faugère, Valérie Gauthier, Ayoub Otmani, Ludovic Perret,
and Jean-Pierre Tillich. “A Distinguisher for High Rate McEliece
Cryptosystems”. In: Proc. IEEE Inf. Theory Workshop- ITW 2011.
Paraty, Brasil, Oct. 2011, pp. 282–286 (cit. on pp. 82–85, 87, 105, 107,
109).

[Fau+13] Jean-Charles Faugère, Valérie Gauthier, Ayoub Otmani, Ludovic Perret,
and Jean-Pierre Tillich. “A Distinguisher for High Rate McEliece
Cryptosystems”. In: IEEE Trans. Inform. Theory 59.10 (Oct. 2013),
pp. 6830–6844 (cit. on pp. x, xii, xiii, xviii, xx, 82–85, 87–89, 94, 100,
101, 108, 109, 125, 126, 129, 152, 171, 172, 174, 175).

[Fau+14a] Jean-Charles Faugère, Pierrick Gaudry, Louise Huot, and Guénaël Re-
nault. “Sub-cubic Change of Ordering for Gröner Basis: A Probabilistic
Approach”. In: ISSAC ’14 - 39th International Symposium on Symbolic
and Algebraic Computation. Kobe, Japan: ACM, July 2014, pp. 170–177
(cit. on p. 54).

[Fau+14b] Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, Frédéric de
Portzamparc, and Jean-Pierre Tillich. “Structural weakness of compact
variants of the McEliece cryptosystem”. In: Proc. IEEE Int. Symposium
Inf. Theory - ISIT 2014. Honolulu, HI, USA, July 2014, pp. 1717–1721
(cit. on p. 32).

[Fau+93] Jean-Charles Faugère, Patrizia M. Gianni, Daniel Lazard, and Teo Mora.
“Efficient Computation of Zero-Dimensional Gröbner Bases by Change
of Ordering”. In: J. Symbolic Comput. 16.4 (1993), pp. 329–344 (cit. on
pp. xi, xviii, 54, 133, 139).

[Fau02] Jean-Charles Faugère. “A New Efficient Algorithm for Computing
Gröbner Bases without Reduction to Zero: F5”. In: Proceedings
ISSAC’02. ACM press, 2002, pp. 75–83 (cit. on pp. xi, xviii, 54).

[Fau99] Jean-Charles Faugère. “A New Efficient Algorithm for Computing
Gröbner Bases (F4)”. In: J. Pure Appl. Algebra 139.1-3 (1999), pp. 61–88
(cit. on pp. xi, xviii, 53).

[Fin10] Matthieu Finiasz. “Parallel-CFS - Strengthening the CFS McEliece-
Based Signature Scheme”. In: Selected Areas in Cryptography 17th
International Workshop, 2010, Waterloo, Ontario, Canada, August 12-
13, 2010, revised selected papers. Vol. 6544. LNCS. Springer, 2010,
pp. 159–170 (cit. on p. 54).

186 Bibliography

[FJR21] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. “Shared Per-
mutation for Syndrome Decoding: New Zero-Knowledge Protocol and
Code-Based Signature”. In: IACR Cryptol. ePrint Arch. (2021), p. 1576
(cit. on p. 38).

[FJR22] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. “Syndrome
Decoding in the Head: Shorter Signatures from Zero-Knowledge Proofs”.
In: IACR Cryptol. ePrint Arch. (2022), p. 188 (cit. on p. 38).

[FL10] Jean-Charles Faugère and Sylvain Lachartre. “Parallel Gaussian Elimina-
tion for Gröbner bases computations in finite fields”. In: Proceedings of
the 4th International Workshop on Parallel and Symbolic Computation.
2010, pp. 89–97 (cit. on p. 54).

[FPP14] Jean-Charles Faugère, Ludovic Perret, and Frédéric de Portzamparc.
“Algebraic Attack against Variants of McEliece with Goppa Polynomial
of a Special Form”. In: Advances in Cryptology - ASIACRYPT 2014.
Vol. 8873. LNCS. Kaoshiung, Taiwan, R.O.C.: Springer, Dec. 2014,
pp. 21–41 (cit. on pp. xiii, xx, 32, 42).

[Frö85] Ralf Fröberg. “An inequality for Hilbert series of graded algebras”. In:
Mathematica Scandinavica 56.2 (1985), pp. 117–144 (cit. on p. 59).

[FS87] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical Solutions
to Identification and Signature Problems”. In: Advances in Cryptology -
CRYPTO ’86. Ed. by A.M. Odlyzko. Vol. 263. LNCS. Springer, 1987,
pp. 186–194 (cit. on p. 34).

[FSS11] Jean-Charles Faugère, Mohab Safey El Din, and Pierre-Jean Spaenle-
hauer. “Gröbner bases of bihomogeneous ideals generated by polynomials
of bidegree (1,1): Algorithms and complexity”. In: J. Symbolic Comput.
46.4 (2011), pp. 406–437 (cit. on p. 60).

[Fuk+17] Kazuhide Fukushima, Partha Sarathi Roy, Rui Xu, Shinsaku Kiyomoto,
Kirill Morozov, and Tsuyoshi Takagi. RaCoSS (Random Code-based
Signature Scheme). First round submission to the NIST post-quantum
cryptography call. NIST Round 1 submission for Post-Quantum
Cryptography. Nov. 2017 (cit. on p. 37).

[Gab+13] Philippe Gaborit, Gaétan Murat, Olivier Ruatta, and Gilles Zémor.
“Low Rank Parity Check codes and their application to cryptography”.
In: Proceedings of the Workshop on Coding and Cryptography WCC’2013.
Bergen, Norway, 2013 (cit. on p. 33).

[Gab+14] Philippe Gaborit, Olivier Ruatta, Julien Schrek, and Gilles Zémor.
“RankSign: An Efficient Signature Algorithm Based on the Rank Metric
(extended version on arXiv)”. In: Post-Quantum Cryptography 2014.
Vol. 8772. LNCS. Springer, 2014, pp. 88–107 (cit. on p. 38).

[Gab+16] Philippe Gaborit, Adrien Hauteville, Duong Hieu Phan, and Jean-Pierre
Tillich. Identity-based Encryption from Rank Metric. IACR Cryptology
ePrint Archive, Report2017/623. http://eprint.iacr.org/. May
2016 (cit. on p. 27).

[Gal63] Robert G. Gallager. Low Density Parity Check Codes. Cambridge,
Massachusetts: M.I.T. Press, 1963 (cit. on p. 32).

http://eprint.iacr.org/

Bibliography 187

[Gao03] Shuhong Gao. “A New Algorithm for Decoding Reed-Solomon Codes”.
In: Communications, Information and Network Security. Ed. by Vijay K.
Bhargava, H. Vincent Poor, Vahid Tarokh, and Seokho Yoon. Boston,
MA: Springer US, 2003, pp. 55–68. isbn: 978-1-4757-3789-9 (cit. on
p. 65).

[Gen09] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In:
Proceedings of the forty-first annual ACM symposium on Theory of
computing. 2009, pp. 169–178 (cit. on p. 24).

[Gio+91] Alessandro Giovini, Teo Mora, Gianfranco Niesi, Lorenzo Robbiano,
and Carlo Traverso. ““One sugar cube, please” or selection strategies in
the Buchberger algorithm”. In: Proceedings of the 1991 international
symposium on Symbolic and algebraic computation. 1991, pp. 49–54
(cit. on p. 53).

[GL09] Valérie Gauthier-Umaña and Gregor Leander. Practical Key Recovery
Attacks On Two McEliece Variants. IACR Cryptology ePrint Archive,
Report2009/509. 2009 (cit. on pp. xiii, xx, 105).

[Gli+14] Danilo Gligoroski, Simona Samardjiska, Håkon Jacobsen, and Sergey
Bezzateev. McEliece in the world of Escher. IACR Cryptology ePrint
Archive, Report2014/360. http://eprint.iacr.org/. 2014 (cit. on
p. 37).

[Gop71] Valerii D. Goppa. “Rational representation of codes and (L, g) codes”.
In: Problemy Peredachi Informatsii 7.3 (1971). In Russian, pp. 41–49
(cit. on p. 9).

[GPS22] Shay Gueron, Edoardo Persichetti, and Paolo Santini. “Designing a
Practical Code-Based Signature Scheme from Zero-Knowledge Proofs
with Trusted Setup”. In: Cryptography 6.1 (2022), p. 5 (cit. on p. 38).

[GPT91] Ernst M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov. “Ideals
over a non-commutative ring and their applications to cryptography”.
In: Advances in Cryptology - EUROCRYPT’91. LNCS 547. Brighton,
Apr. 1991, pp. 482–489 (cit. on p. 32).

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. “Trapdoors
for hard lattices and new cryptographic constructions”. In: Proceedings
of the fortieth annual ACM symposium on Theory of computing. ACM.
2008, pp. 197–206 (cit. on p. 38).

[GR06] Venkatesan Guruswami and Atri Rudra. “Explicit Capacity-achieving
List-decodable Codes”. In: Proceedings of the Thirty-eighth Annual ACM
Symposium on Theory of Computing. STOC ’06. Seattle, WA, USA:
ACM, 2006, pp. 1–10. isbn: 1-59593-134-1 (cit. on p. 13).

[Gra07] Markus Grassl. Bounds on the minimum distance of linear codes and
quantum codes. Online available at http : / / www . codetables . de.
Accessed on 2022-09-27. 2007 (cit. on p. 8).

[GS12] Philippe Gaborit and Julien Schrek. “Efficient code-based one-time
signature from automorphism groups with syndrome compatibility”. In:
Proc. IEEE Int. Symposium Inf. Theory - ISIT 2012. Cambridge, MA,
USA, July 2012, pp. 1982–1986 (cit. on p. 37).

http://eprint.iacr.org/
http://www.codetables.de

188 Bibliography

[GS98] Venkatesan Guruswami and Madhu Sudan. “Improved decoding of Reed–
Solomon and algebraic-geometric codes”. In: Proceedings 39th Annual
Symposium on Foundations of Computer Science (Cat. No. 98CB36280).
IEEE. 1998, pp. 28–37 (cit. on pp. 12, 62).

[GS99] Venkatesan Guruswami and Madhu Sudan. “Improved decoding of
Reed-Solomon and algebraic-geometry codes”. In: IEEE Trans. Inform.
Theory 45.6 (1999), pp. 1757–1767 (cit. on pp. viii, xvi, 15).

[Han18] Antonia Wachter-Zeh Hannes Bartz. “Efficient decoding of interleaved
subspace and Gabidulin codes beyond their unique decoding radius
using Gröbner bases”. In: Advances in Mathematics of Communications
12.4 (2018), pp. 773–804 (cit. on p. 62).

[HP03] W. Cary Huffman and Vera Pless. Fundamentals of error-correcting
codes. Cambridge University Press, Cambridge, 2003, pp. xviii+646.
isbn: 0-521-78280-5 (cit. on p. 7).

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. “NTRU: A
Ring-Based Public Key Cryptosystem”. In: Algorithmic Number Theory,
Third International Symposium, ANTS-III, Portland, Oregon, USA,
June 21-25, 1998, Proceedings. Ed. by Joe Buhler. Vol. 1423. LNCS.
Springer, 1998, pp. 267–288 (cit. on pp. 24, 33).

[HW20] Anna-Lena Horlemann-Trautmann and Violetta Weger. “Information
set decoding in the Lee metric with applications to cryptography”. In:
Advances in Mathematics of Communications 0 (2020). online version,
to appear. issn: 1930-5346 (cit. on p. 41).

[Ish+07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. “Zero-
knowledge from secure multiparty computation”. In: Proceedings of the
thirty-ninth annual ACM symposium on Theory of computing. 2007,
pp. 21–30 (cit. on p. 34).

[Jab01] Abdulrahman Al Jabri. “A statistical decoding algorithm for general
linear block codes”. In: Cryptography and coding. Proceedings of the
8th IMA International Conference. Ed. by Bahram Honary. Vol. 2260.
LNCS. Cirencester, UK: Springer, Dec. 2001, pp. 1–8 (cit. on p. 41).

[JF11] David Jao and Luca De Feo. “Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies”. In: International Workshop
on Post-Quantum Cryptography. Springer. 2011, pp. 19–34 (cit. on p. 25).

[JM96] Heeralal Janwa and Oscar Moreno. “McEliece Public Key Cryptosystems
Using Algebraic-Geometric Codes”. In: Des. Codes Cryptogr. 8.3 (1996),
pp. 293–307 (cit. on p. 32).

[Joz01] Richard Jozsa. “Quantum factoring, discrete logarithms, and the hidden
subgroup problem”. In: Computing in science & engineering 3.2 (2001),
pp. 34–43 (cit. on p. 23).

[KKS05] Gregory Kabatianskii, Evgenii Krouk, and Sergei Semenov. Error
Correcting Coding and Security for Data Networks: Analysis of the
Superchannel Concept. John Wiley & Sons, 2005 (cit. on p. 37).

Bibliography 189

[KKS97] Gregory Kabatianskii, Evgenii Krouk, and Ben. J. M. Smeets. “A Digital
Signature Scheme Based on Random Error-Correcting Codes”. In: IMA
Int. Conf. Vol. 1355. LNCS. Springer, 1997, pp. 161–167 (cit. on p. 37).

[KPG99] Aviad Kipnis, Jacques Patarin, and Louis Goubin. “Unbalanced oil
and vinegar signature schemes”. In: International Conference on the
Theory and Applications of Cryptographic Techniques. Springer. 1999,
pp. 206–222 (cit. on p. 24).

[KRW19] Karan Khathuria, Joachim Rosenthal, and Violetta Weger. “Encryption
Scheme Based on Expanded Reed–Solomon Codes”. In: Adv. Math.
Commun. (2019). In Press (cit. on p. 32).

[KT17] Ghazal Kachigar and Jean-Pierre Tillich. “Quantum Information Set
Decoding Algorithms”. In: Post-Quantum Cryptography 2017. Vol. 10346.
LNCS. Utrecht, The Netherlands: Springer, June 2017, pp. 69–89 (cit. on
p. 39).

[Lam79] Leslie Lamport. Constructing digital signatures from a one way function.
Tech. rep. CSL-98. SRI International, Oct. 1979 (cit. on p. 25).

[Laz83] D. Lazard. “Gröbner bases, Gaussian elimination and resolution of
systems of algebraic equations”. In: Computer algebra. Vol. 162. LNCS.
Proceedings Eurocal’83, London, 1983. Berlin: Springer, 1983, pp. 146–
156 (cit. on pp. 50, 57).

[LDW94] Yuan Xing Li, Robert H. Deng, and Xin Mei Wang. “On the equivalence
of McEliece’s and Niederreiter’s public-key cryptosystems”. In: IEEE
Trans. Inform. Theory 40.1 (1994), pp. 271–273 (cit. on p. 29).

[Lee+17] Wijik Lee, Young-Sik Kim, Yong-Woo Lee, and Jong-Seon No. Post
quantum signature scheme based on modified Reed-Muller code pqsigRM.
First round submission to the NIST post-quantum cryptography call.
NIST Round 1 submission for Post-Quantum Cryptography. Nov. 2017
(cit. on p. 37).

[LJ12] Carl Löndahl and Thomas Johansson. “A New Version of McEliece PKC
Based on Convolutional Codes”. In: Information and Communications
Security, ICICS. Vol. 7168. LNCS. Springer, 2012, pp. 461–470 (cit. on
p. 32).

[LO06] Kwankyu Lee and Michael E. O’Sullivan. “An Interpolation Algorithm
using Gröbner Bases for Soft-Decision Decoding of Reed-Solomon Codes”.
In: 2006 IEEE International Symposium on Information Theory. 2006,
pp. 2032–2036 (cit. on p. 62).

[LO08] Kwankyu Lee and Michael E. O’Sullivan. “List decoding of Reed–
Solomon codes from a Gröbner basis perspective”. In: Journal of
Symbolic Computation 43.9 (2008), pp. 645–658. issn: 0747-7171 (cit. on
p. 62).

[LR20] Julien Lavauzelle and Julian Renner. “Cryptanalysis of a system based
on twisted Reed–Solomon codes”. In: Designs, Codes and Cryptography
88.7 (2020), pp. 1285–1300 (cit. on p. 32).

190 Bibliography

[LS01] Pierre Loidreau and Nicolas Sendrier. “Weak keys in the McEliece
public-key cryptosystem”. In: IEEE Trans. Inform. Theory 47.3 (2001),
pp. 1207–1211 (cit. on p. 41).

[LT13] Grégory Landais and Jean-Pierre Tillich. “An efficient attack of a
McEliece cryptosystem variant based on convolutional codes”. In: Post-
Quantum Cryptography’13. Ed. by P. Gaborit. Vol. 7932. LNCS. Springer,
June 2013, pp. 102–117 (cit. on p. 32).

[LT20] Terry Shue Chien Lau and Chik How Tan. “MURAVE: A New Rank
Code-Based Signature with MUltiple RAnk VErification”. In: Code-
Based Cryptography Workshop. Springer. 2020, pp. 94–116 (cit. on p. 38).

[LX04] San Ling and Chaoping Xing. Coding theory: a first course. Cambridge
University Press, 2004 (cit. on p. 11).

[LXY20] Zhe Li, Chaoping Xing, and Sze Ling Yeo. “A new code based signature
scheme without trapdoors”. In: Cryptology ePrint Archive (2020) (cit. on
p. 37).

[Lyu09] Vadim Lyubashevsky. “Fiat-Shamir with aborts: Applications to lattice
and factoring-based signatures”. In: International Conference on the
Theory and Application of Cryptology and Information Security. Springer.
2009, pp. 598–616 (cit. on p. 37).

[Mac94] Francis Sowerby Macaulay. The algebraic theory of modular systems.
Vol. 19. Cambridge University Press, 1994 (cit. on p. 50).

[MB09] Rafael Misoczki and Paulo Barreto. “Compact McEliece Keys from
Goppa Codes”. In: Selected Areas in Cryptography. Calgary, Canada,
Aug. 2009 (cit. on pp. 32, 105).

[McE78] Robert J. McEliece. “A Public-Key System Based on Algebraic Coding
Theory”. In: DSN Progress Report 44. Jet Propulsion Lab, 1978, pp. 114–
116 (cit. on pp. ix, xvii, 24, 25, 28, 82, 105, 174).

[MI88] Tsutomu Matsumoto and Hideki Imai. “Public quadratic polynomial-
tuples for efficient signature-verification and message-encryption”. In:
Workshop on the Theory and Application of of Cryptographic Techniques.
Springer. 1988, pp. 419–453 (cit. on p. 24).

[Mis+13] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M.
Barreto. “MDPC-McEliece: New McEliece variants from Moderate
Density Parity-Check codes”. In: Proc. IEEE Int. Symposium Inf. Theory
- ISIT. 2013, pp. 2069–2073 (cit. on p. 33).

[MM22] Luciano Maino and Chloe Martindale. “An attack on SIDH with
arbitrary starting curve”. In: Cryptology ePrint Archive (2022) (cit.
on p. 25).

[MMT11] Alexander May, Alexander Meurer, and Enrico Thomae. “Decoding
random linear codes in O(20.054n)”. In: Advances in Cryptology -
ASIACRYPT 2011. Ed. by Dong Hoon Lee and Xiaoyun Wang. Vol. 7073.
LNCS. Springer, 2011, pp. 107–124 (cit. on p. 40).

Bibliography 191

[MO15] Alexander May and Ilya Ozerov. “On Computing Nearest Neighbors
with Applications to Decoding of Binary Linear Codes”. In: Advances
in Cryptology - EUROCRYPT 2015. Ed. by E. Oswald and M. Fischlin.
Vol. 9056. LNCS. Springer, 2015, pp. 203–228 (cit. on p. 40).

[MP12] Irene Márquez-Corbella and Ruud Pellikaan. Error-correcting pairs
for a public-key cryptosystem. CBC 2012, Code-based Cryptography
Workshop. Available on http://www.win.tue.nl/~ruudp/paper/59.
pdf. 2012 (cit. on pp. xii, xx, 82, 83, 87, 107, 109).

[MP16] Dustin Moody and Ray A. Perlner. “Vulnerabilities of "McEliece in
the World of Escher"”. In: Post-Quantum Cryptography 2016. LNCS.
Springer, 2016 (cit. on p. 37).

[MRA00] Chris Monico, Joachim Rosenthal, and Amin A. Shokrollahi. “Using
low density parity check codes in the McEliece cryptosystem”. In: Proc.
IEEE Int. Symposium Inf. Theory - ISIT. Sorrento, Italy, 2000, p. 215
(cit. on p. 33).

[MS07] Lorenz Minder and Amin Shokrollahi. “Cryptanalysis of the Sidelnikov
cryptosystem”. In: Advances in Cryptology - EUROCRYPT 2007.
Vol. 4515. LNCS. Barcelona, Spain, 2007, pp. 347–360 (cit. on p. 32).

[MS86] Florence J. MacWilliams and Neil J. A. Sloane. The Theory of Error-
Correcting Codes. Fifth. Amsterdam: North–Holland, 1986 (cit. on pp. 11,
17).

[MT21] Rocco Mora and Jean-Pierre Tillich. On the dimension and structure of
the square of the dual of a Goppa code. preprint. 2021 (cit. on p. 108).

[MT22] Rocco Mora and Jean-Pierre Tillich. “On the dimension and structure
of the square of the dual of a Goppa code”. In: Designs, Codes and
Cryptography (2022), pp. 1–22 (cit. on pp. xii, xx).

[NC02] Michael A Nielsen and Isaac Chuang. Quantum computation and
quantum information. 2002 (cit. on p. 22).

[Nie14] Johan Sebastian Rosenkilde Nielsen. “Power Decoding of Reed-Solomon
Codes Revisited”. In: Coding Theory and Applications, 4th International
Castle Meeting, ICMCTA 2014, Palmela Castle, Portugal, September
15-18, 2014. Ed. by Raquel Pinto, Paula Rocha Malonek, and Paolo
Vettori. Vol. 3. CIM Series in Mathematical Sciences. Springer, 2014,
pp. 297–305 (cit. on pp. ix, xii, xvi, xix, 63).

[Nie18] Johan Sebastian Rosenkilde Nielsen. “Power decoding Reed-Solomon
codes up to the Johnson radius”. In: Advances in Mathematics of
Communications 12.1 (2018), p. 81 (cit. on pp. ix, xii, xvi, xix, 63–67,
69, 79, 173).

[Nie86] Harald Niederreiter. “Knapsack-type cryptosystems and algebraic coding
theory”. In: Problems of Control and Information Theory 15.2 (1986),
pp. 159–166 (cit. on pp. 29, 105).

http://www.win.tue.nl/~ruudp/paper/59.pdf
http://www.win.tue.nl/~ruudp/paper/59.pdf

192 Bibliography

[OJ02] Alexei V. Ourivski and Thomas Johansson. “New Technique for Decoding
Codes in the Rank Metric and Its Cryptography Applications”. English.
In: Problems of Information Transmission 38.3 (2002), pp. 237–246.
issn: 0032-9460 (cit. on p. 41).

[OT11] Ayoub Otmani and Jean-Pierre Tillich. “An Efficient Attack on All
Concrete KKS Proposals”. In: Post-Quantum Cryptography 2011.
Vol. 7071. LNCS. 2011, pp. 98–116 (cit. on p. 37).

[OTD08] Ayoub Otmani, Jean-Pierre Tillich, and Léonard Dallot. “Cryptanalysis
of McEliece Cryptosystem Based on Quasi-Cyclic LDPC Codes”. In:
Proceedings of First International Conference on Symbolic Computation
and Cryptography. LMIB Beihang University. Beijing, China, Apr. 2008,
pp. 69–81 (cit. on p. 33).

[Ove08] Raphael Overbeck. “Structural Attacks for Public Key Cryptosystems
based on Gabidulin Codes”. In: J. Cryptology 21.2 (2008), pp. 280–301
(cit. on p. 32).

[Pat75] N. Patterson. “The algebraic decoding of Goppa codes”. In: IEEE Trans.
Inform. Theory 21.2 (1975), pp. 203–207 (cit. on p. 18).

[Pat95] Jacques Patarin. “Cryptanalysis of the Matsumoto and Imai public
key scheme of Eurocrypt’88”. In: Annual International Cryptology
Conference. Springer. 1995, pp. 248–261 (cit. on p. 24).

[Pat96] Jacques Patarin. “Hidden Fields Equations (HFE) and Isomorphisms of
Polynomials (IP): Two New Families of Asymmetric Algorithms”. In:
Advances in Cryptology - EUROCRYPT ’96, International Conference
on the Theory and Application of Cryptographic Techniques, Saragossa,
Spain, May 12-16, 1996, Proceeding. Ed. by Ueli M. Maurer. Vol. 1070.
LNCS. Springer, 1996, pp. 33–48 (cit. on p. 24).

[Pat97] Jacques Patarin. “The oil and vinegar signature scheme”. In: Dagstuhl
Workshop on Cryptography September, 1997. 1997 (cit. on p. 24).

[Pei14] Chris Peikert. “Lattice cryptography for the internet”. In: International
workshop on post-quantum cryptography. Springer. 2014, pp. 197–219
(cit. on p. 24).

[Per18] Edoardo Persichetti. “Efficient one-time signatures from quasi-cyclic
codes: A full treatment”. In: Cryptography 2.4 (2018), p. 30 (cit. on
p. 37).

[Pra62] Eugene Prange. “The use of information sets in decoding cyclic codes”.
In: IRE Transactions on Information Theory 8.5 (1962), pp. 5–9 (cit. on
pp. 39, 40).

[PT16] Aurélie Phesso and Jean-Pierre Tillich. “An Efficient Attack on a
Code-Based Signature Scheme”. In: Post-Quantum Cryptography 2016.
Vol. 9606. LNCS. Fukuoka, Japan: Springer, Feb. 2016, pp. 86–103
(cit. on p. 37).

Bibliography 193

[Ran15] Hugues Randriambololona. “On products and powers of linear codes
under componentwise multiplication”. In: Algorithmic arithmetic, geom-
etry, and coding theory. Vol. 637. Contemp. Math. Amer. Math. Soc.,
Providence, RI, 2015, pp. 3–78 (cit. on pp. 89, 111, 113).

[Ras13] Roohallah Rastaghi. An Efficient CCA2-Secure Variant of the McEliece
Cryptosystem in the Standard Model. submitted. 2013 (cit. on p. 92).

[Reg05] Oded Regev. “On lattices, learning with errors, random linear codes,
and cryptography”. In: Proceedings of the 37th Annual ACM Symposium
on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005. 2005,
pp. 84–93 (cit. on p. 24).

[Rob22] Damien Robert. “Breaking SIDH in polynomial time”. In: Cryptology
ePrint Archive (2022) (cit. on p. 25).

[RS16] Johan Rosenkilde né Nielsen and Arne Storjohann. “Algorithms for
simultaneous Padé approximations”. In: Proceedings of the ACM on
International Symposium on Symbolic and Algebraic Computation. 2016,
pp. 405–412 (cit. on p. 67).

[RS60] Irving S. Reed and Gustave Solomon. “Polynomial codes over certain
finite fields”. In: Journal of the society for industrial and applied
mathematics 8.2 (1960), pp. 300–304 (cit. on p. 10).

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. “A Method
for Obtaining Digital Signatures and Public-Key Cryptosystems”. In:
Commun. ACM 21.2 (1978), pp. 120–126 (cit. on pp. ix, xvii, 21).

[SBC19] Paolo Santini, Marco Baldi, and Franco Chiaraluce. “Cryptanalysis
of a one-time code-based digital signature scheme”. In: 2019 IEEE
International Symposium on Information Theory (ISIT). IEEE. 2019,
pp. 2594–2598 (cit. on p. 37).

[Sen00] Nicolas Sendrier. “Finding the permutation between equivalent linear
codes: The support splitting algorithm”. In: IEEE Trans. Inform. Theory
46.4 (2000), pp. 1193–1203 (cit. on p. 41).

[Sen10] Nicolas Sendrier. “On the use of structured codes in code based
cryptography”. In: Coding Theory and Cryptography III. Ed. by
L. Storme S. Nikova B. Preneel. The Royal Flemish Academy of Belgium
for Science and the Arts. 2010, pp. 59–68 (cit. on p. 82).

[Sha48] Claude E. Shannon. “A Mathematical Theory of Communication”. In:
Bell System Technical Journal 27.3 (1948), pp. 379–423. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/j.1538-7305.1948.
tb01338.x (cit. on pp. 3, 21).

[Sho94] Peter W. Shor. “Algorithms for quantum computation: Discrete
logarithms and factoring”. In: FOCS. Ed. by S. Goldwasser. 1994,
pp. 124–134 (cit. on p. 23).

[Sho97] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer”. In: SIAM J.
Comput. 26.5 (1997), pp. 1484–1509 (cit. on pp. 12, 14).

https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1538-7305.1948.tb01338.x

194 Bibliography

[Sid94] Vladimir Michilovich Sidelnikov. “A public-key cryptosytem based on
Reed-Muller codes”. In: Discrete Math. Appl. 4.3 (1994), pp. 191–207
(cit. on p. 32).

[Son+20] Yongcheng Song, Xinyi Huang, Yi Mu, Wei Wu, and Huaxiong Wang.
“A code-based signature scheme from the Lyubashevsky framework”. In:
Theoretical Computer Science 835 (2020), pp. 15–30 (cit. on p. 37).

[Spa12] Pierre-Jean Spaenlenhauer. “Résolution de systèmes multi-homogènes
et determinantiels”. PhD thesis. Univ. Pierre et Marie Curie- Paris 6,
Oct. 2012 (cit. on pp. 57, 60).

[SS92] Vladimir Michilovich Sidelnikov and S.O. Shestakov. “On the insecurity
of cryptosystems based on generalized Reed-Solomon codes”. In: Discrete
Math. Appl. 1.4 (1992), pp. 439–444 (cit. on pp. 29, 41, 105, 108, 109).

[SSB10] Georg Schmidt, Vladimir Sidorenko, and Martin Bossert. “Syndrome
decoding of Reed-Solomon codes beyond half the minimum distance
based on shift-register synthesis”. In: IEEE Trans. Inf. Theory 56.10
(2010), pp. 5245–5252 (cit. on pp. ix, xvi, 63, 64, 69, 72, 173).

[Ste88] Jacques Stern. “A method for finding codewords of small weight”. In:
Coding Theory and Applications. Ed. by G. D. Cohen and J. Wolfmann.
Vol. 388. LNCS. Springer, 1988, pp. 106–113 (cit. on p. 40).

[Ste93] Jacques Stern. “A New Identification Scheme Based on Syndrome
Decoding”. In: Advances in Cryptology - CRYPTO’93. Ed. by D.R.
Stinson. Vol. 773. LNCS. Springer, 1993, pp. 13–21 (cit. on p. 37).

[Sud97] Madhu Sudan. “Decoding of Reed–Solomon Codes beyond the Error–
Correction Bound”. In: J. Complexity 13.1 (1997), pp. 180–193 (cit. on
pp. viii, xvi).

[TPD21] Chengdong Tao, Albrecht Petzoldt, and Jintai Ding. “Efficient Key
Recovery for All HFE Signature Variants”. In: Advances in Cryptology
- CRYPTO 2021 - 41st Annual International Cryptology Conference,
CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part
I. Ed. by Tal Malkin and Chris Peikert. Vol. 12825. Lecture Notes in
Computer Science. Springer, 2021, pp. 70–93 (cit. on p. 24).

[Tri10] Peter V. Trifonov. “Efficient Interpolation in the Guruswami–Sudan
Algorithm”. In: IEEE Transactions on Information Theory 56.9 (2010),
pp. 4341–4349 (cit. on p. 62).

[TV13] Ido Tal and Alexander Vardy. “How to Construct Polar Codes”. In:
IEEE Trans. Inform. Theory 59.10 (2013), pp. 6562–6582 (cit. on p. 9).

[TVZ82] Michael A. Tsfasman, Sergei G. Vlăduţ, and T. Zink. “Modular curves,
Shimura curves, and Goppa codes, better than Varshamov-Gilbert
bound”. In: Math. Nach. 109.1 (1982), pp. 21–28 (cit. on p. 9).

[Vér96] Pascal Véron. “Improved identification schemes based on error-correcting
codes”. In: Appl. Algebra Eng. Commun. Comput. 8.1 (1996), pp. 57–69
(cit. on p. 37).

Bibliography 195

[Wag02] David Wagner. “A generalized birthday problem”. In: Advances in
Cryptology - CRYPTO 2002. Ed. by Moti Yung. Vol. 2442. LNCS.
Springer, 2002, pp. 288–303. isbn: 978-3-540-44050-5 (cit. on p. 41).

[WB86] Lloyd R Welch and Elwyn R Berlekamp. Error correction for algebraic
block codes. US Patent 4,633,470. Dec. 1986 (cit. on pp. viii, xvi, 12).

[Wie06] Christian Wieschebrink. “Two NP-complete Problems in Coding Theory
with an Application in Code Based Cryptography”. In: Proc. IEEE Int.
Symposium Inf. Theory - ISIT. 2006, pp. 1733–1737 (cit. on p. 32).

[Wie10] Christian Wieschebrink. “Cryptanalysis of the Niederreiter Public Key
Scheme Based on GRS Subcodes”. In: Post-Quantum Cryptography 2010.
Vol. 6061. LNCS. Springer, 2010, pp. 61–72 (cit. on pp. 19, 32, 41, 83).

[Xag18] Keita Xagawa. “Practical attack on racoss-r”. In: Cryptology ePrint
Archive (2018) (cit. on p. 37).

[ZS10] Alexander Zeh and Christian Senger. “A link between Guruswami-
Sudan’s list-decoding and decoding of interleaved Reed-Solomon codes”.
In: 2010 IEEE International Symposium on Information Theory. 2010,
pp. 1198–1202 (cit. on p. 62).

	Contents
	List of Tables
	Introduction (Français)
	Introduction
	Preliminaries
	Algebraic Coding theory
	Error-correcting codes
	Bounds on codes
	Reed-Solomon codes
	Subfield subcodes of RS codes: alternant and Goppa codes
	Product and square of codes

	Code-based cryptography
	Public key cryptography
	Quantum computing in a nutshell
	Post-quantum cryptography
	Hard problems from coding theory
	McEliece's scheme
	Niederreiter's scheme
	Other code-based PKE frameworks and schemes
	Digital signatures: definitions and main approaches
	Cryptanalysis on code-based schemes

	Gröbner Bases
	Monomial orderings
	Polynomial reduction and Gröbner bases
	Buchberger's algorithm: a first method to compute Gröbner bases
	The Macaulay matrix
	Advanced Gröbner basis algorithms and solving strategies
	The Hilbert series
	Regular and semi-regular sequences
	Systems with a special shape: application to coding theory and cryptography

	Decoding of Reed-Solomon codes with Gröbner bases
	Introduction
	Power decoding
	The Algorithm
	A partial explanation of the algebraic behavior
	Correcting up to the Sudan bound in polynomial time
	Decoding up to the Johnson radius
	Proof of Theorem 2.1

	Experimental Results
	Conclusions

	The square of the dual of alternant and Goppa codes
	Introduction
	A distinguisher for high-rate alternant and Goppa codes
	Our contribution

	The relationship between the distinguisher of FGOPT11, FGOPT13 and the square code construction
	A general result about the square of a trace code
	Alternant case with e_A=0 and Goppa case with eG=0
	Alternant case with e_A>0
	Goppa case with rq-1
	Conclusions

	An attack on high-rate random alternant codes
	Introduction
	Notation and prerequisites
	Shortening and alternant codes
	Conductors and filtrations
	Base field extension and alternant codes

	The filtration
	Proof of Theorem 4.1
	Complexity of computing the filtration
	What is wrong with Goppa codes?

	Algebraic cryptanalysis
	The algebraic modeling from FGOPT13
	Reducing the number of solutions
	The algorithm for q odd
	Theoretical and experimental validation of the algebraic algorithm
	Differences in the q=2^s case
	Limitations of the algebraic cryptanalysis approach: higher orders and Goppa codes

	Interlacing the algebraic recovering with the filtration
	Conclusions

	Enhancing the distinguisher by shortening the dual code
	Introduction
	Experimental results
	A direct sum decomposition of the shortened dual code
	A decomposition for the square code
	Empirical dimensions of the square code summands and their intersections
	A partial explanation for the square of the shortened code

	Conclusions

	Conclusion
	Bibliography

