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Abstract. We have given a general decomposition of the photon self-energy in a magnetized
medium for any magnetic field strength. In the long wave length limit this can be expressed
interms of only three independent form factors. We consider the finite temperature magnetized
electron gas as the background in which the photon is propagating and derived the dispersion
relations in the non-relativistic limit.

1. Introduction

The propagation of photons in a material medium in the presence of a magnetic field gives rise to
many observable effects. For example, in astrophysical contexts, the fact that the photons with
different polarizations have different dispersion relations (birefringence), leads to the Faraday
rotation effects that have been observed for various astrophysical objects[1]. The subject of the
propagation of photons in magnetized plasmas is well studied[2]. The field-theoretical methods
are generally useful in this kind of problem, since they are applicable to a wider range of physical
situations for which the semiclassical methods breakdown|3].

The existence of super critical fields (4.4 x 10'® G) in nature have grown stronger recently
with the observations of few Soft Gamma Rays Repeaters (SGR) and Anomalous X-Rays Pulsars
(AXP), which are very likely magnetars, that is, isolated neutron stars with surface magnetic
fields of order 10'* — 10" G. A model for extragalactic gamma rays burst in terms of merger of
massive binary stars suggests also that magnetic fields up to the order of 10'7 G may exist. In
the context of the Early Universe, very large magnetic fields (1023 G) may be generated during
the electroweak phase transition due to gradients in the Higgs field. Thus, there are physical
environments of interest - that involve, in addition to matter in extreme relativistic and/or
degenerate conditions, strong magnetic fields - for which neither the semiclassical methods nor
the weak field approximation are directly applicable. We derive the general decomposition of
the photon self-energy in such a medium, and calculate the dispersion relations for the different
modes and calculate the Faraday rotation for the plane polarized light in an electron gas at
finite temperature[4].
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2. Photon polarization tensor

In the absence of the magnetic field, the photon self-energy =, depends in general on the photon
momentum ¢”, and on the velocity four-vector of the medium w*. In the frame of reference in
which the medium is at rest, u* has components given by u* = (1,6) and in that frame we
write ¢" = (w, Q) In the presence of a magnetic field, but otherwise an isotropic medium,
depends in addition on the vector b that is determined by the magnetic field. The vector b is
defined such that, in the frame in which the medium is at rest, b* = (0, b) where we denote the
magnetic field vector by B = Bb.

In the most general case, the photon self-energy can be expressed as a linear combination of

the bilinears e!'e” ¢ in the form

(eff ZTF(” fuz(@)fuj(é) ) (1)

involving the nine independent coefficient functions 709 (w, Cj) In the long wavelength limit all
the 7r(”)( ,Q) can be determined in terms of just three independent functions, ef(Q) = (0,¢é1),
4 (Q) = (0,é5) and €3 1(@Q) = —=(Q, wés). The long wavelength limit is valid under the condition

NG
w > v.0Q, where v, stands for the average velocity of an electron in the gas. In the limit Cj — 0,

we can write ¢* = wut and therefore only u* and b* are independent vectors. The most general

form of 7T,S “J1) consistent with the transversality condition in this case is then

D (w, @ — 0) = 71w, @ — 0) Ry + 1 (w, G = 0)Quuy + 7p(w, @ — )Py, (2)

where R, P, and Q,, are

Q,ul/ = _bubu
R,uz/ = Guv — Uply — Q,uu
P, = iewaﬁbau’g (3)

(eff)

and the functions 77 1, p are determined from the one-loop expression for 7,/ by means of the
projection formulas

wr(,@) = SRUTINw,Q)
WL("‘%Q) = Quyﬂ(iff)(wvé)
wp(0,G) = —5 PR, G). (@)

3. Photon self-energy

In one-loop, the 11 element of the photon thermal self-energy is given by

. 4
impol. ) = (i) [ GBI 5.0+ 0iS.0), )

where S, stands for the 11 component of the electron thermal propagator and Se(p)
SFe(p) + STe(p) with

iSp(p) = [ drG(p,s)em e, ©)
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where
®(p,s) = p? — mz + (s_l tan(s) — 1) R,p'p”,
G(p’ 5) = Vl (p? S) + i%WQ(P, S) + Me + Me tan(s)i75¢l$7 (7)
with
Viu(p,s) = sec(s)pu +tan®(s) [(p- 0)by — (p - u)u,]
Vau(p,s) = tan(s)[(p-b)u, — (p-u)by] (8)

and s = |e|B7. The thermal part is given by

iSTe(p) = —ne(p)/ dTG(p, S)ei-rq’(p,éi)*eh—\‘ (9)

The term which will contribute to the real part is given by

4 o oo / !
I (w,q) = ie? / Clpzl{ne(p) / drereT) / dr' MV [, G, T ) Glp, 7))
b)) [ a0 [ ar eV O (60 G L (0)

where we have defined A(p,7) = i7®(p,s) — €|7| and p’ = p+ ¢q. Using this we can calculate
the scalar form factors 7z, mr and mp. Here we consider the case w < +/|e|B and w < 2(E,),
where (E.) stands for an average value of the energy of an electron in the gas. Thus, if the gas
is non-relativistic, the condition holds for w < me. If the gas is extremely relativistic, it also
holds for w > me. Together With the condition w > v this implies that we are considering a
regime in which v.Q < w < /|e|B, 2(E.), which we refer as the low frequency limit.

4. Nonrelativistic electron gas

In this case the temperature and chemical potential of the electron gas are Bm, > 1, % >1

which gives fz = 0 and E,, ~ m.. Then the dispersion relations to the leading order are given
by

2002
w5
WT(W) = 0?2 — w2’
B
m(w) = 9F,
waﬂz
(W) = (11)
B

B 2 .
where wp = % and Qf = <= with
€ €

e|B
ne = ’47\r LZ% (2— no/ dp) 1o n)]. (12)

The wpg, 2y and n. are the standard expressions for the cyclotron frequency, the plasma frequency
and total electron number density, respectively. For example, if the photon propagates parallel
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to the magnetic field, the dispersion relations are

wg o Q2 CUQ% _ 07
(w—wpB)
W2~ Q2 w3 -0,
(w+ wp)
W = Qo. (13)

The formulas in Eq. (11), and whence those in Eq. (13), represent the leading term in powers
of 1/m., and they neglect entirely the momentum-dependent terms

The two transverse modes having different dispersion relations leads to the Faraday rotation
effect. After traveling a distance L, the direction of polarization of the wave has rotated by an
angle § = 3wAnL, where An = (n_(w) — ny(w)). with ne(w) being the refractive indices of
the left and right polarized modes, respectively. These can be computed from the dispersion
relations given above by using n(w) = @Q/w. For non-relativistic limit we obtain For values of w
such that w > Qg,we have n_ ~ n, ~ 1 and therefore

Dwp
2(w? — w)

0
. (14)
This result coincides with the one given in Ref.[5].

We have given a general decomposition of the photon self-energy in a matter background
that contains a magnetic field, in terms of the minimal set of tensors consistent with isotropy
and the transversality condition. From this result, we have shown that the self-energy can be
expressed in terms of nine independent form factors, that in the long wavelength limit reduce to
three. In this limit, by applying the (real-time) finite temperature field theory method, we have
calculated the one-loop formulas for the form factors and in the non-relativistic limit recover
the Faraday rotation.
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