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Abstract. The LHCb experiment is dedicated to precision measurements of hadrons containing
b and c quarks at the Large Hadron Collider (LHC) at CERN. During the first two Runs of
the LHC, spanning from 2010 to 2018, the LHCb Collaboration invested more than 90% of the
computing budget to simulate the detector response to the traversing particles produced in heavy
hadron decays. Since 2022, the LHCb experiment has relied on a renewed detector and a novel
data-acquisition strategy designed to acquire data at a rate enhanced by a factor of ten. Enabling
an equivalent increase in simulation production is a major challenge, requiring a technological
shift and diversifying the simulation strategies for specific purposes. Data processing and data
analysis technologies have been evolving quickly during the last ten years. New industrial
standards and huge communities behind open-source software projects arose, transforming the
landscape of computer science and data processing. The fast development of Machine Learning
and Cloud technologies provides modern solutions to address challenges well known to the High
Energy Physics community, operating distributed data processing software on the nodes of
the Worldwide LHC Computing Grid for the last three decades. In this Thesis, I present a
study to adopt these new technologies to evolve the LHCb simulation software using machine
learning models trained on multi-cloud resources to parameterize the detector response and the
effects induced by the reconstruction algorithms. The resulting detector simulation approach
is known as flash-simulation and represents the most challenging and radical option in the
landscape of opportunities to accelerate the detector simulation. To encode in a machine learning
model the intrinsic randomness of the quantum interactions occurring within the detector, the
experimental uncertainties, and the effect of missing variables, parameterizations are designed as
Generative Models, and in particular as Generative Adversarial Networks. The Lamarr project,
arising as the official flash-simulation option of the LHCb experiment, enables connecting the
trained models in long data-processing pipelines to simulate various effects in the detection and
reconstruction procedure. Pipelines can be deployed in the LHCb Simulation software stack by
relying on the same physics generators as the other simulation approaches and serializing the
results with the format of the official reconstruction software. In this Thesis, I address the most
compelling challenges in the design of a flash-simulation solution, including the identification of
a strategy to train and validate reliable parameterizations, the definition and distribution of
heavy hyperparameter optimization campaigns through opportunistic computing resources, the
combination of multiple parameterizations in a data processing pipeline, and its deployment
in the software stack of one of the major experiments at the LHC. Future work will extend
the validation of flash-simulation techniques for additional heavy hadrons, decay modes, and
data-taking conditions, paving the way to the widespread adoption of flash-simulations and
contributing to a significant decrease in the average computational cost of detector simulation.

© 2024 CERN for the benefit of the LHCb collaboration. CC BY 4.0 licence.
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Preface

Machine Learning and Artificial Intelligence have been drastically reshaping the landscape
of Computer Science for the last ten years. A stronger and stronger separation between
the algorithm and its vectorized and optimized implementation was made possible by the
wide adoption of Python with its numerical extensions (NumPy first, and then TensorFlow,
PyTorch, and JAX), impressing a new thrust to the developments involving hardware
accelerators. At the same time, the statistical modeling of physics quantities has become
central in top-priority industrial applications, leading to an exponential expansion of the
Data Science community and the emergence of hundreds of new tools and approaches
to manage, process, and visualize complex data. The vast amount of data generated
by the digital world we live in justified the introduction of computing infrastructures to
enable scaling the computations on multiple sites, minimizing the effort for porting the
applications from one center to another and identifying in the Web and the Web browsers
the main entrance to the distributed, often virtual, computing resources. It is what we
call today the Cloud.

Aware of this paradigm shift in Computer Science technologies, and proud of the long
tradition in the development of computing infrastructure for Big Science, the National
Institute for Nuclear Physics (INFN) has been investing great effort to renew its approach
to data processing and computational science. The glorious developments of the Worldwide
LHC Computing Grid (WLCG) connecting tens of national-scale data centers for the
last three decades are being reviewed and simplified in light of the advancement of the
data and Cloud industries, while Machine Learning is playing a first-citizen role in the
development of the applications to process and analyze the experimental data.

This Ph.D. Thesis stems from a joint effort of the Department of Information Engineer-
ing of the University of Firenze and the National Institute for Nuclear Physics, with the
partnership of the Universities of Pisa and Siena. The aim is to contribute to the ongoing
technological shift in computing technologies, focusing in particular on the simulation of
the LHCb experiment, one of the four large detectors surrounding the interaction points
of the Large Hadron Collider (LHC), the world’s largest and most powerful proton and
heavy ion accelerator, built at CERN.

The LHCb experiment was designed to complement the physics program of the general-
purpose detectors of the LHC, named ATLAS and CMS, with measurements of the
particles produced at small angles with respect to the beam axis. In particular, hadrons
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containing b and c quarks, known as heavy hadrons, are sufficiently light on the energy
scale of the LHC to be produced at small angles and their study constitutes the highest
priority in the LHCb physics program. During the first years of data-taking, the LHCb
detector demonstrated great performance. Its pioneering data acquisition system, heavily
relying on real-time software selections, was capable of unprecedented flexibility enabling
impressive extensions to the originally planned physics program in several directions.

Despite the breadth of its physics program, the study of heavy hadrons remains central
in the analysis activities in LHCb, and the vast majority of the computation resources
pledged to the Collaboration are invested in simulating the decays of heavy hadrons and the
subsequent interactions of the decay products with the material constituting the detector,
the subsequent reconstruction procedures and the final selection strategy. In practice,
thousands of data samples simulating the decay and the subsequent reconstruction of
well-defined decay modes are produced every year. Some of them are used to perform
feasibility studies for new data analyses, others investigate potential contributions of
background in high-precision analyses, and others are requested to build a statistical
model for the expected signature for some phenomena while searching the collected data
for evidence.

Historically, the simulation of the LHCb detector was designed as a first, virtual
prototype of the experiment. To perform feasibility studies on the most challenging
physics analyses while defining the specifications for the radiation detectors and the
data acquisition pipelines. That simulation, known as the Detailed Simulation, is based
on first-principle models for radiation-matter interaction and is indeed capable of an
impressive degree of accuracy in the determination of the physics performance of an
apparatus even before construction. During the years following the start of the data
acquisition, the Detailed Simulation has been patched, tuned, and refined multiple times,
improving the accuracy of the physics models and the reliability of the detector description.
Unfortunately, simulating each quantum interaction of hundreds of particles per event in
a volume of several tens of cubic meters can be computationally expensive. Great effort
has been invested by the High Energy Physics (HEP) community at large, and by the
LHCb physicists in particular, to optimize the simulation and reusing, where possible,
results from previous computations. Nevertheless, the detector simulation remains too
expensive to be considered affordable for the planned upgrades of the HEP experiments,
when the larger amount of collected data will require a larger amount of simulated events
to be accurately interpreted.

In addition, physicists started to notice that a particle traversing a detector is associated
with reconstructed features that depend almost exclusively on the kinematics of such
particle and on the overall occupancy of the detector, rather than on the specific production
mechanism. When performing the most precise data analyses of the data collected by
the LHCb experiment, physicists started to ignore the simulated detector response to
the traversing particles replacing them with the features of other reconstructed particles,
produced otherwise but believed, from statistical reasoning, to be equivalent, in terms of
detector response, to the simulated particle. The scientific community started then to
imagine completely new simulation frameworks obtained by combining parameterizations
and such resampling techniques, and capable of predicting the detector response to new
decay modes from calibration data.

In 2019, with my Master Thesis titled “Techniques for parametric simulation with
deep neural networks and implementation for the LHCb experiment at CERN and its
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future upgrades”, I proposed to use Generative Models as building blocks for complex
parameterizations, possibly learned from calibration samples, and combined into pipelines
where each model computes the output based on the quantities generated from the previous
ones [1]. In that work, I discussed the challenges of integrating Machine Learning models in
the LHCb simulation software and proposed an alternative and independent pure-Python
simulation framework, employing in-memory columnar representation of batches of events
and cross-table relations to remove dependencies on the LHCb software stack.

During the last three years, I had the opportunity to expand that pioneering work
deepening my understanding of the Generative Models, employing distributed Cloud
resources to improve their training, and deploying them in the official LHCb simulation
software while preserving the ability to run the parameterization pipelines independently
by adopting tabular, multi-language event model representation.

These contributions to the collective effort towards simulation speed up via Machine
Learning technologies are discussed in depth in this Thesis. I introduce the scientific
background and the LHCb experiment, focusing on its computing model and simulation
software stack in Chapter 1. In Chapter 2, I discuss in more detail the technological shift in
the computing landscape introduced by the widespread adoption of Machine Learning and
Cloud technologies and present the development of Hopaas a custom service to ease the
distribution of hyperparameter optimization campaigns through multiple sites and different
Cloud providers [2]. The technologies enabling Deep Learning and the state-of-the-art in
terms of Generative Models are reviewed in Chapter 3. Chapter 4 describes in detail the
models developed for the simulation of the LHCb experiments and their training [3–5].
Most of the models were obtained with the pidgan software package [6], a Python library
exposing APIs to train multiple flavors of Generative Models, that I have developed as
part of my Ph.D. program and made available as Free Open Source Software on GitHub1.
Finally, in Chapter 5, I discuss the combination of the many parameterizations in a
pipeline and discuss the results of the validation campaign of charged particles performed
studying the semileptonic decay Λ0

b → Λ+
c µ

−ν̄µ. To integrate the parameterization in
the LHCb software stack, while retaining the ability to run the same parameterization
as an independent software package, I contributed to the development of scikinC [7], a
transpiler for scikit-learn and Keras models trained in Python, enabling using them as
shared objects from other applications.

During the three years of my Ph.D. I had the opportunity to discuss my results at
several international conferences. In particular, I had two posters assigned at the 21st
International Workshop on Advanced Computing and Analysis Techniques in Physics
Research (ACAT 2022) titled “Hyperparameter Optimization as a Service on INFN Cloud”,
and “Lamarr: LHCb ultra-fast simulation based on machine learning models”. At the
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP
2023), organized in Norfolk (Virginia, USA), I was assigned the LHCb talk titled “The
LHCb Ultra-Fast Simulation Option, Lamarr”. Besides, I was a lecturer for the third and
fifth editions of the Hackathon of Machine Learning (Advanced Level), organized in Bari
in November 2022, where I presented the talk “Bayesian hyperparameter optimization”;
and in Pisa in November 2023 where I contributed to the lecture on “Generative Models”.

The remarkable results achieved in the development of this alternative approach to
detector simulation were noticed by colleagues of the Pisa unit of the National Institute

1https://github.com/mbarbetti/pidgan
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of Nuclear Physics who have started developing an analogous simulation for the CMS
experiment, while the new National Research Centre for High Performance Computing,
Big Data and Quantum Computing – ICSC, funded as part of the Next Generation EU
program has identified the developments of detector simulations accelerated with Machine
Learning techniques as one of its flagship activities.

The High Energy Physics community has a long and glorious tradition of software
engineering and distributed computing which makes the emerged computing model well
established and widely adopted. Rethinking the model and, in particular, the simulation,
from its fundamental building blocks is a major challenge, and other years of development
will be needed before a massive adoption of new simulation technologies will be able
to significantly reduce the average computational cost of a simulated collision event.
Among the options considered by the community, flash-simulation, obtained by combining
machine-learnt parameterizations of the detector in data processing pipelines, is the most
ambitious and radical. During my Ph.D., I had the opportunity to face and address some of
the most fundamental challenges in the development of a full-fledged flash-simulation, from
the construction of the parameterizations with Generative Models, and the representation
of particle-to-particle correlation effects, to the efficient deployment of the pipelines in the
production software stack of a major experiment. Future work will address the validation
of the pipelines on various decay modes and for different data-taking conditions, heading
the adoption of ultra-fast simulation for the challenging data analysis program of the
current and upcoming Runs of the LHC experiments.
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1
Scientific background and the LHCb experiment

The present knowledge of elementary particles and their interactions is collected
within a successfully theory called Standard Model, which continue to predict the
majority of the experimental results obtained to date. Nevertheless, the existence
of several questions still unanswered, such as the dark matter, the neutrino
mass, or the matter-antimatter asymmetry, brings out that the Standard Model
is not a complete theory. In this scenario, the High Energy Physics experiments
play a key role, providing the instruments for testing the validity of the theory
and, eventually, pointing possible directions for its expansion. This chapter
is dedicated to illustrate the scientific context in which my thesis work has
been developed. In particular, Section 1.1 reports an overview of the Standard
Model, briefly lingering on its theoretical aspects and describing some of the
directions explored to find hints of New Physics. Such investigations often
need for the study of extremely rare decays or very high energy process that
require to rely on dedicated experimental apparatuses. Section 1.2 offers a
detailed description of one of those apparatuses, the LHCb experiment which is
designed for the study of Heavy Flavor Physics, looking for anomalous effects
beyond the Standard Model.

1.1 The Standard Model and beyond: an overview
Since the 1930s, physicists witnessed a proliferation of particles thanks to the increasing
number of studies and experiments investigating the fundamental structure of the matter.
The amount of predictive theories and new discoveries led to develop, in the 1970s, a theory
gathering the best knowledge of these particles and how they interact, called Standard
Model and indicated as SM hereafter. The SM is a quantum field theory representing
particles as spin-1

2
fields and their interactions as spin-1 fields. Gravity is the unique known

interaction to not be included within the SM since it is still not clear how to describe it
as a quantum field theory. On the other hand, the SM describes our best comprehension
of all the other known interactions, namely the Electromagnetic interaction, associated
to a neutral massless mediators named photons γ, the Weak interaction, associated to
the charged massive mediators W± and the neutral massive mediator Z0, and the Strong
interaction, associated to a neutral massless mediator named gluon g. In the quantum
field theory formalism, the Electromagnetic and Weak forces can be unified into the
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Electroweak interaction, associated to the aforementioned two neutral (γ and Z0) and
charged (W±) mediators. In 2012, the discovery of the Higgs boson [8, 9] by the ATLAS
and CMS Collaborations at the LHC has confirmed the existence of a third kind of field,
scalar (spin s = 0), defining the inertial properties (namely, the mass) of matter and
interaction fields.

Elementary particles are the building blocks of matter. Having half-integer spin,
they are distributed according to the Fermi-Dirac statistics and, for this, they are called
fermions. The SM divides fermions into two families: leptons and quarks. Leptons are
elementary particles which do not interact through the Strong force. The electron (e−),
essential constituent of the ordinary matter and responsible for all the properties exhibited
by the chemical elements, is the lightest charged lepton. Two other charged leptons are
know: the muon (µ−) and the tau (τ−). All three have the same unity charge, −e. While
no electron decay is neither observed nor expected in the SM, so ensuring to the ordinary
matter to be stable, muons and taus can decay to lighter leptons through the Weak
interaction:

µ− → e−ν̄eνµ τ− → µ−ν̄µντ τ− → e−ν̄eντ

Such decays involve the emission of neutral leptons called neutrinos that, due to their
charge, are only allowed to interact via the Weak force. The Weak decays conserves a
quantum number, called lepton number that is shared by charged and neutral leptons.
Hence, the three charged leptons correspond to as many neutrino states referred to as νe,
νµ, and ντ .

Contrary to leptons, quarks are allowed to interact also via the Strong force. The
Quantum Chromo-Dynamics (QCD) is the theory that describes such interactions by
relying on a quantum number, called color charge, that quarks share with gluons. An
important difference between Strong and Electromagnetic interactions is the self-interaction
property of the mediator particles: possible for gluons, while impossible for photons. The
self-interaction explains why the Strong bound-states, called hadrons, are so different

Figure 1.1: Summary of interactions between particles described by the Standard Model.
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Family Flavor Charge Spin

Leptons e− (e+) µ− (µ+) τ− (τ+) −1 (+1)
1/2

νe (ν̄e) νµ (ν̄µ) ντ (ν̄τ ) 0

Quarks u (ū) c (c̄) t (t̄) +2/3 (−2/3)
1/2

d (d̄) s (s̄) b (b̄) −1/3 (+1/3)

Table 1.1: Classification of matter (antimatter). The charge values are reported in units of
elementary charge e.

from the Electromagnetic bound-states, for example atoms, and why the constituents
of the latter (electrons and nuclei) can be observed as free, while quarks can only be
observed within hadrons. In the ordinary matter, the most common elementary particles
are the down quark (d), having charge −1

3
e, and the up quark (u), having charge −1

3
,

which are combined to form protons, with the bound-state uud, and neutrons, with the
bound-state udd. The property of a quark of being up or down is named hadronic flavor.
Six different flavors exist for quarks: down (d), up (u), strange (s), charm (c), bottom (b),
and top (t). For the two latter flavors, the alternative names beauty and truth are often
used. A schematic representation of elementary particles and how they interact is depicted
in Figure 1.1.

For any elementary matter particle (i.e., leptons and quarks), a respective antiparticle
exists. For example the positron (e+) is the antiparticle of the electron (e−), while an
anti-up (ū) denotes the antiparticle of the up quark (u). The charge values of both
leptons (quarks) and anti-leptons (anti-quarks) are reported in Table 1.1. Excluding the
charge, (almost) all the properties of a particle are (almost) the same as those of the
respective antiparticle. Hence, as quarks, also anti-quarks interact through the Strong
force and, for example, it is possible to observe bound-states formed by a quark (q)
and an anti-quark (q̄), called mesons (qq̄). As previously observed, the SM admits the
existence of bound-states of three quarks, like protons (uud) and neutrons (ddu) that are
generally called baryons (qqq). Following this formulation, also bound-states formed by
three anti-quarks exist and are called anti-baryons ( ¯qqq). It should be pointed out that,
due to the number of flavors, the complexity of QCD, and the existence of bound state
of particles and antiparticles, the variety of hadrons is huge, however providing a formal
characterization of their properties is probably beyond the scope of this thesis and any
interested reader is referred to the reviews of the Particle Data Group (PDG) [10].

While the quark flavor is conserved in the Strong interactions described by the QCD
Lagrangian, decays of hadrons towards lighter states with different flavor are observed, and
interpreted as Weak decays of quarks through the emission of a charged W boson. Notably,
another important feature of the SM is that Weak and mass eigenstates1 of quarks do
not coincide. This results into the need of defining a mixing matrix to describe the Weak
interaction2 of the mass eigenstates: it is called Cabibbo–Kobayashi–Maskawa matrix, or
1In quantum physics, the eigenstates correspond to states of the system where certain measurement will
always yield the same value, i.e., the observables (like energy, position, or momentum) have definite,
predictable values.

2In the Lagrangian formalism, the Hamiltonian describing the interaction is non-diagonal. The quark
mixing matrix, in this sense, represents a change of basis, and that is why the CKM matrix must be
unitary.

3



simply CKM matrix :

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 (1.1)

with Vpq ∈ C such that∑
i

VijV
∗
ik = δjk and

∑
j

VijV
∗
kj = δik (1.2)

The non-null phase between different complex elements of VCKM is responsible for all
phenomena in flavor-changing processes of the SM where the CP symmetry is violated3.
Studying the quark mixing matrix is therefore crucial to understand the processes behind
the abundance of matter over antimatter that we observe in the present-day Universe.
Moreover, the absence of theoretical uncertainties in the unitarity condition (1.2) provides
us a perfect laboratory to check the validity of the SM. In this sense, observing a violation
of the unitarity condition would unequivocally allow to conclude that the theory is
not complete, eventually hinting the path to follow for physics Beyond the Standard
Model (BSM), also known as New Physics (NP).

Recent decades have witnessed more and more studies, both theoretical and experi-
mental, about VCKM elements measure. Difficulties in producing a sufficient heavy quarks
sample have historically delayed this kind of studies. Nowadays, however, measuring VCKM

parameters is fruitfully carried on by B-Factories4 and hadron colliders (see next Section).
Precise measurements of CKM matrix have already been done for b-sector, for which it
is possible to rewrite the condition (1.2) in terms of unitarity triangles, that are non-
degenerate only if the CP symmetry is violated. The (bd) triangle is shown in Figure 1.2.
The sum of the unitarity triangle angles concurrently measured, α + β + γ = (179+7

−6)
◦, is

consistent with the SM expectation [10].
Both beauty and charmed mesons (qq̄ states made of b- or c-quark coupled with a

lighter one) offer decay channels to study CP-violation. In 2019, the LHCb Collaboration
at CERN has observed, for the first time, the matter-antimatter asymmetry in the D0

meson [11], confirming the extremely small contribution of D0 − D̄0 mixing expected
by the SM. More recently, the LHCb Collaboration has measured the time-dependent
CP-violation in the decays of B0 and B̄0 mesons [12] offering the most precise single
measurement of the CKM angle β to date, overcoming in precision the current world
average [10].

Heavy flavor physics allows indirect search for NP also by studying lepton universality,
a property of the SM ensuring that charged leptons (e, µ, and τ) interact in the same
way with other particles. As a result, the different lepton species should be produced
3The fundamental discrete symmetries are C, P and T. C is the charge conjugation symmetry and relates
two states where the second represents the antiparticle of the first. P is the parity symmetry and relates
two states changing the sign of the three space coordinates x → −x. Lastly, T is the time reversal
symmetry and relates two states that differ for the sign of the temporal coordinate. While the CPT
symmetry is conserved in all the physical phenomena, CP and T symmetries can be violated. The study
of processes where CP is violated is crucial to understand the abundance of matter over antimatter
observed in the present-day Universe.

4B-factories are particle collider experiments designed to produce and detect a large number of B mesons
so that their properties and behavior can be measured with small statistical uncertainty. Read more on
https://en.wikipedia.org/wiki/B-factory.
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Figure 1.2: Sketch of the unitarity triangle. Figure reproduced from Ref. [10].

with the same probability in particle decays, once mass differences are taken into account.
To enhance possible effects of NP, however, it is important to choose processes that are
highly suppressed in the SM, in order to make differences, otherwise invisible, significant.
Processes lead by Flavor-Changing Neutral Currents (FCNC), for example, are allowed in
the SM but tremendously suppressed by simple, symmetry-justified motivations. Studying
FCNC processes involving leptons, such as the two different semileptonic decays as
B → ℓ−ℓ+X, with ℓ = e, µ, τ and X representing a generic portion of the final state, is
a powerful technique to test the validity of lepton universality [13–16] or, in the case of
violation, to highlight effects beyond the SM.

Despite its clear success, the SM is still far from being a complete theory. While there
are signs of SM, none of them sharply points to a specific extension of the theory, nor tells
us by which kind of experiments NP will be discovered [17]. This forces us to increase the
statistical power of our experiments, reaching the precision necessary for indirect search of
NP. In this scenario, the largest High Energy Physics (HEP) experiments, like the Large
Hadron Collider discussed in the next Section, play a key role, facing the technological
challenges to move forward in understanding the Universe and its laws.

1.2 The LHCb experiment at CERN
Approved by the CERN Council in 1994 and fired up for the first time in 2008, the Large
Hadron Collider (LHC) [18] is the accelerator currently operating at CERN and the
largest ever built. It is located at the French-Swiss border and is hosted in the same
tunnel previously used by the Large Electron-Positron collider (LEP) operating from
1989 to 2000. The tunnel, with a 27 km long circumference and an average 100 m depth
underground, contains two beam pipes for as many particle beams accelerated in opposite
directions. Differently from LEP that delivered electron-positron collisions, protons or
ions (notably the lead ones) circulate into LHC at higher energy. In addition, contrary to
proton-antiproton machines (such as Tevatron operating at Fermilab until 2011) where
antiprotons are difficult to produce, accumulate and uniformly squeeze in direction and
energy, the employment of protons in both beams ensures a higher accelerator capability
to deliver collisions. Such a property is described by the instantaneous luminosity L,
defined as

L =
1

σ(
√
s)

dN

dt
(1.3)
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where dN/dt and σ(
√
s) are the rate and the cross-section5 of a given process, respectively,

at the
√
s energy scale. Whenever a collider relies on two highly-relativistic beams as at

LHC, the luminosity definition can be reduced to [19,20]:

L ≃ nb νrev
N1N2

4πσxσy
(1.4)

being nb the number of circulating bunches of particles, νrev the revolution frequency, N1,2

the number of particles per bunch, and σx,y the effective beam transversal dimensions.
Because of the variation of N1,2 due to beam-beam collisions which eject particles from
the beams, and because of the increase in σx,y due to beam warming, L decreases during
the acquisition period.

The design pp target instantaneous luminosity at LHC was 1034 cm−2s−1, but in
2017 a value twice this limit was reached. Since the total quantity of collected data is
typically indicated with the integrated luminosity

∫
L dt, disposing of a high instantaneous

luminosity is a key requirement to study rare phenomena like FCNC processes or to
search for physics BSM. A second crucial component is to collide particles with high
center-of-mass energy

√
s to have access to decays, namely increasing their cross-section,

that involve particles with high mass, such as the Higgs boson. During the first data
taking period (2009-2012), the so-called Run 1, LHC operated with a collision energy of
7 TeV and then 8 TeV. With the start of the Run 2 (2015-2018), the collision energy
reached 13 TeV, 1 TeV below the LHC design energy. In April 2022, LHC has resumed
the data taking with the start of Run 3 where is operating with a new maximum collision
energy of 13.6 TeV, to be increased to the design one at a later stage.

The LHC is served by other smaller and less powerful particle accelerators which
gradually accelerate protons up to 450 GeV before transferring them to the LHC storage
rings, where they are further accelerated for about 20 minutes before reaching the
operational energy. In Figure 1.3, a schematic representation of the accelerators complex
of CERN is shown. Once reached the LHC ring, protons or lead ions circulating in
opposite beams are made to collide at four crossing points, where the main experiments
are located:

• The CMS [21] and ATLAS [22] detectors are general purpose experiments, being
conceived to the study of the Higgs boson, to the analysis of the top quark and
to search for physics BSM. Since no claims of how NP will be exhibited is known,
the geometry of the two detectors covers the largest possible fraction of the solid
angle and is equipped with a versatile detector structure. The main differences
between the two experiments are the magnetic field that is employed to reconstruct
the particle trajectories, which is purely solenoidal for CMS and also toroidal for
ATLAS, and the installed detector technologies;

• The ALICE [23] experiment is dedicated to the study of the matter under extreme
temperature and pressure conditions, where Quark-Gluon plasma QGP with quarks
free from the confinement in hadrons is formed. The ALICE detector is optimized
to study heavy-ion collisions, where the QGP formation is expected;

5Given a particle approaching another particle, the cross-section for this process is the probability that
the two particles interact with each other.
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Figure 1.3: Scheme of the CERN accelerator complex with the largest experiments indicated.
Reproduced from https://home.cern/resources/faqs/facts-and-figures-about-lhc.

• The LHCb [24] detector, detailed in the rest of this chapter, was originally designed
for high-precision measurements of the b- and c-quark decays, while can now be
considered a general purpose experiment covering the forward region.

LHCb is the LHC experiment specialized in studies of b-physics. The experiment has a
wide physics program covering many important aspect of Heavy Flavor, Electroweak, and
QCD physics. The large production cross-section of bb̄ pairs at the energy reachable in
high energy proton collisions (σbb̄ ≃ 500 µm) makes the LHC the most copious source of
B mesons in the world. To exploit this large number of b-hadrons, the LHCb experiment
has been developed as a single-arm detector, in contrast with the other three large LHC
detectors (ATLAS, CMS, and ALICE) which are called 4π detectors since they cover a
solid angle of nearly 4π srad. The instrumented region covered by the LHCb detector is
θ ∈ [10, 300 (250)] mrad in the horizontal (vertical) plane with respect to the beam axis,
corresponding to the pseudorapidity6 values 2 < η < 5. Such a choice is motivated by
Figure 1.4, illustrating the production cross-section of bb̄ pairs as a function of the emission
angles of the two quarks with respect to the beam axis. According to this distribution,
the geometrical acceptance of LHCb for bb̄ pairs is about 24%, and is highlighted through

6The pseudorapidity η is defined as η = − ln
[
tan ( θ2 )

]
, where θ is the angle between the particle momentum

and the beam axis.
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squares only consider the bb̄ pairs in the LHCb
detector acceptance. Figure reproduced from
Ref. [26].

red squares in Figure 1.4. The key features of the LHCb detector include:

• Excellent vertex and proper time resolution.

• Precise particle identification, especially for kaon-pion separation.

• Precise invariant mass reconstruction. This feature is required to efficiently reject
background due to random combinations of tracks (combinatorial background) and
implies a good momentum resolution.

• Versatile trigger scheme. High efficiency is required in both leptonic and hadronic
B decay channels, in order to collect high statistics samples and study the variety
of decay modes with small branching ratios.

A scheme of the LHCb spectrometer layout, with the main detectors indicated, is
shown in Figure 1.5. Conceptually, these can be grouped into two subsystems:

1. Tracking system. System composes of a vertex locator and a set of tracking
stations upstream and downstream a large dipole magnet. The Tracking system
allows to measures the charged particle momenta, identify the collision vertices and
reconstruct the particle decays.

2. Particle identification (PID) system. System composes of two Ring Imaging
Cherenkov (RICH) detectors, a calorimeter system, and five muon stations. The
PID system combines the momentum information with the velocity or the energy to
separate the different charged particle species and identify some neutral particles,
such as neutral pions or photons.

In the following Sections, a brief description of both the systems is depicted together with
some figures of merit for their performance, while full information can be found in the
indicated references.
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Figure 1.5: A schematic representation of the LHCb detector in the non-bending vertical plane.
The definition of non-bending is referred to the magnetic field, which bends charged particles
trajectories in a plane orthogonal to the represented one. The origin of the Cartesian reference
system is centered on the beam-beam interaction point. The z axis coincides with the beam axis
and is directed towards downstream detectors, the y axis is vertical and defined to be parallel
to the weight-force direction pointing upward. The x axis is horizontal and form right-hand
reference system with the axes defined above. Figure reproduced from Ref. [24].

1.2.1 Tracking system
Aiming to achieve a precise determination of the decaying particles mass, to measure the
particle momenta, and to reconstruct the positions of the pp collisions and of the decay
vertices, the trajectories of charged particles are made bent by employing a magnetic field.
At the LHCb detector, a magnetic field with a 4 T ·m bending power is generated by a
dipole magnet [27], which allows to reconstruct the particle trajectories by combining the
information from:

• the Vertex Locator (VELO) detector [28, 29], a set of silicon tracking stations
surrounding the pp interaction region;

• the Trigger Tracker (TT) [30], tracking stations providing some trajectory reference
coordinates upstream the magnet;

• the Inner [31] and Outer Trackers [32, 33] (T1, T2 and T3), a set of three tracking
stations installed downstream the magnet.
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Particles that are reconstructed with the information from the whole LHCb Tracking system
have a resolution on the momentum ranging from 0.5 to 1% for 5 < p < 200 GeV/c [34].

The VELO detector

The Vertex Locator (VELO) is the first detector encountered by the particles produced
in the LHC collisions. It is devoted to the early reconstruction of track segments, and
to measure the position of primary and secondary vertices. One of the main goals of
the VELO is an excellent resolution in the separation between the two vertices, since
a well-defined and displaced decay vertex is a typical signature for the production of
a b- or c-hadrons. As schematically shown Figure 1.6 (top), the VELO consists of 23
silicon tracking stations arranged transversally with respect to the beam axis z, covering
a region of about one meter. Each station consists of two movable modules, a feature
required considering that the minimum sensor distance from the beam is 8.2 mm during
data taking, and lower than the radial aperture of the LHC beam during the injection
or technical development periods. Thus, a mechanical system is used to retract the two
module halves by 3 cm and protect them from the radiation, as illustrated in Figure 1.6
(bottom left). When the beam safety conditions are restored, a closing procedure brings
back the VELO stations to their nominal position.

The key requirements for the VELO detector performance are:

• a larger angular coverage than the nominal LHCb acceptance, which is achieved by
the chosen sensor positions;

• an efficient reconstruction of straight-line tracks, being the magnetic field effect
negligible in the VELO z region and a high rejection of fake tracks;

• an excellent resolution in the separation of the primary and secondary vertices.

Figure 1.6: The top figure shows the positions of the VELO stations along the beam axis z. The
bottom left figures compare the fully closed and open positions of the VELO, while on the right
a picture of one half of the detector is reported. Figures reproduced from Ref. [29].
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Figure 1.7: Figures of merit for the performance of the VELO detector. The left plot presents
the primary vertex resolution as a function of the number of particles originating in the vertex;
the right one the impact parameter resolution measured on 2012 (in blue), 2015 (in black) and
2016 (in red) data. Figures from Refs. [34] and [35], respectively.

Figure 1.7 reports two figures of merit illustrating the VELO performance, whose
detailed discussion can be found in Ref. [29]. The left plot shows the primary vertex
resolution as a function of the number of particles associated to the vertex for 2012
data reconstructed with only one vertex. The right plot reports the resolution on the x
coordinate of the impact parameter, namely the distance between the linearly extrapolated
track and the reconstructed vertex position. This is affected by the multiple scattering
and steeply increase with the inverse of the particle transverse momentum. Thanks to the
geometry of the VELO and its proximity to the beam, LHCb exhibits the best resolution
of the impact parameter coordinates among all the LHC experiments, ranging from 10 to
80 µm for transverse momenta in 0 < 1/pT < 3 (GeV/c)−1.

The dipole magnet and the tracking stations

The LHCb magnet, schematically represented in Figure 1.8 (left), has a bending power of
about 4 T ·m and is generated by two coils that reach a maximum peak intensity of 1.1 T
directed as the y axis. The current in the magnet, and hence the magnetic field polarity,
is periodically inverted. Indeed, the LHCb detector is designed to be symmetric with
respect to the x coordinate, an essential characteristic to mitigate the charge-dependent
detection asymmetries that could affect the measurements of CP-violation phenomena.
The magnetic field profile evolution with z is shown in Figure 1.8 (right) compared to the
positions of the tracking detectors.

The tracking stations located upstream the magnet are called Trigger Tracker (TT)
or Tracker Turicensis. These are located immediately upstream the dipole magnet to
set a reference for charged particle trajectories before the deflection. This improves the
precision of the measurement of particle momenta, reduces the fraction of fake tracks
(i.e., tracks resulting from a random combination of hits), and allows the reconstruction
of long-living particles that decay outside the VELO, such as Λ or K0

S [36]. The TT
detector consists of two stations distant ∼ 30 cm with two layers each. All layers are
equipped with 512 silicon strips and cover the full LHCb acceptance. The first and last
layer measure the x track coordinate, the other two are inclined by ±5◦, forming two axes
called u and v. By combining the information from all the sensors, ambiguities in the
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Figure 1.8: Schematic representation of the LHCb magnet (left) and evolution of the magnetic
field intensity as a function of the z coordinate (right). Figures reproduced from Refs. [24]
and [34], respectively.

track reconstruction are removed.
Downstream the magnet, three other tracking stations (T1, T2, and T3) each equipped

with four detection planes reconstruct the particle trajectory after its bending in the
magnetic field. Each T station employs two different tracking technique, depending on the
closeness to the beam pipe. In the inner region, with a harsher environment due to the
larger detector occupancy, the T stations are equipped with the Inner Tracker (IT) [31]
which relies on silicon detector with high radiation resistance, granularity, and spatial
resolution. The IT stations only cover a region of ∼ 2% of the LHCb acceptance (5×6 m2),
however they measure about 20% of the particle flux, due to the low-angle peak in particle
distributions. At the radial values, where the detector occupancy decreases to 10%, the
IT stations are replaced by the Outer Tracker (OT) [32, 33] ones, which employ straw
tubes, gas detectors developed to minimize the material budget before the calorimeters.
The achieved spatial hit resolution are 50 µm and 200 µm for the IT and OT detectors,
respectively.

Once a particle has traversed the whole Tracking system, the corresponding track is
reconstructed by combining the information coming from all the detectors in two stages [37].
Firstly, pattern recognition tasks are executed to bundle together the hits (i.e., energy
deposits) left by the particles in the detectors. Two strategies, called forward tracking
and track matching, are followed. In the former, a starting track seed is reconstructed
in the modules of the VELO detector. Since the magnetic field intensity is negligible at
the VELO z coordinates (see Figure 1.8), a straight-line model is assumed to determine
the track positions and slopes. Then, the reconstructed track segment is extrapolated
to the TT first modules and corresponding hits are looked for. This rough momentum
estimation is used to predict the position in the T stations by assuming that the magnetic
field effect produce a kink in the particle trajectory (see Figure 4.5). In the latter strategy,
track seeds are reconstructed in the VELO detector and in the T stations at the same
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Figure 1.9: LHCb relative resolution on the momentum (left) and on the mass for di-muon
resonances (right). Figures reproduced chefrom Ref. [34].

time, and are extrapolated forward and backward to the magnet plane. A compatibility
criterion to match the two track segments is then set based on their distance in x and y
at the magnet bending plane. Secondly, the bundled hits are fitted to determine the track
parameters, including the particle momenta. A Kalman filter model [38] is employed in
order to account for the multiple scattering effects. The resulting χ2/ndf of the track
fit is used to evaluate the track reconstruction quality. In addition, a dedicated neural
network classifier is used to measure the probability that a track results from the random
combination of hits coming from different particles [39]. The output of this classifier,
called ghostProb, is typically used within selection algorithms.

The relative momentum resolution as a function of the momentum is depicted in
Figure 1.9 (left). Particles that are reconstructed with the information from the whole
Tracking system have a resolution on the momentum ranging from ∼ 0.5% to ∼ 1% for
5 < p < 200 GeV/c [34]. For tracks originating in the same vertex, the invariant mass is
calculated as:

Mc2 =

√√√√(∑
i

Ei

)2

−

(∑
i

pic

)2

(1.5)

indexing i the particles and indicating Ei and pi their energy and momentum, respectively.
The resolution achieved by LHCb on the determination of this quantity is presented
in Figure 1.9 (right) for di-muon resonances, and ranges from ∼ 0.5% to ∼ 2% for
3 < M < 100 GeV/c2 [34].

1.2.2 Particle Identification system
With the available measurement of a charged particle momentum, its mass can be derived
once its velocity or energy is known. The discrimination of all the particle species in the
momentum range of interest (∼ 2-150GeV) demands for a redundancy of experimental
strategies. Detectors devoted to Particle Identification (PID) at the LHCb experiment
are:

• the Ring Imaging Cherenkov (RICH) system [40], exploiting the Cherenkov effect to
discriminate among charged particles, notably protons, pions and kaons;
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• the Calorimeter system [41], where the showers of particles produced by charged or
neutral particles interacting with the detector material are absorbed to measure the
incoming particle energy. The system is composed of an Electromagnetic calorime-
ter (ECAL), optimised for the identification of neutral pions, photons, electrons and
positrons, and a Hadronic calorimeter (HCAL). To give a fast measurement of the
detector occupancy employed for the hardware level of the trigger and to induce the
start of the shower before the calorimeters, two scintillator planes called Scintillating
Pad Detector (SPD) and PreShower (PS) are installed upstream ECAL.

• Muons are capable to escape HCAL and are tracked by five other dedicated sta-
tions [42] downstream the calorimeters. Matches between extrapolated tracks and
energy deposits in these detectors provide thus the identification for muons.

The RICH system

A charged particle traversing a dielectric medium of refractive index n with a velocity
β > 1/n emits Cherenkov photons with a characteristic angle θc depending on its mass m
and momentum p as [43]:

cosθc =
1

nβ
=

1

n

√
1 +

(mc2
pc

)2
(1.6)

In order to measure θc, allowing charged particles to be identified when combined
with the momentum information from the tracking system, two RICH detectors located
upstream and downstream the magnet and schematised in Figure 1.10 are used. The former,
that covers the full LHCb acceptance, is optimised for particles with p < 60GeV/c, which
could exit the detector acceptance because of the magnetic deflection. The latter efficiently
identifies particles with p ∈ [15, 110]GeV/c in the acceptance region [15, 120]mrad. The
photons emitted by the charged particles in the RICH radiators are conveyed with a system
of spherical and planar mirrors outside the LHCb acceptance and, independently on their
emission point, form a ring on a lattice of Hybrid photodetectors (HPDss). Depending
on the momentum and assuming a mass hypothesis, a test ring for each particle species
is compared against the positions of the activated photodetectors. A RICH likelihood
function is evaluated and, when combined with the information from the calorimeter and
muon systems, is associated to tracks to define a particle identification classifier to be
used in physics analyses. Usually, this is expressed as a differential log-likelihood (DLL)
between two h1 and h2 particle hypotheses:

DLLh1,h2 = log

(
h1 likelihood
h2 likelihood

)
(1.7)

The theoretical evolution of the Cherenkov angle for all particle species as a function
of the momentum and for all the radiators employed in the RICH system is presented in
left Figure 1.11. The right figure presents the θc angle reconstruction performance in the
RICH2 detector for tracks in 2010 and 2011 data reconstructed as isolated, i.e. whose
associated Cherenkov rings do not overlap with any other one. Despite the resolution effects,
an excellent proton-kaon separation up to p ≃ 50GeV/c is obtained, while the RICH2
refractive index limits the active identification of kaons and protons to p ≤ 9.3GeV/c
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Figure 1.10: Scheme of the RICH1 (left) and RICH2 (right) detectors. Figures from Ref. [24].

Momentum (GeV/c)

2

Figure 1.11: Theoretical evolution of the Cherenkov angle θc with the momentum for all particle
species in the radiators employed by the LHCb RICH detectors (left) and its measurement in
the RICH2 detector for 2010 and 2011 data only considering reconstructed tracks producing
isolated Cherenkow rings. Figures from Refs. [24] and [44], respectively.
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Figure 1.12: PID efficiency and misidentification rates for the discrimination of kaons from pions
(top left), protons from pions (top right) and proton from kaons (bottom) as a function of the
momentum. For all plots, the efficiency and misidentification rates are compared considering
two different applied thresholds on the respective DLLh1,h2 . Figures from Ref. [44].

and p ≤ 17.7GeV/c, respectively. The main figures of merit parameterizing the RICH
performance are:

• the PID efficiency, defined as the fraction of particles correctly identified;

• the misidentification rate, i.e. the number of particles assigned to the wrong mass
hypothesis;

Examples for both are presented in Figure 1.12 [44] with two applied thresholds on
the relevant DLLh1,h2 variable. Combining the information from the two RICH detectors,
protons are distinguished from kaons and pions in the full momentum range, while a
steep decrease in the kaon PID efficiency is found. Integrating over the full momentum
range, the kaon PID efficiency with the looser threshold is measured as ∼ 95% with a
pion misidentification rate of ∼ 10%, as ∼ 85% and ∼ 3% with the tighter one [44],
respectively.

The Calorimeter system

Within the calorimetric system, particles are identified through the characteristics of
the showers they produce when interacting with the detector material. It is composed

16



Figure 1.13: Scheme for the shower development in the LHCb calorimetric system for different
particle hypotheses. Figure from Ref. [45].

of two scintillator planes, the SPD and the PS separated by a lead converter, and two
calorimeters, ECAL and HCAL. The system is intended to:

• distinguish among the hadron, e±, π0, γ hypotheses relying on the different induced
showers, as schematically represented in Figure 1.13.;

• measure the particles transverse energy, used in the hardware data trigger;

• efficiently reconstruct π0 and γ particles.

The PS and SPD detectors [45] are two scintillating planes. The former is used to
distinguish photons from charged-particles-induced showers and facilitates the match with
the information from the tracking detector; the latter discriminates electromagnetic and
hadronic showers.

The ECAL detector is a sampling calorimeter of shashlik type. To measure the
longitudinal transverse shower development and to optimize the separation between
neighbour showers, each calorimeter layer is segmented in the transverse direction. The
cell dimensions increase with the distance from the beam because of the lower occupancy
in the detector and are 4.04 × 4.04 cm2, 6.06 × 6.06 cm2 and 12.12 × 12.12 cm2 in
the inner, middle and outer region, respectively. The achieved resolution on the energy
measurement is [46]

σE
E

=
(9.6± 1.4)%√

E [GeV]
⊕ (3.7± 0.1)%⊕ (395± 30) MeV

E [GeV]
(1.8)

indicating ⊕ the sum in quadrature a⊕ b =
√
a2 + b2.

Also HCAL is a sampling calorimeter but, differently than ECAL, employs alternating
iron and scintillating tiles oriented in parallel to the beam axis to improve the angular reso-
lution. A transverse segmentation is also available, with two cell sizes of 13.13 × 13.13 cm2

and 26.26 × 26.26 cm2 in the inner and outer regions, respectively. The total HCAL
thickness is not enough for the full confinement of the induced hadronic shower, and the
consequent achieved energy resolution is:

σE
E

=
69%√
E [GeV]

⊕ 9%. (1.9)
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Figure 1.14: Scheme for the muon chambers location in the LHCb detector. Figure from Ref. [24].

The MUON system

The LHCb detector is completed by five stations for the muon identification and recon-
struction [42], named from M1 to M5. The first one is located upstream the calorimeters
and equipped with Electron Multiplier (GEM) detectors in the central region and with
Multi-Wire Proportional Chambers (MWPC) elsewhere. It is used to improve the early
muon transverse momentum pT measurement, achieving ∼ 20% resolution with the only
muon stations, that is used in the hardware trigger. The other stations are installed
downstream HCAL, equipped with MWPC detectors, and interleaved with 80 cm-thick
iron absorbers. This ensures that secondary particles produced in the muon interaction
with the chambers do not propagate the following stations, mimicking the behaviour of a
muon. The angular acceptance of the chambers is [20,306] mrad ([16,258] mrad) in the
horizontal (vertical) plane, while the minimum momentum required to muons to cross all
the chambers is p = 6 GeV/c.

The computation of the MUON likelihoods follows from performing a loose binary
selection of muon candidates, called isMuon and implemented via FPGA. The latter
provides high efficiency and is based on the penetration of muons through the calorimeters
and iron filters. The response of isMuon depends on the number of stations where a hit is
found within a field of interest (FOI) defined around the track extrapolation. Clearly, the
number of stations required to have a muon signal is a function of track momentum p, as
shown in Table 1.2. This strategy allows to reduce the misidentification probability of
hadrons to the percent level [47].

For those particles that have passed the isMuon criterion, we compute D2 defined as
the average squared distance significance of the hits in the muon chambers with respect
to the linear extrapolation of the tracks from the tracking system. The average distance
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Momentum range Muon stations
3 GeV/c < p < 6 GeV/c M2 and M3

6 GeV/c < p < 10 GeV/c M2 and M3 and (M4 or M5)

p > 10 GeV/c M2 and M3 and M4 and M5

Table 1.2: MUON stations required to trigger the isMuon binary decision as a function of
momentum range.

significance is defined as follows:

D2 =
1

N

∑
i=M2...M5

(x(i)closest − x
(i)
track

pad(i)
x

)2

+

(
y
(i)
closest − y

(i)
track

pad(i)
y

)2
 (1.10)

where the index i runs over the the total number of stations (denoted by N) containing hits
within the FOI, (x, y)closest are the coordinates of the closest hit to the extrapolated track
point (x, y)track of each station and padx,y correspond to one half of the pad sizes along
directions perpendicular to the beam. The distribution of D2 is reported in Figure 1.15a,
for different particle hypotheses: as shown in red, true muons tend to have a much
narrower distribution (close to zero) than the other particles, incorrectly selected by
the isMuon requirement. The likelihood for the muon hypothesis MuonMuLL is defined
as the cumulative of the red distribution in Figure 1.15a. Instead, the likelihood for
the non-muon hypothesis MuonBgLL is calibrated with the D2 distribution for protons
(represented in blue). Indeed, the other charged hadrons (pions and kaons) selected by
isMuon are characterized by a D2 distribution with a narrowed component around zero
similar to true muons, superposed to another component more similar to distribution for
protons. Typically, the logarithm of the ratio between MuonMuLL and MuonBgLL is used
as discriminating variable and is called muDLL. Its distribution, for different particle
hypotheses, is reported in Figure 1.15b. The resulting muon identification efficiency and
hadron misidentification probabilities depend on the momentum. With the combined
likelihood approach, average values ∼93% with a hadron misidentification rate below 0.6%
are achieved [47].

Global particle identification

The PID information obtained separately from RICH, Calorimeter, and MUON system can
be combined to improve a single set of more powerful variables: two different approaches
are used. The first method is still based on likelihood computation, and simply corresponds
to the linear combination of the information produced by each sub-system. This results
in the combined differential log-likelihood (CombDLL), usually defined with respect to
the pion hypothesis, and denoted with ∆LLcomb(X − π), where X represents either the
electron, muon, kaon, or proton mass hypothesis [34].

The second approach relies on machine learning algorithms to define a multivariate
classifier which combines the likelihoods ratios defined above with the information from
the Tracking system. The classifier with the widest application in this category, named
ANNPID, was implemented as feed-forward neural network (FNN) with a single hidden
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(a) (b)

Figure 1.15: In (a) it is shown the average square distance significance distributions for muons,
protons, pions and kaons as obtained from data, while in (b) it is represented their corresponding
muDLL distributions. Figure reproduced from Ref. [47].

Figure 1.16: Scheme for the LHCb data processing sequence. Figure from Ref. [54].

layer activated through a sigmoid function, by relying on the TMVA toolkit [48]. Trained
to perform particle identification, it is also called ProbNN and combined the information
provided the variables listed in Table 1.3.

1.2.3 Data trigger and processing
Raw detector signals need to be processed [50–52] to reconstruct high-level objects like
tracks, vertices and particles and to select events with interesting physics signatures. A
graphical summary of the LHCb data processing sequence running within the Gaudi
framework [53], with the names of the software applications dedicated to each step, is
presented in Figure 1.16.

Early detector information is exploited online to discard the events that do not
contain signatures for interesting physics signal. The trigger, as illustrated in Figure 1.17,
is composed of three stages for both LHC Run 1 and Run 2. The first stage, called
Level 0 (L0), is implemented on dedicated custom FPGA cards and runs synchronously
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Tracking
Total momentum
Transverse momentum
Quality of the track fit
Number of clusters associated to the track
Neural network response trained to reject ghost tracks [39]
Quality of the fit matching track segments upstream and downstream

of the magnet

RICH detectors
Geometrical acceptance of the three radiators, depending on the track direction
Kinematical acceptance due to Cherenkov threshold for muons and kaons
Likelihood of the electron, muon, kaon, and proton hypotheses relative to the pion
Likelihood ratio of the below-threshold and pion hypotheses

Electromagnetic calorimeter
Likelihood ratio of the electron and hadron hypotheses
Likelihood ratio of the muon and hadron hypotheses
Matching of the track with the clusters in the preshower detector
Likelihood ratio of the electron and pion hypotheses, after recovery

of the Bremsstrahlung photons

Hadronic calorimeter
Likelihood ratio of the electron and hadron hypotheses
Likelihood ratio of the muon and hadron hypotheses

Muon system
Geometrical acceptance
Loose binary requirement already available in the hardware trigger
Likelihood of the muon hypothesis
Likelihood of the non-muon hypothesis
Number of clusters associated to at least another tracks

Table 1.3: Input variables of the ProbNN classifier for the various subsystems of the LHCb
detector. Table reproduced from Ref. [49].

with the LHC bunch-crossing rate with a fixed 4 µs latency. Based on the information
from the Calorimeter and MUON systems, the L0 trigger reduces the data from 1 Tb/s
originating from the 30-million per-second visible collisions to ∼ 1MHz. For the events
accepted by at least one of the L0 trigger selections, the information from all detectors
is merged by dedicated acquisition boards and transferred to the software trigger. As
presented in Figure 1.17, in both LHC Run 1 and Run 2, this comprises two stages and
is controlled by the Moore application with the output data rate for the two periods
indicated. In the former, HLT1, a partial event reconstruction is performed, including
the finding of tracks and the muon PID algorithm. Based on these objects, inclusive
trigger lines, i.e. selection algorithms dedicated to generic one or two-body signatures
rather than a specific physics channels, are defined. As an example, to distinguish b- and
c- from light-quark hadrons, which is crucial in the core physics program of the LHCb
experiment, the main signatures are the displacement of the decay vertex and the large
transverse momentum of the decay products. The HLT2 trigger stage completes the event
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Figure 1.17: Schemes for the LHCb data trigger software during the LHC Run 1 (left) and
Run 2 (right) periods of data-taking. Figure from Ref. [55].

reconstruction with a more accurate fit of the reconstructed tracks and the decoding and
processing of the Calorimeter and RICH systems. With the complete description of the
reconstructed events, both inclusive and exclusive trigger lines are acquired.

Raw data of the events that are not discarded by the trigger are distributed through
the Worldwide LHC Computing Grid (WLCG) [56], and reconstructed with an application
called Brunel making use of the calibration and alignment constants that are progres-
sively updated as a result of the continuous improvement in the understanding of the
detector. The produced output is called Full stream and contains all the reconstructed
objects describing the collision. This could be in principle used for physics analyses
but, considering the needs of the whole LHCb Collaboration, is prohibitive in terms of
computing resources. Instead, a further data reduction step, called stripping, is typically
applied. This corresponds to a set of algorithms implemented offline to only select and
save on disk the data that are relevant for physics analyses. The output of the stripping
is finally available to analysts and is processed with the DaVinci application to produce
an output data format that can be easily processed and analyzed. With the start of the
Run 2, a more efficient paradigm for data-taking only reconstructing signal candidates
that would be selected by the stripping, called Turbo [57], was conceived and developed,
providing offline-quality reconstructed objects in real time.
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1.3 Detailed and fast simulations

1.3.1 The simulation software: Gauss, Gaussino, and Boole

To obtain physics information from the acquired data disentangling detector-induced
effects from genuine physics phenomena is of primary importance. This is one of the main
tasks for which a highly reliable simulation is crucial for a High Energy Physics (HEP)
experiment.

Historically, computer-based simulations of the HEP experiments started to be de-
veloped well in advanced with respect to the construction of the detectors. The main
objective, at the time, was to develop a synthetic, virtual version of the detector to define
the specifications on the detector construction and on the data acquisition pipeline to
ensure the physics goal of the experiment.

To serve to this purpose, the simulation must be designed from first-principle models
of the collision between accelerated protons, of the subsequent hadronization, of the
decays of the unstable and quasi-stable particles, and finally of the interaction of the
radiation with matter. Simulation frameworks were developed by the LHC collaborations
to implement these steps for the particular geometry and technological choices of the
respective communities. At the same time, the physics models describing the hadronic
collisions and the radiation-matter interaction are common to the four experiments, and
are relevant to an even wider community spanning from researchers studying cosmic rays
to nuclear medicine applications. Hence, the physics models are grouped in common
software packages on which the Simulation frameworks of the four experiments rely.

Some of the most important dependencies in the category of physics models are:

• Pythia8 [25], describing the collision of the protons accelerated by the LHC and
the subsequent hadronization of quarks and gluons in baryons and mesons;

• EvtGen [58], defining the decay models for heavy hadron decays also implementing
data-driven models capable of reproducing accurately complex decay patterns, in
particular for semileptonic decays, not fully reproduced by purely theoretical models;

• Geant4 [59, 60], implementing the models describing radiation-matter interactions
enabling to predict the ionization energy deposited by traversing particles in the
detector material.

On top of these libraries, the experiments develop their own simulation framework. For
example, within the LHCb Collaboration, these packages are glued together by the
Gauss [61] application which is consistently integrated within the LHCb data flow, as
depicted in Figure 1.16.

The Gauss application is organized to combine in a single application four different
aspects related to the simulation:

• the Generation, that relies on Physics Generators to predict the outcome of a
proton-proton or ion-ion collision;

• the Geometry, that enables describing the different geometrical configuration of the
material constituting the detector and providing a desired or undesired target to
the crossing particles;
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• the Simulation, that is specific of the representation of the interaction of radiation
with matter;

• the Persistency, that enables to store the data with a serialization protocol common
to the other LHCb applications and easy to read and process in the subsequent
steps of the data processing.

In recent year, several efforts started to share between experiments also the imple-
mentation of these frameworks, decoupling the implementation of experiment-specific
geometry from an experiment-independent detector description language, and the serializa-
tion format from the Event Model representation used internally by the framework. The
most popular among these experiment-agnostic frameworks is Gaussino [62] that, started
as a refactoring of the Gauss project, is now an independent project serving multiple
experimental communities [63] and becoming an external dependency for Gauss [64].

Independently on whether relying on Gaussino or not, the Gauss application pro-
duces generated data using the same serialization format as the other LHCb applications,
but its output is not ready to the reconstruction software. Indeed, after the computation
of the energy deposits performed by Gauss, an additional layer of simulation is needed to
implement the electronic response and parameterizing the electronic noise on the various
detector channels. This last step in the simulation data flow is named Digitization and is
demanded to a different application, named Boole.

Once digitized, the simulated data provides identical format to the raw data obtained
by a run of the LHCb experiment so that the same reconstruction software can be
used to process the two kind of datasets. In addition to the digitized information, the
simulated datasets include what in jargon is named the Monte Carlo truth, representing
the generator-level information before any effect related to detection and digitization is
applied. The Monte Carlo truth is propagated through all the subsequent steps of the data
analysis to retain the ability of reconstructing the generated events, greatly improving the
ability of the analyst to identify effects in the reconstructed quantities induced by the
detector or by the reconstruction algorithms.

1.3.2 Sustainability of the detailed simulation
The LHCb Simulation framework, designed before the construction and providing impres-
sively accurate prediction of the detector response event before the first collisions, has
been object of an intense work of optimization to further improve the reliability of the
simulated samples used to interpret the acquired data. In addition, the maintainer of
the libraries implementing the physics models and the theory community at large, have
translated the physics results obtained by the LHC experiments into improvements to the
effective models used in the generators and in the Geant4, providing a further, extremely
precious contribution to the quality and reliability of collision simulation.

Unfortunately, the simulation based on Pythia8 and Geant4 is extremely expensive
in terms of computing resources. The simulation of the high-energy proton collisions
requires to reproduce the thousands of intermediate particles resulting from the interactions
and that give origin to large graphs, where nodes represent elementary interactions and
edges represent the intermediate particles. In addition, these generators implement the
physics models with Monte Carlo techniques, by drawing random numbers from complex
multi-variable joint probability distributions, often defined by the squared modulus of
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a complex wave-function. Conditioning those distributions is of prohibitive complexity,
so that, to generate a particles through a specific physics process, it is customary to
just rerun the generator multiple times until the physics process, by chance, is generated
and continue the simulation for that specific event. While simple and robust in terms of
induced biases, this approach is not particularly efficient from a computing point of view,
making the generation of specific physics processes relatively slow.

Nonetheless, little effort is being spent by the community on alternative techniques
to condition the generators because the computing resources needed by even the most
ineffective generator is almost negligible in front of the computational cost of the radiation-
matter interaction. When high energy particles interact with matter they have a large
chance of transferring a large amount of energy to an atomic electron. If the energy is
sufficient, the electron may be expelled by the atomic orbitals (ionization) and becoming
an ionizing radiation itself. This cascade results in an exponential growth of the ionizing
particles that a simulation framework must track to compute the energy of the original
particle that gets finally deposited in a given region of the detector. Similar exponentially
growing particle shower are caused by hadronic interactions of the high energy particles
with the atomic nuclei. In this case, the physics models to describe the interaction are
even more complex and the computation of hadronic showers may be as computational
expensive as that of the aforementioned electromagnetic showers. In the LHCb experiment,
also the RICH detectors require large computational power to be simulated, as each charged
particle traversing them may emit Cherenkov photons, but also deposit ionization energy
in the Cherenkov radiator, generating high-energy secondary electrons that will start
emitting Cherenkov light as well. Tracking each photon through the complicated geometry
of curved mirror projecting the Cherenkov radiation on the light sensors of the RICH
system is responsible for a relevant fraction of the time spent to simulate collision events.

After the successes of the first two Run of the LHC experiment, notably achieving the
discovery of the Higgs boson in 2012 [8, 9], the LHC is undergoing a major upgrade to
increase the rate of proton-proton collisions by a factor ten with respect to the design
value of the LHC. The upgraded accelerator will be name High Luminosity Large Hadron
Collider (HL-LHC). As a consequence, the LHC collaborations will have the ability of
accessing rarer decays and perform precision measurements on a larger number of physics
phenomena that have been just discovered using the already-collected data. To perform
those new analysis and to enter the precision regime for such new decay modes, a larger
amount of simulated samples will be required. Statistical models were built by the
collaborations trying to observe correlation patterns between the integrated luminosity of
data samples collected in a given period and the number of simulated samples requested
by the data analysis experts to perform the analysis. The statistical model was then used
to build forecast of the simulation requests expected for the experiments at the HL-LHC.
The resulting predictions are reported in Figure 1.18.

The unit for CPU request used in the Figure and, in general, by the HEP community
is the HEP-SPEC 2006, or HS06, which corresponds to a standard benchmark of CPU
performance measured on a set of HEP-specific applications in 2006. By definition, the
HS06 measures an amount of work and is therefore independent of the CPU architecture
provided by different sites of the WLCG. As a consequence, the exponential decrease in
the cost of computing is reflected in a decrease of the cost of each HS06. To convert the
HS06 in a quantity easier to interpret for the reader, I report that the National Institute
for Nuclear Physics, estimated a cost of 10 €per operated HS06 in 2024. The cost includes
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Figure 1.18: Predicted requests of computing power from the two major experiments at the
LHC for the upcoming years. The predictions for ATLAS and CMS are reported on the left and
on the right, respectively. The sudden increase in the requests during the years 2027–2030 is
aligned with the planned start of the High-Luminosity LHC. The CPU requests are dominated
by Simulation. The Figures were reproduced from Ref. [65], and Ref. [66], respectively.

the acquisition of the CPU, of the servers, the maintenance, and personnel costs. Similar
estimates apply for other countries. Applying the conversion factor to the vertical axes of
Figure 1.18, we conclude that the cost of CPU resources for the next Run of the LHC
is of the order of several million euros. The budget considered as sustainable by the
government agencies funding the LHC program are marked as black lines for an optimistic
and a less-optimistic scenario, highlighting that even in the most richest future, the cost
of CPU processing, dominated by the simulation, must decrease by at least a factor two
to be affordable.

The situation for the LHCb requests is being updated very often at the time of writing
because the LHCb Collaboration anticipated a major upgrade of the detector to LHC
Run 3. Because of an incident with primary vacuum of the vertex locator happened in
2023, the data taking has been postponed to 2024 and new data are therefore expected to
start flowing soon. In any case, a similar sudden growth to that observed in the ATLAS
and CMS plots is expected on an earlier schedule for LHCb, though it is not clear whether
it will happen in 2024 or in 2025, or in the most pessimistic scenario if it will overlap with
the restart of the LHC in 2029.

1.3.3 A bird’s eye view on the fast simulation options
Multiple efforts are ongoing within the HEP community aiming at a reduction in the cost
of the detector simulation. To distinguish the various options to reduce the cost of the
simulation from the simulation approach discussed so far, we will refer to the latter as
Detailed Simulation . In the past the wording Full Simulation was preferred and can
still be found in some references, but they indicate the exact same approach.

While details may introduce very important practical differences, all techniques to
reduce the cost of the simulation can be ascribed to two main categories:

• Methods replacing part of the Geant4 computations with results obtained otherwise,
either reusing previously simulated events, or parameterizing the output expected by
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Geant4. These methods aim at producing a simulation output identical to those
obtained with the Detailed Simulation, so that they do not perturbate the subsequent
steps in the data flow, and all the analysis-level variables defined for the Detailed
Simulation will be made available by the reconstruction algorithms obtained with
these methods. However, depending on the method, the probability distributions of
the reconstructed analysis-level features may be drastically different from those of
the Detailed Simulation. For example, belongs to this category the trivial method
of switching off the interactions in part of the detector. The analysis-level quantities
will be computed for the missing detectors, but they will correspond to empty events.
Methods in this category are generically labeled as Fast Simulations .

• Methods replacing the whole simulation step, and sometimes the subsequent digiti-
zation and reconstruction steps with parameterizations. Historically these methods
played a major role in leading order studies to determine the geometry of com-
pletely new detectors, or even to quickly rule out experimental ideas as technically
impossible before any further investment. Traditionally, parameterizations were
provided by analytical formulae or simple histograms while today they are being
replaced more and more by non-parametric techniques such as neural networks or
boosted-decision trees. Since calling Parametric Simulation a simulation based on
non-parametric models sounds clumsy or worse, multiple branding attempts were
made calling methods in this category Rapid or Ultra-Fast Simulations. In this
Thesis I will adopt the wording Flash Simulations introduced for the first time
by Italian members of the CMS Collaboration [67].

The different methods belonging to the same or to the two categories are not necessarily
competing with each other. As mentioned in the introduction, today the samples obtained
by means of the Detailed Simulation are used for a wide pletora of different tasks, spanning
from the tuning of the reconstruction algorithms to feasibility studies before starting a new
challenging data analysis. The ambition of identifying a fast or flash simulation option
adequate for all the needs is utopian, while providing a palette of simulation options the
analyst can choose from might lead to an effective reduction of computing costs. For
example, an analyst may request a small amount of events from Detailed Simulation to
validate the selection efficiency and the projections of some physics quantities, and much
larger amount of events from Flash Simulation to train an efficient multivariate classifier
to reject backgrounds without fears for over-training while trying to let the classifier to
exploit non-trivial correlations.

Other potential applications for Flash Simulation include the construction of statistical
models for the resolution of reconstructed quantities for decay modes as a function of the
kinematics of the particles involved in the reconstruction, or the bulk simulation of a large
cocktail of different decays modes to check for potential peaking contributions in a search.

In the next Sections, I will review some of the most important or promising development
to cope with the projected limitations to the computing budget, more emphasis will be
given to the options explored or adopted within the LHCb Collaboration.

1.3.4 The ReDecay approach
Studying decays of heavy particles to exclusive final states where individual children are
reconstructed for each particle, all long lived particles in the event can be split into two
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distinct groups: the particles that participate in the signal process, and all remaining ones
hereinafter referred as the rest of the event (ROE). These cases are typically characterized
by signal process composed by a few particles, while most particles are part of the ROE.
Therefore, the majority of the computing time per event is spent on simulating particles
that are never explicitly looked at: the opposite scenario to what we want. Ideally, most
of the computing resources should be spent to simulate the signal decays themselves.
Nevertheless, we cannot simply renounce the ROE simulation because it would result in a
much lower occupancy of the detector, and consequently in a significant mis-modeling of the
detector response, with underestimated resolution effects and overestimated reconstruction
efficiencies [68].

ReDecay approach mitigates these problems simulating only the signal process and
re-using the ROE multiple times instead of generating a new one for every event. Therefore,
given a fixed ROE, the signal decays are reproduced multiple times starting from identical
values for the origin-vertex position and kinematics. While the starting point of the
signal particle is fixed in order to preserve the correlations with the ROE, the decay
time and thus decay vertex as well as the final state particle kinematics are different [68].
Algorithm 1 describes schematically the simulation process of ReDecay.

Algorithm 1 ReDecay simulation process. Typically NReDecay is of the order of 100.
Require: Exclusive heavy flavour decay
Require: Number of iterations NReDecay per fixed ROE
1: while The size of the simulation sample not reached do
2: Generate full MC event including the signal decay
3: Save origin-vertex position and momentum of the signal particle (before the gener-

ated particles are passed through the detector simulation)
4: Remove signal particle and its decay products from the event (before the generated

particles are passed through the detector simulation)
5: Simulate the remaining ROE as usual (passing through the detector simulation)
6: Keep the entire output (information on the true particles and the energy deposits

in the detector)
7: for NReDecay iterations do
8: Generate and simulate signal decay using the saved information on origin-vertex

position and momentum
9: Merge the persisted ROE and the signal decay

10: Write out the combined sample to disk as a full event
11: end for
12: end while
13: return Simulation sample

It is important to note that, given a new signal decay, latter and its ROE are digitized
simultaneously (merge-step in line 9). This is done to ensure that the energy deposits
produced by the signal and ROE particles can interfere, as occurs in the standard method
to simulate events. On the contrary, different complete events, for example obtained
combining the same ROE with different signal decays, are digitized independently [68].

Summarizing, in ReDecay approach hadrons are decayed independently and the quasi-
stable tracks are propagated through the detector individually. The approximated process
allows to reproduce efficiencies and resolutions identical to those found in full simulation.
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In addiction, with increasing NReDecay, more and more computing time is spent to simulate
the detector response for the signal particle and its decay products, contrary to the full
simulation scenario. However, achieving this goal is paid with a correlation between
events stemming from the same origin and, consequently, having identical kinematics. The
correlation results in an increasing of the statistical uncertainties related to the simulation
sample. Taking into account this contribution is not easy, but can be done comparing the
ReDecay-based simulation sample with a pseudo-sample obtained from it7 (for additional
detail refer to Ref. [68]).

ReDecay approach has proved to be appropriate for some analysis, especially in c-
sector. It is currently used in production with a CPU gain of a factor between 10 and 20
depending on the multiplicity of the decay of interest [69].

1.3.5 The Delphes framework
Delphes is a fast-simulation framework whose goal is to allow the simulation of a mul-
tipurpose detector (such as ATLAS and CMS detectors) for phenomenological studies.
The simulation includes a track propagation system embedded in a magnetic field, elec-
tromagnetic and hadron calorimeters, and a muon identification system. The Delphes
simulator allows to reconstruct tracks and calorimeter deposits parameterizing the detec-
tors response. It can also perform particle identification, and is able to produce high-level
objects combining information from different detectors. Then, the framework outputs
observables such as isolated leptons, missing transverse energy and collection of jets which
can be used for dedicated analyses [70].

Detector Response Simulation

The sub-detectors included in Delphes (tracking, calorimeter and muon systems) are
organized concentrically with a cylindrical symmetry around the beam axis. The user
may specify the detector active volume, the calorimeter segmentation and the strength
of the uniform magnetic field. The first step carried by Delphes is the propagation
of long-lived particles extracted from input files within the magnet-sensitive zone (or
tracking volume). Charged particles have a user-defined probability to be reconstructed
as tracks in the central tracking volume. Then, a smearing on the norm of the transverse
momentum vector is applied. Neutral particles instead follows a straight trajectory from
the production point to a calorimeter cell [70].

After their propagation in the magnetic field, long-lived particles reach the calorimeters.
The ECAL measures the energy of electrons and photons, while the HCAL measures
the energy of long-lived charged and neutral hadrons. The geometrical characteristics of
both calorimeters can be set in the configuration file. Long-lived particles reaching the
calorimeters deposit a fixed fraction of their energy in the corresponding ECAL (fECAL)
and HCAL (fHCAL) cells8, which are then grouped in a calorimeter tower. Two independent
resolution effects (σECAL, σHCAL) are then applied to the total energy deposited on a
tower, whose position in the (η, ϕ) plane is smeared in turn [70].
7A common approach is the so-called block bootstrapping where the sample is divided into blocks. In order
to capture the correlations arising in the ReDecay approach, a block is naturally given by all events
using the same ROE.

8During the configuration phase, it is possible to customize the fraction values (fECAL, fHCAL) for each
long-lived particle species.
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Figure 1.19: Scheme of the Delphes data flow through the tracking system modules.

Object Reconstruction

The Delphes framework includes a roughly emulation of the particle-flow reconstruction
philosophy used in ALEPH and CMS to reconstruct and identify all particles individually.
The simplified particle-flow algorithm produce two collections of 4-vectors exploiting the
information from tracking and calorimeter systems: tracks associated with calorimeter
towers form the particle-flow tracks, while towers with no tracks are converted into
particle-flow towers. These objects are then used to produce high-level observables.
Indeed, Delphes is able to perform a realistic simulation, identifying isolated leptons and
photons, reconstructing and tagging hadronic jets, and quantifying the missing energy [70].

Software implementation

The Delphes software is a modular framework written in C++ and based on the Root
analysis framework [71]. The modular system allows the user to configure and schedule
modules, add modules, change data flow and alter output information via a configuration
file (named card file and written in Tcl). Event files coming from external MC generators
can be passed to Delphes by a reader, which converts stable particles into a collection of
universal objects. This collection is then processed by a series of modules that transforms
the passing data, performing efficiency correction or adding smearing effects. Figure 1.3.5
shows different species of particles passing through the tracking system modules. Finally,
reconstructed and high-level objects are stored in a Root tree format in order to analyze
the simulated events [70].

1.3.6 The RapidSim application
When a specific decay channel is selected to measure physics parameters, understanding
the kinematic properties of the background is as crucial as studying the signal ones. Indeed,
final states similar to the signal channel or misidentified particles from detector inaccuracy
can degrade the signal contribution in the invariant mass distribution: modeling the
background shape becomes therefore fundamental. To this end, one method consists in
generating large samples of the decays and pass them through the full detector simulation
and reconstruction software chain in order to study potential background sources. The
disadvantage of this approach is the typically long time required to generate, reconstruct
and select these background samples and the mass storage requirements to retain these
samples [72].

RapidSim is a lightweight application for the fast simulation of phase space decays of
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b- and c-hadrons, providing large samples to study signal and background properties. The
speed of generation allows analysts to quickly perform preliminary studies. RapidSim
supports the generation of a single decay chain with any number of sub-decays, namely it
follows a particle-gun-like approach. This offers a significant time saving, but requires
input histograms from which extracts the kinematic distribution of the generated particles.
By default, RapidSim generates all decays flat across the available phase space, however,
inputting the specific histograms, it is possible to generate decays according to any
distributions (for more details, see Ref. [72]).
RapidSim utilises the Root software package [71] and, specifically, the TGenPhaseSpace
class to perform the fast generation. In addition to generating decays in 4π, it is possible
for the user to specify9 that the decays of interest fall within the geometrical acceptance
of the LHCb experiment. Furthermore, RapidSim can accommodate basic user-defined
kinematic efficiency effects during generation and misidentification of final-state particles.
All of these features are implemented in a generic way to enable them to be configured for
any decay chain [72].

9The simple design allows users to extend RapidSim to include alternative detector geometries.
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2
Technologies for fast and scalable computing

The landscape of modern computing has been largely shaped by Moore’s Law,
a principle positing that the number of transistors on a microchip doubles
approximately every two years, leading to an exponential increase in computing
power. However, as we venture deeper into the 21st century, we are increasingly
confronted with the physical limitations that prevent further miniaturization of
transistors due to intrinsic and unavoidable issues, such as heat dissipation
and quantum effects. As a result, the relentless pace of Moore’s Law is being
challenged, prompting a paradigm shift in computing architectures and algo-
rithms. This chapter aims to explore these challenges and potential solutions in
the context of modern computing (Section 2.1), exploring in particular parallel
(Section 2.2) and Cloud computing (Section 2.3). Particular emphasis will be
given to the problem of training complex Machine Learning models (Sections 2.4
and 2.5) in a distributed, multi-cloud environment (Section 2.6).

2.1 Overview on modern computing
Experimental High Energy Physics (HEP) has a long and glorious tradition of shaping
the landscape of computing resources [73–75]. Indeed, as soon as the detector became
readable with electronic devices, they quickly became digital data, stored and processed
with computing technologies. The technological evolution of computing during the last
three decades, however, has changed significantly the analysis techniques and the practices
for storing, handling, and processing data. Sometimes, walking through the theorists’ floor
of the Physics Department, one may hear discussions on re-analyses of the whole dataset
collected by the Large Electron Positron (LEP) experiments, in operation at CERN
between 1989 and 2000 and famous for collecting the world’s most precise and abundant
datasets on the vector bosons W± and Z0. The whole dataset of LEP, motivating at the
time the construction of a world-leading computing infrastructure, can today be stored on
a pen drive and processed on a common laptop.

Indeed, the computing power made available to researchers has increased exponentially
during the last decades, roughly following Moore’s law predicting that the computing
power per chip doubles approximately every two years. In recent years, however, such
exponential growth has been challenged by the physical size of the silicon lattice, with
lithographic technologies capable of engraving transistors of few nanometers, and with
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cooling challenges due to the increasing amount of power dissipated by the devices per
unit of surface [76].

These challenges require huge scientific and technological efforts to be tackled and, to
mitigate the slowdown in the exponential growth of available computing power, engineers
have started exploring alternatives, notably parallelizing the computing workloads on
multiple chips. While guaranteeing a stable exponential decrease in the cost per floating-
point operation (FLOP), to profit from this additional computing power, the software
development techniques and technologies have become more and more complicated and
motivated the introduction of new programming languages and paradigms.

Nonetheless, if a computing workload is designed to run in parallel on multiple devices,
it may become easy to scale the number of concurring processes on a variable number
of processors, as long as the computing infrastructure has been properly designed. This
reasoning, in the context of Experimental HEP, gave origin to the Worldwide LHC
Computing Grid (WLCG) [56], a project aiming at a global collaboration of around 170
computing centers in more than 40 countries to share computing resources and provide
the computing power to process the hundreds of petabytes of data produced every year of
operations from the Large Hadron Collider (LHC) experiments [77]. In more recent years,
with the increasing amount of available digital data relevant to commercial applications,
an alternative approach towards scalability, named Cloud, was introduced and connected
to the concept of web service. If the Grid is conceived to provide scalability to High-
Throughput Computing (HTC) applications accessing and processing a large amount of
static data, the Cloud provides scalability to the access of services, such as websites or
web applications, to the public. The strategic importance of Cloud infrastructures for
companies and the competition among big players1 resulted in a flourishing of future-proof
standards with commercial support and documentation, and attracted large communities of
users developing and supporting open-source alternatives to the best commercial products.

A notable example of such a transition is provided by the containerization of applica-
tions. While possible since the early eighties, the practice of encapsulating applications
together with all the dependencies except the kernel became common with the introduction
of Docker [78] in 2013 and the Open Container Initiative (OCI) standard in 2015 [79].
Containers have impressed a new pace to the development of applications, providing a
tool for versioning software stacks, and automated testing on multiple platforms and
environments. With time, it became common to design complex software stacks composed
of multiple containerized applications orchestrated by some higher-level tool, such as
docker-compose2 or Kubernetes3. Applications designed with such techniques are often
easier to scale with respect to monolithic applications since the provided orchestrators are
designed to easily increase the computing power for some sets of containers, resulting in a
wiser usage of compute and network resources. Today, containers are ubiquitous in any
Cloud environment and represent a fundamental building block for the vast majority of
the web applications accessible through the Internet.

Such an evolution in distributed computing has been receiving attention from the
scientific communities, including those involved in Experimental HEP, and today the
Grid and Cloud approaches co-exist and often overlap in most of the computing centers

1Among the major Cloud service providers there are Amazon with AWS, Microsoft with Azure, and
Google with GCP.

2https://docs.docker.com/compose
3https://kubernetes.io
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supporting scientific data processing.
Also in terms of hardware, the great demand for computing power from the commercial

consumers motivated a great effort to optimize the processors. The instruction sets of
CPUs have been greatly enhanced to include operations between vectors and to ease vector-
matrix products with processor-optimized libraries, such as Intel oneMKL4 and oneAPI5.
The increased power consumption associated with the introduction of these technologies
opened the gate to competitors focusing on low-energy processors, such as ARM, which
are found to be perfectly suited for running the simulation and reconstruction code of HEP
experiments [80], despite the different instruction set they are based on. At the same time,
the exponential growth in the entertainment and video game industries, motivated a fast
development of Graphics Processing Units (GPUs) to elaborate images, represented as large
matrices with strong spatial correlation, on a separate, dedicated hardware accelerator.
The same operations used in GPUs to display fancy images on a screen during a game
session can be used to decode an image to extract digital information with unprecedented
speed and can be tweaked to process acoustic waves and recognize spoken words or even to
study correlations between the words occurring in a sentence. More recently, commercial
computing providers started to serve algorithms on lower-consumption devices explicitly
designed for the purpose and synthesized on Field Programmable Gate Arrays (FPGAs),
providing yet another flavor to hardware acceleration.

Unfortunately, the evolution of storage technologies is not sufficiently fast to keep the
pace of computing in terms of cost reduction. Despite the effort of using magnetic tape
as much as possible, the most important technology for managing large amounts of data
relies on magnetic disks, as in the last decades. Figure 2.1 shows a comparison of the
evolution of the cost per FLOP and terabyte of data, highlighting a faster reduction of
the former. In practical terms, such a difference results in a shift in the computing models
of the various HEP experiments, moving more and more complex processing closer to
the detector to discard immediately the largest fraction of uninteresting data, making
better usage of the expensive storage resources. Such a shift in the computing paradigm
sets unprecedented challenges for scientific Collaborations requiring precise planning of
the data analysis steps well ahead of data taking. In such a scenario, a fast, reliable,
and tunable simulation, obtained from mixed Cloud and Grid resources is crucial to the
success of future HEP experiments.

2.2 Parallel computing
As mentioned above, parallel computing has become the solution to increase the computing
power provisioned to applications beyond the physical constraints on frequency and power
dissipation by dividing the task into multiple procedures that can, or must, be run at
the same time. Within this rather wide definition, the concept of parallel computing can
be implemented in many different ways and on several different scales. Since, in most
cases, multiple parallelization techniques can be adopted in the same application, it is

4Intel oneMKL is a library of optimized math routines for science, engineering, and financial applications.
Read more on https://en.wikipedia.org/wiki/Math_Kernel_Library.

5oneAPI is an open standard, adopted by Intel, for providing a unified interface to be used across different
computing accelerator architectures, including GPUs, AI accelerators and FPGAs. Read more on
https://en.wikipedia.org/wiki/OneAPI_(compute_acceleration).
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Figure 2.1: Historical average cost for storing (blue line) and processing (red line) data. The
information is taken from https://hblok.net/blog/storage and https://aiimpacts.org/
wikipedia-history-of-gflops-costs, respectively.

common to depict the parallelization options as a multi-dimensional space, where each
axis represents a given direction in the parallelization and the hyper-volume corresponding
to a given configuration can be read as the maximal, theoretical speed-up achievable by
the application. For example, if an application can run on two computers in the same
room, but also on two distinct data centers, then the hyper-volume of the configuration,
2× 2, corresponds to a maximal speed-up of factor 4 with respect to the serial application.
Complications on data management, non-parallelizable portions of the application, and
requirements of synchronization between the processors may significantly reduce the
theoretical speed-up. Depending on the application and the surrounding infrastructure,
some configurations may be less expensive than others while providing the same effective
speed-up.

Referring to the formulation of the parallel paradigm as a multi-dimensional space,
the configuration dimensions may vary depending on the perspective of the author, but
they can usually be ascribed to the following seven cases:

1. Multi-site processing. Conceptually very simple, it relies on the share of workloads
on machines belonging to different computing centers, but it comes with challenging
requirements in terms of data management. Notably, input data must be available on
the site where the application that accesses it is running, or easily accessible through
the network. The WLCG infrastructure responds to this need with a design aiming
to maximize the locality of data access, or, in other words, that tries to execute
predetermined portions of the applications in those data centers holding copies of
the input data. The portions of the applications running on different data centers
are usually considered as totally asynchronous and are not coordinated. Indeed,
disposing of an orchestration layer connecting applications running on different sites
would be extremely expensive in terms of maintenance and would open to important
security threats. Recently, multi-cloud solutions relying on VPNs to ensure a secure
connection between multi-site applications are being explored [81], but they have
not yet been widely adopted for scientific workloads.
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2. Multi-machine (or cluster) processing. Data management and synchronization
become easier if the machines running concurrent portions of the application are
physically close to each other and can rely on a private, fast, and local network, by
forming a cluster. The data center of the WLCG usually relies on batch systems such
as HTCondor [82] and Slurm [83] to manage queues of independent jobs, ensuring a
fair share between the tenants and effective balancing among the computing nodes.
If stronger coordination of the application segments is needed, libraries such as
OpenMP6 are often used to ease the development of applications crossing the borders
of a single machine while dealing with the complexity of synchronizing and sharing
the data through the processors.

3. Multi-processing. From an application development perspective, everything
becomes much easier if the processors running different segments of the application
reside on the same machine. The synchronization between tasks does not need
to rely on the network and processors can communicate through signals and even
share some read-only chunk of the memory. When applications are designed to
process data, multi-processing is usually the easiest solution to achieve parallelization.
Libraries such as Snakemake [84] enable building complex graphs of dependencies of
different portions of the application and scheduling them in parallel on the available
processors, using the local storage resources to pass intermediate results through
the workflow. Most languages, including C, C++, and Python, support multi-
processing in the standard libraries, making it easy for the application to exploit
this dimension of parallel computing even without relying on third-party tools. The
most important limitation of the multi-processing approach is that they cannot
share chunks of memory that are not made immutable. Applications requiring a
large amount of almost-immutable memory (such as the geometrical description of a
HEP experiment), need to replicate that amount of memory for each process, often
saturating or exceeding the resources available to the node.

4. Multi-threading. To overcome the limitations of multi-processing in terms of
capabilities to share memory, processors started to support multi-threading and
symmetric access to the memory and other resources from multiple cores. On Intel
processors, multi-threading is also used to increase the utilization of a single core by
simulating two virtual (logical) cores for each physical CPU. This technique is called
Hyper-threading (HTT) and may enable a performance enhancement of up to 30%
with respect to the configuration with a single thread per core [85]. To simulate the
two virtual cores, HTT relies on the long registers available to modern CPUs, which
can be split in two and used to process two independent code segments. HTT provides
users with a simple way to profit from long registers and, when the application is
designed to take advantage of the instruction sets operating on large registers (i.e.
the superscalar operations discussed below), they can usually achieve even more
significant performance boost. Figure 2.2 reports an example of multi-threading
for the Geant4 [59, 60] application, representing the major consumer of CPU
resources for Experimental HEP communities. While extremely beneficial in terms
of memory consumption, coding multi-threading applications usually represents

6OpenMP is an API that supports multi-platform shared-memory multi-processing programming in C,
C++, and Fortran. Read more on https://en.wikipedia.org/wiki/OpenMP.
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Figure 2.2: On the left, throughput of the Geant4 application as a function of the number of
threads on an Intel Xeon Phi processor with 64 physical cores. Using a number of threads up to
twice the number of physical cores (Hyper-threading) enables a significant speed up. Beyond
128 threads, computing operations are scheduled during I/O-bound operations, and a further
speed-up is enabled. On the right, the memory allocated by the multi-threaded application
is shown as a function of the number of threads. The vast majority of the memory is shared
between the threads, enabling 200 concurrent executions with less than 10 gigabytes of allocated
memory. For comparison, the same concurrency implemented with multi-processing would
require more than 200 gigabytes of memory. Figures reproduced from Ref. [91].

a major challenge with respect to multi-processing because concurrent access to
the memory may bring the application in an unexpected, non-reproducible state.
Nonetheless multi-threading has wide support in most languages and standard
libraries exist for example for C++11 and Python. New languages designed to ease
multi-threading programming, such as Rust [86], are increasing in popularity. In
scientific applications [87–90], the preferred way of benefiting from multi-threading
is relying on frameworks that enforce strict read-only constraints on vulnerable
memory chunks or providing self-contained multi-thread functions to perform generic
operations, such as those implementing tensor algebra or image processing steps.
Multi-threading is a challenging but extremely powerful tool to make applications
parallel when application segments are strictly coupled. In terms of performance, the
major limitation of multi-threading is the latency introduced by context switching.
Indeed, when switching from one thread to another, the operating system must
suspend a sequential program, store the status of the processing (the context)
somewhere in the memory, retrieve the context of the new thread, and resume the
new process. This may introduce a latency of a few milliseconds making multi-
threading unsuitable for parallelizing a large number of very fast code segments.

5. Asynchronous execution. While, strictly speaking, not belonging to the category
of parallel computing, asynchronous programming enables concurrency by executing
multiple loosely coupled code segments in the same thread, overcoming the cost of
spawning new threads and switching from one thread to another when passing from
one code segment to another. Asynchronous applications are common in scenarios
that are subject to the latency introduced by accessing external resources (such
as magnetic disks or remote services through the network) while managing several
hundreds of concurrent operations. Asynchronous programming has its foundation
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in the callback principle, in which the code segment processing data accessible
with some latency is scheduled at the earliest convenience after the data becomes
available. A common example of such an application is provided by web servers
that may have to handle several hundreds of concurrent requests from the Internet
while accessing storage to respond to each request. In such a scenario, a serial
application would serve one request at a time, in a sequence, and would access the
storage resource independently for each request, resulting in a CPU idling most of
the time while waiting for data fetched from the storage. Multi-threading would
enable to distribute on multiple threads the code to serve the requests, by effectively
using the time a CPU would otherwise idle to submit a request to the storage
service. However, for an increasing number of requests, the number of threads may
become unsustainable for the operating system and, the time wasted switching from
one context to another just to check whether the data has been fetched from the
storage may become significant. Asynchronous programming comes to the rescue by
providing concurrency in a single thread.

6. Single-Instruction-Multiple-Data (SIMD) paradigm and vectorization.
Modern processors have large registers with up to 512 bits, that, relying on the
appropriate instruction set, can be used to apply the same operation to multiple data
in a single calculation. For example, a 512-bit register can hold 16 single-precision
floating point values. This means that summing up two floating point numbers, or
16 pairs of floating point numbers has the same computational cost: one clock cycle.
To profit from these so-called superscalar operations, however, the data must be
represented in the computer memory as contiguous blocks of uniform data type, in
a way that it is fast for the processor to pick from the memory the 16 values to fill
the register in a single read operation. Indeed, the latency introduced by composing
the register with floating points scattered in independent locations is so that, as
fast as the RAM is, it would completely vanish the benefit of summing them up
in a single clock cycle. In such a scenario HTT is usually more profitable. The
speed-up granted by vectorization is important and often exploits resources that
would not be possible to use as efficiently with techniques like Hyper-threading,
but designing applications to represent data in memory in contiguous blocks of
homogeneous type is sometimes a major challenge. In practice, the community
involved in High-Performance Computing (HPC) uses to map algorithms to tensor
operations, leaving to the libraries and underlying runtime the task of optimizing
tensor algebra [92,93]. For communities with a long tradition in scientific computing,
however, it is often difficult to restate algorithms designed to operate on graphs, as
customary in Object-Oriented Programming (OOP), into tensor algebra, making
vectorization one of the most challenging optimization axes to explore [94].

7. Hardware acceleration. A further option to parallelize a workload is to rely on co-
processors to perform parts of the computation with specialized hardware. GPUs and
FPGAs are the most adopted co-processors and provide parallelism via vectorization
and/or multi-threading. Using co-processors requires dedicated libraries and, in
some cases, specialized programming languages. In general, hardware acceleration
is too broad as a task to be covered here, but heterogeneous computing is becoming
central in most of the HPC scenarios, and co-processors are being used also for some
HTC applications as, notably, the trigger for the LHCb experiment [95].
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To summarize, an application may ideally be parallelized by running on multiple sites,
accessing in each site the data locally available as instructed by the WLCG, on multiple
machines in each site, coordinated by batch systems such as HTCondor or Slurm, in
multiple processes on the same machine, and with multiple threads spawned by each
processor to optimize the ratio between available memory and computing power. The
application may have been designed with an in-memory data representation made of
contiguous blocks of homogeneous data types to enable vectorization and, on some nodes,
it may offload to hardware accelerators, such as GPUs, some portion of the algorithm to
achieve further speed-up.

Developing software capable of benefiting from all of the dimensions of the configuration
space is more an art than a science. Adopting and relying on standard solutions and
infrastructures is often a shortcut to improve performance, but it may require remapping
the application into algorithms and data structures completely different from those that
may appear as natural while describing the task to a human being.

Cloud computing and Machine Learning represent two modern, commercial-level,
often off-the-shelf solutions to deal with different aspects of parallel computing. Cloud
computing has been designed to transparently scale on multiple processors and machines,
possibly on different sites, while machine learning libraries are designed to represent
computations as tensor operations which are implemented targeting multi-threading,
vectorization, and hardware acceleration. In the following sections, I will focus on Cloud
computing and Machine Learning, in the context of scientific computing.

2.3 Cloud computing for scientific data processing
Definition (Wikipedia, 2024). Cloud computing is the on-demand availability of computer
system resources, especially data storage and computing power, without direct active
management by the user. Cloud computing relies on sharing of resources to achieve
coherence and typically pay-as-you-go model.

To achieve the goal of managing users’ resources while providing the necessary cus-
tomization layers to profit from the resources, and to grant rapid elasticity to follow
the needs of customers, Cloud providers need to pool the resources with a multi-tenant
architecture in which resources can be quickly reallocated from one tenancy to another
according to policies (and prices) agreed a priori.

Cloud infrastructures rely on virtualization and containerization technologies to achieve
elastic scalability and implement efficient metrics to measure the consumption of resources
to bill customers with the exact amount of resources requested. While in the scientific
community, billing and accountability are treated differently, the approach established by
commercial Cloud providers is very interesting since it enables the treatment of burst-type
requests of resources which are becoming more and more common for quasi-interactive
data analysis.

Since 2019, the Italian National Institute for Nuclear Physics (INFN) has been pro-
visioning computing resources with the Cloud model, under the name of INFN Cloud7.
While the WLCG remains the de-facto standard for the production model of the LHC
experiments, INFN Cloud aims to provide computing resources to an increasing number

7https://www.cloud.infn.it

40

https://www.cloud.infn.it


of smaller experiments, whose computing models rely on the flexibility and scalability
offered by the Cloud infrastructure.

2.3.1 Services
To provision managed resources to the users, while enabling customization, Cloud infras-
tructures are typically organized as a stack of layers of increasing complexity in terms
of management and operational burden. In the following, the different levels (layers) of
service in use at INFN Cloud are described. Terms are imported from commercial Cloud
solutions, even if the exact meaning may differ depending on the context.

The deepest level of management exposed via web interfaces is the virtualization layer,
which in INFN is based on OpenStack8, and is generically referred to as Infrastructure
as a Service (IaaS). Users accessing the IaaS are Cloud resource administrators and are
enabled to instantiate, administer, or delete the virtual machines within the tenancies
they manage.

Since multiple sites that provision resources through the Cloud model may rely on
different infrastructure solutions, a further layer of abstraction, common to all the sites
has been introduced and named Platform as a Service (PaaS). The PaaS orchestrates
the requests of resources addressing them towards the underlying infrastructures, dealing
with the differences in their interfaces and implementations. The PaaS also introduces
automation tools to configure the virtual machines according to predefined models (tem-
plates) using tools such as Ansible9 and TOSCA10 to describe the application to deploy.
Also the users managing resources through the PaaS are Cloud resource administrators,
but they are only allowed to manage their own resources rather than a whole tenancy.

Deployed either with the IaaS or the PaaS, the virtual machines are intended to host
services that can be accessed by a broader community than the single administrator.
These applications are commonly referred to as Software as a Service (SaaS). For
analysis workloads, the most typical example of SaaS is JupyterHub11. Users accessing the
SaaS are not Cloud administrators and have access only to a limited amount of resources
in a containerized environment, which should limit the threats to the overall infrastructure
with respect to accessing the underlying virtual machines as administrators.

A special kind of SaaS is Kubernetes, sometimes referred explicitly to as Kubernetes
as a Service (KaaS). Kubernetes is an orchestrator of containers that may handle multi-
tenancy. It can be used to spawn custom containers upon user request providing a last
layer of customization known as Container as a Service (CaaS).

2.3.2 Data management
To achieve transparent and elastic scalability, a key ingredient of Cloud computing solutions
is effective data management. In general, Cloud providers tend to favor centralized
storage solutions with location-independent access to the data rather than developing
and maintaining tools enabling the locality of data, as customary in the context of the
WLCG. Applications requiring data locality implement it via an additional layer, based

8https://www.openstack.org/software
9https://www.ansible.com/overview/how-ansible-works
10https://www.oasis-open.org/committees/tosca/faq.php
11https://jupyterhub.readthedocs.io
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on technologies such as Spark 12 and Hadoop13, designed to map computations on the
nodes with the fastest access to the data. Despite important pioneering works to adopt
Spark for analysis tasks in HEP [96], its strong optimization for tabular, non-nested data
is hindering its adoption.

To discuss Cloud storage solutions, it is useful to introduce the following, potentially
overlapping, macro-categories:

• Data warehouse. A data warehouse is a storage solution designed to report
transactional operations to ease reporting and analyzing the data. In general, a
minimal data warehouse is a relational database. Data warehouses may combine
multiple databases and data sources, albeit maintaining the tabular and relational
structure of the data. In the context of scientific data processing, databases and
data warehouses are used to store the experimental conditions of the data taking.
In some cases, databases may hold the metadata of the datasets (stored with other
technologies) to ease indexing and retrieval.

• Data lake. Data lake solutions, nevertheless, are much more flexible in terms
of data structure, and, in general, they may work even with binary data without
any data structure. The minimal unit of a data lake is a generic storage system,
and multiple storage systems can be combined in a data lake. In scientific data
processing, the data lake approach is used to store scientific data in data centers all
over the world and make them accessible through networks with protocols such as
XRootD14, WebDAV15, and more recently Amazon S316.

• Distributed file system. The data sources of a data lake may be structured as file
systems. File systems have a hierarchical tree-structured organization that groups
files semantically similar or correlated in a path. Usually, file systems enable modify-
ing the files, which might be mapped into non-contiguous chunks of the underlying
storage system. File systems distributed on multiple nodes might be complicated
to implement if concurrent editing of the files is needed, which requires adopting
some precautions to prevent or handle race conditions. File systems distributed
on multiple sites are rare, as the network latency between geographically distant
locations usually hinders performance in the procedure dealing with concurrency.
A notable exception is the CERN Virtual Machine File System (cvmfs) [97] which
distributes the software environments used by the LHC experiments to process
data through the network of sites member of the WLCG. To limit issues related to
concurrency, cvmfs only distributes a sealed portion of the file system accessible all
over the world in read-only mode.

• Object storage. An increasingly important alternative to file systems is provided
by object storage. Objects are chunks of data stored in a flat address space. Each
object has a unique identifier to which metadata can be associated with other services
(such as a data ware house). Demanding the complexity of handling metadata to

12https://spark.apache.org
13https://hadoop.apache.org
14https://xrootd.slac.stanford.edu/index.html
15http://www.webdav.org
16https://aws.amazon.com/s3
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other software components, object storage is much more scalable than file systems.
Nonetheless, objects are immutable. They can be created, read, and deleted, but
not modified, simplifying concurrent access and mitigating latency-related problems.
Distributed file systems and object storage solutions have different use cases and
coexist in most Cloud solutions, possibly organized and accessed through a common
data lake infrastructure.

2.4 Machine Learning
Machine Learning (ML) is the branch of Science dedicated to the development and study
of statistical algorithms capable of extracting knowledge from data and generalizing the
learned patterns to unseen data. The aim is to perform tasks without explicit instructions,
but only relying on data analyzed with techniques developed in the context of Statistics,
Data Mining, and Artificial Intelligence (AI). A more precise and formal definition follows:
Definition (Tom Mitchell, 1997). A computer program is said to learn from experience
E with respect to some task T and some performance measure P , if its performance on
T , as measured by P , improves with experience E.
The evolution of Machine Learning over recent decades has undergone a rapid expansion
characterized by a collection of surprising results, both in terms of variability of the
tasks tackled and in terms of the performance achieved in each task. Nowadays, Machine
Learning represents a pivotal technology with widespread use cases that go beyond
specialized scientific research and leave room also to commercial applications. The first
commercial success achieved by ML-based algorithms dates back to the 1990s when
obtaining favorable results was often attributed more to artistry than technological
prowess. The point break was marked by realizing that the skills required to make those
algorithms work reduced as the data available for training increased. Thus, from one side,
the growing digitization of society and the corresponding amount of data recorded that
ushered in the era of Big Data has played a key role in the recent progress in Machine
Learning. On the other hand, the voracious demand for computing power has encouraged
the development and optimization of more and more fast CPUs and laid the foundation for
the advent of general-purpose GPUs [98]. Hence, if until the 1990s the progress in the field
of Machine Learning was stalled due to the limited computing resources available, within
a couple of decades the conditions have completely changed, up to the present days where
ML-based models exhibit performance in the Natural Language Processing (NLP) [99–101]
or Image Generation [102,103] problems unimaginable until a few years ago.

Back to a more mathematical formulation, the majority of the Machine Learning
algorithms focus on function approximation problems, for which task T is embodied
in the parametric function fθ. The experience E may consist of a sample of known
input-output pairs (x, y) from which extracts f : x→ y. In this context17, the learning
problem corresponds to improving the performance P defined by the loss function (or
cost function) L(y, f(x)). Hence, training the model fθ means finding the values for θ
that optimize the performance metric:

θ∗ = argmin
θ∈Θ

E(x,y)∼p [L(y, fθ(x))] (2.1)

17The scenario described above goes by the name of supervised learning because of the presence of outcome
variables that drives the learning process.
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where Θ is the parameter space, p is the joint probability distribution for (x, y), and
E(x,y)∼p [L(y, fθ(x))] denotes the expected value of the loss function with respect to p.

In general, the ultimate objective of an ML-based algorithm is to make predictions,
namely succeeding in generalizing the outcomes of data never seen before only by relying
on the instances explored during the training procedure. However, it should be pointed
out that exhibiting good performance P (i.e., minimizing as much as possible the loss
function L) is strictly connected to the quality of the training sample available, which
should be representative of the tackled task and with sufficient statistics for learning
the correct patterns to generalize to new instances. Thus, to monitor the generalization
capabilities of the ML-based model, it is customary to retain a portion of the dataset
from the training set and use it for validating the algorithm. This sample, never used
during the training phase, is typically called test sample.

2.4.1 Classes of learning problems
Finding the solution to a learning problem depends both on the training set and the
specific task investigated. Many different classes of Machine Learning problems exist and
it may be useful to classify them by using the following criteria:

• Supervised/unsupervised learning. In supervised learning problems the training
data consists of input-output pairs and the algorithm aims to build a parameterization
of the relation that links the input instances to the desired solutions (output), referred
to as labels. Each entry of the input sample is represented by a set of features that
are used by the model to predict a qualitative outcome (for classification tasks),
or a quantitative output (for regression tasks). Contrary to supervised learning, in
unsupervised learning problems, algorithms learn patterns exclusively from unlabeled
data. Nonetheless, also in this case, the model can be trained either to perform
a classification task or a regression task. When the training data consists of a
combination of unlabeled instances and labeled ones, we talk about semi-supervised
learning (or weak supervised learning) problems. With the proliferation of Large
Language Models (LLMs) we have witnessed in recent years [99–101,104–106], this
learning paradigm is becoming more and more popular. Notably, it is typically
employed to train models by combining a small amount of human-labeled data
(more expensive and processed only using the supervised learning paradigm) with a
large amount of unlabeled data (cheaper and processed only relying on unsupervised
learning techniques). Lastly, reinforcement learning defines a totally different
paradigm where an intelligent agent that operates in a dynamic environment learns
the best strategy to pursue the assigned task based on a reward-penalty scheme.

• Batch and online learning. In batch learning problems, the model is not designed
to learn incrementally from data, but instead, it relies on the overall instances
available. From a computational perspective, the cost of this kind of strategies is
generally high, a characteristic that forces us to pursue it offline: this is why it is
also referred to as offline learning. A complementary strategy is online learning,
where instead the model is implemented and trained to improve by adding new
instances sequentially, either individually or in small groups called mini-batches.
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• Instance-based versus model-based learning. When the system learns the
examples by heart and makes predictions based on a similarity measure with learned
examples, we talk about instance-based learning. If instead, during the training step,
the system aims to build a model that is used to generalize new instances, then it
represents a model-based learning problem.

As one may imagine, these criteria are not exclusive and can be combined according to
the chosen strategy and the faced task.

Issues on learning process

From the definition of the learning strategies discussed above, it follows that the perfor-
mance achieved by the trained model on a specific task depends on both the quality of
the training dataset and the algorithm chosen to drive the training itself.

Referring to an instance-based learning system, it is self-evident the key role played
by the data sample. Nevertheless, also for the model-based learning problem, the training
set assembly is crucial. Indeed, the presence of noisy instances or irrelevant features
can prevent from accomplishing the task, while relying on non-representative training
data prevents the generalization at all. It is therefore evident the importance of the data
preprocessing step, where data may be manipulated, filtered, and/or augmented before
being analyzed.

Also choosing the model demanded to extract the patterns within data is crucial.
Indeed, the latter can prove to be either too complex or too simple for the available
training set. When the first case occurs, we are typically dealing with a poorly populated
training sample and a model so descriptive that it learns even the noisiness of the data seen
during the training. The result is a model that does not generalize well, a phenomenon
called overfitting. A way out of this drawback is regularization18, a technique to make the
model simpler constraining its degrees of freedom. The complementary phenomenon is the
underfitting, that occurs when the model is too simple to learn the underlying structure of
the data. In such cases, the solution is to modify the adopted model to increase its degrees
of freedom or to reduce the action of the regularization strategies eventually applied.

2.4.2 Choosing the best algorithm
Solving a learning problem corresponds to finding the solution set of an optimization
problem like the one defined in Eq. (2.1). In other words, the learning process aims to find
the best-suited set of parameters defining the model that we have chosen to parameterize
the patterns underlying the data sample. By design, the only information accessible to
the model is provided by the training sample, thus the optimization problem is performed
on such a set of data. Nonetheless, the ultimate objective of the learning problem is to
build a model that succeeds in the generalization task. It is therefore necessary to define
a metric to monitor the actual performance of the trained model. To this end, the data
sample available is split into (at least) two sub-sets: the training set and the test set. The
error made on new cases is called generalization error, and we have access to an estimate
of this error by evaluating the trained model on the test set. It is customary to define a

18The amount of regularization to apply during learning can be controlled by a hyperparameter, namely a
parameter of the learning algorithm (not of the model).
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third independent sub-set, called validation set, and aim to perform further studies on the
quality of the model output.

The time to reflect a bit on how to define a model has come. In general, we can
describe it as a simplified version of the observations. The simplification is intended to
remove any noisy contributions to the features that are unlikely to be generalized to new
instances. Doing so, it is customary to make assumptions, like the one of approximating y
with a linear model: fθ(x) = θ0 + θ1 x.

The role played by the assumptions in the choice of the best algorithm is crucial.
Good evidence of this can be found in a famous 1996 paper [107], where David Wolpert
demonstrated that, for any two learning algorithms A and B there are just as many
situations (appropriately weighted) in which algorithm A is superior to algorithm B as
vice versa. This is called the No Free Lunch (NFL) theorem, and it ensures that a priori
better-working models simply do not exist. This statement implies that the only way to
find the best-performing model for a given task is to evaluate all the possible alternatives.
Such studies are generally collected within the hyperparameter optimization problem that
is further described in Section 2.6.

2.5 Deep Learning
Deep Learning (DL) is a branch of Machine Learning that achieves power, scalability, and
flexibility by representing the world as a nested hierarchy of concepts [98]. Starting from
basic concepts, typically expressed by the feature space representing the input instances,
Deep Learning allows to compute data representations more and more abstractly by relying
on the previous, less abstract computations. Studying models that involve a structured
hierarchy of the learned concepts, this special class of Machine Learning algorithms is
typically referred to as “deep”.

Differently from what one may guess, Deep Learning is not a new technology, but its
early studies and applications date back to the 1940s. This common mistake is due to the
fact that it was relatively unpopular for several decades because of the incapability to
demonstrate its validity unless disposing of large data samples and an amount of computing
power inconceivable for that period. Nowadays, the availability of huge datasets for almost
every field of application and the technological progress achieved by modern computation
have encouraged a rapid evolution of Deep Learning algorithms that have witnessed an
actual rebranding operation, until to become the de-facto standard for the majority of
Machine Learning applications.

Since its inception, researchers have seen in Deep Learning a reliable approach to
Artificial Intelligence. It is therefore not surprising that the earliest learning algorithms
developed in this context were inspired by biological learning systems, like the one exhibited
by the human brain (Figure 2.3). As proof of this, in 1943 the neurophysiologist Warren
McCulloch and the mathematician Walter Pitts published a landmark paper [108], in
which they proposed a simplified computational model inspired by animal neurons. This
represented the first Artificial Neural Network (ANN) architecture and, since then, many
other architectures have been invented [109–115].

46



Figure 2.3: Drawing of a multiple layers in a biological neural network (human cortex). Figure
reproduced from https://en.wikipedia.org/wiki/Cerebral_cortex.

2.5.1 Perceptron and multilayer perceptron
The perceptron [116] is the simplest ANN architecture, where input-output values are
numbers, unlike the binary elements of the McCulloch-Pitts proposal. The perceptron
algorithm relies on a slightly different artificial neuron called threshold logic unit (TLU)
and is schematically represented in Figure 2.4a. The TLU computes a weighted sum of its
inputs:

z = w1 x1 + w2 x2 + · · ·+ wn xn = xT w (2.2)

where the inputs {xi}i=1,...,n denote the features used to build a predictive model. Then,
a step function is applied to that weighted, obtaining as result

y = hw(x) = step(z) (2.3)

The step function is employed to emulate the behavior of a biological neuron, that fires
new electrical impulses when it receives a sufficient amount of chemical signals. The most
common step functions used for perceptrons are the Heaviside step function and the sign
function.

A perceptron is composed of a single layer of TLUs, where each TLU is connected
to all the inputs. When all the neurons in a layer are connected to every neuron in the

(a) Threshold logic unit with three inputs, and
explicit computation expressions.

(b) Multilayer Perceptron architecture
with two inputs, one hidden layer, and
three outputs.

Figure 2.4: Schematic representation of Perceptron and Multilayer Perceptron. Figures repro-
duced from Ref. [117].

47

https://en.wikipedia.org/wiki/Cerebral_cortex


previous one, the layer is called a fully connected layer (or dense layer). The perceptron
inputs are sent to special neurons called input neurons, which output whatever input they
have received. Combining all the input neurons forms the input layer. It is customary
to add to this layer an extra bias feature (x0 = 1): the latter is represented by a special
type of neuron, called bias neuron, which outputs 1 all the time. Hence, training a TLU
corresponds to finding the best-suited set of weights w = (w0, w1, . . . , wn) that, used in
combination with the input data according to (2.2) and (2.3), allows the optimization of
the loss function L.

The perceptron algorithm can be successfully used for reproducing the output of
simple linear binary classifications, such as the AND/OR operators, but it fails in solving
some trivial problems, like the XOR operator. To overcome these limitations, we can
stack multiple perceptrons together obtaining a new ANN architecture called multilayer
perceptron (MLP), also known as feed-forward neural network (FNN).

A FNN-based model typically aims to approximate some target function f ∗. In a
regression problem, for example, we assume that the input x is mapped to the output
y via the relation y = f ∗(x). Thus, an FNN can be employed to define a parametric
mapping ŷ = fθ(x;θ), where the parameters θ are the solution of the optimization
problem defined in (2.1). Since the information flows from the input x, through the
intermediate computations used to define fθ, and finally to the output layer ŷ, such
models are called “feed-forward”. Notably, FNNs are typically represented by composing
together many different intermediate functions: for instance, f(x) = f (3)(f (2)(f (1)(x)))
describes a map three-layer deep. The internal layers of a FNN, namely the ones different
from input/output layers, are called hidden layers. A schematic representation of a FNN
model with a single hidden layer is depicted in Figure 2.4b.

Activation functions

Ensuring that FNNs behave as universal approximators [118], hence potentially parame-
terizing any function and solving any task, requires interposing non-linear components
between each linear combination of features that results from the various FNN layers.
In the perceptron example depicted in Figure 2.4a, such a transformation is encoded
in the function h that allows, with a simple step function, the addition of a non-linear
component to the linear combination of the input features xT w. Increasing the number
of neurons and layers, and hence of the non-linear transformations, the networks acquire
more and more descriptive capabilities, becoming perfect candidates to approximate the
target function f by finding the best set of parameters θ that solve the optimization/learn-
ing problem. Either used within the hidden layers or as output of the network, these
non-linear transformations are called activation functions. A non-exhaustive list of the
more commonly used activation functions is provided in Table 2.1.

2.5.2 Training Deep Models
As mentioned above, training a neural network (NN) corresponds to finding the set of
parameters θ that minimizes the loss function L measuring the performance of the model
on tackled task. Considering a regression problem, for example, we aim to solve an
optimization problem like the one reported in (2.1) and to define an approximator f(x;θ)
capable of reliable predictions.
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Name Function, fθ(z) Range

Identity z (−∞,∞)

Binary step

{
0 z < 0

1 z ≥ 0
{0, 1}

Logistic or sigmoid
1

1− e−z
(0, 1)

Hyperbolic tangent (tanh)
ez − e−z

ez + e−z
(−1, 1)

Rectified linear unit (ReLU)

{
0 z ≤ 0

z z > 0
[0,∞)

Leaky rectified linear unit (Leaky ReLU)

{
α z z ≤ 0

z z > 0
with α fixed (−∞,∞)

Parametric rectified linear unit (PReLU)

{
α z z ≤ 0

z z > 0
with α learnable (−∞,∞)

Softmax
ezi∑J
j=1 e

zj
with i = 1, . . . , J (0, 1)

Maxout maxi zi with i = 1, . . . , J (−∞,∞)

Table 2.1: Non-exhaustive list of the activation functions generally used for training neural
networks, both for regression and classification tasks.

Let’s now try to derive the best set of parameters by relying on this equation. It
should be pointed out that, in general, we don’t know the joint probability p for (x,y),
and then we are unable to compute directly the expected value E(x,y)∼p [L(y, f(x;θ))].
The only way out is to rely on the information provided by the training set T to obtain
an estimator for the average value of the loss function:

θ̂∗ = argmin
θ∈Θ

m∑
i=1

L(yi, f(xi;θ)) = argmin
θ∈Θ

J(θ) (2.4)

where Θ is the parameter space, xi is the i-th input19 of T , yi is the i-th output of T ,
and m is the total number of instances. The function J(θ) is called empirical risk, and it
is the real subject of our optimization problem mentioned so far.

The set of optimization problems that can be solved analytically is relatively small
and certainly does not include non-trivial neural networks. Approximate methods, such
as Gradient Descent (GD), are therefore preferred as baseline solutions for training neural
networks. Gradient Descent is a generic optimization algorithm capable of finding optimal
solutions to a wide range of problems. The algorithm consists of updating the parameters
according to the local gradient of J(θ):

θt ← θt−1 − η∇θJ(θ) (2.5)
19Here the set {xi}i=1,...,m denotes all the inputs in training data, while, with i-th index fixed, we can

access the n-features {xij}j=1,...,n (note the difference between the bold elements and the italic ones).
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where η weights the gradient contributions to the parameters update. It represents a
crucial training hyperparameter and is called learning rate. To be more precise, step (2.5)
is the parameters update of the Batch Gradient Descent algorithm, where the gradient is
computed over all the instances available. It is a powerful tool in optimum search, but it
suffers from slowness for large training sets. An extreme solution is Stochastic Gradient
Descent (SGD), whose updates rely only on a single computation of the gradient on an
instance randomly chosen:

θt ← θt−1 − η∇θJi(θ) (2.6)

where Ji(θ) = L(yi, f(xi;θ)). An in-between algorithm also exists and it is called Mini-
batch Gradient Descent which computes the gradients on small random sets of instances
called mini-batches :

θt ← θt−1 − η
ℓ∑

i=1

L(yi, f(xi;θ)) (2.7)

where ℓ is the dimension of mini-batches (ℓ ≤ m).
Despite the use of mini-batch-based GD or SGD optimizers, training a very large deep

neural network may prove to be awfully slow. A huge speed boost can come from the
deployment of faster optimizers, such as Adam [119]. Adam, reported in Algorithm 2,
combines the ideas of two popular optimization algorithms: momentum optimization and
RMSProp [120]. The first algorithm introduces the momentum vector m, used to speed
up the learning process along directions already found in previous steps of the iterative
process (line 6). The second algorithm, instead, keeps track of squared gradients from
most recent iterations into the vector s (line 7), so that the latters can be used to drop
the learning rate faster along steep dimensions than for dimensions with gentler slopes.
The parameters update step is reported on line 10.

Algorithm 2 Adam [119] is a widely used algorithm for stochastic optimization. Good
default settings for typical Machine Learning problems are η = 0.001, β1 = 0.9, β2 = 0.999
and ε = 10−8. The operations ⊙ and ⊘ indicates the element-wise product and division,
while βt

1 and βt
2 are the t-powers of β1 and β2 respectively.

Require: Learning rate η
Require: Exponential decay rates β1, β2 ∈ [0, 1)
Require: Empirical risk function J(θ)
Require: Initial parameter vector θ0

1: m0 ← 0 (Initialize 1st moment vector)
2: s0 ← 0 (Initialize 2nd moment vector)
3: t← 0 (Initialize timestep)
4: while θt not converged do
5: t← t+ 1
6: mt ← β1mt−1 − (1− β1)∇θJ(θt−1)
7: st ← β2 st−1 + (1− β2)∇θJ(θt−1)⊙∇θJ(θt−1)
8: m̂t ←m / (1− βt

1)
9: ŝt ← s / (1− βt

2)
10: θt ← θt−1 + η m̂t ⊘

√
ŝt + ε

11: end while
12: return θt (Resulting parameters)
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Back-propagation algorithm

At this point is evident that training neural networks requires computing gradients, often
of complicated functions. Thus, we do not only have to worry about how to solve the
optimization problem but also about how to compute gradients. The back-propagation
algorithm [121] plays a key role in this sense, allowing the information from the cost J(θ)
to flow backward through the network to compute the gradient.

Describing neural networks in terms of computational graphs, the back-propagation
algorithm simply consists of performing a Jacobian-gradient product for each operation
in the graph, according to the chain rule of calculus. Suppose that x ∈ Rn, y ∈ Rm,
g : Rn → Rm, and f : Rm → R. If y = g(x) and z = f(y), then

∂z

∂xi
=
∑
j

∂z

∂yj

∂yj
∂xi

(2.8)

In vector notation, this may be equivalently written as

∇xz =

(
∂y

∂x

)T

∇yz (2.9)

where (∂y/∂x) is the m × n Jacobian matrix of g. Hence, using equation (2.8), the
algorithm can measure the contribution to J(θ) of each connection from the previous
below until it reaches the input layer.

2.6 The hyperparameter optimization problem
As discussed above, recent years have witnessed Machine Learning becoming an incredibly
valuable tool in practically every field of application, from scientific research to industry.
Increasingly complex models achieve surprising results in a wide range of applications, such
as language modeling [100], image generation [102], and medical diagnosis [122]. Generally
speaking, most of the ML techniques rely on the optimization of an objective function
with respect to some internal parameters, describing the performance of the algorithm.
Usually, when the optimum of the objective function is a minimum, the name of loss (cost)
function is adopted. As briefly discussed in Section 2.5.2, the fastest iterative optimization
techniques rely on (Stochastic) Gradient Descent techniques [123], such as Adam [119] or
RMSprop [120]. Unfortunately, for a wide class of optimization problems, the gradient of
the loss function with respect to the model parameter is extremely expensive to compute
or cannot be defined at all. For example, optimization problems involving noisy loss
functions in contexts where analytical derivatives cannot be computed, cannot rely on
gradient-descent techniques, requiring the adoption of slower, often heuristic, methods. A
widely adopted option is to define a surrogate model describing the variations of the loss
function across the parameter space together with its uncertainty, driving the optimization
algorithm to explore those regions where improvements were not statistically excluded
from previous evaluations. Such techniques are referred to as Bayesian optimization (BO)
methods [124, 125] and, although representing a field of study too broad to be covered
here, have been an active area of research in ML in the last decade, especially from a
technological perspective aiming to integrate BO-techniques with the modern computing
ecosystems [2, 126–130].
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Tuning the performance of ML models may benefit from the optimization of the
hyperparameters, defined as all those parameters that are not learned during the model
training procedure, but rather encode some arbitrariness in the architecture of the model
itself or in the procedure to train it [124]. In practice, hyperparameter optimization (HPO)
studies require training the model multiple times to explore the hyperparameter space,
searching for the best-performing model according to the NFL statement (as discussed in
Section 2.4.2). Since training ML models is computationally expensive, HPO campaigns
should focus as much as possible on those regions of the hyperparameter space where
the model performs better to reduce the time needed for finding the best configuration.
Nevertheless, the loss is often a noisy function of the hyperparameters as multiple training
procedures may result in different performances because of the intrinsic randomness of
the stochastic gradient-descent techniques.

Since Bayesian techniques do not rely on gradient computation, the exploration of
the hyperparameter space can be performed in parallel by relying on many independent
trainings, or trials, that can be potentially offloaded to different, distributed comput-
ing resources. In general, accessing more resources enables the exploration of larger
hyperparameter spaces, possibly resulting in better models. Disposing of opportunistic
access to computing resources may provide valuable contributions to HPO campaigns,
but coordinating studies on resources from different providers and different computing
paradigms challenges the adoption of existing HPO services [126–130]. Hence, a part
of my Ph.D. has been dedicated to the conception and development of a Cloud-based
solution designed to coordinate HPO studies across multiple machines submitting simple
queries to a central, managed service. The solution, called Hopaas [2] is described in
detail in Section 2.6.1, while an early Hopaas application relying on HPC resources and
aimed at the LHCb flash-simulations is discussed in Section 2.6.2.

2.6.1 Hyperparameter optimization as a service
Hopaas, which stands for Hyperparameter Optimization as a Service), implements a set of
REST APIs to orchestrate HPO studies across multiple computing instances. Computing
nodes from multiple HPC centers can concur dynamically to the same optimization study,
requesting to the Hopaas server a set of hyperparameters to test, and then sending back
the outcome of the training procedure. Several trials of one or more studies can be tracked
and monitored through the web interface provided by the Hopaas service. A reference
implementation, with a server instance20 deployed on INFN Cloud resources and a simple
client package [131] wrapping the REST APIs to Python functions is discussed in the
following.

Hopaas API specification

We refer to a trial as a single training attempt with a specific set of hyperparameters to
test. A study represents an optimization session and includes a collection of trials. In
practice, a study is unambiguously defined by the set of hyperparameters to optimize, the
range of values where searching the optimum, and the modality in which this search is
carried out (e.g., grid search, Bayesian methods [124], or evolutionary algorithms [132]).

20Visit https://hopaas.cloud.infn.it for additional details.
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API Description HTTP method Request path

version
Provides the version of
the Hopaas backend. GET /api/version

ask

Creates a new trial, con-
tributing to a new/exist-
ing study. The POST
body request should in-
clude the set of settings
to refer unambiguously
to a study. The API re-
sponse contains the hy-
perparameters to test.

POST /api/ask/token

tell

Provides the final score
of a trial to the backend
optimizer chosen for the
study.

POST /api/tell/token

should_prune

Provides an intermediate
score to the backend op-
timizer. If the study
includes a pruner strat-
egy, the API response is
a boolean value saying
whether or not to con-
tinue the current trial.

POST /api/should_prune/token

Table 2.2: Minimal description of the REST APIs provided by the Hopaas service.

The core activity of the Hopaas service is to manage distributed optimization studies
by providing sets of hyperparameters to requesting computing nodes, the so-called Hopaas
clients. The creation, intermediate updates, and finalization of a trial is controlled from the
client-side by using a set of REST APIs. Such APIs, named ask, tell, and should_prune,
implement these actions upon POST HTTP requests with user authentication based on
an API token in the request path. A minimal description of the Hopaas REST APIs is
depicted in Table 2.2 and further detailed in the rest of this section.

A computing node ready to test a set of hyperparameters, whether it comes from
on-premises, Cloud, or HPC resources, will simply need a network connection with the
Hopaas server to take part to an optimization campaign. In particular, it will query
the Hopaas server via the ask API, including in the request body all the information
needed to define a study unambiguously. The Hopaas server will define a new trial,
possibly assigning it to an existing study, or creating a new one. Once created the trial,
the Hopaas server provides it with a unique identifier that is included in the HTTP
response together with the set of hyperparameters to be evaluated for the study.

Usually, the evaluation of a set of hyperparameters consists of training a model defined
by those hyperparameters aiming at the resulting value of the objective function. The
evaluated performance metric may correspond to the loss function computed during the
training procedure but, in general, it can be any numerical score obtained processing a
given set of hyperparameters. Once the evaluation is completed, the computing node will
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Figure 2.5: A Hopaas server orchestrating multiple studies across multiple sites.

finalize the trial using the tell API, whose body will include the unique identifier of the
trial and the final evaluation of the objective function.

The Hopaas server may serve multiple ask requests from different sources, assigning
them to one or different studies, while updating the surrogate model each time a new
evaluation is made available by querying the tell API. A schematic representation of the
orchestration of studies in multiple sites is reported in Figure 2.5.

Depending on the specific ML algorithm, intermediate evaluations of the objective
function can be accessed during the training procedure and used to abort non-promising
trials (pruning) without wasting computing power to take the training procedure to an
end. Optionally, the computing node may update the Hopaas server with intermediate
evaluations of the objective function by querying the should_prune API for monitoring
and pruning purposes. The body of a should_prune request will contain the unique
identifier of the trial, the intermediate value of the loss function, and an integer number
encoding the progress of the training procedure, the so-called step. The HTTP response
will indicate whether the study should be early terminated, or it is sufficiently likely to
result in an improvement over the previous tests.

A reference Python frontend was developed aiming at a facilitated access to the Hopaas
service from Python applications [131]. While Python is a primary choice for many
scientific applications, it should be noticed that the client simply wraps the REST APIs
into classes and functions, as the Hopaas protocol is designed to be language-agnostic,
relying on widely adopted web communication standards. In addition, the Hopaas client
is also framework-agnostic since the evaluation of the objective function for a given set of
hyperparameters can be implemented with any framework and environment.
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http://hopaas.cloud.infn.it/api/ask/user_token POST

http://hopaas.cloud.infn.it/api/tell/user_token POST

200empty HTTP response

Set-up of the optimization study
(e.g. title, min/max, sampler, search space)

1.

Retrieving the trial parameters
(both constant and optimizable parameters)

4.

Objective function computation
(e.g. closed formula, machine learning score)

5.

Creation/loading of the optimization study
(same set-up allows to load existing optimization study)

2.

Parameters sampled according to study set-up
(the prepared set of parameters defines an optimization trial)

3.

Optimization study updated with trial results
(parallel tests enabled by gradientless optimization strategies)

6.

Processing...

Ready for testing a new trial set
(both from the same or a new optimization study)

7a.
Ready for providing a new trial set

(score-driven suggestions enabled by default)

7b.

Framework-agnostic optimization campaign

Computing instance Hopaas server

+

Authorized users only!

200HTTP response with trial parameters

Figure 2.6: Workflow of an optimization study with a client-server approach based on
REST APIs.

Implementation

The reference implementation for the Hopaas service running on INFN Cloud relies on
containerized applications orchestrated with docker-compose. The web server imple-
menting the REST APIs is a scalable set of Uvicorn21 instances running an application
based on the FastAPI framework22. The BO algorithms are provided by integrating the
backend with Optuna23, while future extensions to additional frameworks are planned.
The access to the Uvicorn instances from the Internet is mediated by an NGINX24 reverse
proxy accessed via the encrypted HTTPS protocol. A PostgreSQL25 instance is part of
the docker-compose configuration to provide shared persistency to the multiple instances
of the web application backend. The workflow of the interaction between the Hopaas
server and computing nodes is depicted in Figure 2.6.

The same Hopaas server is designed to serve web-based user access. A web application,
developed in HTML, CSS, and JavaScript, is shipped to the client browser as defined by
a set of web-specific APIs in Uvicorn. The web pages of the frontend provide dynamic
visualizations by fetching data from specialized APIs at regular intervals. Plots showing
the evolution of the loss reported by different studies and trials are obtained with the
Chartist library26.

The user authentication and authorization procedure of the web application is managed
to rely on access tokens as defined by the OAuth2 standard, using the INFN GitLab

21https://www.uvicorn.org
22https://fastapi.tiangolo.com
23https://optuna.org
24https://www.nginx.com/solutions
25https://www.postgresql.org/about
26https://gionkunz.github.io/chartist-js
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instance as an identity provider. Support for INDIGO IAM27 is also planned for the
future [133]. Once authenticated, users can generate multiple API tokens through the
web application. Each API token has a validity period defined at generation and can
be revoked at any time. Tokens with shorter validity are more appropriate for usage in
public or untrusted contexts.

2.6.2 Hyperparameter optimization on HPC centers
The reference implementation of the Hopaas service presented in the previous Section has
found, in the LHCb efforts to provide the experiment with reliable flash-simulated samples,
its early adopters. As deeply discussed in Chapter 1, the detailed simulation of HEP
detectors has a high CPU cost, often committing the largest fraction of pledge resources
available to the LHC experiments. This has resulted in a joint effort within the HEP
community to produce alternative and faster simulation solutions to meet the increasing
request for simulated samples of the various physics working groups for their analyses. Two
major strategies are emerging and aim to reduce the computational cost for simulations
by providing (parametric) shortcuts that point either upstream of the reconstruction step,
referred to as fast-simulations, or downstream of the reconstruction step, then offering
the fastest option for simulation and called flash-simulations. Lamarr [3–5], which will
be described in Chapters 4 and 5, is the flash-simulation option for LHCb and allows
to reproduce analysis-level quantities by using advanced ML algorithms. In particular,
most of the parameterizations rely on Generative Adversarial Networks (GAN) [134],
a powerful algorithm that allows to learn the probability distributions of data by the
competition, namely an adversarial training, of two neural networks. By design, the
performance exhibited by GAN-based models is intimately connected to the combination of
hyperparameters chosen for the training and may require intensive optimization campaigns
to parameterize accurately the target distributions.

During my Ph.D., I had the opportunity to access several GPU-accelerated instances,
provided by on-premises, Cloud, and HPC resources. The pilot project for providing the
CERN experiments with a Cloud broker solution [135] gave me access to GPU-equipped
instances from AWS and GCP and raised the issues of how resources coming from different
providers could concur to the same optimization study. This motivated the design of
a proof-of-concept [136] aimed to thin as much as possible the requirements in terms
of both dependencies and security to combine different computing nodes regardless of
their provenance (e.g., on-premises, Cloud, or HPC resources). The solution then evolved
in Hopaas, relies on a centralized service that coordinates the optimization studies via
HTTP requests. This avoids any connection among nodes and only adds a network
requirement: the access to the Internet.

Several optimization studies have been orchestrated by the Hopaas service using
diverse computing instances, from scientific providers (like INFN Cloud and the CINECA
HPC systems) and commercial Cloud providers (like AWS and GCP). Most of the
resources have been provided by the CINECA supercomputer Marconi100 (technical
specifications in Table 2.3) which has allowed to perform the dozens of optimization studies
with hundreds of trials on each study required to find the best-suited set of hyperparameters
to build reliable parameterizations for the Lamarr framework. Hopaas has played a

27https://indigo-iam.github.io
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Marconi100 Leonardo

Nodes 980 3456

Processors IBM Power9 AC922, 2.60 GHz Intel Xeon 8358, 2.60 GHz

Cores 32 cores/node 32 cores/node

Accelerators 4 × NVIDIA V100 GPU/node 4 × NVIDIA A200 GPU/node

RAM 256 GB/node 512 GB/node

Node performance ∼ 32 TFLOPS ∼ 77 TFLOPS

Table 2.3: Technical specifications of the CINECA HPC systems.

key role in this respect, succeeding in coordinating more than twenty concurrent instances
coming from on-premises, INFN Cloud, and Marconi100, and allowing to perform HPO
campaigns for more than O(104) GPU hours. Notably, using Marconi100 has required a
custom network configuration [137] to enable communications between working nodes and
the Hopaas server, complying with the network policies typically in use at HPC centers.
Marconi100 was dismissed in June 2023 to leave the place to its successor, Leonardo
(technical specifications in Table 2.3), one of the most powerful supercomputing systems
worldwide, capable of executing more than 250 PFLOPS. At the time of writing, Hopaas
has not been tested on Leonardo nodes yet due to stricter network policies that prevent
working nodes (the only ones equipped with GPUs) from having access to the Internet
at all. Developments are undergone to relax the network constraints aiming to integrate
Leonardo within the distributed LHC computing infrastructure. Further developments
of Hopaas are planned to exploit the large computing power offered by Leonardo and
to rely on Cloud solutions for defining automatic pipelines performing optimization and
validation studies for the Lamarr parameterizations whenever new data are available28.

Most of the concepts briefly reported will have space to be expanded and clarified in
the next Chapters, while have been introduced here to provide the discussion on Hopaas
with the context that has motivated its conception and development.

28The solution briefly discussed aims to define pipeline, based on the MLOps paradigm, to deploy and
maintain Machine Learning models in production reliably and efficiently.
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3
Deep generative models

Year after year, architecture after architecture, model after model, we are
witnessing a continue and disruptive evolution of the performance achieved by
Deep Generative Models that, nowadays, populate the majority of the Artificial
Intelligence domains, from image generation to natural language processing.
Most of the enhancements results from an active scientific community that, in
addition to design novel architectures, deeply investigates the limitations and
drawbacks exhibited by the previous models, developing ever-changing strategies
to overcome them. The High Energy Physics experiments are watching carefully
the latest achievements aiming at the application of tuned versions of the most
promising algorithms for Fast Detector Simulation. This Chapter is devoted to
Deep Generative Models, from a general introduction depicted in Section 3.1
to a precise theoretical description aimed to characterize either Generative
Adversarial Networks (Section 3.2) or Normalizing Flows (Section 3.3).

3.1 Introduction
Deep Generative Modeling (DGM) is a quite active field in Machine Learning, where neural
networks are trained to approximate high-dimensional, non-trivial probability distributions
by relying on large data samples. Originally focused on Computer Vision applications,
nowadays DGM problems populate various Artificial Intelligence (AI) domains, studying
models for the generation of images, text, audio, and even more complex data structures,
like sequences (e.g., videos) or graphs (e.g., proteins). Such kind of techniques has become
more and more popular also in High Energy Physics, where are mostly investigated to
reproduce the response of the detectors to traversing particles. The common objective of
all these use-cases is to learn an unknown or intractable probability distribution from a
finite sample of instances distributed accordingly to the target distribution. It represents
a quite general problem that has been deeply studied by Statistics for decades, but that
remains computationally challenging to solve, especially in high dimensional space [138].

In general, the objective of a Generative Modeling problem is to learn, from a finite
set of data, a representation for an intractable probability distribution px defined over Rn,
where n is typically large, and px is a non-trivial distribution. If in statistical inference
problems we aim to find an expression for the target probability distribution, the ultimate
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Figure 3.1: Schematic representation of a generic Generative Modeling problem. The target
distribution p(x) is approximated with the distribution p̂(x) induced by the generator (or
generative model) when fed by elements sampled from a Gaussian distribution. Figure reproduced
from https://openai.com/research/generative-models.

goal of Generative Modeling problems is to obtain a generator

g : Rℓ → Rn (3.1)

namely a function g able to map elements from a tractable distribution pz defined over Rℓ

to points in Rn that resemble the given data. In other words, we assume that for each
points x ∼ px there is at least one element z ∼ pz, such that g(z) ≈ x. Since the element
z that results in a given x is generally unknown, it is customary to refer to it as the latent
variable and call Z the latent space. Without any loss of generality, pz is usually assumed
to be a multivariate Gaussian in Rℓ. Hence, disposing of the map function g allows us to
generate new instances x distributed according to px by simply applying g to an element
z drawn from pz ∼ N (0,1). A schematic representation of this process is depicted in
Figure 3.1.

Deriving g from first principle is infeasible for most of the datasets of interest. For
example, it may be challenging to model the process that transform an element sampled
from a multivariate Gaussian into the 2-D image representing the energy deposited within
a calorimeter by an electromagnetic shower. Therefore, in recent years, it has become
common relying on universal approximators, like neural networks, to parameterize the
generator function. Notably, two major techniques are in use to drive the neural network
training so that it approximate a generator map. In the first case, the training is driven
by measuring the similarity between the generated sample and the reference one. In the
second case, instead, the training is driven by “inverting” the generator map. Despite
the differences, both the strategies come with their own pros and cons. Quantifying the
similarity of two probability distributions from samples become more and more complex
as the dimensions increase. On the other hand, inverting the generator is a non-trivial
operation in most the cases, especially when it is modeled with a neural network that
presents nonlinear components by design [138].

The Deep Generative Models most commonly used follows:

1. Generative Adversarial Networks. Also called GAN, this model relies on the
competition between two neural networks, called discriminator and generator. The
discriminator is trained to perform a classification task, while the generator to
perform a simulation task. Further details discussed in Section 3.2.
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2. Variational Autoencoders. Also called VAE, this model relies on two neural
networks implementing an encoder-decoder system. The encoder define a map from
the reference space to a low-dimensional latent space. The decoder tries to invert
the encoder action, defining a map from the latent space to the synthetic space. The
training is driven minimizing the differences between the input and output spaces,
and regularizing the latent space. Further details in Ref. [139].

3. Normalizing Flows. By relying on a sequence of invertible and differentiable
transformations, this model allows to explicitly learn the data distribution p(x).
Further details in Section 3.3.

4. Diffusion Models. Inspired by the non-equilibrium thermodynamics, this model
works by destroying training data through the successive injection of Gaussian
noise, and then learning to recover the data by reversing this noising process (i.e.,
denoising process). After the training, we can use the Diffusion Model to generate
data by simply passing randomly sampled noise through the learned denoising
process. Further details in Ref. [140].

As schematically represented in Figure 3.2, all four models disposes of a latent space Z
that, used by the different-implemented generator maps, allows to produce a synthetic
space aiming at making it as similar as possible with the reference space.

The rest of this Section is dedicated to provide further details for two of the four Deep
Generative Models presented above. In particular, Section 3.2 offers a complete review on
the training issues that typically affect GAN-based systems, and how to mitigate them
using regularization strategies. A brief introduction on Normalizing Flows and how to
implement them relying on autoregressive models are discussed in Section 3.3.

Figure 3.2: Schematic representation of the learning strategies pursued by the various Deep
Generative Models presented. Figure reproduced from Ref. [140].
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3.2 Demystifying Generative Adversarial Networks
Generative Adversarial Networks (GANs) are a powerful class of generative models that
rely on the simultaneous training of two neural networks [134]:

• the generator G is trained to perform a simulation task, aiming at reproducing as
accurately as possible the reference data sample, starting from some noise source;

• the discriminator D is trained to perform a classification task, aiming at distinguish-
ing reference data from the output of the generator.

The goal is that D optimally discriminates on the origin of the two samples, and simul-
taneously the training procedure for G is to maximize the probability of D making a
mistake. This framework corresponds to a minimax two-player game.

The generator captures the data distribution pr starting from the latent space Z,
where elements z are sampled according to known distribution pz. Then, the generative
model G(z;θg) maps the latent space to the data space, inducing a distribution pg to
generator outputs. The discriminative model D(x;θd) outputs a single scalar, readable
as the probability that x comes from the data rather than G. Both the models can
be represented by FNNs with parameters θg and θd. In this context, the optimization
problem corresponds to training D to maximize the probability of correct labelling, and
simultaneously training G to minimize log(1−D(G(z))). Therefore, defining the V (D,G)
function as follows

V (D,G) = Ex∼pr [logD(x)] + Ez∼pz [log(1−D(G(z)))] (3.2)

the minimax game can be written in this form:

min
G

max
D

V (D,G) (3.3)

In the space of arbitrary functions G and D, a unique solution exists, with G recovering
the training data distribution and D equal to 1/2 everywhere. In the case where G
and D are defined by FNNs, the entire system can be trained with back-propagation.
Algorithm 3 describes the logic behind the minimax game, using a simple mini-batch
gradient descent as optimizer. It follows immediately that latter can be easily replaced
with a faster optimizer. More pedagogical explanation of the approach can be found in
Figure 3.3.

It can be proved that following Algorithm 3 allows the generator to achieve the desired
result, computing the minimax game and correctly mapping the latent space into the data
one. Solving the optimization problem (3.3) with respect to D, in fact, one can find the
optimal discriminator D∗ for fixed generator G:

D∗
G(x) = max

D
V (D,G) =

pr(x)

pr(x) + pg(x)
(3.4)

If we substitute expression (3.4) in the loss function (3.2), it follows that

V (D∗, G) = − log(4) + 2 · JS (pr∥pg) (3.5)
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Algorithm 3 Mini-batch gradient descent training of GANs.
Require: Learning rate η
Require: Number of discriminator updates k per generator iteration
Require: Mini-batch size ℓ
Require: Initial parameter vectors θ

(0)
d and θ

(0)
g

1: t← 0 (Initialize timestep)
2: while θg not converged do
3: s← 0 (Initialize a second timestep every iteration)
4: θ̃

(s)
d ← θ

(t)
d

5: for k steps do
6: s← s+ 1
7: Sample ℓ elements from the latent space, {zi}i=1,...,ℓ

8: Sample ℓ elements from the data space, {xi}i=1,...,ℓ

9: g
(s−1)
d ← ∇θd

1
ℓ

∑ℓ
i=1

[
logD

(
xi; θ̃

(s−1)
d

)
+ log

(
1−D

(
G
(
zi;θ

(t)
g

)
; θ̃

(s−1)
d

))]
10: θ̃

(s)
d ← θ̃

(s−1)
d + η g

(s−1)
d

11: end for
12: t← t+ 1
13: Sample mini-batch of ℓ elements from the latent space, {zi}i=1,...,ℓ

14: g
(t−1)
g ← ∇θg

1
ℓ

∑ℓ
i=1 log

(
1−D

(
G
(
zi;θ

(t−1)
g

)
; θ̃

(s)
d

))
15: θ

(t)
g ← θ

(t−1)
g − η g(t−1)

g

16: θ
(t)
d ← θ̃

(s)
d

17: end while
18: return θ

(t)
g (Resulting generator parameters)

Figure 3.3: GANs are trained by simultaneously updating both of the discriminator D (dashed
line in blue) and of the generator G. The goal of D is to distinguish between the data sample
(dotted line in black) from the generator one (solid line in green). The lower horizontal lines
and the upward arrows represent the latent space Z and the generator map G : z→ x. In (a)
an adversarial pair near convergence is shown, where pg is similar to pr, and D is a partially
accurate classifier. In the inner loop of the algorithm (k steps), D is trained to discriminate
samples from data, converging to D∗ (b). After an update to G, gradient of D has guided the
map G to flow to regions that are more likely to be classified as data (c). After a sufficient
number of iterations (d), if G and D have enough capacity, they will reach a point at which
both cannot improve because pg = pr. Here the discriminator is unable to differentiate between
the two distributions, and D(x) = 1/2. Pedagogical example reproduced from Ref. [134].
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where JS (pr∥pg) denotes the Jensen–Shannon divergence between the data distribution
and the one induced from generating process. Therefore, solving the minimax game (3.3)
corresponds to minimize the Jensen-Shannon divergence (JSD):

min
G

max
D

V (D,G) = min
G
V (D∗, G) = min

G
JS (pr∥pg) (3.6)

Since the JSD between two distributions is always non-negative and zero only when they
are equal, this proves that V (D∗, G) = − log(4) is the global minimum of V (D,G) and
that the only solution is pr = pg, the desired result [134].

GANs can be extended to a conditional model [141] if both the generator G and
discriminator D are conditioned on some extra information y, where latter can be any
kind of auxiliary information. One can perform the conditioning by adding new nodes
containing y to the input layer. In doing so, the loss function (3.2) can be rewritten as
follows:

V (D,G) = Ex∼pr [logD(x|y)] + Ez∼pz [log(1−D(G(z|y)|y))] (3.7)

3.2.1 Causes and solutions for training instability
GANs take a radically different approach compared to other generative models not
requiring inference or explicit calculation of the data likelihood. Instead, two neural
networks are used to solve a minimax game, that corresponds to minimize the JSD
between true data distribution and the generated one [142].

Even though JS(pr∥pg) reaches its minimum for pr = pg, in practice this result is
often irksome because GANs suffer from many issues, particularly during training:

• The generator collapses producing only a single sample or a small family of very
similar samples: it is known as mode collapse (or mode dropping);

• Generator and discriminator oscillate during training, rather than converge to a
fixed point;

• If imbalance between the two agents occurs, the system simply stops learning.

These recurrent problems have forced researchers to employ many tricks during the training
process [142], but despite this the set of hyperparameters for which latter converges is
generally very small.

Least Squares GANs

The typical solutions developed in the literature for overcoming the training instabilities
rely on changing the loss function that drives the training procedure, aiming at defining a
more robust competition system. Among the proposals, the Least Squares Generative
Adversarial Networks (LSGAN) [143] are remarkable. The core idea is to extend the
labeling range available to the discriminator, and disentangle it from the one of the
generator during the evaluation of the loss. Notably, suppose we use the a-b score scheme
for the discriminator, where a and b are the labels for fake and real data, respectively.
Then, we can reformulate the minimax (actually, a “minimini”) game, as follows:minD VLSGAN(D,G) =

1
2
Ex∼pr [(D(x)− b)2] + 1

2
Ez∼pz [(D(G(z))− a)2]

minGCLSGAN(D,G) =
1
2
Ex∼pr [(D(x)− c)2] + 1

2
Ez∼pz [(D(G(z))− c)2]

(3.8)
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where c denotes the value that G want D to believe for fake data.
Also for LSGAN we can find the optimal discriminator D∗ for a fixed generator G by

minimizing VLSGAN(D,G) defined in (3.8):

D∗(x) = min
D

VLSGAN(D,G) =
b pr(x) + a pg(x)

pr(x) + pg(x)
(3.9)

which, substituted in the generator loss in (3.8), results in
b− c = 1

b− a = 2

2C(D,G) = 2C(D∗, G) = χ2
Pearson(pr + pg∥2 pg)

(3.10)

where χ2
Pearson denotes the f -divergence between pr + pg and 2 pg if a, b, and c satisfy the

conditions of b− c = 1 and b− a = 2.
In the practice, two configuration for the parameters a, b, and c are the most employed

when one relies on LSGAN. The first one aims to satisfy the condition that ensure to
minimize the f -divergence once G and D are trained with the loss functions in (3.8). In
particular, by setting a = −1, b = 1, and c = 0, we get the following loss functions:minD VLSGAN(D,G) =

1
2
Ex∼pr [(D(x)− 1)2] + 1

2
Ez∼pz [(D(G(z)) + 1)2]

minGCLSGAN(D,G) =
1
2
Ex∼pr [(D(x))2]

(3.11)

Another method is to make G generate samples as real as possible by setting c = b.
For example, by using the 0-1 score scheme, we obtain the following loss functions:minD VLSGAN(D,G) =

1
2
Ex∼pr [(D(x)− 1)2] + 1

2
Ez∼pz [(D(G(z)))2]

minGCLSGAN(D,G) =
1
2
Ex∼pr [(D(x)− 1)2]

(3.12)

The authors of Ref. [143] declared to having observed similar performance with both
the loss functions defined above.

Unfolding the training instability problem

A complete analysis of the reasons behind the massive instability of GANs training is
reported in a paper by Martin Arjovsky and Léon Bottou [144]. Here, they notice that
generator updates get consistently worse as the discriminator gets better, although the
optimization problem (3.6) follows from achieving the optimal discriminator D∗.

As mentioned above, with an optimal discriminator trained with (3.3), the loss function
can be at most − log(4)+2 ·JS(pr∥pg). However, in practice, if we train D till convergence,
its error goes to 0, showing that the JSD between pr and pg is maxed out1. The only way
this may occur is if the supports of distributions are disjoint or lie in low dimensional
manifolds. Actually, these conditions are not so rare. Considering the generator map
G : Z → X , for instance, if the dimensionality of Z is less than the dimension of X (as it
is in most of the case), then the support of pg can only lie in a manifold with measure 0
for X .
1The global minimum of V (D,G) is a negative value equal to − log(4).
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Under this assumption, it can be proven that a perfect discriminator D⋆ always exists,
where D⋆ is a discriminator smooth and constant almost everywhere in the supports of pr
and pg. The fact that the discriminator is constant in both manifolds ensures that we
cannot really learn anything from gradient-based method. Therefore, from the existence
of D⋆ results the vanishing gradient of the generator. If we consider a discriminator D
approaching to D⋆, we get

lim
∥D−D⋆∥→0

∇θEz∼pz [log (1−D (Gθ(z)))] = 0 (3.13)

This shows that as our discriminator gets better, the gradient of the generator vanishes.
In other words, either our updates to the discriminator will be inaccurate, or they will
vanish. Thus, expression (3.13) points out that using the loss function (3.2) or leaving
the number of D-updates as hyperparameter can make GANs training extremely hard.

There is something we can do to break our gradient problem, and it corresponds to add
continuous noise to the inputs both of discriminator and generator (for more clarification,
see Ref. [144]). The insertion of noise allows to learn thanks to non-zero gradient of the
generator. However, the optimization problem for G is now proportional to the gradient
of noisy JSD:

Ez∼pz ,ε′ [∇θ log (1−D∗
ε (Gθ(z) + ε′))] = 2 · ∇θJS (pr+ε∥pg+ε′) (3.14)

where ε, ε′ ∼ N (0, σ2 I) and pX+ε(x) = Ey∼pX [pε(x− y)]. This variant of JSD measures
a similarity between the two noisy distribution and it is no more an intrinsic measure of
pr and pg distance. Again, all these drawbacks may be exceeded employing a different
loss function, such as the Wasserstein distance.

3.2.2 Wasserstein distance as stability solution
Before defining a new notion of distance, it is useful to open a parenthesis about the kind
of loss function we are looking for. First of all, we want a distance measure between two
probability distributions (one depending on parameters θ), namely ρ(pθ, pr). The most
crucial property of these distances we are interested in is their impact on the convergence
of sequences of probability distributions. A sequence of distributions {pt}t∈N converges if
and only if there is a distribution p∞ such that ρ(pt, p∞) tends to zero, a property that
depends heavily on the kind of distance ρ chosen [145].

Therefore, in optimizing θ we would like to define a model inducing a distribution
pθ (the generator), that makes the mapping θ 7→ pθ continuous. Here, with continuity
we refers to the sequence of distributions property for which the convergence of θt to θ
implies the convergence of pθt to pθ. Concluding the digression, the Wasserstein distance
is an interesting distance capable to be continuous even if the supports of distributions
are disjoint or lie in low dimensional manifolds. The Wasserstein distance is defined as
follows:

W (pr, pg) = inf
γ∈π(pr,pg)

E(x,y)∼γ [ ∥x− y∥ ] (3.15)

where π(pr, pg) denotes the set of all joint distributions γ(x,y) whose marginals are
respectively pr and pg. Even if the Wasserstein distance is much weaker than the JSD
(for more clarification, see Ref. [145]), W (pr, pg) is a continuous loss function on θ under
mild assumptions:
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1. If Gθ is continuous in θ, so is W (pr, pθ);

2. If Gθ is locally Lipschitz and satisfies regularity assumption 1, then W (pr, pθ) is
continuous everywhere and differentiable almost everywhere;

Statements 1-2 are false for the Jensen-Shannon divergence JS(pr, pθ).
The fact that JSD provides non-sensitive loss function for supports lying in low

dimensional manifolds highlights the importance of using a different distance measure, one
capable to learn even in these circumstances. Training GANs with Wasserstein distance
allows to obtain systems more stable and resistant to mode collapse. They are called
Wasserstein GANs, or simply WGANs. However, the infimum in (3.15) is computationally
intractable, and we need a different formulation. Luckily, the Kantorovich-Rubinstein
duality comes to our rescue:

W (pr, pg) = sup
∥ f ∥L≤1

(
Ex∼pr [f(x)]− Ex∼pg [f(x)]

)
(3.16)

where the supremum is over all the 1-Lipschitz functions f : X → R. Note that if we
replace ∥ f ∥L ≤ 1 for ∥ f ∥L ≤ K (consider K-Lipschitz for some constant K), then we
end up with K ·W (pr, pg). We can now rewrite the original minimax game as follows:

min
G

max
C∈C

W (C,G) = min
G

max
C∈C

(Ex∼pr [Cω(x)]− Ez∼pz [Cω(Gθ(z))] ) (3.17)

where C (the critic) replaces the discriminator and C is the set of 1-Lipschitz functions.
Again, both C and G can be represented by FNNs with parameters ω and θ. Training
WGANs can still be described by Algorithm 3 adopting the appropriate changes on the
loss function. Even if we have found a new formulation for the loss function that prevents,
by design, any vanishing gradient problem, it strictly depends on out ability to make the
critic a Lipschitz function (C ∈ C). Several techniques are available in the literature, but
here we will focus on two among the most used.

Implicit Lipschitz constraint

Historically, the way to constrain the critic network to induce a 1-Lipschitz function
follows a reduction of the expressivity of the FNN by clipping the weights ω within
a predefined range. However, such a technique was soon overcome since source of
optimization difficulties due to a violation of the universal approximation theorem for the
critic network. The solution, proposed in Ref. [146], relies on an implicit property of the
optimal solution f ∗ for the optimization problem defined in (3.16). As long as f ∗ is a
1-Lipschitz, it has gradient norm 1 almost everywhere under pr and pg. This property
provides a metric-informed constraint for the critic network that can then regularized to
resemble a 1-Lipschitz function without any loss of expressivity, since the regularization
term, is naturally satisfied whenever the critic network approximate the optimal solution
f ∗. In practice, to enforce the critic to reach the condition just described, we can add a
regularization term to the loss function W (C,G):

W (C,G) = Exr∼pr [C(x)]− Exg∼pg [C(xg)]︸ ︷︷ ︸
Original critic loss

+λ · Ex̂∼px̂ [ (∥∇x̂C(x̂)∥2 − 1)2 ]︸ ︷︷ ︸
Gradient penalty

(3.18)
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Figure 3.4: Optimal discriminator and critic when learning to distinguish two Gaussians. Here
it’s clearly shown that the discriminator of original GAN saturates and results in vanishing
gradients. On the other hand, WGAN critic is able to provide very clean gradients on all parts
of the space. Reproduced from Ref. [145].

where, for simplicity, xg denotes G(z) with z ∼ pz, and x̂ results from a linear interpolation
between real and generated samples, namely x̂ = εxr + (1 − ε)xg with ε uniformly
distributed. The introduction of this term is called gradient penalty and defines WGAN-
GP systems.

Once ensured the Lipschitzianity of the critic, the loss function resembles the Wasser-
stein distance, whose properties (statement 2 in particular) ensures that W (C,G) is
continuous everywhere and differentiable almost everywhere. This means that we can
always train the critic function till optimality without any problems since it, by design,
cannot saturate. In Figure 3.4 we represent this behaviour comparing it with the one of
the original discriminator that, as expected, provides no reliable gradient information.

Explicit Lipschitz constraint

Contrary to the GP-like regularizations that aim to induce the Lipschitzianity of the critic
by requiring that some implicit property is satisfied, the explicit methods allow to define
regularization terms that explicitly penalize any violation of the Lipschitz constant K:

dY(f(x), f(y)) ≤ K · dX (x,y) for any x,y ∈ X (3.19)

where the metric spaces (X , dX ) and (Y , dY) are the domain and the codomain of the
function f , respectively. However, relying on this explicit formulation within the training
is unfeasible in most of the case, since exploring the whole parameter space defined by a
neural network is computationally too expensive. On the other hand, one could propose
to approximate K by relying on pairs (x,y) randomly sampled from pr and pg but it may
ends up with an approximation far from being accurate. A viable solution is to change
the method for sampling the pairs, aiming at statistically exploring such directions where
the Lipschitz constant K is massively violated. This is the idea behind the Adversarial
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Lipschitz Regularization method [147] that allows to rewrite the critic loss function as
follows:

W (C,G) = Exr∼pr [C(x)]− Exg∼pg [C(xg)]︸ ︷︷ ︸
Original critic loss

+λ · Ex∼pr,g

(
|C(x)− C(x+ radv)|

∥radv∥2
− 1

)2

+︸ ︷︷ ︸
Adversarial Lipschitz penalty

(3.20)
where pr,g is a combination of the real and generated distributions (meaning that a sample
x can come from both), λ is the regularization hyperparameter, and the adversarial
perturbation is defined as

radv = argmax
r; ∥r∥2>0

|C(x)− C(x+ r)|
∥r∥2

(3.21)

The introduction of this term is called Adversarial Lipschitz penalty and defines WGAN-
ALP systems [147].

3.2.3 Cramér distance as biased gradients solution
The use of Wasserstein distance with the regularization terms reported in (3.18) and
(3.20) improves significantly the training procedure, allowing to increase its stability and
to reproduce faithful sample. The great performances of WGAN systems are due in part
to a critic function capable of driving effectively the training, and in part to the fact that
the Wasserstein distance is an ideal divergence2.

Another important requirement for distance measure used in Machine Learning al-
gorithms is to satisfy the unbiased sample gradients condition. This property ensure
that3, given a set of random variables {xi}i=1,...,ℓ distributed according to q and given the
empirical distribution q̂ℓ =

1
ℓ

∑ℓ
i=1 δxi

(note that q̂ℓ is a random quantity), the distance
from the empirical distribution converges to the distance from real one. In other word,
the property we are looking for is that

Ex∼q[∇θρ(q̂ℓ, qθ)] = ∇θρ(q, qθ) (3.22)

where ρ is a general distance, and qθ denotes the usual parameterized distribution. Better
said, having unbiased sample gradients allows to rewrite relation (2.1) as (2.4) saying
to solve the same optimization problem. Unfortunately, Wasserstein distance does not
dispose of unbiased sample gradients.

The most dangerous consequence of not satisfying condition (3.22) is that the minimum
of the expected sample loss θ̂∗ is in general different from the minimum of the real
Wasserstein loss θ∗:

θ̂∗ = argmin
θ∈Θ

E[W (q̂ℓ, qθ)] ̸= argmin
θ∈Θ

E[W (q, qθ)] = θ∗ (3.23)

where not equal relation is to be considered in general. This affects heavily adversarial
models, preventing the generator from widespread generalization if one uses SGD-like
methods for optimization (Figure 3.5). Once again, the solution lies in changing the loss
function.
2A divergence that satisfies scale sensitive and sum invariant conditions is called ideal. Deep studies of
these properties are beyond the scope of this thesis (for more details, see Ref. [148]).

3The absence of bold symbols in the following steps is not a typo: for simplicity, we are considering the
unidimensional case.
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Figure 3.5: Learning curves of three different adversarial models: using Wasserstein distance,
Kullback–Leibler divergence and Cramér distance respectively. For the last two, having unbiased
sample gradients, the batch size does not prevent from reaching the minimum. Instead, the
convergence of Wasserstein distance is heavily conditioned by hyperparameter setting. Plots
reported from Ref. [148].

Cramér GANs

An alternative to the Wasserstein distance is the Cramér distance that, used as loss
function, shows the same appealing properties of W (p, q), but also providing us with
unbiased sample gradients. The Cramér distance is defined as follows:

ln(p, q) = sup
f∈Fm

|Ex∼p[f(x)]− Ex∼q[f(x)] | (3.24)

where Fm =
{
f : f is absolutely continuous,

∥∥ df
dx

∥∥
m
≤ 1
}

and m is the conjugate expo-
nent of n, namely n−1 +m−1 = 1. Noticing that ln and Wasserstein distance are identical
at n = 1, it is not surprising that the Cramér distance is an ideal divergence for 1 ≤ n ≤ ∞.
Requiring also unbiased sample gradients, the range comes down to the only n = 2. By
choosing the definition (3.24) with n = 2 therefore, the Cramér distance gains all the
positives of W (p, q) with the addition of unbiased sample gradients.

The energy distance E is a natural extension of the Cramér distance to the multivariate
case. Let p and q be probability distributions over Rd and let x,x′ and y,y′ be independent
random variables distributed according to p and q respectively. For

f ∗(a) = Ey′∼q [ ∥a− y′∥2 ]− Ex′∼p [ ∥a− x′∥2 ] (3.25)

the energy distance can be written as

E(p, q) = Ex∼p[f
∗(x)]− Ey∼q[f

∗(y)] (3.26)

Starting from expression (3.26), we can define a minimax two-player game to train
generative and discriminative models represented by FNNs. Just like for Wasserstein case,
the discriminator is renamed critic and it still has the task of distinguishing data origin,
but in a transformed space defined by h : Rd → Rk. Rewriting the critic function (3.25)
as follows

f ∗
h(a) = Ex′

g∼pg

[
∥h(a)− h(x′

g)∥2
]
− Ex′

r∼pr [ ∥h(a)− h(x′
r)∥2 ] (3.27)

where xg still denotes G(z) with z ∼ pz, the minimax game corresponds to

min
G

max
h
Lg = min

G
max

h

(
Exr∼pr [f

∗
h(xr)]− Exg∼pg [f

∗
h(xg)]

)
(3.28)
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with f ∗(a) belonging to F2 = {f : f is absolutely continuous, ∥∇af
∗∥2 ≤ 1}. To ensure

this condition, it is a good idea adding the gradient penalty term to Lg:

Lcritic = −Lg + λ · Ex̂∼px̂ [ (∥∇x̂f
∗
h(x̂)∥2 − 1)2 ] (3.29)

where x̂ = εxr + (1− ε)xg with ε ∼ U(0, 1).
Using Lg and Lcritic, we are able to build an adversarial model called Cramér GAN. It

is important to note that the minimax game (3.28) is based on the loss maximization with
respect to the map h, and not with respect to the critic itself4 (such as for Wasserstein
case). Therefore, the discriminative neural network is responsible for mapping its inputs
into a space in which the critic can infer their origin. On the other hand, the generative
neural network is driven by critic mistakes, succeeding into widespread generalization.
Algorithm 4 describes the logic behind Cramér GAN systems, using a simple Mini-batch
Gradient Descent not to make reading even heavier. This strategy ensures incredible
stability during the training process, and provides increased diversity in the generated
samples [148].

3.3 Brief introduction to Normalizing Flows
Relying on a series of invertible and differentiable transformations (namely bijective
transformations), Normalizing Flows offer a general mechanism to define expressive
probability distributions, starting from a (simple) base distribution. According to George
Papamakarios and others [149], Normalizing Flows operate by pushing a simple density
through a series of transformations to produce a richer, potentially more multi-modal
distribution, like a fluid flowing through a set of tubes.

Let x be a d-dimensional real vector, and suppose we would like to define a joint
distribution over x. The main idea behind Flow-based models it to represent x as a
transformation T of a real vector z sampled from pz(z):

x = T (z) where z ∼ pz(z) (3.30)

where pz(z) is typically referred to as base distribution of the Flow-based model. Both the
transformation T and the base distribution pz(z) can be described by a set of parameters
(denote them as θ and φ, respectively), hence inducing a family of distributions over x
parameterized by {theta, φ}.

By requiring that T is invertible, both T and T−1 are differentiable, and that also z is
a d-dimensional vector, under these conditions the probability density function of x is
well-defined and can be obtained by a (simple) change of variables:

px(x) = pz(z)| det JT (z)|−1 where z = T−1(x) (3.31)

Equivalently, we can also write px(x) in terms of the Jacobian of the T−1 transformation:

px(x) = pz
(
T−1(x)

)
| det JT−1(x)| (3.32)

4Not touching the critic function, solving the minimax game, is what guarantees that the unbiased sample
gradients condition remains fulfilled.
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Algorithm 4 Cramér GAN trained by Mini-batch Gradient Descent. The critic function
is replaced with an approximation, according to the hypothesis h(xr) ≈ 0 for xr ∼ pr.
Require: Learning rate η
Require: Number of critic steps ncritic per generator iteration
Require: Mini-batch size ℓ
Require: Gradient penalty coefficient λ
Require: Initial parameter vectors w(0) and θ(0)

1: t← 0 (Initialize timestep)
2: while θ not converged do
3: s← 0 (Initialize a second timestep every iteration)
4: w̃(s) ← w(t)

5: for ncritic steps do
6: s← s+ 1
7: for i = 1, . . . , ℓ do
8: Sample xr from the data space
9: Sample z, z′ from the latent space

10: Sample a random number ε from U(0, 1)
11: xg ← G

(
z;θ(t)

)
12: x′

g ← G
(
z′;θ(t)

)
13: x̂← εxr + (1− ε)xg

14: f ∗
r ←

∥∥h (xr; w̃
(s−1)

)
− h

(
x′
g; w̃

(s−1)
)∥∥

2
−
∥∥h (xr; w̃

(s−1)
)∥∥

2

15: f ∗
g ←

∥∥h (xg; w̃
(s−1)

)
− h

(
x′
g; w̃

(s−1)
)∥∥

2
−
∥∥h (xg; w̃

(s−1)
)∥∥

2
16: Lg ← f ∗

r − f ∗
g

17: f ∗
i ←

∥∥h (x̂; w̃(s−1)
)
− h

(
x′
g; w̃

(s−1)
)∥∥

2
−
∥∥h (x̂; w̃(s−1)

)∥∥
2

18: L(i)
critic ← −Lg + λ · (∥∇x̂f

∗
i ∥2 − 1)2

19: end for
20: w̃(s) ← w̃(s−1) + η · ∇w

(
1
ℓ

∑ℓ
i=1 L

(i)
critic

)
21: end for
22: t← t+ 1
23: for i = 1, . . . , ℓ do
24: Sample xr from the data space
25: Sample z, z′ from the latent space
26: Sample a random number ε from U(0, 1)
27: xg ← G

(
z;θ(t−1)

)
28: x′

g ← G
(
z′;θ(t−1)

)
29: x̂← εxr + (1− ε)xg

30: f ∗
r ←

∥∥h (xr; w̃
(s)
)
− h

(
x′
g; w̃

(s)
)∥∥

2
−
∥∥h (xr; w̃

(s)
)∥∥

2

31: f ∗
g ←

∥∥h (xg; w̃
(s)
)
− h

(
x′
g; w̃

(s)
)∥∥

2
−
∥∥h (xg; w̃

(s)
)∥∥

2

32: L(i)
g ← f ∗

r − f ∗
g

33: end for
34: w(t) ← w̃(s)

35: θ(t) ← θ(t−1) − η · ∇θ

(
1
ℓ

∑ℓ
i=1 L

(i)
g

)
36: end while
37: return θ(t) (Resulting generator parameters)
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Figure 3.6: Pedagogical representation of a Flow-based model transforming the base distribution
pz(z) into the target one px(x) step by step. Figure reproduced from Ref. [150].

The Jacobian JT (z) is the d× d matrix of all the partial derivatives of T given by:
∂T1

∂z1
· · · ∂T1

∂zd... . . . ...
∂Td

∂z1
· · · ∂Td

∂zd

 (3.33)

Hence, we can define a by Flow-based model by implementing T (or T−1) with a neural
network and assuming, without any loss of generality, pz(z) to be a multivariate Gaussian.

An important property of invertible and differentiable transformations is that they
are composable. Given two such transformations T1 and T2, their composition T1 ◦ T2 is
also invertible and differentiable. Consequently, we can build complex transformations by
composing multiple instances of simpler transformations, and be sure to still satisfy the
requirements for calculating the density px(x). In practice, it is common to chain together
multiple transformations to obtain T = TK ◦ · · · ◦ T1, where each Tk transforms zk−1 into
zk, assuming z0 = z and zK = x. A schematic representation of the “flow” followed by the
base distribution pz(z) through the transformation T1, . . . , TK is depicted in Figure 3.6.

Interestingly, a Flow-based model enables two different operations: sampling from
the model via Eq. (3.30), and evaluating the model’s density via Eq. (3.32). The two
operations have different computational requirements, since the first needs to sample
from pz(z) and compute the forward transformation T , while the second relies on the
computation of both the inverse transformation T−1 and its Jacobian determinant [149].

Since with Eq. (3.32) Flow-based models expose an explicit expression for the density
px(x), the training criterion of such algorithms is simply the negative log-likelihood over
the training data, namely

L =
1

N

N∑
i=1

log px(x) (3.34)

3.3.1 Autoregressive Flows
For constructing the Flows, we rely on a chain of invertible and differentiable transforma-
tions T = TK ◦ · · · ◦ T1, where each transformation represents a (single) building block,
that must have a tractable inverse and Jacobian determinant. In practice, either Tk or
T−1
k can be implemented using a neural network fθk for which follows

fθk → Tk : zk = fθk(zk−1) fθk → T−1
k : zk−1 = fθk(zk) (3.35)
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(a) Forward (b) Inverse

Figure 3.7: Illustration of the i-th step of an Autoregressive Flow. Figure reproduced from
Ref. [149].

How to use neural networks to define forward/inverse transformations that ensure an
efficient computation of both the inverse and the Jacobian determinant without com-
promising the expressive power of the model is one of the major challenges in designing
Flow-based models. A possible solution is to rely on Autoregressive Flows [151, 152],
namely Flow-based models based on the following forward transformation:

z′i = τ(zi;hi) where hi = ci(z<i) (3.36)

where τ is called the transformer and ci the i-th conditioner. The forward transformation
is illustrated in Figure 3.7a. By definition, the transformer is a strictly monotonic function
of zi (hence invertible) and is parameterized by hi. Conceptually, the transformer describes
the action of the flow on zi to result into z′i. On the other hand, the conditioner controls
the parameter hi of the transformer, and can then modifies its behavior. No constraints
are applied to the conditioner except for the list of variables that can take as input, hence
can be parameterized with a neural network.

As long as the transformer is invertible, the above construction is invertible for any
choice of τ and ci. Given z′, we can compute z iteratively as follows:

zi = τ−1(z′i;hi) where hi = ci(z<i) (3.37)

The inverse transformation is illustrated in Figure 3.7b. It should be noticed that if in
the forward computation each hi, and therefore z′i, can be computed in parallel, in the
inverse computation all z<i need to be computed before zi, so that z<i is available to the
conditioner for computing hi.

Constructing an Autoregressive Flow thus requires to take a choice on how to implement
either the transformer and the conditioner functions. Among the various species available
in literature, in the following two types of transformers and a single conditioner are briefly
discussed. For further details refer to Ref. [149].

Affine transformer

One of the simplest possible choices for the transformer is the class of affine functions :

τ(zi;hi) = αi zi + βi where hi = {αi, βi} (3.38)
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Figure 3.8: Example of a spline-base trans-
former with 5 segments. Each segment is a
monotonic rational-quadratic function, which
can be easily inverted [153]. The locations of
the endpoints (black dots) parameterize the
spline. Figure reproduced from Ref. [149].

Invertibility is guaranteed if αi ̸= 0. To this end we can reformulate the problem as

τ(zi;hi) = exp (α̃i) zi + βi where hi = {α̃i, βi} (3.39)

where α̃i is now an unconstrained parameter. Autoregressive Flows with affine transformers
are attractive because of their simplicity and analytical tractability, but suffer from a
limited expressivity.

Spline-based transformer

To overcome the limits of the affine functions, we can implement the transformer as a
monotonic spline [153], namely a piecewise function consisting of K segments, where each
segment is represented by a function easily invertible (such as a polynomial).

Masked conditioner

This approach uses a single, typically feed-forward neural network that takes as input z
and outputs the entire sequence (h1, . . . ,hd) in one pass. Despite efficient to evaluate as,
given z, all the parameters h can be obtained in one neural network pass, it requires that
the FNN obeys to the autoregressive nature of the conditioner, namely that an output
hi cannot depend on inputs z>i. A simple way to remove invalid connections among the
FNN neurons is by multiplying each weight matrix elementwise with a binary matrix,
called mask, describing the autoregressive structure of the network. A general procedure
for constructing masks for multilayer perceptron is described in Ref. [154].
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4
Lamarr: the LHCb flash-simulation option

The detailed simulation of the physics processes occurring within the LHCb
detector is tremendously expensive in terms of CPU hours, enough to take
down the majority of the resources available to the experiment. Reducing the
computational cost for simulation production is an unavoidable requirement
to fulfill the upcoming and future demands for simulations expected from
the physics working groups. In this thesis work, we propose Lamarr, the
flash-simulation option for LHCb, designed to provide the experiment with
the fastest solution for simulation production. This chapter is devoted to
present and detail the Lamarr project. Section 4.1 provides a comprehensive
introduction Lamarr, highlighting development motivations and design details.
Section 4.2 describes the parameterizations adopted to reproduce the high-level
response of the Tracking system, while Section 4.3 is devoted to detail the
machine-learning-powered solutions chosen for the PID system models. Lastly,
Section 4.4 describes the strategies currently under investigation to properly
parameterize the electromagnetic calorimeter, that includes to face the particle-
to-particle correlation problem. The integration of the Lamarr project within
the LHCb Simulation Software is demanded to the next chapter.

4.1 Introduction
Disposing of statistically significant simulated samples is an unavoidable requirement for
the analysis of most of the data collected by the LHCb experiment. The simulation of the
high-energy collisions, of the decay processes, of the radiation-matter interactions occurring
within the detector, of the electronics, and finally of the data acquisition pipeline is crucial
to interpret signal, reject background contributions and perform efficiency studies. In
order to build a library of interesting decay processes that may be relevant to be analyzed
for the wide physics program of the LHCb Collaboration, analysts request thousands of
simulated samples corresponding to different signals, while sharing the same detector
description and acquisition conditions. Under these assumptions, it is not surprising that
LHCb has spent more than 90% of the total CPU budget for simulation production during
LHC Run 2 [69].

The upgraded version of the experiment is designed to collect data at a higher luminosity
and with a software trigger capable to select interesting decay modes based on a real-time
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Figure 4.1: Percentage of CPU time spent by each LHCb sub-detector for the detailed simulation
of 100 minimum bias events in the Run 2 configuration of the experiment. The timing data
reported in this bar chart has been obtained using Gauss [61] sim10 (v56r7) and has been
provided by the LHCb Performance and Regression (LHCbPR) tests system [156].

event reconstruction [155]. As a consequence, the upgraded LHCb detector is able to
collect larger and pure datasets during LHC Run 3, enabling the study of rarer decay
processes and particles. Meeting the upcoming and future requests for larger simulated
samples, due to the wish of retaining constant the ratio between statistical uncertainties
on the collected and simulated data, will set significant pressure on the pledged CPU
resources.

Within the simulation pipeline, the major CPU consumer is Geant4 [59, 60] that
is responsible to reproduce the radiation-matter interactions between all the stable and
quasi-stable particles (e.g., electrons, photons, muons, pions, kaons or protons) and the
detector materials. The vast majority of the computing power is devoted to calculate the
energy deposited in each active volume of the detector: for instance, in a typical minimum
bias event, about 60% of the resources are dedicated to the Calorimeter system, while
another 22% to the RICH detectors as depicted in Figure 4.1. This quasi-monopoly of
CPU time is due to the cascade of secondary particles that characterizes both the detectors
when traversed by long-lived particles and that require to be properly reproduced in the
detailed simulation of the LHCb detector response.

Despite the amount of CPU dedicated to simulate raw data, most of the analyses
only require very high-level quantities that result from the application of dedicated
reconstruction algorithms: for example, a set of aligned hits on the tracking detectors
can be combined into a track candidate. Spending the majority of a precious resource
such as CPU to simulate quantities that will be used only indirectly and then discarded
sounds rather sub-optimal, especially for all of those analyses that require large simulated
samples to study the adopted selection strategy or to model the statistical distribution of
various background contributions relying only on analysis-level variables. On the contrary,
providing directly the high-level response of the LHCb detector offers a viable solution to
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amarr
Figure 4.2: Logo of the Lamarr project.

reduce the pressure on the computing budget without any renounce for the analysts as
long as the chosen parameterizations are able to correctly model the errors introduced
in the detection and reconstruction steps. Similar parameterizations follow the so-called
flash-simulation paradigm and can be effectively implemented relying on modern machine
learning techniques.

The LHCb Collaboration is spending great efforts in reducing the computational
cost for simulation production, in particular developing a simulation framework able to
reproduce directly the high-level response of its spectrometer. This novel framework is
named Lamarr1 [3–5] and is the official flash-simulation option for the LHCb experiment.
Figure 4.2 shows the logo of the Lamarr project.

My Ph.D. research activity has been mainly dedicated to the development of the
Lamarr framework. In particular, large efforts have been spent to the design, training
and validation of its underlying parameterizations. The following Sections are devoted
to a in-depth description of the Lamarr design, highlighting its modular pipelines and
detailing its atomic components, namely the parameterizations. The next chapter instead
is dedicated to the Lamarr framework itself, describing how the latter is integrated
with the LHCb Simulation Software and concluding with some outlook on its future
development

4.1.1 Priorities for flash-simulated samples
Flash-simulation strategies are not designed to entirely replace the detailed simulations.
As an example, regardless of the quality one could achieve with a (non-)parametric
simulation, detector studies will necessarily remain a use-case for Detailed Simulation,
since they require a deterministic relation between the physics processes and the sign left
by long-lived particles when traverse the detector.

On the other hand, whenever one needs simulations to test if the adopted selection
strategy rejects the background contributions sufficiently well or to design the statistical
model describing the latter backgrounds before performing the final fit of an analysis,
disposing of a flash-simulation option allows to satisfy the analysts request for simulated
samples with a lower computational cost. During LHC Run 2, the analysts were used
to adopt RapidSim [72] for some of these applications. Operating as a particle-gun
simulator generating heavy flavour particles with kinematics sampled from input pT
spectra [157], RapidSim offers a rough description of the LHCb geometrical acceptance
and a simplified parameterization of the tracking resolution function. The PID information
was usually added by using the resampling or transformation techniques described in

1The framework name comes from Hedy Lamarr (1914–2000), who was an Austrian-born American
film actress and inventor who pioneered the technology that would one day form the basis for today’s
communication systems. Read more on https://en.wikipedia.org/wiki/Hedy_Lamarr.
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Section 4 of Ref. [49]. While relatively coarse with respect to the detailed simulation
approach, RapidSim has been a precious tool for LHCb providing the analysts with
abundant and cheap samples that would otherwise require thousands of CPU hours to be
produced.

RapidSim could be significantly improved by adopting modern machine learning
techniques to redesign its parameterizations, like the geometrical acceptance, the tracking
resolution function, or the high-level response of the PID system. Integrating such novel
simulation framework within the LHCb software stack also enables using the exact same
MC physics generators as the official LHCb simulation, including Pythia8 [25] with
LHCb-specific tuning [158] and EvtGen [58], in addition to the particle-gun approach.
Moreover, providing the same reconstructed physics objects, such as tracks and photons,
as the detailed simulation, enables injecting the simulated dataset in the same analysis
pipelines. These are the core ideas motivating the Lamarr project.

The development of the Lamarr parameterizations has been driven by the opportunity
of potentially replacing the largest fraction of fully-simulated events with synthetic samples
obtained via flash-simulations. For example, exploring the simulated datasets in the LHCb
bookkeeping engine for 2016, one finds 16.5 billion simulated events, split into 1.8 million
files and corresponding to about 1.5 PB of data. In about 76% of the simulated events, the
generated signal processes do not include any photons or electrons but only hadrons and
muons. Hence, equipping Lamarr with parameterizations that describe the response of
the Tracking and PID systems when traversed by charged hadrons (e.g., pions, kaons and
protons) and muons, one virtually earns an alternative way to produce the vast majority
of the simulated events. Adding the necessary parameterizations to simulate photons
would enable generating another 15% of events, while to simulate the remaining 9% one
should also model electrons.

Electrons are rather unique objects, challenging the tracking reconstruction algorithms
since they are more prone to multiple scattering2 effects while traversing the tracking
stations [159]. In addition, electrons may emit bremsstrahlung radiation3 while interacting
with the tracking stations upstream the magnet, which makes analysts to search, among
the energy clusters in the ECAL detector, candidates for emitted photons and using
them to correct a posteriori the measurement of the momentum of particles believed to
be electrons. Implementing a flash-simulation for the physics objects involved in such a
process is a non-trivial particle-to-particle correlation problem that requires, in the first
instance, having a correct model for the ECAL when traversed by photons and then to
build a whole LHCb-specific parameterization for the electrons. This is mandatory for
enabling Lamarr to virtually offer an alternative solution to simulate the remaining 9%
of events involving electrons.

Figure 4.3 shows the pie charts of the simulated data split into the categories described
above, summing up either the number of events (left) or the data size (right). From the
comparison of the two plots, it is evident that simulations including photons and electrons
require larger storage per event with respect to simulations not involving ECAL. The

2A charged particle traversing a medium is deflected by many small-angle scatters due to the Coulomb
interaction with nuclei. The elastic scattering of charged particles by Coulomb interactions is called
Rutherford scattering. Read more on https://en.wikipedia.org/wiki/Rutherford_scattering

3In particle physics, we call bremsstrahlung the electromagnetic radiation produced by the deceleration
of a charged particle when deflected by another charged particle, typically an electron by an atomic
nucleus. Read more on https://en.wikipedia.org/wiki/Bremsstrahlung.
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Figure 4.3: Pie charts of the number of events (left) and the corresponding data size (right) as
obtained from the LHCb bookkeeping engine for 2016 data taking. The simulations that do not
involve the ECAL detector are reported in blue; the ones that requires neutrals are highlighted
in yellow, while including also the electrons we obtain the green portions.

reason is that, on average, raw information is more often needed to perform analyses
involving the calorimeter and therefore preserved on disk. As a result, we expect that the
use of flash-simulations in analyses involving photons or electrons would be less profitable,
even if their modeling remains needed to ensure that Lamarr provides a full description
of the LHCb detector.

In summary, simulating electrons would require a dedicated Tracking parameterization
and a specialized effort in building the response of the PID system, including the ECAL
model needed by analysts to reconstruct the energy of an electron track candidate interested
by bremsstrahlung radiation. All that would be necessary on top of a parameterization
for the Tracking and PID systems when traversed by hadrons and muons, which provides
a viable solution to reduce the pressure on CPU offering the fastest option to simulate
the majority of the events requested at LHCb for its physics program.

4.1.2 The Lamarr project design
The first attempt of providing LHCb with a flash-simulation option has originated from
the desire for a customized version of the Delphes framework [160]. In order to profit as
much as possible from the use of parametric strategies to accelerate the computation of
high-level quantities, Delphes is designed as a pipeline of modules describing a generic
multipurpose detector [70]. Despite the wish of integrating the LHCb software stack
with Delphes, the Event Model of the two frameworks is so different that the effort to
achieve a perfectly functional integration would supersede the benefit from reusing existing
parameterizations which are, in any case, mainly designed for concentric detectors. Hence,
at the end of May 2019, the LHCb Simulation Group renounced to rely on Delphes for
flash-simulations, preferring to develop an independent project natively integrated with
the simulation software stack and powered by machine learning LHCb-tuned models, then
we named Lamarr [3–5].

Taking inspiration from the modular layout of Delphes, the Lamarr framework
consists of multiple pipelines of parameterizations that follow one another to reproduce
the high-level response of the LHCb sub-detectors when traversed by quasi-stable particles
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as provided by the MC physics generators. In particular, the Lamarr pipeline can be
logically split in two separated chains according to the charge of the generated particles.

A branch treating charged particles will handle the Tracking and the Particle Identifi-
cation parameterizations. The parameterization of the Tracking, replacing the simulation
and reconstruction of the mark left by charged particles in the tracking stations, is divided
in four subsequent blocks describing:

• the geometrical acceptance (see 4.2.2);

• the reconstruction efficiency for different categories of tracks (see 4.2.3);

• the resolution effect, effectively smearing the reconstructed quantities with respect
to the properties of generated particles (see 4.2.4);

• the uncertainties, obtained by the reconstruction algorithm from the minimization
of the χ2 of the trajectory of a particle through the marks left in the detector, and
parameterized with generative models in Lamarr (see 4.2.5).

Charged particles for which a track is successfully reconstructed are associated to a
Particle Identification (PID) interpretation based on the response of the RICH detectors,
of the MUON system and of the calorimeters. The parameterization of such interpretation
is symmetrically defined as follows:

• the simulation of the combined response of the two RICH detectors (see 4.3.2);

• the simulation of the response of the MUON system expressed as two likelihood
values for the muon and non-muon hypothesis (see 4.3.3);

• the simulation of a loose, binary flag, named isMuon, implemented on programmable
electronics in the real experiment, and parameterized with a neural network in
Lamarr; (see 4.3.4)

• the simulation of reconstruction procedure combining the RICH and MUON re-
sponses into experiment-level classifiers, either as combined likelihoods or using
multivariate classifiers. Since additional inputs (notably including the calorimeter
response) are used in the real version of the reconstruction with marginal, but non-
negligible effect, generative models are used to model the global response, effectively
encoding the missing inputs as part of the latent space. Also, since the distributions
of the global PID features are drastically different depending on the isMuon criterion,
two different generative models are trained and they are evaluated selectively based
on the predicted response of the isMuon pipeline (see 4.3.5).

We expect that charged particles leave a mark in the Tracking system that Lamarr
characterizes in terms of geometrical acceptance, efficiency and resolution effects as further
described in Section 4.2. The reconstructed tracking variables are then used to compute
the response of the PID system for a set of traversing charged particles (i.e., muons, pions,
kaons, and protons) as detailed in Section 4.3. In case of neutral particles (e.g., photons),
the calorimeters play a key role and, since multiple photons can concur to the energy of a
single calorimetric cluster, parameterizing particle-to-particle correlation effects is of major
relevance. The solutions investigated so far are reported in Section 4.4. The Lamarr
pipelines described above are schematically represented in Figure 4.4 using logical blocks.

82



Propagation in
magnetic field

Geometrical
acceptance

Tracking
efficiency

Tracking
resolution

Charged particle
identification

Persistency

Neutral object
kinematics Neutral object

identification

Physics
generators

amarr

Modular pipeline

Figure 4.4: Scheme of the Lamarr modular pipeline. According to the charge of the particles
provided by the physics generator, two sets of parameterizations are defined: the charged particles
are passed through the Tracking and PID models, while the neutral ones follow a different path
where the calorimeter modeling plays a key role.

In addition, disposing of a modular layout for flash-simulations gives the opportunity to
design also hybrid solutions able to accelerate the production of detailed simulated samples.
For instance, fast- or flash-simulation strategies can be adopted on top of a partial detailed
simulation to reproduce the response of one or more computationally expensive detectors,
like the RICH and the Calorimeter systems, reducing the CPU time needed for simulation
production. The LHCb Collaboration is currently investigating several techniques that
follow such philosophy using parametric functions [161] or relying on deep generative
models [162] aimed at reducing the computational cost for the calorimeter simulation.
One of the goal of the Lamarr project is also that of expanding these techniques, offering
flash-simulation parameterizations for the whole spectrometer.

4.2 Charged particles pipeline: the tracking system
When detected and properly reconstructed, a charged particle traversing the LHCb
spectrometer gives origin to a track. A track represents the trajectory of a charged
particle through the detector, bent by the effect of the magnetic field and described by
a collection of hits that fires in correspondence of the active volumes of the tracking
detectors. To select a coherent set of hits forming a track, each hit is described in terms
of states. To define a state, we need to specify the position of the hit along the track,
the corresponding track momentum and the covariance matrix between the estimators
of these parameters, track-level features extracted from a combination of hits using a
Kalman-based4 procedure [163]. By convention, only few states are defined for each track

4The Kalman filter is an algorithm that uses a series of measurement collected over time and the
corresponding uncertainties to estimate unknown states of the investigated system relying on a pa-
rameterization of the joint probability distribution over the states for each time-frame. Read more on
https://en.wikipedia.org/wiki/Kalman_filter.
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at specific z positions that give them meaningful names, like EndVelo for states at the
end of the VELO, EndT for states at the end of the T stations, or ClosestToBeam for
referring to states close to the LHC proton beam. A specific track state is defined through
the following state vector:

x⃗ =


x
y
tx
ty
q/p

 where


tx = ∂x/∂z

ty = ∂y/∂z

q = ±1
(4.1)

The corresponding uncertainties on x⃗ are given by a 5 × 5 state covariance matrix, C.
The state vector and its covariance matrix are commonly referred to as the track state.

Lamarr does not have any notion of hit and does not rely on any explicit geometrical
description of the detector, aiming to a fully parametric modeling of the detection
and reconstruction procedure [160]. Hence, to completely define a reconstructed track,
Lamarr needs to provide the following parameterizations:

• Propagation. Model for the trajectory of a charged particle through the dipole
magnetic field;

• Geometrical acceptance. Model for the probability of a particle to lay within
a sensitive area of the detector considering the effects of bending and multiple
scattering;

• Tracking efficiency. Model for the probability of a track to be successfully
reconstructed, declaring also the tracking stations involved to reconstruct the track;

• Tracking resolution. Model for the errors introduced to the estimates of the
track parameters x⃗ by the reconstruction algorithms due to, for example, multiple
scattering phenomena or imperfections in the detector alignment;

• Track covariance matrix. Model for the uncertainty assessed by the Kalman
filter and encoded in the track covariance matrix C.

To the purpose of most of the analyses at LHCb, only the ClosestToBeam state is
relevant, since it is used to evaluate the consistency of a track with a vertex defining
quantities such as the impact parameter 5 (IP) or to fit decay vertices measuring quantities
such as the lifetime of a particle.

The rest of this Section is devoted to discuss how to parameterize the high-level response
of the LHCb Tracking system when traversed by charged particles. The parametric function
describing the propagation of particles in the magnetic field is discussed in Section 4.2.1.
How to use neural networks to parameterize both the geometrical acceptance and the
tracking efficiency as a classification problem is detailed respectively in Sections 4.2.2 and
4.2.3. Lastly, Sections 4.2.4 and 4.2.5 show how the tracking resolution and the covariance
matrix of the ClosestToBeam track state can be successfully parameterized using deep
generative models.

5In the LHCb jargon, we call impact parameter the minimum distance of a track to a primary vertex.
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4.2.1 Propagation through the magnetic field
Predicting the position at which each charged particle crosses the tracking stations and
the three-momentum of the corresponding track states does not require to know exactly
the trajectory of the traversing particle. Indeed, the tracking stations are positioned in
a region of the spectrometer with negligible magnetic field, resulting into straight track
segments. In addition, the difference between the momentum along the bending axis
(x-axis) as measured upstream and downstream of the magnetic field can be considered
constant if one neglects dissipative processes, such as radiation-matter interactions.

Combining these two considerations together, the effect of the magnetic field on the
path of a particle can be modeled by a single change of direction of the momentum vector
in the xz-plane, in correspondence of a point referred to as zkick. Such parameterization is
called single-kick dipole approximation and is schematically reported in Figure 4.5.
Using such an approximation, parameterizing the trajectory of charged particles throughout
the spectrometer only requires the definition of two parameters:

• ∆px – constant variation of the momentum p along the bending axis;

• zkick – coordinate of the point where the effect of the magnet is condensed.

The combination of the magnet bending power with the structure of the Tracking system
ensures that charged particles experience a variation on the momentum direction ∆px of
about 1.23 GeV/c [165]. Figure 4.6 shows that this constant value describes effectively
the dynamics of particles traversing the LHCb magnetic field in a wide momentum range.
The two peaks exhibited in the Figure result from Detailed Simulation and reports the
momentum variation as measured for particles positively and negatively charged (q = ±1).
In particular, by considering the magnet polarity, it results that

∆px ≡ p′x − px ≃

{
−q · 1.23 GeV/c in MagUp conditions
+q · 1.23 GeV/c in MagDown conditions

(4.2)

where px and p′x represent the projections along the bending axis of the momentum
measured upstream and downstream of the magnetic field, respectively.

Figure 4.5: Graphical representation of the single-kick approximation. The main component of
the magnetic field is perpendicular to the drawn plain. Figure reproduced from Ref. [164].
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Figure 4.6: Distribution of the momentum variation along the bending axis (x-axis) between
the track state at the end of the T stations (EndT) and the one upstream of the magnetic field
(ClosestToBeam). Two vertical dashed lines highlight the adopted parameterization that fix the
momentum variation: ∆px = 1.23 GeV/c. Stacked histograms with different colors and filling
strategies show the ∆px distributions in four p-bins as obtained from Detailed Simulation.

The zkick coordinate depends on the transverse momentum pT of the particle, reason
why the single-bending-point parameterization is also called pT -kick approximation. By
considering negligible the variation of the y-projection of the momentum py, the conserva-
tion law stands that pz changes with a value given by p′z ≃

√
p2x + p2z − p′x2. Hence, by

using a set of trivial trigonometric formulas and by observing the kinematic constraints of
the physical system considered, the zkick coordinate can be expressed as follows:

zkick =
x′ − x+ z · tx − z′ · t′x

tx − t′x
where

{
tx = px/pz

t′x = p′x/p
′
z

(4.3)

where (x, z, tx) denotes the coordinates and slope of a track state upstream of the magnetic
field, while (x′, z′, t′x) reports the same set of features for a downstream track state.

To parameterize the zkick coordinate as a function of the momentum p, Lamarr relies
on a parabolic model whose parameters were obtained by studying the propagation of
quasi-stable particles within the LHCb Tracking system. Figure 4.7 shows the distribution
of zkick as obtained from Eq. (4.3) by using the reconstructed ClosestToBeam and EndT
states provided by the detailed simulation of a sample of b-hadron decays. The kick
z-coordinate is reported versus q/p with the momentum values taken from the physics
generators. The result of the fit procedure is depicted in Figure 4.7 through a red solid
line, together with the corresponding parameters.

4.2.2 Geometrical acceptance
The geometrical acceptance model is defined as the probability that a charged particle
lays within the fiducial volume of the detector where reconstructing the track is, at
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Figure 4.7: Lamarr parameterization of the propagation through the LHCb magnetic field of
charged particles reconstructed as Long tracks. The x-axis reports the charge of the track over
its momentum q/p, whereas the y-axis shows the single-kick approximation point zkick. The
color code represents the number of particles in simulation, while the red curve indicates the
result of a second-order polynomial fit used to parameterize zkick as a function of q/p. The
coefficients βi of the parabolic model employed in Lamarr are reported on the plot.

least a priori, possible. Most of the particles are either in acceptance or not, so such a
probability is either 0 or 1. However, at the boundaries of the fiducial volume, multiple
scattering phenomena may occur and, since they are not included in the propagation
parameterization, disposing of intermediate probability values becomes relevant.

The current version of Lamarr relies on a neural network (NN) for modeling the
geometrical acceptance of the LHCb spectrometer. Such non-parametric approximator was
trained to predict the fraction of particles that lay in acceptance based on the following
set of generator-level information:

• the origin vertex position (x, y, z) of the generated particle;

• the logarithm of the momentum log10(p) of the generated particle;

• the slopes tx and ty of the generated particle;

• the pseudorapidity η of the generated particle;

• the azimuthal angle φ of the generated particle;

• the specie (electron, muon, or hadron) of the generated particle;

• the charge q of the generated particle.

Despite the large correlation between the slopes (tx, ty) and the doublet (η, φ), it was
verified that explicitly including both of them results in better-performing models.
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Figure 4.8: Schematic representation of a residual
block composed by two weight layers that are linked
to the previous ones via a skip connection. Figure
reproduced from Ref. [111].

A training dataset was produced by simulating a cocktail of b-hadron decays with an
official configuration of Gauss [61] sim10 (v56r2), involving Pythia8 [25], EvtGen [58],
and Geant4 [59,60]. Following the steps of the official Data Analysis framework of LHCb,
we defined an inAcceptance flag for each quasi-stable generated particle and stored it
in a tabular dataset. A neural network equipped with skip connections [111] was then
trained to predict the fraction of particles for which inAcceptance is verified, performing
a binary classification task. Different particle species are prone to multiple scattering
effects in different ways, showing specific behavior at the boundaries of the fiducial volume.
Hence, to parameterize the “geometrical efficiency” of the LHCb detector a specie-sensitive
neural network model was trained using the kinematic information of the MC truth.

Model design and training

The neural network currently adopted for the geometrical acceptance is constructed with
a set of 10 fully connected layers of 128 neurons with ReLU activation functions. A
final dense layer with a single neuron and a sigmoid activation function follows. The
classification task was performed by minimizing the binary cross-entropy (BCE) using
Adam [119] as optimizer. To prevent the vanishing gradient problem, the hidden layers are
implemented as 1-D residual blocks [111] where each layer is directly linked to the previous
one with what is called a skip connection, schematically represented in Figure 4.8. Using
skip connections ensures having non-zero gradients during the back-propagation even if the
learning gradient of an inner residual block is zero. This allows to scale NN-based models
that can be safely trained without any adoptions of customary layer-based regularization
strategies [166].

The neural network was implemented and trained using Keras [167] with Tensor-
Flow [168] as back-end. The training procedure is split in two phases, a pre-training with
very high learning rate and label smoothing to protect against numerical instabilities,
followed by a fine-tuning phase to restore the statistics-motivated loss function, while
drastically reducing the learning rate to preserve the stability of the optimization pro-
cedure. In practice, at the beginning of the training procedure, the BCE was used with
label smoothing set to 0.05, and Adam initialized with a learning rate of 0.01. During
the following 200 epochs, such learning rate was exponentially decreased up to 10−4.
Then, fixed the learning rate to the last scheduled value and restored to zero the label
smoothing, the model weights were fine-tuned for 100 more epochs. The complete list
of hyperparameters used to define and train the model for the geometrical acceptance is
reported in Table 4.1

To train this 10-layer neural network, a dataset of O(108) detailed simulated particles
was prepared. The training procedure was performed on a fraction of 50% of the dataset.
An independent 10% portion of the sample was used, during the training, to ensure
that no effect of overtraining was present. Lastly, the remaining 40% of the dataset was
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training fine-tuning

skip connections [111] ✓ ✓

input shape (None, 12) (None, 12)
input preprocessing ✓ ✓

n hidden layers 10 10
n hidden neurons 128 128
hidden activation functions ReLU ReLU
hidden kernel regularizer L2 L2
L2 regularization factor [169] 5× 10−4 5× 10−4

output activation function sigmoid sigmoid
output shape (None, 1) (None, 1)
optimizer Adam Adam
learning rate 0.01 1× 10−4

loss function BCE BCE
BCE label smoothing 0.05 p

learning rate scheduling ExpDecay p

scheduling decay rate 0.1 -
scheduling decay steps 20000 -
batch-size 25000 25000
batches per epoch ∼ 200 ∼ 200

n epochs 200 100

Table 4.1: Hyperparameters of the NN-based model for the acceptance.

preserved for validation and performance measurement. The left plot of Figure 4.9 reports
the learning curves of the trained model: comparing the BCE values obtained on the
training and test samples, we do not observe evidence of overtraining. The right plot
of Figure 4.9 shows the evolution of the Area Under the Curve (AUC) for the Receiver
Operating Characteristic (ROC) curve, that illustrates the performance achieved by the
neural network in accomplishing the binary classification task. The change in the definition
of the loss function between the two phases of the training motivates the dip immediately
after the beginning of the second phase. Then the fine-tuning procedure quickly adapts
the weights to minimize the BCE without label smoothing. The fact that the model
exhibits better performance on the test set rather than on the training one is probably
due to an L2 weights regularizer [169] applied to the neural network.

Validation studies

The geometrical acceptance model has been validated by applying the parameterization to
a dataset never used during the training and that counts about 3 million simulated particles.
The neural network was trained to predict the fraction of generated particles laying within
the LHCb Tracking system. Such fraction is parameterized as the probability that the
generator-level kinematics and the specie of the input particles verify the inAcceptance
flag. Hence, to assess the performance of the trained model, we compare the kinematic
distributions of the particles in acceptance with the ones obtained by weighting the
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Figure 4.9: Learning and metric curves of a L2-regularized deep neural network [169] trained
to parameterize the LHCb geometrical acceptance. The evolution of the BCE loss function is
reported on the left. The right plot shows how the ROC AUC score improved during the training
and fine-tuning steps. The training procedure consisted of 200 epochs where label smoothing
and learning rate scheduling are used. A fine-tuning phase followed counting 100 epochs with
label smoothing and learning rate scheduling strategies disabled.

kinematic distributions of the generated particles with the predicted probability.
The validation plots of the geometrical acceptance model for the electrons as a function

of the pseudorapidity η in four longitudinal momentum pz bins is depicted in Figure 4.10.
The pseudorapidity distributions of the generated electrons are shown in grey, while what
lays in acceptance is highlighted using blue-hatched histograms. The results of the trained
specie-sensitive neural network is superimposed with a red solid-line. Figures 4.11 and
4.12 show the same comparisons for muons and hadrons (i.e., pions, kaons, and protons),
respectively.

As highlighted by the reported histograms, the NN-based model succeeds in parame-
terizing the LHCb geometrical acceptance in a wide range of the kinematic space of the
generated particles, taking into account correctly the specie of such particles.

4.2.3 Tracking efficiency
When a charged particle has kinematics such that lays in the LHCb detector acceptance,
we expect that it deposits some energy in at least a portion of the Tracking system.
The reconstruction algorithms can identify track segments involving only the VELO, the
Trigger Tracker (TT), or the tracking stations installed downstream of the magnet (T1,
T2, and T3), and then combine them into several track classes, depending on the set of
detectors in which matching hits are found [163,170]. The track classes of major relevance
for analysis purposes are schematically shown in Figure 4.13 and further described in the
following:

• Long tracks. Class of tracks that traverse the full Tracking system. They have
hits in both the VELO and the T stations, an optionally in TT. Traversing the full
magnetic field, they are characterized by the most precise momentum estimate, and
therefore are the most important class of tracks for physics analyses.

90



0 2 4 6 8
Pseudorapidity

1

100

104
N

um
be

r o
f e

lec
tr

on
s /

 (0
.0

8)

LHCb  Simulation Preliminary pz∈ (0.1, 1.0) GeV/c

2016 MagUpGenerated
In Acceptance (sim)
In Acceptance (model)

1 2 3 4 5 6
Pseudorapidity

0

2000

4000

6000

N
um

be
r o

f e
lec

tr
on

s /
 (0

.0
5)

LHCb  Simulation Preliminary pz∈ (1.0, 5.0) GeV/c

2016 MagUpGenerated
In Acceptance (sim)
In Acceptance (model)

2 3 4 5 6
Pseudorapidity

0

2000

4000

N
um

be
r o

f e
lec

tr
on

s /
 (0

.0
5)

LHCb  Simulation Preliminary pz∈ (5.0, 10.0) GeV/c

2016 MagUpGenerated
In Acceptance (sim)
In Acceptance (model)

3 4 5 6
Pseudorapidity

0

2000

4000

6000

N
um

be
r o

f e
lec

tr
on

s /
 (0

.0
4)

LHCb  Simulation Preliminary pz∈ (10.0, 50.0) GeV/c

2016 MagUpGenerated
In Acceptance (sim)
In Acceptance (model)

0 2 4 6 8
Pseudorapidity

1

100

104

N
um

be
r o

f e
lec

tr
on

s /
 (0

.0
8)

LHCb  Simulation Preliminary pz∈ (0.1, 1.0) GeV/c

2016 MagUpGenerated
In Acceptance (sim)
In Acceptance (model)

1 2 3 4 5 6
Pseudorapidity

0

2000

4000

6000

N
um

be
r o

f e
lec

tr
on

s /
 (0

.0
5)

LHCb  Simulation Preliminary pz∈ (1.0, 5.0) GeV/c

2016 MagUpGenerated
In Acceptance (sim)
In Acceptance (model)

2 3 4 5 6
Pseudorapidity

0

2000

4000

N
um

be
r o

f e
lec

tr
on

s /
 (0

.0
5)

LHCb  Simulation Preliminary pz∈ (5.0, 10.0) GeV/c

2016 MagUpGenerated
In Acceptance (sim)
In Acceptance (model)

3 4 5 6
Pseudorapidity

0

2000

4000

6000

N
um

be
r o

f e
lec

tr
on

s /
 (0

.0
4)

LHCb  Simulation Preliminary pz∈ (10.0, 50.0) GeV/c

2016 MagUpGenerated
In Acceptance (sim)
In Acceptance (model)

0 2 4 6 8
Pseudorapidity

1

100

104
N

um
be

r o
f e

lec
tr

on
s /

 (0
.0

8)

LHCb  Simulation Preliminary pz∈ (0.1, 1.0) GeV/c

2016 MagUpGenerated
In Acceptance (sim)
In Acceptance (model)

1 2 3 4 5 6
Pseudorapidity

0

2000

4000

6000

N
um

be
r o

f e
lec

tr
on

s /
 (0

.0
5)

LHCb  Simulation Preliminary pz∈ (1.0, 5.0) GeV/c

2016 MagUpGenerated
In Acceptance (sim)
In Acceptance (model)

2 3 4 5 6
Pseudorapidity

0

2000

4000

N
um

be
r o

f e
lec

tr
on

s /
 (0

.0
5)

LHCb  Simulation Preliminary pz∈ (5.0, 10.0) GeV/c

2016 MagUpGenerated
In Acceptance (sim)
In Acceptance (model)

3 4 5 6
Pseudorapidity

0

2000

4000

6000

N
um

be
r o

f e
lec

tr
on

s /
 (0

.0
4)

LHCb  Simulation Preliminary pz∈ (10.0, 50.0) GeV/c

2016 MagUpGenerated
In Acceptance (sim)
In Acceptance (model)

0 2 4 6 8
Pseudorapidity

1

100

104

N
um

be
r o

f e
lec

tr
on

s /
 (0

.0
8)

LHCb  Simulation Preliminary pz∈ (0.1, 1.0) GeV/c

2016 MagUpGenerated
In Acceptance (sim)
In Acceptance (model)

1 2 3 4 5 6
Pseudorapidity

0

2000

4000

6000

N
um

be
r o

f e
lec

tr
on

s /
 (0

.0
5)

LHCb  Simulation Preliminary pz∈ (1.0, 5.0) GeV/c

2016 MagUpGenerated
In Acceptance (sim)
In Acceptance (model)

2 3 4 5 6
Pseudorapidity

0

2000

4000

N
um

be
r o

f e
lec

tr
on

s /
 (0

.0
5)

LHCb  Simulation Preliminary pz∈ (5.0, 10.0) GeV/c

2016 MagUpGenerated
In Acceptance (sim)
In Acceptance (model)

3 4 5 6
Pseudorapidity

0

2000

4000

6000

N
um

be
r o

f e
lec

tr
on

s /
 (0

.0
4)

LHCb  Simulation Preliminary pz∈ (10.0, 50.0) GeV/c

2016 MagUpGenerated
In Acceptance (sim)
In Acceptance (model)

Figure 4.10: Validation plots of the acceptance model for electrons as a function of the
pseudorapidity η in four longitudinal momentum pz bins. The kinematics distributions of
the generated electrons are represented as light grey shaded histograms. The distributions of
electrons in acceptance are shown through blue-hatched histogram, while their parameterization
as modeled by a deep neural network is superimposed using red solid-line histograms.
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Figure 4.11: Validation plots of the acceptance model for muons as a function of the pseudora-
pidity η in four longitudinal momentum pz bins. The kinematics distributions of the generated
muons are represented as light grey shaded histograms. The distributions of muons in acceptance
are shown through blue-hatched histogram, while their parameterization as modeled by a deep
neural network is superimposed using red solid-line histograms.
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Figure 4.12: Validation plots of the acceptance model for hadrons as a function of the
pseudorapidity η in four longitudinal momentum pz bins. The kinematics distributions of
the generated hadrons are represented as light grey shaded histograms. The distributions of
hadrons in acceptance are shown through blue-hatched histogram, while their parameterization
as modeled by a deep neural network is superimposed using red solid-line histograms.

• Upstream tracks. Class of tracks that only pass through the VELO and TT
stations. In general, their momentum is too low to traverse the magnet and reach
the T stations. However, they pass through the RICH1 detector and may generate
Cherenkov photons if they have p > 1 GeV/c. They are therefore also used to
understand backgrounds in the particle identification algorithm of the RICH.

• Downstream tracks. Class of tracks that only pass through the TT and T stations.
They are important for the reconstruction of long lived particles, such as K0

S and Λ,
that decay outside of the VELO acceptance.

• VELO tracks. Class of tracks that only involve the VELO. They are typically
large-angle or backward tracks, which are useful for primary vertex reconstruction.

• T tracks. Class of tracks that only involve the T stations. They are typically
produced in secondary interactions, but are still useful during the treatment of
RICH2 data for particle identification.

Given their definition, distinguishing VELO and T tracks from non-reconstructed
particles is probably outside of the scope of flash-simulations. Actually, taking a particle
in acceptance with hits in the VELO, the fact that no match is found in the TT detector,
thus originating a VELO track, is due to second-order effects not directly modeled by
Lamarr. In the same way, T tracks are typically produced by secondary interactions,
whose parameterization is, as of today, beyond the scope of Lamarr. Hence, both VELO
and T tracks are considered as not reconstructed in the current version of the tracking
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Figure 4.13: Schematic representation of the LHCb Tracking system that consists of a vertex
locator (VELO), a large-area tracker located upstream of the magnet (TT), and three tracking
stations placed downstream of the magnet (T1, T2, and T3). Track segments reconstructed
involving one or more of these detectors can be combined into different track classes: namely
Long, Upstream, Downstream, VELO, and T tracks.

efficiency model, whose aim is then to predict the probability that a charged particle is
reconstructed as a Long, Upstream, or Downstream track.

For parameterizing the tracking efficiency, Lamarr relies on a neural network equipped
with skip connections [111] that takes as input the same set of generator-level variables
adopted by the model for acceptance described in Section 4.2.2. The training and vali-
dation of this non-parametric approximator can count on O(3× 107) particles resulting
from Detailed Simulation and reconstructed by using the Brunel and DaVinci applica-
tions [171]. Since we are interested only in the particles for which reconstructing the tracks
is possible, such a dataset only contains candidates that verify the inAcceptance flag.
Generalizing what has been done for the geometrical acceptance, this novel specie-sensitive
neural network was trained to perform a multi-class classification task. The aim is to
predict whether a generated particle in acceptance will be reconstructed based on its specie
and kinematics. In case of a positive answer, the parameterization should also indicate
which tracking detectors are involved in the reconstruction procedure, forecasting the
probability that such particle will be reconstructed as a Long, Upstream, or Downstream
track [5].

Model design and training

The current version of the tracking efficiency model relies on a 10-layer neural network
with 128 neurons in each hidden layer and ReLU activation functions. The network output
is moderated by a final dense layer with 4 neurons (one per track class, including the
non-reconstructed one) with a softmax as an activation function. The training procedure
was driven by the minimization of the categorical cross-entropy (CCE) by using Adam as
an optimizer.

Most of the training strategies are the same adopted by the geometrical acceptance
model. As described in Section 4.2.2, the use of skip connections is crucial to avoid the
gradient vanishing problem [111]. The training procedure was split into two phases also
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training fine-tuning

skip connections [111] ✓ ✓

input shape (None, 12) (None, 12)
input preprocessing ✓ ✓

n hidden layers 10 10
n hidden neurons 128 128
hidden activation functions ReLU ReLU
hidden kernel regularizer L2 L2
L2 regularization factor [169] 5× 10−4 5× 10−4

output activation function softmax softmax
output shape (None, 4) (None, 4)
optimizer Adam Adam
learning rate 0.01 ∼ 1.6× 10−4

loss function CCE CCE
CCE label smoothing 0.05 p

learning rate scheduling ExpDecay ExpDecay
scheduling decay rate 0.1 0.1
scheduling decay steps 35000 50000
batch-size 25000 25000
batches per epoch ∼ 200 ∼ 200

n epochs 300 200

Table 4.2: Hyperparameters of the NN-based model for the efficiency.

in this case. During the first phase, the CCE was used with label smoothing set to 0.05,
and Adam initialized with a learning rate of 0.01. During the following 300 epochs, such
learning rate was exponentially decreased up to 10−4. During the second phase, the decay
steps of the scheduling were increased to slow the learning rate scheduling. Then, restored
to zero the label smoothing, the model weights were fine-tuned for 200 more epochs. The
complete list of hyperparameters adopted to define and train the model for the tracking
efficiency is reported in Table 4.2.

The training dataset was arranged by selecting a fraction of 50% of the O(3× 107)
particles generated via detailed simulations. Another 10% portion of the sample was used
to monitor any signs of overtraining, while the remaining 40% was preserved for validation
studies. The learning curves representing the evolution of the CCE during the training
procedure are quite similar to the one in Figure 4.9 and not so descriptive.

While not really motivated from a theoretical perspective, since the task is really to
assign a probability of belonging to a class rather than classifying occurrences, we found
it helpful to show the performance of the neural network showing the history of the F1

score for the four classes under investigation is preferred (Figure 4.14). The F1 score is
the harmonic mean of the precision and recall:

F1 = 2
precision · recall
precision + recall

=
2TP

2TP + FP + FN
(4.4)

where TP, FP, and FN represent the number of true positive, false positive, and false
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negative instances resulting from the trained model, respectively.
Using the F1 score for a multi-class classification requires projecting the task into a

binary classification problem following a one-vs-all philosophy: the TP, FP, and FN are
computed considering true the instances belonging to the class under study and false all
the others. Following this strategy, the evolution of the F1 scores for not reconstructed,
Long, Upstream, and Downstream tracks is reported in Figure 4.14. We do not observe
significant evidence of overtraining, actually, the presence of an L2 weights regularizer [169]
ensures that the model shows better performance in recognizing Long and Upstream
tracks on the test set rather than on the training one. The different F1 scores achieved by
the four classes reflect their statistical population within the training dataset. The model
clearly succeeds in identifying not reconstructed and Long tracks, since they represent
68% and 23% of the generated particles, respectively. Upstream and Downstream tracks
achieve worse performance, as expected by poorly represented classes: the remaining 4%
and 5% portions of the training sample.

Validation studies

The ability of the trained neural network to parameterize the tracking efficiency is assessed
on a sample of about 3 million particles never seen during the training procedure. The
model aims to predict the fraction of particles in acceptance that are properly reconstructed
by the LHCb detector based on the generator-level kinematics and their species. The neural
network was also trained to identify the set of sub-detectors involved in the reconstruction
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Figure 4.14: Metric curves reporting the F1 score of the deep neural network trained to model
the LHCb tracking efficiency for the four track classes provided by Lamarr. The training
procedure consisted of 300 epochs where label smoothing and learning rate scheduling are used.
A fine-tuning phase followed counting 150 epochs with label smoothing disabled.
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process, to forecast the probability that a particle, once reconstructed, is associated with
a Long, Upstream, or Downstream track. Similarly to what was done for the acceptance
parameterization, we evaluate the performance of the trained model by comparing the
kinematic distributions of the reconstructed particles with the ones obtained by weighting
the kinematic distributions of the particles in acceptance with the probability predicted
for the various track classes.

The validation plots of the tracking efficiency model for electrons as a function of the
pseudorapidity η and of the z-coordinate of the origin vertex are depicted in Figure 4.15
in four bins of momentum p. The kinematic distributions of the electrons in acceptance
are reported in grey, while stacked histograms (in hatched fill) are used to highlight if a
particle is reconstructed as a Long (in green), Upstream (in red), or Downstream (in blue)
track. The output of a neural network trained to perform this multi-class classification is
superimposed with solid-line histograms. Similar comparisons are repeated for muons and
hadrons (i.e., pions, kaons, and protons), as shown in Figures 4.16 and 4.17, respectively.

The agreement between the kinematic distributions resulting from detailed simulations
and the ones induced by the NN-based model is pretty good, even on poorly populated
tails. It is noteworthy that the neural network is able to reproduce the distribution of
the pseudorapidity for high-energy hadrons that, when reconstructed as Long tracks, is
characterized by a dip at η ≈ 4.4. A corresponding enhancement in the probability of
reconstructing these particles as VELO tracks suggests that multiple scattering phenomena
affect the propagation of the tracks, deflecting them outside of the TT and preventing the
reconstruction as Long tracks. Figure 4.18 shows this effect using a detailed simulated
sample.

The major improvement fulfilled with respect to the tracking efficiency models reported
in Ref. [3, 4, 172] is the use of a neural network sensitive to the specie of the generated
particle, and able to parameterize successfully Upstream and Downstream tracks in
addition to the Long ones [5]. This achievement is highlighted by the distributions of the
origin vertex z-coordinate. Since Downstream tracks do not involve the vertex detector,
they dominate the contribution of reconstructed tracks moving away from the VELO
position, located at z = 0 mm, as is clearly shown in Figures 4.15 and 4.17. When we have
to deal with muons, other effects that interest the z-region away from the origin position
may happen. In particular, if we consider muons produced in the decay of a a quasi-stable
hadron, namely K−(π−)→ µ−νµ (and the charge conjugated process), because of the tiny
mass of the neutrino, we expect that the muon trajectory is almost a perfect prosecution
of the hadron one. As a result, we have a muon with an origin vertex detached to VELO,
but that is still reconstructed as a Long track due to the path of the hadron misidentified
as a muon. Hence, Long tracks represent the dominant contributions of the z-region away
from the VELO position, as depicted in Figure 4.16.

4.2.4 Tracking resolution
Multiple scattering phenomena, imperfections in the LHCb detector alignment, and the
finite granularity of the Tracking system may degrade the quality of track parameters
x⃗, measured through the reconstruction algorithms and defined in (4.1). The trajectory
of a charged particle traversing the spectrometer is reconstructed by using the energy
deposited along the path that is described as a sequence of hits in the tracking stations.
Since the sensors have a finite dimension, the hit position is known with errors, that we
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Figure 4.15: Validation plots of the tracking efficiency model for electrons as a function of the
pseudorapidity η and of the origin vertex z-coordinate in four momentum p bins. The kinematic
distributions of the electrons in acceptance are represented as light grey shaded histograms. The
distributions of electrons reconstructed as Long (in green), Upstream (in red), and Downstream
(in blue) tracks, are shown through stacked histograms (in hatched fill). The parameterization
of the detectors involved for tracks reconstruction as modeled by a deep neural network is
superimposed using solid-line stacked histograms.
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Figure 4.16: Validation plots of the tracking efficiency model for muons as a function of the
pseudorapidity η and of the origin vertex z-coordinate in four momentum p bins. The kinematic
distributions of the muons in acceptance are represented as light grey shaded histograms. The
distributions of muons reconstructed as Long (in green), Upstream (in red), and Downstream (in
blue) tracks, are shown through stacked histograms (in hatched fill). The parameterization of the
detectors involved for tracks reconstruction as modeled by a deep neural network is superimposed
using solid-line stacked histograms.
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Figure 4.17: Validation plots of the tracking efficiency model for hadrons as a function of the
pseudorapidity η and of the origin vertex z-coordinate in four momentum p bins. The kinematic
distributions of the hadrons in acceptance are represented as light grey shaded histograms. The
distributions of hadrons reconstructed as Long (in green), Upstream (in red), and Downstream
(in blue) tracks, are shown through stacked histograms (in hatched fill). The parameterization
of the detectors involved for tracks reconstruction as modeled by a deep neural network is
superimposed using solid-line stacked histograms.
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Figure 4.18: The distribution of the pseudorapidity of high-momentum hadrons in acceptance
is represented as a light grey shaded histogram. The corresponding distribution for hadrons
reconstructed as either Long or VELO tracks is shown through solid green and magenta lines,
respectively. At η ≈ 4.4 hadrons are more likely to be reconstructed as VELO tracks because of
enhanced multiple scattering effects somewhere within the vertex detector.

expect to be of the order of the sensor dimensions. The resolution on the position of the
hits combined with multiple scattering phenomena may lead to sequences of non-perfectly
aligned hits, that degrade the performance of the reconstruction algorithms on measuring
the kinematics of the traversing particles. Hence, the derivation of the track parameters
cannot be disentangled from the resolution effects that end up affecting the position of
the primary vertex (PV), the measurement of the impact parameter (IP), and the charged
particle momentum p.

In Lamarr, we do not have any notion of hits or multiple scattering, then, to reproduce
the tracking resolution, we need a model able to parameterize the errors introduced during
the detection and reconstruction steps based on some set of generator-level information.
The statistical nature of the underlying phenomena makes this regression task non-trivial
since two charged particles generated with the same kinematics can be reconstructed as
tracks with different kinematic properties. Hence, we are not simply interested in modeling
the errors associated with a reconstructed particle, but rather in parameterizing the error
distributions to properly account for the resolution effects. Deep generative models, like
Generative Adversarial Networks (GAN), can be successfully used to extract probability
distributions from the training dataset and produce new synthetic data according to the
learned distributions [134].

Lamarr relies on a GAN-based model to parameterize the LHCb tracking resolution.
As for the case of the acceptance and efficiency models, we expect that also for parame-
terizing the resolution the kinematics and the specie of the particles play a key role. In
addition, since the combination of the tracking detectors involved in the reconstruction
procedure strongly affects the ability to derive the track parameters, we cannot properly
parameterize the resolution without knowing if particles are reconstructed as Long, Up-
stream, or Downstream tracks. Hence, to build a model for the resolution able to take into
account all the aforementioned information learning conditioned probability distributions,
such GAN system is implemented by following the design described in Ref. [141]. The
complete list of input conditions follows:

• the true position (x, y, z) of the ClosestToBeam reconstructed track state;
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• the logarithm of true momentum log10(p) of the reconstructed particle;

• the true slopes tx and ty of the ClosestToBeam reconstructed track state;

• the specie (electron, muon, or hadron) of the reconstructed particle;

• the track class (Long, Upstream, or Downstream) of the reconstructed particle;

• the charge q of the reconstructed particle.

It is worth noticing that the kinematic information and the particle specie (and charge)
are available from the MC physics generators, while the track class can be inferred for
reconstructed particles by the NN-based efficiency model. The pipeline philosophy of
Lamarr starts to take shape: we aim to provide analysis-level tracking variables, like the
reconstructed momentum preco, chaining together the parameterizations for acceptance,
efficiency, and resolution. The first two models allow the selection of the subset of generated
particles reconstructed by the LHCb detector, while the ultimate goal of the resolution
parameterization is to degrade the generator-level kinematic information according to what
is expected from the Tracking system. In addition, since the reconstruction algorithms
also provides a set of track quality variables resulting from the iterative Kalman procedure
adopted to fit combination of hits into tracks, the GAN-based model was also designed to
reproduce such analysis-level quantities, like the χ2, the number of degrees of freedom of
the track fit, and the ghostProb score [39]. The latter is a high-level classifier introduced in
the LHCb reconstruction software to discriminate, a posteriori, between genuine tracks and
random associations of aligned hits erroneously promoted to track by the reconstruction
algorithm. These spurious tracks, not associated to a charged particle, are known as
ghost tracks and this high-level classifier is known as ghost probability, or ghostProb in
short. Technically, the ghostProb classifier is implemented as a FNN taking as input
several low-level quantities produced as secondary results by the hit-clusterization and
track-fitting algorithms, not available in a flash-simulation. Hence, the ghostProb is
parameterized directly using a generative model. The correlations with the other quantities
related to the track reconstruction is ensured by including the ghostProb model in the
same generator parameterizing the track χ2 and resolution effects. The complete list of
features parameterized by the resolution model is reported in the following:

• the reconstruction errors on the position (δx, δy, δz) of the ClosestToBeam state;

• the relative reconstruction error on the momentum δp/p;

• the reconstruction errors on the slopes δtx and δty of the ClosestToBeam state;

• the track fit χ2 per degree of freedom;

• the number of degrees of freedom of the track fit;

• the probability of reconstructing as a track a random combination of hits not
associated with any charged particle (ghostProb) [39].

With the reconstruction error of a variable v, we refer to the difference between its
reconstructed value vreco and the one resulting from physics generators vtrue, namely

δv ≡ vreco − vtrue (4.5)
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Model design and training

A GAN model, as deeply described in Section 3.2, consists of two neural networks, called
generator G and discriminator D, which are trained simultaneously through a competition
game. The discriminator is trained to perform a classification task, distinguishing elements
of the reference dataset from synthetic data produced by the generator. At the same time,
the generator training is driven by a simulation task, whose aim is to reproduce as well as
possible the reference dataset, trying to fake the discriminator. The result is what the
authors of Ref. [134] call a minimax two-player game.

For parameterizing the tracking resolution, the two players are implemented via 10-
layer neural networks with 128 neurons in each hidden layer and Leaky ReLU activation
functions. Both the neural networks are equipped with skip connections to limit the
vanishing gradient problem [111]. To allow the generator to learn probability distributions
conditioned by the above-listed features, such conditions x are used as input features
together with the elements z of the latent space, represented as a 128-dimensional normal
distribution N128(0,1). The last layer of the generator counts as many neurons as it
is the number of the output features y, and it has a simple linear activation function.
To accomplish the classification task, also the discriminator takes the conditions x as
input, coupled with the corresponding resolution parameters, whether they are part of
the reference dataset y or reproduced by the generator G(z|x). The last layer of the
discriminator consists of a single neuron with a sigmoid activation function, describing
the probability that the input belongs to the reference sample.

The minimax game was implemented using BCE-based loss functions. In particular,
the discriminator was trained to correctly classify stacks of resolution parameters and
conditions in input, minimizing the following loss function:

LD =
1

2
[BCE (1, D(y|x)) + BCE (0, D(G(z|x))|x)] (4.6)

On the other hand, the generator training was driven by faking the discriminator outcome.
During the training, the generator improved its ability to mimic the reference dataset,
minimizing the loss that follows:

LG = BCE (1, D(G(z|x))|x) (4.7)

The minimization of the discriminator and generator losses was performed using two
RMSprop optimizers [120] initialized with learning rates of 2× 10−4 and 10−4, respectively.
During a training procedure of 500 epochs, both the learning rates were decreased by
about two orders of magnitude via an exponential decay scheduling.

Despite Ref. [134] demonstrates that the solution of the minimax two-player game
corresponds to minimizing the Jensen-Shannon divergence6 (JSD) between the reference
probability distributions and the ones induced by the generator, let a GAN systems
converge is a non-trivial task. As discussed in Section 3.2.1, the instability of GAN
training results from the ability of the discriminator to perfectly separate true instances
from generated data, so that no feedback remains to the generator for improvement. To
mitigate this vanishing gradient problem, the training of the discriminator was hindered
by setting a label smoothing of 0.05 to the BCE functions and by adding Gaussian noise
6In statistics, the Jensen-Shannon divergence is a method of measuring the similarity between two proba-
bility distributions. Read more on https://en.wikipedia.org/wiki/Jensen-Shannon_divergence.
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Generator Discriminator

skip connections [111] ✓ ✓

latent space dim [134] 128 -
input shape (None, 141) (None, 22)
input preprocessing ✓ ✓

n hidden layers 10 10
n hidden neurons 128 128
hidden activation functions Leaky ReLU Leaky ReLU
output activation function linear sigmoid
output shape (None, 9) (None, 1)
output preprocessing ✓ p

optimizer RMSprop RMSprop
learning rate 1× 10−4 2× 10−4

loss function BCE-based loss (4.7) BCE-based loss (4.6)
BCE label smoothing 0.05 0.05
Gaussian noise stddev [144] 0.02 0.02
learning rate scheduling ExpDecay ExpDecay
scheduling decay rate 0.1 0.1
scheduling decay steps 290000 190000
batch-size 3000 3000
batches per epoch ∼ 1000 ∼ 1000

n epochs 500 500

Table 4.3: Hyperparameters of the GAN-based model for the resolution.

with zero mean and a standard deviation of 0.02 to the discriminator input. This strategy
prevents the discriminator from being a perfect classifier, ensuring the generator learns
continuously during the training [144]. The complete list of hyperparameters used to build
and train the model for the tracking resolution is reported in Table 4.3.

For training and validating the GAN-based resolution model, a dataset of O(2× 107)
reconstructed particles was produced through Detailed Simulation. Similarly to what
was done for the acceptance and efficiency parameterizations, a fraction of 50% of the
dataset was used for training, while another 10% was retained to monitor any signs
of overtraining. Finally, the remaining 40% of the dataset was preserved to assess the
quality of the trained model on an independent never-seen data sample. The left plot
of Figure 4.19 shows the traditional learning curves expected from GAN training. The
aforementioned minimax game minimizes the generator loss, while at the same time,
the discriminator loss is maximized. This competition continues up to reach the Nash
equilibrium, which corresponds to the incapability of the discriminator to distinguish
between reference and generated data, namely LD/G = − ln (0.5) ≃ 0.69. The right plot of
Figure 4.19 reports the evolution during the training of the JSD score computed between
the univariate probability distribution induced by the discriminator taking as input true
instances and synthetic data. The proof of the generator improvement during the training
is demonstrated by the reported decrease in the JSD score. Lastly, from both the plots
we can conclude that there are not any signs of overtraining.
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Figure 4.19: Learning and metric curves of a GAN model trained to parameterize the resolution
effects of the LHCb Tracking system. The left plot reports the competition of the generator
and discriminator networks, whose training is driven by the minimax two-player game. The
evolution of the JSD score is depicted in the right plot to show the improvement of the similarity
between the reference and generated samples during the training.

Validation studies

A generator properly trained via a GAN system can be used to reproduce the probability
distributions underlying the reference dataset explored during the training procedure. To
assess the performance of such a generator in parameterizing the tracking resolution, an
independent sample of more than 2 million reconstructed particles was retained. The
output of the trained generator can be split into two main categories: from one side,
we have the errors on the track position and momentum introduced by the detection
and reconstruction steps, while, on the other hand, we have the set of track quality
variables resulting from the reconstruction algorithms. For the tracking errors, we are
mostly interested in modeling the width of the distributions, namely the resolution, and
correctly parameterizing how it changes as a function of the particle kinematics and the
track class. Figures 4.20 and 4.21 investigate these dependencies in kinematic bins for the
spatial and momentum resolutions, respectively. Assessing the performance of the trained
generator also requires validating its ability to reproduce the distributions of the track
quality variables, whose 1-D histograms are reported in Figures 4.22, 4.23, and 4.24.

The study of CP violation and rare decays in the heavy flavour sector, the core
business of the LHCb physics program, requires accurately measuring decay vertices,
impact parameters, and particle momenta, to highlight signal contributions, rejecting
any background sources. It is therefore not surprising that the performance of the LHCb
tracking detectors is often described in terms of PV, IP, and momentum resolution [29,34,
173,174]. Hence, for validating the GAN-based resolution model, we need the generator
to succeed in reproducing the same metric curves typically used to describe the tracking
performance.

Since the major contribution to the PV is the track covariance matrix (discussed
in Section 4.2.5), the corresponding metric curves are not taken into account in these
validation studies. On the contrary, the IP resolution is strongly related to the resolution
of the ClosestToBeam track state. The upper triplet of plots in Figure 4.20 shows the
resolution of the ClosestToBeam x-coordinate as a function of 1/pT for tracks reconstructed
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as Long, Upstream, and Downstream, reproducing what was reported in the LHCb
performance paper of Ref. [34] for the IPx resolution. The linear dependence on 1/pT is
a consequence of multiple scattering and the geometry of the vertex detector [29], and
indeed, it is not present for Downstream tracks, whose reconstruction does not involve the
VELO. The agreement between the resolution exhibited by Detailed Simulation and the
one resulting from the GAN training is excellent, even if cases of slightly under-estimated
resolution occur for Downstream tracks. Similar performances are achieved for the y- and
z-coordinates of the ClosestToBeam track state as a function of 1/pT . Lastly, it should
be pointed out that neither pT or 1/pT are part of the input conditions: the generator is
then able to derive these dependencies from the true momentum p and slopes (tx, ty).

The lower triplet of plots in Figure 4.20 examines the resolution of the ClosestToBeam
x-coordinate as a function of the azimuthal angle φ, reproducing what was also discussed
in Ref. [29] for the IPx resolution. The two peaks exhibited by Long and Upstream tracks
in correspondence of φ ≈ ±π/2 result from regions of the VELO detector where the
material density greatly increases due to the presence of multiple sensors overlapping.
The GAN-based model struggles to properly reproduce this effect, aided by the fact that
it corresponds to a poorly represented training sample. On the contrary, the generator
succeeds in parameterizing the resolution of the x-coordinate as a function of φ for
Downstream tracks. Similar performances are achieved also for the resolution of y- and
z-coordinates. As for the case of pT studies, neither the azimuthal angle φ is part of the
input conditions, demonstrating the ability of GANs to learn non-trivial dependencies.

The Long tracks, involving the whole Tracking system in the reconstruction process,
offer the highest-precision measurement of the momentum p of charged particles. The
momentum resolution lays between 0.5% and 1.5% for particles below 20 GeV/c, stabilizing
at about 0.5% for particles up to 80 GeV/c. In the same kinematic range, the precision
offered by Downstream tracks is worse even if still decent. Low energy particles are
reconstructed with a momentum resolution ranging from 0.5% to 10%, while increasing
the energy the resolution improves oscillating around 5%. Upstream tracks have the
worst performance, exhibiting momentum resolution from 10% to 100%. The upper
triplet of plots in Figure 4.21 reports the resolution of the relative momentum δp/p as a
function of p for tracks reconstructed as Long, Upstream, and Downstream, reproducing
the same metric curve provided in the LHCb performance paper of Ref. [34]. The correct
parameterization of the momentum resolution is a non-trivial task since it is strongly
correlated to the input kinematic conditions, besides exhibiting behaviors different based
on the reconstructed track class. The GAN-based model succeeds in associating the
correct momentum resolution ranges to the corresponding track class, while the presence
of some mismatches with what is expected from Detailed Simulation suggests that there
is still room for improvement.

The resolution of the relative momentum δp/p is also investigated as a function of the
track-steepness, namely

√
t2x + t2y, as depicted in the lower triplet of plots in Figure 4.21.

In this case, the generator exhibits excellent performance in reproducing the expected
behavior either for Long or Upstream tracks. To fix the mismodeling on the Downstream
tracks instead, some further hyperparameter optimization should be necessary.

The track quality variables provided by the trained generator are crucial to building
a parameterization for the track covariance matrix that properly takes into account the
correlations between how sequences of hits are combined into tracks and the corresponding
uncertainties. The capability of the GAN-based model to reproduce the distribution of
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Figure 4.20: Resolution of the ClosestToBeam x-coordinate as a function of the reciprocal of
the transverse momentum pT (upper triplet of plots) and of the azimuthal angle φ (lower triplet
of plots). The resolution resulting from detailed simulated Long, Upstream, and Downstream
tracks is reported using blue circle-markers. The output of a GAN-based model trained to
parameterize the tracking resolution is depicted through red triangular-markers. It is worth
noticing that both pT and φ are not part of the input variables to the GAN system, which
succeeds in inferring them from MC momentum and slopes.
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Figure 4.21: Relative momentum resolution as a function of the momentum p (upper triplet
of plots) and of the track-steepness

√
t2x + t2y (lower triplet of plots). The relative resolution

resulting from detailed simulated Long, Upstream, and Downstream tracks is reported using blue
circle-markers. The output of a GAN-based model trained to parameterize the errors introduced
in the LHCb detection and reconstruction phases are depicted through red triangular-markers.
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Figure 4.22: Validation plots of the track fit χ2 per degrees of freedom (ndf) for tracks
reconstructed as Long (upper left), Upstream (upper right), or Downstream (lower center). The
distributions obtained from Detailed Simulation are represented as blue shaded histograms. The
results of a GAN model trained to parameterize the high-level response of the LHCb Tracking
system, including the track fit output, are shown using red solid-line histograms.

the track fit χ2 per degree of freedom for Long, Upstream, and Downstream tracks is
depicted in Figure 4.22. Its performance is decent even if the tendency to overestimate the
population at the peak should be further investigated. Figure 4.23 reports the distribution
of the number of degrees of freedom. As expected Long tracks are characterized, on
average, by a greater number of degrees of freedom than the other track classes since
typically involve larger sequences of hits. As highlighted in Figure 4.23, the generator
takes correctly into account the condition of the track class, even if its performances
are severely challenged by the discrete nature of the parameterized variable. Finally,
Figure 4.24 shows the distribution of the ghostProb score as obtained from Detailed
Simulation and as parameterized by the trained GAN-based model. Looking at the
histograms in Figure 4.24 we can conclude that the generator succeeds in reproducing the
distribution of the ghostProb. Since the latter is also obtained through a neural network
in the official LHCb reconstruction, this task has similarities with a knowledged distillation
problem7, though the dependencies on most of the inputs is, in this case, replaced with
random noise shaped by the generator logic, and reproducing accurately also the tails of
the response of this multivariate classifier.

4.2.5 Track covariance matrix
The purpose of the tracking reconstruction algorithms applied to either collected or detailed
simulated data is to determine the most accurate estimates of the track parameters x⃗ and
7With knowledge distillation we refer to the problem of transferring the “knowledge” acquired by a neural
network (called teacher) by training a second neural network (called student) based on the response of
the first one.
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Figure 4.23: Validation plots of the number of track fit degrees of freedom (ndf) for tracks
reconstructed as Long (upper left), Upstream (upper right), or Downstream (lower center). The
distributions obtained from Detailed Simulation are represented as blue shaded histograms. The
results of a GAN model trained to parameterize the high-level response of the LHCb Tracking
system, including the track fit output, are shown using red solid-line histograms.
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Figure 4.24: Validation plots of the probability that a random combinations of hits not associated
with any charged particle (ghost) are reconstructed as Long (upper left), Upstream (upper right),
or Downstream tracks. The distributions obtained from Detailed Simulation are represented
as blue shaded histograms. The results of a GAN model trained to reproduce the response of
the neural network used by LHCb to identify ghost tracks [39] are shown using red solid-line
histograms.
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the corresponding 5× 5 covariances C. Once the event has been completely reconstructed,
these estimates can be used to match the tracks with particle identification objects, i.e.,
RICH rings, calorimeter clusters, and muon candidates. Finally, these high-level quantities
can be used in physics analyses to locate the primary and secondary vertices and calculate
the invariant mass of particle combinations.

The estimation of the track parameters and the covariance matrix results from an
iterative track fit based on a Kalman filter algorithm [38,163]. The principle at the basis
of the Kalman procedure is to add the tracking hits one-by-one to the fit, each time
updating the local track state considering the whole collection of hits. The method is
driven by the minimization of the χ2 of the measurements on the track, and therefore
it is mathematically equivalent to a least-squares fit. This fit procedure is defined so
that accounts for the uncertainties on the track parameters considering, for instance,
multiple scattering phenomena, or energy loss due to ionization. The Kalman procedure
incorporates all these effects during the update of the covariance matrix.

In Lamarr, the track parameters x⃗ are provided relying on the GAN-based resolution
model discussed in Section (4.2.4). Designed to infer the errors introduced in the detection
and reconstruction steps, the latter allows to parameterize the track kinematic properties
applying such errors to the MC truth information provided by the physics generators. To
finalize the parameterization of the track states, and in particular of the ClosestToBeam
track state, Lamarr is also equipped with a model for the covariance matrix. Just like
for the resolution model, also in this case the underlying phenomena are characterized
by a statistical nature, which makes two identical tracks potentially associated with two
different covariances. Again, to face this non-trivial regression problem, Lamarr relies on
a GAN-based model to learn, from detailed simulated samples, the conditioned probability
distributions [141] associated with each element of the covariance matrix.

The GAN model for covariance takes as input the same conditions used for the
resolution model. In addition, to build a parameterization for the covariance that properly
accounts for the quality of the track fit, such GAN is designed to take as input also the
set of track quality variables provided by the resolution model, namely

• the track fit χ2 per degree of freedom;

• the number of degrees of freedom used in the track fit;

• the ghostProb score.

The combination of generator-level kinematic properties, the particle specie and charge,
the set of detectors involved in reconstructing tracks, together with a global assessment of
the fit procedure are used to parameterize the 5× 5 covariance C of the ClosestToBeam
state. Solving the minimax game at the basis of the target model construction is made
difficult by the high correlation between the matrix elements, a factor which requires the
introduction of some (reversible) simplifications:

1. as the covariance is symmetric, the GAN was trained to model only the diagonal
and lower-triangular elements;

2. since the elements of the diagonal are positive, we can simplify the GAN learning
process by taking the logarithm of the diagonal elements;
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3. to reduce the correlation between diagonal and off-diagonal elements, the GAN was
trained to model correlations instead of the covariance for off-diagonal elements.

Hence, recalling that the correlation matrix ρ derives from the covariance C as follows

ρij ≡ corr(xi, xj) =
Cij√
CiiCjj

where Cij ≡ cov(xi, xj) (4.8)

the complete list of matrix elements parameterized by the GAN is reported in the following:

• the logarithm of the covariance diagonal elements, i.e., log (Cii) with i ∈ {1 . . . 5};

• the lower-triangular elements of the correlation matrix, i.e., ρij with i > j.

A further decorrelation step is achieved by applying different preprocessing strategies to
the two classes of matrix elements. In particular, the elements of the covariance diagonal
are standardized by removing the mean and scaling to unit the variance, a transformation
that leaves unchanged the shape of the probability distributions. On the other hand,
the distributions of the off-diagonal elements of the correlation matrix are mapped to
a Gaussian by applying a quantile normalization. The preprocessing strategies were
implemented using respectively the StandardScaler and QuantileTransformer classes
provided by the scikit-learn Python package [175]

Model design and training

The covariance parameterization relies on a GAN model powered by an 8-layer generator
and a 6-layer discriminator. Both neural networks have 128 neurons and Leaky ReLU
activation functions in each hidden layer and are equipped with skip connections [111].
To train the generator to learn conditioned probability distributions, the latter takes as
input the aforementioned conditions x chained with latent vectors z, sampled from a
128-dimensional normal distribution. The output layer of the generator has 15 neurons,
namely the total number of matrix elements to parameterize, and no activation function.
As the generator, also the discriminator takes the conditions x as inputs, together with
either instances from the training samples y or resulting from the generator G(z|x). The
discriminator outputs a single value, passing through a sigmoid function to represent the
probability that the input comes from the reference dataset.

The discriminator was trained to correctly classify the input instances according to
their origin minimizing the loss function LD defined in (4.6). At the same time, the
generator was trained to reproduce as accurately as possible the reference sample, trying
to fake the discriminator by minimizing the loss function LG defined in (4.7). The training
of both the discriminator and generator networks was driven by two RMSprop optimizers
initialized with learning rates of 2× 10−4 and 10−4, respectively. The training procedure
consisted of 350 epochs during which both the learning rates were exponentially decreased
by about two orders of magnitude. Finally, to ensure stable GAN training, the following
precautions were adopted [144]:

• setting a label smoothing of 0.1 to both the BCE-based loss functions LD and LG;

• adding to the discriminator input a Gaussian noise with zero mean and a standard
deviation of 0.05.
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Generator Discriminator

skip connections [111] ✓ ✓

latent space dim [134] 128 -
input shape (None, 144) (None, 31)
input preprocessing ✓ ✓

n hidden layers 8 6
n hidden neurons 128 128
hidden activation functions Leaky ReLU Leaky ReLU
output activation function linear sigmoid
output shape (None, 15) (None, 1)
output preprocessing ✓ p

optimizer RMSprop RMSprop
learning rate 1× 10−4 2× 10−4

loss function BCE-based loss (4.7) BCE-based loss (4.6)
BCE label smoothing 0.1 0.1
Gaussian noise stddev [144] 0.05 0.05
learning rate scheduling ExpDecay ExpDecay
scheduling decay rate 0.1 0.1
scheduling decay steps 200000 150000
batch-size 7500 7500
batches per epoch ∼ 900 ∼ 900

n epochs 350 350

Table 4.4: Hyperparameters list of the GAN-based model for the covariance.

The complete list of hyperparameters adopted to build and train the model for the
covariance matrix is reported in Table 4.4.

The GAN-based model for the covariance shares with the resolution parameterization
the dataset of O(2× 107) reconstructed particles produced via Detailed Simulation. As
usual, a fraction of 50% of the dataset was used for the training procedure, 10% for
monitoring any evidence of overtraining, and the remaining 40% to perform validation
studies. Figure 4.25 reports the learning and metric curves resulting from the covariance
GAN training. The evolution of the loss functions LD and LG is depicted on the left plot.
At the beginning of the training, the discriminator had some difficulties learning how to
generalize the separation problem: the initial indecision in distinguishing the reference
instances from the generated ones is visible from the high variability of the generator
loss (in blue) on the test set. After this stalemate, the discriminator starts to accomplish
the classification task, giving back fruitful feedback to the generator. The result is a
canonical GAN learning process where both the loss functions point asymptotically to the
Nash equilibrium, namely LD/G = − ln (0.5) ≃ 0.69. The right plot highlights the same
behavior through the accuracy metric score. Such accuracy measures the performance
of the generator in producing data enough faithful to the reference sample so that the
discriminator wrongly classifies them as true instances. In this case, the equilibrium point
corresponds to the discriminator making a mistake on half of the investigated sample, on
average, resulting in an accuracy equal to 50%.
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Figure 4.25: Learning and metric curves of a GAN model trained to parameterize the 5 × 5
covariance matrices describing the track states at LHCb. The left plot reports the competition of
the generator and discriminator networks, whose training is driven by the minimax game. The
evolution of the accuracy is depicted in the right plot to show the improvement of the similarity
between the reference and generated samples during the training.

Validation studies

The GAN training was favored by the adoption of a series of reversible simplifications
intended for avoiding non-physical predictions, like for the case of the parameterization of
log(Cii) instead of Cii, and for reducing the correlations between the covariance elements
modeling ρij in place of Cij . Despite the pursued strategy, the final goal is that the trained
generator succeeds in reproducing correctly all the elements of the covariance matrix C,
including the correlations between each of its elements. Hence, to assess the effectiveness
of the adopted simplifications and the performance achieved by the trained generator, a
dataset of about 2 million reconstructed particles was retained for validation studies.

As the first step of this validation study, we need to revert the simplifications adopted
for stabilizing the training. Hence, both the detailed simulated sample and the generator
output were post-processed inverting the preprocessing transformations. In this way,
we have back log(Cii) with i ∈ {1 . . . 5} and ρij with i > j, from which obtaining
the covariance elements Cij is trivial. Then, the comparison between the probability
distributions expected from Detailed Simulation and the ones induced by the GAN training
is available. The histograms along the diagonal of Figure 4.26 report such comparison
for the diagonal elements of the covariance C resulting from a pure sample of Long
tracks. The reference distributions are shown through blue shaded histograms, while the
outputs of the trained generator are superimposed by using red solid-line histograms. The
lower-triangular portion of Figure 4.26 instead reports several scatter plots showing the
correlations between the various Cii elements. The true correlations are described by
blue points, while the result of a neural network trained in an adversarial configuration
is depicted by using red points. The agreement between the histograms and the non-
trivial correlations shown in Figure 4.26 is excellent. The trained generator succeeds in
reproducing the expected distributions for the diagonal elements Cii, even on the tails
whose parameterization is typically made difficult by the scarce statistics. In addition, the
NN-based model was so able to learn the conditional probability distributions that also
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the correlations between the Cii are well reproduced, even the ones that reveal a linear
dependency:

Cxx ∝ Cyy and Ctxtx ∝ Ctyty (4.9)

The covariance model achieves slightly worse performance for Upstream tracks, while the
agreement between the correlations expected from the Detailed Simulation and the ones
learned by the GAN suffers from a significant drop in performance for Downstream tracks.
This is probably related to the reduced number of Downstream instances which represents
less than 10% of the total size of the training sample. Nevertheless, the agreement
exhibited between the reference and generated histograms is still decent.

Lastly, Figures 4.27 and 4.28 report the performance achieved by the GAN-based
model in reproducing a selected set of off-diagonal covariance elements Cij for Long
tracks. In particular, Figure 4.27 shows the distributions and correlations of cov(x, v) with
v ∈ {y, tx, ty, q/p}, while the performance achieved for cov(q/p, v′) with v′ ∈ {x, y, tx, ty}
is explored in Figure 4.28. For both the set of elements Cij , the covariance GAN correctly
parameterizes the distributions expected from Detailed Simulation. In addition, the
model exhibits astonishing performance in reproducing the Cij correlations, even on the
non-trivial one shown in Figure 4.27. Also the correlations depicted in Figure 4.28 are well
parameterized, even if it should be noticed that the model struggles in reproducing second-
order correlation components since their poor statistics. As for the diagonal elements, the
performance achieved by the covariance GAN in parameterizing the off-diagonal elements
for Upstream tracks is slightly worse than the one for Long tracks, and even worse for
Downstream tracks, especially when it comes to reproducing Cij correlations. Despite this,
the agreement between the reference and generated histograms is more than decent so as
to not compromise the flash-simulation of primary and secondary vertices, and impact
parameters aimed by Lamarr.

4.3 Charged particles pipeline: the PID system
Once the hits left by a charged particle traversing the LHCb spectrometer are properly
combined into a track candidate, the following step of the reconstruction phase is to
complete the track information with a hypothesis on the particle specie. To this end,
each reconstructed track is typically coupled with the response of one or more of the
detectors that compose the Particle Identification (PID) system. The latter, operating
in a wide momentum range (2÷ 150 GeV/c), allows LHCb to distinguish among all the
quasi-stable particles by relying on a set of complementary experimental strategies. The
momentum measurement combined with the Cherenkov angle provided by two RICH
detectors permits the separation of kaons from protons and charged pions. The ECAL
detector allows the identification of photons and neutral pions, and to restore the energy
lost by electrons for bremsstrahlung radiation finalizing their identification. The response
of the HCAL detector is typically employed by the trigger for events selection, while the
muons capable of escaping HCAL are tracked by using the five dedicated stations of the
MUON system located at the end of the spectrometer.

Given a traversing particle through LHCb, we expect that the response of the PID
detectors depends only on the kinematics of the particle, the occupancy of the detectors
(which may be different event-to-event and for different particle production mechanisms),
and experimental conditions such as alignments, temperature, and gas pressure (which
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Figure 4.26: Validation plots of the diagonal elements of the covariance matrix C associated
to the track parameters x⃗, namely cov(v, v) with v ∈ {x, y, tx, ty, q/p}. The distributions of
the diagonal elements as obtained from Detailed Simulation are represented via blue shaded
histograms along the diagonal of this Figure. The results of a GAN model trained to parameterize
the covariance matrix are superimposed using red solid-line histograms. The lower-diagonal
portion of this Figure reports several scatter plots used to investigate the ability of the trained
model to reproduce also the correlations between the Cii elements. Again, what expected from
Detailed Simulation is shown in blue, while the red points result from the trained neural network.
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Figure 4.27: Validation plots of a selected set of off-diagonal elements of the track covariance
matrix C considering, in particular, cov(x, v) with v ∈ {y, tx, ty, q/p}. The distributions of such
off-diagonal elements as obtained from Detailed Simulation are represented via blue shaded
histograms along the diagonal of this Figure. The results of a GAN model trained to parameterize
the covariance matrix are superimposed using red solid-line histograms. The lower-diagonal
portion of this Figure reports several scatter plots used to investigate the ability of the trained
model to reproduce also the correlations between the Cij elements. Again, what expected from
Detailed Simulation is shown in blue, while the red points result from the trained neural network.
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Figure 4.28: Validation plots of a selected set of off-diagonal elements of the track covariance
matrix C considering, in particular, cov(q/p, v) with v ∈ {x, y, tx, ty}. The distributions of such
off-diagonal elements as obtained from Detailed Simulation are represented via blue shaded
histograms along the diagonal of this Figure. The results of a GAN model trained to parameterize
the covariance matrix are superimposed using red solid-line histograms. The lower-diagonal
portion of this Figure reports several scatter plots used to investigate the ability of the trained
model to reproduce also the correlations between the Cij elements. Again, what expected from
Detailed Simulation is shown in blue, while the red points result from the trained neural network.

117



may modify the response of detectors run-to-run) [49]. Lamarr assumes that the response
of a PID variable is fully parameterized by some known set of variables, such as the track
momentum p, the pseudorapidity η, and the number of reconstructed tracks (nTracks)
used for measuring the detector occupancy. By considering the pipeline philosophy of
Lamarr, the set of particles actually reconstructed and the corresponding kinematic
properties are provided by the tracking models discussed in Section 4.2. On the contrary,
to parameterize the detector occupancy, the current version of Lamarr relies on a
parametric function, whose definition derives by fitting the simulated nTracks distribution
with a linear combination of Gaussian distributions. Indeed, while counting the number
of particles in acceptance has been found to provide a rather reasonable proxy for the
number of reconstructed tracks, relying on a parameterization for the detector occupancy
enables replacing the Pythia8 generator with a particle-gun generating only the signal
while relying on the parameterizations for all the occupancy-related effects. As first-order
approximation, the nTracks parameterization succeeds in reproducing the number of
reconstructed tracks, but it strongly depends on the flavour of the hadron decays that
compose the training sample. Hence, to describe the detector occupancy for events
including b- or c-hadron decay, Lamarr disposes of two different flavour-specialized
nTracks models.

The track kinematic properties provided by the Lamarr tracking modules and the
number of reconstructed tracks as parameterized for a given event can be used to reproduce
the high-level response of the LHCb PID system. In particular, to provide the analysis-
level quantities required for the majority of the physics studies, Lamarr relies on the
following parameterizations:

• RICH system. Model for the high-level response of the RICH system when
traversed by muons, pions, kaons, or protons;

• MUON system. Model for the high-level response of the MUON system when
traversed by muons, pions, kaons, or protons;

• isMuon criterion. Model for the probability of a track to be associated with a
muon candidate parameterizing the isMuon criterion for muons, pions, kaons, or
protons;

• Global PID response. Model for the global high-level response of the PID system,
resulting from the combination of the response of the RICH detectors, calorimeters,
and MUON system when traversed by muons, pions, kaons, or protons.

At the moment, Lamarr does not provide any parameterizations for the response of
the PID system when traversed by electrons, whose energy recovery requires to disposal
of a dedicated model for the bremsstrahlung photons, currently under investigation
as discussed in Section 4.4.2. Hence, the ECAL detector is not included among the
parameterizations for charged particles listed above. Also the HCAL detector is excluded
from such a list since it is mostly employed for the trigger. Lamarr has not any dedicated
model for the trigger, which is indirectly parameterized by relying on the models for
geometrical acceptance and tracking efficiency. Actually, a restricted set of analysis-level
variables resulting from the calorimeters is employed to compute the global response of
the PID system, either within the combined likelihoods or for evaluating the capability of
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a multivariate classifier (ANNPID) to further improve the separation between different
particle species. As discussed in Section 4.3.5, GAN-based models succeed in reproducing
these global high-level variables without relying on the information from the calorimeters,
whose contribution is approximated by relying on the generator latent space Z [1].

The rest of this Section is devoted to describing how neural networks and generative
models can be used to parameterize a set of analysis-level quantities resulting from the
LHCb PID system when traversed by muons, pions, kaons, or protons. Section 4.3.1
illustrates the features of a Python package designed and developed during my Ph.D. to
simplify the implementation and training of GAN-based models. How to parameterize
the high-level response of either the RICH or MUON system by using deep generative
models properly conditioned is described in Sections 4.3.2 and 4.3.3, respectively. Sec-
tion 4.3.4 demonstrates that a neural network trained to solve a classification problem
succeeds in modeling the isMuon criterion. Finally, the outputs of all the aforementioned
parameterizations can be combined by relying on a further generative model to reproduce
the global high-level response of the PID system, as detailed in Section 4.3.5.

4.3.1 Ready-to-use GANs in Python
My Ph.D. research activity has been largely dedicated to the design, optimization, and
validation of the ML-based models used by Lamarr to reproduce the high-level response
of the LHCb detector by only relying on the information from physics generators. As
discussed in Section 4.2, neural networks and GANs can fruitfully be employed to describe
the response of the Tracking system, and the same applies to the PID system as it
will be further detailed in the following Sections. The heavy use of GANs within the
parameterizations and the different performance offered by the state-of-the-art algorithms
and regularization strategies discussed in Section 3.2 created the necessity of simplifying
their implementation and standardizing the training and optimization procedures. Such
efforts have rapidly turned into pidgan [6], a Python package that, by relying on
Keras [167] and TensorFlow [168] as back-ends, simplifies the implementation and training
of GAN-based models intended for High Energy Physics (HEP) applications. Originally
designed to develop parameterizations to flash-simulate the LHCb PID system, pidgan
can be used to describe a wide range of LHCb sub-detectors (including the Tracking system)
and succeeds in reproducing the high-level response of a generic HEP experiment. The
pidgan package was publicly presented8 in November 2023 during the “Fifth ML-INFN
Hackathon: Advanced Level”, where it was used to parameterize a set of analysis-level
quantities as reconstructed by the CMS experiment when traversed by high-energy jets9.

pidgan provides ready-to-use Python implementations for several GAN algorithms
(listed in Table 4.5) by relying on the TensorFlow and Keras APIs. In particular, GANs
are implemented by subclassing the TensorFlow Model class and customizing the training
procedure that is executed when one calls the fit() method. Different GAN flavours do
not vary only for the loss function used, but also for the regularization strategies eventually
adopted. By design, pidgan encodes these flavour-specific differences directly within
the customized TensorFlow classes and exposes high-level APIs that simplify the GAN
implementation. To mitigate the vanishing gradient problem, pidgan also provides a set

8The complete event agenda is available at https://agenda.infn.it/event/37650.
9A jet is a narrow cone of hadrons and other particles produced by the hadronization of a quark or gluon
in a HEP experiment. Read more on https://en.wikipedia.org/wiki/Jet_(particle_physics).
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GAN
Implementation of the GAN algorithm proposed by Ian Goodfellow and others [134].
Both the loss functions discussed in the original paper are available through the
use_original_loss flag.

BceGAN
Implementation of the BCE-based GAN algorithm. The loss functions of the discrim-
inator and generator networks are defined in (4.6) and (4.7), respectively.

LSGAN
Implementation of the LSGAN algorithms [143]. Both the loss functions discussed in
the paper are available through the minimize_pearson_chi2 flag.

WGAN
Implementation of the WGAN algorithm [145]. The weights clipping strategy is used
to regularize the Lipschitzianity of the discriminator network.

WGAN_GP
Implementation of the WGAN-GP algorithm [146]. The gradient penalty strategy is
used to regularize the Lipschitzianity of the discriminator network.

CramerGAN
Implementation of the CramerGAN algorithm [148]. The gradient penalty strategy is
used to regularize the Lipschitzianity of the discriminator network.

WGAN_ALP
Implementation of the WGAN-ALP algorithm [147]. The adversarial Lipschitz penalty
strategy is used to regularize the Lipschitzianity of the discriminator network.

BceGAN_GP
Implementation of the BCE-based GAN algorithm. The gradient penalty strategy is
used to regularize the Lipschitzianity of the discriminator network [146].

BceGAN_ALP
Implementation of the BCE-based GAN algorithm. The adversarial Lipschitz penalty
strategy is used to regularize the Lipschitzianity of the discriminator network [147].

Table 4.5: List of GAN algorithms provided by pidgan (v0.1.3).

of techniques for training stabilization that can be enabled during the instantiation of the
GAN algorithm. Among the techniques available, we can inject Gaussian noise within
the discriminator to prevent the disjoint separation between the reference and generated
samples, and then ensure valuable feedback for the generator training [144]. Alternatively,
to further regularize the discriminator, pidgan allows constraining its hidden states by
requiring that the latters do not differ too much between the reference and generated
samples by following what authors of Ref. [176] called the features matching strategy.

pidgan simplifies also the design of the generator and discriminator networks that need
to operate taking conditions (e.g., momentum, pseudorapidity, or nTracks) as input [141]
to simulate the response of a generic HEP experiment. The two players are implemented
by subclassing the TensorFlow Model class and customizing the call() method to support
the processing of conditions or to add automatically the latent vectors z as needed by
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the generator network. By doing so, pidgan enables building and train a GAN model by
using about twenty lines of code, as depicted in the following example:

1 from pidgan.players.generators import Generator
2 from pidgan.players.discriminators import Discriminator
3 from pidgan.algorithms import GAN
4

5 x = ... # conditions
6 y = ... # targets
7

8 G = Generator(
9 output_dim=y.shape [1],

10 latent_dim =64,
11 output_activation="linear"
12 )
13 D = Discriminator(
14 output_dim =1,
15 output_activation="sigmoid"
16 )
17

18 model = GAN(generator=G, discriminator=D, use_original_loss=True)
19

20 model.compile(
21 metrics =["accuracy"],
22 generator_optimizer="rmsprop",
23 discriminator_optimizer="rmsprop",
24 )
25

26 model.fit(x, y, batch_size =256, epochs =100)

The default implementation of the generator and discriminator networks relies on
the TensorFlow Sequential model10 that allows to construct the two players as plain
FNNs. Alternatively, pidgan also provides implementations based on the TensorFlow
Functional API11 that enable the use of skip connections [111] necessary whenever one
aims to extend the scale of the models avoiding the consequent vanishing gradient issues.
In addition, pidgan offers a further implementation for the discriminator that aims to
induce physics constraints during the training procedure by relying on a set of auxiliary
features [177]. The latters, computed at runtime, result from a user-defined combination
of the discriminator input features and can be used to indirectly inform the generator
on non-trivial correlations among the variables through the GAN minimax game. The
benefits of disposing of such an auxiliary system will be more clear in the following Sections
where it is deeply used to improve the quality of the probability distributions of variables
not directly parameterized by the generator, but instead resulting from a combination of
its outputs.

Finally, the pidgan’s GAN algorithms allow to define a third independent network,
called referee, and to train it together with the other two players. Just like the discriminator,
the referee network is trained to distinguish the reference instances from the generated
ones, but without participating in the minimax game. Both the discriminator and referee

10https://www.tensorflow.org/guide/keras/sequential_model
11https://www.tensorflow.org/guide/keras/functional_api
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networks allow to reduce to one the dimensionality of the classification problem. However,
if the discriminator is contaminated by the generator updates that prevent it from having
unbiased outputs, the referee can be fruitfully employed to assess the performance achieved
by the generator [178]. The referee network provided by pidgan can be trained also as
a standalone to perform binary or multi-class classification tasks. Hence, by relying on
pidgan, we can design and train GANs to learn conditional probability distributions,
as well as neural networks to parameterize the efficiencies (including the tracking ones
discussed in the previous Sections).

Optimization campaigns for PID models

The performance exhibited by GAN-based models is intimately connected to the combi-
nation of hyperparameters chosen for their design and training. Despite such generative
algorithms have proven to succeed in reproducing the high-level response of the LHCb
PID detectors [1, 177,179–181], using them for simulation production requires a precise
parameterization of the variables typically adopted in physics analyses. Hence, PID GANs,
more than the tracking models, benefit from the use of optimization studies, performed to
identify the best-suited set of hyperparameters to train models that reproduce accurately
the response of the LHCb spectrometer in the widest possible range of the input conditions
(e.g., p, η, and nTracks).

During my Ph.D., I had the opportunity to access several GPU instances, provided
by on-premises, cloud, and HPC resources, and used them to train ML-based models or
run intense optimization campaigns. The stochastic nature of the neural network training
makes the path between the chosen hyperparameters and the performance exhibited by
the model not deterministic, but instead affected by statistical uncertainties. Bayesian
techniques allow the definition of optimization strategies that take into account such
uncertainties while searching for the minimum (or maximum) of the function under
investigation. Since the Bayesian techniques do not rely on gradient computation, either
a single instance or multiple computing nodes in parallel can participate to the same
optimization study by testing different combinations of hyperparameters to find the
optimum. As discussed in Section 2.6.1, disposing of several computing instances from
different resource providers laid the foundations for Hopaas [2], a cloud service designed
for coordinating optimization studies across multiple computing instances via HTTP
requests.

Since PID GANs strongly rely on hyperparameter optimization studies, pidgan is
natively integrated with the Hopaas service. In particular, pidgan encodes a set of
Hopaas APIs within a custom TensorFlow Callback that can be enabled to update the
remote state of the optimization study continuously during the training procedure. Such
a mechanism can also be employed to abort the test of non-promising hyperparameters
(pruning), reducing the waste of computing resources to take a sub-optimal training to an
end. In this context, the referee network plays a key role by providing an independent
measurement of the quality of the trained generator that can be used to either drive the
hyperparameter optimization study or to promptly interrupt non-promising trials.

Despite the valuable role played by the referee network, its performance may vary
profoundly trial-to-trial due to the combined effect of the stochastic nature of neural
networks training and the high variability of a dynamic system like the one established by
the GANs training. Hence, to have a clear picture of the optimization achievements, the
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use of a static score was preferred to drive the studies of the PID models. In particular,
as will be detailed in the following Sections, the Kolmogorov-Smirnov (KS) distance
was selected as the optimization score to measure the differences between the reference
sample and the generated one. Since such metric rapidly loses power as the dimensionality
increases, a well-known problem referred to as the curse of dimensionality [182], the KS
distance was computed variable-by-variable restoring a univariate problem. In addition,
aiming to reproduce the response of the PID detectors as precisely as possible in a wide
range of the input conditions, the target variables were split into bins of momentum,
pseudorapidity, and nTracks before computing the KS distances. Finally, the maximum
value among these mismodeling errors was taken as the optimization score, so that
requiring its minimization corresponds to rejecting models introducing large errors in at
least some region of the phase-space of the LHCb PID system (p, η, nTracks)

4.3.2 RICH detectors
The primary role of the LHCb RICH system is to distinguish among the charged hadrons
(i.e., pions, kaons, and protons), and to contribute to the identification of the charged
leptons (i.e., electrons and muons) in combination with the other PID detectors. The
discrimination between the various particle species relies on the Cherenkov angle θC
defined in Eq. (1.6) that, combined with the track momentum, allows to derive a mass
hypothesis. The Cherenkov photons emitted by the particles traversing the RICH radiators
are conveyed through a system of mirrors and collected forming rings in dedicated photo-
detectors. Depending on the momentum of the traversing particle and assuming a mass
hypothesis, a test ring for each particle species is compared against the hits in the
photo-detectors, and the corresponding likelihood is evaluated [44]. Hence, the high-level
response of the RICH system is usually expressed as a differential log-likelihood (DLL)
between two particle hypotheses h1 and h2. Since the most abundant species produced
at hadron colliders are pions, it is customary to define DLLs with respect to the pion
hypothesis:

RichDLLh ≡ log

(
RICH likelihood for h
RICH likelihood for π

)
with h ∈ {e, µ,K, p} (4.10)

Implementing a flash-simulation paradigm, Lamarr aims to reproduce the RICH DLLs
without relying on the underlying physics processes, but rather directly parameterizing
them only by using the information provided by its pipelines. Since the Cherenkov
radiation depends on the velocity of the traversing particles, we expect that the RICH
response is strongly related to the momentum. In addition, due to the arrangement
of the mirrors system (reported in Figure 1.10), the DLLs are necessary related to the
pseudorapidity of the particles. Since the likelihoods measure the match between the hits
in the photo-detectors and the test rings, we also expect that the latters depend on the
occupancy of the RICH detectors, which may vary the total number of reconstructed hits.
Given two traversing particles through the RICH system, even if they are produced with
the same specie, kinematic properties, and detector occupancy, the resulting DLLs may
be different due to the statistical nature of the radiation-matter interactions causing the
detector low-level response. Hence, in searching for an ML-based model for the RICH
system we should opt for deep generative models, algorithms able to derive from data the
underlying probability distributions. The current version of Lamarr relies on conditional
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GANs for this purpose, following the path traced by Refs. [1, 179]. The features used to
conditionate the RICH models are listed below:

• the reconstructed momentum p of the traversing particles;

• the reconstructed pseudorapidity η of the traversing particles;

• the number of reconstructed tracks nTracks;

• the charge q of the traversing particles.

The reconstructed particles and the corresponding momentum and pseudorapidity are
available to Lamarr from the tracking models discussed in Section 4.2. The measurement
of the occupancy of RICH detectors (i.e., nTracks) results by sampling from a parametric
probability distribution function modeled to reproduce what expected from Detailed
Simulation. Finally, the charge of the traversing particles is directly provided by the physics
generators. These features are used to learn the conditional probability distributions of
the following likelihoods:

• the RICH DLL of the electron hypothesis versus the pion one RichDLLe;

• the RICH DLL of the muon hypothesis versus the pion one RichDLLmu;

• the RICH DLL of the kaon hypothesis versus the pion one RichDLLk;

• the RICH DLL of the proton hypothesis versus the pion one RichDLLp.

A keen eye has surely noticed that the input conditions do not include the specie
of the traversing particles, despite we expect that this property affects significantly the
response of the RICH system by design. The strategy pursued by Lamarr is to provide
one specialized parameterization per each of the particle species currently tackled. To
this end, four different pure samples of muons, pions, kaons, and protons were prepared
simulating a cocktail of b-hadron decays with an official configuration of Gauss [61] sim10
(v56r6), involving Pythia8 [25], EvtGen [58], and Geant4 [59, 60]. The resulting raw
data was then used to reconstruct particle candidates calculating the tracking and PID
information by relying on the Brunel and DaVinci applications [171].

Model design and training

As mentioned in Section 4.3.1, the best combination of hyperparameters and training
strategies adopted for parameterizing precisely the RICH system results from intense
optimization campaigns that have takenO(103) hours per each of the four specie-specialized
GAN models, combining GPUs from on-premises, cloud, and HPC resources. Optimization
studies running on different computing instances were coordinated by relying on the
Hopaas [2] service (further described in Section 2.6.1) that allows to find the optimum set
of hyperparameters with respect to a target score. In this case, the target score corresponds
to the KS-distance between the distributions of the RICH DLLs generated by the trained
GANs and the ones resulting from the reference samples. Indeed, the KS-distance was
computed in bins of momentum, pseudorapidity, and nTracks, and the target score was
defined as its maximum value among the whole phase space. Hence, minimizing such a
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target score corresponds to requiring the set of hyperparameters that allow to train the
model with the lowest mismatch in the whole phase space (p, η, nTracks).

As expected, the hyperparameters that affect more the performance of the trained
models are the initial values of the learning rates for both the generator and the discrimi-
nator, and the strategy adopted for their scheduling, such as the decay steps in case of an
exponential decrease of the learning rates. Another crucial component is the GAN flavour
and the corresponding minimax game that drives the generator training. The optimization
campaigns have revealed two major GAN algorithms that succeed in parameterizing the
RICH response better than others: the BCE-based algorithm already used for the tracking
parameterizations and the LSGAN algorithm [143]. By using the pidgan package [6],
the implementation of such algorithms is straightforward. In particular, the RICH GAN
systems rely on 10-layer neural networks for both the generator and the discriminator.
Each hidden layer counts 128 neurons and outputs with a Leaky ReLU activation function.
Regardless of the GAN algorithm, the generator hidden layers are equipped with skip
connections [111], while the discriminator is implemented as a plain FNN in the case
of LSGAN since we experienced some training instability problems when using residual
blocks with this flavour.

To parameterize the RICH response to properly take into account the underlying
phase space (p, η, nTracks), the generator is trained by using as input features the
aforementioned conditions x in combination with elements z of the latent space, sampled
from a 64-dimensional normal distribution. The generator has four output neurons, one
for each of the target likelihoods y, namely RichDLLh with h ∈ {e, µ,K, p}. Since the
latters are differential log-likelihoods, their subtraction has a precise physical meaning,
such as RichDLLpK ≡ RichDLLpK − RichDLLpK which represents the proton hypothesis
versus the kaon one. The separation between protons and kaons is one of the main tasks of
the LHCb RICH system, hence it is of primary importance that the generator reproduces
accurately also the RichDLLpK distribution. To this end, the discriminator takes as input a
set of auxiliary features in addition to the conditions x and the DLLs y (real or generated).
Inspired by what is proposed in Ref. [177] for adding physics-based constraints to the
output of a GAN trained to reproduce the low-level response of the LHCb ECAL detector,
the RICH discriminator is fed by additional features to accomplish its classification task:

• the RICH DLL of the muon hypothesis versus the electron one RichDLLmue;

• the RICH DLL of the proton hypothesis versus the kaon one RichDLLpK.

Thanks to the pidgan APIs, the discriminator is able to compute the above auxiliary
features at runtime12 during the training procedure by using either the reference data
or the generator output. The last layer of the discriminator counts a single neuron with
a sigmoid activation function that describes the probability that the input, including
conditions, target likelihoods, and auxiliary features, belongs to the reference sample. By
doing so, the generated samples can benefit from such auxiliary physics information by
relying on the minimax game and avoiding adding explicitly any other features to the
generator.
12The preprocessing strategy adopted for the target DLLs should take into account that the auxiliary

features are computed at runtime. This is physically reasonable only if the preprocessing maintains
the shape of the likelihood distributions, such as by using the MinMaxScaler or StandardScaler
transformations of scikit-learn [175].
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Generator Discriminator

skip connections [111] ✓ p/✓/✓/✓
latent space dim [134] 64 -
n auxiliary features [177] - 2
input shape (None, 68) (None, 10)
input preprocessing ✓ ✓

n hidden layers 10 10
n hidden neurons 128 128
hidden activation functions Leaky ReLU Leaky ReLU
output activation function linear sigmoid
output shape (None, 4) (None, 1)
output preprocessing ✓ p

optimizer RMSprop RMSprop
learning rate ∼ (4/1/5/4)× 10−4 ∼ (5/2/7/8)× 10−4

loss function

Least squares loss (3.12)
BCE-based loss (4.7)
BCE-based loss (4.7)
BCE-based loss (4.7)

Least squares loss (3.12)
BCE-based loss (4.6)
BCE-based loss (4.6)
BCE-based loss (4.6)

BCE label smoothing -/0.05/0.05/0.05 -/0.05/0.05/0.05
Gaussian noise stddev [144] p/0.02/0.02/0.02 p/0.02/0.02/0.02
learning rate scheduling ExpDecay ExpDecay
scheduling decay rate 0.1 0.1
scheduling decay steps (15/12/12/27)× 104 (20/17/37/39)× 104

batch-size 10000 10000
batches per epoch ∼ 900 ∼ 900

n epochs 500 500

Table 4.6: Hyperparameters of the GAN-based models for the RICH system. When multiple
hyperparameter values are reported, they refer to the different settings adopted for the definition
and training of the models for muons, pions, kaons, and protons, respectively.

To mitigate the vanishing gradient problem typical of GAN systems, the BCE-based
algorithm relies on label smoothing and the injection of zero-mean Gaussian noise to the
discriminator input [144]. On the contrary, LSGAN does not need any of these customary
strategies, since its loss functions are designed to limit the gradient issues [143]. The
complete list of hyperparameters used to build and train the four specie-specialized models
for the RICH system is reported in Table 4.6.

The training and validation of the GAN models used to parameterize the high-level
response of the RICH detectors can count on a dataset of O(0.5×109) of detailed simulated
particles, split in four pure samples of reconstructed muons, pions, kaons, and protons.
Each of these sub-samples is divided into training (50%), test (10%), and validation
(40%) sets. As usual, the test set was used for monitoring any sign of overtraining, while
the validation set was adopted for assessing the performance of the trained models by
comparing the reference and generated distributions. Figure 4.29 reports the learning and
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metric curves resulting from the RICH GANs training. The evolution of the generator
(in blue) and discriminator (in red) loss functions for muons, pions, kaons, and protons
are depicted in top-down order on the left. Since either BCE-based GAN or LSGAN
rely on a discriminator that outputs probabilities, the accuracy is a well-defined metric
score for both algorithms. The right plots show the evolution during the training of
the generator accuracy, namely the misidentification probability of the discriminator
in recognizing instances from the reference sample. Regardless of the GAN algorithm,
the desired solution of the minimax competition corresponds to the incapability of the
discriminator to distinguish between reference and generated data, namely an accuracy
score that asymptotically points to 50%.

Validation studies

The ultimate goal of Lamarr is to provide analysts with flash-simulated samples that
reproduce faithfully the response and performance of the LHCb spectrometer [181,183].
Since the role of the RICH detectors is to distinguish among charged hadrons and to
contribute to the identification of charged leptons, in the validation studies we need to
test that the trained GANs exhibit the same discrimination performance resulting from
Detailed Simulation. To this end, the following Figures report the probability distributions
of several RICH differential log-likelihoods ∆LL(h1−h2) as expected from pure samples of
h particles with h ∈ {µ, π,K, p}. The reference distributions are then compared with what
results from the trained generators. To further test the performance of the models, the
selection efficiency and the misidentification probability plots are also reported, showing
the capability of GANs to reproduce faithfully the response of the RICH system [181].

The distributions of RichDLLmu for muons and pions are depicted in Figure 4.30 in
four bins of momentum. The high overlapping between the two distributions represents
the difficulty in separating the two particle species relying only on the RICH response.
The distribution of the DLL is well reproduced by the two GANs (specialized for muons
and pions) for p < 50 GeV/c. The very high momentum bin presents some mismodeling
effects, where both the models struggle in accurately reproducing the very narrow structure
at RichDLLmu = 0. This mismodeling appears also in the efficiency plots reported in
Figure 4.30 when the loose selection RichDLLmu > 0 is investigated: the overestimation
of the fraction of particles that pass such cut at high momentum results from the
same parameterization drawback. Due to the narrow distribution of RichDLLmu at high
momentum, the effect of the mismodeling disappears by studying the efficiencies induced
by the mild selection RichDLLmu > 5.

Figure 4.31 reports the distributions of RichDLLk for kaons and pions in four bins of
momentum. Differently from the muon case, the RICH system offers an excellent kaon-
pion separation in a wide momentum range (2÷ 50 GeV/c). The two GANs (specialized
for kaons and pions) succeed in reproducing precisely the distributions of such DLL in
the whole phase space. This is also demonstrated by the efficiency plots where both
the trained generators reproduce the discriminating performance expected from Detailed
Simulation within the statistical errors. The ability of the pion-specialized GAN to
populate the structure peaked at RichDLLk = 0 for p < 10 GeV/c is noteworthy. This is
a detector-dependent effect resulting from the active materials adopted by the RICH2
that makes a limit for the identification of kaons with p ≤ 9.3 GeV/c [44]. The trained
generator succeeds in reproducing such an effect by relying on the minimax game.
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Figure 4.29: Learning and metric curves of the four GAN-based models trained to parameterize
the LHCb RICH response when traversed by muons, pions, kaons, and protons (in top-down
order). The competition between the generator and discriminator networks of the various GANs
is depicted on the left plots. The evolution during the training of the fraction of generated
instances wrongly classified by the discriminator, namely the generator accuracy, is reported on
the right plots.
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Figure 4.30: Validation plots of the GAN-based models trained to parameterize the muon-pion
separation offered by the LHCb RICH detectors. The distributions resulting from Detailed
Simulation for the RichDLLmu variable are represented as filled histograms for muons (in red) and
pions (in blue) in four bins of momentum p. The output of the trained generators is superimposed
through solid-line histograms. To further investigate the quality of the generated distributions,
the corresponding efficiency plots are added to the figure. In particular, the performance achieved
by the GANs in reproducing the RICH efficiency for the muon identification is reported on the
left plots using two selection cuts: RichDLLmu > 0 and RichDLLmu > 5. The same cuts are used
to investigate the ability of the GANs to model the misidentification probability (π → µ) as
depicted on the right plots.
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Figure 4.31: Validation plots of the GAN-based models trained to parameterize the kaon-pion
separation offered by the LHCb RICH detectors. The distributions resulting from Detailed
Simulation for the RichDLLk variable are represented as filled histograms for kaons (in red) and
pions (in blue) in four bins of momentum p. The output of the trained generators is superimposed
through solid-line histograms. To further investigate the quality of the generated distributions,
the corresponding efficiency plots are added to the figure. In particular, the performance achieved
by the GANs in reproducing the RICH efficiency for the kaon identification is reported on the
left plots using two selection cuts: RichDLLk > 0 and RichDLLk > 5. The same cuts are used
to investigate the ability of the GANs to model the misidentification probability (π → K) as
depicted on the right plots.
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The RichDLLp distributions for protons and pions are depicted in Figure 4.32 in the
usual four momentum bins. The LHCb RICH detectors excel in distinguishing protons
from pions in a wide momentum range (2 ÷ 100 GeV/c). Also in this case, the two
GANs (specialized for protons and pions) exhibit good performance in reproducing the
discriminative power of the RICH system, either in terms of probability distributions, as
demonstrated by the histograms in Figure 4.32, or in terms of efficiency plots for both
the selection cuts of the DLL. The capability of the pion-specialized GAN to reproduce
the peak at RichDLLp = 0 for p < 25 GeV/c is remarkable. Again, this is due to the
construction design of the RICH2 detector that prevents the active identification of protons
with p ≤ 17.7 GeV/c [44]. The training procedure allows to correctly parameterize such
effect, offering the analysts an accurate description of the RICH performance.

Finally, to show the effect of using auxiliary features during the discriminator training,
Figure 4.33 reports the distributions of RichDLLpK for protons and kaons in four bins of
momentum. By design, the RICH system exhibits an excellent proton-kaon separation
in the momentum range (20 ÷ 100 GeV/c). Despite the DLL is not listed within the
output features of the trained generators, the combination of the generated RichDLLp
with RichDLLk allows to obtain very good results among the phase space, especially for
p ≥ 10 GeV/c. This is visible looking at the histogram plots in Figure 4.33 where the
distributions induced by the two GAN models (specialized for protons and kaons) are
in perfect agreement with what is expected from Detailed Simulation. The bin with
p < 10 GeV/c presents some mismodeling effects due to the difficulty of reproducing a
Dirac delta superimposed with poorly populated resolution phenomena at RichDLLpK = 0.
Such peculiar behavior follows from the construction design of the RICH2 detector that
limit the identification of either kaons or protons for p ≤ 9.3 GeV/c and p ≤ 17.7 GeV/c,
respectively. This corresponds to having most of the likelihoods for the proton hypothesis
equal to the ones for the kaon hypothesis in the momentum bin with p < 10 GeV/c,
resulting in a DLL that peaks at zero. The parameterization of this phenomenon by
using plain GANs is a non-trivial task since it requires that the generators learn to
output identical values for both RichDLLp and RichDLLk when fed by the corresponding
conditions. Using RichDLLpK as an auxiliary feature helps in accomplishing such a
task, seeding physics constraints through the minimax game, thus allowing to accurately
reproduce the efficiencies shown in Figure 4.33.

An alternative solution: Flow-based models

The continue development of deep generative models relying on ever-changing architectures
and training strategies, opens the doors to alternative algorithms that find application in
HEP and aim to compete with GANs for Fast Detector Simulation. Among these, the
promising results recently achieved by the CMS Collaboration make emerge Flow-based
models [67, 184] and encourage to investigate them also for the LHCb use cases.

A preliminary study aimed to assess the performance achieved by Flow-based models
in parameterizing the high-level response of the RICH system is briefly discussed here.
Differently from GANs that only enable the sampling from the learned underlying distri-
bution, Normalizing Flows allows to explicitly compute the probability density functions
by relying on a sequence of invertible and differentiable transformations, typically powered
by neural networks [149]. However, the intrinsic non-linear nature of the neural network
makes defining transformations with such properties non-trivial, and pushes to rely on
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Figure 4.32: Validation plots of the GAN-based models trained to parameterize the proton-pion
separation offered by the LHCb RICH detectors. The distributions resulting from Detailed
Simulation for the RichDLLp variable are represented as filled histograms for protons (in red) and
pions (in blue) in four bins of momentum p. The output of the trained generators is superimposed
through solid-line histograms. To further investigate the quality of the generated distributions,
the corresponding efficiency plots are added to the figure. In particular, the performance achieved
by the GANs in reproducing the RICH efficiency for the proton identification is reported on the
left plots using two selection cuts: RichDLLp > 0 and RichDLLp > 5. The same cuts are used
to investigate the ability of the GANs to model the misidentification probability (π → p) as
depicted on the right plots.
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Figure 4.33: Validation plots of the GAN-based models trained to parameterize the proton-kaon
separation offered by the LHCb RICH detectors. The distributions resulting from Detailed
Simulation for the RichDLLpK variable are represented as filled histograms for protons (in red) and
kaons (in blue) in four bins of momentum p. The output of the trained generators is superimposed
through solid-line histograms. To further investigate the quality of the generated distributions,
the corresponding efficiency plots are added to the figure. In particular, the performance achieved
by the GANs in reproducing the RICH efficiency for the proton identification is reported on the
left plots using two selection cuts: RichDLLpK > 0 and RichDLLpK > 5. The same cuts are used
to investigate the ability of the GANs to model the misidentification probability (K → p) as
depicted on the right plots.
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dedicated architectures designed for a compromise between expressivity and regularity.
In particular, for these preliminary studies, we make use of a Masked Autoregressive
Flows (MAF), whose definition is depicted in Section 3.3.1, relying on affine functions to
transform a 4-dimensional Gaussian distribution into the joint probability density function
representing the distribution of the four target RICH DLLs. Following the implementation
suggested in Ref. [154], each transformation can be easily implement to rely on a set of
additional variables, hence enabling to compute conditional probability density functions.
Following the example of the GANs, four specie-specialized Flow-based models are defined
and designed to take as input condition the track kinematic information, the detector
occupancy, and the charge of the generated particle. The MAF implementation relies on
the nflows package [185], while the training was performed using PyTorch [186].

The preliminary results are depicted in Figure 4.34, where the ability to reproduce the
kaon-proton separation is investigate both for GAN- and Flow-based models. In particular,
the distributions of RichDLLpK for kaons (left) and protons (right) resulting from the two
generative models are compared with what expected from Detailed Simulation in three
bins of momentum. As already discussed, RichDLLpK is not part of the target variables of
the trained generators that succeed in reproducing physically reasonable results relying on
the auxiliary feedback provided by the discriminator training. Interistingly, neither the
MAF-based models have access to the RichDLLpK variable, but succeed in reproducing
it even without relying on any auxiliary process. In general, the performance exhibited
by the two models are quite similar, despite the presence of minor mismodeling in the
MAF case probably due to a non-optimal hyperparameter configuration. Despite these
preliminary results are promising and encourage further studies in the future, we do not
observe any clear evidence to stop relying on GANs for parameterizing the high-level
response of the LHCb experiment, that would also require additional efforts to develop
ad-hoc solutions to be integrated within the simulation software stack, as further discussed
in Chapter 5.

4.3.3 MUON system
The LHCb MUON system disposes of five stations located at the end of the spectrometer
for the selection of high-pT muons at the trigger level and for the offline identification of
muon candidates. The latter relies on the distribution of specialized likelihood functions
only computed after the verification of the isMuon flag, a binary muon-identification
criterion implemented via FPGA [42]. Given the mean square errors along the MUON
stations between the detected hits and the linear extrapolation of the reconstructed
track D2 defined in Eq. (1.10), the likelihood for the muon hypothesis is defined as the
cumulative of D2 distribution obtained from true muon candidates. The likelihood for the
non-muon hypothesis relies instead on the cumulative of D2 distribution resulting from
protons wrongly identified as muons by the isMuon criterion. Similarly to what is done
by the rest of the PID detectors at LHCb, these two likelihoods are combined by forming
a DLL discriminating variable called muDLL [42]:

muDLL = log

(
MUON likelihood for µ
MUON likelihood for p

)
≡ MuonMuLL− MuonBgLL (4.11)

Despite the physics processes used for the identification of muons being profoundly
different from the ones exploited by the RICH detectors, also, in this case, we expect that
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Figure 4.34: Comparison plots between GAN- and Flow-based models trained to reproduce
the high-level response of the LHCb RICH system. The distribution of the RichDLLpK variable
for kaons (left) and protons (right) as result from Detailed Simulation are represented as grey
shaded histograms in three bins of momentum. The output of the trained models are reported
by using solid line histograms, blue for the GANs and red for the Flows. The ratios between the
modeled and reference histogram entries are also reported following the same color labeling.
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the response of the MUON system depends on the momentum p and pseudorapidity η of
traversing particles, and the total number of reconstructed tracks nTracks. To understand
the reason behind these dependencies, we should consider that the track momentum is one
of the information adopted by isMuon to make decisions for the muons identification. The
efficiency of isMuon as well as the probability of misidentification are then strongly related
to p values which may vary the D2 distributions and the likelihoods. The scheme of the
MUON system depicted in Figure 1.14 makes evident why the detector response depends
also on the pseudorapidity of the traversing particles. Lastly, considering a low-occupancy
event, it stands to reason that the latter is characterized by a clear signature for both
MuonMuLL and MuonBgLL so that they can be effectively separated. On the contrary, in
the case of a crowded event, the same likelihoods are affected by resolution effects that
typically drop the global performance of the MUON system.

Lamarr relies on GANs to parameterize the high-level response of the LHCb MUON
system. Such parameterizations are designed to take as input the same set of conditions
used for the RICH model discussed in Section 4.3.3. The MUON GANs were trained to
learn the conditional probability distributions of the following likelihoods [1, 180]:

• the MUON log-likelihood for the muon hypothesis MuonMuLL;

• the MUON log-likelihood for the non-muon hypothesis MuonBgLL.

As for the RICH case, for parameterizing the MUON system Lamarr relies on four
different specie-specialized models, trained by using as many pure samples of muons, pions,
kaons, and protons once they have passed the isMuon criterion.

Model design and training

The selection of the best hyperparameters and training strategies to build an effective
parameterization of the MUON systems relies on Bayesian optimization campaigns [2]
that have required more than O(103) GPU hours. Just like for the RICH models, the
optimization procedure was driven by the minimization of a static metric measuring the
distance between the reference distributions resulting from Detailed Simulation, and the
distributions generated by four specie-specialized GANs. The metric chosen for these
studies was the KS-distance that, computed in bins of momentum, pseudorapidity, and
nTracks, aims to minimize the mismodeling errors introduced by the GANs in the whole
phase space (p, η, nTracks).

Besides the BCE-based GAN and LSGAN [143] algorithms which have already proven
their effectiveness with the parameterization of the RICH response, the optimization
studies for the MUON system highlighted also the potentialities of other GAN flavours.
The injection of Gaussian noise [144] within the discriminator reveals the capability of
the original GAN design proposed by Ian Goodfellow and others [134] to generate faithful
synthetic data. On the other hand, the use of Lipschitz-constrained discriminators [145–
147] avoids relying on customary techniques to stabilize BCE-based training. In particular,
the likelihoods of the MUON system seem to be properly reproduced by using the
adversarial Lipschitz penalty (ALP) algorithm discussed in Section 3.2.2 to constraint
explicitly the Lipschitzianity of the discriminator. Independently of the GAN flavour,
these adversarial systems rely on 10-layer neural networks for both the generator and the
discriminator. As usual, each hidden layer comprises 128 neurons and Leaky ReLUs as
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activation functions. The generators can count on 1-D residual blocks [111] to ensure
a smooth training procedure. On the contrary, the use of skip connections for the
discriminators is discouraged when using LSGANs or the original GAN design. All the
GAN algorithms, the regularization strategies, and the network architectures mentioned
above can be easily implemented by relying on the pidgan APIs [6].

We expect that the response of the MUON system depends on the kinematics of
the traversing particles and the detector occupancy, hence such information x is used
to conditionate the output of the generator in combination with latent vectors z, which
are sampled from a 64-dimensional normal distribution N64(0,1). The last layer of the
generatorsG(z|x) counts two neurons with no activation functions that aim to parameterize
the likelihoods MuonMuLL and MuonBgLL. However, the variable used for analyses at LHCb
is muDLL, which results by subtraction from the modeled likelihoods. Hence, to ensure
that the outputs of the generators are physically reasonable, all the discriminators make use
of muDLL as an auxiliary feature [177] together with the conditions x and the likelihoods y.
This information ends up with a single neuron that is used by the discriminator D(y, yaux|x)
to separate the reference sample from the synthetic one. Table 4.7 reports the complete
list of hyperparameters used to build and train the specie-specialized models of the
MUON system, which include label smoothing, Lipschitz regularization, and learning rate
scheduling.

For training and validating the GAN-based models of the MUON system, a dataset
of O(4 × 106) particles passing the isMuon criterion was produced through Detailed
Simulation. A fraction of 50% of the dataset was used for training, while another 10% was
retained to monitor any signs of overtraining. Finally, the remaining 40% of the dataset
was preserved for validation studies. The learning and metric curves of the MUON GANs
are depicted in Figure 4.35. The evolution of the competition between the generator and
discriminator networks during the training is shown on the left plots for the various GAN
flavours adopted. Different algorithms have different metrics measuring the proximity to
the Nash equilibrium. In particular, when discriminators learn probabilities, the metric
chosen is the Jensen-Shannon divergence, while when the discriminators do have not
any output activation functions, the Wasserstein distance defined in (3.16) is preferred.
The evolution during the training of such metric scores is reported on the right plots of
Figure 4.35.

Validation studies

As done for the RICH parameterization discussed in Section 4.3.2, the validation studies
of the MUON models aim to test the ability of the trained GANs to reproduce faithfully
the discrimination performance of the MUON system, in particular in distinguishing
muons from charged hadrons. To this end, Figures 4.36, 4.37, and 4.38 report the
muDLL distributions resulting from Detailed Simulation for muons versus pions, kaons,
and protons, respectively. The reference distributions are then compared with the ones
produced by the trained generators. To further test the performance of the models, the
selection efficiency and the misidentification probability plots are also reported, showing
the capability of GANs to fully parameterize the MUON system. It should be pointed
out that muDLL is not listed within the output features of the trained generators, but
instead, it results from the combination of the two target likelihoods, namely MuonMuLL
and MuonBgLL. To help the generators reproduce physically reasonable outputs, a notion
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Figure 4.35: Learning and metric curves of the four GAN-based models trained to parameterize
the LHCb MUON response when traversed by muons, pions, kaons, and protons (in top-down
order). The competition between the generator and discriminator networks of the various
GANs is depicted on the left plots. The evolution during the training of the metric adopted for
monitoring the proximity to the Nash equilibrium in each of the GAN flavours is reported on
the right plots.
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of the actual distribution of muDLL is seeded through the minimax game by using it as
an auxiliary feature within the discriminator training.

The muDLL distributions for muons and pions are depicted in Figure 4.36 in four
bins of momentum. Despite the high overlapping between the two distributions in all the
bins, the MUON system offers a very good muon-pion separation that results from the
combination of muDLL with the preliminary filtering achieved by the isMuon criterion.
Despite the non-trivial shape of the DLL distribution, the two GANs (specialized for

Generator Discriminator

skip connections [111] ✓ ✓/✓/p/✓
latent space dim [134] 64 -
n auxiliary features [177] - 1
input shape (None, 68) (None, 7)
input preprocessing ✓ ✓

n hidden layers 10 10
n hidden neurons 128 128
hidden activation functions Leaky ReLU Leaky ReLU

output activation function linear

sigmoid
linear

sigmoid
linear

output shape (None, 2) (None, 1)
output preprocessing ✓ p

optimizer RMSprop RMSprop
learning rate ∼ (3/6/5/7)× 10−4 ∼ (5/3/3/4)× 10−4

loss function

BCE-based loss (4.7)
BCE-based loss (4.7)

GAN original loss (3.2)
BCE-based loss (4.7)

BCE-based loss (4.6)
BCE-based loss (4.6)

GAN original loss (3.2)
BCE-based loss (4.6)

BCE from logits False/True/-/True False/True/-/True
BCE label smoothing 0.05/p/-/p 0.05/p/-/p
Gaussian noise stddev [144] 0.02/-/0.05/- 0.02/-/0.05/-
Lipschitz regularization [145] -/ALP/-/ALP -/ALP/-/ALP
learning rate scheduling ExpDecay ExpDecay
scheduling decay rate 0.1 0.1
scheduling decay steps (21/13/18/15)× 104 (15/25/23/20)× 104

batch-size (22/3/7/3)× 103 (22/3/7/3)× 103

batches per epoch ∼ 500 ∼ 500

n epochs 1000 1000

Table 4.7: Hyperparameters of the GAN-based model for the MUON system. When multiple
hyperparameter values are reported, they refer to the different settings adopted for the definition
and training of the models for muons, pions, kaons, and protons, respectively.
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muons and pions) succeed in parameterizing the expected response of the MUON system,
as demonstrated by the histogram plots. To further investigate the performance of the
trained models, Figure 4.36 reports also the efficiency plots obtained by applying two
cuts to the muDLL variable. Also, in this case, the GANs exhibit a very good ability in
reproducing the discrimination performance expected from the MUON system.

Figures 4.37 and 4.38 report the muon-kaon and muon-proton separations exhibited
by the muDLL variable in four bins of momentum. The GANs specialized for kaons and
protons succeed in parameterizing the MUON high-level response, showing a very good
agreement with Detailed Simulation either within the histograms or by comparing the
misidentification probability plots.

An alternative solution: Flow-based models

Following what done for the RICH parameterization, also the high-level response of the
MUON system is employed as laboratory to study the performance exhibited by Flow-based
models on LHCb-tailored use-cases. As previously discussed, we aim to explicitly obtain
the probability density function representing the distribution of the MUON likelihoods by
relying on MAF-based models powered by affine transformations [149]. The usual input
conditions x are used to conditionate the bijective transformations, and hence the flow, in
order to obtain a proper description for the target density, representing the distribution
of MuonMuLL and MuonBgLL. Similarly to what done for GANs, four specie-specialized
Flow-based models were prepared and trained on data sample containing only particles
satisfying the isMuon criterion. Also in this case, the MAF implementation relies on the
nflows package [185], while the training was delivered by relying on PyTorch [186] as
back-end.

The preliminary results are reported in Figure 4.39, where the distributions of the
muDLL for protons (left) and muons (right) are investigated both for GAN- and Flow-
based models. What results from Detailed Simulation is shown through grey shaded
histograms in three bins of momentum. The distributions reproduced by GANs (blue)
and MAFs (red) are superimposed by using solid line histograms. Also in this case the
variable chosen for the performance metric, muDLL, is not part of the target features
either for GANs nor Flows. However, if the GANs take advantage from the auxiliary
features employed by the discriminator for reproducing the expected distributions, Flows
struggle in correctly parameterizing the non-regular shape of the muDLL distributions,
that lead to non-negligible mismodeling effects. Despite the obtained results required to be
further investigated, they push to postpone in the future similar studies, confirming to rely
on GANs for the construction of an end-to-end pipeline of models aimed at parameterizing
the high-level response of the LHCb detector.

4.3.4 isMuon criterion
To reduce the misidentification of hadrons as muons at the percentage level, LHCb makes
use of a dedicated FPGA-based strategy, called isMuon, which implements a loose boolean
selection of muon candidates. The latter provides high efficiency and is based on the
penetration of muons through the calorimeters and the iron filters of the MUON system.
The higher momentum a muon has, the greater the expected number of stations traversed
by such muon. Hence, requiring to find hits around the track extrapolation in the stations
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Figure 4.36: Validation plots of the GAN-based models trained to parameterize the muon-pion
separation offered by the LHCb MUON detectors. The distributions resulting from Detailed
Simulation for the muDLL variable are represented as filled histograms for muons (in red) and
pions (in blue) in four bins of momentum p. The output of the trained generators is superimposed
through solid-line histograms. To further investigate the quality of the generated distributions,
the corresponding efficiency plots are added to the figure. In particular, the performance
achieved by the GANs in reproducing the efficiency of the muDLL criterion, applied on top of
the isMuon requirement, is reported on the left plots using two selection cuts: muDLL > 1.75
and muDLL > 2.25. The same cuts are used to investigate the ability of the GANs to model the
misidentification probability (π → µ) as depicted on the right plots.
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Figure 4.37: Validation plots of the GAN-based models trained to parameterize the muon-kaon
separation offered by the LHCb MUON detectors. The distributions resulting from Detailed
Simulation for the muDLL variable are represented as filled histograms for muons (in red) and
kaons (in blue) in four bins of momentum p. The output of the trained generators is superimposed
through solid-line histograms. To further investigate the quality of the generated distributions,
the corresponding efficiency plots are added to the figure. In particular, the performance
achieved by the GANs in reproducing the efficiency of the muDLL criterion, applied on top of
the isMuon requirement, is reported on the left plots using two selection cuts: muDLL > 1.75
and muDLL > 2.25. The same cuts are used to investigate the ability of the GANs to model the
misidentification probability (K → µ) as depicted on the right plots.
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Figure 4.38: Validation plots of the GAN-based models trained to parameterize the muon-proton
separation offered by the LHCb MUON detectors. The distributions resulting from Detailed
Simulation for the muDLL variable are represented as filled histograms for muons (in red)
and protons (in blue) in four bins of momentum p. The output of the trained generators is
superimposed through solid-line histograms. To further investigate the quality of the generated
distributions, the corresponding efficiency plots are added to the figure. In particular, the
performance achieved by the GANs in reproducing the efficiency of the muDLL criterion,
applied on top of the isMuon requirement, is reported on the left plots using two selection cuts:
muDLL > 1.75 and muDLL > 2.25. The same cuts are used to investigate the ability of the
GANs to model the misidentification probability (p→ µ) as depicted on the right plots.
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Figure 4.39: Comparison plots between GAN- and Flow-based models trained to reproduce
the high-level response of the LHCb MUON system. The distribution of the muDLL variable
for protons (left) and muons (right) as result from Detailed Simulation are represented as grey
shaded histograms in three bins of momentum. The output of the trained models are reported
by using solid line histograms, blue for the GANs and red for the Flows. The ratios between the
modeled and reference histogram entries are also reported following the same color labeling.
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indicated in Table 1.2, we can derive a first rough estimation of the muon identification [47].
The current version of Lamarr relies on four specie-specialized neural networks for

parameterizing the isMuon flag when the MUON system is traversed by muons, pions,
kaons, or protons. Similarly to what is discussed in Section 4.3.3 for the MUON system,
we expect that the output of the isMuon criterion depends on the momentum p and
pseudorapidity η of traversing particles, and the total number of reconstructed tracks
nTracks. Hence, four different neural networks were trained to predict the fraction of
particles that fulfill the isMuon rules based on the following set of features:

• the reconstructed momentum p of the traversing particles;

• the reconstructed pseudorapidity η of the traversing particles;

• the number of reconstructed tracks nTracks;

• the charge q of the traversing particles.

To train these neural networks, we relied on the same dataset of O(0.5× 109) particles
used for training the RICH models, after having substituted the DLLs with the isMuon
flag. The training of such NN-based approximators aims to predict the fraction of particles
that pass the isMuon criterion by performing a binary classification task. According to
this view, the isMuon models are formally equivalent to the parameterization of the LHCb
geometrical acceptance discussed in Section 4.2.2.

Model design and training

Each of the four neural networks used to parameterize the output of the isMuon criterion is
constructed with a set of 10 fully connected layers with ReLU activation functions. A final
dense layer with a single neuron and a sigmoid activation function follows. To mitigate
the gradient vanishing problem, all the NNs are equipped with skip connections [111]. The
training procedure was driven by the minimization of the BCE using Adam as optimizer.
Similarly to what was done for the acceptance model, the training procedure was split
into two phases. At the beginning of the training procedure, the BCE was used with
label smoothing set to 0.05, and Adam initialized with a learning rate of 0.05. During
the following 200 epochs, such learning rate was exponentially decreased up to 10−4.
Then, fixed the learning rate to the last scheduled value and restored to zero the label
smoothing, the neural networks were fine-tuned for 100 more epochs. The complete list of
hyperparameters used to define and train the four specie-specialized models parameterizing
the isMuon criterion is reported in Table 4.8. Since the referee implementations provided
by pidgan [6] can also be trained as standalone, we can rely on them to train and fine-tune
the isMuon models.

The training dataset was arranged by selecting a fraction of 50% of the O(0.5× 109)
particles available from Detailed Simulation. As usual, another 10% portion was retained
to detect any overtraining effects, while the remaining 40% was preserved for validation
studies. Figure 4.40 shows the evolution of the ROC AUC score during the training, which
illustrates the performance achieved by the neural networks in accomplishing the binary
classification task.
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training fine-tuning

skip connections [111] ✓ ✓

input shape (None, 4) (None, 4)
input preprocessing ✓ ✓

n hidden layers 10 10
n hidden neurons 128 128
hidden activation functions ReLU ReLU
hidden kernel regularizer L2 L2
L2 regularization factor [169] 5× 10−5 5× 10−5

output activation function sigmoid sigmoid
output shape (None, 1) (None, 1)
optimizer Adam Adam
learning rate 0.05 1× 10−4

loss function BCE BCE
BCE label smoothing 0.05 p

learning rate scheduling ExpDecay p

scheduling decay rate 0.1 -
scheduling decay steps 50000 -
batch-size 20000 20000
batches per epoch ∼ 600 ∼ 600

n epochs 200 100

Table 4.8: Hyperparameters of the neural networks used to parameterize the isMuon criterion.

Validation studies

The ability of the trained neural networks to parameterize the isMuon criterion is assessed
by relying on detailed simulated samples that count 5 million of instances for each of
the specializing particle species. Aiming to predict the fraction of particles that satisfy
the isMuon rules [47], the neural networks were trained to output the probability that
a particle (i.e., muon, pion, kaon, or proton), with a certain combination of momentum
and pseudorapidity and that traverses LHCb in different detector conditions (such as
nTracks), passes such binary criterion. Hence, to assess the performance of the trained
models, we compare the kinematic distributions of the particles that verify isMuon with
the ones obtained by weighting the kinematic distributions of the reconstructed particles
with the predicted probabilities.

The validation plots of the isMuon model for muons as a function of the momentum p
in four bins of pseudorapidity η is depicted in Figure 4.41. The momentum distributions
of the reconstructed true muons are shown in grey, while the ones that pass the binary
criterion are highlighted by using blue-hatched histograms. The results of the trained
muon-specialized neural network are superimposed with a red solid-line. Figures 4.42,
4.43, and 4.44 show the same comparisons for pions, kaons, and protons, respectively. In
all the cases, the neural networks succeed in reproducing the fraction of particles that
verify isMuon as expected from Detailed Simulation, even on the tails of the kinematic
distributions.
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Figure 4.40: Metric curves reporting the ROC AUC score of four L2-regularized neural
networks [169] trained to model the response of the isMuon criterion when the LHCb MUON
system is traverse by muons, pions, kaons, or protons. The training procedure consisted of 200
epochs where label smoothing and learning rate scheduling are used. A fine-tuning phase followed
counting 100 epochs with label smoothing and learning rate scheduling strategies disabled.
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Figure 4.41: Validation plots of the isMuon model for muons as a function of the momentum p
in four bins of pseudorapidity η. The kinematics distributions of the reconstructed muons are
represented as light grey shaded histograms. The distributions of muons that pass the isMuon
criterion are shown through blue-hatched histogram, while their parameterization as modeled by
a deep neural network is superimposed using red solid-line histograms.
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Figure 4.42: Validation plots of the isMuon model for pions as a function of the momentum p
in four bins of pseudorapidity η. The kinematics distributions of the reconstructed pions are
represented as light grey shaded histograms. The distributions of pions that pass the isMuon
criterion are shown through blue-hatched histogram, while their parameterization as modeled by
a deep neural network is superimposed using red solid-line histograms.
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Figure 4.43: Validation plots of the isMuon model for kaons as a function of the momentum p
in four bins of pseudorapidity η. The kinematics distributions of the reconstructed kaons are
represented as light grey shaded histograms. The distributions of kaons that pass the isMuon
criterion are shown through blue-hatched histogram, while their parameterization as modeled by
a deep neural network is superimposed using red solid-line histograms.
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Figure 4.44: Validation plots of the isMuon model for protons as a function of the momentum p
in four bins of pseudorapidity η. The kinematics distributions of the reconstructed protons are
represented as light grey shaded histograms. The distributions of protons that pass the isMuon
criterion are shown through blue-hatched histogram, while their parameterization as modeled by
a deep neural network is superimposed using red solid-line histograms.

To further investigate their performance, the parameterizations are also tested in terms
of efficiency. In particular, Figure 4.45 reports the isMuon efficiency and misidentification
probabilities as a function of the momentum. Since we expect that the output of isMuon
strongly depends on the transverse momentum pT [47], the efficiencies shown in Figure 4.45
are computed for particles with pT ∈ (1.5, 3.0) GeV/c. Also in this case the performance
exhibited by the trained models is very good with efficiencies that match the ones drawn
from simulations within the statistical errors in almost all the momentum bins. Similar
results are shown in Figure 4.46 where the same study is repeated for particles traversing
the spectrometer with an occupancy described by nTracks ∈ (100, 250).

4.3.5 Global response of the PID system
Despite the experimental strategies adopted by each of the LHCb PID detectors being very
different, each of them allows the computation of a likelihood ratio between two particle
hypotheses for each reconstructed track. The RICH detectors provide likelihoods that
distinguish muons and hadrons from charged pions by comparing the size of the Cherenkov
rings against a specific mass hypothesis. The Calorimeter system provides likelihoods that
identify electrons versus hadrons based on the shape of the associated cluster and the
energy deposited on each of the calorimeter sub-detectors (i.e., PS, ECAL, and HCAL).
Finally, the MUON system provides likelihoods that separate muons from hadrons by
exploiting the hits left within five stations located at the end of the spectrometer. To
improve the PID performance, the likelihood ratios of the three detector systems are
linearly added to obtain combined differential log-likelihoods (CombDLLs), which are
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Figure 4.45: isMuon efficiency and misidentification probabilities as a function of the momentum
in a specific bin of the transverse momentum pT . The efficiencies resulting from detailed simulated
muons (top left), pions (top right), kaons (bottom left), and protons (bottom left) are reported
using blue circle-markers. What results from a deep neural network trained to parameterize the
isMuon criterion is depicted through red triangular-markers.
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Figure 4.46: isMuon efficiency and misidentification probabilities as a function of the momentum
in a specific bin of the number of reconstructed tracks nTracks. The efficiencies resulting from
detailed simulated muons (top left), pions (top right), kaons (bottom left), and protons (bottom
left) are reported using blue circle-markers. What results from a deep neural network trained to
parameterize the isMuon criterion is depicted through red triangular-markers.
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typically used to define the selection criteria for data analyses [34, 49]. Since the most
abundant species produced at hadron colliders are pions, it is customary to define such
CombDLLs with respect to the pion hypothesis. The second approach used at LHCb for
selecting particle candidates relies on a multivariate classifiers, called ANNPIDs designed
to combine the aforementioned likelihood ratios with information coming from the Tracking
system, and an additional one provided by the PID detectors not entering the likelihood
computation, as listed in Table 1.3. These classifiers are structured as MLPs with a single
hidden layer and a single output neuron with a sigmoid activation function [49]. Since the
ANNPID classifiers are trained to predict probabilities, the latters are typically referred
to as ProbNNh with h ∈ {e, µ, π,K, p}.

Aiming to provide analysts with everything necessary for pursuing the LHCb physics
program, Lamarr also disposes of a dedicated set of GAN-based models to parameterize
the global response of the PID system. Since both the CombDLLs and ANNPIDs rely on
the response of the MUON system only for those tracks that pass the isMuon criterion,
two different sets of parameterizations have been designed, counting four specie-specialized
models each. When the isMuon flag is true, the corresponding GAN models make use
of the momentum p and pseudorapidity η of the traversing particles, the number or
reconstructed tracks nTracks, and the RICH and MUON likelihoods to parameterize
the global response of the PID system. On the contrary, when isMuon is not satisfied,
the MUON likelihoods are not included. Hence, the complete list of features used to
conditionate the PID models follows:

• the reconstructed momentum p of the traversing particles;

• the reconstructed pseudorapidity η of the traversing particles;

• the number of reconstructed tracks nTracks;

• the charge q of the traversing particles;

• the RICH DLL of the electron hypothesis versus the pion one RichDLLe;

• the RICH DLL of the muon hypothesis versus the pion one RichDLLmu;

• the RICH DLL of the kaon hypothesis versus the pion one RichDLLk;

• the RICH DLL of the proton hypothesis versus the pion one RichDLLp;

• when isMuon = 1, the MUON log-likelihood for the muon hypothesis MuonMuLL;

• when isMuon = 1, the MUON log-likelihood for the non-muon hypothesis MuonBgLL.

Relying on these input features, Lamarr allows to reproduce the global response
of the PID system only using the information provided by the previous modules of the
pipeline defined for charged particles. The reconstructed particles and the corresponding
momentum and pseudorapidity are available from the tracking models discussed in
Section 4.2. The measurement of the detector occupancy results by sampling from a
parametric probability distribution modeled on simulations. The charge of the traversing
particles is directly provided by the physics generators. Both the RICH and MUON
likelihoods results from the GAN models discussed in Sections 4.3.2 and 4.3.3. Finally,
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the isMuon criterion can be parameterized by relying on the neural networks detailed in
the previous Section. The combination of such features allows to effectively parameterize
not only the CombDLL variables but also the response of the ANNPID, even if it relies
on information not included in the aforementioned list. As demonstrated in Ref. [1],
by relying on the latent space Z, GANs are able to reproduce the missing information,
allowing Lamarr to parameterize successfully the conditional probability distributions of
the following variables:

• the PID CombDLL of the electron hypothesis versus the pion one ∆LLcomb(e− π);

• the PID CombDLL of the kaon hypothesis versus the pion one ∆LLcomb(K − π);

• the PID CombDLL of the proton hypothesis versus the pion one ∆LLcomb(p− π);

• the ANNPID probability for electrons ProbNNe;

• the ANNPID probability for pions ProbNNpi;

• the ANNPID probability for kaons ProbNNk;

• the ANNPID probability for protons ProbNNp;

• the PID CombDLL of the muon hypothesis versus the pion one ∆LLcomb(µ− π);

• when isMuon = 1, the ANNPID probability for muons ProbNNmu.

The training and validation of the two sets of GAN-based models require two different
datasets resulting from Detailed Simulation. The first one includes pure samples of muons,
pions, kaons, and protons passing the isMuon criterion, and contains the information from
the MUON system and the whole global response of the PID system for studying muon
candidates, namely CombDLL(µ− π) and ProbNNmu. On the contrary, the second dataset
includes four pure samples of particles not passing isMuon and does not contain neither
the MUON likelihoods nor the ProbNNmu variable.

Model design and training

The design of the parameterizations for the global response of the LHCb PID system
requires optimization campaigns that have made use of significant computational power
(most of which included GPUs), provided by combining on-promises, cloud, and HPC
resources. Dozens of the optimization studies were run in parallel and coordinated by the
Hopaas service [2], earning more than O(103) GPU hours to select the set of training
strategies listed in Tables 4.9 and 4.10. In particular, the Bayesian optimizer exposed
by Hopaas was used to find the best-suited collection of hyperparameters for training
GANs that aim to parameterize faithfully the PID response. To this end, similarly to the
campaigns for the RICH and MUON models, also in this case the optimization procedure
was designed to minimize the errors introduced by the adoption of flash-simulations
with respect to fully simulated samples. To have an objective measurement13 of the
mismodeling errors, the metric chosen for the optimization studies was the KS-distance.
13Here, with objective measurement, we refer to the necessity of evaluating the mismodeling errors with a

metric robust against the dynamic evolution of the generator-discriminator learning process.
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Generator Discriminator

skip connections [111] ✓ ✓/✓/✓/p
latent space dim [134] 64 -
n auxiliary features [177] - 2
input shape (None, 74) (None, 21)
input preprocessing ✓ ✓

n hidden layers 5 5
n hidden neurons 128 128
hidden activation functions Leaky ReLU Leaky ReLU

output activation function linear

linear
sigmoid
sigmoid
sigmoid

output shape (None, 9) (None, 1)
output preprocessing ✓ p

optimizer RMSprop RMSprop
learning rate ∼ (7/5/7/4)× 10−4 ∼ (7/8/10/4)× 10−4

loss function

BCE-based loss (4.7)
BCE-based loss (4.7)
BCE-based loss (4.7)

Least squares loss (3.12)

BCE-based loss (4.6)
BCE-based loss (4.6)
BCE-based loss (4.6)

Least squares loss (3.12)

BCE from logits True/False/False/- True/False/False/-
BCE label smoothing p/0.05/0.05/- p/0.05/0.05/-
Gaussian noise stddev [144] -/0.02/0.02/p -/0.02/0.02/p
Lipschitz regularization [145] ALP/-/-/- ALP/-/-/-
learning rate scheduling ExpDecay ExpDecay
scheduling decay rate 0.1 0.1
scheduling decay steps (15/18/10/14)× 104 (21/11/20/20)× 104

batch-size (9/2.5/7.5/3)× 103 (9/2.5/7.5/3)× 103

batches per epoch ∼ 500 ∼ 500

n epochs 1000 1000

Table 4.9: Hyperparameters of the GAN-based models for the PID system for particles passing
the isMuon criterion. When multiple hyperparameter values are reported, they refer to the
different settings adopted for the definition and training of the models for muons, pions, kaons,
and protons, respectively.

Such metric was computed in bins of momentum, pseudorapidity, and nTracks for each
of the analysis-level variables parameterized by the GAN-based models. The maximum
error measured was then taken as the optimization score so that minimizing its values
corresponds to searching for the best-suited model to parameterize the PID response in
the whole phase space (p, η, nTracks).

The Bayesian optimizer expands the list of generative models that can be used to
parameterize the PID system by including novel GAN algorithms and regularization
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Generator Discriminator

skip connections [111] ✓ ✓/p/p/✓
latent space dim [134] 64 -
n auxiliary features [177] - 2
input shape (None, 72) (None, 18)
input preprocessing ✓ ✓

n hidden layers 5 5
n hidden neurons 128 128
hidden activation functions Leaky ReLU Leaky ReLU

output activation function linear

sigmoid
linear
tanh

sigmoid

output shape (None, 8)

(None, 1)
(None, 256)
(None, 1)
(None, 1)

output preprocessing ✓ p

optimizer RMSprop RMSprop
learning rate ∼ (7/7/8/8)× 10−4 ∼ (7/5/6/4)× 10−4

loss function

BCE-based loss (4.7)
Energy distance (3.26)

Wasserstein distance (3.16)
BCE-based loss (4.7)

BCE-based loss (4.6)
Energy distance (3.26)

Wasserstein distance (3.16)
BCE-based loss (4.6)

BCE from logits False/-/-/False False/-/-/False
BCE label smoothing 0.05/-/-/0.05 0.05/-/-/0.05
Gaussian noise stddev [144] 0.02/-/-/0.02 0.02/-/-/0.02
Lipschitz regularization [145] -/GP/ALP/- -/GP/ALP/-
learning rate scheduling ExpDecay ExpDecay
scheduling decay rate 0.1 0.1
scheduling decay steps (15/14/16/10)× 104 (20/7/10/14)× 104

batch-size (5/9.5/9/10)× 103 (5/9.5/9/10)× 103

batches per epoch ∼ 500 ∼ 500

n epochs 1000 1000

Table 4.10: Hyperparameters of the GAN-based models for the PID system for particles not
passing the isMuon criterion. When multiple hyperparameter values are reported, they refer
to the different settings adopted for the definition and training of the models for muons, pions,
kaons, and protons, respectively.
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strategies for the discriminator. The Wasserstein distance, defined in Eq. (3.16), finds
finally a way to enter into such a list, adding WGANs to the list of flavours to select
from. In particular, the optimization studies reveal that the ALP algorithm proposed in
Ref. [147] is the best strategy to induce the Lipschitzianity of the WGAN discriminators.
On the contrary, the energy distance defined in Eq. (3.26) and used by CramerGANs
relies on the gradient penalty (GP) algorithm to implicitly force the discriminator to
approximate a Lipschitz function. To accomplish the classification task, CramerGANs
generally dispose of a high-dimensional vector space, called critic space. BCE-based
GANs powered by noise injection [144] or the ALP regularization reconfirm their ability
to reproduce conditional probability distributions, as well as LSGANs that exhibit good
performance without relying on any customary strategy for training stabilization. Once
again, implementing different GAN algorithms and regularization strategies is made easy
by using the pidgan package [6].

Both sets of PID GANs strongly depend on the input condition x, whose processing is
crucial for either the generator or discriminator networks. The generator, implemented via
8-layer (or 5-layer) neural network, couples the x features with the latent vector z, sampled
from a 64-dimensional Gaussian distribution. On the other hand, the discriminator,
constructed as 6-layer (or 5-layer) neural network, uses the conditions x and the target
variables y to distinguish the reference data from the generated one. To reduce the
vanishing gradient problem, the generator is equipped with skip connections [111], as
well as the discriminator unless it drives the training of LSGAN systems that exhibit
instabilities when dealing with residual blocks. To further improve the generator output,
the discriminator relies on a set of auxiliary features [177] that are used to constrain the
generated CombDLLs to physically reasonable quantities by the minimax game and the
message passing through the corresponding computational graph. The auxiliary features
used for this scope follows:

• the PID CombDLL of the muon hypothesis versus the electron one ∆LLcomb(µ− e);

• the PID CombDLL of the proton hypothesis versus the kaon one ∆LLcomb(p−K).

Whether the PID GANs are specialized for particles passing the isMuon criterion or not,
the aforementioned CombDLLs exhibit very peculiar characteristics (partially discussed
in the following Section), whose accurate parameterization is of primary importance for
physics analysts. Hence, disposing of discriminators powered by auxiliary features becomes
crucial for producing faithful flash-simulated samples.

To train and validate the two sets of GANs, as many datasets of detailed simulated
particles were produced. The first dataset, dedicated to particles satisfying the isMuon
criterion, counts O(4× 106) instances, split into four pure samples of muons, pions, kaons,
and protons. The second dataset relies instead on O(0.5 × 109) particles not passing
isMuon, again, split into four pure samples of muons, pions, kaons, and protons. Both
datasets were divided following the same philosophy: a fraction of 50% for training,
another 10% for monitoring overtraining effects, and the remaining 40% for validation
studies. The learning curve of the PID GAN models specialized for particles passing or
not isMuon are depicted in Figures 4.47 and 4.48, respectively. As reported in Tables 4.9
and 4.10, the training of the various GAN flavours is driven by different loss functions and
regularization strategies, that strongly affect the evolution of the competition between
the generator and discriminator networks shown in the following figures.
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Validation studies

Before to assemble the pipeline of parameterizations for the charged particles described
along Sections 4.2 and 4.3, we need to demonstrate that GANs can model the global
response of the PID system and reproduce faithfully the performance offered by LHCb in
distinguishing different particle species as exhibited in Detailed Simulation. To this end,
the following figures report the probability distributions of several CombDLL(h1 − h2)
and ProbNNh as expected from pure samples of h particles with h ∈ {µ, π,K, p}. The
reference distributions are then compared with what results from the trained generators.
To further test the performance of the models, plots for the selection efficiency and
misidentification probability are also reported with the aim of demonstrating that GANs
succeed in reproducing the global response of the LHCb PID system.

The parameterization of the muon-pion separation is investigated in Figures 4.49 and
4.50 in four bins of momentum by relying on the distributions of the combined ∆LL(µ−π)
and ProbNNmu, respectively. Aiming to select muon candidates by rejecting pions, the
reference distributions are compared versus the output of two GANs specialized for muons
and pions that have passed the isMuon criterion. Thanks to the additional separation
power provided by the global classifiers represented in the histograms, the LHCb PID
system offers a very good muon-pion separation that results from the combined action
of discriminating variables and the isMuon filter, as highlighted in the efficiency plots
depicted in Figures 4.49 and 4.50. By relying on the DLLs from the RICH and MUON
systems, the trained generators show good performance in reproducing both the CombDLL
and the response of the ANNPID for muon identification, as shown in the histogram plots.
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Figure 4.47: Learning curves of the GANs trained to parameterize the global response of the
LHCb PID system when traversed by muons, pions, kaons, and protons passing the isMuon
criterion. The loss functions used by the various GAN models are listed in Table 4.9.
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Figure 4.48: Learning curves of the GANs trained to parameterize the global response of the
LHCb PID system when traversed by muons, pions, kaons, and protons not passing the isMuon
criterion. The loss functions used by the various GAN models are listed in Table 4.10.

As a further investigation, we apply selection cuts on both the generated variables and
obtain as a result efficiencies and misidentification probabilities that match, within the
statistical uncertainties, with what is expected from Detailed Simulation as shown in
Figures 4.49 and 4.50.

The distributions of ∆LLcomb(K − π) and ProbNNk for kaons and pions are depicted
in Figures 4.51 and 4.52 in four bins of momentum. Such a study aims to test the ability
of GANs specialized for kaons and pions to model the LHCb discrimination performance
for these charged mesons. In Lamarr, the response of the PID system to particles that
satisfy or not the isMuon criterion is, by design, parameterized by two different sets of
GANs. Here, for simplicity, both the reference and generated distributions are obtained for
kaons and pions not passing isMuon, allowing us to have a clear picture to investigate the
performance achieved by generators coming from one of the two sets of parameterizations.
By doing so, the response of the MUON system is not included in the computation of
the CombDLLs, whose major contribution is then the response of the RICH detectors.
As a consequence, looking at the histograms in Figure 4.51, we can observe a structure
at ∆LLcomb(K − π) = 0 for p < 10 GeV/c. As discussed in Section 4.3.2, this effect is
due to the construction design of the RICH2 detector, whose active materials prevent
identifying kaons with p ≤ 9.3 GeV/c [44]. Disposing of the RICH DLLs among the
input conditions, it is quite easy for the trained generators to accomplish the simulation
task, and to reproduce successfully the distributions of the CombDLLs resulting from
Detailed Simulation. Figure 4.52 shows that the combination of the input conditions
with samplings from the latent space Z is sufficient to parameterize the response of the
ANNPID [1], reconfirming that GANs also succeed in accomplishing knowledge distillation
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Figure 4.49: Validation plots of the GAN-based models trained to parameterize the muon-pion
separation offered by LHCb by relying on the response of the whole PID system. The distributions
of the corresponding combined DLL as modeled by Detailed Simulation are represented as filled
histograms for muons (in red) and pions (in blue) in four bins of momentum p. The output of
the trained generators is superimposed through solid-line histograms. To further investigate the
quality of the generated distributions, the corresponding efficiency plots are added to the figure.
In particular, the performance achieved by the GANs in reproducing the efficiency for the muon
identification based on the PID criterion, applied on top of the isMuon requirement, is reported
on the left plots using two selection cuts: ∆LL > −2 and ∆LL > 2. The same cuts are used
to investigate the ability of the GANs to model the misidentification probability (π → µ) as
depicted on the right plots.
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Figure 4.50: Validation plots of the GAN-based models trained to parameterize the muon-pion
separation offered by LHCb by relying on multivariate techniques. The distributions resulting
from Detailed Simulation for the ProbNNmu variable are represented as filled histograms for
muons (in red) and pions (in blue) in four bins of momentum p. The output of the trained
generators is superimposed through solid-line histograms. To further investigate the quality
of the generated distributions, the corresponding efficiency plots are added to the figure. In
particular, the performance achieved by the GANs in reproducing the PID efficiency for the
muon identification is reported on the left plots using two selection cuts: ProbNNmu > 0.2 and
ProbNNmu > 0.5. The same cuts are used to investigate the ability of the GANs to model the
misidentification probability (π → µ) as depicted on the right plots.

159



problems, as discussed in Section 4.2.4 for the parameterization of the ghostProb score.
Figures 4.53 and 4.54 report the distributions of ∆LLcomb(p − π) and ProbNNp for

protons and pions in the usual four momentum bins. Also in this case, to have a clear
validation picture, both the reference and generated distributions result from protons and
pions not passing the isMuon criterion. Similarly to the kaon case, the CombDLL variable
presents structures at ∆LLcomb(p− π) = 0 in the histograms with p < 25 GeV/c due to
the RICH materials that make the proton discrimination difficult for p ≤ 17.7 GeV/c [44].
Directly relying on the RICH likelihoods, the two GANs (specialized for protons and pions)
parameterize correctly such phenomenon, and also succeed in reproducing the output of
the ANNPID for proton identification depicted in Figure 4.53. To further investigate the
performance of the trained models, proton candidates are selected by applying cuts on the
generated variables, and the corresponding efficiencies (or misidentification probabilities)
are evaluated. The results, added to Figures 4.53 and 4.54 for CombDLL and ProbNNp,
respectively, match with what is expected from Detailed Simulation within the statistical
errors.

Finally, the GAN-based models for the proton-kaon separation are investigated in
Figures 4.55 and 4.56 in four bins of momentum by relying on ∆LLcomb(p − K) and
ProbNNp, respectively. It should be pointed out that such CombDLL is not listed within
the output features of the trained generators, but instead, it results from the combination
by subtraction of the CombDLLs for the proton and kaon hypotheses versus the pion
one. To constrain the generator to physically reasonable outputs, the actual distribution
of ∆LLcomb(p − K) is used by the discriminator as an auxiliary feature. Since we are
comparing protons and kaons not satisfying isMuon, the histograms in Figure 4.55 show
the expected narrow peaks at ∆LLcomb(p−K) = 0 for p < 25 GeV/c. Again, this is due to
the combination of identification problems for kaons and protons with p ≤ 9.3 GeV/c and
p ≤ 17.7 GeV/c, respectively. Also the ANNPID classifier is affected by the same problem
as demonstrated by the large overlapping between the proton and kaon distributions
shown in Figure 4.56 for p < 25 GeV/c. Driven by the RICH likelihoods and the auxiliary
features, the two GANs (specialized for protons and kaons) reproduce quite faithfully
∆LLcomb(p − K). However, parameterizing the aforementioned narrow peaks is still a
non-trivial task, that leads to a mismodeling of proton candidates at low momentum when
we apply loose cuts like the top example depicted in the efficiency plots in Figure 4.55.
On the contrary, the proton-kaon separation provided by the ProbNNp variable is well
reproduced, joining the set of analysis-level variables successfully parameterized by GAN-
based models, and further confirming the validity of the flash-simulation strategy pursued
by Lamarr.

4.4 Neutral particles pipeline: the ECAL detector
As part of the PID system, the main role of the LHCb calorimeters is to enable the
separation of photons from π0 candidates and to contribute to the identification of
electrons. The reconstruction algorithms allow to distinguish neutral from charged particles
by studying the absence (or presence) of tracks in front of the energy deposits collected
within the Calorimeter system by forming clusters. In addition to the (in)consistency of
the reconstructed tracks with the barycenters of the energy deposits, also the shape of the
clusters is employed for particle identification, either to separate electrons from charged
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Figure 4.51: Validation plots of the GAN-based models trained to parameterize the kaon-pion
separation offered by LHCb by relying on the response of the whole PID system. The distributions
of the corresponding combined DLL as modeled by Detailed Simulation are represented as filled
histograms for kaons (in red) and pions (in blue) in four bins of momentum p. The output of
the trained generators is superimposed through solid-line histograms. To further investigate
the quality of the generated distributions, the corresponding efficiency plots are added to the
figure. In particular, the performance achieved by the GANs in reproducing the efficiency for
the kaon identification based on the PID criterion, applied on top of the isMuon requirement, is
reported on the left plots using two selection cuts: ∆LL > 0 and ∆LL > 5. The same cuts are
used to investigate the ability of the GANs to model the misidentification probability (π → K)
as depicted on the right plots.
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Figure 4.52: Validation plots of the GAN-based models trained to parameterize the kaon-pion
separation offered by LHCb by relying on multivariate techniques. The distributions resulting
from Detailed Simulation for the ProbNNk variable are represented as filled histograms for
kaons (in red) and pions (in blue) in four bins of momentum p. The output of the trained
generators is superimposed through solid-line histograms. To further investigate the quality
of the generated distributions, the corresponding efficiency plots are added to the figure. In
particular, the performance achieved by the GANs in reproducing the PID efficiency for the
kaon identification is reported on the left plots using two selection cuts: ProbNNk > 0.2 and
ProbNNk > 0.5. The same cuts are used to investigate the ability of the GANs to model the
misidentification probability (π → K) as depicted on the right plots.
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Figure 4.53: Validation plots of the GAN-based models trained to parameterize the proton-pion
separation offered by LHCb by relying on the response of the whole PID system. The distributions
of the corresponding combined DLL as modeled by Detailed Simulation are represented as filled
histograms for protons (in red) and pions (in blue) in four bins of momentum p. The output
of the trained generators is superimposed through solid-line histograms. To further investigate
the quality of the generated distributions, the corresponding efficiency plots are added to the
figure. In particular, the performance achieved by the GANs in reproducing the efficiency for
the proton identification based on the PID criterion, applied on top of the isMuon requirement,
is reported on the left plots using two selection cuts: ∆LL > 0 and ∆LL > 5. The same cuts are
used to investigate the ability of the GANs to model the misidentification probability (π → p)
as depicted on the right plots.

163



0.00 0.25 0.50 0.75 1.00
Proton probability from ANNPID

0

100000

200000
Ca

nd
id

at
es

 / 
(0

.0
2)

LHCb  Simulation Preliminary p∈ (3.0, 10.0) GeV/c

2016 MagUp

proton (sim)
proton (model)
pion (sim)
pion (model)

0.00 0.25 0.50 0.75 1.00
Proton probability from ANNPID

0

100000

200000

300000

Ca
nd

id
at

es
 / 

(0
.0

2)

LHCb  Simulation Preliminary p∈ (10.0, 25.0) GeV/c

2016 MagUp

proton (sim)
proton (model)
pion (sim)
pion (model)

0.00 0.25 0.50 0.75 1.00
Proton probability from ANNPID

0

50000

100000

Ca
nd

id
at

es
 / 

(0
.0

2)

LHCb  Simulation Preliminary p∈ (25.0, 50.0) GeV/c

2016 MagUp

proton (sim)
proton (model)
pion (sim)
pion (model)

0.00 0.25 0.50 0.75 1.00
Proton probability from ANNPID

0

10000

20000

30000

Ca
nd

id
at

es
 / 

(0
.0

2)

LHCb  Simulation Preliminary p∈ (50.0, 150.0) GeV/c

2016 MagUp

proton (sim)
proton (model)
pion (sim)
pion (model)

0.00 0.25 0.50 0.75 1.00
Proton probability from ANNPID

0

100000

200000

Ca
nd

id
at

es
 / 

(0
.0

2)

LHCb  Simulation Preliminary p∈ (3.0, 10.0) GeV/c

2016 MagUp

proton (sim)
proton (model)
pion (sim)
pion (model)

0.00 0.25 0.50 0.75 1.00
Proton probability from ANNPID

0

100000

200000

300000

Ca
nd

id
at

es
 / 

(0
.0

2)

LHCb  Simulation Preliminary p∈ (10.0, 25.0) GeV/c

2016 MagUp

proton (sim)
proton (model)
pion (sim)
pion (model)

0.00 0.25 0.50 0.75 1.00
Proton probability from ANNPID

0

50000

100000

Ca
nd

id
at

es
 / 

(0
.0

2)

LHCb  Simulation Preliminary p∈ (25.0, 50.0) GeV/c

2016 MagUp

proton (sim)
proton (model)
pion (sim)
pion (model)

0.00 0.25 0.50 0.75 1.00
Proton probability from ANNPID

0

10000

20000

30000

Ca
nd

id
at

es
 / 

(0
.0

2)

LHCb  Simulation Preliminary p∈ (50.0, 150.0) GeV/c

2016 MagUp

proton (sim)
proton (model)
pion (sim)
pion (model)

0.00 0.25 0.50 0.75 1.00
Proton probability from ANNPID

0

100000

200000

Ca
nd

id
at

es
 / 

(0
.0

2)
LHCb  Simulation Preliminary p∈ (3.0, 10.0) GeV/c

2016 MagUp

proton (sim)
proton (model)
pion (sim)
pion (model)

0.00 0.25 0.50 0.75 1.00
Proton probability from ANNPID

0

100000

200000

300000

Ca
nd

id
at

es
 / 

(0
.0

2)

LHCb  Simulation Preliminary p∈ (10.0, 25.0) GeV/c

2016 MagUp

proton (sim)
proton (model)
pion (sim)
pion (model)

0.00 0.25 0.50 0.75 1.00
Proton probability from ANNPID

0

50000

100000

Ca
nd

id
at

es
 / 

(0
.0

2)

LHCb  Simulation Preliminary p∈ (25.0, 50.0) GeV/c

2016 MagUp

proton (sim)
proton (model)
pion (sim)
pion (model)

0.00 0.25 0.50 0.75 1.00
Proton probability from ANNPID

0

10000

20000

30000

Ca
nd

id
at

es
 / 

(0
.0

2)

LHCb  Simulation Preliminary p∈ (50.0, 150.0) GeV/c

2016 MagUp

proton (sim)
proton (model)
pion (sim)
pion (model)

0.00 0.25 0.50 0.75 1.00
Proton probability from ANNPID

0

100000

200000
Ca

nd
id

at
es

 / 
(0

.0
2)

LHCb  Simulation Preliminary p∈ (3.0, 10.0) GeV/c

2016 MagUp

proton (sim)
proton (model)
pion (sim)
pion (model)

0.00 0.25 0.50 0.75 1.00
Proton probability from ANNPID

0

100000

200000

300000

Ca
nd

id
at

es
 / 

(0
.0

2)

LHCb  Simulation Preliminary p∈ (10.0, 25.0) GeV/c

2016 MagUp

proton (sim)
proton (model)
pion (sim)
pion (model)

0.00 0.25 0.50 0.75 1.00
Proton probability from ANNPID

0

50000

100000

Ca
nd

id
at

es
 / 

(0
.0

2)

LHCb  Simulation Preliminary p∈ (25.0, 50.0) GeV/c

2016 MagUp

proton (sim)
proton (model)
pion (sim)
pion (model)

0.00 0.25 0.50 0.75 1.00
Proton probability from ANNPID

0

10000

20000

30000

Ca
nd

id
at

es
 / 

(0
.0

2)

LHCb  Simulation Preliminary p∈ (50.0, 150.0) GeV/c

2016 MagUp

proton (sim)
proton (model)
pion (sim)
pion (model)

0 50 100
Momentum [GeV/c]

0.7

0.8

0.9

1.0

PI
D

 e
ffi

ci
en

cy
 (p

p)

LHCb  Simulation Preliminary Proton tracks

2016 MagUp

ProbNNp > 0.2 (sim)
ProbNNp > 0.2 (model)

0 50 100
Momentum [GeV/c]

0.6

0.8

PI
D

 e
ffi

ci
en

cy
 (p

p)

LHCb  Simulation Preliminary Proton tracks

2016 MagUp

ProbNNp > 0.5 (sim)
ProbNNp > 0.5 (model)

0 50 100
Momentum [GeV/c]

0.1

0.2

PI
D

 m
isi

de
nt

ifi
ca

tio
n 

(
p)

LHCb  Simulation Preliminary Pion tracks

2016 MagUpProbNNp > 0.2 (sim)
ProbNNp > 0.2 (model)

0 50 100
Momentum [GeV/c]

0.02

0.04

PI
D

 m
isi

de
nt

ifi
ca

tio
n 

(
p)

LHCb  Simulation Preliminary Pion tracks

2016 MagUpProbNNp > 0.5 (sim)
ProbNNp > 0.5 (model)

0 50 100
Momentum [GeV/c]

0.7

0.8

0.9

1.0

PI
D

 e
ffi

ci
en

cy
 (p

p)

LHCb  Simulation Preliminary Proton tracks

2016 MagUp

ProbNNp > 0.2 (sim)
ProbNNp > 0.2 (model)

0 50 100
Momentum [GeV/c]

0.6

0.8

PI
D

 e
ffi

ci
en

cy
 (p

p)

LHCb  Simulation Preliminary Proton tracks

2016 MagUp

ProbNNp > 0.5 (sim)
ProbNNp > 0.5 (model)

0 50 100
Momentum [GeV/c]

0.1

0.2

PI
D

 m
isi

de
nt

ifi
ca

tio
n 

(
p)

LHCb  Simulation Preliminary Pion tracks

2016 MagUpProbNNp > 0.2 (sim)
ProbNNp > 0.2 (model)

0 50 100
Momentum [GeV/c]

0.02

0.04

PI
D

 m
isi

de
nt

ifi
ca

tio
n 

(
p)

LHCb  Simulation Preliminary Pion tracks

2016 MagUpProbNNp > 0.5 (sim)
ProbNNp > 0.5 (model)

Figure 4.54: Validation plots of the GAN-based models trained to parameterize the proton-pion
separation offered by LHCb by relying on multivariate techniques. The distributions resulting
from Detailed Simulation for the ProbNNp variable are represented as filled histograms for
protons (in red) and pions (in blue) in four bins of momentum p. The output of the trained
generators is superimposed through solid-line histograms. To further investigate the quality
of the generated distributions, the corresponding efficiency plots are added to the figure. In
particular, the performance achieved by the GANs in reproducing the PID efficiency for the
proton identification is reported on the left plots using two selection cuts: ProbNNp > 0.2 and
ProbNNp > 0.5. The same cuts are used to investigate the ability of the GANs to model the
misidentification probability (π → p) as depicted on the right plots.
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Figure 4.55: Validation plots of the GAN-based models trained to parameterize the proton-kaon
separation offered by LHCb by relying on the response of the whole PID system. The distributions
of the corresponding combined DLL as modeled by Detailed Simulation are represented as filled
histograms for protons (in red) and kaons (in blue) in four bins of momentum p. The output
of the trained generators is superimposed through solid-line histograms. To further investigate
the quality of the generated distributions, the corresponding efficiency plots are added to the
figure. In particular, the performance achieved by the GANs in reproducing the efficiency for
the proton identification based on the PID criterion, applied on top of the isMuon requirement,
is reported on the left plots using two selection cuts: ∆LL > 0 and ∆LL > 5. The same cuts are
used to investigate the ability of the GANs to model the misidentification probability (K → p)
as depicted on the right plots.
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Figure 4.56: Validation plots of the GAN-based models trained to parameterize the proton-kaon
separation offered by LHCb by relying on multivariate techniques. The distributions resulting
from Detailed Simulation for the ProbNNp variable are represented as filled histograms for
protons (in red) and kaons (in blue) in four bins of momentum p. The output of the trained
generators is superimposed through solid-line histograms. To further investigate the quality
of the generated distributions, the corresponding efficiency plots are added to the figure. In
particular, the performance achieved by the GANs in reproducing the PID efficiency for the
proton identification is reported on the left plots using two selection cuts: ProbNNp > 0.2 and
ProbNNp > 0.5. The same cuts are used to investigate the ability of the GANs to model the
misidentification probability (K → p) as depicted on the right plots.
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hadrons or to distinguish between photons and π0 candidates. When evaluating the photon
likelihoods, the reconstruction algorithms take into account the possibility that photons
convert into electron-positron pairs when interacting with the detector material upstream
of the calorimeter. In addition, since a large fraction of pairs of photons coming from the
decay14 of high energy π0 cannot be resolved due to the ECAL granularity, specialized
procedures are used at LHCb to reconstruct such π0 by disentangling a potential pair of
photons merged into single clusters [34,46].

For measuring the total energy of a traversing particle, a generic calorimeter system
relies on the energy deposited by a cascade of secondary particles produced by the
interaction of the target particle with the detector materials. The large number of particles
that come into play together with the corresponding radiation-matter interactions make
the detailed simulation of the particle shower computationally expensive, as already
observed for the LHCb case in Figure 4.1. It represents a shared problem across the
HEP community that is investing great efforts in developing alternative strategies to
reduce the CPU cost for calorimeter simulations, as demonstrated by the “CaloChallenge”
initiative15. Since the energy deposited along the calorimeter layers can be represented as
two-dimensional images whose pixels correspond to the calorimetric cells (as shown in
Figure 4.57), the progress achieved in Computer Vision for the image generation problem
can help in accelerating the detailed simulations. In particular, deep generative models
(e.g., GAN, Normalizing Flows, and Diffusion Models) continue to be investigated and
tuned by the HEP community to parameterize the energy deposited within the calorimeter
active volume [187–189]. Despite the apparent simplicity of the calorimetric clusters
depicted in Figure 4.57, parameterizing the energy deposits so that the underlying physics
processes are taken into account correctly and the reconstruction algorithms reproduce
reasonable results is a non-trivial task.

The LHCb Collaboration participates in this joint effort investigating solutions based
on deep generative models [162,177,190] or parametric functions [160,161]. Since such
techniques aim to reduce the CPU cost of calorimeter simulations by providing models
that reproduce the energy deposits without relying on the underlying physics processes,
they are generally referred to as fast-simulations. Inspired by the pioneering work of
Ref. [187] with CaloGAN, Viktoria Chekalina and others [162] proposed a WGAN-
based model implemented via 2-D convolution layers to parameterize the particle showers
as produced within the LHCb ECAL detector. Despite the good agreement shown in
Figure 4.57 between clusters resulting from Geant4-based simulations (top row) and the
ones produced with WGANs (bottom row), using the latters to derive, from the traditional
reconstruction algorithms, high-level quantities with distributions physically reasonable is
hard. It is demonstrated by the mismatch exhibited by WGANs with respect to Geant4
reported in Figure 4.58 (left) for a shape property of the electromagnetic cluster. A
viable solution is to inform the generator network of the physics constraints underlying
the simulation task by relying on the auxiliary system proposed in Ref. [177]. The
discriminator network disposes of a differentiable parameterization of the reconstruction
algorithms that is used to compute (at runtime) a set of high-level quantities either from
the real clusters or the generated ones during the training. Any mismodeling of the physics

14The branching ratios of the two main decay modes of π0 are B(π0 → γγ) = (98.823 ± 0.034)% and
B(π0 → e−e+γ) = (1.174± 0.035)% [10].

15The challenge concluded in May 2023 with a final workshop whose complete agenda is available at
https://agenda.infn.it/event/34036.
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Figure 4.57: Electron showers produced within an electromagnetic calorimeter inspired by the
LHCb detector as simulated by Geant4 (top row) or by a WGAN-based model (bottom row)
for three different sets of input conditions. Figure reproduced from Ref. [162].

Figure 4.58: Performance in reproducing the distribution of a high-level cluster variable
computed by relying on the particle shower generated with a plain GAN-based model (left), or
with a GAN powered by the auxiliary system (right). Figures reproduced from Refs. [162,177].

properties exhibited by the generator is used by the discriminator as an auxiliary feature
to accomplish the classification task. Then, through the minimax game, the generator
receives feedback on how to simulate clusters complying with the physics constraints,
improving its capability to reproduce the distributions of high-level variables, like the one
depicted in Figure 4.58 (right).

During the preparatory work for providing LHCb with a flash-simulation option [160],
that is when Lamarr did not yet exist and the Simulation Group still relied on
Delphes [70], a parameterization describing the energy deposits in terms of Molière
radii16 was designed to offer useful insights for detector upgrade studies. In particular,
given a generated particle extrapolated to the ECAL face, the first step of such parameter-

16The Molière radius is a characteristic constant of a material giving the scale of the transverse dimension
of the fully contained electromagnetic showers initiated by an incident high energy electron or photon.
Read more on https://en.wikipedia.org/wiki/Moliere_radius.
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Figure 4.59: Schematic representation of the three granularity regions of the LHCb ECAL
detector. Two traversing photons are reported using green points surrounded by three concentric
circles with radii equal to 1, 2, and 3.5 RM (Molière radius). The calorimetric cluster computed
by relying on RM is also shown for one of the two photons. Figure reproduced from Ref. [160].

ization was to apply customary resolution effects as provided by the dedicated Delphes
module. Then, the computation of the energy deposited in each of the calorimetric cells
relied on RM (Molière radius) that, by definition, represents the radius of a cylinder
containing on average 90% of the shower’s energy deposition (for the LHCb ECAL de-
tector, RM = 3.5 cm [46]). By taking the smeared coordinates of the incident point of
the generated particle, it was used as the center for drawing three concentric circles in
correspondence of 1, 2, and 3.5 RM , which delimits the deposition of 90%, 95%, and 99%
of the total energy. The smeared energy was uniformly distributed according to these
percentages and then discretized by considering the granularity of the ECAL detector, as
schematically represented in Figure 4.59. Despite some preliminary promising results [160],
such parameterization was not developed to be put in production due to the presence of
intrinsic limitations that would have granted its use only for detector studies. But if on
the one hand, the fast-simulation nature of the model just described makes it difficult to
reproduce analysis-level quantities, on the other it still requires running reconstruction
algorithms that, in case of high-multiplicity events, may become rather CPU expensive.

Just like for the rest of the LHCb spectrometer, the solution proposed by Lamarr is
to move to the flash-simulation paradigm and rely on an agnostic description either of the
ECAL detector (no notion of calorimetric cells or granularity) or the underlying physics
processes. However, differently from what is done for the Tracking and charged PID
systems described in Sections 4.2 and 4.3, reproducing the calorimeter high-level response
is a non-trivial task since canonical generative models rely on the assumption that an
unambiguous relation between the generated particle and the reconstructed object exists17.
Instead, the presence of electrons emitting bremsstrahlung radiation, converted photons,
or merged π0 may lead to having n generated particles responsible for m reconstructed
objects (in general with n ̸= m). This particle-to-particle correlation problem binds us
to use techniques like the ones discussed so far (i.e., NN-based classifiers or GANs) only

17To a first approximation, the response of the Tracking and charged PID systems satisfy this condition.
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under certain assumptions and requires instead more sophisticated solutions for facing
directly the n-to-m problem [5]. The third year of my Ph.D. has been dedicated to
investigating strategies able to model the response of the LHCb ECAL detector when
traversed by photons. Two different approaches have been identified, whose characteristics
are summarized in the following:

• Signal photons. When the decay modes under study include photons, to provide a
clear and accurate parameterization of the ECAL detector, its response is described in
terms of reconstruction efficiency and resolution effects. To this end, an unambiguous
relation between photons and clusters is enforced by considering reconstructed only
those clusters that match with at least one generated photon. Back to the k-to-k
case, we can use NN-based classifiers and GANs to model efficiency and resolution,
as repeatedly done in the Lamarr pipeline for charged particles.

• Seq2seq approach. When the photons are produced by secondary processes, such
as the bremsstrahlung radiation of electrons, avoiding the ambiguity is impossible
and the objective becomes the correct parameterization of the n-to-m problem. To
this end, we can describe the calorimeter simulation as a sort of translation problem
where we aim to transform sequences of n generated particles into sequences of m
reconstructed clusters. Advanced sequence-to-sequence (Seq2seq) algorithms can be
used effectively to face this problem [5].

The rest of this Section is devoted to detailing the aforementioned strategies to
parameterize the high-level response of the LHCb ECAL when traversed by photons. In
particular, Section 4.4.1 describes how to use multivariate classifiers and GANs to model
the efficiency and resolution of the ECAL detector when interested by “signal photons”.
The Seq2seq algorithms under investigation to tackle the particle-to-particle correlation
problem are discussed in Section 4.4.2.

4.4.1 The flash-simulation of signal photons
The underlying hypothesis shared across all the (non-)parametric functions discussed so
far to model the high-level response of the LHCb spectrometer is that each generated
particle is associated with one and only one proto-particle, namely the high-level object
collecting all the reconstructed information of a particle candidate. As long as such an
assumption is valid, we can describe the response of any detectors in terms of efficiency,
modeling when to exclude particles since not reconstructed, and resolution, describing, in
general, how to use the generator-level information to reproduce high-level quantities. In
the previous Sections, we have assumed true the k-to-k relation for both the Tracking and
charged PID systems, neglecting any particle-to-particle correlation effect. In the case of
the Tracking system, this results in the incapability of Lamarr to parameterize the ghost
tracks, namely random combinations of hits produced by different charged particles and
wrongly reconstructed as tracks. On the other hand, for the charged PID system, such
an assumption prevents modeling the electrons, whose propagation through the detector
is characterized by the emission of bremsstrahlung photons, hence requiring an n-to-m
treatment of the problem. To provide Lamarr with a parameterization for the electrons,
we first need to build a model able to reproduce the LHCb response to traversing photons,
namely to the ECAL detector.
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Figure 4.60: The reconstruction criterion
admits that different generated photons
may be reconstructed with the same cluster,
producing clones. The clone multiplicity
with respect to the total amount of recon-
structed photons is reported in the bar plot
on the left.

Whenever the photons are not only produced by secondary processes but are also
part of the decay channel under study, modeling faithfully the ECAL response to such
photons is of primary importance. As discussed in the previous Sections, NN-based
classifiers and generative models succeed in describing the LHCb detectors in terms of
efficiency and resolution but require that an unambiguous relation between generated
particles and reconstructed objects exists. Hence, to pursue the same strategy adopted
for the Tracking and charged PID systems, a dedicated parameterization for signal
photons has been investigated by enforcing a k-to-k relation. To this end, a simplified
reconstruction criterion was designed to combine the generated photons with matching
reconstructed clusters. The first step of this criterion requires that photons and clusters
have a geometrical match:√

(xphoton − xcluster)2 + (yphoton − ycluster)2 < RM (4.12)

where (x, y) are the coordinates of the photons or cluster barycenters extrapolated to
the ECAL face, while RM is the Molière radius. It is a loose cut that includes multiple
random photon-cluster matches. Hence, the reconstruction criterion also requires that
photons and clusters have an energetic match:

|Ephoton − Ecluster| < 2σE (4.13)

where E is the energy of the photons or cluster, while σE is the ECAL energy resolution
reported in Eq. (1.8). This second requirement reduces significantly the number of random
matches, allowing the criterion to provide a reasonable approximation of the ECAL
efficiency performance. Given a generated photon, if at least one cluster is found to match
with it geometrically and energetically, then such a photon is considered reconstructed. It
is worth noticing that the simplified criterion just described admits that different photons
may be reconstructed with the same cluster, resulting in a collection of cloned clusters.
As shown in Figure 4.60, such a side effect interests less than 2% of the reconstructed
photons and may produce a slight overestimation of the efficiency. Despite the presence of
these biases, the reconstruction criterion offers a reasonable approximation of the k-to-k
relation, providing as necessary to investigate the description of the high-level ECAL
response in terms of efficiency and resolution.

The reconstruction criterion was applied to a sample of O(107) photons produced by
simulating a cocktail of b-hadron decays with an official configuration of Gauss [61] sim10
(v56r4), involving Pythia8 [25], EvtGen [58], and Geant4 [59, 60]. The resulting raw
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data was then used to reconstruct O(107) clusters calculating the barycenter coordinates,
the energy, and a set of neutral PID variables by relying on the Brunel and DaVinci
applications [171]. Among the generated photons, a rough 30% passed the reconstruction
criterion, providing the missing information to train either the ECAL efficiency model or
the resolution one.

Calorimeter efficiency

After having built the calorimetric cluster by collecting the energy deposited within a 3×3
cell pattern around local energy maxima, the ECAL reconstruction algorithms allow the
classification of such a cluster into a charged or neutral particle candidate based on the
extrapolation of tracks to the calorimeter. For this study, we have only considered neutral
clusters that in LHCb are further classified as single or split photons, where the second
label refers to the pair of photons extracted from the merged clusters typically produced
by π0 [191]. To parameterize the action of the reconstruction algorithms in labeling the
neutral clusters, we rely on a neural network trained to perform a multi-class classification
task. The aim is to predict whether a generated photon will find a geometrical and
energetic matching cluster, and hence be reconstructed. In case of a positive answer, the
parameterization should also indicate the reconstruction procedure employed for defining
the proto-particle, forecasting the probability that such a cluster will be reconstructed
as a single or split photon. To this end, a 10-layer neural network equipped with skip
connections [111] was trained by relying on the following set of generator-level information:

• the position (x, y) where the generated photon enters the ECAL detector;

• the logarithm of the momentum log (p) of the generated photon;

• the slopes tx and ty of the generated photon;

• the origin vertex position (x, y, z) of the generated photon;

• a boolean flag indicating if the generated photon results from a π0 decay.

The training of the NN-based classifier was performed by using the same set of precautions
adopted for the Tracking and charged PID efficiencies, such as an L2 kernel regularizer [169],
the learning rate scheduling, or the CCE label smoothing, that was then removed during
the neural network fine-tuning phase (refer to Section 4.2.2 for all the details). The neural
network was designed and trained by relying on the pidgan APIs [6].

The ECAL efficiency model has been validated by applying the parameterization
to a dataset never used during the training procedure and that counts about 2 million
simulated photons. The neural network was trained to predict the fraction of generated
photons matching with a cluster, and which of those are reconstructed as a single or split
photon. To assess the performance of the trained model, we compare the distribution of
the reconstructed photons with the ones obtained by weighting the kinematic distributions
of the generated photons with the probability predicted for the various cluster classes (i.e.,
not reconstructed, single photon, or split photon).

The validation plots of the efficiency model are depicted in Figure 4.61 for a cocktail
of photons produced in b-hadron decays as a function of the pseudorapidity η in four
bins of transverse momentum pT . The kinematic distributions of the generated photons

172



2 3 4 5
Pseudorapidity

0

20000

40000

N
um

be
r o

f p
ho

to
ns

 / 
(0

.0
5)

LHCb  Simulation Preliminary pT∈ (0.01, 0.5) GeV/c

2016 MagUpGenerated
Single photons (sim)
Single photons (model)
Split-photons from 0 (sim)
Split-photons from 0 (model)

2 3 4 5
Pseudorapidity

0

2500

5000

7500

N
um

be
r o

f p
ho

to
ns

 / 
(0

.0
5)

LHCb  Simulation Preliminary pT∈ (0.5, 1.0) GeV/c

2016 MagUp Generated
Single photons (sim)
Single photons (model)
Split-photons from 0 (sim)
Split-photons from 0 (model)

2 3 4 5
Pseudorapidity

0

1000

2000

3000

N
um

be
r o

f p
ho

to
ns

 / 
(0

.0
5)

LHCb  Simulation Preliminary pT∈ (1.0, 2.0) GeV/c

2016 MagUp Generated
Single photons (sim)
Single photons (model)
Split-photons from 0 (sim)
Split-photons from 0 (model)

2 3 4 5
Pseudorapidity

0

250

500

750

N
um

be
r o

f p
ho

to
ns

 / 
(0

.0
5)

LHCb  Simulation Preliminary pT∈ (2.0, 20.0) GeV/c

2016 MagUp Generated
Single photons (sim)
Single photons (model)
Split-photons from 0 (sim)
Split-photons from 0 (model)

2 3 4 5
Pseudorapidity

0

20000

40000
N

um
be

r o
f p

ho
to

ns
 / 

(0
.0

5)

LHCb  Simulation Preliminary pT∈ (0.01, 0.5) GeV/c

2016 MagUpGenerated
Single photons (sim)
Single photons (model)
Split-photons from 0 (sim)
Split-photons from 0 (model)

2 3 4 5
Pseudorapidity

0

2500

5000

7500

N
um

be
r o

f p
ho

to
ns

 / 
(0

.0
5)

LHCb  Simulation Preliminary pT∈ (0.5, 1.0) GeV/c

2016 MagUp Generated
Single photons (sim)
Single photons (model)
Split-photons from 0 (sim)
Split-photons from 0 (model)

2 3 4 5
Pseudorapidity

0

1000

2000

3000

N
um

be
r o

f p
ho

to
ns

 / 
(0

.0
5)

LHCb  Simulation Preliminary pT∈ (1.0, 2.0) GeV/c

2016 MagUp Generated
Single photons (sim)
Single photons (model)
Split-photons from 0 (sim)
Split-photons from 0 (model)

2 3 4 5
Pseudorapidity

0

250

500

750

N
um

be
r o

f p
ho

to
ns

 / 
(0

.0
5)

LHCb  Simulation Preliminary pT∈ (2.0, 20.0) GeV/c

2016 MagUp Generated
Single photons (sim)
Single photons (model)
Split-photons from 0 (sim)
Split-photons from 0 (model)

2 3 4 5
Pseudorapidity

0

20000

40000

N
um

be
r o

f p
ho

to
ns

 / 
(0

.0
5)

LHCb  Simulation Preliminary pT∈ (0.01, 0.5) GeV/c

2016 MagUpGenerated
Single photons (sim)
Single photons (model)
Split-photons from 0 (sim)
Split-photons from 0 (model)

2 3 4 5
Pseudorapidity

0

2500

5000

7500

N
um

be
r o

f p
ho

to
ns

 / 
(0

.0
5)

LHCb  Simulation Preliminary pT∈ (0.5, 1.0) GeV/c

2016 MagUp Generated
Single photons (sim)
Single photons (model)
Split-photons from 0 (sim)
Split-photons from 0 (model)

2 3 4 5
Pseudorapidity

0

1000

2000

3000

N
um

be
r o

f p
ho

to
ns

 / 
(0

.0
5)

LHCb  Simulation Preliminary pT∈ (1.0, 2.0) GeV/c

2016 MagUp Generated
Single photons (sim)
Single photons (model)
Split-photons from 0 (sim)
Split-photons from 0 (model)

2 3 4 5
Pseudorapidity

0

250

500

750

N
um

be
r o

f p
ho

to
ns

 / 
(0

.0
5)

LHCb  Simulation Preliminary pT∈ (2.0, 20.0) GeV/c

2016 MagUp Generated
Single photons (sim)
Single photons (model)
Split-photons from 0 (sim)
Split-photons from 0 (model)

2 3 4 5
Pseudorapidity

0

20000

40000

N
um

be
r o

f p
ho

to
ns

 / 
(0

.0
5)

LHCb  Simulation Preliminary pT∈ (0.01, 0.5) GeV/c

2016 MagUpGenerated
Single photons (sim)
Single photons (model)
Split-photons from 0 (sim)
Split-photons from 0 (model)

2 3 4 5
Pseudorapidity

0

2500

5000

7500

N
um

be
r o

f p
ho

to
ns

 / 
(0

.0
5)

LHCb  Simulation Preliminary pT∈ (0.5, 1.0) GeV/c

2016 MagUp Generated
Single photons (sim)
Single photons (model)
Split-photons from 0 (sim)
Split-photons from 0 (model)

2 3 4 5
Pseudorapidity

0

1000

2000

3000

N
um

be
r o

f p
ho

to
ns

 / 
(0

.0
5)

LHCb  Simulation Preliminary pT∈ (1.0, 2.0) GeV/c

2016 MagUp Generated
Single photons (sim)
Single photons (model)
Split-photons from 0 (sim)
Split-photons from 0 (model)

2 3 4 5
Pseudorapidity

0

250

500

750

N
um

be
r o

f p
ho

to
ns

 / 
(0

.0
5)

LHCb  Simulation Preliminary pT∈ (2.0, 20.0) GeV/c

2016 MagUp Generated
Single photons (sim)
Single photons (model)
Split-photons from 0 (sim)
Split-photons from 0 (model)

Figure 4.61: Validation plots of the ECAL efficiency model for photons as a function of the
pseudorapidity η in four bins of the transverse momentum pT . The kinematic distributions of the
generated photons are represented as light grey shaded histograms. The distributions of clusters
reconstructed as single (in red) or split (in blue) photons, are shown through stacked histograms
(in hatched fill). The parameterization of the reconstructed class of the ECAL clusters as
modeled by a deep neural network is superimposed using solid-line stacked histograms.

are reported in grey, while stacked histograms (in hatched fill) are used to highlight if a
matching cluster is reconstructed as a single (in red) or split (in blue) photon. The output
of the neural network trained to perform this multi-class classification is superimposed with
solid-line histograms. The trained model exhibits good performance in parameterizing the
ECAL reconstruction algorithms, succeeding in reproducing the expected distributions
for single and split photons. In particular, the neural network has correctly inferred that
one has the major contribution to the split photon class for pT > 2 GeV/c, since the
reconstruction algorithms are designed to search for merged clusters, hence resulting in
split photons, for π0 with high pT [46].

Calorimeter resolution and photon identification

The efficiency model allows to reduce the ECAL n-to-m problem to a k-to-k relation where
each of the k generated photons is associated with one and only one of the k reconstructed
clusters18. Satisfying the hypothesis of having an unambiguous relation between generated
particles and reconstructed objects, the high-level response of the ECAL detector can be
described in terms of resolution effects. Hence, we aim to reproduce cluster-level variables
only relying on the generator-level photon information and a model parameterizing the

18Due to the presence of the cloned clusters, this relation is not a bijective function, but only surjective.
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errors introduced during the detection and reconstruction steps. The previous Sections
have demonstrated that GANs can be fruitfully used to parameterize such errors and that
the latters, powered by a stochastic component (i.e., the latent space), allow reproducing
different detector responses even if the same generator-level information is employed.

For parameterizing the errors introduced in the detection and reconstruction of photons
using the LHCb detector, we have investigated the performance achieved by a GAN-based
model trained in conditional mode [141]. Due to the physics processes underlying the
ECAL detection, we expect that the cluster-level information, including the reconstruction
errors, is strongly related to the kinematic properties of the traversing photons. Hence, the
GAN resolution model is designed to take as input conditions the same list of features used
for the efficiency model. To these features, the reconstruction class of the matching clusters
(i.e., single or split photons) is added, since we expect that different ECAL reconstruction
procedures can introduce different error sources. By combining such information, the
GAN model was trained to derive the (x, y)-position of the cluster barycenters in terms of
reconstruction errors with respect to the coordinates of the point where the generated
photon enters the ECAL detector. The same adversarial system was also trained to learn
the errors introduced by the detection and reconstruction steps in measuring the total
energy deposited by a traversing photon. Lastly, stressing a bit the definition of resolution,
the GAN model was also trained to reproduce the conditional probability distributions
of a set of neutral PID variables that, in a way, described the errors introduced for the
photon identification. In particular, the resolution model is designed to parameterize the
neutral PID sequence that assigns a confidence level (DLL) to the reconstructed clusters
being produced by a single photon, a quantity called PhotonID [191]. The response of two
independent NN-based classifiers employed at LHCb to distinguish photons from electrons
(IsNotE) and hadrons (IsNotH) [46] is also included in the GAN output. The complete
list of features parameterized by the resolution model is reported in the following:

• the reconstruction errors on the barycenter position (δx, δy) of the matched cluster;

• the relative reconstruction error on the energy δE/E;

• the confidence level of the single photon hypothesis (PhotonID) [191];

• ANN-based probability of photon versus electron (IsNotE) [46];

• ANN-based probability of photon versus hadron (IsNotH) [46].

Both the generator and discriminator networks of the GAN system are implemented
via 10-layer neural networks equipped with skip connections [111]. The two players
were trained by using the BCE-based loss functions (LD,LG) defined in (4.6) and (4.7),
respectively. To avoid training instability while ensuring a faithful description of the
ECAL response, we adopted the same strategies used for the Tracking and charged PID
resolution models, such as the BCE label smoothing, the Gaussian noise injection [144],
or the learning rate scheduling (refer to Section 4.2.4 for all the details. The ECAL GAN
model was designed and trained by relying on the pidgan APIs [6]. To train the resolution
model, a dataset of O(3×106) detailed simulated photons with the corresponding matched
clusters was prepared. The training procedure was performed on a fraction of 50% of the
dataset. An independent 10% portion of the sample was used to monitor any evidence of
overtraining, while the remaining 40% of the dataset was retained for validation studies.
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The output of the trained generator can be split into two main categories: from one
side, we have the reconstruction errors on the cluster barycenter position and energy,
while, on the other hand, we have the set of photon identification variables (i.e., PhotonID,
IsNotE, and IsNotH). For the reconstruction errors, we are mostly interested in modeling
the widths of the distributions, namely the resolution, and correctly parameterizing how
it changes as a function of the photon kinematics and the cluster reconstructed class.
Figure 4.62 investigates these dependencies in kinematic bins for the spatial (top row)
and energy (bottom row) resolutions exhibited by clusters reconstructed as single photons.
The plots reported in this Figure demonstrate that the GAN-based model succeeds in
parameterizing the reconstruction errors, inferring the correct dependency between the
spatial (energy) resolution and 1/pT (pT ). It should be pointed out that neither pT nor
1/pT are part of the input conditions, and hence the generator is able to derive these
dependencies from the true energy E and the slopes (tx, ty). As shown in the bottom
right plot of Figure 4.62, the trained generator is also able to reproduce accurately the
relative energy resolution as a function of the photon energy expected from the Detailed
Simulation and consistent with the one reported in the LHCb performance paper of
Ref. [46]. Hence, the GAN model can be employed to reconstruct the cluster barycenter
position and energy by only relying on the generator-level photon information.

The second category of variables provided by the GAN-based resolution model is the
neutral PID quantities. To assess the performance of the GAN in parameterizing the
PID information, Figures 4.63 and 4.64 report the comparison between the probability
distributions of the modeled quantities resulting from Detailed Simulation and the ones
reproduced by the trained generator. In particular, the distributions of PhotonID for
clusters reconstructed as single photons are depicted in Figure 4.63 in four bins of
transverse momentum pT . The GAN model exhibits good performance in reproducing the
distributions resulting from Detailed Simulation, even if some minor mismodeling effect
appears for pT > 1 GeV/c probably due to the lower populated bins. The same occurs in
Figure 4.64 where the distributions of IsNotE (top quartet) and IsNotH (bottom quartet)
are depicted in four bins of transverse momentum pT . Also in this case, the limited
statistics available for the training produces some minor mismodeling for pT > 1 GeV/c.
Nevertheless, the GAN resolution model succeeds in parameterizing also the photon
identification variables, offering Lamarr a viable solution to provide analysts with the
calorimeter information for signal photons.

4.4.2 Seq2seq for particle-to-particle correlations
The reconstruction of photons from the energy deposits in the calorimeter is based on the
idea that the electromagnetic shower induced by the interaction of the photon with the
high-Z material composing (part of) the calorimeter is geometrically localized around the
position of the interaction. From the clusters of energy deposits in that localized area,
however, it may be difficult to recognize the number of photons close-by photons concurring
to the energy deposition. As mentioned above, the photons produced in the decay of a
high-momentum π0 are almost superposed making their energy deposit in the calorimeter
almost impossible to distinguish from that of a single photon. The LHCb calorimeter has
been designed to identify energy deposits produced by multiple photons studying the very
first part of the shower development where the contributions from multiple photons are
still separated. Unfortunately, back-scattering phenomena and secondary interactions in
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Figure 4.62: The top plots report the resolution of the cluster barycenter (x, y)-coordinates as a
function of the reciprocal of the photon transverse momentum pT . The bottom plots shows the
resolution of the cluster energy as a function of the photon transverse momentum (bottom left)
and the relative energy resolution as a function of the photon energy E (bottom right). The
results of simulated matching clusters reconstructed as single photons is reported using blue
circle-markers. The output of a GAN-based model trained to parameterize the ECAL resolution
is depicted through red triangular-markers. It is worth noticing that neither 1/pT nor pT are
part of the input variables to the GAN system, which succeeds in inferring it from MC energy
and slopes.

the detectors upstream of the calorimeter can mimic multiple-photon clusters, making it
frequent for the reconstruction algorithm to split the energy deposited by a single photon
into two or more clusters believed to be due to different neutral particles. In addition,
aiming to provide Lamarr with a flash-simulation model for electrons, it is of primary
importance to reconstruct the dynamics of electron tracks that, emitting bremsstrahlung
radiation while interacting with the tracking stations upstream the magnet, require to
correct a posteriori the measurement of the momentum using the energy deposited within
the Calorimeter system by the emitted photons, introducing important correlation effects
between different particles. In these cases there is no way to simplify the n-to-m problem,
since we are interested in reproducing the non-trivial correlations between the generated
particles (e.g., electrons) and the reconstructed objects (e.g., electron tracks, electron
clusters, photon clusters). Hence, we need a model capable of processing n-length sequences
of input data to produce m-length sequences of target features. Such models belong
to the family of Seq2seq approaches and are generally employed for Natural Language
Processing (NLP) problems. Recently, the Seq2seq architectures have become one of the
major centers of development for the Artificial Intelligence (AI) community. The attention
mechanism proposed in Ref. [115] plays a key role in this respect, having allowed large
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Figure 4.63: Validation plots of the GAN-based model trained to parameterize the neutral PID
sequence used at LHCb to assign the confidence level (DLL) for single photons. The distributions
obtained from Detailed Simulation for clusters reconstructed as single photons are represented
as blue shaded histograms in four bins of transverse momentum pT . The output of the trained
generator is superimposed through red solid-line histograms.

Seq2seq models to achieve important results in the NLP context and having given rise to
a real proliferation of Large Language Models (LLMs) [99–101,104–106].

Reformulating the calorimeter simulation as a translation problem, we can rely on
advanced Seq2seq architectures to transform a “sentence” of generated particles into a
“sentence” of reconstructed objects by leaving to the attention mechanism the task of
modeling all the correlations between each element of the two “sentences”. Differently from
the parameterizations adopted for the k-to-k problem that are allowed, by design, to treat
each particle independently, the Seq2seq models aim to provide an event-level description
of the ECAL response to enable the possibility that each (proto-)particle is correlated
to all the others, in principle. Referring to this formulation, we have investigated the
performance achieved by Transformer [115] and Graph Neural Network (GNN) [113,192]
models to reproduce the response of the LHCb spectrometer to traversing photons [5].
It represents a preliminary study to test the ability of Seq2seq or Graph2graph models
to face the particle-to-particle correlation problem inherent in the calorimeter flash-
simulation. Further developments are planned for the future to extend these studies to
the electrons, whose dynamics may require to involve also the Tracking system within the
parameterization of the n-to-m problem.
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Figure 4.64: Validation plots of the GAN-based model trained to parameterize the two
multivariate classifiers employed at LHCb to distinguish the photons from electrons (with
IsNotE, shown on the top quartet of plots), or from hadrons (with IsNotH, shown on the
bottom quartet of plots). The distributions obtained from Detailed Simulation for clusters
reconstructed as single photons are represented as blue shaded histograms in four bins of
transverse momentum pT . The output of the trained generator is superimposed through red
solid-line histograms.
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Transformer-based calorimeter model

The Transformer model relies on an encoder-decoder architecture powered by the at-
tention mechanism proposed in Figure 1 of Ref. [115]. The encoder is designed to
processes the source sequence (i.e., the generated photons) and aims to parameterize the
photon-to-photon correlations by producing a sequence of embeddings that describes the
comprehensive event-level contribution of the generated photons to the ECAL response.
On the other hand, the purpose of the decoder is to retrieve the reconstructed information
by processing the target sequence (i.e., the reconstructed clusters) and modeling both the
cluster-to-cluster and photon-to-cluster correlations. In particular, the latters result from
the repeated application of the attention mechanism (×N in Figure 1 of Ref. [115]) aiming
to combine the photon embeddings with the cluster features available to the decoder.

The Transformer-based ECAL model currently investigated is inspired to the architec-
ture originally proposed by Ashish Vaswani and others [115], while the design of the skip
connections follows what adopted by Alexey Dosovitskiy and others [193] for implementing
the Vision Transformer (ViT). In addition, contrary to the architectures just mentioned,
the ECAL Transformer (also referred to as Calotron) has no activation function in
output and is trained to perform a regression task. By design, Calotron has no notion
of the detector geometry, the underlying physics processes employed for the particle
detection, nor the physics constraints defined by the Laws of Nature, such as the law of
conservation of energy. Hence, training a model able to reproduce physically reasonable
results is a non-trivial task, since it requires that the Transformer disposes of a faithful
description of all the photon-cluster correlations. Obviously, as one might guess, the
longer the source and target sequences are, more complex inferring physics constraints
from data becomes. A similar problem affects also the LLMs, whose major improvements
often involve the capability of processing a larger number of words, typically represented
by tokens [99–101].

To test the validity of the Calotron model we decided to limit the complexity of the
physics problem, leaving to future developments the design of specialized architectures
able to face the sequence-length problem. In particular, we have opted to reduce the
maximum length of both the source and target sequences to ease the parameterization
of the photon-cluster correlations performed by the attention mechanism. To ensure
the selection of the most important photons and clusters, each sequence was order by
decreasing energy and the first 32 (16) most energetic photons (clusters) were retained.
Each photon entry is described by a collection of kinematic properties, such as the (x, y)-
position on the ECAL face, the momentum, the slopes tx and ty, and the (x, y, z)-position
of the origin vertex. As a proof-of-concept, such information aims to be used for inferring
a few cluster-level reconstructed features, like the barycenter (x, y)-position and the total
energy collected. Despite the adoption of such precautions, let the Transformer converging
to physical results remains challenging. Hence, to improve the quality of the Calotron
output, the canonical training of a regression model was enhanced with the addition of an
adversarial component. Similarly to what occurs for GANs, the Calotron system relies
on the competition between two players: from one side, we have the Transformer that is
trained to produce a faithful sequence of reconstructed clusters, while, on the other side,
there is a binary classifier (a discriminator in the GAN jargon) that processes sequences
of clusters trying to distinguish real sequences from the fake ones. However, contrary to
the GAN case, the discriminator cannot be implemented via a plain FNN but requires
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instead an architecture able to process sequences of features (i.e., 2-rank data) to predict
probabilities. Decoder-only Transformers offer a feasible architecture to implement such a
sequence-classifier, but for these preliminary studies we have opted for Deep Sets [194],
a model already investigated by the ATLAS Collaboration for jet flavour tagging [195].
Given an m-length sequence of features x⃗, the Deep Sets architecture applies a first neural
network φ to each sequence entry, sums over the entries, and then applies additional
processing on the summed representation with a second neural network f , as described in
the following equation:

y = f

(
m∑
i=1

φ(x⃗i)

)
(4.14)

Letting y be the probability of being a real sequence of clusters, and x⃗ the target set
of cluster features, we can rely on a Deep Sets model to improve the quality of the
Calotron output.

To validate the performance achieved by the Calotron model, the kinematic dis-
tributions produced by the ECAL Transformer are compared with what results from
Detailed Simulation. Since we are interested in the global performance of the model, both
the Calotron output and the reference sequences are unrolled along the event (length)
dimension, resulting into flat arrays of features. The distributions of the cluster barycenter
(x, y)-position and total energy collected are depicted in Figure 4.65. Although not perfect,
the preliminary results are encouraging and leave room for further developments aimed to
improve the Transformer architecture, employ specialized training strategies, or perform
hyperparameter optimization studies. Anyway, the most surprising result is shown in
Figure 4.66, where the geometrical information and the energy signature either of the
simulated clusters or resulting from the Calotron output are summarized in a single 2-D
histogram. Despite Calotron has no notion of the detector geometry nor the underlying
physics processes, it succeeds in reproducing the absence of active volume in the middle of
the calorimeter, as well as it tends to populate more the region adjacent to the calorimeter
hole, as expected from Detailed Simulation [5]. In addition to improve the quality of
the predicted cluster features, future developments point to implement Calotron as a
generative model in order to make it able to parameterize the statistical nature of the
physics processes underlying the ECAL response. A possible solution is to rely on a
Seq2seq GAN-based model, like the ViTGAN [196] or GigaGAN [103] models, where both
the generator and discriminator are implemented via Transformer architectures.

Graph-based calorimeter model

Despite the analogy between the calorimeter simulation and the translation problem,
formally speaking, the correlations between the generated photons and the reconstructed
clusters are better described by a graph-to-graph (Graph2graph) approach, since the use
of sequences assume that a notion of order among photons or clusters exists. Actually, if
we consider the response of the LHCb calorimeter, this assumption is not satisfied, but
rather it has been enforced to ease the parameterization of the physics constraints, like the
law of conservation of energy, and to enable the use of Transformer-based models to face
the particle-to-particle correlations problem. On the other hand, representing photons
and clusters as the nodes of a graph, and describing their correlations in terms of links
between nodes allows to reformulate the topology of the problem so that GNNs can be
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Figure 4.65: Distributions of the cluster barycenter (x, y)-coordinates (top) and the cluster
energy as measured by the LHCb ECAL detector. What obtained from Detailed Simulation
is reported with blue shaded histograms. The results of a Transformer-based model trained
to parameterize the event-level response of ECAL when traversed by photons are shown using
red solid-line histograms. To improve the quality of the Transformer output, it is trained in
combination with a Deep Sets model specialized in distinguishing real events from the fake ones
(adversarial training).

Figure 4.66: Distributions of the (x, y)-position of the reconstructed clusters on the LHCb
ECAL face for a 2600× 2000 mm2 frame placed around the center. The geometrical information
is combined with the energy signature by weighting each bin entry with the energy of the
corresponding reconstructed cluster. What obtained from Detailed Simulation is reported on the
left 2-D histogram, while the predictions of an adversarial trained Transformer model is shown
on the right.

181



used to tackle it.
The solution investigated to parameterize the event-level response of the ECAL detector

relies on a heterogeneous graph composed of two families of nodes:

• Photon nodes. Nodes representing the generated photons (input);

• Cluster nodes. Nodes representing the reconstructed clusters (output).

The generated photons are described by the same collection of kinematic properties
adopted for Calotron, namely the (x, y)-position on the ECAL face, the momentum,
the slopes tx and ty, and the (x, y, z)-position of the origin vertex. Aiming to provide a
proof-of-concept that GNNs can be fruitfully used to parameterize the particle-to-particle
problem intrinsic of the calorimeter simulation, we limited to a small set the cluster
features to be predicted by the graph model. Hence, the output nodes are represented
by relying on the cluster barycenter (x, y)-position and the total energy collected. In
addition, each node has an associated hidden state, representing the analogue for GNNs
of what hidden layers are for FNNs.

The edges among the photon nodes were built by following a nearest neighbourhood
criteria based on the Euclidean distance between nodes in the (x, y, E)-space, and requiring
that each photon node was connected to at least other two nodes. The connections among
cluster nodes and between cluster and photon nodes were randomly assigned, but requiring
that each cluster node was linked to at least other two cluster nodes and exactly two
photon nodes. The GNN is designed so that the features of the photon nodes cannot
be modified during the training procedure, although the associated hidden states can be
updated to propagate information through the graph. On the other hand, the features
of the cluster nodes are designed to be modified during the training by relying on the
corresponding hidden states that, in turn, are updated using the information from the
photon and the other cluster nodes connected. The functions that map node features
into hidden state and vice-versa were implemented via plain FNNs, called MapFeatures.
Based on the hidden states and by considering the connections among the nodes, the
training procedure of a GNN consists of an iterative process where the information hosted
in each node are propagated to the first neighbors by relying on MLPs. This message
passing procedure can be enhanced with the attention mechanism by relying on the Graph
Attention Network (GAT) architecture proposed in Ref. [197] architecture. The ECAL
GNN-based model investigated was then implemented via by using an input MapFeatures
to map the node features into hidden states, four GATv2 layers to update the hidden
states through the message passing process, and an output MapFeatures to map-back the
cluster hidden states into the predicted target features. Similarly to what discussed for
Calotron, to improve the quality of the GNN output, the training of the regression
model was combined with the one of a discriminator specialized in distinguishing real
graphs from the fake ones. Also in this case, the discriminator was implemented via
Deep Sets [194], since Eq. (4.14) does not assume any order to the input sequences of
features. To provide the discriminator with information about the geometrical and physical
correlations, pairs of photons and pairs of clusters are used as input entries for the Deep
Set.

To validate the performance achieved by the GNN-based model, the distributions
of the features predicted by the cluster nodes are compared with what results from
Detailed Simulation. Since we are interested in the global performance of the model,
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Figure 4.67: Distributions of the cluster barycenter (x, y)-coordinates (top) and the cluster
energy as measured by the LHCb ECAL detector. What obtained from Detailed Simulation is
reported with blue shaded histograms. The results of a GNN-based model trained to parameterize
the event-level response of ECAL when traversed by photons are shown using red solid-line
histograms. To improve the quality of the GNN output, it is trained in combination with a Deep
Sets model specialized in distinguishing real events from the fake ones (adversarial training).

either the features of the cluster nodes and of the reference sample are unrolled along the
event dimension, resulting into flat arrays. The distributions of the cluster barycenter
(x, y)-position and the total energy collected are depicted in Figure 4.67. The agreement
exhibited with the reference distributions is quite impressive, also considering that, contrary
to the Calotron case, in this case no constraint to the maximum dimension of the
graph has been applied. This demonstrates the potential of GNNs that, operating in the
same topology space of the data, gains architecture-based advantages with respect to
the Transformer-based models. Figure 4.68 shows that, as well as Calotron, also the
GNN succeeds in reproducing the absence of active volume in the middle of the ECAL
detector, even if graph model seems to struggle in populating more the region adjacent to
the calorimeter. Further studies are planned in the future to include also electrons in the
graph representation, and to implement the GNN-based model as a generative model.
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Figure 4.68: Distributions of the (x, y)-position of the reconstructed clusters on the LHCb
ECAL face for a 2600× 2000 mm2 frame placed around the center. The geometrical information
is combined with the energy signature by weighting each bin entry with the energy of the
corresponding reconstructed cluster. What obtained from Detailed Simulation is reported on
the left 2-D histogram, while the predictions of an adversarial trained GNN model is shown on
the right.
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5
Integration, validation, and future of the Lamarr project

The software stack developed for High Energy Physics is composed of
experiment-independent libraries implementing the basic building blocks to
include custom data structures, such as ROOT trees, and physics-motivated
models, such as those made available by Pythia and EvtGen, used by dif-
ferent experiments to implement their own frameworks based on the different
specification. This chapter investigates the deployment of machine learning
models, trained with libraries such as Keras and TensorFlow, in the LHCb
software stack, focusing on the solution identified for the flash simulation,
presenting the additional requirement of offloading tasks to neural-network
models with the lowest possible latency. The validation of the resulting software
project, combining Pythia, EvtGen and Lamarr is also presented taking
as an example the simulation of Λ0

b → Λ+
c µ

−ν̄µ decays.

5.1 Deploying neural networks in HEP
The application of machine learning algorithms in the field of High Energy Physics (HEP)
has a long and glorious tradition for what concerns data analysis and statistical infer-
ence [198], while attempts of employing such techniques to speed up the code execution
are more recent and, as discussed in Chapter 1 and longly demonstrated in Chapter 4,
mainly flourishing in the field of Fast Detector Simulation. Traditionally, simulating the
response of large and complex detectors to traversing particles is extremely expensive in
terms of computing resources since it requires to reproduce accurately the quantum inter-
actions of each particle with the material the detectors are built with, which include the
generation of new particles, and results in cascade phenomena known as particle showers.
Fast-simulation approaches aim to reduce the computational cost by replacing parts of
the computation with statistical models, possibly defined as machine learning algorithms
trained on the detailed simulated samples or by relying on acquired calibration data [199].
A more radical approach is the one proposed by flash-simulation techniques that provide
parameterizations encoding in one go both the detection and reconstruction steps typically
performed by Detailed Simulation softwares, hence offering the best performance in terms
of CPU cost reduction.

The deployment of machine learning (ML) techniques in such computational intensive,
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highly branched scenario, however, is not a trivial task. Different particles in the same
collision event, for example, may undergo different physics processes and may require
the evaluation of different models to provide a parameterized simulation, either based
on fast or flash approach. On the other hand, modern machine learning frameworks
are designed for high-level languages, such as Python, and achieve CPU performance by
defining batches of data where the same sequence of operations is performed on multiple
data entries, which is rarely the case in the context of HEP simulation (see Section 1.3).

A further challenge is related to the slow development cycle of the large applications
used for Detector Simulation, and their distribution through the computing grids, such as
WLCG, where they are typically executed. On the other hand, the continuous development
and tuning of ML-based parameterizations of (parts of) the detector requires the ability
to plug new models in the Simulation at runtime, without depending on a new release of
the full software stack. This can be hardly achieved if the machine learning models are
compiled together with the main application, even if retaining the possibility of loading
optimized parameters from files.

Lastly, long dependency chains are considered dangerous for HEP software projects
that are intended to serve large communities of researchers for several decades. However,
the rapid evolution of machine learning algorithms in terms of both architectures and
training strategies moves developers to adopt the ever-changing high-level packages [167,
168, 175, 186, 200, 201], whose life cycles are strongly connected with the latest results
achieved by the Artificial Intelligence (AI) community.

Hence, during my Ph.D., I have contributed to the development of a simple tool
designed to simplify the deployment of models implemented either via scikit-learn [175]
or Keras [167] APIs. The tool, called scikinC [7], allows to transpile1 machine learning
models trained in Python, in plain C functions by taking as input a single data entry.
The transpiled functions can then be compiled as shared objects and dynamically linked
to the main applications, with negligible overhead. The transpiled functions are designed
to run in the same thread where they are called and, being stateless, they are thread-safe
by design.

The rest of this Section is dedicated to describe the scikinC tool and provide a simple
example usage for Fast Detector Simulation. In particular, Section 5.1.1 reports a brief
review on the state-of-the-art and related projects that face the problem of machine
learning models deployment. A detailed description of the strategy adopted by the
scikinC tool to tackle the same problem is depicted in Section 5.1.2. Finally, Section 5.1.3
presents a simplified application of scikinC for Fast Detector Simulation.

5.1.1 State-of-the-art and related projects
The to-go deployment option for machine learning is the ONNX runtime [202]. ONNX,
originally an open format for neural network exchange, provides today extensions to deploy
models trained with several frameworks, including scikit-learn [175] or Keras [167]. Since
the focus of ONNX is on interoperability and performance, it provides a runtime optimized
for various platforms including multiple CPUs, GPUs and other hardware accelerators. The
ONNX runtime has APIs for several languages including C and C++, but unfortunately

1A transpiler is a source-to-source compiler which takes the source code of a program written in one
programming language as its input and produces the equivalent source code in another programming
language. Read more on https://en.wikipedia.org/wiki/Source-to-source_compiler.
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the need for a runtime designed to get the most from parallel computation on multiple
threads introduces a small overhead and sets some minor thread-safety issues. These
considerations make ONNX ideal for a number of applications in HEP as long as the model
is complex enough or the batches can be large enough to make the overhead negligible,
this is especially true for reconstruction or analysis tasks, and for some special task in
Fast Detector Simulation, such as simulating the energy deposits in a calorimeter in a
collision event.

To avoid the need for a runtime and aiming at a significant reduction of the amount of
external dependencies for long-term scientific applications, the HEP community developed
the LWTNN (Lightweight Trained Neural Network) project [203], providing a format to
exchange machine learning algorithms alternative to ONNX, which can then be interpreted
and executed as part of the main application. LWTNN is a quite popular in the HEP
community because of its simplicity.

A more drastic approach to reduce the complexity of the dependency tree is to
separate the applications in charge of running the main task and the machine learning
inference infrastructure in two different processes communicating via sockets. With
this approach, the inference application acts as a server specialized in machine learning
applications, providing optimal access to hardware accelerators and building batches,
possibly combining the requests from several concurrent instances of the main application.
The server application does not even need to run on the same machine and can be
written in Python in the exact same environment as used for training. Machine Learning
as a Service (MLaaS) [204, 205] is a fascinating opportunity for extremely computing-
intensive tasks, where the large overhead due to the inter-process communication becomes
negligible in front of the speed-up obtained offloading the inference to specialized hardware
accelerators.

At the opposite end, the HEP community is developing tools to compile machine
learning models to optimize the inference of small models on tiny batches, which still
cover an impressing amount of use-cases in our simulation, reconstruction and analysis
applications. Compiling the models also helps to reduce the memory footprint of the
inference routines, which is especially important when multiple instances of the application
run in parallel as different threads or processes on the same machine. The most advanced
transpiler for machine learning models is being developed by the CERN ROOT team as
part of the Toolkit for Multivariate data Analysis (TMVA) [48] and is called SOFIE (System
for Optimized Fast Inference code Emit) [206]. SOFIE extends TMVA by introducing the
ability to parse ONNX files and convert them into C++ code. The generated code can be
compiled with a C++ compiler with some BLAS2 libraries as the only dependency. While
an extremely promising tool providing conversion templates for a large variety of ONNX
operators, SOFIE comes as part of the ROOT framework, which sets serious limitations
in terms of portability, especially when targeting the cloud-based Python environments
commonly used for training.

Outside of the HEP community, there are several active projects to develop compiler
for deep neural networks built on top of LLVM3, for example TVM [207], nGraph [208],

2Basic Linear Algebra Subprograms (BLAS) is a specification that prescribes a set of low-level routines
for performing common linear algebra operations, such as vector addition or matrix multiplication. Read
more on https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms.

3LLVM provides compilation technologies to develop a front-end for any programming language and a
back-end for any instruction set architecture. More on https://en.wikipedia.org/wiki/LLVM.
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Figure 5.1: Sketch of the working principle of scikinC. Figure reproduced from Ref. [7].

Tensor Comprehensions [209], Glow [210] and Extended Linear Algebra (XLA) [211].
A comprehensive review of the different approaches adopted in the various projects
can be found in Ref. [212]. Each of these projects produces compiled and optimized
representations of deep neural networks that can be linked to applications developed in
several languages, which will then depend on runtimes or, at least, on external kernels
implementing the actual computation.

Interesting experiences were reported in the field of machine learning deployment
on microcontrollers and real-time processing, requiring extremely low latency and being
usually designed for tiny batches. We report in particular on two packages, emlearn [213]
and keras2c [214], providing transpilers for several scikit-learn and Keras models to C.
Conceptually, these recent packages are similar to scikinC, with minor differences in the
implementation choices rather than in the design principles. In particular, keras2c is
more mature and complete than scikinC on the Keras models, which is more focused on
scikit-learn models and their distribution, as discussed in the next Section.

5.1.2 The scikinC implementation
As mentioned above, scikinC was primarily intended for offering a simple solution to
integrate small to medium-sized machine learning models within a Fast Detector Simulation
framework.

The models, preprocessed and trained relying on scikit-learn and/or Keras APIs, are
converted to C code using the parser made available by scikinC. The generated source
code can be immediately compiled into a shared object using a C compiler, such as GCC,
and then dynamically linked to the main application using standard C libraries. In the
transpiling process, scikinC encodes directly in the C files the weights of the models,
hence avoiding dependencies on configuration files. Dynamic linking enables selecting the
model to use for inference at runtime via the option files or the command-line arguments
used to configure the main application. This feature gives access to frequent updates of
the models (for example for validation purpose), without the need of a new release of the
whole software stack in production. The procedure to follow for transpiling a scikit-learn
model in C, and then compiling and linking it in a C/C++ application is schematically
depicted in Figure 5.1.

The transpiling procedure consists of filling template C implementations of the forward
pass (i.e., the inference) of the supported models implemented in scikit-learn or Keras by
accessing the attributes and properties exposes by the class APIs. The scikinC modular
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Class Module Implementation Test
MinMaxScaler preprocessing ✓ ✓

StandardScaler preprocessing ✓ ✓

QuantileTransformer preprocessing ✓ ✓

FunctionTransformer preprocessing ✓ ✓

ColumnTransformer preprocessing ✓ ✓

GradientBoostingClassifier ensemble ✓ ✓

Pipeline pipeline ✓ $

Table 5.1: List of the scikit-learn models that scikinC can transpile to C files.

Class Module Implementation Test
Sequential models ✓ ✓

Functional models $ p

Dense layers ✓ ✓

Dropout layers ✓ ✓

Leaky ReLU layers ✓ ✓

PReLU layers ✓ ✓

Softmax layers ✓ ✓

sigmoid activations ✓ ✓

tanh activations ✓ ✓

relu activations ✓ ✓

linear activations ✓ ✓

Table 5.2: List of the Keras models that scikinC can transpile to C files.

design, involving a separate template for each model, simplifies the extension of the
package to support additional models.

The scikinC template implementations currently provided for scikit-learn and Keras
models are reported in Tables 5.1 and 5.2, respectively. Most of the models are completely
implemented and successfully tested. The sole exceptions are the scikit-learn’s Pipeline
whose deployment breaks when one relies on pipelines of pipelines, and the Keras Functional
API that is implemented only to deploy “feed-forward” neural networks equipped with
skip connections [111].

All the functions defined by scikinC are intended for single entries as no support is
provided for batch inference, and share the same signature:

float *functionname (float* output, const float* input);

where input and output are arrays containing the input features of the model and the
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predictions obtained. The pointer to the output array is also returned to ease inline
operations on the result of the computation. The number of input features and produced
output variables is fixed by the model and is supposedly known by the client application.
Passing the size of the arrays as additional arguments is therefore unnecessary.

During code generation, scikinC disables the name mangling of the linker symbols,
assigning to the functions representing the entry point user-defined names and symbols for
the evaluation of each model. Combining the standard function signature and user-defined
linker symbol, the function can be accessed easily by using the function dlopen which is
part of standard C libraries.

During the development of scikinC, we became aware of two ongoing projects with
similar, but not completely overlapping, goals: emlearn targeting microcontrollers and
keras2c targeting real-time data processing. The latter introduces a more general
signature for the transpiled C functions, including the shape of the input and output
tensors. In the future, scikinC will share the same signature in order to make switching
from a keras2c model to a scikinC model transparent for the client application. On the
same line, we will consider offloading the conversion of Keras models to keras2c focusing
on models trained with scikit-learn, aiming at a complete toolbox of C transpilers for
machine learning models with the lowest latency. The scikinC codebase is released under
MIT license and its Git repository is publicly available on GitHub4.

5.1.3 Example application to a simplified fast-simulation
To show an end-to-end real application of scikinC, we propose a (simplified) example on
Fast Detector Simulation. Considering to have access to a (small) sample of simulated
data from some experiment, we aim to model the response of the detector in terms of
efficiency and resolution. Once trained, the models should be integrated in the C++
framework this hypothetical experiment is equipped with for searching new physics effects,
so enabling quick checks on whether the experiment would be sensitive to the Physics
Model to test.

We consider the decay of 180 GeV/c neutral kaons into three pions, namely

K0 → π+π−π0

The experiment relies on a calorimeter to reconstruct the π0, but this requires neutral
pions with a momentum higher than 70 GeV/c to reject some background. For simplicity,
we assume that the efficiency of this requirement is 100% for neutral pions above 70 GeV/c
and zero otherwise. This requirement introduces an efficiency term on the Dalitz plot5

that might compromise the sensitivity of the experiment to the Physics Model, which
will be further investigated by studying the invariant mass of the two charged pions:
m(π+π−). The latter variable is reconstructed with a rough spectrometer reconstructing
the momentum of the charged pions with an error

δp
p
≈ 1GeV−1 · p

For simplicity, we assume the same error on the momentum also for the neutral pion.
4https://github.com/landerlini/scikinC
5The Dalitz plot is a two-dimensional plot used to characterize the kinematics of a three-body decay
aiming at representing the relative frequency of different combination of its products. Read more on
https://en.wikipedia.org/wiki/Dalitz_plot
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Figure 5.2: Representation of simplified simulated detector effects that we aim to parameterize
with machine learning algorithms. The generated events prior of any reconstruction and selection
are reported through blue filled histograms. The reconstructed and selected events are depicted
by using orange filled histograms. The Dalitz plot is also reported via scatter plot following the
same color labeling. Figure reproduced from Ref. [7].

Figure 5.3: Representation of the detector efficiency parameterization as modeled by a GBDT-
based classifier implemented and trained using the scikit-learn’s GradientBoostingClassifier
model. Figure reproduced from Ref. [7].

The effect of the requirement on the momentum of the neutral pion on the other
variables of the system is depicted in Figure 5.2: the suppression of higher values of
m(π+π−) is clearly visible in the Dalitz plot (orange scatter plot).

To model the efficiency in a quick and reliable way, we train a Gradient Boosted
Decision Tree (GBDT) [215] to predict the probability that an event will be reconstructed
given the coordinates of the Dalitz plot: m(π+π−) ⊥ m(π+π0). Conceptually, this is
equivalent to what is discussed, for instance, in Section 4.2.2 where the geometrical
acceptance of the LHCb spectrometer is parameterized by a neural network trained to
perform a binary classification task. In this simplified example, we rely instead on a
GBDT-based classifier. The performance of the trained model is reported in Figure 5.3.

Similarly, the resolution function associated to each entry in the Dalitz plot can be
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Figure 5.4: Representation of the detector resolution parameterization as modeled by a
FNN predicting the standard deviation of the reconstruction error (i.e., ∆x = xreco − xtrue)
distributions for the m(ππ) variables. The ground-truth resolution model for the m(π+π−)
variable is represented as a blue filled histogram, while the FNN-based Gaussian prediction is
shown as an orange solid-line. Figure reproduced from Ref. [7].

parameterized with an neural network. Since the momentum uncertainty depends on the
momentum itself, we expect that the uncertainty on the invariant masses varies through
the Dalitz plot, and it is interesting to model. To simplify the setup, a minimal (2-layer)
feed-forward neural network (FNN) is trained to predict the standard deviation of the
experimental error distributions on the reconstructed m(ππ) as a function of the Dalitz plot
coordinates. To ease the training of the FNN, the input variables are preprocessed using
the scikit-learn’s MinMaxScaler class. The result of this oversimplified parameterization
is depicted in Figure 5.4.

In real experiments, deep generative models, like Generative Adversarial Net-
works (GAN), are typically employed to parameterize resolution functions with neural
networks. The training of such more advanced algorithms, however, is beyond the scope of
this example, since their deployment would happen exactly in the same way as discussed
below for the simplified model just described.

Once the GBDT-based efficiency model, the preprocessing step, and the FNN-based
resolution parameterizations are defined, scikinC can transpile them to C file as follows:

1 import scikinC
2

3 converted_code = scikinC.convert(
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4 {
5 "efficiency_model": efficiency_model ,
6 "resolution_prepr": preprocessing ,
7 "resolution_model": resolution_model ,
8 }
9 )

Here, the dictionary keys, placed within the quotes, will be used as linker symbols in
the compiled shared library, while the dictionary values, placed at right of the colon
signs, are the scikit-learn and Keras objects defining the trained models. The content of
converted_code is C code containing the instructions for the evaluation of the converted
models. Saving converted_code to a file, for example converted.C, it can be immediately
compiled to a shared object as

gcc -o converted.so --shared -fPIC -Ofast converted.C

The binary version of the models representing the efficiency and resolution of the
simulated detector are now stored in a shared library, named converted.so, that can
be dynamically linked to other applications, for example using the dlopen function.
A minimal C application employing the parameterization for detector efficiency and
resolution as modeled with machine learning algorithms is reported in the following. It
should be noticed that both the name of the shared object file and of the linker symbol are
strings that can be taken as inputs at runtime. Hence, changing the parameterization of
the efficiency from a GBDT to a FNN, for example, could be achieved without recompiling
the main application.

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <math.h>
4

5 // Import the dlfcn header
6 #include <dlfcn.h>
7

8 // Define the signature for scikinC functions and name it mlfunc
9 typedef float *(* mlfunc)(float *, const float *);

10

11 int main (int argc , char* argv [])
12 {
13 float m_pipi = atof(argv [1]);
14 float m_pipi0 = atof(argv [2]);
15

16 // Open the converted.so shared object
17 void *handle = dlopen ("./ converted.so", RTLD_LAZY);
18

19 // Load the functions from the shared object based on their names
20 mlfunc efficiency_model = (mlfunc) dlsym ( handle ,
21 "efficiency_model" );
22 mlfunc resolution_model = (mlfunc) dlsym ( handle ,
23 "resolution_model" );
24 mlfunc resolution_prepr = (mlfunc) dlsym ( handle ,
25 "resolution_prepr" );
26

27 float efficiency [1];
28 float input [] = {m_pipi , m_pipi0 };
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29 // Once loaded , trained models can be called as normal functions
30 efficiency_model (efficiency , input);
31 printf ("Efficiency: %.3f\n", efficiency [0]);
32

33 float preprocessed [2], resolution [2];
34 resolution_prepr (preprocessed , input);
35 resolution_model (resolution , preprocessed);
36

37 // ...
38

39 return 0;
40 }

5.2 Integration and validation of Lamarr
The detailed simulation of the proton-proton collisions and, in particular, the computation
of the physics processes occurring within the detector material when traversed by particles,
is the major consumer of CPU resources at LHCb [216], having used more than 90% of
the total computing budget during LHC Run 2.

The LHCb simulation software stack Gauss [61], is based on Gaudi [53] and combines
MC generators simulating the proton-proton collisions, such as Pythia8 [25,158], with
EvtGen [58], specialized in modeling heavy hadron decays, and Geant4 [59, 60], taking
care of the detailed simulation of radiation-matter interactions in the detector material
to compute the energy released by the traversing particles. The energy deposited in the
active volumes is then converted into electronic signals by using the Boole application
for a seamless integration with the reconstruction algorithms applied to the acquired data
as implemented in Brunel [171].

Among the many solutions that the LHCb Collaboration is investigating to reduce
the pressure on CPU resources [64, 90, 161, 162, 177, 190], techniques implementing the
flash-simulation paradigm represent the most radical approach, inferring the results of the
detector simulation, digitization, and event reconstruction relying on ML-based models or
simpler parameterizations.

Lamarr [3–5] is the flash-simulation option for LHCb, designed to provide the
experiment with the fastest solution for simulation production. As deeply discussed in
Chapter 4, Lamarr relies on a set of neural-network-based modules to parameterize
the experimental errors introduced by the quantum interactions of particles with the
detector materials and by the reconstruction algorithms employed to build analysis-level
quantities, like track momenta or PID likelihoods. The Lamarr parameterizations are
arranged into two main pipelines (represented in Figure 4.4) that, taking as input particles
resulting from the MC physics generators, reproduce the high-level response of the LHCb
experiment when traversed by charged (e.g., muons, pions, kaons, or protons) and neutral
particles (like photons or π0). While the latter case is currently under investigation to
find the best-suited model to face the particle-to-particle correlation problem discussed
in Section 4.4, the parameterizations of the pipeline for charged particles are at a more
mature stage and are ready to be further validated, assessing the performance achieved
once the information provided by the physics generators flows throughout the pipeline up
to compute analysis-level quantities.

Recalling that Lamarr has no notion of the geometry of the spectrometer nor of
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the physics processes underlying the detection strategies, the charged particle pipeline
consists of a series of consecutive parameterizations aimed at particle selection, kinematic
correction due to resolution effects, and computation of higher-level variables produced
by the reconstruction algorithms. Following the formalism employed at LHCb, the
various modules are split into two macro-categories, referred to as Tracking and Particle
Identification models. Thus, given a set of generated charged particles, the selection of
which of those cross the active volumes of the detector and are then correctly reconstructed
as tracks, relies on two neural networks whose performance have been discussed in
Sections 4.2.2 and 4.2.3, respectively. The selected subset of reconstructed tracks is
still described by the generator-level information, that can be corrupted as expected
from the resolution effects by relying on two GANs trained to parameterize the tracking
reconstruction procedure and detailed in Section 4.2.4 and 4.2.5. Disposing of analysis-level
kinematic information, namely the high-level response of the LHCb Tracking system, one
more set of parameterizations, either implemented via GANs or plain neural networks, can
be employed to couple each flash-simulated track with the corresponding PID information,
as it has been discussed in Section 4.3. Hence, the pipeline for charged particles provided
by Lamarr converges at the persistency step, where the parameterized variables are
converted into a data format as similar as possible to the one adopted for reconstructed
data, namely the one produced by the Brunel application.

To validate such a pipeline, the integration of Lamarr within Gauss is required.
This allows Lamarr to be interfaced with standard MC physics generators, to further
process (decay reconstruction) the flash-simulated samples with the analysis applications
in use by the Collaboration, and to distribute these computations through the WLCG
computing nodes. On the other hand, ensuring a fast development cycle is a key feature
for any ML-based framework, since ever-changing architectures and training strategies can
easily outperform the predecessors. Consequently, the AI community is extremely versatile
in terms of software technologies, in total contrast with the decades tradition typical of
software stacks in HEP. Hence, to take the best of both worlds, Lamarr relies on the
transcompilation approach offered by scikinC [7] which, as discussed in Section 5.1.2,
enables a low-latency inference for models trained in scikit-learn and Keras. Notably, all
the parameterization employed within the charged particle pipeline rely on preprocessing
strategies available in scikinC, and are implemented via either Keras Sequential models
or FNNs equipped with skip connections [111], both provided by the C converter, too.
The shared library resulting from the compilation procedure can be dynamically linked
to the main application, Gauss in this case, and easily distributed through the WLCG
nodes by using cvmfs [97]. Interestingly, this approach gives the way to a CI/CD practice
where each of the parameterizations can be replaced with an updated one, whatever is the
architecture or the training strategy, as long as scikinC implements it, and the number
of input and output variables remains the same.

The flash-simulation philosophy at the base of the Lamarr framework has been
preliminary validated by comparing the distributions resulting from a pipeline of ML-
based models and the ones obtained with standard simulation strategies. In particular,
we discuss here the validation studies performed using simulated Λ0

b → Λ+
c µ

−ν̄µ decays
with Λ+

c → pK−π+. The semileptonic nature of the Λ0
b decay requires to dispose of a

LHCb-tuned physics generator specialized for heavy hadron decays, such as EvtGen,
hence highlighting the necessity of having a simulation framework integrated within
Gauss. In addition, as part of the calibration samples used for unbiased studies of the
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LHCb PID system performance [49], the decay channel has been deeply studied by the
Collaboration and, interestingly, it includes the four charged particle species currently
parameterized within Lamarr (i.e., muons, pions, kaons, and protons) in its final states.
Lastly, it should be pointed out that the training of the ML-based models was performed
with an independent dataset obtained by combining samples from the Detailed Simulation
of several heavy hadron decays, including a negligible fraction of Λ0

b → Λ+
c µ

−ν̄µ decays. A
description of the datasets involved in the comparison follows:

1. A sample obtained from Detailed Simulation generating 1 million Λ0
b with Pythia8,

simulating their decay with EvtGen, and processing the daughter particles with
Geant4, Boole, Brunel and Bender [217]. This sample is part of the official
and centralized LHCb productions and serves as a reference.

2. A sample obtained generating 1 million Λ0
b with Pythia8, simulating their decay

with EvtGen, and processing the daughter particles with Lamarr and Bender.

3. A sample obtained generating 100 million Λ0
b single particles with a particle-gun,

with parameterized momentum and rapidity spectra and decaying it with EvtGen,
and processing the daughter particles with Lamarr and Bender.

All samples are produced for the 2016 LHCb data taking conditions with the magnet
polarity pointing upward. The configuration of the Bender application is exactly the
same for the processing of the first two datasets, while a simplified truth-matching
procedure has been adopted to speed-up the analysis of the large datasets obtained with
the particle-gun.

The validation campaign discussed below dates back to July 2022 [3], and hence
does not rely on the latest version of the ML-based parameterizations detailed along
Sections 4.2 and 4.3, but rather on a set of (sub-optimal) models briefly described in
Ref. [218]. However, although the lower performance, the models succeed in describing
the high-level response of the LHCb detector when traversed by the charged particles
resulting from Λ0

b → Λ+
c µ

−ν̄µ decays with Λ+
c → pK−π+, as reported in the following

Sections. Among the major difference with respect to the parameterizations discussed in
Chapter 4, there are the use of GBDT in place of the neural networks for the efficiencies
(i.e., geometrical acceptance, tracking efficiency, and isMuon criterion), the use of only
Keras Sequential models (no skip connections) for the GAN players, and the absence
of neither particle species nor track classes within the Tracking parameterizations. The
latter difference violates the terms for the adoption of a CI/CD practice, as the latest
models have a different number of input and/or output variables.

Most of the third year of my Ph.D. has been spent investigating the particle-to-particle
correlation problem needed for the flash-simulation of the LHCb response to neutrals, and
contributing to the development of SQLamarr (which will be discussed in Section 5.3),
the stand-alone version of the Lamarr framework. Aiming at moving new validation
studies on the frameworks under development, and including also the parameterization of
the ECAL detector for the photons, no other validation campaigns has been performed so
far. At the time of writing, both the new logic of the flash-simulation framework (i.e.,
SQLamarr) and the calorimeter models are no mature enough to be presented here, and
will be instead reported in future publications.
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5.2.1 Validation studies
As mentioned above, the decay channel chosen for the validation study is part of the
calibration samples, namely datasets collected by LHCb where the kinematics of the
decay candidates is so that allows an unambiguous identification of one of the daughters,
without the use of the PID information, hence providing an unbiased sample for assessing
the performance exhibited by the experiment in identifying such a particle [49]. Notably,
Λ+

c → pK−π+ is the decay channel employed for the performance studies of the protons.
Although the comparison plots rely on detailed simulated samples, hence no needs for an
unbiased analysis should be necessary, along the validation plots we will mainly focus on
the distributions of the protons in consistency with the sample employed.

Kinematics and invariant masses

To test the ability of the Tracking models to reproduce the resolution effects introduced by
the detection and reconstruction steps, Figure 5.5 reports the distributions of the momen-
tum p (top) and the pseudorapidity η (bottom) for protons produced via Λ0

b → Λ+
c µ

−ν̄µ
decays with Λ+

c → pK−π+. The reference distributions, represented as cyan shaded
histograms, result following the standard Detailed Simulation strategies, in particular
relying on Geant4 for computing the radiation-matter interactions (e.g., multiple scat-
tering) occurring within the detector material. On the other hand, the pipeline defined in
Lamarr is employed to transform the generator-level kinematic information provided by
either Pythia8 and EvtGen (orange markers), or a particle-gun model (purple markers).
Interestingly, since the effects on the detector performance due to the occupancy are
enclosed in the parameterizations, very similar results are produced by Lamarr running
on these two configurations. In both the case, the agreement exhibited with respect to the
reference distributions is very good, demonstrating the validity of the Lamarr models to
reconstruct tracks and to parameterize the errors introduced by the resolution effects.

While looking at the kinematic distributions (p, η) we can assess the quality of the
variables directly provided by Lamarr, evaluating the models performance on quantities
that require further (decay-level) reconstruction allows to challenge the flash-simulation
framework. In particular, Figures 5.6 and 5.7 report the distributions for the invariant
mass of Λ+

c and Λ+
c µ

− candidates, respectively. The excellent agreement exhibited between
the distributions in both the configurations (Pythia8 or particle-gun) and the reference
distributions confirms the quality of the resolution parameterizations and, in addition,
validates the use of flash simulated samples within the analysis applications, such as
Bender, employed at LHCb.

Tracking uncertainties

As discussed in Section 4.2.5, the uncertainty on the reconstructed trajectories of particles
is represented in the LHCb Event Model as the covariance matrix obtained from the fit
procedure by minimizing the χ2 of the track passing through the hits in the tracking
detectors. The correctness of the uncertainty on the reconstructed quantities of the
tracks is of primary importance to assess the consistency of a track with a vertex. For
example, when reconstructing a b-hadron from its decay to multiple hadrons it is very
effective to reject all the charged particles that are consistent with being produced in
the primary interaction. Aiming at assessing the performance achieved by Lamarr in
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Figure 5.5: Kinematic variables of protons produced in Λ0
b → Λ+

c µ
−ν̄µ decays with Λ+

c → pK−π+.
The Λ0

b baryons are generated either with Pythia8 (left) or particle-gun (right), and the decay
model is implemented with EvtGen including feed-down modes. The momentum is shown on
the first row for protons processed by Lamarr after Pythia8-based generation (orange markers
on the left), and for Λ0

b generated through particle-gun (purple markers on the right). The
second row displays the pseudorapidity for protons processed by Lamarr after Pythia8-based
generation (orange markers on the left), and for Λ0

b generated through particle-gun (purple
markers on the right). In all cases, what results from Lamarr is superposed to reference samples
made of Λ0

b generated with Pythia8, decays implemented with EvtGen, and interactions with
the detector processed by Geant4 (cyan shaded histogram). Figure reproduced from Ref. [218].

reproducing the covariance matrix, validation studies involving the uncertainties on the
impact parameter (IP), namely the minimum distance of a track to a primary vertex, and
on the primary vertex (PV) are depicted in Figures 5.8 and 5.9. Notably, to test the
performance of the flash-simulation framework with variables actually used in physics
analyses, the smeared values of the track kinematic parameters and the corresponding
uncertainties in terms of covariance matrix elements are further processed by relying on
the Bender application. The compatibility of the proton track with the primary vertex,
namely the IP χ2 is reported in Figure 5.8, while the vertex quality expressed in terms of
χ2
vtx of the Λ+

c is depicted in Figure 5.9. In both the cases, the output of the Lamarr
pipeline of the two configurations (Pythia8 or particle-gun) is compared with what results
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Figure 5.6: Invariant mass distribution of Λ+
c candidates produced in Λ0

b → Λ+
c µ

−ν̄µ decays
with Λ+

c → pK−π+. The Λ0
b baryons are generated either with Pythia8 or particle-gun, and

the decay model is implemented with EvtGen including feed-down modes. The invariant mass
is computed for combinations of proton, kaon and pion from the Λ+

c decay simulated by Lamarr
after Pythia8-based generation (orange markers on the left), and for Λ0

b generated through
particle-gun (purple markers on the right). In both cases, what obtained with Lamarr is
superposed to reference sample resulting from Λ0

b generated with Pythia8, with a decay model
described by EvtGen, and interactions with the detector obtained from Geant4 (cyan shaded
histogram) and reconstructed with Brunel. Figure reproduced from Ref. [218].
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Figure 5.7: Invariant mass distribution of Λ+
c µ

− candidates produced in Λ0
b → Λ+

c µ
−ν̄µ decays

with Λ+
c → pK−π+. The Λ0

b baryons are generated either with Pythia8 or particle-gun, and
the decay model is implemented with EvtGen including feed-down modes. The invariant
mass is computed for the combinations of proton, kaon, pion and muon simulated by Lamarr
after Pythia8-based generation (orange markers on the left), and for Λ0

b generated through
particle-gun (purple markers on the right). In both cases, what obtained with Lamarr is
superposed to reference sample resulting from Λ0

b generated with Pythia8, with a decay model
described by EvtGen, and interactions with the detector obtained from Geant4 (cyan shaded
histogram) and reconstructed with Brunel. Figure reproduced from Ref. [218].
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Figure 5.8: Distribution of the impact parameter χ2 for protons produced in Λ0
b → Λ+

c µ
−ν̄µ

decays with Λ+
c → pK−π+. The Λ0

b baryons are generated either with Pythia8 or particle-gun,
and the decay model is implemented with EvtGen including feed-down modes. The impact
parameter χ2 is reported for protons simulated by Lamarr after Pythia8-based generation (or-
ange markers on the left), and for Λ0

b generated through particle-gun (purple markers on the
right). In both cases, what obtained with Lamarr is superposed to reference sample resulting
from Λ0

b generated with Pythia8, with a decay model described by EvtGen, and interactions
with the detector obtained from Geant4 (cyan shaded histogram) and reconstructed with
Brunel. In both cases, the position of the primary vertex and its uncertainty are computed
using the smearing algorithm developed by LHCb for particle-gun simulations. Figure reproduced
from Ref. [218].

from the detailed simulation of the detection and reconstruction steps. The IP χ2 for the
proton tracks and the χ2

vtx of the Λ+
c candidates are then computed by relying on a common

configuration of the Bender application. Although the presence of some mismodeling
effect clearly visible in the distributions, we are here mainly interested in validating the
capabilities of Lamarr to reproduce reliable physical quantities progressively querying
its ML-base parameterizations and further processing the outcomes with the standard
analysis software in use at LHCb. In this respect, the results obtained are more than
satisfactory, while an improvement on the agreement between the flash and detailed
simulated variables is expected once the latest models will be employed.

The ultimate comparison with which challenges the ability of Lamarr to reproduce
the uncertainty on the reconstructed trajectories rely on the complete reconstruction of the
decay chain based on the DecayTreeFitter (DTF) algorithm [219] in use at LHCb. The
χ2
DTF of Λ+

c candidates produced in Λ0
b → Λ+

c µ
−ν̄µ decays with Λ+

c → pK−π+ is reported
in Figure 5.10. Notably, two configurations are investigated for assessing the Lamarr
performance: in the first one, the fit of the decay chain is designed to ignore the PV (top
row), while, in the second case, the fit is configured to constraint the Λ+

c trajectory to
match with the PV (bottom row). Interestingly, the agreement exhibited in the bottom
plots between the reference distributions and the ones resulting from Lamarr (Pythia8
and particle-gun) is another, more effective proof of the validity of the flash-simulation
philosophy at the base of the novel framework, and of the ability of the employed models
in reproducing so well the high-level response of the LHCb detector that even particle-gun
samples are transformed in faithful datasets ready for the analysis.
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Figure 5.9: Distribution of the decay vertex χ2 for the decay Λ+
c → pK−π+ of Λ+

c baryons
produced in the semileptonic decay Λ0

b → Λ+
c µ

−ν̄µ. The Λ0
b baryons are generated either with

Pythia8 or particle-gun, and the decay model is implemented with EvtGen including feed-
down modes. The decay vertex χ2 is shown for Λ+

c resulting from the combination of protons,
kaons and pions simulated by Lamarr after Pythia8-based generation (orange markers on the
left), and for Λ0

b generated through particle-gun (purple markers on the right). In both cases,
what obtained with Lamarr is superposed to reference samples resulting from Λ0

b generated with
Pythia8, with a decay model described by EvtGen, and interactions with the detector obtained
from Geant4 (cyan shaded histogram) and reconstructed with Brunel. Figure reproduced
from Ref. [218].

Proton Identification

To finalize the validation of the Lamarr pipeline for charged particles, we need to assess
the performance achieved by the PID models once they are evaluated by consecutively
querying each module of the pipeline to obtain the input for the following step. In
particular, once the Lamarr Tracking modules have provided the kinematic variables
as expected from the high-level response of the LHCb spectrometer, the differential log-
likelihoods (DLL) of the RICH system can be computed by relying on GAN-based models
similar to the ones discussed in Section 4.3.2. At the same time, for those reconstructed
(flash-simulated) tracks that have passed the isMuon efficiency model (implemented via
GBDTs in this validation study), also the likelihoods of the MUON system can be computed
with GANs, whose training strategies are described in Section 4.3.3. Having access to
the DLLs both from the RICH and MUON detectors, and disposing of the kinematic
parameters from the Tracking modules, the global response of the PID system can be
computed by relying on one more, last set of GANs that, as discussed in Section 4.3.5,
have demonstrated to succeed in parameterazing both the combined differential log-
likelihoods (CombDLL) and the output of the ANNPID classifier employed at LHCb.
Actually, all the PID models rely also on the detector occupancy, that is typically modeled
with the number of reconstructed tracks nTracks. For this validation study, a simplified
parameterization for the detector occupancy has been implemented, based on samplings
from a nTracks histogram resulting from Detailed Simulation.

According to this non-trivial pipeline, a set of proton identification variables have been
produced and used for proton selection. The resulting efficiency and misidentification
probability are then compared to what expected from Detailed Simulation by relying
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Figure 5.10: Distribution of the χ2 of a fit to the decay Λ+
c → pK−π+ of Λ+

c baryons produced in
the semileptonic decay Λ0

b → Λ+
c µ

−ν̄µ. The fit is part of the DecayTreeFitter algorithm [219]
configured to ignore the primary vertex (top row) or to constrain the Λ+

c trajectory to its
position (bottom row). The Λ0

b baryons are generated either with Pythia8 or particle-gun, and
the decay model is implemented with EvtGen including feed-down modes. The decay vertex
χ2 is shown for Λ+

c resulting from the combination of protons, kaons and pions simulated by
Lamarr after Pythia8-based generation (orange markers on the left), and for Λ0

b generated
through particle-gun (purple markers on the right). In both cases, what obtained with Lamarr
is superposed to reference samples resulting from Λ0

b generated with Pythia8, with a decay
model described by EvtGen, and interactions with the detector obtained from Geant4 (cyan
shaded histogram) and reconstructed with Brunel. In both cases, the position of the primary
vertex and its uncertainty are computed using the smearing algorithm developed by LHCb for
particle-gun simulations. Figure reproduced from Ref. [218].
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Figure 5.11: Efficiency of a tight requirement on high value of the CombDLL(p− π) on protons
(proton identification) tagged though the decay Λ0

b → Λ+
c µ

−ν̄µ with Λ+
c → pK−π+. The Λ0

b

baryons are generated either with Pythia8 or particle-gun, and the decay model is implemented
with EvtGen including feed-down modes. The efficiency is reported in bins of momentum for
protons simulated by Lamarr after Pythia8-based generation (orange markers on the left),
and for Λ0

b generated through particle-gun (purple markers on the right). In both cases, what
obtained with Lamarr is superposed to reference efficiencies resulting from Λ0

b generated with
Pythia8, with a decay model described by EvtGen, and interactions with the detector obtained
from Geant4 (cyan shaded histogram) and reconstructed with Brunel. Figure reproduced
from Ref. [218].

on the same selection cuts. Figures 5.11 and 5.12 report the efficiency of the proton
identification as a function of the momentum by relying on a tight requirement on the
CombDLL(p− π) variable and the ANNPID output for proton identification, respectively.
On the other hand, Figures 5.13 and 5.14 report the misidentification probability p→ K
as a function of the momentum by using a tight requirement on the CombDLL(K − π)
variable and the ANNPID output for kaon identification, respectively. Despite the presence
of some mismodeling effect probably due to sub-optimal PID models, the performance
exhibited by the Lamarr pipeline in both the configurations (Pythia8 and particle-gun)
is extremely promising, pushing forward further validation campaigns relying on the latest
models aiming at a soon adoption for analysis purpose.

5.2.2 Preliminary timing studies
Together with the comparison between the distributions obtained from standard detailed
simulation strategies and the ones resulting from Lamarr once the pipeline is injected
with Λ0

b produced with Pythia8 or particle-gun and their decays described with EvtGen,
the validation campaign of July 2022 [3] has also performed preliminary timing studies.
As expected, the detailed simulation of the response of the LHCb detector interested by
Λ0

b → Λ+
c µ

−ν̄µ decays with Λ+
c → pK−π+ is extremely expensive in terms of CPU cost,

with Geant4 responsible for the majority of the about 2.5 kHS06 · s required to simulate
each event. Replacing Geant4 with Lamarr allows to reduce the computational cost
to about 0.5 kHS06 · s per event, moving the title of major CPU consumer to Pythia8
that spends the large fraction of the computing resources for simulating the non-trivial
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Figure 5.12: Efficiency of a tight requirement on the output of ProbNNp, namely a neural
network trained to identify protons as evaluated on protons (proton identification) tagged
though the decay Λ0

b → Λ+
c µ

−ν̄µ with Λ+
c → pK−π+. The Λ0

b baryons are generated either
with Pythia8 or particle-gun, and the decay model is implemented with EvtGen including
feed-down modes. The efficiency is reported in bins of momentum for protons simulated by
Lamarr after Pythia8-based generation (orange markers on the left), and for Λ0

b generated
through particle-gun (purple markers on the right). In both cases, what obtained with Lamarr
is superposed to reference efficiencies resulting from Λ0

b generated with Pythia8, with a decay
model described by EvtGen, and interactions with the detector obtained from Geant4 (cyan
shaded histogram) and reconstructed with Brunel. Figure reproduced from Ref. [218].
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Figure 5.13: Efficiency of a tight requirement on high value of the CombDLL(k− π) on protons
(proton misidentification as kaon) tagged though the decay Λ0

b → Λ+
c µ

−ν̄µ with Λ+
c → pK−π+.

The Λ0
b baryons are generated either with Pythia8 or particle-gun, and the decay model is

implemented with EvtGen including feed-down modes. The efficiency is reported in bins of mo-
mentum for protons for protons simulated by Lamarr after Pythia8-based generation (orange
markers on the left), and for Λ0

b generated through particle-gun (purple markers on the right).
In both cases, what obtained with Lamarr is superposed to reference efficiencies resulting from
Λ0
b generated with Pythia8, with a decay model described by EvtGen, and interactions with

the detector obtained from Geant4 (cyan shaded histogram) and reconstructed with Brunel.
Figure reproduced from Ref. [218].
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Figure 5.14: Efficiency of a tight requirement on the output of ProbNNk, namely a neural network
trained to identify kaons as evaluated on protons (proton misidentification as kaon) tagged
though the decay Λ0

b → Λ+
c µ

−ν̄µ with Λ+
c → pK−π+. The Λ0

b baryons are generated either
with Pythia8 or particle-gun, and the decay model is implemented with EvtGen including
feed-down modes. The efficiency is reported in bins of momentum for protons simulated by
Lamarr after Pythia8-based generation (orange markers on the left), and for Λ0

b generated
through particle-gun (purple markers on the right). In both cases, what obtained with Lamarr
is superposed to reference efficiencies resulting from Λ0

b generated with Pythia8, with a decay
model described by EvtGen, and interactions with the detector obtained from Geant4 (cyan
shaded histogram) and reconstructed with Brunel. Figure reproduced from Ref. [218].

dynamics of the Λ0
b semileptonic decay. Hence, the major speed-up in terms of computation

follows from replacing Pythia8 with particle-gun that drops significantly the cost for
events simulation up to about 1 HS06 · s. The high-quality distributions obtained with the
employ of a particle-gun approach, discussed in the previous Section, allows to take the
most, in terms of computing performance, from the use of the flash-simulation paradigm
that exhibits up to three orders of magnitude speed-up with respect to Detailed Simulation
for the decay channel investigated.

5.3 A stand-alone flash-simulation option
The original attempt of providing LHCb with a flash-simulation option [160] relied
on Delphes [70], a stand-alone framework designed to provide simulated samples for
phenomenological studies at concentric experiments (such as ATLAS and CMS). Relying
on configurable parameterizations, Delphes encodes the errors introduced in the detection
and reconstruction steps within a pipeline of modules, called cards, offering a simplified
description of the tracking, calorimeter, and muon systems of a generic multipurpose (4π)
experiment. Easily customizable by each Collaboration, as long as the corresponding
experiment has a concentric shape, by default Delphes has not explicit dependency from
any collaborations’ software stacks, offering a valuable tools for theorists to investigate
the sensitivity of the various experiments to New Physics (NP) effects without relying on
any proprietary softwares.

Despite inspired by the modular layout of Delphes, contrary to the latter, Lamarr
renounces to any “geometrical constraints” describing the response of the LHCb experi-
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ment with a generic (and agnostic) pipeline of parameterizations. This, in combination
with the transcompilation approach offered by scikinC [7], enables a variety of studies
and developments on the single parameterizations, providing a unique and shared infras-
tructure for validation and performance measurements. Designed to offer to LHCb the
fastest solution for simulation production, the integration of Lamarr with Gaudi and
Gauss is mandatory to have easily access to the tuned version of physics generators,
to enable centralized production relying on the WLCG resources, and to be natively
integrated with the analysis software employed at LHCb. On the other hand, these strong
dependencies makes the adoptions of Lamarr unappealing for researchers outside of the
LHCb community, preventing them from approaching the detector simulation to evaluate
the experiment sensitivity to NP phenomena or studying the recently-released LHCb
Open Data [220].

These limitations have pointed to SQLamarr6, a package aimed to decoupling
Lamarr from Gaudi providing a stand-alone application with minimal dependencies
that can be easily set up and run in any Linux machine. To replace the concept of LHCb
Event Model, hence avoiding any dependency from Gaudi, SQLamarr relies on SQLite7,
a C library with minimal dependencies, enabling vectorized processing of batches of
events, and providing a full-features SQL dialect to interact with data. Thus, SQLamarr
provides a set of classes and functions for loading data from physics generators and defining
pipelines from models compiled as shared libraries. Finally, to avoid any dependency from
ROOT, also the persistency is handled by relying on SQLite, writing the reconstructed
(or intermediate) quantities in the form of SQLite databases. It should be noticed that it
does not prevent from using ROOT data format, as converting a SQLite table to a ROOT
nTuple requires a few lines of Python:

1 import sqlite3 , uproot , pandas
2

3 with sqlite3.connect("SomeInput.db") as db:
4 file = uproot.open("SomeFile.root", "RECREATE")
5 file["myTree"] = pandas.read_sql_table("myTable", db)

A similar strategy, aimed at defining a pure Python simulation framework powered by
cross-table relations, were investigated in the past and is briefly discussed in Ref. [1].

The minimal dependencies, the thread-safe database engine offered by SQLite, and the
design choices for the pipeline configuration make SQLamarr the perfect candidate to
deliver the flash-simulation option within the newer version of Gauss8 (sim11), that will
have access to multi-threading technologies by relying on the novel experiment-independent
framework Gaussino9 [64, 90]. In this respect, the development of SQLamarr moves
in two different and complementary directions. From one side, offering an integration
of the Lamarr framework within Gauss-on-Gaussino that takes the most from the
unlocked multi-threading capabilities. From the other side, providing a stand-alone
flash-simulation framework that, powered by a pipeline of ML-based parameterizations,
succeeds in reproducing the high-level response of the LHCb detector even relying on a
set of particles generated through particle-gun.

To take full advantage from this generic simulation framework and aiming at making it

6Visit https://lamarrsim.github.io/SQLamarr for additional details.
7https://www.sqlite.org
8Visit https://lhcb-gauss.docs.cern.ch/master for additional details.
9Visit https://gaussino.docs.cern.ch for additional details.
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as agnostic as possible with respect to the software technologies employed by state-of-the-
art machine learning algorithms, a pure Python package describing the LHCb simulation
pipeline has been developed. The latter, called PyLamarr10, relies on SQLamarr
as back-end and is designed to support pipeline of parameterizations defined either as
compiled shared libraries or generic Python objects, such as Keras custom models or
other architecture-specialized libraries (e.g., nflows [185], or TF-GNN [221]). Despite
not mature enough at the time of writing, PyLamarr will play a key role for validating
the performance of a wide range of parameterizations, whose implementation in scikinC
would require a significant a priori effort hardly justifiable otherwise. The validation of
PID Flow-based models investigated in Sections 4.3.2 and 4.3.3, and the Seq2seq and
Graph2graph approaches discussed in Section 4.4.2 is planned and will be tackled by
relying on PyLamarr for a first assessment of the quality of these parameterizations
when deployed in the global pipeline operated in realistic conditions.

10Visit https://lamarrsim.github.io/PyLamarr for additional details.
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Conclusions

This Ph.D. Thesis presents the first implementation of a parametric simulation of a High
Energy Physics experiment obtained by concatenating in a pipeline multiple Generative
Deep Neural Networks.

To make the discussion concrete, I present the development of such a flash-simulation
for the LHCb experiment, whose experimental program urgently requires a technological
shift to drastically reduce the average cost of a simulated collision event.

In the development of this document, I focused on the three major challenges in the
development of such a flash-simulation: the training of the generative models to represent
the effect of the particle detection and event reconstruction on analysis-level quantities; the
modeling of correlations between different particles in the same event; and the deployment
of the trained parameterizations within the software stack and the computing model of a
major experiment at the LHC.

Among the generative models developed within the Artificial Intelligence technology,
I identified Generative Adversarial Networks (GANs) as the most promising candidate
to encode parameterizations for simulating a particle physics detector. Once trained,
the parameterizations are represented as simple feed-forward neural networks, whose
computation can benefit from superscalar operations in the modern processors while
easily fitting in the in-thread computing model adopted by the software frameworks in
Experimental High Energy Physics. Nonetheless, training GANs might result in a frus-
trating and ineffective exercise without a deep understanding of the two-player dynamics
of the training procedure around the Nash equilibrium. The Machine Learning community
made great progress on the subject during the years of my Ph.D. research, enabling
the development of high-quality parameterizations for seven sets of variables (tracking
resolution and reconstruction uncertainties, RICH and MUON system response, global
hadron identification, global muon identification, and photon resolution and reconstruction
uncertainties).

In addition, the concept of GANs may be extended to more complex architectures
capable of processing multiple particles at once, and therefore encoding in the parame-
terizations effects of correlation between particles. I have explored two neural network
architectures providing multi-particle parameterizations: Transformers, representing sets
of particles as energy-sorted sequences; and Graph Neural Networks (GNNs), representing
particles as nodes in a graph and defining edges to identify geometrical correlations. I
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have used these multi-particle parameterizations to describe the response of the electro-
magnetic calorimeter of the LHCb experiment to the impinging photons. Indeed, the
reconstruction algorithms associating calorimetric energy deposits to photons are prone
to break the one-to-one relation between the simulated photon and the reconstructed
cluster, by identifying adjacent clusters as originated by a single photon or by erroneously
splitting the energy deposit of a single photon into two separate clusters. The global
distribution quantities obtained from the trained models are in reasonable agreement with
those obtained with production-grade simulation techniques. A more complete validation
embedding the parameterization in the global pipeline to assess whether the achieved
quality is sufficient for physics analysis is ongoing.

Finally, the idea that the parameterization of the whole detector can be described
as a pipeline of subsequent generative models deserves careful validation. I contributed
to the first validation of the Lamarr framework by studying the semileptonic decays
Λ0

b → Λ+
c µ

−ν̄µ, to compare the distributions of the reconstructed quantities obtained
with the flash-simulation to those provided by the production-grade LHCb simulation.
The level of agreement was found acceptable also on derived quantities, obtained by
running analysis-dependent algorithms taking as inputs multiple parameterized features.
For example, the distribution of the χ2 describing the quality of the global fit to the Λ0

b

decay tree was found well reproduced. This represents an important closure test since the
χ2 of a decay tree candidate is directly sensitive to the parameterizations of the errors
and uncertainties on the tracking and indirectly to those of the particle identification
introducing efficiency effects depending on the kinematics.

During the development of this research, I led or provided major contributions to
the development of three Python projects: Hopaas, a software package to orchestrate
hyperparameter optimization campaigns through multi-cloud opportunistic resources;
pidgan, a Python library simplifying the implementation of several different flavors of
Generative Adversarial Networks and organizing in a consistent set of APIs the regular-
ization techniques identified in the literature as stabilizing the training procedure; and
scikinC a simple application to transpile simple Machine Learning models trained using
scikit-learn and Keras into C functions ready to be compiled as dynamically linkable
libraries. The three packages are available as Free and Open Source Software on GitHub.

The future developments will focus on the validation of the flash-simulation paradigm
and of the Lamarr software application to simulate a larger variety of heavy hadrons,
decay modes, and for multiple data-taking conditions.

In conclusion, the work presented in this Thesis paves the way towards the adoption
of Lamarr, an application rethinking the simulation of High Energy Physics detectors
from its fundamentals, and ready to contribute to a significant reduction of the average
cost of simulating a collision event for the LHCb experiment.
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