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Abstract: After finding a solution for the Hayward regular black hole (HRBH) in massive gravity,

we embed the (3+1)-dimensional HRBHs both in massless and in massive gravities into (5+2)- and

(6+3)-dimensional Minkowski spacetimes, respectively. Here, massive gravity denotes that a graviton

acquires a mass holographically by broken momentum conservation in the HRBH. The original

HRBH has no holographically added gravitons, which we call ‘massless’. Making use of newly

found embedding coordinates, we obtain desired Unruh temperatures and compare them with the

Hawking and local fiducial temperatures, showing that the Unruh effect for a uniformly accelerated

observer in a higher-dimensional flat spacetime is equal to the Hawking effect for a fiducial observer

in a black hole spacetime. We also obtain freely falling temperatures of the HRBHs in massless and

massive gravities seen by freely falling observers, which remain finite even at the event horizons

while becoming the Hawking temperatures in asymptotic infinity.

Keywords: Hayward regular black hole; global flat embedding; Unruh effect; freely falling temperature

1. Introduction

Black holes are among the most mysterious and fascinating objects in our universe,
observationally as well as theoretically. Theoretically, they date back to a century ago, when
Schwarzschild found a spherically symmetric vacuum solution of Einstein’s gravitational
field equations, and in the same year, Einstein suggested the existence of gravitational
waves as a natural outcome of his general relativity. Observationally, precisely a century
later, LIGO with Virgo collaboration [1] detected gravitational waves representing the
merger of two stellar-mass black holes. In 2019, the Event Horizon Telescope (EHT) [2]
finally detected a direct image of a black hole and its event horizon. These remarkable
discoveries provide some constraints on the modified theories of gravity, such as the
existence of a tight bound on the graviton mass [1], the speed of the gravitational wave [3],
black hole parameters and properties [4–6], and so on, in light of observational data.

The generalization of the Schwarzschild black hole solution to the electrically charged
one [7,8] was done immediately after the work, and the more general and realistic ro-
tating black hole solutions [9,10] were found in the 1960s. However, all of these black
hole solutions have a curvature singularity at r = 0 at which spacetime is geodesically
incomplete. According to the singularity theorem proved by Hawking and Penrose [11],
singularity is inevitable. Moreover, the usual laws of physics break down at the singu-
larity, and many physicists believe that quantum gravity effects would work near the
singularity. Nevertheless, since we do not have a complete quantum gravity theory yet,
another line of work to avoid singularity has been pursued on regular black holes. Such
works began with Gliner [12] and Sakharov [13], who proposed a way to avoid the singu-
larity in terms of the matter source, which has a de Sitter core with an equation of state
ρ = −p at the center of the spacetime. To avoid the singularity problem, Bardeen [14]
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also proposed a model of a regular black hole obeying the weak energy condition, and
thus, the model does not obey at least one condition of the Hawking–Penrose singularity
theorem. However, the Bardeen’s regular black hole solution is not an exact solution to
Einstein’s equations. After more than three decades, Ayon–Beato and Garcia [15] showed
that the Bardeen’s metric could be interpreted as a magnetic solution to Einstein’s equations
coupled to nonlinear electrodynamics. Since then, there has been a lot of work on regular
black holes, including Dymnikova [16,17], Bronnikov [18], Hayward [19], Ayon–Beato and
Garcia [20], and more [21–30]. These studies have inspired further investigations related to
such black holes, for example regarding particle geodesics [31–39], the shadows of regular
black holes [40–43], and the quasi-normal modes [44–48]. The thermodynamics and phase
transitions for regular black holes have also been studied widely in refs. [49–63].

On the other hand, as is well-known, Einstein’s general relativity (GR) is a theory of a
massless graviton. However, quantum gravity phenomenology [64] at extreme limits has
pushed forward to search for alternatives to GR, one of which is to introduce a massive
graviton to GR. Historically, this started with Fierz and Pauli [65], who developed a massive
theory by extending GR with a quadratic mass term. However, the theory suffers from
the Boulware–Deser ghost problem [66] and the van Dam, Veltman, and Zakharov (vDVZ)
discontinuity [67,68] in the massless graviton limit. The vDVZ discontinuity was cured by
the Vainshtein mechanism [69]. After half a century, the notorious Boulware–Deser ghost
problem was at last solved by de Rham, Gabadadze, and Trolley (dRGT) [70,71] to have a
ghost-free massive gravity, which has nonlinearly interacting mass terms constructed from
the metric coupled with a symmetric reference metric tensor. These new terms with properly
tuned coefficients make it avoid the ghosts order-by-order. To all orders, the complete
absence of the Boulware–Deser ghost was subsequently proven by Hassan and Rosen
by a Hamiltonian analysis of the untruncated theory [72,73] and by other works [74–79].
Since then, the dRGT massive gravity has led to new astronomical and cosmological
applications for modified gravity [80–89], including the black hole shadow [90,91]. In
particular, Hendi et al. [92] have obtained a fascinating result allowing for regions with
massive parameters by comparing the black hole shadow in the dRGT massive gravity with
the EHT data of M87∗. On the other hand, Vegh [93] further elaborated on another nonlinear
massive gravity with a special singular reference metric and applied it to gauge/gravity
duality. The modification in the reference metric in the dRGT massive gravity keeps the
diffeomorphism symmetry for coordinates (t, r) intact but breaks it in angular directions
so that gravitons acquire mass because of broken momentum conservation [94–96]. As a
result, momentum dissipates as the graviton may behave like a lattice, and it can avoid
divergent conductivity. Since then, this Vegh’s type of massive gravity, called holographic
massive gravity, has been extensively exploited to investigate many interesting models
of gravity [97–109]. Very recently, we have studied the tidal effects [110] and statistical
entropy [111] for the Schwarzschild black hole in holographic massive gravity.

We have also studied the charged BTZ [112] and Schwarzschild black holes [113]
in holographic massive gravity in the global embedding Minkowski spacetime (GEMS)
scheme. According to the GEMS scheme, any low-dimensional Riemannian manifold
can be locally isometrically embedded in a higher-dimensional flat one [114–116]. This
can make us have a complete analytic extension of manifolds, or we can use it for visu-
alizing or deriving physical properties of the embedded spacetimes, such as a unified
description of Hawking [117] and Unruh effects [118]. In this line of work, Deser and
Levin [119–121] firstly showed that the Hawking temperature for a fiducial observer in a
curved spacetime can be considered as the Unruh one for a uniformly accelerated observer
in a higher-dimensional GEMS embedded flat spacetime. Since then, there has been much
work on the GEMS approach to confirm these ideas in various other spacetimes [122–134]
and an interesting extension to embedding gravity [135–138]. Later, Brynjolfsson and
Thorlacius [139] introduced a local temperature measured by a freely falling observer in
the GEMS method. We have also studied various interesting curved spacetimes [140,141]
to investigate local temperatures and their equivalences to Hawking ones.
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The main goal of this paper is to construct and analyze the GEMS embeddings of
spacetimes having regular black holes in massless and massive gravity for which the
embeddings are neither found nor even tried at all, as far as we know. Moreover, a recent
study on the geodesic completion of a regular black hole [142] supports the needs of
the GEMS embeddings of regular black holes. In this respect, it would be interesting to
embed a regular black hole with massive gravitons into a higher-dimensional flat spacetime.
In this paper, we will consider the Hayward regular black hole (HRBH) in massless gravity
as representative of regular black holes and extend it to massive gravity to embed it
in higher-dimensional flat spacetimes. Here, the HRBH in massless gravity means the
original Hayward black hole, while the HRBH in massive gravity is the one having massive
gravitons obtained from the consideration of Vegh’s type of massive gravity. We note
that when the Hayward parameter vanishes, the HRBH in massless gravity becomes the
Schwarzschild black hole, and when massive gravitons are turned off, the HRBH in massive
gravity is reduced to the HRBH in massless gravity.

The remainder of the paper is organized as follows. In Section 2, we newly find
solutions to the HRBH in holographic massive gravity. We first briefly summarize the
known solution of the HRBH in massless gravity and generalize it to one in holographic
massive gravity. Then, we show that the Kretschmann scalar for the HRBH in massive
gravity is not regular near r = 0. In Section 3, we construct the GEMS embeddings of the
HRBH both in massless and in massive gravity. As a result, making use of embedding
coordinates, we obtain Unruh, Hawking, and freely falling temperatures seen by different
observers. Conclusions are drawn in Section 4. Lastly, since embedding coordinates of
these regular black holes are very complicated, we list them separately and then show their
limits explicitly from the massive to the massless cases in Appendix A.

2. HRBH in Massive Gravity

The (3+1)-dimensional HRBH in holographic massive gravity is described by the action

S =
1

16πG

∫

d4x
√

−g

[

R+
24l2m2

(r3 + 2l2m)2
+ m̃2

4

∑
a=1

caUa(gµν, fµν)

]

, (1)

where R is the scalar curvature of the metric gµν, m is the black hole mass, l is a length-scale
Hayward parameter present in the Hayward solution, m̃ is a graviton mass (in this paper,
we shall call it ‘massless’ when m̃ is zero), ca are the coupling constants, fµν is a fixed
symmetric tensor (usually called the ‘reference metric’), and Ua are symmetric polynomial
potentials of the eigenvalue of the matrix Kµ

ν ≡
√

gµα fαν given as

U1 = [K],

U2 = [K]2 − [K2],

U3 = [K]3 − 3[K][K2] + 2[K3],

U4 = [K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4]. (2)

Here, the square root in K means (
√

A)
µ
α(
√

A)α
ν = A

µ
ν , and square brackets denote

the trace [K] = Kµ
µ. Indices are raised and lowered with the dynamical metric gµν, while

the reference metric fµν is a non-dynamical, fixed symmetric tensor that is introduced to
construct nontrivial interaction terms in holographic massive gravity.

Variation of the action (1) with respect to the metric gµν leads to the equations of
motion given by

Rµν − 1

2
gµν

(

R− 24l2m2

(r3 + 2l2m)2
+ m̃2

4

∑
a=1

caUa

)

+
1

2
m̃2

4

∑
a=1

[

acaUa−1Kµν − a(a − 1)caUa−2K2
µν + 6(3a − 8)caUa−3K3

µν − 12(a − 2)caUa−4K4
µν

]

= 0. (3)
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with U−a = 0 and U0 = 1.
When one considers the spherically symmetric black hole solution ansatz as

ds2 = − f (r)dt2 + f−1(r)dr2 + r2(dθ2 + sin2 θdφ2) (4)

with the following degenerate reference metric

fµν = diag(0, 0, c2
0, c2

0 sin2 θ), (5)

one can find
Kθ

θ = Kφ
φ =

c0

r
. (6)

Note that the choice of the reference metric in Equation (5) preserves general covariance
in (t, r) but not in the angular directions. This gives the symmetric potentials as

U1 =
2c0

r
, U2 =

2c2
0

r2
, U3 = U4 = 0. (7)

Therefore, we see that there are no contributions from the c3 and c4 terms that would
appear in (4+1)- and (5+1)-dimensional spacetimes, respectively. Then, we finally obtain
the new solution of the HRBH in massive gravity as

f (r) = 1 − 2mr2

r3 + 2l2m
+ 2Rr + C (8)

with graviton mass parameters R = c0c1m̃2/4 and C = c2
0c2m̃2. Note that m is an integration

constant related to the mass of the black hole, and c0 is a positive constant. In the limit of
R → 0 and C → 0, it becomes the HRBH in massless gravity, and when l → 0, it is further
reduced to the Schwarzschild metric, as expected. On the other hand, when R 6= 0 and
C 6= 0 with l = 0, it becomes the Schwarzschild black hole in massive gravity [113].

It is appropriate to comment on the two terms due to massive gravitons. Firstly,
the C term in Equation (8) reminds us of a monopole solution introduced by Barriola and
Vilenkin [143], which comes from a topological defect in the early Universe as a result of
a gauge symmetry breaking. On the other hand, the R term is not uncommon in gravity
theories, which also arises in, for example, the dRGT massive gravity [70,71], conformal
gravity [144], and f (R) gravity [145]. Physically, the linear term in Equation (8) stands for
a deviation between the solution and the HRBH spacetime in massless gravity, as modified
Newtonian dynamics (MOND) studies deviations of massive bodies in the solar system
from the Newtonian mechanics [146]. The linear term also affects the radius of the photon
sphere in a black hole, i.e., the size of the shadow, which is smaller than the one in a
Schwarzschild spacetime [147]. In addition, Hendi et al. [92] have shown that the black hole
shadow in the dRGT massive gravity consistent with EHT data is given for small R < 0.072
and negative −0.3 < C < −0.03 by comparing the black hole shadow with the data of EHT
collaboration. We note that the additional C and R terms in Equation (8) are obtained from
the consideration of massive gravitons, while the other theories have different causes.

It is well known that the HRBH solution in massless gravity (R = 0 and C = 0) has
two horizons for m > m∗ ≡ 3

√
3l/4, one for m = m∗, and none for m < m∗ [19]. However,

for the case of the HRBH in massive gravity, these are modified by R and C. While we
find their exact solutions of f (rH) = 0 in the following subsections, we summarize here
the number of event horizons of the HRBH in holographic massive gravity according to
various values of R and C in Tables 1 and 2. In the tables, max(2) and max(3) mean that
there exist a maximum of two and three horizons, respectively, satisfying f (rH) = 0 in
the given range of R and C. Otherwise, a given number of event horizons are allowed in
the range. In order to describe these clearly, as an example, in Figure 1, we have plotted
f (r)-graphs for −1 < C < 0 with R for the case of m > m∗ where one can see the changes
to the number of event horizons according to R and C, respectively.
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Figure 1. The f (r)-graphs for the third-column case from Table 1 of −1 < C < 0 and R: (a) for R > 0,

where (R, C) = (0.01,−0.5), (0.25,−0.5), (0.35,−0.5) from top to bottom curves and (b) R = 0,

where (R, C) = (0,−0.5) and (c) R < 0, where (R, C) = (−0.01,−0.1), (−0.01,−0.42), (−0.01,−0.7)

from top to bottom curves. The dashed lines corresponding to (R, C) = (0, 0) are for the HRBH in

massless gravity with two horizons. Here, we have chosen m = 5
√

3/4 > m∗ and l = 1.

Table 1. Number of event horizons of the HRBH in holographic massive gravity according to R and

C when m > m∗. Note that in the table, max(2) and max(3) denote the cases for which a maximum of

two or three horizons are formed, respectively, satisfying f (rH) = 0 in the given range.

C < −1 C = −1 −1 < C < 0 C = 0 C > 0

R > 0 max(3) max(2) max(2) max(2) max(2)
R = 0 0 0 2 2 max(2)
R < 0 0 0 max(3) max(3) max(3)

Table 2. Number of event horizons of the HRBH in holographic massive gravity according to R and

C when m = m∗.

C < −1 C = −1 −1 < C < 0 C = 0 C > 0

R > 0 1 1 max(2) 0 0
R = 0 0 0 2 1 0
R < 0 0 0 max(3) max(3) max(3)

One can see from Tables 1 and 2 and Figure 1 that when m > m∗, it is physically
interesting both in all ranges of C with R > 0 and all ranges of R with C > −1. In those
ranges, there exists not only an outer but also at least one inner event horizon. When
m = m∗, the extremal case for the HRBH in massless gravity, it remains extremal for
C ≤ −1 and R > 0 in the HRBH in massive gravity. However, for all ranges of R with
−1 < C < 0 and R < 0 with C ≥ 0, it changes to have two or more event horizons.
As a result, according to the graviton mass parameters R and C, it is expected that the
thermodynamics of the HRBH in massive gravity are differently described compared to
those of the HRBH in massless gravity.

On the other hand, from the metric solution (8), one can find that the event horizon rH

determines the mass as

m(rH) =
(1 + C + 2RrH)r

3
H

2[r2
H − (1 + C + 2RrH)l2]

. (9)

In Figure 2, we have plotted the mass function by comparing the HRBH in massless
gravity with ones in holographic massive gravity. As a result, one can see that for a
fixed R (or C), as C (or R) decreases, the outer event horizon rH increases in the HRBH in
massive gravity.
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1 2 3 4 5

rH

0.5

1.0

1.5

2.0

mHrH L

1 2 3 4 5

rH

0.5

1.0

1.5

2.0

mHrH L

HaL HbL

Figure 2. Mass function m(rH): (a) (R, C) = (0, 0), (0.01,−0.1), (0.01,−0.2), (0.01,−0.3) from top

to bottom curves and (b) (R, C) = (0.01,−0.1), (0, 0), (0.03,−0.1), (0.05,−0.1) from bottom to top

curves. The dashed lines corresponding to (R, C) = (0, 0) are for the HRBH in massless gravity.

Finally, it is appropriate to comment on the Kretschmann scalar—which is known
to be finite for regular black holes—for the HRBH in massive gravity. First of all, for the
HRBH in massless gravity [27], the Kretschmann scalar is given by

RµνρσRµνρσ =
48m2(r12 − 8l2mr9 + 72l4m2r6 − 16l6m3r3 + 32l8m4)

(r3 + 2ml2)6
. (10)

At the center of the spacetime as r → 0, due to the Hayward parameter l, it is finite as

RµνρσRµνρσ =
24

l4
, (11)

which shows that the HRBH in massless gravity is regular everywhere with no curvature
singularity. On the other hand, as l → 0, it becomes

RµνρσRµνρσ =
48m2

r6
, (12)

the Kretschmann scalar of the Schwarzschild spacetime in massless gravity, as expected.
Now, when massive gravitons are introduced as the HRBH in massive gravity having

the lapse function (8), we have a new Kretschmann scalar modified by R and C as

RµνρσRµνρσ =
48m2(r12 − 8l2mr9 + 72l4m2r6 − 16l6m3r3 + 32l8m4)

(r3 + 2ml2)6

− 192l2m2R

r(r3 + 2ml2)2
− 16mC

r2(r3 + 2ml2)
+

32R2

r2
+

16RC
r3

+
4C2

r4
. (13)

In the massless limit of R = 0 and C = 0, it becomes the Kretschmann scalar (10) of the
HRBH in massless gravity. However, near the center as r → 0, the last term in Equation (13)
becomes dominant, so it diverges as

RµνρσRµνρσ ∼ 4C2

r4
→ ∞. (14)

Thus, the regular structure of the HRBH in massless gravity has been changed to sin-
gular due to massive gravitons, though it is less severely divergent than the Schwarzschild
case. Note that in the massive Schwarzschild limit as l → 0, the Kretschmann scalar is
reduced to

RµνρσRµνρσ =
32R2

r2
+

16RC
r3

+
4C2

r4
− 16mC

r5
+

48m2

r6
. (15)
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As a result, we have found that introducing massive gravitons to the HRBH in massless
gravity affects the spacetime structure from regular to singular. This singular structure of
spacetime can be relieved by enlarging the dimensions of the spacetime according to the
well-established GEMS scheme, which we consider in Section 3.

2.1. Solutions of the HRBH in Massless Gravity

Let us first briefly summarize the solutions of the HRBH in massless gravity satisfying
f (r̃H) = 0 in Equation (8), where r̃H denotes the horizon radius of the black hole in massless
gravity. In the massless case with the graviton mass parameters R = C = 0, event horizons
can be found from the following cubic equation, rewritten as

r̃3
H − 2mr̃2

H + 2l2m = 0. (16)

By following the general procedure from Equations (32)–(37) presented in the next
subsection, one finally gets the solutions of the HRBH in massless gravity as

r̃H1 =
2m

3

[

1 − 2 cos

(

ψ

3

)]

,

r̃H2 =
2m

3

[

1 − 2 cos

(

ψ

3
+

2π

3

)]

, (17)

r̃H3 =
2m

3

[

1 − 2 cos

(

ψ

3
+

4π

3

)]

,

the behaviors of which are depicted in Figure 3. Here, cos ψ is defined as

cos ψ = −1 +
27l2

8m2
. (18)

2 4 6 8 10

m

5

10

15

20

rH HmL

Figure 3. Solutions of the HRBH in massless gravity: the blue curve is for r̃H2, the black curve for

r̃H3, and the red curve for r̃H1 with l = 1. Here, we see that r̃H2 corresponds to an outer horizon (r+)

and r̃H3 to an inner horizon (r−). The term r̃H1 is negative and is thus discarded.

Note that the solutions (17) satisfy the properties

r̃H1 + r̃H2 + r̃H3 = 2m,

r̃H1r̃H2 + r̃H2r̃H3 + r̃H3r̃H1 = 0, (19)

r̃H1r̃H2r̃H3 = −2l2m.
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2.2. Solution of the HRBH in Massive Gravity

In this subsection, we newly find general solutions of the HRBH in holographic
massive gravity (8) satisfying f (rH) = 0, where rH denotes the horizon radius of the black
hole in massive gravity. First of all, one can rewrite f (rH) = 0 as

2Rr4
H + (1 + C)r3

H − 2mr2
H + 4Rl2mrH + 2l2m(1 + C) = 0, (20)

which is a quartic equation with R 6= 0, compared with the cubic one in the previous
massless case. After dividing by 2R and by introducing a new variable y as

y = rH +
1 + C

8R
, (21)

one can find the standard quartic equation written as

y4 + a1y2 + a2y + a3 = 0, (22)

where

a1 = −m

R
− 3(1 + C)2

32R2
,

a2 = 2l2m +
(1 + C)m

4R2
+

(1 + C)3

64R3
, (23)

a3 =
3(1 + C)l2m

4R
− (1 + C)2m

64R3
− 3(1 + C)4

4096R4
.

Note that at this stage, one cannot simply take the limit of R → 0 since the coefficients
are all divergent. Thus, if one wants to find the limit, Equation (20) should be considered
again from the start.

The quartic Equation (22) can be solved by adding and subtracting xy2 + x2/4 to
Equation (22) as

(

y4 + xy2 +
1

4
x2

)

− xy2 − 1

4
x2 + a1y2 + a2y + a3 = 0, (24)

which can be rewritten as

0 =

(

y2 +
1

2
x

)2

−
[

(x − a1)y
2 − a2y +

(

1

4
x2 − a3

)]

=

(

y2 +
1

2
x

)2

−
(√

x − a1y − a2

2
√

x − a1

)2

+
a2

2

4(x − a1)
−
(

1

4
x2 − a3

)

. (25)

Thus, if we demand the last two terms to vanish as

a2
2

4(x − a1)
−
(

1

4
x2 − a3

)

= 0, (26)

one can have

0 =

(

y2 +
1

2
x

)2

−
(√

x − a1y − a2

2
√

x − a1

)2

=

(

y2 −
√

x − a1y +
1

2
x +

a2

2
√

x − a1

)(

y2 +
√

x − a1y +
1

2
x − a2

2
√

x − a1

)

. (27)
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These are the products of two quadratic equations whose roots can be easily obtained
separately. As a result, we have the following four roots for the quartic Equation (22)

y1 =
1

2
(p1 + p2), y2 =

1

2
(p1 − p2), y3 =

1

2
(−p1 + p3), y4 =

1

2
(−p1 − p3), (28)

with

p1 ≡ (x0 − a1)
1/2, p2 ≡

(

−p2
1 − 2a1 −

2a2

p1

)1/2

, p3 ≡
(

−p2
1 − 2a1 +

2a2

p1

)1/2

. (29)

In Equation (29), note that x0 is a root of the cubic Equation (26) rewritten as

x3 − a1x2 − 4a3x + 4a1a3 − a2
2 = 0. (30)

Then, we have
b1 = −a1, b2 = −4a3, b3 = 4a1a3 − a2

2, (31)

where b1, b2, and b3 are the coefficients of the standard cubic equation of

x3 + b1x2 + b2x + b3 = 0. (32)

These give us

q1 =
9b1b2 − 27b3 − 2b3

1

54
, q2 =

3b2 − b2
1

9
(33)

to yield

q1 = 2l4m2 +
3(1 + C)l2m2

2R2
− m3

27R3
+

(1 + C)3l2m

8R3
,

q2 = − (1 + C)l2m

R
− m2

9R2
. (34)

Now, we define cos ψ [148,149] as

cos ψ =
q1

(−q3
2)

1/2
. (35)

Making use of q1 and q2 in Equation (34), we find

cos ψ =
−8m3 + 27(1 + C)3l2m + 324(1 + C)l2m2R + 432l4m2R3

8[m2 + 9(1 + C)l2mR]3/2
. (36)

Then, the solutions for the cubic Equation (30) are given by

x1 =
2

3R
[m2 + 9(1 + C)l2mR]1/2 cos

(

ψ

3

)

− 1

3R

[

m +
3(1 + C)2

32R

]

,

x2 =
2

3R
[m2 + 9(1 + C)l2mR]1/2 cos

(

ψ

3
+

2π

3

)

− 1

3R

[

m +
3(1 + C)2

32R

]

, (37)

x3 =
2

3R
[m2 + 9(1 + C)l2mR]1/2 cos

(

ψ

3
+

4π

3

)

− 1

3R

[

m +
3(1 + C)2

32R

]

.



Universe 2023, 9, 486 10 of 26

Thus, making use of these solutions, we finally have the following four roots of the
quartic Equation (22) as

rH1 =
1

2

(

p1 + p2 −
1 + C

4R

)

,

rH2 =
1

2

(

p1 − p2 −
1 + C

4R

)

,

rH3 =
1

2

(

−p1 + p3 −
1 + C

4R

)

,

rH4 =
1

2

(

−p1 − p3 −
1 + C

4R

)

, (38)

where

p1 =

(

2

3R
[m2 + 9(1 + C)l2mR]1/2 cos

(

ψ

3

)

+
2

3R

[

m +
3(1 + C)2

32R

])1/2

,

p2 =

(

− 2

3R
[m2 + 9(1 + C)l2mR]1/2 cos

(

ψ

3

)

+
4

3R

[

m +
3(1 + C)2

32R

]

−2

{

2l2m +
(1 + C)m

4R2
+

(1 + C)3

64R3

}{

2

3R
[m2 + 9(1 + C)l2mR]1/2 cos

(

ψ

3

)

+
2

3R

[

m +
3(1 + C)2

32R

]}−1/2
)1/2

, (39)

p3 =

(

− 2

3R
[m2 + 9(1 + C)l2mR]1/2 cos

(

ψ

3

)

+
4

3R

[

m +
3(1 + C)2

32R

]

+2

{

2l2m +
(1 + C)m

4R2
+

(1 + C)3

64R3

}{

2

3R
[m2 + 9(1 + C)l2mR]1/2 cos

(

ψ

3

)

+
2

3R

[

m +
3(1 + C)2

32R

]}−1/2
)1/2

.

Here, we have chosen x1 as x0 in p1.
In Figure 4, we depict a set of solutions for the HRBH in massive gravity for R = 0.01

and C = −0.1. As explained in Table 1, for the chosen R and C, we expect that there are
two event horizons, and Figure 4 shows the same behavior that there are two, i.e., one is an
outer rH1 and the other is an inner horizon rH2. The remaining two, rH3 and rH4, are of no
physical meaning for event horizons since they are negative. In Figure 5, we also draw the
solution for the HRBH in massive gravity compared with the HRBH in massless gravity,
where one can see how massive gravitons change rH(m).

1 2 3 4 5

m

2

4

6

8

rH HmL

1 2 3 4 5

m

-50

-40

-30

-20

-10

rH HmL

HaL HbL

Figure 4. Solutions for the HRBH in massive gravity: (a) The blue curve is for rH1 and the black curve

is for rH2, which correspond to an outer horizon (r+) and to an inner horizon (r−), respectively. In (b),

the curves are for rH3 (upper) and rH4 (lower), which are negative and are thus discarded. Here, we

set R = 0.01, C = −0.1 with l = 1.
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2 4 6 8

m

5

10

15

rH HmL

Figure 5. Solutions for the HRBH in massless and massive gravity: the blue and black solid curves

are for massive gravity, while the dotted curves are for massless gravity. Here, we set R = 0.01,

C = −0.1 with l = 1.

Note that rHi
(i = 1, 2, 3, 4) in Equation (38) denote the event horizons of the HRBH in

holographic massive gravity, while r̃Hi
(i = 1, 2, 3) in Equation (17) stand for those of the

HRBH in massless gravity. It is also appropriate to comment that it is not possible to directly
obtain the solutions of the HRBH in massless gravity by taking R → 0 and C → 0 from the
solutions (38) of the quartic equation. Note that this can be understood due to the fact that
they are obtained from the implicit condition of R 6= 0 as in Equations (20) and (21).

3. GEMS Embedding of HRBH

3.1. HRBH in Massless Gravity

The (3+1)-dimensional HRBH in massless gravity can be embedded in a
(5+2)-dimensional Minkowski spacetime given by

ds2 = ηI JdzIdzJ , with ηI J = diag(−1, 1, 1, 1, 1, 1,−1), (40)

where embedding coordinates are obtained as

z0 = k̃−1
H f 1/2(r) sinh k̃Ht,

z1 = k̃−1
H f 1/2(r) cosh k̃Ht,

z2 = r sin θ cos φ,

z3 = r sin θ sin φ, (41)

z4 = r cos θ,

z5 =
∫

dr

2k̃H

(

H0[r
8r̃13

H + l4r2r̃9
H(30r6 + 5r3r̃3

H + 4r̃6
H) + 20l6r5r̃10

H + l8r2r̃5
H(33r6 + 6r̃6

H) + 18l10r5r̃6
H ]

r̃6
H(r

2r̃2
H − l2H0)[r3(r̃2

H − l2) + l2r̃3
H ]

3

)1/2

,

z6 =
∫

ldr

2k̃H

(

H0[r
5r̃11

H (9r3 + 4r̃3
H) + l4r2r̃7

H(46r6 + r̃6
H) + 39l6r5r̃8

H + 9l8r2r̃3
H(r

6 + r̃6
H)]

r̃6
H(r

2r̃2
H − l2H0)[r3(r̃2

H − l2) + l2r̃3
H ]

3

)1/2

,

with

H0 = r2 + rr̃H + r̃2
H . (42)

In the above embedding functions (41), k̃H is the surface gravity, which is defined as

k̃H =

√

−1

2
(∇µξν)(∇µξν)

∣

∣

∣

∣

∣

r=r̃H

=
r̃2

H − 3l2

2r̃3
H

, (43)
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where ξµ is a Killing vector, and r̃H is the event horizon of the HRBH in massless gravity.
Note that in the limit of l → 0, z6 vanishes, and z5 becomes

z5 =
∫

dr

2k̃H

(

r2 + rr̃H + r̃2
H

r̃Hr3

)1/2

. (44)

Therefore, with z0 · · · z4 expressed in the same limit, the embedding coordinates (41)
are correctly reduced to the well-known (5+1)-dimensional GEMS embeddings of the
Schwarzschild black hole [114].

Here, we note that from the original spacetime metric, the Hawking temperature T̃H

seen by an asymptotic observer and a local fiducial temperature measured by an observer
who rests at a distance from the black hole are simply found as

T̃H =
k̃H

2π
=

r̃2
H − 3l2

4πr̃3
H

, (45)

T̃FID(r) =
T̃H

√

f (r)
=

(r̃2
H − 3l2)[r3(r̃2

H − l2) + l2r̃3
H ]

1/2

4πr̃3
H [(r − r̃H)(r2r̃2

H − H0l2)]1/2
, (46)

respectively.
Now, let us consider the Unruh effect in the embedded flat spacetime, which orig-

inally states that accelerated observers or detectors with an acceleration a along the x
direction by following the trajectory a−2 = x2 − t2 measure the Unruh temperature given
by 2πT = a [118]. To apply this to a higher-dimensional flat spacetime, we notice that
the static detectors (r, θ, φ = constant) in the original curved spacetime are described by
a fixed point in the (z2, z3, z4, z5, z6) plane on the GEMS embedded spacetime. Then,
an observer who is uniformly accelerated in the (5+2)-dimensional flat spacetime follows a
hyperbolic trajectory described by

a−2
7 = (z1)2 − (z0)2 =

f (r)

k̃2
H

. (47)

Thus, one can find the Unruh temperature for the uniformly accelerated observer in
the (5+2)-dimensional flat spacetime as

T̃U =
a7

2π
=

(r̃2
H − 3l2)[r3(r̃2

H − l2) + l2r̃3
H ]

1/2

4πr̃3
H [(r − r̃H)(r2r̃2

H − H0l2)]1/2
. (48)

This corresponds to the fiducial temperature (46) for the observer located at a distance
from the HRBH in massless gravity. The Hawking temperature T̃H seen by an asymptotic
observer can be obtained as

T̃H =
√

−g00T̃U =
k̃H

2π
. (49)

As a result, one can see that the Hawking effect for a fiducial observer in a black
hole spacetime is equal to the Unruh effect for a uniformly accelerated observer in a
higher-dimensional flat spacetime.

Now, let us find a freely falling acceleration and corresponding temperature in the
(5+2)-dimensional embedded flat spacetime. For an observer who is freely falling from
rest r = r0 at τ = 0, the equations of motion are

dt

dτ
=

f 1/2(r0)

f (r)
=

(

1 − 2mr2
0

r3
0 + 2l2m

)1/2
(

1 − 2mr2

r3 + 2l2m

)−1

,

dr

dτ
= −[ f (r0)− f (r)]1/2 = −

[

−2m{r2
0r2(r − r0)− 2l2m(r2 − r2

0)}
(r3

0 + 2l2m)(r3 + 2l2m)

]1/2

, (50)
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where the (−) sign is for inward motion. Then, making use of the embedding coordinates
in Equation (41) and the geodesic equations in Equation (50), one can explicitly find a freely
falling acceleration ā7 in the GEMS embedded (5+2)-dimensional spacetime as

ā2
7 =

6

∑
I=0

ηI J
dzI

dτ

dzJ

dτ

∣

∣

∣

∣

r=r0

=
N1N2

4r̃6
H(r

2r̃2
H − l2H0)[r3(r̃2

H − l2) + l2r̃3
H ]

3
, (51)

where

N1 = r4r̃6
H(r + r̃H)− l2rr̃4

H H1 + l4r̃2
H H0H2 − 3l6(r − r̃H)H2

0 ,

N2 = r4r̃6
H(r

2 + r̃2
H)− l2rr̃4

H H3 + l4r̃2
H(r − r̃H)H0H2 − 3l6(r − r̃H)

2H2
0 (52)

with

H1 = 5r4 + 5r3r̃H + 4r2r̃2
H + 2rr̃3

H + 2r̃4
H ,

H2 = 7r3 − r̃3
H , (53)

H3 = 5r5 + r3r̃2
H − 2r2r̃3

H + 2r̃5
H .

Note here that r0 is replaced with r in Equation (51).
According to the Unruh’s prescription, the freely falling acceleration gives us the freely

falling temperature measured by the freely falling observer as

T̃FF =
ā7

2π

=
1

4πr̃3
H

√

N1N2

(r2r̃2
H − l2H0)[r3(r̃2

H − l2) + l2r̃3
H ]

3
. (54)

Making use of the dimensionless parameters x = r̃H/r and b = l/r̃H , the squared
freely falling temperature can be written as

T̃2
FF =

[1 + x − b2h1 + b4h0h2 − 3b6(1 − x)h2
0][1 + x2 − b2h3 + b4(1 − x)h0h2 − 3b6(1 − x3)2]

16π2r̃2
H(1 − b2h0)[1 − b2(1 − x3)]3

, (55)

where

h0 ≡ H0/r2 = 1 + x + x2,

h1 ≡ H1/r4 = 5 + 5x + 4x2 + 2x3 + 2x4,

h2 ≡ H2/r3 = 7 − x3,

h3 ≡ H3/r5 = 5 + x2 − 2x3 + 2x5. (56)

As r → ∞, the freely falling temperature T̃FF is reduced to the Hawking temperature (45).
Moreover, as l → 0, it becomes the freely falling temperature of the Schwarzschild black
hole as

TSch
FF =

1

4πr̄H

√

r3 + r̄H H0

r3
, (57)

where r̄H = 2m is the radius of the event horizon of the Schwarzschild black hole. Note
also that as r → ∞, TSch

FF becomes the Hawking temperature of the Schwarzschild black
hole, while as r → r̄H , the freely falling temperature becomes

TSch
FF → 1

2πr̄H
, (58)

which does not diverge but remains finite at the event horizon.
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In Figure 6, we have depicted the ratio of the squared freely falling temperatures
to the squared Hawking temperature, T̃2

FF/T̃2
H . For comparison purposes, it is shown in

Figure 6a that the freely falling temperature of the Schwarzschild black hole, which is a
prototype of a singular black hole, is finite at the event horizon of x = 1 (r = r̃H), while it
becomes the Hawking temperature at asymptotic infinity of x → 0 (r → ∞). On the other
hand, as in Figure 6b, for the HRBH in massless gravity, the freely falling temperatures are
finite only when 0 < b < bc(≡ 0.3568) at the event horizons, and when b = bc, it vanishes
at the event horizon. Meanwhile, the freely falling temperatures become the Hawking
temperature at asymptotic infinity. The parameter b also has an upper bound coming from
the Hawking temperature (45), which is defined when r̃H ≥

√
3l (or b ≤ 1/

√
3 = 0.5774)

where T̃2
FF/T̃2

H diverges. In between bc < b < 0.5774, one can see in Figure 6b that the freely
falling temperatures of the HRBH behave quite differently from the Schwarzschild singular
black hole. They go up and down and then become negative. It is well known that the
negativity of squared freely falling temperatures is not entirely prohibited, which means
that there is no thermal radiation. This is allowed for a geodesic observer who follows
a spacelike motion similar to the case of the Schwarzschild–AdS black hole in massless
gravity [113,119,139].

0.0 0.2 0.4 0.6 0.8 1.0

x

1

2

3

4

5

T
�

FF

2

�T
�

H

2

0.0 0.2 0.4 0.6 0.8 1.0

x

1

2

3

4

5

T
�

FF

2

�T
�

H

2

HaL HbL

Figure 6. Squared freely falling temperatures T̃2
FF/T̃2

H for the HRBH in massless gravity drawn by a

dimensionless parameter x (= r̃H/r). (a) The freely falling temperature of the Schwarzschild black

hole in massless gravity, which corresponds to b = 0 (or l = 0). (b) The freely falling temperatures of

the HRBH in massless gravity for b = 0.1(blue), 0.2(red), 0.3(orange), bc(pink), 0.4(black). Here,

the vertical dotted lines are drawn at event horizons.

3.2. HRBH in Massive Gravity

Now, after a lengthy calculation, we newly find that the (3+1)-dimensional HRBH in
massive gravity can be embedded in a (6+3)-dimensional Minkowski spacetime as

ds2 = ηI JdzIdzJ , with ηI J = diag(−1, 1, 1, 1, 1, 1,−1,−1, 1), (59)

whose embedding coordinates are explicitly written as
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z0 = k−1
H f 1/2(r) sinh kHt,

z1 = k−1
H f 1/2(r) cosh kHt,

z2 = r sin θ cos φ,

z3 = r sin θ sin φ,

z4 = r cos θ, (60)

z5 =
∫

dr

2kH

[

r8r12
H H5u1+l2r9r10

H H5u2+l4r2r8
H H2

5 u3+2l6r4r6
H H3

5 u4+l8r5
H H4

5 u5 + 3l10r3rH H6
5 u6+9l12rH H8

5 u7

r6
H [r2r2

H(H5 + 2Rr)− l2H4H5H6][r3(r2
H − l2H5) + l2r3

H H5]3

]1/2

,

z6 =
∫

dr

2kH

[

r8r12
H H5ū1+l2r9r10

H H5ū2+l4r2r8
H H2

5 ū3+2l6r4r6
H H3

5 ū4+l8r5
H H4

5 ū5 + 3l10r3rH H6
5 ū6+9l12rH H8

5 ū7

r6
H [r2r2

H(H5 + 2Rr)− l2H4H5H6][r3(r2
H − l2H5) + l2r3

H H5]3

]1/2

,

z7 =
∫

ldr

2kH

[

r5r11
H H5v1+6l2r4r11

H RH2
5 v2+l4rr7

H H3
5 v3+l6r3r4

H H4
5 v4+3l8r2

H H6
5 v5 + 9l10H8

5 v6

r6
H [r2r2

H(H5 + 2Rr)− l2H4H5H6][r3(r2
H − l2H5) + l2r3

H H5]3

]1/2

,

z8 =
∫

ldr

2kH

[

r5r11
H H5v̄1+6l2r4r11

H RH2
5 v̄2+l4rr7

H H3
5 v̄3+l6r3r4

H H4
5 v̄4+3l8r2

H H6
5 v̄5 + 9l10H8

5 v̄6

r6
H [r2r2

H(H5 + 2Rr)− l2H4H5H6][r3(r2
H − l2H5) + l2r3

H H5]3

]1/2

.

Here, the surface gravity of the HRBH in massive gravity is given by

kH =
H5(r

2
H − 3l2H5)

2r3
H

+ R. (61)

Also, H4, H5, and H6 are defined as

H4 = 1 + C + 2Rr,

H5 = 1 + C + 2RrH ,

H6 = r2 + rrH + r2
H , (62)

and ui(ūi) (i = 1, 2, · · · , 7) and vi(v̄i) (i = 1, 2, · · · , 6) are given in Appendix A. Note that
the above GEMS embedding is explicitly carried out under the assumption of R ≥ 0 and
C ≥ −1, which is physically much more interesting than other embeddings, as shown in
Figures 1 and 2 and Tables 1 and 2.

It seems appropriate to comment that in the massless gravity limit of R → 0 and C → 0,
H4 and H5 become unity, and H6 becomes H0 in Equation (42). Also, when subtracting
the embedding coordinates z6 from z5, the coefficients of ui − ūi (i = 1, 2, · · · , 7) in
the numerator of z5 − z6 are reduced to Equation (A9) in the Appendix A. In the same
way, by subtracting the embedding coordinates z8 from z7, the coefficients of vi − v̄i

(i = 1, 2, · · · , 6) in the numerator of z7 − z8 become Equation (A10). Since H6 is reduced to
H0 in the massless limit, one can find that they are exactly the same coefficients in z5 and
z6, respectively, of the HRBH in massless gravity in Equations (41). As a result, one can
see that when R → 0 and C → 0, the (6+3)-dimensional embedding coordinates (60) of the
HRBH in massive gravity have proper limits of the (5+2)-dimensional ones (41) in massless
gravity. Moreover, when one additionally takes the limit of l → 0, z7 and z8 identically
vanish, and the combination of z5 and z6 by subtraction is finally reduced to

z5 =
∫

dr

√

r̄H(r2 + rr̄H + r̄2
H)

r3
, (63)

where r̄H = 2m is the event horizon of the Schwarzschild black hole. Thus, one can see
that the embedding coordinate of z5 − z6 is finally reduced to z5, which is one of the
spacelike embedding coordinates of the Schwarzschild black hole in the (5+1)-dimensional
GEMS scheme.
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Here, we note again that from the original spacetime metric, the Hawking temperature
TH seen by an asymptotic observer can be found as

TH =
H5(r

2
H − 3l2H5) + 2Rr3

H

4πr3
H

, (64)

and a local fiducial temperature measured by an observer who rests at a distance from the
black hole is given by

TFID(r) =
TH

√

f (r)
=

H5(r
2
H − 3l2H5)[r

3(r2
H − H5l2) + l2r3

H H5]
1/2

4πr3
H [H5(r − rH)(r2r2

H − l2H6)]1/2
. (65)

In the massless limit of R → 0 and C → 0, one can easily find that it becomes the
fiducial temperature (46) since H5 → 1 and H6 → H0.

On the other hand, in order to investigate the Unruh effect in the GEMS embedded
flat spacetime, we note that the static detectors (r, θ, φ = constant) in the original curved
spacetime are described by a fixed point in the (z2, z3, z4, z5, z6, z7, z8) plane on the
GEMS embedded spacetime. Then, an observer who is uniformly accelerated in the (6+3)-
dimensional flat spacetime follows a hyperbolic trajectory in (z0, z1) described by

a−2
9 = (z1)2 − (z0)2 =

f (r)

k2
H

. (66)

Thus, as before, one can arrive at the Unruh temperature for the uniformly accelerated
observer in the (6+3)-dimensional flat spacetime as

TU =
a9

2π
=

H5(r
2
H − 3l2H5)[r

3(r2
H − H5l2) + l2r3

H H5]
1/2

4πr3
H [H5(r − rH)(r2r2

H − l2H6)]1/2
. (67)

This corresponds to the fiducial temperature for the observer located at a distance
from the HRBH in massive gravity. The Hawking temperature TH seen by an asymptotic
observer can be obtained as

TH =
√

−g00TU =
kH

2π
. (68)

As a result, one can see that the Hawking effect for a fiducial observer in a black
hole spacetime is equal to the Unruh effect for a uniformly accelerated observer in a
higher-dimensional flat spacetime.

Now, let us find a freely falling acceleration and corresponding temperature in the
(6+3)-dimensional embedded flat spacetime. For an observer who is freely falling from rest
r = r0 at τ = 0, the equations of motion are

dt

dτ
=

f 1/2(r0)

f (r)
=

(

1 − 2mr2
0

r3
0 + 2l2m

+ 2Rr0 + C
)1/2

(

1 − 2mr2

r3 + 2l2m
+ 2Rr + C

)−1

, (69)

dr

dτ
= −[ f (r0)− f (r)]1/2 = −

[

−2m{r2
0r2(r − r0)− 2l2m(r2 − r2

0)}
(r3

0 + 2l2m)(r3 + 2l2m)
− 2R(r − r0)

]1/2

. (70)

Then, making use of the embedding coordinates in Equation (60) and the geodesic
equations in Equation (69), one can explicitly find a freely falling acceleration a9 in the
GEMS embedded (6+3)-dimensional spacetime as

ā2
9 =

8

∑
I=0

ηI J
dzI

dτ

dzJ

dτ

∣

∣

∣

∣

r=r0

=
H5N3N4

4r6
H(r

2r2
H(H5 + 2Rr)− l2H4H5H6)[r3(r2

H − l2H5) + l2r3
H H5]3

, (71)
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where

N3 ≡ r4r6
H(r + rH)− l2rr4

H H1H5 + l4r2
H H2H2

5 H6 − 3l6(r − rH)H3
5 H2

6 ,

N4 ≡ r4r6
H [(r

2 + r2
H)H5 + 4r2RrH ]

− l2rr4
H [(5H5 + 8RrH)r

5 + H5r3r2
H − 2(H5 + 4RrH)r

2r3
H + 2H5r5

H ]H5 (72)

+ l4r2
H(r − rH)[6H5r3 + (r3 − r3

H)(1 + C + 6RrH)]H
2
5 H6

− 3l6(r − rH)
2H4

5 H2
6 .

One can easily check that in the massless limit of R → 0 and C → 0, D3 and D4 are
reduced to D1 and D2, respectively in Equation (52), and thus, the freely falling acceleration
ā2

9 becomes ā2
7 in Equation (51) of the HRBH in massless gravity.

According to the Unruh’s prescription, one can find TFF measured by the freely falling
observer from the freely falling acceleration as

TFF =
ā9

2π
=

1

4πr3
H

√

H5N3N4

(r2r2
H(H5 + 2Rr)− l2H4H5H6)[r3(r2

H − l2H5) + l2r3
H H5]3

. (73)

In the massless limit of R → 0 and C → 0, this is exactly the same as the previous one:
the freely falling temperature of the HRBH in massless gravity in Equation (54). Moreover,
as r → ∞, the freely falling temperature TFF is reduced to the Hawking temperature.

Now, making use of the dimensionless parameters x = rH/r, b = l/rH , and d = RrH ,
the squared freely falling temperature can be written as

T2
FF =

xn3n4

16π2r2
H(2d + h5x − b2h4h5h6x)[1 − b2(1 − x3)h5]3

, (74)

where

n3 = 1 + x − b2h1h5 + b4h2h2
5h6 − 3b6(1 − x)h3

5h2
6,

n4 = 4d + (1 + x2)h5 − b2[h3h5 + 8d(1 − x3)]h5 + b4(1 − x)[6h5 + (1 + C + 6d)(1 − x3)]h2
5h6 − 3b6(1 − x3)2h4

5 (75)

with

h4 = 1 + C +
2d

x
,

h5 = 1 + C + 2d, (76)

h6 = 1 + x + x2.

In Figure 7, we have depicted the ratio of the squared freely falling temperatures to
the squared Hawking temperature T2

FF/T2
H for the HRBH in massive gravity. One can see

that at the event horizon, the freely falling temperatures are all finite, while the fiducial
temperature diverges [139]. In the limit of b → 0 (or l → 0), which corresponds to the
case of the Schwarzschild black hole in massive gravity, the freely falling temperature is
reduced to

T2
FF =

x(1 + C + 2d)[(1 + C + 2d)(1 + x + x2 + x3) + 4d(1 + x)]

16π2r2
H [(1 + C + 2d)x + 2d]

. (77)

This is exactly the same with T2
FF in Ref. [113]. Furthermore, in the massless limit of

d → 0 (or R → 0) and C → 0, it becomes

T2
FF =

1 + x + x2 + x3

16π2r2
H

: (78)

the freely falling temperature of the Schwarzschild black hole in massless gravity [139].
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Figure 7. Squared freely falling temperatures T2
FF/T2

H for the HRBH in massive gravity drawn by

a dimensionless parameter x (= rH/r). (a) The freely falling temperature of the HRBH in massive

gravity for d = 0.01, 0.03, 0.05, 0.07 from top to bottom with a fixed C = −0.1 and b = 0.3. (b) The

freely falling temperature of the HRBH in massive gravity for C = −0.4,−0.3,−0.2,−0.1 from top to

bottom with a fixed d = 0.07 and b = 0.3. Here, the dashed black curve is for the HRBH in massless

gravity, as in Figure 6, with b = 0.3, and the dotted black curve is for the Schwarzschild black hole in

massless gravity. Also, the vertical dotted lines are drawn at event horizons.

4. Discussion

In this paper, we have newly studied the Hayward regular black hole (HRBH) in
massive gravity, which is a modification of the HRBH in massless gravity to have nonzero
mass of gravitons, as proposed by Vegh in the framework of holography. By solving
Einstein’s equations, we have found a solution of the HRBH in massive gravity and
analyzed the novel structures of event horizons classified by the graviton mass parameters
R and C qualitatively. Concretely, when m > m∗, physically interesting ranges of R and
C lie in both all C with R > 0 and all R with C > −1. In those ranges, there exist an
outer event horizon and at least one inner event horizon. When m = m∗, which is the
extremal case for the HRBH in massless gravity, it remains extremal for C ≤ −1 and R > 0.
However, for all R with −1 < C < 0 and R < 0 with C ≥ 0 in the HRBH in massive
gravity, it changes to have two or more event horizons. Therefore, according to the specific
values in the graviton mass parameters R and C, we expect that the thermodynamics of
the HRBH in massive gravity would be different from those of the HRBH in massless
gravity. Furthermore, to find full information on event horizons, we have also analytically
solved the metric function f (rH) = 0 of the HRBH in massive gravity, which is a non-trivial
quartic equation due to massive gravitons, while the HRBH in massless gravity is the
cubic equation.

After exploiting the geometric property of the spacetime, we have proceeded to study
the GEMS embeddings of the HRBHs in massless and massive gravity, where the former is
geodesically incomplete and the latter is singular due to massive gravitons. As a result,
we have globally embedded the (3+1)-dimensional HRBH in massless gravity into a (5+2)-
dimensional flat Minkowski spacetime and the (3+1)-dimensional HRBH in massive gravity
into a much higher (6+3)-dimensional flat Minkowski spacetime, where the difference in
embedding dimensions comes from whether or not holographically introduced massive
gravitons exist. Furthermore, making use of newly obtained embedding coordinates, we
have directly obtained Unruh temperatures and compared them with the Hawking and
local fiducial temperatures, showing that the Unruh effect for a uniformly accelerated
observer in a higher-dimensionally embedded flat spacetime is equal to the Hawking effect
for a fiducial observer in the corresponding curved spacetime. We have also obtained
freely falling temperatures of the HRBH in massless and massive gravities seen by freely
falling observers following their geodesic trajectories, which remain finite even at the
event horizons. These are different from the Hawking temperatures divergent at the
event horizons.
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Finally, it seems appropriate to comment that the solutions of the HRBH in massless
gravity cannot be obtained simply by taking R → 0 and C → 0 due to their implicit
condition of R 6= 0, as seen in Equations (20) and (21). On the other hand, the GEMS
embedding of the HRBH in massive gravity can be reduced to the corresponding GEMS
embedding of the HRBH in massless gravity in the limit of R → 0 and C → 0 by redefining
some embedding coordinates. As a result, when R → 0 and C → 0, the (6+3)-dimensional
embedding coordinates (60) of the HRBH in massive gravity have proper limits of the (5+2)-
dimensional ones (41) in massless gravity, which may be a characteristic of the Hayward
nonsingular black hole in massive gravity.
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Appendix A. Coefficients of Embedding Coordinates of z
i (i = 5, 6, 7, 8)

In this Appendix, we list the coefficients used in zi (i = 5, 6, 7, 8) as follows

u1 = r3H5(1 + C + 6RrH) + 4r2r2
H R + rH H5H6,

u2 = 4r3R[5 + 34RrH + 56R2r2
H + 2(1 + C)(5 + 17RrH) + 5C2] + 2r2[2RrH(6 + 41RrH + 56R2r2

H)

+ (1 + C)(5 + 55RrH + 124R2r2
H) + C2(10 + 43RrH) + 5(1 + C3)] + r2

H H5R[(1 + C)(r + rH) + 2RrrH ],

u3 = 3r9[13(1 + C)2 + 40(1 + C)RrH + 28R2r2
H ] + 3r8rH [(1 + C)(10 + 7C + 2R(1 + C)(37r + 2rH))

+ 12RrH(6 + 3C + 4Rr) + 4R2rH(30r + 7rH)] + 3r7r2
H [4RrH(1 + C + 4RrH)

2 + H5(2R(18r + 23rH)

+ (1 + C)(13 + 12RrH) + 48R2r2
H)] + 3r6r3

H [(1 + C)2(10 + 9C + 2Rr) + 4(1 + C)RrH(19 + 19C + 4Rr)

+ 4R2r2
H(50 + 50C + 8Rr) + 160R3r3

H ] + r5r4
H [3(1 + C)2H4 + 24H4H5RrH + 2H5(1 + C + 11RrH)]

+ r4r5
H [3H4(1 + C)2 + 24H4H5RrH + 2H5(1 + C + 11RrH)] + r3r6

H [8(1 + C)2 + 38(1 + C)RrH + 44R2r2
H ]

+ 6r2r8
H H5R + 4r7

H H2
5 H6,

u4 = 4r8R[19(1 + C)2 + 98(1 + C)RrH + 124R2r2
H ] + r7[38(1 + C)3 + 242RrH(1 + C)2 + 568(1 + C)R2r2

H

+ 460R3r3
H ] + 48r6r2

H H5R(1 + C) + r3r4
H [22(1 + C)2 + 61RrH(1 + C) + 34R2r2

H ] + r2r5
H [22(1 + C)2 (A1)

+ 61RrH(1 + C) + 2(53 + 36C)R2r2
H + 240R3r3

H ] + rr6
H [12(1 + C)3 + 99(1 + C)2RrH + 276(1 + C)R2r2

H

+ 240R3r3
H ] + 12r8

H RH5(1 + C),
u5 = (r + rH)r

9[79(1 + C)2 + 290(1 + C)RrH + 264R2r2
H ] + r9rH [2H5RrH(71 + 32C + 180RrH)]

+ 3r8r2
H [2(1 + C)2(23 + 23C + 22Rr) + 24(1 + C)RrH(6 + 6C + 5Rr) + 8H5RrH(16 + 16C + 14Rr + 15RrH)

+ 36R2r2
H(3 + 3C + 2Rr)] + 168r7r4

H H4H5R + 6r6r5
H H5R(13 + 13C + 56Rr) + 3(r + rH)r

3r6
H H5(9 + 9C

+ 8RrH) + 6r3r8
H H5R(1 + 8RrH) + r2r8

H [(1 + C)2(7 + 7C + 2Rr) + 12RrH(1 + C)2 + 4H5RrH(11 + 11C
+ 4Rr + 12RrH)] + (r + rH)r

9
H H4(1 + C + 4RrH)

2,

u6 = 6r9rH H5R + 2r8rH [(1 + C)(7 + 7C + 11Rr) + RrH(19 + 19C + 26Rr) + 6R2r2
H ] + 8r7r3

H H4R

+ 6r4r5
H [5(1 + C) + 9RrH ] + 6r3r6

H [5(1 + C) + 11RrH + 6R2r2
H ] + 6r2r7

H [(1 + C)(4 + 4C + 5Rr)

+ RrH(13 + 13C + 14Rr + 6RrH)] + 24rr9
H H4R + 6r10

H R(3 + 3C + 8Rr),

u7 = H5
6 H4,
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ū1 = r3(H4 + 2RrH)(1 + C + 4RrH)
2,

ū2 = 2r2[10 + 5R(4r + 11rH) + 4R2rH(17r + 31rH)],

ū3 = 3r9H4[13(1 + C)2 + 28(1 + C)RrH + 12R2r2
H ] + 3r8rH [(1 + C)(3C2 + 74Rr(1 + C) + 2Rr(19 + 48Rr) + 4RrH)

+ 32RrH(1 + 3Rr + 4R2r2) + 4RrH(1 + C)(1 + C + 30Rr) + 24R3rr2
H ] + 3r7r2

H [16R2r2(5 + 5C + 2Rr + 6RrH)

+ H4(1 + C + 4Rr)(3 + 3C + 4Rr + 4RrH)] + 3r6r3
H [8(1 + C)RrH + 20R2r2

H ] + 3r3r6
H(1 + C)3,

ū4 = r7[38(1 + C)2 + 196(1 + C)RrH + 240R2r2
H ] + 66r6r2

H H5R + 6r4r4
H R(1 + C)(3H5 + 1 + C) + r3r4

H [12(1 + C)3

+ 42RrH(1 + C)2 + 36R2r2
H(1 + C) + 96R3r3

H ] + r2r5
H(1 + C)[12(1 + C) + 15RrH ] + rr6

H [2(1 + C)2 (A2)

+ 14(1 + C)RrH + 20R2r2
H ] + 9r8

H H5R ,

ū5 = 2(r + rH)r
9H4[23(1 + C)2 + 72RrH(1 + C) + 54R2r2

H ] + 3r8r2
H [35(1 + C)2 + 122(1 + C)RrH + 54H5RrH

+ 104R2r2
H ] + 6r6r4

H H5R(27r + 13rH) + 3(r + rH)r
3r6

H H4(1 + C)(7 + 7C + 12RrH) + r2r8
H [(1 + C)2

+ 2(1 + C)RrH + 6H5RrH ] + (r + rH)r
9
H H5(1 + C + 6RrH),

ū6 = 2r8rH [7(1 + C) + 16RrH ] + 6r7r3
H R + 12(r + rH)r

3r5
H H4[2(1 + C) + 3RrH ] + 6r2r7

H [3(1 + C) + 8RrH ]

+ 18(r + rH)r
9
H R,

ū7 = H5
6 ,

v1 = 2r6R(2 + C + 6RrH) + r5[10 + 66RrH + 96R2r2
H + 7C2 + (1 + C)(17 + 64RrH)] + r4rH [10 + 62RrH

+ 120R2r2
H + 96R3r3

H + C2(7 + 6RrH) + (1 + C)(17 + 68RrH + 48R2r2
H)] + 3r3r2

H [32R2r2
H(1 + C + RrH)

+ 2H2
5 + (1 + C)2(1 + C + 10RrH)] + 4r3

H H2
5 H6,

v2 = 16r7R2 + 8r5H4(H5 + Rr) + 9r3r2
H H5 + r2r3

H [9H5 + (1 + C + 4RrH)
2] + rr4

H [8 + 2RrH(11 + 8RrH)

+ (1 + C)(13 + 16RrH) + 5C2] + 3r5
H H5,

v3 = 2r9H5[15 + 8(1 + C) + 54RrH ] + 2r8rH [2(1 + C)2(19 + 3RrH) + 2(1 + C)RrH(97 + 195RrH) + 236R2r2
H

+ 684R3r3
H ] + 2r7r2

H [45(1 + C)3 + 318(1 + C)2RrH + 810(1 + C)R2r2
H + 684R3r3

H ] + 6r6r4
H R[20C2

+ 2RrH(13 + 24RrH) + (1 + C)(13 + 80RrH)] + 6r5r5
H R[13C2 + 12RrH(1 + C)] + r3r6

H H5[1 + 4(1 + C)
+ 8RrH ] + r2r7

H(5 + 22RrH + 64R2r2
H + 32R3r3

H) + rr8
H H5[(1 + C)2 + 8(2 + C)RrH + 16R2r2

H ] + 8r10
H H5R, (A3)

v4 = 6r9H5R(11 + 11C + 26RrH) + r8[(1 + C)2(79 + 79C + 92Rr) + 2(1 + C)RrH(217 + 217C + 224Rr)

+ 8R2r2
H(89 + 89C + 67Rr) + 312R3r3

H ] + 80r7r2
H H5R(H4 + 2RrH) + 3r4r4

H H5[13 + 35(1 + C) + 60RrH ]

+ 3r3r5
H [35(1 + C)2 + 122(1 + C)RrH + 104R2r2

H + 2H5RrH(14 + 42RrH)] + 3r2r6
H [22(1 + C)3

+ 60(1 + C)2RrH + 9(1 + C)R2r2
H + 2H5RrH(43 + 43C + 32Rr + 42RrH)] + 96rr8

H H4H5R

+ 12r9
H H5R(7 + 7C + 16Rr),

v5 = 2(r + rH)r
9rH(7 + 7C + 13RrH) + 2r9r3

H R(8 + 5C + 18RrH) + 3r8r3
H [(1 + C)(11 + 11C + 16Rr)

+ 6RrH(3 + 3C + 4Rr) + 2RrH(7 + 7C + 8Rr + 6RrH)] + 24r7r5
H H4R + 6r6r6

H R(1 + C + 8Rr)

+ 6r4r7
H(3 + 3C + 5RrH) + 6r3r8

H(3 + 3C + 5RrH + 2R2r2
H) + r2r9

H [(1 + C)(5 + 5C + 4Rr) + 6(1 + C)RrH

+ 2RrH(7 + 7C + 8Rr + 6RrH)] + 2(r + rH)r
10
H H4(1 + C + 4RrH),

v6 = rH5
6 H4,
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v̄1 = 2r6RC2 + r5[17 + 64RrH + 2RrHC2 + (1 + C3)] + r4rH [17 + 68RrH + 48R2r2
H + (1 + C3)],

v̄2 = rr4
H(13 + 16RrH),

v̄3 = 12r10R[5(1 + C)2 + 12(1 + C)RrH + 6R2r2
H ] + 2r9H5(15C2 + 36(1 + C)RrH + 114R2r2

H) + 30r8rH(1 + C)3

+ 4r7r2
H [11(1 + C)2 + 71(1 + C)RrH + 98R2r2

H ] + 120r6r4
H R(1 + 4RrH) + 6r5r5

H R(14 + C + 54RrH)

+ 6r4r6
H(1 + C)2 + r3r6

H H5[1 + 3(1 + C)2 + 6RrH + 48R2r2
H ] + r2r7

H [C2(5 + 22RrH) + 3(1 + C3)

+ (1 + C)(1 + 4RrH + 32R2r2
H)], (A4)

v̄4 = r8[79(1 + C)2 + 368(1 + C)RrH + 420R2r2
H ] + 78r7r2

H H5R + 6r5r4
H R[(1 + C)2 + 12(1 + C)H5 + 9H2

5 ]

+ 3r4r4
H H5[22(1 + C)2 + 60(1 + C)RrH + 13 + 8RrH + 36R2r2

H ] + 3r3r5
H(1 + C)[22(1 + C)2 + 46(1 + C)RrH

+ 12R2r2
H ] + 3r2r6

H [9(1 + C)2 + 26(1 + C)RrH + 30H5RrH + 16R2r2
H ] + 2r8

H H5R(45r + 42rH),

v̄5 = (r + rH)r
9rH H4(11 + 11C + 18RrH) + 6r8r3

H [5(1 + C) + 12RrH ] + 6r6r5
H R(3r + rH)

+ 3(r + rH)r
3r7

H H4(5 + 5C + 6RrH) + 2r9
H H6(1 + C + 4RrH),

v̄6 = rH5
6 .

In the limit of R → 0 and C → 0, H4 and H5 become unity, and thus, these coefficients
are reduced to

u1 = r3 + rH H6,

u2 = 20r2,

u3 = 39r9 + 30r8rH + 39r7r2
H + 30r6r3

H + 5r5r4
H + 5r4r5

H + 8r3r6
H + 4r7

H H6,

u4 = 38r7 + 22r3r4
H + 22r2r5

H + 12rr6
H , (A5)

u5 = 79r10 + 79r9rH + 138r8r2
H + 27r4r6

H + 27r3r7
H + 7r2r8

H + rr9
H + rh10,

u6 = 14r8rH + 30r4r5
H + 30r3r6

H + 24r2r7
H ,

u7 = H5
6 ,

ū1 = r3,

ū2 = 20r2,

ū3 = 39r9 + 9r7r2
H + 3r3r6

H ,

ū4 = 38r7 + 12r3r4
H + 12r2r5

H + 2rr6
H , (A6)

ū5 = 46r10 + 46r9rH + 105r8r2
H + 21r4r6

H + 21r3r7
H + r2r8

H + rr9
H + r10

H ,

ū6 = 14r8rH + 24r4r5
H + 24r3r6

H + 18r2r7
H ,

ū7 = H5
6 ,

v1 = 27r5 + 27r4rH + 9r3r2
H + 3r3

H H6,

v2 = 8r5 + 9r3r2
H + 10r2r3

H + 21rr4
H + 3r5

H ,

v3 = 46r9 + 76r8rH + 90r7r2
H + 5r3r6

H + 5r2r7
H + rr8

H , (A7)

v4 = 79r8 + 144r4r4
H + 105r3r5

H + 66r2r6
H ,

v5 = 14r10rH + 14r9r2
H + 33r8r3

H + 18r4r7
H + 18r3r8

H + 5r2r9
H + 2rr10

H + 2r11
H ,

v6 = rH5
6 ,



Universe 2023, 9, 486 22 of 26

v̄1 = 18r5 + 18r4rH ,

v̄2 = 13rr4
H ,

v̄3 = 30r8rH + 44r7r2
H + 4r3r6

H + 4r2r7
H , (A8)

v̄4 = 79r8 + 105r4r4
H + 66r3r5

H + 27r2r6
H ,

v̄5 = 11r10rH + 11r9r2
H + 30r8r3

H + 15r4r7
H + 15r3r8

H + 2r2r9
H + 2rr10

H + 2r11
H ,

v̄6 = rH5
6 .

Thus, after replacing H6 with H0 in the massless limit, the differences of ui − ūi

(i = 1, 2, · · · , 7) and vi − v̄i (i = 1, 2, · · · , 6) can be obtained as

u1 − ū1 = rH H0,

u2 − ū2 = 0,

u3 − ū3 = rH H0(30r6 + 5r3r3
H + 4r6

H),

u4 − ū4 = 10rr4
H H0, (A9)

u5 − ū5 = r2H0(33r6 + 6r6
H),

u6 − ū6 = 6r2r5
H H0,

u7 − ū7 = 0,

v1 − v̄1 = H0(9r3 + 4r3
H),

v2 − v̄2 = 8r5 + 9r3r2
H + 10r2r3

H + 8rr4
H + 3r5

H ,

v3 − v̄3 = rH0(46r6 + r6
H), (A10)

v4 − v̄4 = 39r2r4
H H0,

v5 − v̄5 = 3r2rH H0(r
6 + r6

H),

v6 − v̄6 = 0.

which are the exact same coefficients in z5 and z6 of the HRBH in massless gravity in
Equations (41).
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