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EINLEITUNG

Nachdem die Physiker die Vielfalt der Atome auf nur drei
"elementare" Teilchen - Proton, Neutron und Elektron -
zurickfihren konnten, sahen sie sich kurze Zeit spiter

vor der Explosion der Anzahl der Hadronen, zu denen das
Proton und das Neutron gehdren. Die Struktur dieses neu
entstandenen "Teilchenzoo's" konnte nur dann verstanden
wverden, wenn die Hadronen ihrerseits als zusammengesetzte
Systeme betrachtet wurden. Ihre Bausteine nannte man
Quarks. Zuerst als rein mathematische Gebilde eingefihrt,
konnten sie sich nach einigen Experimenten als physikalisch
reale Teilchen behaupten, die allerdings eine Besondsrheit
haben : Sie sind nicht direkt beobachtbar (confinement) .
Um die Konsistenz des Modells zu wahren, musste den Quarks
ein neuer Freiheitsgrad zugesprochen werden, der sog.
Color (Farbe) . Die ihm zugrundegelegte Symmetrie ist die
SU(S)C. Es zeigt sich, dass die Theorie, die diesen frei-
heitsgrad als bestimmend fir die Quarkdynamik annimmt,
einigen Erfolg in der Erklidrung bereits bekannter und

der Voraussage neuer Phinomene hat. Sie heisst Quanten=
chromodynamik (GQCD) . Als eine Eichtheorie bendtigt sie
Eichfelder, die die Wechselwirkung zwischen den Teilchen
vermitteln. In der QCD sind dies die acht Gluonen.

In dieser Arbeit besch&ftigen wir uns mit der Anuendung
der QCD. Der erste Teil enthilt einen Ueberblick iiber die
Theorie. Nach einigen Bemerkungen zur Stdrungsrechnung
wenden wir uns insbesondere der "bagged" - QCD zu. In Ab-
schnitt 1.2 geben wir die Lﬁéungen der freien Feldglei-
chungen an sowie ihre Quantisierung. Danach behandeln wir
die QCD in erster Ordnung Stdrungsrechnung in der U-Matrix.
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Im Hinblick auf unsere Anwendungen beschrédnken wir uns dabei

auf Systeme, die keine reellen Gluonen enthalten.

Im zweiten Teil leiten wir aus der Theorie konkrete Aus-
sagen ab. Wir berechnen in 2.1 die Zwei-Teilchen-Wechseluwir-
kung und daraus das qG-Mesonenspektrum. Abschnitt 2.2 enthilt
das Hauptthema dieser Arbeit : Die Behandlung des qzaz-Systems,
das auch Baryonium genahnt wird. Wir konstruieren explizit die
Color-, Spin- und Isospinzustinde in der Diquark-Antidiquark-
Basis und bestimmen ihre C- und G-Paritdt. Die Baryoniumzu-
stidande werden auch in der Dimeson-Basis angeschrieben, da dies
spater gebraucht wird. Als Nichstes berechnen wir das nonstrange-
Baryoniumspektrum, wobei alle Wechselwirkungen zweiter Ordnung
in g bericksichtigt werden : Ein-Gluon-Austausch und Annihi-
lation. Nachdem auch die Zerf&dlle vorausgesagt wurden, ver-
gleichen wir die theoretischen Angaben mit bekannten Mesonen-
resonanzen souwie einem Experiment, in welchem gezielt nach
Baryonium gesucht wurde. Wir werden eine gute Uebereinstim-

mung feststellen konnen.

Im Anhang bsweisen wir einige niitzliche Beziehungen von

SU(N) = Generatoren, die viele Rechnungen erleichtern.,
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TEIL I ¢ THEORIE

1.1 Allgemeines

Wir geben eine kurze Zusammenfassung einiger wichtiger
Ergebnisse aus der Storungsrechnung, von denen in der

Folge meist unerwidhnt Gebrauch gemacht wird.

Die Griossen des Schrddinger-Bildes IW®\> , H, 0 (allg.
Operator), die die Schrodinger-Gleichung erfillen

O P>
3%

H IWw®R)>

werden nach der Aufspaltung H = Ho + V durch die unitare
Transformation W

U(t)+ = e-iHot

ins Wechselwirkungs~Bild lbersetzt

PR — 1PED> = WE TWEY

0 —> 0(t) = uw(t)ow(t)*

Sie gehorchen den Beziehungen
P>
ok
S O)

" = O
L — [ , Ho |

mit  Hp(t) = w(t)vu(t)*. Beachte Hg(t) = Hg .

= H ) 1w (1.1)




Gleichung (1.1) kann formal integriert werden, d.h. in sine

Integralgleichung umgeschrieben werden

L
lbers = dwad> - & Sae Hy () 1)
ke

Man fihrt die U-Matrix bzw. den Zeitentwicklungsoperator
ein, der die Lﬁsungen'dieser Gleichung zu einer beliebigen

Zeit t generiert

ToYCRRN = UG 1heed>

Er hat die Form
ta-a

+ t.
Egi(-i)" Sdt1HI(t1) SdtzHI(tz) cee SdthI(tn)
t o

to

u(t,tq)

tn tﬁ-A
dt1gdt2 Sdtn P(HI(t.‘) HI(tn))
te to teo

- >

ns n!

(-i)n‘g‘

(o]

(1.2)

P bezeichnet das Dyson'sche zeitgeordnete Produkt.

Nehmen wir an, das Eigenwertproblem von H, sei bereits

geldst

Ho 1 > Eo e
Uns interessiert das volle Problem
Hid> = (Ho+ HOIP> = E b

Wir stellen uns vor, dass es eine Zeit gab (z.B. t = =-00),
zu der das System ungestdrt war : H(t = ~0) = Hg «




Danach wurde die Wechselwirkung adiabatisch eingeschaltet,
sodass sie zur Zeit t = 0 voll entwickelt ist

He(t) = Hy + &% Hy(t) (>0, t<0 )

und H(t) = lim H.(t)
 3ipd 0@

Auf diese Weise konstruieren wir die Grissen, iiber die uns
physikalische Aussagen interessiern (d.h. Grossen im gestir-
ten oder wechselwirkenden System)

1G> — 19> = lim Ug(0,-) DD

‘E">Q+
Qe lHI (O B>
LB 0>

Ug erhdlt man aus U, indem jedes Hy(tk) durch etk Hy(tk)
ersetzt wird. Die Wechselwirkung bewirkt also gegeniiber dem

Ec —» E = Eq

ungestdrten System einen Energieshift

f e .1 Do [HI(0) UL(D,-) | B>
° T e <0, U(0,- =) | B>

Dies kann auch geschrieben werden als
E-€, = lin L8 (H1(0) Ue(0,-=) 1dad,

c steht fir "connected" und bedeutet die Einschrinkung auf
verbundene Feynman-Graphen (siehe weiter unten).

Waren wir in der Lage, die Reihe (1.2) fir U aufzusum-
mieren, so hitten wir die volle Theorie exakt geldst. In
der Praxis gelingt diss jedoch nicht. An dieser Stelle
setzt die Storungsrechnung ein : Wir glauben verniinftige
Resultate zu erhalten, indem wir nur die ersten paar




Reihenglieder in U beriicksichtigen. In dieser Arbeit be =~
schrinken wir uns auf die ersten zwei (Erste Ordnung Sté =

rungsrechnung in U ).
o

Ue(O,=00) = 1 = igdt et p( Hi(t) )

-0

E-E = <OolHp(o)ldd
0

E90x
)

- i lim &dt &t P 1P(HI(0) Hi(£)) 1 o>

Das Dyson'sche zeitgeordnete Produkt P , das im Falle,
wenn Fermionenfelder nur in geraden Potenzen vorkommen,
mit dem Wick'schen zeitgeordneten Produkt T ({berein -
stimmt, kann nach dem Wick'schen Theorem in Normalpro -
dukte entwickelt werden. Die Wickzerlegung hat in der
Feldtheorie eine grosse Bedeutung, da ihren einzelnen
Termen physikalisch anschauliche graphische Darstellungen
- die sog. Feynman-Graphen - zugeordnet werden kodnnen.
Man kann sogar den zuerst befolgten Weg umkehren, und
eine physikalische Theorie auffassen als dis Menge ihrer
Graphen, zusammen mit einem Uebersetzungsschlisssel - den
sog. Feynman-Regeln - , der uns erlaubt, jedem Graphen
einen analytischen Ausdruck zuzuordnen (den entsprechen=-
den Summanden der Wickzerlegung).




1.2 QGCD , Mes1.,Te = Bagmodell

Die Quantenchromodynamik (QCD) ist eine nichtabelsche
Eichtheorie, die gegeben ist durch die Lagrangedichte
t

e - W - U A Apvo~a

(Einstein'sche Summenkonvention, a= 1..8, s Jra0= 0.e3 )

G” ist der antisymmetrische Feldtensor

GLY = Ay - SAL + g Fapc Ab Ao

Af* sind die acht Gluonenfelder (Eichbosonen), fapc die
Strukturkonstanten der SU(3)c e g ist die Kopplungskon-
stante der QCD.

Y bezeichnet das Fermionenfeld (Quarks und Antiquarks),
das einen bestimmten Color und Flavor trigt : W’Cf

D ist die kovariante Ableitung

(o )ab = c}@gab - ig (Fc)ab A/a

Fc. sind die Generatoren der SU(3); sie erfiillen die Lie-
Algebra

[FasFp)l = i fapcF

In der 3-dimensionalen Darstellung der SU(3) sind sie

A/Q. O\Q,

durch die Gell-Mann-Matrizen bestimmt : Fa
Das Symbol D hat die Bedeutung

XDY = X(BY) = (DX)Y

x steht fir den Vierervektor der Dirac-Matrizen. Wir

verwenden die Signatur (+,-,-,-), d.h. der metrische
Fundamentaltensor g/M® ist gegebsen zu : g00 =1,

g1 = g22 = ¢33 = 4
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Die Massenmatrix m ist diagonal, ihre Elemente hidngen nur
vom Flavor ab. Wir wollen uns ausschliesslich mit den leich-
testen Quarks befassen ¢ Flavor up (u) und Flavor doun (d) .
Dabei vernachldssigen wir ihren Massenunterschied. Wir

wverdsn deshalb statt vom Flavor auch vom Isospin reden.

Jede Theorie, die Quarkdynamik beschreiben will, muss
dem confinement (Quarkeinschluss) Rechnung tragen : freie
Quarks sind nicht beobachtbar. Man nimmt an, dass die QCD
das confinement enthilt, es konnte jedoch bis heute nicht
bewiesen werden. Um im Rahmen der OQCD konkrete Aussagen
machen zu kdnnen, prdgt man deshalb das confinement der
Lagrangedichte "von Hand" auf. Die so entstandene Theorie
heisst das M.I.T. - Bagmodell (die Teilchen werden in einem

"Sack" eingesperrt)

£(x) = (Lyep = 8) 650 - 3 Py E(x)

B ist eine Konstante, der sog. Vakuumsdruck. GBB(X) ist
die Bag~-Stepfunktion, die gleich 1 ist im Raumgebiet, wo -
sich die Quarks aufhalten konnen, 0 ausserhalb ; <§S(x)

die Bag=-Oberflachendeltafunktion.

'Die Aufspaltung in Volumen- und Oberfl&dchenanteil liefert
bei Bestimmung der Feldgleichungen Terme mit EBB(x), die den
effektiven Feldgleichungen im Bag entsprechen, und Terme mit
<§S(x), die Randbedingungen beinhalten und ein diskretes

Energiespektrum zur Folge haben.




1.2.1 Die freien Feldgleichungen

Die Feldgleichungen lauten im wechselwirkungsfreien
Fall (g= 0)

Im Bag : (i ¥ M - m) W = O (1.3)
Pligad*+mY = 0 (1.4)

oA = 0O (1.5)

Oberflache (i N X\P -AYY = O (1.6)
WiayrsAN = O (1.7)

Ny (ODP‘):\_" e gb&\ + (\}*Q))).qv& = O (1.8)

nM ist ein raumartiger Einheitsvektor ( n* = =1), dessen

n
/4
Raumanteil W senkrecht zur Bagoberfliche steht und nach

innen gerichtet ist.

Wir geben die Lisungen fiir den statischen Fall ( n% = 0 )
und einen spharischen Bag mit Radius R an. Die Zeitabhingig~
keit soll fiur alle Gleichungen exponentiell sein : exp(-ift).

(i) Quarks

Gleichung (1¢3) ist die Dirac-Gleichung. Es treten also
Losungen mit negativen Energien auf. Wie in der Quantenelsk-
trodynamik interpretieren wir sie mit Antiquarks, wihrend
Losungen mit positiven Energien Quarks beschreiben. Wir
spalten die Felder nach diesen zwei Beitridgen auf

WP (=) WY+ W0

P = P o+ T
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WS;(X) ) "%m befnam (bmkm(?) o™t Enu t
;-;(x) = z_ d:f‘nxm (b-n-x-m(?) of Ena
AR
q’:?(x) = nZ«Lm A fnam EB-n-&-m(?) et Eng t
PO = = bt () ot Enn

nkm

Die Summenindizes durchlaufen die Werte

1 e¢ 00
-® +1/2 bis ® =1/2

n: 1 e« 00 ; R

- Cru ( fn«(r) k«m(?) )
(bnam(r) v i g (r) x-*'m(,f) (1.9)

mit f (r) = jl(xn&r/R)

ny
1
RE, -
e (T) son(n#) [—ne &
Ran&+§_

jI(Xn& r/R)

und dem spharischen Spinor

X g () 2 <1m 1/2m,ljm) Ylm1(?) u

mnmz

2
Uiy = (113) 3 Ulqy2 = (3)

m




jl(r) sind die sphirischen Besselfunktionen, Ylm(?) die

Kugelfunktionen,
2 2
Re e = sgn(n) an&-k g
X = pR ( p = 3=-Impuls )

( m = Quarkmasse )

Ot
L}
3
2

Die Drehimpulsquantenzahlen j , 1 , 1 ergeben sich aus

i = IRl -1/2 ; 1 = j + 1/2 sgn(R)
T = j = 1/2 sgn(®)
Die Bestimmungsgleichung fir die Zahlen X0 folgt aus
den Randbedingungen (1.6) und (1.7)
sgn(R) x
0+ ——— () = 0 (x=ox, )
R an&.+ 2

Fur jedes A existiert eine abzahlbar-unendliche Menge
von Losungen ( — diskretes Spektrum ) , die wir ihrer
Grosse nach durchnummerieren N = 1,2, ees o £Es werden
jedoch auch x mit negativen n's gebraucht; diese

miissen wir definieren als

X X

=N =X na

Nach einiger Integration erhalten wir die Normierungs-

konstants

.2,
- 31 (x4
(Cng\) 2 = —];.;TEL [2R£n&(R5n&+ 1&) + E ]
ny
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Die einzelnen Quarkmoden sind Eigenzustinde der folgenden
vier Operatoren

Xo(‘i?§ +m) (bnxm = &g Pnrm

=2 ./
J (bm\m = 3(+1) (bnmm
I, (bmem = cbmm
1
P (bnam = 2p (=1) (bnxm
wobei 1 f? o
Jd = L+ S = «iTxV + '2- ( 0 E_h)

-

?px"l 3 I F(F) = f(-1)

( ?p bezeichnet die innere Paritit des Zustandes)

P

Zwischen Cb und 5 besteht die Beziehung

—

ixz?(o (bnm = % ®-n-g-m

‘Zc ist die C-Paritate.

(ii) Gluonen

Bei Abseparation der Zeit e-u’“‘>t vereinfacht sich die

d'Alembert-Gleichung (1.5) zur Helmholtz-Gleichung
Aa(x) Aa(x.t) Aa(x) e

(A+w?2) AN(X) = 0
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Wir spalten wieder nach Beitrdgen positiver und negativer

Frequenzen auf

» 1 A o _=i™t
AMT(x) = > a A (X) e NJ
a A aNJM "NIMA
NIMA \’2 QNJ'
(& 1 W ¢t
V00

* .
ST o ——— aAT__ afT (X)) et NI
NIMA ’2‘Q£hl aNJMm "NIMA

(N =1,2e0 3 3 =20,10e 3 M= =], 0,47 3; 9\= SyME,4)

Als Basis im LOsungsraum wihlen wir die Hansen~-Funktionen.
Sie weisen definierte Polarisationen A auf ¢ A =5
(skalar) , A = M (transversal magnetisch), A = &
(transversal elektrisch) , A= £ (longitudinal elektrisch) .
Nach der Zerlegung in Zeit- und Raumanteil AﬁBMA(;) =
(Agjmﬁ(i)’.ﬁﬂJMA(;)) sehen die Ldsungen folgendermassen aus

[s] - . -

Anams(X) = 1 Qygg(X)

Ayams(X) =" 0

Aggmal®) = 0 ( A=ME,s L)
Aymal®) = — Ay gmadX) *)

J3(3+1)
| (1.10)

— 1 §7x1:

A (X) = Q (%) *)

NIME L wE GGy Name
-ty - 1 =l -t

Angme(X) = oL V- Qg (X)

N3]

*) Es existieren keine Losungen mit 3 =0
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mit : N/A
Die Namen der Polarisationen leiten sich ab von den
Formeln
e B - — - J - -
VeoRyama®) = 0 Anamad=X) = =(=1)7 Ay g (X)
—_— . 3 hry -
Vo Aygme(X) = 0 Ryamal=%) = (=1)7 By pa(3)
VXANJNL( X) = 0 (2= 5,8,&8)
Die Randbedingung (1.8) legt die Zahlen Ygs fest
Moo _
o yM =
J JJ( ) YNT J3- 1(Y ) = 0

Die Frequenzen «y sind mit den Y's verkniipft durch

A
ol
A o NI
L})N:] R

Die Normierungskonstanten, aufgefasst als Funktion

der Y,;’:., , sind

(N2 =

N

o [+ - 380 ]
NJ

(9\= S’\Myﬁﬂ.)

-2
(NG5)

]
N

j3+1(Y§?.1)




1.2.2 Quantisierung

Bis jetzt sind die Losungen der Gleichungen (1.3) bis
(1.8) klassische Felder, die b, d und a verallgemeinerte
Fourierentwicklungskoeffizienten. Bei der Quantisierung
werden aus den fFeldern Feldoperatoren, indem man diesen
Koeffizienten (Anti-) Vertauschungsrelationen auferlegt.

Die Quarks sind als Spin 1/2 - Teilchen Fermionen. Sis

werden daher mit Antikommutatoren quantisiert

{}cfnmm’ b, c'f'n 'x'm'}
+
{dcfnam’ dc"f"n'u'm'} = S cc' S Ff? CSnn' ant Syt

(alle anderen {, } verschwinden)

Die Gluonen sind Spin 1 - Teilchen, also Bosonen; hier

kommen Kommutatoren zur Anwendung

+ AN
[aNJI”I’ a 'N'J'M = =g CSam' &NN' °SJJ' CSmm'

Nach diesen Vereinbarungen fassen wir b, d und a als

* und at als Erzeugungsope~

Vernichtungsoperatoren, b+, d
ratoren von (Quarks, Antiquarks bzwe. Gluonen auf.
Zustinde wie bYlo> , d*a*i0> etc. bilden den Fock-
Raum, in welchem sich die ganze Physik abspielt (10> ist

das Vakuum, deh. der Null-Teilchen-Zustand) .




1.2.3 Zwei-Fermionen-Wechselwirkung

Wir betrachten Graphen, die Erste-Ordnung-Stdrungsrechnung
in U (deh. zweite Ordnung in g) liefert. Wir beschrianken uns
auf Systeme, die keine reellen Gluonen enthalten.

Aus unserer lLagrangedichte £ berechnen wir mit der wohlbekann-
ten Vorschrift die Hamiltondichte ﬂ{ und spalten sie auf
R = R, + ® | - Das Eigenwertproblem von H,

Ho(t) = Sd3x R, (x)
N

haben wir bereits in Abschniit 1.2.1 geldst. Der fiir uns
relevante Teil von %(I ist

&30 = -9 P WG Vi A

Da unsere Graphen keinse externen‘Gluonenlinien besitzen,
ergibt nur der Term der Wickzerlegung einen nichtverschwin-
denden Beitrag, in welchem iber alle Gluonenfelder kontra-
hiert wurde. <(b°|HI(0)((b°) im Ausdruck fir den Energie-
shift aus Abschnitt 1.1 f&llt deshalb weg. Es bleibt der
Operator

O
AE = (-i) gdt T(H (D) Hi(t))

0
= (-i) Sdt ggcﬁx a3y T(R;(x) ®R;(y))
VvV

-0

x=(%x,0) y=(y,t)

Die Berechnung der Matrixelemente dieses Operators ist
ziemlich aufwendig, obwohl keine prinzipiellen Schwierig-
keiten auftreten. Wir wollen darum nur einige wichtige

Schritte besprechen.




15«

Jeder der drei Fille qq (Diquark), 9 (Antidiquark) wund
qgq (Quark-Antiquark) muss einzeln betrachtet werden. Dement=-
sprechend erhalten wir die

o fQuark-Quark Wechselwirkung

X

0 Antiquark~Antiquark Wechselwirkung

X

o Quark-Antiquark Wechselwirkung

und

X

Jedesmal stossen wir auf ein Integral von der Form

I = gdsx &ntklml(_’z) X/* (Dnam('i) AﬁJNA(i)
\Y

Wir spalten es auf in Radial- und Winkelanteil

o o
RNJA(“"n S,R,0) UJM(&.,m »X,m)

UJN(&"N"K’M) = gdﬂ x;'m' YJM X&m

Die Form von RNjoga!,n',x,n) hingt von
der Polarisation A ab
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Dabei haben wir die Gleichungen (1.9) und (1.10), (1.11) ein-
gesetzt. Beachte, dass qu im Gegensatz zu RNJo\unabhéﬂgig
von der Quarkmasse ist.

Wahrend RNJO\nummerisch berechnet werden muss (wir konnten
eine von R. Buser erstellte Tabelle beniitzen) , kann UJM

analytisch ausgewertet werden

n141/2 sz'+1‘J23+1‘J23+1‘

quﬂ
CREANEEE)
1/2 0 =1/2 -m!' M m

(fir j' + 3 + j gerads)

UJM(K',N',ﬂ,m) = (-1) X

= 0 sonst

(nach R.D. Viollier )

Véi) in (1.12) und Vgﬂ) in (1.13) , die weiter unten gebraucht

werden, hangen im wesentlichen folgendermassen von UJM ab

- M mt t 1
% ( 1) UJN(R‘;’m"’x‘l’m‘l) uJ_m(aZ’mz’xzﬁmz)

Diesen Ausdruck nennen wir 25 und berechnen ihn fir J = 0,1
(Wir setzen I\ = I\® = 1)

(i) 2 =0
Man Uberzeugt sich leicht, dass
¢Sm'm
! m =
UOO(« ’m ,K’m) 4T »

also ZD = ‘4_,ﬁ_"' cgm{m1 ém'm




(ii) 3 =1

Mit Hilfe des Wigner-Eckart-Theorems wandeln wir das M-abhin-
gige 3-J-Symbol in der Formel fir UJM in ein Matrixelement
des Spinoperators S um und benitzen, dass das reduzierte
Matrixelement <1/213511/2> = \/Z-\ . Es folgt

“in = T T B (Sn)nm

Sm bezeichnet die spharischen Kemponenten von §, die mit den

rechtwinkligen zusammenhzngen nach

1 .
S+1 = - J%T (s i-lSy) SU = Sz

1 . A 1 =
S_1 —;— (Sx-lsy) wobei S5 = 7 @

Die Summe in 5% entpuppt sich als das Skalarprodukt in

spharischen Koordinaten, sodass

. (5)

1 4 -
%5 w3 Oage, s Ouga,

1 47
Damit ist es uns gelungen, den Spin, der nicht explizit in
der Lagrangedichte auftritt, einzufiihren.

Das Ergebnis fir den Ein-Gluon-Austausch zwischen zwei

Fermionen ist

L

KAt J)

Ex = ER— %‘j F-F/u(a) "éx (1.12)
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T bezeichnet den Vektor der acht SU(3). - Generatoren .
Vég) ist eine Funktion der Winkelintegrale, /u(J) der
Radialintegrale.

Falls alle “'s nur die Werte *1 annehmen ( R = =1 :
Quarks im Grundzustand ), kann J = 0 oder 1 sein (SU(2) =
Addition von zwei Drehimpulsen 1/2) . Vég) hat dann die

einfache Form

(o) _ _1 () _ L=.=
Vey! = wn Vex! = o 5°5

Den Annihilationsgraph kann man sich vorstellen als
den Ein-Gluon-Austausch, wobei die kausale und die rdum-
liche Richtung vertauscht wurden.Die Rechnung liefert ein
dhnliches Resultat wie fir .A£EX mit dem Unterschied,
dass die Matrixelemente zwischen den Anfangs- bzw. End=-
zustdnden genommen werden missen. Um die Formel physika-
lisch durchsichtiger zu machen und die Weiterrechnung zu
erleichtern, mdochten wir nur Matrixelemente zwischen je
einem Anfangs- und einem Endzustand haben. Im Anhang ist
die Umrechnung vorgefihrt. Als Folge davon erhalten die
Skalarprodukte uis f’-fr zusdtzlich eine additive Kons-

tante. Das Ergebnis lautet

+

2
S = L (3-1T) (77 44) T oo v

T sind die Isospinoperatoren (SU(2)¢), T = %_’t:
(T : Pauli-Matrizen) '




>%I§I

FUr IRl = 1 folgt

(0 _ 1 1_-= A & D R P
Van! = (3-5:3) 5 v = (5.5 +%)

4

Quarks im Grundzustand (R = =1)

>
m
i

= [:/u(o) + 4 (1) *sq-?;q:l Fa.F

[/u(o) + 4/u(1) 'E;a-*sa:l +9,79

(1.14)

N [/u(o) + zy,«(ﬂ‘éqoﬁaj F9.359

AE = =t 1 _¥9.79 FA.F9 + 2 ) x

R ( 4 ) ( 3 3

[U(D) (% - 359.39) &+ V(1) (‘50,‘:{5 + %):I
2

g
(%= - )

Durch q bzw. § haben wir angedeutet, ob der Operator auf ein
Quark oder Antiquark wirkte. ’
Fir masselose Teilchen haben die Koeffizienten/}& und » die

Werte
/}A(U) = 0.0098 vw(0) = 0
f/*(1) = =0,7081 v(1) = 0.1875
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TEIL II ¢ ANUWENDUNGEN

Von nun an befassen wir uns nur noch mit masselosen Quarks
im Grundzustand. Wir bezeichnen den Spin mit J, den Isospin
mit I und die Dimension der Color-Darstellung mit {N} .

Weiter setzen wir
Mo 3= /A(D) v, i= v(0)
Mg t= Q/}(1) R S (1)

2.1 Das Zwei-Teilchen-System

Wir betrachten die Wechselwirkung zwischen zwei Quarks in
allen Color-, Spin- und Isospinzustidnden. Die Ergebnisse
konnen fir grobe Abschitzungen in Multiquarksystemen verwen-
det werden.

Ueber die Formel

Xe¥ = %[(7+7)2-72-72]

fihren wir die Skalarprodukte in (1.14) auf Casimiroperatoren

zurlck
FieF, = '12'[0 - %J
31-_52 = -12-:3'(34-1) - %
'?1&“2 = -;-[I(IH) - %]
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Die Quantenzahlen J, I kdnnen die Werte 0 und 1 annehmen,
die Color-Dimension {N} = {3},{6} fir qq, {3},{6} fir Gg
und {13, {8} flr qge.
(i) qaq , @d
n - 1 -8y (-3 /4 §
R AEEX({Nl) = X3 (CNY = ) (Mo -F /M + > 3(3+1)

c{3} = 4/3 c{el = 10/3

also R AEEX({3}) (-2) R AEEX({G})

Der Annihilationsgraph leistet natlirlich keinen Beitrag.

(ii) g9

mit c{ly =0, Ci{8l =3 folgt

R AEEX({‘I}) (-8) R AEEX({BI«)

Weiter ist

0

x (1 --12-1(1+1)> 3 (u0+

R AE AN(m)

BV, =D,
12 2 J(J+1))

RAE,, (g8y)

Beachte, dass ein qG-System nur dann an der Annihilations-
Wechselwirkung teilnehmen kann, wenn es die Quantenzahlen

eines Gluons tragte.

In Abb, 1 1ist R AE = R AEEX + R AEAN als Funktion von

%o dargestellt.
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Mit diesen Angaben kdnnen wir die Massen der qg-Mesocnen im
Rahmen des Bagmodells berechnen. Allerdings miissen wir

vorher noch Folgendes nachtragen :

Der Hamiltonoperator ldsst sich in unserem Fall aufspalten in

~B

1 A9 + 1

7\
q
+ HI

¢ wechselwirkungsfreie Quarks

W on

¢ Volumensnergie des Bags

I> I I

¢ Wechselwirkung der Quarks

0

Dementsprechend setzt sich die totale Energie zusammen aus

X z
X
E(R) = S_ D% _ -;%9- + ¥R + = A
QuarksR

z
o ~
- — , der sog. Casimir-Term, stammt van Hg und

berlicktsichtigt die Quantenfluktuationen
des Systems (z0 hdangt von der Baggeometrie

ab )

e ) . A
— A bezeichnet dia Beitrzge der Graphen

( A ist unabhingig ven R)

Das Bagmodell liefert neben den Randbedingungen (1.6) bis
(1.8) eine weitere, dis fuark- und Gluonenfelder quadratisch
miteinander verknipft. Sie verlangt, dass sich die Quarks
und die Gluonen mit ihren Dricken an der Bagoberfladche lokal
die Waage halten. Wir konnen diese Bedingung zwar nicht
exakt, aber doch im Mittel erfillen, indem wir die Energie
unseres Systems in Bezug auf den Radius minimieren (R war
bisher ein freier Parameter). Auf diese Weise erhalten wir
die effektiven Werte fir Masse und Radius.
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16

g4 = A M = 2% ggs
o 4T B 3 o

mit A = = x -z + X, A

Quarks n® o c

Wir werden in dieser Arbeit einheitlich die Werte

1/4

B = 146 MeV zd 1.842 ,

die aus dem Baryonenspektrum gefittet wurden, veruwenden.
Wir nehmen also das Bagmodell ernst und setzen voraus,
dass B eine Eigenschaft des Vakuums ist und nicht von
der Teilchensorte abhingt.

Die Quark-Randbedingung lisefert

Xq.q = 240428

Es ergibt sich das folgende gg-Mesonenspektrum (Notation IPJ)

R, M M(exp)
] 070 0.65 fm 267 MeV 548.8 MaV
STy 170 0.65 fm 267 MeV 138.0 MeV
W 0”1 0.92 fm 779 Mev 7682.6 MaV
g 171 0.92 fm 779 MeV 769 MeV
(Hhc = 197.32858 MeV fm)

Die J=1 - Mesonen kommen recht gut heraus. Da das physikalische
2 einen betridchtlichen Anteil an sinem sS-Quarkpaar hat,
kann seine grosse Masse qualitativ erklirt werden. Schwierig-
keiten macht das T : seine viel zu niedrige Masse bleibt

unverstanden.
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2.2 Das qzﬁz-System

Als Nichstes studieren wir Baryonium, bestehend aus zuwei
Quarks und zwei Antiquarks, etwas ausfilhrlicher. Dieses
System ist deshalb interessant, weil es das kleinste ist,
dessen Color~Freiheitsgrade nicht vollstiandig durch die
Gesammtstruktur festgefroren sind, wie z.B. bei den qg =~
Mesonen ({3} ® {3} -» {13) oder den q3 - Baryonen ({3} ® {3} ® {33
—» {13). Das Baryonium kennt zwei Wege, seine Quarks und Anti-
quarks zu Color-Singletts zu koppeln.

262 - Basis

2.2.1 Zustiande in der q

Die Zustandsfunktion, die unser System beschreibt, enthilt
neben dem Raumanteil noch Color (SU(3)C) - 5 Spin (SU(Z)S) -
und Isospin (bei uns SU(Z)F) - Anteile. Diese wollen wir nun,
ausgehend von den Ein-Teilchen~Zustanden, konstruieren. Es
ist sinnvoll, zuerst ein Diquark und ein Antidiquark zu bil-
den und diese zum Baryonium zu verbinden ( Alternative : UWeg
iber zwei Mesonen) , da auf diese Weise das Pauli-Prinzip fiir
Quarks bzwe Antiquarks leichter erfillbar ist.

(i) su(3) (color)

g2: By ® 3y = {33 @ {63 §2: 3 ® iR

oe o = Hem HeR

{33 ® 63

™ e H

Die Basisvektoren der 6~-dimensionalen Darstellungen sind syme
metrisch, die der 3-dimensionalen antisymmetrisch bei Aus=-
tausch von zwei Teilchen.




g%5%: M@ {3 = 3 & {8)
]
H = ® [
3y @ {6} = {8y @ 003
» AR
He[H - T e
L
{6 ® 33 = 8y ® {103
O ® Bj - Pq-; _Jﬂ
- -
{6 @ 61 = {3} © {8 & 27

Mo [ e e D

Da nur Color-Singletts physikalische Zustinde beschreiben,
bleiben uns, wie bereits erwshnt, zwei Mdglichkeiten

€335 €335 (3>
{6} 5 {6} ; (13>

3 @ 31 —» 3

und 6] @ (63 —» 13

Im Folgenden wollen wir die schon beniitzte Schreibweise
beibehalten : im Ket stehen an erster Stelle Angaben iiber
die Quarks, an zweiter die ilber Antiquarks und an letzter
die iUber das ganze System. Allerdings wird der Gesammt-
color spidter weggelassen, da er immer {1} sein muss.

Ausgedriickt durch die Ein-Teilchen-Zustinde :

— 1 — - - —_—
(3 31; O =————(bb-b“b-bb+bb
{335 {33; (13> 5 gbg Qg gbbg + gbg

+ rgrg - rggr - grrg + grgr (2.1a)

+ rbrb - rbbr - brrb + brbr )
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- 1 - - -
1163 63; i3> = & ( rrrr + bbbb + gggg (2.1b)
+ % ( bgbg + bggb + gbbg + gbgb
4+ rgrg + rggr + gQrrg + grgr

+ rbrb + rbbT + brrb + brbr ) )

(ryb,g) ist das fundamentale Triplett, (-r,b,g) das Anti-
triplett der SU(S)c .

(ii) su(2) (spin und Isospin)

Quarks und Antiquarks sind Spin 1/2 - Teilchen; die leichten,
auf die wir uns beschrinken, bilden ein Isoshin-Doublett.
Daher kann der Isospin wie der Spin mit den Methoden der
SU(2) - Clebsch-Gordan-Kopplungen behandelt werden.
(In den folgenden Formeln bezeichnen wir die irreduziblen
Darstellungen mit ihrem Isospin statt ihrer Dimension,
dim = 21+ 1)

g ,q /2 © /2 = 0 @ 1

Die I=0 - Darstellung ist antisymmetrisch, die I=1 symmetrisch

unter der Vertauschung von zwei Teilchen. _

q252 0 ® 0 = 0O
8 ® 1 = 1
1 ® 0 = 1
1 ® 1 = 0@ 1@ 2

Da die Clebsch-Gordan~-Reihen der SU(2) wohlbekannt sind,

verzichten wir auf die Angabe der Young-Tableaux.




Hier sind die Zustinde mit ihrem Ein-Teilchen-Inhalt :

Cudllud]
11;1;00> = fl‘s" (uuda + {ud}{Gd} + dddd)

10;0;00>

1031;11> = Cudldd

11;0;11> = wulud]

1131311 = 'T%" (vu{ud} + {ud}dd)
1031310 = - [udl{ud}

1130;10> = {ud} [ud]

1131310> = Jf—éq (uulc - dddd) (2.2)
{0;1;1-1> = fud]uu

1150;1-1> = dd{ud]

113131-1> = é; ({ud}Ta + dd{ad})
1151;22> = uudd

11;1;21> = - I’}‘ (uuitdl - {udldd)
11;1;20> = ng (uutd - 2{ud}{ud} + dddd)

11;1;2-1> = é" ({udl}uu - ddiud})
151;2=-2> = dduu

Dabei haben wir gesetzt

(/2 /2> u = =11/2 =1/2>
(172 =-1/2> g = /2 /2>

c
"

a
[

Macht man die entsprechenden Identifikationen mit t und ¢ ,
so kdnnen aus dieser Zusammenstellung auch die Spinzustande

abgelesen werden .
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Der gesammte Baryoniumzustand ist das direkte Produkt von
Color-, Spin~ und Isospinteil

18> = icy 11y 13> ’

wobei darauf zu achten ist, dass die Quarks und Antiquarks
das Pauli-Prinzip erfiillen, deh. |B> muss das Vorzeichen
andern, wenn zwei Quarks bzw. Antiquarks vertauscht werden.
In Tabelle 2.1 sind alle Zustidnde aufgefihrt, die dieser
Bedingung genligen.

Ohne Berilicksichtigung der magnetischen Quantenzahlen existie-
ren zwanzig Baryoniumzustinde (aufgebaut nur aus u- und
d-Quarks) , die wir mit B1 bis B20 bezeichnen. Sie bilden

eine orthonormale Basis im q262-Hilbertraum (ohne Orts-
raumanteil) ; diese wollen wir Diquark-Antidiquark- bzw.

qzaz - Basis nennen.

2022 C- und G~Paritit

Die C-Paritit wirkt wie folgt auf den Ein-Teilchen-

Zustanden
P - ~ ~ —
Cu = u ce = ¢ Cr = T
Cd = d Ty = 4 Cb = b
A —
Cg = g
Lad - 203
Cu = u ar = ( )
P T P I
Cd = d Cb = b
A‘
Cg =

Die C~Paritdt eines Viel-Teilchen-Systems erhidlt man, indem
man C auf jedes Teilchen einzeln anwendet. Wie fiihren die
Rechnung zuerst explizit an einem Beispiel durch.
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Tabelle 2.1

{Néﬁ jq iq {Na} ja ia J 1 Bezeichnung
3y o o 33 0 o 0 o B, {(3,0)0;(3,0)0;00>
33y 1 1 11 By, 1(3,0)0;(3,1)1311>
8y 1 3% 0 o 101 By 1(3,1)15(3,0)0;11>
By 1 0 0 B, [(3,1)1;(3,1)1;00>
o 1 Bg [(3,1)13(3,1)1301>
0 2 Bg 1(3,1)13(3,1)1;02 >
1 0 Big 1(3,1)1;(3,1)1;10 >
101 Big  1(3,1)15(3,1)1;11 >
12 Big 1(3,1)15(3,1)1512>
2 0 Big 1(3,1)13(3,1)1520 >
2 1 Big 1(3,1)15(3,1)1;21>
2 2 Bog  H(3,1)15(3,1)1522>
63 0 1 {63 0 1 c 0 B, I(6,0)1;(6,0)1;00>
0 1 B I(6,0)1;(6,0)1;01>
0 2 B, I(6,0)1;(6,0)1;02>
{6 1 o 1 1 By, [(6,0)15(6,1)0;511 >
{63 1 o0 6y 0 1 1 1 B,y 1(6,1)05(6,0)1;11>
{6y 1 o 0 O B, [(6,1)05(6,1)0;00>
1 0 Bg |(6,1)0;(6,1)0;10 >
2 0 B, 1(6,1)0;5(6,1)0;520>

Di Notati i Ket ist N j i s(N_pj-)i-3 J1I
ie Notation im Ket is 1( q’Jq)lq’( quq)lq, v

Die Nummerierung der Zustinde
Gesammtquantenzahlen J und 1.

richtet sich nach ihren
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lo;1310> = - [ud]{ud}
11;0;10> = {ud}lud]

1 . -
11;1310> = i (uuTG - dddd)

- [0d1{ud}
{udilud]

8!1;1;10) = ‘é% (GGuu - dddd)

~N
Cl0;1;10>
EI1;D;10>

Nun stehen wir vor einem Problem. In unseren Zustandsfunktionen
kommen keine Terme wie udud vor, wo alsc die Antiguarks an
erster, die Quarks an zweiter Stelle stehen. Das Pauli-Prin-
zip verlangt, dass die totale Zustandsfunktion antisymmet-
risch ist bei Austausch von zwei beliebigen Fermionen. Unsere
Funktionen sind also nur Kurzschreibweisen, da in den voll
ausgeschriebenen auch Terme wie udud , uudd etce. auftreten
missene. Unsere Schreibweise entspricht der Einfihrung einer
Standardreihenfolge der Teilchen : alle Quarks stehen vor
allen Antiquarks. Wir bringen also die Ausdriicke udud etc.
durch Vertauschen der Fermionen mit den Antifermionen in

die Standardform zuriicke Da wir von jeder Sorte zwei Teil-
chen haben, missen wir eine gerade Anzahl von Permutationen
ausfihren. Das Vorzeichen der Zustandsfunktion bleibt daher

unverindert. Wir erhalten

Clo;13;10> = - ;03105

C11;0;10> - 1031310>

€11;1310> = \131310>
Fuhren wir dies fidr alle Isospin-Zustidnde aus, so finden wir

oL =i +1 .
Cligzis11.> = (=1)71772773 li s 51-1.D
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Wegen dem Vorzeichenwechsel von 13 konnen nur neutrale
Teilchen Eigenzustinde der C~Paritat sein : 13=!J
(Ladung @ = I,

verschwindet) . Weiter mischen diejenigen mit asym-

s da die Hyperladung Y in unserem Fall

metrischen Quark-Antiquark-Isospin i1;£i2 s, sodass die
Eigenzustinde die Folgenden sind

isi;10)>

Ei Jiziz;10>

SEY =i, . L.
C, lig5i,51008 * (-1)11712 1,358,510

. c s 1 s .
mit li31,511,0, = 5(111;12;119 Eoliyi,511.0)

Beachte, dass i1 nicht stwa durchgehend den Quark-Isospin
bezeichnet ¢ bei dieser Zuordnung kommt es auf die Posi-

tion im Ket an.

Wir haben EI statt C geschrieben, um hervorzuheben, dass

dies erst die Wirkung auf den Isospinanteil ist, und die

folgende Zerlegung eingefihrt

c! = ¢l (-nls (n steht fiir neutral)

Was wir bis jetzt haben, ist noch nicht die ganze Wahr-
heit. Um unsere Standardreihenfolge zu erhalten, haben wir
die Fermionenfelder vertauscht und dies beeinflusst natir-
lich auch den Color- und Spinanteil.

Man Uberzeugt sich leicht, dass die Ersetzung r &b T ,

b «» b, g «» § und anschliessende Permutation die Color-
funktionen (2.1) nicht dndert: cC = 1 .

Die C-Paritdt wirkt nicht auf dem Spine. Die Vertauschung

liefert wegen

Cigmyd,mylam> = (02705 m, 5, mlam>

eine Phase, sodass gilt




3=

AJ\ . 43" s s
C13433,33352 (-1)31%9277 13,53,5335

Das Ergebnis lautet damit

_ I
= C_ (-1)°3
N AC AI AJ
c,= c¢C,¢
(2.4)
. _ _aNFa+io=3 e
wobei C, = (=1)717Y2 fir i, = i,
c, = il (3t rur 1, 4 4

Die C=Paritit hat den Nachteil, dass sie nur fir neutrale
Mitglieder eines Isospin-Multipletts definiert ist. Man fuhrt
deshalb die G-Paritit ein, die fir das ganze Multiplett gilt.
Sie wird definiert als

€ = €™l (2.5)
Man kann zeigen,dass

i I-1
etV I2 111> = (-1)7 T8 M-I (2.6)

Wir beweisen dies zuerst fUr Ein-Teilchen-Zustinde und erwei=-
tern das Resultat durch Induktion auf die aus ihnen Gebildeten

exp(%ieﬁ-’t") = cos% + 1 A% sin

@ =, n = (0,1,0) eingesetzt




]
8

exp(2iTT,)

woraus folgt
et TI2 172 1,> = (-1)V2-13 yq/2 -1,

Sei also (2.6) fir i, und i, bewiesen. Dann pflanzt sich das

Gesetz durch alle Kopplungen weiter :

S <i1m1izm2\ 113> |i1m1>\12m2>

m‘mz

%_“z<i1m112m2\113> (-0 ™Mliem

151,511,

"~
iarl

e 2 111;12;113>

x  (=1)'2""2\i-n >

Die Auswahlregel verlangt m1+m2 = 13, die Gesammtphase ist

also
(_1)11+12-13

Wir dndern die Summationsindizes zu m, == k1 s my,=- k2

und beniUtzen
. . i +i, -1 . . ~
<11m112m2l113> = (=1)"17"2 <11-m112-m2\1-13>

.(\A 3 L3 * .
et T2 i 3i311,> = ka Ciqkqih N T=I1,> Ligk Dlik,>
4 ™~2

x (-0)t1*iz~ly (q)I=1471;

0T Ligsist-1) qeeode
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.Ph
Der Term el"IZ dreht somit die dritte Isospinkomponsente,
die die C-Paritidt gedndert hat, wieder zurick und macht die

Phase 1.,-unabhidngig

3

G 1113>

]
®
N
o
—
=i
0
Vv

iw? 1
e 2 ¢, (-1)'3 11-15>

I+1
)

= c (-1)I3 (-1 3111,

c, (-0 1>

Mit diesen Informationen konnen wir Tabelle 2.2 erstellen.

|
Wenn wir C und G fir ein qNEN-System (man mache sich klar,

dass diese Paritidten nur dann definiert werden kdnnen, wenn
gkeichviele Teilchen wie Antiteilchen vorliegen) bestimmen
wollen, missen wir die Vertauschungen von Quarks mit Anti-
quarks zihlen, die bendtigt werden, um die Standardreihen-
folge nach der Anwendung von 6 wieder herzustellen. Wie man
leicht einsieht, sind es N mod 2 Permutationen. Damit
lautet die Verallgemeinerung von Cn
c® (-n*a7 g (-1dg* g ()"

Cn

c, (-1)1  gilt weiter.

Die Beziehung G

c

Bei den gewthnlichen Mesonen ( iq=iﬁ=1/2 R jq=j =1/2 , C

N=1 ) vereinfachen sich diese fFormeln zu

q

C = (-1)3
. ( 1):“_1 ( qq - Mesonen )

=1,
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Tabelle 2.2

Baryeoniumzustand Ci CJ c

B, [(3,0)0;(3,0)0;00> + o+ +
B, |(6,0)1;(6,0)1;00> + o+ .
B, 1(6,1)0;(6,1)0;00> + 4 +
B, 1(3,1)1;(3,1)1;00> v o+ +
Bg |(6,0)1;(6,0)1501> + o+ +
Bg 1(3,1)1;(3,1)1;01> +  + +
B, |(6,0)1;(6,0)1;02> + o+ +
Bg  1(3,1)1;5(3,1)1;02> + o+ +
Bg |(6,1)0;(6,1)0;10 > + - -
Bag |(3,1)1;(3,1)1;10> + = -
Bq1 |(3,0)0;(3,1)1;11> Byq+Byy ¢ - o+ -
By, 1(6,0)15(6,1)0511> By,+Byg - 4+ -
Bys |(6,1)0;(6,0)1;11> Byy=Bqg ¢ + o+ +
By  1(3,1)15(3,0)0;115 Byq=B14 ° + 4+ +
B15 |(391)13(3,1)1;11> + - -
Bag [(3,1)15(3,1)1312> + = -
B17 |(6!1)05(6’1)U;20> + + +
Byg 1(3,1)13(3,1)1;20> + o+ +
819 l(3!1)1;(3’1)1;21> + + +
B |(3,1)1;3(3,1)1522> + 4+ +




2¢2.3 Die Dimeson~Basis

Fir viele Belange ist es glinstiger, die Zustinde in der
(qﬁ)z- bzw. Dimeson-Basis zu kennen. Die Symmetrieverhilt-
nisse der Quarks und Antiquarks sind hier zwar nicht so
offensichtlich wie in der qzaz-Basis, doch die physikalischen
Aussagen konnen in diesem Bezugssystem leichter abgelesen
werden. Es werden auch diejenigen Zwei-Teilchen-Operatoren
diagonal, die es in der Diquark-Antidiquark-Basis nicht sind.
Man kann sich Baryonium direkt aus zwei Color-Singlett- bzw.
Color-Oktett-Mesonen aufgebaut denken.

(1) su(3)

qq @ 3 ® (33 {1} @ {83

ae{ - QQEP

3

@ 8 © {83 @ {i0y® 010} @ 0273
E:® n Qb ‘Q ]® II]QED

- frenad
— b

(q@)? s @ M
H e
{81 ® 8}

H e

i
A
-—
w

Die Kombinationen {13 ® {8y = {8} und {8 ® (11 = {83
interessieren uns nicht, da sie kein Color-Singlett ent=-
halten. Wir suchen nun eine unitidre Transformation U ,
sodass gilt

(1{3}; {33; {13>> <({13 FAUL IR AL D
= u
€63 ; {63; 113> 1{83; {8}; (N>
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Ihre Matrixelemente sind

Wir
wie
und
wir

(ii)

u = <G ;MMM >

11

Uy, = Z{By; {Z; | {8y;8Y; 3>
Uy = <65 {B1; {31 M3; MU
Uy, = £ {63;{63; {11 {6}; {83; N>

konstruieren uns also |{13; (13; {1} und |{8}; {83; (13>,
vir es in (2.1) flir die anderen zwei aufgefihrt haben,
bilden die Skalarprodukte. Nach einiger Rechnung finden

s s D>+ [ 27 148y; ey v

14315 4335 {11 3
0y > - [ Mey; ey 01>

1{63; &1 ; 11

su(2)

Das Vorgehen ist hier das gleiche wie oben ¢ Konstruktion
der (qﬁ)z-Easis und Berechnung der Skalarprodukte. Wir
verwenden die Indizes q (Diquark-Antidiquark) und m (Di=-

meson) zur Unterscheidung der zwei Basen.

o

1 3
1050305, = 5 10;0;05, + 73 151300
3 1
|1;1;0>q = "$10;0;05, - 5 131500
1 . 1
\0;1;1>q = 3 \D;1;1>m == \1;0;1>m + |3 \1;1;1)m
1 1
\1;0;1>q = -5 1051510, + 5 \5051) + % V13151,
i
\1;1;1>q = !5 1051315 + l-;— \15051>,

1151523, 115152,




Mit diesen Formeln ausgerlistet, kdnnen wir den Mesonen-
inhalt der Baryoniumzustinde angeben. Die Rechnung besteht
nur aus Ausmultiplizieren, ist aber wegen der Anzahl der
qzaz-Zusténde ziemlich langwierige. Wir filhren sie nur an

einem Beispiel vor

o
]

1(6,0)15(6,0)1;00> = |{61;4863; (NS lo;0;0>§ \1;1;0>£
16 (3102 + B wd) (Tl - Tl

= 1edt (r%m;\o); - oyl 21y loy - J_-f’;n>;l1>‘f'>

NI

mit den Abkiirzungen 16 1{61; {61; 11D

10, = 10;0;0), D, = 115150)
Wir ordnen zu
losgloy = 77
TSI
\1>,3 l0>:, = WL
5 Wn = Qs

mit den qg - Mesonen, was J und 1 betrifft, die zu dem
totalen Spin und Isospin gekoppelt sind, wie es der
Baryoniumzustand verlangt.

o, = ([t - [Tf) (Fop - 1w + 2uw - Tgg)

2 a1 41 {6 a1 4 6 1 .1 20 a4
% 2 'Z - 337 YRR + 7 W W - % S; g
SEYr e B -Tee . foe
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Die hochgestellte Zahl gibt die Color-Dimension an ; das
ganze Zwei-Mesonen-System wird natiirlich zu Color-Singlett

gekoppelt.
Auf diese Weise entstand Tabelle 2.3 .

2.2.4 Wechselwirkung

Wir haben bereits eine ganze Menge Informationen Uber
Baryonium : wir kennen die mdglichen Quantenzahlen und den
Mesoneninhalt. Nun stellen wir uns die frage, wie die Zu-
stinde in der Natur vorkommen. Im wechselwirkungfreien Fall
konnten wir eine beliebige Linearkombination von solchen
mit gleichen Quantenzahlen als physikalisch annehmen. Ihre
Masse wire nach den Formeln aus Abschnitt 2.1 M = 1463 MeV
und ihr Radius 1.14 fm ; sie wdren also vollkommen entartet.
Ihr Mesoneninhalt wiirde natirlich von der gewdhlten Linear=-
kombination abhingen.

Dieser Fall ist zwar trivial zu handhaben ; wir dirfen aber
nicht erwarten, dass wir auf diese Weise mehr als eine grobe

Abschitzung der mittleren Masse von Baryonium erhalten.

Einige Autoren (z.B. Jaffe, Aerts) haben sich im Rahmen
des Bagmodells mit qzﬁz-Systemen auseinandergesetzt und

als Wechselwirkung den Ein-Gluon-Austausch betrachtet

In ihren Arbeiten steckt aber eine Unsicherheit drin : sie
haben nicht alle Graphen beriicksichtigt, die Zweite-Ordnung
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Tabelle 2.3

Baryoniumzustinde in der Dimeson-Basis

J=U,I=D

31 12\27) + Z\W + Z“"w> +r%_\\§g>
1228 + Tiwvd + Do + B

- g ¢ 12\'W>8 - T+ fige
oy = Tt + Foov) - G -@\%‘9’
1 3.8 ., T 1

5, = 2! - fieot - i) %\391
{6’ 2 2

S - Twe® - Bl + 1"

Bg = r—g\'z'\r>1 +I§\'\TQ>1 + -;-\w3>1 + %
- Cﬁ-z-\r[\oe - S—G_-‘\'\T'pa I?\mg‘)a -J—:S >

%\wg‘; - r‘%\gwg

4
+ -12-\'[\">8 + l\Wfba - %-‘\wg‘g 'Jg‘\gb»e
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3J=0,1=2
3, = S+ Tige' - Tion? - Ligg
o - bl B! Tt - Figs?
J=1,1=20
By = %j‘?w>1 + @\w'ﬁ + %\‘WS>1 + 1\3T>1
- Bf - B - Zing? - Zigw?
g = Ziged + Ty - Bwgy' - Fige
v Tgwsf + Dogf - 3\Ts> - g’
J=1,1=1
Bq1 %\'291 %‘S’Z>1 - 1E\T“’>1 - %‘\“ﬂg
» B! - B!+ Bog! - T « B!
+ S0 - %\S'DB - Hwef - e
+ Birgy® - Bigr? + Thog? - Figwd + Bigey’
812 = ‘l:l_é_;\?_g\; - ITG_Z—‘\S'zg + %\Tm; + %\Q‘T)“
+r§\v3>1 - @\379 - Ry + Fged +Figey
10"+ \s'z> - vy - Zwd
l—1-_—‘\u3> 5*) + T—\wg>8 - %E\S(@B ‘?‘S@B
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{6" 1 3
- Y

{6 1
B3 =-72108>

3
» H° + Hg® - T - Fiew
&
12

¢ e - Biem® - B gf + Eigy? - F
Big = P\‘Z§> + E\g’b - %\m.»" - J;—%-\mv>1

- g;'w§>1 + ——\gﬁf‘ _'¥%V¢g§ + g%\guﬁj + ﬁ?
¢ E100? + Big? - Bwe® - Biows

- Fme? + Big? - Tiog® + Tigf + Fige®
Tipe® + Bigg + Fire® + Fieow?

Byg = Slrgy! + Slew! + Dlagy® 3 gt

(& ]
"
N
.
-
]
o

017 = Flowsd + g’ - Tl - Jige”
Big = Floy - {'g\\S‘S>1 * %\\“’"‘g N %:\398
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Fur die Quantenzahlen der Baryoniumzustinde siehe Tabelle 2.1
bzuw. Tabelle 2.2 .
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Storungsrechnung zuldsst. Die fehlende Wechselwirkung ist die

Annihilation

Wir haben ja bereits den analytischen Ausdruck auch fir
diesen Graph angegeben. Im Folgenden wollen wir das Bary-

oniumspektrum berechnen, wobei wir alle Graphen mitnehmen.

Der erste Schritt ist die Bestimmung der Matrixdarstellung
von JSE » ZeBs in der qzﬁz-Basis. Un die Terme wvie ?q‘?q’
F9.F9, die in den Ausdriicken fiir die Graphen auftreten (siehe
Abschnitt 1.2.3) , auszuwerten, konnten wir einen Teil der
Rechnung (qq - und G - Wechselwirkung) in der q262-Basis,
den Rest (qg - Wechselwirkung) in der (qﬁ)z-Basis ausfihren
und zurilcktransformieren. Obwohl die Rechnungen an sich ein-
fach sind, haben sie einen betrichtlichen Umfang : SU(2) -
und SU(3) - Matrixelemente, danach direktes Produkt von Color,
Spin und Isospin den Kopplungen entsprechend. Wir haben statt-
dessen ein Computerprogramm geschrieben, das die Ausdriicke
vom obengenennten Typ in der Vier-Teilchen-Basis auswertet,
sie in die korrekten SU(2) = und SU(3) - Zustinde transfor-
miert und gerade die Kombinationen, wie sie in den Graphen
vorkommem, berechnet.

Wir machen die folgende Aufspaltung

At
R Ak,

i
X
o]
P~
)
(v ]
[»]
+
>
[vp]
-
L —_

RAEAN = x
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mit N R
Go = oo Fl.?i'
61 = \?L’ -“1"1' ?i.*l'
fo = HG-TTR MR D G-
R 3 G- Ty TR (Fpfe e D Gy s b

Die Indizes i und i' beziehen sich auf alle
Teilchen, j auf Quarks und k auf Antiquarks

Jeden dieser vier Operatoren E und ﬁ konnen wir durch eine
20 x 20 - Matrix darstellen (20 Baryoniumzustinde, keine
Abhdngigkeit von den magnetischen Quantenzahlen). Wie nicht
anders zu erwarten, srweist es sich, dass die Matrizen
Blockdiagonalform haben, sodass nur Zustinde mit gleichen
Wuantenzahlen untereinander mischen. Dazu gehdrt auch, dass
im Fall J=1,1=1 die 5x5 = I"latriizen (Basis By, bis 815)
nach einer Transformation auf Zustdnde mit definierten C-
und G-Paritdten (siehe Tabelle 2.2) zerfallen in 2x2 - und
3x3 - Blockee. Wir sehen hier eindricklich demonstriert,
dass die (QCD-Theorie C- und G-invariant ist.

€ ist in allen Zustinden diagonal und hat den UWert

o

6, = o FyeF 3 (Er? - =ep?)

o oL i
1 1 4
= 7 (€ - 4C{3}) = 5 (0-43)

C{N} ist wie in Abschnitt 2.1 der Wert des
quadratischen Casimiroperators in der N-=dim.
Darstellung der SU(3)
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In Tabelle 2.4 geben wir die Matrixdarstellungen von 61, 30

und 31 in der qzaz- Basis an. Sie enthalten die meiste Infor-
mation liber Baryonium und kinnen bei allfdlliger Weiterrechnung
wiederverwendet werden. Ist bei einer Matrix ein Vektor hinzu-
gefligt, so kann sie als dyadisches Produkt dieses Vektors mit

sich selbst aufgefasst werden

mn = 1)

Miy> = <xiydlxd

Die Operatoren KO und 31 sind spezielle Projektoren, die
aus einem qg - System dessen Anteil mit bestimmten Color-,
Spin~ und Isospinquantenzahlen herausfiltrieren. Zum Beispiel

( 1 . |I=0>

(

1
7
1
4

-7 .'fa) \1=1> o . \1=1}

Unter Beniitzung der Formeln aus Abschnitt 2.1 kann man die
Skalarprodukte T9.79 etc. durch Casimir's ausdriicken und
sich so die Projektionen auf beliebige qq - Quantenzahlen

konstruieren. Wir fihren dies an einem Beispiel vor

P = Bt pdpl
Wir verlangen pC Ni=3> = 1« [{I=03>

P (M3 = 183> 0+ HN3={83>

A

und setzen an pC a FO.F9 4,
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Tabelle 2.4

Matrixdarstellung von 61, Ro und 31 in der qzaz-Basis

J=20 » I =20 Basis @ B1 » 82. 83’ 84
1 o {3/2 0
0 -1/2 0 3/2
G =
1 G/Z o 11/6 0
o {372 0 1/3
2 = -6 6 2
1 [ =16 3 3 -{54 S . [-T8
A E S : X = -
o B8} _[6 3 s & | 4\ .06
6 -Ea -Is54 18 6
6 -{54 {6 -6 (&
- (54" 9 -3 {54 -3
& -3 1 =46 {8’ 1
-6 (5 -{6" 6 -{&
J=0,1=1 Basis ¢ 85, 86
( -1/2 ls/z')
G =
1 {3/2 /3
1 -8 1
Ao = % 3 1x> = %
-{g" 6 -{6"
3 {6’ {3
Ry = % 3 x> = %
{6 2 {2
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J=0,1=2 Basis ¢ B,, B

7 8
-1/2 l3/2 0 o
G1 = . AO = A1 =
{(az722 /3 1] 0
J=1,1=20 Basis ¢ Bg, 810
( 1 Ul)
G =
1 0 0
= - = A H \ x = =
0 4 -5 6 1 2 -{-6—‘
J=1,1=1 Basis ¢ 811. 812, 813, 814, 815

1/3 0 -1/{0 o 0

0 =1/6 0 -1/{22 o©
G, = -1/ 0 -1/6 0 0
o -1/ o 1/3 0
0 0 0 0 0
2 oz 2 4
z 1 1 [z &
SR I R T T A A FENPS
2 2 {7 2 4
s (& e 4 8

,mbq;]&
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6 1 -0 -2
e 3 -1 {2
1
Ay =g -0 - 3 e
-2 {2 e 6
-4 -8 -{8 -4

Transformation in eine Basis mit definierter C- und G-Paritat

1 1

1
(BB s 38127 B3) e 5
/3 /22 o 0
1/{Z° =-1/6 0 0
G, = 0 0 1/3 =1/{7
0 o -1/{2" -1/6
0 0 0 0
0 0 ) 0
1) 0 0 0
]
Ay = 3 0 0 2 {Z
0 0 2’ 1
0 0 {a 2
4 {8 0 0
{8 2 1) 0
S
Ay = % 0 0 2 P2
0 0 2 1
0 0 -{8 -2

-4
(8"
{8

- 4
8

@

1
(849+844) s 5 (8Byp+8q3) 0

0
0
0
0
0

B

15
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Basis

1 = 0
Basis ¢
0
. Ao
-2/3
-{6
3 x>
6
Basis :
H A0 = 0
Basis ¢
H A = A =

we

16




3 a%(ﬂ-%)+b =--§a+b = 1
8y : a%(S-%)-ﬁ-b = -16-a+b = 0
dehe P = - 3 FeF + 5
analog
P - 1 . 399
P = 4 S5
P = 7 T T

Die Diagonalelemente dieser Operatoren P fiur ein Viel-Teilchen-
System geben gerade die Wahrscheinlichkeit, ein bestimmtes

Meson darin zu finden. Zur Veranschaulichung :
Wy = pldy  + aldy
Wy = ridy o+ sld)

N})] und IW)Z sind die Zustdnde in einer beliebigen, l(b>1
"~
und “b)é die in der Multimesonbasis. P wirke folgendermassen

PIby, = 1 -1
Bldy, = o -1,
Somit
PRIV = 1pl? W IBIW, = i
W 181wy = r*p WIB1WD, = irl?

Die Ausserdiagonalelemente sind nicht so einfach zu deuten 3

Sie snthalten Information iliber die relativen Phasen.
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2.2.5 Das Baryoniumspektrum

Wir bilden aus den Matrixdarstellungen von Eu 0 E1 » ﬁo
und 51 den Operator

RA 8 8 A A

X AR = ‘/Ub G, + /}*l 1 Y YRy v VYA

und diagonalisieren ihn. Seine Eigenvektoren fassen wir dabei
als die physikalischen Baryoniumzustinde auf, seine Eigenuwerte
‘A als die Beitridge der Zweite-Ordnungs-Graphen zur totalen
Energie. Sie sind in Tabelle 2.5 zusammengestellt.

Die effektiven Massen und Radii berechnen wir daraus nach den
Beziehungen aus Abschnitt 2.1 . Auf diese Weise erhalten wir
das Baryoniumspektrum, das in Abb. 2 dargestellt ist. Fir

die Zahlenwerte verweisen wir auf z.B. Tabelle 2.8 .

Hervorgehoben ist in Abb., 2 die Aufspaltung der Energie-
niveaux, die der Annihilationsgraph gegeniber dem Ein-Gluon-

Austausch bewirkt

S - - an mar w  m - - -

gluon gluon exchange +
exchange annihilation

Als teilweise Kontrolle dient uns der Vergleich mit dem
Jaffe-Spektrum (gluon exchange)

Der Uebersichtlichkeit halber ist die Darstellung unterteilt
in J=0- (links), J=1- (Mitte) und J=2 - Zustinde (rechts).

Das Hauptmerkmal des Spektrums ist die Anhebung der Energie
durch die Annihilation : kein einziger Zustand erhdlt eine

niedrigere Masse als im Jaffe-Spektrum. Die Annihilations-
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wechselwirkung stellt sich als "abstossend" heraus (vgl.
Abbe 1 ). Charakteristisch ist die Art der Aufspaltung :
widhrend im Jaffe-Spektrum vollkommene Isospinentartung

{ herrscht, erfahren bei uns die I=0 - Zustinde den grossten
Energiezuwachs, die I=1 einen mittleren und die I=2
bleiben unveridndert. Dies wird verstandlich, wenn man sich
vor die Augen hilt, dass die Starke, mit der ein System
aus Quarks und Antiquarks an der Annihilationswechselwir-
kung teilnimmt, durch seinen Anteil an qﬁ-—Paéren bestimmt
wird, die die Quantenzahlen eines Gluons tragen : 1=0 ,
J=1 und {N}= {8} ; nur solche Paare konnen annihilieren.
In unserem Fall bleiben dies I=2 -~ Zustande unbeeinflusst,
weil hier alle Ein=-Teilchen-Isospins parallel ausgerichtet
sind und deshalb kein qg~- Teilsystem I=0 haben kann.

2.2.6 Zerfalle und Energiebreiten

Wir wenden uns nun den ZerfiZllen von Baryonium zu. Die
Moglichkeit, das System als ein Dimeson aufzufassen, legt
es nahe, als dominanten Zerfallsmechanismus die Dissoziation

in zwei Mesonen anzunehmsn.

\/
$I
- .
-
A X
|
Baryonium — zwei Mesonen

Natiirlich sind auch Prozesse denkbar wie
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AL._J
Se

Da sie alle aber Graphen mindestens zweiter Ordnung in g
bendtigen, dirfen wir sie gegeniiber der Dissoziation in

erster Ndherung vernachlidssigen.

Mit dieser Annahme ktnnen wir neben den moglichen Zer-
fallen auch ihre Partialbreite angeben. Die Lorentz-inva-

riante Form der Energiebreite des Uebergangs

B — a + b

ist
1 v 2 . 2, .
Tosash = Zmg S Mggapp!™ dlips(mgspgspy)
(2.7)
JAB—>a+b ist das invariante Matrixelement der Zerfallswechsel=-

wirkunge. Da wir nur Prozesse nullter Ordnung bericksichtigen,
ist es proportional zum Skalarprodukt von Baryonium B mit den
beiden Mesonen a und b (kombiniert 2u einem Zustand \a,b>).

2
|‘MB—reHbl
priformierte Color-Singlett-Mesonen a und b im Bag zu finden

ist dann im wesentlichen die Wahrscheinlichkeit,

| M | 2

B—> a+b = > vgian

(3 ist eine universelle Konstante fir alle Baryoniumzust&dnde.
Die Wahrscheinlichkeiten Yg|ab erhalten wir, indem wir die

Eigenzustidnde, die uns in der q q - Basis bekannt sind, in




die Dimeson-Basis transformieren und dort die Quadrate der
entsprechenden Amplituden bilden. In Tabelle 2.6 sind die
Amplituden aufgefiihrt, Tabelle 2.7 enthidlt die Wahrschein-
lichkeiten.

Lips in (2.7 ) steht fiir lorentz invariant phase space,
dLips(s;pa;pb) ist das Zweikorper-Phasenraumelement

~CM
_ 1 4 a V931 _cnm
diLips(s;p_sp,) = Sp=-p_~p,)dp—— dld
a’"b (2“)2 a b 4r;\ a
CM : centre of mass

p ¢ 4 - Impulse
q : 3~ Impulse

In unserem Fall hingt der Integrand (2.7 ) nicht von den
Ortskoordinaten ab, de.h. die Mesonen werden isotrop aus-

gesandt. Die Integration bereitet daher keine Schwierig-

keiten
‘*CM
[—' 3 —E— L 4 U [ ] qa‘
B—» a+b 8T Blab 2
m
B
mit der Bedingung P = Pg= Pgt Py die uns er-
~CM a
laubt, q = lqa | auszurechnen
pg = (mg,0) p, = (E,,7,)
also a, + 9, = o, Ea + Eb = mg
2 2 2 2
(mB-Ea) = mg - 2mg E, + my + T
2 2 -2
= Ep = my *+ 4
2
deho e mg m, = my
= — <+
a 2 2 m
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und q2 = E2 - m2
Weiter verbietet die Einschrinkung q2 > 0 Zerfalle, die
den Energie-Impuls-Satz verletzen wirden. Sie ist gleich-

bedeutend mit

somit sind alle Grossen in {ﬂB—va+b bekannt, zusammen mit

dem Kriterium, wann ein Zerfall uberhaupt moglich iste.

Noch eine Warnung zu den Wahrscheinlichkeiten fur pré-
formierte Mesonenpaare : Wir haben nur den Color-, Spin-
und Isospinanteil der Zustandsfunktion beriicksichtigt, den
Ortsraumanteil aber vernachldssigt. Es ist jedoch zu erwarten,
dass dieser die Zerfallswahrscheinlichkeit ebenfalls beein-
flusst. Falls das Baryonium seine tiefstmdgliche Energie
einnehmen will, miissen sich die Konstituenten von qg-Paaren,
die nach Abb. 1 einen positiven Beitrag zur Gesammtenergie
leisten, hiiten, nahe zueinander zu kommen, da sis sonst ein
gut ausgéprégtes Teilsystem bilden wiirden, das die Masse
stark anhebt. Dieses Argument ist zu qualitativ, als dass
wir damit der riumlichen Korrelation Rechnung tragen kdnnten.
Wir wiirden uns aber nicht wundern, wenn sich im Experiment
herausstellt, dass die Bildung eines (> oder § gegeniiber

? und 7 unterdriickt iste.

Bei den Phasenraumformeln nehmen wir an, dass unsere
theoretischen Baryoniummassen auch realisiert werden und
setzen diese ausgerechneten Werte ein.Flur die gg-Mesonen
hingegen verwenden wir nicht die Voraussagen des Bagmodells -
(siehe Abschnitt 2.1 ), sondern ihre experimentellen Massen.
Wir verlassen damit zwar das reine Bagmodell, doch erscheint

uns dieser Weg zuverldssiger.
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In Tabelle 2.8 ist die meiste Information zusammengefasst,
die wir liber Baryonium erarbeitet haben. Fir die Angabe der
Zerfallsbreiten veruwenden wir

(> 2

Bw = 2996590 MeV

Diese Wahl wird im nichsten Abschnitt begriindet.

Die Zerfallsbreite in ‘W + x , wobei x ein beliebiges

qg - Meson ist, konnte als Abschdtzung der effektiven Breite
gelten, da hier zum einen die obenerwzhnte r&umliche Korre-
lation grob beriicksichtigt wurde. Zum anderen wissen wir,
dass das physikalische 9 zu einem grossen Teil aus sS =
Quarkpaaren besteht. Unser Baryonium enthz@lt nur u- und

d - Quarks, die Erzeugung eines 7 erfordert daher einen

Prozess zweiter Ordnung
G g d s

Weiter muss die nicht vernachlissigbare Ruheenergie der
s = Quarks zur Verfigung gestellt werden. Wir erwarten

somit, dass als einziges das ar - Meson gebildet werden kanne.

2.2.7 Interpretation

Wir versuchen nun, einige bekannte Mesonresonanzen als

q262-Zusténde zu entlarven. Kandidaten konnen nur Teilchen

mit positiver Paritit und I £2 , J £2 sein.
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Tolelle 2.8

BEARYONIUMSFERKTRUM UND ZERFAELLE

60 = ,0098 A0 = .0000 ET&  S548.8HEV OiE  782.5601EV
Gl =-.7001 Al = 1873 FI 133.0HEY KHO 767.0MeV
IFJ G6C MASS5E RADIUS EREITEZ RREITE FROE. LIFS FART.
(MZV)  (FiD) FI+X 10T BEREITE
0+d ++ 671, + 83 718, 718. --» FI FI 135328 677503 716,
++ 1241. 1.03 218, 338. -->» ETA ETA 2123 413732-03 120.
FI FI +1854  .392%-03 213,
++ 14530, 1.14 1. 27. --» ETA ETA »C330 .2253-03 24,
FI ¥l +000% +3355-03 1,
++ 1323. 1.23 2. 2446, --» ETA ETA «0043  ,2170-03 3.
FI F1l +0025  42712-03 2.
GHE 0OWE +4076  +1406-03 172,
RHO RHO «1584 ,1472--03 70,
140 -+ 1200. 1,07 377 397, -~ ETA PI +4126  ,3210-03 I?7.
-+ 1818, 1.22 3. 244, --x ETA FI +0041  .2401 03 3.
OME RHO ¢350%  +1133-03 241,
210 ++ 1111, 1,04 542, 542. -- FI FI1 +«4130  +43560-03 342,
++ 1311, 1,22 1. 243. --» FPI FPI 0017 272803 1.
RHO R0 89320 .113138-03 241,
0+1 ~-- 1135, 1.06 3G7 . 307. --» PFI RHO +4433  +2300-03 07
--  13%4. 1.1¢ ?8. 173, --» ETa OHi +2005  L1565E-03 120,
FI RUO «1376  42383-03 g8,
1+1  +- 1223, 1,07 138, 133, --% PI OiiE 2013 L2270-03 133,
-+ 1333. 1.10 322, 322, -=> FI RHO «A244 ,2421-03 322,
+- 1503, 1.15 133. 148, --» ETA RHC +0730 +1383-03 S
FI  Onc +2133 L2375 03 153,
-+ 14629, 1.18 37 130, --» ¥ RHQO +033546  +2350-03 39,
OMC REO +3000 .9371-04 140,
+- 1693, 1,20 0. 203, --» ETA RIO +G703  +1839-03 39,
RHO RKO +4481  J1239-03 144,
241 -- 1433, 1,14 242. 242, --*» PI RHO «3333  .2422-0G3 242,
0+2 ++ 15629, 1.18 o. 173, --» ONE OHE +3214 ,83532-04 S
RHO RO 2976 +1014-03 ?2G.,
++ 1883, 1.23 0. 171, -=-% OrE OME +0932 .1458-03 2.
RHO REHO «28057  +1517-03 130,
142 - 17646, 1.21 0. 135. --» 0OME RHO «3333  L1351-03 135.

T2 ++ 1629, 1,18 0. 101, ~-» RHO RHO +3333  .1014-03 101,
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IG(JP)Cn ~ Masse Breite 2 - Meson
(mev) (mMev) Zerfille
s* oY oY)+ 975 33 T W
$ 17(0%)+ 983 54 nT
H 0~"(1)- 1190 320 T
B 1*(1%)- 1233 137 T W
f ot (2)+ 1273 179 W
A, 170 )+ 1275 315 w
e oYY+ ~1300 200-600 W
27 schwach
A, 17(2%)+ 1318 110 ]
Vi

(aus : Review of Particle Properties
April 1982 )

D(1285) und E£(1420) haben wir ausgeschlossen, da ihre Quanten-
zahlen in unserem Schema nicht vorkommen, sowie f'(1515) , das
hauptsichlich in strange-Mesonen (KK) zerfillte.

Die Spin 2 = Teilchen haben alle, verglichen mit unserem
Spektrum, eine viel zu niedrige Masse. Das Schuerste, A2(1320),
liegt immerhin mehr als 300 MeV unter unserem leichtesten J=2
Zustand bei 1629 MeV. Eine Interpretation als reine qzaz-
Zustinde wdre daher etwas gewaltsam.

m 2F = ot
€ (1300) , dessen Massenangabe recht unsicher ist, kdnnen wir

Sektor sehen die Verhialtnisse bereits besser aus.

versuchsweise mit 0%(0%)+ Baryonium bei 1241 MeV identifizieren.
Die vorausgesagten Zerfidlle sind vor allem in %% und schwicher
in M die Energiebreite um 200 MeV., Dies widerspricht nicht
den experimentellen Angaben.




Etwas mehr Mihe machen & und S*., &(980) liegt ca. 220 MeV
unter einem passenden qzaz-Zustand bei 1200 MeV. Obwohl der
Zerfall nach 9% Ubereinstimmt, wird eine Erklarung als Bary-
onium nicht die ganze Wahrheit sein.

P21% fallen sofort zwei Resonanzen auf : H(1190)

Bei J
und B(1235). Sie stimmen Uberraschend gut mit 07(1%)- bei
1186 MeV und 1*Y(1%)- bei 1225 iiberein. Die Massenunterschiede
verlieren sich in den experimentellen und theoretischen Un-
sicherheiten, die Zerfille werden korrekt vorausgesagt und
auch das Verhiltnis der Energiebreiten ist richtig. Diese
vielen Koinzidenzen werden kaum zufdllig sein. Eine Inter-
pretation als Baryonium erscheint sehr natiirlich. Sie ergibt
sich zwangsloser als qg - Modelle mit Bahndrehimpuls oder
andere Erklarungen.
An diesen beiden Zustinden haben wir die Konstante FB/(B“)
aus dem letzten Abschnitt gefittet, die in die Energiebreiten
in Tabelle 2.8 eingeht.
Der nichste Kandidat, A1(1275), zeigt wieder eine griossere
Massendifferenz zu einem unserer Baryonia : ca. 60 MeV bis
17(1*)+ bei 1333 MeV. Dies ist zweimal so viel wie die expe-
rimentelle Unsicherheit. Nichtsdestotrotz stimmt die Zerfalls-

art und die Breite iUberein.

Baryonium
G,.P Zuordnung
1°(2 )Cn Masse Breite Zerfille
ot (o) + 1241 218 Il £
12
0"(1%)- 1186 307 e H
1 (1%)- 1225 138 T B

17(1 %+ 1333 322 TR oA,
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Diese Gegeniiberstellung erlaubt uns mit gutem Grund anzunehmen,
dass sinige der seit lingerer Zeit bekannten Resonanzen tat-

sachlich qzﬁz-Zusténde sind.

Zum Abschluss vergleichen wir unser Spektrum mit den Daten
aus einem Experiment, in welchem am CERN gezielt nach Baryonium

in der niederenergetischen pp - Streuung gesucht wurde
p + p —> B + y
Es wurden hier bei Energieen zwischen 1200 MeV und 1800 MeV

einige erstaunlich enge Resonanzen gefunden (Backenstoss,

Tauscher, Pavlopoulos et al.)

Massse Breite Masse Breite
1771 <8 1421 (?) <23
1694 <12 1383 (?) <23
1638 38 1210 <29

Die Evidenz fir die mit (?) Bezeichneten ist schuwidcher als
fir die andereni alle Angaben wie immer in MeV.

Es stellt sich heraus, dass sich diese Resonanzen recht gut
in unser qzaz-Schema einordnen lassen. lhre Energieschérfe
kann allerdings nur verstanden werden, wenn einzig Zerfallse
in T + x zugelassen werden (vgl. Tabelle 2.8) .

In Abb. 3 , welche die besprochenen Resonanzen unserem
Baryoniumspektrum gegeniiberstellt, wurden diese Zustidnde in
alle drei Kolonnen (3 = 0,1,2) eingetragen, da im Experiment
keine Quantenzahlen bestimmt wurden. Es ist jedoch klar,

Proton 1/2) .
Weiter war die Bildung von J=0 - Zustdnden gehemmt gegeniber

dass keine I=2 - Baryonia entstehen konnten (I

den mit J=1 und J=2 , da angenommen wird, dass das pp-System

aus einem relativen S-Zustand reagierts.
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ANHANG

: jaNZ2-1 . . L
Die Menge {N }j=1 bilde zusammen mit der Einheit A
eine hermitesche Basis im Raume der komlexen N xN -
Matrizen, wobei gelte

(i) sp(md)
(ii) Sp(mjmk) = 5 OS.

]
o

Als erstes beweisen wir eine fundamentale Beziehung. Wir
setzen

(D o= éab 6Cd a’b’C,d = 1 see N

ac)bd

Entwicklung nach der Basis

D = A_A + gk mK (Summenkonvention)
ac ac ac
Koeffizienten bestimmen
Sp(Dac} = N Aac = é%b cgcb = é%c
jy _ k - h|
Sp(DaCr‘I ) = Bac S °Sjk = S Bac
J - J
= Sup Seq Mab Mea

ac

bzu, lwca l"lbd = S QS.ab CScci - N CS.ca Cde ‘ (M)




Folgerungen

1)

2)

3)
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Die Matrizen MJ kdnnen als Generatoren einer SU(N) aufge-

fasst werden.

md,mk] = i f il m!
Aus (ii) folgt
F-jkl = -1—1-5 Sp(l'_mj,mk] ml)
Wir definieren C = Nk Mk
Cab = m:c mtb = 5 Sge Sy - % Sac Scb
= NS S, - R Sa
N1 L
C = s=—F A Casimir der fundamentalen

b

Darstellung der SU(N)
(A2)

in (A1) vertauschen und mit (A1) kombinieren

2
kK K NZ-1 1k .k
Mpa Mcqg = 3 2 ScSbd = N Mca Mpg (A3)

Dies ist die Beziehung, die wir beim Annihilationsgraph

brauchen.

Indem wir (A1) mit dem allgemeinen Element qu einer

beliebigen Matrix A multiplizieren und lber geeignete

Indizes summieren, erhalten wir

k k

mTAM = Sp(A) A =~ A (Ag)

2in

ma )t - st - 2 (A5)
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und MK sp(mkay = s A - % SpCA) AL (R6)

Dabei ist (I'I)t die Transponierte von M.

4)

mk md mK = Kk md . WK M3, mi]
_ h] . k o1
= cm + i fjkl m M
= - % md  wegen (A4) und (i)
Es folgt
k 1 . j
fjkl m" M = iSNM
weiter
k o1 1 _k kK o1
fjkl MM o= fjkl m-M o+ fjkll[m oM ]
: k ol . n
= - fjkl m-m + i fjklfkln M
(Antisymmetrie der fjkl)
Zusammen mit dem oberen Ergebnis heisst das
fjklfkln = 2SN <§jn Casimir der adjun-
gierten Darstellung
5) w3, w5, m"] = -f. r, mP md

jnp kng

Andererseits liefert Ausmultiplikation der Kommutatoren

und Beniitzung von (A4)

(md,m™I[m*,m"] = -swmd Mk - g2 <Sjk A
Somit ]
Ipk o = PMd _ 3
TR = S Tinpfkng M M N Sjk A
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