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Abstract. We have given a general decomposition of the photon self-energy in a magnetized
medium for any magnetic field strength. In the long wave length limit this can be expressed
interms of only three independent form factors. We consider the finite temperature magnetized
electron gas as the background in which the photon is propagating and derived the dispersion
relations in the non-relativistic limit.

1. Introduction

The propagation of photons in a material medium in the presence of a magnetic field gives rise to
many observable effects. For example, in astrophysical contexts, the fact that the photons with
different polarizations have different dispersion relations (birefringence), leads to the Faraday
rotation effects that have been observed for various astrophysical objects[1]. The subject of the
propagation of photons in magnetized plasmas is well studied[2]. The field-theoretical methods
are generally useful in this kind of problem, since they are applicable to a wider range of physical
situations for which the semiclassical methods breakdown[3].

The existence of super critical fields (4.4 × 1013 G) in nature have grown stronger recently
with the observations of few Soft Gamma Rays Repeaters (SGR) and Anomalous X-Rays Pulsars
(AXP), which are very likely magnetars, that is, isolated neutron stars with surface magnetic
fields of order 1014 − 1015 G. A model for extragalactic gamma rays burst in terms of merger of
massive binary stars suggests also that magnetic fields up to the order of 1017 G may exist. In
the context of the Early Universe, very large magnetic fields (1023 G) may be generated during
the electroweak phase transition due to gradients in the Higgs field. Thus, there are physical
environments of interest - that involve, in addition to matter in extreme relativistic and/or
degenerate conditions, strong magnetic fields - for which neither the semiclassical methods nor
the weak field approximation are directly applicable. We derive the general decomposition of
the photon self-energy in such a medium, and calculate the dispersion relations for the different
modes and calculate the Faraday rotation for the plane polarized light in an electron gas at
finite temperature[4].
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2. Photon polarization tensor

In the absence of the magnetic field, the photon self-energy πμν depends in general on the photon
momentum qμ, and on the velocity four-vector of the medium uμ. In the frame of reference in
which the medium is at rest, uμ has components given by uμ = (1,�0) and in that frame we
write qμ = (ω, �Q). In the presence of a magnetic field, but otherwise an isotropic medium, πμν

depends in addition on the vector bμ that is determined by the magnetic field. The vector bμ is
defined such that, in the frame in which the medium is at rest, bμ = (0, b̂) where we denote the
magnetic field vector by �B = Bb̂.

In the most general case, the photon self-energy can be expressed as a linear combination of
the bilinears εμ

i εν
j in the form

π(eff)
μν (ω, �Q) = −

∑
i,j

π(ij)(ω, �Q)εμi( �Q)ενj( �Q) , (1)

involving the nine independent coefficient functions π(ij)(ω, �Q). In the long wavelength limit all
the π(ij)(ω, �Q) can be determined in terms of just three independent functions, εμ

1 ( �Q) = (0, ê1),
εμ
2 ( �Q) = (0, ê2) and εμ

3 ( �Q) = 1√
q2

(Q, ωê3). The long wavelength limit is valid under the condition

ω � veQ, where ve stands for the average velocity of an electron in the gas. In the limit �Q → 0,
we can write qμ = ωuμ and therefore only uμ and bμ are independent vectors. The most general
form of π

(eff)
μν consistent with the transversality condition in this case is then

π(eff)
μν (ω, �Q → 0) = πT (ω, �Q → 0)Rμν + πL(ω, �Q → 0)Qμν + πP (ω, �Q → 0)Pμν , (2)

where Rμν , Pμν and Qμν are

Qμν = −bμbν

Rμν = gμν − uμuν − Qμν

Pμν = iεμναβbαuβ (3)

and the functions πT,L,P are determined from the one-loop expression for π
(eff)
μν by means of the

projection formulas

πT (ω, �Q) =
1
2
Rμνπ(eff)

μν (ω, �Q)

πL(ω, �Q) = Qμνπ(eff)
μν (ω, �Q)

πP (ω, �Q) = −1
2
Pμνπ(eff)

μν (ω, �Q) . (4)

3. Photon self-energy

In one-loop, the 11 element of the photon thermal self-energy is given by

iπ11μν(ω, �Q) = −(−ie)2
∫

d4p

(2π)4
Tr [γμiSe(p + q)γνiSe(p)] , (5)

where Se stands for the 11 component of the electron thermal propagator and Se(p) =
SFe(p) + STe(p) with

iSF (p) =
∫ ∞

0
dτG(p, s)eiτΦ(p,s)−ετ , (6)
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where

Φ(p, s) = p2 − m2
e +

(
s−1 tan(s) − 1

)
Rμνp

μpν ,

G(p, s) = V/1(p, s) + iγ5V/2(p, s) + me + me tan(s)iγ5u/b/ , (7)

with

V1μ(p, s) = sec2(s)pμ + tan2(s) [(p · b)bμ − (p · u)uμ]
V2μ(p, s) = tan(s) [(p · b)uμ − (p · u)bμ] , (8)

and s = |e|Bτ . The thermal part is given by

iSTe(p) = −ηe(p)
∫ ∞

−∞
dτG(p, s)eiτΦ(p,s)−ε|τ |. (9)

The term which will contribute to the real part is given by

π(eff)
μν (ω, �Q) = ie2

∫
d4p

(2π)4

{
ηe(p)

∫ ∞

−∞
dτeλ(p,τ)

∫ ∞

0
dτ ′eλ(p′,τ ′)Tr

[
γμG(p′, τ ′)γνG(p, τ)

]
+ ηe(p′)

∫ ∞

0
dτeλ(p,τ)

∫ ∞

−∞
dτ ′eλ(p′,τ ′)Tr

[
γμG(p′, τ ′)γνG(p, τ)

]}
, (10)

where we have defined λ(p, τ) = iτΦ(p, s) − ε|τ | and p′ = p + q. Using this we can calculate
the scalar form factors πL, πT and πP . Here we consider the case ω � √|e|B and ω � 2〈Ee〉,
where 〈Ee〉 stands for an average value of the energy of an electron in the gas. Thus, if the gas
is non-relativistic, the condition holds for ω � me. If the gas is extremely relativistic, it also
holds for ω > me. Together with the condition ω � veQ this implies that we are considering a
regime in which veQ � ω � √|e|B , 2〈Ee〉, which we refer as the low frequency limit.

4. Nonrelativistic electron gas

In this case the temperature and chemical potential of the electron gas are βme � 1, me
μ � 1

which gives fē ≈ 0 and En 	 me. Then the dispersion relations to the leading order are given
by

πT (ω) =
ω2Ω2

0

ω2 − ω2
B

,

πL(ω) = Ω2
0 ,

πP (ω) =
ωωBΩ2

0

ω2 − ω2
B

, (11)

where ωB ≡ |e|B
me

and Ω2
0 ≡ e2ne

me
with

ne =
|e|B
4π2

[ ∞∑
n=0

(2 − δn,0)
∫ ∞

−∞
dp‖fe(En)

]
. (12)

The ωB, Ω0 and ne are the standard expressions for the cyclotron frequency, the plasma frequency
and total electron number density, respectively. For example, if the photon propagates parallel
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to the magnetic field, the dispersion relations are

ω2 − Q2 − ωΩ2
0

(ω − ωB)
= 0,

ω2 − Q2 − ωΩ2
0

(ω + ωB)
= 0,

ω = Ω0. (13)

The formulas in Eq. (11), and whence those in Eq. (13), represent the leading term in powers
of 1/me, and they neglect entirely the momentum-dependent terms

The two transverse modes having different dispersion relations leads to the Faraday rotation
effect. After traveling a distance L, the direction of polarization of the wave has rotated by an
angle θ = 1

2ωΔnL, where Δn = (n−(ω) − n+(ω)). with n∓(ω) being the refractive indices of
the left and right polarized modes, respectively. These can be computed from the dispersion
relations given above by using n(ω) = Q/ω. For non-relativistic limit we obtain For values of ω
such that ω � Ω0,we have n− 	 n+ 	 1 and therefore

θ

L
	 Ω2

0ωB

2(ω2 − ω2
B)

. (14)

This result coincides with the one given in Ref.[5].
We have given a general decomposition of the photon self-energy in a matter background

that contains a magnetic field, in terms of the minimal set of tensors consistent with isotropy
and the transversality condition. From this result, we have shown that the self-energy can be
expressed in terms of nine independent form factors, that in the long wavelength limit reduce to
three. In this limit, by applying the (real-time) finite temperature field theory method, we have
calculated the one-loop formulas for the form factors and in the non-relativistic limit recover
the Faraday rotation.
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