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Abstract

The holographic Ryu-Takayanagi formula for entanglement entropy connects the

entanglement of a field theory to the geometry of a dual gravitational theory in a

straightforward and universal way.

The first part of this thesis applies this formula to study the entanglement en-

tropy in strongly coupled noncommutative field theories. It is found that the ground

state of these theories have substantial entanglement at the length scale of the non-

commutativity. The entanglement entropy in a different perturbative regime is also

computed, where in contrast it is found that noncommutative interactions do not in-

duce long range entanglement in the ground state to leading order in perturbations

theory.

The second part of this thesis explores some general consequences of this holo-

graphic formula for the entanglement entropy. Identities involving entanglement

entropies are related to nontrivial geometric constraints on gravitational duals. In

particular, the strong subadditivity of entanglement entropy is used to show that

dual three dimensional asymptotically anti-de Sitter gravitational states must obey

an averaged null energy condition. Finally, this holographic formula allows us at

least in principle to express the entanglement entropy of a region in a holographic

field theory in terms of the one-point functions in that theory. This is explored

in the context of a two dimensional conformal field theory where explicit calcula-

tions are possible. Our results in this case allow us to extend a recent proposal that

the entanglement entropy of states near the vacuum of conformal theories can be

understood by propagation in an auxiliary de Sitter space.
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Chapter 1

Introduction

The standard model of particle physics has applied the techniques of quantum field

theory very successfully to describe all observed particles and their interactions

with one important caveat: it does not include the effects of gravity. In the classical

limit, Einstein’s theory of general relativity and Maxwell’s equations describe the

behaviour of matter subject to gravity and electromagnetism. At small scales in

laboratory settings on earth, gravitational interactions become weak and can be

ignored, while electromagnetism dominates. At these small scales in the quantum

regime, Maxwell’s classical description breaks down. The study of this regime

lead to the development of the standard model, however as gravity is very weak

in this regime the question of how to include it in the framework of the standard

model could be postponed while still matching the results of experiments in particle

accelerators to exquisite precision.

Applying the techniques of perturbative quantum field theory to general relativ-

ity leads to a nonrenormalisable theory, indicating that general relativity can only

be understood as an effective field theory and does not describe the correct degrees

of freedom to understand quantum gravity at short distance scales. String theory

provides an ultraviolet completion which reduces to general relativity at long dis-

tances, but is not understood in a full nonperturbative sense. A full understanding

of quantum gravity is still lacking and this is especially apparent in the context of

geometries far from flat space such as black holes.

One of the symptoms of the problem of quantum gravity is the information loss

1



problem for black holes [1]. In classical general relativity no signal can escape the

event horizon of a black hole. However, the study of quantum fields in curved

space near a black hole reveals that black holes emit thermal radiation. As this

radiation carries away energy, the black hole must shrink until it reaches a small

size where the calculation breaks down. This poses a problem for any quantum

theory which proposes to describe this system: time evolution in quantum systems

is unitary and therefore reversible, yet the semi-classical description of the collapse

of matter into a black hole which eventually evaporates away into thermal radiation

is not unitary as the information about the configuration of the initial matter cannot

be contained in thermal radiation. Either the unitarity of quantum gravity or the

validity of the semi-classical approximation near the event horizon of the black

hole must be abandoned.

Another symptom is the holographic bound on entropy in gravitational systems

[2, 3]. In quantum field theories, thermal entropies are extensive. However, gravity

contains black holes which are thermal systems with an entropy proportional to

the area of their event horizon. In fact, in a gravitational system, thermal entropy

in a region is bounded by the area of the boundary of that region. This lead to

the holographic principle, which conjectures that a gravitational system in a region

should be described by degrees of freedom on the boundary of that region.

Taken together, these suggest that we do not understand how to correctly or-

ganise the degrees of freedom of quantum gravity. However, a concrete example

of the holographic principle has been found in the context of string theory where

quantum gravity in an asymptotically anti-de Sitter (AdS) geometry was found to

be dual to a conformal field theory living on its conformal boundary [4, 5]. This

explicit example of holography can be used to shed light on quantum gravity as the

dual conformal field theory is a well defined quantum system.1

Although in order to make contact with reality we might be most interested in

quantum gravity with asymptotically flat or de Sitter boundary conditions, asymp-

totically AdS boundary conditions provide a good starting point for understanding

1The classical limit of the gravitational description is dual to a strong coupling limit in the confor-
mal field theory, which although well defined in principle is often inaccessible to perturbative field
theory techniques. This presents an obstacle to our original goal of understanding quantum gravity,
but it also opens up new opportunities for understanding strongly coupled field theories by studying
the dual classical gravitational description.
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some of the problems of quantum gravity because they simplify the problem of

defining diffeomorphism invariant operators. Diffeomorphisms are a gauge sym-

metry of general relativity and so the physical states and operators of quantum

gravity should be diffeomorphism invariant, which precludes the existence of local

operators in quantum gravity. However, the conformal structure of the asymptotic

boundary of a geometry is invariant under diffeomorphisms and so this boundary

provides a natural setting for diffeomorphism invariant observables. In asymp-

totically AdS spaces, the conformal boundary is timelike and the observables of

quantum gravity can be matched to those of a conformal field theory.

This thesis will focus on a particular diffeomorphism invariant quantity, the

area of the minimal surface anchored on a region of the boundary. The holographic

duality relates this quantity to entanglement entropy in the dual conformal field

theory through the Ryu-Takayanagi (RT) formula [6, 7, 8] and its covariant gener-

alisation given by Huberny, Rangamani and Takayanagi [9].

From topological condensed matter systems, to black holes, to phase transitions

and the emergence of spacetime in holography, the study of entanglement entropy

has proven fruitful across many fields of physics [10, 11, 12, 8, 13]. Entanglement

is one of the principal features distinguishing the quantum from the classical and

entanglement entropy has proven to be an important tool for quantifying entangle-

ment between two systems.

A useful property of entanglement entropy is that its definition is independent

of the details of the theory in question giving us an tool to study universal prop-

erties of field theories and to compare the entanglement structure of very different

field theories. This universality is reflected in the RT formula which relates the

entanglement entropy directly to the geometry of the gravity dual.

Part I of this thesis uses this holographic relation to compute the entangle-

ment entropy in noncommutative field theories using known gravitational duals

and contrasts these results to those found in a different perturbative regime of these

theories.

One of the original motivations for studying noncommutative field theories was

to help regulate divergences in local quantum field theories. Much as introducing

a commutation relation between positions and momenta regulated the ultraviolet

catastrophe in black body radiation by introducing a minimal scale in phase space,

3



a commutation relation between coordinates can introduce a minimal length scale.

Since this involves quantising coordinates, it was hoped that this might be related to

the quantisation of spacetime required to understand quantum gravity. In addition,

noncommutativity appears naturally in string theory in the context of D-branes.

Part II studies general properties of this holographic relation, with the goal of

better understanding the holographic map and ultimately quantum gravity. Chapter

4 relates universal properties of entanglement entropy to constraints on the classical

limit of dual holographic geometries in the form of gravitational energy inequali-

ties. This tells us that although the effective theory given by general relativity can

describe any geometry given appropriate matter, the ultraviolet completion given

by string theory can only accommodate geometries obeying some constraints.

Chapter 5 uses properties of classical geometries to express entanglement en-

tropy in terms of one-point functions, exhibiting constraints on quantum states

which have a classical gravitational description. The results of this chapter also

extend a surprising connection between entanglement entropy in conformal field

theories and a field propagating in an auxiliary de Sitter (dS) space.

1.1 Entanglement
Given two Hilbert spaces HA and HB, we can construct a tensor product space

H = HA⊗HB
2. A state in the tensor product space is called a product state if

it can be written as the tensor product of states in the constituent Hilbert spaces.

|ψ〉 ∈H is a product state if |ψ〉 = |ψA〉⊗ |ψB〉 for |ψi〉 ∈Hi. A state which is

not a product state is called an entangled state. Given an operator OA on HA and

a product state |ψ〉 ∈H , 〈ψ|OA⊗ IB|ψ〉= 〈ψA|OA|ψA〉. The expectation value of

OA in a product state only depends on the state in the A-subspace. This is not the

case in an entangled state.

A density matrix is an operator on H which encodes the state, but which can

also encode classical uncertainty like that found in statistical mechanics. Given an

2Given a basis {|χa〉} for HA and {|ξb〉} for HB the tensor product space is the space spanned
by {|χa〉}×{|ξb〉}.
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ensemble of states |ψi〉 with classical probabilities pi, the density matrix is

ρ = ∑
i

pi|ψi〉〈ψi|. (1.1)

A density matrix describes a pure state if it can be written as ρ = |ψ〉〈ψ| for a single

state, otherwise it describes a mixed state. The expectation value of an observable

is tr(ρO). Note that ρ itself is not an observable as it depends on the state.

Given a tensor product space and a basis {|χa〉} for HA and {|ξb〉} for HB, the

partial trace is

trB(O) = ∑
b
〈ξb|O|ξb〉, (1.2)

which defines an operator on A.

The reduced density matrix ρA = trB ρ reproduces the expectation values of

operators OA on HA,

trρOA = trA ρAOA. (1.3)

The expectation value of local operators in a subspace can be reproduced with

a state in that subspace at the cost of introducing classical uncertainty when the

original state was entangled.

Quantifying this uncertainty using the von Neumann entropy of the reduced

density matrix leads us to a natural way of quantifying the entanglement of a state.

This is called the entanglement entropy3

S(A) =− trA (ρA logρA) . (1.4)

If ρ corresponds to a pure state on H = HA⊗HB, then the entanglement

entropy computed using either subspace must be equal, S(A) = S(B). In this case

the classical uncertainty in the reduced density matrices on either subspace comes

only from the entanglement. If the state is mixed, this equality does not hold as

there is additional classical uncertainty which can be unevenly distributed between

3A useful reference on the topic of quantum information is [14].
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the subsystems.

Of course this one number cannot fully describe the entanglement of a state.

Other useful quantities include the Renyi entropies

Sn =
1

1−n
log trA (ρ

n
A) (1.5)

and the entanglement negativity.

Knowledge of all the Renyi entropies allows one to compute the spectrum of

the reduced density matrix also known as the entanglement spectrum. In fact the

Renyi entropies are often used to calculate the entanglement entropy since

lim
n→1

Sn = SA. (1.6)

1.1.1 Field theory

The Hilbert space of a field theory can be decomposed into a tensor product of the

degrees of freedom inside a region and those in its compliment. The entanglement

entropy of a region in a field theory is that resulting from this decomposition. This

entanglement entropy is defined for any state of the field theory, but unless oth-

erwise specified we will usually be interested in the entanglement entropy in the

ground state of the theory in question.

Since the von Neumann entropy of the reduced density matrix in a thermal

state4 will receive an extensive contribution related to the thermal entropy, some

reserve the terminology of entanglement entropy for the vacuum state where the

entanglement entropy can only be attributed to entanglement. This work will use

the term somewhat more loosely to refer to the von Neumann entropy of the re-

duced density matrix in any state. The entanglement entropy in the ground state is

sometimes referred to as geometric entanglement entropy in the literature.

When decomposing the Hilbert space of a gauge theory there are ambiguities

related to the fact that the physical gauge invariant Hilbert space is not strictly local.

The resolution of these ambiguities has been discussed in detail in the literature

4A thermal state is a mixed state described by a density matrix where every state appears with a
classical probability given by the canonical ensemble, ρthermal = e−βH .
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[15, 16, 17].

In the ground states of local relativistic field theories, the entanglement entropy

usually has an area law divergence.5 In d dimensions,

S(A) =C
|∂A|
εd−1 + . . . , (d > 2) (1.7)

S(A) =C logε + . . . , (d = 2) (1.8)

where ∂A is the boundary of A, |∂A| is the area of this boundary, C is a regulator

dependent constant and ε is a UV regulator such as a lattice spacing. This area

law divergence reflects the short range entanglement present in local quantum field

theories.

In field theories, the entanglement entropy is often computed using the replica

trick. Computing the Renyi entropies defined in (1.5) requires evaluating the nth

power of the reduced density matrix, which can be computed by appropriately

sewing together along A the boundary conditions of n copies of the theory in a

path integral. Analytically continuing the result for the nth Renyi entropy to make

n continuous and taking the appropriate limit as n→ 1 allows us to compute the

entanglement entropy. This procedure is described in detail in Section 3.3 where it

is used in the context of perturbative quantum field theory.

1.1.2 Relative entropy

The relative entropy

S (ρ||σ) = tr(ρ logρ)− tr(ρ logσ) . (1.9)

provides a measure of the distinguishability between two density matrices as S(ρ||σ)≥
0 with S(ρ||σ) = 0 iff ρ = σ . If ρ and σ are two different pure states this measure

will diverge.

Fixing a state σ , the modular Hamiltonian can be defined Hσ = logσ . The

5See [18] for a review of area laws. Exceptions include Fermi surfaces [19].
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relative entropy is

S (ρ||σ) =∆E−∆S (1.10)

∆S =Sρ −Sσ (1.11)

∆E =〈Hσ 〉ρ −〈Hσ 〉σ . (1.12)

The relative entropy is positive and monotonic. For any regions A and B such

that A⊂ B,

S (ρA||σA)≥0, (1.13)

S (ρB||σB)≥S (ρA||σA) . (1.14)

The relative entropy of a density matrix with itself vanishes. Since the relative

entropy is positive,

d
dλ

S(ρ +λδρ||ρ)
∣∣∣∣
λ=0

= 0, (1.15)

which leads to the first law for entanglement entropies: 6

δS = δE, (1.16)

where where δS and δE are the first order changes under the perturbation of the

state to the entanglement entropy and the expectation of the modular Hamiltonian

respectively.

The monotonicity of relative entropy is equivalent to the strong sub-additivity

of entanglement entropy (SSA), which says that for tripartite systems with H =

HA⊗HB⊗HC, [20, 21]

S(A∪B)+S(B∪C)≥ S(B)+S(A∪B∪C). (1.17)

6This name is in analogy to the first law of thermodynamics.
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This can be recast in terms of the mutual information

I(A,B)≡ S(A)+S(B)−S(A∪B), (1.18)

so that strong sub-additivity reads

I(A,B∪C)≥ I(A,B). (1.19)

Restricting ourselves to a subset (B) of a subsystem (B∪C) cannot increase our

knowledge about the correlations between this subsystem and a reference subsys-

tem (A).

1.2 Holography
This section will review gauge-gravity duality. The best established example is the

AdS5×S5—N = 4,d = 4 Super-Yang Mills duality [4, 5]. A number of variations

of this example are also understood, which lead us to some entries in the dictionary

of the duality7 in its most general form.

D-branes are extended dynamical objects in string theory, described in text-

books on perturbative string theory, e.g. [22]. At small string coupling (gs),8 their

degrees of freedom can be understood using string perturbation theory. These in-

clude a gauge theory living on the world-volume of the brane. The rank of the

gauge group of this theory counts the number of units of brane charge, so we think

of the low energy excitations of a stack of N branes as including a U(N) gauge

theory. The Yang-Mills coupling of this U(N) gauge theory obeys g2
Y M ∼ gs.

A large stack of these branes has a complimentary description at large string

coupling [5]. In this case, the stack of branes represents a large classical source and

can be described using classical gravity. We will focus on the case of D3-branes

which fill 3 spatial directions. The curvature length scale of this classical solution

obeys R4 = 4πgsα
′2N, where α ′ is the dimensionful string tension parameter in

7The gauge-gravity dictionary is the set of relationships that allows us to convert concepts be-
tween the two sides of the duality.

8String theory doesn’t have externally fixed dimensionless coupling constants. However, in string
perturbation theory amplitudes are expanded in the constant part of the expectation value of the
dilaton field.

9



string theory which sets the length scale of fundamental strings. For this classical

description to be a good approximation, the curvature must be large compared to

the scale of both gravity and strings. In terms of string parameters, the string scale

is ls ∼
√

α ′ and the plank length is lp =
√

GN ∼
√

α ′
√

gs. We need that

R4

l4
s
∼ gsN ∼ g2

Y MN ∼ λ � 1 (1.20)

R4

l4
p
∼ N� 1, (1.21)

where λ is the ’t-Hooft coupling. In the low-energy limit of this gravitational

description, the dynamics of a near horizon AdS5× S5 spacetime decouples from

the rest. This is understood to be a complimentary strong coupling description of

the low energy sector of this stack of branes, which at weak coupling is a U(N)

gauge theory.

This example related a specific spacetime to a specific conformal field theory

(CFT). However, by considering different brane configurations, by varying the di-

mensionality of the branes or by turning on other sugergravity fields, many gauge-

gravity dualities can be found [23, 5, 24, 25].

There is an important entry in the holographic dictionary which allows us to

extend this duality. Deforming the action of a conformal theory by an operator

O with source J corresponds to adding a scalar field to the gravitational action

[26]. J and 〈O〉 determine the boundary conditions for the scalar at the conformal

boundary of the asymptotically AdS space. The mass of the scalar field is related

to the conformal dimension of the operator O by R2m2 = ∆(∆−d).

A general feature of the duality is that to describe a field theory defined on

a manifold M the gravitational description will need a conformal boundary of M.

This means that if the gravitational theory is defined on a manifold N, there must

be a diffeomorphism which preserves the metric up to a local rescaling between

∂N and M.9 This feature allows us to use local data in the field theory as boundary

conditions for the gravitational theory.

9Given a region or a manifold M, ∂M denotes its boundary.
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Figure 1.1: Two time slices of asymptotically AdS3 geometries in coordinates
which bring the conformal boundary (in blue) into view. The minimal
surface (in red) homologous to a boundary region (in orange) is shown.
On the left the geometry is empty AdS3 corresponding to the vacuum
state of a CFT2. On the right, the geometry is a BTZ black hole corre-
sponding to a thermal state of a CFT2. The grey region is enclosed by
the horizon of the black hole.

1.2.1 Holographic entanglement entropy

This thesis focuses on a particular entry in this holographic dictionary relating geo-

metric entanglement entropy in a field theory to the area of boundary anchored min-

imal surfaces in its gravitational description known as the Ryu-Takayanagi (RT)

formula [6, 7, 9, 8, 27, 28].

The entanglement entropy of a region A in a field theory in a particular state is

given by the area of the minimal extremal area surface homologous10 to A on the

conformal boundary of the dual gravitational description of that state.

Let Ã be an extremum of the area functional such that ∂ Ã = ∂A, then

S(A) =
|Ã|

4GN
, (1.22)

where |Ã| is the area of Ã and GN is Newton’s constant. Figure 1.1 presents a few

examples of such minimal surfaces for asymptotically AdS3 spacetimes.

10Two submanifolds A and B of dimension k of a manifold M of dimension d > k are homologous
if ∂A = ∂B and there exists a submanifold C such that ∂C = A∪B. This essentially means that A is
smoothly deformable into B.
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Figure 1.2: When the region A (in orange) is disconnected, there are multiple
homologous extremal surfaces (in red). The extremal surface with the
minimal area should be chosen.

If there are multiple extremal surfaces, the one with minimal area should be

taken. If the gravitational state has a black hole, it may be necessary to include the

area of an unconnected component of Ã which wraps the horizon of the black hole

so as to obey the homology constraint. In particular, there is no requirement for A

or Ã to be connected. See Figure 1.2 for an example where A is disconnected and

Figure 1.3 for an example where Ã is disconnected even though A is not.

For static geometries and regions defined on a fixed time slice of the field the-

ory, the extremal surface is a minimal surface on the extension of that fixed time

slice into the bulk of the dual geometry.

Regularisation

The entanglement entropy in field theories has a UV divergence as was discussed in

Section 1.1.1. In holography this is reflected by the fact that the conformal bound-

ary is at infinite distance, require any surface anchored there to have infinite area.

In order to regularise the entanglement entropy, the surface is instead anchored to a

distant cutoff surface. In this picture, the area law divergence typical of the entan-

glement entropies in field theories arises from the part of the minimal surface near

the conformal boundary. In asymptotically AdS spaces, minimal surfaces quickly

dive into the interior of the space and the divergence in their area comes from a

throat near the boundary of the region (∂A) where they must be anchored to the

12



Figure 1.3: Two local minima of the area functional (in red) homologous to
the same region (in orange) in an asymptotically AdS3 BTZ black hole
geometry corresponding to a thermal state of a CFT2 (the conformal
boundary is blue and the interior of the black hole horizon is grey). The
extremal surface with the minimal area should be chosen.

conformal boundary.

Thermal states

In thermal states, for regions A much larger than the thermal scale, the entangle-

ment entropy receives an extensive contribution proportional to the thermal entropy

S(A) ∝ |A|s, (1.23)

where |A| is the volume of A and s is the entropy density in the thermal state.

The gravitational dual to a thermal state is generally a black hole where the

thermal scale is tied to the size of the black hole. The extensive contribution to the

entanglement entropy comes from the minimal surface dwelling near the horizon

of the black hole as can be seen in Figure 1.1.

When A includes the entire boundary, the entanglement entropy is the thermo-

dynamic entropy. In this case, the minimal surface homologous to the boundary

cannot shrink to zero due to the presence of the black hole. Instead it wraps the

horizon, reproducing the well known Bekenstein-Hawking entropy of the black
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hole

S =
Area
4GN

. (1.24)

1.3 Noncommutative gauge theories
Noncommutative spaces arise naturally in string theory in the context of D-branes.

Noncommutative spaces first manifest themselves in that the coordinates of a stack

of D-branes are given by a set of noncommuting matrices rather than a list of

numbers. In addition, the gauge field living on the worldvolume of a brane in the

presence of a background NS-NS 2 form B field along the brane is a noncommu-

tative field theory. In particular, the gauge theory on a D3-brane is Yang-Mills on

a noncommutative plane. The gravity dual to this theory was found in [29, 30],

which gives us the opportunity on one hand to learn about the application of the

RT formula to new backgrounds11 and on the other hand to study the entangle-

ment entropy of this theory [31]. Part I of this thesis is dedicated to studying the

entanglement entropy of noncommutative theories.

1.3.1 Summary of results for holographic entanglement entropy

In Chapter 2, the holographic RT formula is used to study entanglement entropies

in a class of nonlocal theories related to field theories on noncommutative spaces.

This will draw on my work with Joanna Karczmarek [31].

In a nonlocal theory, the behaviour of entanglement entropy could be expected

to deviate from an area law and this is precisely what was found using holographic

methods at strong coupling. In a simple nonlocal theory with a fixed scale of

nonlocality aL, a dipole deformation of N = 4 SYM, the entanglement entropy

is extensive (proportional to the volume of A), for regions A of size up to aL. At

length scales larger than aL, it follows an area law, with an effective number of

entangled degrees of freedom which is proportional to aL. This is consistent with

all the degrees of freedom within a region A of size aL or smaller, and not only those

11This gravity dual has a number of unusual properties, including not being asymptotically AdS,
a nontrivial dilaton profile and a nonzero B field.
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living close to the boundary of A, having quantum correlations with the outside of A

due to the nonlocal nature of the Hamiltonian. In contrast, in the noncommutative

deformation of N = 4 SYM, which is known to exhibit UV/IR mixing and whose

nonlocality length scale grows with the UV cutoff, the entanglement entropy is

extensive for all regions as long as their size is fixed as the UV cutoff is taken

away.12

Since our theories differ from N = 4 SYM in the UV, the holographic duals

are not asymptotically AdS spaces. Their non-asymptotically AdS geometry has

an interesting consequence. In previously studied examples of extensive behaviour

of entanglement entropy (for example, in thermal states) this extensive behaviour

was due to the minimal surface ‘wrapping’ a surface in the IR region of the dual,

such as a black hole horizon (see for example [33]). Here, however, the extensivity

arises from the fact that the minimal surfaces stays close to the cutoff surface: the

volume law dependence of entanglement entropy is a UV phenomenon.

1.3.2 Summary of results for perturbative entanglement entropy

A natural question is whether the volume law behaviour found in the holographic

analysis of entanglement entropies is generic to nonlocal theories or if it is confined

to a strongly coupled, large N regime.

In Chapter 3, based on [34], the role of interactions in this question is inves-

tigated by considering field theories at small coupling and with one scalar degree

of freedom and nonlocal interactions. The leading divergence in entanglement en-

tropy of large regions to leading order in perturbation theory is not found to be

proportional to the length scale of the nonlocality, hence no evidence of a volume

law is found. Instead, the leading divergence in both theories has the same form

as the standard local λφ 4 theory which follows an area law. This result indicates

that, perturbatively these nonlocal interactions are not generating sufficient entan-

glement at distances of the nonlocality scale to change the leading divergence, at

least to first order in the coupling.

12Entanglement entropy in the noncommutative theory was studied before in [32]. Here we extend
and improve on those results.
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1.4 The structure of holographic entanglement entropies
Part II investigates general features of the RT formula. This has the double goal of

better understanding the two theories involved in the duality as well as clarifying

the structure of the duality itself.

1.4.1 Constraints on geometry from entanglement

Entanglement entropy is a function on the subsets of a spacetime manifold. How-

ever not all such functions can arise as the entanglements entropies of some state.

There are a number of constraints that the entanglement entropy of any state must

obey. Similarly, not all such functions can arise as the areas of minimal surfaces in

some geometry. Holographic entanglement entropy must satisfy both these sorts

of constraints.

Studying these constraints and their translations through the gauge-gravity dic-

tionary can provide new constraints on quantum gravity theories dual to quantum

field theories. A strong form of gauge-gravity duality, where any quantum gravity

theory with asymptotically AdS boundary conditions is dual to some field theory,

would lead us to interpret any constraints following from the axioms of quantum

mechanics as necessary conditions on any consistent theory of quantum gravity.

Constraints on entanglement entropies

The work in Chapter 4 concentrates on particular constraints on entanglement en-

tropies following from the basic laws of quantum mechanics, which where dis-

cussed in Section 1.1.2. See [35] for more details on these constraints and addi-

tional references.

The RT formula gives a geometric interpretation of these entanglement inequal-

ities in terms of the areas of minimal surfaces. The goal is to transform these

constraints on the areas of surfaces into more useful geometric constraints.

Einstein Equations

This approach was used to derive that the holographic duals of states near the vac-

uum must obey the linearised Einstein equations near AdS [36, 37, 38].

Using techniques developed by Wald and Iyer for proving the first law of black
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hole thermodynamics [39, 40], an integral of the linearised Einstein tensor for a

perturbation over a region bounded by a minimal surface can be related to the

change in the area and the energy associated to the asymptotic boost Killing vector.

Through the gauge-gravity dictionary these are related to the entanglement en-

tropy and the expectation of the modular Hamiltonian. In the case of black hole

thermodynamics a first law can be derived starting from the Einstein equations. In

this case the logic can be reversed by using the first law of entanglement entropies

in (1.16) for spherical boundary regions of all sizes to derive the linearised Einstein

equations.

Energy conditions

Once we go beyond first order in perturbation theory, the field theory entanglement

constraints no longer have the form of an equality, but rather of an inequality.

Inequalities that involve the Einstein tensor are referred to as energy or cur-

vature conditions. Conditions of these form are usually assumed to hold for rea-

sonable matter and are necessary to prove singularity theorems. Deriving such

inequalities from the tenants of quantum mechanics would put them on more solid

footing, so these provide a natural target.

Indeed some progress towards relating these constraints to such energy condi-

tions has been made in low spacetime dimensions [41, 35, 42].

Chapter 4 shows that for 1 + 1-dimensional spacetimes which have transla-

tional invariance, strong subadditivity can be related to an integrated null energy

condition of the form ∫
γ

dsTµνuµuν ≥ 0 (1.25)

where γ is an arbitrary spatial geodesic and uµ is a null vector generating a light-

sheet of γ defined such that translation by uµ produces an equal change in the

spatial scale factor at all points.

In addition, a local version of the weak energy condition in the field theory

directions of the dual geometry near the boundary follows from the positivity of

the relative entropy. The near boundary expansion of Tµνuµuν must be positive for

any timelike vector uµ with components only in the field theory directions, but not
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in the holographic direction.

This chapter based on my work with Nima Lashkari, Philippe Sabella-Garnier

and Mark Van Raamsdonk [35].

1.4.2 Expanding holographic entanglement entropies in terms of
field theory one-point functions

In classical gravitational states, boundary conditions at the conformal boundary

along with the equations of motion determine the geometry. Using the holographic

duality this geometry allows us to compute whatever we wish about the state of

a quantum theory with the boundary conditions at the conformal boundary as the

only input. These are dual to the expectation value or one-point functions of op-

erators in the quantum theory and the sources or coupling constants in its action.

In other words, a holographic state, that is a state which is well approximated by a

classical gravitational dual, is determined by its one-point functions. This can be

contrasted to the fact that in a generic quantum state, knowledge of the expectation

of an operator does not provide any information about the expectation value of the

square of that operator.

Chapter 5 explores methods to compute the entanglement entropy in an expan-

sion of one-point functions of operators in the field theory using both holographic

and field theory methods. In particular, we developed an iterative method to ex-

press the entanglement entropy in a two-dimensional conformal field theory for

states dual to gravity with no additional matter in terms of the one-point function

of the stress tensor.

In [43], it was realised that the leading order contribution to entanglement en-

tropy in this expansion can be understood in terms of the propagation of a scalar

field in an auxiliary de Sitter space. We used our technique to compute the next

order contribution and found that it could be understood by adding a simple inter-

action term to this scalar field.

This chapter is based on my work with Matt Beach, Jaehoon Lee and Mark Van

Raamsdonk [44].
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1.5 Outline
The following four chapters each contain my published work as described above

and as detailed in the preface to this thesis. Each has its own introduction which

introduces the concepts specific to that work and summarises the results of the rest

of that publication. The final chapter is a conclusion which will summarise the

original results contained in this thesis and discuss these results in the context of

existing literature.
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Part I

Entanglement Entropy in
Noncommutative Field Theories
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Chapter 2

Holographic Entanglement
Entropies in Noncommutative
Theories

2.1 Introduction
Geometric entanglement entropy as a tool to characterize physical properties of

quantum field theories has recently received a large amount of attention. One at-

tractive feature of geometric entanglement entropy as an observable is that it is de-

fined in the same way in any quantum field theory: it is simply the von Neumann

entropy, −Tr(ρA logρA), associated with the density matrix ρA describing degrees

of freedom living inside a region A. ρA arises when the portion of total Hilbert

space associated with degrees of freedom living outside of A is traced over. Uni-

versality of entanglement entropy is reflected in the Ryu-Takayanagi holographic

formula [6]

S[A] =
Vold(Ã)

4G(d+2)
N

. (2.1)

Here, we place A, a d-dimensional spacial region, on a spacelike slice of the bound-

ary of the (d+2)-dimensional spacetime dual to the quantum field theory of interest.

Ã is a minimal area surface in the bulk of the holographic dual spacetime homolo-
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gous to A. G(d+2)
N is the (d+2)-dimensional Newton constant and the d-dimensional

volume of Ã is denoted with Vold(Ã). 1

The Ryu-Takayanagi formula (2.1) is applicable to holographic duals where

the dilaton and the volume of the internal sphere are both constant. However, duals

to the nonlocal theories we are interested in have neither, so the local gravitational

constant G(d+2)
N varies. Thus we must use a generalized version of formula (2.1),

given by [7]

S[A] =
Vol(Ā)

4G(10)
N

, with Vol(Ā) =
∫

d8
σe−2φ

√
G(8)

ind , (2.2)

where G(10)
N = 8π6(α ′)4g2

s is the (asymptotic) 10-dimensional Newton’s constant

and φ is the local value of the fluctuation in dilaton field (so that the local value

of the 10-dimensional Newton’s constant is G(10)
N e2φ ). Integration is now over

a co-dimension two surface Ā that wraps the compact internal manifold of the

holographic dual.

Because Ā wraps the internal manifold, its boundary is the direct product of

the boundary of A, ∂A, and the internal manifold. To obtain entanglement en-

tropy, Ā is chosen to to have minimal area (we will only work in static spacetimes).

G(8)
ind is the induced string frame metric on Ā. By considering the standard rela-

tionship between local Newton’s constants in different dimensions: G(d+2),local
N =

G(10)
N e2φ/V8−d , together with Vol(Ā) = V8−d VoldÃ, (2.1) can be easily recovered

from (2.2) for a scenario where the dilaton is a constant and the internal manifold

has a constant volume V8−d (in string metric). The more general formula (2.2)

has been used to study, for example, tachyon condensation [46] and confinement-

deconfinement transition [47]. We will refer to the 8-dimensional Vol(Ā) as the

area of the minimal surface from now on.

Generically, geometric entanglement entropy has a UV divergence, so it needs

to be regulated with a UV cutoff. Holographically, this is accomplished the usual

way by placing the region A on a surface which is removed from the boundary

of the holographic dual spacetime. Once the theory has been regulated with a

1For an accessible introduction and some recent developments to holographic entropy, see for
example [8, 45].
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cutoff, geometric entanglement entropy in the vacuum state can be thought to count

effective degrees of freedom inside A that have quantum correlations with degrees

of freedom outside of A. In other words, it measures the the range of quantum

correlations generated in the ground state by the interactions in the Hamiltonian.

For a local theory, degrees of freedom with correlations across the boundary of A

must live near this boundary, which leads to the area law: entanglement entropy

in local theories is generically proportional to the area of the boundary of A, |∂A|.
While the area law has not been proven for a general interacting field theory, it is

expected to generically hold in local theories for the reason outlined above (see

[18] for a review, focusing on lattice systems).

In a nonlocal theory, behaviour of entanglement entropy could be expected

to deviate from the area law and this is precisely what we find using holographic

methods at strong coupling. In a simple nonlocal theory with a fixed scale of nonlo-

cality aL, a dipole deformation of N = 4 SYM, we find that entanglement entropy

is extensive (proportional to the volume of A), for regions A of size up to aL. At

length scales higher than aL, it follows an area law, with an effective number of

entangled degrees of freedom which is proportional to aL. This is consistent with

all degrees of freedom within a region A of size aL or smaller, and not only those

living close to the boundary of A, having quantum correlations with the outside of

A due to the nonlocal nature of the Hamiltonian. In contrast, in the noncommuta-

tive deformation of N = 4 SYM, which is known to exhibit UV/IR mixing and

whose nonlocality length scale grows with the UV cutoff, we find that entangle-

ment entropy is extensive for all regions as long as their size is fixed as the UV

cutoff is taken away to infinity.2

Recent work [48] links behaviour of entanglement entropy to the ability of a

quantum system to ‘scramble’ information. Whether a given physical theory is ca-

pable of scrambling, and how fast it can scramble, has recently became of interest

to the gravity community in the view of the so called fast scrambling conjecture

[49]. It has been suggested that nonlocal theories might emulate the scrambling

behaviour of stretched black hole horizons. While the results of [48] do not apply

directly to quantum field theories, they are quite suggestive. Generally speaking,

2Entanglement entropy in the noncommutative theory was studied before in [32]. Here we extend
and improve on those results.
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they imply that local (lattice) theories, generally exhibiting area law for entan-

glement entropy at low energies, do not scramble information at these low ener-

gies, while theories with volume law entanglement entropy do. As we summarized

above, we demonstrate here, in the two nonlocal theories we consider, that entan-

glement entropy follows a volume law in the vacuum state. There is no reason

why entanglement entropy would cease to be extensive in an excited energy state;

if anything, high energy states are more likely to have extensive entanglement en-

tropy than low-lying states such as the vacuum state [50, 51]. Thus, the results of

[48] would suggest that our nonlocal theories are capable of scrambling informa-

tion. Combined with such results as those in [52], which shows that timescales for

thermalization in nonlocal theories are accelerated compared to local theories, our

work points towards these nonlocal theories at strong coupling being fast scram-

blers.

Since our theories differ from N = 4 SYM in the UV, the holographic duals

we use are not asymptotically AdS spaces. Their non-asymptotically AdS geom-

etry has an interesting consequence. In previously studied examples of extensive

behaviour of entanglement entropy (for example, in thermal states) this extensive

behaviour was due to the minimal surface ‘wrapping’ a surface in the IR region

of the dual, such as a black hole horizon (see for example [33]). Here, however,

the extensivity arises from the fact that the minimal surfaces stays close to the

cutoff surface: the volume law dependence of entanglement entropy is a UV phe-

nomenon.

As we were finalizing this manustript, preprint [53] appeared, which also anal-

izes entanglement entropy in the noncommutative SYM and which has some over-

lap with our work.

The reminder of the paper is organized as follows: in Section 2.2 we review

nonlocal theories of interest and their gravity duals, in Section 2.3 we compute

holographic entanglement entropy for a strip geometry, in Section 2.4 we compute

holographic entanglement entropy in the noncommutative theory for a cylinder

geometry, in Section 2.4 we briefly comment on mutual information in the non-

commutative theory, and in Section 2.6 we offer further discussion of our results.
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2.2 Theories considered and their gravity duals
We study the strong coupling limit of two different nonlocal deformations of N =

4 SYM in 3+1 dimensions: a noncommutative deformation and a dipole deforma-

tion. Both of these can be realized as the effective low energy theory on D3-branes

with a background NSNS B-field. To obtain the noncommutative deformation,

both indices of the B-field must be in the worldvolume of the D3-brane, while

to obtain the dipole theory, one of the indices must be in the worldvolume of the

D3-brane while the other one must be in an orthogonal (spacial) direction.

Since both of these theories are UV deformations of the N = 4 SYM, deep in

the bulk their holographic duals reduce to pure AdS:

ds2

R2 = u2 (−dt2 +dx2 +dy2 +dz2)+ du2

u2 +dΩ
2
5 (2.3)

with a constant dilaton:

e2φ = g2
s . (2.4)

In our coordinates, the boundary of AdS space, corresponding to UV of the field

theory, is at large u. It is in that region that the holographic duals in the next two

sections will deviate from the above.

2.2.1 NCSYM

Noncommutative Yang-Mills theory is a generalization of ordinary Yang-Mills the-

ory to a noncommutative spacetime, obtained by replacing the coordinates with a

noncommutative algebra. We consider a simple set up where the x and y coor-

dinates are replaced by the Heisenberg algebra, for which [x,y] = iθ and which

corresponds to a noncommutative x− y plane.

One way to define this noncommutative deformation of N = 4 SYM is to

replace all multiplication in the Lagrangian with a noncommutative star product:

( f ?g)(x,y) = e
i
2 θ

(
∂

∂ξ1
∂

∂ζ2
− ∂

∂ζ1
∂

∂ξ2

)
f (x+ξ1,y+ζ1)g(x+ξ2,y+ζ2) |ξ1=ζ1=ξ2=ζ2=0

(2.5)

At low energy, this corresponds to deforming ordinary SYM theory by a gauge

invariant operator of dimension six.
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The holographic dual to this noncommutative SYM theory is given by the fol-

lowing bulk data [29, 30]

ds2

R2 = u2 (−dt2 + f (u)
(
dx2 +dy2)+dz2)+ du2

u2 +dΩ
2
5 ,

e2φ = g2
s f (u) ,

Bxy = −1− f (u)
θ

=−R2

α ′
a2

θ u4 f (u) ,

f (u) =
1

1+(aθ u)4 , (2.6)

where Bxy is the only nonzero component of the NS-NS form background. Note

that x,y,z have units of length, while u has units of length inverse, or energy. aθ =

(λ )1/4
√

θ is the weak coupling length scale of noncommutativity
√

θ scaled by

a power of the ’t Hooft coupling λ and can be thought of as the length scale of

noncommutativity at strong coupling.

In the infrared limit, u� a−1
θ

, f (u) ≈ 1 and the holographic dual appears to

approach pure AdS space (2.3), while the UV region at large u is strongly de-

formed from pure AdS, so the holographic dual is not asymptotically AdS. Let ε

denote the UV cutoff and uε = ε−1 the corresponding energy cutoff. For ε � a−1
θ

(uε � a−1
θ

), the deformed UV region of the dual spacetime is removed: noncom-

mutativity has been renormalized away. However, when uε > a−1
θ

, the non-AdS

geometry near the boundary can influence the holographic computations of any

field theory quantities, including those with large length scales. This opens the

possibility of UV/IR mixing, defined as sensitivity of IR quantities to the exact

value of the UV cutoff. Noncommutative theories are known to have UV/IR mix-

ing [54]. The simplest way to understand the mechanism behind the UV/IR mix-

ing in noncommutative theories is to consider fields with momentum py in the

y-direction in (2.5): f (x,y) = e−ip f
y y f̂ (x), g(x,y) = e−ipg

yyĝ(x). Then f ? g(x,y) =

e−i(pg
y+p f

y )y f̂ (x−θ pg
y/2)ĝ(x+θ p f

y/2): the interaction in the x-direction is nonlocal

on a length scale θ py. We will see that this momentum (or energy) dependence of

the scale of nonlocality is reflected in holographic entanglement entropy.

Finally, we need to understand the geometry of the boundary. The metric on

the boundary of the gravitational spacetime (2.6) is singular since f → 0 there.
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However, this is not the metric applicable to the boundary field theory, as open

string degrees of freedom see the so-called open string metric. This is the effective

metric which enters open-string correlation functions in the presence of a NS-NS

potential B, first derived in [55]3 and given by

Gi j = gi j−
(
Bg−1B

)
i j , (2.7)

where gi j is the closed string metric. Substituting our holographic data at a fixed

u, we obtain the open string metric, Gi j = R2u2(δi j). Removing an AdS conformal

factor, we see that the boundary field theory lives on a space with a conformally

invariant metric ds2 = −dt2 + dx2 + dy2 + dz2. This is the metric we will use to

compute distances on the field theory side of the holographic correspondence.

2.2.2 Dipole theory

Another theory we will consider is the simplest dipole deformation of N = 4 SYM

[57, 58, 59]. A dipole theory is one in which multiplication has been replaced by

the following noncommutative product:

( f ?̃g)(~x) = f

(
~x−

~L f

2

)
g

(
~x+

~Lg

2

)
, (2.8)

where~L f and~Lg are the dipole vectors assigned to fields f and g respectively. At

low energy, this corresponds to a deformation by a vector operator of dimension 5.

To retain associativity of the new product, we must assign a dipole vector~L f +~Lg

to f ?̃g. A simple way to achieve it is to associate with each field f a globally

conserved charge Q f and to let ~L f =~LQ f . This can also be easily extended to

multiple globally conserved charges. We will take ~L = Lx̂ for some fixed length

scale L, so that our theory is nonlocal only in the x-direction. As we saw in the

previous section, noncommutative theory can be thought of as a dipole theory with

the charges being momenta in a direction transverse to the dipole direction.4

3For an interpretation of the open string metric in the context of the AdS-CFT duality, see for
example [56].

4This is not entirely accurate, as a field with transverse momentum p induces a dipole moment
θ p in all the fields it interacts with instead of in itself, but this detail will not be relevant to our
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Dipole SYM is a simpler nonlocal theory than the NCSYM. Since the scale of

the noncommutativity is fixed, the theory does not exhibit UV/IR mixing. We will

see a clear signature of that in the entanglement entropy.

The holographic dual to a dipole deformation of N = 4 SYM theory where

the scalar and fermion fields in N = 4 SYM are assigned dipole lengths based

on global R-symmetry charges was found, using Melvin twists, in [25]. For the

simplest case, where supersymmetry is broken completely and where all the scalar

fields have the same dipole lengths, the holographic dual is given by the following

bulk data:

ds2

R2 = u2 (−dt2 + f (u)
(
dx2)+dy2 +dz2)+ du2

u2 +metric on a deformed S5 ,

e2φ = g2
s f (u) ,

Bxψ = −1− f (u)
L̃

=−R2

α ′
aLu2 f (u) , (2.9)

f (u) =
1

1+(aLu)2 .

Similar to aθ , aL = λ 1/2L̃, L̃ = L/(2π) is the length scale of nonlocality at strong

coupling. The usual S5 of the gravity dual to a 3+1-dimensional theory is deformed

in the following way: Express S5 as S1 fibration over CP2 (the Hopf fibration).

Then the radius of the fiber acquires a u-dependent factor and is given by R f (u).

The volume of the CP2 is constant and given by R4π2/2. Thus the compact man-

ifold at radial position u has a volume given by R5π3 f (u). ψ is the global angular

1-form of the Hopf fibration. For details, see [25].

As we did for the noncommutative theory in the previous section, we need to

understand what metric to use for distances in the boundary dipole theory. Unfor-

tunately, it does not seem possible to give an argument similar to the one in [55]

to find an ‘open string metric’ for the D-branes whose low-energy theory gives us

the dipole theory, since (in contrast to the noncommutative case) the dipole the-

ory requires a nonzero NSNS field H and not just the nonzero potential B.5 The

reasoning.
5A constant potential B which has only one of its indices in the worldvolume of a D-brane can

be gauged away completely. It is therefore important that the other index is in a direction of a circle
with varying radius, resulting in a nonzero H. In the holographic dual we consider, this circle is the
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essence of the argument in [55] is that the only effect of the potential B is to change

the boundary conditions for open string worldsheet theory. Thus, the boundary-

boundary correlator is modified in a simple way that is equivalent to modifying the

metric. To understand the open string metric for the dipole set up we need a differ-

ent way to make the NSNS field B ‘disappear’. We can accomplish this following

[25] and using T-duality.

First, let’s see what happens when we compactify the x direction in (2.6) on a

circle of radius Rx and T-dualize using the prescription in [60]. The T-dual metric

is

(Ru)2 (−dt2 +(dy− (θ/α
′)dx̃)2 +dz2)+ 1

(Ru)2 (dx̃)2 +
du2

u2 +dΩ
2
5 , (2.10)

where x̃ is the T-dual coordinate to x. In the T-dual, B is zero. It has been traded for

the twist around the x̃ circle: we identify (x̃,y) with (x̃+2πR̃x,y+2πR̃xθ), RxR̃x ∼
α ′. Conformal invariance in the t− y− z directions has been restored by T-duality,

and we recover the open string metric (2.7) in those directions.6 At the same time,

the twist encodes the nonlocal structure of the theory. To see this recall that in the

noncommutative theory, fields with momentum px in the x-direction appear to have

dipole lengths θ px. Taking x on a circle of radius Rx, p = n/Rx, with n an integer.

When T-dualized, the corresponding open string mode has winding number n in

the x̃ direction. Given the twist, the ends of this open string are separated by ∆y =

2πR̃x(θ/α ′)n. Substituting n=Rx p we get ∆y∼ θ p: the twist reproduces nonlocal

behaviour of the noncommutative theory when the distances are measured in the

conformally invariant (or open string) metric.

Returning to the dipole theory, we perform T-duality in the direction of the

Hopf fiber to obtain

(Ru)2 (−dt2 +(dx− L̃dψ̃)2 +dy2 +dz2)+ (α ′)2

R2 (dψ̃)2+
du2

u2 +d(CP2) . (2.11)

Again, the NSNS potential Bψx has been replaced by a twist. However, due to the

Hopf fiber.
6This is not a coincidence; the equation for the T-dual metric [60] and the equation for the open

string metric (2.7) are functionally the same.
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twist of the Hopf fibration, in the T-dual there is a new NSNS potential compo-

nent, Bxb where b lies in the direction of the CP2, resulting in a nontrivial NSNS

field Hxbu. Since ψ was a Dirichlet direction before T-duality, the interpretation is

slightly different than it was in the noncommutative case. After T-duality, we have

a twisted compactification identifying (ψ̃,x) with (ψ̃ + 2π,x+ 2πL̃). The proper

distance between (ψ̃,x) and (ψ̃,x+2πL̃) is therefore α ′/R, which is small on the

boundary in the large u limit. This is a sign of the nonlocality at the dipole length

L = 2πL̃. More relevant to us at this point is that, just like for the noncommutative

theory, conformal invariance in the t− x− y− z direction has been restored in the

T-dual metric. It seems reasonable then to use the metric −dt2 + dx2 + dy2 + dz2

to compute distances on in the boundary theory. For more details about this argu-

ment, as well as a string worldsheet argument about the origin of dipole theories,

see [25, 61].

2.3 Entanglement entropy for the strip
We will start by studying entanglement entropy for degrees of freedom living on

an infinitely long strip7 −l/2 < x < l/2, −W/2 < y,z < W/2, W → ∞. In this

geometry, entanglement entropy follows the area law if it is independent of the strip

width l. As we discussed in the Introduction, the relevant minimal surface is eight-

dimensional; it wraps the compact (possibly deformed) sphere of the gravity dual

and is homologous to the strip on the boundary in the non-compact dimensions. Its

area is given by

Vol(Ā) = π
3R8W 2

∫ l/2

−l/2
dx (u(x))3

√
1+

(u′(x))2

f (u)(u(x))4 , (2.12)

where function u(x) specifies the embedding of the bulk minimal area surface. The

above formula for the area in terms of u(x), with the appropriate form for f (u),

is applicable to all bulk metrics we are interested in: while the noncommutative

theory dual has more directions warped by a factor f (u) than the dipole one, in the

dipole theory there is another factor of f (u) accounting for the deformation of the

7 In dimensions three and higher it would be perhaps more accurate to call this region a ‘slab’
rather than a ‘strip’; nevertheless, we will use established terminology.
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sphere on which the entangling surface is wrapped.

Following previous work, we can think of the problem of finding u(x) corre-

sponding to a minimal area surface as a dynamics problem in one dimension: x

plays the role of time, u(x) is the position and u′(x) the velocity. Since the La-

grangian

L (u,u′) = u3

√
1+

(u′)2

f (u)u4 (2.13)

does not depend explicitly on the ‘time’ x, there is a conserved Hamiltonian,

H = u′
∂L (u,u′)

∂u′
−L (u,u′) =− u3√

1+ (u′)2

f (u)u4

. (2.14)

The Hamiltonian H is equal to −u3
∗, where u∗ is the smallest value of u(x) on the

entangling surface. This point of deepest penetration of the minimal surface into

the bulk occurs at x = 0 by symmetry. u′(x) vanishes there.

To implement the UV cutoff, the differential equation in (2.14) is to be solved

with a boundary condition

u(x =±l/2) = uε =
1
ε
. (2.15)

For some functions f (u), (2.14) can be integrated explicitly. The answer is

a hypergeometric function for f (u) = 1 or f (u) = 1/(aθ u)4, and an elementary

function for f (u)= 1/(aLu)2. For f (u)= 1/(1+(aLu)2) or f (u)= 1/(1+(aθ u)4),

(2.14) can only be studied using series expansions in different limits.

To compute the area of the minimal surface, it is useful to solve (2.14) for u′(x)

as a function of u and substitute the result into (2.12). We obtain

Vol(Ā) = 2π
3R8W 2

∫ uε

u∗

du
u′

u6

(−H)
= 2π

3R8W 2
∫ uε

u∗

duu4

u3∗

√
u6∗

f (u)(u6−u6∗)
.

(2.16)

To obtain the area of the minimal surface in terms of l from this equation, given uε ,

it is necessary to find the relationship between u∗ and l.
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2.3.1 Review of results for AdS space

For pure AdS, with f (u) = 1, we can remove the boundary of AdS all the way

to infinity, uε → ∞. Then, by integrating (2.14), we obtain a simple relationship

between u∗ and the width of the strip l:

lu∗ =
Γ(2/3)Γ(5/6)√

π
≈ 0.8624 . (2.17)

This relationship has a nice interpretation: holographic entanglement entropy for a

structure of size l is given by the minimal surface that probes AdS bulk from the

UV cutoff down to energy scales of order l−1. Modes with wavelength longer than

l do not contribute to the entanglement entropy.

To compute the leading order (for uε→∞) behaviour of the area of the minimal

surface, we can we can use (2.16). Since u∗ depends only on l and not on uε (i.e.,

it remains finite in the uε → ∞ limit), the leading contribution to the area comes

from large values of u. We can thus approximate

Vol(Ā) = 2π
3R8W 2

∫ uε

duu = π
3R8 W 2

ε2 . (2.18)

A more precise result for the entanglement entropy density is obtained from a next-

to-leading order computation. It gives a universal term which is finite and indepen-

dent of the cutoff:

S
W 2 =

R3

4G(5)
N

[
1
ε2 −

(
2Γ
(2

3

)
Γ
(5

6

))3

π3/2

1
l2 + (terms that vanish for ε → 0)

]
.

(2.19)

In terms of field theory variables, we have

R3

4G(5)
N

=
N2

2π
, (2.20)

so that the divergent part of the entanglement entropy is proportional to N2ε−2,

with a numerical coefficient which is specific to strongly coupled N = 4 SYM.

The entanglement entropy is therefore of this generic form (applicable to 3+1 di-
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mensions):

S = Neff
|∂A|
ε2 = Neff

W 2

ε2 (2.21)

with the number of effective on-shell degrees of freedom Neff proportional to N2.

Formula (2.21) supports the following simple picture of entanglement entropy

in theory with a local UV fixed point: A quantum field theory in 3+1 dimensions

with a UV cutoff ε−1 can be thought of as having on the order of one degree of

freedom per cell of volume ε3. The divergent part of the geometric entanglement

entropy computed the vacuum state of such a theory is a measure of the effective

number of degrees of freedom inside of a region A that have quantum correlations

with degrees of freedom outside of A. In a local theory, only ‘adjacent’ degrees

of freedom are coupled via the Hamiltonian and the simple intuition is that there-

fore quantum correlations between degrees of freedom inside of A and outside of

A happen only across the boundary ∂A. Thus, the dominant part of the entangle-

ment entropy comes from degrees of freedom which live within a distance ε of the

boundary of A, with entanglement entropy proportional to the volume of this ‘skin’

region, equal to ε|∂A|. Dividing this volume by the volume of one cell, ε3, gives

(2.21).

2.3.2 Dipole theory

Having briefly reviewed holographic entanglement entropy on a strip in unde-

formed SYM, we will now study it in the dipole theory.

In Figure 2.1, we show the relationship between l and u∗ for the dipole theory.

We see that it approaches the AdS result (2.17) for large strip widths l and that it

deviates significantly from it for strips whose width is on the order of and smaller

than aL. For narrow strips, the entangling surface does not penetrate the bulk very

deeply into the IR region. To study these, we assume that u∗ � a−1
L and write

f (u) ≈ (aLu)−2. Here we get a pleasant surprise: the exact shape of the minimal

surface can be obtained in terms of elementary functions

u(x) =
u∗

cos(3x/aL)1/3 for x/aL ∈ [−π/6,π/6] . (2.22)

The relationship between the penetration depth of the minimal surface and the
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Figure 2.1: Point of deepest penetration u∗ as a function of the strip width l
for a minimal area surface in the gravity dual to the dipole theory (solid
red line). The blue dotted line shows the result for pure AdS, given by
(2.17), while the black dashed line shows the narrow strip approxima-
tion, (2.23). In this figure, aLuε = 30.

width of the strip is

u∗ = uε (cos(3l/2aL))
1/3 . (2.23)

This equation is valid as long as u∗� a−1
L , which, in the limit where uε is large, is

true for all strip widths l up to l = (π/3)aL. Notice that, in contrast to pure AdS,

the point of deepest penetration u∗ depends on the UV cutoff. Thus, if one works

at the limit of infinite cutoff, these minimal area surfaces will be missed.

The area of the minimal surface under the approximation f (u)≈ (aLu)−2 is

Vol(Ā) = π
3R8
[

W 2aL

ε3
2sin(3l/2aL)

3

]
≈ π

3R8 W 2l
ε3 , (2.24)

where the final approximation is for a small strip width l� aL. For narrow strips,

entanglement entropy is extensive, proportional to the width of the strip. The first

part of (2.24) gives the corrections to the volume scaling, controlled by the powers
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Figure 2.2: The area of the minimal surface as a function of the strip width
l for for the dipole theory (solid red line). The blue dotted line shows
result (2.24), valid for narrow strips l < (π/3)aL. In this figure, aLuε =
30.

of the ratio l/aL.

For surfaces with large l (compared to aL), we can use the same approximation

as in (2.18), with f (u)≈ (aLu)−2:

Vol(Ā) = 2π
3R8W 2aL

∫ uε

duu2 = π
3R8 2W 2aL

3ε3 (2.25)

We see that this area, which is independent of the width, is the same as the

area obtained from (2.24) at the extremal value of l, l = aLπ/3. The situation is

illustrated in Figure 2.2.

To summarize, we obtained the following result for the entanglement entropy

density in the dipole theory:

S
W 2 =

N2

2π

2aL

3ε3 G(l/aL) , where G(z) =

 sin(3z/2) for z < π/3 ,

1 for z > π/3 .
(2.26)
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Entanglement entropy is extensive for very narrow strips, depends on the width of

the strip in a nonlinear fashion for widths up to the nonlocality scale and smoothly

goes over to a non-extensive (area law) behaviour for wide strips. For wide strips,

while the entanglement entropy follows an area law, it has a different form than

it would for a a generic local theory (given by (2.21)). To explain this, apply

reasoning similar to that below (2.21) to a theory with a fixed scale of nonlocality

aL. By definition, the Hamiltonian of such a theory couples together degrees of

freedom as far apart at aL, thus, for a large region, the dominant part of geometric

entanglement entropy should be proportional to the volume of a set of points no

more than aL away from the boundary of A. This volume, for a large enough

region, can be approximated by aL|∂A|, leading to S ∝ aL|∂A|/ε3, which is exactly

what we see in (2.26) for a strip with l > (π/3)aL.

Applying our reasoning to the narrow strip, we see that, for l < aL, all degrees

of freedom inside the strip should are directly interacting with, and therefore entan-

gled with, degrees of freedom outside of the strip. For a very narrow strip, degrees

of freedom inside it will mostly be entangled with the degrees of freedom outside,

and entanglement entropy should be proportional to l, which is exactly what we

see. As the strip gets wider, some of the degrees of freedom inside the strip be-

come entangled with each other, decreasing the entanglement with the outside and

implying a sub-linear growth to the entanglement entropy as a function of l, again

in agreement with (2.26).

The exact way in which S deviates from S ∝ l can be viewed as a way to probe

the distribution of quantum correlations in the ground state of this nonlocal theory.

It would be interesting to consider this further.

Finally, notice that above the nonlocality length scale aL, the shape of the min-

imal surface is not greatly affected by the exact value of the cutoff; this is a sign

that the dipole theory does not have UV/IR mixing. We will see a very different

behaviour for the noncommutative theory.

2.3.3 NCSYM

For entanglement entropy of a strip in the noncommutative theory, the situation is

more complicated. As is shown in Figure 2.3, there are as many as three extremal
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Figure 2.3: Point of deepest penetration u∗ as a function of the strip width
l for extremal area surfaces in the gravity dual to the noncommutative
theory (solid red line). The blue dotted line shows the result for pure
AdS, given by (2.17), while the black dashed line shows the result of
(2.27). In this figure, aθ uε = 30.

area surfaces for a given width l of the strip. At large strip widths there is only

one surface, for which the relationship between l and u∗ approaches that of pure

AdS, given by (2.17). At small widths, similarly to the dipole theory, there is a

surface which stays close to the cutoff surface.8 At intermediate l, there are three

extremal surfaces, whose shape is shown in Figure 2.4. As we will see, the middle

of the three surfaces is always unphysical (its area is never smaller than the other

two). As the width is increased from zero, at some critical width lc there is a phase

transition as the area of the surface on the top-most branch becomes larger than the

area of the surface on the bottom-most branch in Figure 2.3.

We start by studying top-most branch, which contains surfaces anchored on

8In [32], this surface was approximated by one placed exactly at the cutoff, at constant u.
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Figure 2.4: Shape of three extremal area surfaces, given as u(x), all anchored
on the same boundary strip.

narrow strips. To study these, we find u(x) as a series expansion for small x. This

allows us to write the relationship between l, u∗ and uε for small l:

uε −u∗ =
3
8

u3
∗

1+(aθ u∗)4 l2 +O((l/aθ )
4) . (2.27)

The integral in (2.12) can also be expanded and evaluated for small l. Finally,

substituting u∗ from the expression above into the area integral, we can obtain the

area for small l:

Vol(Ā) = π
3R8W 2

[
l

ε3 −
3
8

l3

a4
θ

ε(1+(ε/aθ )4)
+O((l/aθ )

4)

]
. (2.28)

We have kept the sub-leading terms in ε for completeness — expression (2.28), as

given, is correct even for large ε as long as l is small.

From (2.27) we see that as we increase uε keeping l fixed, (uε − u∗) ∝ l2/u∗,

so that uε − u∗ approaches zero: the minimal surface approaches the boundary

surface.
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This result turns out to hold even for large (but fixed) strip width l in the large

uε limit. In this limit, we approximate f (u) ≈ (aθ u)4. This allows us to obtain l

and the area as a function of u∗ and uε in terms of hypergeometric functions. We

see that l/uε is a function of the ratio u∗/uε only. As uε approaches infinity with

l fixed, this ratio goes to 1, showing that the entire minimal surface stays close to

the boundary and that our approximation f (u)≈ (aθ u)4 is self-consistent even for

large l, as long as l is held fixed when the UV cutoff is removed. The following

relationship holds under this approximation:

∫ l/2

−l/2
dx L =

lu3
∗+uε

√
u6

ε −u6∗
4

. (2.29)

Thus, the leading order UV divergence of the area of the minimal surface at any

fixed width l is

Vol(Ā) = π
3R8W 2 l

ε3 . (2.30)

Having understood the top-most branch of the plot in Figure 2.3 , correspond-

ing to surfaces that stay close to the boundary, we now move to the bottom-most

one. These surfaces penetrate deeply into the bulk and their shape is not affected

by the cutoff point. We can therefore use the same method as before for obtaining

their area:

Vol(Ā) = 2π
3R8W 2a2

θ

∫ uε

u3du = π
3R8 W 2a2

θ

2ε4 . (2.31)

Since there are multiple extremal surfaces anchored on a strip, we need to find

out which of them have the smallest area at a given l. At very small l there is only

one surface (see Figure 2.3), thus, by continuity, for l less than some critical length

lc, the surface of the smallest area corresponds to the top-most branch of Figure

2.3. Its area is given by (2.30). At lc there is a first order phase transition.9 Above

lc, the surface with the smallest area is on the bottom-most branch of Figure 2.3

and its area is given by (2.31). To compute lc, we set (2.30) and (2.31) equal and

obtain that lc = a2
θ

uε/2.

Since the critical length increases with uε , if we hold l fixed and take the limit

9This is similar to [62] and to [47], as well as to the recent paper [63]. Entanglement entropy is
continuous across the transition, but its derivative is not.

39



Figure 2.5: Area of the minimal surface as a function of strip width l for
noncommutative theory. Top: Plots with aθ uε = 10, 30, 50 and 70
are shown. Area is scaled by a power of the cutoff to allow functions
for different cutoffs to be plotted on the same set of axis. Dashed line
corresponds to the leading term in (2.28), Vol(Ā)/u3

ε ∝ l. The range
of validity of this approximate expression increases with increasing uε .
Bottom: Detail of the fish-tail phase transition is shown. The green
dotted line and the blue dashed line correspond to (2.31) and (2.28)
respectively. aθ uε = 30.

uε → ∞, lc will diverge to infinity as well and (2.30) will hold for any l.

Our analysis implies that in the limit ε → 0, the entanglement entropy density

for a strip of a fixed length l is

S
W 2 =

N
2π

[
l

ε3 −
3
8

l3

a4
θ

ε
+ terms vanishing for ε → 0

]
, (2.32)

which, to the leading order, is the same answer as for the dipole theory in the

narrow strip limit ( (2.26), l� aL).

To understand the physics behind this result, we recall that in the noncommu-

tative theory a mode with momentum py in the y-direction can be thought of as

a dipole field with an effective dipole length θ py in the x-direction. The high-

momentum modes which dominate the divergent part of entanglement entropy all

have large effective dipole moments. Therefore the entanglement entropy is that of

a nonlocal theory with a large effective scale of nonlocality. This is precisely what
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we see.

In the complementary limit, fixing a (large) UV cutoff first and then consider-

ing wide strips, l > lc, (2.31) shows that entanglement entropy density is equal to

S
W 2 =

N2

2π

a2
θ

2ε4 . (2.33)

We see that the area law applies and the number of degrees of freedom which

are near enough to the boundary of the region to be entangled with the outside

is proportional to a2
θ
/ε2. This is equal to the scale of noncommutativity at the

UV cutoff (a2
θ

uε= a2
θ
/ε) divided by the cutoff length scale ε , consistent with our

previous discussions.

In the next section, we will compute the entanglement entropy in the noncom-

mutative theory for another geometry: a cylinder whose circular cross-section is in

the two noncommutative directions x and y and which is extended infinitely in the

commutative direction z. We will obtain a result for the entanglement entropy that

is similar to the one in this section, while the geometry of the entangling surfaces

will be very different.

2.4 Entanglement entropy for the cylinder in NCSYM
Consider a region on the boundary extended in the z direction (−W/2 < z <W/2,

W → ∞) and satisfying x2 + y2 < l2 in the x and y directions. The area functional

for a surface homologous to this cylindrical region, assuming rotational symmetry

in the x− y plane and translational symmetry in the z direction, is

Vol(Ā) = 2π
4R8W

∫ l

0
dr r (u(r))3

√
1+

(u′(r))2

f (u)(u(r))4 , (2.34)

where r =
√

x2 + y2 and the surface is specified by a function u(r).

Since r appears explicitly in the Lagrangian density, the equation of motion

cannot be integrated explicitly even once. We will therefore have to rely more on

numerical computation.

Figure 2.6 shows shapes of extremal surfaces anchored on a disk in the bound-

ary noncommutative theory. As is easy to check analytically, all these surfaces
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Figure 2.6: Extremal surfaces homologous to a cylinder in NCSYM, pre-
sented as u(r). On the left, the straight dashed line is the asymptotic
behaviour given by aθ u =

√
3r/aθ . On the right, surfaces with l suffi-

ciently smaller or larger than lc = a2
θ

uε/
√

3 to reach the cutoff before
they had time to approach the this asymptote are shown as well.

asymptote at large r and u to a single ‘cone’ given by aθ u =
√

3r/aθ . A linear

analysis about this asymptotic solution gives

aθ u(r)≈
√

3r/aθ + t cos

(√
7

2
ln(r/aθ )+ϕ

)
, (2.35)

where t and ϕ are free parameters, with t small. In principle, a relationship between

t and ϕ could be derived given that u′(0) = 0, but it cannot be obtained within

perturbation theory. It is interesting and perhaps surprising that the fluctuations

about the asymptote are oscillatory in r. This behaviour, which can be seen in

Figure 2.6, agrees very well with more detailed numerical analysis.

From Figure 2.6 we see that surfaces with u∗ relatively close to a−1
θ

approach

the asymptote u =
√

3r/a2
θ

before reaching the cutoff, while those with large u∗
(aθ u∗� 1) or small u∗ (aθ u∗� 1) do not. At a fixed cutoff, then, we have three

classes of surfaces: shallowly probing surfaces, aθ u∗ � 1, with l smaller than

and bounded away from lc := a2
θ

uε/
√

3, deeply probing surfaces, aθ u∗� 1, with l

larger than than and bounded away from lc and the intermediate category, for which

l is approximately equal to lc. In the first and second category, there is a unique
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extremal surface at a given radius l, while for radii close to lc the situation is more

complicated, due to the oscillatory nature of the near-asymptotic solutions shown

in (2.35). Since the cutoff radius lc increases with uε (similar to the behaviour in

the strip geometry), the entanglement surface for a region with any radius l belongs

to the first category for a sufficiently high UV cutoff.

First, let us consider the surfaces with small l/aθ . These can be studied by

expanding in l/aθ . We get the following two results:

uε −u∗ =
3
4

u3
∗

1+(aθ u∗)4 l2 +O((l/aθ )
4) , (2.36)

Vol(Ā) = 2π
4R8W

[
l2

2ε3 −
9
32

l4

a4
θ

ε(1+(ε/aθ )4)
+O((l/aθ )

4)

]
. (2.37)

The l/aθ expansion for the area of the minimal surface has a structure which is sim-

ilar to the one we obtained for the strip in the noncommutative theory: organizing

the expansion in powers of l, the term of order ln has as its leading ε dependence

1/ε5−n (with n even). Assuming that this analytic structure is valid for finite l/aθ ,

we obtain that in the limit ε → 0, the entanglement entropy density for a cylinder

at a fixed radius l is

S
W

=
N
2π

[
πl2

ε3 −
9
32

l4

a4
θ

ε
+ terms vanishing for ε → 0

]
. (2.38)

Qualitatively, this is the same answer as we obtained for the strip: entanglement

entropy is extensive, proportional to the volume of the considered region. Notice

that neither expression has a non-zero universal (independent of ε part).

At finite (and large) cutoff, we can consider large radius cylinders. For l suf-

ficiently larger than lc we see from Figure 2.6 that u∗aθ � 1 and the entangling

surface seems close in shape to that in pure AdS (as it approaches the boundary at

approximately the right angle, based on numerical evidence). Thus, u∗ ∝ l−1 and
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Figure 2.7: Point of deepest penetration u∗ as a function of the cylinder’s ra-
dius l for the minimal surface homologous to a cylinder in the noncom-
mutative theory. The black dashed line corresponds to (2.36). Linear
scale on the left, log-log scale on the right; aθ uε = 30 for both plots.

the area is approximately

Vol(Ā) = 2π
4R8Wa2

θ

∫
dr r u3 u′(r) = 2π

4R8Wa2
θ l
∫ uε

duu3 = π
3R8 2πlWa2

θ

4ε4 ,

(2.39)

where we have used f (u) ≈ (aθ u)−4 and approximated r ≈ l in the region near

the boundary. Resulting entanglement entropy has the same interpretation as the

one in (2.33), with the area of the strip’s boundary, W 2 replaced by the area of the

boundary of the cylinder, 2πlW .

Having understood the minimal surface in the large l and small l limits, we now

turn to l near the cutoff radius lc = a2
θ

uε/
√

3, which corresponds to u∗aθ close to

1. Figure 2.7 shows the dependence of u∗ on l over the entire range for a finite

cutoff. We notice that near lc, there are multiple values of u∗ at a given l: just like

in the case of the strip, there is a range of radii l for which there exist multiple

extremal surfaces anchored on the same cylinder. This is related the oscillating

nature of the asymptotic solution (2.35). Since taking a large cutoff limit removes

the radius lc, at which phase transition take place, to infinity, we will not attempt

a detailed study of the properties of the phase transition, which is complicated by

the oscillatory nature of the minimal surfaces near the critical radius.

44



Figure 2.8: Area of the minimal surface homologous to a cylinder, as a func-
tion of the cylinder’s radius l, with both axis shown in logarithmic scale.
aθ uε = 30. The green dotted line and the blue dashed line correspond
to (2.39) and (2.37) respectively.

It is interesting to notice that, apart from the details of the phase transition, the

entanglement entropy for the cylinder has the same qualitative behaviour as it does

for the strip, ever though the geometry of the minimal surfaces is very different.

2.5 Mutual information in NCSYM
To strengthen our discussion of UV/IR mixing in noncommutative SYM theory, it

would be interesting to study the behaviour of an observable that (in the commu-

tative theory) is finite in the large UV cutoff limit. One such observable is mutual

information.

Consider two disjoint regions A and B. Mutual information is defined by

I(A,B) := S(A)+ S(B)− S(A∪B). Subadditivity implies that mutual information

is a non-negative quantity. For local theories, holographic mutual information is

UV finite, since contributions from the near-boundary parts of the minimal sur-

faces cancels. It is known to exhibit a phase transition [64]: if the regions A and
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B have width l and the distance between them is x, I(A,B) is nonzero for x less

than some xc and zero for x greater than xc, with xc/l of order 1. The origin of this

phase transition is shown in Figure 1.2: for large x/l, the minimal area surface has

the the topology shown on the right of Figure 1.2, while for small x/l, it has the

topology shown on the left of Figure 1.2. Behaviour of mutual information and the

existence or disappearance of this phase transition can be used to find characteristic

length scales, see for example [65] and [66]. For NCSYM we find that the mutual

information phase transition is absent for length scales less than lc. The fact that lc
depends on the UV cutoff is then a signature of the UV/IR mixing.

To study the details of this signature, let regions A and B be strips of width

lA and lB respectively, separated by a distance x. Then, if lA, lB and x are held

fixed as the cutoff uε is taken to infinity, entanglement entropies associated with

strips of width x, lA, lB and lA + lB + x are all extensive. Therefore, S(lA)+S(lB)<

S(lA + lB + x)+ S(x), i.e. the surface on the right in Figure 1.2 has a smaller area

than that on the left in Figure 1.2. This implies that I(A,B) = 0 for any x and

there is no phase transition. On the other hand, if lA and lB are both larger than

lc, then S(lA) ≈ S(lB) ≈ S(lA + lB + x) because to leading order the entanglement

entropies do not depend on the width of the strip. Mutual information is positive

(and divergent, since entanglement entropy in the noncommutative theory does

not have a UV-finite piece) as long as x is small enough and undergoes a phase

transition as x is increased just like it does for a local field theory.

It would be interesting to study the behaviour of mutual information near the

phase transition in detail. We leave this to future work.

2.6 Final comments
A key ingredient in our analysis was keeping the cutoff finite, if large. Only when

the entangling region A is placed on a cutoff surface at finite u = uε can the correct

minimal area minimal surfaces be found. This is especially true in the noncommu-

tative theory, where UV/IR mixing implies that infrared physics is affected by the

precise value of the cutoff.

We have already discussed the origins of the dependence of the entanglement

entropy on the size (volume or area) of the region A, on the cutoff length ε and on
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the intrinsic length scales aL and aθ built into our nonlocal theories. The numerical

coefficients we obtain are of physical significance: In the volume law regime, the

coefficient measures whether degrees of freedom inside of A are are entangled

with the outside of A or with each other. Therefore, this coefficient controls the

maximum size of the region over which the theory thermalizes [48]. A similar

statement can be made about the coefficient in the area law regime.

While the open string metric gives distances in the nonlocal boundary field

theory, it is the closed string metric that determines the causal structure of the

theory. In a local field theory, knowledge of the density matrix ρA in the region A is

enough to compute all observables within the domain of dependence of A. While

we don’t know exactly which portion of the total holographic dual spacetime is

dual to ρA itself [67, 68, 69, 70], the answer must involve the bulk (closed string)

metric and its causal structure. Applying this argument to our nonlocal theories,

we see that it is the bulk metric that determines the extent of the holographic dual

to the density matrix ρA. For example, this holographic dual might be bounded

by the minimal surface. Then, the intersection between the AdS boundary and

the lightsheets originating from the minimal surface might be interpreted as the

boundary of the “domain of dependence” of the region A in a nonlocal theory.

We would expect that knowledge of the density matrix ρA would be sufficient to

determine all observables within this “domain of dependence”. This new “domain

of dependence” is determined causally not by the open string metric but by the bulk

closed string metric at a fixed cutoff. This closed string metric is not isotropic,

in fact, it has a very large “speed of light” in the nonlocal directions, compared

with the open string metric. Field theory computations show that nonlocal field

theories have large propagation speeds , see for example the behaviour discussed in

[54], or the observations that the propagation speed in the noncommutative theory

is effectively infinite [71, 72]. As a result, in a nonlocal theory the “domain of

dependence” should have a very small time-like extent. This is consistent with

it being bound by lightsheets which originate on a minimal surface which does

penetrate the bulk very far, a feature we have observed.

A related feature of our minimal surfaces is that they are not necessarily or-

thogonal to the boundary at a finite cutoff. Therefore, for example, the two pro-

posals given in [9] for a covariant version of holographic entanglement entropy are
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not necessarily equivalent, raising an interesting question about time-dependent

nonlocal theories. Similarly, arguments for strong subadditivity of covariant holo-

graphic entanglement entropy in time dependent spacetimes, in [73], do not apply

either (however, the simple argument for static spacetimes, in [74], does apply,

and therefore the entanglement entropies computed in this paper do satisfy strong

subadditivity).

Since our computations were done using holography, they are reliable in the

strong coupling limit. It would be interesting to see whether the same results ap-

ply at weak coupling, with the appropriate nonlocal scale, aθ or aL, replaced by its

weak coupling counterpart,
√

θ or L respectively. This might not necessarily be the

case: for example, the enhancement to the rate of dissipation provided by noncom-

mutativity at strong coupling is not seen at weak coupling [52]. The analysis in [52]

points towards strong coupling being necessary for scrambling in noncommutative

theory, and, if the results in [48] can be extended to this situation, strong coupling

being necessary for extensive entanglement entropy. It would be interesting to set-

tle this question by a direct computation of geometric entanglement entropy in a

weakly coupled noncommutative theory. Unfortunatelly, it will not be possible to

learn anything from free noncommutative theories as these are equivalent to their

commutative counterparts.

A simple example of a nonlocal field theory with volume scaling of its en-

tanglement entropy was given in [75]. In that work, it was proposed that volume

scaling was a necessary feature of entanglement entropy in a hypothetical field the-

ory dual to flat space. In contrast to this hypothetical theory, our nonlocal theories

do not have vanishing correlation functions.

Finally, it would be interesting to study other extremal surfaces in holographic

duals to nonlocal theories, following the work for local theories [76], as well as to

extend our results to finite temperature.
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Chapter 3

Perturbative Entanglement
Entropies in Noncommutative
Theories

3.1 Introduction
Local field theories generally exhibit what is know as an area law behaviour, where

the leading divergence in the entanglement entropy of a spatial region is propor-

tional to the area of the boundary of that region. That is, S ∼ |∂A|Λd−2, where S

is the entanglement entropy, |∂A| the area of the boundary of the region and Λ is

the momentum scale of the UV regulator of the theory, for example the inverse of

a lattice spacing.1 However, recent holographic studies of strongly coupled non-

local theories have found a volume law behaviour instead [32, 75, 53, 31, 77].

That is, for a nonlocality scale l, S ∼ |A|Λd−1 for regions much smaller than l and

S∼ l|∂A|Λd−1 for regions much larger than l [31], as discussed in Chapter 2. Note

that entanglement entropy of large regions is sufficient to differentiate this type of

volume law from an area law, as the entanglement entropy is proportional to the

length scale of the nonlocality times an additional factor of the UV regulator. To

1See for example [18] for a review of area laws in entanglement entropy.
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summarise,

area law : S∼ |∂A|Λd−2, (3.1)

volume law : S∼ |A|Λd−1, (small regions) (3.2)

S∼ l|∂A|Λd−1. (large regions) (3.3)

These results can be understood intuitively by assuming that all the degrees of

freedom within the range of the nonlocality are equally entangled with each other.

Then, for regions much smaller than l, all the degrees of freedom inside the region,

not only those near the boundary, are entangled with degrees of freedom outside.

For regions much larger than l, all the degrees of freedom within a distance l of the

boundary are entangled with those outside. In both cases, the number of degrees

of freedom strongly entangled across the boundary is proportional to Λd−1 rather

than the Λd−2 expected from an area law.

A natural question is whether this behaviour is generic to nonlocal theories

or if it is confined to a strongly coupled, large N regime. One approach is to

study entanglement entropy for a free scalar field on the fuzzy sphere [78, 79,

80, 81]. This turns out to be proportional to the area2 for small polar caps [80, 81].

However, two issues arise which question whether this should be characterised as a

volume law. First, the dependence of the entanglement entropy on the UV regulator

does not match the volume law described above. Second, the entanglement entropy

does not scale like the number of degrees of freedom contained in the polar cap,

as the degrees of freedom are not uniformly distributed across the sphere. Instead

it scales as the number of degrees of freedom near the boundary [78, 79]. Another

limitation of this theory is that the nonlocality scale is tied to the size of the sphere

so it is not possible to study regions much larger than the nonlocality scale.

Another approach is to study a free field theory on a lattice with a nonlocal

kinetic term, in which case a volume law was found [82].

This paper investigates the role of interactions in this question by considering

two theories with nonlocal interactions: scalar λφ 4 theory on the noncommutative

plane and λφ 4 theory with a dipole type nonlocal modification with fixed nonlo-

2The fuzzy sphere is a two-dimensional surface, thus |A| is an area and |∂A| is a circumference.
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cality scale. The leading divergence in entanglement entropy of large regions is

calculated to leading order in perturbation theory and is not found to be propor-

tional to the length scale of the nonlocality, hence no evidence of a volume law is

found. Instead, the leading divergence in both theories has the same form as the

standard local λφ 4 theory which follows an area law. This result indicates that, per-

turbatively these nonlocal interactions are not generating sufficient entanglement at

distances of the nonlocality scale to change the leading divergence, at least to first

order in the coupling.

The free theory with λ = 0 for both of these nonlocal theories is equivalent to

the regular commutative λφ 4 theory. There is no modification of the entanglement

entropy at this order. Perturbation theory can be used to study the nonlocal theories

at small λ .

The entanglement entropy is calculated using the replica trick and the formula

S = −∂n [lnZn−n lnZ1]n=1, where Zn is the partition function of the field theory

defined on an n-sheeted space [83, 84, 85]. This partition function can be reduced

to computing vacuum bubble diagrams and the O(λ ) contribution in perturbation

theory comes from bubble diagrams with one vertex and two loops. Consistent with

the results of previous investigations of perturbative noncommutative theories [54],

the planar diagrams in the nonlocal theories give the standard commutative result,

which is S∼G1(0)
∫

dx∂n=1Gn(x)∼ A⊥Λ2 ln(Λ/m), where A⊥ is the (infinite) area

of the boundary of our region, Λ our UV regulator, m our IR regulator and Gn is

the Green’s function on the n-sheeted space used in the replica trick [85]. This

contribution follows an area law, as S ∝ A⊥Λ2 up to logarithmic corrections.

The nonlocality only affects the nonplanar diagram. This diagram contributes a

term of the form S∼G1(0,∆x)
∫

dx∂n=1Gn(x,x+∆x)∼ A⊥
(∆x)2 ln f (Λ,m,∆x), where

now ∆x corresponds to a translation from the nonlocality.

In the dipole theory, ∆x is proportional to the fixed dipole length. Thus the

nonplanar diagram has only a logarithmic IR divergence and is subleading com-

pared to the planar diagrams. In the noncommutative theory the translation along

the noncommuative plane is proportional to the momentum in the other noncom-

mutative direction, so this contribution must be integrated over this momentum.

If we don’t impose an IR regulator, the momentum controlling the translation is

allowed to vanish and G(0,∆x)→ G1(0)∼ Λ2. This gives a contribution that is of
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the same order as the planar diagrams. However, if we impose an IR regulator, ∆x

has a minimal value and this divergence can be reinterpreted as an IR divergence.

This is familiar from the UV/IR connection described for example in [54].

Our results for the O(λ ) contribution to the entanglement entropy, S1, are

real scalar : S1 =2λSplanar +λSnonplanar (3.4)

complex scalar : S1 =(2λ0 +λ1)Splanar +λ1Snonplanar, (3.5)

where Splanar and Snonplanar denote the contributions from planar and nonplanar di-

agrams respectively.

The leading divergences from these diagrams in each of the theories considered

are

Splanar =−
A⊥Λ2

21032π3 ln
Λ2

4m2 (3.6)

Commutative theory : Snonplanar =Splanar (3.7)

Noncommutative plane : Snonplanar =−
A⊥Λ2

2932π3

− ln
(

Θ2m2Λ2

4

)
1− Θ2m2Λ2

4

+ subleading

(3.8)

Dipole theory : Snonplanar is subleading, (3.9)

where Λ is our UV regulator, m is our IR regulator, A⊥ is the area of the boundary,

Θ is the noncommutativity parameter of the plane and a is the nonlocality scale of

the dipole theory. The details of the expansion in m
Λ

used to extract these leading

divergences are discussed in Section 3.5.2.

In both cases, the contribution from these nonplanar diagrams does not have

the right form to be interpreted as the sign of a volume law in the entanglement

entropy and we must conclude that these nonlocal theories at least to first order

in perturbation theory obey an area law. This can be contrasted with the strong

coupling result which found clear signs of the volume law even for large regions

[31]. Thus, the volume law must either only appear at higher orders in perturbation

theory or it must require strong coupling. Consistent with our analysis, previous

investigations of perturbative dynamics of the noncommutative theory [54] have
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shown that noncommutativity does not introduce any new perturbative UV diver-

gences that cannot be reinterpreted as IR divergences. Thus, is it hard to see how

the higher degree of divergence required for a volume law can arise in perturbation

theory. We are lead to the conclusion that entanglement on distances of the non-

locality scale and volume laws require strong coupling and are not accessible to

perturbation theory.

The remainder of the paper is organised as follows: Section 3.2 describes the

theories we study, Section 3.3 explains how the entanglement entropy can be com-

puted perturbatively in these theories, Section 3.4 shows that the results for the free

theory are unchanged in these nonlocal theories, Section 3.5.1 computes the first

order correction in the coupling to the entanglement entropy in a real scalar φ 4

theory for a warm-up and for later reference. Section 3.5.2 extends the calculation

to the real scalar on the noncommutative plane. Section 3.5.3 reproduces the re-

sults for the previous two sections in the case of the complex scalar. Section 3.5.4

computes the result for the complex scalar in the dipole theory. Finally, Section 3.6

concludes with a discussion of these results.

3.2 Theories
The theories used in this paper are scalar field theories on R1,3 where products

of fields are replaced with a possibly noncommutative product denoted ?. Three

examples of this product will be used: the regular commutative one, the Moyal

product associated with the noncommutative plane and the dipole product with a

fixed nonlocality scale. See [86] for a review of noncommutative field theory. The

Euclidean action is

SE =
∫

ddx
[
−1

2
∂φ ?∂φ(x)+

1
2

m2
φ ?φ(x)+

λ

4!
φ ?φ ?φ ?φ(x)

]
. (3.10)

The entanglement entropy in these three theories is calculated to leading order in

the coupling λ . The mass is present to serve as an IR regulator and will be taken

to be small in the end.

First, the standard commutative case, where ( f ?g)(x) = f (x)g(x), is reviewed

and presented in our notation in Sections 3.4 through 3.5.1. The entanglement
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entropy for this theory was studied in [85] and the approach contained therein will

be followed for each of the theories we consider.

Second, in Section 3.5.2, the entanglement entropy of a field theory defined on

the noncommutative plane, where

( f ?g)(x) = exp
(

i
2

Θ
µν ∂

∂ξ µ

∂

∂ζ ν

)
f (x+ξ )g(x+ζ )|ξ=ζ=0, (3.11)

is studied. The noncommutativity is parametrised by the antisymmetric tensor Θ.

This theory has been studied perturbatively in [54]. In this case especially, the

mass should be thought of as an IR regulator and taken to zero at the end of the

calculation in order to see full effects of the UV/IR mixing present in this theory.

We specialise to the case commonly referred to as the noncommutative plane where

Θµν = Θ
(
δ 1µδ 2ν −δ 2µδ 1ν

)
for simplicity.

Finally, the entanglement entropy of the a simpler nonlocal theory with a fixed

nonlocality scale along a particular axis, known as a dipole theory, is studied. For

this product, a vector called a dipole must be assigned to every field. The noncom-

mutative product is

( f ?g)(xµ) = f (xµ +
1
2

Lµ(g))g(xµ − 1
2

Lµ( f )), (3.12)

where Lµ( f ) is the dipole assigned to the field f .

These dipoles must obey various rules set out in [61]. In particular, the dipole

of the ?-product of two field must be the sum of their dipoles. As well, the dipole

of the complex conjugate of a field must be minus the dipole of the original field.

This means that a real field must have a zero dipole and that a complex scalar must

be used rather than the real scalar field theory discussed so far. The action for a

complex scalar is

SE =
∫

ddx
[
−∂φ

† ?∂φ(x)+m2
φ

† ?φ(x)+
λ0

4
φ

† ?φ ?φ
† ?φ(x)+

λ1

4
φ

† ?φ ?φ ?φ
†(x)

]
.

(3.13)

where there two φ 4 terms which are inequivalent due to our noncommutative prod-
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uct [61].3

The result from the real scalar theory will be extended to this complex scalar

theory in Section 3.5.3, then the dipole theory will be studied in Section 3.5.4.

Setting Lµ(φ) = aδ µ1, the terms in the action can be written in a more explicit

form: ∫
dx(φ † ?φ)(x) =

∫
dxφ

†(x+
1
2

a)φ(x+
1
2

a) =
∫

dxφ
†(x)φ(x),∫

dx(φ † ?φ)? (φ † ?φ)(x) =
∫

dxφ
†(x)φ(x)φ †(x)φ(x), (3.14)∫

dx(φ † ?φ)? (φ ?φ
†)(x) =

∫
dxφ

†(x+
1
2

a)φ(x+
1
2

a)φ(x− 1
2

a)φ †(x− 1
2

a),

where only the dependence on the first coordinate, labelled x, is highlighted as the

other coordinates are unaffected by this deformation.

In fact, renormalisability requires that we include in the action terms of the

form

λn

∫
dx(φ †

φ)(x+
1
2

na)(φ †
φ)(x− 1

2
na) (3.15)

for all n [61]. However, the contributions from these terms can be obtained by

simply substituting a→ na into the results for n = 1 and summing over n. The

results in Section 3.5.4 are such that this sum is guaranteed to converge as long as

the λn don’t grow too quickly. As the inclusion of these terms would not affect our

conclusions, we will not consider them separately.

3.3 Entanglement entropy
The standard technique of the replica trick is used to compute the entanglement

entropy [83]. This technique was used in a perturbative context in [85], whose

approach is followed here.

Starting with ρA, the reduced density matrix of the ground state of the theory

3These noncommutative products are constructed to ensure that integrals of products of fields are
invariant under cyclic permutations.
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in question for a region A, the idea is to evaluate

S =− Tr (ρA lnρA) =−
∂

∂n
ln Tr (ρn

A)|n=1, (3.16)

by calculating Tr ρn
A for arbitrary n and analytically continuing. In this paper we

will concentrate on the simplest case where A is the half plane (A = {(x1,x2,x3) ∈
R3|x1 > 0}).

The main result that will be needed can be lifted directly from [83, 85]:

ln Tr (ρn
A) = lnZn−n lnZ1, (3.17)

where Zn is the partition function of the theory on an n-sheeted surface with a cut

along the region A that connects the sheets. However, some details of this n-sheeted

space will be needed in the argument to follow, so the rest of this section will define

it more carefully.

3.3.1 n-sheeted surfaces

The density matrix can be written as a path integral, (at finite inverse temperature

of β )

〈φ2|ρ |φ1〉= (Z1)
−1
∫

Dφ
φ(x,β )=φ2
φ(x,0)=φ1

e−SE , (3.18)

where Z1 is a normalisation factor to ensure that Tr ρ = 1. Then the reduced

density matrix for a region A is obtained by periodically identifying the field in the

Euclidean time direction along Ā, the complement of A, while leaving the boundary

condition along A untouched. To look at the ground state, β must be sent to infinity.

We do this while keeping the cut along A near the origin.

Then,

Tr (ρn
A) = (Z1)

−n
[∫

Dφ
φ(x∈A,0−)=φ2
φ(x∈A,0+)=φ1

e−SE

][∫
Dφ

φ(x∈A,0−)=φ3
φ(x∈A,0+)=φ2

e−SE

]
. . .

[∫
Dφ

φ(x∈A,0−)=φ1
φ(x∈A,0+)=φn

e−SE

]
.

(3.19)

This identification of boundary conditions can be replaced by defining the field
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theory on an n-sheeted surface with a cut along A that takes you from one sheet

to the next. Calling this n-sheeted surface
(
Rd \A

)n, the projection onto the sheet

π :
(
Rd \A

)n→ Rd \A and the indicator function telling you if you are on the kth

sheet χk :
(
Rd \A

)n → Z1, this means that Φ :
(
Rd \A

)n → R can be defined as

Φ(x) = ∑
N
k=1 φk(π(x))χk(x), so that

Tr (ρn
A) = (Z1)

−n
[∫

DΦe−SE

]
, (3.20)

where SE for Φ has the same form as that for each φ , since the action for each

sheet is additive.

With our simple region A, a half-plane, polar coordinates can be defined in the

x-τ plane of Rd \A. Then the glueing required to create this n-sheeted surface is

simply to identify θ = 2π on one sheet to θ = 0 on the next. Thus polar coordinates

can be defined on
(
Rd \A

)n where θ ∈ [0,2πn), such that each interval of length

2π corresponds to a sheet, i.e. π(r,θ ,y,z) = (r,θ mod 2π,y,z) and χk(r,θ ,y,z) =

χ[2π(k−1),2πk)(θ).

This gives us the result from [83, 85] cited above, as Zn =
∫

DΦe−SE . This

path integral over Φ is the path integral over the n-sheeted surface.

3.4 Free theory
The first step is to understand the free theories where λ = 0. The action for the

free noncommutative and dipole theories is the same for that of the commutative

theory, since the star product of 2 fields is the same as the regular product up to a

total derivative [54].

For the noncommutative theory,

∫
d4x( f ?g)(x) =

∫
d4x

∞

∑
n=0

in

2n Θ
µ1ν1 . . .Θµnνn ∂µ1 . . .∂µn f (x) ∂ν1 . . .∂νng(x)

(3.21)

=
∫

d4x

[
f (x)g(x)+∂µ1

∞

∑
n=1

Θ
µ1ν1 . . .Θµnνn ∂µ2 . . .∂µn f (x) ∂ν1 . . .∂νng(x)

]
,

so that the quadratic term in the action is the same as for the commutative case up

57



to a total derivative. As there are no boundaries, the only place this total derivative

could make for a finite contribution is at the conical singularity introduced at the

origin when considering the n-sheeted path integral.

Around the origin this term contributes (note that the singularity is at the origin

of the x-τ plane and is not localised in the y-z directions),

lim
r→0

A⊥
∞

∑
n=1

∫
rdθ Θ

rν1Θ
µ2ν2 . . .Θµnνn ∂µ2 . . .∂µnφ ∂ν1 . . .∂νnφ ∼ lim

r→0
∑
n

r∂
n
φ∂

n+1
φ ,

(3.22)

where A⊥ is the area of the y-z plane. As long as ∂ nφ ∂ n+1φ is regular at the origin

this term will not contribute to the action. This means that φ needs to be C∞ at the

origin, which is just the regular boundary condition imposed in the commutative

case.

For the dipole theory, direct calculation of the ?-product of two fields can be

seen to reduce to the commutative result in (3.14).

Thus the free theory is the same for all three theories.

3.4.1 Green’s functions

Since the free theories are the same, they have the same Green’s functions. This

Green’s function is straightforward in the polar coordinates introduced in Section

3.3.1. Since the action for Φ living on the n-sheeted surface is the same as the

action for φ living on any particular sheet, the local equation that the Green’s func-

tion must obey will be the same. The only difference is that θ must be periodic

with period 2πn rather than the usual period of 2π . The Green’s function for the

field living on the n-sheeted surface is, from [85],

Gn(x,x′) =
1

2πn

∫ dd⊥ p⊥

(2π)d⊥

∞

∑
k=0

ak

∫
∞

0
dqq

Jk/n(qr)Jk/n(qr′)

q2 + p2
⊥+m2 cos(k(θ −θ

′)/n)eip⊥(x⊥−x′⊥),

(3.23)

where a0 = 1, ak 6=0 = 2, p⊥ = (py, pz) and x⊥ = (x2,x3). ⊥ refers to the directions

orthogonal to the cut introduced by the replica trick.
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The Euler-Maclaurin formula,

∞

∑
k=0

akF(k) = 2
[∫

∞

0
dkF(k)

]
− 1

6
F ′(0)−2 ∑

j>1

B2 j

(2 j)!
F(2 j−1)(0), (3.24)

can be applied to this Green’s function to replace the sum over k,

Gn(x,x′) =
∫

∞

0

dk
π

∫ dd⊥ p⊥

(2π)d⊥

∫
∞

0
dqq

Jk(qr)Jk(qr′)
q2 + p2

⊥+m2 cos(k(θ −θ
′))eip⊥(x⊥−x′⊥)

− 1
12πn2

∫ dd⊥ p⊥

(2π)d⊥

∫
∞

0
dqq

∂ν [Jν(qr)Jν(qr′)]ν=0

q2 + p2
⊥+m2 eip⊥(x⊥−x′⊥) (3.25)

−∑
j>1

B2 j

πn2 j(2 j)!

∫ dd⊥ p⊥

(2π)d⊥

∫
∞

0
dqq

(∂ν)
2 j−1[Jν(qr)Jν(qr′)cos(ν(θ −θ ′))]ν=0

q2 + p2
⊥+m2 eip⊥(x⊥−x′⊥).

It will be useful to define Gn(x,x′; p) as

Gn(x,x′; py) =
1

2πn

∫ d pz

2π

∞

∑
k=0

ak

∫
∞

0
dqq

Jk/n(qr)Jk/n(qr′)
q2 + p2

y + p2
z +m2 cos(k(θ −θ

′)/n)eipz(x3−x′3)+ipy(x2−x′2)

(3.26)

such that

Gn(x,x′) =
∫ d py

2π
Gn(x,x′; py) (3.27)

∂

∂x2
Gn(x,x′; p) =− ∂

∂x′2
Gn(x,x′; p) = ipGn(x,x′; p). (3.28)

It is also useful to define fn(x,x′) and fn(x,x′; p) as

fn(x,x′) = Gn(x,x′)−G1(x,x′) (3.29)

=
n2−1
12πn2

∫ dd⊥ p⊥

(2π)d⊥

∫
∞

0
dqq

∂ν [Jν(qr)Jν(qr′)]ν=0

q2 + p2
⊥+m2 eip⊥(x⊥−x′⊥)+( j > 1)

fn(x,x′; p) = Gn(x,x′; p)−G1(x,x′; p), (3.30)

where G1 is the Green’s function on the 1-sheeted surface, that is just the regular

Green’s function.
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Single sheeted limit

This Green’s function for the n-sheeted space must reduce to the regular Green’s

function in the limit where n→ 1. Starting with our expression for the Green’s

function in (3.23), defining ϕ = θ −θ ′ for convenience and setting n = 1,

G1(x,x′) =
1

2π

∫ dd⊥ p⊥

(2π)d⊥

∞

∑
k=0

ak

∫
∞

0
dqq

Jk(qr)Jk(qr′)
q2 + p2

⊥+m2 cos(kϕ)eip⊥(x⊥−x′⊥). (3.31)

(10.9.E2) in the DLMF [87] provides a useful integral representation of the

Bessel functions, which can be rewritten as, Jn(z) =
∫

π

−π

dγ

2π
ei(zsinγ−nγ). Using this

representation and the fact that J−k(z) = (−1)kJk(z), 4

∞

∑
k=0

akJk(qr)Jk(qr′)cos(kϕ) =
∞

∑
k=−∞

∫
π

−π

dγdκ

(2π)2 eiq(r sinγ+r′ sinκ)−ik(γ+κ)eikϕ

=
∫

π

−π

dγ

2π
eiq[r sinγ+r′ sin(ϕ−γ)]. (3.32)

Defining our position axes on the x0-x1 plane such that ~x = (0,r) implies that

~x′ = (−r′ sinϕ,r′ cosϕ). Then defining~q = (qcosγ,qsinγ),

~q · (~x−~x′) =q
[
r sinγ + r′ sin(ϕ− γ)

]
(3.33)

∞

∑
k=0

akJk(qr)Jk(qr′)cos(kϕ) =
∫

π

−π

dγ

2π
ei~q·(~x−~x′) (3.34)

Finally, defining p = (~q, p⊥),

G1(x,x′) =
∫ dd p

(2π)d
eip(x−x′)

p2 +m2 , (3.35)

which is the usual Euclidean Green’s function.

3.4.2 Entanglement entropy in the free theory

The entanglement entropy when λ = 0 must be identical in the three theories as it

was shown above that the quadratic terms in the action are the same. This can

4 (10.4.E1) in [87]
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be seen more explicitly by using the approach from [85]. Starting from SA =

−∂n [lnZn−n lnZ1]n=1, the part of the entanglement entropy which depends on

the mass can be related to the Green’s function by

∂

∂m2 lnZn =−
1
2

∫
n

ddx〈Φ2(x)〉n. (3.36)

In the commutative case, 〈Φ2(x)〉n = Gn(x,x). In the non-commutative case,

〈Φ?Φ(x)〉n =
(

exp
[

i
2

Θ

(
∂

∂ξ1

∂

∂ζ2
− ∂

∂ξ2

∂

∂ζ1

)]
〈Φ(x+ξ )Φ(x+ζ )〉n

)
ξ=ζ=0

=

(
exp
[

i
2

Θ

(
∂

∂ξ1

∂

∂ζ2
− ∂

∂ξ2

∂

∂ζ1

)]
Gn(x+ξ ,x+ζ )

)
ξ=ζ=0

(3.37)

=
∫ d py

2π

(
exp
[

1
2

Θpy

(
∂

∂ξ1
+

∂

∂ζ1

)]
Gn(x+ξ ,x+ζ ; py)

)
ξ=ζ=0

=
∫ d py

2π
Gn(x+

1
2

Θpy ı̂,x+
1
2

Θpy ı̂; py).

That the ?-product turns out to just translate the argument of the Green’s function

is an important theme of the calculation in this paper.

The only difference for a complex scalar is that the mass term in the action is

proportional to Φ† ?Φ instead of Φ?Φ, however the expectation value of this leads

to the same Green’s function and the same result follows.

The dipole theory is identical except that translations by Θ times the momen-

tum in the y-direction are replaced by translations by a.

Thus, still for the non-commutative case,

∂

∂m2 lnZn =−
1
2

∫
n

ddx〈Φ?Φ(x)〉n

=− 1
2

∫
n

ddx
∫ d p

2π
Gn(x+

1
2

Θpı̂,x+
1
2

Θpı̂; p) (3.38)

=− 1
2

∫
n

ddx
∫ d p

2π
Gn(x,x; p) =−1

2

∫
n

ddxGn(x,x),

recovering explicitly the result from the commutative case by shifting the integra-

tion variable.
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Figure 3.1: Translations on each of the sheets of the n-sheeted surface (on the
left) give a well defined map on the whole surface (shown for n = 2 in
the polar coordinates described in Section 3.3.1 on the right), except for
a measure zero set near the singularity at the origin.

However, this shift of the integration variable on the n-sheeted surface bears

further investigation. It is sketched in Figure 3.1.

This shift is well defined except for the region which gets translated into or out

of the origin. However, this region has measure zero and cannot affect the result

of the integral. As long as only a countable number of such shifts are done, these

points can be omitted from the integral without changing the result. Finally, the

integral over the whole n-sheeted surface can be written as a sum over the sheets

and the Jacobian of this shift on each sheet is 1, so the Jacobian of the whole shift

does not introduce any new factors into the integral. Thus shifting the variable of

integration on this n-sheeted surface is allowed with no Jacobian, just as for the

plane.

3.5 First order in perturbation theory

3.5.1 Commutative theory

We will start by computing the first order correction to the entanglement entropy

for the commutative φ 4 theory. This was done previously in [85], but will be re-

peated here with more explicit regulators that will allow a direct comparison to the
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nonlocal cases. From [85],

lnZn = ln
∫

Dφe−SE [φ ]

= lnZn,0−
λ

4!

∫
n

d4x〈Φ4(x)〉0 + ... (3.39)

= lnZn,0−
3λ

4!

∫
n

d4x [Gn(x,x)]
2 + ...,

where
∫

n denotes integration over the n-sheeted surface and lnZn,k is the kth order

term in a λ expansion of lnZn. Generally, adding subscript will denote the order of

a term in a λ expansion, e.g. X = X0 +X1 +X2 + . . .

The entanglement entropy can be calculated using (3.16) and (3.17),

ln Tr (ρn
A)1 = lnZn,1−n lnZ1,1

=− 3λ

4!

∫
n

d4x [Gn(x,x)]
2 +

3nλ

4!

∫
d4x [G1(x,x)]

2 (3.40)

=− 3λ

4!

∫
n

d4x
[
2G1(x,x) fn(x,x)+ f 2

n (x,x)
]
.

Recalling from (3.29),

fn(x,x′) =
n2−1
12πn2

∫ dd⊥ p⊥

(2π)d⊥

∫
∞

0
dqq

∂ν [Jν(qr)Jν(qr′)]ν=0

q2 + p2
⊥+m2 eip⊥(x⊥−x′⊥)+( j > 1).

(3.41)

The j > 1 terms don’t contribute [83], so they will be dropped in what follows.

This is the same on each sheet, so the integral over the n-sheeted surface is n times

in integral on one sheet. Finally, f1(x,x′) = 0, so ∂n f 2
n (x,x

′)|n=1 = 0 and

S1 =−∂n [ln Tr (ρn
A)1]n=1 =

6λ

4!

∫
d4xG1(x,x)∂n [n fn(x,x)]n=1 (3.42)

S1 =
12λA⊥
12π ·4!

∫
rdrdφ

∫ d4kd pyd pz

(2π)6
1

k2 +m2

∫
∞

0
dqq

∂ν [Jν(qr)Jν(qr)]ν=0

q2 + p2
y + p2

z +m2 .

(3.43)
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Schwinger parameters are introduced to allow the denominators to be com-

bined, using

1
A
=
∫

∞

0
dαe−Aα . (3.44)

This allows us to regulate the UV divergence in S1 by introducing a factor of e−
1

αΛ2 ,

as was done in previous perturbative studies of noncommutative theories [54]. This

regulator is convenient in the noncommutative case and is used here so that the

results can be compared. Using (25) from p.146 in volume I of [88],

∫
∞

0
dte−pt− a

4t =

√
a
p

K1(
√

ap), (3.45)

the effect of this regulator is

∫
∞

0
dαe−α p2− 1

αΛ2 =
2

Λp
K1

(
2p
Λ

)
p
Λ
→∞−−−→

√
2

Λp3 e−
2p
Λ ,

p
Λ
→0−−−→ 1

p2 . (3.46)

Thus it regulates the UV and leaves the IR unaffected. This can be seen simply

from the fact that e−
1

αΛ2 vanishes for α � Λ−2 and goes to one for α � Λ−2. A

mass m regulates the IR by contributing a factor of e−αm2
, which has the opposite

behaviour.

Introducing these Schwinger parameters and regulating,

S1 =
λA⊥
3 ·23

∫
dr

d4kd pyd pz

(2π)6 dq
∫

∞

0
dαdβqre

−αk2−β [q2+p2
y+p2

z ]−αm2− 1
αΛ2−βm2− 1

βΛ2
∂ν [Jν(qr)Jν(qr)]ν=0.

(3.47)

All the momenta integrals except q are Gaussian,

S1 =
λA⊥

3 ·29π3

∫
drdq

∫
∞

0
dαdβ

qr
α2β

e
−βq2−αm2− 1

αΛ2−βm2− 1
βΛ2

∂ν [Jν(qr)Jν(qr)]ν=0.

(3.48)

Using (10.22.E67) from the Digital Library of Mathematical Functions (DLMF)

64



[87],

∫
∞

0
te−p2t2

Jν(at)Jν(bt)dt =
1

2p2 e
− (a2+b2)

4p2 Iν

(
ab
2p2

)
, (3.49)

the q integral can be evaluated. This along with the fact that ∂ν Iν(z)|ν=0 =−K0(z)5

gives

S1 =−
λA⊥

3 ·210π3

∫
dr
∫

∞

0
dαdβ

r
α2β 2 e

− r2
2β
−αm2− 1

αΛ2−βm2− 1
βΛ2 K0

(
r2

2β

)
. (3.50)

(21) on p. 131 of [88],

∫
∞

0
dte−atK0(ty) =

arccos(a
y )√

y2−a2

a
y→1
−−−→ 1

y
, (3.51)

after substituting r2→ t and setting a = y = 1
2β

, gives

S1 =−
λA⊥

3 ·210π3

(∫
∞

0

dα

α2 e−αm2− 1
αΛ2

)(∫
∞

0

dβ

β
e
−βm2− 1

βΛ2

)
. (3.52)

Looking at the α integral first,∫
∞

0

dα

α2 e−αm2− 1
αΛ2 =

∫
∞

0
dαe−

m2
α
− α

Λ2

=2mΛK1

(
2m
Λ

)
m
Λ
→0−−−→ Λ

2 (3.53)

by substituting α → 1
α

in the first line and using (3.45) as well as in the second.

This recovers the Λ2 divergence seen previously in this case [85].

Using (29) from Volume 1, p. 146 of [88]

∫
∞

0
tν−1e−pt− a

4t dt =2
(

a
4p

) ν

2

Kν(
√

ap) (3.54)

5 (10.38.E4) in the DLMF [87].
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the β integral gives,

∫
∞

0

dβ

β
e
−βm2− 1

βΛ2 =2K0

(
2m
Λ

)
m
Λ
→0−−−→−2ln

2m
Λ

= ln
Λ2

4m2 , (3.55)

as K0(z)→− lnz as z→ 0. This reproduced the logarithmic divergence seen pre-

viously in this case [85] and makes explicit its form in our regularisation scheme.

Combining, the first order in λ correction to the entanglement entropy in the

commutative theory is

S1,Comm. =−3λ
A⊥Λ2

32 ·210π3 ln
Λ2

4m2 . (3.56)

This is proportional to the area of the boundary of A, that is A⊥, and the leading

divergence is of order Λ2, so this result fits with the area law picture discussed in

the introduction.

3.5.2 Noncommutative theory

Next we will compute the first order correction to the entanglement entropy for the

noncommutative φ 4 theory. Similarly to the commutative theory,

lnZn = ln
∫

Dφe−SE [φ ]

= lnZn,0−
λ

4!

∫
n

d4x〈Φ?Φ?Φ?Φ(x)〉0 + ... (3.57)

Using the associativity of the ?-product, this can be written as

∫
n

d4x〈Φ?Φ?Φ?Φ(x)〉0 =
∫

n
d4x
(

exp
[

i
2

Θ

(
∂

∂ξ1

∂

∂ζ2
− ∂

∂ξ2

∂

∂ζ1

)])
ξ=ζ=0(

exp
[

i
2

Θ

(
∂

∂η1

∂

∂ς2
− ∂

∂η2

∂

∂ς1

)])
η=ς=0

(3.58)(
exp
[

i
2

Θ

(
∂

∂γ1

∂

∂κ2
− ∂

∂γ2

∂

∂κ1

)])
γ=κ=0

〈Φ(x+ξ +η)Φ(x+ξ + ς)Φ(x+ζ + γ)Φ(x+ζ +κ)〉.
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The usual Wick’s Theorem can be applied to calculate the four-point function,

〈Φ(w)Φ(x)Φ(y)Φ(z)〉= Gn(w,x)Gn(y,z)+Gn(w,y)Gn(x,z)+Gn(w,z)Gn(x,y).

(3.59)

The key point is that while the conical singularity breaks the translational in-

variance in the x0-x1 plane, it is preserved in the x2-direction. Thus the star product

reduces to a translation in the x1-direction by an amount determined by the mo-

mentum in the x2-direction. Defining Gn(w,z) =
∫ d py

2π
Gn(w,z; py) as in (3.26),

exp
(

i
2

Θ
∂

∂w1

∂

∂ z2

)
Gn(w,z) =

∫ d py

2π
exp
(

1
2

pyΘ
∂

∂w1

)
Gn(w,z; py)

=
∫ d py

2π
Gn(w+

1
2

pyΘı̂,z; py), (3.60)

this can be used to evaluate the 4-point function,∫
n

d4x < Φ?Φ?Φ?Φ(x)>0 (3.61)

=
∫

n
d4x

∫ dkyd py

(2π)2

[
Gn(x+

1
2

Θky ı̂,x+
1
2

Θky ı̂;ky)Gn(x+
1
2

Θpy ı̂,x+
1
2

Θpy ı̂; py)

+Gn(x+
1
2

Θky ı̂,x+
1
2

Θ(ky +2py)ı̂;ky)Gn(x+
1
2

Θ(2ky + py)ı̂,x+
1
2

Θpy ı̂; py)

+Gn(x+
1
2

Θky ı̂,x+
1
2

Θky ı̂;ky)Gn(x+
1
2

Θ(2ky + py)ı̂,x+
1
2

Θ(2ky + py)ı̂; py)

]
.

Then, by shifting the spatial integral,

=
∫

n
d4x

∫ dkyd py

(2π)2

[
Gn(x,x;ky)Gn(x+

1
2

Θ(py− ky)ı̂,x+
1
2

Θ(py− ky)ı̂; py)

+Gn(x−
1
2

Θpy ı̂,x+
1
2

Θpy ı̂;ky)Gn(x+
1
2

Θky ı̂,x− 1
2

Θky ı̂; py) (3.62)

+Gn(x,x;ky)Gn(x+
1
2

Θ(ky + py)ı̂,x+
1
2

Θ(ky + py)ı̂; py)

]
.

In [54] it is seen that the effects of the non-commutativity manifest themselves

in the diagrams where lines cross each other. This is also present here, as Figure

3.2 shows that it is only the second term that involves lines crossing. The other
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Figure 3.2: Vacuum bubble diagrams at leading order in a real scalar λφ 4

theory. The only vacuum bubble where lines cross is the second one.
This is the only one which is affected by the non-commutativity, as
discussed in [54].

two terms are two self-coincident Green’s functions – the same result as was found

in the commutative case in Section 3.5.1 and [85]. The second term, which corre-

sponds to the nonplanar diagram, is the only one which is different than what was

found in the commutative case.

The entanglement entropy can be calculated using (3.16),

S1 =−∂n [lnZn,1−n lnZ1,1]n=1 (3.63)

=
2λ

4!
∂n

(∫
d4x
[

2G1(x,x)n fn(x,x)+
∫ dkyd py

(2π)2 G1(x,x+Θpy ı̂;ky)n fn(x,x−Θky ı̂; py)

])
n=1

where the fact that the spatial integral can be shifted, that the momenta can be

renamed, that G1(x,x; py) =G1(x+a,x+a; py), that fn(x,x′, py) = fn(x,x′;−py) as

long as x2 = x′2 and that f1 = 0 so that the terms with f 2
n can be ignored have all been

used. The j > 1 terms in fn have also been dropped again, which allows us here to

write the integral over the n-sheeted surface as n times the integral over a sheet. In

the commutative case, it was clear that these j > 1 terms do not contribute [83]. In

Appendix A it is argued that the leading divergence must be entirely contained in

the j = 1 term even in this noncommutative theory.

New contribution from the nonplanar diagram

The first term in (3.63) is the contribution from the two planar diagrams. These

give the same result as in the commutative case, namely λA⊥Λ2

21032π3 ln Λ2

4m2 from each

diagram. However, the nonplanar diagram gives a new contribution to the entangle-

ment entropy from the non-commutativity. The contribution from this nonplanar
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diagram will be denoted Snonplanar,

Snonplanar =
2λ

4!

∫
d4x

∫ dkyd py

(2π)2 G1(x,x+Θpy ı̂;ky)∂n [n fn(x,x−Θky ı̂; py)]n=1

=
4λA⊥

12π ·4!

∫
rdrdφ

∫ d4kd pyd pz

(2π)6
eiΘkx py

k2 +m2

∫
∞

0
dqq

∂ν [Jν(qr)Jν(qr′)]ν=0

q2 + p2
y + p2

z +m2 ,

(3.64)

where r′2 = (~r−Θky ı̂)2 = r2+(Θky)
2−2Θrky cosφ and A⊥ is the area of the x2-x3

plane that bounds the region for which the entanglement entropy is being calcu-

lated.

The next step is to introduce Schwinger parameters and to regulate this inte-

gral in the same manner as the integrals for other perturbative calculations in this

noncommutative theory were regulated in [54], as discussed in Section 3.5.1,

Snonplanar =
λA⊥

2332π

∫
drdφ

d4kd pyd pz

(2π)6 dq
∫

∞

0
dαdβqre

−αk2−β [q2+p2
y+p2

z ]− 1
αΛ2−αm2− 1

βΛ2−βm2

eiΘkx py∂ν [Jν(qr)Jν(qr′)]ν=0.

(3.65)

The py, pz and k except for ky integrals are all Gaussian (recall that r′ is a

function of ky),

Snonplanar =
λA⊥

2832π
9
2

∫
drdφdkydq

∫
∞

0
dαdβ

qr

α
√

β
√

4αβ +Θ2

e
−αk2

y−βq2− 1
αΛ2−αm2− 1

βΛ2−βm2

∂ν [Jν(qr)Jν(qr′)]ν=0. (3.66)

In order to make explicit some of the symmetry between r and r′, ρ and ϕ can

be defined such that r = ρ sinϕ and ky =
ρ

Θ
cosϕ , with ρ ∈ [0,∞) and ϕ ∈ [0,π].

Then defining g(φ ,ϕ) =
√

1+ sin2ϕ cosφ , gives r′ = ρg(φ ,ϕ) in these variables.
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Performing this change of variables,

Snonplanar =
λA⊥

2832π
9
2 Θ

∂ν |ν=0

∫
dρdϕdφdqdαdβ

qρ2 sinϕ

α
√

β
√

4αβ +Θ2

e
− α

Θ2 ρ2 cos2 ϕ−βq2− 1
αΛ2−αm2− 1

βΛ2−βm2

Jν(qρ sinϕ)Jν(qρg(φ ,ϕ)).

(3.67)

From the DLMF (10.22.E67) [87],

∫
∞

0
te−p2t2

Jν(at)Jν(bt) =
1

2p2 e
− (a2+b2)

4p2 Iν

(
ab
2p2

)
(3.68)

so that,

Snonplanar =
λA⊥

2932π
9
2 Θ

∂ν |ν=0

∫
dρdϕdφdαdβ

ρ2 sinϕ

αβ
3
2
√

4αβ +Θ2

e
− α

Θ2 ρ2 cos2 ϕ−ρ2 sin2 ϕ+g2(ϕ,φ)
4β

− 1
αΛ2−αm2− 1

βΛ2−βm2

Iν

(
ρ2

2β
g(φ ,ϕ)sinϕ

)
.

(3.69)

Now ρ and α can be rescaled to simplify this expression as ρ → 2
√

βρ and

α → Θ2

4β
α ,

Snonplanar =
λA⊥

2632π
9
2 Θ2

∂ν |ν=0

∫
dρdϕdφdα

ρ2 sinϕ

α
√

α +1

(∫
∞

0
dβe−β

(
m2+ 4

Θ2Λ2α

)
− 1

β

(
1

Λ2 +
Θ2m2α

4

))
e−αρ2 cos2 ϕ−ρ2[sin2

ϕ+g2(φ ,ϕ)]Iν

(
2ρ

2g(φ ,ϕ)sinϕ
)
. (3.70)

(25) from p.146 in volume I of [88],

∫
∞

0
dte−pt− a

4t =

√
a
p

K1(
√

ap), (3.71)
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allows the β integral to be evaluated,

∫
∞

0
dβe−β

(
m2+ 4

Θ2Λ2α

)
− 1

β

(
1

Λ2 +
Θ2m2α

4

)
=

√√√√ 4
Λ2 +Θ2m2α

m2 + 4
Θ2Λ2α

K1

(√(
4

Λ2 +Θ2m2α

)(
m2 +

4
Θ2Λ2α

))
,

=Θ
√

αK1

(
4

ΘΛ2
√

α
+Θm2√

α

)
. (3.72)

Using the identity ∂ν |ν=0Iν(z) =−K0(z),

Snonplanar =−
λA⊥

2632π
9
2 Θ

∫
dρdϕdφdα

ρ2 sinϕ√
α
√

α +1
e−ρ2[α cos2 ϕ+sin2

ϕ+g2(φ ,ϕ)]

K0
(
2ρ

2g(φ ,ϕ)sinϕ
)

K1

(
4

ΘΛ2
√

α
+Θm2√

α

)
. (3.73)

Taking a large Λ limit of this expression and expanding K1(x) ≈ 1
x for x→ 0

allows us to extract an overall quadratic divergence. However, more progress can

still be made by evaluating the ρ integral.

Using in order (23) from p. 131 of [88] and (15.9.E19) of [87],∫
∞

0
dρρ

2e−Aρ2
K0(Bρ

2) =
∫

∞

0
dx
√

xe−AxK0(Bx)

=
1
2
√

π
[Γ(3

2)]
2

Γ(2)(A+B)
3
2

2F1

(
3
2
,
1
2

;2;
A−B
A+B

)
(3.74)

=
π

3
2

8
√

2B
3
2

1√(A
B

)2−1
P1
− 1

2

(
A
B

)
,

where P1
− 1

2
(x) is the appropriate branch of the associated Legendre function with

non-integer degree.
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Defining z= α cos2 ϕ+sin2
ϕ+g2(ϕ,φ)

2g(φ ,ϕ)sinϕ
and recalling that g(φ ,ϕ)=

√
1+ sin2ϕ cosφ ,

Snonplanar =−
λA⊥

21132π3Θ

∫
∞

0
dα

G(α)√
α
√

α +1
K1

(
4

ΘΛ2
√

α
+Θm2√

α

)
and

(3.75)

G(α) =
∫

π

0
dϕ

∫ 2π

0
dφ

1

[g(φ ,ϕ)]
3
2
√

sinϕ

P1
− 1

2
(z)

√
z2−1

, (3.76)

where G(α) is dimensionless and finite for α ∈ (0,∞).

At this point, the asymptotic behaviour of G(α) can be analysed numerically,

as no analytic formula for this integral was found in the tables consulted. However,

while analysing this asymptotic behaviour, we found that G(α) = 16√
α+1

gives an

exact match up to high numerical accuracy across the many orders of magnitude

that were checked.6

Using this result for G(α),

Snonplanar =−
λA⊥

2732π3Θ

∫
∞

0

dα√
α

1
α +1

K1

(
4

ΘΛ2
√

α
+Θm2√

α

)
. (3.77)

Note that this result is invariant under ΘΛ2 ↔ Θm2, another sign of the UV/IR

connection in non-commutative theories.

This integral has two regulators, Λ and m. The only other dimensionful pa-

rameter is Θ, so the only dimensionless products of these regulators are m
Λ

and

ΘmΛ. As is familiar from the UV/IR mixing in this theory, the limits Λ→ ∞ and

m→ 0 do not commute. This can be resolved by taking m
Λ
→ 0 while fixing ΘmΛ.

Then taking the limit m→ 0 or Λ→ ∞ first corresponds to the limits ΘmΛ→ 0 or

ΘmΛ→ ∞ respectively. 7

6The only potential divergences in the integral for Snonplanar come from the regions of small and
large α . If the reader is uncomfortable with this numeric argument, this functional form for G(α)
could also be thought of more conservatively as a function with the right asymptotic behaviour to
reproduce the correct divergences in this integral.

7This discussion applies even if we want to think of m as a physical mass, as the ratio m
Λ

will still
vanish if m is fixed while Λ→ ∞. This case corresponds to ΘmΛ→ ∞.
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Introducing γ =
√

α ,

Snonplanar =−
λA⊥

2632π3Θ

∫
∞

0
dγ

1
γ2 +1

K1

(
2m
Λ

[
2

ΘmΛγ
+

ΘmΛγ

2

])
m
Λ
→0−−−→− λA⊥Λ

2832π3Θm

∫
∞

0
dγ

1
γ2 +1

1
2

ΘmΛγ
+ ΘmΛγ

2

(3.78)

=− λA⊥Λ2

2932π3

− ln
(

Θ2m2Λ2

4

)
1− Θ2m2Λ2

4

=− λA⊥
2732π3Θ2m2

− ln
( 4

Θ2m2Λ2

)
1− 4

Θ2m2Λ2

,

where the last line uses (2) from Volume 2 p.216 of [88].

This result illustrates the UV/IR connection in non-commutative theories. If the

IR regulator is removed first (ΘmΛ� 1), Snonplanar∼A⊥Λ2 – a quadratic UV diver-

gence. However if the UV regulator is removed first (ΘmΛ� 1), Snonplanar ∼ A⊥
Θ2m2 ,

allowing the same divergence to be interpreted as an IR divergence. In addition,

whether Θ2m2Λ2

4 is taken to be large or small there is a logarithmic divergence as

is found in the commutative case. However, here there is the additional option of

keeping both regulators, that is keeping 1
2 ΘmΛ finite, which eliminates the loga-

rithmic divergence seen in the commutative case.8 In particular, there is a natural

choice of IR regulator9, m = 2
ΘΛ

where

Snonplanar =−
λA⊥

2732π3Θ2m2 =−λA⊥Λ2

2932π3 . (3.79)

From a mathematical point of view, this UV/IR connection can be seen to

originate from the translation of the arguments of the Green’s function. In the

commutative theory, Snonplanar ∼
∫

n dxGn(x,x) fn(x,x) where as in the noncommu-

tative theory, the non-planar diagram made a contribution of the form Snonplanar ∼∫
n dxGn(x,x+Θp) fn(x,x+Θp). If an IR regulator is imposed, this momentum

cannot vanish and regulates the integral. This can be seen more clearly in the

dipole theory (analysed in Section 3.5.4) where the fixed translation regulates the

UV divergence of the integral.

8Note that if a Θ→ 0 limit is taken, this option is no longer available and the commutative result
is recovered, although the exact form of the logarithmic divergence depends on how the Θ limit is
taken.

9See Section 6 of [54]
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It is important to note that contributions from the j > 1 terms in (3.25) were

dropped at the start of this section and are not present in (3.78) or elsewhere in these

results. However, as is discussed in Appendix A, these do not affect the leading

divergence in Snonplanar or the conclusion that there is no volume law.

In contrast to strong coupling results, which saw signs of a volume law for the

entanglement entropy even with large regions, this perturbative calculation is only

sees an area law. The leading divergence in Snonplanar is quadratic and proportional

to the area of the boundary of the region, A⊥, in line with the area law discussed in

the introduction.

3.5.3 Complex scalar

The difference when considering a complex scalar is the Wick contraction in (3.39)

and (3.59) for the commutative and the noncommutative theory respectively. For

the real scalar

λ 〈φ(w)φ(x)φ(y)φ(z)〉= λ (Gn(w,x)Gn(y,z)+Gn(w,y)Gn(x,z)+Gn(w,z)Gn(x,y)) ,

(3.80)

whereas for the complex scalar this must be replaced with

λ0〈φ †(w)φ(x)φ †(y)φ(z)〉+λ1〈φ †(w)φ(x)φ(y)φ †(z)〉 (3.81)

= λ0 (Gn(w,x)Gn(y,z)+Gn(w,z)Gn(x,y))+λ1 (Gn(w,x)Gn(z,y)+Gn(w,y)Gn(z,x)) .

In the commutative theory, the fields in the 4-point function are all inserted

at the same point, that is w = x = y = z. Taking into account the difference in

the normalisation of the φ 4 term in the action, the only change is to replace an

overall factor of 3λ

4! by 2(λ0+λ1)
4 . This has no effect on the intermediate steps of the

calculation and can just be carried through straight to the final result:

S1,Comm.→−
(λ0 +λ1)A⊥Λ2

3 ·28π3 ln
Λ2

4m2 . (3.82)

For the noncommutative theory, it is a simple matter of writing out the ?-

products explicitly and following through similar transformations of the integra-
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Figure 3.3: Vacuum bubble diagrams at leading order in the noncommutative
complex scalar λφ 4 theory. The two on the left come from the λ0φ † ?
φ ?φ †?φ term in the action whereas the two on the right from the λ1φ †?
φ ?φ ?φ † term.

tion variables as in the previous section. This procedure gives 2λ0 +λ1 times the

commutative result plus λ1 times the result for the nonplanar diagram already en-

countered for the real scalar. This result can be obtained directly by looking at the

4 diagrams in Figure 3.3 and realising that only the term proportional to λ1 gives a

nonplanar diagram.

Thus the result for the noncommutative theory with a complex scalar is

S1,NC→(2λ0 +λ1)
A⊥Λ2

3 ·29π3 ln
Λ2

4m2 −λ1
A⊥Λ2

3 ·28π3

− ln
(

Θ2m2Λ2

4

)
1− Θ2m2Λ2

4

(3.83)

3.5.4 Dipole theory

For the dipole theory, the explicit form of the interaction terms was written out in

(3.14). Thus,

lnZn = ln
∫

Dφe−SE [φ ] (3.84)

= lnZn,0−
∫

n
d4x
〈

λ0

4
Φ

†(x)Φ(x)Φ†(x)Φ(x)+
λ1

4
Φ

†(x+
1
2

a)Φ(x+
1
2

a)Φ(x− 1
2

a)Φ†(x− 1
2

a)
〉

0
+ . . .

Applying Wick’s Theorem, using the facts that G1(x,x) = G1(x+a,x+a) and
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fn(x+a,x) = fn(x,x+a) (when ignoring the j > 1 terms) and shifting the integral,

lnZn,1 =−
1
4

∫
n

d4x [2λ0Gn(x,x)Gn(x,x) (3.85)

+ λ1

(
Gn(x+

1
2

a,x+
1
2

a)Gn(x−
1
2

a,x− 1
2

a)+Gn(x+
1
2

a,x− 1
2

a)Gn(x−
1
2

a,x+
1
2

a)
)]

S1 =−∂n [lnZn,1−n lnZ1,1]n=1 (3.86)

=
2
4

∂n

(∫
d4x
[
(2λ0 +λ1)G1(x,x)n fn(x,x)+λ1G1(x,x+a)n fn(x,x−a)

])
n=1

.

Again this is as expected from the diagrammatic approach. Only the single

nonplanar diagram gives a new contribution and the 3 planar diagrams give contri-

butions identical to those in the commutative theory.

Focusing on the contribution from the nonplanar diagram, the explicit forms of

G1 and fn give

Snonplanar =
4λA⊥
12π ·4

∫
rdrdφ

∫ d4kd pyd pz

(2π)6
eikxa

k2 +m2

∫
∞

0
dqq

∂ν [Jν(qr)Jν(qr′)]ν=0

q2 + p2
y + p2

z +m2 ,

(3.87)

where now r′2 = (~r−aı̂)2 = r2 +a2−2racosφ .

Introducing Schwinger parameters and regulating,

Snonplanar =
λA⊥
223π

∫
drdφ

d4kd pyd pz

(2π)6 dq
∫

∞

0
dαdβqre

−αk2−β [q2+p2
y+p2

z ]− 1
αΛ2−αm2− 1

βΛ2−βm2

eikxa
∂ν [Jν(qr)Jν(qr′)]ν=0.

(3.88)

In this case, all the momenta integrals except q are Gaussian,

Snonplanar =
λA⊥

283π4

∫
drdφdqdαdβ

qr
α2β

e
− a2

4α
− 1

αΛ2−αm2−βq2− 1
βΛ2−βm2

∂ν [Jν(qr)Jν(qr′)]ν=0.

(3.89)
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The α integral can be factored out to give, using (3.45),

∫
∞

0
dα

e−
1
α

(
a2
4 + 1

Λ2

)
−αm2

α2 =
∫

∞

0
dαe−α

(
a2
4 + 1

Λ2

)
−m2

α =
2m√

a2

4 + 1
Λ2

K1

(
2m

√
a2

4
+

1
Λ2

)
Λ→∞−−−→4m

a
K1 (ma) (3.90)

m→0−−−→ 4
a2

This factor came from evaluating G1(0,aı̂) which goes as ∼ 1
a2 as expected. The

fixed nonlocality scale has regulated the UV divergence in this case. In the dipole

theory the distance of the translation is fixed, as opposed to the non-commutative

case where the translation is proportional to the momentum in the y-direction which

can vanish in the IR.

Using (3.49),

Snonplanar =−
λA⊥

273π4a2

∫
∞

0
dβ

[∫
∞

0
dr
∫ 2π

0
dφ

r
β 2 e−

r2+r′2
4β K0

(
rr′

2β

)]
e
− 1

βΛ2−βm2

.

(3.91)

Rescaling r→ ar and β→ a2β to make them dimensionless (r′→ a
√

r2 +1−2r cosφ

under this) and defining H(β ) as the part of the previous equation enclosed in

brackets,

Snonplanar =−
λA⊥

273π4a2

∫
∞

0
dβH(β )e

− 1
βa2Λ2−βa2m2

. (3.92)

H(β ) is dimensionless and finite for β ∈ (0,∞). The integrand is exponentially

suppressed for small β and numerical evaluation of the r and φ integrals confirm

that H(β )
β→0−−−→ 0. The other potential source of a divergence is at large β and

numerical integration finds that H(β )
β→∞−−−→ 2π

β
leading to a logarithmic divergence

at large β that must be regulated by e−βa2m2
,

∫
∞ dβ

β
e−βa2m2

=− ln(a2m2)+O(m0), (3.93)
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to leading order in the small m limit.

Thus Snonplanar has only an IR divergence in the dipole theory. The leading

divergence in the j = 1 term is

Snonplanar =−
λA⊥

3 ·26π3a2

[
− ln(a2m2)

]
, (3.94)

however there will be contributions to this order from the j > 1 terms which were

dropped. The the conclusion of this analysis is that the nonplanar diagram does not

contribute to the leading divergence of entanglement entropy at this order as it is

subleading to the contribution from the planar diagram.

The nonlocality introduced in the dipole theory does not affect the area law, as

the total entanglement entropy at this order in perturbation theory is dominated by

the planar diagrams which matched the result from the commutative theory. Even

the subleading terms we have analysed do not follow any sort of volume law as they

are not proportional to the lengthscale of the nonlocality. The only effect of the

nonlocality is to regulate the UV divergence otherwise present. Similar behaviour

was observed in [54], where one of the ways that the nonlocality manifested itself

was by softening divergences in nonplanar diagrams.

3.6 Final remarks
In this paper we computed the first perturbative correction to the entanglement

entropy in two nonlocal theories, a φ 4 theory defined on the noncommutative plane

and a dipole theory.

The contribution to the entanglement entropy in each of these theories at first

order in coupling comes from vacuum bubble diagrams. The planar diagrams give

the same contribution in all three theories. However, the nonplanar diagram is

affected by the modified ?-product. Never the less, these diagrams do not modify

the area law observed in the commutative theory. Thus, at this order in perturbation

theory and for the region considered at least, all these theories follow an area law

with no sign of a volume law, as opposed to the strongly coupled case where the

signature of the volume law could be seen even for large regions.

In the commutative theory it has been shown that the modification to the en-
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tanglement entropy at first order in perturbation theory can be absorbed into the

renormalisation of the mass [85]. It would be interesting to see if a similar inter-

pretation can be made in the case of the theories considered here.

Finally, a comment about the commutative limit. Since the quantities dealt with

in the paper are not UV finite, this is not a straightforward issue. The general pat-

tern is that the nonlocality has served as an additional regulator that softens certain

divergences. Thus, if the nonlocality is removed, these divergences reappear and

the commutative limit applied to the final results is not smooth.
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The Structure of Holographic
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Chapter 4

Inviolable Energy Conditions

4.1 Introduction
The AdS/CFT correspondence provides a remarkable connection between quan-

tum gravitational theories and non-gravitational quantum systems [4, 5]. There are

believed to be many examples of the correspondence; indeed, it may be that any

consistent quantum gravity theory for asymptotically AdS spacetimes can be used

to define a CFT on the boundary spacetime. In this paper, we focus on examples

with a classical limit described by Einstein’s equations coupled to matter. We seek

to derive results that are universally true for all such theories, by translating to

gravitational language results that are universally true in all quantum field theories.

Specifically, we will translate some basic constraints on the structure of entangle-

ment in quantum systems to derive some fundamental constraints on spacetime

geometry that must hold in all consistent theories of Einstein gravity coupled to

matter.

Our main tool will be the Ryu-Takayanagi formula (and its covariant gener-

alization due to Hubeny, Rangamani, and Takayanagi)[6, 9].1 This relates entan-

glement entropy for spatial regions A in the field theory to the areas of extremal

surfaces ∂A in the dual geometry with the same boundary as A (see Section 4.2 for

1A recent proof was given in [27].
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Figure 4.1: Ryu-Takayanagi formula as a map from the space G of geome-
tries with boundary B to the space S of mappings from subsets of B to
real numbers. Mappings in region Sphys (shaded) correspond to physi-
cally allowed entanglement entropies. Geometries in region Gphys map
into Sphys while the remaining geometries are unphysical in any con-
sistent theory for which the Ryu-Takayanagi formula holds (plausibly
equal to the set of gravity theories with Einstein gravity coupled to mat-
ter in the classical limit).

a review). Generally speaking, we can understand this as a mapping

RT : G →S

from the set G of asymptotically AdS spacetimes with boundary geometry B to the

set S of maps S from subsets of B to real numbers.2

This mapping is depicted in Figure 4.1. Physically allowed entanglement struc-

tures must obey constraints, such as strong subadditivity and positivity/monotonic-

ity of relative entropy, so only a subset Sphys of maps represented by S can rep-

resent physically allowed entanglement structures. If a geometry M ∈ G maps to a

point outside this subset, we can conclude that such a geometry is not allowed, in

any theory for which the Ryu-Takayanagi formula is valid (which we believe to be

2To avoid divergent quantities, we could define the map S associated with a geometry M such that
for subset B of the boundary of M, SM(B) is the difference between the area of the extremal surface
B̃M and the corresponding extremal surface B̃AdS in pure AdS.
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all consistent gravity theories whose classical limit is Einstein gravity coupled to

matter). Another interesting point is that the space of geometries with boundary B

is much smaller than the space of functions on subsets of B, so the image of G in

S will be a measure zero subset SG. This implies that the entanglement structures

for quantum field theory states with gravity duals are extremely constrained.

This picture suggests several interesting directions for research:

• Characterize the geometries Gphys that map to physically allowed entangle-

ment entropies Sphys. While some of these geometries may be ruled out

by additional constraints not related to entanglement, we can say that any

geometry not in Gphys cannot represent a physical spacetime.

• Characterize the constraints on entanglement structure implied by the exis-

tence of a holographic dual i.e. understand the subset SG. Examples in-

clude the monogamy of mutual information [89], but there should be much

stronger constraints through which the entanglement entropies for most re-

gions are determined in terms of the entanglement entropies for a small sub-

set of regions.

• Better understand the inverse mapping from Sphys to Gphys to be able to

explicitly reconstruct geometries from entanglement entropies.

In this paper, we focus on the first direction, though we will have some comments

on the second direction in Section 4.6. Many recent papers discuss the third direc-

tion, including [90, 91, 92].

Constraining geometry from entanglement

The question of which geometries give rise to allowed entanglement structures was

considered at the level of first order perturbations to pure AdS in [36, 37, 38] (see

also [93, 94]). Such perturbations correspond to small perturbations of the CFT

vacuum state. For these first order CFT perturbations, the entanglement entropy for

ball-shaped regions is determined in terms of the expectation value of the stress-

energy tensor3 via the “first law of entanglement,” which we review in Section 4.2

3The stress tensor is determined in terms of the entanglement entropy for infinitesimal ball shaped
regions, so we can think of the entanglement first law as a constraint determining the entanglement
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below. As shown in [36, 37] the gravitational version of this constraint is exactly

the linearized Einstein equation. For a discussion of constraints at the second-order

in the metric perturbation, see [95, 96].

In this paper, we begin to unravel the implications of entanglement constraints

on geometries away from this perturbative limit. One might ask whether it is pos-

sible to obtain the full non-linear Einstein equations in this way. However, at the

classical level, the entanglement quantities tell us only about the dual geometry,

so the entanglement constraints will be constraints on the geometries themselves,

without reference to any bulk stress-energy tensor. Further, the specific constraints

we consider (strong subadditivity of entanglement entropy, and the positivity and

monotonicity of relative entropy) take the form of inequalities, so we should ex-

pect that the nonlinear constraints also take the form of geometrical inequalities

ruling out some geometries as unphysical. This is a natural outcome: since the

results must apply to all consistent theories, we cannot expect specific non-linear

equations to emerge, but there should be restrictions that apply to the whole class

of allowed theories.

In interpreting these geometrical constraints, it is useful to translate them into

constraints on the stress-energy tensor assuming that Einstein’s equations hold.

This is a very plausible assumption. Indeed, it is possible to argue [38] indirectly

using the linearized results that Einstein’s equations must be obtained.4 Any ge-

ometry provides a solution to Einstein’s equations for some stress tensor. Thus,

given a geometry that violates the entanglement constraints, we can conclude that

no consistent theory of gravity can produce the associated stress tensor. Expressed

in this way, the constraints from entanglement inequalities can be thought of as

certain “energy conditions.”

We will see that some of the conditions we obtain are closely related to some

of the standard energy conditions used in classical general relativity. However,

entropies for arbitrary ball-shaped regions from the entanglement entropies for infinitesimal balls.
4In [38], it was shown that by considering quantum corrections to the Ryu-Takayanagi formula,

the expectation value of the bulk stress-energy tensor comes in as a source for the linearized Einstein
equations. Assuming that the source is a generally a local operator, this is enough to see that it must
be the stress-energy tensor. It has been argued that the linearized equations together with the stress-
energy tensor as a source imply the full non-linear Einstein equations if one demands conservation
of the stress-energy tensor in the full theory.
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we emphasize that while these standard conditions (such as the weak and null-

energy conditions) are simply plausible assumptions on the properties of matter, the

conditions we derive follow from fundamental principles of quantum mechanics

(assuming the Ryu-Takayanagi formula holds) and cannot be violated.

Summary of results

In this paper, we take a few modest steps towards understanding the general con-

straints on non-linear gravity due to entanglement inequalities, investigating these

constraints in the case of highly symmetric spacetimes. Specifically, we determine

constraints on static, translationally invariant spacetimes in 2+1 dimensions, and

static, spherically-symmetric spacetimes in general dimensions. We find the fol-

lowing main results:

• For spacetimes dual to the vacuum states of 1+1 dimensional Lorentz-invariant

field theories flowing between two CFT fixed points, the constraints due to

strong-subadditivity are satisfied if and only if the spacetime satisfies a set

of averaged null energy conditions∫
γ

dsTµνuµuν ≥ 0

where γ is an arbitrary spatial geodesic and uµ is a null vector generating a

light-sheet of γ defined such that translation by uµ produces an equal change

in the spatial scale factor at all points (Section 4.3).

• For static translation-invariant spacetimes dual to excited states of 1+1 di-

mensional CFTs, we show that the monotonicity of relative entropy implies

that the minimum scale factor reached by an RT surface for spatial interval

is always less than the scale factor reached by the corresponding RT sur-

face in the geometry for the thermal state with the same stress-energy tensor

(Section 4.4).

• For these spacetimes, we find that asymptotically, the positivity of relative

entropy is exactly equivalent to the statement that observers near the bound-

ary moving at arbitrary velocities in the field theory direction cannot ob-

serve negative energy. That is, we get a subset of the weak energy condition
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Tµνuµuν ≥ 0 where uµ is an arbitrary timelike vector with no component in

the radial direction.

• For static spherically symmetric asymptotically AdS spacetimes, the pos-

itivity of relative entropy implies that the area of a surface bisecting the

spacetime symmetrically is bounded by the mass of the spacetime. For four-

dimensional gravity, the specific result is (Section 4.5)

∆A≤ 2πGNM`AdS .

We offer a few concluding remarks in Section 4.6.

Previous connections between energy conditions and entanglement inequalities

appeared in [97, 98, 73, 99] who noted that the null energy condition is sufficient

to prove certain entanglement inequalities holographically. The use of relative en-

tropy in holography was pioneered in [100] and applied to derive gravitational

constraints at the perturbative level in [95, 96].

Note: While this manuscript was in preparation, the paper [41] appeared, which

overlaps with the results in Section 4.4.2.

4.2 Background

4.2.1 Entanglement inequalities

In this section, we review various entanglement inequalities that should place con-

straints on possible dual spacetimes via the holographic entanglement entropy for-

mula.5

Strong subadditivity

To begin, we recall that the entanglement entropy S(A) for a subsystem A of a

quantum system is defined as S(A) = − tr(ρA log(ρA)), where ρA is the reduced

density matrix for the subsystem.

5See, for example [14], for a more complete discussion of entanglement inequalities.
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Figure 4.2: Spacelike intervals for strong subadditivity.

The strong subadditivity of entanglement entropy states that for any three dis-

joint subsystems A, B, and C,

S(A∪B)+S(B∪C)≥ S(B)+S(A∪B∪C). (4.1)

Considering only spatial regions of a constant-time slice in a time-invariant state

corresponding to a static dual geometry, this constraint places no constraints on

the dual geometry, as shown in [74]. However, in the time-dependent cases, or

for regions of a time-slice that do not respect the symmetry, this inequality gives

non-trivial constraints, as we will see below.

For our analysis below, we will be interested in applying the constraints of

strong subadditivity in the case of 1+1 dimensional field theories. Entanglement

entropy is the same for any spacelike regions with the same domain of dependence,

so for any connected spacelike region A, entanglement entropy is a function of the

two endpoints of the region. We write S(x1,x2) to denote the entanglement entropy

of the interval [x1,x2] (or any spacelike region with the same domain of depen-

dence). We focus on the case where A, B, and C in (4.1) are adjacent spacelike

intervals, as shown in Figure 4.2.

We note first that the full set of strong subadditivity constraints for adjacent

intervals follow from the constraints in the case where the intervals A and C are

infinitesimal. For suppose the strong-subadditivity constraint is true for regions A,

B, and C with the proper length of A and C less than Lmax. Then we can show that

the constraint holds for intervals with A and C less than 2Lmax, and so forth. For
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example, if A, B, C1 and C2 are adjacent intervals with C1 and C2 having proper

length less than Lmax, we have

S(A∪B)+S(B∪C1) ≥ S(A∪B∪C1)+S(B)

S(A∪B∪C1)+S(B∪C1∪C2) ≥ S(A∪B∪C1∪C2)+S(B∪C1)

Adding these, we find

S(A∪B)+S(B∪{C1∪C2})≥ S(A∪B∪{C1∪C2})+S(B) .

In this way, we can combine two strong subadditivity constraints for which the

rightmost interval has length smaller than Lmax to obtain a constraint where the

rightmost interval is any interval with length less than 2Lmax.6

Now, consider the strong subadditivity constraint where B is the interval [x1,x2]

while A and C are the intervals [x1 + εξ1,x1] and [x2,x2 +δξ2], as shown in Figure

4.2. In this case, the constraint (4.1) gives

S([x1 + εξ1,x1]∪ [x1,x2])+S([x1,x2]∪ [x2 +δξ2])

≥ S([x1 + εξ1,x1]∪ [x1,x2]∪ [x2 +δξ2])+S([x1,x2])

=⇒ S(x1 + εξ1,x2)+S(x1,x2 +δξ2)−S(x1 + εξ1,x2 +δξ2)−S(x1,x2)≥ 0

Expanding to first order in both δ and ε , this gives

ξ
α
1 ξ

β

2 ∂
1
α∂

2
β

S(x1,x2)≤ 0 .

Since this constraint is linear in the spacelike vectors ξ1 and ξ2, it is sufficient to

require that the constraint be satisfied in the lightlike limit of ξ1 and ξ2, i.e. when

ξ1 and ξ2 lie along the dotted lines in Figure 4.2. Thus, a minimal set of strong

subadditivity constraints that imply all constraints for connected regions is

∂
1
+∂

2
+S(x1,x2)≤ 0 ∂

1
+∂

2
−S(x1,x2)≤ 0 ∂

1
−∂

2
+S(x1,x2)≤ 0 ∂

1
−∂

2
−S(x1,x2)≤ 0 .

6Essentially the same argument works in general dimensions to show that the full set of strong
subadditivity constraints are implied by considering the constraint (4.1) where B is an arbitrary region
and where A and C are taken to be infinitesimal.
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In the special case of states invariant under spacetime translations, the entan-

glement entropy for an interval can only depend on the difference between the end-

points so S(x1,x2) = S(x2− x1). In this case, the basic constraints may be written

as7

∂+∂+S(x)≤ 0 ∂−∂−S(x)≤ 0 ∂+∂−S(x)≤ 0 ∂−∂+S(x)≤ 0; . (4.2)

Only the latter two constraints here are saturated for the vacuum state, so we expect

these will provide more useful constraints.

Finally, in the case of a Lorentz-invariant state, the entanglement entropy can

depend only on the proper length of the interval, so is described by a single function

S(R). In this case, the constraints reduce to

d2S
dR2 ±

1
R

dS
dR
≤ 0 , (4.3)

where the first two constraints in (4.2) give the − sign and the latter two give the

+ sign. In particular, the constraint with the + sign (which is saturated for vacuum

states) is equivalent to

c′(R)≤ 0 c(R)≡ R
dS
dR

.

This was shown by Casini and Huerta [101] in their proof of the c-theorem using

strong-subadditivity.

Positivity and Monotonicity of Relative Entropy

A very general class of constraints on the entanglement structure of a quantum

system are related to relative entropy. This gives a measure of distinguishability of

a density matrix ρ to a reference state σ , defined as

S(ρ||σ) = tr(ρ logρ)− tr(ρ logσ) .

7Similar constraints were noted in [42], which appeared while the current version of this paper
was in preparation.
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Relative entropy is always positive, increasing from zero for identical states ρ and

σ to infinity for orthogonal states. Furthermore, for reduced density matrices ρA

and σA obtained by a partial trace operation from ρ and σ , we have

S(ρA‖σA)≤ S(ρ‖σ). (4.4)

This decrease in ρ under restriction to a subsystem is known as the monotonicity

of relative entropy, or the data processing inequality [14].

It is useful to define the modular Hamiltonian associated with the reference

state as Hσ = − log(σ), in analogy with thermodynamics. Using this, and the

definition S(ρ) = − tr(ρ log(ρ)) for entanglement entropy, we can rewrite the ex-

pression for relative entropy as

S(ρ||σ) = tr(ρ logρ)− tr(σ logσ)+ tr(σ logσ)− tr(ρ logσ)

= 〈− logσ〉ρ −〈− logσ〉σ −S(ρ)+S(σ)

= ∆〈Hσ 〉−∆S. (4.5)

For nearby states, ρ−σ = εX with ε � 1 and X an arbitrary traceless Hermi-

tian operator, one can expand relative entropy in powers of ε . To the first order in ε

relative entropy vanishes. This is typically referred to as the first law of entangle-

ment since it implies δ 〈Hσ 〉 = δS. The expression at second order in ε is known

as Fisher information, and is discussed in detail in Section 4.3.

The rewriting in (4.5) becomes useful in cases where we can compute the mod-

ular Hamiltonian Hσ . Generally this is possible when the reference state is thermal

with respect to some Hamiltonian. For example, the density matrix for a half-

space in the vacuum state of a Lorentz-invariant field theory on Minkowski space

is thermal with respect to the Rindler Hamiltonian (boost generator), so we have

Hmod = c
∫

ddxxT00. The cases we consider below can all be obtained by conformal

transformations from this example [102, 100].

For a ball shaped region in the vacuum state of a CFT on Rd,1, we have [100]

HB = 2π

∫
|x|<R

ddx
R2−|x|2

2R
T CFT

00 . (4.6)
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For a ball-shaped region in the vacuum state of a CFT on a sphere, we have

HB = 2π

∫
B

ddx
cos(θ)− cos(θ0)

sin(θ0)
T00 . (4.7)

In the special case of 1+1 dimensional CFTs the modular Hamiltonian can also

be calculated for thermal states. For a spatial interval [−R,R] in an unboosted

thermal state with temperature T = β−1, the modular Hamiltonian is

HB =
2β

sinh
(

2πR
β

) ∫ R

−R
dxsinh

(
π(R− x)

β

)
sinh

(
π(R+ x)

β

)
T00(x) , (4.8)

We can also obtain the expression for the modular Hamiltonian of an interval in a

boosted thermal state. This is derived in Appendix B.

Optimal relative entropy constraints for a family of reference states

In various situations, we may have a family of reference states σα depending on

parameters αi (e.g. temperature), and we would like to find the strongest rela-

tive entropy constraint coming from this family. We will assume that the modular

Hamiltonians for these reference states take the form of an integral over linear

combination of local operators with α-dependent coefficients,

Hα =
∫

ddx fn(x,α)On(x) . (4.9)

According to the entanglement first law, under first order variation of the reference

state σα , the entanglement entropy of this state changes as

δSα =
∫

ddx fn(x,α)δ 〈On(x)〉α .

Here the right side corresponds to the variation in the expectation value of the

modular Hamiltonian for the reference state under a variation of the state (while

keeping the modular Hamiltonian fixed). Using this result and the definition (4.5),

we have

δS(ρ||σα) = δ

{
〈Hβ 〉ρ −〈Hβ 〉σβ −S(ρ)+S(σβ )

}
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=
∫

ddxδ fn(x,α)
[
〈On(x)〉ρ −〈On(x)〉σα

]
. (4.10)

Thus, the relative entropy will be extremized with respect to parameters αi if we

can choose a reference state such that∫
ddx

∂ fn(x,α)

∂αi

[
〈On(x)〉ρ −〈On(x)〉σα

]
= 0 . (4.11)

In the special case where the initial state and reference states are translation invari-

ant, this becomes
∂ In(α)

∂αi

[
〈On〉ρ −〈On〉σα

]
= 0 , (4.12)

where

In(α) =
∫

ddx fn(x,α) .

so we see that an extremum will be obtained if we can choose a reference state with

the same expectation value as our state for each of the operators,

〈On〉ρ = 〈On〉σα
(4.13)

The same state will also be provide an extremum for the monotonicity constraint,

since if R parameterizes a region whose size increases with R,

d
dαi

d
dR

S(ρ||σα) =
∂ 2In(α,R)

∂R∂αi

[
〈On〉ρ −〈On〉σα

]
= 0 .

Thus the reference state σα∗ whose operator expectation values match the state ρ

will also give the minimum dS(ρ||σα)/dR (and thus the strongest monotonicity

constraint), assuming that the extremum is a minimum.8

The matching of operator expectation values and the form (4.9) of the Hamil-

tonian implies that ∆〈Hα∗〉 = 0, so in this case, the constraint from positivity and

8In practice, we should also check whether other extrema exist, and check the boundary of the
parameter space. However, since the relative entropy provides a measure of how close our state is to
the reference state, it is plausible that the relative entropy is minimized by matching the expectation
values of operators. For the cases below, we have explicitly checked that this is the case using the
explicit form of the modular Hamiltonian.
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monotonicity of relative entropy are simply that9

S(ρR)−S(σα∗
R )≤ 0

d
dR

(S(ρA)−S(σα∗
A ))≤ 0. (4.14)

4.2.2 Holographic formulae for entanglement entropy

In this paper, we consider general theories of gravity dual to holographic QFTs

such that the leading order (in the 1/N expansion) entanglement entropy for spatial

regions of the field theory is computed by the Ryu-Takayanagi formula [6], or its

covariant generalization [9]. This states that the entanglement entropy of a region

A is given by

S(A) =
Area(Ã)

4GN
,

where Ã is the extremal surface in the dual geometry with ∂ Ã= ∂A (i.e. such that A

and ∂A have the same boundary). The surface Ã is also required to be homologous

to A, and in cases where multiple extremal surfaces exist, it is the extremal surface

with least area.

The Ryu-Takayanagi formula receives quantum corrections from the entangle-

ment entropy of bulk quantum fields, but we consider only the classical limit in this

paper. We note also that for theories of gravity with higher powers of curvature or

higher derivatives, the entropy is computed using a more complicated functional

than area. However, we restrict attention in this paper to theories for which the

gravitational sector is Einstein gravity.

4.2.3 Energy conditions

To end this section, we briefly review a few of the standard energy conditions

discussed in the gravitational literature. These are statements about the stress-

energy tensor that are taken to be plausibly true, but which are generally not derived

from any underlying quantum theory.10 The weak energy condition states that the

energy density in any frame of reference must be non-negative. Specifically, if uµ

9A similar simplification of relative entropy was noted in [103] when considering the problem of
finding entropy-maximizing states consistent with local data.

10See [104] for a recent argument for the null-energy condition based on perturbative string theory.
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is a timelike vector, then

Tµνuµuν ≥ 0 .

The null energy condition takes the same form, but with u is taken to be a null

vector. This is implied by the weak energy condition.

Various authors have also considered averaged energy conditions, in which the

conditions are only required to hold when averaged over some geodesic or spatial

region. This is the type of contraint that we will find below.

4.3 Constraints on spacetimes dual to Lorentz-invariant
1+1D field theories

In this section, we consider Lorentz-invariant holographic two-dimensional field

theories that flow from some CFT in the UV to another CFT in the IR. For such

theories, the vacuum state is dual to a spacetime of the form11

ds2 =
F2(r)

r2 dr2 + r2(−dt2 +dx2) , (4.15)

where F(r) approaches constants both at r = 0 and at r =∞ (giving AdS geometries

corresponding to the IR and UV fixed points).12 We would like to understand the

constraints on the function F(r) that arise from entanglement inequalities in the

CFT. Specifically, we consider the constraints arising from strong subadditivity.

For any spacelike interval, Lorentz-invariance implies that the entanglement

entropy depends only on the proper length of the interval, so entanglement entropy

for connected regions is captured by a single function S(R). As we reviewed in

Section 4.2, Casini and Huerta have shown [101] starting from strong subadditivity

that the function c(R) = dS/d(ln(R)) = RdS/dR obeys c′(R) ≤ 0. The function

c(R) therefore decreases monotonically for increasing R, which leads immediately

to the Zamolodchikov c-theorem, since c(R) reduces to the UV and IR central

charge for small and large R respectively.

The holographic version of the statement c′(R) ≤ 0 was obtained previously

11In special cases, there may be additional compact directions in the dual spacetime. In these
cases, we consider the KK-modes of the metric and other fields as part of the matter sector.

12This choice of coordinates assumes that the spatial scale factor is monotonic in the radial direc-
tion. At the end of this section, we comment on the case where this doesn’t hold.
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in [97], but we review the calculation here since we will be generalizing this in

the next section. Using the Ryu-Takayanagi formula, the entanglement entropy for

an interval of length R in the geometry (4.15) is obtained by the minimum of the

action

S =
∫

dλ

√
F2(r)

r2

(
dr
dλ

)2

+ r2

(
dx
dλ

)2

(4.16)

with boundary conditions (r(λi),x(λi)) = (rmax,0) and (r(λ f ),x(λ f )) = (rmax,R),

where rmax is a regulator that we will take to infinity. In Appendix C, we derive

a general formula for the variation of the entanglement entropy under a variation

in the endpoints of the interval for translation-invariant geometries. For the case

of variations in the size of spatial interval, the result (derived previously in [97]) is

that dS
dR equals the minimum spatial scale factor reached by the RT surface. Thus,

for our choice of coordinates,

dS
dR

= r0 c(R) = r0R . (4.17)

To find an explicit relation between r0 and R (and check that r0 has a well-

defined limit as we remove the regulator), we note that the equation for curves x(r)

extremizing the action (4.16) is

d
dr

 r2 dx
dr√

F(r)2

r2 + r2
(dx

dr

)2

= 0 .

In terms of the r0, the value of r where dr/dx vanishes, we have(
dx
dr

)2

=
F2(r)

r4
(

r2

r2
0
−1
) . (4.18)

Thus, we obtain

R = 2
∫

∞

r0

dr
F(r)

r2
1√

r2

r2
0
−1

= 2
∫

∞

1
dx

F(r0x)

r0x2
√

x2−1
. (4.19)
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We can now translate the strong-subadditivity condition c′(R) ≤ 0 to a conve-

nient bulk expression. Starting from the relation (4.17), we have that

d
dR

c(R) =
dr0

dR
d

dr0
(Rr0) =

d2S
dR2

∫
∞

1
dx

F ′(rx)

x
√

x2−1
(4.20)

Strong subadditivity implies that13

dr0

dR
=

d2S
dR2 ≤ 0 , (4.21)

so we have finally that d
dR c(R)≤ 0 is equivalent to the condition on F(r) that

∫
∞

r0

dr
F ′(r)

r
√

r2

r2
0
−1
≥ 0 (4.22)

for every r0. This result was derived originally in [97].

4.3.1 An averaged null energy condition

We will now show that the condition (4.22) can be interpreted as a particular aver-

aged null energy condition in this geometry.

We start by considering the light sheet emanating from the curve B, pointing

in the forward direction in time with light rays going towards the boundary. We

can define a null vector field on B directly along this lightsheet by the conditions

that u · u = 0, u · ∂λ xB = 0 and uµ∂µr = 1. Here, the scale factor r can be defined

as r =
√

ξ ·ξ , where ξ is the Killing vector corresponding to spatial translations

along the field theory direction. In our coordinates, we have

(ut ,ur,ux) =

F(r)
rr0

,−1,±
F(r)

√
r2− r2

0

r0r2

 .

13To see this, apply the strong subadditivity constraint (4.1) to the case where B is an interval of
length R and A and C are intervals of length δR to the left and right. Then strong subadditivity
implies that 2S(R + δR)− S(R)− S(R + 2δR) ≥ 0 which gives S′′(R) ≤ 0 in the limit δR → 0.
Holographically, this implies that Ryu-Takayanagi surfaces for larger intervals must penetrate deeper
into the bulk.
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Physically, this null vector field is normalized so that translation by the vector field

produces the same (additive) change in the scale factor everywhere.

Defining Tµν to be the stress tensor giving rise to the geometry (4.15) via Ein-

stein’s equations, we find that

Tµνuµuν
∝

F ′(r)
rF(r)

,

where we have used that the Einstein tensor in our geometry is

Grr =
1
r2

Gtt =−Gxx =
r3

F(r)3 F ′(r)− r2

F(r)2 .

From (4.15) and (4.18) the distance element along an RT curve B with minimal

radial coordinate r0 is given by

ds =
drF(r)

r0

√
r2

r2
0
−1

It follows that the condition (4.22) is equivalent to the condition that for every RT

curve B ∫
B

Tµνuµuνds≥ 0. (4.23)

Thus, the positivity of Casini and Huerta’s entanglement c-function is equivalent

in holographic theories (at the classical level) to this averaged null-energy con-

dition.14 This is clearly implied by the null energy condition, but is a weaker

condition, since it is possible for Tµνuµuν ≤ 0 to be negative locally while all the

integrals are positive.

We can give an alternative statement of the energy condition in terms of a

globally defined null vector field û, defined by replacing the condition u ·∂λ xB = 0

with u ·ξ = 0, where ξ is the spatial Killing vector. In our coordinates, (ût , ûr, ûx) =

(F(r)/r2,1,0). Physically, this null vector field is defined so that it points only in

the radial and time directions, and so that translation by the vector field produces

14This is not equivalent to what is usually called the averaged null energy condition, which in-
volves an average over null geodesics.
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the same (additive) change in the scale factor everywhere. In terms of this null

vector, the energy condition is also expressed as (4.23). In this case, the condition

(4.23) may be expressed by saying that the “Radon transform”15 of Tµν ûµ ûν is

everywhere non-negative.

4.3.2 Non-monotonic scale factors

The coordinate choice (4.15) assumed the scale factor to be monotonic in the radial

coordinate. In this section, we briefly consider the case where it is not. Here, we

can choose coordinates

ds2 = dr2 +a(r)2(−dt2 +dx2) . (4.24)

Asymptotically, a(r) must be increasing, but suppose that a′(r) < 0 in some in-

terval with upper bound rc, such that a′(rc) = 0. Note that any such geometry

violates the null energy condition d2/dr2(ln(a)) ≤ 0 which forbids local minima

of a. However, we would like to understand whether such a geometry can still

satisfy the constraints coming from strong subadditivity.

It is straightforward to check that a′(rc) = 0 implies that r = rc is an extremal

surface, so as r0 approaches rc, there will be a family of extremal surfaces end-

ing on boundary intervals whose length diverges. These extremal surfaces are re-

stricted to the region r ≥ rc, so their regulated length will scale with the interval

size R in the limit of large R. This is inconsistent with our assumption that the IR

physics is some conformal fixed point, so it must be that beyond some R∗, these ex-

tremal surfaces are no longer minimal. Let a1 = limR→R−∗ a(r0(R)) be the minimal

value of a attained by this branch of extremal surfaces.

In the present coordinates, the equations for an extremal surface penetrating to

some minimum radial value r0 are(
dr
dx

)2

= a2(r)
(

a2(r)
a2(r0)

−1
)

.

Thus, we see that only when a(r0) = minr≥r0 a(r) can an extremal surface reach

15Here we mean the map from a function on a space to a function on the space of geodesic curves
obtained by integrating the original function over the curve.
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the boundary. Otherwise, the previous equation would imply some negative value

for
( dr

dx

)2
at locations where a(r) < a(r0). Thus, the branch of extremal surfaces

which become minimal for R > R∗ have r0 greater than the value where a(r) again

decreases past a(rc). Let a2 be the maximal value of a for this R > R∗ branch of

solutions. We see that a2 < a1.

Using the result (4.17) in the previous section, we have

dS
dR

= a(r0) c(R) = Ra(r0)

so we see that non-monotonic scale factors, the entanglement c-function is discon-

tinuous, jumping from R∗a1 to R∗a2 at R = R∗. This was emphasized previously in

[97].

Despite the discontinuous behavior of the RT-surfaces, the constraint from

monotonicity of the c-function can still be expressed as (4.23), as we can show

by repeating the calculations from the previous section in the coordinates (4.24).

In this case, the constraint applies only to the extremal surfaces with minimal area.

4.4 Constraints on spacetimes dual to states of 1+1D
CFTs

In this section, we place restrictions on translation and time-translation invariant

spacetimes dual to states of 1+1 dimensional holographic CFTs on Minkowski

space.

4.4.1 Constraints from positivity and monotonicity of relative
entropy

We start by considering constraints arising from the positivity and monotonicity of

relative entropy for spacelike intervals.

For our CFT state Ψ, we can choose to work in a frame of reference where

the stress tensor is diagonal. We consider the density matrices ρI for a spacelike

interval I from (0,0) to (Rx,Rt). We will compare these to the density matrices

σ
β ,v
T calculated from a reference state, which we take to be a boosted thermal state

with temperature β and boost parameter v. For these states the relative entropy
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S(ρT ||σβ ,v
T ) must be positive and increase with the size of the interval,

δ
+
I S(ρI||σβ ,v

I )≥ 0 (4.25)

where δ
+
I represents a deformation (Rx,Rt)→ (Rx +δx,Rt +δ t) that increases the

proper length of the interval. Note that positivity follows from this monotonicity

condition since the relative entropy is zero for a vanishing interval.

According to the result (4.14) and the discussion in that section, the optimal

relative entropy constraints will be obtained by choosing the reference state pa-

rameters (β ,v) such that the stress tensor of the boosted thermal state matches the

stress-tensor of our state. This requires v = 0 and β = β ∗ such that the energy

density of the thermal state matches that of our state. From (4.14) the optimal

monotonicity constraint reduces simply to

δ
+
I

{
S(ρI)−S(σβ ∗

I )
}
≤ 0 (4.26)

A general expression for the variation of the holographic entanglement entropy

under a variation in the interval is given in Appendix C. The result is:

δ
+
I S = δx[Ax

0γ0]−δ t[At
0γ0β0] (4.27)

where A0
x and A0

t are the spatial and temporal scale factors at the deepest point

r0 on the extremal surface, defined for a general diagonal choice of the metric by

A0
x =
√

gxx(r0) and A0
t =
√
−gtt(r0), and γ0 = (1−β 2

0 )
− 1

2 with β0 = (Atdt)/(Axdx)

measuring the “tilt” of the geodesic at the point r0.

Using this result, the monotonicity constraint may be expressed as

δx
{
[Ax

0γ0]I− [Ax
0γ0]

β ∗

I

}
−δ t

{
[At

0γ0β0]I− [At
0γ0β0]

β ∗

I

}
≤ 0 (4.28)

where ∆ refers to difference between our state and the reference thermal state with

the same stress-tensor expectation values. Here we require δx> 0 and |δ t| ≤ δx, so

the strongest constraint will either be for δ t = δx or δ t =−δx. Thus, an equivalent

statement is

∆[γ0(Ax
0±β0At

0)]I ≤ 0 , (4.29)
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where ∆ refers to the result for our state minus the result for the thermal state.

Spatial constraint

It is interesting to write the our constraint more explicitly for the special case of a

spatial interval. We choose coordinates for which the metric takes the form

ds2 =
F2(r)

r2 dr2 + r2dx2− r2G2(r)dt2 , (4.30)

so that the radial coordinate measures the spatial scale factor. In this case, the

geodesics lie on constant time slices, so β0 = 0, γ0 = 1, and the constraint (4.28)

gives

r0(R)≤ rβ ∗

0 (R) , (4.31)

Thus, the monotonicity of relative entropy constraint for spatial intervals is equiva-

lent to the statement that the minimum scale factor reached by an extremal surface

in the geometry associated with |Ψ〉 is never less than the value in the thermal state

geometry with the same 〈T00〉.
Since r is a decreasing function of R according to (4.21), the condition (4.31)

is equivalent to

R(r0)≤ Rβ (r0) , (4.32)

Using the coordinates (4.30) and the result (4.19), we can express this as∫
∞

1
dx

1
x2
√

x2−1
(F(r0x)−Fβ (r0x))≤ 0 . (4.33)

As we show in the next section, this constraint agrees asymptotically with the con-

dition of positive energy T00 ≥ 0.

More generally, we can show that the condition (4.33) is implied by but does

not imply the constraint of positive energy. To see this, we note that F(∞) =

Fβ (∞) = 1 and that for large r, F(r)−Fβ (r) = ar−n +O(r−(n+1)) with n ≥ 3. In

our coordinates, the positive energy constraint gives rF ′(r)−F(r)+F3(r)≥ 0 with

equality for Fβ (r) describing the thermal state. Thus,

(F−Fβ )
′ ≥ 1

r
(Fβ −F)(F2

β
+Fβ F +F2−1) .
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To leading order in large r this is a(n−2)≤ 0, so that F(r)−Fβ (r) must initially

decrease below zero as we move in from r = ∞. Then since Fβ (r) ≥ 1, (F(r)−
Fβ (r))′ ≥ 0 and F(r)−Fβ (r) must continue to decrease as r decreases, ensuring

that (4.33) holds.

Asymptotic Constraints

It is interesting to work out the implications of the relative entropy constraint

(4.29) on the asymptotic geometry of the spacetime. For this purpose, we choose

Fefferman-Graham coordinates

ds2 =
1
z2 (dz2 + f (z)dx2−g(z)dt2) . (4.34)

To apply the constraint (4.29) we need an expression relating the parameters β0,

Ax
0, and At

0 to the parameters (Rx,Rt) describing the boundary interval. Starting

from the area functional

Area(B̃) =
∫ dz

z

√
1−g(z)

(
dt
dz

)2

+ f (z)
(

dx
dz

)2

, (4.35)

we find that the surface is extremal if

d
dz

 f (z)dx
dz

z
√

1−g(z)
( dt

dz

)2
+ f (z)

(dx
dz

)2

 = 0

d
dz

 g(z) dt
dz

z
√

1−g(z)
( dt

dz

)2
+ f (z)

(dx
dz

)2

 = 0 . (4.36)

Let z0 be the maximum value of z reached by the surface, and define as above

β0 =

√
g(z0)

f (z0)

dt
dx

(z = z0) ,
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such that |β0|< 1 for a spacelike path. In terms of these parameters, we get(
dx
dz

)2

=
z2 f0

z2
0 f 2

1[
1− z2 f0

z2
0 f

]
−β 2

0

[
1− z2g0

z2
0g

]
(

dt
dz

)2

= β
2
0

z2g0

z2
0g2

1[
1− z2 f0

z2
0 f

]
−β 2

0

[
1− z2g0

z2
0g

] (4.37)

where we have defined f0 = f (z0) and g0 = g(z0). Using these, we obtain

Rx =
∫ z0

0
dz

z
√

f0

z0 f
1√[

1− z2 f0
z2

0 f

]
−β 2

0

[
1− z2g0

z2
0g

]
Rt =

∫ z0

0
dz

zβ0
√

g0

z0g
1√[

1− z2 f0
z2

0 f

]
−β 2

0

[
1− z2g0

z2
0g

] (4.38)

To understand the asymptotic constraints, we can write f and g asymptotically as16

f (z) = 1+ z2 f2 + z3 f3 + z4 f4 + . . . g(z) = 1− z2 f2 + z3g3 + z4g4 + . . . .

(4.39)

where we have used tracelessness of the CFT stress tensor to conclude that

[g]z2 +[ f ]z2 ∝ 〈−Ttt +Txx〉= 0 .

Defining the proper length L =
√

R2
x−R2

t and v = Rt/Rx, we can use (4.38) to

express L and v as power series in z0 with β0-dependent coefficients. Inverting

these, we can express z0 and β0 as power series in L with v-dependent coefficients.

Finally, we can write the expression

δIS = γ0(Ax
0±β0At

0) =
1√

1−β 2
0

(√
f (z0)

z0
+β0

√
g(z0)

z0

)

16Note that in purely gravitational solutions, f3 and g3 vanish, but more generally, these could be
sourced by another bulk field corresponding to an operator with sufficiently low dimension.
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appearing in (4.29) as a power series in L with v-dependent coefficients. Here we

have chosen the plus sign in (4.29) without loss of generality, since the constraint

is invariant under a swap of the sign and v− > −v. The monotonicity constraint

implies a negative difference between this expression for general f and g and the

expression with the thermal state values

fβ ∗ = 1+ f2z2 +
1
4

f 2
2 z4 gβ ∗ = 1− f2z2 +

1
4

f 2
2 z4 .

Since we are working in the limit of small L, the negativity implies that the leading

order nonzero terms in the power series must have a negative coefficient.

In the case where f3 and g3 are nonzero, the leading order term is at order L2,

and negativity of the coefficient gives:

v(3v−2)g3 +(2v−3) f3 ≥ 0

This is required to be true for all |v| < 1 (corresponding to the tilt of the interval),

and we find that the combination of these conditions is equivalent to

f3 ≤ g3 f3 ≤
3
√

5−7
2

g3 ≈−0.1459g3 (4.40)

In the case where f3 and g3 vanish, the constraint becomes the positivity of the L3

term, which gives

v(2v−1)(g4−
1
4

f 2
2 )+(v−2)( f4−

1
4

f 2
2 )≥ 0

Again, this is required to be true for all |v|< 1, and the combination of constraints

gives

f4 ≤ g4 ( f4−
1
4

f 2
2 )≤ (4

√
3−7)(g4−

1
4

f 2
2 )≈−.07178(g4−

1
4

f 2
2 )

(4.41)

Comparison with standard energy conditions

We can compare our results to the standard weak and null energy conditions Tµνuµuν ≥
0 for various timelike or null vectors u. The non-vanishing components of the stress
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Figure 4.3: Relative entropy constraints on coefficients in the Fefferman-
Graham expansion of the metric (striped region). Constraints on the
right apply only if f3 = g3 = 0. Dark blue shaded region are the con-
straints from the null-energy condition. Full shaded region corresponds
to constraints from positivity of relative entropy, equivalent to con-
straints from the weak energy condition for timelike vectors with no
component in the radial direction.

tensor are

Tzz = − 1
2z

g′

g
− 1

2z
f ′

f
+

1
4

f ′

f
g′

g

Ttt =
g
4z

(
2

f ′

f
+ z
(

f ′

f

)2

−2z
f ′′

f

)

Txx = − f
4z

(
2

g′

g
+ z
(

g′

g

)2

−2z
g′′

g

)
(4.42)

Assuming that f3 and g3 are nonzero, the weak energy condition applied to timelike

vectors with no radial component (i.e. the non-negativity of energy for observers

moving in the field theory directions) gives

f3 ≤ g3 f3 ≤ 0 , (4.43)

while including uµ in the radial direction strengthens the conditions to

f3 ≤ g3 f3 ≤−
1
2

g3 . (4.44)
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When f3 = g3 = 0, the weak energy condition applied to timelike vectors with no

radial component gives

f4 ≤ g4 f4−
1
4

f 2
2 ≤ 0 , (4.45)

while the full weak/null energy condition gives

f4 ≤ g4 f4−
1
4

f 2
2 ≤−

1
3
(g4−

1
4

g2
2) . (4.46)

The conditions (4.40) and (4.41) coming from monotonicity of relative entropy

are intermediate between the weak/null energy condition considering only u in the

field theory directions and the conditions for general u. An interesting point is that

the weaker conditions (4.43) and (4.45) are exactly equivalent to the conditions

obtained by positivity of relative entropy (without demanding monotonicity).

4.4.2 Constraints from strong subadditivity

We now consider the constraints arising from the strong subadditivity of entangle-

ment entropy. For a state invariant under spacetime translations, the entanglement

entropy for any spacelike interval will be a single function S(Rx,Rt) where (Rx,Rt)

represents the difference between the two endpoints. According to the discussion

in Section 4.2, the requirements of strong subadditivity in this case are implied

by the minimal set of strong subadditivity constraints (4.2). In these formulae,

we have defined R± = Rx±Rt . To obtain explicit expressions for these, we can

evaluate the first derivatives using the result (4.27). We have

∂±S = γ0(Ax
0∓β0At

0) (4.47)

where At , Ax, β0, and γ0 are defined in the previous subsection. From here, we can

write the constraints (4.2) explicitly by taking one more derivative. For example,

we have

∂+∂−S =
∂

∂R+

[
γ0(Ax

0 +β0At
0)
]

=
∂ r0

∂R+

∂

∂ r0

[
γ0(Ax

0 +β0At
0)
]
+

∂β0

∂R+

∂

∂β0

[
γ0(Ax

0 +β0At
0)
]
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=
1
∆

{
−∂R−

∂β0

∂

∂ r0

[
γ0(Ax

0 +β0At
0)
]
+

∂R−
∂ r0

∂

∂β0

[
γ0(Ax

0 +β0At
0)
]}

where

∆ = det

 ∂R−
∂ r0

∂R−
∂β0

∂R+

∂ r0

∂R+

∂β0

 .

The strong subadditivity constraint is then that ∂+∂−S ≤ 0. Here, the determinant

∆ is positive for geometries in some neighborhood of pure AdS (and possibly more

generally); in this case, the constraint simplifies to the statement that the expression

in curly brackets is non-positive.

We can write an explicit expressions for R− and R+ using the steps leading to

(4.38). We find

R± =
∫

γ

dsγ0

{
Ax

0
(Ax)2 ±β0

At
0

(At)2

}
(4.48)

where the integral is along the extremal surface, with length element

ds =
dr
√

grr

γ0

√[
1− (Ax(r0))2

(Ax(r))2

]
−β 2

0

[
1− (At(r0))2

(At(r))2

] .
From this, the constraint ∂+∂−S≤ 0 for each spacelike interval I can be expressed

as an integral over the extremal curve γ ending on I. It is natural to expect that the

result can be expressed in a covariant form similar to (4.23), but we leave this for

future work.

Asymptotic constraints

Using the tools from Section 4.4.1, it is straightforward to work out the con-

straints on the asymptotic geometry implied by the strong subadditivity constraint

∂+∂−S≤ 0. Note that the conditions ∂+∂+S≤ 0 and ∂−∂−S≤ 0 are always satisfied

asymptotically.

We work again in the Fefferman-Graham expansion (4.34) with metric func-

tions expanded as (4.39). We can write the expression (4.47) as a power series

in the proper length L of the interval, with coefficients depending on the ratio
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β = Rt/Rx and the coefficients appearing in (4.39). Acting with

∂+ =
∂L

∂R+
∂L +

∂v
∂R+

∂v

=
1
2

√
1− v
1+ v

{
∂L +(1− v2)

1
L

∂v

}
gives a power series for ∂+∂−S, and the strong subadditivity constraint implies that

the leading non-zero coefficient must be negative.

In the case where f3 and g3 are nonzero, the leading order term is at order L,

and negativity of the coefficient gives:

(2−7v2)g3 ≤−(7−2v2) f3

This is required to be true for all |v| < 1 (corresponding to the tilt of the interval),

and we find that the combination of these conditions is equivalent to

f3 ≤ g3 f3 ≤−
2
7

g3 (4.49)

In the case where f3 and g3 vanish, the constraint becomes the negativity of the L2

term, which gives

(1−7v2)(g4−
1
4

f 2
2 )≤−(7− v2)( f4−

1
4

f 2
2 )≥ 0 (4.50)

Again, this is required to be true for all |v|< 1, and the combination of constraints

gives

f4 ≤ g4 ( f4−
1
4

f 2
2 )≤−

1
7
(g4−

1
4

f 2
2 ) (4.51)

These constraints take a similar form to the constraints (4.40) and (4.41) from

monotonicity of relative entropy, but are slightly stronger. However, they are still

weaker than the constraints (4.44) and (4.46) arising from the null energy condi-

tion.
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4.5 Constraints on spherically-symmetric asymptotically
AdS spacetimes

In this section, we point out a simple constraint on the geometries of static, spheri-

cally symmetric asymptotically AdSd+2 spacetimes. This would apply for example

to spherically symmetric “stars” made of any allowable type of matter in a theory

of gravity whose classical limit is Einstein gravity coupled to matter.

For these spacetimes, the dual state is an excited state of the dual CFT on a

sphere with a homogeneous stress tensor. If the mass of the spacetime (relative to

empty AdS) is M, the field theory energy is M` (taking the sphere radius equal to

one for the CFT), so we can say that the energy density expectation value for this

state relative to the vacuum state is

∆〈T00〉=
M`

Ωd
, (4.52)

where Ωd is the volume of a d-sphere.

Now, consider a ball-shaped region Bθ of angular radius θ0 on the sphere. For

this region, the relative entropy for our state with respect to the vacuum state is

SBθ
(ρ||0) = ∆〈Hmod〉−∆S

= 2π

∫
B

dΩd
cos(θ)− cos(θ0)

sin(θ0)
∆〈T00〉−∆S

where we have used the expression (4.7) for the modular Hamiltonian.

Since the stress tensor (4.52) is constant on the sphere, we can perform the

integral explicitly to obtain

SBθ
(ρ||0) = −∆S+

2πM`Ωd−1

Ωd
Id(θ0)

where

Id(θ0)=
∫

θ0

0
dθ sin(θ)d−1 cos(θ)− cos(θ0)

sin(θ0)
=

(sinθ0)
d−1

d

[
1− 2F1

(
1
2
,
d
2

;
d
2
+1;sin2

θ0

)
cosθ0

]
.

Then, using the Ryu-Takayanagi formula, the positivity of relative entropy gives
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the constraint

∆Area(θ0)≤ 8
√

πGNM`Id(θ0)
Γ
(d

2 +
1
2

)
Γ
(d

2

) .

where ∆Area is the area of the bulk extremal surface with boundary δBθ .

For the special case of a hemisphere (θ0 = π/2), we have that

∆Area(π/2)≤ 8
√

πGNM`
Γ
(d

2 +
1
2

)
dΓ
(d

2

) .

which reduces for 3+1 dimensional gravity to

∆A≤ 2πGNM`AdS .

Typically, the minimal area extremal surface bounded by an equator on the sphere

will be the surface bisecting the spacetime symmetrically, so this constraint bounds

the change in area for this bisecting surface by the mass contained in the space-

time.17 Roughly, the constraint places a bound on how much a certain amount of

total energy in the spacetime can curve the spacetime.

4.6 Discussion
In this paper, we have explored constraints from entanglement inequalities on

highly symmetric spacetimes. It will be interesting to see how these results gener-

alize to less symmetric cases. In our analysis, we have used only the classical term

in the Ryu-Takayanagi formula, so our constraints apply to gravitational theories

in the classical limit. It would be interesting to understand how the constraints are

corrected when the contribution of bulk quantum fields are taken into account. This

should be possible using the quantum-corrected holographic entanglement entropy

formula proposed by [28].

17In some cases, however, there may exist more than one extremal surface bounded by an equator,
and in this case, the minimal area surface may not be the symmetrical one.
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4.6.1 Constraints on entanglement structure from geometry

Before concluding, we offer a few remarks on the orthogonal research direction

of understanding which entanglement structures are consistent with the existence

of a geometrical dual spacetime. In the language of Figure 4.1, we would like to

precisely characterize the image of G in S (or in (Sphys). Here, we make a few

qualitative observations that hopefully illuminate how severe these constraints are.

Consider a general asymptotically AdSd+2 spacetime. In a Fefferman-Graham

description of the metric,

ds2 =
1
z2

[
dz2 +Γµν(z,x)dxµdxν

]
the information about the geometry is contained in the functions Γµν(z,x) of (d +

1) variables.

A set of entanglement entropies that includes a similar amount of information

as one of these functions is the set {S(R,x)} for ball-shaped regions with any ra-

dius R centered at any point x. At least close to the boundary (where the geometry

is similar to AdS), we expect that there is a one-to-one correspondence between

pairs (R,x) and bulk points (z,xbulk), obtained by choosing the point on the RT sur-

face with the largest value of z. For pure AdS, we have simply (z,xbulk) = (R,x).

Thus, given the entanglement entropies for ball-shaped regions in one spatial slice,

it is plausible that we can reconstruct some combination of the metric functions

Γµν(z,x). The other combinations are related by Lorentz-transformations, so it is

further plausible that we can reconstruct the remaining functions (in some neigh-

borhood of the boundary) by considering entanglement entropies for ball-shaped

regions in other Lorentz frames.

Assuming this reconstruction is possible, we now have enough information

(the full geometry in a neighborhood of the boundary) to calculate entanglement

entropies for regions of any other shape. Thus, it is plausible that for a quan-

tum state with gravity dual, the entanglement entropies for regions of arbitrary

shape (assuming they are not too large) are completely determined from the en-

tanglement entropies for ball-shaped regions (in the various frames of reference).

Furthermore, they are determined in a very specific way, via construction of a dual

geometry and calculation of extremal surface areas. A natural question is then to
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understand which field theory Hamiltonians can give rise to low-energy states with

this entanglement structure, and/or why the known examples of holographic CFTs

have this property.
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Chapter 5

Entanglement Entropy of
Holographic States in Terms of
One-point Functions

5.1 Introduction
In holographic conformal field theories, states with a simple classical gravity dual

interpretation have a remarkable structure of entanglement: according to the holo-

graphic entanglement entropy formula [6, 7, 9], their entanglement entropies for

arbitrary regions (at leading order in large N) are completely encoded in the ex-

tremal surface areas of an asymptotically AdS spacetime. In general, the space of

possible entanglement entropies (functions on a space of subsets of the AdS bound-

ary) is far larger than the space of possible asymptotically AdS metrics (functions

of a few spacetime coordinates), so this property of geometrically-encodable en-

tanglement entropy should be present in only a tiny fraction of all quantum field

theory states [35]. It is an interesting question to understand better which CFT

states have this property1, and which properties of a CFT will guarantee that fami-

1Even in holographic CFTs, it is clear that not all states will have this property. For example, if
|Ψ1〉 and |Ψ2〉 are two such states, corresponding to different spacetimes MΨ1 and MΨ2 , the super-
position |Ψ1〉+ |Ψ2〉 is not expected to correspond to any single classical spacetime but rather to a
superposition of MΨ1 and MΨ2 . Thus, the set of “holographic states” is not a subspace, but some
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lies of low-energy states with geometric entanglement exist.

For a hint towards characterizing these holographic states, consider the gravity

perspective. A spacetime MΨ dual to a holographic state |Ψ〉 is a solution to the

bulk equations of motion. Such a solution can be characterized by a set of initial

data on a bulk Cauchy surface (and appropriate boundary conditions at the AdS

boundary). The solution away from the Cauchy surface is determined by evolving

this initial data forwards (or backwards) in time using the bulk equations. Alter-

natively, we can think of the bulk solution as being determined by evolution in the

holographic radial direction, with “initial data” specified at the timelike boundary

of AdS. In this case, the existence and uniqueness of a solution is more subtle, but

the asymptotic behavior of the fields determines the metric at least in a perturba-

tive sense (e.g. perturbatively in deviations from pure AdS, or order-by-order in

the Fefferman-Graham expansion). It is plausible that in many cases, this bound-

ary data is enough to determine a solution nonperturbatively to some finite distance

into the bulk, or even for the whole spacetime. Thus, for geometries dual to holo-

graphic states, we can say that the bulk spacetime (at least in a perturbative sense)

is encoded in the boundary behavior of the various fields.

According to the AdS/CFT dictionary, this boundary behavior is determined by

the one-point functions of low-dimension local operators associated with the light

bulk fields. On the other hand, the bulk spacetime itself allows us to calculated

entanglement entropies (and many other non-local quantities). Thus, the assump-

tion that a state is holographic allows us (via gravity calculations) to determine the

entanglement entropies and other non-local properties of the state (again, at least

perturbatively) from the local data provided by the one-point functions:

|Ψ〉 → 〈Oα(xµ)〉 → φα asymptotics→ φα(xµ ,z)→ entanglement entropies S(A)

(5.1)

where φ here indicates all light fields including the metric.2

The recipe (5.1) could be applied to any state, but for states that are not holo-

graphic, the results will be inconsistent with the actual CFT answers. Thus, we

general subset.
2Here, the region A should be small enough so that the bulk extremal surface associated with A

should be contained in the part of the spacetime determined through the equations of motion by the
boundary values; we do not need this restriction if we are working perturbatively.
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have a stringent test for whether a CFT state has a dual description well-described

by a classical spacetime: carry out the procedure in (5.1) and compare the results

with a direct CFT calculation of the entanglement entropies; if there is a mismatch

for any region, the state is not holographic.3

In this paper, our goal is to present some more explicit results for the gravity

prediction Sgrav
A (〈Oα〉) in cases where the gravitational equations are Einstein grav-

ity with matter and the region is taken to be a ball-shaped region B. We will work

perturbatively around the vacuum state to obtain an expression as a power series

in the one-point functions of CFT operators. At first-order, the result depends only

on the CFT stress tensor expectation value [102]:

SB(|Ψ〉) = Svac
B +2π

∫
B

dd−1x
R2− r2

2R
〈T00〉+O(〈Oα〉2) . (5.2)

This well-known expression is universal for all CFTs since it follows from the first

law of entanglement δ (1)SB = δ 〈HB〉, where

HB ≡− logρ
vac
B = 2π

∫
B

dd−1x
R2− r2

2R
T00 (5.3)

is the vacuum modular Hamiltonian for a ball-shaped region. Thus, to first-order,

the gravity procedure (5.1) always gives the correct CFT result for ball-shaped

regions, regardless of whether the state is holographic.

General second-order result for ball entanglement entropy

Our focus will be on the second-order answer; in this case, it is less clear whether

the gravity results from (5.1) should hold for any CFT or whether they represent a

constraint from holography. To obtain explicit formulae at this order, we begin by

writing

SB(|Ψ〉) = Svac
B +∆〈HB〉−S(ρB||ρvac

B ) (5.4)

which follows immediately from the definition of relative entropy S(ρB||ρvac
B ) re-

viewed in Section 5.2 below. We then make use of a recent result in [105]: to
3Another interesting possibility is that the one-point functions could give boundary data that is

not consistent with any solution of the classical bulk equations; this possibility exists since the “initial
data” for the radial evolution problem obeys certain constraints.
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second-order in perturbations from the vacuum state, the relative entropy for a

ball-shaped region in a holographic state4 is equal to the “canonical energy” as-

sociated with a corresponding wedge of the bulk spacetime. We provide a brief

review of this in Section 5.2 below. On shell, the latter quantity can be expressed

as a quadratic form on the space of first-order perturbations to pure AdS spacetime,

so we have

S(ρB||ρvac
B ) = ∆〈HB〉−∆SB =

1
2
E (δφα ,δφα)+O(δφ

3) . (5.5)

Rearranging this, we have a second-order version of (5.2):

SB(|Ψ〉) = Svac
B +δ

(1)SB +δ
(2)SB +O(δφ

3)

= Svac
B +∆〈HB〉−

1
2
E (δφα ,δφα)+O(δφ

3) (5.6)

= Svac
B +2π

∫
B

dd−1x
R2− r2

2R
〈T00〉−

1
2
E (δφα ,δφα)+O(δφ

3) .

As we review in Section 5.2 below, the last term can be written more explicitly as

E (δφα ,δφα) =
∫

Σ

ω(δg,£ξ δg)−
∫

Σ

ξ
aT (2)

ab ε
b , (5.7)

where Σ is a bulk spatial region between B and the bulk extremal surface B̃ with

the same boundary, ω is the “presymplectic form” whose integral defines the sym-

plectic form on gravitational phase space, T (2)
ab is the matter stress tensor at second-

order in the bulk matter fields, and ξ is a bulk Killing vector which vanishes on

B̃. The first-order bulk perturbations δφα (including the metric perturbation) may

be expressed in terms of the boundary one-point functions via bulk-to-boundary

propagators

δφα(x,z) =
∫

DB

Kα(x,z;x′)〈Oα(x′)〉 , (5.8)

where DB is the domain of dependence of the ball B. Given the one-point functions

within DB, we can use (5.8) to determine the linearized bulk perturbation in Σ and

evaluate (5.7).

The expression (5.6), (5.7), and (5.8) together provide a formal result for the

4This second-order relative entropy is known as quantum Fisher information.
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ball entanglement entropy of a holographic state, expanded to second-order in the

boundary one-point functions.

Explicit results for 1+1 dimensional CFTs

In order to check the general formula and provide more explicit results, we focus

in Section 5.3 on the case of 1+1 dimensional CFTs, carrying out an explicit cal-

culation of the gravitational contributions to (5.7) starting from a general boundary

stress tensor. We find the result

δ
(2)Sgrav

B =−1
2

∫
B′

dx+1

∫
B′

dx+2 K2(x+1 ,x
+
2 )〈T++(x+1 )〉〈T++(x+2 )〉+{+↔−}

(5.9)

where the integrals can be taken over any spatial surface B′ with boundary ∂B, and

the kernel is given by

K2(x1,x2) =
6π2

cR2

 (R− x1)
2(R+ x2)

2 x1 ≥ x2

(R+ x1)
2(R− x2)

2 x1 < x2

, (5.10)

where c is the central charge. In this special case, the conservation equations de-

termine the stress tensor expectation values throughout the region DB from the

expectation values on B′, so as in the first-order result (5.2), our final expression

involves integrals only over B′. This will not be the case for the terms involving

matter fields, or in higher dimensions. As a consistency check, we show that the

expression (5.10) is always negative, as required by its interpretation as the second-

order contribution to relative entropy.

We can also check the formula (5.10) via a direct CFT calculation by consider-

ing states that are obtained from the CFT vacuum by a local conformal transforma-

tion. In two dimensions, states with an arbitrary traceless conserved stress-tensor

can be obtained, and the entanglement entropy for these states can also be calcu-

lated explicitly. We carry out this calculation in Section 5.4, and show that the

result (5.10) is exactly reproduced.

In Section 5.3.2, we consider the matter terms in (5.7) providing some explicit

results for the quadratic contributions of scalar operator expectation values. Here,
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as in the generic case, the result takes the form

δ
(2)Smatter

B =−1
2

∫
DB

∫
DB

Gαβ (x,x
′)〈Oα(x)〉〈Oβ (x

′)〉 (5.11)

with integrals over the entire domain of dependence region.

Auxiliary de Sitter Space Interpretation

Recently, in [43] it has been pointed out that the first-order result δ (1)S(xµ ,R) for

the entanglement entropy of a ball with radius R and center xµ can be obtained as

the solution to the equation of motion for a free scalar field on an auxiliary de Sitter

space ds2 =
L2

dS
R2 (−dR2+dxµdxµ) with the CFT energy density 〈T00(xµ)〉 acting as

a source term at R = 0. In Section 5.5, we show that in the 1+1 dimensional case,

the stress tensor term (5.10) for the entanglement entropy at second-order can also

results from solving a scalar field equation on the auxiliary de Sitter space if we

add a simple cubic interaction term. In an upcoming paper [106], it is shown

that this agreement extends to all orders for a suitable choice of the scalar field

potential. The resulting nonlinear wave equation also reproduces the second-order

entanglement entropy near a thermal state in the auxiliary kinematic space recently

described in [107].

Including the contributions from matter fields or moving to higher dimensions,

the expression for entanglement entropy involves one-point functions on the entire

causal diamond DB, so reproducing these results via some local differential equa-

tion will require a more complicated auxiliary space that takes into account the

time directions in the CFT. This direction is pursued further in [108, 106].

Discussion

While the explicit two-dimensional stress tensor contribution (5.10) can be ob-

tained by a direct CFT calculation for a special class of states, we emphasize that

in general the holographic predictions from (5.1) are expected to hold only for

holographic states in CFTs with gravity duals. It would be interesting to under-

stand better whether all of the second order contributions we considered here are

universal for all CFTs or whether they represent genuine constraints/predictions
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from holography.5 In the latter case, and for the results at higher order in pertur-

bation theory, it is an interesting question to understand better which CFT states

and/or which CFT properties are required to reproduce the results through direct

CFT calculations. This should help us understand better which theories and which

states in these theories are holographic.

5.2 Background
Our holographic calculation of entanglement entropy to second-order in the bound-

ary one-point functions makes use of the direct connection between CFT quantum

Fisher information and canonical energy on the gravity side, pointed out recently

in [105]. We begin with a brief review of these results.

5.2.1 Relative entropy and quantum Fisher information

Our focus will be on ball-shaped subsystems B of the CFTd , for which the the

vacuum density matrix is known explicitly through (5.3). More generally, we can

write it as

ρ
vac
B = e−HB , HB =

∫
B′

ζ
µ

B Tµνε
ν , (5.12)

where Tµν is the CFT stress tensor operator and ε is defined as

εν =
1

(d−1)!
ενν1···νd−1dxν1 ∧·· ·∧dxνd−1 , (5.13)

so that nµεµ is the volume form on the surface perpendicular to a unit vector nµ ,

and ζB is a conformal Killing vector defined in the domain of dependence region

DB, with ζB = 0 on ∂B. For the ball B with radius R and center xµ

0 in the t = t0
slice, we have

ζB =−2π

R
(t− t0)(xi− xi

0)∂i +
π

R
[R2− (t− t0)2− (~x−~x0)

2]∂t . (5.14)

5There is evidence in [109, 110, 111] that at least some of the contributions at this order can be
reproduced by CFT calculations in general dimensions, since they arise from CFT two and three-
point functions, though the results there most directly apply to the case where the perturbation is to
the theory rather than the state.
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By the conservation of the current ζ
µ

B Tµ
ν associated with this conformal Killing

vector, the integral in (5.12) can be taken over any spatial surface B′ in DB with the

same boundary as B.

For excited states, the density matrix ρB will generally be different than ρvac
B .

One measure of this difference is the relative entropy

S(ρB||ρvac
B ) = tr(ρB logρB)− tr(ρB logρ

vac
B )

= ∆〈HB〉−∆SB , (5.15)

where HB is the vacuum modular Hamiltonian given in (5.12), SB =− tr(ρB logρB)

is the entanglement entropy for the region B and ∆ indicates the difference with the

vacuum state.

For a one-parameter family of states near the vacuum, we can expand ρB as

ρB(λ ) = ρ
vac
B +λ δρ1 +λ

2
δρ2 +O(λ 3) . (5.16)

The first-order contribution to relative entropy vanishes (this is the first law of en-

tanglement δ (1)SB = δ 〈HB〉) so the leading contribution to relative entropy appears

at second-order in λ . This quadratic in δρ1 with no contribution from δρ2,

S(ρB(λ )||ρvac
B ) = λ

2 〈δρ1,δρ1〉ρvac
B

+O(λ 3) , (5.17)

where

〈δρ,δρ〉σ ≡
1
2

tr
(

δρ
d

dλ
log(σ +λδρ)

∣∣∣
λ=0

)
. (5.18)

This quadratic form, which is positive by virtue of the positivity of relative entropy,

defines a positive-(semi)definite metric on the space of perturbations to a general

density matrix σ . This is known as the quantum Fisher information metric.

Rearranging (5.15) and making use of (5.17), we have

SB = Svac
B +

∫
B′

ζ
µ

B 〈Tµν〉εν −λ
2〈δρ1,δρ1〉ρvac

B
+O(λ 3) . (5.19)

This general expression is valid for any CFT, but the O(λ 2) term generally has

no simple expression in terms of local operator expectation values. However, for
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holographic states we can convert this term into an expression quadratic in the CFT

one-point functions by using the connection between quantum Fisher information

and canonical energy.

5.2.2 Canonical energy

Consider now a holographic state, which by definition is associated with some dual

asymptotically AdS spacetime M. Near the boundary, we can describe M using a

metric in Fefferman-Graham coordinates as

ds2 =
`2

AdS
z2

(
dz2 +dxµdxµ + zd

Γµν(x,z)dxµdxν

)
(5.20)

where Γµν(z,x) has a finite limit as z→ 0 and Γ = 0 for pure AdS.

The relative entropy S(ρB||ρvac
B ) can be computed at leading order in large N

by making use of the holographic entanglement entropy formula, which relates

the entanglement entropy for a region A to the area of the minimal-area extremal

surface Ã in M with boundary ∂A,

SA ≡
Area(Ã)

4GN
. (5.21)

This yields immediately that ∆SA = (Area(Ã)M−Area(Ã)AdS)/(4GN). The result

(5.21) also allows us to relate the ∆〈HB〉 term in relative entropy to a gravitational

quantity, since it implies that the expectation value of the CFT stress tensor is

related to the asymptotic behaviour of the metric through [37]

〈Tµν〉=
d`d−1

AdS
16πGN

Γµν(x,z = 0) . (5.22)

Thus, for holographic states, we can write

S(ρB||ρvac
B ) =

d`d−1
AdS

16πGN

∫
B

ζ
µ

B Γµν(x,0)ε
ν − Area(Ã)M−Area(Ã)AdS

4GN
. (5.23)

For a one-parameter family of holographic states |Ψ(λ )〉 near the CFT vacuum,

the dual spacetimes M(λ ) can be described via a metric and matter fields φα =
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(g,φ matter) with some perturbative expansion

g = gAdS +λδg1 +λ
2
δg2 +O(λ 3) ,

φ
matter = λδφ

matter
1 +λ

2
δφ

matter
2 +O(λ 3) . (5.24)

By the result (5.19) from the previous section, the second-order contribution to

entanglement entropy is equal to the leading order contribution to relative entropy.

This is related to a gravitational quantity via (5.23). The main result in [105] is

that this second-order quantity can be expressed directly as a bulk integral over the

spatial region Σ between B and B̃ where the integrand is a quadratic form on the

linearized bulk perturbations δg1 and δφ matter
1 .

z

x

t

B

DB

Σ B̃
B

Figure 5.1: The Rindler wedge RB associated to the ball-shaped region B on
the boundary. The blue lines indicate the flow of ζB, and the red lines
ξB. The surface Σ lies between B and the extremal surface B̃.

To describe the general result, consider the region Σ between B and B̃ in pure

AdS spacetime, and define RB as the domain of dependence of this region, as shown

in Figure 5.1. Alternatively, RB is the intersection of the causal past and the causal

future of DB; it can be thought of as a Rindler wedge of AdS associated with B. On

RB, there exists a Killing vector which vanishes at B̃ and approaches the conformal

122



Killing vector ζB at the boundary. In Fefferman-Graham coordinates, this is

ξB =−2π

R
(t− t0)[z∂z +(xi− xi

0)∂i]+
π

R
[R2− z2− (t− t0)2− (~x−~x0)

2]∂t (5.25)

The vector ξB is timelike hence defines a notion of time evolution within the region

RB; the “Rindler time” associated with this Rindler wedge.

The “canonical energy”, dual to relative entropy at second-order, can be under-

stood as the perturbative energy associated with this time, as explained in [112].

This is quadratic in the perturbative bulk fields including the graviton, and given

explicitly by

E (δg1,δφ1) = WΣ

(
δφ1,£ξBδφ1

)
=

∫
Σ

ω
f ull (

δφ1,£ξBδφ1
)

=
∫

Σ

ω
(
δg1,£ξBδg1

)
+
∫

Σ

ω
matter (

δφ1,£ξBδφ1
)

=
∫

Σ

ω(δg1,£ξBδg1)−
∫

Σ

ξ
a
BT (2)

ab ε
b . (5.26)

In the first line, WΣ is the symplectic form associated with the phase space of grav-

itational solutions on Σ, and £ξBδφ1 is the Lie derivative with respect to ξ on δφ1,

the first-order perturbation in metric and matter fields. The symplectic form is

equal to the integral over Σ of a “presymplectic” form ω f ull which splits into a

gravitational part and a matter part as in the third line. The matter part can be

written explicitly in terms of T (2)
ab , the matter stress tensor at quadratic order in the

fields, while the gravitational part ω is given explicitly by

ω(γ1,γ2) =
1

16πGN
εaPabcde f (γ2

bc∇dγ
1
e f − γ

1
bc∇dγ

2
e f ) (5.27)

Pabcde f = gaeg f bgcd− 1
2

gadgbeg f c− 1
2

gabgcdge f − 1
2

gbcgaeg f d +
1
2

gbcgadge f .

In deriving (5.26) it has been assumed that the metric perturbation has been ex-

pressed in a gauge for which the coordinate location of the extremal surface B̃ does

not change (so that ξB continues to vanish there), and the vector ξB continues to
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satisfy the Killing equation at B̃. Thus, we require that

ξB|B̃(λ ) = 0, (5.28)

£ξBg(λ )|B̃(λ ) = 0. (5.29)

As shown in [112], it is always possible to satisfy these conditions; we will see an

explicit example below.

5.3 Second-order contribution to entanglement entropy
Using the result (5.7), we can now write down a general expression for the ball

entanglement entropy of a general holographic state up to second-order in pertur-

bations to the vacuum state, in terms of the CFT one-point functions. According

to (5.19) and (5.26), the second-order term in the entanglement entropy for a ball

B can be expressed as an integral over the bulk spatial region Σ between B and the

corresponding extremal surface B̃, where the integrand is quadratic in first-order

bulk perturbations.

These linearized perturbations are determined by the boundary behavior of the

fields via the linearized bulk equations. In general, to determine the linearized

perturbations in the region Σ (or more generally in the Rindler wedge RB), we only

need to know the boundary behavior in the domain of dependence region DB, as

discussed in detail in [113]. The relevant boundary behaviour of each bulk field is

captured by the one-point function of the corresponding operator. We can express

the results as

(δφ1)α(x,z)|Σ =
∫

DB

ddx′Kα(x,z;x′)〈Oα(x′)〉CFT (5.30)

where Kα(x,z;x′) is the relevant bulk-to-boundary propagator. As discussed in

[114, 113, 70], Kα should generally be understood as a distribution to be integrated

against consistent CFT one-point functions, rather than a function. Since the ex-

pression (5.30) is linear in the CFT expectation values, the result (5.7) is quadratic

in these one-point functions and represents our desired second-order result.

To summarize, for a holographic state, the second-order contribution to entan-

glement entropy in the expansion (5.19) is the leading order contribution to the

124



relative entropy S(ρB||ρvac
B ). This is dual to canonical energy, given explicitly by:

δ
(2)SB =−〈δρ1,δρ1〉ρvac

B
=−1

2
E (δφ1,δφ1)=−

1
2

∫
Σ

ω(δg1,£ξBδg1)+
1
2

∫
Σ

ξ
a
BT (2)

ab ε
b .

(5.31)

This is quadratic in the linearized perturbations δφα (including the metric pertur-

bation, and these can be expressed in terms of the CFT one-point functions on DB

as (5.30).

5.3.1 Example: CFT2 stress tensor contribution

In this section, as a sample application of the general formula, we provide an ex-

plicit calculation of the quadratic stress tensor contribution to the entanglement

entropy for holographic states in two-dimensional conformal field theories. This

arises from the first term in (5.7).

For a general CFT state, the stress tensor is traceless and conserved,

〈T µ
µ〉= 〈∂µT µν〉= 0 . (5.32)

In two dimensions, these constraints can be expressed most simply using light-cone

coordinates x± = x± t, where we have

〈T+−〉= ∂+〈T−−〉= ∂−〈T++〉= 0 . (5.33)

Thus, a general CFT stress tensor can be described by the two functions, 〈T++(x+)〉
and 〈T−−(x−)〉.

Assuming that the state is holographic, there will be some dual geometry of the

form (5.20). According to (5.22), the stress tensor expectation values determine the

asymptotic form of the metric as

Γ++(x,0) = 8π
GN

`AdS
〈T++(x+)〉 Γ−−(x,0) = 8π

GN

`AdS
〈T−−(x−)〉 (5.34)

Now, suppose that our state represents a small perturbation to the CFT vacuum,

so that the stress tensor expectation values and the asymptotic metric perturbations
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are governed by a small parameter λ :

Γ++(x,0)≡ λh+(x+) Γ−−(x,0)≡ λh−(x−) . (5.35)

Then the metric perturbation throughout the spacetime is determined by this asymp-

totic behavior by the Einstein equations linearized about AdS. Here, we need only

the components in the field theory directions, which give

1
z3 ∂z(z3

∂zΓµν)+∂ρ∂
ρ

Γµν = 0 . (5.36)

The solution in our Fefferman-Graham coordinates with boundary behaviour (5.35)

is

Γ
(1)
++(x,z) = λh+(x+) Γ

(1)
−−(x,z) = λh−(x−) (5.37)

with the linearized perturbation Γ
(1)
µν independent of z.

Satisfying the gauge conditions

We would now like to evaluate the metric contribution to (5.7)

δ
(2)Sgrav

B =−1
2

∫
Σ

ω
grav(δg1,£ξBδg1) . (5.38)

This formula assumes the gauge conditions (5.28) which differ from the Fefferman-

Graham gauge conditions we have been using so far. Thus, we must find a gauge

transformation to bring our metric perturbation to the appropriate form. In general,

we can write

γab = hab +(£V g)ab = hab +∇aVb +∇bVa . (5.39)

where γ is the desired metric perturbation satisfying the gauge condition, and h is

the perturbation in Fefferman-Graham coordinates (equivalent to Γ for d = 2).

The procedure for finding an appropriate V and evaluating (5.38) is described in

detail in [105], but we review the main points here. Defining coordinates (XA,X i)

so that the extremal surface lies at some fixed value of XA with X i describing coor-

dinates along the surface, the gauge condition (5.28) (equivalent to requiring that
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the coordinate location of the extremal surface remains fixed) gives

(∇i∇
iVA +[∇i,∇A]V i +∇ihi

A−
1
2

∇Ahi
i)|B̃ = 0 (5.40)

while the condition (5.29) that ξB continues to satisfy the Killing equation at B̃

gives

(hiA +∇iVA +∇AVi) |B̃ = 0 , (5.41)(
hA

D−
1
2

δ
A
DhC

C +∇
AVD +∇DV A−δ

D
D∇CVC

C

)∣∣∣∣
B̃
= 0 . (5.42)

To solve these, we first expand our general metric perturbation in a Fourier

basis.

hµν(t,x,z) = λ

∫ [
δ
+
µ δ

+
ν ĥ+(k)eikx+ +δ

−
µ δ
−
ν ĥ−(k)eikx−

]
dk , (5.43)

with a gauge choice hza(t,x,z) = 0.

For each of the basis elements, we use the equations (5.40), (5.41) and (5.42)

to determine V and its first derivatives at the surface V . For these calculations, it

is useful to define polar coordinates (z,x) = (r cosθ ,r sinθ). Since the gauge con-

ditions are linear in V , the conditions on V for a general perturbation are obtained

from these by taking linear combinations as in (5.43),

Va(t,x,z) = λ

∫ [
V̂+

a (k)eikx+ +V̂−a (k)eikx−
]

dk . (5.44)
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After requiring Va remain finite at θ =±π

2 , we find

V̂−t (k; t,r,θ) =
e−ikt

k3r2 cos2 θ

(
−icos(kr)+ sinθ sin(kr)− i

(k2r2 cos2 θ −1)eikr sinθ

2

)
V̂−r (k; t,r,θ) =

e−ikt

k3r2 cos2 θ

(
sin(kr)− isinθ cos(kr)

− (k2r2 cos2 θ sinθ + ikr cos2 θ +2isinθ)eikr sinθ

2

)

∂tV̂−θ (k; t,r,θ) =
e−ikt

2k2 r cosθ

(
(2+ k2r2 cos2

θ −2 ikr sinθ)eikr sinθ − 2sin(kr)
k3r2

)
∂rV̂−θ (k; t,r,θ) =

e−ikt

k3r2 cosθ

(
2icos(kr)

+
[
2kr sinθ + r3k3 sinθ cos2

θ + i
(
r2k2 cos2

θ − kr2 +2
)]

eikr sinθ

)
(5.45)

where the V± solutions are related through V̂+
r (k; t,r,θ)= V̂−r (k;−t,r,θ) and V̂−t (k; t,r,θ)=

−V̂+
t (k;−t,r,θ). The results here give the behavior of V and its derivatives only at

the surface B̃ (r = R in polar coordinates). Elsewhere, V can be chosen arbitrarily,

but we will see that our calculation only requires the behavior at B̃.

Evaluating the canonical energy

Given the appropriate V , we can evaluate (5.38) using

ω(g,γ,£ξ γ) = ω(h+£V g,£ξB(h+£V g)) (5.46)

= ω(g,h,£ξ h)+ω(g,h+£V g,£[ξ ,V ]g)−ω(g,£ξ h,£V g)

where

[ξ ,V ]a = ξ
b
∂bV a−V b

∂bξ
a (5.47)

and we have used that £ξ g = 0. We can simplify this expression using the gravita-

tional identity

ω(g,γ,£ξ g) = dχ(γ,X) (5.48)
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where

χ(γ,X) =
1

16πGN
εab

{
γ

ac
∇cXb− 1

2
γc

c
∇

aXb +∇
b
γ

a
cXc−∇cγ

acXb +∇
a
γ

c
cXb
}

.

(5.49)

Thus, we have

ω(g,γ,£ξ γ) = ω(g,h,£ξ h)+dρ (5.50)

where

ρ = χ(h+£V g, [ξ ,V ])−χ(£ξ h,V ) . (5.51)

Finally, choosing V so that it vanishes at B, we can rewrite (5.38) as

E =
∫

Σ

ω(g,h,£ξ h)+
∫

B̃
ρ(h,V ) . (5.52)

In this final expression, we only need V and its derivatives at the surface B̃. Thus,

we can now calculate the result explicitly for a general perturbation. In the Fourier

basis, the final result in terms of the boundary stress tensor is

E =
∫

dk1

∫
dk2 K̂2(k1,k2)〈T++(k1)〉〈T++(k2)〉+{+↔−} , (5.53)

where the kernel is

K̂2(k1,k2) =
256π2 R4 GN

`AdSK3(K−κ)3(K +κ)3

[
(K5−2(κ2 +4)K3 +κ

4K)cosK

−(5K4−6K2
κ

2 +κ
4)sinK +8K3 cosκ

]
,

(5.54)

with K ≡ R(k1 + k2),κ ≡ R(k1− k2). We note in particular that the result splits

into a left-moving part and a right-moving part with no cross term.

Transforming back to position space

E =
∫

B′
dx+1

∫
B′

dx+2 K2(x+1 ,x
+
2 )〈T++(x+1 )〉〈T++(x+2 )〉+{+↔−} , (5.55)

where the kernel K2 is symmetric under exchange of x±1 and x±2 , and has support
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only on x±i ∈ [−R,R]. Focusing only on the domain of support, we have

K2(x1,x2) =
4π2GN

R2`AdS

(R− x1)
2(R+ x2)

2 x1 ≥ x2

(R+ x1)
2(R− x2)

2 x1 < x2

. (5.56)

Using the relation c= 3`AdS/(2GN) between the CFT central charge and the gravity

parameters, we recover the result (5.10) from the introduction.

Like the leading order result in (5.19), the integrals can be taken over any sur-

face B′ with boundary ∂B. The fact that we only need the stress tensor on a Cauchy

surface for DB is special to the stress tensor in two dimensions, since the conserva-

tion relations allow us to find the stress tensor expectation value everywhere in DB

from its value on a Cauchy surface. For other operators, or in higher dimensions,

the result will involve integrals over the full domain of dependence. We will see an

explicit example in the next subsection.

5.3.2 Example: scalar operator contribution

We now consider an explicit example making use of the bulk matter field term in

(5.7) in order to calculate the terms in the entanglement entropy formula quadratic

in the scalar operator expectation values. The discussion for other matter fields

would be entirely parallel. This example is more representative, since the formula

will involve scalar field expectation values in the entire domain of dependence DB,

i.e. a boundary spacetime region rather than just a spatial slice. The results here

are similar to the recent work in [109, 110, 111], but we present them here to show

that they follow directly from the canonical energy formula.

We suppose that the CFT has a scalar operator of dimension ∆ with expectation

value 〈O(x)〉. According to the usual AdS/CFT dictionary, this corresponds to a

bulk scalar field with mass m2 = ∆(∆−d) and asymptotic behavior

φ(x,z)→ γz∆〈O(x)〉 , (5.57)

where γ is a constant depending on the normalization of the operator O . The

leading effects of the bulk scalar field on the entanglement entropy (5.7) come
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from the matter term in the canonical energy

δ
(2)Smatter

B =
1
2

∫
Σ

ξ
a
BT (2)

ab ε
b . (5.58)

Using the explicit form of ξB from (5.25) and ε from (5.13), this gives (for a

ball centered at the origin)

δ
(2)Smatter

B =−`d−1
AdS
2

∫ R

0

dz
zd−1

∫
x2<R2−z2

dd−1x
π

R
(R2− z2− x2)T (2)

00 (x,z) . (5.59)

This expression is valid for a general bulk matter field. For a scalar field, we have

T (2)
ab = ∂aφ1∂bφ1−

1
2

gab(gcd
∂cφ1∂dφ1 +m2

φ
2
1 ) , (5.60)

where gab is the background AdS metric and φ1 represents the solution of the lin-

earized scalar field equation on AdS,

1
zd−1 ∂z

{
zd−1

∂zφ

}
+∂µ∂

µ
φ − m2

z2 φ = 0 , (5.61)

with boundary behavior as in (5.57). This solution is given most simply in Fourier

space, where we have

φ1(k,z) =
2νΓ(ν +1)

(2π)d

∫
k2

0>
~k2

ddk
eikµ xµ(

k2
0−~k2

)ν/2 z
d
2 Jν

(√
k2

0−~k2z
)

γ〈O(k)〉 ,

(5.62)

where ν = ∆−d/2, but we can formally write a position-space expression using a

bulk-to-boundary propagator K(x,z;x′) as [115, 116]

φ1(x,z) = γ

∫
dx′K(x,z;x′)〈O(x′)〉 . (5.63)

The integral here is over the boundary spacetime, however it has been argued (see,

for example [113, 114]) that to reconstruct the bulk field throughout the Rindler

wedge RB (and specifically on Σ), we need only the boundary values on the do-

main of dependence region. We recall some explicit formulae for this “Rindler

bulk reconstruction” in Appendix D. Combining these results, we have a general
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expression for the scalar field contribution to entanglement entropy at second-order

in the scalar one-point functions,

δ
(2)Sscalar

B = −`d−1
AdS
2

∫ R

0

dz
zd−1

∫
x2<R2−z2

dd−1x
π

R
(R2− z2− x2) (5.64){

(∂0φ1)
2 +(∂iφ1)

2 +(∂zφ1)
2 +

m2

z2 φ
2
1

}
where φ1 is given in (5.62) or (5.63) .

As a simple example, consider the case where the scalar field expectation value

is constant. In this case it is simple to solve (5.61) everywhere to find that

φ1(x,z) = γ〈O〉z∆ . (5.65)

Inserting this into the general formula (5.64), and performing the integrals, we

obtain

δ
(2)Sscalar

B =−π`d−1
AdS
4

γ
2〈O〉2R2∆

Ωd−2
∆Γ(d

2 − 1
2)Γ(∆− d

2 +1)

Γ(∆+ 3
2)

. (5.66)

This reproduces previous results in the literature [100, 110].

5.4 Stress tensor contribution: direct calculation for
CFT2

In Section 5.3.1, we used the equivalence between quantum Fisher information and

canonical energy to obtain an explicit expression for the second-order stress tensor

contribution to the entanglement entropy for holographic states in two-dimensional

CFTs. This is applicable for general holographic states, whether or not other matter

fields are present in the dual spacetime (in which case there are additional terms in

the expression for entanglement entropy). In special cases where there are no mat-

ter fields, the spacetime is locally AdS and we can understand the dual CFT state as

being related to the vacuum state by a local conformal transformation. We show in

this section that in this special case, we can reproduce the holographic result (5.56)

through a direct CFT calculation, providing a strong consistency check. We note

that the result does not rely on taking the large N limit or on any special properties
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of the CFT, so the formula holds universally for this simple class of states.

Our approach will be to develop an iterative procedure to express the entan-

glement entropy as an expansion in the stress tensor expectation value for this

special class of states. We evaluate the entanglement entropy for these states from

a correlation function of twist operators obtained by transforming the result for the

vacuum state.6 Similarly, the stress tensor expectation values follow directly from

the form of the conformal transformation. Inverting the relationship between the

required conformal transformation and the stress tensor expectation value allows us

to express the entanglement entropy as a perturbative expansion in the expectation

value of the stress tensor.

5.4.1 Conformal transformations of the vacuum state

In two-dimensional CFT, under a conformal transformation w = f (z), the stress

tensor transforms as

T ′(w) =
(

dw
dz

)−2(
T (z)+

c
12
{ f (z);z}

)
. (5.67)

Here c is the central charge of the CFT and the inhomogeneous part is the Schwarzian

derivative

{ f (z);z} ≡ f ′′′(z)
f ′(z)

− 3 f ′′(z)2

2 f ′(z)2 . (5.68)

For an infinitesimal transformation f (z) = z+ λ ε(z), the Schwarzian derivative
can be expanded as

{z+λε(z);z}= λ ε
′′′(z)−λ

2
(

ε
′′′(z)ε ′(z)+

3
2

ε
′′(z)2

)
+λ

3 (
ε
′(z)2

ε
′′′(z)+3ε

′(z)ε ′′(z)2)+· · ·
(5.69)

The CFT vacuum is invariant under the SL(2,C) subgroup of global conformal

transformations. However, for transformations which are not part of this subgroup,

the vacuum state transforms into excited states. The action of the full confor-

mal group includes the full Virasoro algebra which involves arbitrary products and

6A similar approach was recently used to derive the modular Hamiltonian of these excited states
in [117].
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derivatives of the stress tensor

Id∼ 1,T,∂ mT,T 2,T ∂
nT, · · · . (5.70)

These states capture the gravitational sector of the gravity dual. Other excited

states can be obtained by the action of other primary operators and their descen-

dants. However we restrict ourselves to the class states that are related to ‘pure

gravity’ excitations, which are the states obtained by conformal transformation of

the vacuum state.

We denote the excited state as | f 〉=U f |0〉 where U f is the action of a confor-

mal transformation on the vacuum |0〉. The expectation value of the stress tensor

for the state perturbed state | f 〉 is

〈 f |T (z)| f 〉= 〈0|U†
f T (z)U f |0〉= 〈0|T ′(w)|0〉=

(
d f
dz

)−2 c
12
{ f (z);z} , (5.71)

where we used that 〈0|T (z)|0〉= 0. The anti-holomorphic component of the stress

tensor T̄ (z̄) is similarly related to the anti-holomophic part of the conformal trans-

formation f̄ .

To leading order in a conformal transformation near the identity, this equation

relates the conformal transformation to 〈T (z)〉 by a third-order ordinary differen-

tial equation. The three integration constants correspond to the invariance of 〈T (z)〉
under the global conformal transformations. Thus we have an invertible relation-

ship between the conformal transformations modulo their global part and 〈T (z)〉,
at least near the identity.

5.4.2 Entanglement entropy of excited states

In a two-dimensional CFT, the entanglement entropy can be explicitly computed

using the replica method [118, 83]. The computation can be reduced to a corre-

lation function of twist operators Φ±, which are conformal primaries with weight

(hn, h̄n) =
c

24(n−1/n,n−1/n).

The Rényi entropy is

exp
(
(1−n)S(n)

)
= 〈Φ+(z1)Φ−(z2)〉= (z2− z1)

−2hn . (5.72)
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The entanglement entropy is obtained by taking the n→ 1 limit of S(n).

Svac = lim
n→1

S(n) = lim
n→1

(1−n)−1 log(z2− z1)
−2hn =

c
12

log
(z2− z1)

2

δ 2 . (5.73)

For the excited states obtained by conformal transformations z→ w = f (z) the

Rényi entropy is

exp
(
(1−n)S(n)ex

)
= 〈 f |Φ+(z1)Φ−(z2)| f 〉 (5.74)

=

(
d f
dz

)−hn

z1

(
d f
dz

)−hn

z2

(
d f̄
dz̄

)−h̄n

z̄1

(
d f̄
dz̄

)−h̄n

z̄2

〈0|Φ+(z1)Φ−(z2)|0〉 .

(5.75)

Here z1,z2 are the points f (z1) = f̄ (z̄1) = −R, f (z2) = f̄ (z̄2) = R. The entangle-

ment entropy of the excited state is

Sex = lim
n→1

S(n)ex =
c

12
log
∣∣∣∣ f ′(z1) f ′(z2) f̄ ′(z̄1) f̄ ′(z̄2)(z2− z1)

2

δ 2

∣∣∣∣ . (5.76)

Therefore the change in entanglement entropy respect to the vacuum state is

δS≡ Sex−Svac =
c

12
log
∣∣∣∣ f ′( f−1(R)) f ′( f−1(−R))( f−1(R)− f−1(−R))2

(2R)2

∣∣∣∣
(5.77)

+
c

12
log
∣∣∣∣ f̄ ′( f̄−1(R)) f̄ ′( f̄−1(−R))( f̄−1(R)− f̄−1(−R))2

(2R)2

∣∣∣∣ .
By inverting (5.71), the conformal transformation required to reach the state

| f 〉 can be expressed as a function of the expectation value of the stress tensor.

Plugging this f into (5.77), allows us to express the entanglement entropy as a

function of the expectation value of the stress tensor alone, as we set out to do.

In practice, we will invert (5.71) order by order in a small conformal trans-

formation and express the entanglement entropy as an expansion in the resulting

small stress tensor. The second-order term in this expansion will be the Fisher

information metric.

In the following, we will focus on the holomorphic term in (5.71), noting that
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the anti-holomorphic part follows identically.7

5.4.3 Perturbative expansion

Consider a conformal transformation perturbation near the identity transformation

w = f (z) = z+λ f1(z)+λ
2 f2(z)+λ

3 f3(z)+ · · · , (5.78)

where λ is a small expansion parameter.

In this expansion,

12
c
〈T (w)〉= λ f ′′′1 (w)+λ

2
(
−3

2
f ′′1 (w)

2−3 f ′1(w) f ′′′1 (w)+ f ′′′2 (w)− f1(w) f ′′′′1 (w)
)
+O(λ 3) ,

(5.79)
and the entanglement entropy is

12
c

Sex = log
∣∣∣∣ f ′(z1) f ′(z2)(z2− z1)

2

δ 2

∣∣∣∣
= log

(2R)2

δ 2 +λ

[
R( f ′1(−R)+ f ′1(R))+ f1(−R)− f1(R)

R

]
+λ

2
(
− ( f1(R)− f1(−R))2

4R2 +
− f1(−R) f ′1(−R)+ f1(R) f ′1(R)+ f2(−R)− f2(R)

R

− 1
2

f ′1(−R)2− 1
2

f ′1(R)
2 + f ′2(−R)+ f ′2(R)− f1(−R) f ′′1 (−R)− f1(R) f ′′1 (R)

)
+ O(λ 3) . (5.80)

Linear order

To first-order in λ , the stress tensor is given by

〈T (z)〉= λ
c

12
f ′′′1 (z)+O(λ 2) , (5.81)

7Note that the potential cross-term between left and right moving contributions vanished in the
gravitational computation of δ (2)S.
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so that change in the expectation value of the modular Hamiltonian becomes

δ 〈HB〉 =
λ c
24R

∫ R

−R
dz(R2− z2) f ′′′1 (z)

=
λ c
24R

[
(R2− z2) f ′′1 (z)+2

(
z f ′1(z)− f1(z)

)]R
−R

=
λ c
12R

[
R( f ′1(R)+ f ′1(−R))− ( f1(R)− f1(−R))

]
. (5.82)

From (5.77) we also have that the first-order change in entanglement entropy is

δ
(1)S =

λ c
12R

[
R( f ′1(R)+ f ′1(−R))− ( f1(R)− f1(−R))

]
. (5.83)

Comparing with (5.82) we see that the first law of entanglement holds

δ
(1)S = δ 〈HB〉 . (5.84)

Second-order

The second-order change in entanglement entropy gives the second-order relative

entropy as the modular Hamiltonian is linear in the expectation value of the stress

tensor. This is the quantum Fisher metric in the state space, which is dual to the

canonical energy in gravity [105]. In this section, we obtain the expression for

canonical energy from the CFT side and find an exact match to the results of Sec-

tion 5.3.1.

Our procedure so far yields the entanglement entropy of a subregion in terms

of a perturbative expansion in small stress tensor expectation value

δS =
∫

B

dz
2π

K1(z)〈T (z)〉−
1
2

∫
B

dz1

2π

∫
B

dz2

2π
K2(z1,z2)〈T (z1)〉〈T (z2)〉+ · · ·

+{z↔ z̄} . (5.85)

To obtain K2(z1,z2), we need to invert the relationship in (5.79) order by or-

der, the lower order solutions fi−1, fi−2, · · · f1 becoming sources for the i-th order

solution.

Taking the explicit expression for 〈T (z)〉 to simplify solving the differential
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equations,

〈T (z)〉= λ

(
c1eik1z + c2eik2z

)
, (5.86)

is sufficient to extract the Fourier transformed kernel.

The first-order solution is

f1(z) = F1 +F2z+F3z2 +
12i
c

(
c1

eik1z

k3
1

+ c2
eik2z

k3
2

)
, (5.87)

where Fi are constants that corresponds to the global part of the conformal trans-

formation and do not effect the final result. We take these constants to be zero for

simplicity. The second-order solution is

f2(z)=−
9
c2

[
11i
16

(c2
1

e2ik1z

k5
1

+ c2
2

e2ik2z

k5
2

)+ i
c1c2

k3
1k3

2

ei(k1+k2)z
(
k4

1 +3k2k3
1 +3k2

2k2
1 +3k3

2k1 + k4
2
)

(k1 + k2)3

]
.

(5.88)

With these solutions, we obtain

K̃1(k) =
2
k2

sin(kR)− kRcos(kR)
kR

, (5.89)

as well as

K̃2(k1,k2) =
96R4

c
(K5−2(κ2 +4)K3 +κ4K)cosK− (5K4−6K2κ2 +κ4)sinK +8K3 cosκ

K3(K−κ)3(K +κ)3 ,

(5.90)

with K ≡ R(k1 + k2) and κ ≡ R(k1− k2).

Taking the inverse Fourier transformation of K̃1(k)

K1(z) =
∫

dk K̃1(k)e−ikz = π
R2− z2

R
W (R,z) (5.91)

where

W (R,x)≡ (sgn(R+ x)+ sgn(R− x))
2

(5.92)

is a window function with support x ∈ [−R,R].
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The second-order position space kernel is

K2(z1,z2) =
6π2

cR2

(R− z1)
2(R+ z2)

2 −R≤ z2 ≤ z1 ≤ R

(R+ z1)
2(R− z2)

2 −R≤ z1 < z2 ≤ R
. (5.93)

The anti-holomorphic part is the same with z→ z̄, and the cross term vanishes.

With the relation

c =
3`AdS

2GN
(5.94)

this reproduces the kernel for canonical energy in (5.56).

This result holds for regions defined on any spatial slice of the CFT. If we

choose the t = 0 slice, z = z̄ = x and our result becomes

δS(2)EE = −1
2

∫
B

dx1

∫
B

dx2 K2(x1,x2) [〈T++(x1)〉〈T++(x2)〉+ 〈T−−(x1)〉〈T−−(x2)〉] .

Changing variables using x1 = x− r, x2 = x+ r, the kernel is simply

K2(x,r) = K2(x,−r) =
12π2

cR2

[
(R−|r|)2− x2]2

Θ(R−|r|− |x|) . (5.95)

5.4.4 Excited states around thermal background

A similar analysis can be applied to perturbations around a thermal state with tem-

perature T = β−1. If we denote homogeneous thermal state |β 〉, the stress tensor

one-point function is

〈β |T |β 〉= π2c
6β 2 . (5.96)

This can be obtained by a conformal transformation from the vacuum with

fβ (z) =
β

2π
log(z) . (5.97)

On top of this transformation, one could also apply an infinitesimal conformal

transformation to obtain non-homogeneous perturbation around thermal state.
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A similar computation as the previous section leads to the first-order kernel

Kβ

1 (z) =
2β

sinh(2πR
β
)

sinh
(

π(R− z)
β

)
sinh

(
π(R+ z)

β

)
, (5.98)

which is the modular hamiltonian of thermal state in 2d CFT.

Furthermore, the second-order kernel is

Kβ

2 (z1,z2) =
24β 2

c sinh2(2πR
β
)

sinh2
(

π(R−z1)
β

)
sinh2

(
π(R+z2)

β

)
−R≤ z2 ≤ z1 ≤ R

sinh2
(

π(R+z1)
β

)
sinh2

(
π(R−z2)

β

)
−R≤ z1 < z2 ≤ R

.

(5.99)

Consistency check : homogeneous BTZ perturbation

As a check, consider the homogeneous perturbation example, where 〈T 〉= 〈T̄ 〉=
λ

8GN
.8

In the AdS3 this is a perturbation towards the planar BTZ black hole geometry,

ds2 =
1
z2

(
dz2 +(1+λ z2/2)2dx2− (1−λ z2/2)2dt2) (5.100)

in Fefferman-Graham coordinates. Holographic renormalization (5.22) tells us the

stress tensor expectation value of the dual CFT is

〈Ttt〉=
1

2π
(〈T 〉+ 〈T̄ 〉) = λ

8πGN
. (5.101)

As the black hole corresponds to the thermal state in CFT, the dual state be obtained

by the conformal transformation (5.97).

First, applying (5.77) for this conformal transformation, the change in entan-

glement entropy with respect to the vacuum is

δS = λ
R2

6G
−λ

2 R4

90G
+λ

3 4R6

2835G
+O(λ 4) , (5.102)

which matches the previous known results [100, 105].

8λ = 2π2

β
sets the temperature.
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The linear order equals δ 〈HB〉 as expected from the entanglement first law.

The second-order term gives the quantum Fisher information or the canonical

energy

E =
d2

dλ 2 (∆E−∆S)
∣∣∣
λ=0

=
R4

45GN
. (5.103)

Using the formula using the second-order kernel (5.85) and (5.93), we obtain the

same canonical energy

E = 2
d2

dλ 2

[
1
2

∫
B

dz1

2π

∫
B

dz2

2π
K2(x1,x2)〈T 〉〈T 〉

]
λ=0

=
R4

45GN
. (5.104)

5.5 Auxiliary de Sitter space interpretation
In [43], it was pointed out that the leading order perturbative expression (5.2) for

entanglement entropy, expressed as a function of the center point x and radius R of

the ball B, is a solution to the wave equation for a free scalar field on an auxiliary

de Sitter space, with 〈T00(x)〉 acting as a source.

It was conjectured that higher order contributions might be accounted for by

local propagation in this auxiliary space with the addition of self-interactions for

scalar field. In this section, we show that for two-dimensional CFTs, the second-

order result (5.10) can indeed be reproduced by moving to a non-linear wave equa-

tion with a simple cubic interaction to this scalar field. A slight complication is that

we actually require two-scalar fields; one sourced by the holomorphic stress tensor

T++, and the other sourced by the anti-holomorphic part T−−; the perturbation to

the entanglement entropy is then the sum of these two scalars, δS = δS++ δS−,

reproducing both terms in (5.10). We will focus on δS+ since δS− follows identi-

cally.

To reproduce the second-order results for entanglement entropy, we consider

an auxiliary de Sitter space with metric

ds2
dS =

L2
dS

R2

(
−dR2 +dx2) . (5.105)
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and consider a scalar field δS+ with mass m2L2
dS =−2 and action

L =
1
2

∇a (δS+)∇
a (δS+)+

1
2

m2 (δS+)
2 +

4
cL2

dS
(δS+)

3 . (5.106)

The equation of motion is

(
∇

2
dS−m2)

δS+(R,x) =
12

cL2
dS

(δS+(R,x))
2 . (5.107)

As shown in [43], the first-order perturbation (5.2) obeys the linearized wave equa-

tion (
∇

2
dS−m2)

δ
(1)S+(R,x) = 0 . (5.108)

We can immediately check that the second-order perturbation (5.10) is consistent

with the nonlinear equation by acting with the dS wave equation on the second-

order kernel (5.93)

(
∇

2
dS−m2)K2(x1− x,x2− x) =− 24

cL2
dS

K1(x1− x)K1(x2− x) . (5.109)

Integration against the CFT stress tensor then gives (5.107).

Alternatively, introducing the retarded9 bulk-to-bulk propagator [119]

GdS(η ,x;η
′,x ′) =−η2 +η ′2− (x− x ′)2

4ηη ′
(5.110)

and bulk-to-boundary propagator

KdS(η ,x;x ′) = lim
ε→0

[
−4πε lim

η ′→ε

GdS(η ,x;η
′,x ′)

]
= π

η2− (x− x′)2

η
.(5.111)

we can show directly that the solution with boundary behavior

δS+ =
4π

3
〈T++〉R2 +O(R3) (5.112)

9These propagators are defined to be non-zero only within the future directed light-cone. This is
important in reproducing both the support and the exact form of K2(x1,x2).
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for R→ 0 is

δ
(1)S+(R,x0) =

∫
dxKdS(R,x0;x)〈T++(x)〉 (5.113)

at first-order and

δ
(2)S+(R,x0) =

12
cL2

dS

∫
dS

dη
′dx′
√
|gdS|GdS(R,x0;η

′,x′)
(∫

dxKdS(η
′,x′;x)〈T++(x)〉

)2

,

(5.114)

at second-order, where the latter term comes from the diagram shown in Figure

5.2.

x−R x+R

δS+ δS+

δS+

x1 x2

g3

(R, x)

Figure 5.2: Feynman diagram which computes δ (2)S. The δS+ field propa-
gates in de Sitter with a cubic interaction given by (5.106). The bold
(red) line is the conformal boundary of de Sitter which is identified with
a time slice of the CFT. δS+ is sourced by the CFT stress tensor on this
boundary.

The integrals can be performed directly to show that these results match with

the expressions (5.2) and (5.10) respectively.

A useful advantage of writing the second-order result in the form (5.114) is

that it is manifestly negative. More explicitly, we have

δ
(2)S+(R,x0) = − 3

cL2
dS

∫
dηdy

√
|gdS|

R2 +η2− (x0− y)2

Rη

[∫
By

dxKdS(η ,y;x)〈T++(x)〉
]2

.

(5.115)
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where
√
|gdS| and the squared expression are manifestly positive and the bulk-

to-bulk propagator (5.110) is positive over the range of integration where (y−
x0)

2 ≤ (R−η)2. That this expression is negative is required by the positivity of

relative entropy, since we showed above that −δ (2)S represents the leading order

perturbative expression for the relative entropy.

Recently, it has been realized that the modular Hamiltonian in certain non-

vacuum states in two dimensional CFTs can be described by propagation in a dual

geometry [107] matching the kinematic space found in [120, 121]. We find that the

results of Section 5.4.4 can be explained by the same interacting theory (5.106) on

this kinematic space. The kinematic space dual to the thermal state is [107]

ds2 =
4π2L2

dS

β 2 sinh2
(

2πR
β

) (−dR2 +dx2) . (5.116)

The second-order perturbation to the entanglement entropy from (5.99) obeys the

wave equation (5.107) with the same interactions in this kinematic space.

We could imagine adding additional fields propagating in de Sitter to capture

the contributions to the entanglement entropy from scalar operators discussed in

Section 5.3.2. However, unlike the contribution from the stress tensor, this con-

tribution involves integration of the one-point functions over the full domain of

dependence DB. In higher-dimensions, this will also be true for the stress tensor

contribution. The R = 0 boundary of the auxiliary de Sitter space does not include

the time direction of the CFT, so any extension of these results to contributions

of other operators or higher dimensional cases will require a more sophisticated

auxiliary space. Promising work in this direction is discussed in [108, 106].
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Chapter 6

Conclusion

This thesis investigated entanglement entropy using holographic duality focusing

on its applications to a particular class of noncommutative theories in Part I and on

general properties of the holographic formula for entanglement entropy in Part II.

In Part I, Chapter 2 applied the holographic Ryu-Takayanagi formula for en-

tanglement entropy to noncommutative theories. A violation of the area law was

found as is to be expected in nonlocal theories. We interpreted our results as an in-

dication that the vacuum states of these noncommutative theories are entangled on

length scales of the nonlocality leading to an enhancement in the effective number

of degrees of freedom involved in the entanglement entropy between two spatial

regions.

Chapter 3 followed up on the study of entanglement entropy in this class of

noncommutative theories by studying them in a different perturbative regime. The

aim was to explore in what regimes similar violations to the area law could be

found. It was found that noncommutative interactions did not induce long range

entanglement in the vacuum state of these theories to leading order in perturbations

theory.

Part I fits into a larger effort to apply this holographic formula to better under-

stand the entanglement entropy in the full range of field theories with holographic

duals. The class of noncommutative theories studied are interesting as they involve

many unusual ingredients in the context of gauge-gravity duality. These include a

nontrivial dilaton profile and compact dimensions and the presence of a bulk two-
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form field in the gravitational dual. In addition, entanglement entropy is interesting

in its own right in the larger context of the study of noncommutative field theories.

It would be interesting to investigate the onset of long range entanglement in these

theories, perturbatively at large N and through further holographic studies.

Part II focused on the properties of entanglement entropy in general holo-

graphic states. Chapter 4 explores the constraints imposed by the existence the

holographic formula for entanglement entropies on the geometries of holographic

duals. A number of constraints were identified. In particular, the strong subadditiv-

ity of entanglement entropy implies that the dual geometry must obey an averaged

null energy condition in three dimensional gravity.

Chapter 4 describes the first step in a programme of relating the constraints

on geometries imposed by the holographic entanglement entropy formula to phys-

ically motivated constraints like energy conditions. It would be particularly inter-

esting to extend our results to higher dimension or to explore the implication of

other field theoretic entanglement identities. The technical difficulties of dealing

with the nonlocal nature of the holographic formula provide the major barrier to

such extension. It may be that recent approaches to reorganising the data in holo-

graphic dualities using an auxiliary kinematic space along the lines of [108] may

provide some insight into these technical difficulties.

In the classical limit, the dual holographic geometry is determined by the one-

point functions of the field theory. This geometry allows us to compute the en-

tanglement entropies through the holographic Ryu-Takayanagi formula. Chapter

5 expresses the entanglement entropies of holographic states directly in terms of

these one-point functions. In particular the entanglement entropy in a class of

purely gravitational asymptotically AdS3 states is expressed in an expansion in the

one-point function of the stress tensor of the field theory. This is confirmed directly

in the dual conformal field theory. This result is then interpreted in terms of the

propagation of a self-interacting scalar field in an auxiliary de Sitter space.

Chapter 5 describes the first steps in a program of relating entanglement en-

tropy to one-point functions in holographic field theories. Finding the explicit

form of this relationship could provide insights into the structure of entanglement

in these field theories as well as providing constraints on the class of states which

have holographic duals. In this way Chapter 4 can be though of as providing con-
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straints on the geometries which can be dual to field theories, while Chapter 5 pro-

vides constraints on the states which can have gravitational duals. Finally, Chapter

5 has extended the intriguing fact noticed in [43] that the entanglement entropy of

near vacuum states can be interpreted in terms of the propagation of a field in an

auxiliary de Sitter space by adding interactions to the field. This provides some

support to the idea that this auxiliary de Sitter space contains interesting physics

and that what is so far a curious fact should be investigated further.
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Appendix A

Analysis of the Potential
Divergences from the j > 1 Terms

This analysis follows that of [83], where it is found that the leading divergence

when the Green’s function is evaluated at coincident points is entirely contained in

the j = 1 term.

The Green’s function for the scalar field on the n-sheeted space was given in

(3.25):

Gn(x,x′) =
∫

∞

0

dk
π

∫ dd⊥ p⊥

(2π)d⊥

∫
∞

0
dqq

Jk(qr)Jk(qr′)
q2 + p2

⊥+m2 cos(k(θ −θ
′))eip⊥(x⊥−x′⊥)

− 1
12πn2

∫ dd⊥ p⊥

(2π)d⊥

∫
∞

0
dqq

∂ν [Jν(qr)Jν(qr′)]ν=0

q2 + p2
⊥+m2 eip⊥(x⊥−x′⊥) (A.1)

−∑
j>1

B2 j

πn2 j(2 j)!

∫ dd⊥ p⊥

(2π)d⊥

∫
∞

0
dqq

(∂ν)
2 j−1[Jν(qr)Jν(qr′)cos(ν(θ −θ ′))]ν=0

q2 + p2
⊥+m2 eip⊥(x⊥−x′⊥).

The first term is independent of n and did not enter into the calculation of the

entanglement entropy. The second term was the subject of our investigation. How-

ever, the third term was dropped with the claim that it could not introduce any new

divergences. This appendix will justify this claim.

We start by revisiting the entanglement entropy in the commutative theory. In
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this case from (3.42)

S∼
∫

rdrG1(r,r) fn(r,r), (A.2)

where only the contributions to the divergences in the final result have been kept.

The Green’s function when evaluated at coincident points gives a Λ2 divergence

G1(r,r)∼
∫

d4 p
1

p2 +m2 ∼
∫

dα p3d p e−α(p2+m2)− 1
αΛ2

∼Λ
2−m2 logΛ

2. (A.3)

The fn term has the form

fn(r,r)∼
∫

d2 p⊥ qdq
∂ν [Jν(qr)Jν(qr)]ν=0

q2 + p2
⊥+m2 + ∑

j>1

∫
d2 p⊥ qdq

∂
2 j−1
ν [Jν(qr)Jν(qr)]ν=0

q2 + p2
⊥+m2 .

(A.4)

The momentum integrals can be evaluated when the function is evaluated at coin-

cident points

∫
d2 p⊥ qdq

Jν(qr)Jν(qr)
q2 + p2

⊥+m2 =
∫

dβ pd p qdq Jν(qr)Jν(qr)e
−β (q2+p2+m2)− 1

βΛ2

∼ e−
1
2 r2

Iν(
1
2

r2) logΛ
2. (A.5)

This must be integrated over r

∫
∞

0
rdre−

1
2 r2

Iν(
1− ε2

2
r2) =

1√
2ε
−ν +O(ε), (A.6)

where a small ε has been added to regulate the integral. It is only divergent because

∂
2 j−1
ν was passed though the integral sign. Once this derivative is applied, ε can

be safely taken to zero. A calculation of terms O(Λ0) would require a more careful
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analysis, but this is sufficient for extracting the leading O(logΛ2) divergence. Thus

∫
d4x fn(x,x)∼ A⊥ logΛ

2

[
∂ν(−ν)+ ∑

j>1
∂

2 j−1
ν (−ν)

]
= A⊥ logΛ

2

[
−1+ ∑

j>1
0

]
.

(A.7)

This shows that all the j > 1 terms vanish when the Green’s function is eval-

uated at coincident points and the divergence is entirely contained in the j = 1

term.

In the noncommutative and dipole theories, the Green’s functions are evaluated

at points separated by the length scale of the nonlocality rather than at coincident

points. However, we saw that the source of divergences in the entanglement en-

tropy was regions in the integral where this separation vanishes. This analysis

shows that these divergences are contained in the j = 1 term.
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Appendix B

Modular Hamiltonian for an
Interval in a Boosted Thermal
State of a 1+1D CFT

In this appendix, we derive the modular Hamiltonian for a spatial interval [−R,R]

in the boosted thermal state. To do this, we start by considering the domain of

dependence D1 of the interval [−r,r] for the vacuum state in Minkowski space

with coordinates (t ′,x′). For this interval, the modular Hamiltonian is quantum

operator associated with the conformal isometry generated by

H1 =
π

r
((r2− (t ′)2− (x′)2)∂t ′−2t ′x′∂x′) .

We can now apply a boost

x′ = γ(x− vt) t ′ = γ(t− vx) .

In this case, the region D1 maps to the domain of dependence D2 of the interval

from−(rt ,rx) to (rt ,rx), where r2 = r2
x−r2

t and v= rt/rx. In this case, the generator

H1 maps to

H2 =
π

r2
x − r2

t

[
(rx(r2

x − r2
t )+2txrt − rx(t2 + x2))∂t +(rt(r2

x − r2
t )−2txrx + rt(x2 + t2))∂x

]
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Next, we perform a transformation for which the causal development of the interval

[−1,1] maps to the full Minkowski space (with coordinates (u,τ)), such that the

resulting state is the thermal state on Minkowski space dual to the planar BTZ

geometry with horizon at z = z0.

ds2 =
dz2−

(
1− z2

z2
0

)2
dτ2 +

(
1+ z2

z2
0

)2
du2

z2 (B.1)

The appropriate transformation (which can be obtained by finding the coordinate

transformation that maps the bulk region associated with the domain of dependence

of [−1,1] to the planar BTZ black hole) is

t =
sinh(2τ/z0)

cosh(2u/z0)+ cosh(2τ/z0)

x =
sinh(2u/z0)

cosh(2u/z0)+ cosh(2τ/z0)
. (B.2)

After the map, the region D2 maps to the domain of dependence D3 of the interval

from −(Rt ,Ru) to (Rt ,Ru), where

rt =
sinh(2Rt/z0)

cosh(2Ru/z0)+ cosh(2Rt/z0)

rx =
sinh(2Ru/z0)

cosh(2Ru/z0)+ cosh(2Rt/z0)
. (B.3)

The generator H2 maps to

H3 =
πz0

C2
u−C2

t
[{CuSu +CuSt sinh(2u/z0)sinh(2τ/z0)−CtSu cosh(2u/z0)cosh(2τ/z0}∂τ

{−CtSt +CuSt cosh(2u/z0)cosh(2τ/z0)−CtSu sinh(2u/z0)sinh(2τ/z0}∂u]

(B.4)

where

Cu = cosh(2Ru/z0) Su = sinh(2Ru/z0) .

Finally, we can perform one further Lorentz transformation

u = γ(u′+ vτ
′) τ = γ(τ ′+ vu′) .
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with velocity v = Rt/Rx, such that the region D3 is mapped to the domain of de-

pendence of the interval [−R,R], where R2 = R2
x−R2

t . In terms of v,z0, and R, we

find that the generator H3 restricted to τ ′ = 0 gives

H4 =
πγz0

C2
u−C2

t
{−∂τ ′ (cosh(γvU)cosh(γU)(CuStv+SuCt)

−sinh(γvU)sinh(γU)(SuCtv+StCu)

−(StCtv+CuSu))

+∂u′ (cosh(γvU)cosh(γU)(CuSt +SuCtv)

−sinh(γvU)sinh(γU)(SuCt +StCuv)

−(StCt +CuSuv))} (B.5)

where we define U = 2u′/z0 and

Ct = cosh(2Rγv/z0) Cu = cosh(2Rγ/z0) St = sinh(2Rγv/z0) Su = sinh(2Rγ/z0) .

The modular Hamiltonian is obtained by making the replacements ∂τ ′ → Tτ ′τ ′ and

∂u′ → Tτ ′u′ and integrating over [−R,R].
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Appendix C

Variation in Geodesic Length
under Endpoint Variation

In this section, we derive a formula for the variation of the entanglement entropy

of a boosted interval for some translation and time-translation invariant state in a

holographic 1+1 dimensional field theory under a general variation in the endpoint

of the interval.1 We assume that the field theory lives on Minkowski space with

coordinates (x, t).

The dual spacetime will be a 2+1 dimensional spacetime with translational

isometries in one spatial direction and one time direction, associated with Killing

vectors ξ
µ

t and ξ
µ
x . We assume that the spacetime has a conformal boundary, with

a Minkowski space boundary geometry ds2 = −dt2 + dx2 such that the Killing

vectors ξ
µ

t and ξ
µ
x become ∂t = (1,0) and ∂x = (0,1) at the boundary. Consider

a spatial geodesic with endpoints on the boundary at points 0 and R(γ,γv), where

v < 1, γ = (1− v2)−1. We would like to determine the variation in length of the

geodesic under a variation in the proper length R of the boundary interval.

The geodesic is an extremum of the action

S =
∫ f

i
dλ

√
gµν

dxµ

dλ

dxν

dλ
. (C.1)

1It is interesting to note that techniques similar to those in this section were used in [123] to show
a relation between differential entropy and the lengths of bulk curves.
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In general, the variation of an action S =
∫

dλL (qn, q̇n) evaluated for an on-shell

configuration under a variation of the boundary conditions (assuming the range of

integration remains the same) is given by

δS = [pnδqn]
f
i ,

where qn are the coordinates and pn = ∂L /∂qn are the conjugate momenta. This

follows immediately since the variation of the action gives a total derivative when

the Euler-Lagrange equations are satisfied. Consider a general variation of the

endpoints

δxµ

f = δxξ
µ
x +δ tξ µ

t .

Since the conjugate momentum to xµ is

pµ =
∂L

∂xµ
=

gµν
dxν

dλ√
gµν

dxµ

dλ

dxν

dλ

.

we have

δS = δxξ
µ
x pµ +δ tξ µ

t pµ . (C.2)

Now, for a Killing vector ξ µ , the action (C.1) is invariant under xµ → xµ + ξ µ .

The corresponding conserved quantity is exactly ξ µ pµ . Thus, the right hand side

of (C.2) can be evaluated at any point on the trajectory. We choose to evaluate it

at the midpoint of the geodesic, where ∂λ xµ is a linear combination of ξ
µ

t and ξ
µ
x

(i.e. with no component in the radial direction). In this case,

∂λ xµ = ξ
µ

t
ξt ·∂λ x
ξt ·ξt

+ξ
µ
x

ξx ·∂λ x
ξx ·ξx

,

so we find that our expression (C.2) becomes

δS = δx[γ0Ax
0]+δ t[γ0β0At

0] . (C.3)

where we have defined

Ax
0 =

√
ξx ·ξx
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At
0 =

√
−ξt ·ξt

β0 =
Ax

0
At

0

ξt ·∂λ x
ξx ·∂λ x

γ0 =
1√

1−β 2
0

,

which measures the “tilt” of the geodesic at the midpoint.

In the special case of a spatial interval, we will have ξt · ∂λ x = 0 everywhere,

so
δS
δR

=
√

ξ 2
x =

√
gµνξ

µ
x ξ ν

x . (C.4)

Thus, the variation of the entanglement entropy with respect to the size of a spatial

interval gives exactly the spatial scale factor.
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Appendix D

Rindler Reconstruction for
Scalar Operators in CFT2

In this appendix we find an expression for the matter contribution to the second-

order perturbation to the entanglement entropy of a ball B using Rindler recon-

struction so as to only use the one-point functions of the scalar operator in the

domain of dependence DB. We specialise to two dimensional CFTs in order to

obtain a more explicit expression which can be compared to the gravitational con-

tribution (5.10). Further discussions of Rindler reconstruction can be found in the

literature [115, 116, 124, 114, 113].

Coordinates on the Rindler wedge RB of radius R can be given by (r,τ,φ) which

map back into Poincaré coordinates by

z =
R

r coshφ +
√

r2−1coshτ
, (D.1)

t =
R
√

r2−1sinhτ

r coshφ +
√

r2−1coshτ
, (D.2)

x =
Rr sinhφ

r coshφ +
√

r2−1coshτ
, (D.3)

where 1 < r < ∞.

The scalar field dual to an operator O can be reconstructed in this Rindler
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wedge using [113]

φ(r,τ,φ) =
∫

dωdk e−iωτ−ikφ fω,k(r)Oω,k , (D.4)

fω,k(r) =r−∆

(
1− 1

r2

)−i ω

2

2F1

(
∆

2
− i(ω + k)

2
,
∆

2
+

i(ω + k)
2

;∆;r−2
)
, (D.5)

where Oω,k is the Fourier transform of the CFT expectation value of the operator

Oω,k =
∫

dτdφ eiωτ+ikφ 〈O(τ,φ)〉 . (D.6)

This can be expressed in terms of the operator in the original coordinates

Oω,k =
∫

DB

dtdx
[
(R+ x+ t)i k+ω

2 (R− x− t)−i k+ω

2

(R− x+ t)i ω−k
2 (R+ x− t)i k−ω

2

]
〈O(t,x)〉 , (D.7)

where the region of integration is only over the domain of dependence DB.

This form of the scalar field can be combined with (5.58) to obtain an an ex-

pression for δ (2)Sscalar which only depends on the expectation value of O in DB,

δ
(2)Sscalar =− 1

4

∫
∞

1
drdkdω1dω2 r

√
r2−1

[
fω1,k(r) fω2,−k(r)

(
−ω1ω2

r2−1
+

k2

r2 +∆(∆−2)
)

+
(
r2−1

)
f ′ω1,k(r) f ′ω2,−k(r)

]
Oω1,kOω2,−k . (D.8)
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