
JOURNAL OF GEOMETRIC MECHANICS doi:10.3934/jgm.2015.7.1
c©American Institute of Mathematical Sciences
Volume 7, Number 1, March 2015 pp. 1–33

TULCZYJEW TRIPLES IN HIGHER DERIVATIVE

FIELD THEORY

Katarzyna Grabowska

Department of Physics, University of Warsaw
Pasteura 5, 02-093 Warszawa, Poland

Luca Vitagliano

Department of Mathematics, University of Salerno, and

Istituto Nazionale di Fisica Nucleare, GC Salerno
Via Giovanni Paolo II, 123, 84084 Fisciano (SA), Italy

(Communicated by Manuel de León)

Abstract. The geometrical structure known as Tulczyjew triple has been used

with success in analytical mechanics and first order field theory to describe a
wide range of physical systems, including Lagrangian/Hamiltonian systems

with constraints and/or sources, or with singular Lagrangian. Starting from

the first principles of the variational calculus, we derive Tulczyjew triples for
classical field theories of arbitrary high order, i.e. depending on arbitrarily high

derivatives of the fields. A first triple appears as the result of considering higher

order theories as first order ones with configurations being constrained to be
holonomic jets. A second triple is obtained after a reduction procedure aimed

at getting rid of nonphysical degrees of freedom. This picture we present is

fully covariant and complete: it contains both Lagrangian and Hamiltonian
formalisms, in particular the Euler-Lagrange equations. Notice that the re-

quired Geometry of jet bundles is affine (as opposed to the linear Geometry

of the tangent bundle). Accordingly, the notions of affine duality and affine
phase space play a distinguished role in our picture. In particular the Tulczy-

jew triples in this paper consist of morphisms of double affine-vector bundles

which, moreover, preserve suitable presymplectic structures.

1. Introduction.

1.1. Variational calculus in Statics. From a mathematical point of view, cal-
culus of variations is a theory providing tools for finding extremals, or stationary
points, of functionals, i.e. maps from a set of functions to real numbers. Using
calculus of variations, one may find, for example, differential equations for curves
of the shortest length connecting two points, or surfaces of minimal area spanning
a given frame. In physics the same mathematical tools can be used to formulate
principles of least action leading to Euler-Lagrange equations both in mechanics
and field theory. In our paper we shall adopt a different point of view based on
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ideas of W. M. Tulczyjew, as presented in his numerous works and lectures (see, for
instance the book [19] and papers [20, 21, 23, 24]).

In the Tulczyjew approach a physical system is studied through its response to
interactions. This can be explained in a natural way in Statics since all mathemat-
ical objects that are used there have direct physical interpretations. Take a static
system S, and suppose that the set of configurations of S is a smooth manifold Q.
The system S can be probed by changing its configuration in a quasi-static way,
i.e. slowly enough to produce negligible dynamical effects. The changing of config-
urations is called a process and is represented mathematically by a one-dimensional
smooth oriented submanifold of Q with boundary. It may happen that not all the
processes are admissible. In such a case we say that the system is constrained. We
assume that we can estimate the cost of every process. All the information about
the system is therefore encoded in the following three objects: the configuration
manifold Q, the set of all admissible processes, and the cost function that assigns
a real number to every process. The cost function should fulfill some additional
conditions, e.g. it should be additive in the sense that if we break a process into
two subprocesses, then the cost of the whole process should be equal to the sum of
the costs of the two subprocesses. Usually one also assumes that the cost function
is local, i.e. for each process, it is an integral of a certain positively homogeneous
function W on TQ or, in case of a constrained system, on some subset ∆ ⊂ TQ.
Vectors tangent to admissible processes are called admissible virtual displacements.
The set ∆ should be positively homogeneous since admissible processes are a priori
unparameterized.

In Statics, one is usually interested in equilibrium configurations of isolated sys-
tems, as well as systems interacting (with other static systems). A point q ∈ Q is
an equilibrium point if, for all “short enough” processes starting in q, the cost func-
tion is non-negative. The first-order necessary condition for an equilibrium point
q is W (δq) ≥ 0 for all vectors δq ∈ ∆ ∩ TqQ. Interactions between systems are
described by composite systems. One can compose two systems that have the same
configuration space Q. The composite system is then described by the intersection
of admissible processes and the sum W = W1 + W2 of the cost functions W1 and
W2 of the two systems. We would like to know how does a system S1 interact with
any possible other system (S2) which means that we would like to know all equilib-
rium points of all possible composite systems (containing S1). However, making a
list of all composite systems and their equilibrium points is not an efficient way of
describing S1. A more efficient way is discussed below.

There is a distinguished class of systems called regular, for which all the processes
are admissible and the function W is the differential of a given function U : Q →
R, called the potential. Thus, restrict to the composition of S1 with a regular
system. The condition for an equilibrium point of the composite system reads now
W1(δq)−〈dU, δq〉 ≥ 0, i.e. W1(δq) ≥ 〈dU, δq〉 (the presence of a minus sign is just a
matter of conventions). Let us note that a regular system at a point q is represented
by a covector ϕ = dU(q) called a force. We may now make a list Cq of all forces
in equilibrium with our system at a point q. The subset C =

⋃
q∈Q Cq of T∗Q

is called a constitutive set. Now, given two systems with the same configuration
manifold and constitutive sets C1 and C2 we can answer the question whether or
not q is an equilibrium point for the composite system. This happens precisely when
C1
q∩C2

q 6= ∅. The correspondence between cost functions W and the constitutive sets
C is known as the Fenchel transformation and considered within convex analysis. If
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W is convex then C contains a full information about W , i.e. W can be recovered
from C. In any case, all the information we need about our system is encoded by
the constitutive set. For a regular system with potential U the constitutive set is
C = dU(Q). It is then a Lagrangian submanifold (generated by U) in T∗Q. Notice
that a regular system is in equilibrium without external forces iff its configuration
is an extremal for the potential U .

The above ideas apply efficiently to other theories as mechanics or field theory as
well. To see this we shall specify a configuration space Q, a set of processes (or at
least infinitesimal processes), the set of functions on Q (to define regular systems),
the set of covectors T∗Q (to define constitutive sets). It is not always obvious how
to do this since in many interesting situations Q is not a manifold any more. The
main aim of the present paper is showing how things work in the case of higher
derivative field theory.

1.2. Variational calculus in mechanics. In this section we shall concentrate on
the main ideas leading to the classical Tulczyjew triple in mechanics. We briefly
present two “regimes” of the theory: mechanics on a finite time interval and me-
chanics on an infinitesimal one. Analyzing the first regime allows to identify appro-
priate mathematical descriptions of physical quantities, while analyzing the second
one provides phase equations and the Tulczyjew triple itself. We refer to [19] for
details.

Let M be the manifold of positions of a mechanical system. Thus, for motions
concentrated in a finite time interval [t0, t1] a configuration q is a smooth path
q : [t0, t1]→ M. The set of all configurations will be denoted by Q. Since Q is not
a finite-dimensional manifold, it is not obvious a priori what are processes in Q,
smooth functions on Q, and tangent vectors to Q. We adopt the following (natural)
definitions. They are well enough for our purposes. Smooth functions on Q are
action functionals associated to Lagrangians L : TM → R by the usual formula

S(q) =
∫ t1
t0
L(q̇)dt. Smooth, parameterized processes, or curves in Q, are smooth

maps χ : R2 ⊃ I × [t0, t1] → M where I is some neighborhood of zero in R. This
means that at a value s ∈ I of the parameter, the process reaches a configuration
given by the path t 7→ χ(s, t). Notice that, with these definitions, the composition
of a process with a function is a smooth function R 3 s 7→ S(χ(s, ·)) ∈ R. Having
smooth curves and smooth functions on Q one can define tangent and cotangent
vectors as suitable equivalence classes.

A tangent vector to Q is an equivalence class of processes with respect to the
obvious equivalence relation. Namely, two processes χ1 and χ2 are equivalent if they
have the same value at s = 0 and, for all smooth functions S, (S ◦ χ1)′(0) = (S ◦
χ2)′(0), where a prime “(·)′” denotes derivative with respect to s. The equivalence
class of a process χ will be temporarily denoted by [χ]. We say that [χ] is tangent
at q ∈ Q iff χ(0, t) = q(t). A tangent covector to Q is an equivalence class of pairs
(q, S) (with q ∈ Q and S a smooth function) with respect to the obvious equivalence
relation. Namely, two pairs (q1, S1) and (q2, S2) are equivalent if q1 = q2 and, for all
smooth curves χ such that χ(0, ·) = q1 = q2, we have (S◦χ1)′(0) = (S◦χ2)′(0). The
equivalence class of a pair (q, S) will be denoted by dS(q). We can pair a covector
and a vector provided they are attached at the same configuration. The pairing is

〈dS(q), [χ]〉 = S ◦ χ(0) =

∫ t1

t0

d

ds |s=0
L(χ̇(s))dt. (1)
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Vectors and covectors defined as equivalence classes are very abstract objects. It is
very useful to describe them in alternative, and easy to use, ways, what Tulczyjew
calls “convenient representations”. The choice of convenient representations for
vectors and covectors is based on integration by parts. Namely, integrating by
parts in (1) we get

〈dS(q), [γ]〉 =

∫ t1

t0

〈EL(γ̈(0)), δq〉dt+ 〈 PL(γ̇(0)), δq 〉
∣∣∣t1
t0
, (2)

where EL : T2M → T∗M is the Euler-Lagrange map and PL : TM → T∗M is the
vertical differential of the Lagrangian L. It is easy to see that the tangent vector
[χ] is equivalent to (i.e. it contains the same information as) the curve δq : [t0, t1]→
TM , where δq(t) is the tangent vector to the curve s 7→ χ(s, t) at s = 0. Similarly,
the covector dS(q) is equivalent to the triple (f, p0, p1), where f : [t0, t1] → T∗M ,
f(t) = EL(q̈(t)) and pa ∈ T∗q(ta)M , pa = PL(q̇(ta)), a = 0, 1. Paths in TM and

triples (f, p0, p1) as above are Tulczyjew convenient representatives of vectors and
covectors, respectively. Correspondences [χ] 7→ δq and dS(q) 7→ (f, p0, p1) between
vectors and covectors and their convenient representations are usually denoted by
κ and α, respectively.

A mechanical system with Lagrangian L is, from a static point of view, a regular
system with cost function given by dS. Accordingly, the constitutive set is C =
dS(Q). Using convenient representations one sees that C is actually the dynamics
of the system. More precisely, the phase dynamics of a mechanical system moving
in a finite interval is the subset D of {triples (f, p0, p1)} defined by

D = α−1(C) = α−1(dS(Q)),

i.e.,

D = {(f, p0, p1) : f(t) = EL(q̈(t)), pa = PL(q̇(ta)) , a = 0, 1} .
Explicitly, in coordinates, q = (xi(t)), q̇ = (xi(t), ẋj(t)), and we have

fi(t) =
∂L

∂xi
(q̇(t))− d

dt

(
∂L

∂ẋi
(q̇(t))

)
, (pa)i =

∂L

∂ẋi
(q̇(ta)) , a = 0, 1 .

The target space T∗M of f in naturally interpreted as the phase space, i.e. the space
of momenta.

We now pass to a different “theoretical regime”: the one when the time interval
[t0, t1] is infinitesimally small. The appropriate notions are thus obtained in the limit
t1 − t0 = O(dt). For instance, configurations are infinitesimal paths, i.e. tangent
vectors to positions. We conclude that, in the “infinitesimal regime”, Q = TM . In
particular, the configuration space is a finite-dimensional manifold, and it is then
clear what processes, i.e. curves in Q, functions on Q, tangent and cotangent vectors
are. A Lagrangian L is now interpreted as a potential for the cost function dL of
a regular system, and the constitutive set is just C = dL(TM) ⊂ T∗TM . In this
case, it is interesting what one gets as convenient representations of vectors and
covectors. The infinitesimal version of κ is the well-known canonical involution

κM : TTM −→ TTM. (3)

The infinitesimal version of Formula (2) reads

〈dL, δχ̇(0, 0)〉 = 〈EL(χ̈(0, 0)), δχ(0, 0)〉+
d

dt |t=0
〈PL(χ̇(t, 0)), δχ(t, 0)〉 .
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Similarly, the infinitesimal version of α is the Tulczyjew isomorphism

αM : TT∗M −→ T∗TM .

Finally, the constitutive set is dL(TM) or, when “conveniently represented” via
αM :

D = α−1
M (dL(TM)) ⊂ TT∗M.

Since D is a subset of the tangent space, it can be regarded as an (implicit) first-
order differential equation for curves in the phase space. Actually, it is precisely the
dynamics of the system.

Now we are ready to present the Lagrangian part of the Tulczyjew triple that
contains all the structure needed in the Lagrangian formulation of mechanics in
the infinitesimal regime. The map αM is an isomorphism of double vector bundles
[16]. Both TT∗M and T∗TM are symplectic manifolds. The map αM is also a
symplectomorphism. It follows that D is a Lagrangian submanifold.

D �
� // TT∗M

αM //

��

��

T∗TM

��

��

T∗M

��

T∗M

��

TM

��

TM

��

PL
ff

dL

aa

M M

.

In the infinitesimal regime one sees that, in some cases, the dynamics D is the
image of a vector field on T∗M . Since D is a Lagragian submanifold this vector field
should be at least locally Hamiltonian. The correspondence between functions on
T∗M and Hamiltonian vector fields can be described using the following diagram:

T∗T∗M

��

��

TT∗M
βMoo

��

��

D? _oo

T∗M

��

T∗M

��

TM

��

TM

��
M M

.

The map βM is the isomorphism (of double vector bundles) determined by the
canonical symplectic form ωM on T∗M , i.e. for X ∈ TT∗M , we have βM (X) =
ωM (·, X). The map βM is an antisymplectomorphism with respect to the symplectic
forms ωT∗M on T∗T∗M and dTωM on TT∗M (here, dTωM is the total lift of ωM ).
If H is a function on T∗M , then the Hamiltonian vector field XH associated to H
is given by dH = ωM (·, XH), and we have of course, dH(T∗Q) = βM (XH(T∗Q)).
Diagram (1.2) is the Hamiltonian side of the Tulczyjew triple and contains all the
structure needed in the Hamiltonian formulation of mechanics in the infinitesimal
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regime. Notice that it does not have any counterpart in the finite time interval
regime.

A Lagrangian L or an Hamiltonian H are examples of generating objects, i.e. they
can be used to generate a Lagrangian submanifold D ⊂ TT∗M , i.e. a dynamics.
However Lagrangian submanifolds can be also generated starting from more general
generating objects using symplectic relations techniques (see [1] for a general dis-
cussion on Lagrangian submanifolds, generating objects and symplectic relations).
The passage from Lagrangian to Hamiltonian generating objects of the dynamics
is called the Legendre transformation (not to be confused with the Legendre map
PL). It is well known that the dynamics obtained from an hyperregular Lagrangian
L is the image of an Hamiltonian vector field XH . In such a case D has two, par-
ticularly simple, “generating objects”, namely the functions L : TM → R and
H : T∗M → R, where H(p) = 〈p, (PL)−1(p)〉 − L((PL)−1(p)). In particular we
have D = α−1

M (dL(TM)) = β−1
M (dH(T∗M)). Notice, however, that even if L is not

hyperregular, D = α−1
M (dL(TM)) can still be generated by a suitable Hamiltonian

generating object (via a suitable procedure) but not an object as simple as a function
on T∗M , rather a family of functions. Specifically, the “Lagrangian bundle” T∗TM
and the “Hamiltonian bundle” T∗T∗M are canonically isomorphic as double vector
bundles. The graph of the isomorphism RTM : T∗TM → T∗T∗M is the Lagrangian
submanifold generated in T∗(TM × T∗M) ' T∗TM × T∗T∗M by the canonical
evaluation of vectors and covectors on M . The isomorphism RTM is an antisym-
plectomorphism and βM = RTM ◦αM . Following the rules of composing symplectic
relations we get that the Lagrangian submanifold RTM (dL(TM)) is generated by
a family of functions (also called a generating family) on T∗M parameterized by
elements of TM ,

T∗M ×M TM −→ R, (p, v) 7−→ H̃(v, p) := L(v)− 〈p, v〉.

The full Tulczyjew triple in mechanics is the diagram

D
� _

��
T∗T∗M

��

��

TT∗M
βMoo αM //

��

��

T∗TM

��

��

T∗M

dH 77

��

T∗M

��

T∗M

��

TM

��

TM

��

TM

��

dL

aa

M M M

. (4)

Using the structure encoded in the Tulczyjew triple, one can describe more com-
plicated mechanical systems than those usually treated in the traditional Lagrangian
and Hamiltonian mechanics. In geometrical optics, for example, one finds systems
for which one needs more general generating object on the Lagrangian side while
in relativistic mechanics, one needs generating families on the Hamiltonian side,
(see for instance [26]). Finally, Diagram (4) shows also that, from the mathemati-
cal point of view, Hamiltonian and Lagrangian mechanics are equivalent only if we
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agree to use the most general generating objects. However, one should keep in mind
that Lagrangian mechanics has variational origin and comes from the finite time
interval regime after passing to the suitable limit. On the other hand, Hamiltonian
mechanics comes from the theory of generating objects of Lagrangian submanifolds
and symplectic relations and does not have a finite time interval counterpart.

In classical field theory, one is often interested in Euler-Lagrange PDEs, i.e. those
PDEs coming from a variational principle. Let us recall the geometric definition
of a variational principle. Let D ⊂ M be a bounded domain in the m-dimensional
space-time M . Informally, a variational principle on fields described as sections of
a bundle E is given by an action functional

{sections σ of E} 7→
∫
D

L(x, σ(x),∇σ(x), . . . ,∇k+1σ(x)), (5)

where L is a Lagrangian density, i.e. a differential m-form, to be integrated on
D, depending on a space-time point x, and derivatives, σ(x),∇σ(x), . . . ,∇k+1σ(x),
of a section σ of E at the point x, up to some finite order k + 1. From a precise,
geometric point of view, a (k+1)-st order Lagrangian density should be understood
as an m-form L on M with values in functions on the space Jk+1 of (k + 1)-st jets
of sections of E, i.e. a section of the line bundle Jk+1 ×M Ωm → Jk+1 [2, 18]. An
easy integration by parts shows that extremals of the action functional (5) (with
respect to variation fixing the values of σ at the boundary ∂D) are solutions of
the Euler-Lagrange equations. The Euler-Lagrange equations are (2k+ 2)-nd order
PDEs. From a geometric point of view, they consist in a submanifold E ⊂ J2k+2

canonically associated to a given Lagrangian density L [18]. A (k + 1)-st order
Lagrangian density defines a (k + 1)-st order (classical) Lagrangian field theory.
The relationship between variational principles and the associated Euler-Lagrange
equations, or, more generally, the calculus of variations, is rather well understood in
intrinsic, geometric (and homological) terms. The main works on the topic are due
to Tulczyjew [25] and Vinogradov [28, 29]. Notice, however, that the Euler-Lagrange
equations do not exhaust all the relevant geometric content of a field theory even
when the theory is defined by a variational principle. Fixing variations equal zero
at the boundary means neglecting boundary terms which should be included in
the theory. We have seen above that boundary terms in mechanics are momenta.
In Electrodynamics boundary terms are related to magnetic strength and electric
induction. Moreover Euler-Lagrange equations with right-hand-side equal to zero
are equations for fields without sources (or external forces in mechanics). Using
the Tulczyjew approach one can include both boundary terms and sources in field
theory.

The main aim of this paper is twofold: (1) showing that Tulczyjew paradigms
apply as well to higher order field theories, i.e. systems whose configurations are sec-
tions of a generic bundle on a “space-time manifold”, and whose cost functions are
(in the regular case) action functionals whose Lagrangian density depends on space-
time derivatives of the configurations up to arbitrarily high order; (2) showing that
all the mathematical structure needed in a suitable infinitesimal regime (dynamics
on an infinitesimal space-time region) is encoded by a certain (field theoretic, higher
order) version of the Tulczyjew triple (4).

In [7, 8] the first author made the first steps in this direction, discussing first
derivative field theory, and this paper heavily relies on that one. However, higher
order field theories exhibit novel features as we explain below.
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2. Mathematical background. A convenient differential geometric setting for
intrinsic aspects of partial differential equations (PDEs) in provided by the theory
of jet spaces. Classical field theory and, in particular, the calculus of variations
have a nice geometric formulation within jet spaces. In this section we recall basic
facts about them, and the main geometric constructions underlying field theory
from both the Lagrangian and the Hamiltonian sides. At the same time, we set our
(mathematical) notations.

We will consider PDEs imposed on sections of fiber bundles. The geometric
portrait of a PDE is a submanifold in a jet space. Namely, let ζ : E → M be a
fiber bundle, dimM = m, dimE = m + n. We will often interpret M as a space-
time manifold. More generally it will be the manifold of independent variables.
We denote by Ωi → M the bundle of differential i-forms on M . For the sake of
simplicity, we assume M to be oriented. This allow us to avoid the use of densities
and to use differential forms, instead, as objects to be integrated over M . However,
except for the orientation, M will not carry any other extrinsic geometric structure,
unless otherwise specified. We will often interpret E as the target space of the fields,
i.e. a field is a section of E (over M). Accordingly, fibers of E are the manifolds of
dependent variables. The k-th order jet space encodes multiple, partial derivatives
of dependent variables with respect to independent ones up to order k and can be
defined as follows. Let (xi, uα) be bundle coordinates in M , i.e. (xi) are local
coordinates in M and (uα) are local fiber coordinates in E. A (local) section σ of
E can be locally written as

σ : uα = fα(xi) (6)

for some smooth functions (fα) of the (xi). We will consider multiple partial deriva-
tives of the (fα) with respect to the (xi). Our notations for partial derivatives are
the following. Let I = (i1, . . . , in) be an n-entry multiindex. We set

∂|I|fα

∂xI
:=

∂i1+···+infα

∂xi11 · · · ∂x
in
n

, |I| := i1 + · · ·+ in.

Two local sections σ1, σ2, with local description σa : uα = fαa (xi), a = 1, 2, are
tangent up to order k at a point x ∈M with local coordinates (xi) if

∂|I|fα1
∂xI

(xi) :=
∂|I|fα2
∂xI

(xi), |I| ≤ k.

Tangency up to order k is a well defined equivalence relation. In particular, it
is independent of the choice of coordinates. The equivalence class of section σ is
denoted by jkσ(x) and it is called the k-th jet of σ at x. It contains a full, intrinsic
information about derivatives of σ at x up to order k. For instance, the first jet
of σ at x contains the same information as the tangent space to the image of σ at
σ(x). The k-th jet space of sections of E is the set JkE:

JkE := {jkσ(x) : σ a local section of E and x ∈M}

Clearly, J0E identifies with E, and J1E identifies with the set of n-dimensional
tangent subspaces to E, transversal to fibers of π. Moreover, there are obvious
projections ζk : JkE → M , jkσ(x) 7→ x, and, ζk,l : JkE → JlE, jkσ(x) 7→ jlσ(x),
l ≤ k. In particular, ζk,l consists in “dropping higher derivatives”. Clearly, ζk =
ζl ◦ ζk,l, and ζk,l = ζp,l ◦ ζk,p, l ≤ p ≤ k. The k-th jet space can be coordinatized as
follows. Let U be a coordinate domain in E and (xi, uα) bundle coordinates in it.
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There are jet coordinates (xi, uαI ), |I|≤ k on ζ−1
k,0(U). Namely, pick jkσ(x) ∈ ζ−1

k,0(U),

and let σ be locally given by (6). Then put

xi(jkσ(x)) := xi(x), and uαI (jkσ(x)) :=
∂|I|fα1
∂xI

(xi(x)).

When equipped with jet coordinates, JkE is a smooth manifold. Moreover, projec-
tions ζk and ζk,l are fiber bundles. For instance, a section of ζ1,0 : J1E → E can be
understood as an Ehresmann connection in E, i.e. an n-dimensional distribution on
E, transversal to fibers of ζ.

In the following, we will deal with various bundles and bundle maps. However,
every manifold fibered over M will be understood as a bundle over M unless oth-
erwise specified. For instance, we will understand the projection ζk and interpret
JkE as a bundle over M without further comments. We will also consider jets of
sections of various bundles. However, jets of section of E will play a special role,
and we denote simply by Jk the bundle JkE, if there is no risk of confusion.

A section σ of E can be prolonged to a section jkσ : M → Jk, x 7→ jkσ(x), called
the k-th jet prolongation of σ. If σ is locally given by (6), then jkσ is locally given
by:

jkσ : uαI =
∂|I|fα

∂xI
(xi), |I| ≤ k,

and contains a full, intrinsic information about derivatives of σ up to order k.
Sections of Jk of the form jkσ are sometimes called holonomic sections.

The main geometric structure on Jk, k > 1, consists in the following canonical
embedding ι : Jk+1 ↪→ J1Jk, jk+1σ(x) 7→ j1(jkσ)(x). Denote by (xi, uαI , u

α
I,i), |I| ≤ k,

jet coordinates in J1Jk. Then ι is locally given by

ι(xi, uαI , u
α
I+j) = (xi, uαI , u

α
I,j = uαI+j), |I| ≤ k,

where, for I = (i1, . . . , in) we denote by I + j the multiindex (i1, . . . , ij−1, ij +
1, ij+1, . . . , in). The embedding ι is able to detect holonomic sections of Jk in the
following sense: a section Σ of Jk is holonomic iff j1Σ takes values in the image of ι.
In the following, we will understand the map ι and interpret Jk+1 as a (distinguished)
submanifold of J1Jk. Elements of J1Jk in Jk+1 are sometimes called holonomic jets.

There is another geometric structure on Jk which will be relevant for our pur-
poses. Namely, the bundle ζk,k−1 : Jk −→ Jk−1 is an affine bundle in a canonical
way. The underlying vector bundle is the bundle ∨kT∗M ⊗Jk−1 VE whose fiber at
a point jk−1σ(x) ∈ Jk−1 is

∨k T∗xM ⊗R Vσ(x)E. (7)

In (7) ∨kT∗xM is the k-th symmetric power of T∗xM , consisting of covariant, sym-
metric k-tensors on M at x, and VeE denotes the vertical tangent space to E at e.
In particular π1,0 : J1E → E is an affine bundle modelled over T∗M ⊗E VE.

Jet spaces allow one to give an intrinsic definition of PDEs, i.e. a definition
manifestly independent of the choice of coordinates. Namely, a system of k-th order
PDEs imposed on sections of the bundle E is a (closed) submanifold E of Jk. A
solution of a system of PDEs E ⊂ Jk is a (local) section σ of E such that jkσ takes
values in E . Locally, E is given by

E : Fa(xi, uαI ) = 0, |I| ≤ k,
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for some local functions (Fa) on Jk, and a section σ of E, locally given by (6), is a
solution iff

Fa

(
xi,

∂|I|fα

∂xI
(xi)

)
= 0.

Thus, the analytic definition of systems of PDEs is recovered when using local
coordinates.

There have been a lot of work about a possible geometric formulation of the
Hamiltonian side of classical field theories (see [30, 31, 32] for a recent proposal
by the second author, see also references therein). Whatever the approach, affine
duality plays a prominent role. Let us recall here basic facts about it. Let N be
a smooth manifold, A → N an affine bundle on it, and Λ → N a line bundle. In
applications, N will often be the total space of a bundle N = E → M , A will be
the first jet bundle of E and Λ will be the bundle of m-forms on M with values
in functions on E, i.e. the bundle E ×M Ωm. For now, let us stick on the general
case. Denote by V the model vector bundle of A. Linear maps from fibers of V
to fibers of Λ over the same point of N form the vector bundle A∗ := V ∗ ⊗N Λ.
Similarly, affine maps from fibers of A to fibers of Λ over the same point of N , form
a vector bundle A† := Aff(A,Λ) over N . Moreover, there is a canonical projection
` : A† → A∗ which consists in taking the linear part. It is easy to see that ` is an
affine bundle with 1-dimensional fiber, and model vector bundle A∗ ×N Λ→ A∗.

We will need one more construction involving A and Λ. Denote by J1` the space
of first jets of sections of `. Sections of Λ act on A† by vertical automorphisms in
an obvious way. This action can be lifted to an action on J1` as follows. Let λ
be a section of Λ, and H a generic section of `. Define the action of λ on j1H(p),
p ∈ A† as λ.j1H(p) := j1(H + λ′)(p) where λ′ is a section of A∗ ×N Λ → A∗, and,
precisely, the pull-back of λ via A∗ → N . The quotient of J1` with respect to the
action of sections of Λ is a smooth manifold denoted by PA†. Moreover, the induced
projection PA† → A∗ inherits from J1`→ A† an affine bundle structure, with model
vector bundle V∗A∗⊗M Λ→ A∗. Finally a section H of ` can be “differentiated”to
get a section dvH of PA† → A∗, defined as the composition of j1H and the canonical
projection J1`→ PA†, according to the commutative diagram

J1`

��

// PA†

��
A† // A∗

j1H

ee

H

kk

dvH

VV

.

The manifold PA† is referred to as the affine phase space [10, 8]. In the case when
E is a bundle over M , A = J1E, and Λ = E×M Ωm, we have that V = T∗M⊗EVE,
hence A∗ = V∗E ⊗E Ωm−1, where V∗E is the dual bundle to VE. In this case, we
will also denote A∗ by PE, or simply P if this does not lead to confusion, because
it should be understood as the phase space of first order classical field theories
defined on E (see below). We will also denote A† by J†E, or just J† if this does not
lead to confusion. There is a tautological vertical 1-form ϑP on P with values in
Ωm−1, i.e. a section of the bundle V∗P ⊗P Ωm−1 → P defined as follows. Denote
by π : P → E the projection, and, for p ∈ P put

(ϑP)p(ξ) := p(π∗(ξ)) ∈ Ωm−1, ξ ∈ VpE.
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Notice that ϑP is a “field theoretic version”of the Liouville 1-form on a cotangent
bundle. The space PJ† is a field theoretic version of a twice iterated cotangent
bundle (see next section). See [8] for an alternative description and more details.

Finally, recall that i-forms on M with values in functions on E, i.e. sections of
the bundle E ×M Ωi, can be “differentiated along fibers of E” to get vertical forms
on E with values in Ωi. Namely, there is an operator, the vertical differential dv

which takes a section σ of E ×M Ωi to a section dvσ of V∗E ⊗E Ωi. In bundle
coordinates, the vertical differential is given by

dv
(
σj1···jidx

j1 ∧ · · · ∧ dxji
)

=
∂σj1···ji
∂uα

dvuα ⊗ dxj1 ∧ · · · ∧ dxji ,

where the vertical differential dvf of a function f ∈ C∞(E) is just the restriction
of df to VE.

3. First order field theory. A Lagrangian field theory is specified by a variational
principle of the kind (5). In the case of a (k+1)-st derivative theory, the Lagrangian
density L is a bundle map Jk+1 → Ωm covering the identiy. As we already remarked,
Jk+1 can be understood as a distinguished submanifold of J1Jk. Accordingly, a
(k+ 1)-st derivative Lagrangian field theory on a bundle E can be understood as a
first derivative theory on Jk subjected to the (vakonomic) constraints Jk+1 ⊂ J1Jk.
This idea goes back to de Donder [5]. Now, in mechanics, constraints in TM
can be easily handled within the Tulczyjew triple approach (on an infinitesimal
time interval, see Section 1.2). Namely, a Lagrangian L : C → R defined on a
(constraint) submanifold C of TM generates a Lagrangian submanifold SC,L in
T∗TM by putting

SC,L := {pξ ∈ T∗TM : ξ ∈ C and ∀δx ∈ C, 〈pξ, δx〉 = 〈dL, δx〉}.

In its turn, SC,L determines a dynamics D := α−1(SC,L) in TT∗M . A similar con-
struction works for constrained first derivative field theories (see [8]), in particular,
higher order field theories.

Thus, let us briefly recall the Tulczyjew triple for a first order field theory. Fields
are sections of a bundle ζ : E → M and a Lagrangian density is a bundle map
J1 → Ωm covering the indentity. The details of the construction can be found in [8]
(see also [6]).

Precisely as for mechanics the Lagrangian side of the triple is based on variational
calculus. The phase space for the theory is the total space of the bundle π : P → E,
(see Section 2). In the case with no sources the Lagrangian side of the Tulczyjew
triple for first order classical field theories is then

J1P α //

~~

��

LagE

~~

��

P

��

P

��

J1

}}

J1

}}
E E

,
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where we denoted by LagE the space V∗J1 ⊗J1E Ωm, and α is the field theoretic
version of the Tulczyjew isomorphism αM (see [8] for its definition). In the following
we shall often use Lag instead of LagE if there is no risk of confusion. Both spaces,
J1P and Lag are double affine-vector bundles [13] with vector bundle structure over
J1 and affine bundle structure over P. The map α is a double vector affine bundle
morphism. The phase equations determined by a Lagrangian density L are the
subset D of J1P given by

D = α−1
(
dvL(J1)

)
.

The double bundle Lag on the right is endowed with a canonical vertical two-form
ωJ1 with values in the line bundle Ωm. The form ωJ1 is fiber-wise symplectic (every
fiber is in a sense a cotangent bundle). The double bundle J1P on the left is endowed
with a canonical vertical two-form ωJ1P with values in Ωm as well. Moreover, ωJ1P
is fiber-wise presymplectic. Actually,

ωJ1P = α∗ωJ1 .

The double bundle structure of Lag makes it easy to define the Legendre map λ:

λ : P −→ J1, λ(j1σ) = ξ(dvL(j1σ)) (8)

where ξ is the projection ξ : Lag → P. In coordinates

λ(xi, uα, uαj ) =

(
xi, uα, pjα =

∂L

∂uαj

)
.

We stress that, while the Tulczyjew morphism αM : TT∗M → T∗T∗M is an
isomorphism, its field theoretic analogue α is not in general. One could reduce the
space J1P to get a space isomorphic to the “fiber-wise cotangent bundle”Lag, but
then one would loose the obvious interpretation of the dynamics as a first order
partial differential equation.

The Hamiltonian side of the Tuczyjew triple is

HamE

}}

��

J1P
βoo

}}

��

P

��

P

��

J1

}}

J1

}}
E E

where by HamE we denoted the space PJ†, i.e. the affine phase bundle for the
affine dual bundle of J1 → E (see Section 2). We shall often use Ham instead
of HamE. The bundle Ham is a double affine-vector bundle with affine bundle
structure over P and vector bundle structure over J1. The map β is a double affine-
vector bundle morphism defined as the composition of the canonical isomorphism
RJ1 between Lag and Ham with α (see [8] for the definition of RJ1). Moreover Ham
is endowed with a canonical vertical two-form ωJ† with values in Ωm. Since RJ1 is
an antisymplectomorphism we get that

β∗ωJ† = −ωJ1P .
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Phase equations D can be also generated by an affine generating object, in the
simplest case, a section H of the bundle J† → P:

D = β−1(dvH(P)). (9)

The next to the simplest case is when D = α−1(dvL(J1)) for a generic Lagrangian
L. In this case, use symplectic relations techniques one obtains a generating family
of sections (of J† → P) parameterized by elements of J1:

H̃ : J1 ×E P → J†,

which is equivalent to a family of form valued maps

FH̃ : J1 ×E J† → Ωm, FH(j1σ(x), ϕ) = L(j1σ(x))− ϕ(j1σ(x)).

In some cases the above family reduces to a single generating section H. This is the
field-theoretical version of Legendre transformation. Note, that a pair (j1σ(x), p) is

critical for H̃ precisely if p = λ(j1σ(x)).
Summarizing, the Tulczyjew triple for first order field theories on the bundle

E →M is

Ham

~~

��

J1P
βoo α //

~~

��

Lag

~~

��

P

��

P

��

P

��

J1

}}

J1

}}

J1

}}
E E E

.

The right-hand-side is the Lagrangian one, the left-hand-side is the Hamiltonian
one, the dynamics lives in the middle. Hamiltonian and Lagrangian spaces Ham
and Lag are canonically isomorphic double affine-vector bundles equipped with
(antisymplectomorphic) vertical symplectic forms with values in Ωm. The dynamics
D is a submanifold of J1P, i.e. a first order partial differential equation on sections
of the bundle P →M .

Finally, we remark that, exactly as in the opening of this section, a dynamics
can be generated by a Lagrangian density L even when L is only defined on a
“constraint” subbundle C ⊂ J1, L : C → Ωm. Namely, first of all L generates the
“Lagrangian” submanifold SC,L in Lag given by

SC,L := {ϕw ∈ Lag : w ∈ C and ∀δw ∈ VC, 〈ϕw, δw〉 = 〈dvL, δw〉}. (10)

Now put D := α−1(SC,L). It is easy to see that D is the “correct phase dynamics”
of the Lagrangian field theory specified by the (vakonomic) constraints C and the
constrained Lagrangian L.

4. Higher order field theory: The unreduced triple. In this section we shall
construct the Tulczyjew triple for field theories of order (k+1) treated as constrained
first order theories. We interpret a (k + 1)-st order Lagrangian L : Jk+1 → Ωm as
a first order one defined on the submanifold Jk+1 of holonomic jets in J1Jk. The
price for going back to well-known structures is that we have to accept unphysical
degrees of freedoms coming from the mathematical language.



14 KATARZYNA GRABOWSKA AND LUCA VITAGLIANO

In this approach we can repeat the construction of the Tulczyjew triple for first
order theories replacing the bundle ζ : E → M with the bundle ζk : Jk → M
and using, in the simplest case, Lagrangians defined on Jk+1 ⊂ J1Jk as generating
objects. Let us go through spaces and bundles that will appear in the triple.

Since Lagrangians are defined on a submanifold of J1Jk the Lagrangian space is

L̃agk := Lag Jk = V∗J1Jk ⊗ Ωm.

Using coordinates (xi, uαI ) in Jk as defined in Section 2 we can define the adapted

coordinates (xi, uαI , u
β
J,j , a

K
µ , a

K,k
ν ), with |K| ≤ k, in L̃agk. Namely, a point in L̃agk

is an Ωm-valued vertical differential form on J1Jk given by (aKµ dvuαK+aK,kν dvuνK,k)⊗
η, with η := dx1 ∧ · · · ∧ dxn. The phase space is

Pk := PJk = V∗Jk ⊗ Ωm−1

which is a vector bundle over Jk. We can define a system of adapted coordinates

(xi, uαI , p
I.j
β ), with |I| ≤ k. Namely, a point in Pk is an Ωm−1-valued vertical form

on Jk given by pI.iα dvuαI ⊗ ηi,where ηi := (−1)i−1dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn, and a

hat “(̂·)” denotes omission. The Tulczyjew morphism α̃k := α : J1Pk −→ L̃agk is
constructed exactly as in [8], replacing the bundle E →M with the bundle Jk →M .
In adapted coordinates

α̃k(xi, uαI , p
J.j
β , uαI,i, p

J.j
β ,i) =

xi, uαI , uαI,i, aJβ =

m∑
j=1

pJ.jβ ,j , a
J,j
β = pJ.jβ

 .

The Lagrangian side of the Tulczyjew triple for field theories of order (k+1) is then

J1Pk
α̃k //

~~

��

L̃agk

~~

��

Pk

��

Pk

��

J1Jk

~~

J1Jk

~~
Jk Jk

. (11)

Using Diagram (11) one can give the right answer, for instance, to the Question:
“What is the phase space dynamics of a field theory governed by a variational
principle specified by a Lagrangian density L : Jk+1 → Ωm?” Indeed, the dynamics
Dk should be a submanifold of J1Pk, i.e. a first order PDE on sections of the bundle
Pk → M . Now, a dynamics can be generated from L as discussed in the end of
Section 3. It is enough to put

Dk = α−1
k (SJk+1,L).

(see (10)). A description of Dk in local coordinates shows that it is indeed the

“right answer” to the above Question. Namely, in coordinates (xi, uαI , u
β
J,j , a

I
α, a

J,j
β )
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in L̃agk the submanifold SJk+1,L reads

uαJ,j = uαJ+j |J | < k,

uαJ+j = uαI+i |J | = |I| = k, J + j = I + i,

aIα + δIJ+ia
J,i
α = ∂L

∂uαI
|I| ≤ k,

δIJ+ia
J,i
α = ∂L

∂uαI
|I| = k + 1.

where symbol δIJ+i is a Kronecker delta-like symbol. It equals 1 when multi-indices
I and J + i coincide and it is 0 otherwise. Finally, in coordinates, the dynamics
reads

uαJ,j = uαJ+j |J | < k,

uαJ+j = uαI+i |J | = |I| = k, J + j = I + i,

pI.jα ,j + δIJ+ip
J.i
α = ∂L

∂uαI
|I| ≤ k,

δIJ+ip
J.i
α = ∂L

∂uαI
|I| = k + 1.

In first order field theory the double bundle structure of the Lagrangian side of
the triple allowed us to construct the Legendre map (8) that associates momenta to
configurations. In the higher order case we do not have a map like this any more.

This is because SJk+1,L is not the image of a section of the bundle L̃agk → J1Jk.
Instead of a map we get only a relation. A point p ∈ Pk is in the relation λk with
w ∈ J1Jk if and only if w is a holonomic jet and there exists a point in SJk+1,L that
projects on both p and w. It is easy to see in coordinates that this means that

δIJ+ip
J.i
α =

∂L

∂uαI
for |I| = k + 1.

One can say that only “the highest order momenta” are defined here. Since in
the following we will often use relations we introduce a specific notation for them.
Namely, a relation (as opposed to a plain map) will be indicated by a dotted line

. For instance

J1JkE
λk Pk.

Notice that Dk coincides exactly with the Euler-Lagrange-Hamilton equations
determined by L (see, e.g., [30], see also [3]). In their turn, as shown in [30, 3] the
Euler-Lagrange-Hamilton equations are essentially equivalent to the Euler-Lagrange
equations, but still keep the nice feature of incorporating momenta. We conclude
that diagram (11) contains a full information about the dynamics of a Lagrangian
field theory (including the dynamics of momenta).

We now pass to the Hamiltonian side of the triple. The Hamiltonian space is

H̃amk := Ham Jk = PJ†Jk. Recall that the spaces H̃amk and L̃agk are canon-
ically isomorphic double bundles and we can define the “Hamiltonian Tulczyjew

morphism” β̃k : J1Pk → H̃amk composing αk with the canonical isomorphism

L̃agk ' H̃amk. In coordinates the map β̃k reads

β̃k(xi, uαI , p
J.j
β , uαI,i, p

J.j
β ,i) =

xi, uαI , pJ.jβ ,−
∑
j

pJ.jβ ,j , u
α
I,i

 .
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The Hamiltonian side of the Tulczyjew triple for field theories of order (k + 1) is

H̃amk

~~

��

J1Pk
β̃koo

~~

��

Pk

��

Pk

��

J1Jk

~~

J1Jk

~~
Jk Jk

.

Using the above diagram one can generate a dynamics Dk from an Hamiltonian
generating object, in the simplest case a section H of the bundle J†Jk → Pk. In
this case Dk = β−1

k (dvH(Pk)) exactly as (9) in first order theories.
Following the pattern of first order field theories we get (k+1)-st order version of

Legendre transformation. For a generic Lagrangian L the Hamiltonian generating
object is actually a family of sections of the bundle J†Jk → Pk parameterized by
elements of Jk+1. It is easier to write the corresponding family of Ωm valued maps

F k
H̃

: J†Jk ×Jk Jk+1 → Ωm, F k
H̃

(ϕ, jk+1σ(x)) = L(jk+1σ(x))− ϕ(j1jkσ(x)).

The pair (ϕ, j(k+1)σ(x)) is a critical point for the family F k
H̃

if (in coordinates)

∂L

∂uαJ
= δJI+jp

I.j
α , |J | = k + 1,

i.e. precisely when ϕ projects on an element of Pk which is in the relation λk with
j1jkσ(x).

The full version of the Tulczyjew triple for (k + 1)-st derivative field theories is

H̃amk

��

��

J1Pk
β̃koo α̃k //

��

��

L̃agk

��

��

Pk

��

Pk

��

Pk

��

J1Jk

��

J1Jk

��

J1Jk

��
Jk Jk Jk

. (12)

Summarizing, as usual the right-hand-side is the Lagrangian one, the left-hand-
side is the Hamiltonian one, and the dynamics lives in the middle. Hamiltonian

and Lagrangian spaces H̃amk and L̃agk are canonically isomorphic double affine-
vector bundles equipped with (anti-symplectomorphic) vertical symplectic forms
with values in Ωm. The dynamics Dk is a submanifold of J1Pk which can be
generated either in Lagrangian or in Hamiltonian way.

We refer to diagram (12) as the “unreduced Tulczyjew triple for (k + 1)-st de-
rivative field theories”. When using it for field theories depending on derivatives
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of the fields up to order k + 1, we interpret Jk+1 as a constraint subbundle in the
“configuration” bundle J1Jk. However, the extra variables in J1Jk are unphysical.
In the next section we show that, starting from first principles, diagram (12) can
be actually “reduced” to a genuine (reduced) Tulczyjew triple where the unphysical
degrees of freedom disappear.

5. Higher order field theory: The reduced triple. In the previous section we
have constructed the Tulczyjew triple for (k+ 1)-st order field theories, considering
jets of order (k + 1) as holonomic first jets of sections of the bundle Jk → M .
Following this point of view we could use well-developed first order theory for the
price of having non-physical degrees of freedom coming only from the mathematical
language.

On the other hand Tulczyjew paradigms allow to construct a triple for virtually
any theory, starting from first principles. Recall that the Lagrangian side of the
Tulczyjew triple is directly obtained from variational calculus, while the Hamilton-
ian side can only be obtained after taking a suitable limit (see Section 1.2). In this
section we follow Tulczyjew strategy to obtain a triple for field theories depending
on higher derivatives of the fields. We call the result the “reduced triple” because
it can also be obtained from the “unreduced triple” in previous section performing

a suitable “symplectic reduction”. More specifically, recall that the bundles H̃amk,

J1Pk, and L̃agk are equipped with canonical (line-bundle valued) vertical two-forms.
All such two-forms are fiber-wise symplectic. Upon restricting them to holonomic
jets they become presymplectic. The reduced triple can be then obtained by quoti-
enting out the null-distribution of the restricted forms (see [15] for details), and it
is free from unphysical degrees of freedom.

As usual, let the fields be sections of a fiber bundle ζ : E →M over the “space-
time” M . Let us first focus on fields propagating on a bounded domain D of the
space-time. We assume D to have a smooth boundary ∂D. The configuration
space Q consists of sections σ of ζ defined over D. We define processes, smooth
functions and tangent vectors for Q in a similar way as in Section 1.2. Parametrized
processes in Q are vertical homotopies, i.e. smooth maps χ : I ×D → E where 1)
I is neighborhood of 0 in R, 2) for every x ∈ D, s 7→ χ(s, x) is a vertical curve in
E, and 3) for every s ∈ I, x 7→ χ(s, x) is a section of ζ. Functions on Q are action
functionals specified by (k + 1)-st order Lagrangian densities L : Jk+1 → Ωm via
the usual formula S(σ) =

∫
D
L(jk+1σ). Note that, as in mechanics, the composition

of a function with a process is a smooth function I 3 s 7→ S(χ(s, ·)) ∈ R. Tangent
vectors and covectors are obvious equivalence classes of processes and functions
respectively. The pairing between vectors and covectors is given by the formula

〈dS(σ), [χ]〉 =

∫
D

d

ds |s=0
L(jkχ(s, ·)),

where dS(σ) is a tangent covector, the equivalence class of the pair (S, σ), and
[χ] is a tangent vector, the equivalence class of χ. Adopting the Statics point of
view reviewed in Section 1.1, we interpret the (k + 1)-st order field theory with
Lagrangian L as a regular system with cost function given by dS and constitutive
set being C = dS(Q).

To find convenient representations of vectors and covectors we integrate by parts
k + 1 times and obtain

〈dS(σ), [χ]〉 =

∫
D

〈EL(j2k+2χ|s=0), δσ〉+

∫
∂D

〈PL(j2k+1χ|s=0), δjkσ〉, (13)



18 KATARZYNA GRABOWSKA AND LUCA VITAGLIANO

where EL : J2k+2 → V∗E⊗Ωm is the Euler-Lagrange morphism [18], PL : J2k+1 →
V∗Jk ⊗ Ωm−1 is a boundary term, δσ denotes a vertical vector field on E along σ
such that δσ(x) is the tangent vector to curve s 7→ χ(s, x) at s = 0, and δjkσ is
the vertical vector field on Jk along jkσ defined is a similar way. It is easy to see
that the tangent vector [χ] is equivalent to (i.e. it contains the same information as)
δσ. Similarly, the covector dS(σ) is equivalent to a pair (f, p) where f is a section
of V∗E ⊗ Ωm → M over D and p is a section of V∗Jk ⊗ Ωm−1 over ∂D. Using
these convenient representations for tangent vectors and covectors, one sees that C
is “conveniently represented”by the following phase equations:

D = {(f, p) : f(x) = EL(j2k+2σ), p(x) = PL(j2k+1σ) }.

This means, in particular, that f represents sources of the field, while V∗Jk⊗Ωm−1

should be understood as the phase space of the theory. Note that we have obtained
the same phase space Pk as in the previous section. It should be stressed, however,
that the boundary term PL in (13) is canonical only up to total differentials (see for
instance [30] and references therein). As a consequence, there are still “non-physical
degrees of freedom” in Pk. In principle, one could quotient them out at the price
of loosing the nice interpretation of the dynamics as a submanifold in a jet space,
i.e. as a differential equation, which, on the other hand, is obviously desirable for
many purposes. Therefore, we keep adopting Pk as the “optimal” phase space of
the theory. In the following we shall consider only field theories without sources
assuming f = 0.

The Lagrangian side of the Tulczyjew triple is obtained, as in Section 1.2, by
passing to the new regime where the domain D becomes infinitesimally small. It is
easy to see that, in this infinitesimal limit, Q becomes (a fiber in) Jk+1. Accordingly,
TQ becomes (a fiber in) VJk+1, and T∗Q becomes (a fiber in) V∗Jk+1 ⊗ Ωm. The
latter space will be denoted by Lagk E, or simply Lagk if this does not lead to confu-
sion. It is naturally equipped with an obvious vertical symplectic form with values
in Ωm. In the infinitesimal regime, a Lagrangian L is interpreted as a potential
for the cost function dvL, thus the constitutive set is C = dvL(Jk+1) ⊂ Lagk. Now
let us look at the correspondence between vectors and covectors and their conve-
nient representations in the infinitesimal regime. Formula (13), with the additional
condition f = 0, assumes the following form

〈dvL(jk+1σ), δjk+1σ〉 = dM 〈p, δjkσ〉, (14)

where p is a section of Pk, and dM is the total differential [8] (see also [2, 18] where
dM is referred to as the horizontal differential and denoted differently). The right-
hand side of (14) defines a pairing between holonomic first jets of sections of Pk →M
and holonomic first jets of sections of VJk → M , where, by holonomic, we mean
here “projecting on holonomic jets in J1Jk”. Let j1p(x) ∈ J1Pk and j1δσ(x) ∈ J1VJk

1) project on holonomic jets in J1Jk and, 2) project on the same jet jkσ(x) ∈ Jk.
Define the following pairing

〈〈 j1p(x), jk+1δσ(x) 〉〉 = dM 〈 p, κk,1(jkδσ) 〉(x),

where κk,1 is the field theoretic version of the isomorphism κM (3)

κk,1 : JkVE −→ VJk, jkδσ(x) 7−→ δjkσ(x).

This shows that convenient representations of covectors are provided by points in
J1Pk projecting on holonomic jets in J1Jk, which we collectively denote by J1

holPk.
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Similarly, convenient representations of vectors are given by points in J1VJk pro-
jecting on holonomic jets in J1Jk, or, which is the same, points in Jk+1VE.

We now define a relation αk generalizing αM . A covector ψ ∈ Lagk is in the
relation αk with j1p(x) ∈ J1Pk if 1) j1p(x) ∈ J1

holPk, 2) ψ and j1p(x) are over the
same point of Jk+1, and 3) for all jk+1δσ ∈ Jk+1VE

〈ψ, κ−1
k+1,1(δjk+1σ(x)) 〉 = 〈〈 j1p(x), jk+1δσ(x) 〉〉.

In coordinates j1p(x) is in the relation αk with ψ iff

uαI (j1p(x)) = uαI (ψ) |I| ≤ k,

uαI,i(j1p(x)) = uβI+i(ψ) |I| ≤ k,

pI.jα,j(j1p(x)) + δIJ+ip
J.i
α (j1p(x)) = aIα(ψ) |I| ≤ k,

δIJ+ip
J.i
α (j1p(x)) = aIα(ψ) |I| = k + 1.

The relation αk

J1Pk
αk

Lagk

is the main part of the Lagrangian side of the reduced Tuczyjew triple for (k+ 1)-st
order field theories. Since the pairing 〈〈·, ·〉〉 is degenerate αk is not an isomorphism
and not even a map.

Before we present the full Lagrangian side of the reduced triple, let us examine
the double bundle structure of Lagk. It is obviously a vector bundle over Jk+1.
The second bundle structure is an affine bundle. Recall that ζk+1,k : Jk+1 → Jk

is an affine bundle with underlying vector bundle ∨k+1T∗M ⊗Jk VE (see Section
2). An element of Lagk restricted to vectors tangent to the fibre of ζk+1,k acts
as an element of ∨k+1TM ⊗Jk V∗E ⊗Jk Ωm =: Qk. Accordingly there is a double
vector-affine bundle

Lagk
πk

  

ξk

~~
Qk

  

Jk+1

~~
Jk

.

The Lagrangian side of the reduced Tulczyjew triple is the diagram

J1Pk
αk

~~

��

Lagk

~~

��

Pk //

��

Qk

��

J1Jk

~~

Jk+1

~~

_?
oo

Jk Jk

. (15)

Both spaces J1P and Lagk are double vector-affine bundles with vector bundle
structures on the right and affine bundle structures on the left. The relation αk is



20 KATARZYNA GRABOWSKA AND LUCA VITAGLIANO

not a morphism of double vector affine bundles in a strict sense, but it is compatible
with these structures. In particular αk projects on the map Pk → Qk which is a
morphism of vector bundles over the identity on Jk defined as follows. The fibre of
Pk over jkσ(x) is the vector space (Pk)jkσ(x) = V∗jkσ(x)Jk ⊗ Ωm−1

x . Elements of this

vector space act on Vjkσ(x)Jk as one-forms with values in Ωm−1
x . The restriction of

an element of (Pk)jkσ(x) to vectors tangent to the fibre of ζk,k−1 defines a projection

from (Pk)jkσ(x) to ∨kTxM ⊗ V∗σ(x)E ⊗ Ωm−1
x . On the other hand (Qk)jkσ(x) =

∨k+1TxM ⊗ V∗σ(x)E ⊗ Ωmx , and there is a “symmetrization map”

∨kTxM ⊗ Vσ(x)E ⊗ Ωm−1
x −→ (Qk)jkσ(x)

that in coordinates reads

pI.iα ∂xI ⊗ dvuα ⊗ ηi 7−→ (δJI+ip
I.i
α )∂xJ ⊗ dvuα ⊗ η,

where, for I = i1 · · · ik, we put ∂xI = ∂xi1 ∨ · · · ∨ ∂xik . Composing, we get the map
Pk → Qk in (15).

Finally let us observe that, since Jk+1 ⊂ J1Jk, there is an obvious cotangent
relation

L̃agk
ρk

Lagk .

Namely, recall that L̃agk = V∗J1Jk ⊗Ωm, and Lagk = V∗Jk+1 ⊗Ωm. In particular,
they fit into the commutative diagram

Lagk

��

i∗(L̃agk)
ρoo //

zz

L̃agk

��
Jk+1 �

� i // J1Jk

where i is the inclusion, and ρ is the restriction to Jk+1 of vertical covectors on J1Jk.

The composition Lagk ← i∗(L̃agk)→ L̃agk is, by definition ρk. Now, diagram

L̃agk
ρk

Lagk

J1Pk
α̃k

__

αk

commutes (in a relation-theoretic sense). As a consequence, the phase equations in
(k + 1)-st order theory obtained by means of the Lagrangian side of the reduced
and unreduced triples are the same, i.e.

α̃−1
k (SJk+1,L) = αk(dvL(Jk+1)).

In the reduced triple we can also find the Legendre relation λk expressed as the
composition of dvL, αk and the projection j1Pk → Pk, as illustrated in the following
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diagram

J1Pk
αk

~~

��

Lagk

~~

��

Pk //

��

Qk

��

J1Jk

~~

Jk+1

~~

_?
oo

dvL

aa

λk

Jk // Jk

.

The structure of the relation λk is clear: using the double bundle Lagk we can
construct a map `k : Jk+1 → Qk as a composition

Lagk

  

ξk

~~
Qk

  

Jk+1

~~

dvL
jj

`koo

Jk

, `l = ξk ◦ dvL. (16)

The element jk+1σ(x) is in the relation λk with p ∈ Pk if p projects on `k(jk+1σ(x)) ∈
Qk. This means that λk(jk+1σ(x)) contains the whole inverse image of `k(jk+1σ(x))
with respect to Pk → Qk.

Now we pass to the Hamiltonian side of the reduced triple, which is based on the
affine bundle structure of ζk+1,k : Jk+1 → Jk. The space of affine maps on fibres
of ζk+1,k with values in the appropriate fibre of Ωm will be denoted, for simplicity,
by Kk. Note that there is a canonical projection Kk → Qk consisting of taking the
linear part of an affine map. The bundle Kk → Qk is an affine bundle with one
dimensional fibre. The underlying vector bundle is Qk ×M Ωm → Qk. The affine
phase bundle PKk (see Section 2) is the Hamiltonian space for the Hamiltonian
side of the reduced triple for (k + 1)-st order field theories. It will be denoted by
Hamk E, or simply Hamk.

The Hamiltonian space Hamk is a double vector affine bundle with affine bundle
structure over Pk and vector bundle structure over Jk+1. Moreover, it is easy to see
(along very similar lines as in [8]), that Hamk is naturally equipped with a vertical
symplectic form with values in Ωm. Finally, Hamk is canonically isomorphic to
Lagk, and the canonical isomorphism Rk = RJk+1 is an anti-symplectomorphism
with respect to the “canonical structures” on Lagk and Hamk. In Hamk we shall use
the coordinates (xi, uαI , f

J
β , ξ

I
α, ζ

α
J ) where |I| ≤ k and |J | = k+1. In coordinates υ ∈

Hamk is identified with an element of V∗Qk⊗Ωm and υ = ξIαdvuIα⊗η+ζβJ dvfJβ ⊗η.
In coordinates, the canonical isomorphism Rk reads

Rk(xi, uαI , u
β
J , a

I
α, a

J
β) = (xi, uαI , f

J
β = aJβ , ξ

I
α = aIα, ζ

β
J = −uβJ), |I| ≤ k, |J | = k+ 1.

The composition of Rk and αk is the relation βk

βk = Rk ◦ αk
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which is the Hamiltonian side of the reduced Tulczyjew triple

Hamk

~~

��

J1Pk
βk

~~

��

Qk

��

Pkoo

��

Jk+1 �
� //

~~

J1Jk

~~
Jk Jk

.

In coordinates υ ∈ Hamk is in the relation βk with j1p(x) ∈ J1Pk if

uαI (j1p(x)) = uαI (υ) |I| ≤ k,

uαI,i(j1p(x)) = uβI+i(υ) |I| < k,

uαI,i(j1p(x)) = −ζβI+i(υ) |I| = k,

pI.jα,j(j1p(x)) + δIJ+ip
J.i
α (j1p(x)) = ξIα(υ) |I| ≤ k,

δIJ+ip
J.i
α (j1p(x)) = f Iα(υ) |I| = k + 1.

Similarly as above, one sees that the phase field equations Dk = αk(dvL(Jk+1))
generated by a generic Lagrangian, are also generated, on the Hamiltonian side by
a family of sections of the bundle Kk → Qk parametrerized by point in Jk+1. In its
turn, this family is equivalent to the family of Ωm valued maps

F : Kk ×Jk Jk+1 −→ Ωm, F (ϕ, jk+1σ(x)) = ϕ(jkσ(x))− L(jk+1σ(x)).

The complete reduced Tulczyjew triple for theories of order (k + 1) is

Hamk

��

��

J1Pk
βk αk

��

��

Lagk

��

��

Qk

��

Pk //oo

��

Qk

��

Jk+1 �
� //

��

J1Jk

��

Jk+1

��

_?
oo

Jk Jk Jk

.

6. On the relation between different order triples. Tulczyjew triples (12)
and (16) capture most of the relevant geometric structures underlying classical field
theories of order k+1 defined on the bundle E. For instance, they prescribe how to
produce the dynamics from different kind of generating objects (e.g., a Lagrangian
density defined on a constraint submanifold) “depending on derivatives of the fields
up to order k + 1”. Notice that when a “generating object depends on derivatives
up to order k + 1”, one may safely state that “it also depends on derivatives up to
order l + 1” for all l ≥ k. For instance, any (k + 1)-st order Lagrangian density
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is an (l + 1)-st order Lagrangian density as well, for every l ≥ k. In other words,
generating objects can be pull-backed to higher order jet bundles. In this section we
want to give a precise mathematical meaning to this claim. In particular we shall
discuss the relationship between different order Tulczyjew triples. In order to do
this, it is convenient to start from the relationship between the triples of first order
field theories defined on two different bundles connected by a bundle morphism.

Let G,F be bundles over the same manifold M , and let Φ : G→ F be a bundle
morphism over the identity of M , i.e. Φ is a smooth map such that diagram

G

��

Φ // F

��
M M

(17)

commutes. Recall that diagram (17) can be prolonged to a diagram

J1G

��

j1Φ // J1F

��
G

��

Φ // F

��
M M

, (18)

where the map j1Φ is defined as j1Φ(j1σ(x)) := j1(Φ ◦ σ)(x) and can be charac-
terized as the unique bundle map making diagram (18) commutative and mapping
holonomic sections to holonomic sections. In particular, j1Φ is a morphism of affine
bundles over Φ. Its linear part T∗M ⊗G VG→ T∗M ⊗F VF is nothing but the well
defined restriction VΦ : VG→ VF of the tangent map TΦ : TG→ TF to Φ tensor
the identity of T∗M .

Let us now discuss the relationship between PG and PF . Sections of the bundle
PF → F are Ωm−1-valued, vertical 1-forms on F . As such, they can be pulled-back
to sections of PG→ G via the bundle morphism Φ, but there is no natural bundle
morphism PF → PG. However, there is a natural bundle relation between PG and
PF covering Φ. Namely, The pull back bundle X := G ×F PF maps to PG as
follows: (e, ω) 7→ (V∗eΦ)(ω), (e, ω) ∈ G×F PF . Accordingly, there is a commutative
diagram

PG

��

X //oo

��

PF

��
G

��

Φ // F

��
M M

. (19)

Notice that the relation PG PF obtained in this way is just a bundle-theoretic
version of the standard cotangent lift of a smooth map. Now, all arrows originating
from X are bundle morphisms over the identity of M . Thus, diagram (19) prolongs
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to a diagram

J1PG

��

J1X //oo

��}}

J1PF

��
PG

��

X //oo

}}

PF

��
G

��

Φ // F

��
M M

.

In a very similar way, one can construct diagrams

LagG

��

Y //oo

��

LagF

��
J1G

��

j1Φ // J1F

��
G

��

Φ // F

��
M M

and

HamG

��

Z //oo

~~

HamF

��
J1G

��

j1Φ // J1F

��
G

��

Φ // F

��
M M

,

where Y := LagF ×J1F J1G, and Z := HamF ×J1F J1G. In particular there are

natural relations J1PG J1PF , LagG LagF and HamG HamF . All of

them do actually preserve the canonical structures. Details are left to the reader.
It is easy to see that diagram

HamF

��

J1PF //oo

����

LagF

��
HamG

��

J1PG //oo

����

LagG

��

PF

��

J1F33

j1Φ ��
PG

��

J1G

��

F33

Φ

G

(20)

commutes. In this sense morphism Φ lifts to a relation between Tulczyjew triples.
This clarifies the relationship between Tulczyjew triples of G and F . In the special
case when G = Jl, F = Jk, and Φ = ζl,k, l ≥ k, we get a relation between the
(k + 1)-st order, and the (l + 1)-st order, unreduced Tulczyjew triples of E.

Now, we look at the relationship between the dynamics generated by gener-
ating objects which are “related through diagram (20)”. For simplicity, instead
of considering the most general situation we will only consider one case among
the most interesting ones: a Lagrangian density L : C → Ωm is assigned on a
subbundle C ⊂ J1F of J1F → F . Recall that L generates a dynamics DL =
α−1(SC,L) ⊂ J1PF , and assume, as a minimal regularity requirement, that Φ−1(C)
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is a smooth subbundle of J1G → G. Then L can be pulled-back to a Lagrangian
density Φ∗(L) := L ◦ Φ : Φ−1(C) → Ωm. It is easy to see that the dynamics
DΦ∗(L) = α−1(SΦ−1(C),Φ∗(L))) ⊂ J1PG is the pre-image of DL ⊂ J1PF under the

relation J1PG J1PF . In particular, if Φ is a surjective submersion, then a sec-
tion Σ of PG is a solution of DΦ∗(L) iff it is related to a (necessarily unique) solution

Φ(Σ) of DL via the relation PG PF . On the other hand, every solution of DL
is (locally) of the form Φ(Σ) for some solution Σ of DΦ∗(L). In other words, so-
lutions of DΦ∗(L) project surjectively to solutions of DL (up to global topological
obstructions). In this sense, the dynamics DΦ∗(L) covers the dynamics DL. Notice
that if Φ = ζl,k, then it is a surjectve submersion (actually a fiber bundle) and the
above considerations apply. This clarifies the relationship between

• the dynamics generated in J1Pk by a higher order Lagrangian density L :
Jk+1 → Ωm, and

• the dynamics generated in J1Pl by the same L understood as a (l+1)-st order
Lagrangian,

l ≥ k.
Finally, notice that, in the case Φ = ζl,k, diagram (20) reduces to an obvious

diagram of reduced triples, which we do not report. Similar considerations as above
hold for the dynamics.

7. Examples.

Example 1. As a first example let us consider “second order mechanics”, i.e. the
special case when M = R, E = Q×R, ζ is the projection onto the second factor, and
k = 2 (higher order mechanics, when k > 2, doesn’t look significantly different and
details about it are left to the reader). We have then Jk ' TkQ×R, Ω1 ' R×R. If,
moreover, L does not depend explicitly on time, i.e. it is just a function L : T2Q→
R, we can simplify the triples dropping the factor R everywhere. In the “unreduced
approach” we understand L as a function on the submanifold T2Q ⊂ TTQ. The
unreduced Tulczyjew triple in this case is

T∗T∗TQ

~~

��

TT∗TQ
βTQoo αTQ //

��

��

T∗TTQ

��

��

T∗TQ

��

T∗TQ

��

T∗TQ

��

TTQ

��

TTQ

��

TTQ

��
TQ TQ TQ

,

where αTQ is the “Tulczyjew morphism” for TQ and, similarly, βTQ is the morphism
determined by the canonical symplectic form ωTQ on T∗TQ. Starting form local
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coordinates (qi) in Q and (qi, vj) in TQ we get natural coordinates

(qi, vj , q̇i, v̇j) in TTQ,

(qi, vj , pi, rj) in T∗TQ,

(qi, vj , q̇i, v̇j , πi, ρj , π̇i, ρ̇j) in T∗TTQ,

(qi, vj , pi, rj , q̇
i, v̇j , ṗi, ṙj) in TT∗TQ,

(qi, vj , pi, rj , ϕi, ϕ̄i, ψ
i, ψ̄j) in T∗T∗TQ.

It is easy to see that in coordinates

αTQ(qi, vj , pi, rj , q̇
i, v̇j , ṗi, ṙj) = (qi, vj , q̇i, v̇j , ṗi, ṙj , pi, rj),

βTQ(qi, vj , pi, rj , q̇
i, v̇j , ṗi, ṙj) = (qi, vj , pi, rj ,−ṗi,−ṙj , q̇i, v̇j).

The submanifold T2Q in TTQ is given by the condition vi = q̇i. A second order
Lagrangian is thus a function L = L(qi, vi, v̇i). A Lagrangian function defined on
T2Q generates the following (Lagrangian) submanifold in T∗TTM

ST2Q,L

=

{
(qi, vj , q̇i, v̇j , πi, ρj , π̇i, ρ̇j) : vi = q̇i, πj =

∂L

∂qj
, π̇k + ρk =

∂L

∂vk
, ρ̇l =

∂L

∂v̇l

}
.

The dynamics D2 = α−1
TQ(ST2Q,L) is then

D2

=

{
(qi, vj , pi, rj , q̇

i, v̇j , ṗi, ṙj) : vi = q̇i, ṗj =
∂L

∂qj
, pk + ṙk =

∂L

∂vk
, rl =

∂L

∂v̇l

}
.

In general, D2 is an implicit differential equation (imposed on curves in T∗TQ) and
the Hamiltonian generating object is a family

F : T∗TQ×TQ T2Q −→ R, (qi, vj , pi, rj , v̇
k) 7−→ piv

i + rj v̇
j − L(qi, vi, v̇i).

For instance, let L be the Lagrangian governing the motion of the tip of a javelin
[4]. The manifold of positions is Q = R3 and

L(qi, vi, v̇i) =
1

2

3∑
i=1

(vi)2 − (v̇i)2. (21)

The dynamics is given is

D2 : vi = q̇i, ṗj = 0, pk + ṙk = vk, rl = −v̇l.

It is easy to see that D2 is the image of the vector field

X(qi, vj , pi, rj) = vi
∂

∂qi
− rj

∂

∂vj
+ (vk − pk)

∂

∂rk
.

Accordingly, the Hamiltonian generating object

F : T∗TQ×TQ T2Q −→ R, (qi, vj , pi, rj , v̇
k) 7−→ pkv

k + rj v̇
j − 1

2

3∑
i=1

(vi)2 − (v̇i)2,

can be simplified. Namely, the condition for a critical point can be solved for v̇i:

∂F

∂v̇i
= ri + v̇i = 0 =⇒ v̇i = −ri,
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and the dynamics is generated by one single Hamiltonian function which reads

H : T∗TQ −→ R, (qi, vj , pi, rj) 7−→ pkv
k − 1

2

3∑
i=1

(ri)
2 + (vi)2.

Interestingly enough, in this example, although the Lagrangian generating object
is a function defined on a submanifold, nonetheless the dynamics is an explicit
differential equation given by a Hamiltonian vector field. ♦

Example 2. In the reduced triple approach to second order mechanics the “La-
grangian space” is Lag1 = T∗T2Q. The Lagrangian space is a double bundle with
vector bundle structure over T2Q and affine bundle structure overQ1 = TQ×QT∗Q.
The Hamiltonian bundle Ham1 = P(T2Q)† is constructed from the one dimensional
affine bundle K1 = (T2Q)† → Q1. The reduced triple for second order mechanics is

P(T2Q)†

||

��

TT∗TQ
β2 α2

��

��

T∗T2Q

}}

��

TQ×Q T∗Q

��

T∗TQoo //

��

TQ×Q T∗Q

��

T2Q

��

� � // TTQ

��

T2Q

��

_?
oo

TQ TQ TQ

.

In local coordinates

(qi, q̇i, q̈j) in T2Q,

(qi, vj , q̇i, v̇j) in TTQ,

(qi, vj , pi, rj) in T∗TQ,

(qi, q̇i, q̈i, πj , π̇j , π̈j) in T∗T2Q,

(qi, vj , pi, rj , q̇
i, v̇j , ṗi, ṙj) in TT∗TQ,

(qi, q̇i, ri, ϕj , ψj , ϑ
j) in P(T2Q)†.

we have

T∗TQ −→ TQ×Q T∗Q, (qi, vj , pi, rj) 7−→ (qi, q̇j = vj , rj),

T∗T2Q −→ TQ×Q T∗Q, (qi, q̇i, q̈i, πj , π̇j , π̈j) 7−→ (qi, q̇j , rj = π̈j),

T2Q −→ TTQ, (qi, q̇i, q̈j) 7−→ (qi, vj = q̇j , q̇i, v̇j).

In coordinates the Lagrangian relation α1 between (qi, vj , pi, rj , q̇
i, v̇j , ṗi, ṙj) and

(qi, q̇i, q̈i, πj , π̇j , π̈j) is given by conditions

vi = q̇i, v̇i = q̈i, pj + ṙj = π̇j , ṗj = πj .

A point (qi, q̇i, ri, ϕj , ψj , ϑ
j) ∈ P(T2Q)† is in the relation β1 with a point

(qi, vj , pi, rj , q̇
i, v̇j , ṗi, ṙj) ∈ TT∗TQ

if
q̇i = vi, v̇i = −ϑi, π̈j = ṗj = ϕj , pj + ṙj = ψj .
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The dynamics generated by a general Lagrangian L : T2Q → R has a family of
sections of (T2Q)† → Q1 as Hamiltonian generating object. This generating family
corresponds to a family of functions on (T2Q)†

F : (T2Q)† ×TQ T2Q −→ R, (ϕ,T2γ) 7−→ ϕ(T2γ)− L(T2γ).

In coordinates
F (qi, q̇i, ri, ρ, q̈

i) = riq̈
i + ρ− L(qi, q̇i, q̈i),

where ρ is the (affine) fiber coordinate in (T2Q)† → Q1. In coordinates, the corre-
sponding family of sections

HF : T2Q×TQ T∗Q 3→ (T2Q)†

reads
ρ = L(qi, q̇i, q̈i)− rj q̈j .

When L is given by (21) we get the family of sections

(qi, q̇i, q̈i, ri) 7−→

(
qi, q̇i, q̈i, ri, ρ =

3∑
i=1

(
1

2
(q̇i)2 − 1

2
(q̈i)2 − riq̈i

))
which can be reduced to one single generating section

H : TQ×Q T∗Q −→ (T2Q)†, (qi, q̇i, ri) 7−→

(
qi, q̇i, ri, ρ =

1

2

3∑
i=1

(
(q̇i)2 + (rj)

2
))

.

We conclude that, in the reduced triple approach, the dynamics of the tip of a
javelin is generated by a Lagrangian function and a Hamiltonian section. This is
an example of system with regular Lagrangian (see, e.g., [30, 31]). As usual, the

Legendre relation λ2 : T2Q T∗TQ is not a map. Nonetheless,

`2 : T2Q→ TQ×Q T∗Q

(see diagram (16)) is a diffeomorphism which in coordinates reads

(qi, q̇i, q̈i) 7−→ (qi, q̇i, ri = −q̈i).
♦

Example 3. Most of the physical systems that can be described within Lagrangian
or Hamiltonian formalisms are of order one, i.e. their Lagrangians depend on first
derivatives of configurations only (a noteworthy exception is the Einstein-Hilbert
Lagrangian in General Relativity, but, even so, Einstein field equations can be
equivalently derived from first order variational principles). Dependences on higher
order jets appear usually as a result of idealizations in mathematical modelling. This
is precisely the case of plate theory, i.e. the theory of thin layers of elastic material.
The theory is obtained from continuum mechanics (in Lagrangian description) by
assuming that one of the dimensions of the elastic body is infinitesimally small.

The main ingredients are two Riemannian manifolds (M,γ) and (N, g) where
dimM = 2 and dimN = 3. The manifold M is the material space, and N is
the physical space. A position of the plate in the physical space is given by a
smooth immersion σ : M → N , which can be understood as a section of the bundle
prM : E = M × N → M . The Lagrangian is the internal energy of the elastic
plate. In the present case of an infinitesimally thin plate, it depends on second
order jets of the immersion σ : M → N via the extrinsic curvature of the surface
σ(M) in N with respect to the metric g. This means that the space of infinitesimal
configurations is J2 = J2(M,N) (or, more precisely, the open subset of J2 consisting
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of jets of immersions). Details about how to implement the infinitesimal thickness
limit can be found in [14].

Let us now review all the spaces appearing in the reduced triple in the present case
of plate theory. In the following, we shall assume, as usual, that M is orientable. We
also fix the volume form η defined by the metric γ and use it to identify Ω2(M) with
M×R. The first jet prolongation of a map σ : M → N identifies with the differential
df : TM → TN . Accordingly, the fibre of J1 = J1E → E over a point (x, y) ∈M×N
identifies with T∗xM ⊗TyN . Abusing the notation we shall write J1 ' T∗M ⊗TN .
The phase space is P1 = V∗J1 ⊗J1 Ω2(M) ' V∗(T∗M ⊗ TN). In the reduced triple
formulation “the highest momenta” are elements of Q1 = ∨2TM⊗J1 V∗E⊗J1 Ω2(M)
which in this case can be expressed as

Q1 = J1 ×(N×M) (∨2TM ⊗ T∗N).

A point in the second factor is naturally interpreted as bending moment. Thus, it
follows from the Lagrangian side of the reduced triple that the bending moment,
although usually defined in coordinates, has indeed a geometric meaning.

Let us write phase equations in coordinates. Using coordinates (xi) in M and

(uα) in N we get coordinates (xi, uα, uβj ) in J1 and (xi, uβJ) in J2 with |J | ≤ 2. In

the phase space we have coordinates (xi, uαj , p
k
β , p

lm
µ ) such that an element of P1 is

p = pkβduβ ⊗ ηk + plmµ duµl ⊗ ηm, where ηk is the contraction of η with ∂
∂xk

. The
phase equations are

∂iu
α = uαi , ∂iu

α
j = uαi,j ,

∂jp
1j
α + p1

α =
∂L

∂uα(1,0)

, ∂jp
2j
α + p2

α =
∂L

∂uα(0,1)

,

p11
α =

∂L

∂uα(2,0)

, p22
α =

∂L

∂uα(0,2)

, p12
α + p21

α =
∂L

∂uα(1,1)

and can be generated, as usual, by a family of functions on K1 = (J2)† parame-
terized by elements of J2:

F : K1 ×J1 J2 → R, F (ϕ, j2σ(x)) = ϕ(j2σ(x))− L(j2σ(x)).

8. Tulczyjew triples on infinite jets. So far we defined Tulczyjew triples involv-
ing an arbitrary but finite number of derivatives of the fields. There is a formal,
geometric way to account for all (arbitrarily high) derivatives of the fields at the
same time, which consists in using infinite jet spaces. Let us first recall the definition
of infinite jets. There is a tower of fiber bundles

M
ζ←− E ζ1,0←− J1 ←− · · · ζk,k−1←− Jk

ζk+1,k←− Jk+1 ←− · · · . (22)

The set theoretic inverse limit of sequence (22) is denoted by J∞E (or, shortly, J∞)
and it is called the space of infinite jets of sections of E. Equivalently, J∞ is the set
of equivalence classes of tangency of sections of E up to order∞ at arbitrary points
of M . Namely, recall that two sections of E are tangent up to order ∞ at x ∈M if
their local descriptions in bundle coordinates have the same partial derivatives at x
up to arbitrarily high order. Tangency up to order ∞ is a well defined equivalence
relation. The equivalence class of section σ is denoted by j∞σ(x) and it is called
the ∞-th jet of σ at x. It contains a full, intrinsic information about all derivatives
of σ at x. We have

J∞ := {j∞σ(x) : σ a local section of E and x ∈M}
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There are obvious projections ζ∞ : J∞ → M , j∞σ(x) 7→ x, and, ζ∞,l : J∞ → Jl,
j∞σ(x) 7→ jlσ(x). Clearly, ζ∞ = ζl ◦ζ∞,l, and ζ∞,l = ζp,l ◦ζ∞,p, l ≤ p. The∞-th jet
space is a countable dimensional manifold which can be coordinatized as follows.
Let U be a coordinate domain in E and (xi, uα) bundle coordinates in it. There are
jet coordinates (xi, uαI ), |I| <∞, on ζ−1

∞,0(U). Namely, pick j∞σ(x) ∈ ζ−1
∞,0(U), and

let σ be locally given by (6). Then put

xi(j∞σ(x)) := xi(x), and uαI (j∞σ(x)) :=
∂|I|fα1
∂xI

(xi(x)).

Notice that sequence (22) gives rise to a pull-back sequence of algebra monomor-
phisms

C∞(M)
ζ∗−→ C∞(E) −→ · · · −→ C∞(Jk)

ζ∗k+1,k−→ C∞(Jk+1) −→ · · · . (23)

By definition, the algebra C∞(J∞) of smooth functions over J∞ is the direct limit
of sequence (23). In other words a smooth function on J∞ is just a function on some
finite jet space. Despite J∞ is not a finite dimensional smooth manifold, there is a
nice differential calculus on it, and one can do differential geometry on infinite jets,
to a large extent. For instance, one can define vector fields and differential forms on
J∞ in purely algebraic terms starting from the algebraic properties of the algebra
C∞(J∞). The interested reader can find details in [2]. Since, for what concerns
our purposes, the differential geometry of infinite jets does not differ much from
differential geometry of finite dimensional manifolds, we will treat J∞ as a standard
manifold in the following, without insisting on unessential, technical details.

The maps ζ∞ and ζ∞,l are fiber bundles (with infinite dimensional fibers), and
a section σ of E can be prolonged to a section j∞σ : M → J∞, x 7→ j∞σ(x), called
the∞-th jet prolongation of σ. If σ is locally given by (6), then j∞σ is locally given
by:

j∞σ : uαI =
∂|I|fα

∂xI
(xi), |I| <∞,

and contains a full, intrinsic information about all derivatives of σ. Sections of J∞

of the form j∞σ are called holonomic sections.
The main geometric structure on J∞ consists in a canonical section C : J∞ →

J1J∞ of the bundle J1J∞ → J∞. By definition, C(j∞σ(x)) = j1(j∞σ)(x). Since
sections of the bundle J1J∞ → J∞ are Ehresmann connections in J∞ (see Section
2), then C can be interpreted as a canonical connection in J∞, sometimes called the
Cartan connection. The Cartan connection is able to detect holonomic sections of
J∞ in the following sense: a section Σ of J∞ is holonomic iff it is an integral section
of C, i.e. j1Σ takes values in the image of C. Obviously, the Cartan connection is
the ∞-th order analogue of the embeddings Jk+1 ⊂ J1Jk. Howevere, the latter are
not connections. Because of this special feature of infinite jets, the geometry of J∞

is, in many respects, much simpler than the geometry of finite jets. For instance, as
we will see in a moment, the infinite order (both unreduced and reduced) Tulczyjew
triples have very simple descriptions.

Let us start with the unreduced triple. The main point here is that infinitesimal
configurations are first jets of sections of J∞. Accordingly, the unreduced infinite
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order Tulczyjew triple is

Ham J∞

��

��

J1PJ∞
βoo α //

��

��

Lag J∞

��

��

PJ∞

��

PJ∞

��

PJ∞

��

J1J∞

��

J1J∞

��

J1J∞

��
J∞ J∞ J∞

C

HH

, (24)

where α and β are defined in the usual way. The presence of the Cartan connection
simplifies a lot the structure of the vertexes in (24). Indeed, the projection J1J∞ →
J∞ is an affine bundle as usual but, in addition, it possesses a distinguished section C.
Accordingly, J1J∞ identifies canonically with its model vector bundle VJ∞⊗MT∗M .
As an immediate consequence, the projection J†J∞ → PJ∞ possesses a canonical
section as well, hence J†J∞ identifies with its model vector bundle PJ∞ ×M Ωm.
Finally, for similar reasons, Ham J∞ = P†J†J∞ possesses a canonical section and
identifies with its model vector bundle V∗PJ∞ ⊗M Ωm.

Diagram (24) plays the same role as diagram (12) for field theories depending
on a not better specified number of space-time derivatives of the fields. The latter
claim can be proved along very similar lines as those of Section 4 and we will not
insist much on this. Instead, we will briefly discuss the dynamics generated by a
Lagrangian density of non-specified order. Namely, if keeping track of the order of a
Lagrangian density L is not needed, then one can understand L as an m-form on M
with values in functions on C∞(J∞) (recall that any smooth function on J∞ is just a
smooth function on some Jk with not better specified k), i.e. a section of the bundle
J∞×M Ωm → J∞. To see a Lagrangian density L as a generating object, one has to
understand it as a section assigned along the submanifold J∞ ' im C ⊂ J1J∞. As
such, it can generate a dynamics D in the usual way D := α−1(SJ∞,L) ⊂ J1PJ∞.
It is easy to see that D does actually coincide with the Euler-Lagrange-Hamilton
equations determined by L [30, 31], which, in their turn, are naturally interpreted
as phase equations of the theory described by L. One can treat in a similar way
theories governed by more general generating objects.

Notice that when interpreting points in J1J∞ as infinitesimal configurations we
are actually adding unphysical degrees of freedom to the theory. To get rid of them
one can write down a reduced triple for field theories of non-specified order, similarly
as in Section 5. However, in this case, the situation is slightly different. Indeed J∞

plays both the role of “manifold of infinitesimal configurations”and “manifold of
positions”. Accordingly, the projection from the former to the latter is just the
identity map id : J∞ → J∞, understood as a 0-dimensional affine bundle, and the
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reduced triple is the rather simple diagram

Ham∞

��

��

J1PJ∞

��

��

Lag∞

��

��

J∞ PJ∞ //oo

��

J∞

J∞ // J1J∞

��

J∞oo

J∞ J∞ J∞

, (25)

where Lag∞ = Ham∞ := V∗J∞ ⊗M Ωm. The dynamics is generated using (25) in
the standard way. In particular, Lagrangian generating objects and Hamiltonian
generating objects coincide if one forgets about the order of the theory.

9. Conclusions. Most of the physical systems that can be described within La-
grangian or Hamiltonian formalisms are of order one, i.e. their Lagrangians depend
on first derivatives of configurations only. However, idealization processes inherent
to mathematical modelling, e.g. taking infinitesimally thin layers of elastic materials,
can lead to Lagrangians depending on derivatives of higher order. The Tulczyjew
approach to the Lagrangian and Hamiltonian description of physical systems can
be extended to such cases. Starting from the first principles of variational calculus
we were able to generalize first-order Tulczyjew triple in mechanics and field the-
ory to the higher order Tulczyjew triples of Sections 4 and 5, providing geometric
description of higher derivative field theories. Future research in this area should
concentrate on applications of this general theory to particular examples.
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[13] J. Grabowski, M. Rotkiewicz and P. Urbański, Double affine bundles, J. Geom. Phys., 60

(2010), 581–598.
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