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Abstract

We present a search for electroweak single top quark production using 2.7 fb~!
of CDF II data collected between 2002 and 2008. The analysis employes a mul-
tivariate technique based on Boosted Decision Trees (BDT), where the output is
used to build a discriminant variable which we will fit to the data. We search for
a combined single top s- and t-channel and measure a cross section of 2.41’8:? pb
assuming a top quark mass of 175 GeV/c2. We use the MCLIMIT to calcu-
late the signal significance. The expected (median) p-value for this analysis is
3.8 x 1077 % which corresponds to a 5.0¢ signal significance assuming single top
quark production at the rate predicted by the Standard Model. The observed
p-value is 0.00017 %, corresponding to a 3.60 excess.
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0 Introduction

Finding single top quark production is challenging since it is rarely produced (o ingictop ~
2.9 pb) in comparison with other processes with the same final state like W+jets and
tt. The signal to background ratio of the analysis is small, typically on the order of
S/B~1/18 [1]. This calls for a better discrimination of signal and background events
which can be achieved by using more information to characterize each event.

This note describes a new analysis approach that attempts to make optimal use
of information in the data by means of a multivariate technique via Boosted Decision
Trees (BDT) . We train four differnt BDTs which are optimezed for the search of single
top signatures in four different final states, namely W + 2 jets and W + 3 jets with
exaclty one SecVtx tag or > 2 SecVtx tags, where the W decays leptonically into an
electron (CEM and PHX electrons are considered) or a muon (CMUP and CMX, as
well as the new extra muons [2] from the MET+JETS trigger are used in this analysis).

In section [ll we present the event selection employed with the expected event yield.
Section B describes the BDT multivariate method using the TMVA package [3]. The
rest of the note discusses the systematic uncertainties and the results on the data.
This note has been updated to include pl4-pl17 data and this new data is validated
against the data from pl3 and before in Appendix Details of our previous result
with 2.2 fb~! of CDF data can be found in reference [4].

1 Event Selection and Expected Number of Events

Candidate events for this analysis are selected by requiring a W + 2 jet event topology
where the W decays leptonically, W — ev. and W — pv,. One or both of the two
jets should be identified as a b-jet using the secondary vertex tag requirement. The
detailed event selection and the estimate strategy has been performed and summarized
in a separate CDF note [1, B]. Table [ lists the expected event yield.

1.1 Non-triggered Muons

In the previous iteration of the analysis [, we included new non-triggered muons
according to the work of [2]. This acceptance gain is equivalent to 50% of the CMUP
contribution for the signal sample, while the background acceptance is increased by
about 35%. The overall sensitivity gain is estimated to be 9% [6].

2 Methodology

In order to search for a single top quark production we develope a multivariate tech-
nique based on Boosted Decision Trees. To Build the BDTs we make use of the
ROOT-integrated package TMVA [3]. The basics of a BDT is described in the follow-

ing section.
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Process Number of Events in 2.7 fb~! Sample
W + 2 jets W + 3 jets
s-channel 493 £ 7.0 16.3 £ 2.3 stop00
t-channel 74.3 + 10.9 22.3 £ 3.2 stopm0
Wb 549.1 + 165.5 | 169.8 + 51.3 btopXp
Wee, Weg 453.5 +139.9 | 126.7 £ 39.0 | ctopXw,stopwX
Mistags 410.7 £ 51.0 125.5 + 15.8 | ptopXw, utopXw
anti-electron /
non — W 75.6 = 30.2 274 £ 11.0 jet-electron /
non-isolated data
WwWw 49.4 £ 5.5 18.0 £ 2.0 itopww
Wz 244+ 1.9 7.3 £ 0.6 itopwz
47 0.7+ 0.1 0.3 £ 0.0 itopzz
Z + jets 31.1 4.6 13.4 + 2.0 ztopXY
tt dilepton 58.8 + 8.4 51.3 + 7.3 ttop75
tt non-dilepton 114.7 + 16.4 | 359.2 + 51.1 ttop75
Total signal 123.6 + 17.9 38.6 £ 5.5
Total prediction | 1891.1 4+ 312.4 | 934.4 + 108.0
‘ Observed in data ‘ 1874 ‘ 902 ‘ ‘

Table 1: Number of expected single top and background events in 2.7 fb~'of CDF data
passing all event selection requirements.

2.1 Description of a Boosted Decision Tree

A Decision Tree (DT) is a sequence of cuts using the discriminating variable (from a
given set of variables) which gives the best sig-bkg separation in each “node”, until
some stop criterion is reached. The phase space is split into regions that are eventually
classified as signal or background, depending on the majority of training events that
end up in the final “leaf” nodes. A schematic view of a DT is shown in Figure [l A
single DT is very similar to rectangular cuts. However, whereas a cut-based analysis
is able to select only one hypercube as region of phase space, the decision tree is able
to split the phase space into a large number of hypercubes, each of which is identified
as either signal-like or background-like . The path down the tree to each leaf node
represents an individual cut sequence that selects signal or background depending on
the type of the leaf node.

A shortcoming of decision trees is their instability with respect to statistical fluc-
tuations in the training sample from which the tree structure is derived. For example,
if two input variables exhibit similar separation power, a fluctuation in the training
sample may cause the tree growing algorithm to decide to split on one variable, while
the other variable could have been selected without that fluctuation. In such a case the
whole tree structure is altered below this node, possibly resulting also in a substantially
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different classifier response.

This problem is overcome by constructing a forest of decision trees and classifying
an event on a majority vote of the classifications done by each tree in the forest. All
trees in the forest are derived from the same training sample, with the events being
subsequently subjected to so-called boosting, a procedure which modifies their weights
in the sample. Boosting increases the statistical stability of the classifier and typically
also improves the separation performance compared to a single decision tree. However,
the advantage of the straightforward interpretation of the decision tree is lost. While
one can of course still look at a limited number of trees trying to interprete the training
result, one will hardly be able to do so for hundreds of trees in a forest. Nevertheless,
the general structure of the selection can already be understood by looking at a limited
number of individual trees.

Figure 1: Schematic view of a decision tree. Starting from the root node, a sequence
of binary splits using the discriminating variables x; is performed. Each split uses the
variable that at this node gives the best separation between signal and background
when being cut on. The same variable may thus be used at several nodes, while others
might not be used at all. The leaf nodes at the bottom end of the tree are labeled S
for signal and B for background depending on the majority of events that end up in
the respective nodes.

2.2 Training of the BDTs

Four different BDT's optimized for the search of single top in four different signal regions
are trained:



6 2 METHODOLOGY

2 jets bin, 1tag

2 jets bin, 2 tags

3 jets bin, 1 tag

3 jets bin, > 2 tags

In the following subsections we summarize the choices made for the building of
the BDTs (splitting criteria, boosting algorithm and pruning method), as well as the
samples and variables used for the training.

2.2.1 Building a DT

The training or building of a DT is the process that defines the splitting criteria for each
node. At each node, the split is determined by finding the variable and corresponding
cut value that provides the best separation between signal and background. The node
splitting is stopped once it has reached a minimum number of events. The end —or
leaf nodes— are classified as signal or background according to the class the majority
of events belongs to. Different separation criteria can be configured to assess the
performance of a variable and a specific cut requirement. For this analisys we have
chosen the so-called Gini Index which optimezes the quantity p-(1—p) = S-B/(S+B)?,
wherep = S é(S +B) is the purity and S(B) is the number of signal (background) events
in the node . The cut values are optimised by scanning over the variable range with
a granularity given by the parameter nCuts. The value of nCuts = 25 proved to be
a good compromise between computing time and step size. Finer stepping values did
not increase noticeably the performance of the BDTs.

2.2.2 Boosting Algorithm

Boosting is a general procedure in which the same classifier is trained several times
using a successively boosted (reweighted) training event sample. The final classifier is
then derived from the combination of all the individual classifiers. The most popular
boosting algorithm is the so-called AdaBoost[l] (adaptive boost), where events that
were misclassified during the training of a tree are given a higher event weight in the
training of the next following tree. Starting with the original event weights when
training the first decision tree, the subsequent tree is trained using a modified event
sample where the weights of previously misclassified events are multiplied by a common
boost weight . The boost weight is derived from the misclassification rate err (number
of missclasified events over total events) of the previous tree,

1 —err
a = .

(1)

! Another splitting criteria based on S/v/S + B has been investigated for this analyses, however
the performance of the trained BDT has been found to be slightly worse than using Gini Index

err
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With the result of an individual tree h(z) (x being the tuple of input variables) encoded
for signal and background as h(x) = +1 and —1, respectively, the resulting event
classification yppr(z) for the boosted classifier is then given by

yppr(z) = Z In(a;) - hi(z), (2)

i€ forest

where the sum is over all trees in the forest. Small (large) values for yppr(x) indicate
a background-like (signal-like) event.

Another possible modification of Eq. 2lis to use the training purity in the leaf node
as respectively signal or background weights rather than relying on the binary decision,
h(z) = p. It has been found that it is preferable to train with the latter option the
single tag BDT's, while the double tag BDTs —with smaller statistics samples— perform
better when trained with the former option.

2.2.3 Pruning Method

Pruning is the process of cutting back a tree from the bottom up after it has been built
to its maximum size. Its purpose is to remove statistically insignificant nodes and thus
reduce the overtraining of the tree. It has been found to be beneficial to first grow the
tree to its maximum size and then cut back, rather than interrupting the node splitting
at an earlier stage. This is because apparently insignificant splits can nevertheless lead
to good splits further down the tree.

In this analysis we use the Cost complexity [§] pruning algorithm which relates
the number of nodes in a subtree below a node to the gain in terms of misclassified
training events by the subtree compared the the node itself with no further splitting.
The cost estimate R chosen for the misclassification of training events is given by the
misclassification rate 1 — max(p, 1 — p) in a node. The cost complexity for this node is

then defined by
_ R(node) — R(subtree below node)

~ #nodes(subtree below node) — 1

(3)

The node with the smallest p value in the tree is recursively pruned away as long as
p < PruneStrength, where PruneStrength is a parameter which has to be tuned for each
analisys until overtraining is completely avoidedd. An example of a non-overtrained
BDT is shown in Figure

2.2.4 Training Samples

A natural way of choose the sample composition for the training of the BDTs is to
use a mixture of all the expected proccesses with the correct estimated composition.

2 A more aggressive approach would be to chose a smaller PruneStrength. Although the overtrain-
ing wouldn’t be completely avoided, one could remove the events used in the training to build the
discriminant templates, so the bias from the overtrainig is avoided and signal to background separation
power would be improved.
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Figure 2: Example of a BDT trained in the 2-jets and 1-tag sample with enough
PruneStrength to avoid overtraining. Blue are signal events and red are background
events. Points are events from the training sample, and histogram are events from test
sample.

TMVA has the ability of introduce event by event weights into the training sample, in
this way we can use as much statistics as we have availablell while keeping the correct
predicted composition between samples. Although, one has to be careful with large
samples —for instance the mistag sample— since it has been found that composing your
training sample with much more background events than signal events can degrade the
performance of the trained BDT. Then, it is preferable to cut big samples in such a way
that the total number of background events used for the training is smaller than ~ 5
times the total number of signal events while keeping the real background composition
via weights in the training.

The backgrounds proccesses included for the training are tt and W + bottom for
the double tag channels, plus W 4 charm and W + light for the 1 tag channels. The
inclusion of all backgrounds (except non-W) into the training has been investigated,
but it has been found that the performance of the BDTs are very similar so the simpler
case has been chosen.

3At least half of the events in each sample used in the trainig are kept for a subsequent test of the
training.
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2.2.5 Input Variables

Decision trees are insensitive to the inclusion of poorly discriminating input variables.
While for artificial neural networks it is typically more difficult to deal with such
additional variables, the decision tree training algorithm will basically ignore non dis-
criminating variables as for each node splitting only the best discriminating variable is
used.

The variables used for the training of the BDTs in the 2-jet bin channels are:

e the Fp and the 7 of both jets

the pr and the n of the lepton
e the missing transverse energy in the event Fr
e the scalar sum of the transverse energies Hr = >, BT + pr + Er
e the invariant mass of the di-jet system my ;o
e the 7 and the transverse mass of the W boson m (1)
e the mass of the reconstructed top my,,
e the invariant mass of the lepton, neutrino and both jets m, ;152
e the charge of the lepton times the n of the b-quark jet Q) x n
e the KIT NN flavor separator [9, [10]
e the A¢ between the jets and the fr
e the A¢ between the jets and the lepton
e the A¢ between the the lepton and the Fr
e the cosine of the angle between the lepton and the jets
For the 3-jet channels the following variables are also included:
e the £ and the n of the 3rd jet

e the three combinations of di-jet system invariant masses

the invariant mass of the three jets

the invariant mass of the lepton, neutrino and three jets 1,19

the A¢ between the 3rd jet and the Fp

the A¢ between the 3rd jet and the lepton
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2-jets, 1-tag 2-jets, 2-tag
Rank | Variable Variable Importance | Variable Variable Importance
1 KaNN 4.597e-01 mJ1J2 7.453e-02
2 mJ1J2 1.799e-01 Mlnub 6.599e-02
3 QEta 1.077e-01 wmt 6.453e-02
4 MInub 4.684e-02 MetJ1DPhi 5.142e-02
> J1Et 4.570e-02 Mlnuj1j2 4.805e-02
6 wmt 1.890e-02 KaNN 4.656e-02
7 J2Et 1.874e-02 cosLepJ1 4.645e-02
8 LepPt 1.639e-02 J1Eta 4.563e-02
9 cosLepJ1 1.572e-02 J1Et 4.522e-02
10 | MetLepDPhi 1.481e-02 J2Et 4.424e-02
11 | J2Eta 1.063e-02 LepEta 4.366e-02
12 | LepEta 8.744e-03 MetJ2DPhi 4.339e-02
13 | Mlnuj1j2 8.106e-03 LepJ2DPhi 4.252e-02
14 | Ht 7.755e-03 cosLepJ2 4.249e-02
15 | MetJ1DPhi 7.589e-03 MetLepDPhi 4.098e-02
16 | LepJ1DPhi 6.232e-03 LepJ1DPhi 3.886e-02
17 | cosLepJ2 6.035e-03 LepPt 3.869e-02
18 | met 4.676e-03 QEta 3.850e-02
19 | MetJ2DPhi 4.174e-03 met 3.840e-02
20 | J1Eta 3.922e-03 J2Eta 3.573e-02
21 | WEta 3.881e-03 Ht 3.227e-02
22 | LepJ2DPhi 3.839¢-03 WEta 3.188e-02

Table 2: Variable ranking result for both 2-jets channels. Top variable is best ranked.

All the energies involved are level-5 corrected. When a variables requires a b-quark
jet, it is chosen as the b-tagged jet for the single tag samples, and as the jet with largest
@ x n for the double tag sample. For the reconstruction of the neutrino, the smallest
|pY| solution is chosen.

Validation plots of all the above variables in the four signal regions, as well as in
the control regions are shown in Appendix [Al Validation for the newest data periods
is included in

A ranking of the BDT input variables is derived by counting how often the variables
are used to split decision tree nodes, and by weighting each split occurrence by the
separation gain-squared it has achieved and by the number of events in the node.
Tables show the variable ranking for each trained channel.
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3-jets, 1-tag 3-jets, 2-tag
Rank | Variable Variable Importance | Variable Variable Importance
1 KaNN 3.846e-01 QEta 7.785e-02
2 mJ2J3 7.124e-02 Ht 5.032e-02
3 wmt 5.449e-02 Mlnub 4.698e-02
4 mJ1J3 5.358e-02 mJ2J3 4.100e-02
5 Ht 4.978e-02 mJ1J2 3.864e-02
6 QEta 4.729e-02 mJ1J2J3 3.735e-02
7 Mlnub 3.924e-02 MetLepDPhi 3.677e-02
8 mJ1J2J3 2.642¢-02 wmt 3.632e-02
9 J3Et 2.609e-02 J1Eta 3.573e-02
10 | J2Eta 2.549e-02 cosLepJ1 3.447e-02
11 | mJ1J2 2.490e-02 J2Et 3.400e-02
12 | cosLepJ1 2.370e-02 J3EL 3.324e-02
13 | LepPt 1.910e-02 mJ1J3 3.307e-02
14 | LepEta 1.774e-02 J2Eta 3.275e-02
15 MetLepDPhi 1.382e-02 cosLepJ3 3.046e-02
16 | J1Eta 1.373e-02 J1Et 3.017e-02
17 | LepJ1DPhi 1.223e-02 WEta 2.993e-02
18 | cosLepJ2 1.069e-02 MetJ2DPhi 2.988e-02
19 | cosLepJ3 9.661e-03 LepJ1DPhi 2.898e-02
20 | JIEt 8.641e-03 KaNN 2.894e-02
21 | MetJ3DPhi 8.278e-03 LepEta 2.873e-02
22 | MetJ2DPhi 8.256e-03 LepJ3DPhi 2.855e-02
23 | met 8.141e-03 Mlnuj1j2j3 2.828e-02
24 | MetJ1DPhi 7.496e-03 MetJ3DPhi 2.692e-02
25 | LepJ3DPhi 6.743e-03 cosLepJ2 2.616e-02
26 | J2Et 6.133e-03 LepPt 2.518e-02
27 | LepJ2DPhi 6.035e-03 MetJ1DPhi 2.508e-02
28 | WEta 5.932e-03 LepJ2DPhi 2.204e-02
29 | Mlnuj1j2 5.417e-03 met 2.160e-02
30 | MlInuj1j2j3 5.108e-03 Mlnuj1j2 2.060e-02

Table 3: Variable ranking result for both 3-jets channels. Top variable is best ranked.

2.3 Distributions of the BDT Outputs

We use the output of the BDT trained in the four channels as the discriminant for a
s-channel and t-channel combined search. The raw output of the BDTs are always in
a range inside [-1, 1], howeve we make a transformation which consist in a stretching
and a shift in such a way that the output goes from -1 to 1. In that transformation we
require the overflow bin to have at least some backgrounds events in order not to make
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MCLIMIT code confused by the absence of background. The choice for the number of
bins and the overflow bin are optimized performing a 2D scan based on the o-value as
figure of merit.

Figure B includes the final templates we use in the cross section fit and to throw
pseudo-experiments. For showing purposes, we group templates with similar shapes in
categories, so W + bottom is the composition of Wbb, WZ, ZZ, Z + jets and non-W
weighted by Method 2 predictions; W + charm is composed by Wee, Wej and WW.
Figure @l shows the predicted distributions of the BDT output in the four channels.
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Figure 3: Templates of the BDT outputs. The top two plots show the two-jet bin while
the bottom plots show the three-jet bin. Single-tag discriminants are on the left side,
while double-tag discriminants are on the right. All histograms are normalized to unit
area.

2.4 Cross Check of the Method

In this section we cross-check whether the MC prediction of the BDT output represents
the data well without looking at the single top candidate events. We choose the “tag-
gable but not tagged” side-band data. That is, we select W+2/3 jets events according
to our nominal event selection and require that at least one jet is taggable but that
neither are tagged by the SECVTX algorithm. This event selection is orthogonal to the
single top signal region while it still represents a very similar kinematic event topology.
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Figure 4: Predicted distributions of the BDT outputs. The top two plots show the
two-jet bin while the bottom plots show the three-jet bin. Single-tag discriminants are
on the left side, while double-tag discriminants are on the right.

Another advantage is that this sample has very little contribution from top (<0.5%).
The input variables for the BDT are the same as in the single top analysis (with some
exceptions as the KIT flavor separator and variables requiring a b-jet, these variables
for the untagged samples are defined in Appendix [A]). Data-Monte Carlo comparisons
of the input variables are shown in Appendix [A], where we find generally good agree-
ment between data and Monte Carlo prediction. We also plot the distribution of the
BDTs outputs shown in FiguresBHol The agreement is good, which assures us that the
BDT output in Monte Carlo is well represented by data.

We also cross-checked the shape of our ¢t template by looking in the tt-enriched data
tagged lepton + 4 jets sample. Figure [ shows the comparison. The lepton + 4 jets
sample has an expected ¢t contribution of about 75%. In these plots, the Monte Carlo
distributions are normalized to the data. Within statistics, we find good agreement in
the data and Monte Carlo shapes.
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Figure 5: Comparison of the outputs of the BDTs for W + 2 jet Monte Carlo and data
in the taggable but not tagged control sample. The left-hand plots are the single tagged
events and the right-hand plots are double-tagged. Linear scale in the top figures, and
logarithmic scale in the bottom figures (shown for the 2.2fb~1 sample only).

2.5 The Likelihood Function

The likelihood function, £, is a function of the unknown Poisson means for signal and
background and is defined such that it expresses the joint probability of observing the
N data events at their respective values of the BDT output. The values of the Poisson
means at which £ achieves its maximum, corresponds to the most probable estimate
for the true signal and background content in the data sample.

We perform a binned likelihood fit to the BDT output. To make it easier to compare
the different fit parameters, we define the fit parameter as 3; = (TJF @) an where 3; is
unity when the fit result corresponds to the expected number of events obtained from
the independent Method 2 signal /background estimate:

5 B o=y, Tk
L=T1G(B00) IT 7 (4)

j=2 k=1
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Figure 6: Comparison of the outputs of the BDTs for W + 3 jet Monte Carlo and data
in the taggable but not tagged control sample. The left-hand plots are the single tagged
events and the right-hand plots are double-tagged. Linear scale in the top figures, and
logarithmic scale in the bottom figures (shown for the 2.2fb~1 sample only).

The Gaussian constraints to the backgrounds are given by:

1 1 (8, —10\

I 27r-<7]2 2 gj

(5)

Hi = ﬁsingle top * ir]k + ﬁW—l—bottom jets * T‘]k + ﬁW-{-Charm jets ir]k + ﬁmistags : ir]k + ﬁtf : ir]k (6)

The index k runs over the bins of the fitted histogram. The template histograms
are normalized to the predicted number of events as shown in Table [l This means,
SE, Tk = N7

In addition, the prediction in each bin needs an additional Gaussian uncertainty due
to the limitations of Monte Carlo statistics. Each bin is allowed to fluctuate according
to the total uncertainty in that bin, which is the sum in quadrature of the weight of
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Figure 7: Comparison of the outputs of the BDTs for lepton + four jets data and
Monte Carlo, using the leading two jets. The left-hand plots are the single tagged
events and the right-hand plots are double-tagged. The top plots are in the two-jet bin
and the bottom plots are in the three-jet bin (shown for the 2.2 fb~! sample only.)

each event. This prevents us from overestimating our sensitivity due to a fluctuation
in Monte Carlo.

3 Incorporating Systematic Uncertainties

Systematic uncertainties can bias the outcome of this analysis and have to be incorpo-
rated into the result. We address systematic uncertainty from several different sources:
(1) jet energy scale (2) initial state radiation (3) final state radiation (4) parton dis-
tribution functions (5) the event generator, the uncertainty in the event detection
efficiency and luminosity (6) neural network jet flavor separator uncertainty, (7) ALP-
GEN Monte Carlo factorization and renormalization scale uncertainty (8) uncertainty
on the mistag model, (9) uncertainty on the non-W flavor composition, and (10) un-
certainty on the modeling of the Monte Carlo simulation, as estimated from the most
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discrepant shapes in the control variables.

Systematic uncertainties can influence both the expected event yield (normaliza-
tion) and the shape of the discriminant distribution.

Normalization uncertainties are estimated by recalculating the acceptance using
Monte Carlo samples altered due to a specific systematic effect. The single top nor-
malization uncertainty is the difference between the systematically shifted acceptance
and the default one and are shown in Table

The effect of the uncertainty in the jet energy scale is evaluated by applying jet-
energy corrections that describe +1¢ variations to the default correction factor. Sys-
tematic uncertainties due to the modeling of ISR and FSR are obtained from dedicated
Monte Carlo samples where the strength of ISR/FSR was increased and decreased in
the parton showering to represent +1¢ variations [II]. To evaluate the uncertainty
associated with the specific choice of parton distribution functions, we use the rec-
ommendation from the joint physics group and vary the 40 independent eigenvectors
of the CTEQ parton distribution functions and compare to the MRST PDFs. We
quadratically sum the uncertainty from the CTEQ and MRST PDF uncertainty if the
difference between the CTEQ and MRST PDFs is larger than the CTEQ uncertainty:.

The effect of event generator, event detection, b-tag scale factor, and luminosity
uncertainty is determined from the background estimate (for the signal template only;
the background templates have these numbers included in their Gaussian constraints).
The neural network jet flavor separator has a systematically shifted outputs that we
employ as systematic uncertainty. ALPGEN Monte Carlo systematic uncertainties in
shape are estimated from dedicated samples—rate uncertainties are already included
in the background normalization uncertainties.

The uncertainty on the mistag model shape is determined by weighting pretag data
with the mistag matrix [T2]. The non-WW flavor composition is determined from studies
made using the neural net b-tagger to estimate the flavor composition of the non-W
samples. The uncertainty is estimated by comparing the default flavor ratios (45% b,
40% ¢, 15% light) with an “extreme” estimate (60% b, 30% ¢, 10% light).

In order to account for possible mis-modeling in Monte Carlo, we assign a systematic
to variables that look sufficiently discrepant to suspect a mis-modeling. We do this
by re-weighting the templates using the distributions of that variable in the sideband
of events which have at least one taggable jet but no tagged jets. Two variables were
chosen for this systematic: the pseudo-rapidity of the last jet, which shows an excess
in data in the far forward region, asymmetrically on the east side; and the quantity
AR between the two jets, in which the Monte Carlo comes close but does not match
the data perfectly. Figure B shows the distribution and the re-weighting approach.

For all backgrounds the normalization uncertainties are represented by the uncer-
tainty on the predicted number of background events, obtained from Method2 and are
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incorporated in the analysis as Gaussian constraints in the likelihood function.

B e Hk . 11
E(/617"'765;617" 511 = H HG /6J|1 HG(517071> (7)
k=1 7j=2 =1
Poisson term Gauss constraints Systematics
5 11
where, =Y B - {H (1416 - (i H (6:) + Gji—H(—5i))]} (8)
j=1 i=1

Normalization Uncertainty

g T8 e G) 80D} @
Shape P. =1

Shape Uncertainty

All systematic normalization and shape uncertainties are incorporated in the analy-
sis into the likelihood as nuisance parameters, conform with a fully Bayesian treatment
[13]. We take the correlation between normalization and shape uncertainties for a
given source into account [I4]. The relative strength of a systematic effect due to
the source i is parameterized by the nuisance parameter 9; in the likelihood function,
constrained to a unit-width Gaussian (last term in Equation [). The +1o changes
in the normalization of process j due to the i source of systematic uncertainty are
denoted by €;;+ and €;;— (see Equation part B). The £10 changes in bin k of the Hr
templates for process j due to the i*" source of systematic uncertainty are quantified
by kjirt+ and kj— (see Equation part M). H(¢;) represents the Heaviside function,
defined as H(0;) = 1 for §; > 0 and H(4;) = 0 for §; < 0. The Heaviside function is
used to separate positive and negative systematic shifts (for which we have different
normalization and shape uncertainties). The variable §; appears in both the term for
the normalization (Equation B) and the shape uncertainty (Equation @), which is how
correlations between both effects are taken into account.

We marginalizing the likelihood function by integrating £(31, 2, 33, B4, 35, 01, --011)
over the nuisance parameters 35, 33, 04, O5, 01, ..011 for many possible values of the single
top cross-section 3 from [0..5]. The resulting reduced likelihood £(/3) is a function of
the single top cross-section [3; only.

We list all systematic acceptance changes due to systematic uncertainties (aside
from the uncertainty in the background estimate, which includes luminosity, generator,
b-tagging, and heavy flavor uncertainties) in Table ll and Table B

Figures [ through [ show the shifts in the distributions caused by shifts of one
standard deviation in the different sources of uncertainty.



Systematic | Process 1 tag 2 tag

JES Single top | —0.6% / +0.3% | +2.2% / —1.1%
JES b-like +6.0% / —6.6% | +9.7% / —9.9%
JES c-like +6.1% / —5.6% | +10.0% / —10.0%
JES tt +9.9% / —9.4% | +8.5% / —7.6%
ISR Single top | +1.9% / +2.1% | 40.3% / +6.6%
ISR tt —2.6% / =7.1% | +0.6% / —9.4%
FSR Single top | +4.8% / —0.7% | +7.5% / +0.8%
FSR tt —-51% / —2.6% | —8.0% / —1.7%
PDF Single top | —3.0% / +3.0% | —2.0% / +2.0%
PDF tt —1.8% / +1.8% | —1.7% / +1.7%
Metop Single top | +7.3% / —6.2% | +9.0% / —7.6%
Myop tlT +7.8% / —8.1% —|-7.8% / +8.1%
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Table 4: Rate systematic uncertainties used in this analysis for the W + 2 jet bin .
The my,, samples are used not as a systematic but as a different mass point for the

measurement.

Systematic | Process 1 tag 2 tag

JES Single top | —9.4% / +10.3% | —8.3% / +4.2%
JES b-like +6.8% / —6.3% | +9.5% / —10.0%
JES c-like +4.7% |/ —=5.6% | +15.4% [/ —11.4%
JES tt +4.6% / —=5.1% | +5.5% / —5.1%
ISR Single top | —3.3% / —4.8% | +5.8% / —5.0%
ISR tt —0.6% / —4.5% —0.5% / —6.6%
FSR Single top | —3.3% / =3.8% | +2.2% / —2.3%
FSR tt —-3.4% | —2.2% —3.4% |/ —2.7%
PDF Single top | —2.6% / +2.6% | —1.9% / +1.9%
PDF tt —1.8% / +1.8% —-1.7% / +1.7%
Metop Single top | +7.4% / —6.3% | +8.0% / —6.8%
Myop tt +7.8% / —8.1% 7.8% | —8.1%

Table 5: Rate systematic uncertainties used in this analysis for the W + 3 jet bin.

The my,, samples are used not as a systematic but as a different mass point for the

measurement.
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Figure 8: Distributions which suggest a mis-modeling in Monte Carlo, binned so as
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of the third jet in the three-jet bin, and AR between the jets in the two-jet bin.
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Figure 9: Shape systematics for the single top template.
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Figure 10: JES systematic uncertainty evaluated in background events.
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Figure 14: Systematic uncertainty due to

mis-modeling of last jet pseudo-rapidity.
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uncertainty due to mis-modeling of last jet pseudo-rapidity.
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Figure 16: Systematic

uncertainty due to mis-modeling of AR between the two jets.




29

tt-bar tt-bar

MC modelingaR 2 el tag MC madeling AR 2[e} 3 daf
Ddfaut Default
——bystematic Hs matic

1 05 0 0.5 1 -1 05 0 05 1
BDT Output BDT Output
s 0z
3 05 o 05, o2 o o 0
tbar tbar

et

MC modeling 4R 9 Mg hodeling 4R 3 et 2 tag
Defduit efault
ystematic Syspmatic

-1 0.5 0 0.5 1 -1 -0.5 0 0.5 1
BDT Output BDT Output
g o s o
£ 1
T o1 T
= 0 2 o
b 2. b 01
0z oz
o2 05 0 05, o3 0 O 0

Figure 17: Systematic uncertainty due to mis-modeling of AR between the two jets.
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3.0.1 Multiple Fit Regions

To increase the sensitivity of the analysis, we create separate templates for the untrig-
gered muons, which have a substantially different background composition from the
rest of the subdetectors. We create templates for single and double tags separately,
and for the two-jet and three-jet bins separately. We fit for one common cross section
across all eight different regions when we perform the final fit.

4 Result with CDF II Data

We apply the analysis to 2.7 fb~! of CDF Run II data. We compare the BDT out-
put distributions of 2247 candidate events with the sum of predicted single top and
background templates (see Figure [ for the unblinded discriminant distributions).

In order to extract the most probable single top content in the data we perform the
maximum likelihood method described in Section 3. The posterior p.d.f is obtained
by using Bayes’ theorem:

(5 data) = =\ SLeOUT)

J L*(data|B7)m(B1)d B,
where L£*(data|f;) is the reduced likelihood and 7(f3;) is the prior p.d.f. for g;. We
adopt a flat prior, 7(8;) = H(f1), in this analysis, with H being the Heaviside step
function.

The most probable value (MPV) corresponds to the most likely combined single
top production cross section given the data. The uncertainty corresponds to the range
of highest posterior probability density which covers 68.27% [15].

We perform marginalization using the likelihood function of Equation [ with all
systematic rate and shape uncertainties included in the likelihood function. The most
probable value for the single top cross section is obtained at 2.473% pb. The posterior
probability density is shown in Figure

5 Expected Sensitivity and Hypothesis Test

We interpret the result using the CLs/CLb method developed at LEP [16]. We compare
our data against two models, one asserting that the data is due to background processes
only (b) and one which includes Standard Model single top production in addition to
the background processes (s+b). We propagate all systematic uncertainties in our
statistical method as described in the next section Using the test statistic ) =
% we compute the probability (p-value) hat the background only (b) model
fluctuated equal or up to the observed value Qus in the data (observed p value) and
to the median @) value of signal+background (s+b) pseudo-experiments (expected p-
value). Figure 0 shows the distribution of the test statistics for pseudo-experiments
performed for (b) and (s+b). We expect a p-value of 3.8 x 10~7 % (5.00). and observe
a p-value of 0.00017% (3.60) in the data.
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Figure 18: CDF data compared to Monte Carlo prediction for signal and background.
The top plots show the two-jet bin while the bottom plot shows the three-jet bin;
the left-hand plots show the single-tagged events while the right-hand plots show the
double-tagged events.

6 Conclusions

We have used the matrix element analysis technique in a direct search for electroweak
single top quark production. Our search was done simultaneously for s-channel and
t-channel single top production. To extract the most probable single top content in
data, we apply a maximum likelihood technique. All sources of systematic rate and
shape uncertainty are included in the likelihood function. We have analyzed 2.7 fb~tof
CDF Run II data and measure a combined s- and t-channel single top production cross
section of:

Osingletop = 2.470% pb (all systematics included)

assuming a top quark mass of 175 GeV/c?. We use the MCLIMIT program [T6] to cal-
culate the signal significance. The observed p-value in 2.7fb~! of CDF data is 0.00017
(3.60). The expected (median) p-value in pseudo-experiments is 3.8 x 10~7 % (5.00).
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Figure 19: Marginalized likelihood of the single top cross section using 2.7 fb~'of data.
The error band shows the 68% uncertainty (all systematics included) on the measure-
ment.
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A Validation of Input Variables

Figures show the data MC comparisons of all the BDT input variables in the
untagged control regions as well as in the signal regions. In the untagged samples
the b-quarq jet is chosen as the leading jet. The KIT falvor separator is randomized
according to a mistag distribution. These distributions are for the 2.2 fb~1 data sample
(up to period 13). The newest data period (pl14-pl7) sample compared with the MC
prediction is included in Appendix [Bl
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Figure 21: Er of the leading jet. Top is the untagged sample, middle is the single
tagged sample, and bottom is the double tagged sample. Left is 2-jet bin, and right is
3-jet bin.
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Figure 22: 7 of the leading jet. Top is the untagged sample, middle is the single tagged
sample, and bottom is the double tagged sample. Left is 2-jet bin, and right is 3-jet
bin.
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Figure 23: Er of the 2nd jet. Top is the untagged sample, middle is the single tagged
sample, and bottom is the double tagged sample. Left is 2-jet bin, and right is 3-jet
bin.
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Figure 27: Lepton n. Top is the untagged sample, middle is the single tagged sample,
and bottom is the double tagged sample. Left is 2-jet bin, and right is 3-jet bin.
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Figure 28: Missing Transverse Energy. Top is the untagged sample, middle is the single
tagged sample, and bottom is the double tagged sample. Left is 2-jet bin, and right is
3-jet bin.
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Figure 29: A® between /Er and lepton. Top is the untagged sample, middle is the
single tagged sample, and bottom is the double tagged sample. Left is 2-jet bin, and
right is 3-jet bin.
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Figure 30: A® between leading jet and lepton. Top is the untagged sample, middle is
the single tagged sample, and bottom is the double tagged sample. Left is 2-jet bin,
and right is 3-jet bin.
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Figure 31: A® between 2nd jet and lepton. Top is the untagged sample, middle is the
single tagged sample, and bottom is the double tagged sample. Left is 2-jet bin, and
right is 3-jet bin.
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Figure 32: A® between leading jet and /Er. Top is the untagged sample, middle is
the single tagged sample, and bottom is the double tagged sample. Left is 2-jet bin,
and right is 3-jet bin.
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Figure 33: A® between 2nd jet and /E7. Top is the untagged sample, middle is the
single tagged sample, and bottom is the double tagged sample. Left is 2-jet bin, and
right is 3-jet bin.
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Figure 34: Cosine of the angle between leading jet and lepton. Top is the untagged
sample, middle is the single tagged sample, and bottom is the double tagged sample.
Left is 2-jet bin, and right is 3-jet bin.
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Figure 35: Cosine of the angle between 2nd jet and lepton. Top is the untagged sample,
middle is the single tagged sample, and bottom is the double tagged sample. Left is
2-jet bin, and right is 3-jet bin.
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Figure 36: Transverse mass of the W boson. Top is the untagged sample, middle is
the single tagged sample, and bottom is the double tagged sample. Left is 2-jet bin,
and right is 3-jet bin.
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Figure 37: n of the W boson. Top is the untagged sample, middle is the single tagged
sample, and bottom is the double tagged sample. Left is 2-jet bin, and right is 3-jet
bin.
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Figure 38: Sum of scalar energies of the event. Top is the untagged sample, middle is
the single tagged sample, and bottom is the double tagged sample. Left is 2-jet bin,
and right is 3-jet bin.
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Figure 39: . Top is the untagged sample, middle is the single tagged sample, and
bottom is the double tagged sample. Left is 2-jet bin, and right is 3-jet bin.
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Figure 40: . Top is the untagged sample, middle is the single tagged sample, and
bottom is the double tagged sample. Left is 2-jet bin, and right is 3-jet bin.
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Figure 41: Top is the untagged sample, middle is the single tagged sample, and bottom
is the double tagged sample. Left is 2-jet bin, and right is 3-jet bin.
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Figure 43: . Top is the untagged sample, middle is the single tagged sample, and
bottom is the double tagged sample. Left is 2-jet bin, and right is 3-jet bin.
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Figure 44: . Top is the untagged sample, middle is the single tagged sample, and
bottom is the double tagged sample. Left is 2-jet bin, and right is 3-jet bin.
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Figure 45: . Top is the untagged sample, middle is the single tagged sample, and
bottom is the double tagged sample. Left is 2-jet bin, and right is 3-jet bin.
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Figure 46: . Top is the untagged sample, middle is the single tagged sample, and
bottom is the double tagged sample. Left is 2-jet bin, and right is 3-jet bin.
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B Validation of new data sample (p14-p17)

As a quick validation check of the newest data periods to be included in the analysis
a comparison of the shapes of some important kinematic variables in the 2-jet bin for
new data (pl4-pl7) have been compared with old data (prior to period 14). Figures
show the new data (red) compared with the old data scaled to the new data
(black). Reasonable agreement is observed in all distributions studied.

For completeness the pl4-p17 data sample is also compared with the MC prediction
in 7?7-77.
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Figure 47: Er distributions of the first jet in the > 0 tag bin for the new data (p14-p17)
compared with old data (prior to p14). The old data has been scaled to the new data.
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Figure 48: FEr distributions of the second jet in the > 0 tag bin for the new data

(p14-p17) compared with old data (prior to pl4). The old data has been scaled to the
new data.
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Figure 49: Hp distributions in the > 0 tag bin for the new data (pl14-pl7) compared
with old data (prior to pl4). The old data has been scaled to the new data.
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Figure 50: Lepton-n distributions in the > 0 tag bin for the new data (pl4-pl7)
compared with old data (prior to p14). The old data has been scaled to the new data.
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Figure 51: Lepton-Pr distributions in the > 0 tag bin for the new data (pl4-pl7)
compared with old data (prior to pl14). The old data has been scaled to the new data.
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Figure 52: MET distributions in the > 0 tag bin for the new data (p14-p17) compared
with old data (prior to pl4). The old data has been scaled to the new data.
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Figure 53: N-tag distribution in the > 0 tag bin for the new data (p14-p17) compared
with old data (prior to pl4). The old data has been scaled to the new data.
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Figure 54: W transverse mass distribution in the > 0 tag bin for the new data (p14-

pl7) compared with old data (prior to pl4). The old data has been scaled to the new
data.
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Figure 55: Er distributions of the first jet in the > 1 tag bin for the new data (p14-p17)
compared with old data (prior to pl14). The old data has been scaled to the new data.
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Figure 56: FEr distributions of the second jet in the > 1 tag bin for the new data

(p14-p17) compared with old data (prior to pl4). The old data has been scaled to the
new data.
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Figure 57: Hp distributions in the > 1 tag bin for the new data (p14-pl17) compared
with old data (prior to pl4). The old data has been scaled to the new data.
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Figure 58: Lepton-n distributions in the > 1 tag bin for the new data (pl4-pl7)
compared with old data (prior to p14). The old data has been scaled to the new data.
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Figure 59: Lepton-Pr distributions in the > 1 tag bin for the new data (pl4-pl7)
compared with old data (prior to pl14). The old data has been scaled to the new data.
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Figure 60: MET distributions in the > 1 tag bin for the new data (p14-p17) compared
with old data (prior to pl4). The old data has been scaled to the new data.
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Figure 61: N-tag distribution in the > 1 tag bin for the new data (p14-p17) compared
with old data (prior to pl4). The old data has been scaled to the new data.



71

Wm_T (CEM @ hew o prapss Wm_T (PEM W m_T (CMUP)

= Ol dat 013

20 40 60 80 100 120 140 1 20 40 60 80 100 120 140 20 40 60 80 100 120 140 160

Wm_T (CMX] Wm_T (NEW, Wm_T (ALL;

20 40 60 80 100 120 140 160

Figure 62: W transverse mass distribution in the > 1 tag bin for the new data (pl4-
pl7) compared with old data (prior to pl4). The old data has been scaled to the new
data.
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Figure 63: Ep of the leading jet. Left is untagged 2-jet bin, middle is untagged 3-jet
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Figure 64: 7 of the leading jet. Left is untagged 2-jet bin, middle is untagged 3-jet bin,
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Figure 65: Ep of the 2nd jet
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Figure 66: n of the 2nd jet. Left is untagged 2-jet bin,
and right is single tagged 2-jet bin.
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Figure 67: Invariant dijet mass. Left is untagged 2-jet bin, middle is untagged 3-jet
bin, and right is single tagged 2-jet bin.
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Figure 68: Lepton pr. Left is untagged 2-jet bin, middle is untagged 3-jet bin, and
right is single tagged 2-jet bin.
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Figure 69: Lepton 7. Left is untagged 2-jet bin, middle is untagged 3-jet bin, and right
is single tagged 2-jet bin.
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Figure 70: Missing Transverse Energy. Left is untagged 2-jet bin, middle is untagged
3-jet bin, and right is single tagged 2-jet bin.
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Figure 71: A® between /Er and lepton. Left is untagged 2-jet bin, middle is untagged
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Figure 72: A® between leading jet and lepton. Left is
untagged 3-jet bin, and right is single tagged 2-jet bin.

Figure 73: A® between 2nd jet and lepton.
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Figure 74: A® between leading jet and /Ep. Left is
untagged 3-jet bin, and right is single tagged 2-jet bin.

120

CDF Run Il Preliminary, L=2.20 fo

100

80

60

Candidate Events

Ks: 28 2% 05 1 15 2 25
:29.2%

Chi2/DoF: 18.3/26: 84.6%

CDF Run Il Preliminary, L=2.20 fo

3 3.
A@Met,))

{

Candidate Events

o
Ks: 495% 05 1 15 2
Chi2/DoF: 31.5/27: 23.5%

untagged 2-jet bin, middle is

CDF Run Il Preliminary, L=2.20 fo

3 3.

E12Q 01 pa[eds 0peD SO

n

B12q 01 pa[eds 0peD Ao

n

Ag(lj1)

80

60

Candidate Events

20

1 15 2

Chi2/DoF: 19.6/27: 83.2%

0
KS: 783% 05 25

CDF Run Il Preliminary, L=2.20 fo

3 3.

Aq(lj2)

120

N
g

80

60

Candidate Events

20

o
Ks: 389% 05 1 15 2 25

Chi2/DoF: 27.4/27: 42.5%

untagged 2-jet bin, middle is

3 3.
AgMet,j1)

©12Q 01 pa|eds 0peD oW

n

Left is untagged 2-jet bin, middle is

12q 0} pajeds 0peD SO

n



CDF Run Il Preliminary, L=2.20 fo

g

Candidate Evgnts
(4]
8

0
KS: 199% 05 1
Chi2/DoF: 51.3/45: 23.0%

E12Q 01 p[eds 0eD Ao

3 3.

n

A@Met,j2)

400
g
g 300
w
2 5
:‘gu 200 H
K] g2
g g
O 100} f
H
)
0 H
Ks: 792% 0.5 1 15 2 25 3 ) 35
Chi2/DoF: 29.0/27: 34.5% Ag(Met,j2)

CDF Run Il Preliminary, L=2.20 fo

|

80

60

Candidate Events

20

E12Q 01 pa[eds OpeD AW

15 2 25 3 3.

AgMet,j2)

n

0
KS: 5%% 05 1
Chi2/DoF: 32.3/27: 20.7%

75

Figure 75: A® between 2nd jet and /Er. Left is untagged 2-jet bin, middle is untagged
3-jet bin, and right is single tagged 2-jet bin.
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Figure 76: Cosine of the angle between leading jet and lepton. Left is untagged 2-jet
bin, middle is untagged 3-jet bin, and right is single tagged 2-jet bin.
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Figure 77: Cosine of the angle between 2nd jet and lepton. Left is untagged 2-jet bin,
middle is untagged 3-jet bin, and right is single tagged 2-jet bin.
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Figure 79: n of the W boson. Left is untagged 2-jet bin,

and right is single tagged 2-jet bin.
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Figure 80: Sum of scalar energies of the event. Left is untagged 2-jet bin, middle is
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untagged 3-jet bin, and right is single tagged 2-jet bin.
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Figure 81: . Left is untagged 2

tagged 2-jet bin.
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Figure 82: . Left is untagged 2-jet bin, middle is untagged 3-jet bin, and right is single

tagged 2-jet bin.
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Figure 83: Left is untagged 2-jet bin, middle is untagged 3-jet bin, and right is single

tagged 2-jet bin.
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Figure 84: . Left is untagged

tagged 2-jet bin.
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Figure 85: . Left is untagged

tagged 2-jet bin.
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Figure 87: . Left is untagged 2-jet bin, middle is untagged 3-jet bin, and right is single
tagged 2-jet bin.
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Figure 88: . Left is untagged 2-jet bin, middle is untagged 3-jet bin, and right is single
tagged 2-jet bin.



	Introduction
	Event Selection and Expected Number of Events
	Non-triggered Muons

	Methodology
	Description of a Boosted Decision Tree
	Training of the BDTs
	Building a DT
	Boosting Algorithm
	Pruning Method
	Training Samples
	Input Variables

	Distributions of the BDT Outputs
	Cross Check of the Method
	The Likelihood Function

	Incorporating Systematic Uncertainties
	Multiple Fit Regions

	Result with CDF II Data
	Expected Sensitivity and Hypothesis Test
	Conclusions
	Validation of Input Variables
	Validation of new data sample (p14-p17)

