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Abstract

FLUGG is an electron and hadron MonteCarlo simulationpackage that in-
tegrates the GEANT4 geometrical description into the FLUKA code. At the
present stage of development the FLUGG prototype is able to perform simu-
lation in complex multi-level geometries. FLUGG and pure FLUKA simula-
tions of the Test36 lead-scintillatorhadronic calorimeter have been performed
as a test of the geometry interface. Comparisons with experimental data are
also presented.

1 The FLUGG Project

The goal of the project is to allow the FLUKA MonteCarlo[1], coded in FOR-
TRAN, to call the geometry functions of the object-oriented HEP simulation soft-
ware GEANT4[2], which is coded in C++. The key features of this project are:

� Simulation of particles behaviour using the whole of the FLUKA physics
package, like e.g. interaction models, charged particles tracking, biasing.
The FLUKA interaction and tracking models have been demonstrated [1, 3]
to be quite successful in reproducing a variety existing data. They should en-
sure a good degree of predictivity thanks to their theory-driven microscopic
approach, and are continuously subject to improvements and enrichments.
The biasing techniques available in the code are an unique tool for deep pen-
etration studies and in general for all kind of radiation studies.

� Allow the transport code in FLUKA to efficiently access very complex geo-
metries by means of GEANT4 routines ([4]). This will also allow to exploit
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the broad range of geometry related facilities available in GEANT4 like ex-
changing detector geometries with Computer Aided Design - CAD - pro-
grams, detector and tracks visualisation. (See [5], [6]).

As a consequence, users will also be able to run FLUKA and GEANT4 MonteCarlo
simulations with the same geometry description.

1.1 FLUKA

FLUKA ([1]) is a complete transport MonteCarlo program. It handles hadronic and
electromagnetic interactions, charged particle tracking, low energy neutron trans-
port, and so on, in a fully integrated way. It has been succesfully applied to differ-
ent problems such as shielding, dosimetry, high energy experimental physics and
engineering, cosmic ray studies, medical physics. It allows analogue and biased
transport. Descriptions of the FLUKA physical models and comparisons with ex-
perimental data can be found in refs. [1, 3].

Its geometry package is a modification of the combinatorial geometry (CG)
package developed at ORNL for the neutron and gamma-ray transport program
MORSE [7]. Important improvements have been made to the original CG package,
such as the implementation of additional bodies, the calculation of the distance to
nearest boundary and special algorithms that minimize tracking errors due to round-
ing. Interplay with charged particle transport (multiple scattering, magnetic field
transport) is properly managed. A limited repetition capability (lattice capability)
is available. These improvements resulted in a very accurate and fast tracking, that,
howewer, has some limitations: repetition of identical structures is available at one
level only, the description of complex geometries can be rather cumbersome for the
user.

1.2 The GEANT4 Geometry Package

GEANT4 ([2]) is an Object-Oriented Toolkit for HEP simulation. A detector geom-
etry in GEANT4 is described by listing the different elements it contains and specif-
ing their positions and orientations. This detector description is stored in a database
that must bank and provide access to elements of the detector. This is achieved em-
ploying the following concepts:

� pure dimensioned geometrical shape: solid. The class involved (G4VSolid)
provides methods to determine whether a point is inside or outside the solid,
to calculate the distance from a point to a boundary either along a straight line
or along an arbitrary path, and to compute the outwards pointing normal to
the surface closest to the point. A set of complementary implementation of
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solids can be created (this allows to import/export detector geometries from
CAD, using the ISO STEP compliant solid modeller):

– solids representing simple shapes are available directly as Constructed
Solid Geometry (CSG) entities, by the corrisponding classes.

– more complex volumes are defined by their bounding surface. They are
called Boundary REPresentated Solids (BREPS).

� Unpositioned detector element with attributes: logical volume. It is built up
from the solid volumes, and carries its attributes, like for instance its material
composition.

� Positioned logical volume with respect to an enclosing logical volume physi-
cal volume. The logical volume can be simply “placed” in its mother volume,
specifying a transformation in a given reference system. In alternative, there
is the possibility to place repeatedly a single logical volume inside another,
using replications or a parametrisation mechanism. In this case a single phys-
ical volume represents multiple copies of a volume within its mother (differ-
ent copies are distinguished by an integer index). In the case of “replicas”
the copies are all identical. For “parametrised” volumes the solid type, its di-
mension, the material and the transformation matrix can all be parametrised
in function of the copy number by a user-implemented parametrisation func-
tion .

The GEANT4 user can define either a hierarchical geometry or a flat one. In
the first case, the detector description is developed by positioning daughter volumes
inside mother volumes. Daughter volumes can on turn contain sub-daughter vol-
umes, an so on, allowing the construction of a tree-structured geometry. The vol-
ume boundaries are strictly non-intersecting. Positioning a daughter volume is ac-
complished through the specification of a translation and a rotation. These define
the transformation from the global coordinate system to the local coordinate sys-
tem centered at the centre of the mother volume. The characteristic of hierarchical
geometries are:

� good tracking time performance (efficient search/lookup of volumes);

� simple way of positioning a volume relative to others;

� many translation and rotation matrix involved when transforming from the
global to the local coordinate systems.
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A flat geometry is the one with no hierarchy: all volumes are independently posi-
tioned in a single mother volume. The characteristic of this geometry description
are:

� simple importing and exporting of CAD geometries, which are flat;

� only one coordinate transformation is required between a global coordinate
system and a part of the detector;

� tracking time search is less performant than in the hierarchical case, and can
be improved only with the creation of dummy volumes;

� tracking optimisation is, in any case, less performant.

Tracking optimisation is available in GEANT4. It aims to reduce the number of
candidate volumes intersected by the particle along a given direction from a given
point. This could be achived implementing virtual divisions, in the so called Smart
Voxel method, that provides very efficient search in the volume database and in-
volves only a fast initialisation.

1.3 Status of the Project

The FLUGG package has presently the following characteristics:

� particle transport is performed in single level and multi-level geometries;

� the geometry input is in GEANT4 format;

� the physics input and the output is in FLUKA format;

� the package runs on HP and Linux platforms;

� the transport in magnetic field has still to be coupled to GEANT4 geometry.

The status of the project allows for the use of FLUGG in a complex, multi-level
geometry. In the present work a full calorimeter simulation is performed as a test
of the geometry interface.

2 Technical Details about FLUGG

2.1 First Technical Challenges Faced

First of all, we investigated two kinds of technical problems:
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1. the feasibility of mixing modules written in different programming lan-
guages: C++ code (GEANT4) with FORTRAN code (FLUKA);

2. the possibility of decoupling physics and geometry routines in both
FLUKA and GEANT4.

The first problem is not straightforward, due to the formal differences between
the two languages; we solved it building C++ wrappers as interface ([8]). Analyzing
the second problem, we isolated and compared geometry calls in the two programs.
These calls are few and similar, thus it is possible and easy to call GEANT4 routines
from FLUKA ([8]). One wrapper for each of the FLUKA geometry calls has been
written (in fig.1: G1WR, NRMLWR, LKWR).

The first version of the application included the FLUKA physics and the alpha
version of the GEANT4 geometry. Several tests with simple geometries have been
performed, requiring that FLUKA and FLUGG simulations were reproducing ex-
actly the same random number sequence even after hundreds of histories. This is
a simple and very powerful test, since it ensures that all the particle steps are ex-
actly the same in the two geometry packages. However, since even small rounding
differences in the two algorithms could eventually lead to different random number
selection in the physics, the test is no longer feasible in complex geometries and/or
for runs spanning several hours of CPU.

2.2 FLUGG Initialisation

Initialisation was an important task to handle.
The standard FLUKA input includes the geometry definition, material defini-

tions and material to region assignments, setting of transport and interaction thresh-
olds and accuracy, link to neutron data sets, scoring directives, biasing directives.
Many of the definitions are given on a region-dependent or on a material-dependent
basis. Thus, care had to be taken to keep all the potentialities of the FLUKA user
initialization while transferring part of the input tasks to GEANT4 classes.

In FLUGG, the geometry is build exclusively with GEANT4 input classes, so it
is completely independent and decoupled from the FLUKA input. At the initialisa-
tion stage, the wrapper JOMIWR (see figure 1) is called from FLUKA for Geome-
try initialisation. JOMIWR calls GEANT4 geometry classes for the construction
of the detector and returns to FLUKA the number of regions of the detector. The
GEANT4 numeration table for physical volumes is used both at run time to iden-
tify the current region number, and at input/initialization to assign region dependent
parameters.

In the GEANT4 toolkit, materials and material-volume assignments are speci-
fied in geometry input classes, in the detector constructor file. However, the mate-
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Figure 1: Sketch of the FLUGG application.

rial initialization in FLUGG cannot be restricted to the one provided by GEANT4
classes. In FLUKA, material definitions can include details that are related to the
physics of the code. For instance, the user can override the defaults for the ioni-
zation density effect parameters, can define effective densities for gases, can refer
to different neutron cross section sets depending on the material temperature, can
adopt different degrees of accuracy in the physics processes on a material dependent
basis, to optimize the balance between precision and speed. The material initializa-
tion has thus been divided into two steps: when FLUGG initialises the geometry,
material information is read from the GEANT4 detector description, and translated,
by means of JOMIWR, into FLUKA-formatted input cards. The newly created file
containing the GEANT4 material specifications and volume-material assignments
must be included into the FLUKA input file where additional properties can still be
defined.
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2.3 FLUKA + GEANT4 Facilities in FLUGG: Particle History

The geometry history of a given particle is defined by the volume it belongs to,
placed in the geometry tree hierarchy, with all its mother volumes specified. The
geometry history is the outcome of particle location computation, and it is a neces-
sary information for tracking the particle in the detector geometry. When secondary
particles are created, in a particular location (history), it is helpful to store their his-
tory together with the other informations related to them. This avoids relocation
computations every time a secondary particle is taken from the stack for tracking.

FLUKA creates secondary particles and banks them in its stack with their his-
tory. When FLUKA gets a secondary particle from the stack, it doesn’t recalculate
the exact location because it knows it from the stored history. This feature is not
present, yet, in GEANT4 (it is however planned). There is in GEANT4 geometry,
and in particular in the “compute location” routines, no history output to be stored
in a FLUKA readable format (both for code language reasons as for program struc-
ture). This is the reason why, in its first version, FLUGG was not able to store his-
tory information. Only the region number the particle belonged to was given and
stored on FLUKA side. But this led to the following drawbacks:

1. Every time a secondary particle was taken from the stack, its history had to
be recomputed, with a significant CPU penalty.

2. FLUKA received from GEANT4 only the physical volume number, so it was
impossible to distinguish volumes belonging to different replicated mothers.
This has no impact on the tracking, but spoils part of the FLUKA scoring
capabilities.

To solve these problems, it was necessary to make the geometry classes able to
give back to FLUKA the whole history after the location of particles. The first task
was then to create C++ objects containing the history information and the number
of secondary verteces created with that particular history. We built the new class
“NavHistWithCount”: every object of this class stores the pointer to the Naviga-
tionHistory of a given particle and its counter (that is the number of secondary par-
ticles created with that history).

FLUKA has been made able to handle all operations related to those objects
via specific wrappers. Every time the FLUKA physics creates secondary particles,
and wants to store them in the stack, the current history is saved in a NavHistWith-
Count object. The pointer to this object can be stored on the FLUKA stack as an
integer number (ISVHWR makes a new NavHistWithCountobject, saving the navi-
gation history stored in G4Navigator in it, and returns its pointer to FLUKA). Then
FLUKA can decrement or increment the history counter, every time a secondary
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particle is taken from or saved in the stack (CONHWR updates the secondary par-
ticle history counter and deletes the object if the counter is equal to 0). On starting
tracking of a secondary particle, taken from the stack, FLUKA reinitialises the his-
tory stored in G4Navigator (INIHWR).

In conclusion, the new class “NavHistWithCount” allow to store in memory the
history of secondary particles, computed by means of GEANT4 geometry routines,
every time FLUKA physics needs it. The pointer to these objects is given back to
FLUKA, that manages all the related operations. The G4Navigator can then reuse
the stored histories, and not recalculate them, without waste of cpu time in reloca-
lisation.

3 First Calorimeter Simulation

In this paper we simulate with FLUGG a well known and tested Lead-Scintillator
calorimeter, named Test-36 ([9]). The goal of the test is to verify the behaviour of the
new interface. Since the simulation results must be completely independent from
the geometry package used, the FLUGG simulations have to match the standalone
FLUKA ones within the statistical accuracy. The choice of a real calorimeter as ge-
ometry benchmark allows us to perform also a comparison with experimental data.
The test-36 calorimeter was chosen because its geometry allows a full testing of the
multi-level capabilities and of the history saving algorithm without requiring a huge
effort in building the geometry input.

3.1 Test-36 Lead-Scintillator Calorimeter

The Test-36 calorimeter [9] consisted of three identical modules. Each module was
subdivided vertically into three optically decoupled towers. The front part of each
tower (EM section) and the back part (HAD section) had separate readout. The
depth of the EM section was 1� (hadronic interaction lenght). The HAD section was
4�. So, the calorimeter consists of nine towers with a total depth of 5� for hadronic
interactions. Each module had a sandwich structure of 81 layers. The sampling
layer consisted of a 10 mm thick lead plate followed by a 2.5 mm thick scintillator
(SCSN38) sheet. The thickness ratio between lead and scintillator was optimized
to achieve a good energy resolution for hadrons. The lead plate contained 4% anti-
mony to increase the mechanical stability. They were kept at a distance by 3.5 mm
thick spacers located at the top and bottom of the plate. The stack was held together
by steel rods running through the spacers. In this way no dead material was intro-
duced in the sensitive volume. The EM section contained the first 16 layers and the
HAD part the remaining 65 layers. Each tower was read out on both sides by 2 mm
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thick wavelength shifter plates (WLS). It was tested at PS and SPS with e; � and �
[9, 10].

4 Simulation Analysis

Figure 2: Energy deposited by 10 GeV � in the first 16 scintillator layers (EM sec-
tor).

We choose the following parameters for the simulation:

� 10 GeV electron and pion beams;

� detailed treatment of all interactions and of particle transport;

� low thresholds : 100 keV for e�, 10 keV for 
;

� signal quenching in the scintillator with Birks parameter 0.0085
g=cm2=MeV ;
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Figure 3: Energy deposited by 10 GeV � in all the scintillator layers.

� no simulation of the light attenuation in WLS fibres.

We simulated, with FLUKA and with FLUGG, the response of the calorimeter
to pions of 10 GeV incident on the centre of tower 5 (the number of events in all
plots is normalised to 1).

In Figure 2 and 3 the visible energy in the electromagnetic section and in the
whole calorimeter for 10 GeV incident pions is plotted, for both simulations. The
close similarity of the plots confirms that the tracking in the two geometries gives
identical responses.

In Figure 4 the energy deposited in the central tower over the total energy is plot-
ted. FLUKA and FLUGG plots show again no difference, thus confirming that the
lateral development of the shower is tracked in the same way in the two simulations.

The ratio between quenched signal and true energy deposition is plotted in Fig-
ure 5. This plot is sensitive to the details of the tracking, since the quenching fac-
tor depends on the density of deposited energy along the particle trajectory, thus it
depends on the length of particle trajectories in the scintillator. In this case, again,
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Figure 4: Fraction of energy deposited in the central tower by 10 GeV. �

FLUGG results reproduce exactly the standalone FLUKA simulation.
In Figure 6, the total visible energy is plotted for a 10 GeV electron beam. Again,

FLUKA and FLUGG plots are exactly the same.

5 Comparison with Experimental Data

5.1 Energy resolution

The energy resolutions obtained with MonteCarlo simulations have been compared
to experimental data ([9, 10]), adopting, as far as possible, the same cuts and pro-
cedures. For pion and electron energy of 10 GeV, the pulse height distribution has
been fitted with a Gaussian, limited in between �2� from the central value. Pion
events with energy in E.M. compartment < 1.5 GeV have been discarded. The con-
tributions of the photoelecron statistic, of the beam momentum spread, and of the
fluctuations in light attenuation have been added in quadrature to the MonteCarlo
resolutions (values taken from [11]).
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Figure 5: Ratio between quenched and not quenched signal for 10 GeV. �

We obtained:
beam FLUGG Exp. data

10 GeV � 12:7%� 3:3% = 13:1% 13:8� 0:2%

10 GeVe� 6:9%� 2:8% = 7:46% 7:5� 0:1%

5.2 Shower Profile

The following table contains the energy fraction deposited in each of the nine towers
of the calorimeter; we have assumed 95.2% containment as in the original paper.
Boldface character values are the experimental data, underneath values are FLUGG
simulation results.
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Figure 6: Energy deposited by 10 GeV electrons in all the scintillator layers.

1.4 3.6 1.4
1.3 3.6 1.3
3.6 75.2 3.6
3.6 75.5 3.6
1.4 3.6 1.4
1.3 3.6 1.3

It can be seen that the simulation results reproduce very well the shower spread
in the calorimeter.

5.3 e/�

In the FLUGG simulation, the ratio between the mean value < Ee > for electrons
and the mean value < Eh > for hadrons is 1.01. It is a bit lower than the experi-
mental data (1.09 before leakage corrections), but, as we can see in Figure 7, this
can be affected by the EM-HAD inter-calibration and by the choice of the quench-
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ing parameter.

Figure 7: e/� and �E versus Birks coefficient

5.4 CPUs and executable file dimensions

We have compared the CPU spent running the described events with FLUKA and
FLUGG, finding that the ratio between FLUGG and FLUKA execution time is
nearly 1.7. This ratio has to be taken with care, since the Test-36 geometry is still
simple enough to be very efficiently treated by the FLUKA geometry package. The
ratio could become smaller in more complex cases, where all the GEANT4 geom-
etry capabilities can be exploited at best.

The executable file dimensions are:

� FLUKA: 13 MBytes

� FLUGG: 22 MBytes

The total used memory during execution is about:

� FLUKA: 48 MBytes

� FLUGG: 50 MBytes
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It has to be pointed out that the global FLUKA memory allocation does not de-
pend on the characteristics of the simulation. Only part of this allocated memory is
really occupied at run time.

6 Future Developments

We plan the following activities for the near future:

1. develop and test the wrappers for tracking in magnetic field;

2. apply to more complex cases like ATLAS test beams;

3. make FLUGG and GEANT4 outputs fully compatible to allow easy results
comparison;

4. include in FLUGG the GEANT4 geometry facilities (like visualisation
drivers, geometry debugger and editor).

7 Conclusions

We built a MonteCarlo simulation environment, FLUGG, which incorporates the
GEANT4 Geometry into the core FLUKA program. The FLUGG prototype is now
ready to perform simulations

� using the FLUKA input for material and simulation parameters;

� using the GEANT4 geometry input;

� obtaining the output in FLUKA format.

FLUGG has been tested in a full calorimeter simulation. The multi-level geo-
metry has been built with GEANT4 classes. The response of the calorimeter to elec-
trons and pions has been simulated with both FLUKA and FLUGG, with the same
material definitions and simulation settings. The comparison between FLUGG and
FLUKA simulationsshows that FLUGG reproduces exactly the standalone FLUKA
results, as expected.

In particular, we have simulated the response of the calorimeter to electron and
pion beams with energy 10 GeV. We have found an energy resolution for electrons
of:

��

< E� >
= 7:46%
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And an energy resolution for pions of:

�e�

< Ee� >
= 13:1%

The e=h ratio obtained, for a Birks parameter of 0.0085 g/cm2/MeV, is:

< Ee >

< Eh >
= 1:01

We compared the simulation outcomes with experimental data, concluding that
FLUGG simulation reproduce reasonably well the experimental data.
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