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1 Introduction

Planar N = 4 super Yang-Mills continues to prove itself as the simplest toy model to
develop techniques for computing scattering amplitudes from their singular structure; re-
cent work has pushed analytic ansätze for planar amplitudes up to seven points at four
loops [1, 2]. A remarkable feature which entails this particular facet of its simplicity is its
on-shell constructibility [3, 4]: the use of (four-dimensional) unitarity cuts to construct am-
plitudes [5–8] finds its apotheosis in this theory, and this has led to many fruitful insights,
but there are still outstanding questions about what broader statements about scattering
amplitudes in more general quantum field theories can be induced from these successes.

Although QCD amplitudes remain a few steps behind in comparison, a firm foothold
has been gained at two-loop order for five-gluon scattering [9–11] thanks to finite field
numerical reconstruction of numerators [12] on D-dimensional unitarity cuts; these results
have in turn been processed into more manageable functions [13–15]. A particularly man-
ageable example at two loops is the all-plus helicity amplitude (AP amplitude for short).
Due to its simpler analytic structure, particularly when arranged to separate off the in-
frared (IR) divergence [16], the amplitude can in fact be directly computed with one-loop
methods [17, 18]. Recent work on its subleading-colour structure [19, 20] has led to proofs
of conformal invariance at one loop [21], and an all-multiplicity (all-n) form of a partial
amplitude [22], the first such example.
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In 1996, Bern, Dixon, Dunbar and Kosower (BDDK) [23] conjectured a relation be-
tween the simplest one-loop gluon amplitudes in these two theories. When computed in
D = 4 − 2ε dimensions in dimensional regularisation, they conjectured that for arbitrary
multiplicity n,

AQCD
n

(
1+, 2+, . . . , n+

)
= −2ε(1− ε)(4π)2

[
AN=4
n (1+, . . . , i−, . . . , j−, . . . , n+)

〈ij〉4

]
ε→ε−2

,

(1.1)

where the change in ε on the right-hand-side corresponds to a “dimension shift” 4− 2ε→
8 − 2ε. While the amplitudes on each side were by then well known up to O(ε), there
has been little motivation to develop methods to probe higher orders in ε, and so it has
been difficult to test the validity of the conjecture. A further motivation to do so comes
from recent interest in properties of amplitudes viewed in terms of their expansions in
multiple polylogarithms. It would be interesting to know whether these most accessible
amplitudes, which are highly constrained by their myriad symmetries, are well behaved
and easily predicted when probed at higher orders in ε.

Both the all-plus and the MHV amplitudes have close connections with integrability
and string theory. At one loop, the AP amplitude has been explicitly shown to be equivalent
to the one-loop amplitude in self-dual Yang-Mills theory: the latter was built from the
Lagrangian by Cangemi [24], as well as by Chalmers and Siegel [25] which built on previous
work by Bardeen [26], who computed four and five-point amplitudes directly from all-plus
tree level amplitudes with two off-shell legs, which is very close to the analysis we carry
out in section 2 to all multiplicity.

Moreover Bardeen proposed that the non-vanishing of the AP amplitude at loop level
was rooted in an anomaly associated with the currents in the self-dual sector; recent work
along these lines explores these elemental notions in a manner complementary to the
“amplitudes”-based techniques presented here [27]. Self-dual Yang-Mills has historically
been a theory of interest as it is classically integrable (see [28] and references therein),
and can also be obtained from the compactification of N = 2 strings in 2 + 2 spacetime
dimensions [29].

The technique used by BDDK in [23] for computing the all-epsilon structure of N = 4
MHV amplitude for n = 5, 6 built upon the computation of the four-point string amplitude
by Green, Schwarz and Brink [30], by taking the field-theory limit of the 10-dimensional
open superstring to compute the amplitude in D = 4 − 2ε. Systematic rules which gen-
eralise a string-based computation of field-theory amplitudes were developed by Bern and
Kosower [31], and it was shown that they can also be directly derived from the Schwinger
worldline formalism as derived by Bern and Dunbar [32]. As a computational alternative
to Feynman diagrams worldline approaches maintain significant interest [33, 34] provid-
ing a context to study asymptotic states in scattering problems [35], and for computing
gravitational-radiation contributions to black-hole scattering [36].

Statements concerning the relationship between N = 4 MHV and AP amplitudes can
also be found in the literature. Schabinger [37] has pointed out that dimension-shifted one-
loop N = 4 amplitudes occur in the tree-level O(α′2) string computations of Stieberger and
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Taylor [38], and that as both amplitudes are dominated by cyclic structure and F 4 terms,
they are so constrained that they must coincide. This provides a strong argument for the
validity of equation (1.1), and indeed the arguments we make in section 2 confirm this.

1.1 Overview

In supersymmetric Yang-Mills theories, the all-plus (and indeed the single-minus) gluon
amplitudes can be shown to vanish to all orders in perturbation theory1 thanks to super-
symmetric (SUSY) Ward identities [39],

ASUSY
n (1±, 2+, . . . , n+) = 0 . (1.2)

At one-loop order we can decompose the gluonic ([1]), fermionic ([1/2]) contributions
to the loop content into terms which can be expressed entirely in terms of amplitudes
in supersymmetric theories, and an independent (N = 0) part which corresponds to the
contribution from a complex scalar [40]

A[0] = S , (1.3)

A[ 1
2 ] = −2S + F , (1.4)

A[1] = 2S + G . (1.5)

Here A[0] denotes the contribution from a real scalar: as the scalar and anti-scalar con-
tributions are equal, the complex case is retrieved by simply doubling this term. The
expressions (1.5) can be seen emerge from inverting the decompostion of the supersymmet-
ric multiplets2

AN=4 = A[1] + 4A[ 1
2 ] + 6A[0] (1.6)

= G + 4F (1.7)

AN=1 = A[1] +A[ 1
2 ]

= G + F . (1.8)

From the vanishing property (1.2) we conclude that

A[1]
n (+ + · · ·+) = 2A[0] = 2S . (1.9)

A major simplification is thus made manifest: the AP amplitude is equivalent to having
just two real scalars circulating around the loop. This makes its computation using mas-
sive cuts particularly tractable [42]. It is thus puzzling that in this context the N = 4
MHV amplitude seems to have a structure almost entirely converse to the all-plus in that
equations (1.9) and (1.7) have mutually disjoint content.

1As the tree level amplitudes coincide in SUSY and in QCD, this is also a statement about massless
QCD at leading order.

2They also emerge naturally from implementing the Bern-Kosower rules in the string-based formal-
ism [31, 32, 41].
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The conjecture (1.1) was verified by BDDK up to six points, with the explicit expres-
sions for the QCD amplitudes computed to be

AAP
4 ≡ AQCD

4

(
1+, 2+, 3+, 4+

)
= −2ε(1− ε)
〈12 · · · 41〉 s12s23I

8−2ε
4 , (1.10)

AAP
5 = −ε(1− ε)

2〈12 · · · 51〉

 n∑
j=1

sj+1,j+2sj+2,j+3I
8−2ε,(j)
4 + (D − 4) tr5(1234)I10−2ε

5

 , (1.11)

AAP
6 = −ε(1− ε)

2〈12 · · · 61〉

− n∑
1<j1<j2≤n

tr ((j1 + 1)qj1+1,j2+1(j2 + 1)qj2+1,j1+1) I8−2ε,(j1,j2)
4

+(4− 2ε)

 n∑
j=1

tr5(j + 1, j + 2, j + 3, j + 4)I10−2ε,(j)
5 + tr(123456)I10−2ε

6

 ,
(1.12)

and the N = 4 MHV amplitudes can be obtained from (1.1). Here we use the variables qrs
to denote sums of consecutive momenta qrs =

∑s−1
i=r pi. The descendant integral notation

(j1, j2) denotes the shrinking of the propagators leading into the j1th and j2th leg of
the maximal n-gon. We use the usual notation for two-particle Mandelstam invariants
sij = (pi + pj)2, and

tr(ab · · · ) = tr(/pa/pb · · · ) = tr+(ab · · · ) + tr−(ab · · · ) , (1.13)

tr5(ab · · · ) = tr(γ5/pa/pb · · · ) = tr+(ab · · · )− tr−(ab · · · ) , (1.14)

where tr± involve the usual chiral projectors, and can be expressed in terms of spinor-
helicity if one of the momenta is null. For example, if p2

a = 0 then

tr+(ab · · · ) = 1
2 tr((1 + γ5)/pa/pb · · · ) = [a|b · · · |a〉 ,

tr−(ab · · · ) = 1
2 tr((1− γ5)/pa/pb · · · ) = 〈a|b · · · |a] . (1.15)

Although the study of scattering amplitudes has advanced significantly since this con-
jecture was first proposed, an explicit proof has not been presented until now. The all-
multiplicity expressions for both the MHV in N = 4 and the AP amplitude were already
known to leading order in ε at the time of the conjecture [23]. We review these results in
a more contemporary framework.

If one is content with truncating terms ∼ O(ε), a one-loop amplitude that is dimen-
sionally regulated in 4−2ε dimensions can be expressed in terms of a basis of box, triangle
and bubble integrals with algebraic functions as coefficients, and additional purely rational
terms,

An = d4 · ID=4−2ε
4 + d3 · ID=4−2ε

3 + d2 · ID=4−2ε
2 + dR +O(ε) , (1.16)

where dm · Im are dot products weighting the m-point scalar integrals, I [i1,...,im]
m [1] with

algebraic functions of kinematic variables. The integral functions are defined as

ID;[i1,...,im]
m [1] = i(−1)n+1(4π)2−εeγEε

∫
dD`

(2π)D
1

`2(`− qi1i2)2 · · · (`− qi1im)2 . (1.17)
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In general we denote the propagator just before the kth leg `ik so in equation (1.17)
` ≡ `i1 . The normalisation is set such that after the loop integration (but before the Feyn-
man parameter integration) shift and reduction identities [43, 44] are simplified, consistent
with [45]. We suppress the term +i0 in each propagator. From here on the absence of a
D superscript on Im implies D = 4 − 2ε. The argument in the square brackets, indicates
possible numerator terms introduced: these could be loop momenta or Feynman parame-
ters and thus apply at different stages of the loop integration depending on context; if no
brackets are present the numerator is understood to be 1 and we speak of scalar integrals,
as in the formula above.

The term dR in the basis (1.16) is a rational function of spinor-brackets and momentum
variables only. One manifestation of the simplicity of amplitudes in N = 4 SYM at one-loop
is the fact that

dN=4
i = 0, for i ∈ {R, 2, 3} ; (1.18)

while for the all-plus amplitude, the lack of four-dimensional cuts implies that

dAPi = 0, for i ∈ {2, 3, 4} . (1.19)

We adopt the Grassmann delta-function δ(8) (|i〉ηiA) notation [46], which bundles to-
gether the states in the supermultiplet as related by supersymmetric (SUSY) Ward identi-
ties. Negative helicity gluon states are extracted by applying the usual functional deriva-
tives δ4

δ4ηi
; in practice this amounts simply to partial derivatives and then setting all η to

0. This allows us to deal with the cyclically invariant MHV superamplitude, and project
out gluon amplitude on the r.h.s. of equation (1.1) with

AN=4
n

(
1+, . . . , i−, . . . , j−, . . . , n+

)
= δ4

δη4
i

δ4

δη4
j

[
AMHV
n

]
. (1.20)

In this broader framework, two-particle unitarity cuts depicted on the left of figure 1, can
be expressed as a product of two MHV superamplitudes. Considering, for example, the
q2

1r-channel cut,

AMHV
n

∣∣∣∣
q1r cut

=
∫
d4η`1d

4η`r
δ(8) (L)

〈`11〉〈12〉 · · · 〈(r − 1)`r〉〈`r`1〉
× δ(8) (R)
〈`rr〉 · · · 〈n`1〉〈`1`r〉

,

L ≡ |i〉ηiA, i ∈ {−`1, 1, . . . , r − 1, `r} ; (1.21)

R ≡ |i〉ηiA, i ∈ {−`1, 1, . . . , r − 1, `r} .

The left-hand delta function can be made independent of the integral variables on the
support of the right-hand one, by carrying out the Grassman integration

AMHV
n

∣∣∣∣
q1r cut

= δ(8) (L+R)
〈`11〉〈12〉 · · · 〈(r − 1)`r〉

× 〈`1`r〉2

〈`rr〉 · · · 〈n`1〉

= δ(8) (|i〉ηiA)
2〈12 . . . n1〉

[
tr(1q2(r−1)(r − 1)qr1)

`22`
2
r−1

+
tr(nq1r(r)q(r+1)n)

`2n`
2
r+1

]
,

i ∈ {1, 2, . . . , n} . (1.22)

We are then left only with box contributions from four-dimensional cuts.
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1

r

n

i4

i1

i2

i3

Figure 1. Old-fashioned and generalised unitarity: the two-particle cut on the left are a consistency
condition on the final amplitude, which can be used to constrain its form; the generalised four-
particle cut on the right allows the direct computation of the box coefficient d[i1,i2,i3,i4]

4 .

We can more conveniently use generalised unitarity [7] to compute d4. Each box
coefficient can be computed by imposing the four dimensional on-shell conditions

`2ik = (`1 − q1ik)2 = 0, i ∈ 1, 2, 3, 4 (1.23)

resulting in the product of amplitudes on the generalised cut depicted on the right of
figure 1. The coefficient should be averaged over the two solutions of the constraints in
equation (1.23).

d
[i1,i2,i3,i4]
4 = 1

2
∑
l±

Atree (−`i1 , i1, . . . , i2 − 1, `i2)×Atree (−`i2 , i2, . . . , i3 − 1, `i3)

×Atree (−`i3 , i3, . . . , i4 − 1, `i4)×Atree (−`i4 , i4, . . . , i1 − 1, `i1) . (1.24)

The only cut configuration with non-vanishing amplitudes composing it involves op-
posite facing 3-point amplitudes, which upon evaluation gives

d
[i1,i1+1,i3,i3+1]
4 = δ(8)(|i〉ηiA)

〈12 . . . n1〉 × tr(i1qi1+1,i3i3qi3+1,i1) . (1.25)

Thus the amplitude is

AMHV
n = 1

4
δ(8)(|i〉ηiA)
〈12 . . . n1〉

n∑
i1,i3=1

tr(i1qi1+1,i3i3qi3+1,i1)I [i1,i1+1,i3,i1+1]
4 +O(ε) , (1.26)

where I4 is in 4− 2ε dimensions. The terms O(ε) are (implicitly) determined in sections 2
and 3.

The AP amplitude manifests a structure which is somewhat converse; its four-dimen-
sional unitarity cuts vanish: any on-shell QCD amplitude inserted into the cut diagrams
of figure 1 with all-plus helicity external legs vanishes. It is, however, highly constrained
and as such the all-n form was determined ad hoc by symmetry principles and limiting
behaviour [47, 48].

AAP
n =

∑
1≤i1<i2<i3<i4≤n

tr−(i1i2i3i4)
〈12 . . . n1〉 +O(ε) . (1.27)
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Equation (1.27) can be recovered from equations (1.10), (1.11), and (1.12) by noting that

ε(1− ε)I4 = 1
6 +O(ε) ,

ε(1− ε)I5 = 1
24 +O(ε) . (1.28)

The two sides of the conjecture (1.1) were computed in different ways by BDDK: the
all-epsilon structure of MHV amplitude was computed using the string-based formalism
whereas AP amplitude, was computed with a prototypical version of D-dimensional uni-
tarity. This is effectively equivalent to taking unitarity cuts with massive on-shell states,
specifically applying the techniques of Bern and Morgan [49] to compute the expressions
in equations (1.10), (1.11) and (1.12); a technique made especially simple thanks to the
equivalence in equation (1.9).

Moreover, as BDDK highlight, the D-dimensional unitarity technique provides the
full structure of the amplitude and can thus be made use of to prove the conjecture. An
alternative statement to (1.1) in terms of cuts is thus

AAP
n

∣∣∣∣µ
2 6=0

qrs cut
= AN=4(1+, 2+, . . . , i−, . . . , j−, . . . , n+)

[
2µ4

〈ij〉4

]∣∣∣∣∣
µ2 6=0

qrs cut

; (1.29)

for any q2
rs channel. Here µ2 is a mass-like parameter associated with the (−2ε)-dimensional

component of the loop integral. The statement (1.29) is proved in section 2 thanks to
massive spinor-helicity formalisms [50, 51] and insights into supersymmetric Ward identi-
ties [52] for Coulomb-branch amplitudes [53–55] in particular an axial-gauge choice, which
is equivalent to a choice of basis with which to define the intermediate states in the massive
unitarity cut.

In section 3 an ansatz is presented for the all-n all-ε form for the AP (and thus through
the dimension shift in equation (1.1) the N = 4 MHV) amplitude through the computation
of generalised D-dimensional cuts, depicted in figure 2. This method is directly analogous
to the one first introduced for four-dimensional cuts in [7]; it produces a compact result
thanks to the simple form of a solution to the on-shell conditions for a given pentagon,
I

[i1,i2,i3,i4,i5]
5

`νi1 = −tr5 (qi1i2qi2i3qi3i4qi4i5γν)
2 tr5 (qi1i2qi2i3qi3i4) . (1.30)

We then conclude with some observations and outlook.

2 Proof of the conjecture

As stated in the original discussion in [23], an equivalent statement to the conjecture (1.1)
is that the D-dimensional cuts match:

AAP
∣∣∣∣µ

2 6=0

qrs cut
= AN=4(+ + · · · i− · · · j− · · ·+ +)

[
2µ4

〈ij〉4

]∣∣∣∣∣
µ2 6=0

qrs cut

. (2.1)

It is in showing this relationship that we prove this conjecture here.
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1

r

n

i4

i1

i2

i3

i1

i5

i2

i3

i4

Figure 2. Top: the D-dimensional cuts capture the full amplitude, it is in this context that the
BDDK conjecture is proved in section 2.

Bottom: generalised D-dimensional cuts can be used to compute the functional form of the
all-plus, and thus the MHV through the relation (1.1).

2.1 Unitarity cuts

It has long been known that unitarity cuts provide tight constraints on the functional
form of amplitudes [56] and can be used as a tool to compute them [6, 57]. A technique
emblematic of contemporary on-shell methods for computing scattering amplitudes, gen-
eralised unitarity [6, 7, 57–61], is able to fully fix box, triangle and bubble coefficients
in supersymmetric theories at leading order in epsilon. However, rational terms, in par-
ticular those that compose the all-plus and single-minus amplitudes, are non-vanishing
in non-supersymmetric theories; supplementary approaches [18, 42, 62–64] are needed to
overcome these limitations.

A more complete unitarity technique known as “D-dimensional” unitarity [42, 65–67]
extends the conventional version, but considers additional singularities of the integrand
which capture the full singular structure of the amplitude; these extra singularities can be
counted when the “on-shell” states of the unitarity cut are considered to be D = 4 − 2ε
dimensional.

After formally splitting the D-dimensional loop momentum ` into a four-dimensional
component and an orthogonal (−2ε)-dimensional one,

` = lµ + `[−2ε] (2.2)

the cut condition becomes

`2 = l2 − µ2 = 0 , (2.3)

– 8 –
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where we have defined

µ2 ≡
(
`[−2ε]

)2
. (2.4)

The integral measure can then be transformed according to

d4−2ε` = − dµ2

(−µ2)1+εd
4l

= dµ2

µ2 d
4l +O(ε) . (2.5)

The µ2 = 0 pole captures the four-dimensional structure, whereas the singular locus for
the combination of all cut conditions

`2i = l2i − µ2 = 0 (2.6)

encodes all-epsilon properties with coefficients characterised by the “off-shell structure” of
the tree-level theory. Thus µ2 can be considered as an extra parameter subject to the cut
constraints, and is ultimately the mass term in the tree-level amplitudes which are used to
fix the integral coefficients.

As with four-dimensional unitarity, a set of k massive-cut conditions singles out a
codimension-k singular locus in the domain of integration; the extra integral parameter µ2

puts the dimension of this domain, and thus the number of constraints on the maximal cut,
at k = 5 as opposed to k = 4 in the massless (or µ2 = 0) case. Thus for a k-line cut, k−5 free
parameters are unfixed by the constraints. The coefficients can be determined from these
cut expressions through taking careful limits depending on the residues coming from poles
in the unfixed parameters [42, 59]. How this is done is contingent on a choice of integral
basis: both the AP and MHV amplitudes are free of bubble and triangle contributions, so
just the µ2 degree of freedom need be considered to capture box coefficients. The discussion
of what basis to use in computation of the amplitudes is carried out in section 3.

Four-dimensional cuts constrain an amplitude by requiring that any two-particle cuts
reproduce a product of tree-level amplitudes

An

∣∣∣∣µ
2=0

qrs cut
=
∑
hs,hr

Atree
r+2(−lhrr , r, r+1, . . . , s−1, l−hss )×Atree

n−r+2(−l−hss , s, s+1, . . . , r−1, lhrr ) .

(2.7)

This can be fit into a broader framework by noting that the eigenstates of the little group for
massless particles, U(1), are represented by the sum over helicities. The helicity “weight”
which induces a helicity weighting (or complex phase) for each particle cancels across the
cut; this is how the cut can be viewed as a U(1) contraction. In theories with rational
terms, cuts of the form (2.7) are incomplete, as a consequence of the intermediate states
living in D = 4 − 2ε dimensions. Taking a D-dimensional unitarity requires a concrete
scheme for defining these states crossing the cut. This has previously been done using six-
dimensional spinor helicity [68–70], but here we propose simply using off-shell/equal-mass
amplitudes.

– 9 –
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Equation (2.5) provides a natural motivation to use massive amplitudes.3 An heuristic
justification for this is the fact renormalisation and resolution of infrared singularities
always introduces an external scale, and thus off-shell expressions of the classical theory
will be needed to fully define a loop amplitude. The massive spinor-helicity formalism
of Arkani-Hamed, Huang and Huang [51] (AHH) provides a contemporary framework for
combining these expressions.

In the AHH formalism, a two-particle unitarity cut consists of a sum over several inner
products each carried out over the particles crossing the cut

An

∣∣∣∣µ
2 6=0

qrs cut
=

∑
particles

〈
Atree
L (−lσrr , r, r + 1, . . . , s− 1, lσss ), Atree

R (−lσsr , s, . . . , r − 1, lσrr )
〉
,

(2.8)

where the boldface notation indicates suppressed, symmetrised SU(2) indices, the little
group of massive particles in 3+1 dimensions. The inner product contracts these indices,
and the contraction has a clear interpretation in terms of the eigenstates of the SU(2) little
group of the particles of spin σ which “cross” the cut. The AHH formalism thus represents
this product as rank-(2σs + 2σr) tensors of SU(2) contracted with two-dimensional Levi-
Civita symbols εαrjβrj and εαs

k
βs
k
,

An

∣∣∣∣µ
2 6=0

qrs cut
=

∑
particles

A
αr1...α

r
2σr ;αs1...αs2σs

L

2σr∏
j=1

[
εαrjβ

r
j

] 2σs∏
k=1

[
εαs

k
βs
k

]
A
βs1 ...β

s
2σs ;βr1 ...βr2σr

R . (2.9)

There is also a constraint on the expressions which feed into the cut expression (2.8):
the quantum states in a given channel must be consistently defined, i.e. defined in the same
frame of reference. In practice this is simply done by fixing an axial gauge vector,4 which
we term pχ, against which to define helicities, or spin states of massive particles.

To use these tools to prove the formula (2.1) we require the tree-level expressions.

2.2 Tree-level off-shell amplitudes

The all-multiplicity tree-level expressions that need to be fed into equation (2.8) have
been known for a long time and exist in multiple forms throughout the literature [54, 72–
75], mostly in the older massive spinor-helicity formalism of Dittmaier [50]. As with the
tree amplitudes of all-massless particles, compact expressions for massive amplitudes are
neatly related to each other through SUSY Ward identities [52, 76]. These can be bundled
together in a super-amplitude like the massless-MHV case, with a clear interpretation in
terms of taking N = 4 away from the origin of the moduli space [53, 54], where the origin
corresponds to the massless theory.5 The result is a super-amplitude in what is termed

3The fact that Pauli-Villars regularisation [71] functions by introducing masses also supports this.
4This is most often denoted as q in the literature. It is equivalent to fixing a Lorentz frame and thus is

also referred to as a “q-frame” in e.g. [54]. Note also that choosing pχ to be complex is also an option.
5The Coulomb branch can also be obtained by compactifying the massless N = (1, 1) maximal theory

in 6 dimensions [68, 69].
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“MHV band” [53]. The MHV-band superamplitude differs from the massless MHV super-
amplitude in that the delta functions are not homogeneous in the η variables which carry
the helicity weight. We discuss how to interpolate between the two formalisms and collect
the necessary expressions here.

The AHHmassive spinor-helicity formalism [51] deployed here extends the compactness
of conventional spinor helicity by defining a given amplitude with massive external particles
1 and n, of spin σ1 and σn respectively, as a rank 2σ1 + 2σn tensor of SU(2), the little
group for massive particles:

Atree
n (1σ1 , 2h2 , . . . , (n− 1)hn−1 ,nσn) . (2.10)

In practice, to compute a cut, we will need to choose a basis and express the tree-level
amplitudes on the right hand side of equation (2.9) in the form

Atree
n (1σ1 , 2h2 , . . . , n̄σn) =

∑
h1,hn

Ah1hn
n ζh1ζh2 ; (2.11)

here, on the l.h.s. σi (hi) is the spin (helicity) of the massive (massless) particle; on the r.h.s.
we use indices h1, hn to label the spin states of the massive particles in the chosen basis.
The boldface variables ζ ≡

∏2σ
k=1 ζ

αk again carry suppressed SU(2) tensor indices αk. Each
tensor indexes the spin-states of the massive particles in a given frame of reference, or more
specifically relative to a choice of axial gauge vector, which we term pχ. These spinning
states are pseudo-orthonormal,

〈ζha , ζ−hb〉 = (±1)2ha δab , (2.12)

meaning the product in equation (2.8) can be expressed as a sum over products of complex
valued functions in a given pχ basis. As demonstrated by AHH in [51], the high-energy
limits (m2 → 0) of the coefficients Ah1hn

n are the tree amplitudes of massless particles.
AP amplitudes must satisfy the constraint in equation (2.9); thanks to all-n expressions

for all-plus helicity gluons with two other massive particles, the AP amplitude can be
reconstructed by the product of scalar amplitudes that was exploited in [23]

AAP
n

∣∣∣∣µ
2 6=0

qrs cut
= 2

〈
Atree
L (−l0r , r, r + 1, . . . , s− 1, l0s), Atree

R (−l0s , , s, s+ 1, . . . , r − 1, l0r)
〉

= 2Atree
L (−l0r , r, r + 1, . . . , s− 1, l0s)×Atree

R (−l0s , , s, s+ 1, . . . , r − 1, l0r) ,
(2.13)

as is consistent with the string-derived equation (1.9). In the scalar case, the amplitudes
are scalar functions thus reducing the inner product to conventional multiplication.

The original computations which resulted in equations (1.10)–(1.12) reconstructed inte-
grand polynomials in the parameter µ2 and entailed finding a function which was consistent
with it. In section 3 we will adopt a different and more direct approach, which builds on the
work of Badger [42] to directly extract the coefficients of a scalar integral in a simple man-
ner. It is the functions Atree

n needed as input for the cut constraints in equation (2.9) which
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are the focus of this section. To evaluate the cut AP amplitudes we use the all-multiplicity
expressions for tree-level amplitudes of positive-helicity gluons and two equally massive
scalars, first computed by Forde and Kosower through recursion relations [72]:

Atree(10, 2+, 3+, . . . , (n− 1)+,n0) =
−
∑bn2 c−1
j=1 κj(−m2)j

(s12 −m2)〈23 . . . (n− 2)(n− 1)〉(sn−1,n −m2)
(2.14)

with

κj =
n−3∑
{wi}j−1

i=1

[2|1q2w1w1qw1w2w2 · · ·wj−1qwj−1wj |n− 1]∏j−1
r=1(q2

1(wr) −m
2)(q2

1wr+1 −m2)
(2.15)

where the sets {wi} are defined by the conditions:6

wj = n− 1, w0 = 1, wi = wi−1 + 2 . (2.16)

Other more compact representations of Atree
n (10, 2+, 3+, . . . , (n − 1)+,n0) have also been

computed [54, 73–75]. However, we would like a representation that is arranged as a series
in m2 with only at worst linear dependence on the massive momenta in the numerators,
which helps to insert cut solutions into amplitudes. By means of the expression (2.14) for
n = 4, 5, 6, BDDK were able to confirm the representations (1.10), (1.11), and (1.12) of the
AP amplitudes.

The N = 4 super-multiplet is more complicated to treat in this manner. We can begin
by exploring the nature of off-shell amplitudes: how does the cut (2.9) look if quarks or
vector bosons were circulating in the loop? As mentioned above, projection onto a state
basis of the kind expressed in equation (2.11) can be done by choosing a reference four-
vector, pχ, relative to which we define the spinning particles. We build our basis using this
reference, and interpolate between old [50] and new [51] massive spinor-helicity formalisms.
This is ultimately equivalent to making a choice of axial gauge [77] and thus this choice is
referred to simply as a gauge from here on.

Considering massive vector bosons 11 and n1 having opposite helicity, it is straight-
forward to express the equivalent of equation (2.14): SUSY Ward identities [52, 76] can
be used to show that the vector boson just involves the introduction of an overall factor
relative to the scalar case. The spin-one state coefficient of ζ−1 ζ+

n in the expansion of
equation (2.11) is

A−+
n (11, 2+, 3+, . . . , (n− 1)+,n1) = 〈χλ1〉2

〈χλn〉2
Atree
n (10, 2+, 3+, . . . , (n− 1)+,n0) (2.17)

where 〈χ| is a reference spinor corresponding to the gauge choice and |λi〉 represents7 the
holomorphic spinor of the nullified momentum pλi defined such that

pλi = pi −
m2

[χ|i|χ〉pχ . (2.18)

6See also [72] for more explicit representations of the sum over {wj}.
7Also denoted |λi〉 ≡ |i[〉 in [77] or |i⊥〉 in [53–55].
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We can extract the full rank 2σ1 +2σn tensor amplitude by loosening the χ constraint,
and considering how component amplitudes Ah1hn

n in a particular gauge fix the full SU(2)
tensor structure of the amplitude through symmetry principles. By fixing 〈χ| → 〈χn| where
χn is defined such that 〈χnλn〉 = m we get

A−+
n (11, 2+, 3+, . . . , (n− 1)+,n1) =〈χnλ1〉2

m2 Atree
n (10, 2+, 3+, . . . , (n− 1)+,n0) . (2.19)

The spinor χn is a specific choice which favours the taking of the high-energy limit of tree
expressions in the AHH scheme8 [51]. In general the momentum of each massive particle
can be decomposed

(pi)ȧb = (pλi − pχi)ȧb = λIȧλ̄Ib =

⇒ λIȧ = λȧ
(
ζ−
)I + χȧ

(
ζ+
)I
,

λ̄Ib = λ̄b
(
ζ+
)I

+ χ̄b
(
ζ−
)I
, (2.20)

and the spinors fixed such that 〈λχ〉 = [λχ] = m. Thus from fixing the gauge χ → χn
it is easy to induce the gauge-covariant rank 4 amplitude from the SU(2) symmetry by
promoting the coefficient of ζ−1 ζ+

n , the gauge-dependent factor in equation (2.19) can thus
be generalised:

Atree
n (11, 2+, 3+, . . . , (n− 1)+,n1) = 〈1n〉2

m2 Atree
n (10, 2+, 3+, . . . , (n− 1)+,n0) . (2.21)

The expression (2.21) can also be projected in the frame of the massive particles spinning
in the “negative” direction relative to their motion.

A−−n (11, 2+, 3+, . . . , (n− 1)+,n1) = 〈λ1λn〉2

m2 Atree
n (10, 2+, 3+, . . . , (n− 1)+,n0) , (2.22)

and from this it can be seen that

lim
m2→0

[
A−−n (11, 2+, 3+, . . . , (n− 1)+,n1)

]
= Atree

n (1−, 2+, 3+, . . . , (n− 1)+, n−) , (2.23)

providing a strong consistency check.
The quark version of (2.21) has also been computed [74, 75] and is simply

Atree
n

(
1

1
2 , 2+, 3+, . . . , (n− 1)+,n

1
2
)

= 〈1n〉
m

Atree
n (10, 2+, 3+, . . . , (n− 1)+,n0) . (2.24)

The simple relation between the scalar, fermion and gluon form factors in equa-
tions (2.14), (2.21) and (2.24) can be understood simply as a consequence of supersymmetric
Ward identities [52, 76]: they are in the highly constrained “ultra-helicity-violating” (UHV)
sector [53], so called because the particles spin states have one fewer negative helicity states9

than the MHV helicity configuration.
8In [51] they are denoted η however we reserve the symbol η to denote the Grassmann variables in the

superamplitude.
9The configurations of equation (2.17) would correspond to a single-minus amplitude, and indeed vanishes

in the m2 → 0 limit.

– 13 –



J
H
E
P
0
4
(
2
0
2
1
)
2
7
6

The fact that the full tensor-amplitude (2.21) produces the MHV case for free is a
feature of the blurring of the normally clear demarcation between helicity states in the
massive/spin case, unlike the simpler massless/helicity case. As with the massless case,
however, these amplitudes can all be bundled into a super-amplitude of N = 4 taken away
from the origin of the moduli space on the Coulomb branch: the “MHV-band” amplitudes
read thus [53]

AMHV-band
tree = [λnλ1]2δχ12δ

χ
34

m2q4
n2

A(10, 2+, 3+, . . . , (n− 1)+,n0) . (2.25)

The expression δχ12δ
χ
34 is a nonhomogeneous polynomial in the helicity (or more precisely

spin-state) weight carrying variables ηia. Component amplitudes corresponding to different
external states can be extracted from the δχ12δ

χ
34 in an identical way to how MHV states can

be extracted from δ(8)(|i〉ηia) using functional derivatives. As for the massive vector boson
amplitude in equation (2.21), gauge covariance implies that a single class of amplitude
contains multiple spin states.

The structure and construction techniques of Coulomb branch super-amplitudes is
covered extensively with the Dittmaier massive-spinor-helicity formalism in references [53–
55], and we refer the reader to these for more background. The explicit general pχ-gauge
form of δχ12δ

χ
34 can be found in [53], but we give an explicit form after we fixing pχ · qrs = 0,

which is key to the proof of the conjecture in the following section.

2.3 Proving the conjecture from the Coulomb branch

To prove the conjecture we consider the individual contributions of particles as expressed
in equation (1.6).

In the case where purely gluonic states are crossing a cut, we consider the fully cut
MHV amplitude. Examples of the helicity configurations corresponding to the cuts, and
thus the tree amplitudes that compose them, are depicted in figure 3: the types of cut
possible are

a. AP×N2MHV

b. UHV×NMHV

c. MHV×MHV.

a. These cuts do not contribute as the all-plus tree amplitude vanishes in any pχ gauge [52]

A++;pχ(−l1r , r+, . . . , . . . , (s− 1)+, l1s) = 0 . (2.26)

b. The UHV × NMHV cut can be extracted from the MHV-band amplitude in equa-
tion (2.25) in pχ · qrs = 0 gauge [53]

δχ12δ
χ
34

µ2〈λlrλls〉2
A(−l0r , r+, . . . , (s− 1)+, l0s) (2.27)
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Figure 3. Example helicity configurations of a. b. and c. Only c., the MHV×MHV cut survives
in the full N = 4 multiplet in qrs · pχ gauge.

with

δχ12 =
[
δ(4) (〈λi|ηia) + µ〈λlrλlr〉

〈χλls〉〈χλlr〉
δ(2) (〈χλi〉ηia)

]
×
[
1− [λlsχ][λlrχ]

µ[λlrλls ]
δ(2)

(
µηia
[λiχ]

)]
(2.28)

with the index a ∈ {1, 2} in this case, and i ∈ {−lr, r, . . . , s − 1, ls}. δχ34 takes the
same form but carries the index of the other SU(2) branch of the broken SU(4) R-
symmetry [53]. We can apply the functional derivative δ4

δη4
1
to extract the UHV case:

the negatively spinning term comes entirely from the second term in the first bracket
giving

δχ12δ
χ
34 → µ2〈λrλs〉2

〈χλlr〉2

〈χλls〉2
(2.29)

as is consistent with equation (2.21). The NMHV amplitude A−+(l1s , s, . . . , r− 1, l1r)
comes from the term

δχ12δ
χ
34 → δ(8) (〈λi|ηia)

µ2

[λlrλls ]2
[λlrχ]2

[λlsχ]2 , (2.30)

where in this case i ∈ {s, s+ 1, . . . , r − 1}. The gauge choice pχ · qrs = 0 implies

[χ|lr|χ〉 = [χ|ls|χ〉
= [χλlr ]〈λlrχ〉 = [χλls ]〈λlsχ〉 , (2.31)

and thus

[λlrλls ]〈λlrλls〉 = q2
rs , (2.32)
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so that the generic UHV×NMHV cut can be reduced to

A−+
L (−l1r , r+, . . . , . . . , (s−1)+, l1s)×A+−

R (−l1s , s, . . . , r−1, l1r) =

AL(−l0r , r+, . . . , . . . , (s−1)+, l0s)×
〈χλlr〉2[λlsχ]2

〈χλls〉2[λlrχ]2×
δ(8) (〈λi|ηia)µ2

q4
rs

AR(−l0s , s+, . . . , (r−1)+, l0r) .

(2.33)

After making the identification from equation (2.25) (with corresponding arguments)
and the definition in equation (2.28) then we can match

δ4

δ4ηi

δ4

δ4ηj
AMHV-band

tree = δ4

δ4ηi

δ4

δ4ηm

δ(8) (〈λi|ηia)µ2

q4
rs

AR(l0s , s+, . . . , (r − 1)+, l0r) , (2.34)

and we identify the right-most factor in equation (2.33) as the NMHV two-massive-
scalar amplitude. Thus, as

〈χ(−λlr)〉[λlrχ]
〈χλls〉[(−λls)χ] = −1 , (2.35)

we get

A−+
L ×A+−

R = A00
L ×A00

R = A[0]
∣∣∣∣µ

2 6=0

qrs cut
. (2.36)

From this, we identify the NMHV×UHV contribution to the qrs gluon cut channel
as that originating from S in the decomposition (1.5). The A+−

L × A−+
R term is the

same to make the total contribution 2S. Similar reasoning can be used to deduce a
similar result for fermions

A[ 1
2 ]
∣∣∣∣µ

2 6=0

UHV×NMHV qrs cut
= −2A[0]

∣∣∣∣µ
2 6=0

qrs cut
, (2.37)

and their contributions sum up to cancel with the scalar states in the N = 4 super-
multiplet.

AMHV
n

∣∣∣∣µ
2 6=0

UHV×NMHV qrs cut
= 0 . (2.38)

Of course this could all be done formally using the CSW rules developed in [54, 55],
but treating the particles explicitly shows how this gauge separates the structure in
terms of the decomposition in equation (1.5).

c. This leaves the MHV×MHV cuts. These simply correspond to the complete unitarity
cut version of equation (1.22)∫

d4ηlrd
4ηlsA

MHV tree
L (−l1r , r, . . . , (s−1), l1s)×AMHV tree

R (−l1r , r, . . . , s−1, l1s) =∫
d4ηlrd

4ηls
δ(8) (L)

µ2〈λlsλlr 〉2
AL(−l0r , r, . . . , (s−1), l0s)×

δ(8) (R)
µ2〈λlsλlr 〉2

AR(−l0r , s, . . . , r−1, l0r) ,

L ≡ |i〉ηiA, i ∈ {λ−lr , r, . . . , s−1, λls} ;R ≡ |i〉ηjA, i ∈ {λls , r, . . . , s−1, λ−lr} ; (2.39)
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so the Grassman integration gives

AMHV
∣∣∣∣µ

2 6=0

qrs cut
=δ(8) (〈λi|ηiA)

µ4 AL(−l0r , r+, . . . , (s−1)+, l0s)AR(−l1s , s+, . . . , (r−1)+, l1r) ,

(2.40)

equivalent to equation (2.1) upon applying the functional derivatives δ4

δη4
i

δ4

δη4
j
,

AN=4
n (1+, 2+, . . . , i−, . . . , j−, . . . , n+)

∣∣∣∣µ
2

qrs cut
= δ4

δη4
i

δ4

δη4
j

AMHV
n

∣∣∣∣µ
2 6=0

qrs cut


= 〈ij〉

4

2µ4 A
AP
n

∣∣∣∣
qrs cut

(2.41)

thus proving the conjecture (1.1).

3 Generalised cuts and all-epsilon forms

To compute the one-loop scattering amplitudes of the verified conjecture (1.1) we present
a new generalised version of D-dimensional unitarity which extracts the coefficients of a
fixed basis of integrals. The simplicity of one-loop amplitudes in general, and the all-plus
amplitude in particular leads us to an all-multiplicity form to all orders in epsilon which,
through what is now the shift identity (1.1), delivers the all-multiplicity form of the one-
loop MHV N = 4 without any further computation. The only master integrals necessary
for these configurations are pentagons and boxes, both of which have known closed forms
in general dimension.

The basis we use was proposed by Giele, Kunszt, and Melnikov [65], and later used
for the all-plus amplitude and other examples by Badger [42]; we re-derive it in section 3.1
for completeness. Techniques for fixing one-loop amplitudes by cuts in four-dimensions
generalise to provide direct techniques to extract the coefficients of the scalar integrals
forming the smaller basis up to O(ε) and rational terms. In sections 3.2 and 3.3 we show
how we can use an equivalent technique for the box and pentagon coefficients. Moreover,
in the case of the box we see that the massive solutions can easily be parametrised in terms
of the four-dimensional null solutions.

3.1 Integral bases

The well-known principle of reducing loop-level amplitudes to kinematic coefficients over a
basis of known master-integrals takes a simple form at one-loop. When truncating to O(ε),
an amplitude An can be expressed

An = d4 · ID=4−2ε
4 + d3 · ID=4−2ε

3 + d2 · ID=4−2ε
2 + dR +O(ε) . (3.1)

This is a reduced version of a complete basis [42, 65, 66] which includes pentagons, tadpoles
and higher-dimensional scalar integrals

An = b5 · ID=D̄−2ε
5 +b4(ε) · ID={4,6,8}−2ε

4 + b3(ε) · ID={4,6}−2ε
3

+b2(ε) · ID={4,6}−2ε
2 + b1(ε) · ID=4−2ε

1 . (3.2)
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We leave D̄ as a general integer placeholder to be fixed later in the derivation. The epsilon
dependence of the coefficient in fact takes a very particular form, such that it integrates
well with massive unitarity cuts. For completeness it is worth reviewing how this basis is
derived [42].

The principles underlying the building of a basis are both to ensure that the basis
is compatible with the generalised unitarity technique which builds the amplitude, in the
sense that a given cut is precisely a prefactor of a given integral without overlaps or other
ambiguities, and that it is general enough to capture all high-multiplicity behaviour. The
most general basis one could write down includes all possible one-loop 4 − 2ε Feynman
integrals with general numerator dependence on loop momentum `, as emerges naturally
from a dimensionally regulated Feynman diagram construction in four dimensions:{

I4−2ε
m [P(`)]

}
. (3.3)

There are further constraints we can apply to this polynomial. The theory we are
working in is renormalisable. This puts a limit on the mass dimension of the vertices,
and thus through power counting on the order of the polynomial P for a given one-loop
graph. For example the bubble Feynman diagram depicted in figure 4 could only contribute
numerators at worst quadratic in the loop momentum.

It is also very well known that basis elements possessing numerator terms involving
the four-dimensional components of the loop momentum lµ can be expressed in terms of
scalar integrals [43, 78, 79]. On any given cut, this implies that the numerator P becomes a
polynomial in the “mass” term µ2 from the (−2ε)-dimensional component of the momentum
(see section 2). We choose to represent numerators in this form, which allows us to conclude
that [49]

I4−2ε
m [µ2r] = −ε(1− ε) · · · (r − 1− ε)I4+2r−2ε

m . (3.4)

Although r ≤
⌊
n
2
⌋
for diagrams of the type in figure 4, there is the question of how the

power counting follows the reduction of (m ≥ 6)-point integrals to pentagons. Moreover,
using generalised unitarity to fix the coefficient of the pentagon integral functions leads to
an ambiguity as to the dimension they are defined in.

This can be understood from the fact that the ε-dependence of the coefficients in the
integral dimension-shift identity [43]

ID5 = 1
2

 n∑
j=1

cjI
D;(j)
4 + (4−D)c0I

D+2
5

 , (3.5)

is identical to that arising from a µ2 being inserted into the numerator of ID5 . Applying
the identity (3.5) into itself r times gives

I4−2ε
5 = −ε(1− ε) · · · (r − 1− ε)I4+2r−2ε

5 + boxes

= I
4−2ε
5 [µ2r] + boxes (3.6)

so that the choice r in this case is determined by the choice of dimension-shifted boxes that
are included in the basis. Choosing to include boxes I4[µ2r] implies that we can restrict
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≤ µ2
prp1

≤ µ2⌊n
2 ⌋

Figure 4. Ultraviolet limits on the bubble integral. Left is the possible sources of µ2r numerators
in renormalisable gauge theories, each vertex contributing a possible `µ to the numerator. The only
possible contributions where r > 1 comes from higher point integrals, which we include separately
in the basis.

ourselves to pentagon coefficients of I5[µ2r+2], as the box cuts compute the contribution
from the first term on the right-hand side of equation (3.5) for that respective r. The
choice of which boxes to include is thus contingent on the choice of pentagon, and the
cut computes the independent contributions alongside the contribution from a pentagon
shifted from 0 to r + 1. As could be deduced from the box version of figure 4, there is an
upper limit of r = 2 for a given box to exist independently from higher point functions.
This implies the truncation of polynomials in µ2 to quadratic order (µ4).

The external momenta are four-dimensional, and thus there is the additional simplifica-
tion that n-point integrals reduce to pentagons for n > 5. This fact can be seen in a number
of ways [43], and recently a simple formula was written down by one of the authors [44]
which generalises very simply for any n. Crucially, there is a very simple coincidence of
interpretation with maximal unitarity cuts, which allows the coefficient of the reduction to
simply be interpreted as propagators frozen at a cut solution. This compatibility permits
us to interpret, for m > 5,

I4−2ε
m

∣∣∣∣
[i1,i2,i3,i4,i5] cut

=

m−5∏
j=1

ξj

 I [i1,i2,i3,i4,i4];4−2ε
5 , (3.7)

so capturing the pentagons will also reproduce all higher-point integrals, thus extending
generalised unitarity to treat complete unitarity cuts. We emphasise here that all degrees of
freedom are fixed, so unlike the box case µ2 is not a degree of freedom for the (m ≥ 5)-point
integrals. The general solution to the penta-cut is [44]

µ2∣∣
[i1,i2,i3,i4,i5] cut = 1

c0
= 16Υ5

∆5

=
tr(qi1i2qi2i3qi3i4qi4i5qi5i1qi1i2qi2i3qi3i4qi4i5qi5i1)− 2

∏5
k=1 q

2
ikik+1

tr2
5(qi1i2qi2i3qi3i4qi4i5)

. (3.8)

Thus we can refine the basis (3.2), as we know what the ε-dependence of the coefficients
must be, and so we bundle the dependence into the integral basis. Knowing that boxes can
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arise independently for Im[µ2r], we also fix the dimension of the pentagon to D = 10− 2ε
(i.e. r = 3) such that boxes are included up to I4[µ4] separately in the basis. For massless
theories we drop tadpoles; our final basis is thus

An = b5 · I5[µ6] + b4 · I4
[
1, µ2, µ4

]
+ b3 · I3

[
1, µ2

]
+ b2 · I2

[
1, µ2

]
. (3.9)

The ingredients needed to construct the coefficients are the tree amplitudes in equa-
tion (2.14) which we use to compute the one-loop amplitude AAP

n = 2A[0]
n . The bubbles

and triangles vanish trivially from the scaling of the tree amplitudes

Atree(10, 2+, 3+, . . . , (n− 1)+,n0) ∼ µ2 (3.10)

so that a nonvanishing product of tree amplitudes would contribute only to order O(µ4),
which is entirely captured by the box integrals, by the above arguments. In other words,
we can set b3 = b2 = 0 in equation (3.9). We will proceed to show that the coefficients of
I4
[
µ4] vanish as well.

3.2 The cut box

To compute the box coefficients which compose bAP
4 we use a method analogous to how

generalised four-dimensional cuts can be used to determine the coefficient of the N = 4
MHV amplitude.

The four-dimensional cut conditions for massless propagators

`2ik = l2ik = 0 , k ∈ {1, 2, 3, 4} (3.11)

are readily solved. For the massless, one-mass and two-mass boxes depicted in the top row
in figure 5 the solution to the conditions (3.11) is

lµi1 = l̄µ± = tr±(qi1i2i2i4γµ)
si2i4

(3.12)

which can also be expressed in spinor-helicity formalism as

(l̄+)aḃ =
( |i4][i2|qi1i2

[i2i4]

)
aḃ

,

(l̄−)aḃ =
(
qi1i2 |i2〉〈i4|
〈i4i2〉

)
aḃ

. (3.13)

For massive propagators, the cut conditions are

`2ik = l2ik − µ
2 = 0 , k ∈ {1, 2, 3, 4} , (3.14)

which have an extra unfixed parameter compared to the massless cut conditions in equa-
tion (3.11). Intuitively, to match up with the basis (3.9), this parameter can simply be µ2,
however a more generally applicable solution is to choose it to be a dimensionless param-
eter α, such that we can define the solution to equations (3.14) in terms of the massless
solutions (3.12):

lµ1 = (αl̄+ + (1− α)l̄−)µ , (3.15)
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with the relationship between α and µ defined by

α(1− α) = µ2

2l+ · l−
. (3.16)

It is convenient to note that 2l+ · l− = (cbox
0 )−1 for the following representation10 of cbox

0 ,

cbox
0 = 4si2i4

[i2|qi1i2 |i2〉[i4|qi1i2 |i4〉
. (3.17)

We can then write solutions to equation (3.16) as

α± =
1±

√
1 + cbox

0 µ2

2 . (3.18)

The solution to (3.14) is split into two branches which meet at α = 1
2 . The two solu-

tions simply correspond to the choice of parametrisation, as it is trivial to see that the
replacement

α→ 1− α , ± → ∓ (3.19)

leaves (3.15) unaltered. When making the choice, one needs to average over the solutions,
just like for the massless case. Instead of making the solution depend on choice of α± we
fix α ≡ α+ then our two solutions can be expressed

l± = αl̄± + (1− α)l̄∓ . (3.20)

These solutions are then input into the massive cuts of the kind depicted in figure 5.
As the three-point amplitude with one on-shell gluon and two equal-mass scalars is

not defined by equation (2.14), we define it here [51, 77]:

Atree
3 (i+, l0i+1, l

0
i ) = [i|li|χ〉

〈iχ〉
. (3.21)

We see that unlike the leading term of the four-point and above UHV amplitudes, the
amplitude (3.21) does not scale linearly with µ2. As with the bubbles and triangles, we
will use the truncation of the µ2 polynomial to rule out two-mass hard, three-mass and
four-mass boxes which form the bottom diagrams of figure 5 from the functional form. To
this end, and to simplify future manipulations, we explicitly consider some basic simpli-
fications of adjacent three-point amplitudes. Without loss of generality considering the
adjacent massive cuts l21 = l22 = l23 = µ2; we can express the corresponding product of
amplitudes thus

Atree
3 (1+,−l01, l02)×Atree

3 (2+,−l02, l04) = − [1|l1|χ〉
〈1χ〉 ×

[2|l1|χ〉
〈2χ〉

= 〈χ|l112l1|χ〉
〈1χ〉〈2χ〉〈12〉

= µ2 [12]
〈12〉 , (3.22)

10The box coefficient can also be expressed as a ratio of kinematic determinants [43, 44, 80].
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l1

i4

i1

i2

i3

∼ µ4

∼ O(µ6)

Figure 5. Top: diagrams which contribute to the basis (3.9). Bottom: diagrams which are
eliminated by the truncation of terms O(µ6).

where we have made use of the fact that the cut conditions imply l1 · p1 = l1 · p2 = 0 to
commute the l1s together in the last line using the identity

〈X|{a, b}|Y 〉 = 2pa · pb〈XY 〉 . (3.23)

Equation (3.22) implies that, like n ≥ 4-point off-shell amplitudes, adjacent three-
point vertices have an O(µ2) scaling, implying that two-mass hard boxes have polynomials
which start at O(µ6), like three-mass boxes; four-mass boxes begin at O(µ8). Recalling
that our choice of basis in equation (3.9) implies the truncation of this polynomial up to
O(µ4), we assert that, much like the massless N = 4 cuts, the all-plus scalar cuts only have
contributions from two-mass-easy, one-mass and, in the four-point case, massless boxes.

The coefficients of the boxes are captured by inputting the cut solutions given in
equation (3.15) into the appropriate amplitudes, averaging over α± and truncating terms
O(µ6). Because of this truncation, the computation is greatly simplified, as generically
from the definition of amplitudes with two internal scalars (2.14),

Atree
(
−l0i1 , i

+
1 , . . . , (i2−1)+, l0i2

)
= µ2[i1|li1qi1i2 |i2−1]+O(µ4)

(sli1 i1−µ
2)〈i1(i1+1) · · · (i2−2)(i2−1)〉(sli2 (i2−1)−µ2) ,

(3.24)

so we can truncate terms ∼ O(µ4), as they contribute to the cut to O(µ6) at most. We
double our expression of the coefficient b[i1,i3−1,i3,i1−1]

4 of the 8− 2ε dimensional two-mass-
easy box integral I [i1,i3−1,i3,i1−1]

4 [µ4] as AAPn = 2A[0] with the all-plus configuration

b
[i1,i3−1,i3,i1−1]
4 = 1

µ4

2× 1
2
∑
α±

Atree ×Atree ×Atree ×Atree
∣∣∣∣
O(µ6)


= 1

2
tr(i1qi1i3i3qi3+1,i1−1)

〈12 . . . n1〉 , (3.25)
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i1

i5

i2

i3

i4

l

Figure 6. The pentagon cut.

where |O(µ6) denotes truncation of termsO(µ6); we suppress the arguments of the two-scalar
all-plus tree amplitudes in the cut. The result (3.25) matches the expected coefficient from
the shifted version of the N = 4 coefficient of the box given in equation (1.26).

3.3 Pentagon coefficients

We introduce the maximal cut unitarity solution to solve for the pentagon coefficient. The
solution is remarkably compact for all descendant pentagons [44]

The five-particle maximal cut depicted in figure 6 fixes the loop momentum completely:

lµi1 = −tr5 (qi1i2qi2i3qi3i4qi4i5qi5i1γµ)
2 tr5(qi1i2qi2i3qi3i4qi4i5)

µ2 = c−1
0 =

tr(qi1i2qi2i3qi3i4qi4i5qi5i1qi1i2qi2i3qi3i4qi4i5qi5i1)− 2
∏5
k=1 q

2
ikik+1

tr2
5(qi1i2qi2i3qi3i4qi4i5)

. (3.26)

One now need simply draw all possible pentagons. The coefficient computed from the
product of amplitudes is naturally interpreted as that of the four-dimensional pentagon
I5[1], but as we have already computed box coefficients up to I4[µ4], part of this function’s
contribution to the amplitude has already been captured. Applying the dimension-shift re-
lation (3.5) three times up to I5[µ6] introduces a factor c3

0. The coefficient of I [i1,i2,i3,i4,i5]
5 [µ6]

is thus

b
[i1,i2,i3,i4,i5]
5 = c3

0A
tree(−l0i1 , i

+
1 , . . . , (i2 − 1)+, l0i2)×Atree(−l0i2 , i

+
2 , . . . , (i3 − 1)+, l0i3)×

Atree(−l0i3 , i
+
3 , . . . , (i4 − 1)+, l0i3)×Atree(−l0i4 , i

+
4 , . . . , (i5 − 1)+, l0i3)×

Atree(−l0i5 , i
+
5 , . . . , (i1 − 1)+, l0i3) .

(3.27)

Note that propagator factors can be substituted for the general (n > 5)-multiplicity kine-
matic coefficients of the integral reduction In → I5 [44]

1
q2
−likr

− µ2

∣∣∣∣
[i1,i2,i3,i4,i5]cut

= 1
2ξ

[i1,i2,i3,i4,i5,r]
r , (3.28)
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where

ξ[i1,i2,i3,i4,i5,r]
r = −2 tr5(qi1i2qi2i3qi3i4qi4i5)

tr5(qi1i2qi2i3qi3i4qi4i5qi5rqri1) . (3.29)

With the solution (3.26), the substitution (3.28) and the explicit form of the off-shell scalar
amplitude (2.14), equation (3.27) is a closed form for any given pentagon coefficient.

3.4 Six-point example

We demonstrate the technique explicitly by computing the first non-trivial example: the
six-point amplitude AAP

6 . There are two possible box configurations, one mass and two-
mass-easy. The box cuts are thus of the form

b
[a,b,c,f ]
4 = 1

µ4

∑
l±

[
Atree

3 ×Atree
3 ×Atree

5 ×Atree
3

]∣∣∣∣
O(µ6)

,

b
[a,c,d,f ]
4 = 1

µ4

∑
l±

[
Atree

4 ×Atree
3 ×Atree

4 ×Atree
3

]∣∣∣∣
O(µ6)

. (3.30)

We can simplify the computation by massaging these expressions before inputting the
explicit solutions l± defined in equation (3.15). Using the identity (3.22)

µ4b
[a,b,c,f ]
4 =

∑
l±

[
µ2 [fa]
〈fa〉

× µ2[c| − lcqce|e][b|lc|χ〉
(s−lcc − µ2)〈cd〉〈de〉〈bχ〉(self − µ2)

]∣∣∣∣∣∣
O(µ6)

, (3.31)

where the left-most factor is a combination of the two three-point amplitudes with legs f
and a. If we factor out the Parke-Taylor denominator, we can concatenate the numerator

µ4b
[a,b,c,f ]
4 = 1

〈12 . . . 61〉
∑
l±

[
µ4〈χ|lcbc(−lc)qceefa|b〉

(s−lcc − µ2)〈bχ〉(self − µ2)

]∣∣∣∣∣∣
O(µ6)

. (3.32)

By noting that

s−lcc − µ2 = −2lc · pc ,
2lc · pb = l2b − µ2 = 0 , (3.33)

we can commute the lc through up to lc · lc = µ2

µ4b
[a,b,c,f ]
4 = 1

〈12 . . . 61〉
∑
l±

[
µ4[b|(−lc)qceefa|b〉

(self − µ2) +O(µ6)
]∣∣∣∣∣∣
O(µ6)

, (3.34)

and upon noting that by commuting lc through all the other terms in [b| · · · |b〉 = tr+(b · · · )

[b|(−lc)qceefa|b〉 = −2lc · qce[b|afa|b〉 − [b|(−lc)qceefa|b〉

= 1
2(self − µ

2)sfasab , (3.35)
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the one-mass box coefficient falls out without explicitly entering the solutions l±, as

b
[a,b,c,f ]
4 = − 1

〈12 . . . 61〉sfasab = 1
2 tr(fabqcf ) . (3.36)

The two-mass box coefficients can be simplified in a similar way, but to diversify the
demonstration we show how to manipulate the expression with the α form of solution from
equation (3.15).

µ4b
[a,c,d,f ]
4 =

∑
l±

[
µ2[ab]

〈ab〉(s−laa − µ2) ×
〈χ|lc|c]
〈cχ〉

× µ2[de]
〈de〉(s−ldd − µ2) ×

〈χ|lf |f ]
〈fχ〉

]∣∣∣∣
O(µ6)

= µ4[ab][de]
〈ab〉〈de〉

[
α[c|fqac|c]α[f |cqdf |f ]

4s2
af (2(αl̄d+ + (1− α)l̄d−) · pd)(2(αl̄a+ + (1− α)l̄a−) · pa)

+

(1− α)[c|fqac|c](1− α)[f |cqdf |f ]
4s2
af (2((1− α)l̄d+ + αl̄d−) · pd)(2((1− α)l̄a+ + αl̄a−) · pa)

]∣∣∣∣∣
O(µ6)

;

(3.37)

we can simply take the µ2 → 0 limit for the content of the bracket which implies, if we
choose α = α+, that α→ 1

µ4b
[a,c,d,f ]
4 = µ4[ab][de]

〈ab〉〈de〉

[
[c|fqac|c][f |cqdf |f ]

4s2
af (2l̄d+ · pd2l̄a+ · pa)

+O(µ2)
]∣∣∣∣∣
O(µ6)

= µ4[ab][de]
〈ab〉〈de〉

[
[c|fqac|c][f |cqdf |f ]
〈f |qdfdc|f ]〈c|qacaf |c]

+O(µ2)
]∣∣∣∣∣
O(µ6)

= µ4

〈12 . . . 61〉
[
〈f |qac|c]〈c|qdf |f ] +O(µ2)

]∣∣∣∣
O(µ6)

; (3.38)

thus, the coefficient is

b
[a,c,d,f ]
4 =1

2
tr(cqacfqdf )
〈12 . . . 61〉 . (3.39)

The penta-cut in equation (3.27) can be used to compute the pentagon coefficient

b
[a,b,c,d,e]
5 = c3

0
[a|la|χ〉
〈aχ〉

× [b|lb|χ〉
〈bχ〉

× [c|lc|χ〉
〈cχ〉

× [d|ld|χ〉
〈dχ〉

× µ2[ef ]
〈ef〉(s−lee − µ2) ; (3.40)

using the adjacent-three-point identity (3.22) substituting in the solution (3.26) gives

b
[a,b,c,d,e]
5 = [ab]

〈ab〉
× [cd]
〈cd〉

× [ef ]
〈ef〉

× 1
2ξf ;

= 1
〈12 . . . 61〉tr+(abcdef)1

2ξf

= 1
〈12 . . . 61〉

(
tr(123456)1

2ξf − tr5(abcd)
)

(3.41)
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where upon summing over cycles the hexagon function can be reconstructed from the first
term in the final line.

Putting all the coefficients together reconstructs the full amplitude

AAP
6 = 1

〈12 . . . 61〉

− n∑
1<j1<j2≤n

tr (j1qj1+1,j2−1j2qj2+1,j1−1) I(j1,j2)
4 [µ4]

+
n∑
j=1

tr5(j + 1, j + 2, j + 3, j + 4)I(j)
5 [µ6] + tr(123456)I6[µ6]

 , (3.42)

which matches equation (1.12) upon shifting of the integrals I[µ2r] using equation (3.4).

3.5 Reduction to finite limit

To verify our results we can check that taking the limit ε → 0 reproduces known results.
This is a strong check, as delicate cancellations need to occur between integral coefficients
which do not follow obviously from their functional form.

The AP amplitude, to all orders in epsilon, is

AAP
n =

∑
P2me

4 ⊂{1,...,n}
bP4 I

P
4 [µ4] +

∑
P5⊂{1,...,n}

bP5 I
P
5 [µ6] , (3.43)

where P2me
4 consists of the “two-mass-easy” ordered subsets of {1, . . . , n} of the form

{i1, i3 − 1, i3, i1 − 1} , (3.44)

the subsets P5 are all five-element subsets of {1, . . . , n}, and the bP4 and bP5 are defined in
equations (3.25) and (3.27) respectively. The ε→ 0 limit should yield

AAP
n =

∑
1≤i1<i2<i3<i4≤n

tr−(i1i2i3i4)
〈12 . . . n1〉 +O(ε) . (3.45)

Upon making the decomposition tr− = 1
2(tr− tr5) and taking into account the limits of

the integral

ε(1− ε)I4 = 1
6 +O(ε) ,

ε(1− ε)I5 = 1
24 +O(ε) , (3.46)

then as shown by BDDK [23]∑
P2me

4 ⊂{1,...,n}
bP4 I

P
4 [µ4] =

∑
1≤i1<i2<i3<i4≤n

tr(i1i2i3i4)
2〈12 . . . n1〉 . (3.47)

Equally it must hold true that∑
P5⊂{1,...,n}

bP5 I
P
5 [µ6] = −

∑
1≤i1<i2<i3<i4≤n

tr5(i1i2i3i4)
2〈12 . . . n1〉 . (3.48)

This does not appear to fall out naturally from the functional forms of the coefficients bP5 ,
but as the solutions and functional form are completely determined, it provides a nontrivial
check on the validity of the expression (3.27). We confirm that this holds numerically up
to n = 17.
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3.6 Transcendental structure

For n = 4, 5, and before performing the dimension shift, the MHV amplitude is a pure
function in the sense of [81]. That is to say, taking the n = 5 case in particular, it can be
written in the form

AN=4
5

(
1−, 2−, 3+, 4+, 5+

)
= Atree

5 (1−, 2−, 3+, 4+, 5+)fMPL
5 ({si,i+1}, ε) , (3.49)

where fMPL
5 is a linear combination of multiple polylogarithms without any additional

kinematic coefficients. This can be seen by noticing that the coefficients appearing inside
the brackets in equation (1.11) precisely cancel the leading singularities of the corresponding
integrals, leaving the normalized versions of I4−2ε

4 , I6−2ε
5 , which belong to the uniformly

transcendental basis used in [82].
To see whether the pattern holds at n = 6, we must check the leading singularity of

the hexagon integral in equation (1.12). The amplitude before the dimension shift is

AN=4
6 = 〈ij〉4

4〈12 . . . 61〉

− n∑
j1,j2=1

tr (j1qj1+1,j2−1j2qj2+1,j1−1) I4−2ε;(j1,j2)
4

−2ε

 n∑
j=1

tr5(j + 1, j + 2, j + 3, j + 4)I6−2ε,(j)
5 + tr(123456)I6−2ε

6

 . (3.50)

Similarly to the five-point case, the boxes and pentagon integrals are multiplied by the
coefficients cancelling their leading singularities, tr

(
j1qj1+1,j2−1j2qj2+1,j1−1

)
and tr5(j +

1, j+2, j+3, j+4) respectively.11 The hexagon breaks down entirely to pentagons [43, 44]

I6 = 1
2

6∑
j=1

ξjI
(j)
5 (3.51)

where

ξj = 2(−1)j tr5(j + 1, j + 2, j + 3, j + 4)
tr5(123456) (3.52)

and thus the purity is broken by terms with the rational prefactor

(−1)j tr(123456)
tr5(123456) , (3.53)

where the denominator is the leading singularity12 of the hexagon. It should also be
highlighted that the dimension shifted hexagon does not contribute to the finite rational
(ε0) piece of the AP amplitude as

ε(1− ε)I8−2ε
6 = O(ε) . (3.54)

11See [44] for representations of these reduction coefficients as determinants.
12As the hexagon breaks down entirely to pentagons, the notion of it having a leading singularity could be

considered dubious. Here we use the same definition as in [82], with a natural representation as a kinematic
determinant.
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Thus while the MHV amplitude fails to preserve purity at n = 6, it is still possible
to match the pure structure to the finite contribution of the AP amplitude. However, this
matching becomes more complicated for n ≥ 7.

The fact that MHV integrands in N = 4 SYM have dlog forms [4, 83] led to the hope
that the integrated expressions would be pure functions. Of course, the dlog forms for MHV
amplitudes cannot be integrated directly in four dimensions, but dimensional regularisa-
tion is not a priori incompatible with a similar analysis of transcendental behaviour. For
example, it was mentioned in [84] that dlog forms can naturally accommodate additional
factors needed in dimensional regularisation, leading to results of uniform transcendental
weight. We have demonstrated by our explicit reduction that they are indeed of uniform
transcendental weight in D = 4−2ε dimensions for all n, but already the case n = 6 shows
that they do not satisfy the stronger condition of purity.

4 Conclusion and outlook

In this article we have proved the dimension-shift conjecture in equation (1.1) by using
unitarity cuts with a massive spinor-helicity formalism. We have also demonstrated how
to compute the one-loop amplitudes in the conjecture to all orders in epsilon and at all
multiplicities. This is facilitated by the simplicity of the pentagon cut solution (3.26).

Although one-loop amplitudes have for the most part long been computable to any
extent required by phenomenological applications, these results demonstrate that these two
simple classes of amplitude can be understood at a level of completeness not previously
realised. Extending these results to other helicity configurations is also achievable, by in-
cluding dimension-shifted bubble and triangle cuts and using a limiting procedure to resolve
the extra unfixed parameters in the cut constraint [42, 59]. For any given configuration,
one would also need the appropriate lower-point tree amplitudes with two massive legs.

Applying similar techniques to multi-loop amplitudes requires a general understand-
ing of how to fix a basis as was done in section 3.1. We hope the one-loop techniques
consolidated and developed in this work can provide insight and guidance into pushing
understanding of multi-loop amplitudes beyond their current level.

Moreover, the theorem (1.1) and the proof given here bridges N = 4 super-Yang-Mills,
with its remarkable simplicity, and more realistic theories like QCD. We hope that further
simplifications and unifications of this kind follow down the line.
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