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Abstract: In this paper, we compute two anisotropic static spherical solutions for two compact stellar
candidates in the background of f (G, T) gravity using the minimal geometric decoupling technique.
The internal structure becomes anisotropic when an additional sector is added to the isotropic system.
With this method, the radial component is distorted to establish two sets of the field equations that
represent perfect and anisotropic sources. We use the Karmarkar condition to formulate the metric
potentials that help to find the solution of the first set. For the second set, two extra constraints
are applied on theanisotropic sector to find its solution. Both of the solutions are then combined to
yield the ultimate anisotropic solution. We then examine the physical feasibility and stability of the
resulting anisotropic solutions through energy conditions and stability criteria, respectively. It is
found that the compact star Her X-1 is viable but not stable corresponding to the first solution while
satisfying all the physical acceptability conditions for the second solution. On the other hand, the star
4U 1820-30 indicates viable and stable behavior for both anisotropic solutions.

Keywords: exact solutions; gravitational decoupling; anisotropy; f (G, T) gravity

PACS: 04.20.Jb; 04.40.-b; 04.50.Kd

1. Introduction

The vicinity of the universe ranges from unpretentious physical objects to immense
and perplexing cosmic bodies. Normal matter, dark energy and dark matter are assumed
to form the structure of the cosmos. Normal matter is recognized as the component of the
universe that can be seen by humans, while dark matter and dark energy exhibit obscure
and intriguing characteristics that are thought to be governed by general relativity (GR).
Along with addressing the rotation curves of galaxies [1,2], it also acknowledges the ac-
celerating cosmic expansion [3,4]. The Lambda cold dark matter model incorporated the
cosmological constant to explain the existence of dark energy. In addition, the cosmological
constant value must be updated in order to be consistent with the experimental observa-
tion and to explain how the universe has evolved through several cosmic epochs. Thus,
it is believed that modified gravity theories are the more favorable alternatives to GR for
overcoming these issues.

The Lovelock theory of gravity, which is identical to GR in four dimensions, is the
straightforward generalization of GR in higher dimensions [5,6]. The two scalars obtained
from this theory are Ricci scalar and Gauss–Bonnet (GB) invariant, which can also be
termed as first and second Lovelock scalars, respectively. The second Lovelock scalar (or
GB term) established the Einstein GB gravity in five dimensions [7,8]. The mathematical
expression of the GB invariant is defined as follows:

G = R̟τναR̟τνα + R2 − 4R̟τ R̟τ ,
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where the Riemann tensor (R̟τνα), the Ricci tensor (R̟τ) and scalar curvature are com-
bined in four dimensions. In order to comprehend how GB-invariant behaves in four
dimensions, Nojiri and Odintsov [9] revised the Einstein–Hilbert action with the inclusion
of the generalized function f (G) and devised the f (G) gravity, also known as modified GB
theory. The embedding class-1 method was utilized by Sharif and Ramzan [10] in this theory
to explore the fundamental physical characteristics of anisotropic stellar configurations.

The accelerated expansion of the universe is assumed to be best explained by modified
models that incorporate the curvature–matter coupling. In this regard, Sharif and Ikram [11]
combined the trace of the energy–momentum tensor with f (G) function in Einstein–Hilbert
action to introduce f (G, T) gravity. The non-conservation of the stress–energy tensor gen-
erates extra force that pushes the massive particles to deviate from the geodesic route.
By taking into account the homogeneous and isotropic universe, the same authors [12]
adopted linear perturbation to investigate several cosmological systems. By following
the orthogonal decomposition of the Riemann curvature tensor, we have calculated the
complexity factor for static cylindrical geometry in the absence and presence of electromag-
netic field as well as for the non-static spherical and cylindrical compositions in the same
theory [13–15].

The physical properties of interacting materials in massive compact objects frequently
differ in different orientations. As a result, the existence of anisotropy in heavenly bodies is
confirmed [16]. Phase transition [17] and superfluid [18] are thought to be the factors that
cause anisotropy in the internal regime. The origin of anisotropy and its implication in the
progression of stellar entities were studied by Herrera and Santos [19]. Harko and Mak [20]
investigated the anisotropic spherical systems by analytically solving the field equations
using a particular anisotropic component. Through several equations of the state coupling
of the radial and tangential pressures, Dev and Gleiser [21] examined physical features of ce-
lestial objects undergoing pressure anisotropy. Paul and Deb [22] examined physical aspects
of cosmic entities experiencing hydrostatic equilibrium. The stability of the strange cosmic
bodies was investigated by Arbañil and Malheiro [23] using the MIT bag model in the
final solutions.

In comprehending the complex nature of the astrophysical bodies, the analytic solu-
tions to the field equations are assumed to play a crucial role. Finding viable solutions
to these intricate non-linear differential equations is definitely a challenging task. Gravi-
tational decoupling via minimal geometric deformation (MGD) is one of the reasonable
methods for achieving physically acceptable solutions in the context of spherically symmet-
ric geometries. This method divides the system of field equations into two independent
arrays and uses a linear transformation to distort the radial metric function of spacetime.
The first set is related to the seed sector, and the second system includes the contribu-
tion of newly introduced source. These two sets are handled separately, after which the
superposition principle is used to ascertain the solution of the entire framework. Primar-
ily, Ovalle [24] applied this approach to assess the exact solution of the stellar objects.
Afterward, the anisotropic solutions and their well-behaving aspects were discussed by
Ovalle et al. [25]. Gabbanelli et al. [26] employed the isotropic Durgapal–Fuloria ansatz
in devising its anisotropic version. The Krori–Barua metric was adopted by Sharif and
Sadiq [27] to find charged anisotropic domains.

In order to develop new exact anisotropic models, Estrada and Tello-Ortiz [28]
used gravitational decoupling and analyzed their physical characteristics graphically.
Singh et al. [29] worked on class-I geometry to construct viable solutions and deter-
mined the mass and radius of astrophysical objects by plotting the M–R curve. Hensh and
Stuchlík [30] found the anisotropic version of the Tolman VII metric. Using decoupled field
equations, Zubair and Azmat [31] investigated how the decoupling parameter affected
the feasible properties of the derived result. Sharif and Saba [32,33] distorted the radial
metric coefficient via MGD and graphically represented the well-behaved solutions for
charged/uncharged systems in f (G) gravity. The application of this technique in different
modified theories has extensively been studied in the literature [34–42]. We have utilized
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different spacetimes as a seed source to formulate the anisotropic domains using minimal
and extended geometric deformation corresponding to uncharged/charged and charged
systems, respectively, in f (G, T) theory [43–45].

In this paper, the MGD technique is used to evaluate two anisotropic static solutions
using the Karmarkar condition in f (G, T) theory. The format of the paper is arranged as
follows. The substantial aspects of this theory are mentioned in Section 2. In Section 3, we
utilize the MGD scheme to segregate the field equations into two independent sets. Section 4
explores the two constraints to formulate the anisotropic solutions. In Section 5, the viability
and stability of the developed solutions are analyzed through graphical interpretation.
In Section 6, a brief description of the main results is presented.

2. Fundamental Features of f (G, T) Theory

The Einstein–Hilbert action of this theory is defined as

S f (G,T) =
∫

d4x

[

f (G, T) + R
16π

+ ψLχ + LM

]

√

−g, (1)

where Lχ and LM symbolize the matter Lagrangian density corresponding to the extra
source and normal matter, respectively, g is the determinant of the metric tensor, and

T represents the trace of the usual energy–momentum tensor (T
(m)
̟τ ). For the current

system, the positive pressure is assumed to be placed at the matter Lagrangian density.
The energy–momentum tensor and Lagrangian densities are interlinked through the rela-
tions as

T̟τ = g̟τLM − 2∂LM

∂g̟τ
, χ̟τ = g̟τLχ − 2∂Lχ

∂g̟τ
. (2)

The modified field equations are produced by varying the action (1) with respect to the
metric tensor as

G̟τ = 8πT
(tot)
̟τ = 8π(T(mod)

̟τ + ψχ̟τ + T
(m)
̟τ ), (3)

where ψ denotes the decoupling parameter, and G̟τ is the Einstein tensor with
G̟τ = R̟τ − 1

2 Rg̟τ . It can be seen that the extra source χ̟τ is responsible for caus-
ing anisotropy in the considered structure. In addition, the perfect and anisotropic matter
sources are associated with the dimensionless parameter ψ. In the present theory, the
additional terms can be written as

T(mod)
̟τ =

1
8π

[

{(U + P)V̟Vτ} fT(G, T) +
1
2

g̟τ f (G, T) +
(

4RµνR̟µτν

− 2RR̟τ − 2R
µνγ
̟ Rτµνγ

)

fG(G, T) + 4Rµτ R
µ
̟ + (4g̟τ Rµν∇µ∇ν

− 4R
µ
̟∇τ∇µ − 4R̟µτν∇µ∇ν − 2g̟τ R∇2 + 2R∇̟∇τ − 4R

µ
τ∇̟∇µ

+ 4R̟τ∇2) fG(G, T)

]

, (4)

where fT(G, T) and fG(G, T) stand for the partial derivatives of an arbitrary function
f (G, T) with respect to T and G, respectively. Further, ∇̟ indicates the covariant derivative
and ∇2 = ∇e∇e = � signifies the d’ Alembert operator. The stress–energy tensor of the
perfect fluid is characterized as

T
(m)
̟τ = (U + P)V̟Vτ + Pg̟τ , (5)

where V̟ is the covariant component of the four-velocity possessing V̟V̟ = −1, and P
and U depict the pressure and density of the matter configuration, respectively.
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The stars under consideration have two regions (inner and outer) that are segregated
through a boundary termed as a hypersurface. The static symmetric structure describing
the internal regime is portrayed by the line element

ds2 = −eγdt2 + eσdr2 + r2dθ2 + r2sin2 θdφ2, (6)

where γ and σ are functions of r only, and the four-velocity is defined as

V̟ =
(

e
−γ
2 , 0, 0, 0

)

. (7)

We adopt the following f (G, T) model [46,47] to figure out the feasible and stable
characteristics of the spherical anisotropic structure

f (G, T) = l1(G) + l2(T), (8)

where l1 and l2 are independent functions of G and T, respectively. The physical character-
istics of the self-gravitating stars are taken into account with the help of a quadratic model
to study the significant impact of this curvature–matter coupling. For this purpose, we
pick l1(G) = ϑG2 and l2(T) = ǫT, where ϑ is the real constant and ǫ stands for the free
parameter. The derivatives of G up to its second order are presented in Equations (A4)–(A6)
of Appendix A.

The modified field equations of the celestial structure in view of metric functions are
represented as

8π(Ũ + T0(mod)
0 − ψχ0

0) =
1
r2 + e−σ(

σ′

r
− 1

r2 ), (9)

8π(P̃ + T1(mod)
1 + ψχ1

1) = − 1
r2 + e−σ(

1
r2 +

γ′

r
), (10)

8π(P̃ + T2(mod)
2 + ψχ2

2) = e−σ(
γ′′

2
+

γ′2

4
+

γ′

2r
− σ′γ′

4
− σ′

2r
), (11)

where T1(mod)
1 , T0(mod)

0 and T2(mod)
2 are the additional terms whose values are exhib-

ited in Appendix A, and prime shows differentiation with respect to r. Furthermore,
Ũ = U + ǫ

16π (3U − P) and P̃ = P + ǫ
16π (−U + 3P). The additional force in this theory is

generated as a result of the non-conserved usual energy–momentum tensor. Therefore, the
equation representing the non-zero divergence of matter configuration is described by

∇̟T̟τ =
fT(G, T)

8π − fT(G, T)

[

− 1
2

g̟τ∇̟T + (Θ̟τ + T̟τ)∇̟(ln fT(G, T))

+ ∇̟
Θ̟τ

]

, (12)

where Θ̟τ = −2T̟τ + Pg̟τ and the only non-zero term is

σ′

2
(U + P) +

dP

dr
+ ψ

dχ1
1

dr
+

ψσ′

2
(χ1

1 − χ0
0) +

2ψ

r
(χ1

1 − χ2
2) = Ł, (13)

where Ł is the correction term prescribed as

Ł =
ǫ

8π − ǫ

[

− (3P − U)

2
+ (−2P)′ − ψχ1

1(ln fT)
′
]

. (14)

One can notice that the system (9)–(11) together with (13) constitutes four non-
linear differential equations that have seven unknown parameters, i.e., U, P, γ, σ, χ0

0, χ1
1, χ2

2.
This shows that the system under consideration is indefinite (less equations than un-
knowns); therefore, the system must be closed by employing certain constraints. As a result,
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the systematic approach of MGD is utilized to find the solution of the current system. The
state variables are defined for the sake of simplification as

U = U − ψχ0
0, Pr = P + ψχ1

1, P⊥ = P + ψχ2
2. (15)

The above terms indicate that the extra sector χ̟
τ is responsible for inducing anisotropy

within the self-gravitating celestial objects. Thus, the effective anisotropy for χ1
1 6= χ2

2 is
delineated as

△ = P⊥ − Pr = ψ(χ2
2 − χ1

1). (16)

3. Minimal Gravitational Decoupling Strategy

In this section, the system (9)–(11) is closed by evaluating the unknown quantities
through the systematic approach of MGD. The field equations are split so that the new
sector χ̟

τ produces anisotropy in the interiors of celestial bodies. Hence, the following line
element is chosen to solve the isotropic regime

ds2 = −eι(r)dt2 +
dr2

λ(r)
+ r2dθ2 + r2sin2 θdφ2, (17)

where λ(r) = 1 − 2m
r and m is the Misner–Sharp mass of the internal geometry. The

radial metric potential is deformed through linear geometric transformations to study the
influence of anisotropy on isotropic source by

ι → γ = ι + ψn1, λ → e−σ(r) = λ + ψn2, (18)

where n1 and n2 are two geometric deformation functions imposed on temporal and radial
metric coefficients, respectively. As a result of MGD, the translation is applied only to
the radial potential, whereas the temporal function remains unchanged. With the help
of the above-mentioned transformations, the field Equations (9)–(11) are segregated into
two arrays.

For the perfect source, the modified field equations yield the first set as

8π(U +
ǫ

16π
(3U − P) + T0(mod)

0 ) =
1
r2 − (

λ′

r
+

λ

r2 ), (19)

8π(P +
ǫ

16π
(−U + 3P) + T1(mod)

1 ) = − 1
r2 +

λ

r
(

1
r
+ γ′), (20)

8π(P +
ǫ

16π
(−U + 3P) + T2(mod)

2 ) = λ(
γ′′

2
+

γ′2

4
+

γ′

2r
) + λ′(

γ′

4
+

1
2r

). (21)

For the seed sector, the above equations are simultaneously solved to determine the values
of U and P as

U =
−1

4
(

ǫ2 + 12πǫ + 32π2
)

r2

(

− 2ǫ + 3ǫr2T0(mod)
0 + 16πr2T0(mod)

0 + ǫr2T1(mod)
1

− ǫrλγ′ + 3ǫrλ′ + 2ǫλ + 16πrλ′ + 16πλ − 16π
)

, (22)

P =
−1

4
(

ǫ2 + 12πǫ + 32π2
)

r2

(

2ǫ + ǫr2T0(mod)
0 + 3ǫr2T1(mod)

1 + 16πr2T1(mod)
1

− 3ǫrλγ′ + ǫrλ′ − 2ǫλ − 16πrλγ′ − 16πλ + 16π
)

. (23)

The second set, representing the contribution of anisotropy due to the new sector, is

8πχ0
0 =

n
′
2

r
+

n2

r2 , (24)

8πχ1
1 =

n2

r
(

1
r
+ γ′), (25)
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8πχ2
2 = n2(

γ′′

2
+

γ′2

4
+

γ′

2r
) + n

′
2
(

γ′

4
+

1
2r

). (26)

It is clearly seen that the system (19)–(21) has four unknown parameters, i.e., U, P, λ
and γ, whereas the anisotropic set consists of seven unknowns (U, P, γ, χ0

0, χ1
1, χ2

2, n2).
The isotropic sector should be specified to calculate the solution of the second system
(anisotropic set). In this way, MGD plays a significant role in minimizing the number of
unknowns and estimating the anisotropic solutions.

4. Anisotropic Interior Solutions

Here, we require a solution corresponding to the seed source to solve the field
Equations (24)–(26) which are used in evaluating the solution of anisotropic systems. For
this purpose, a well-known constraint termed as embedding class-one (also known as the
Karmarkar condition) is imposed for the first array. Eiesland [48] proposed the necessary
and sufficient condition corresponding to the embedding class-one, given as

R1212R0303 − R0101R2323 + R1202R1303 = 0. (27)

Substituting the values of Riemann tensor, we obtain

γ
′2 − (γ′ − λ′)γ′eλ − 2(eλ − 1)γ′′ = 0, (28)

whose solution turns out to be

λ = ln(Xγ
′2eγ + 1), (29)

where X represents the integration constant. To find out λ, we choose the temporal metric
function proposed by Maurya: et al. [49,50]

γ = ln Y + 2Wr2, (30)

where Y and W are positive unknowns to be determined by matching conditions. Now, by
combining Equations (29) and (30), we have the radial metric as

λ = ln(1 + 16XYW2r2e2Wr2
). (31)

Hence, the final form of the metric potentials is

eγ(r) = Ye2Wr2
, (32)

eσ(r) = λ−1 =
1

ln(1 + 16XYW2r2e2Wr2)
. (33)

The isotropic matter determinants present in Equations (19)–(21) under embedding class-
one assume the form

U = {−2
(

ǫ − 2ǫr2W + 8π
)(

16r2W2XYe2r2W + 1
)

ln
(

16r2W2XYe2r2W + 1
)

− ǫ
(

r2(− 128W2XYe2r2W + 3T0(mod)
0 + T1(mod)

1

)

− 16r4W2XYe2r2W(−3T0(mod)
0

− T1(mod)
1 + 12W)− 2

)

− 16π
(

r2(T0(mod)
0 − 48W2XYe2r2W

)

− 16r4W2XYe2r2W

× (4W − T0(mod)
0 )− 1

)

}{4
(

ǫ2 + 12πǫ + 32π2)r2(16r2W2XYe2r2W + 1
)

}−1, (34)

P =
−1

4
(

ǫ2 + 12πǫ + 32π2
)

r2

(

{16π
(

r2T1(mod)
1 + 1

)(

16r2W2XYe2r2W + 1
)

+ ǫ
(

r2(T0(mod)
0 + 3T1(mod)

1 )− 16r4W2XYe2r2W(−T0(mod)
0 − 3T1(mod)

1 + 4W)

+ 2
)

}{16r2W2XYe2r2W + 1}−1 − 2
(

ǫ + 6ǫr2W + 8π
(

4r2W + 1
))

ln
(

16r2
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× W2XYe2r2W + 1
))

. (35)

The constants are determined as a result of matching the outer and inner geometries
(over the hypersurface). The metric components of the internal and external structures are
matched at the hypersurface as

gtt = eγ(r) = Ye2WR2
= 1 − M

2R , (36)

grr = eλ(r) = 1 + 16XYW2R2e2WR2
=

(

1 − M

2R

)−1

, (37)

∂gtt

∂r
= 4WR =

2M

R(R−M)
, (38)

which give rise to the values of constants as

W =
M

2R2(R− 2M)
, (39)

X =
R3

2M
, (40)

Y =

(R− 2M

R

)

e
M

2M−R , (41)

with M

R <
4
9 , where M and R represent the mass and radius of the spherical objects at

the junction. The radial as well as temporal metric functions in Equations (32) and (33)
are utilized to accomplish the solutions of the anisotropic spherical celestial bodies. One
can see that the system (24)–(26) involves the anisotropic sector and deformation function
n2. Certain additional constraints must be imposed to have the solution of this system.
To do so, density-like and pressure-like constraints are employed in the subsequent sec-
tions. In the present setup, two astronomical objects, i.e., Her X-1 (M = 0.85 ± 0.15M⊙,
R = 8.1 ± 0.41 km) and 4U 1820-30 (M = 1.58 ± 0.6M⊙,R = 9.1 ± 0.4 km), are used
to observe the physical acceptance of the resulting solutions. The graphical analysis of
the constructed solutions is illustrated by utilizing the masses and radii of the above-
mentioned stars. The surfaces of the stars Her X-1 and 4U 1820-30 are represented by blue
and orange colors, respectively.

4.1. The First Solution

Here, we impose an extra constraint on the temporal part of the new source. It
contributes to finding the deformation function n2, which is then used to develop the
components of χ̟

τ and formulate the first solution. It leads to

Ũ + T0(mod)
0 = χ0

0 (42)

Equations (19) and (24) together with this constraint yield the following form:

n
′
2

r
+

n2

r2 − 1
r2 +

ln
(

16r2W2XYe2r2W + 1
)

r2 − 32W2XYe2r2W
(

2r2W + 1
)

16r2W2XYe2r2W + 1
, (43)

which provides the solution of the deformation function as

n2 =
A
r
+ 1 − ln

(

16r2W2XYe2r2W + 1
)

, (44)



Universe 2023, 9, 165 8 of 18

where A is the integration constant. Here, we choose A to be zero in order to prevent any
ambiguity in the solution of celestial entities at the center. The matter determinants and
anisotropy obtained for the first solution are

U =
1

8r2

(

{ψ
(

{32r2W2XYe2r2W
(

2r2W + 1
)

}{16r2W2XYe2r2W + 1}−1 + ln
(

1

+ 16r2W2XYe2r2W
)

− 1
)

}{π}−1 − {2
(

2
(

ǫ − 2ǫr2W + 8π
)(

16r2W2XYe2r2W

+ 1
)

ln
(

16r2W2XYe2r2W + 1
)

+ ǫ
(

r2(− 128W2XYe2r2W + 3T0(mod)
0 + T1(mod)

1

)

− 16r4W2XYe2r2W(−3T0(mod)
0 − T1(mod)

1 + 12W)− 2
)

+ 16π
(

r2(T0(mod)
0 − 48W2

× XYe2r2W
)

− 16r4W2XYe2r2W(4W − T0(mod)
0 )− 1

))

}{
(

ǫ2 + 12πǫ + 32π2)

×
(

16r2W2XYe2r2W + 1
)

}−1), (45)

Pr =
−1
8r2

(

{ψ
(

4r2W + 1
)(

ln
(

16r2W2XYe2r2W + 1
)

− 1
)

}{π}−1 + {ǫ2 + 12πǫ

+ 32π2}−1(2
(

{16π
(

r2T1(mod)
1 + 1

)(

16r2W2XYe2r2W + 1
)

+ ǫ
(

r2(T0(mod)
0

+ 3T1(mod)
1 )− 16r4W2XYe2r2W(−T0(mod)

0 − 3T1(mod)
1 + 4W) + 2

)

}{16W2

× r2XYe2r2W + 1}−1 − 2
(

ǫ + 6ǫr2W + 8π
(

4r2W + 1
))

ln
(

16r2W2XY

× e2r2W + 1
))))

, (46)

P⊥ = −{ψW
((

r2W + 1
)(

16r2W2XYe2r2W + 1
)

ln
(

16r2W2XYe2r2W + 1
)

+ 4WXYe2r2W + r2(−W)− 1
)

}{2
(

16πr2W2XYe2r2W + π
)

}−1 − {4
(

ǫ2

+ 12πǫ + 32π2)r2}−1({16π
(

r2T1(mod)
1 + 1

)(

16r2W2XYe2r2W + 1
)

+ ǫ

×
(

r2(T0(mod)
0 + 3T1(mod)

1 )− 16r4W2XYe2r2W(−T0(mod)
0 − 3T1(mod)

1 + 4W)

+ 2
)

}{16r2W2XYe2r2W + 1}−1 − 2
(

ǫ + 6ǫr2W + 8π
(

4r2W + 1
))

ln
(

1

+ 16r2W2XYe2r2W
))

, (47)

△ = {ψ
(

2r2W + 1
)((

2r2W − 1
)(

16r2W2XYe2r2W + 1
)

ln
(

16r2W2XYe2r2W

+ 1
)

+ 2r2W
(

16WXYe2r2W − 1
)

+ 1
)

}{8r2(16πr2W2XYe2r2W + π
)

}−1. (48)

4.2. The Second Solution

For the second anisotropic solution, we enforce a constraint on the radial part of the
extra sector, also called the pressure-like constraint. It can be noticed that the continu-
ity between the outer geometry and inner source holds as long as P̃(R) + T1(mod)

1 (R) ∼
ψ(χ1

1(R))− is satisfied. It can also be written by using Equations (20) and (25) as

P̃ + T1(mod)
1 = χ1

1, (49)

from which the deformation function is defined as

n2 =
λ + λrγ′ − 1

rγ′ + 1
. (50)

Alternatively, this deformation function under embedding class-one can be written as

n2 =

(

4r2W + 1
)

ln
(

16r2W2XYe2r2W + 1
)

− 1

4r2W + 1
. (51)

The corresponding fluid parameters, i.e., U, Pr and P⊥, are given as

U = −{2
(

ǫ − 2ǫr2W + 8π
)(

16r2W2XYe2r2W + 1
)

ln
(

16r2W2XYe2r2W + 1
)
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+ ǫ
(

r2(− 128W2XYe2r2W + 3T0(mod)
0 + T1(mod)

1

)

− 16r4W2XYe2r2W(−3T0(mod)
0

− T1(mod)
1 + 12W)− 2

)

+ 16π
(

r2(T0(mod)
0 − 48W2XYe2r2W

)

− 16r4W2XY

× e2r2W(4W − T0(mod)
0 )− 1

)

}{4
(

ǫ2 + 12πǫ + 32π2)r2(16r2W2XYe2r2W + 1
)

}−1

− {ψ
((

4r2W + 1
)2(16r2W2XYe2r2W + 1

)

ln
(

16r2W2XYe2r2W + 1
)

+ 4r2W

×
(

4WXYe2r2W + 1
)

+ 1024r8W5XYe2r2W + 1024r6W4XYe2r2W + 384r4W3

× XYe2r2W − 1
)

}{8
(

4r3W + r
)2(16πr2W2XYe2r2W + π

)

}−1, (52)

Pr =
1

8r2

(

{ψ
((

4r2W + 1
)

ln
(

16r2W2XYe2r2W + 1
)

− 1
)

}{π}−1 − {ǫ2 + 12πǫ

+ 32π2}−1(2
(

{16π
(

r2T1(mod)
1 + 1

)(

16r2W2XYe2r2W + 1
)

+ ǫ
(

r2(T0(mod)
0

+ 3T1(mod)
1 )− 16r4W2XYe2r2W(−T0(mod)

0 − 3T1(mod)
1 + 4W) + 2

)

}{1 + 16r2W2

× XYe2r2W}−1 − 2
(

ǫ + 6ǫr2W + 8π
(

4r2W + 1
))

ln
(

16r2W2XYe2r2W + 1
))))

, (53)

P⊥ = {ψW
((

r2W + 1
)(

4r2W + 1
)2(16r2W2XYe2r2W + 1

)

ln
(

16r2W2XYe2r2W

+ 1
)

+ W
(

r2(48WXYe2r2W − 3
)

+ 4XYe2r2W + 256r8W4XYe2r2W + 320r6W3

× XYe2r2W + 4r4W
(

40WXYe2r2W − 1
)))

}{2
(

4r2W + 1
)2(16πr2W2XYe2r2W

+ π
)

}−1 − {4
(

ǫ2 + 12πǫ + 32π2)r2}−1({16π
(

r2T1(mod)
1 + 1

)(

16r2W2XYe2r2W

+ 1
)

+ ǫ
(

r2(T0(mod)
0 + 3T1(mod)

1 )− 16r4W2XYe2r2W(−T0(mod)
0 − 3T1(mod)

1 + 4W)

+ 2
)

}{16r2W2XYe2r2W + 1}−1 − 2
(

ǫ + 6ǫr2W + 8π
(

4r2W + 1
))

ln
(

16r2W2X

× Ye2r2W + 1
))

. (54)

The influence of anisotropy is estimated by the expression

△ = −{ψ
(

2r2W + 1
)((

2r2W − 1
)(

4r2W + 1
)2(16r2W2XYe2r2W + 1

)

ln
(

16r2

× W2XYe2r2W + 1
)

+ 2r2W
(

16WXYe2r2W + 3
)

+ 512r8W5XYe2r2W

+ 384r6W4XYe2r2W + 8r4W2(32WXYe2r2W − 1
)

+ 1
)

}{8
(

4r3W + r
)2

×
(

16πr2W2XYe2r2W + π
)

}−1. (55)

5. Physical Features

In this section, we analyze the physical aspects, viability and stability of the established
solutions corresponding to two stellar entities. For this purpose, the model (8) is chosen,
and the values of variables ϑ and ǫ are fixed to be 1 and −12, respectively. Through the
behavior of matter constituents, the feasibility of the astronomical objects is examined.
The physical nature of the matter variables (pressure components and energy density)
must be positive and maximal closer to the center with diminishing sketch as r rises.
The profiles of density and pressure constituents of solution I shown in Figure 1 indicate the
maximum behavior at the center and monotonic decrement on reaching the boundary with r.
The tangential and radial pressures depict the same trend as that of density and become
zero at the star surface. The anisotropy trend in Figure 1 demonstrates that it is zero at
the core and maintains this behavior until it reaches the boundary. It is worth noting that
anisotropy becomes larger on increasing ψ, and the second star has more anisotropy in
comparison to the first one. This ensures the increment in anisotropy in the system as a
result of extra source.
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Figure 1. Physical analysis of U, Pr, P⊥ and △ versus ψ and r corresponding to two stellar candidates
(Solution I).

Some mathematical limitations known as energy bounds guarantee the presence of
ordinary matter in the inner region of cosmic structures. The fulfillment of these constraints
assures the existence of usual source as well as the feasibility of the constructed solutions.
These conditions, for the anisotropic matter configuration, are classified as null (NEC),
dominant (DEC), weak (WEC) and strong (SEC) as

NEC: U+ Pr ≥ 0, U+ P⊥ ≥ 0,

DEC: U− P⊥ ≥ 0, U− Pr ≥ 0,

WEC: U ≥ 0, U+ Pr ≥ 0, U+ P⊥ ≥ 0,

SEC: U+ Pr + 2P⊥ ≥ 0. (56)

Stability is regarded as an essential feature for analyzing the physical acceptance of stellar
structures. We utilize two approaches (Herrera cracking approach and causality condition)
to discuss the stable feature of considered astrophysical objects. According to causality
condition, the constituents of squared speed of sound must obey [0, 1] or 0 ≤ V2

⊥ ≤ 1 as
well as 0 ≤ V2

r ≤ 1 [51], where the radial and tangential ingredients of square speed sound
are indicated by V2

r and V2
⊥, respectively. Alternatively, we can also say that the speed of

sound should be less than the speed of light. The mathematical expressions of speed sound
are given as

V
2
⊥ =

dP⊥
dU

, V
2
r =

dPr

dU
. (57)

In order to discuss stability, Herrera [52] devised another method called the cracking
approach, according to which components of speed sound related to the celestial structures
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must fulfill the constraint |V2
⊥ −V2

r | ≤ 1 [52]. The stars in Figure 2 illustrate that the first
solution is viable as all the necessary requirements for the energy bounds are fulfilled. In
Figure 3, one can see that the first solution does not meet the stability criteria for the first
candidate. However, for the second model, the similar solution satisfies the stability ranges.
To analyze solution II graphically, we make use of the similar values as provided for the first
solution. Figure 4 shows that the plots of U,Pr, and P⊥ have maximum values at the core
and display decreasing behavior as r increases towards the stellar surface. The anisotropy,
presented in the last plot of Figure 4, vanishes at the core and sustains this behavior for the
whole domain of r. It is also seen that astrophysical objects depict zero anisotropy near the
center for every value of decoupling parameter, but it increases near the star surface when
the decoupling parameter is increased. Interestingly, similar to solution I, the second star
has more anisotropic effects than the first candidate. Figure 5 demonstrates the viability
of the second solution since both the stellar structures meet all the energy limitations. The
Herrera cracking approach and causality conditions are consistent with the required results
for both celestial systems, implying the stability of the solution II (Figure 6).

Figure 2. Plots of energy constraints versus ψ and r corresponding to two stellar candidates (Solution I).
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Figure 3. Plots of causality condition and Herrera cracking approach versus ψ and r corresponding
to two stellar candidates (Solution I).

Figure 4. Physical analysis of U, Pr, P⊥ and △ versus ψ and r corresponding to two stellar candidates
(Solution II).
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Figure 5. Plots of energy constraints versus ψ and r corresponding to two stellar candidates (Solution II).

Figure 6. Cont.
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Figure 6. Plots of causality condition and Herrera cracking approach versus ψ and r corresponding
to two stellar candidates (Solution II).

One of the basic entities of a static spherical symmetric geometry is the mass, whose
mathematical expression can be defined as

m = 4π
∫ R

0
Ur2dr. (58)

To calculate the mass of the assumed anisotropic stellar models, we numerically solve
the above equation together with the initial condition m(0) = 0. Compactness (ϕ) is a
necessary substantial property of astrophysical objects, defined as the mass to radius ratio.
Buchdahl [53] estimated the maximum bound of the compactness parameter by the match-
ing of inner and outer structures using junction conditions, which was determined to be
smaller than 4

9 . The celestial body produces electromagnetic radiations whose wavelength
becomes larger as a result of strong gravitational attraction, hence this change in wave-
length is assessed through redshift factor with Z(r) = 1√

1−2ϕ
− 1. Buchdahl revealed that

for isotropic matter sources, this value is Z(r) < 2, while it becomes 5.211 for anisotropic
distribution [54]. We assign the decoupling parameter to be ψ = 0.1, 0.9 for both solutions
to analyze the graphical interpretation of mass, compactness and redshift parameters corre-
sponding to two stellar models. The analysis of mass corresponding to solutions I and II is
given as

• For ψ = 0.1, both stellar objects are massive for solution I (Figure 7).
• For ψ = 0.9, both considered models possess massive interiors corresponding to the

solution II (Figure 8).

The compactness and redshift factors depict acceptable behavior for all the values of
decoupling parameter in view of solutions I and II (Figures 7 and 8).
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Figure 7. Cont.
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Figure 7. Plots of mass, compactness and redshift versus r corresponding to ψ = 0.1 (Orange),
ψ = 0.9 (Red) (Her X-1) and ψ = 0.1 (Blue) and ψ = 0.9 (Purple) (4U 1820-30) for solution I.
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Figure 8. Behavior of mass, compactness and redshift versus r corresponding to ψ = 0.1 (Orange),
ψ = 0.9 (Red) (Her X-1) and ψ = 0.1 (Blue) and ψ = 0.9 (Purple) (4U 1820-30) for solution II.

6. Concluding Remarks

This paper deals with static anisotropic spherical solutions using gravitational decou-
pling method via MGD in the f (G, T) = ϑG2 + ǫT gravity model. The isotropic matter
distribution within the static system has been evolved with the addition of an extra sector
that introduces anisotropy into the system. Isotropic and anisotropic frameworks are
constructed as a result of the deformation of the radial metric component, which splits
the system of field equations into two different sets. To resolve the seed source, we have
used the Karmarkar condition, which gives rise to particular metric functions, and match-
ing conditions are employed to find the expressions of unknown constants. The second
array (24)–(26) has four unknown quantities, so we have closed this system to find the un-
knowns by applying certain additional constraints on the extra gravitational source. Finally,
the physical behavior of the matter determinants as well as viable and stable characteristics
of two compact star candidates have been illustrated graphically.

We have discussed physical characteristics of matter variables, anisotropy and energy
constraints to ensure that the generated solutions are physically viable. To determine the
stable behavior of both solutions, the causality and cracking conditions have been used.
We have found that mass, compactness and redshift parameters meet the required limits
for both solutions. For both solutions, the star Her X-I is more dense compared to 4U
1820-30. The anisotropic solution I is viable but not stable for the first candidate, while it is
both viable as well as stable for the second star. On the other hand, the second anisotropic
solution has satisfied all the physical acceptability conditions for both stellar stars. It is
important to note that two anisotropic solutions were developed in GR [27], in which only
the first solution was viable whereas both solutions were unstable. In the context of f (G)
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gravity, the viable and stable solutions have been found [32,33]. We have also worked on
two anisotropic solutions in f (G, T) gravity using Krori–Barua spacetime and found both
solutions physically viable as well as the second solution stable [43–45]. Here, we have
found the results that show more appropriate behavior. Finally, the restrictions ϑ = ǫ = 0
in f (G, T) model reduce to GR.
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Appendix A

The modified terms are described as

T0(mod)
0 =

1
8π

[

− 1
2

G2 +

(

4e−2σγ′′

r2 − 4e−σγ′′

r2 − 2e−σγ′2

r2 +
2e−σγ′σ′

r2

+
2e−2σγ′2

r2 − 6e−2σγ′σ′

r2

)

G +

(

12e−2σσ′

r2 − 4e−σσ′

r2

)

G′

(

− 8e−2σ

r2 +
8e−σ

r2

)

G′′
]

, (A1)

T1(mod)
1 =

1
8π

[

1
2

G2 +

(

− 4e−2σγ′′

r2 +
4e−σγ′′

r2 +
6e−2σγ′σ′

r2 − 2e−σγ′σ′

r2

− 2e−2σγ′2

r2 +
2e−σγ′2

r2

)

G +

(

12e−2σγ′

r2 − 4e−σγ′

r2

)

G′
]

, (A2)

T2(mod)
2 =

1
8π

[

1
2

G2 +

(

− 4e−2σγ′′

r2 +
4e−σγ′′

r2 +
2e−σγ′2

r2 − 2e−2σγ′2

r2

− 2e−σγ′σ′

r2 +
6e−2σγ′σ′

r2

)

G +

(

− 6e−2σγ′σ′

r
+

4e−2σγ′′

r

+
2e−2σγ′2

r

)

G′ +
4e−2σγ′

r
G′′

]

. (A3)

The expressions of GB together with its higher derivative are determined as

G =
1
r2

[

2e−2σ
(

(eσ − 3)γ′σ′ − (eσ − 1)
(

2σ′′ + γ′2
))

]

, (A4)

G′ =
−1
r3

[

2e−2σ

(

− rγ′((eσ − 3)σ′′ − 2(eσ − 1)γ′′)+ r(eσ − 6)γ′σ′2

+ σ′
(

−r(3eσ − 7)γ′′ + r(−(eσ − 2))γ′2 + 2(eσ − 3)γ′r
)

− 2
(

eσ

− 1
)

γ′2 − 2
(

eσ( − 1
)(

2γ′′ − rγ(3)
)

)]

, (A5)

G′′ =
1
r4

[

2e−2σ

(

γ′2(r2(eσ − 2
)

σ′′ − 6eσ + 6
)

− 2
(

γ′′(6
(

eσ − 1
)

− r2(2eσ
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− 5
)

σ′′)+ r2(eσ − 1
)

γ′′2 + r
(

rγ(4) − 4γ(3))(eσ − 1
)

)

+ r2(eσ − 12
)

× γ′σ′3 + σ′
(

γ′(− 3r2(eσ − 6
)

σ′′ + 4r2(eσ − 2
)

γ′′ + 6
(

eσ − 3
))

− 4

× r
(

eσ − 2
)

γ′2 + r
(

rγ(3)(5eσ − 11
)

− 4
(

3eσ − 7
)

γ′′)
)

− rσ′2
(

4r
(

eσ

−5
)

γ′′ + r
(

eσ − 4
)

γ′2 − 4
(

eσ − 6
)

γ′
)

+ rγ′
(

r
((

eσ − 3
)

σ(3) − 2γ(3)

×
(

eσ − 1
))

− 4
(

eσ − 3
)

σ′′ + 8
(

eσ − 1
)

γ′′
))]

. (A6)
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