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ABSTRACT

Presently contemplated experiments propose to test whether or not gravity itself can serve

as a mediator for quantum entanglement. The detection of such gravitationally mediated

entanglement would provide the first example of an observed phenomenon that cannot be

explained within the framework of classical general relativity, and would constitute the first

experimental test of quantum gravity. This dissertation, based on a series of published articles

[Danielson et al., 2022a,b, 2023, 2025b], develops the implications of gravitationally mediated

entanglement should it prove to exist in Nature. By analyzing an apparent paradox between

causality and complementarity in a gedankenexperiment, it is shown that the experimental

discovery of gravitationally mediated entanglement may be viewed as implying the existence

of the graviton. A similar gedankenexperiment outside a black hole then shows that a

quantum superposition maintained outside a black hole must undergo a constant rate of

decoherence, so that a black hole will eventually decohere any quantum superposition in its

exterior. This occurs because of an unavoidable accumulation of soft, entangling gravitons

on the black hole horizon, in a direct mathematical analog of the gravitational memory

effect at null infinity. A similar quantum gravitational decoherence effect is shown to arise

in the presence of a cosmological horizon, and more generally in the vicinity of any Killing

horizon. The resulting decoherence rates are predicted in each case. A fully local account

of this decoherence is developed, and reveals the soft radiation can be viewed as the result

of extremely low frequency vacuum fluctuations interacting with the superposition. The

decoherence in the presence of black holes is contrasted with the decoherence that would

arise in the spacetime of a star, in a thermal bath, or in the presence of an ordinary material

body.
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No elementary phenomenon is a phenomenon until it is an observed phenomenon.

—John Archibald Wheeler, “Law Without Law.”
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CHAPTER 1

INTRODUCTION

General relativity and quantum field theory are the two fundamental pillars of modern physics.

Their union in the form of a theory of quantum gravity remains the most significant open

issue in theoretical physics. Although one can formulate an essentially satisfactory theory

of linearized quantum gravity perturbed off of some fixed background spacetime, severe

difficulties arise in formulating a nonperturbative theory of quantum gravity. While strong

arguments can be given that gravity should be quantized [Bronstein, 2012, Page and Geilker,

1981, Eppley and Hannah, 1977, Mattingly, 2006, Carlip, 2008, Giampaolo and Macrì, 2019],

these difficulties have led some to suggest that gravity may be fundamentally classical, that the

description of gravity with quantum mechanics requires a radical modification of quantization

[Hossenfelder, 2010, Penrose, 2014, Diósi, 1987], or that the question of quantization is ill-

posed [Dyson, 2013]. Of central importance to this debate is the prediction that it should be

possible to entangle two initially uncorrelated bodies purely by virtue of their gravitational

interaction. Intimately related with this is the prediction of quantized gravitational radiation

in the form of gravitons, the existence of which has not yet been verified experimentally.

As already noted by Feynman in the 1950s [DeWitt-Morette and Rickles, 2011, Zeh, 2011],

some key issues regarding the quantization of gravity can be explored by considering the

gravitational field sourced by a quantum superposition of a massive body. Due to recent

advances in maintaining coherent spatial superpositions,1 many actual experiments involving

such superpositions have recently been proposed [Ford, 1982, ?, Bahrami et al., 2015]. Given

the rapid progress toward proposed “low-energy” tabletop experiments [Bose et al., 2017,

Marletto and Vedral, 2017, Carney et al., 2019, Haine, 2021, Qvarfort et al., 2020, Carlesso

et al., 2019, Howl et al., 2021, Matsumura and Yamamoto, 2020, Pedernales et al., 2022, Liu

1. Spatial superpositions of masses on the scale of 105 amu over distances of order microns have been
achieved [Gerlich et al., 2011, Eibenberger et al., 2013, Romero-Isart, 2017, Fein et al., 2019] and recent
proposals have suggested up to nanogram scale superpositions [Pino et al., 2018, Brand et al., 2017].
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et al., 2021, Datta and Miao, 2021, Gonzalez-Ballestero et al., 2021, Krisnanda et al., 2020,

Margalit et al., 2021, Christodoulou and Rovelli, 2019, Bose et al., 2022], it is of interest to

understand what such low-energy phenomena might teach us about the fundamental nature

of quantum gravity.

The analysis by Belenchia et al. [Belenchia et al., 2018, 2019] of a gedankenexperiment

originally proposed by [Mari et al., 2016] provides strong evidence that low-energy exper-

iments can probe quantum field theoretic aspects of gravity. In this gedankenexperiment,

an experimenter, Alice, puts a massive body (hereinafter referred to as a “particle”) into a

quantum superposition at different spatial locations. At a later time, she recombines the

particle and determines its quantum coherence. In the meantime—at a spacelike separation

from the recombination portion of Alice’s experiment—another experimenter, Bob, measures

the Newtonian gravitational field of Alice’s particle to try to determine its position. If

Bob succeeds, then by complementarity, Alice’s particle must be decohered. But, if Bob

influences the state of Alice’s particle, then causality would be violated. The analysis by

Belenchia et al. [Belenchia et al., 2018, 2019] showed that, in order to avoid contradictions

with complementarity or causality, quantum gravity must have fundamental features of a

quantum field theory at low energies, specifically the quantization of gravitational radiation

(which decoheres Alice’s particle without the presence of Bob) and local vacuum fluctuations

(which limits Bob’s ability to measure the position of Alice’s particle). However, the analysis

of [Belenchia et al., 2018, 2019] made only back-of-the-envelope estimates for the decoherence

effects associated with Alice’s recombination and Bob’s measurement. Furthermore, it con-

sidered only a particular type of measurement that Bob might make. An important purpose

of Chapter 2 (based on [Danielson et al., 2022a]) is to reanalyze this gedankenexperiment,

allowing Bob to make any measurement whatsoever in the region spacelike separated from

Alice’s recombination region. We provide a precise analysis of the decoherence associated with

radiation emitted by Alice’s particle and the decoherence associated with Bob’s measurement.
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We thereby confirm in a rigorous way the conclusions that had been drawn in [Belenchia

et al., 2018, 2019] from their back-of-the-envelope estimates.

Proposed experimental probes of gravitationally mediated entanglement [Ford, 1982, ?,

Bahrami et al., 2015, Bose et al., 2017, Marletto and Vedral, 2017, Carney et al., 2019, 2022,

Feng and Vedral, 2022] will search for entanglement mediated by the superposed Newtonian

field of a body. Thus the implications of such a discovery are of significant practical interest.

The crux of our rigorous reformulation of the gedankenexperiment is to show that, under

the protocols of the thought experiment, no meaningful distinction can be made between

quantized gravitational radiation—gravitons, and the Newtonian field of a body. In fact,

we show the causal consistency of the theory dictates that the existence of entanglement

mediated by the constraints of gravity, i.e., the “Newtonian field,” implies the existence of

entanglement mediated by gravitons. It follows therefore that the experimental discovery of

entanglement mediated by a quantum state of the Newtonian field may be viewed as implying

the existence of the graviton as a fundamental constituent of Nature.

Entanglement and decoherence are two sides of the same coin, insofar it is impossible

for a system to become entangled with another without accruing a commensurate degree

of decoherence. In the gedankenexperiment involving Alice and Bob, we establish that

Alice’s particle must be decohered by gravitational radiation whenever it is possible for Bob

to measure the Newtonian field of her particle. In flat spacetime, the requirement that

Bob measures the field at spacelike separation from the recombination portion of Alice’s

experiment implies that if Alice recombines very slowly and thus minimizes the energy

radiated into the gravitational field, then Bob must perform his measurement a great distance

away to remain spacelike. Therefore, Bob must resolve a very small distinction between the

superposed Newtonian fields, which of course fall off with distance. The precision of Bob’s

field measurement is, however, limited by the local vacuum fluctuations of the metric, which

force Bob to measure the field over a longer and longer time to make a measurement at farther
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and farther distances. In flat spacetime this implies that if Alice performs her experiment

adiabatically and radiates an arbitrarily small amount of energy during her recombination

process then Bob will only gain an arbitrarily small amount of which-path information as

he is forced to measure Alice’s Newtonian field at an arbitrarily far distance from its source.

This entire situation changes dramatically in the spacetime of a black hole, which is what we

demonstrate in Chapter 3.

Chapter 3 describes a new gedankenexperiment, in which Alice uses rocket thrusters to

hold her laboratory at a fixed distance from a black hole. There she adiabatically moves a

massive body into a quantum superposition of positions, and later adiabatically recombines

the spatial branches of her superposition and determines its quantum coherence. Another

experimenter, Bob, will again attempt to decohere Alice’s particle by measuring its Newtonian

field, and as before he must perform his measurement entirely at spacelike separations from

the recombination portion of Alice’s experiment. If Bob performs his measurement outside

the black hole, then the conclusion is no different than in flat spacetime: Alice has performed

her experiment adiabatically, so Bob is forced to remain extremely far from Alice and gains

almost no which-path information. Now, however, Bob has another option available to him:

he can “hide” his experiment in the black hole interior. By doing this he can remain spacelike

separated from Alice’s recombination process at a fixed distance, regardless of how slowly

Alice performs her experiment (we assume the black hole is sufficiently massive that it does

not evaporate a significant fraction of its mass in this time, and so that Bob can successfully

measure the Newtonian field before reaching the singularity). Now nothing prevents Bob

from performing a successful which-path measurement while remaining spacelike from Alice’s

recombination process, in spite of the fact that Alice can minimize the energy she radiates

into the black hole to an arbitrarily small amount. Complementarity dictates that if Bob

is able to obtain which-path information, then Alice’s particle must be decohered. On the

other hand, causality dictates that Alice cannot learn about a measurement performed by
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Bob inside the black hole. This paradox suggests one resolution: there would be no paradox

if the mere presence of a black hole decoheres all superpositions in its exterior as if Bob were

performing a measurement of the Newtonian field in the interior.

Motivated by this gedankenexperiment, we proceed along the lines of [Danielson et al.,

2022b] to show that if a massive body is put in a quantum superposition of spatially separated

states, the mere presence of a black hole in the vicinity of the body will eventually destroy

the coherence of the superposition. This occurs because, in effect, the gravitational field of

the body radiates soft gravitons into the black hole, allowing the black hole to acquire “which

path” information about the superposition. A similar effect occurs for quantum superpositions

of electrically charged bodies, and we provide estimates of the decoherence time for such

quantum superpositions.

Chapter 4 (based on [Danielson et al., 2023]) generalizes the results of Chapter 3 to

spacetimes with Killing horizons, i.e., spacetimes with a Killing vector field such that there

is a null surface to which the Killing field is normal. The event horizon of a stationary black

hole is a Killing horizon [Hawking and Ellis, 1973, Hawking, 1972, Alexakis et al., 2010], so

spacetimes with Killing horizons encompass the case of stationary spacetimes that contain

black holes. However, there are many cases of interest where Killing horizons are present

without the presence of black holes. One such case is that of Minkowski spacetime, where the

Rindler horizon is a Killing horizon with respect to the Lorentz boost Killing field. Another

such case is de Sitter spacetime, where the cosmological horizon is a Killing horizon. We

will show that in these cases, a spatial superposition that is kept stationary (with respect to

the symmetry generating the Killing horizon) will decohere in a manner similar to the black

hole case. We will also provide an estimate of the maximum amount of time during which

coherence can be maintained.

The main purpose of Chapter 5 (based on [Danielson et al., 2025b]) is to show that one

can give a purely local description of the decoherence in terms of the behavior of the quantum
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field within Alice’s lab. From this viewpoint, the decoherence arises from the behavior of the

unperturbed two-point function of the quantum field in the region where the superposition

was created. In particular, the decoherence in the presence of a black hole can be understood

as resulting from the extremely low frequency Hawking radiation that partially penetrates

into Alice’s lab before being reflected back into the black hole by the effective potential of

the black hole. This local viewpoint will enable us to gain insights into various aspects of the

decoherence process, such as the differences in decoherence that occur in different vacuum

states and in different spacetimes. We will also gain insight into the requirements on a

material body to mimic the decoherence effects of a black hole.
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CHAPTER 2

NEWTONIAN FIELD VERSUS GRAVITONS

The analysis of this chapter sheds additional light on the issue of whether tabletop exper-

iments probe only quantum properties of the Newtonian gravitational field [Anastopoulos

and Hu, 2018]. In the gedankenexperiment of Chapter 1, since Bob sees only the Newtonian

gravitational field of Alice’s superposition during the time of his measurement, it is natural

to view this Newtonian field as mediating entanglement between Bob and Alice. Indeed, if

Alice decides to recombine her body at a much later time, the resulting correlations between

the state of Bob’s measuring apparatus and the state of Alice’s particle must be viewed as

having been mediated by the Newtonian field of Alice’s particle. However, we will show

that if Alice follows her protocol and recombines her particle in a region spacelike separated

from Bob’s measurements, then it is much more natural to view Bob as having measured

on-shell gravitons that were emitted by Alice’s particle; i.e., although Bob may believe that

he is measuring a Newtonian gravitational field, he is actually measuring long wavelength

gravitons. This viewpoint makes it clear that if the protocols of the gedankenexperiment are

followed, then Bob is merely a “bystander” and his measurements have no relevance to the

decoherence of Alice’s particle.

Thus, in the circumstances of our gedankenexperiment, there is no clear distinction be-

tween entanglement of Alice’s particle with Bob’s apparatus that is mediated by a Newtonian

field and entanglement of Alice’s particle with gravitons that then interact with Bob’s ap-

paratus. This suggests that, in more general circumstances, entanglement mediated by a

Newtonian field is not fully distinguishable from entanglement with gravitons and, hence,

that the experimental discovery of entanglement by a Newtonian field may be viewed as

evidence for existence of the graviton as a fundamental particle of nature.1 Furthermore, our

analysis provides support for the conclusions of [Belenchia et al., 2019] that the Newtonian

1. Additional arguments for this conclusion have been given in [Carney, 2022].
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field itself can store and transmit quantum information.

In Sec. 2.1, we review the gedankenexperiment of [Mari et al., 2016] and its analysis by

[Belenchia et al., 2018]. In Sec. 2.2 we analyze the decoherence effects associated with the

emission of quantized radiation by Alice’s particle and the decoherence effects associated with

measurements made by Bob. In Sec. 2.3 we reanalyze the gedankenexperiment in a more

precise way and provide a proof that no violations of causality or complementarity occur.

Some further remarks and conclusions are given in Sec. 2.4.

Throughout the chapter, we will work in Planck units where G = c = ℏ = 1.

2.1 The Gedankenexperiment of Mari et al. and its Resolution by

Belenchia et al.

In this section we review the gedankenexperiment initially proposed by Mari et al. [Mari

et al., 2016] and its resolution given by Belenchia et al. [Belenchia et al., 2018]. There

are electromagnetic and gravitational versions of this gedankenexperiment. For simplicity

and definiteness, we shall first focus on the electromagnetic version and then discuss the

modifications to the analysis needed for the gravitational case.

The gedankenexperiment is illustrated in Fig. 2.1. At some time in the distant past, Alice

sent a charged particle with spin in the positive x direction through a Stern-Gerlach apparatus

that is oriented in the z direction. We assume that this process was done sufficiently slowly

so as to produce negligible radiation and that Alice’s particle can be described by ordinary,

nonrelativistic quantum mechanics. After going through the Stern-Gerlach apparatus, her

particle is then in a superposition state of the form

1√
2

(
|↑;A1⟩+ |↓;A2⟩

)
(2.1.1)

where |A1⟩ and |A2⟩ describe spatially separated wave packets and |↑⟩ and |↓⟩ represent

8



t = 0 D

d

TB

TA

Alice

Bob

t
z

Figure 2.1: The setup for the gedankenexperiment of [Mari et al., 2016], as analyzed in
[Belenchia et al., 2018]. Alice’s particle (in blue) is originally in the superposition state
Eq. (2.1.1) with the two wave packets separated by distance d. Bob is at a distance D ≫ d
from Alice and, at a prearranged time, he releases a particle (in orange) from a trap and
attempts to gain information about which path Alice’s particle took by determining the
strength of the Coulomb/Newtonian field of Alice’s particle. Meanwhile, at a corresponding
prearranged time, Alice recombines her particle and determines its coherence as described in
the text. Bob does his measurement within time TB < D and Alice recombines her particle
in time TA < D, so their actions are performed in spacelike separated regions.

eigenstates of z spin. At a prearranged time, Bob attempts to determine which path Alice’s

particle followed by measuring the Coulomb field of Alice’s particle. One way that Bob

could do this is to release a charged particle from a trap at the prearranged time; if Alice’s

particle takes the right path in Fig. 2.1, the Coulomb field near Bob will be stronger and

the motion of Bob’s particle will be influenced more, so by measuring the position of his

particle at a later time, Bob can obtain some “which-path” information about Alice’s particle.

At a corresponding, prearranged time, Alice recombines her particle by putting it through

a “reversing Stern-Gerlach apparatus” [Mari et al., 2016, Bose et al., 2017]. Alice then

9



determines the coherence of her recombined particle by measuring its spin in the x direction.2

If her had particle maintained perfect coherence, it would evolve back to an eigenstate of

spin in the positive x direction. By contrast, if the components of the original superposition

Eq. (2.1.1) had completely decohered, Alice would find that the spin is in the positive x

direction only 50% of the time. By repeating the gedankenexperiment as many times as

necessary, Alice can build up good statistics on the x spin and thereby determine the degree

of decoherence of her particle. By the prearranged protocol, the spacetime region in which

Alice does the recombination and spin measurement is spacelike separated from the region

in which Bob does his measurements, as illustrated in Fig. 2.1.

This gedankenexperiment appears to lead to a contradiction with complementarity or

causality. If Bob acquires any which-path information from his measurement, the state of

Bob’s particle must be correlated with Alice’s to some degree. In that case, by comple-

mentarity, Alice’s particle cannot be in a perfectly coherent superposition and she will find

her particle to have spin in the negative x direction some of the time. On the other hand,

since Bob and Alice perform their actions in spacelike separated regions, by causality, it is

impossible for Bob’s measurements to have any effect on Alice’s results, so the fact that he

obtained some which-path information cannot degrade the coherence of Alice’s particle. So,

if Bob’s measurement does not influence Alice’s spin measurement, we would appear to have

a violation of complementarity, whereas if Bob’s measurement does influence Alice’s spin

measurement, we have a clear violation of causality.

A resolution of this apparent paradox was given in [Belenchia et al., 2018]. This resolution

is based upon Bob’s limitations in acquiring which-path information due to vacuum fluctu-

ations and Alice’s limitations in maintaining coherence due to the emission of entangling

2. In the version of the gedankenexperiment discussed in [Belenchia et al., 2018], Alice determines the
coherence of her particle by performing an interference experiment on the particle wave packets. An alternative
resolution of that version of the gedankenexperiment was proposed in [Rydving et al., 2021], based upon
postulating fundamental limits to the ability to resolve interference fringes as originally proposed by [Baym and
Ozawa, 2009]. This alternative resolution would not be applicable to the version of the gedankenexperiment
being considered here.
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radiation. Bob’s limitations due to vacuum fluctuations can be estimated as follows. In

the electromagnetic case, the difference of the Coulomb electric fields associated with the

different paths of Alice’s particle is given by

E ∼ DA
D3

(2.1.2)

where D is the distance between Alice and Bob and DA = qAd, where qA is the charge of

Alice’s particle and d≪ D is the distance between the two paths of Alice’s particle. If Bob

must perform his measurement in time TB , the difference in the final position of his particle

due to the difference in the Coulomb fields of Alice’s particle is

δx ∼ qB
mB

DA
D3

T 2
B (2.1.3)

where qB is the charge of Bob’s particle and mB is its mass. On the other hand, vacuum

fluctuations of the electromagnetic field produce fluctuations in the position of Bob’s particle

of order

∆x ∼ qB
mB

. (2.1.4)

Thus, on account of the “noise” due to vacuum fluctuations, Bob can acquire significant

which-path information only if
DA
D

>

(
D

TB

)2

. (2.1.5)

In particular, if Bob abides by his protocol TB < D, he can acquire significant which-path

information only when DA > D.

Alice’s limitations on maintaining coherence due to radiation can be estimated as follows.

When Alice recombines her particle over a time TA, she reduces the initial effective dipole

DA to zero. By the Larmor formula, this should result in emission of entangling radiation

corresponding to an average energy flux ∼ (DA/T 2
A)

2. Thus the total energy radiated should
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be ∼ D2
A/T

3
A. This radiation should be composed of photons of frequency ∼ 1/TA. Thus the

total number of entangling photons emitted when Alice recombines her particle should be

N ∼
D2
A

T 2
A

. (2.1.6)

If N > 1, then Alice’s particle will undergo significant decoherence due to entanglement

with radiation, independent of what Bob does. In particular, if Alice abides by her protocol

TA < D, she can maintain coherence only when DA < D.

The above estimates allow one to provide the resolution given in [Belenchia et al., 2018].

If DA > D, then Bob can acquire significant which-path information, so by complementarity,

Alice’s particle must correspondingly be significantly decohered. However, in this case the

radiation emitted when Alice does her recombination will decohere her particle independently

of what Bob does, so there is no reason to believe that Bob’s measurement “caused” the

decoherence, i.e., there is no obvious violation of causality. On the other hand, if DA <

D, then Alice should be able to largely maintain the coherence of her particle during the

recombination. But in this case, Bob cannot acquire significant which-path information,

so complementarity does not imply decoherence of Alice’s particle and, again, there is no

obvious violation of causality.

The analysis of the gravitational version of the gedankenexperiment within the context

of linearized quantum gravity is very similar, with the main difference being the replacement

of “dipole” by “quadrupole.” Alice’s original separation of the particle into a superposition

of two paths does not produce an effective dipole on account of conservation of center of

mass—her laboratory must produce an equal and opposite compensating mass dipole. Thus,

Eq. (2.1.3) gets replaced by

δx ∼ QA
D4

T 2
B (2.1.7)

where QA = mAd
2, where mA is the mass of Alice’s particle. The replacement of Eq. (2.1.4)
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is the Planck length which, in our units, is given by

∆x ∼ 1. (2.1.8)

Since Alice now dominantly would emit quadrupole radiation during her recombination, the

replacement of Eq. (2.1.6) is

N ∼
Q2
A

T 4
A

. (2.1.9)

Suppose that Bob and Alice follow their protocols, so that TB < D and TA < D. Then if

QA > D2, Bob can acquire significant which-path information but Alice decoheres her particle

with gravitational radiation independent of what Bob does. Conversely, if QA < D2, then

Alice should be able to largely maintain the coherence of her particle during the recombination,

but Bob cannot acquire significant which-path information. Thus, as in the electromagnetic

case, there is no obvious contradiction with complementarity or causality.

The above analysis of [Belenchia et al., 2018] resolves the apparent paradox posed by the

gedankenexperiment. Interestingly, this analysis shows that both quantized radiation and

vacuum fluctuations are essential for resolving the paradox. Nevertheless, there are some

unsatisfactory aspects of this analysis. In particular, only back-of-the-envelope estimates of

the various effects were made, so only a rough, order of magnitude relation was obtained

between the decoherence due to radiation during Alice’s recombination and the decoherence

associated with Bob’s measurement. Furthermore, one might consider ways in which Bob

might improve his ability to obtain which-path information. For example, suppose that Bob,

together with n−1 assistants, sets up n separate experiments like the one pictured in Fig. 2.1

to measure the Coulomb/Newtonian field of Alice’s particle. Suppose that each of these

n experiments are done in regions that are spacelike separated from Alice’s recombination

region and spacelike separated from each other. If each of these experiments could be treated

as independent, one would obtain an improvement of 1/
√
n in Bob’s ability to overcome
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the noise due to vacuum fluctuations. Bob would then be able to obtain a corresponding

improvement in his acquisition of which-path information, so if n could be taken to be

sufficiently large, we would again get a contradiction with complementarity or causality. In

fact, vacuum fluctuations over spacelike separated regions are correlated, so it is not obvious

that the n experiments can be treated as independent. But it also is not obvious that a

scheme of this sort would not work. Thus, while the analysis of [Belenchia et al., 2018] is

satisfactory for indicating that there are no obvious contradictions with complementarity or

causality, it is not adequate for conclusively showing that no such contradictions can ever

occur in this type of gedankenexperiment.

As already stated in the Introduction, an important purpose of this chapter is to improve

the analysis of [Belenchia et al., 2018] by giving much more precise versions of the above

estimates. We will thereby show in a much more rigorous way that no contradictions with

complementarity or causality can occur in this type of gedankenexperiment. As a very

important by-product, we will also obtain additional insights into how the state of Alice’s

particle and the state of Bob’s apparatus become correlated. Should this correlation be

viewed as being mediated by the Coulomb/Newtonian field of Alice’s particle or by on-

shell photons/gravitons emitted during the recombination process? We will show that both

viewpoints are correct, i.e., they are equivalent descriptions of the same phenomena. We

begin in the next section by giving precise descriptions of the decoherence due to Alice and

the decoherence due to Bob.

2.2 Decoherence due to Alice and Decoherence due to Bob

In this section, we give a more precise characterization of the decoherence of Alice’s particle

due to radiation emitted when she recombines her particle and the decoherence associated with

Bob’s measurements. These characterizations will be used in the next section to reanalyze

the gedankenexperiment. In this section we will explicitly discuss the electromagnetic version
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of the gedankenexperiment, since the language and concepts are more familiar in this context.

However, exactly the same discussion applies to the gravitational case, with appropriate

substitutions of “graviton” for “photon,” “Newtonian” for “Coulomb,” etc.

2.2.1 Decoherence due to Alice

We first consider the decoherence of Alice’s particle that would occur in the absence of Bob

or any other external influence.

Previously, we stated that after Alice sends her particle through a Stern-Gerlach apparatus

at an early time, the particle is in the superposition state Eq. (2.1.1). However, this expression

ignores the electromagnetic field, which is in a different state depending upon the state of

Alice’s particle. Heuristically, the state of the total system should be of the form

1√
2

(
|↑;A1⟩ ⊗ |ψ1⟩+ |↓;A2⟩ ⊗ |ψ2⟩

)
(2.2.1)

where states |ψ1⟩ and |ψ2⟩ formally correspond to coherent states of the Coulomb field of

Alice’s particle in states |↑;A1⟩ and |↓;A2⟩ respectively. However, this is only a formal

expression because the “Coulomb states” |ψ1⟩, |ψ2⟩ are not well defined—we would need to

define the state space of the full interacting quantum field theory to define them. Nevertheless,

formally, one could argue that these formal Coulomb states should be orthogonal and that

therefore Alice’s particle is already decohered at the earliest time depicted in Fig. 2.1. However

this decoherence is a “false decoherence” in the sense of [Unruh, 2000]. If Alice recombines

her particle slowly enough and if there are no external influences, she will be able to fully

restore the coherence of her particle.

As Alice recombines her particle and moves its components along noninertial paths,

formally the total state should continue to be of the form Eq. (2.2.1). However, while the

recombination process is occurring, there is no way to meaningfully separate |ψ1⟩ or |ψ2⟩
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into a “Coulomb part” (which is not an independent degree of freedom and should cause only

a false decoherence of Alice’s particle) and a “radiation part” (which is a state of the free

electromagnetic field that should be responsible for a true decoherence). Since we do not

have a well-defined inner product between |ψ1⟩ and |ψ2⟩, we cannot, in general, meaningfully

say how much true decoherence has occurred at any finite time during this process.

However, the situation improves considerably if we go to asymptotically late times. At

asymptotically late times, the electromagnetic field naturally decomposes into a radiation

field that propagates to null infinity and a Coulomb field that follows Alice’s particle to

timelike infinity. The asymptotic Coulomb field is completely determined by the asymptotic

state of Alice’s particle and does not represent an independent degree of freedom (see e.g.

[Prabhu et al., 2022]). Thus, at asymptotically late times, the state of the total system is of

the form
1√
2

(
|↑;A1⟩i+ ⊗ |Ψ1⟩I + + |↓;A2⟩i+ ⊗ |Ψ2⟩I +

)
. (2.2.2)

Here |↑;A1⟩i+ and |↓;A2⟩i+ represent the asymptotically late time states of the components of

Alice’s recombined particle and |Ψ1⟩I + and |Ψ2⟩I + represent the states of the radiation field

at null infinity that would arise if, over all time, the states of Alice’s particle were |↑;A1(t)⟩

and |↓;A2(t)⟩, respectively. Note that after recombination, the spatial wave packets describing

the “1” and “2” states coincide, so, in particular, we have |A1⟩i+ = |A2⟩i+ , but we keep the

1 and 2 subscripts for notational clarity.

It is very important to recognize that—unlike Eq. (2.2.1)—Eq. (2.2.2) is not merely a

formal expression. The states |Ψ1⟩I + and |Ψ2⟩I + are well-defined Fock space states of the

“out” Hilbert space of the electromagnetic field and have a well-defined description in terms

of photons.3 The failure of |Ψ1⟩I + and |Ψ2⟩I + to coincide implies a decoherence of Alice’s

3. In a general scattering process, there will be a nontrivial electromagnetic “memory effect,” resulting
in infrared divergences in the description of the quantum state (see e.g. [Prabhu et al., 2022, Kulish
and Faddeev, 1970, Bloch and Nordsieck, 1937]). In that case, the electromagnetic “out” state cannot be
expressed as a state in the standard Fock space and cannot be given a proper description in terms of photons.
However, such infrared divergences do not occur in cases where the charges are not relatively boosted at
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particle. The degree of decoherence of the asymptotic state of Alice’s particle is given by

DAlice = 1− |⟨Ψ1|Ψ2⟩I + | (2.2.3)

where ⟨Ψ1|Ψ2⟩I + denotes the inner product of the states |Ψ1⟩I + and |Ψ2⟩I + on I +. This

equation is a precise and general version of the decoherence estimate given in Sec. 2.1 based

on the number of “entangling photons” that are emitted. If |Ψ1⟩I + and |Ψ2⟩I + differ by

more than one photon, they should be nearly orthogonal, and the decoherence will be nearly

complete.

Σ

P
I+

i 0i 0

i -

I+

i+

Figure 2.2: Alice recombines her particle at event P and subsequently keeps her recombined
particle in inertial motion. Σ is an arbitrary Cauchy surface passing through P .

We are interested in the case depicted in Fig. 2.2 where Alice recombines her particle as

in the gedankenexperiment—but without the presence of Bob—and after recombination, she

asymptotically early and late times as we consider here, so such infrared issues play no role in the analysis
of this gedankenexperiment. Similar divergences which arise due to the gravitational memory effect also play
no role in the (linearized) gravitational version of the gedankenexperiment.
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keeps her combined particle in inertial motion at all future times. Then, to the causal future

of the recombination event P , the electromagnetic field will correspond to the Coulomb

field of the recombined particle. Let Σ be an arbitrary Cauchy surface passing through

P . Extend the Coulomb field of the recombined particle to the entire region to the future,

I+(Σ), of Σ (i.e., not just the causal future of P ). Subtract this Coulomb field from the

electromagnetic field in this region. The electromagnetic field associated with |↑;A1⟩ with

the final Coulomb field subtracted will thus correspond to a well-defined state |Ψ1⟩Σ of the

source-free electromagnetic field on Σ. Similarly, the electromagnetic field associated with

|↓;A2⟩ with the final Coulomb field subtracted will correspond to a well-defined state |Ψ2⟩Σ

on Σ. At “time” Σ, the joint state of Alice’s particle and the electromagnetic field is described

by
1√
2

(
|↑;A1⟩Σ ⊗ |Ψ1⟩Σ + |↓;A2⟩Σ ⊗ |Ψ2⟩Σ

)
. (2.2.4)

In contrast to Eq. (2.2.1), this is a completely meaningful expression; |Ψ1⟩Σ and |Ψ2⟩Σ are

well-defined states of the source-free electromagnetic field. Under time evolution, |Ψ1⟩Σ and

|Ψ2⟩Σ evolve to |Ψ1⟩I + and |Ψ2⟩I + , respectively. Since time evolution is unitary, we may

express the decoherence Eq. (2.2.3) of Alice’s particle as

DAlice = 1− | ⟨Ψ1|Ψ2⟩Σ |. (2.2.5)

This is our desired expression for the decoherence due to Alice. It is clear that if there are no

time constraints on Alice’s recombination, then by doing the recombination adiabatically—so

that negligible radiation is emitted to infinity—she can make the decoherence arbitrarily

small.
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2.2.2 Decoherence due to Bob

We now consider the decoherence that would occur if Bob makes a measurement that obtains

some which-path information about Alice’s particle. We assume that Alice recombines her

particle adiabatically in the distant future—after Bob has completed his measurements—in

such a way that had Bob not been present, no decoherence would have occurred. Thus,

any decoherence in this situation can be attributed to Bob. This situation corresponds to

experimental proposals such as [Bose et al., 2017].

Since Bob is now part of the system, heuristically, the state of the total system after Alice

has put her particle through the initial Stern-Gerlach apparatus but before Bob has begun

his measurements is now

1√
2

(
|↑;A1⟩ ⊗ |ψ1⟩+ |↓;A2⟩ ⊗ |ψ2⟩

)
⊗ |B0⟩ (2.2.6)

where |B0⟩ is the initial state of Bob’s apparatus and again |ψ1⟩ and |ψ2⟩ are the formal

Coulomb states of Alice’s particle. We wish to consider a situation wherein Bob turns

on his apparatus for a time TB and makes a measurement of the Coulomb field of Alice’s

particle in order to try to obtain which-path information. We assume that Bob carries out

his measurement in such a way that he emits negligible radiation to infinity. For example

if Bob measures the motion of a charged particle released from a trap as described in the

previous section, the sensitivity of his experiment will depend on qB/mB but the emitted

radiation will vary as q2B , so by taking qB and mB sufficiently small, he should be able to

carry out his measurements with negligible emitted radiation.4 We allow Bob to make any

field measurement whatsoever, i.e., we do not restrict him to measuring the trajectory of a

particle released from a trap. For the analysis of this subsection, we do not place any limits

on TB , i.e., we do not require TB < D.

4. The assumption that Bob emits negligible radiation is being made so as to make our discussion simpler
and cleaner, but it is not essential for the analysis.
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Since no radiation is emitted by Bob or Alice, at asymptotically late times, the state of

the electromagnetic field at null infinity will be |0⟩I + for either state of Alice’s superposition.

Thus, the final state of the electromagnetic field plays no role in entanglement and we need

only be concerned with the Alice-Bob system. The final state of the Alice-Bob system will

be of the form
1√
2

(
|↑;A1⟩i+ ⊗ |B1⟩i+ + |↓;A2⟩i+ ⊗ |B2⟩i+

)
(2.2.7)

where |B1⟩i+ and |B2⟩i+ are the final states of Bob’s apparatus for Alice’s states |↑;A1⟩ and

|↓;A2⟩, respectively. The failure of |B1⟩i+ and |B2⟩i+ to coincide corresponds to Bob having

acquired which-path information about Alice’s particle. The corresponding decoherence of

Alice’s particle is

DBob = 1− | ⟨B1|B2⟩i+ |. (2.2.8)

However, since Bob stops interacting at time TB , we can equivalently calculate the inner

product at time TB

DBob = 1− | ⟨B1|B2⟩TB |. (2.2.9)

This gives the decoherence associated with Bob’s measurement. In the circumstance consid-

ered here where Alice emits no radiation, it is clear that this decoherence can be viewed as

being caused by Bob. It also is clear that in this circumstance, the decoherence should be

viewed as being mediated by the Coulomb field of Alice’s particle.

Equation (2.2.9) is a precise and general version of the decoherence estimate given in

Sec. 2.1 based upon Bob’s ability to get which-path information. The amount of which-

path information Bob can obtain is determined by the extent to which Bob can design a

measurement so that |B1⟩TB is nearly orthogonal to |B2⟩TB . The degree to which |B1⟩TB is

orthogonal to |B2⟩TB determines how much decoherence of Alice’s particle must occur.
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2.3 Reanalysis of the Gedankenexperiment

We now are in a position to reanalyze the gedankenexperiment of Sec. 2.1. We will again

explicitly consider the electromagnetic version of the gedankenexperiment, but the exactly

same discussion applies to the gravitational case with the appropriate word substitutions.

The spacetime diagram of the gedankenexperiment is redrawn in Fig. 2.3 in order to show

three Cauchy surfaces, Σ1, Σ2, and Σ3, that will play an important role in our reanalysis.

Σ2

Σ3

Σ1

Figure 2.3: A spacetime diagram of the gedankenexperiment of Fig. 2.1 showing the three
Cauchy surfaces, Σ1, Σ2, and Σ3. The Cauchy surface Σ1 passes through Alice’s region after
recombination but is such that the region in which Bob performs his measurements (shaded
in gray) lies to the future of Σ1. (We have depicted Bob as releasing a particle from a trap,
but Bob is allowed to perform any measurement whatsoever in the gray region.) The Cauchy
surface Σ2 is such that it passes through Alice’s region before she starts the recombination
process but is such that Bob’s measurement lies to the past of Σ2. The Cauchy surface Σ3
passes through Alice’s region after recombination and is such that Bob’s measurement lies
to the past of Σ3.

We reanalyze the decoherence of Alice’s particle using the results of the previous section

as follows. First, consider the portion of the spacetime of Fig. 2.3 that lies to the past of
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Cauchy surface Σ1. At the time represented by Σ1, Alice has completed her recombination

but Bob has not yet begun performing his measurements. The portion of the spacetime lying

to the past of Σ1 is identical to the portion of the spacetime of Fig. 2.2 lying to the past of

a corresponding Cauchy surface Σ. Thus, we may apply the results of Sec. 2.2.1 to conclude

that the decoherence of Alice’s particle is given by

DAlice = 1−
∣∣∣⟨Ψ1|Ψ2⟩Σ1

∣∣∣ , (2.3.1)

where |Ψ1⟩Σ1
and |Ψ2⟩Σ1

are the radiation states on Σ1 obtained by subtracting the common

Coulomb field from the states of the electromagnetic field corresponding to Alice’s particle

being in states |↑;A1⟩ and |↓;A2⟩, respectively. Since Alice’s recombination is complete at

time Σ1, Eq. (2.3.1) should yield the exact expression for the decoherence of Alice’s particle.

However, we also can analyze the decoherence of Alice’s particle by considering the portion

of the spacetime that lies to the past of the Cauchy surface Σ2. At time Σ2, Alice has not

yet started her recombination, but Bob has completed his measurements. Thus, the situation

here is identical to the setup considered in Sec. 2.2.2. Hence, we may apply the results of

Sec. 2.2.2 to conclude that a decoherence of Alice’s particle given by

DBob = 1− | ⟨B1|B2⟩ | (2.3.2)

must occur as a result of Bob’s measurements, where |B1⟩ and |B2⟩ represent the states of

Bob’s apparatus after completion of his measurement. It is possible that more decoherence

of Alice’s particle could occur as Alice performs her recombination. However, since Bob

has completed his measurement and stops interacting after time Σ2, it is impossible for the

decoherence of Alice’s particle to be less than this.

It follows that there would be a paradox if it were possible for Bob to do a measurement
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in such a way that

| ⟨B1|B2⟩ | <
∣∣∣⟨Ψ1|Ψ2⟩Σ1

∣∣∣ , (2.3.3)

i.e., such that the decoherence associated with Bob’s measurement is greater than the deco-

herence due to Alice. If Eq. (2.3.3) held, then Bob’s measurement either would result in a

violation of causality [if it induced an additional decoherence of Alice’s particle beyond that

given by Eq. (2.3.1)], or it would result in a violation of complementarity (if it did not induce

such an additional decoherence). Eq. (2.3.3) is a precise statement of the potential paradox

posed by the gedankenexperiment of Sec. 2.1.

However, it is now easy to see that no such paradox can ever arise. At time Σ1, the state

of the joint Alice-field-Bob system is described by

1√
2

(
|↑;A1⟩ ⊗ |Ψ1⟩Σ1

+ |↓;A2⟩ ⊗ |Ψ2⟩Σ1

)
⊗ |B0⟩ (2.3.4)

where |Ψ1⟩Σ1
and |Ψ2⟩Σ1

are the radiation states on Σ1 (with the common Coulomb field

subtracted), and |B0⟩ is the initial state of Bob’s detector. We now consider the evolution

of this state to the Cauchy surface Σ3. There is no evolution of Alice’s state, since Σ3 is the

same time as Σ1 as far as Alice’s state is concerned. However, the radiation interacts with

Bob’s measuring apparatus. In the case where Alice’s state is |↑;A1⟩, Bob’s state evolves to

|B1⟩, whereas if Alice’s state is |↓;A2⟩, Bob’s state evolves to |B2⟩. It follows that the state

Eq. (2.3.4) on Σ1 must evolve to the state on Σ3 described by

1√
2

(
|↑;A1⟩ ⊗ |Ψ′1⟩Σ3

⊗ |B1⟩+ |↓;A2⟩ ⊗ |Ψ′2⟩Σ3
⊗ |B2⟩

)
. (2.3.5)

Here |Ψ′1⟩Σ3
and |Ψ′2⟩Σ3

are the radiation states that arise from |Ψ1⟩Σ1
and |Ψ2⟩Σ1

, respec-

tively, after interaction with Bob. The states |Ψ′1⟩Σ3
and |Ψ′2⟩Σ3

depend on the interaction

with Bob, so they cannot be calculated without knowing exactly what Bob is measuring.

However, no matter what Bob does, the joint evolution from Σ1 to Σ3 must be unitary. It
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follows that the norms of states are preserved and that

⟨Ψ′1|Ψ
′
2⟩Σ3

⟨B1|B2⟩ = ⟨Ψ1|Ψ2⟩Σ1
⟨B0|B0⟩

= ⟨Ψ1|Ψ2⟩Σ1
. (2.3.6)

It then follows immediately that

| ⟨B1|B2⟩ | ≥
∣∣∣⟨Ψ1|Ψ2⟩Σ1

∣∣∣ (2.3.7)

so the inequality Eq. (2.3.3) can never be satisfied. This is precisely what we wished to show.

Although the above argument completes our proof that no contradiction with causality

or complementarity can ever arise in this gedankenexperiment—no matter what Bob chooses

to measure—it remains to give a more intuitive explanation of our new resolution of the

gedankenexperiment and connect it with the discussion of Sec. 2.1.

The main new ingredient that we have added to the analysis is that we may view Bob

as measuring aspects of the radiation emitted by Alice’s particle. It may seem strange to

talk about “emitted radiation” that is present in a region that is spacelike separated from

the region where the emission is taking place. Indeed, this may, by itself, appear to be a

violation of causality! However, this kind of phenomenon is a basic feature of quantum field

theory, with no violation of causality involved. The mode function of a particle in quantum

field theory is a positive frequency solution and cannot be sharply localized. If a photon is

emitted by a source in some localized region O, there always will be some amplitude for the

photon to be present in a region spacelike separated from O. Indeed, as discussed in detail

in [Unruh and Wald, 1984], there are cases where the emitted photon is mostly localized in a

spacelike separated region. This does not lead to a violation of causality because an observer

in the spacelike separated region will not be able to tell whether she is observing a photon or

a vacuum fluctuation—she can tell the difference between these possibilities only when she
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enters the causal future of O. In the present case, the electromagnetic field in Bob’s region

can be viewed either as corresponding to the superposition of the Coulomb fields of Alice’s

particle with no radiation—as would be natural to do if we view Bob’s region as lying to the

past of time Σ2—or as the single Coulomb field of Alice’s combined particle together with

free radiation—as would be natural to do if we view Bob’s region as lying to the future of

time Σ1. These viewpoints are indistinguishable in Bob’s region.

The radiation viewpoint allows us to understand why Bob cannot produce any additional

decoherence beyond what Alice produces during her recombination. Bob can obtain which-

path information only by measuring (i.e., scattering and/or absorbing) the entangling photons

that “previously” were emitted by Alice. Therefore, the state of his apparatus cannot become

more correlated with Alice’s particle than the radiation emitted by Alice, as we have proven

above in Eq. (2.3.7).

Note that, as we have just argued, in the gedankenexperiment, Bob is merely an “innocent

bystander” with regard to the decoherence of Alice’s particle, since he is merely measuring

the entangling radiation emitted by the particle that was the true cause of the decoherence.

However, suppose that Alice does not follow the protocol assigned to her in the gedankenex-

periment and instead recombines her particle very slowly at a later time, so as not to produce

any radiation. Then, despite her attempts to keep perfect coherence, she will find that her

particle has decohered by the amount Eq. (2.3.2). In this case, Bob’s measurement is the true

cause of her particle’s decoherence [Belenchia et al., 2019]. Interestingly, when Bob performs

his measurements, he has no way of knowing whether he will turn out to be an “innocent

bystander” or the cause of decoherence of Alice’s particle.

Finally, we note that the analysis of the gedankenexperiment summarized in Sec. 2.1 was

based upon the limitations on Alice’s ability to maintain coherence due to radiation and

the limitations on Bob’s ability to get which-path information due to vacuum fluctuations.

The reanalysis of the gedankenexperiment given above gave a more precise version of Alice’s
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limitations on maintaining coherence due to radiation. However, we did not mention “vacuum

fluctuations” in the discussion of the decoherence associated with Bob’s measurements, so

it might appear that the reanalysis differs in this respect. However, this is not the case:

The radiation fields |Ψ1⟩Σ1
and |Ψ2⟩Σ1

have different expected values of the electromagnetic

field. Their failure to be orthogonal can be viewed as a manifestation of the same type of

fluctuations in these states as occurs in the vacuum state; if these states did not have such

fluctuations, they would be fully distinguishable and hence orthogonal. But, as is evident

from 2.3.7, it is the failure of |Ψ1⟩Σ1
and |Ψ2⟩Σ1

to be orthogonal that limits Bob’s ability

to make |B1⟩ and |B2⟩ orthogonal. Thus, there is a direct connection between vacuum

fluctuations and the limitations on Bob’s ability to obtain which-path information.

2.4 Summary and Conclusions

In this chapter, we have reanalyzed the gedankenexperiment discussed in [Belenchia et al.,

2018]. Our reanalysis validates the arguments that had been made in [Belenchia et al., 2018]

using only back-of-the-envelope estimates, and it shows in a much more precise way—and

under completely general assumptions about the measurements that Bob makes—that no

violations of causality or complementarity can occur.

Perhaps the most interesting aspect of our reanalysis is the equivalence of two viewpoints

on how the state of Bob’s measuring apparatus becomes correlated with the state of Alice’s

particle. In the gravitational version of the gedankenexperiment, one can say either that (i)

Alice’s particle became entangled with on-shell gravitons emitted during the recombination

process and Bob’s apparatus then interacted with these gravitons—thereby transferring some

of the entanglement present in these gravitons to his apparatus—or that (ii) the Newtonian

gravitational field of Alice’s particle mediated an entanglement of Bob’s apparatus with

Alice’s particle. If Alice follows her protocol but Bob fails to make any measurement, then it

is essential to take viewpoint (i) to understand why Bob’s inaction has no effect whatsoever on
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the decoherence of Alice’s particle. Conversely, if Bob follows his protocol but Alice recombines

her particle adiabatically at a later time, one must take viewpoint (ii) to understand how

Bob’s measuring apparatus becomes correlated with the Alice’s particle [Belenchia et al.,

2019]. But if Alice and Bob each follow the protocols of the gedankenexperiment, then both

(i) and (ii) provide a valid description of the process that occurs.

Indeed, it is essential that both (i) and (ii)—or, alternatively, neither (i) nor (ii)—be

valid descriptions of the process. To see this, suppose that (i) fails, i.e., Alice’s particle does

not emit entangling gravitons, but suppose that (ii) holds, i.e., Bob’s apparatus is able to

entangle with Alice’s particle via its Newtonian gravitational field. Then Alice’s particle

would not decohere in the absence of Bob. It follows that if it decohered in the presence of

Bob we would have a violation of causality, whereas if it did not decohere in the presence

of Bob we would have a violation of complementarity. Thus, it is not consistent for (i) to

fail but (ii) to hold. Conversely, suppose (i) holds, i.e., Alice’s particle emits quantized

entangling gravitational radiation, but suppose that (ii) fails, i.e., Bob’s apparatus is unable

to entangle with Alice’s particle via its Newtonian gravitational field. Then, since, as we have

seen, under the protocol of the gedankenexperiment, the difference of the Newtonian fields of

Alice’s particle can be equivalently viewed as quantized radiation emitted by Alice’s particle,

this would imply that Bob is unable to interact with quantized gravitational radiation in any

way that results in entanglement. This would not make sense in any theory where quantized

gravitational radiation can be produced.5

These considerations show that there is a direct relationship between Newtonian entan-

glement and the existence of gravitons. Our argument for such a relationship is strictly

valid only within the protocol of the gedankenexperiment, where the measurement of the

Newtonian field/gravitons is carried out within a time span no longer than the light travel

5. It has been argued that it may be impossible, in principle, to measure the energy of a single graviton
[Dyson, 2013]. Bob is not required here to resolve an individual graviton but merely to become entangled, at
least to some degree, with gravitons.
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time to the source. Nevertheless, these considerations yield strong support for the view that

any observation of entanglement mediated by a Newtonian field provides evidence for the

existence of the graviton.
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CHAPTER 3

BLACK HOLES DECOHERE QUANTUM SUPERPOSITIONS

The gedankenexperiment of the previous chapter suggests an intimate connection between the

causal structure of a theory, and the amount of entanglement that exists between spacetime

regions. This chapter introduces a variation of the gedankenexperiment that illustrates this

point in dramatic fashion, by asking Alice to perform her coherence experiment in the exterior

of a black hole.

Black holes have long been known to be destroyers of quantum coherence. If one member

of an entangled pair of particles falls into a black hole, all that will remain is the particle

that stayed outside the black hole, which will be in a mixed state. Much more generally, if

matter of any kind falls into a black hole, it will, in effect, eventually emerge as Hawking

radiation and be in a highly mixed state. While it may be debated as to whether the quantum

coherence is lost forever in this process (see, e.g., [Unruh and Wald, 2017, Marolf, 2017]),

there is a general consensus that the state outside the black hole is highly mixed at least up

to the “Page time” in black hole evaporation.

The purpose of this chapter is to show that black holes are even more insidious destroyers

of quantum coherence than has been previously known. If one puts any quantum matter in

a spatial superposition, the mere presence of a black hole in the vicinity of the matter will

eventually destroy the coherence of this superposition. This happens because the long-range

(i.e., electromagnetic and gravitational) fields associated with the quantum matter affect the

quantum state of these fields on the black hole horizon. In effect, the black hole thereby

acquires “which path” information about the quantum superposition. As we shall show, this

inflicts a fundamental rate of decoherence even on stationary superpositions outside its event

horizon. This is sufficient to decohere any quantum superposition over a sufficiently long

period of time.

To understand how this works, it is useful to first consider a quantum superposition
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in flat spacetime and see how decoherence can be avoided, following the analysis given in

Chapter 2. For simplicity and definiteness, we consider an electrically charged body and the

decoherence effects of the electromagnetic field, but an exactly similar analysis will apply

for a massive body in the gravitational case. Below, we will refer to the charged body as

a “particle” although it need not be an elementary particle, e.g. it could be an atom or a

nanoparticle. Suppose an experimenter, Alice, sends a particle of charge q with spin initially

in the positive x-direction through a Stern-Gerlach apparatus oriented in the z-direction, so

that the state of her particle after the process is in a superposition state of the following

form:
1√
2

(
|↑;A1⟩+ |↓;A2⟩

)
. (3.0.1)

Here |A1⟩ and |A2⟩ are spatially separated wavepackets with separation d, with |↑⟩ and |↓⟩

being eigenstates of the z-spin. We wish to know whether the coherence of this superposition is

preserved at a later time. In order to make this into a well defined experimental/observational

question, Alice can put the particle through a reversing Stern-Gerlach apparatus at some

later time and measure the x-spin. If the coherence of the superposition Eq. (3.0.1) has been

maintained, the spin will always be found to be in the positive x-direction, whereas if any

coherence has been lost the spin will sometimes be found to be in the negative x-direction.

We assume that there are no external influences whatsoever on Alice’s particle. It might

then seem obvious that coherence must be maintained. However, this is not necessarily the

case because, since the particle is charged, an electromagnetic field is present and it is part

of the system. Heuristically, the state of the total system after passage through the initial

Stern-Gerlach apparatus is actually of the following form:

1√
2

(
|↑;A1⟩ ⊗ |ψ1⟩+ |↓;A2⟩ ⊗ |ψ2⟩

)
(3.0.2)

where |ψ1⟩ and |ψ2⟩ formally correspond to the states of the electromagnetic field for the
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charge-current sources determined by |A1⟩ and |A2⟩, respectively. Since |ψ1⟩ and |ψ2⟩ clearly

are distinguishable electromagnetic fields, it might seem that Alice’s particle is already

decohered at the outset. However, this decoherence is a “false decoherence” in the sense of

Ref. [Unruh, 2000]. If Alice recombines her particle slowly enough so as to avoid radiating,

she will be able to fully restore the coherence of her particle.

In order to give a precise description of the true decoherence of Alice’s particle associated

with the electromagnetic field, it is necessary to separate the electromagnetic field into a

“Coulomb part” (which is not an independent degree of freedom and should cause only a false

decoherence of Alice’s particle) and a “radiation part” (which corresponds to the true degrees

of freedom of the electromagnetic field that should be responsible for a true decoherence,

observable by Alice). In general, this distinction is not possible to make in a meaningful way

at any finite time. However, the situation improves considerably if we go to asymptotically

late times. At asymptotically late times, the electromagnetic field naturally decomposes into

a radiation field that propagates to null infinity and a Coulomb field that follows Alice’s

particle to timelike infinity. The asymptotic Coulomb field is completely determined by the

asymptotic state of Alice’s particle and does not represent an independent degree of freedom.

Thus, at asymptotically late times, the state of the total system is of the following form:

1√
2

(
|↑;A1⟩i+ ⊗ |Ψ1⟩I + + |↓;A2⟩i+ ⊗ |Ψ2⟩I +

)
. (3.0.3)

Here |↑;A1⟩i+ and |↓;A2⟩i+ represent the asymptotically late-time states of the components

of Alice’s particle and |Ψ1⟩I + and |Ψ2⟩I + represent the quantum states of the electromag-

netic radiation at future null infinity I +. If Alice has recombined her particle at some finite

time, then |A1⟩ = |A2⟩. Thus, the decoherence of Alice’s superposition will be determined

by the orthogonality of the radiation states

D = 1− |⟨Ψ1|Ψ2⟩I + | . (3.0.4)
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In the absence of any external influences, Alice can ensure that the coherence of her particle is

maintained (i.e. D ≈ 0) if she recombines her particle in such a way that negligible entangling

radiation is emitted. As estimated in Ref. [Belenchia et al., 2018] and in the previous chapter,

this will be possible if the recombination is done over a time span T such that

T ≫ qd√
ϵ0c3ℏ

. (3.0.5)

In other words, if Eq. (3.0.5) holds, Alice can ensure that |Ψ1⟩I + ≈ |Ψ2⟩I + ≈ |0⟩I + ,

so D ≈ 0. Thus, in Minkowski spacetime, Alice can, in principle, maintain the quantum

coherence of her spatial superposition by recombining the components of the superposition

slowly enough.

The previous chapter also analyzed the complementary point of view of an experimenter,

Bob, who attempts to measure the superposed Newtonian field of Alice’s particle while

remaining in the causal complement of the recombination portion of Alice’s experiment.

We found that the vacuum fluctuations of the electromagnetic field reduced the precision

of Bob’s field measurement, thereby obscuring from him any significant amount of which-

path information so long as he remained spacelike separated from Alice’s recombination

process. Bob might attempt to overcome this vacuum fluctuation noise by averaging his field

measurement over a longer time. This, however does him no good in flat spacetime: to perform

a longer experiment while remaining at spacelike separation from Alice’s recombination

process, Bob must measure the field at a further distance from Alice’s source. Although

Bob can increase his precision in this way, the falloff of Alice’s sourced field with distance

eliminates any benefit Bob might have hoped to obtain, by shrinking the difference between

the two Coulomb fields he is attempting to distinguish.

We now consider how this situation changes if there is a black hole in the vicinity of Alice.

First, Alice must ensure that her lab does not fall into the black hole. One way of doing

this would be for Alice to orbit the black hole. However, this may result in some unwanted
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emission of radiation. Therefore it would be better to equip Alice with a rocket engine that

keeps her lab stationary. She must then also apply some force to her particle (e.g., via a

uniform electric field) to keep it stationary. There also may be other effects in her lab due to

the spacetime curvature associated with the black hole. However, Alice can take the effects

of the gravitational field of the black hole on her lab into account in such a way that they

will not result in the decoherence of her particle. Therefore, we shall ignore these effects.

Again, Bob will attempt to decohere Alice’s particle by measuring its Coulomb field. If he

attempts this from outside the black hole, he will find the analysis of the previous chapter goes

through essentially unchanged. If, however, Bob is willing to perform his measurement in the

region of the black hole interior that is spacelike separated from Alice’s recombination process,

the situation changes dramatically. Of course, Bob will eventually reach the singularity. Given

a sufficiently massive black hole, however, he can sample the Coulomb field for a sufficiently

long time that the effects of vacuum fluctuations will average out. Unlike in flat spacetime,

Bob can do this while remaining at an essentially fixed proper distance from Alice. In fact,

the longer the time T over which Alice recombines her superposition, the more which-path

information Bob can obtain while remaining at spacelike separations. As always, causality

requires that it is impossible for Bob to effect the coherence of Alice’s particle. The fact that

Bob could in principle measure Alice’s Coulomb field from inside the black hole, then, suggests

that the mere presence of a black hole should decohere Alice’s superposition regardless of

the presence of Bob. Furthermore, this gedankenexperiment suggests that the decoherence

inflicted by the black hole should in fact grow with T , so that if Alice performs her experiment

adiabatically to minimize the energy radiated to null infinity, she should in fact suffer even

more decoherence due to the black hole.

As we shall now explain, the black hole itself does indeed acquire “which path” information

about Alice’s particle, which will result in decoherence. With regard to the decoherence of

Alice’s particle, the key difference arising when a black hole is present is that electromagnetic
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radiation can now propagate through the black hole horizon as well as to null infinity. Thus,

when a black hole is present, the asymptotically late-time state of Alice’s particle and the

electromagnetic field is now

1√
2

(
|↑;A1⟩i+ ⊗ |Ψ1⟩I + |Φ1⟩H + + |↓;A2⟩i+ ⊗ |Ψ2⟩I + |Φ2⟩H +

)
(3.0.6)

where |Ψ1⟩I + and |Ψ2⟩I + are as before and |Φ1⟩H + and |Φ2⟩H + are the correspond-

ing states of the electromagnetic field on the event horizon, H +, of the black hole. The

decoherence of Alice’s particle in the presence of a black hole is now given by

D = 1− |⟨Ψ1|Ψ2⟩I + ⟨Φ1|Φ2⟩H + | . (3.0.7)

As in Minkowski spacetime, if Alice recombines her particle adiabatically, she can ensure

that there is negligible radiation to infinity, so |Ψ1⟩I + ≈ |Ψ2⟩I + ≈ |0⟩I + , in which case

any decoherence will be entirely due to radiation propagating into the black hole

DBH = 1− |⟨Φ1|Φ2⟩H + | . (3.0.8)

It might be thought that, by performing her recombination adiabatically, Alice also can

ensure that no radiation enters the black hole. However, this is not the case.

To see this, we first consider a classical point charge outside of a Schwarzschild black hole.

The explicit solution for a static point charge outside of a Schwarzschild black hole has long

been known [Copson and Whittaker, 1928, Cohen and Wald, 1971, Linet, 1976]. On the

horizon, the electric field of a static point charge is purely radial, i.e. the only nonvanishing

component of the electric field on the horizon is Er = cFabℓ
anb, where na denotes the

affinely parametrized null normal to the horizon and ℓa is the unique past-directed radial

null vector satisfying ℓana = 1. Electromagnetic radiation on the horizon is described by the
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pullback, EA, of the electric field Ea = cFabn
b to the horizon, where capital Latin indices

denote angular components on the horizon. Since EA = 0 for a static point charge, there is

no radiation through the horizon, as would be expected. However, suppose we now quasi-

statically move the point charge to a new location. After the charge has reached its new

location, the electric field will again be radial, but Er on the horizon will be different from

what it was initially. However, it follows from Maxwell’s equations at the horizon that

DAEA = −∂V Er (3.0.9)

where DA denotes the covariant derivative on the 2-sphere cross-sections of the horizon,

angular indices are raised and lowered with the metric, qAB , on the cross-section, and V

is an affine parameter such that na = (∂/∂V )a. Therefore, we must have EA ≠ 0 on the

horizon as the charge is being moved and, indeed,
∫
EAdV is constrained by initial and

final values of Er, independently of how the charge is moved between its initial and final

positions. Thus, there is necessarily some radiation that crosses the horizon of the black hole

due to the displacement of the charge. We can make the total energy flux of this radiation

through the horizon arbitrarily small by moving the charge very slowly, but, as we will now

show, we cannot make the “total photon flux” of this radiation small by moving the charge

quasi-statically.

In order to analyze quantum aspects of the radiation, we need to give a precise specification

of the quantum state of electromagnetic radiation on the horizon of a black hole. For an

unperturbed Schwarzschild black hole formed by gravitational collapse, the state of the

electromagnetic field on the horizon of the black hole is described by the Unruh vacuum.

However, we will be concerned here only with low frequency phenomena (ω ≪ 1), in which

case the Unruh and Hartle-Hawking vacua near the horizon are essentially indistinguishable.

For the electromagnetic field in a gauge where Aana = 0 on the horizon, the “free data” of

the electromagnetic field on the horizon is the pull-back, AA, of the vector potential. In
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the Fock space associated with the Hartle-Hawking vacuum, a “particle” corresponds to a

solution that is purely positive frequency with respect to affine parameter on the horizon.

The inner product on the one-particle Hilbert space is given by [Kay and Wald, 1991]

⟨A1,B |A2,C⟩H + ≡
2ϵ0c

ℏ

∫
S2

r2s dΩ

∞∫
0

ωdω

2π
qBCÂ1,B(ω, x

A)Â2,C(ω, x
A) (3.0.10)

where rs is the Schwarzschild radius of the black hole and ÂA is the Fourier transform of

AA with respect to affine parameter V . Equation (3.0.10) corresponds to a Klein-Gordon

type of inner product on the positive frequency part of AA. Now suppose that the black

hole is perturbed by a classical charge-current source of the quantum electromagnetic field.

The quantum state of the electromagnetic field will then be described by the coherent state

(relative to the unperturbed vacuum) associated with the classical retarded solution. The

expected number of “horizon photons” in this electromagnetic state at the horizon is given

by

⟨N⟩ = ∥AA∥2H + , (3.0.11)

where AA is the classical retarded solution and the norm of AA is defined by the inner product

Eq. (3.0.10).

Let us apply this result to the electromagnetic field of a point charge that starts at a point

x outside the black hole, is moved to another point x′ outside of the black hole and remains

at x′ forever. We have already seen in this case that
∫
EAdV ≠ 0. Since EA = −c∂V AA,

this means that AA does not return to its initial value at the end of the process. This

is closely analogous to the memory effect that occurs at null infinity [Bieri and Garfinkle,

2013, Satishchandran and Wald, 2019]. The fact that AA does not return to its initial value

implies that its Fourier transform diverges as 1/ω as ω → 0. It then follows immediately

from Eq. (3.0.10) that ∥AA∥2H + =∞. Thus, if one moves a point charge from x to x′ and

leaves the particle at x′ forever, no matter how quickly or slowly the charge is moved, an

36



infinite number of “soft horizon photons” will be radiated into the black hole. This is closely

analogous to the infrared divergences at null infinity that arise in scattering theory in quantum

electrodynamics [Prabhu et al., 2022]. Note that the infinite number of “soft photons” carry

negligible energy, and by moving the charge quasi-statically, the total electromagnetic energy

radiated into the black hole can be made to be arbitrarily small.

The case of more relevance for us is one in which the point charge is moved from x to x′,

is held at x′ for a long proper time T , and then is returned to x. In that case, AA returns

to its initial value at late times, so there is no infrared divergence in the sense that ⟨N⟩

is finite. Nevertheless, the following estimates show that ⟨N⟩ is very large when T is very

large. The radial electric field of a point charge located a distance b from the black hole

is roughly Er ∼ q/ϵ0b
2 [Copson and Whittaker, 1928, Cohen and Wald, 1971, Linet, 1976].

The change in the radial electric field when the charge is moved from x to x′ is therefore

roughly ∆Er ∼ qd/ϵ0b
3, where d is the distance between x and x′ and we have assumed that

d≪ b. Taking account of the fact that the 2-spheres on the horizon are of radius 2GM/c2,

it then follows from Eq. (3.0.9) that the change in the vector potential, AA, on the horizon

when the particle is moved from x to x′ is

∆AA ∼
G2M2

c5
qd

ϵ0b3
. (3.0.12)

Eventually, when the particle is moved back to x, the change in AA will be equal and opposite

to Eq. (3.0.12). But if the charge is held at point x′ for a very long time T , the contribution of

AA to the norm defined by Eq. (3.0.10) will be dominated by the low-frequency contribution

arising from the time interval over which Eq. (3.0.12) holds. We obtain

⟨N⟩ = ∥AA∥2H + ∼
G4M4q2d2

ℏc9ϵ0b6
lnV (3.0.13)

where V is the affine time on the horizon corresponding to the proper time T along the
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particle trajectory. However, the relation between affine time, V , and Killing time, v, on the

horizon of a black hole is given by V = exp(κv/c), where κ = c4/4GM is the surface gravity

of the black hole. Furthermore, the Killing time is related to the proper time of the particle

by the redshift factor. We shall assume that Alice’s lab is not extremely close to the black

hole and neglect the departure of the redshift factor from 1. We then obtain

⟨N⟩ = ∥AA∥2H + ∼
G3M3q2d2

ℏc6ϵ0b6
T. (3.0.14)

Thus, the number of “soft photons” radiated into the black hole in the above process grows

linearly with the time, T , that the point charge spends at point x′.

We now have all of the ingredients needed to analyze Alice’s coherence experiment, under

the assumption that Alice splits and recombines her particle slowly enough that negligible

radiation is emitted to infinity. Although our results hold much more generally, it is easiest

to consider the case where, after passing through the Stern-Gerlach apparatus, the first

component of Alice’s particle remains at position x and the second component of her particle

moves to position x′. After these components stay at x and x′, respectively, for a time T ,

they are recombined in such a way that the first component continues to remain at x and

the second component moves from x′ to x. In that case, no radiation is emitted by the

first component, so in Eq. (3.0.6), we have |Φ1⟩H + = |0⟩H + . However, our above analysis

applies to the second component, which moves from x to x′, stays at x′ for a time T , and

then returns to x. Thus, |Φ2⟩H + will be a state with expected number of photons given by

Eq. (3.0.14). If ⟨N⟩ ≳ 1, then |Φ2⟩H + will be nearly orthogonal to |Φ1⟩H + = |0⟩H + . This

means that—due entirely to the presence of a black hole—Alice’s particle will decohere in a
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time

TD ∼
ϵ0ℏc6b6

G3M3q2d2
(3.0.15)

∼ 1043 years
(

b

a.u.

)6

·
(
M⊙
M

)3

·
(
e

q

)2

·
(
m

d

)2

. (3.0.16)

Thus, if our Sun were a black hole and if one separated an electron into two components one

meter apart in a laboratory experiment on Earth, it would not be possible to maintain the

coherence of the electron for more than 1043 years. On the other hand, if this experiment

were done at b = 6GM/c2, then TD ∼ 5minutes.

A closely parallel analysis can be given for the case of a gravitating particle. In the

gravitational case, the electric part of the Weyl tensor Eab = c2Cacbdn
cnd plays a role closely

analogous to the role played by the electric field Ea in the electromagnetic case. For a

static point mass outside a Schwarzschild black hole the only non-vanishing component of

the electric part of the Weyl tensor on the horizon is Err = c2Cacbdℓ
ancℓbnd. Gravitational

radiation on the horizon is described by the pullback, EAB , of Eab, which vanishes for a static

point mass. However, the process of moving the particle quasi-statically to a new location

will involve a change in Err. The (once-contracted) Bianchi identity on the horizon yields

DAEAB = −∂V ErB , DAErA = −∂V Err (3.0.17)

which implies

DADBEAB = ∂2V Err (3.0.18)

in close analogy with Eq. (3.0.9). Thus, if a point mass is moved quasi-statically, there

necessarily will be radiation through the horizon. To determine the number of gravitons

emitted, we treat the quantum gravitational field at the level of linearized perturbation

theory about the black hole background. For a metric perturbation hab in a gauge where
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habn
a = 0 = qABhAB on the horizon, the “free data” on the horizon is hAB . As in the

electromagnetic case, a “particle” in the Fock space associated to the Hartle-Hawking vacuum

is a solution with positive frequency with respect to affine parameter V . The inner product

on the one-particle Hilbert space is given by a direct analog of Eq. (3.0.10) with AA replaced

by hAB . Finally, EAB is given in terms of hAB by EAB = −1
2c

2∂2V hAB .

The analysis of the decoherence of a quantum superposition of a body of mass m in the

presence of a black hole now proceeds in exact parallel with the electromagnetic case. The

only significant difference is that, for the same reason as in the analysis of Ref. [Belenchia

et al., 2018], it is now the effective mass quadrupole md2 of the superposition that enters,

rather than the effective electrostatic dipole qd that entered the electromagnetic analysis.

We find that a black hole will decohere a quantum superposition of a massive body in a time

TGR
D ∼ ℏc10b10

G6M5m2d4
(3.0.19)

∼ 10 µs
(

b

a.u.

)10

·
(

M⊙
M

)5

·
(

MEarth
m

)2

·
(

REarth

d

)4

. (3.0.20)

Thus, if the Sun were a black hole and the Earth occupied a quantum state with its center of

mass spatially superposed by a separation on the order of its own radius, this superposition

would decohere due to the presence of the black hole in about 10 µs. Of course, it would not

be easy to put the Earth into such a quantum superposition.

In summary, we have found that black holes, in effect, gather information about quantum

superpositions of spatially separated components by means of the long range fields sourced

by the matter comprising these components. Eventually, a black hole will decohere any

quantum superposition. Although this may not be of practical importance for any presently

contemplated experiments, it may be of fundamental significance for our understanding of

the nature of black holes in a quantum theory of gravity.
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CHAPTER 4

KILLING HORIZONS DECOHERE QUANTUM

SUPERPOSITIONS

Consider a stationary spacetime in which an experimentalist, Alice, is present. Alice’s lab

is stationary, and she has control of a charged or massive body (hereinafter referred to as a

“particle”). She sends her particle through a Stern-Gerlach apparatus or other device that

puts her particle in a quantum superposition of two spatially separated states.1 She keeps

these spatially separated components stationary for a time T and then recombines them.

Will Alice be able to maintain the coherence of these components, so that, when recombined,

the final state of her particle will be pure — or will decoherence have occurred, so that the

final state of her particle will be mixed?

Ordinarily, any decoherence effects will be dominated by “environmental influences,” i.e.,

additional degrees of freedom present in Alice’s lab that interact with her particle. We

assume that Alice has perfect control of her laboratory and its environment so that there

is no decoherence from ordinary environmental effects. However, for a charged or massive

particle, Alice cannot perfectly control the electromagnetic or gravitational field, since her

particle acts as a source for these fields and some radiation will be emitted during the

portions of her experiment where she separates and recombines her particle. Nevertheless, in

Minkowski spacetime, if her lab is stationary in the ordinary, inertial sense, she can perform

her experiment in a sufficiently adiabatic manner that negligible decohering radiation is

emitted. In principle, she can keep the particle separated for an arbitrarily long time T and

still maintain coherence when the components are recombined.

1. Quantum spatial superpositions of massive bodies have been of recent interest in both theoretical as
well as experimental probes of fundamental properties of quantum gravity, e.g., [Bose et al., 2017, Marletto
and Vedral, 2017, Belenchia et al., 2018, Christodoulou and Rovelli, 2019, Giacomini et al., 2019, Gonzalez-
Ballestero et al., 2021, Danielson et al., 2022a, Carney, 2022, Christodoulou et al., 2023, Carney et al., 2022,
Feng and Vedral, 2022, Zhou et al., 2022, Overstreet et al., 2023].
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In the preceding chapter we showed that the above situation changes dramatically if a

black hole is present in the spacetime — even though the experiment is carried out entirely

in the black hole’s exterior. In effect, a black hole horizon harvests “which path” information

about any quantum superposition in its exterior, via the long-range fields sourced by the

superposed matter. We showed that this results in the unavoidable radiation of entangling

“soft photons or gravitons” through the horizon that carry the “which path” information into

the black hole. Consequently, the mere presence of the black hole implies a fundamental

rate of decoherence on the quantum superposition.2 Although the rate of decoherence will

be small if the black hole is far away, the coherence decays exponentially in the time, T , that

the spatial superposition is maintained. Thus, in any spacetime with a black hole, there will

be essentially complete decoherence within a finite time.3

The purpose of this chapter is to generalize the results of Chapter 3 to spacetimes with

Killing horizons, i.e., spacetimes with a Killing vector field such that there is a null surface to

which the Killing field is normal (see, e.g., [Kay and Wald, 1991] for a discussion of properties

of Killing horizons). The event horizon of a stationary black hole is a Killing horizon [Hawking

and Ellis, 1973, Hawking, 1972, Alexakis et al., 2010], so spacetimes with Killing horizons

encompass the case of stationary spacetimes that contain black holes. However, there are

many cases of interest where Killing horizons are present without the presence of black holes.

One such case is that of Minkowski spacetime, where the Rindler horizon is a Killing horizon

with respect to the Lorentz boost Killing field. Another such case is de Sitter spacetime,

where the cosmological horizon is a Killing horizon. We will show that in these cases, a

spatial superposition that is kept stationary (with respect to the symmetry generating the

Killing horizon) will decohere in a manner similar to the black hole case. We will also provide

2. In QED, this effect applies only to superpositions of charged particles. However, since all matter sources
gravity, the quantum gravitational decoherence applies to all superpositions.

3. This maximal coherence time for superpositions in the exterior can be much smaller than the evaporation
time of the black hole.
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an estimate of the maximum amount of time during which coherence can be maintained.

The case of the Rindler horizon is particularly instructive. The relevant symmetry here

is that of Lorentz boosts, so Alice’s lab will be “stationary” if it is following orbits of Lorentz

boosts, which are uniformly accelerating worldlines. Our analysis based upon radiation

through the Rindler horizon shows that decoherence of a uniformly accelerating spatially

separated superposition occurs because of the emission of “soft” (i.e., very low frequency)

gravitons or photons, where the frequency is defined relative to an affine parameter on the

Rindler horizon. As we shall show, the decoherence effect of this radiation of soft gravitons

or photons is distinct from the (smaller) decoherence effect resulting from the presence of

Unruh radiation. To gain further insight, we also analyze the decohering radiation in the

electromagnetic case from the inertial point of view, using the Liénard-Wiechert solution to

determine the radiation at future null infinity. As we shall show, the decohering photons are

of high frequency at null infinity.

In Sec. 4.1 we provide a general discussion of the decoherence of a quantum superposition

due to radiation in a stationary spacetime. In Sec. 4.2 we consider the decoherence of a

uniformly accelerating superposition, analyzing it from both the Rindler and Minkowski

viewpoints. We also show that this decoherence is distinct from (and larger than) the

decoherence effects due to the presence of Unruh radiation. In Sec. 4.3 we analyze the

decoherence in de Sitter spacetime associated with the cosmological horizon. We will work in

Planck units where G = c = ℏ = kB = 1 and, in electromagnetic formulas, we also put ϵ0 = 1,

but we will restore these constants in our formulas that give estimates for decoherence times.

Lower case Latin indices represent abstract spacetime indices. Upper case Latin indices from

the early alphabet correspond to spatial indices on horizons or null infinity.
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4.1 Decoherence due to Radiation in a Stationary Spacetime

In this section, we will give a general analysis of the decoherence of a spatial superposition in

a stationary spacetime due to emission of radiation by the body. Our analysis applies both

to the decoherence of a charged body due to emission of electromagnetic radiation and to

the decoherence of a gravitating body due to emission of linearized gravitational radiation.

The analyses of these two cases are very closely parallel. In order to avoid repetition, we

will analyze only the electromagnetic case in detail, but near the end of this section, we will

state the corresponding results in the linearized gravitational case, which can be obtained

straightforwardly by replacing the vector potential Aa with the perturbed metric hab, the

charge-current ja with the stress-energy Tab, etc.

Consider a charged particle4 in a stationary spacetime. We assume that the particle is

initially in a stationary state. The particle is then put through a Stern-Gerlach (or other)

apparatus, resulting in it being in a superposition state5

|ψ⟩ = 1√
2
(|ψ1⟩+ |ψ2⟩) (4.1.1)

where |ψ1⟩ and |ψ2⟩ are normalized states that are spatially separated after passing through

the apparatus. The particle is then recombined via a reversing Stern-Gerlach (or other)

apparatus and returns to a stationary state. We are particularly interested in the case where,

between separation and recombination, |ψ1⟩ and |ψ2⟩ are kept stationary for a long period

of time, T , but we do not make any such assumption in this section. We wish to estimate

how much decoherence due to emission of electromagnetic radiation will have occurred by

the time of recombination.6

4. As already indicated above, the “particle” need not be an elementary particle but could be a “nanoparticle”
or any other body whose only relevant degree of freedom for our analysis is its center of mass.

5. For simplicity, we have assumed that we have a 50-50 superposition of |ψ1⟩ and |ψ2⟩, but this assumption
is not necessary.

6. The decoherence of Alice’s particle can be experimentally determined as follows. We assume that
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A key assumption that we shall make is that the fluctuations in the charge-current

operator ja in the states |ψ1⟩ and |ψ2⟩ are negligibly small over the scales of interest so that

we can treat the charge current in each of these states as c-number sources in Maxwell’s

equations, given by ja1 = ⟨ψ1|ja|ψ1⟩ and ja2 = ⟨ψ2|ja|ψ2⟩, respectively. In the initial and

final stationary eras, |ψ1⟩ and |ψ2⟩ are assumed to coincide spatially (though they may differ

in other characteristics, such as spin) so that ja1 = ja2 at very early and very late times.

In order to proceed further, we must specify the initial state of the electromagnetic field.

Since, prior to going through the Stern-Gerlach apparatus, the charge is assumed to be

stationary, at early times we may subtract the “Coulomb field” C in
a of the charge, i.e., at

early times we may consider the electromagnetic field observable

Ain
a = Aa − C in

a 1 (4.1.2)

where C in
a is the (assumed to be unique) stationary classical solution to Maxwell’s equations

with the early-time stationary charged particle source ja1 = ja2 and Aa is the vector potential

operator. We need not assume any specific choice of gauge for Ain
a . Then Ain

a satisfies the

source-free Maxwell’s equations at early times, and we may extend its definition to all times

by requiring it to satisfy the source-free Maxwell equations everywhere.

The initial state of the electromagnetic field may be specified by giving the “radiation

state” of Ain
a . The choice of this state depends on the physical situation being considered. If

the spacetime were globally stationary — i.e., if the stationary Killing field were everywhere

timelike, so, in particular, there are no Killing horizons — it would be natural to assume that

Alice’s particle initially has spin in the positive x-direction and thus is in a 50-50 superposition of z-spin
after passing through the initial Stern-Gerlach apparatus. After recombination, Alice measures the x-spin
of her particle. If coherence of the superposition eq. (4.1.1) has been maintained, then (assuming that Alice
has made appropriate corrections if there are any phase differences between the paths) the spin will always
be found to be in the positive x-direction. On the other hand, if any coherence has been lost, the particle
will not be in a state of definite spin, and the spin will sometimes be found to be in the negative x-direction.
By repeating the experiment many times, Alice can, in principle, determine the decoherence to any desired
accuracy.
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the initial state of the radiation is the stationary vacuum state, i.e., the ground state relative

to the time translations. For the case of a black hole spacetime, it would be correspondingly

natural to assume that the initial state of the radiation is that of the Unruh vacuum, since

for a black hole formed by gravitational collapse, the state of a quantum field is expected

to approach the Unruh vacuum after the black hole has “settled down” to a stationary state.

For the case of Minkowski spacetime, we take the initial state of the radiation to be the

ordinary (inertial) Minkowski vacuum. For de Sitter spacetime, we take the initial state of

the radiation to be the de Sitter invariant vacuum7 for the electromagnetic field [Allen and

Jacobson, 1986]. We denote the initial state of the radiation in all of the above cases by |Ψ0⟩.

In each of the above cases, |Ψ0⟩ is a pure, quasi-free (i.e., Gaussian) state. It follows

(see, e.g., [Wald, 1995] or Appendix A of [Kay and Wald, 1991]) that we can construct a

one-particle Hilbert space Hin and corresponding Fock space F(Hin) wherein |Ψ0⟩ plays the

role of the vacuum state and the field operator Ain
a is represented on F(Hin) by

Ain
a (f

a) = ia(Kσf )− ia†(Kσf ). (4.1.3)

Here fa is a divergence-free8 test function, σf denotes the advanced minus retarded solution

to Maxwell’s equations with source fa, and K : S → Hin denotes the map taking the space

S of classical solutions to their representatives in the one-particle Hilbert space Hin. The

commutator of the creation and annihilation operators in Eq. (4.1.3) is given by

[a(Kσf ),a
†(Kσg)] = ⟨Kσf |Kσg⟩1, (4.1.4)

where ⟨Kσf |Kσg⟩ is the inner product on Hin, which is given by a natural generalization of

7. A de Sitter invariant vacuum state does not exist for the massless scalar field [Allen, 1985] but such
a state does exist for the electromagnetic field [Allen and Jacobson, 1986] and linearized gravitational field
[Allen, 1986].

8. Restriction of the smearing to divergence-free test functions is necessary and sufficient to eliminate the
gauge dependence of Ain

a (see, e.g., P.101 of [Wald, 1995]).
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the Klein-Gordon inner product to electromagnetic fields.

For the case of a globally stationary spacetime in the stationary vacuum state, Kσf

corresponds to taking the positive frequency part of σf with respect to the time translations

generating the stationary symmetry. For the case of a stationary black hole in the Unruh

vacuum state, Kσf corresponds to taking the positive frequency part of σf with respect to

affine time on the past horizon and with respect to Killing time at past null infinity. For

Minkowski spacetime in the inertial Minkowski vacuum, Kσf corresponds to taking the

positive frequency part of σf with respect to inertial time translations. Equivalently, Kσf ,

in this case, corresponds to the solution obtained by taking the positive frequency part of

the restriction of σf to any null hyperplane N (i.e., any Rindler horizon) with respect to an

affine parametrization of the null geodesics generating N . For de Sitter spacetime in the de

Sitter invariant vacuum, Kσf corresponds to the solution obtained by taking the positive

frequency part of the restriction of σf to any cosmological horizon with respect to an affine

parametrization of the null geodesics generating that horizon.

Under the above assumption that the charge-currents of |ψ1⟩ and |ψ2⟩ can be treated as

c-number sources, the electromagnetic field Ai,a in the presence of the charge in state |ψi⟩

for i = 1, 2 is given in terms of the source-free field Ain
a by [Yang and Feldman, 1950]

Ai,a = Ain
a +Gret

a (jbi )1 (4.1.5)

where Gret
a (jbi ) denotes the classical retarded solution for source jbi . In particular, since the

field Ain
a is in state |Ψ0⟩, the correlation functions of the electromagnetic field Ai,a for |ψi⟩
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are given by9

⟨Ai,a1(x1) . . .Ai,an(xn)⟩

= ⟨Ψ0|
[
Ain
a1(x1) +Gret

a1 (j
b
i )(x1)1)

]
. . .

[
Ain
an(xn) +Gret

an (j
b
i )(xn)1)

]
|Ψ0⟩. (4.1.6)

Equation (4.1.6) is valid at all times. However, at late times — i.e., to the future of any

Cauchy surface Σ corresponding to the time at which recombination has occurred — we can

again subtract off the common stationary Coulomb field, Cout
a , of ja1 = ja2 to obtain the

source-free field10 Aout
i,a that describes the radiation at late times for the states |ψi⟩,

Aout
i,a = Ai,a − Cout

a 1 . (4.1.7)

By Eq. (4.1.6), at late times, the correlation functions of Aout
a are given by

⟨Aout
i,a1

(x1) . . .A
out
i,an

(xn)⟩

= ⟨Ψ0|
[
Ain
a1(x1) +Ai,a1(x1)1)

]
. . .

[
Ain
an(xn) +Ai,an(xn)1)

]
|Ψ0⟩ (4.1.8)

where

Ai,a = Gret
a (jbi )− C

out
a . (4.1.9)

Note that Ai,a is a classical solution of the source-free Maxwell equations in the late-time

region.

9. It is understood that each of the xk variables should be smeared with a divergence-free test vector field
fak .

10. Note that Ain
a did not have a subscript “i” whereas Ai,a and Aout

i,a do carry such subscripts. This is a
consequence of the fact that we are working in the “in” representation — i.e., the Heisenberg representation
on the Hilbert space F(Hin) — so Ain

a does not depend on the sources, but the other fields do.
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The correlation functions Eq. (4.1.8) on any late-time Cauchy surface are precisely those

of the coherent state

|Ψi⟩ = e−
1
2∥KAi∥2 exp

[
a†(KAi)

]
|Ψ0⟩ , (4.1.10)

where the norm is that of the one-particle inner product of Eq. (4.1.4). Thus, the coherent

state |Ψ1⟩ describes the “out” radiation state corresponding to charged particle state |ψ1⟩

and the coherent state |Ψ2⟩ describes the “out” radiation state corresponding to charged

particle state |ψ2⟩. The joint “out” state, |Υ⟩, of the particle-radiation system is given by

|Υ⟩ = 1√
2
(|ψ1⟩ ⊗ |Ψ1⟩+ |ψ2⟩ ⊗ |Ψ2⟩) . (4.1.11)

Therefore, the decoherence of |ψ1⟩ and |ψ2⟩ due to emission of electromagnetic radiation is

given by

D = 1− | ⟨Ψ1|Ψ2⟩ |. (4.1.12)

We wish to evaluate D .

By the general formula for the inner product of coherent states, we have

| ⟨Ψ1|Ψ2⟩ | = exp

[
−1

2
∥K(A1 −A2)∥2

]
. (4.1.13)

Now, in the late-time era, A1,a −A2,a is just the difference between the classical retarded

solutions with sources ja1 and ja2 ,

A1,a −A2,a = Gret
a (jb1)−G

ret
a (jb2) = Gret

a (jb1 − j
b
2). (4.1.14)

Consider the coherent state associated with Gret
a (jb1 − j

b
2) in the late-time era. We refer to

photons in this state as entangling photons. By the general properties of coherent states, the
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expected number, ⟨N⟩, of entangling photons is given by

⟨N⟩ ≡
∥∥∥K [

Gret(j1 − j2)
]∥∥∥2 . (4.1.15)

Thus, we have

| ⟨Ψ1|Ψ2⟩ | = exp

[
−1

2
⟨N⟩

]
(4.1.16)

so

D = 1− | ⟨Ψ1|Ψ2⟩ | = 1− exp

[
−1

2
⟨N⟩

]
(4.1.17)

and we see that the necessary and sufficient condition for significant decoherence (D ∼ 1) is

⟨N⟩ ≳ 1.

We summarize the results that we have obtained above as follows. Under the assumptions

we have made above, in order to calculate the decoherence, D , of the particle due to radiation,

we carry out the following steps:

1. We obtain the expected charge current, ja1 and ja2 , for the particle in states |ψ1⟩ and

|ψ2⟩ of the superposition.

2. We calculate the classical retarded solution, Gret
a (jb1 − j

b
2) for the difference of these

charge currents, which is a source-free solution at late times, since ja1 = ja2 at late

times.

3. We calculate the one-particle state KGret(j1 − j2) corresponding to Gret
a (jb1 − j

b
2) at

late times. In the various cases, this corresponds to the following: (i) For a globally

stationary spacetime initially in the stationary vacuum state, this one-particle state

is the positive frequency part of the solution with respect to the time translations

generating the stationary symmetry. (ii) For the case of a stationary black hole initially

in the Unruh vacuum, the one-particle state is the positive frequency part of the solution

with respect to affine time on the past horizon and with respect to Killing time at past
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null infinity. (iii) For Minkowski spacetime initially in the Minkowski vacuum, the

one-particle state is the positive frequency part of the solution with respect to inertial

time or, equivalently, the positive frequency part with respect to affine time on any

Rindler horizon. (iv) For de Sitter spacetime initially in the de Sitter invariant vacuum,

the one-particle state is the positive frequency part of the solution with respect to affine

time on any cosmological horizon.

4. We compute the squared norm, ∥K[Gret(j1 − j2)]∥2, of this one-particle state at late

times. This quantity is equal to the expected number of entangling photons, ⟨N⟩. The

decoherence due to radiation is then given by

D = 1− exp

[
−1

2
∥K

[
Gret(j1 − j2)

]
∥2
]
. (4.1.18)

As previously stated, the above analysis extends straightforwardly to the linearized grav-

itational case, where the perturbed metric, hab, is treated as a linear quantum field propa-

gating in the background classical stationary spacetime. To compute the decoherence due

to gravitational radiation in this case, we carry out the above steps, replacing Aa by hab

and the charge-current ja by the stress-energy tensor Tab. The retarded solution Gret
a (jb) for

Maxwell’s equations is replaced by the retarded solution Gret
ab (Tcd) for the linearized Einstein

equation. The map K : S → Hin is again obtained as in item 3 above and the inner product

on Hin is again given by a natural generalization of the Klein-Gordon inner product to

linearized gravitational fields. The decoherence due to gravitational radiation is then given

by the analog of Eq. (4.1.18).

The above analysis applies for any motion of the components of Alice’s superposition. We

are primarily interested in the case where, during a time interval T1, Alice puts a particle of

charge q (or mass m) into a spatial superposition, where the distance between the components

of the particle wavefunction is d. She then keeps this superposition stationary in her lab for

51



a time T . Finally, she recombines her particle over a time interval T2.

In Minkowski spacetime in the case where Alice’s lab is inertial, Gret
a (jb1 − j

b
2) will be

nonzero at null infinity only at the retarded times corresponding to the time intervals T1 and

T2. A rough estimate of the number of entangling photons was obtained in [Belenchia et al.,

2018] using the Larmor formula for radiation in these eras, which, in natural units, yields

⟨N⟩ ∼ q2d2

[min(T1, T2)]2
(Minkowski, EM). (4.1.19)

The corresponding result in the linearized gravitational case is [Belenchia et al., 2018]

⟨N⟩ ∼ m2d4

[min(T1, T2)]4
(Minkowski, GR). (4.1.20)

Therefore, if Alice recombines her particle sufficiently slowly that T1, T2 ≫ qd in the elec-

tromagnetic case or T1, T2 ≫ md2 in the gravitational case, then she can maintain the

quantum coherence of her particle. In particular, Alice can keep the components of her

particle separated for as long a time T as she likes without destruction of the coherence.

As shown in Chapter 3, the situation is quite different if a black hole is present. In the

electromagnetic case, even if T1, T2 ≫ qd so that a negligible number of entangling photons

is emitted to infinity, there will be entangling radiation emitted into the black hole. For large

T , the number of entangling photons increases with T as11

⟨N⟩ ∼ M3q2d2

D6
T (black hole, EM) (4.1.21)

where M is the mass of the black hole, D is the proper distance of Alice’s lab from the horizon

of the black hole, and we assume that D ≳ M . The corresponding result in the linearized

11. In the analysis of Chapter 3, we used the fact that the Unruh vacuum is well approximated by the
Hartle-Hawking vacuum at low frequencies near the horizon of the black hole.
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gravitational case is

⟨N⟩ ∼ M5m2d4

D10
T (black hole, GR). (4.1.22)

Thus, the coherence of Alice’s particle will always be destroyed within a finite time.

In the next two sections, we will apply the above analysis to the cases of Rindler spacetime

and de Sitter spacetime. Although we will explicitly analyze only the Rindler and de Sitter

cases, it will be clear from our analysis of the next two sections — as well as our analysis

in Chapter 3 — that it can be applied to any Killing horizon, provided only that the initial

“vacuum state” |Ψ0⟩ of the electromagnetic and/or linearized gravitational field corresponds

to one-particle states that are positive frequency with respect to affine time on the future

Killing horizon.

4.2 Rindler Horizons Decohere Quantum Superpositions

We now consider the case of Minkowski spacetime12 with Alice’s lab uniformly accelerating

with acceleration a. Specifically, we take Alice’s lab to follow the orbit

t =
1

a
sinh(aτ), z =

1

a
cosh(aτ) (4.2.1)

of the boost Killing field

ba = a

[
z

(
∂

∂t

)a
+ t

(
∂

∂z

)a]
. (4.2.2)

Here we have normalized ba such that baba = −1 on the worldline of Alice’s laboratory. Thus,

ba is the four-velocity of Alice’s laboratory and τ is the proper time in her lab. We introduce

the null coordinates

U ≡ t− z, V ≡ t+ z (4.2.3)

12. We explicitly treat the case of 4 spacetime dimensions, but our analysis generalizes straightforwardly
to all higher dimensions.
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and the corresponding vector fields

na ≡ (∂/∂V )a, ℓa ≡ (∂/∂U)a, (4.2.4)

which are globally defined, future-directed null vector fields that satisfy ℓana = −1. In terms

of these coordinates, the Minkowski spacetime metric is

η = −dUdV + dx2 + dy2 (4.2.5)

and the boost vector field is given by

ba = a
[
− Uℓa + V na

]
. (4.2.6)

The boost Killing field is null on the two “Rindler horizons,” i.e., the two null planes U = 0

and V = 0, which divide Minkowski spacetime into four wedges. The orbits of the boost

Killing field are future-directed and timelike within the “right Rindler wedge” WR which is the

region U < 0 and V > 0. Thus, the “right Rindler wedge” WR — where Alice performs her

experiment — is a static, globally hyperbolic spacetime where the notion of “time translations”

is defined by Lorentz boosts.

We refer to the null surface U = 0 as the future Rindler horizon and denote it as H +
R .

On the region V > 0 of H +
R , it is useful to introduce the coordinate v by

V = V0e
av (4.2.7)

where V0 is an arbitrary constant. Then, for V > 0 on H +
R , we have

ba
∣∣
HR+

= aV

(
∂

∂V

)a∣∣∣∣
HR+

=

(
∂

∂v

)a∣∣∣∣
HR+

. (4.2.8)
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Since (∂/∂V )a on the horizon is tangent to the affinely parametrized null geodesic generators

of H +
R , we refer to V as the “affine time” on H +

R , whereas we refer to v as the “boost Killing

time” on H +
R .

4.2.1 Decoherence due to Radiation of Soft Photons/Gravitons through the

Rindler Horizon

We are now in position to apply the results of Sec. 4.1 to the Rindler case. We will first

analyze the electromagnetic case and then give the corresponding results in the gravitational

case.

We assume that the electromagnetic field is initially in the Minkowski vacuum state. We

assume that Alice possesses a charged particle that is initially stationary (with respect to the

boost Killing field) in her (uniformly accelerating) lab. She then creates a quantum spatial

superposition which is held stationary (with respect to the boost Killing field) for a proper

time T and is then recombined. We wish to know the degree of decoherence of Alice’s particle

due to emission of radiation. We may directly apply the analysis of Sec. 4.1 to answer this

question.

The future Rindler horizon H +
R (U = 0) does not meet the technical requirements of

being a Cauchy surface for Minkowski spacetime, since there are inextendible timelike curves

that remain in the past of H +
R as well as inextendible timelike curves that lie in the future

of H +
R . However, as argued in [Unruh and Wald, 1984], it is effectively a Cauchy surface

for determining evolution of solutions to the wave equation. This is most easily seen in

the conformally completed spacetime, where H +
R is the past light cone of a point p ∈ I +

except for the single generator that lies on I + and it also is the future light cone of a point

on p′ ∈ I− except for the single generator that lies on I−. Data on the full past light

cone of p would determine a solution to the past of H +
R and data on the full future light

cone of p′ would determine a solution to the future of H +
R , thereby determining a solution
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everywhere in Minkowski spacetime. However, for solutions with appropriate decay, the data

on the missing null geodesic generators of I + and I− can be determined by continuity

from the data on H +
R . Consequently, data on H +

R suffices to uniquely characterize solutions

with appropriate decay. Consequently, the “out” states |Ψ1⟩ and |Ψ2⟩ of the radiation are

completely determined by data on H +
R . Note that this contrasts sharply with the black hole

case, where one would need data on both the future event horizon and future null infinity to

characterize the “out” state of radiation.

The decoherence of Alice’s particle due to radiation is given by Eq. (4.1.17). In order to

evaluate this, we first consider a classical point charge of charge q in the “right Rindler wedge”

WR that is stationary with respect to the boost Killing field and lies at proper distance

D from the bifurcation surface of the Rindler horizon. Such a charge will be uniformly

accelerating with acceleration a given by

a =
1

D
, (4.2.9)

as depicted in Fig. 4.1.

The explicit solution for such a stationary charge in the Rindler wedge has long been known

[Whittaker, 1927, Bondi and Gold, 1955, Rohrlich, 1961, Boulware, 1980, Padmanabhan and

Padmanabhan, 2010, Eriksen and Grøn, 2004]. The only nonvanishing component of the

electromagnetic field in the region V > 0 of H +
R is

EU ≡ Fabℓ
anb =

2a2q

π(1 + a2ρ2)2
(4.2.10)

where ρ2 ≡ x2 + y2. Electromagnetic radiation through the Rindler horizon is described by

the pullback, EA, of the electric field13 Ea = Fabn
b to H +

R , where the capital Latin indices

13. The electric field as measured by an observer with 4-velocity ub is Fabu
b. Although nb is null rather

than timelike, it is natural (and standard) to use the terminology “electric field” for Fabn
b on the horizon.
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D
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Figure 4.1: Alice’s laboratory undergoes uniform acceleration a in the z-direction in
Minkowski spacetime and thus follows an orbit of a boost Killing field. The future Rindler
horizon H +

R is a Killing horizon for this boost Killing field. The future-directed null vector
nb = (∂/∂V )b points along the horizon, while lb = (∂/∂U)b is transverse to it. D is the
proper distance from Alice’s lab to the horizon.

from the early alphabet denote spatial components in the x and y directions. Since EA = 0 on

the horizon for a uniformly accelerated charge, one may say that a charge held stationary in

Alice’s lab does not produce any radiation as determined on H +
R — even though a uniformly

accelerated charge radiates (inertial) energy to future null infinity.14

Now consider the case where the point charge is initially uniformly accelerating with

acceleration a at a proper distance D = 1/a from the bifurcation surface of the Rindler

horizon. The charge is then moved in the z-direction15 to a different orbit of the same boost

Killing field, so that it has uniform acceleration a′ and lies at proper distance D′ = 1/a′

from the Rindler horizon. After the charge has reached its new location, the electric field on

H +
R is again given by Eq. (4.2.10), but its value, E′U , will be different from its value at early

14. A uniformly accelerating charge has a nonvanishing inertial energy current flux Tabt
a through both

H +
R and I +, where ta denotes a Minkowski time translation. However, the flux of “boost energy” Tabba

vanishes at both H +
R and I +.

15. We consider a z-displacement for simplicity. Similar results would hold if the charge were displaced in
the x or y directions.
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times. Maxwell’s equations on H +
R imply that

DAEA = ∂V EU (4.2.11)

where DA is the derivative operator on the R2 cross sections of the horizon and capital Latin

indices from the early alphabet are raised and lowered with the metric, δAB , on the cross

sections. Eq. (4.2.11) implies that EA ̸= 0 whenever ∂V EU ̸= 0, so there will be radiation

through the horizon as the charge is being moved. Most importantly, it implies that

DA
 ∞∫
−∞

dV EA

 = ∆EU (4.2.12)

where ∆EU = E′U − EU is the change in the radial electric field between the charge at

positions D′ and D. Now, in a gauge where Aana = 0 on the horizon, the transverse (i.e.,

x-y) components of the electric field are related to the corresponding components of the

vector potential by

EA = −∂V AA. (4.2.13)

Since the transverse components of the Coulomb field of a static charge vanish, we may

replace the vector potential AA by the “Coulomb subtracted” vector potential AA defined by

Eq.(4.1.9), so we have

EA = −∂VAA. (4.2.14)

It then follows immediately from Eq. (4.2.12) that the difference, ∆AA, between the final

and initial values of AA is given by

DA(∆AA) = −∆EU (4.2.15)

independently of the manner in which the charge is moved from D to D′. Equation (4.2.15)
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is an exact mathematical analog of the electromagnetic memory effect at null infinity [Bieri

and Garfinkle, 2013]. For the explicit solution Eq. (4.2.10), we have

∆EU ≈
−4qda3(1− a2ρ2)
π(1 + a2ρ2)3

. (4.2.16)

where d = D′ −D and we have assumed that

d≪ D =
1

a
. (4.2.17)

From Eq. (4.2.15), we find that ∆AA points in the ρ̂-direction and has magnitude

|∆AA| = ∆Aρ ∼
qda3ρ

(1 + a2ρ2)2
. (4.2.18)

The key point is that even though EA = 0 at both late and early times, AA does not return

to its original value at late times, and the change, ∆AA, in the vector potential between late

and early times is determined only by the initial and final positions of the charge.

We now consider the quantized radiation through the horizon resulting from the displace-

ment of the charge, assuming that, after the displacement, the charge is held at its new

position, D′, forever. For the Fock space associated with the Minkowski vacuum state, the

map K : S → Hin that associates one-particle states to classical solutions is given by taking

the positive frequency part of the classical solution with respect to inertial time, with the

inner product on Hin given by the Klein-Gordon product. For the electromagnetic field on

H +
R in a gauge where Aana = 0 on H +

R , the “free data” on H +
R is the pullback, AA, of

the vector potential. For two classical solutions with data A1,A and A2,A on H +
R , the inner

product of their corresponding one-particle states is given by [Kay and Wald, 1991, Dappiaggi

et al., 2017]

⟨KA1|KA2⟩H +
R

= 2

∫
R2

dxdy

∞∫
0

ωdω

2π
δABÂ1,AÂ2,B (4.2.19)
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where ÂA(ω, xB) is the Fourier transform of AA(V, xB) with respect to the affine parameter

V . By the same reasoning as led to Eq. (4.1.15), the expected number of photons on H +
R in

the coherent state associated to any classical solution AA is simply

⟨N⟩ = ∥KA∥2
H +

R
(4.2.20)

where the norm is defined by the inner product Eq. (4.2.19). However, since ∆AA ̸= 0, the

Fourier transform, ÂA(ω, xB), of AA diverges as 1/ω as ω → 0. It follows that the integrand

of the expression for the norm given by the right side of Eq. (4.2.19) also diverges as 1/ω

as ω → 0, so the integral is logarithmically divergent. Thus, ∥KA∥2
H +

R
= ∞. Therefore,

if Alice displaces a charged particle to a different orbit of the boost Killing field and the

particle remains on this new uniformly accelerated trajectory forever, an infinite number

of “soft horizon photons” will be radiated through the Rindler horizon16 regardless of how

quickly or slowly this process is done.

The above infrared divergence is an exact mathematical analog of the infrared divergences

that occur at null infinity in QED for processes with nonzero memory (see e.g., [Ashtekar,

1987, Satishchandran and Wald, 2019, Carney et al., 2017, 2018, Asorey et al., 2018]). Note

that infrared divergences at null infinity arise only in d = 4 spacetime dimensions. The reason

for this is that in d dimensions, radiation falls off at infinity in null directions as 1/rd/2−1,

whereas Coulomb fields and associated memory effects fall off as 1/rd−3, so it is only in d = 4

dimensions that memory effects occur at radiative order [Pate et al., 2018, Satishchandran

and Wald, 2019]. By contrast, radial Coulomb fields will penetrate a Killing horizon in all

spacetime dimensions (see [Garfinkle, 2021] for the case of a Schwarzschild black hole) and a

16. These “soft horizon photons” are closely related to the “soft hair” discussed by Hawking, Perry, and
Strominger [Hawking et al., 2016] in the case of black hole horizons (see also [Hotta et al., 2001]). However,
while Hawking, Perry, and Strominger considered effects of matter falling into a black hole, our “soft radiation”
arises from the displacement of matter sourcing a long range field outside of a horizon. Note that in the case
of a black hole, the “soft radiation” of Alice’s experiment increases the entanglement of the black hole with
its exterior.
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displacement of a charge will result in a change in the radial Coulomb field in all dimensions.

As analyzed above, this will result in radiation through the horizon in all dimensions high

enough for the field in question to admit radiation (i.e., d ≥ 3 for electromagnetism and

d ≥ 4 for gravity). Consequently, the logarithmic divergence in Eq. (4.2.20) occurs in all

spacetime dimensions that admit radiation.17

Now suppose that Alice displaces the particle a z-distance d ≪ D = 1/a from D to

D′ = D + d as above, but instead of leaving the particle at D′ forever, she leaves it there

for proper time18 T and then returns it to D. In this case, the transverse components of

the vector potential, AA, return to their initial values at late times, so there is no “memory

effect” at the horizon. Correspondingly, there are no infrared divergences in the expected

number of photons that propagate through H +
R . Nevertheless, if T is very large then the

expected number of photons ⟨N⟩ will be correspondingly large. To see this, we note that if,

for convenience, we work in a gauge where AA = 0 initially, then during the era at which

the particle is at D′, AA will be given by the right side of Eq. (4.2.18). If we keep the

manner in which the particle is moved from D to D′ as well as from D′ to D fixed but take

T to be very large, the asymptotic behavior of the norm Eq. (4.2.19) will be dominated by

the low-frequency contribution from the era of time T that the particle is displaced. The

logarithmic divergence at ω = 0 that would occur if the particle remained at D′ forever is

now effectively cut off at frequency ω ∼ 1/V , where V denotes the affine time duration on

the horizon H +
R over which the particle remains at D′. We obtain

⟨N⟩ = ∥KA∥2HR
∼ q2d2a2 ln

(
V

min[V1, V2]

)
(4.2.21)

17. Indeed, there would also be infrared divergences for a particle that sources a massive field, since the
Yukawa field of the particle will also penetrate the horizon.

18. We have normalized the boost Killing field ba so that Killing time equals proper time on the orbit at D
with acceleration a. Since we assume d = D′ −D ≪ D, Killing time and proper time are also (nearly) equal
on the orbit at D′. Thus, T is also the elapsed Killing time that Alice keeps the particle at D′.
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where V1, V2 ≪ V are the durations of affine time over which the particle is displaced from

D to D′ and from D′ back to D, so that 1/min[V1, V2] provides an effective high-frequency

cutoff. However, the affine time V on the horizon is related to boost Killing time on the

horizon by

V = V0 exp(av) (4.2.22)

and the boost Killing time v corresponds to the proper time T in Alice’s lab. Thus, we obtain

⟨N⟩ ∼ q2d2a3T (Rindler, EM) . (4.2.23)

Therefore, no matter how slowly the particle is displaced, it is forced to radiate a number of

“soft Rindler horizon photons” through the Rindler horizon that is proportional to the time

T that the particle remains on the displaced trajectory.

We are now in a position to fully analyze Alice’s experiment. Alice’s lab is uniformly

accelerating with acceleration a in Minkowski spacetime. She puts her particle of charge q

into a superposition of states separated by z-distance d≪ 1/a and keeps these components

stationary in her lab for a proper time T . She then recombines the components and determines

their coherence.19 By the analysis of Sec. 4.1, the decoherence is given by Eq. (4.1.18).

However, for large T , the calculation of ∥K
[
Gret(j1 − j2)

]
∥2 corresponds precisely to the

calculation we have given above of the number of photons radiated through the Rindler

horizon when a charge is displaced for a time T . Thus, we obtain

∥K
[
Gret(j1 − j2)

]
∥2 ∼ q2d2a3T. (4.2.24)

In other words, for large T , Alice’s superposition will decohere due to radiation of “soft

19. The coherence can be determined as described in footnote 6.
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Rindler horizon photons,” as

D = 1− exp(−ΓradT ) (4.2.25)

where the “decoherence rate” Γrad, is given by

Γrad = q2d2a3. (4.2.26)

Thus, restoring the constants c, ℏ, and ϵ0, Alice’s particle will decohere within a time

TD ∼
ϵ0ℏc6

a3q2d2
(Rindler, EM) (4.2.27)

∼ 1033 years
(

g
a

)3

·
(

e
q

)2

·
(
m

d

)2

. (4.2.28)

Thus, if Alice’s lab uniformly accelerates at one g in flat spacetime and she separates an

electron into two components one meter apart, she would not be able to maintain coherence

of the electron for more than 1033 years.

A similar analysis holds in the gravitational case20 where Alice separates a massive body

with mass m across a distance d and maintains this superposition for a time T . In the

gravitational case, the “electric part” of the perturbed Weyl tensor Eab = Cacbdn
cnd plays

an analogous role to the electric field Ea in the electromagnetic version of the gedankenex-

periment. For a uniformly accelerating point mass, the only nonvanishing component of the

electric part of the Weyl tensor on H +
R is EUU = Cacbdℓ

ancℓbnd.

Gravitational radiation on the horizon is described by the pullback, EAB , of Eab, which

vanishes for the static point mass. However, the process of quasistatically moving the static

point mass involves a change in EUU on H +
R . The (once-contracted) Bianchi identity on

the horizon yields

DAEAB = ∂V EUB , DAEUA = ∂V EUU (4.2.29)

20. In the gravitational case, additional stress-energy will be needed to keep Alice’s particle in uniform
acceleration. We will ignore the gravitational effects of this additional stress-energy.
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which implies that

DADBEAB = ∂2V EUU (4.2.30)

which is closely analogous to Eq. (4.2.11). As in the electromagnetic case, if a uniformly

accelerating point mass is quasistatically moved there is necessarily gravitational radiation

through H +
R .

To determine the number of “Rindler horizon gravitons” emitted we quantize the linearized

gravitational field. For a metric perturbation hab in a gauge where habna = 0 and δABhAB =

0, the “free data” on H +
R is hAB . A “particle” in the standard Fock space associated to

the Poincaré invariant vacuum is then a positive frequency solution with respect to affine

parameter V and the inner product on the one-particle Hilbert space is given by a direct

analog of Eq. (4.2.19) with the vector potential AA replaced with the metric perturbation

hAB , namely

⟨Kh1|Kh2⟩H +
R

=
1

8

∫
R2

dxdy

∞∫
0

ωdω

2π
δABδCDĥ1,AC ĥ2,BD. (4.2.31)

Finally, EAB is related to the metric perturbation hAB by

EAB = −1

2
∂2V hAB . (4.2.32)

Equations (4.2.30) and (4.2.32) directly imply that a permanent change, ∆EUU ̸= 0, in the

U -U component of the electric part of the Weyl tensor on H +
R implies a permanent change,

∆hAB ̸= 0, in the perturbed metric on H +
R between early and late times. In the quantum

theory, as in the electromagnetic case, this implies a logarithmic infrared divergence in the

number of gravitons emitted through H +
R in the process where a uniformly accelerating

charge is moved to a new orbit of the same boost Killing field and then remains at the new

position forever.
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The analysis of Alice’s experiment proceeds in a similar manner to the electromagnetic

case. Alice does not maintain the relative separation of her wavefunction forever but closes

her superposition after a proper time T . As before, the number of entangling gravitons

emitted to the Rindler horizon is logarithmically growing in affine time and therefore linearly

growing in the proper time duration T of Alice’s experiment. We obtain

⟨N⟩ ∼ m2d4a5T (Rindler, GR) . (4.2.33)

Thus, restoring constants, we find that the Rindler horizon decoheres the quantum superpo-

sition of a uniformly accelerating massive body in a time

TGR
D ∼ ℏc10

Gm2d4a5
(Rindler, GR) (4.2.34)

∼ 2 fs
(

MMoon
m

)2

·
(

RMoon
d

)4

·
(
g

a

)5

. (4.2.35)

Therefore, if the Moon were accelerating at one g and occupied a quantum state with its

center of mass superposed by a spatial separation of the order of its own radius then it would

decohere within about 2 femtoseconds. Of course, it would not be easy to put the moon in

such a coherent quantum superposition.

Note the acceleration of a stationary observer outside of a black hole who is reasonably

far21 (D ≳ M) from the event horizon is a ∼ M/D2. If we substitute a = M/D2 in Eqs.

(4.2.27) and (4.2.34), we obtain Eqs. (4.1.21) and (4.1.22), respectively. Therefore, it might

be tempting to believe that what is important in all cases is the acceleration of Alice’s lab.

However, this is not the case. In particular, if we replace the black hole by an ordinary

star (and if there are no dissipative effects in the star), then there will not be any analogous

21. It should be emphasized that the estimates made in Chapter 3 that yielded Eqs.(4.1.21) and (4.1.22)
assumed that Alice’s lab is reasonably far from the black hole. If Alice’s lab is extremely close to the black
hole (i.e., at a distance D ≪M from the horizon), then the black hole analysis would reduce to the Rindler
case analyzed here.
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decoherence effect, even though the acceleration of Alice’s lab is the same as in the case of a

black hole. Furthermore, as we shall see in Sec. 4.3, decoherence effects associated with the

cosmological horizon occur in de Sitter spacetime even for nonaccelerating observers. It is

the presence of a Killing horizon that is the essential ingredient for the fundamental rate of

decoherence of quantum superpositions as described in this dissertation.

We now consider another potential cause of decoherence, namely Unruh radiation.

4.2.2 Decoherence due to Scattering of Unruh Radiation

The Minkowski vacuum state restricted to a Rindler wedge is a thermal state at the Unruh

temperature

T =
a

2π
(4.2.36)

relative to the notion of time translations defined by the Lorentz boost Killing field ba,

Eq. (4.2.2). Thus, the superposition state of Alice’s particle will be buffeted by this thermal

bath of Unruh radiation. Scattering of this radiation will cause some decoherence of Alice’s

particle. Indeed, since this decoherence should occur at a steady rate while the superposition

is kept stationary (and thus the decoherence will be proportional to T ), one might even suspect

that scattering of Unruh radiation could be the same effect as found in the previous section

but expressed in a different language. The purpose of this subsection is to show that this is

not the case, i.e., decoherence due to scattering of Unruh radiation and decoherence due to

radiation of “soft” photons/gravitons through the horizon are distinct effects. Furthermore, we

shall show that, for reasonable parameter choices, the decoherence rate due to the scattering

of Unruh radiation is smaller than the decoherence rate due to emitted radiation as obtained

in the previous section. We will consider only the electromagnetic case in this subsection.

The decoherence rate of a spatial superposition due to collisions with particles in an

environment has been analyzed in [Joos and Zeh, 1985, Gallis and Fleming, 1990, Diósi, 1995,

Hornberger and Sipe, 2003], and we will adapt this analysis to obtain a rough estimate of
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the decoherence caused by the scattering of Unruh radiation. As in Eq. (4.1.1), Alice has

a particle of charge q in a state |ψ⟩ = (|ψ1⟩ + |ψ2⟩)/
√
2, where |ψ1⟩ and |ψ2⟩ are spatially

separated by a distance d. Since we require d≪ 1/a [see eq. (4.2.17)] and since the typical

wavelength of Unruh photons at temperature Eq. (4.2.36) is λ ∼ 1/a, we are in the scattering

regime where λ≫ d. In an elastic scattering event between Alice’s particle and a photon in

the Unruh radiation, the final outgoing state of the photon will depend upon which branch of

the superposition the photon scattered off of. Let |χ1⟩ denote the outgoing state of the Unruh

photon for scattering off of |ψ1⟩ and let |χ2⟩ denote the outgoing state for scattering off of

|ψ2⟩. Decoherence will occur to the extent to which these outgoing states of the scattered

Unruh photon are distinguishable, i.e., D = 1− | ⟨χ1|χ2⟩ |.

In order to obtain a rough estimate of the decoherence resulting from a single scattering

event, we consider the corresponding Minkowski process of the scattering of a photon of

momentum p off of an inertial superposition separated by d, with d≪ 1/p. Assuming that

the charged particle states |ψ1⟩ and |ψ2⟩ are identical except for their location, the scattered

photon states |χ1⟩ and |χ2⟩ should differ only by the action of the translation operator e−iP⃗·d⃗,

i.e.,

|χ2⟩ ≈ e−iP⃗·d⃗ |χ1⟩ (4.2.37)

where P⃗ denotes the photon momentum operator. Expanding the exponential, we obtain the

following rough estimate of the decoherence resulting from a single scattering event involving

a photon of momentum p

1− | ⟨χ1|χ2⟩ | ∼ p2d2 (4.2.38)

where we have ignored any dependence on the angle between the incoming momentum p⃗

and the separation d⃗. We will take Eq. (4.2.38) as our estimate of the decoherence of Alice’s

particle resulting from the scattering of a single Unruh photon of “Rindler momentum” p

(i.e., of energy ϵ = p with respect to the boost Killing field ba).
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The total decoherence rate due to scattering of Unruh radiation is then given by

Γscatt ∼ d2
∞∫
0

dp p2ϱ(p)σ(p) (4.2.39)

where ϱ(p) is the number density of photons at momentum p [so ϱ(p) is also the incoming flux

of photons] and σ(p) is the scattering cross section. For a thermal distribution of photons.22

we have

ϱ(p) ∼ p2

ep/T − 1
. (4.2.40)

We take σ to be given by the Thomson cross section

σ =
8π

3

q4

(4πm)2
, (4.2.41)

where m is the mass of Alice’s particle. Putting this all together, our estimate of the

decoherence rate due to scattering of Unruh photons is

Γscatt ∼
q4d2a5

m2
(Rindler, EM) . (4.2.42)

Comparing Eq. (4.2.42) to the rate of decoherence, Γrad due to the emission of soft

photons given by Eq. (4.2.26), one can immediately see that the effects are distinct. In

particular, Γrad has no dependence on the mass, m, of Alice’s particle, whereas Γscatt does

depend on m on account of the mass dependence of the scattering cross section. The ratio

of these decoherence rates is given by

Γscatt
Γrad

∼ q2a2

m2
=

(
q/m

D

)2

(4.2.43)

22. The factor of p2 in the numerator of Eq. (4.2.40) arises from the density of states in Minkowski spacetime.
We ignore here any differences between the Minkowski and Rindler densities of states
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Now, q/m is the “charge radius” of Alice’s particle and, as argued in [Belenchia et al., 2018],

it represents a fundamental lower bound to the spread of a charged particle due to vacuum

fluctuations of the electromagnetic field. Therefore, in order that |ψ1⟩ and |ψ2⟩ not overlap,

we must have d > q/m. Since d≪ D, we conclude that

Γscatt
Γrad

≪ 1 (4.2.44)

i.e., the contribution to decoherence from the scattering of Unruh radiation is negligible

compared with the decoherence due to emission of soft photons through the Rindler horizon.

A similar analysis holds for a charged particle superposition outside of a black hole. It

is worth noting, that the decoherence effects due to scattering of Hawking radiation will

decrease with distance, D, from the black hole only as 1/D2 for large D, giving

Γscatt ∼
q4d2

m2M3

1

D2
(black hole, EM). (4.2.45)

On the other hand, by Eq. (4.1.21) the decoherence effects of radiation of soft photons through

the horizon decreases with D as 1/D6. Thus at sufficiently large D, the decoherence effects

due to scattering of Hawking radiation will dominate. However, in this regime, both effects

are extremely small.

4.2.3 Decoherence from the Inertial Perspective

In our analysis of the decoherence of a spatial superposition in the presence of a black hole

[Danielson et al., 2022b] as well as in our analysis of the decoherence of a spatial superposition

in Rindler spacetime given above in Sec. 4.2.1, it may appear that we have introduced a radical

new mechanism for decoherence, namely radiation of soft photons and gravitons through

a horizon. The main purpose of this subsection is to show that, in fact, the decoherence

we derived in the Rindler case can also be obtained by entirely conventional means. In the
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Rindler case, we are simply considering a uniformly accelerating superposition in Minkowski

spacetime. The radiation of entangling photons to infinity from such a superposition can be

calculated in the inertial viewpoint by standard methods, without introducing concepts such

as a Rindler horizon. It is instructive to calculate the decoherence from the inertial viewpoint

both in order to validate the results of Sec. 4.2.1 as well as to gain insight into how the emitted

“soft photons” would be interpreted by an inertial observer. As we shall see, the entangling

photons as seen by a faraway inertial observer along the forward axis of acceleration will be

“hard” even though, from her point of view, Alice has performed the experiment adiabatically.

We will restrict our analysis in this subsection to the electromagnetic case.

The Liénard-Wiechert solution for the potential of a point charge in Minkowski spacetime

following an arbitrary worldline Xµ(τ) is, in Lorenz gauge,

Aµ(x) =
1

4π

1

α

q

|x⃗− X⃗(tret)|
dXµ

dt
(tret) (4.2.46)

where

α ≡ 1− n̂ · dX⃗
dt

(tret) and n̂ =
x⃗− X⃗(tret)

|x⃗− X⃗(tret)|
. (4.2.47)

For a uniformly accelerated trajectory with acceleration a, we have

Xµ(τ) =

(
1

a
sinh(aτ), 0, 0,

1

a
cosh(aτ)

)
. (4.2.48)

In Bondi coordinates (u, r, θ, ϕ) with

u ≡ t− r (4.2.49)

the future light cone of an event at proper time τ on the worldline Eq. (4.2.48) reaches null

infinity at

au = sinh(aτ)− cos θ cosh(aτ). (4.2.50)

Electromagnetic radiation is described by the pullback of the electromagnetic field, Eq. (4.2.46),
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to null infinity. Taking the limit as r →∞ at fixed u, we obtain23

AA(u, θ, ϕ) =
−q
4π

sinh(aτ) sin θ

cosh(aτ)− cos θ sinh(aτ)
(dθ)A (4.2.51)

where, in this subsection, capital indices from the early alphabet denote angular compo-

nents on the 2-sphere cross-sections of I +. We will be concerned with the difference, at

fixed (u, θ, ϕ), between the electromagnetic radiation of a particle following the trajectory

Eq. (4.2.48) and a particle following a similar trajectory that is displaced in the z-direction

by a proper distance d≪ 1/a and thus has

δa = a2d. (4.2.52)

We denote this difference by

Ad
A(u, θ, ϕ) ≡ AA(a+ δa)− AA(a) ≈ δa

(
∂AA
∂a

)
u,θ

(4.2.53)

From Eq. (4.2.51), we obtain

Ad
A = −a

2qd

4π

u sin θ

(cosh(aτ)− cos θ sinh(aτ))3
(dθ)A (4.2.54)

where Eq. (4.2.50) was used to compute (∂τ/∂a)(u,θ).

In her experiment, Alice starts with her particle in a uniformly accelerating state. Over

a proper time T1, she separates it into two uniformly accelerating components separated by

a distance d as above. She keeps these components separated for a proper time T , and she

then recombines them over a proper time T2. The difference between the radiation fields of

23. The vector potential is not smooth at I + in Lorenz gauge but one can do an asymptotic gauge
transformation such that Aa is smooth at I +. Such a gauge transformation does not affect the angular
components AA at I + [Satishchandran and Wald, 2019], so we can calculate AA using our Lorenz gauge
expression.
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these components is given by

AA ≡ A1,A −A2,A = F (τ)Ad
A (4.2.55)

where the smooth function F is such that F (τ) = 0 for τ < −T1 and τ > T + T2, whereas

F (τ) = 1 for 0 < τ < T . The entangling photon content is then given by

⟨N⟩ = ∥KA∥2 = 2

∫
S2

dΩ

∞∫
0

ωdω

2π
ÂAÂA (4.2.56)

where ÂA(ω, θ, ϕ) denotes the Fourier transform of AA(u, θ, ϕ) with respect to u, i.e.,

ÂA(ω, θ, ϕ) =
∞∫
−∞

du eiωuAA(u, θ, ϕ). (4.2.57)

We are interested in estimating ⟨N⟩ for large T .

In order to evaluate the Fourier transform integral, it is useful to note that, at fixed a,

we have
du

dτ
= cosh(aτ)− cos θ sinh(aτ) (4.2.58)

and
d2u

dτ2
= a2u. (4.2.59)

It follows that

d

du

(
1

du/dτ

)
=

1

du/dτ

d

dτ

(
1

du/dτ

)
=

−a2u
(cosh(aτ)− cos θ sinh(aτ))3

(4.2.60)
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Thus, we have

Ad
A =

qd sin θ

4π
(dθ)A

d

du

(
1

du/dτ

)
(4.2.61)

and

ÂA =
qd sin θ

4π
(dθ)A

∞∫
−∞

du eiωuF (τ)
d

du

(
1

du/dτ

)
. (4.2.62)

Integrating by parts, we obtain

ÂA(ω, xA) =−
qd sin θ

4π
(dθ)A

[
iω

∞∫
−∞

du eiωu
F (τ)

du/dτ
+

∞∫
−∞

du eiωu
F ′(τ)

(du/dτ)2

]
. (4.2.63)

The second term in this equation contributes only during the time intervals (−T1, 0) and

(T, T + T2) when Alice opens and closes the superposition. For large T , its contribution can

be shown to be negligible compared with the first term. Therefore, we have

ÂA(ω, xA) ≈ −(dθ)A
iωqd sin θ

4π
I (4.2.64)

where

I ≡
∞∫
−∞

du eiωu
F (τ)

du/dτ
. (4.2.65)

To evaluate I, we approximate F by a step function in the τ -interval [0, T ]. The corre-

sponding interval, [u0, uT ], in u is

u0 = −1

a
cos θ

uT =
1

2a

[
eaT (1− cos θ)− e−aT (1 + cos θ)

]
. (4.2.66)

Noting that
du

dτ
=

√
a2u2 + sin2 θ (4.2.67)
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we obtain

I ≈
uT∫
u0

du
eiωu√

a2u2 + sin2 θ
. (4.2.68)

It can be seen that for large T , the dominant contribution to I will come from small angles,

θ ≪ 1. For aT ≫ 1, the upper limit of the integral may then be approximated as

uT ≈ 1

4a
eaT θ2 − 1

a
e−aT for θ ≪ 1

∼


0 for θ2/4 < e−aT

1
4aθ

2eaT for θ2/4 ≥ e−aT
. (4.2.69)

For aT ≫ 1, the contribution to I from θ2/4 < e−aT can be shown to make a negligible

contribution to ⟨N⟩, Eq. (4.2.56). Therefore, we may approximate I as

I ∼ Θ(θ2 − 4e−aT )

exp(aT )θ2/(4a)∫
−1/a

du
eiωu√

a2u2 + sin2 θ
(4.2.70)

where

Θ(x) ≡


0 for x < 0

1 for x ≥ 0.

(4.2.71)

For 0 < ω < 4ae−aT /θ2, we may bound I by replacing eiωu by 1. The integral can then

be evaluated explicitly, and it can be shown that for aT ≫ 1, the contribution to ⟨N⟩

from this frequency range is negligible. For ω > 4ae−aT /θ2, the integrand is oscillatory for

u > exp(aT )θ2/(4a), and, for aT ≫ 1, we will make negligible error in our estimate of ⟨N⟩

if we replace the upper limit of Eq. (4.2.70) by ∞. We will also make a negligible error by
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replacing the lower limit by 0. Thus, for aT ≫ 1, we may approximate I as

I ∼ Θ(θ2 − 4e−aT )Θ(ω − 4ae−aT /θ2)

∞∫
0

du
eiωu√

a2u2 + sin2 θ
. (4.2.72)

Evaluating the integral we obtain

I ∼ 1

a
Θ(θ2 − 4e−aT )Θ(ω − 4ae−aT /θ2)

(
1

2
iπI0(sin θω/a)

+K0(sin θω/a)−
1

2
iπLLL0(sin θω/a)

)
(4.2.73)

where I0, K0 are Bessel functions and LLL0 is a Struve function. This expression is highly

suppressed for ω > a/θ, so we can expand in θω/a and truncate the function above ω = a/θ

to obtain,

I ∼ −1

a
Θ(1− θω/a)Θ(θ2 − 4e−aT )Θ(ω − 4ae−aT /θ2) ln (θω/a) . (4.2.74)

Note that the restrictions ω < a/θ, and θ > 2e−aT/2 imply a frequency cutoff at ω ∼ aeaT/2/2.

By Eqs.(4.2.74) and (4.2.64), the frequency spectrum of ÂA goes as ω ln(ω/a) up to this

cutoff, i.e., the spectrum is “hard” and becomes increasingly so for large T . This contrasts

with the increasingly “soft” spectrum on the Rindler horizon, which goes as 1/ω down to

a low frequency cutoff ∼ 1/V ∝ e−aT . Thus, the “soft horizon photons” from the Rindler

perspective are “hard” photons from the inertial perspective.

From Eq. (4.2.56) for ⟨N⟩ together with our expression Eq. (4.2.64) for ÂA and the

expression Eq. (4.2.74) that we have just derived for I, we obtain

⟨N⟩ ∼
(
qd

a

)2 ∫
dωdθ θ3ω3

(
ln
ωθ

a

)2

(4.2.75)

where the region of ω-θ integration is determined by the Θ-functions appearing in Eq. (4.2.74)
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as well as the geometrical restriction θ ≲ 1. We can break up this region into the portion

with ω ≤ a and the portion with ω > a. Since the region with ω ≤ a and θ ≲ 1 is bounded

and the integrand of Eq. (4.2.75) is bounded in this region, the contribution to ⟨N⟩ from

ω ≲ a is bounded by a constant that is independent of T . We may therefore discard this

contribution. In the region ω > a, the third Θ-function in Eq. (4.2.74) is redundant, and the

integration region is

a ≤ ω ≤ aeaT/2/2 (4.2.76)

2e−aT/2 ≤ θ ≤ a

ω
. (4.2.77)

For aT ≫ 1, we will make negligible error by replacing the lower limit of θ by 0. We thereby

obtain

⟨N⟩ ∼
(
qd

a

)2
a exp(aT/2)/2∫

a

dω

a/ω∫
0

dθ θ3ω3
(
ln
ωθ

a

)2

. (4.2.78)

Making the change of variables from θ to

x =
ω

a
θ (4.2.79)

we find that the θ-integral becomes

a/ω∫
0

dθ θ3ω3
(
ln
ωθ

a

)2

=
a

ω
a3

1∫
0

dx x3(ln x)2 ∼ a4

ω
. (4.2.80)
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Thus, we obtain

⟨N⟩ ∼
(
qd

a

)2

a4

a exp(aT/2)/2∫
a

dω

ω

∼ a2q2d2 ln[exp(aT/2)]

∼ a3q2d2T. (4.2.81)

This estimate agrees with Eq. (4.2.23).

Thus, we have succeeded — with considerable effort! — in our goal of deriving the

decoherence of Alice’s superposition by entirely conventional means. It is notable how much

simpler the calculation of Sec. 4.2.1 was compared to the calculation that we have just

completed.

4.3 Cosmological Horizons Decohere Quantum Superpositions

In this section, we apply our analysis to de Sitter spacetime. The de Sitter metric in a static

patch is given by

ds2 = −f(r)dt2 + f(r)−1dr2 + r2qABdx
AdxB (4.3.1)

where, in this section, xA are angular coordinates on the 2-sphere, qAB is the unit round

metric on the 2-sphere, and

f(r) = 1− r2/R2
H (4.3.2)

where RH (the “Hubble radius”) is a constant. The coordinate singularity at r = RH

corresponds to the “cosmological horizon,” which is a Killing horizon of the static Killing

field (∂/∂t)a. The relation between “affine time,” V , and “Killing time,” v, on the future

cosmological horizon is

V = ev/RH . (4.3.3)
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The general analysis of Sec. 4.1 applies to the decoherence of a static superposition in

de Sitter spacetime. The estimates of the decoherence due to emission of soft photons and

gravitons through the cosmological horizon when Alice keeps the superposition present for

a time T can be made in exact parallel with the analysis of Sec. 4.2 in the Rindler case

and Chapter 3 in the black hole case. The only noteworthy new ingredient in de Sitter

spacetime is that the worldline r = 0 is an orbit of the static Killing field that is inertial,

i.e., nonaccelerating. We now estimate the decoherence of a spatial superposition created in

Alice’s lab at r = 0 and thereby show that decoherence will occur even though Alice’s lab is

not accelerating.

By Gauss’ law, a point charge placed at r = 0 will give rise to a radial electric field EU

on the future cosmological horizon given by

EU ∼
q

R2
H

(4.3.4)

where EU = Fabℓ
anb on the horizon with na = (∂/∂V )a tangent to the affinely parametrized

null generators of the horizon and ℓa = (∂/∂U)a a radial null vector with naℓa = −1. The

change in the electric field on the horizon resulting from a displacement of the charge to

r = d≪ RH is

∆EU ∼
qd

R3
H

. (4.3.5)

By paralleling the steps that led to Eq. (4.2.18) above, we find that the change in the

tangential components of the vector potential at the horizon is

|∆AA| ≡
(
R−2H qAB∆AA∆AB

)1/2
∼ qd

R2
H

. (4.3.6)

By paralleling the steps that led to Eq. (4.2.23) — assuming that the electromagnetic field
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is initially in the de Sitter invariant vacuum (see footnote 7) — we obtain the estimate

⟨N⟩ ∼ q2d2

R3
H

T (de Sitter, EM) . (4.3.7)

Thus, restoring constants, the decoherence time due to the presence of the cosmological

horizon is

TD ∼
ℏϵ0R3

H

q2d2
(de Sitter, EM) . (4.3.8)

Since d≪ RH , the decoherence time will be much larger than the Hubble time RH/c unless

q is extremely large relative to the Planck charge qP ≡
√
ϵ0ℏc. Nevertheless, we see that

decoherence does occur despite the fact that Alice’s lab is inertial.

A similar analysis applies in the gravitational case for a spatial superposition of a massive

particle in Alice’s lab at r = 0. In parallel with the derivation given in Sec. 4.2.1 above, we

find

⟨N⟩ ∼ m2d4

R5
H

T (de Sitter, GR) (4.3.9)

which leads to a decoherence time

TGR
D ∼

ℏR5
H

Gm2d4
(de Sitter, GR) . (4.3.10)
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CHAPTER 5

LOCAL DESCRIPTION OF DECOHERENCE DUE TO BLACK

HOLES AND OTHER BODIES

The analysis of Chapters 3 and 4 strongly suggests that global aspects of the structure of the

spacetime—specifically, the presence of a horizon—are essential for the decoherence effect.

The main purpose of the present chapter is to show that one can give an alternative, purely

local description of the decoherence in terms of the behavior of the quantum field within

Alice’s lab. From this viewpoint, the decoherence arises from the behavior of the unperturbed

two-point function of the quantum field in the region where the superposition was created.

In particular, the decoherence in the presence of a black hole can be understood as resulting

from the extremely low frequency Hawking radiation that partially penetrates into Alice’s

lab before being reflected back into the black hole by the effective potential of the black hole.

This local viewpoint will enable us to gain insights into various aspects of the decoherence

process, such as the differences in decoherence that occur in different vacuum states and in

different spacetimes. We will also gain insight into the requirements on a material body to

mimic the decoherence effects of a black hole.

We note that, very recently, Wilson-Gerow, Dugad, and Chen [Wilson-Gerow et al.,

2024] also have given a local formulation of our decoherence results, focusing particularly on

the Rindler case, i.e., an accelerating observer in Minkowski spacetime. The methods and

arguments used in [Wilson-Gerow et al., 2024] are quite different from the ones we shall give

in our analysis below. Nevertheless, there are a number of significant points of overlap in the

results. In particular, our result Eq. (5.3.8) relating the decoherence to the local two-point

function of the electric field corresponds to Eq. (103) of [Wilson-Gerow et al., 2024].

We also note that in a previous chapter we analyzed the decohering effects of the scattering

of Unruh radiation on a charged superposition in an accelerating laboratory in Minkowski

spacetime. We concluded that this decoherence was distinct from (and smaller than) the
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decohering effects of emission of entangling radiation through the Rindler horizon. However,

in Chapter 4 we considered only incoherent scattering effects of individual Unruh photons.

We did not consider the coherent effects of the presence of a large number of Unruh photons

of frequency ω ∼ 1/T ≪ 1/a, where a denotes the acceleration of the laboratory. As we

shall see in the present chapter, the presence of these very low frequency photons can be

viewed as stimulating the emission of entangling radiation from the superposition. Thus, the

decoherence effect in Rindler spacetime is, in fact, intimately related to the presence of very

low frequency Unruh radiation in the Minkowski vacuum. Similarly, the decoherence effect

in a black hole spacetime is intimately related to the presence of very low frequency Hawking

radiation in the Unruh vacuum.

Our local reformulation of the decoherence makes manifest that one can interpret the

decoherence of Alice’s superposition in terms of the interaction of Alice’s particle with the

local state of the quantum field in her lab. It should be emphasized that the thermal

nature of the state is, by itself, insufficient to account for this effect [Danielson et al., 2023,

Wilson-Gerow et al., 2024]. In particular, for the decoherence in the Unruh vacuum in the

presence of a black hole, it is essential that there is an extremely large reservoir of “soft”

Hawking quanta in the Unruh vacuum as compared with an ordinary inertial thermal bath

in Minkowski spacetime at the same temperature. Furthermore, in the Boulware vacuum

in a black hole spacetime—which is the ground state with respect to the timelike Killing

field and thus has no particles—Alice’s superposition still spontaneously emits entangling

soft photons/gravitons into the black hole, but the number of entangling particles grows only

logarithmically with time. The Unruh vacuum corresponds to a thermal population whose

density of states diverges at low frequencies. The presence of these low-frequency quanta

stimulate the emission of entangling soft radiation into the horizon, so that the number of

entangling soft photons/gravitons grows linearly in time.

Our local reformulation of Alice’s decoherence also allows one to also consider what
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happens when one replaces the black hole by a body without a horizon. It is instructive

to consider the case where Alice’s lab is in the spacetime outside of a static, spherical star

rather than a black hole but we do not consider any internal degrees of freedom of the matter

composing the star, i.e., we consider only the effect of replacing the spacetime geometry of

a black hole with the spacetime geometry of a star. If the quantum field is in its stationary

ground state in the spacetime of the star, then the two-point function of the quantum field

in Alice’s lab should look very much like the Boulware vacuum in Schwarzschild spacetime

with respect to the incoming modes from infinity. However, the “white hole incoming modes”

of Schwarzschild will be entirely absent for the star. These white hole modes are responsible

for the decoherence effects that grow with T in Schwarzschild, so a similar decoherence will

not occur for the star. Even if the quantum field is in a thermal state in the spacetime of

the static star, there will be no decoherence effects that grow with T . Thus, the presence of

a horizon is essential for the kind of decoherence obtained for a Schwarzschild black hole.

Nevertheless, one can get decoherence without a horizon if one has a material body with

internal degrees of freedom that interact electromagnetically and/or gravitationally with

the particle in Alice’s lab. In this situation, the interaction is now mediated by the long-

range Couloumbic/Newtonian field of the superposition without any emission of radiation,

analogous to the gedankenexperiment [Belenchia et al., 2018, Danielson et al., 2022a] in flat

spacetime where Alice and Bob both perform their experiments adiabatically and in causal

contact with one another. As we shall show, the material body will mimic the decoherence

effects of the black hole if, at very low frequencies, the thermal fluctuations of its electric

dipole moment and/or mass quadrupole moment agree with black hole case [see Eqs. (5.3.48)

and (5.3.49) below]. This issue has recently been investigated by Biggs and Maldacena [Biggs

and Maldacena, 2024]. In order for a body of size comparable to that of a black hole to be

able to absorb and emit low frequency electromagnetic or gravitational waves as efficiently

as the black hole, a conducting or gravitating body must have a very large resistance or
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viscosity. There does not appear to be any difficulty, in principle, in achieving this in the

electromagnetic case [Biggs and Maldacena, 2024]. However, some extraordinary physical

properties of matter would be required to mimic the quantum gravitational decoherence effect

[Biggs and Maldacena, 2024].

In Sec. 5.1, we review our previous derivation of decoherence in the presence of a horizon.

In Sec. 5.2, we provide a local reformulation of this decoherence in terms of the two-point

function of the quantum field in Alice’s laboratory over the duration of her experiment. In

Sec. 5.3, we compute the decoherence in the Unruh vacuum in Schwarzschild using our local

formulation, which requires the computation of the two-point function of the electric field

along the worldline of Alice’s lab. Finally, in Sec. 5.4, we compute the decoherence for

different vacua in Schwarzschild and in different spacetimes, including a brief discussion of

the decoherence due to entanglement with an ordinary material body.

Unless otherwise stated, we will work in Planck units where G = c = ℏ = kB = 1 and,

in electromagnetic formulas, we also put ϵ0 = 1. We will generally follow the notational

conventions of [Wald, 1984]. In particular, abstract spacetime indices will be denoted with

lowercase Latin indices from the early alphabet (a, b, c . . . ). Spacetime coordinate components

will be denoted with Greek indices. Spatial coordinates and components will be denoted with

Latin indices from the middle alphabet (i, j, k, . . . ).

5.1 Decoherence of a Quantum Superposition due to Radiation

In this section we briefly review the analysis of decoherence due to radiation through a Killing

horizon previously given in Chapters 3 and 4. We will focus on the electromagnetic case and

merely state the corresponding results in the gravitational case.

An experimenter, Alice, in a stationary lab in a stationary spacetime (M , gab) controls a

charged particle1 which is initially held stationary in her lab. The particle is put through a

1. The “particle” need not be “elementary,” e.g., it could be a nanoparticle. All that is required is that the
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Stern-Gerlach apparatus over a time T1 so that at the end of this process its quantum state

is of the form

|ψ⟩ = 1√
2
(|ψ1⟩+ |ψ2⟩) (5.1.1)

where |ψ1⟩ and |ψ2⟩ are the spatially separated, normalized states of the particle after passing

through the Stern-Gerlach apparatus. Alice maintains this stationary superposition for a

(proper) time T , and she subsequently recombines her particle over a time T2 where we

assume that T ≫ T1, T2. The recombined particle is then kept stationary. We now analyze

the decoherence of Alice’s particle due to emission of entangling electromagnetic radiation

sourced by Alice’s superposition.

We assume that |ψ1⟩ and |ψ2⟩ are sufficiently spatially separated that ⟨ψ1|ja|ψ2⟩ = 0

and we further assume that the fluctuations of the charge current ja in states |ψ1⟩ and |ψ2⟩

are negligible compared with their expected values. We may then treat the charge-current of

each component of the superposition as a c-number source in Maxwell’s equations. Thus, if

Alice’s particle is in state |ψn⟩ for n = 1, 2, then the electromagnetic field operator is given

by [Yang and Feldman, 1950]

An,a = Ain
a +Gret

a (jn)1 (5.1.2)

where Ain
a is the unperturbed (“in”) field operator and Gret

a (jn) is the retarded solution

associated to the classical charge-current jan = ⟨ψn|ja|ψn⟩. The “out” radiative field at late

times is obtained by subtracting the final Coulomb field Ca of the recombined particle from

An,a

Aout
n,a = An,a − Ca1

= Ain
n,a +An,a1 (5.1.3)

degrees of freedom of the particle apart from its center of mass may be neglected.
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where

An,a ≡ Gret
a (jn)− Ca . (5.1.4)

We assume that the initial state of the quantum electromagnetic field is some “vacuum

state” (i.e., a pure, quasifree state) |Ω⟩ that is invariant under the time translation symmetries

of the spacetime. The unperturbed field operator Ain on the Fock space, F (Hin), associated

with |Ω⟩ can be expressed in terms of annihilation and creation operators on F (Hin) as

Ain
a (f

a) = ia(K∆(f))− ia†(K∆(f)) (5.1.5)

where fa is a divergence-free2 test vector field and ∆(f) is the advanced minus retarded

solution to Maxwell’s equation with source fa

[∆(f)]a(x) =

∫
M

√
−gd4x′∆aa′(x, x

′)fa
′
(x′) (5.1.6)

where ∆aa′(x, x
′) is the advanced minus retarded Greens function. Here K is the map that

takes classical solutions into the corresponding one-particle states in the Fock space defined

by |Ω⟩.

As can be seen from Eq. (5.1.3), the “out” state corresponding to the “in” vacuum |Ω⟩

has field correlation functions at late times that are obtained from the vacuum correlation

functions by shifting the field operator by a multiple of the identity operator. It follows that

if Alice’s particle is in state |ψn⟩, then the “out” state of the electromagnetic field will be

given by the coherent state

|Ψn⟩ = e−
1
2∥KAn∥2 exp

[
a†(KAn)

]
|Ω⟩ (5.1.7)

2. Restriction of the smearing to divergence-free test functions is necessary and sufficient to eliminate the
gauge dependence of Ain,a (see, e.g., p. 101 of [Wald, 1995]).
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where, for notational simplicity, we drop the spacetime index “a” from An,a, Eq. (5.1.4), here

and elsewhere in the remainder of this section. The norm ||KAn|| appearing in Eq. (5.1.7)

is taken in the one-particle Hilbert space of the Fock space of |Ω⟩.

The joint quantum state of Alice’s particle together with the emitted electromagnetic

radiation at late times is given by

1√
2

(
|ψ1⟩ ⊗ |Ψ1⟩+ |ψ2⟩ ⊗ |Ψ2⟩

)
. (5.1.8)

Thus, the decoherence of Alice’s particle due to the emission of electromagnetic radiation is

then given by

DAlice = 1− | ⟨Ψ1|Ψ2⟩ | . (5.1.9)

The magnitude of the inner product of the coherent states |Ψ1⟩ and |Ψ2⟩ is computed to be

| ⟨Ψ1|Ψ2⟩ | = exp

(
− 1

2
||K(A1 −A2)||2

)
(5.1.10)

where K(A1 −A2) denotes the one-particle state associated with late time classical solution

A1 −A2 = Gret(j1 − j2). (5.1.11)

But ||K(A1 −A2)||2 is equal to the expected number of photons, ⟨N⟩, in the coherent state

associated with the late time classical solution A1 −A2 sourced by j1 − j2

⟨N⟩ ≡ ||K(A1 −A2)||2 = ||KGret(j1 − j2)||2. (5.1.12)

Thus, we have

D = 1− exp

(
− 1

2
⟨N⟩

)
. (5.1.13)

We shall refer to ⟨N⟩ as the expected number of entangling photons. If the expected number of
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entangling photons is significantly bigger than 1, then Alice’s superposition will be completely

decohered.

Thus, we see that to compute the decoherence of a superposition created by Alice under

the assumptions stated above, we proceed as follows:

1. We compute the expected currents j1 and j2 of the components of Alice’s superposition.

2. We compute the classical retarded solution Gret(j1 − j2) sourced by the difference of

these currents.

3. We compute the one-particle state KGret(j1− j2) of this classical solution at late times

and its squared norm ∥KGret(j1−j2)∥2. This yields the expected number of entangling

photons, ⟨N⟩, and thereby the decoherence, Eq. (5.1.13). Note that the one-particle

map K depends on the choice of vacuum state |Ω⟩.

The above analysis extends directly to the linearized quantum gravitational case, where

the linearized metric perturbation hab is treated as a field propagating on a fixed spacetime

background. In the above formulas, we simply replace Aa with hab and we replace the current

ja with the linearized stress tensor Tab. The expected number of entangling gravitons is then

given by the analog of Eq. (5.1.12) and the decoherence is given by Eq. (5.1.13).

In Minkowski spacetime, we may take the notion of stationarity to be given by ordinary,

inertial time translations and we may take |Ω⟩ to be the Poincaré invariant vacuum. If

a particle of charge q is put in a superposition separated by a distance d, then we may

estimate Gret(j1 − j2) near null infinity using the Larmor formula. The one-particle state

KGret(j1 − j2) is the positive frequency part of this solution with respect to inertial time

translations. The norm of this one-particle state is given by the Klein-Gordon norm. The

expected number of entangling photons is thereby estimated to be [Belenchia et al., 2018,
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Danielson et al., 2022a]

⟨N⟩ ∼ q2d2

min[T1, T2]2
(Minkowski, EM). (5.1.14)

Thus, the decoherence does not depend upon T and can be made arbitrarily small by per-

forming the separation and recombination of the superposition sufficiently slowly, so that

T1, T2 ≫ qd.

In the analysis of the corresponding gravitational case we must take into account the fact

that conservation of total stress-energy implies that the center of mass cannot change. Thus

if the component |ψ1⟩ of the superposition corresponds to the particle moving to the right,

then Alice’s lab must move a tiny bit to the left to keep the center of mass unchanged. The

upshot is that the leading order contribution to the retarded solution with source T ab1 − T
ab
2

arises from quadrupole radiation rather than dipole radiation. The estimate corresponding

to Eq. (5.1.14) for the number of entangling gravitons is [Belenchia et al., 2018, Danielson

et al., 2022a]

⟨N⟩ ∼ m2d4

min[T1, T2]4
(Minkowski, GR). (5.1.15)

Again, the decoherence does not depend upon T and can be made arbitrarily small by

performing the separation and recombination of the superposition sufficiently slowly, so that

T1, T2 ≫
√
md2.

However, it was shown in Chapter 3 that the situation is drastically different in the

presence of a black hole or, more generally, any Killing horizon [Danielson et al., 2023].

In the case of a black hole, the relevant vacuum is the “Unruh vacuum” |ΩU⟩. If T1, T2

are sufficiently large—i.e., if Alice separates and recombines the particle sufficiently slowly—

then the number of entangling photons/gravitons emitted to infinity will again be negligible.

However, if an initially stationary source is moved to a new position and held there forever,

the retarded solution will exhibit a “memory effect” on the horizon [Hawking et al., 2016].

88



Consequently, it can be seen that if Alice were to keep her superposition open forever, an

infinite number of soft entangling photons/gravitons would be emitted through the horizon, in

close analogy with the infrared divergences at infinity that arise in scattering theory (see, e.g.,

[Ashtekar, 1987, Ashtekar et al., 2018, Prabhu et al., 2022, Prabhu and Satishchandran, 2024]).

If Alice closes her superposition after time T , then the number of entangling photons radiated

through the horizon will be finite but will grow linearly with T . In the electromagnetic case

the number of photons grows as [Danielson et al., 2022b]

⟨N⟩ ∼ M3q2d2

D6
T (black hole, EM) (5.1.16)

where M is the mass of the black hole and D is the proper distance of Alice’s lab from the

horizon (and, for simplicity, we have assumed that D ≳M so that, e.g., the redshift factor

at Alice’s lab is of order unity and can be absorbed in the “∼”). The analogous computation

in the gravitational case3 yields [Danielson et al., 2022b]

⟨N⟩ ∼ M5m2d4

D10
T (black hole, GR). (5.1.17)

More generally, it was shown that in the presence of any Killing horizon (e.g., a Rindler or

cosmological horizon) the number of entangling soft photons and gravitons grows linearly in

the time T that the superposition is maintained [Danielson et al., 2023].

The above results were obtained by calculating the quantum state of the electromagnetic

and linearized gravitational fields on the horizon associated with the retarded solution sourced

by the components of Alice’s superposition. The decoherence of Alice’s particle was attributed

to the emission of entangling photons/gravitons through the horizon. Thus, it might appear

that the global properties of the spacetime—specifically, the presence of a horizon—are

3. In the gravitational case, it will be necessary to have some additional stress-energy present to hold
Alice’s lab stationary and keep her particle components stationary. We neglect any effects of such additional
stress-energy.
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essential for the description of the decoherence phenomenon we have just given. However,

we will now show that the decoherence can alternatively be described purely in terms of the

local properties of the unperturbed quantum field within Alice’s laboratory. This alternative

viewpoint will enable us to compare decoherence phenomena in the presence of a black hole

with decoherence phenomena occurring when no horizon is present.

5.2 Local Reformulation of the Decoherence

As in the previous section, we first consider the electromagnetic case and then state the

corresponding results in the gravitational case.

A local reformulation of the electromagnetic decoherence results of the previous section

is obtained from the following simple observations: First, since j1 = j2 at late times, the

retarded solution Gret(j1− j2) is equal to −∆(j1− j2) at late times, where ∆ = Gadv−Gret.

Thus, we may replace Gret by −∆ in Eqs. (5.1.11) and (5.1.12), and we no longer have to

evaluate these quantities at late times. Second, we note that it follows immediately from

Eq. (5.1.5) that for any (divergence-free) test vector field fa, we have

⟨Ω|
[
Ain
a (f

a)
]2
|Ω⟩ = ||K∆(f)||2 (5.2.1)

where Ain denotes the unperturbed electromagnetic field. Combining Eq. (5.2.1) with

Eq. (5.1.12) (with Gret replaced by −∆), we obtain

⟨N⟩ = ⟨Ω|
[
Ain
a (j

a
1 − j

a
2 )
]2
|Ω⟩ . (5.2.2)

Thus, we see that the prescription for computing the decoherence of Alice’s superposition

outlined in the bullet points given in the previous section can be equivalently reformulated

as follows:
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• We compute the expected currents ja1 and ja2 of the components of Alice’s superposition.

• We compute the two-point function ⟨Ω|Ain
a (x)A

in
a′(x

′)| |Ω⟩ of the unperturbed field in

the vacuum state |Ω⟩.

• We smear this two-point function in both variables with the test vector field fa =

ja1 − j
a
2 . This yields the expected number of entangling photons, ⟨N⟩, and thereby the

decoherence, Eq. (5.1.13).

The remarkable feature of this reformulation is that it requires only knowledge of the

expected currents and the unperturbed two-point function of the quantum field in Alice’s lab,

i.e., unlike the previous prescription, we do not need to calculate anything about the particle

content of the perturbed field at late times. In particular, this explicitly demonstrates that

the decoherence can be viewed as a purely local phenomenon occurring entirely in Alice’s

lab.

The corresponding result in the linearized gravitational case is

⟨N⟩ = ⟨Ω|
[
hin
ab(T

ab
1 − T

ab
2 )

]2
|Ω⟩ (5.2.3)

where T ab1 − T
ab
2 is the difference in the stress-energy of the components of Alice’s particle

(also taking into account the tiny correlated motion of Alice’s lab that keeps the center of

mass fixed). Again, the calculation of decoherence is seen to require only a knowledge of

the expected stress-energy of the components of Alice’s particle as well as the unperturbed

two-point function of the quantum field in Alice’s lab, so the decoherence can be viewed as

a purely local phenomenon occurring entirely in Alice’s lab.

Note that Eqs. (5.2.2) and (5.2.3) show that the quantity ⟨N⟩—and hence the correspond-

ing decoherence, D , given by Eq. (5.1.13)—are determined by the vacuum fluctuations of

the quantum field smeared into the difference of the sources in Alice’s lab.

In the next section, we recompute the black hole decoherence Eq. (5.1.16) using our local
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reformulation. This will enable us to gain further insights into the nature of the decoherence

in the presence of a black hole and to compare it with cases where no horizon is present.

5.3 Local Calculation of the Decoherence in the Unruh Vacuum

around a Schwarzschild Black Hole

We now compute the decoherence of Alice’s particle in the presence of a Schwarzschild black

hole by the methods of the previous section. We will focus upon the electromagnetic case

and merely comment briefly on the linearized gravitational case near the end of this section.

If we neglect the spatial extent of the particle components, then we have

ja1 (t, x
i) ≈ q√

−g
δ(3)[xi −Xi

1(t)]u
a
1
dτ1
dt

(5.3.1)

and similarly for ja2 . Here t is the Killing time coordinate, xi are spatial coordinates on the

hypersurfaces Σt orthogonal to the timelike Killing field ta, Xi
1(t) is the path taken by the

center of mass of the first component of the particle, ua1 is the 4-velocity of that path, τ1 is

the proper time along the path, and δ(3) is the “coordinate delta function” defined so that∫
δ(3)[xi−Xi

1(t)]d
3x = 1. For nonrelativistic motion relative to the rest frame of ta, we have

dτ1/dt ≈
√
−gtt and

ja1 (t, x
i) ≈ q√

−g
δ(3)[xi −Xi

1(t)](t
a + va1) (5.3.2)

where va is the coordinate velocity of the component, i.e., vi1 = dXi
1/dt and vt1 = 0. We

represent the displacement of the two components of Alice’s particle at time t by the tangent

vector Sa(t) to the geodesic segment in Σt of unit affine parameter that connects the centers

of mass of the two components. We write Sa(t) = d(t)sa(t), where sa is a unit vector. Then

d(t) represents the proper distance between the components. We assume that sa is Lie

transported along ta (i.e., the direction of separation does not change with time) and that
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d(t) is smoothly varying and is such that

d(t) =


d for |t| < T/2

0 for t < −T/2− T1 and t > T/2 + T2.

(5.3.3)

The difference between the current densities of the two components is given by

(ja1 − j
a
2 ) ≈

qd(t)√
−g

tasb∇bδ(3)(xi −Xi)− q√
−g

δ(3)(xi −Xi)satb∇bd(t) (5.3.4)

where Xi is the position of Alice’s lab. Here, the first term arises from the difference in

charge densities and the second term arises from the difference in spatial currents. We may

rewrite this as

(ja1 − j
a
2 ) ≈

2q√
−g

t[asb]∇b
[
d(t)δ(3)(xi −Xi)

]
. (5.3.5)

We define the electric field Ea on the static slices by4

Ea = Fabt
b = (∇aAb −∇bAa)tb . (5.3.6)

It follows immediately from Eq. (5.3.5) and the definition of E that the unperturbed field

Ain smeared in with ja1 − j
a
2 (with the volume element

√
−gd4x understood in the smearing)

is given by

Ain
a (j

a
1 − j

a
2 ) ≈ −q

∫
dtd(t)saEin

a (t,Xi). (5.3.7)

Thus, from Eq. (5.2.2), we have

⟨N⟩ = q2
∫
dtdt′d(t)d(t′) ⟨saEin

a (t,Xi)sa
′
Ein
a′ (t
′, Xi)⟩Ω . (5.3.8)

4. Note that this differs from the notion of the “electric field on the horizon” used in Chapters 3 and 4,
which was defined as Fabk

b, where kb is the null normal to the horizon.
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Thus, to calculate ⟨N⟩ and thereby the decoherence Eq. (5.1.13) of Alice’s particle, we simply

evaluate the two-point function of the component, saEin
a of the electric field in the direction

of the separation, sa, of the components of Alice’s particle evaluated at Alice’s lab, xi = Xi,

and smeared in time via the separation d(t).

Thus, the remaining task is to obtain the two-point function of the unperturbed electric

field, which we will do via a mode expansion. We shall simplify this task by restricting

consideration to the case of radial separation of the components of Alice’s particle, so that

we need only calculate the two-point function of the radial component of Ein
a . The magnetic

parity modes do not contribute to the radial component of the electric field so we need

only consider the electric parity modes [Wald, 2022]. The two-point function of the radial

coordinate component Ein
r has been calculated for the Boulware, Unruh and Hartle-Hawking

vacuum states by Zhou and Yu [Zhou and Yu, 2012] and Menezes [Menezes, 2016], who

obtained5

⟨Er(x)Er(x
′)⟩Ω =

∞∑
ℓ=1

CℓPℓ(r̂ · r̂′)
r2r′2

∞∫
−∞

dω

ω
e−iω(t−t

′)×

×
[
G⃗(ω)R⃗ωℓ(r)R⃗

∗
ωℓ(r

′) + ⃗G(ω) ⃗Rωℓ(r) ⃗R
∗
ωℓ(r

′)
]
. (5.3.9)

Here,

Cℓ ≡
1

16π2
ℓ(ℓ+ 1)(2ℓ+ 1) (5.3.10)

and Pℓ is the ℓth Legendre polynomial (so Pℓ(r̂ · r̂′) = 1 for the case of interest below where

xi = x′i). The mode functions R⃗ωℓ(r) and ⃗Rωℓ(r) satisfy the differential equation

d2Rωℓ
dr∗2

+

[
ω2 − V (r)

]
Rωℓ = 0 (5.3.11)

5. These results are given in Eqs. (51)-(53) of [Zhou and Yu, 2012] and Eqs. (A13)-(A16) of [Menezes,
2016]. We have used the addition theorem for spherical harmonics to rewrite their sum of spherical harmonics
over azimuthal number m in terms of Pℓ(r̂ · r̂′).
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where

V (r) =

(
1− 2M

r

)
ℓ(ℓ+ 1)

r2
(5.3.12)

and r∗ is the radial “tortoise coordinate”

r∗ = r + 2M ln
( r

2M
− 1

)
, (5.3.13)

which satisfies dr∗/dr = (1−2M/r)−1 and ranges from r∗ → −∞ at the horizon to r∗ → +∞

at infinity. The modes R⃗ωℓ correspond to waves that are incoming from the white hole and

are defined by the asymptotic conditions

R⃗ωℓ(r)→


eiωr

∗
+ A⃗ωℓe

−iωr∗ as r → 2M

B⃗ωℓe
iωr∗ as r →∞

(5.3.14)

whereas the modes ⃗Rωℓ correspond to waves that are incoming from infinity and are defined

by the asymptotic conditions

⃗Rωℓ(r)→


⃗Bωℓe
−iωr∗ as r → 2M

e−iωr
∗
+ ⃗Aωℓe

iωr∗ as r →∞.
(5.3.15)

Finally, the coefficients G⃗(ω) and ⃗G(ω) appearing in Eq. (5.3.9) depend on the choice of

vacuum state |Ω⟩. For the Boulware vacuum [Boulware, 1975], |ΩB⟩, we have

G⃗B(ω) = ⃗GB(ω) = Θ(ω) (5.3.16)

corresponding to the fact that Boulware vacuum is positive frequency with respect to Killing

time at both the white hole horizon and past infinity. For the Unruh vacuum [Unruh, 1976],
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|ΩU⟩, we have

G⃗U(ω) =
1

1− e−2πω/κ
and ⃗GU(ω) = Θ(ω) (5.3.17)

where κ is the surface gravity of the black hole, corresponding to the fact that the Unruh

vacuum is positive frequency with respect to Killing time at past null infinity but is positive

frequency with respect to affine time (and thus is thermally populated with respect to Killing

time at temperature κ/2π) on the white hole horizon. Finally, for the Hartle-Hawking vacuum

[Hartle and Hawking, 1976], |ΩHH⟩, we have

G⃗HH(ω) = ⃗GHH(ω) =
1

1− e−2πω/κ
(5.3.18)

corresponding to the fact that the Hartle-Hawking vacuum is a thermal state at both the

white hole horizon and past null infinity.

We now plug our expression Eq. (5.3.9) for the two-point function into our formula

Eq. (5.3.8) for ⟨N⟩. We obtain

⟨N⟩ = q2
∞∑
ℓ=1

Cℓ(1− 2M/r)

r4

∞∫
−∞

dω

ω
|d̂(ω)|2

[
G⃗(ω)|R⃗ωℓ(r)|2 + ⃗G(ω)| ⃗Rωℓ(r)|2

]
. (5.3.19)

Here r is the radial coordinate of Alice’s lab and d̂(ω) is the Fourier transform of d(t)

d̂(ω) =

∞∫
−∞

dt eiωtd(t) . (5.3.20)

The factor of (1−2M/r) arises from converting the proper distance component saEa appearing

in Eq. (5.3.8) to the coordinate component Er appearing in Eq. (5.3.9), and we used the fact

that Pℓ(1) = 1.

For d(t) of the form Eq. (5.3.3) with T large, the magnitude of the Fourier transform

|d̂(ω)| behaves like d/|ω| as ω → 0 until this divergent behavior levels off below |ω| ∼ 1/T .
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There will also be a high frequency cutoff at |ω| ∼ 1/min[T1, T2]. Thus, we may approximate

the contribution of |d̂(ω)| to the integral in Eq. (5.3.19) using

|d̂(ω)| ∼


d
ω

1
T < |ω| < 1

min[T1,T2]

0 |ω| < 1
T or |ω| > 1

min[T1,T2]
.

(5.3.21)

Thus, the behavior of ⟨N⟩ at large T will be determined by the behavior of the integrand of

Eq. (5.3.19) near the low frequency end, |ω| ∼ 1/T , of the range of integration. In order to

determine this behavior, we need to obtain expressions for the mode functions R⃗ωℓ(r) and

⃗Rωℓ(r) at very low frequencies.

In order to determine these mode functions at low frequencies, we divide the exterior into

three regions (see Fig. 5.1):

Region I 2M < r ≤ r1 (5.3.22)

Region II r1 < r ≪ r2 (5.3.23)

Region III 3M ≪ r <∞ (5.3.24)

where [Fabbri, 1975]

r1 = 2M +
8ω2M3

ℓ(ℓ+ 1)
(5.3.25)

r2 =
[ℓ(ℓ+ 1)]1/2

ω
. (5.3.26)

Note that for ωM ≪ 1, there will be a large overlap of regions II and III. In region I, we

may neglect the potential, V (r), in Eq. (5.3.12) compared with ω2 and the solutions take the

form

RI
ωℓ(r) ≈ αI

ℓ(ω)e
iωr∗ + βI

ℓ(ω)e
−iωr∗ . (5.3.27)

In region II, the potential, V (r), dominates over ω2 and the solutions are well approximated

97



×10-3

-50 0 50 100 150 200
0

1

2

Figure 5.1: The potential V (r∗) plotted as a function of r∗ for ℓ = 1. The horizontal, grey
dashed line corresponds to square of the frequency ω = 0.01/M . The vertical blue and orange
dashed lines correspond to the turning points r∗1 and r∗2 respectively. The vertical, red dashed
line is the peak of the potential at r = 3M . The radial mode solutions in regions II and III
are matched in the regions where they overlap. The solutions in regions I and II are both
good approximations in a neighborhood of r∗ = r∗1 and so can be matched there.

by the static (zero frequency) solutions [Cohen and Wald, 1971, Fabbri, 1975]

RII
ωℓ(r) ≈α

II
ℓ (ω)

[
y

2
Pℓ(y − 1)−

Pℓ+1(y − 1)− Pℓ−1(y − 1)

2(2ℓ+ 1)

]
+βII

ℓ (ω)

[
y

2
Qℓ(y − 1)−

Qℓ+1(y − 1)−Qℓ−1(y − 1)

2(2ℓ+ 1)

]
(5.3.28)

where y ≡ r/M .

Finally, in region III, we may approximate the potential as V (r) ≈ ℓ(ℓ+ 1)/r∗2 and we

may then approximate the solutions by the flat spacetime solutions with r∗ replacing r

RIII
ωℓ(r) ≈ αIII

ℓ (ω)r∗jℓ(ωr
∗) + βIII

ℓ (ω)r∗nℓ(ωr
∗) (5.3.29)

where jℓ and nℓ denote the spherical Bessel and Neumann functions. Note that in the overlap
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between regions II and III, we may neglect6 the difference between r and r∗ and the solutions

take the form

R
II,III
ωℓ (r) ≈ αℓ(ω)r

ℓ+1 +
βℓ(ω)

rℓ
. (5.3.30)

In order to determine R⃗ωℓ(r), we start with the solution B⃗ωℓe
−iωr∗ in region III [see

Eq. (5.3.14)], with initially unknown coefficient B⃗ωℓ. We match this solution to the general

solution Eq. (5.3.28) in region II and then match the resulting solution to the general solution

Eq. (5.3.27) in region I. Finally, we adjust B⃗ωℓ so as to give a coefficient of 1 to the term

eiωr
∗

as r → 2M in Eq. (5.3.14). Similarly, to obtain ⃗Rωℓ(r), we start with the solution

⃗Bωℓe
−iωr∗ in region I [see Eq. (5.3.15)], with initially unknown coefficient ⃗Bωℓ. We match

this solution to the general solution Eq. (5.3.28) in region II, match the resulting solution to

the general solution Eq. (5.3.29) in region III, and adjust ⃗Bωℓ so as to give a coefficient of 1

to the term e−iωr
∗

as r →∞ in Eq. (5.3.15).

For simplicity, we shall assume that Alice’s lab is located in the region M ≪ r ≪ 1/ω for

the relevant range of frequencies ω ∼ 1/T , so that it lies in the overlap of regions II and III.

This is the regime in which the estimates of Chapters 3 and 4 reviewed in Sec. 5.1 apply, so

we will be able to make a direct comparison of our results with the results of the previous

calculation. The mode functions ⃗Rωℓ(r) were previously obtained by Fabbri [Fabbri, 1975],

since they are needed to analyze scattering of classical waves by a black hole. In region

III, we find that βIII
ℓ = O([ωM ]2ℓ+2) and thus the Neumann term in Eq. (5.3.29) may be

neglected. The solution with the correct normalization in region III is

⃗Rωℓ(r) ≈ −2i3ℓ+1ωr∗jℓ(ωr
∗). (5.3.31)

6. Replacement of r∗ by r in Eq. (5.3.29) would give rise to an arbitrarily large phase error in the solutions
as r → ∞, so the difference between r and r∗ cannot be neglected throughout region III. However, the
difference between r and r∗ makes only a small correction, which we neglect, in the overlap of regions II and
III.
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If, in addition, we have ωr ≪ 1, then

⃗Rωℓ(r) ≈ −
i3ℓ+12ℓ+1ℓ!

(2ℓ+ 1)!
(ωr)ℓ+1 (M ≪ r ≪ ω−1). (5.3.32)

Thus, as might be expected, if we assume that Alice’s lab is not close to the black hole

(r ≫ M), the modes in Alice’s lab corresponding to low frequency incoming waves from

infinity are essentially unaffected by the black hole. As in flat spacetime, they are suppressed

by the factor (ωr)ℓ+1 due to the angular momentum barrier. Since ωr ≪ 1, the dominant

contribution to the two-point function in Alice’s lab from modes that are incoming from

infinity arises from the ℓ = 1 mode.

Performing the similar analysis for R⃗ωℓ(r), we obtain

R⃗ωℓ(r) ≈ aℓ

(
M

r

)ℓ
(Mω) (M ≪ r ≪ ω−1), (5.3.33)

where

aℓ =
−i2l+2(ℓ− 1)!(ℓ+ 1)!

(2ℓ+ 1)(2ℓ)!
. (5.3.34)

Note that, although at low frequencies the white hole modes are essentially entirely reflected

back into the black hole by the potential barrier V (r), these modes fall off in r only as

the power law 1/rℓ and, thus, they penetrate far beyond the peak of the potential barrier

at r = 3M and can have a nontrivial effect in Alice’s lab. Note also that, as opposed to

the incoming modes from infinity, the frequency dependence of the white hole modes is ℓ

independent. Since r ≫M , the dominant contribution to the two-point function in Alice’s

lab from the modes emerging from the white hole arises from the ℓ = 1 modes.

We now estimate ⟨N⟩U, Eq. (5.3.19), for the case of the Unruh vacuum, |ΩU⟩. (The

cases of the Boulware and Hartle-Hawking vacua will be treated in the next section.) We

first consider the contribution, ⟨N⟩U←, of the incoming modes from infinity. We keep only the

ℓ = 1 contribution and use Eq. (5.3.32) to evaluate ⃗Rω1. We use Eq. (5.3.21) to evaluate d̂
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and we also use ⃗GU(ω) = Θ(ω). Ignoring all subleading terms and all factors of order unity,

we obtain the following expression for the contribution of the incoming modes from infinity

in the Unruh vacuum

⟨N⟩U← ∼
q2

r4

1/min[T1, T2]∫
1/T

dω

ω

d2

ω2
(ωr)4 ∼ q2d2

min[T1, T2]2
. (5.3.35)

This agrees with the estimate Eq. (5.1.14) for Minkowski spacetime obtained by considering

radiation of entangling photons to infinity. Note that the contribution from the incoming

modes from infinity does not grow with T .

Next, we estimate the contribution, ⟨N⟩U→ of the incoming modes from the white hole to

⟨N⟩U. We keep only the ℓ = 1 contribution and use Eq. (5.3.33). In the Unruh vacuum, we

have

G⃗U(ω) =
1

1− e−2πω/κ
≈ κ

2πω
. (5.3.36)

Ignoring all subleading terms and all factors of order unity and setting r = D, we obtain the

following expression for the contribution of the incoming modes from the white hole in the

Unruh vacuum

⟨N⟩U→ ∼
q2d2κM4

D6

1/min[T1, T2]∫
1/T

dω

ω2
∼ q2d2M3

D6
T. (5.3.37)

For large T , this contribution dominates over Eq. (5.3.35), so we have

⟨N⟩U = ⟨N⟩U← + ⟨N⟩U→ ≈ ⟨N⟩
U
→ ∼

q2d2M3

D6
T. (5.3.38)

This agrees with the estimate Eq. (5.1.16) for the decoherence resulting from the emission of

entangling photons through the black hole horizon. Thus, our purely local analysis reproduces

the results previously obtained in Chapters 3 and 4.

We now briefly comment on the analogous computation in the linearized quantum grav-
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itational case. If we approximate the stress-energy tensor of the first component of Alice’s

particle as being essentially a point particle, then its stress-energy tensor would take the form

T ab1 (t) ≈ m√
−g

δ(3)[xi −Xi
1(t)]u

a
1u
b
1
dτ1
dt

(5.3.39)

in analogy with Eq. (5.3.1). If this component was not interacting with any other matter,

then conservation of stress-energy would imply that it must move on a geodesic. However,

since we want the component to follow a nongeodesic trajectory, Alice must apply some

“external force” to it. The external forces on the different components act oppositely on

the different components during separation and recombination and will have a backreaction

effect on Alice’s lab. In Minkowski spacetime, conservation of total stress-energy implies

that Alice’s lab would have to move oppositely to the particle components so as to keep the

center of mass of the total system fixed. In the case of a black hole spacetime, the situation

is more complicated, since a further external system would be needed to keep Alice’s lab

stationary. Nevertheless, the analog of the dipole contribution Eq. (5.3.5) to the difference

in stress-energy of the components should be canceled by the stress-energy effects of Alice’s

lab, and the leading order contribution should be given by

(T ab1 − T
ab
2 ) ≈ 2m√

−g
dt

dτ
t[asc]t[bsd]∇c∇d

[
d2(t)δ(3)(xi −Xi)

]
. (5.3.40)

The analog of Eq. (5.3.7) is then

hin
ab(T

ab
1 − T

ab
2 ) ≈ −m

∫
dtd2(t)sasbEin

ab(t,X
i). (5.3.41)

where Ein
ab is the quantum field observable corresponding to the electric part of the Weyl

tensor Eab = Cacbdt
ctd. Thus, the computation of ⟨N⟩, Eq. (5.2.3), reduces to obtaining the

two-point function of the Weyl tensor. Again, we can simplify calculations by restricting to
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the case of radial separation. The upshot is that the order of magnitude estimates that we

obtained above for the electromagnetic case apply with the substitutions q → m, d → d2

and the mode sum now running over ℓ ≥ 2, so that the dominant contribution arises from

ℓ = 2. For the Unruh vacuum, this yields the estimate

⟨N⟩U,GR
← ∼ m2d4

min[T1, T2]4
(5.3.42)

in agreement with Eq. (5.1.15), and the estimate

⟨N⟩U,GR
→ ∼ M5m2d4

D10
T (5.3.43)

in agreement with Eq. (5.1.17).

Finally, we note that Eq. (5.3.8) shows that in the electromagnetic case, we have

⟨N⟩ = q2

〈(∫
dtd(t)saEin

a

)2
〉
Ω

∼ q2d2T 2
[
∆(saEin

a )
]2

(5.3.44)

where ∆(saEin
a ) is defined by

[∆(saEin
a )]2 =

〈(
1

T

∫
dt
d(t)

d
saEin

a

)2
〉
Ω

(5.3.45)

and thus can be interpreted as the root mean square of the time average of the sa component

of the electric field fluctuations in state |Ω⟩ on Alice’s worldline during the duration of her

experiment.

The fluctuations of the electric field are most usefully characterized by its power spectrum.

The power spectrum of the radial component of the electric SU
r (ω) is given by

SU
r (ω) =

∞∫
−∞

dt eiω(t−t
′) ⟨Er(t,X

i)Er(t
′, Xi)⟩ΩU

. (5.3.46)
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The modes that dominantly contribute to this power spectrum in Alice’s lab are the white

hole modes R⃗ωℓ with ℓ = 1 and ω ∼ 1/T . By Eqs. (5.3.9) and (5.3.33), in the Unruh vacuum

these modes contribute7

SU
r (ω) ∼

1

r4
1

ω
G⃗U (ω)|R⃗ω1(r)|2

∼ κ

r4ω2

(
M2ω

r

)2

∼ M3

r6
. (5.3.47)

This corresponds to the black hole in the Unruh vacuum acting as though it were an ordinary

body with a randomly fluctuating electric dipole moment, P⃗U with constant power spectrum

∆|P⃗U|(ω) ∼
√
ϵ0ℏG3/2M3/2

c3
∼ 10

e·m√
Hz

(
M

M⊙

)3/2

, (5.3.48)

where we have restored fundamental constants to emphasize that this is an O(
√
ℏ) effect.

Similarly, in the gravitational case, the black hole acts as though it were an ordinary body

with a fluctuating mass quadrupole moment of magnitude

∆|QU|(ω) ∼
√
ℏG2M5/2

c5
∼ 10−1

g·m2
√

Hz

(
M

M⊙

)5/2

. (5.3.49)

More generally, the power spectra of the higher electric multipole fluctuations and mass

multipole fluctuations of the black hole go as

∆|QEM
ℓ |(ω) ∼M ℓ+1/2, ∆|QGR

ℓ |(ω) ∼M ℓ+1/2. (5.3.50)

7. In Rindler spacetime, the analogous horizon modes similarly make a contribution to the power spectrum
of the electric field that is nonvanishing as ω → 0 [Wilson-Gerow et al., 2024]. This fact is undoubtedly
intimately related to the phenomena analyzed in [Higuchi et al., 1992b,a, Matsas et al., 1996, Higuchi et al.,
1997].
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There also are similar fluctuations of the magnetic parity multipole moments. The

dominant contribution to the decoherence in Alice’s experiment, however, comes from the

lowest electric parity multipole moment.

In conclusion, we have successfully reproduced the main results of Chapters 3 and 4 using

our purely local reformulation. In the next section, we will use our local reformulation to

compare the results for the decoherence in the Unruh vacuum around a black hole to other

cases.

5.4 Comparison with Decoherence Arising in Other Cases

The results we have obtained in the previous section will now enable us to analyze the decoher-

ence arising in other situations. Specifically, we will analyze the cases of (i) a Schwarzschild

black hole in the Boulware or Hartle-Hawking vacuum, (ii) Minkowski spacetime in the

Minkowski vacuum or filled with a thermal bath of radiation, (iii) a spacetime corresponding

to the gravitational field of a star with no internal degrees of freedom assigned to the star,

and (iv) a material body with internal degrees of freedom in a thermal state.

5.4.1 Decoherence in the Boulware and Hartle-Hawking Vacua

The Boulware vacuum, |ΩB⟩, is the ground state for the exterior region (r > 2M) of

Schwarzschild with respect to the timelike Killing field. The Boulware vacuum is singu-

lar on the past and future event horizons of Schwarzschild. Since it is singular on the future

horizon, it does not correspond to a physically reasonable state for a black hole formed by

gravitational collapse. Nevertheless, the Boulware vacuum is a well-defined state in Alice’s

lab, and it is instructive to compute the decoherence of her particle in the Boulware vacuum

using the results of the previous section.

The Boulware vacuum differs from the Unruh vacuum only in that G⃗ and ⃗G are now

given by Eq. (5.3.16) rather than Eq. (5.3.17). Since ⃗GB = ⃗GU, it follows immediately that
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⟨N⟩B← is again given by Eq. (5.3.35), i.e.,

⟨N⟩B← = ⟨N⟩U← ∼
q2d2

min[T1, T2]2
. (5.4.1)

On the other hand, in the Boulware vacuum, we have G⃗B = Θ(ω) rather than being given

by Eq. (5.3.36). Consequently, the integrand of the formula for ⟨N⟩B→ will differ from the

integrand appearing on the right side of Eq. (5.3.37) by a factor of ∼ ω/κ. We obtain

⟨N⟩B→ ∼ q2d2M4

D6

1/min[T1, T2]∫
1/T

dω

ω

=
q2d2M4

D6
ln

(
T

min[T1, T2]

)
. (5.4.2)

Additionally, we note that the Boulware vacuum at Mω ≪ 1 has a randomly fluctuating

electric dipole ∆|P⃗B| and mass quadrupole ∆|QB| of magnitude

∆|P⃗B|(ω) ∼M2√ω, ∆|QB|(ω) ∼M3√ω (5.4.3)

which are much smaller than the corresponding fluctuations in the Unruh vacuum given by

Eqs. (5.3.48) and (5.3.49).

Equation (5.4.2) could also be derived by the methods used in Chapters 3 and 4. Indeed,

the only change that needs to be made to the calculations done in those chapters is that when

we compute the one-particle norm corresponding to the retarded solution with source ja1 − j
a
2

on the horizon, we now have to take the positive frequency part with respect to Killing time

rather than affine time. The same calculation as led to Eq. (13) of Chapter 3—which yielded

⟨N⟩ varying as lnV , where V denotes the affine time duration of the separation—now yields

the lnT dependence8 given in Eq. (5.4.2).

8. Affine time V is related to Killing time T by V ∝ exp(κT ), so, for the Unruh vacuum, the logarithmic
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Next, we consider decoherence in the Hartle-Hawking vacuum, |ΩHH⟩. In the exterior

region (r > 2M) of Schwarzschild, the Hartle-Hawking vacuum is a thermal (KMS) state with

respect to all modes at temperature T = κ/2π. Since G⃗HH = G⃗U, it follows immediately

that ⟨N⟩HH→ is again given by Eq. (5.3.37), i.e.,

⟨N⟩HH
→ = ⟨N⟩U→ ∼

q2d2M3

D6
T. (5.4.4)

On the other hand, in the Hartle-Hawking vacuum we have

⃗GHH(ω) =
1

1− e−ω/T
(5.4.5)

with T = κ/2π = 1/8πM rather than ⃗G = Θ(ω) as for the Boulware and Unruh vacua. At

low frequencies, we have ⃗GHH(ω) ≈ T /ω. Consequently, the integrand (of the formula for

⟨N⟩HH← will differ from the integrand appearing on the right side of Eq. (5.3.35) by a factor

of T /ω at low frequencies. We obtain

⟨N⟩HH
← ∼ q2d2T

min[T1, T2]
∼ q2d2

Mmin[T1, T2]
, (5.4.6)

which differs from Eq. (5.3.35) in that a factor of M has replaced a factor of min[T1, T2] in

the denominator. Nevertheless, the thermal population of incoming modes from infinity does

not lead to a decoherence that grows with T . The key point is that although the radiation

incoming from infinity is thermal, it does not have the necessary population of “soft modes”

to provide a decoherence effect similar to the white hole modes [Wilson-Gerow et al., 2024].

For sufficiently large T the contribution of the incoming modes from infinity will be negligible

dependence on V is converted to the linear dependence on T obtained above. However, for an extremal black
hole (κ = 0), the relation between V and T is linear, so one would expect only logarithmic growth of ⟨N⟩
with T in the extremal case. In fact, in the electromagnetic case, the coefficient of this logarithmic term
also vanishes in extremal Kerr [Gralla and Wei, 2024] (the “black hole Meisner effect”) but a lnT dependence
occurs for a scalar field [Gralla and Wei, 2024].
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compared with the contribution from the white hole modes, Eq. (5.4.4), and the decoherence

in the Hartle-Hawking vacuum will be the same as in the Unruh vacuum.

It should be noted that there can be additional decoherence effects resulting from thermal

populations of modes emerging from the white hole and/or infinity that have not been taken

into account in our analysis above. In particular, we have implicitly assumed in our analysis

that the components of Alice’s particle move on fixed trajectories that are not affected by

the incoming radiation. This would be the case if, e.g., the components of Alice’s particle

are rigidly held in traps.9 However, if these components are free to move in response to the

incoming electromagnetic radiation, there will be Thompson scattering of the radiation. Since

the Thompson scattering will be slightly different for the different components, this will result

in decoherence that will grow with time for a steady influx of radiation. The decoherence

arising from Thompson scattering of low frequency thermal radiation was estimated in

Chapter 4, based upon previous analyses of collisional decoherence given in [Diósi, 1995,

Gallis and Fleming, 1990, Hornberger and Sipe, 2003, Joos and Zeh, 1985]. It was shown in

Chapter 4 that in the Rindler case, this collisional decoherence can be neglected compared

with the decoherence due to emission of soft radiation. For the case of a black hole in the

Unruh or Hartle-Hawking states, the same would be true if Alice’s lab is sufficiently near the

black hole. However, the decoherence rate due to emission of soft radiation falls off rapidly

with distance, D, from the black hole, whereas the collisional decoherence rate falls off more

slowly in the Unruh vacuum and does not fall off at all in the Hartle-Hawking vacuum. Thus,

if the particle components are free to respond to the incoming radiation, the collisional

decoherence effects will dominate at sufficiently large distances from the black hole.

Finally, we briefly mention the corresponding results for the gravitational case. In the

9. It would be best to use nonelectromagnetic traps, so that the traps do not produce any shielding or
other electromagnetic effects that could interfere with Alice’s experiment.
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gravitational case, a calculation analogous to that which led to Eq. (5.4.2) now yields

⟨N⟩B,GR
→ ∼ m2d4M6

D10
ln

(
T

min[T1, T2]

)
(5.4.7)

whereas ⟨N⟩B,GR
← is the same as for the Unruh vacuum, Eq. (5.3.42). A calculation analogous

to that which led to Eq. (5.4.6) now yields

⟨N⟩HH,GR
← ∼ m2d4T

min[T1, T2]3
∼ m2d4

Mmin[T1, T2]3
(5.4.8)

whereas ⟨N⟩HH,GR
→ is the same as for the Unruh vacuum, Eq. (5.3.43).

5.4.2 Decoherence in Minkowski Spacetime

In Minkowski spacetime, there are no “white hole modes,” R⃗ωℓ(r), of the quantum field. The

incoming modes from infinity, ⃗Rωℓ(r), are given by

⃗Rωℓ(r) = −2i3l+1ωrjℓ(ωr) , (5.4.9)

corresponding to taking the limit as M → 0 of the Schwarzschild modes. The two point

function of the radial component of the electric field can be obtained from Eq. (5.3.9) by

deleting the white hole modes and using Eq. (5.4.9) for the incoming modes from infinity.

The Minkowski vacuum, |ΩM ⟩, corresponds to ⃗G(ω) = Θ(ω). It follows immediately that the

decoherence of Alice’s particle in the Minkowski vacuum will be given by the same estimate

as we previously obtained for the decoherence effects of the incoming modes from infinity in

Schwarzschild for the Boulware or Unruh vacua [see Eqs. (5.3.35) and (5.4.1)], namely

⟨N⟩M ∼ q2d2

min[T1, T2]2
. (5.4.10)
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This agrees with the estimate originally given in [Belenchia et al., 2018]. In particular, the

decoherence effects do not grow with T .

If we thermally populate the modes ⃗Rωℓ(r) in Minkowski spacetime at temperature

T , then the decoherence will be given by the same estimate as we previously obtained in

Eq. (5.4.6) for the decoherence effects of the incoming modes from infinity in Schwarzschild

for the Hartle-Hawking vacuum, namely

⟨N⟩Mth. ∼
q2d2T

min[T1, T2]
. (5.4.11)

In particular, the decoherence effects do not grow with T , despite the presence of the thermal

bath.

In a similar manner, in the gravitational case, for the Minkowski vacuum, we obtain

⟨N⟩M,GR ∼ m2d4

min[T1, T2]4
(5.4.12)

in agreement with the original estimate of [Belenchia et al., 2018]. If Minkowski spacetime

is populated with a thermal bath of gravitons at temperature T , then we obtain the same

estimate as in Eq. (5.4.8), namely

⟨N⟩M,GR
th. ∼ m2d4T

min[T1, T2]3
. (5.4.13)

Again, the decoherence effects do not grow with T , despite the presence of a thermal bath of

gravitons.

Finally, we point out that for a scalar field it is possible, in principle, to get decoherence

in an inertial laboratory in Minkowski spacetime from “soft radiation” despite the absence

of a horizon. In Minkowski spacetime, a memory effect and associated infrared divergences

occur at null infinity for a massless field as a result of a permanent change in the field at order
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1/r. Since charge is conserved in electromagnetism, such O(1/r) changes can occur in the

electromagnetic case only via Lorentz boosting of the Coulomb fields of the charged particles.

This generically occurs in scattering, since the outgoing charged particles generically have

different momenta from the incoming particles. However, the protocol of Alice’s experiment

requires her to keep the components of her particle confined to her lab, which precludes

changes in particle momenta lasting a long enough time T to produce significant decoherence

via “soft radiation.” This is in accord with what we have found above. Similarly, since mass

is conserved in linearized gravity, there also are no significant “soft radiation” decoherence

effects. However, for a scalar field, scalar charge need not be conserved, and a change in

the scalar field at order 1/r can be achieved by simply changing the monopole moment of

the source. Consequently, a source with a permanent change of scalar charge will radiate an

infinite number of “soft” massless scalar particles in ℓ = 0 modes. We can use this fact to

obtain decoherence via soft radiation to null infinity in Minkowski spacetime in a manner

previously suggested in [Gralla and Wei, 2024] as follows.

Suppose that a massless scalar field ϕ exists in nature and Alice performs her experiment

in an inertial laboratory in Minkowski spacetime with a particle with scalar charge. Suppose,

further, that her protocol includes changing the charge of one of the components during

separation and then restoring the charge during the recombination.10 The scalar analog of

Eqs. (5.2.2) and (5.2.3) is

⟨N⟩ = ⟨Ω|
[
ϕin(j1 − j2)

]2
|Ω⟩ . (5.4.14)

The mode expansion of the two-point function of a scalar field in Schwarzschild is given

in [Candelas, 1980]. It takes a form very similar to Eq. (5.3.9) except that (i) the factor

of 1/r2r′2 is replaced by 1/rr′ for the definition of scalar mode functions analogous to our

definition of electromagnetic mode functions used in Eq. (5.3.9) and (ii) the mode sum

10. If the experiment is performed in the presence of a black hole or other gravitating body, such a change
in scalar charge as determined at infinity automatically occurs from redshift effects if the components are
separated in the radial direction [Gralla and Wei, 2024].
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begins at ℓ = 0 rather than ℓ = 1. Only the incoming modes from infinity are relevant for

Minkowski spacetime, and they again take the form Eq. (5.4.9). The ℓ = 0 modes contribute

to Eq. (5.4.14) an extra factor of 1/ω2 relative to the ℓ = 1 modes. For the case where the

scalar field initially is in the Minkowski vacuum state |ΩM⟩, a calculation in direct parallel

to Eq. (5.3.35) yields

⟨N⟩M,S ∼ (∆qS)
2 ln

(
T

min[T1, T2]

)
(5.4.15)

where ∆qS denotes the scalar charge difference of the two components during their separation.

This behavior is analogous to the decoherence occurring in the presence of a black hole for

the Boulware vacuum [see Eqs. (5.4.2) and (5.4.8)]. If Minkowski spacetime is initially filled

with a thermal bath of scalar particles at temperature T , we obtain

⟨N⟩M,Sth. ∼ (∆qS)
2T T (5.4.16)

which is analogous to the decoherence in the presence of a black hole in the Unruh or Hartle-

Hawking vacua.11 In both cases, the decoherence grows with T due to the emission of soft

radiation to infinity, and we thus see that such decoherence is possible, in principle, without

the presence of a horizon.

5.4.3 Decoherence in the Spacetime of a Static Star

We now consider the decoherence effects arising in Alice’s lab when we place it outside of a

star rather than a black hole. In this subsection, we do not consider the decoherence effects

that may arise from interactions with degrees of freedom of the matter composing the star,

11. For a scalar field the similarity of the decoherence rate in a global thermal state in Minkowski spacetime,
as compared to the decoherence due to a Killing horizon is related to the fact that the restriction of the two-
point function of the Minkowski vacuum to a uniformly accelerating world line is identical to the restriction
of the two-point function of the global Minkowski thermal state at the Unruh temperature to an inertial
world line. However, for the electromagnetic and gravitational fields, no such equivalence holds [Boyer, 1980],
and as we have seen, these fields do not exhibit the analogous decoherence in a global thermal state.
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i.e., we are concerned only with the effects of replacing the black hole spacetime with a

spacetime without a horizon. Decoherence effects due to interactions with matter will be

considered in the next subsection.

The metric outside of a static, spherical star is identical to the metric of a Schwarzschild

black hole. If the electromagnetic field in the spacetime of a static star is initially in its

ground state, then one might expect that if Alice performs her experiment outside of the

star, she would get essentially the same results as she would have obtained by performing

her experiment at the same radius in Schwarzschild spacetime with the electromagnetic

field initially in the Boulware vacuum state.12 Similarly, if the electromagnetic field in the

spacetime of the star is initially in a thermal state at temperature T = 1/8πM , one might

expect that Alice would get essentially the same results as for a Schwarzschild black hole

with the electromagnetic field initially in the Hartle-Hawking vacuum state. The purpose of

this subsection is to explain why these expectations are not correct.

The key point is that the behavior of a quantum field in the spacetime of a star differs

significantly from that of a quantum field around a black hole in that the white hole modes,

R⃗ωℓ(r), are absent. The complete absence of the white hole modes in the case of a star

is very different from the modes being present but in their ground state, as occurs for

the Boulware vacuum in Schwarzschild. The white hole modes in Schwarzschild represent

additional degrees of freedom of the quantum field that are not present in the case of the star.

It is these additional degrees of freedom—associated with the presence of a horizon—that

are responsible for the decoherence effects that grow with T in Alice’s experiment.

To see this explicitly, we note that in the spacetime of the star, the two-point function of

the radial component of the electric field is modified from Eq. (5.3.9) in that (i) the white hole

modes, R⃗ωℓ(r), are absent and (ii) the incoming modes from infinity, ⃗Rωℓ(r), are modified

by the presence of the star. However, at very low frequencies, ωR ≪ 1, where R denotes the

12. In contrast to a static star, a body that collapses to a black hole produces the Unruh vacuum in its
exterior, so that ⟨N⟩ grows linearly in time, as we have shown.
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radius of the star, the corrections to ⃗Rωℓ(r) are negligibly small. The ground state of the

star satisfies ⃗G(ω) = Θ(ω). It follows immediately that the decoherence in the spacetime of a

star with the electromagnetic field initially in its ground state is the same as the decoherence

in Schwarzschild due to the incoming modes from infinity in the Boulware or Unruh vacua

[see Eq. (5.4.1)], which, in turn, is the same as the decoherence in Minkowski spacetime in

the Minkowski vacuum [see Eq. (5.4.10)]. Thus, we obtain

⟨N⟩star ∼ q2d2

min[T1, T2]2
. (5.4.17)

Similarly, if the electromagnetic field around the star is in a thermal state at temperature

T , we obtain the same result as in Eq. (5.4.8), namely

⟨N⟩starth. ∼
q2d2T

min[T1, T2]
. (5.4.18)

In the gravitational case, we obtain results in agreement with Eqs. (5.4.12) and (5.4.13),

respectively.

In summary, the presence of a horizon is essential for the black hole decoherence effects.

Similar effects do not occur in the spacetime of a static star.

5.4.4 Decoherence due to the Presence of a Body with Internal Degrees of

Freedom

As we have just seen, in the electromagnetic and gravitational cases, decoherence due to

emission of “soft radiation” does not occur in a static asymptotically flat spacetime without

a horizon.13 This can be understood as resulting from the absence of any “white hole mode”

degrees of freedom associated with the horizon. However, if an actual material body is

13. However, as discussed at the end of Sec. 5.4.2, in the scalar case one can get decoherence due to emission
of soft radiation to null infinity.
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present, there will be additional degrees of freedom associated with the material body. These

degrees of freedom can couple to the components of Alice’s particle via ordinary Coulombic

(or, in the gravitational case, Newtonian) interactions. If there is suitable dissipation in the

material body system, this can result in the decoherence of Alice’s particle. Indeed, ordinary

environmental decoherence is exactly of this nature. In this subsection, we will consider

whether the decoherence of Alice’s particle resulting from Coulombic/Newtonian interactions

with a material body can mimic the decoherence obtained for the case of a black hole.

As we have seen in Sec. 5.3 above, in the electromagnetic case the dominant contribution

to decoherence of Alice’s particle near a Schwarzschild black hole in the Unruh vacuum comes

from the ℓ = 1 white hole modes at very low frequencies. Very near the horizon of the black

hole, these modes correspond to radiation and they represent genuine additional degrees of

freedom of the electromagnetic field. Nevertheless, we saw at the end of Sec. 5.3 that in Alice’s

lab, these modes look just like the exterior dipole field of an ordinary body, with a fluctuating

electric dipole moment given by Eq. (5.3.48). Thus, if we have a material body with the

property that its ordinary thermal fluctuations cause its electric dipole moment at very low

frequencies ω to fluctuate in accord with Eq. (5.3.48), then that material body should mimic

the decoherence effects of a black hole. Similarly, in the gravitational case, a material body

will mimic the decoherence effects of a black hole if ordinary thermal fluctuations cause its

mass quadrupole moment at very low frequencies ω to fluctuate in accord with Eq. (5.3.49).

The issue of whether an ordinary material body can mimic a black hole of the same

temperature in this manner has very recently been investigated by Biggs and Maldacena

[Biggs and Maldacena, 2024]. They have shown that in the electromagnetic case, there

are no difficulties in constructing a physically reasonable matter model that mimics the

“soft radiation” decoherence effects of a black hole. However, in the gravitational case, the

mimicking of black hole decoherence effects by an ordinary body of the same physical size

and temperature as the black hole appears to require extraordinary properties of the matter.
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The underlying difficulty is the weakness of the coupling of matter to gravity. In order to

produce a fluctuating quadrupole moment of the required size Eq. (5.3.49), it seems possible

that the body would need to have a mass comparable to that of a black hole as well as

extremely large dissipation. This issue appears worthy of further investigation.
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