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Abstract We explore the sensitivity of quantum state characteristics, specifically purity and entropy, to variations
in the chosen value of Planck’s constant. This investigation begins with a novel examination of the Wigner function,
framed through the displacement operator, providing fresh insights into quantum phase space analysis. Emphasizing
Gaussian states, we systematically evaluate how changes in Planck’s constant influence the mixedness of quantum
states. By leveraging the Narcowich–Wigner spectrum, we derive key behaviors of purity and entropy under these
variations. Finally, our findings are interpreted through the lens of symplectic capacity, offering a robust theoretical
framework that unifies quantum state dynamics and phase-space geometry.
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1 On the variability of fundamental constants

The question of whether all constants of Nature really are constant has a long history. Paul Dirac already suggested
in 1937 in his “Large Numbers Hypothesis” [5] that the gravitational constant G or the fine-structure constant
α = e2/2h̄c might be subject to change over time. Since then numerous and very precise measurements seem to
indicate that, indeed, α or Planck’s constant h has undergone a very small and slow shifts since the Big Bang. These
findings spurred further attempts to measure variations of α and whence of h, in particular using cosmological
methods. In 1999, a team of astronomers headed by John Webb reported that measurements of light absorbed by
quasars suggest that the value of the fine-structure constant was once slightly different from what it is today and
found an upper bound for this variation at roughly 10−17 per year. The quest for testing this hypothesis is ongoing,
and has been rekindled by recent advances (2024) by Zhang et al. [40] on nuclear clocks using laser-controllable
transition in the atomic nucleus of thorium-229. Freeman Dyson had already pointed out to the author a few years
ago (in a private communication) that advances in the precision of atomic clocks would be instrumental in the study
of the possibly variability of constants of Nature. Perhaps the results of Zhang et al. will shed some light on these
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fascinating problems (see the review paper [33]). We mention that Duff has shown [6–8] that all the fundamental
physical dimensions could be expressed using only one unity: mass.

We have collected some results on measurements of the values of h in an Appendix.
In this paper we will discuss some consequences of possible variations of Planck’s constant on mixes quantum

states, thus pushing the study we initiated in [17]. Our treatment is purely mathematical; we do not discuss the
physical question whether Planck’s constant (or other constants of Nature) are variable, or not: Hypotheses non
fingo. As we will see the choice of the value of Planck’s constant has drastic consequences for quantum states, pure
or mixed. Assigning different values to h can deeply change the mixedness (and hence the purity and entropy) of a
quantum state. This was already pointed out in our previous work [17] in the Gaussian case, and also discussed by
Dias and Prata [4].

Notation 1 The standard symplectic form on R
2n is ω(z, z′) = J z · z′ where J =

(
0n×n In×n

−In×n 0n×n

)
and · is the

Euclidean scalar product. Let M be a symmetric matrix on R
n; we will often use the notation Mx · x = Mx2. We

denote by Sp(n) the symplectic group of (R2n, ω) and by Mp(n) the corresponding metaplectic group (it is a unitary
representation of the double covering of Sp(n)). We denote by S(Rn) is the Schwartz space of rapidly decreasing
test functions onRn and by S ′(Rn) its dual (the tempered distributions). Given a tempered distribution a ∈ S ′(R2n)

we denote by OpW(a) the Weyl operator with symbol a.

2 The density matrix and its Wigner distribution

2.1 From displacements to the Wigner function

The Wigner function loses much of its mystery when it is viewed as a transition amplitude between the displaced
function and its reflection.

How Wigner arrived at his eponymous transform in his famous paper [38] is a mystery. Some have speculated
that the idea might have come from Leo Szilard (because Wigner acknowledges his help in a footnote) but there is
no firm evidence that the latter should have participated in Wigner’s constructions (it is believed that Wigner wanted
to boost Szilard’s career by mentioning him as a collaborator). Indeed, nothing seems to motivate the introduction
of the Wigner function

Wh̄ψ(z) =
(

1
2π h̄

)n ∫
Rn

e− i
�
pyψ(x + 1

2 y)ψ
∗(x − 1

2 y)dy (1)

except that it has the qualities of a quasi-probability function.
Consider now the phase space translation operator T (z0) : z �−→ z + z0. It acts unitarily on functions by

pullback: if ψ is a function on R
n only then T (z0) ψ(x) = ψ(x − x0) if z0 = (x0, p0). It turns out that T (z0) is

the time-one value of the flow t �−→ T (t z0) determined by the Hamilton equations ẋ = x0, ṗ = p0 for the phase
space function ω(z, z0) = px0 − p0x (the “displacement Hamiltonian”). We quantize this flow to an evolution
group t �−→ T̂h̄(t z0) solution of the abstract Schrödinger equation

i h̄
d

dt
T̂h̄(t z0) = ω(̂z, z0)T̂h̄(t z0)

where ẑ = (̂x, p̂). By definition, the time-one value T̂h̄(z0) = e− i
h̄ ω(̂z,z0) of T̂h̄(t z0) is the (Heisenberg–Weyl)

displacement operatt0r; a simple calculation shows that its action is explicitly given by

T̂h̄(z0)ψ(x) = e
i
h̄ (p0x− 1

2 p0x0)ψ(x − x0). (2)
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Let ψ be a square integrable function on R
n ; by definition its Wigner function (or transform) is

Wh̄ψ(z) =
(

1

π h̄

)n

〈R̂T̂h̄(z0)ψ |T̂h̄(z0)ψ〉 (3)

where R̂ is the reflection operator: R̂ψ(x) = ψ(−x). This equality can be rewritten

Wh̄ψ(z) =
(

1

π h̄

)n

〈R̂h̄(z0)ψ |ψ〉 (4)

where R̂h̄(z0) is the Grossmann–Royer reflection operator [24,34]:

R̂h̄(z0) = T̂h̄(−z0)R̂T̂h̄(z0) (5)

whose action on a function (or disruption) ψ) is given by

R̂h̄(z0)ψ(x) = e
2i
h̄ p0(x−x0)ψ(2x0 − x). (6)

It is a simple computational exercise, using the expression using (6) to check that Wh̄ψ(z) is given by the familiar
expression (1).

Definition (3)–(4) show that the dependency of the Wigner function on Planck’s constant is due solely on the
dimensionless phase

� = i

h̄
(p0x − 1

2
p0x0) (7)

(for the signification of this phase in terms of Lagrangian submanifolds see [13]). The effect of a change of the
value of Planck’s constant from h̄ to h̄′ is straightforward:

Wh̄′ψ(x, p) =
(
h̄

h̄′
)n

Wh̄ψ(x,
h̄

h̄′ p). (8)

2.2 Their Wigner distribution of the density matrix

A density matrix (or operator) on a complex Hilbert space H is positive semidefinite operator ρ̂ on H with trace
one: Tr ρ̂́ = 1. he positive semi-definiteness property ρ̂ ≥ 0 means that 〈ρ̂ψ |ψ〉 ≥ 0 for all ψ ∈ H . Notice
that since we are assuming that H is a complex Hilbert space, the positive semi-definiteness of ρ̂ implies that it is
self-adjoint A density matrix is a compact operator, applying the spectral theorem one sees that ρ̂ can be written as
a convex sum of orthogonal projections: ψ j ∈ H and corresponding positive numbers λ j summing up to one such
that

ρ̂h̄ =
∑
j

λ j	ψ j , λ j ≥ 0 ,
∑
j

λ j = 1 (9)
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where 	ψ j = |ψ j 〉〈ψ j is the orthogonal pocosin on ψ j . Assume from now on that H = L2(Rn). Then ρ̂h̄ is the
Weyl operator on R

n and Wρ̂h̄ its Wigner distribution: by definition the phase space function defined by

Wρ̂h̄ (z) =
∑
j

λ jWh̄ψ j (z). (10)

It is common in Physics to find the formula

Wρ̂h̄ (x, p) =
(

1

2π h̄

)n ∫
Rn

e
i
h̄ py〈x − 1

2 y|ρ̂h̄ |x − 1
2 y〉dy. (11)

2.3 The quantum condition

That the chosen value of Planck’s constant matter is already seen on the following simple example. Suppose we
have determined a state ρ̂h̄ : with covariance matrix 
 (It can be determined experimentally using symplectic
tomographic methods). It is well known [10,15] that if this state is quantum the covariance matrix has to satisfy the
condition


 + i h̄

2
J is positive semidefinite (12)

which implies to the Robertson–Schrödinger inequalities

(�x j )
2(�p j )

2 ≥ (�(x j , p j )
2 + 1

4
h̄2. (13)

These conditions are sensitive to the value of h̄. In fact, if (12) holds it will also hold for h̄′ < h̄., and so does (13).
Setting h̄′ = r h̄; we have


 + i h̄′

2
J = (1 − r)
 + r

(

 + i h̄

2
J

)
;

since 
 > 0 and 
 + (i h̄/2)J ≥ 0 condition (12) will hold for 0 ≤ r ≤ 1., but not necessarily for h̄′ > h̄. To
illustrate this consider the phase space Gaussian

ρ
(z) = 1

(2π)n
√

det 

e− 1

2 
−1(z−z0)·(z−z0) (14)

with covariance matrix 
. If ρ
 is thew Wigner distribution of a quantum state (i.e. if it satisfies (12)) then the
purity of this state will be will be a density operator for all h̄′ ≤ h̄hen its purity is ([20] or [12], p. 302)

μ =
(
h̄

2

)n

det(
−1/2) (15)

and the corresponding state will state will be pure if and only if det(
) = (h̄/2)2n . It is clear that if we choose
h̄′ > h̄. then we will have μ > 1, which is absurd.
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3 Purity and Planck’s constant

Since the function (2π h̄)nWρ̂h̄ is the Weyl symbol [11,15]of the operator ρ̂h̄ . By definition the purity of ρ̂h̄ is

μ(ρ̂h̄) = Tr(ρ̂2
h̄) =

∑
j

λ2
j .

We briefly discussed in Sect. 2.3 the sensitivity of the purity of a Gaussian mixed state to variations of Planck’s
constant. Here is a much more general result, whose proof is based on Moyal’s identity [18]: let ψ and φ be two
square integrable functions on R

n . We have

∫
R2n

Wh̄ψ(z)Wh̄φ(z)dz =
(

1
2π h̄

)n |〈ψ |φ〉|2. (16)

Theorem 2 (Purity)Let ρ be a phase space function. Assume that ρ is the Wigner distribution of two density
matrices ρ̂h̄ and ρ̂h̄′corresponding to two values h̄ and h̄′ of Planck’s constant. The purities of ρ̂h̄ and ρ̂h̄′ are
related by the formula

μ(ρ̂h̄′) =
(
h̄′

h̄

)n

μ(ρ̂h̄). (17)

Proof The following argument somewhat simplifies the proof in [17], &3.2. There exist (orthonormal) families
(ψ j ) and (ψ ′

j ) of square integrable functions such that

ρ(z) =
∑
j

λ jWh̄ψ j (z) =
∑
j

λ′
jWh̄′ψ ′

j (z)

where the λ j and λ′
j are positive numbers summing up to one. Squaring both sides of the second equality and

integrating we get

∑
j,k

λ jλk

∫
R2n

Wh̄ψ j (z)Wh̄ψk(z)dz =
∑
j,k

λ′
jλ

′
k

∫
R2n

Wh̄′ψ ′
j (z)Wh̄′ψ ′

k(z)dz;

hence, in view of Moyal’s identity and taking into account the orthonormality proprieties the ψ j and ψ ′
j ,

(
1

2π h̄

)n ∑
j

λ2
j =

(
1

2π h̄′
)n ∑

j

λ′2
j

which is the same thing as (17).

The equality (17) implies in particular that if ρ̂h̄ is a pure state then ρ̂h̄′ can be a density matrix if and only if
h̄′ < h̄ in which case ρ̂h̄′ is mixed: decreasing Planck’s constant decreases purity and hence increases mixedness.

4 Entropy and Planck’s constant

4.1 The von Neumann entropy: discussion

The calculations above will allow us to easily describe the behavior of a Gaussian state (36) under variations of
Planck’s constant. Let us briefly discuss the (von Neumann) entropy of a quantum state. It is a measure of the
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uncertainty or the amount of quantum information in a quantum system. By definition the (von Neumann) entropy
of a density matrix ρ̂h̄ is the nonnegative number

S(ρ̂h̄) = − Tr(ρ̂h̄ ln ρ̂h̄) (18)

where the logarithm ln ρ̂h̄ is defined as follows: suppose that ρ̂h̄ has the spectral decomposition

ρ̂h̄ =
∑
j

λ j ρ̂ j , λ j > 0,
∑
j

λ j = 1 (19)

where the λ j are > 0 and ρ̂ j are rank-one orthogonal projections in L2(Rn). Then

ln ρ̂h̄ =
∑
j

(ln λ j )ρ̂h̄ (20)

is also a trace class operator. Note that by the change of variables z → S−1z it is clear that S(ρ) = S(ρ ◦ S−1) for
S ∈ Sp(n) (because det S = 1). With the notation (23) and (24) we thus have, taking into account this symplectic
invariance and the additivity of entropy, that

S(ρ̂h̄) =
n∑
j=1

S(ρ̂h̄ j ). (21)

4.2 The Gaussian case

Assume that ρ is the Gaussian ρ
 (36); then

ρ
(S−1z) = 1

(2π)n
√

det D
e− 1

2 D
−1z·z (22)

where 
 = ST DS is the Williamson factorization of the covariance matrix. Thus,

ρ
(S−1z) = ρ1(x1, p1)(⊗ρ2(x2, p2) ⊗ · · ⊗ρn(xn, pn) (23)

with

ρ j (x j , p j ) = 1

2πλω
j

exp

(
− 1

2λω
j
(x2

j + p2
j )

)
. (24)

The partial entropies Sρ̂ j ) are given by the formula

S(ρ̂ j ) = 1 − μ j

2μ j
ln

(
1 + μ

1 − μ j

)
− ln

(
2μ j

1 − μ j

)
(25)

(see Agarwal [1]; we have given a rigorous proof thereof in [20]. In this formula μ j = h̄′/2λω
j is the purity of ρ̂ j

(recall that λω
j is the j th symplectic eigenvalues of the covariance matrix 
, and that we have h̄′ ≤ 2λω

min. It follows
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that S(ρ̂ j ) (and hence S(ρ̂
)) depend on the value of h̄: unseeing μ j = h̄′/2λω
j in the expression (25 we get

S(ρ̂ j ) = 2 − λω
j

2h̄
ln

(
λω
j + h̄

λω
j − h̄

)
− ln

(
2h̄

2λω
j − h̄

)
. (26)

Using formula (21) for the sum of partial entropies we see that

lim
h̄→0+S(ρ̂h̄) = ∞. (27)

This can be interpreted by saying that the information about the system’s precise state decreases when Planck’s
constant becomes smaller. Notice that the entropy is zero (pure state) if and only if all the λω

j are equal to 2h̄ (that
is if the state is a pure Gaussian).

5 The quantum Bochner theorem

Let us now address the question “Under which conditions is a given a phase space function ρ the Wigner distri-
bution of some density matrix?”. This question has been addressed by many authors; historically the paper [31]
by Narcowich and O’Connell was the first to give a rigorous approach to the problem; their work was inspired by
the so-called “KLM papers” [26–28] by Kastler, Loupias, and Miracle-Sole. The main results: can be explained as
follows (we ar4e following our exposition in [18], Chapter 4; the method, different from that in KLM which relied
on the theory of Banach algebras, and first appeared in our paper [3] with Cordero and Nicola. Assume that ρ is
both integrable and square integrable and that

∫
R2n

ρ(z)dz = 1. (28)

We denote by ρ♦ the “diamond Fourier transform”. Let N be an arbitary nonnegative integer and (z j , zk) an arbitrary
pair of phase space points.

Theorem 3 (Quantum Bochner)The functionρ is the Wigner distribution of a density matrix if and only if the
matrices


 = (
N
jk)11≤ j,k≤N , 
N

jk = e− i h̄
2 ω(z j ,z′k )ρ♦(z j − zk) (29)

are all positive semidefinite.

Proof We only sketch the proof the necessity of the condition 
 ≥ 0. For a complete proof and computational
details see [3] or [18]. One first remarks that the conditions 
 ≥ 0. are equivalent to the positivity of the polynomials
in λ = (· · ·, λ j , · · ·) ∈ C

N :

PN (z j , zk, λ) =
∑

1≤ j,k≤N

λ jλ
∗
ke

− i h̄
2 ω(z j ,zk )ρ♦(z j − zk) ≥ 0 (30)

for all choices of (z j , zk) and N . If h̄ �= 0 (which we assume from now on) these conditions are in turns equivalent
to

P ′
N (z j , zk, λ) =

∑
1≤ j,k≤N

λ jλ
∗
ke

− i
2h̄ ω(z j ,z′k )ρω(z j − zk) ≥ 0. (31)
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Suppose that ρ is the Wigner distribution of a density matrix; then ρ must be of the type (10). Then, by linearity,
it is sufficient to assume that ρ = Wh̄ψ for some square integrable and absolutely integrable ψ . The necessity of
the conditions 
 ≥ 0 and P ′(λ) ≥ 0 the follows from the observation that

P ′
N (z j , zk, λ) =

(
1

2π h̄

)n
∥∥∥∥∥∥

∑
1≤ j,k≤N

T̂h̄(z j − zk)ψ

∥∥∥∥∥∥
2

L2(Rn)

��

hence P ′
N (z j , zk, λ) ≥ 0 as was to be proven.

6 The Narcowich–Wigner spectrum

As discussed in Sect. 2.3 a phase space (quasi-) probability can be the Wigner distribution of a density matrix or not,
depending on the value attributed to Planck’s constant. The Narcowich–Wigner spectrum is a way to characterize
such values. It was introduced by Narcowich in [29,31] (he called it the “Wigner spectrum”), and has been further
studied by Dias and Prata [4], Bröcker and Werner [2], and the present author [17]. By definition the Narcowich–
Wigner spectrum of ρ is the set NW(ρ) of all numbers h̄′ ≥ 01 such that

Ph̄′
N (z j , zk, λ) =

∑
1≤ j,k≤N

λ jλ
∗
ke

− i h̄′
2 ω(z j ,zk )ρ♦(z j − zk) ≥ 0 (32)

for all choices of N , z j , zk, λ. It is thus the set of all values of Planck’s constant for which the phase space function ρ

is the Wigner distribution of a density matrix. Put a little bit more precisely: given a phase space (quasi-)distribution
ρ satisfying the normalization condition (28), for which values of h̄′ is the Weyl quantization (cf. (11))

ρ̂h̄ψ(x) =
∫

R2n
e− i

h̄′ p(x−y)
ρ 1

2 (x + y), p)ψ(y)dydp (33)

a positive semi-definite operator (and hence a density matrix)? The set of all such values of h̄′ is precisely the
Narcowich–Wigner spectrum

In general the Narcowich–Wigner spectrum is generally quite complicated to calculate (cf. the examples in [2]).
We however have a partial result when the density matrix has a covariance matrix (which requires that ρ decreases
sufficiently fast at infinity):

Theorem 4 (Narcowich–Wigner, I)Let ρ be a phase space quasi-distribution centered at z0. Assume that the
covariance matrix


 =
∫

R2n
(z − z0)(z − z0)

T ρ(z)dz (34)

and is positive definite. (i) Let λω
min be the smallest symplectic eigenvalue of 
. We have

NW(ρ) ⊆ [0, 2λω
min]. (35)

(ii) The Narcowich–Wigner spectrum NW ρ) is a compact subset of R.(iii) When ρ is a Gaussian

ρ
(z) = 1

(2π)n
√

det 

e− 1

2 
−1(z−z0)·(z−z0) (36)

1 In some texts negative values of h̄′ are allowed; this corresponds to a time reversal in Schrödinger’s equation.
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then the equality NW(ρ) = [0, 2λω
min] holds.

Proof (i) Recall [15,22,25] that the symplectic eigenvalues of a symmetric positive definite matrix are the n numbers
λω
j > 0 such that ±iλω

j is an eigenvalue of the antisymmetric matrix 
1/2 J
1/2 (they are thus those of J
). Let
D be the diagonal matrix

D =
(


 0
0 


)
, 
 = diag(λω

1 , ..., λω
n ). (37)

In view of Williamson’s diagonalization theorem,wi36 (see [15,18,25] for proofs) there exists S ∈ Sp(n) such that

 = SDST . The condition ρ̂h̄ ≥ 0 implies that we must have 
 + i h̄′

2 J ≥ 0 that is S
ST + i h̄′
2 SJ ST ≥ 0. Since

SJ ST = J we must thus have D+ i h̄′
2 J ≥ 0. This condition is equivalent to (λω

j )
2 − h̄′2/4 ≥ 0 for all j = 1, ..., n,

that is too 2λω
min ≤ h̄′, proving the inclusion (35). (ii) That NW ρ) is compact follows from its closedness: let (hm) be

a sequence in NW ρ) converging towards a number h̄′. The polynomials (30) are all nonnegative Ph̄m
N (z j , zk, λ) ≥ 0

hence we also have

Ph̄′
N (z j , zk, λ) = lim

m→∞ Ph̄m
N (z j , zk, λ) ≥ 0 ≥ 0

so that h̄′ ∈ NW ρ) . (iii) The condition 
 + i h̄′
2 J ≥ 0 is both necessary and sufficient for a Gaussian (36) to be the

Wigner distribution of a density matrix, hence every value h̄′ ∈ [−2λω
min, 2λω

min] is admissible. ��

7 Planck’s constant and symplectic capacities

Let us briefly recall some key concepts from symplectic topology (for a detailed review see our Phys. Reps. paper
[22] with Luef). A (normalized) symplectic capacity on the symplectic phase space (R2n, ω) associates to every
subset � ⊂ R

2n a number c(�) ≥ 0 or +∞,satisfying the following properties:

SC1 Monotonicity: If � ⊂ �′ then c(�) ≤ c(�′);
SC2 Conformality: For every λ ∈ R we have c(λ�) = λ2c(�);
SC3 Symplectic invariance: c( f (�)) = c(�) for every symplectomorphism (= canonical transformation f of

(R2n, ω);
SC4 Normalization:Let B2n(r) be the phase space ball |z| ≤ r and Z2n

j (r) is the cylinder with radius r and center
0 based on the x j , p j plane for 1 ≤ j ≤ n. We have

c(B2n(r)) = πr2 = c(Z2n
j (r)). (38)

The explicit construction of a symplectic capacity is not an easy task, especially because of the normalization
axiom (SC4) which shows that a symplectic capacity is very different from volume. Actually, the conformality
axiom (SC2) seems to suggest that symplectic capacities behave like areas. or, equivalently, action. In fact, there
exits a symplectic capacity cHZ (the Hofer–Zehnder capacity [25]) having the following property: if � is a bounded
convex subset of R2n having a smooth boundary ∂� then

cHZ(�) =
∮

γmin

pdx =
∮

γmin

p1dx1 + · · · + pndxn (CHZ)

where γmin is the shortest closed Hamiltonian orbit carried by the boundary ∂�. In fact, the existence of symplectic
capacity (actually an infinity of them) follows from a celebrated theorem due to Gromov [23]. He showed that no
symplectomorphism can “squeeze” a phase space ball B2n(R) inside a cylinder Z2n

j (r) unless R ≤ r . An equivalent
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formulation is that if you defoam a ball B2n(R) using symplectomorphisms, then the orthogonal projection of that
deformed ball will still have area at least πR2. These phenomena, widely know under the nickname “principle of
the symplectic camel” at first sight seems to contradict Liouville’s theorem on conservation of volume; however
one should not forget that conservation of volume does not imply conservation of shape! Gromov’s theorem shows
that the formulas

cmin(�) = sup
f symplecto

{πr2 : f (B2n(r)) ⊂ �} (39)

cmax(�) = inf
f symplecto.

{πr2 : f (�) ⊂ Z2n
j (r)} (40)

define symplectic capacities and we have cmin(�) ≤ c(�) ≤ cmax(�) for all symplectic capacities c. Interpolating
between cmin(�) and cmax(�) one again obtain (infinitely many) symplectic capacities (however the Hofer–Zehnder
capacity cHZ(�) is not obtained by such an interpolation). Now, a striking fact (and it is the only we will actually
need here) is that all symplectic capacities agree on phase space ellipsoids. hey are calculated as follows: assume
that � is the covariance ellipsoid

�
 = {z ∈ R
2n : 1

2
−1z · z ≤ 1}.

We have [14,15,22]

c(�
) = sup
S∈Sp(n)

{πR2 : S(B2n(R)) ⊂ �
} (41)

which implies after some straightforward calculations that

c(�
) = 2πλmin (42)

where λmin is the smallest symplectic eigenvalue of 
. Assume that 
 satisfies the quantum condition h̄′ ≤ 2λω
min;

then (42) becomes c(�
) ≥ π h̄.
It turns out that the properties of the Narcowich–Wigner spectrum can easily be derived from those of symplectic

capacities:

Theorem 5 (Narcowich–Wigner, II) Let ρ be a phase space quasi-distribution centered at 0. Assume that ρ has a
well-defined covariance matrix 
 and let �
 be the corresponding covariance ellipsoid. The Narcowich–Wigner
spectrum of ρ is

NW(ρ) ⊂ [0, c(�
)/π ] (43)

for every symplectic capacity c on (R2n, ω); equivalently

NW(ρ) ⊂ [0, h̄max] , h̄max = 1

π

∮
γmin

pdx (44)

where γmin is the shortest positively oriented periodic orbit carried by the boundary ∂�
 : 1
2
−1z · z = 1 of �
 .

Proof In [14,22] we proved the following topological characterization of the uncertainty principle in terms of
symplectic capacities


 + i h̄′

2
J is positive semidefinite ⇐⇒ c(�
) ≥ π h̄′. (45)
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In [16] we introduced the notion of “quantum blob” as minimum uncertainty phase space unit.. A quantum blob
is the image of a phase space ball with radius

√
h̄′ by a linear symplectic transformation S ∈ Sp(n). In view of

formula (41) these conditions (45) are in turn equivalent to

�
 contains a quantum blobS(B2n(
√
h̄′)). (46)

It follows from (41) we have c(�
) ≥ π for every symplectic capacity c h̄′

The Narcowich–Wigner spectrum can thus be redefined as consisting of all h > 0 such that
∮
γ
pdx ≥ 1

2h for
all positively oriented periodic orbits carried by �
 .

Appendix: What is the value of Planck’s constant?

On 20 May 2019 the BIPM https://www.bipm.org/en/ redefined the SI unit of mass, the kilogram, by fixingarbitrarily
the value of Planck’s constant as being

h = 6.626070150 × 10−34 J s (47)

(see the herbage [9] of the National Institute of Standards ). This ad hoc choice was meant to make the kilogram fit
with its best known values, leading to its redefinition

1 kg = h

6.626070150 × 10−34 m−2s× ν

c2 (48)

where one has used the relation mc2 = hν relating energy, frequency, and mass. However, previous results from
the task group on fundamental constants NIST [9] in 2014 yield the interval of confidence

h = 6.626070150(81) × 10−34 J s (49)

justifying the middle choice (47), but more recent measurements, also performed at NIST, yield the different result

h = 6.626070040(81) × 10−34 J s (50)

which would logically lead to a different choice for (47).
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