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Resumen

El presente trabajo de investigacion se adentra en el estudio de las Generalized Quasi-
Topological Gravities (GQTG’s), un campo emergente en la fisica teérica que profun-
diza en las teorias de gravedad en curvatura superior. Esta investigacion se centra
especialmente en el andlisis de las propiedades y aplicaciones de los agujeros ne-
gros y fendmenos afines dentro del marco de las GQTG’s. Aunque se han logrado
avances significativos en este &mbito, atin quedan numerosos desafios y preguntas
sin resolver respecto a las caracteristicas fundamentales de estas teorias.

Con un enfoque orientado hacia la revisién bibliografica, este trabajo de in-
vestigacion se dedica a examinar y compilar los hallazgos més importantes en el
campo de las GQTG’s. Se realiza un andlisis exhaustivo de los progresos recientes,
asi como de los retos que enfrenta la investigaciéon en GQTG’s y su aplicaciéon en
la fisica tedrica. El objetivo es identificar dreas con potencial para investigaciones
futuras y contribuir de manera significativa al conocimiento en esta area.

Con el objetivo de profundizar en la comprensién de los cédlculos y analisis
realizados, este trabajo de investigacién incorpora el uso de Python, cuyos detalles
se especifican en los apéndices. Esta integracion es clave para entender los procesos
matematicos empleados tanto en este trabajo como en los articulos que sirven de
guia. Adicionalmente, en los apéndices se presentan calculos detallados que facilitan
la comprension de las férmulas utilizadas a lo largo de la investigacion.

Reflejando el compromiso de esta investigacion con la profundizacién en las
GQTG’s alo largo de este estudio, se ha efectuado una revisiéon meticulosa y actuali-
zada de la literatura cientifica. Se abarcan aspectos como los fundamentos teéricos,
las propiedades especificas y las aplicaciones practicas en el estudio de agujeros ne-
gros y otros fendmenos conexos, como también la inflacién geométrica. Asimismo,
se identifican y discuten las areas de investigacion actuales y los interrogantes pen-
dientes en el campo de las GQTG’s, con el proposito de esclarecer las limitaciones
existentes y proponer direcciones innovadoras para futuras investigaciones.
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INTRODUCCION

El campo de la fisica tedrica, siempre en la vanguardia del conocimiento cien-
tifico, ha visto surgir un interés creciente por las Generalized Quasi-Topological Gravi-
ties (GQTG's), tal como lo documentan Bueno, Cano y Hennigar (2019). Estas teorias
amplian la comprension de la gravedad de Einstein (1915) y se extienden mads alla
de los modelos convencionales de gravedad en curvatura superior (Lovelock, 1970;
Sotiriou & Faraoni, 2010). El vasto potencial de las GQTG’s se extiende a fenéme-
nos tan diversos como la formacién de agujeros negros, la estructura del espacio-
tiempo bajo condiciones extremas y las interpretaciones hologréficas, en linea con
la correspondencia AdS/CFT (Adair et al., 2020; Bueno & Cano, 2017b). Este trabajo
de investigacion representa una contribucién substancial al cuerpo de conocimien-
to sobre las GQTG’s, ofreciendo una revisién meticulosa de sus principios tedricos,

aplicaciones y su importancia en la fisica de altas energfas.

El objetivo de este trabajo de investigacién es doble: consolidar la literatura
sobre las GQTG’s para facilitar el acceso a descubrimientos fundamentales y, pa-
ralelamente, identificar y explorar nuevas dreas de investigacién y preguntas atin
sin respuesta. Pretende ser un recurso referencial para investigadores y estudiantes,

proporcionando una base tedrica robusta y un marco conceptual coherente.

La estructura del trabajo de investigacién se ha disefiado con esmero pa-
ra abarcar aspectos fundamentales de las GQTG’s. En el Capitulo 1 se introducen
conceptos esenciales para entender estas teorias, tratando sus dimensiones fisicas y
matematicas, y discutiendo las limitaciones de la Relatividad General. Se abordan
las teorias de gravedad mads alla de Einstein, como las teorias de f(R) (Sotiriou &
Faraoni, 2010) y Lovelock (1970), estableciendo asi la base para una comprensiéon

profunda de las GQTG’s. Se detallan las ecuaciones de movimiento fundamentales



2 Introduccion

y definiciones criticas, como la analogia con el tensor de Ricci [véase la Ecuacion
(1.9)]. Se define formalmente a los agujeros negros, ademas se clarifican sus pro-
piedades termodindmicas y las soluciones esféricamente simétricas, culminando en
la solucién de Schwarzschild-Tangherlini (Tangherlini, 1963). El desarrollo de las
teorias de Lovelock en agujeros negros, usando la teoria de Gauss-Bonnet, que es
fundamental, para D = 5y D = 6, demuestra la aplicabilidad de las GQTG’s (véase

célculos detallados en el Apéndice B).

El capitulo 2 profundiza en la definicién detallada de las GQTG’s, sus pro-
piedades, las subclases, ademads se presenta a una pieza fundamental la teoria Eins-
teinian Cubic Gravity (Bueno & Cano, 2016a), haciendo una descripciéon completa
de esta teoria, y un desarrollo detallado de la aplicacién a la solucién de agujeros
negros, entendiendo asi el comportamiento asint6tico y cerca del horizonte. Por l-
timo, se presentan sus férmulas de recurrencia (Bueno, Cano & Hennigar, 2019) y
los célculos necesarios para entender las dreas en desarrollo que se explorardn en

los capitulos subsiguientes.

Los Capitulos 3 y 4 se centran en la aplicabilidad de las GQTG'’s, explorando
nuevos desafios y oportunidades. Se discute la estabilidad de agujeros negros en
cuatro dimensiones, las contribuciones de las GQTG’s a la cosmologia contempora-
nea y su relevancia en la fisica de altas energias, ofreciendo una nueva perspectiva
sobre el proceso inflacionario como alternativa al modelo ACDM. Estos capitulos
integran avances recientes y perspectivas emergentes con un andlisis critico y pro-

positivo.

Finalmente, este trabajo no solo recopila y organiza de manera exhaustiva
el conocimiento existente, sino que también fomenta la discusién y el intercambio
de ideas en la comunidad cientifica. Ademads, que contribuye significativamente al
avance del conocimiento en el drea de la fisica tedrica y la gravedad en curvatura
superior, estableciendo un punto de referencia importante para futuras investiga-

ciones y descubrimientos en el campo de las Generalized Quasi-Topological Gravities.



CAPITULO 1

GRAVEDADES MAS ALLA DE LA
RELATIVIDAD GENERAL

La teoria de la Relatividad General describe la gravedad como la curvatu-
ra del espacio-tiempo. Es una teoria fundamental que fue propuesta por Albert
Einstein (1915). Las ecuaciones de Campo de Einstein relacionan la geometria del
espacio-tiempo con la distribucién de materia y energfa en el universo. En situacio-
nes apropiadas, la Relatividad General reproduce las predicciones de la teoria de la
gravedad de Newton y ha sido confirmada por una gran cantidad de experimentos

y observaciones.

Sin embargo, la teoria de la Relatividad General presenta algunas limitacio-
nes y problemas tedricos que han llevado a la basqueda de teorias alternativas. Una
de estas limitaciones es la falta de una descripcién adecuada de la gravedad cuan-
tica, que se observa a escalas muy pequefias, especialmente en su capacidad para
describir la fisica de altas energias. Ademads, predice la existencia de singularida-
des en el espacio-tiempo, como las encontradas en el centro de los agujeros negros,
donde las leyes de la fisica ya no se aplican. Por otro lado, existen numerosos mo-
tivos que nos hacen pensar que la accién de Einstein-Hilbert es solo la primera de
una torre infinita de correcciones de orden superior en curvatura. Estos motivos han

llevado a la investigacién de teorias como las Generalized Quasi-Topological Gravities
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(GQTG’s), que buscan superar estas limitaciones y proporcionar una comprensién

maés profunda de la gravedad.

En este trabajo de investigacion, nos centraremos en el estudio de las GQTG’s
como una posible alternativa a la teoria de la Relatividad General para describir la
gravedad en situaciones de curvatura espacio-temporal grande. Para ello, conside-

raremos una modificacién de la accién de Einstein-Hilbert definida como:

Sera = /d4x\/—_g(R —2A), (1.1)

donde R es el escalar de Ricci, también conocido como escalar de curvatura y A la

constante cosmoloégica.

Esta accion tiene una larga historia que se remonta a los primeros dias de
la Relatividad General. A través del estudio de las soluciones de las ecuaciones de
campo correspondientes a esta accion modificada, esperamos obtener una compren-

siéon més profunda de la gravedad y de como se comporta en condiciones extremas.

1.1. Gravedad en curvatura superior

Las teorfas de curvatura superior aparecieron originalmente propuestas por
Weyl (1952) y Eddington (1921) para una unificacién geométrica del electromagne-
tismo y la gravedad. Estas teorias han sido estudiadas en varias 4reas de fisica de
altas energias, como la cosmologia, la fisica de agujeros negros (Hawking, 1972a),
la holografia (Padmanabhan, 2005) y la teoria de cuerdas (Maldacena, 1999). Estas
teorias han sido utilizadas para entender el origen del universo y su expansion, des-
cribiendo fenémenos como la inflacién cosmoldgica y la dindmica del universo en
etapas tempranas; asimismo, parece ser que un fenémeno general de estas teorias,
permite que la inflacién pueda ser provocada por un mecanismo diferente conocido
como inflacién geométrica (Arciniega, Bueno et al., 2020), como se verd en el Capitu-

lo 4. En fisica de agujeros negros, las teorias de gravedad de curvatura superior han

IExtraida de (Blau, 2023) en el capitulo 20.
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sido utilizadas para entender su estructura y comportamiento, permitiendo encon-
trar la solucioén de problemas como la paradoja de la informacién y la no unitariedad
en la evolucion del estado (Myers, 1999). En teoria de cuerdas, las teorfas de grave-
dad de curvatura superior son esenciales para entender los aspectos de altas ener-
gias, tales como la descripcién de estados excitados y la resolucién de problemas

relacionados con la unificacién de la gravedad con otras fuerzas fundamentales.

El estudio de estas teorias permite una comprensién mas profunda de la gra-
vedad de Einstein y sus propiedades, al proporcionar un marco para probar qué ca-
racteristicas de la teoria son tinicas y cudles persisten cuando se consideran términos
adicionales en la accién. Ademads, esto ofrece una forma de superar las limitaciones

de la teoria de la Relatividad General.

La idea principal es agregar términos adicionales a la accién de Einstein-
Hilbert, lo que implica potencias superiores del tensor de curvatura de Riemann.
La accién modificada se puede expresar mediante una integral, como se muestra en

la siguiente ecuacién?:

5= / 4P /=8L (3%, Raprs, VeRaps ) (1.2)

donde S es la accién, g es el determinante del tensor de métrica, L es la densidad

lagrangiana y R, V son los términos de curvatura y derivadas respectivamente.

1.1.1. Ecuaciones de Movimiento

Las ecuaciones de campo de la teoria de la Relatividad General, también co-
nocidas como ecuaciones de campo de Einstein, son una generalizaciéon de la Ley
de Gravitaciéon Universal Newtoniana, mientras que esta ley asume la existencia
de solo un potencial que describe el campo gravitacional, la teoria de la Relativi-
dad General cuenta con 10 potenciales. Estos potenciales, se identifican en las 10
componentes del tensor métrico simétrico g, de la geometria del espacio-tiempo

Riemanniano curvado, como se discute en el libro de Carmeli (1982).

2Revisar (Bueno & Cano, 2017b)
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Las ecuaciones de campo de Einstein muestran una propiedad importante,
su no linealidad en las funciones de campo, lo cual es facil de ver a partir de la
estructura del tensor de Ricci. Este hecho diferencia las ecuaciones de campo gravi-
tacional de las ecuaciones de campo de otras teorias conocidas, como la teoria del
campo electromagnético. Sin embargo, no son tan diferentes de otras teorias de gau-
ge, que generalmente también son no lineales. Debido a esta propiedad, el principio

de superposicién ya no es valido para las ecuaciones de campo de Einstein.

La distribucion y movimiento de la materia son determinadas por las fun-
ciones de campo gravitacional, es decir, las componentes del tensor métrico, y al
mismo tiempo el tensor métrico es determinado por la distribucién y movimiento

de la materia a través de las ecuaciones de campo de Einstein.

Desde un punto de vista moderno, las ecuaciones de campo para la teoria de
la Relatividad General, se pueden obtener a partir del principio de accién como se
discute p.e., en las notas de Blau (2023)> Asi, variando la accién [véase la Ecuacién

(1.1)] con respecto a la métrica, se tiene:
1
Rocﬁ - EglxﬁR + Agzxﬁ =0 ’ (13)

donde la parte izquierda de (1.3) representa la parte geométrica del espacio-tiempo;
ademds, al considerar cero en el lado derecho de la ecuacién, significa que no hay
fuentes de energia y masa presentes, a excepcion por la energia del vacio represen-
tada por la constante cosmoldgica. Las soluciones a esta ecuacién son soluciones de
la teoria de la Relatividad General en un espacio-tiempo vacio con constante cosmo-
l6gica. En el caso maximalmente simétrico, a tales soluciones se las conoce como de

Sitter o Anti-de Sitter, dependiendo del signo de A ya puesto (de Sitter, 1916).

Asimismo la accién que abarca tanto la relaciéon entre materia y gravedad

para la Relatividad General es:

1
S[gzxﬁrcp] = RSEH[&X/S] + SM[‘P/gocﬁ] ’ (1.4)

3Las siguientes ecuaciones se extraen de (Blau, 2023)
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donde Sy es la accién para la materia.

De la misma manera, variando la accién general, se pueden obtener las ecua-
ciones de campo de Einstein asociado al tensor de Energia-Momento, el cual es la

fuente de las ecuaciones del campo gravitatorio:

S [gocﬁ/ ¢

ég}’“/ - O A G],[]/ - 87TGT’,¢1/ . (1.5)

donde, Gy, representa el tensor de Einstein. Por otro lado, el tensor de Energia-

Momento T}, se define como:

;=2 Su
e 2T

A partir de trabajar con la accién, uno puede ver que es relativamente sencillo lle-

(1.6)

gar a generalizaciones covariantes de la accién de Einstein-Hilbert, se asume que la
acciéon modificada se reduce a la accién de Einstein-Hilbert cuando todos los aco-
plamientos de orden superior se fijan en cero. Gracias a esto, podemos escribir el

Lagrangiano anterior de la forma p.e., (Bueno & Cano, 2017b):

1

= TenC [—2A0 + R + términos de derivada superior] .

(1.7)

L (g“ﬁ, Rugrsr VeRapys, )

Consideremos el caso en el que no hay derivadas covariante del tensor de Riemann.
Se debe enfatizar que el Lagrangiano gravitacional presentado anteriormente, de-
pende tanto de la curvatura como de la métrica, pero no de las derivadas de la
curvatura, es decir, el Lagrangiano contiene términos solo hasta derivados de se-
gundo orden de la métrica. La cantidad mds importante, que serd ttil para nuestro

propésito posterior, derivada del Lagrangiano, es el siguiente tensor*:

pars — (9L . (1.8)
IRups g

4Revisar el trabajo de Bueno et al. (2023)
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También este tensor es ttil para poder construir un tensor analogo al tensor de Ricci,
definiéndolo asi:

Rup = p,XWRﬁW , (1.9)

Al tener ya definido el funcional de la accién, y para obtener las ecuaciones de cam-

po, se requiere variar la accién, dando como resultado:

(ssz/a de,/—ggaﬁ(sg“MA P/ =gV 60", (1.10)
M M

donde &4 representa el término de las ecuaciones de campo, que resulta de la va-
riacion de la parte principal de la accién y §v* es el término de la frontera. Asi, las

ecuaciones de campo de una teorfa £(gyg, R*7%) tienen la forma:
Eap = Rap — » YV Pyosp = 111
ap = aﬁ_igocﬁL_zv \Y a'yéﬁ—O‘ ( . )

La cantidad® P*f7° involucra derivadas de segundo orden de la métrica, lo que im-
plica que el término V’YV‘Sngﬁ en &, contiene derivadas de cuarto orden de la

métrica.

1.1.2. Ejemplos de gravedad de orden superior

Teorias de f(R)

Las teorias f(R) de la gravedad, surgen a partir de la generalizacién del La-
grangiano en la accion Einstein-Hilbert [véase la ecuacion (1.1)]. Ademas, el escalar

de Ricci R, se sustituird por una funcién general de R, es decir:

S = ﬁ /d4x\/—_gf(R) : (1.12)

Las acciones f(R), son suficientemente generales para abarcar algunas caracteris-

ticas bésicas de gravedad en orden superior y al mismo tiempo son lo suficiente

5Véase mas a detalle sus propiedades en el trabajo de Padmanabhan (2011)
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simples a la hora de ser manipuladas en los calculos a realizar (Sotiriou & Faraoni,

2010).

Considerando y definiendo f(R) = R, obtenemos nuevamente la acciéon de
Einstein-Hilbert (con A = 0). Ademads, f(R) se puede considerar con la constante
cosmoldgica no nula (A # 0), es decir, la funcién f(R) = R — 2A obtenemos la

accion de Hilbert-Einstein [véase la Ecuacion (1.1)].

Como se observa, tanto la accion de Hilbert-Einstein con la Constante Cosmo-

l6gica, como sin la Constante Cosmoldgica, son parte de la familia de las funciones

f(R).

Utilizando el procedimiento visto en la seccién anterior, es decir agregando

el término de materia Sy, la accién total para gravedad f(R) toma la forma:

1
Sﬂm::ﬂgfi/f“VtgﬂR)+5MQhw¢L (1.13)

donde ¢ denota colectivamente los campos de materia. La variacién con respecto a
la métrica da, después de algunas manipulaciones y términos del moédulo de super-

ficie, la siguiente expresion general:

fI(R)Ryw — %f(R)gyv — [VuVy = gw] f/(R) = 87GTyy . (1.14)

Gravedad de Lovelock

La teoria de Lovelock (1970) es una extension natural de la teoria de Einstein
de la gravedad a dimensiones superiores, y es de gran interés en la fisica tedrica, ya
que describe una amplia clase de modelos. La teoria de Lovelock es la teoria maés
general de la gravedad que produce ecuaciones de movimiento de segundo orden
en un nimero arbitrario de dimensiones. A su vez, es la generalizacién natural de
la teoria de la Relatividad General de Einstein a dimensiones superiores. En tres y
cuatro dimensiones la teoria de Lovelock coincide con la teoria de Einstein, pero
en dimensiones superiores ambas teorias son en realidad diferentes. De hecho, para

D > 4, la gravedad de Einstein se puede considerar como un caso particular de
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la gravedad de Lovelock, ya que el término de Einstein-Hilbert es uno de varios

términos que constituyen la acciéon de Lovelock (2003).

El Lagrangiano de la teoria se da como una suma de densidades de Euler,

siendo la densidad de Euler 2n — dimensional:

_()"T@n41) o
X(M) - 22+n7-[n1—~ n T 1 / d XA/ — Rn , (115)
extendidas dimensionalmente, y se puede escribir de la siguiente manera®:
D/2 1 ]411/1 UnVn o ,Br
o r;)aan, Ron = on “1/31 “tn P HR HrVy 7 (1.16)

donde & 11; Z"E” es la delta de Kronecker generalizada.

Cada término R, corresponde a la extensiéon dimensional de la densidad de
Euler en 2n dimensiones, por lo que esto solo contribuye a las ecuaciones de movi-

miento paran < D/2.

Expandiendo (1.16) el Lagrangiano toma la forma familiar:
L=—% (ao F R+ o (RZ + Ry R — 4RWRW) n 0(30(R3)> . (117)
En particular, el término de segundo orden es el término de Gauss-Bonnet.
R = R* + Rypuy R"P" — 4R, R . (1.18)

La condicién de segundo orden para las ecuaciones de campo nos lleva a imponer

una condicién sobre PP79:

VP70 = . (1.19)

Esta condicion caracteriza precisamente a las gravedades de Lovelock, al eliminar

los posibles términos de més de dos derivadas en las ecuaciones de movimiento.

®Para una detallada explicacién, ver (Garraffo & Giribet, 2008)
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1.2. Agujeros Negros

Un agujero negro es una solucién exacta de las ecuaciones de la Relatividad
General de Einstein. Describe una regién del espacio-tiempo caracterizada por la
presencia de un horizonte de eventos, es decir, una regién donde la gravedad es tan

fuerte que nada, ni siquiera la luz, puede escapar.

7

Un agujero negro,” en un espacio-tiempo asintéticamente plano (M, g,v) se

define como una regién

B=M-1(I"), (1.20)

donde I es el infinito nulo futuro y I~ es el pasado cronolégico. En otras palabras,
esto significa que el futuro de B no estd contenido en la regién asintética. El hori-
zonte de eventos del agujero negro es una hipersuperficie nula que corresponde a la
frontera comun entre B y el pasado de I*. Es importante destacar que el horizonte
de eventos es una caracteristica global del espacio-tiempo que requiere conocer toda

su historia futura, por lo que carece de un significado local.

Hoy por hoy tenemos evidencia experimental directa de los agujeros negros
gracias a los detectores de ondas gravitacionales LIGO/Virgo® y a The Event Hori-

zon Telescope.”

En este trabajo de investigacion trabajaremos con agujeros negros estaticos y
esféricamente simétricos. Schwarzschild (1915) fue el primero en encontrar una so-
lucién exacta no trivial a las ecuaciones de campo de Einstein para un agujero negro
estdtico, sin carga ni momento angular. En coordenadas esféricamente simétricas la

componente temporal se anula para cierto radio, y ahi existe un horizonte.

La importancia del estudio de los agujeros negros es que este es un excelente
laboratorio para probar la relacién entre la mecanica cudntica y la gravedad, ya que
muchas de sus propiedades tienen un origen mecénico cuantico, ademads, permite

entender mejor el comportamiento de esta interacciéon fundamental.

"Revisar el trabajo de Cano (2019)
8Revisar los hallazgos de Abbott et al. (2016)
9Revisar los hallazgos de The Event Horizon Telescope Collaboration et al. (2019)
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1.2.1. Termodinadmica de agujeros negros

Cléasicamente, se considera que un agujero negro, por su naturaleza absorben-
te, no puede emitir nada. Esta caracteristica conlleva a la nocién de que un agujero
negro carece de temperatura, ya que no emite radiacién alguna. Sin embargo, este
concepto entra en conflicto con las leyes de la termodindmica. Por un lado, la idea de
que los agujeros negros no tienen temperatura implica una violacién de la segunda
ley de la termodindmica. Tedricamente, uno podria “ocultar” entropia dentro de un
agujero negro, lo que reduciria la entropia observable del universo, contraviniendo
esta ley. Observaciones relevantes indican que el 4rea de los agujeros negros nunca
disminuye; siempre crece o permanece constante!’ . Esta propiedad llevé a Bekens-
tein (1973) a proponer una relacién directa entre la entropia y el area de un agujero
negro. Este autor sugirié que la entropia de un agujero negro es proporcional a su
drea, pues entonces, la segunda ley de la termodindmica en presencia de agujeros
negros se satisface sin problema lo que se llama La Sequnda Ley Generalizada. La en-

tropia de un agujero negro, es dada por la férmula de Bekenstein-Hawking:

A
Spy = ek (1.21)

donde G es la constante gravitacional y A es el area.

Sin embargo, si se asocia una entropia a un agujero negro, tiene que ser un
objeto termodindmico, es decir que deberia tener temperatura, pero previamente se
menciond que los agujeros negros no tienen temperatura. Hawking (1975) demos-
tré6 que un agujero negro emite radiacion térmica. La temperatura de esta radiacion
es directamente proporcional a la superficie gravitacional del agujero negro, deno-
tada por «,. Esta superficie gravitacional se define como la aceleracién debida a la
gravedad que un observador experimentaria cerca del horizonte del agujero negro,

medida de forma asintética. La relacion entre la temperatura (Ty) y la superficie

19Los primeros en observar que un agujero negro muestra una tendencia a incrementar el drea de
la superficie de su horizonte cuando experimenta cualquier transformacién fueron Penrose y Floyd
(1971), quienes ademas sugirieron que un aumento en el drea podria ser una caracteristica general de
las transformaciones de agujeros negros, lo cual permiti6 sentar las bases para las ideas posteriores
desarrolladas por Bekenstein (1973) y Hawking (1975) sobre la relacién entre la entropia y el area del
horizonte de los agujeros negros.
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gravitacional se expresa mediante la férmula:

Ty = -8 (1.22)

H — 27_[ ’ .
donde x, representa la superficie gravitacional. Este descubrimiento valida la pro-
puesta de Bekenstein (1973) y Hawking (1975), mostrando que los agujeros negros

tienen tanto temperatura como entropia.

Existen varias similitudes entre la fisica de agujeros negros y la termodina-
mica. La similitud més llamativa es la que existe entre los comportamientos del drea
de un agujero negro y de la entropia, debido a que ambas cantidades tienden a au-
mentar de manera irreversible. A partir de la analogia entre agujeros negros y la
termodindmica, se pueden describir las 4 leyes de la mecanica de agujeros negros
(Bardeen et al., 1973), las cuales son las leyes ordinarias de la termodindmica, que

rigen los grados de libertad UV 11,12

microscopicos que forman los agujeros negros.
Mediante esta analogia existente se pueden identificar a aquellas cargas conserva-
das como la Masa, Momento angular o la carga eléctrica, que permiten caracterizar

a los agujeros negros como las variables termodindmicas.

La ley cero de la mecénica de los agujeros negros, establece que dado un agu-
jero negro estacionario, k¢ es siempre constante en el horizonte (Hawking, 1972a,
1972b); esto nos lleva a pensar en la ley cero de la termodindmica que establece que

la temperatura es uniforme en todas partes en un sistema en equilibrio térmico.

La primera ley de la mecanica de la agujeros negros establece que al conside-
rar un proceso cuasiestatico durante el cual un agujero negro estacionario de masa
M, momento angular | y drea superficial A es llevado a un nuevo agujero negro
estacionario con pardmetros M + M, | + 6] y A + 6A. Los cambios en la masa, el

momento angular y el 4rea superficial estdn relacionados por!®:

_ K¢
M = 5 dA+ Qd] + ..., (1.23)

HRevisar el trabajo de Moffat (2011)
12Ge refiere a UV-complete theory of gravity.
13Revisar el Apéndice A para ver como se obtiene la ecuacion (1.23)
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estos ultimos puntos suspensivos indican variables adicionales de las que puede

depender la solucién del agujero negro, tal como la carga de este agujero negro.

El trabajo de Hawking (1971), introdujo el importante teorema del 4rea en la
mecénica de los agujeros negros. Este teorema, conocido como la segunda ley de la
mecanica de los agujeros negros, establece que bajo la condicién de la energia nula,
el drea de la superficie de un agujero negro no puede disminuir. Esto se representa

matematicamente mediante la ecuacion:
0A >0, (1.24)

donde 6 A simboliza la variacion en el drea de la superficie del agujero negro. La ley
implica que, en cualquier proceso fisico, el drea de la superficie de un agujero negro

tiende a permanecer constante o a aumentar, pero nunca a disminuir.

Por tltimo, la tercera ley de la mecénica de los agujeros negros establece que

la gravedad superficial del horizonte no puede ser reducida a cero en un ntmero

finito de pasos.'

Termodinamica de agujeros negros en gravedad de curvatura superior

La ley del area en la férmula de entropia de Bekenstein-Hawking, puede ser
reemplazada por la férmula de entropia de Wald (1993), en el caso de teorfas mas
generales que la de Einstein definidas por un lagrangiano dependiente de la métrica

y el tensor de Riemann £(g,v, Ruvpo)-

5L
S =—2n/ A0 2 /% e e 1.5
w o SR ope u€po (1.25)

donde:

= H es el horizonte de eventos del agujero negro.

m /1 es la métrica inducida en el horizonte de eventos.

14Una formulacién méas precisa de la tercera ley es probada y propuesta por W. Israel (Israel, 1986)
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= €y es el tensor binormal al horizonte de eventos.

Ademds Wald mostré que la entropia definida de esta manera, satisface la primera

ley de la mecédnica de agujeros negros:

SM — ;—f_[(ssw F QO]+ . (1.26)

1.2.2. Soluciones de agujeros negros esféricamente simétricos

El ansatz estético y esféricamente simétrico general!® tiene la forma:

2
ar r2d03 ,, (1.27)

ds%\,,f = —N(r)2f(r)dt* + )

donde N(r) y f(r) son dos funciones independientes, ademés dQ?, , es la métrica

de (D —2) —esfera.

Tanto las funciones N(r) y f(r), en general, son determinadas por un sistema
de ecuaciones diferenciales que pueden ser elegidas como las componentes & = 0
y & = 0 de las ecuaciones de movimiento. Usando las identidades de Bianchi de
las ecuaciones de movimiento V¥#&,, = 0, el resto de componentes resultan de una

combinacién de estas.

En el caso de Relatividad General con una constante cosmolégica:

1
L==(R-24), (1.28)

su tnica solucién corresponde a N(r) = Np'¢:

dr?
dsy = —f(r)dt* + oM A%, (1.29)

15Revisar (Bueno & Cano, 2017b)

16Usualmente Ny = 1, dado que siempre se puede redefinir el tiempo, pero no necesariamente
tiene que ser 1, por ejemplo se podria tomar N(r) = 5, esto quiere decir que el nuevo tiempo es 5
veces el tiempo inicial, entonces la métrica se modificarfa y en la parte temporal habria un factor de
25, asi como t' = 5t, esto solo es para g
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donde:
167tGM 2 A2

f =120y 403 D-1)(D-2)"

(1.30)

Esta es la conocida solucién de Schwarzschild-Tangherlini. Para cuatro dimensiones
y en ausencia de la constante cosmolégica, esta se reduce a la solucién usual de

Schwarzschild (1915),7 segtin lo propuesto por Tangherlini (1963).

Agujeros Negros en la Gravedad de Lovelock

La gravedad de Lovelock, como la forma mds general de gravedad de cur-
vatura superior, se caracteriza por ecuaciones de movimiento de segundo orden.
Esta teoria propone modificaciones a la Relatividad General en contextos de dimen-
siones superiores. Inicialmente, enfocamos nuestra atencién en un espacio de cinco
dimensiones, dado que en dimensiones menores a siete (D < 7), el término R3 no
influye en las ecuaciones de movimiento. En cinco dimensiones, la teoria de Love-
lock se alinea esencialmente con la gravedad de Einstein, integrada con la extension
dimensional de la densidad de Euler de cuatro dimensiones, conocida comtinmente

como la teorfa de Einstein-Gauss-Bonnet (EGB).!®

La teoria de Gauss-Bonnet es crucial para extender la teoria convencional de
la gravedad, especialmente en dimensiones superiores. La accién de Einstein-Gauss-

Bonnet en un espacio-tiempo de dimensién D se expresa mediante la ecuacion:

_ 1 D
Seop = m/d x\/—g[~2A0 + R + axal . (1.31)

Para un espacio de D = 5, la generalizacion se describe con:

r? \/ Agr* |t 2GM
=1+ -—+4/1 . 1.32
f=1+4 T n Tle2 T (1.32)

Esta formulacién indica una solucién que amplia nuestra comprension de la grave-

dad maés all4 de las cuatro dimensiones habituales. Al expandir la teoria a un espacio

17f(r) — 1 — 2GM
r
18La solucién estética con simetria esférica en la teoria EGB fue desarrollada por Boulware y Deser,
como se detalla en (Boulware & Deser, 1985)
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de D = 6, obtenemos la siguiente ecuacién

(1.33)

) =14 \/ZNGMJF Ao
T 0 TV e T 14402 T 60m

Estas ecuaciones para D = 5y D = 6 dimensiones se exploran en profundidad en

el Apéndice B, basandose en las caracteristicas presentadas en el siguiente capitulo.
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CAPITULO 2

GRAVEDADES CUASITOPOLOGICAS
GENERALIZADAS (GQTG's)

2.1. Introduccion

En este capitulo, se examinara en detalle las Generalized Quasi-Topological Gra-
vities (GQTG’s) y su relaciéon con la gravedad y los agujeros negros. Se discutiran las
definiciones y propiedades generales de estas teorias, asi como su aplicacion especi-
tica en la Einsteinian Cubic Gravity (ECG). Se analizaran las soluciones esféricamente
simétricas de ECG y el comportamiento asint6tico de los agujeros negros asintoti-
camente planos, incluyendo el andlisis del horizonte. También se discutirdn las fér-
mulas de recurrencia y como se utilizan para calcular la evolucién temporal de estas
teorias en relacién a los agujeros negros. Este capitulo proporcionara una compren-
sion detallada de como las GQTG’s pueden contribuir a nuestra comprension de la

gravedad y la fisica de los agujeros negros.

2.2. Definicién y propiedades generales

En estos tltimos afios se comenzo a trabajar en una nueva familia de teorias

de gravedad de curvatura superior, las cuales resultan muy interesantes a la hora de
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describir y calcular propiedades de la gravedad. La accién de las llamadas Generali-

zed Quasi-Topological Gravities se puede escribir como':

e 2(n-1) (1) 7o (1)
S_l6nG/d ¥ g[ 2A+R+7§2§5 wIRML, @)

(n)

in

)

. . . . n

donde /¢ es alguna escala de longitud, u; ’ son acoplamientos adimensionales, Rl(
n

son combinaciones lineales de densidades construidas en cada caso desde la con-

traccion de n tensores de Riemann.

Estas teorias, que ahora se sabe que existen en 6érdenes generales y en dimen-
siones arbitrarias (Bueno et al., 2023), son muy interesantes, dado que cuando se
evalta sobre backgrounds esféricamente simétricos, las ecuaciones de campo se re-
ducen a ecuaciones diferenciales de segundo orden y admiten soluciones exactas de
una forma muy parecida a la gravedad de Lovelock (Hennigar et al., 2017). Una par-
ticularidad interesante de las Generalized Quasi-Topological Gravities es que en back-
grounds de simetria méxima, las ecuaciones de movimiento linealizadas coinciden

con las ecuaciones de Einstein linealizadas excepto un prefactor global.

Para saber si una teoria genérica como E(g“ﬁ,R,xm(g, VaRgqse, ) pertenece
a la familia de las GQTG'’s, se necesita evaluar en /gL el ansatz general estatico y

esféricamente simétrico:

b

dS%SS = _Nz(r)f(r)dtz + f(?’)

dr* +r*d03% _, . (2.2)

Obteniendo como resultado Ly ¢ siendo este el Lagrangiano efectivo. Definiendo

con mayor precision, se tiene que este Lagrangiano efectivo:

L f(r, f(r),N(r), f'(r),N'(r),..) = N(r)rP 2L (2.3)

=gyt

Por definicién, extraida del trabajo de Bueno, Cano, Moreno y Murcia (2019), dire-
mos entonces que, para que L(g*F, Rupys, VaRp7de, ...) pertenezca a la familia de

las GQTG's se debe cumplir que las ecuaciones de Euler-Lagrange de Ly se anulen

IRevisar (Bueno, Cano & Hennigar, 2019)
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idénticamente, es decir, si:

oL d oL 42 oL
oy ddly POl
of “arap Taapr = V0. (2.4)

2.2.1. Propiedades

I. Cuando se linealiza alrededor de cualquier fondo simétrico maximo, las ecua-
ciones de movimiento de las GQTG’s se vuelven de segundo orden, es decir,
solo propagan el gravitén habitual sin masa y sin traza de la gravedad de Eins-

tein en dichos backgrounds.

II. Tienen un limite de gravedad de Einstein continuo y bien definido, que corres-

(n)

ponde a establecer y; * — 0 para todo 1 y iy

III. Admiten generalizaciones del agujero negro de Schwarzschild (asintéticamen-
te plano, de Sitter o Anti-de Sitter), es decir, soluciones que se reducen a él en
el limite de gravedad de Einstein, caracterizados por una tinica funcién f(r).

Para ellos, N(7) = 1 (o alguna otra constante) en la ecuacion (2.2) y g4 grr = —1

IV. Cualquier accién efectiva de gravedad puede ser mapeada, mediante una re-
definicién de la métrica, a una Generalized Quasi-Topological Gravity, orden por

orden en términos de los acoplamientos.

2.3. Subclases

Por la forma de las densidades GQTG’s, se pueden clasificar en tres grupos o

subclases:
= Primer Grupo: La densidad correspondiente no contribuye, en absoluto, a la
ecuacion de f(r) se les llama “triviales”

= Segundo Grupo: Entre las GQTG’s densidades, se encuentran las teorias lla-

madas Quasi-Topological, en las cuales, la ecuacién que caracteriza a la funcién
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métrica f(r) es algebraica y no involucra derivadas de f(r); ademads, alguna de
ellas que satisfacen el teorema de Birkhoff? . Las teorfas de esta subclase solo
existen para D > 5 con la excepcién de Eintein Gravity. Un subconjunto de esta
subclase son las teorfas de Lovelock. También las soluciones de un agujero ne-
gro estatico de esta subclase estd, caracterizada, por una simple funcién que es
determinada por una ecuacién algebraica, esto ocurre de manera similar para

las teorias de Lovelock (Boulware & Deser, 1985).

= Tercer Grupo: En este grupo la densidad contribuye a la ecuacién con términos
que contienen derivadas de segundo orden para f(r), un ejemplo claro seria

Einsteinian Cubic Gravity en D = 4 la cual se desarrollard en la Seccién (2.4.)

2.4. Einsteinian cubic gravity

Antes del descubrimiento de Einsteinian Cubic Gravity (ECG), las tnicas teo-
rias quasitopoldgicas conocidas operaban en 5 dimensiones o més. Todas estas teo-
rias eran vélidas para dimensiones iguales o superiores a 5. Einsteinian Cubic Gravity
fue pionera al ser la primera teoria de este tipo aplicable a 4 dimensiones, lo que
impulsé un auge en la investigacion en este campo. Es notable mencionar que este
avance no se realiz6 a través del estudio de sus agujeros negros, sino mediante el

analisis del espectro linealizado (Bueno & Cano, 2016a).

Esta teoria fue construida al inicio como una modificacion generalizada pa-
ra curvatura superior de la gravedad de Einstein que, hasta el orden ctbico, solo
propaga el graviton sin traza y transverso sobre un background maximalmente si-
métrico en dimensiones generales. A partir de esta teoria se pudo definir y clasificar

las GQTG’s (Adair et al., 2020). Siendo la accién de esta teoria dada por:

Erce = / dPx,/—3L . (2.5)

2En Relatividad General, el teorema de Birkhoff establece que las soluciones esféricamente simé-
tricas de las ecuaciones de Einstein en el vacio son localmente isométricas a la solucién de Schwarzs-
child, para su generalizacién a teorias de derivadas superiores de la gravedad. Revisar (Oliva & Ray,
2011)
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Para poder construir la teoria Einsteinian Cubic Gravity, Bueno y Cano (2016a) se
basaron en que tenia que satisfacer las propiedades (I.) y (I1.) de la Seccién (2.2.1)
para dimensiones generales. Obteniendo, asi, la densidad lagrangiana de esta teoria

que estd dada por:
1
L= o [—2A + R] +axy +« [Bxe + AP] , (2.6)
donde?:

P =12R, "R MR P+ R IR R — 12R 5, RTRP + 8R,PR,TR
2.7)

45 o también

ademads, x4 y X6 son las densidades de Euler de 4 y 6 dimensiones
conocidas como el término de Gauss-Bonnet y el término ctibico de Lovelock res-
pectivamente. Siendo x4 topolégico en D = 4 y trivial para D < 3, mientras que X4
es topologico en D = 6y trivial para D < 5. Las ecuaciones de movimiento de ECG

son (Adair et al., 2020) :

0LEcG

W . (2.8)

s 1
PprsR" — S8 —2VPVT Pig =0, Papys =

2.4.1. Soluciones esféricamente simétricas de ECG

Si se restringe el estudio a agujeros negros de vacio asintéticamente planos,
estaticos y esféricamente simétricos (5SS) en 4 dimensiones (Adair et al., 2020; Bueno
& Cano, 2016b; Hennigar & Mann, 2017; Hennigar et al., 2018; Poshteh & Mann,

2019), la accién se reduce a:

1
Skcc = o= | #xv/=g [R-GP], 29
ECG ™ 16nG & @9)
3k =8nG
X4 = R — 4R gR* + R*F7R 5.5
SXe = 8RR M + 4R IR R — 24Rug0 s RPIRY + BRupysRT + 4R, +

RETRP 4 16RERYRY + 12R g R + R3
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asi, utilizando el elemento de linea

2
ar (d62 + sin? 9d4>2> . (2.10)

ds* = —f(r)dt* + 0

Se obtiene la tinica ecuacién de campo independiente:

r

(v a2 Caagir -0 - (r-22) ] =n, e

donde la cantidad ry que aparece en el lado derecho de la ecuacién esta asociada
con la masa ADM® del agujero negro, este valor se trabajara en la Seccién (2.4.2) con

maés detalles.

2.4.2. Agujero Negro asintéticamente plano

La ecuacién (2.11) no tiene solucion analitica; sin embargo, se puede analizar
mediante expansiones y aproximaciones, permitiendo entender la naturaleza de la

solucién.

Comportamiento asintético

Fijémonos en el comportamiento asintético. Para ello, se realiza una expan-
sién alrededor de r — +-o0. La solucién puede expresarse como la solucién de Sch-

warzschild mas una correccién pequefia:

() =1-2+A(), 212)

®La masa ADM (Arnowitt-Deser-Misner) se refiere a la masa total de un sistema gravitacional
aislado. El nombre proviene de los fisicos Richard Arnowitt, Stanley Deser y Charles W. Misner,
quienes la definieron en el contexto de su formulacién del formalismo de descomposicién 3+1 de la
relatividad general, conocido también como formalismo ADM.
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donde |f1(r)| < 1. Luego de introducir (2.12) en (2.11) y expandiendo linealmente
en f1(r) se obtiene la ecuacion diferencial con la correccion:

921’(2)

—r°f; — G?A (10&5 - T) +12G*Arg | (6r — 14r0) f1

+3r(rg — 2r) f{ 4+ 31*(r — 1g) 1”] =0. (2.13)

La solucién de esta ecuacion diferencial de segundo orden es la suma entre la solu-

cion particular y la homogénea f1 = f1, + f1 -

Para primer orden en A, la solucién particular es:

10872 923 rd
fllp(i’) = Gz/\ (- 1"6 0 + 7’_70> + @) <A2, i"_g> s (214)

los primeros términos dan una buena aproximacién, debido a que los términos de

orden superior para A decaen tan rdpido como r — co.

La ecuacién homogénea puede escribirse de la siguiente manera:

=1 fi =@ () fin =0, (2.15)
donde:
5 r 6r — 14r,
w(r) = _
36G2n(r —r0)  32(r—10) 2.16)
(r) B 2r —rg :
= r(r—rg)

Ahora, cuando r is muy grande, se tiene que w’/w? < 1y v < w. En esta situacion,

la solucién de la ecuacién anterior es aproximadamente:

fin~ Aexp [ / drw(r)} + Bexp {— / dra)(r)} , (2.17)

donde A y B son constantes arbitrarias. Cuando r — oo, se obtiene:

2 r?

_ 2
= 36C2r, +0O(r), (2.18)

w
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asi, la solucién se da de manera muy aproximada por:

1,5/2 1,5/2
~ A _— B -, 2.19
fl,h(r) exp 15G\//\_1"0 + exp 15G\/)L_1"() ( )

entonces, debido a que se quiere que la métrica sea asintéticamente plana, debemos
fijar A = 0. Esto nos deja con una familia uniparamétrica de soluciones que son
asintéticamente planas. Por lo tanto, en el limite de r grande, la solucién se da por:
f(r)~1-2-G%A (% — ﬁ) +0 ()\2,%) + Bexp (—L> :
r r r 15G+/Arg

(2.20)
La expansion asintotica permite determinar la masa del agujero negro. En el con-
texto de un espacio-tiempo asintéticamente plano, la férmula de Abbott-Deser para
calcular la masa no se ve alterada por términos de curvatura de orden superior. Esto
nos permite emplear el método convencional para este calculo. De manera espe-
cifica, la masa total del agujero negro en este escenario se determina mediante la

siguiente ecuacion:

.
M = 5C rgrfoor(grr(r) -1). (2.21)

Tal como se mencioné anteriormente, las correcciones de orden superior en A de-
crecen mds rdpidamente que el término principal —ry/7 cuando r tiende a infinito.
Esto implica que el término principal no se ve afectado significativamente por estas

correcciones. En consecuencia, aplicando esta férmula obtenemos:
ro =2GM, (2.22)

lo cual coincide con los resultados estdndar. A partir de esta relacion y de la ecuacion
(2.20), es posible expresar la expansion asintética de f(r) para valores pequefios de

Ay cuando r se aproxima a infinito:

flr—o0) =1 (2.23)

_2GM 108(2GM)*>  92(2GM)®
r 10 r’ )
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Cerca del Horizonte

La superficie r = r;, es el horizonte para la métrica de la forma (2.10), en la
cual f(ry,) =0y f'(r;) > 0, esto quiere decir que la funcién debe ser diferenciable
en r,. La superficie gravitacional (xg) sobre el horizonte para este tipo de métrica
es Kg = @ Considerando que la funcién f(r) es completamente regular y que se

puede expandir en una serie de Taylor, obtenemos:

f(r) =2xe(r —1y) + i an(r—rp)", (2.24)
n=2

donde a, = f (”)(rh)/ n!, esta expansién la introducimos en la ecuacién’ (2.11) y

se resolverd orden por orden para (r — rj,)". Expandiendo hasta segundo orden se

obtiene:
3 481\ G%k2
+ 1y —2GM — 16AGx; <2Kg + ;> +(r—rp) <1 — 2Ky — Tg + (r—mp)?| = 2kg — o1y
g h
3+4 192G%x;  144G? 144G2
+ A 48G2K a2 +4 M —ap 8 + Kg +as 144G2K2 + 7’% (2.25)
§ 2 T’i T 7’% 8 Ty

+0((r=m)) =0,

como se observa en la expresion (2.25), las dos primeras ecuaciones determinan el

radio del horizonte r;, y la gravedad superficial x; como funciones de la masa:

rp —2GM — 16AG%i; (2Kg + ;) =0, (2.26)
h
48AG*r3
L= 2ngry = ——5— = 0. (2.27)
h

Es esencial enfatizar la precisién de las relaciones discutidas. La habilidad de derivar
conexiones exactas entre la masa, el radio del horizonte y la gravedad superficial es
notable y distingue a esta teoria de la gravedad de otras de orden superior. Estas
relaciones establecen que, una vez fijados los valores de r;, y k¢, se puede obtener
una relacion lineal entre los coeficientes a; y a3 usando la tercera ecuacién . Esta
linealidad en a3 simplifica su determinacién como funcién de a,. De manera similar,

la cuarta ecuacion presenta una linealidad en a4, facilitando su calculo en funcién

’ro = 2GM, ver (Bardeen et al., 1973)
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de los coeficientes anteriores. Generalizando este proceso®, el coeficiente a, puede
determinarse a partir de la enésima ecuacién. Como resultado, emergen soluciones

caracterizadas por un tinico parametro libre, a,.

Respecto a los términos de orden superior, resulta que todos estan determi-
nados exclusivamente por el pardmetro a,. Al elegir adecuadamente a,, es posible
lograr que la solucién se acerque asint6ticamente a Minkowski. Esto implica que
hay un pardmetro que define la solucién cerca del horizonte y otro que evita la pre-
sencia de un modo exponencial, lo cual es crucial para asegurar que la solucién no

tenga pelo.

Estas observaciones llevan a dos conclusiones clave. Primero, la teoria ECG
admite soluciones de agujeros negros con horizontes regulares. Segundo, la con-
dicién de un horizonte regular limita las soluciones posibles a una familia con un
unico pardmetro. Esto subraya la singularidad y las restricciones impuestas por la

condicién de horizonte regular en esta teoria especifica.

Las expresiones (2.26) y (2.27), nos permiten determinar x, y 4 como funcio-

nes de la masa. Sin embargo, es mds facil obtener las relaciones® xq(r;) y M(ry,) . Es

decir:
B 1
A i (1 + \/1 + 48G2/\/r§> ' 229
2GM _ 1662 (5 +3\/1 +48G2A/r§) | 229)
" g (1+ /1 +48G2A/r§)3

Si representamos gréficamente M(r) y la comparamos con la solucién de Schwarzs-

child, observamos diferencias significativas, como se detalla a continuacién:

8Revisar el Apéndice D
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h

FIGURA 2.1: Representacion de 2GM como funcién de r;, para la so-
lucién ECG (en amarillo) con A > 0 y la solucién de Schwarzschild
estandar (en azul). Hemos introducido las definiciones M = (GZ% y

= (Gﬁ% para una mayor claridad en la presentacién de los resulta-
dos. Es importante notar que la gréfica en azul es aplicable para todos
los valores de A > 0.

Como se puede observar en la Figura 2.1, esta representacion nos indica que
para valores elevados de 7y, las predicciones de la teoria ECG se vuelven indistin-
guibles de la solucién de Schwarzschild, lo que resalta la motivacién de investigar
en teorias de gravedad con curvatura superior, las cuales podrian proporcionar una

comprension mds profunda de la singularidad gravitatoria.

2.5. Formulas de recurrencia

Las férmulas de recurrencia son una técnica matemaética utilizada para gene-
rar una secuencia de nameros, funciones o elementos de un conjunto, donde cada
elemento de la secuencia se define en términos de los elementos anteriores. Es una

técnica comdn en matematicas, fisica, informética y otras areas.

En el caso de las teorias de gravedad generalizadas como las GQTG’s, las
férmulas de recurrencia permiten construir teorias de gravedad con 6rdenes de cur-
vatura maés altas a partir de teorias de gravedad con 6rdenes de curvatura inferiores.
Como se muestra en el trabajo de Bueno, Cano y Hennigar (2019) es posible cons-

truir teorias Quasi-Topological y GQTG’s de érdenes de curvatura arbitrarias a partir
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de relaciones recursivas simples que involucran densidades de 6rdenes inferiores
del mismo tipo. Es decir, que se utilizan las férmulas de recurrencia para generar
las densidades de estas teorias. Cada término de la densidad se define en términos
de los términos anteriores, utilizando una relacién recursiva especifica [véase maés

adelante Seccion (2.5.1)].

Esto ha servido para completar la demostracién general de que cualquier ac-
cién efectiva de curvatura superior, que involucre contracciones arbitrarias del ten-
sor de Riemann y la métrica, se puede escribir en términos de una teoria Generalized
Quasi-Topological (GQTG) mediante redefiniciones de la métrica (Bueno, Cano, Mo-

reno & Murcia, 2019).

2.5.1. Foérmulas de Recurrencia

La ecuacion (2.30) es la formula de recurrencia que forma parte del proceso
de construccién de estas teorias. Estas relaciones recursivas permiten obtener las
teorfas GQTG’s de 6rdenes de curvatura superiores a partir de las teorias de 6rdenes

inferiores, lo que facilita el estudio de las propiedades y soluciones de estas teorias.

La férmula de recurrencia® dada por,

_ 3(n+3)51)Snyay  3(n+4)S)Suys)  (n+3)(n+4)53)5(u12)
Stues) = — - (2.30)
4D-1)(n+1) 4(D—1)n 4(D—Dn(n+1)

estd definida de tal manera que hace uso de las densidades semilla, es decir, las

siguientes densidades definidas de la forma:

D 2 )
Se) =~ o=y =3) [~ HResR? + RugsRP] (232
 3DRRgR™ (D2 +8D — 8)R3 BR* R Wy s
) "4D-1)(D-2)2 16(D—-1)2(D-2)2 2(D—-2)(D-3) 2.3
3DRW‘,¢'375W‘Xﬁ75 (D - 2) (2D - 1)Wag(gw'y§€}\w€)féﬁ .

T 16(D—1)(D—2)(D—=3) " 8(D—3)(D° —9D?+26D —22) ’

9Revisar el Apéndice C para el calculo de la verificacién de la férmula de recurrencia.
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3D
= R%R,gR*P
S = 8(D—1)2(D—2)2" "%
(D? +20D —20) _, 3

T @1 D228 " 21D -2 =3 KR Wapo

3(2D° — 17D* + 33D3 + 16D? — 64D + 32)

— RZW th,lhb‘
32(D—1)2(D —2)(D — 3)(2D* — 17D3 + 49D? — 48D + 16) = “F7°
3D 5
- RR*PW, "W,
(D —3)(2D* —17D3 + 49D? — 48D + 16) « proe
+ 3D2 RDL‘BR’)/éw E/\W
4(D —3)(2D* —17D3 + 49D — 48D + 16) ay " VWpse
(D—-2)(2D —1) B
RW, WP ToW,
T 8(D-1)(D—3)(D>—9D2+ 26D —22) '8 70eA
3D?

R"f RDL‘BW 56/\W .
* 4(D —3)(2D* — 17D3 +49D2 — 48D + 16) " © B yoeA
3(D —2)%(3D —2) Newr @Berr 70
_ W AW W Y W X6 ,
64(D — 3)(D5 — 14D* +79D3 — 224D2 4 316D — 170) *F ""70 "x& e

(2.34)

donde W,p,s es el tensor de Weyl. Por ejemplo si deseamos obtener S5, lo que
debemos hacer es que en en (2.30) se considera n = 0, observando que estara en
términos de S(1), S(2), 5(3) ¥ S(4), siendo esta una expresion covariante. S5 ademas
es una expresion tensorial, que va a ser lagrangiano escrito en términos de tensores
de Rienmann de orden 5, esto es porque se obtiene a base de multiplicar densidades

de 6rdenes més bajos. La expresion (2.30) vale a cualquier orden.

Esto demuestra que existen a todos los 6rdenes, debido a que si se pudo obte-
ner hasta orden cinco, (2.30) podemos aplicarlo de manera recursiva para cualquier
orden, es decir, se esta sugiriendo que es posible construir densidades de curva-
tura de orden arbitrariamente alto mediante la aplicacién iterativa de la ecuacién
(2.30). Ademads, se puede afirmar que tales densidades construidas de esta manera
pertenecerdn automadticamente a la clase GQTG y que la existencia de esta relaciéon
recursiva demuestra la existencia de estas densidades GQTG en todos los 6rdenes

de curvatura.

Demostracion: Para demostrar esto es conveniente reescribir el tensor de Rie-

mann para la métrica de la forma (1.29) como:

« o [ ] [« Bl [ B
R ;=2 [—A+TUST5] +2BT S0} + ool | (2.35)
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donde Tf , son los proyectores en las direcciones (t,7) y o, son los proyectores en

las direcciones angulares. Ademads se definen las funciones A, B y i como:

PR}

_x—f(r)
o s p= (2.36)

Las densidades GQTG's al ser evaluadas on shell deben tomar la forma de:

n—1
TD—ZS(H)|f _ ;r lz(n —2)P-1 (B + (D4—4) ¢> (B — Wg])] . (237)

O expandiendo la ecuacién (2.37) toma la siguiente forma:

1
Smlp=+3

(n—1) ((D —4)y— (D -6)B+ zA)) ((D — 44 2m)p—2(n— 2)3))

—2<B+(D4_4)tp> <(D—3)(D—4+2n)1/) (2.38)
(D—4) \"?
<B gL ¢) .

Ahora, para poder demostrar que (2.30) construye densidades GQTG’s, esto para un

+((6—2m)D +8(n —2))B+2(n - 2)A)

n arbitrario, lo que se debe de hacer es:

= A partir de (2.38) escribir las densidades para S¢)|f, Suia)lfr S2) 5/ S(nr3)l £/
S@)lf Sty Smealr

» Evaluar estas densidades en el lado derecho de (2.30)

Evaluar estas densidades en el lado izquierdo de (2.30), es decir:

3 +3)SwlSpraly | 3(n+4)So)|fSas)ly  (143)(n+4)S5)[rSmr2) | (2.39)
4D-Dn+1) 4(D—1)n AD-Dnn+1) = =

Al hacer los productos correspondientes de las densidades mencionadas, y realizar
la suma de estos valores, obtendremos precisamente que el resultado de esto que
toma la forma de una tinica densidad de orden (n + 5), dando asi esta densidad de
la forma (2.38) para S, 5|, siendo esta la forma que debe de tomar una densidad
GQTG’s. Lo que demuestra que (2.30) es vélida y construye las densidades GQTG's

de 6rdenes arbitrarios a partir de las densidades de orden inferior.
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CAPITULO 3

ESTABILIDAD DE AGUJEROS
NEGROS EN CUATRO DIMENSIONES

3.1. Introduccion

Un estudio sobre la estabilidad de los agujeros negros en cuatro dimensiones
muestra que la adicién de términos de curvatura superior a la accién gravitatoria
de Einstein-Hilbert puede estabilizar los agujeros negros por debajo de cierta masa.
Estos nuevos agujeros negros tienen un comportamiento termodindmico universal
para valores generales de los acoplamientos de orden superior. Ademads, estos nue-
vos agujeros negros pueden tener una entropia enorme y una vida infinita, lo que
cambia completamente el proceso de evaporacién. También se discute como estos
nuevos agujeros negros afectan la teoria de la relatividad general y se proporcionan
ecuaciones detalladas para las propiedades termodindmicas de estos nuevos agu-
jeros negros. Asi, se presenta una nueva familia de gravedades de orden superior
que admiten generalizaciones no peludas, estdticas y esféricamente simétricas del
agujero negro de Schwarzschild, y que tienen propiedades termodindmicas univer-
sales y un comportamiento completamente diferente al de los agujeros negros de

Schwarzschild (Bueno & Cano, 2017a).
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3.2. Estabilidad universal de agujeros negros en cuatro

dimensiones

3.2.1. Agujeros Negros de Orden Superior

Como se mostré en capitulos anteriores,! podemos trabajar con el Ansatz
(1.27), pero para este caso se considerard D = 4, debido a que trabajaremos en 4

dimensiones.

Asi mismo, podemos definir el lagrangiano de la familia de gravedades de
orden superior, que admiten extensiones simples de la solucién de Schwarzschild y

cuyas propiedades termodindmicas son de fécil acceso.

L= 167TG +TZZ;M , (3.1)

donde se considera que M, es alguna nueva escala de energia, ademads los A, son
acoplamientos sin dimension y n es el orden de la curvatura para cada R(n)z inva-
riante, estos, como se vid en capitulos anteriores, estan formados por las contraccio-

nes de la métrica y el tensor de Riemann, en este caso no sus derivadas covariantes.

Una vez definido el Lagrangiano, podemos evaluar el ansatz mencionado

anteriormente en este y asi obtener la siguiente expresion:

o Ay I\ =3 1 13 . /
- £ e (6 [ 45252

2 1
~SIF - = L -2 - D) 32
Se puede aproximar a una solucién analitica en el Horizonte y comprobar el compor-
tamiento asint6tico [véase la Seccion (2.4.2)]; debido a esto se plantea una soluciéon
numérica que permitird analizar el comportamiento de los agujeros negros cuando

se aplica la correccién a la acciéon de Hilbert-Einstein.

lyéase la Seccién (1.2.2)
Zyéase en el Capitulo 1 como se obtienen estos R (n)-
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Ademds se pueden obtener las siguientes relaciones a partir de utilizar la ex-
presion (2.24), considerando 2k, = 47T, siendo T la temperatura del agujero negro.
Entonces, reemplazando esta expresion en (3.2) para los dos primeros 6rdenes en

(r — ry), se obtienen las siguientes relaciones:

X A (4T)" 1 (2n + (n — 1)4nTry,)

2GM =1y — ’ (3.3)
Y IR IOy
A (4T (2n + (n — 1)4nTry)
Wy e e T G
n=3 Mg r,

Después de este andlisis se observa que cambiando los valores de A;, no modifi-
ca cualitativamente estas curvas; esto significa que al cambiar los valores de estos
pardmetros, las curvas no cambian en su forma o caracteristicas generales. En otras
palabras, aunque los valores numéricos de las curvas pueden cambiar, su apariencia

y comportamiento general permanecen iguales.

3.2.2. Termodindmica de Agujeros Negros

En teorfas de gravedad con acoplamientos de orden superior, los agujeros ne-
gros muestran un comportamiento termodindmico que se distingue de los agujeros
negros de Schwarzschild. Al aplicar la férmula de Wald para calcular la entropia de
estas soluciones, se verifica que cumplen con la primera ley de la termodindmica,
que relaciona el cambio en la masa del agujero negro (dM) con su temperatura (T) y

el cambio en su entropia (4S) a través de la ecuacion dM = TdS.

En contraste con los agujeros negros de Schwarzschild, estas soluciones pre-
sentan un maximo en la temperatura para un valor especifico de masa (M;ax).
Cuando la masa de un agujero negro es mayor que My, Su comportamiento es
similar al de un agujero negro de Schwarzschild. Sin embargo, para masas menores
a Myax, €l calor especifico de las soluciones es positivo, lo que implica que los aguje-
ros negros pequenios se comportan como sistemas termodindmicos convencionales,
enfridndose a medida que emiten radiacién y tendiendo a alcanzar el equilibrio en

presencia de un entorno térmico.
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Este comportamiento termodindmico se observa tan pronto como al menos
uno de los acoplamientos de orden superior es distinto de cero, y no se modifica
cualitativamente al encender acoplamientos adicionales. Todos los agujeros negros
posibles con diferentes valores de A, (> 0), excepto el agujero negro de Schwarzs-

child, pertenecen a la misma clase de universalidad.

Cuando la masa de un agujero negro es mucho menor que M,y (M <
Miuax), las expresiones para el radio del horizonte (r,) en funcién de la masa coin-
ciden con las de una teoria conforme de campos (CFT; del inglés, Conformal field
Theory) tridimensional a temperatura finita, si se identifica la masa M con la den-
sidad de energfa de la CFT. En este régimen, la relacién M = 3TS es vélida para
cualquier valor de A, siempre que al menos uno sea distinto de cero. Este resulta-
do coincide con lo encontrado en agujeros negros planares asintéticamente Anti-de
Sitter (AdS). Esta relacion termodindmica difiere de la relacién andloga en agujeros
negros de Schwarzschild, que es M = 2TS. La relacién de Schwarzschild también

es valida para valores generales de A, cuando M > M,,x(véase Figura 3.1).

0.04—— T . : ; . . : . . —

0.03| — Higher—order BHs
— Schwarzschild

0.01

0.00

MM, /M3,

FIGURA 3.1: Temperatura del agujero negro en funcién de la masa pa-
ra la soluciéon de Schwarzschild (rojo) y para los agujeros negros de
orden superior con A3 = Ay = A5 = A = 1,A,;, > 6 = 0 (se de-
be tener en cuenta que la linea azul es valida para cualquier M,.). Los
agujeros negros de orden superior se vuelven estables por debajo de
Max Ml% /M.. La forma de esta curva es cualitativamente la mis-
ma para cualquier otra eleccién de acoplamientos (excepto A, = 0 para
todos los n). Adaptado de “Universal Black Hole Stability in Four Dimen-
sions” por Bueno y Cano (2017a).
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3.2.3. Evaporacién de los agujeros Negros

Se puede analizar cémo el proceso de evaporacién de agujeros negros se ve
afectado por el comportamiento termodinamico especial de las nuevas soluciones
en el régimen de masa pequefia. La tasa de pérdida de masa de un agujero negro en

el vacio se puede calcular utilizando la ley de Stefan-Boltzmann

dM(t)
dt

= —4711%(7- T+, (3.5)

con o = 712 /60. Integrando esta expresion para M < M,;4x, se obtiene

My

MO T

(3.6)

donde t;/; es la vida media del agujero negro.

Se observa que se requiere un tiempo infinito para que los agujeros negros se
evaporen por completo. La vida media es enorme siempre que M, sea mucho menor
que Mp. Para que la fisica de los agujeros negros macroscépicos no se vea afectada

por los nuevos acoplamientos, se puede elegir M, alrededor de 10~%¢V.

La descripcién semicldsica es valida cuando el radio del horizonte es mucho
mayor que la longitud de onda de Compton correspondiente (r, > Acompton), y la
descripcion termodindmica es vélida cuando S > 1. Un agujero negro de Schwarzs-
child alcanza la masa de Planck en un tiempo At -~ Mg /M3, después del cual ambas
condiciones se violan. Sin embargo, en los nuevos agujeros negros, la condicién so-

bre la entropia nunca se viola si M, < Mp.

Al comparar cuantitativamente con el caso de Schwarzschild, se muestra que
los nuevos agujeros negros pequefios tienen una vida mucho mas larga o incluso
infinita para todos los propositos précticos, en contraste con los agujeros negros de
Schwarzschild. Ademas, todos los agujeros negros, grandes o pequefios, que perte-
necen a la nueva familia tienen vidas ttiles infinitas. En el caso de agujeros negros
con Mo > My, el proceso de evaporacion seria similar al de Schwarzschild hasta

que la masa restante sea menor que M. A partir de ese momento, la discusién en
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esta seccién comenzaria a aplicarse.

Estos resultados sugieren que el proceso de evaporacién de agujeros negros
puede verse drasticamente modificado en escalas en las que las correcciones a la

relatividad general se vuelven importantes.
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CAPITULO 4

INFLACION GEOMETRICA

4,1. Introduccion

En el campo de la cosmologia tedrica, una perspectiva interesante ha surgido
respecto a como las correcciones de alta curvatura en la gravedad podrian influir
en la evoluciéon temprana del universo. Segtin esta vision, modificando la accién de
Einstein-Hilbert, que es la base de la teoria de la relatividad general, para incluir una
serie de términos de alta curvatura, se puede capturar efectos de alta energia que no
estdn presentes en la teoria estdndar. Estas correcciones geométricas, derivadas de
las contracciones del tensor métrico y el tensor de Riemann, llevan a una genera-
lizacién de las ecuaciones de Friedman (1922). Tradicionalmente, estas ecuaciones
describen cémo el factor de escala del universo, a(t), evoluciona con el tiempo ba-
jo la influencia de la gravedad. Sin embargo, al introducir las correcciones de alta
curvatura, las ecuaciones resultantes se convierten en un conjunto de ecuaciones di-
ferenciales de segundo orden que ofrecen una nueva perspectiva sobre la expansion
o contracciéon del universo. Dentro de este marco, se han explorado modelos espe-
cificos, que sugieren una era inflacionaria en el universo temprano como resultado
directo de estas correcciones. Estos modelos propuestos por Arciniega, Bueno et al.
(2020), conocidos como “GeomlInf 1” y “GeomlInf 2”, indican que el tradicional Big
Bang, propuesto por Lemaitre (1927), dominado por la radiacién podria ser reem-

plazado por un periodo de crecimiento exponencial del factor de escala. Es decir,
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en lugar de un inicio con un Big Bang, el universo podria haber experimentado una
fase de inflaciéon geométrica, que eventualmente se enlaza con la fase de materia
oscura fria observada en épocas maés tardias del universo. Lo méas notable de esta
inflaciéon geométrica es que surge de manera natural a partir de la propia estructu-
ra geométrica del espacio-tiempo, sin la necesidad de introducir campos escalares
adicionales, que son una caracteristica comtn en muchos modelos de inflacién con-
vencionales. Esta nueva aproximacion no solo ofrece una interpretacién alternativa
de la inflacién y la aceleracion tardia del universo, sino que también establece una
base para futuras investigaciones. Por ejemplo, el andlisis de perturbaciones cosmo-
l6gicas dentro de este marco podria proporcionar comparaciones valiosas con los
datos observacionales actuales, desafiando y posiblemente enriqueciendo nuestra

comprension de la cosmologia temprana y la expansién del universo.

4.2. Inflacion Geométrica

La accién con la que se trabaja en esta teoria estd dada por:

d*x,/g &
S= | —YS{2A+R AL 2Ry ¢ - 41
167G TR n; " (n) (41)
Aqui en esta accién se introducen acoplamientos sin dimensién A;, asi como tam-

bién, una nueva escala de energia ~ L1,

Los R(,) son GQTG’s que ademas satisfacen ciertas propiedades deseables,
como tener ecuaciones linealizadas de segundo orden, admitir generalizaciones de
agujeros negros de Schwarzschild(-AdS) y tener un problema de valor inicial bien

planteado en el contexto cosmolégico.

i. Alrededor de cualquier fondo con simetria méaxima, la teorfa posee ecuacio-
nes linealizadas de segundo orden. Esto quiere decir que cuando se estudian
pequenias perturbaciones alrededor de un espacio-tiempo simétrico, las ecua-
ciones que describen estas perturbaciones son de segundo orden en sus deri-

vadas.
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ii. La teoria admite generalizaciones sin pelo (non-hairy) del agujero negro de
Schwarzschild(-AdS) y, méas en general, de las soluciones de Taub-NUT /bolt
en gravedad de Einstein. Estas generalizaciones estdn caracterizadas por una
Unica funcién, gi g = —1, y sus propiedades termodindmicas pueden ser

analizadas de manera completamente analitica.

iii. La teorfa posee un problema de valor inicial bien planteado en el contexto cos-
molégico. Es decir, admite soluciones cosmoldgicas de Friedmann-Lemaitre-
Robertson-Walker (FLRW), que son las soluciones mas comunes utilizadas pa-

ra describir la evolucion del universo en la teorfa de la relatividad general.

dr?
1— kr?

ds? = —dt* 4+ a(t)? ( + r2d02> , 4.2)

donde las ecuaciones generalizadas de Friedmann asociadas al factor de escala a(t)

son de segundo orden.

Esta teorfa gravitacional en cuatro dimensiones cuenta propiedades notables,
como la capacidad de generalizar agujeros negros de Schwarzschild y admitir solu-
ciones cosmolégicas de FLRW (Robertson, 1935). Estas teorias estdn relacionadas
con teorfas de dimensiones superiores y han sido estudiadas en diversos grados de
complejidad y orden de curvatura. La representacion ctibica en la teoria gravitacio-
nal involucra una combinacién lineal de la densidad de Einsteinian Cubic Gravity

(2.7) con:
1 1
C = RaﬁwR“ﬁ”(sRV‘s — A—LR,X[;WR“/%WR — 2R R RPY + ERM;R“/%R . (4.3)

Lo cual es trivial cuando se evaltia sobre un ansatz estatica y esféricamente simétri-

ca. Quedando la combinacion exacta:
R(3) xP —8C, 4.4)

R = 3 [R?—4QIR — QR — %C1 —2C, +8G3| = }(P —¥C) — kxe + T5,
(4.5)
donde P es la densidad correspondiente a Einsteinian cubic gravity, C es una densi-

dad definida por (Hennigar et al., 2017), x4 es la densidad de Euler de 6-dimensional,
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y 73 es el término definido anteriormente en la ecuacién (1) en (Arciniega, Edelstein
& Jaime, 2020), como se mostro en capitulos anteriores, estos dos tltimos términos
desaparecen idénticamente para métricas en cuatro dimensiones. En el caso de cur-
vaturas de orden superior, las invariantes son, por supuesto, mds complicadas. Para
observar las formas explicitas revisar el apéndice A del trabajo de (Arciniega, Bueno

et al., 2020).

4.3. Ecuaciones de Friedmann generalizadas.

Evaluando sobre un ansatz FLRW de la forma (4.2), siendo este un universo
que es homogéneo e isotrépico, las ecuaciones no lineales completas de (4.1), se
reducen a un par de ecuaciones diferenciales de segundo orden para el factor de
escala, dado que el factor de escala es bdsicamente una medida de cémo el tamafio
del universo cambia con el tiempo. Si se considera ademads la métrica de un espacio

plano, k = 0, se obtienen las ecuaciones generalizadas de Friedmann:

3F(H) =8nGp+ A, (4.6)
H
—EP’(H) =8nG(p+P), (4.7)
donde:
F(H)=H*+L?Y (-1)"A,(LH)*". (4.8)
n=3

Para esto consideraremos el parametro usual de Hubble H = i/4, siendo este la me-
dida de la tasa a la que el universo se estd expandiendo, ademads p es la densidad y P
es la presion de un fluido perfecto, esto nos permite describir de manera idealizada
la materia y la energia del universo. Una vez mds si nosotros fijamos el conjunto de
todos los acoplamientos de curvatura superior a cero, tanto (4.6) como (4.7) se redu-
cen a la version usual de la gravedad de Einstein. Ademas, al usar ambas ecuaciones

se puede obtener la ecuacién de conservacion.

d
o +3H(P+p) = 0. 4.9)
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4.4. Modelos Especificos

En este lagrangiano con el que se esté trabajando, lo acoplamientos gravita-
cionales A, son pardmetros libres. Esto permite o da pie a un gran rango de posibles
modelos con sus propias peculiaridades. Bajo esto se necesita restringir ese gran
rango imponiendo o requiriendo agujeros negros de masa positiva, esto permite
arreglar el signo del primer acoplamiento que no desaparece, esto se podria hacer
Az > 0, también es conveniente elegir F(H) como una funcién bijectiva. Al trabajar
de esta manera se logra evitar situaciones inusuales, como la ausencia de soluciones
para densidades de energia suficientemente altas o la aparicion de singularidades
en puntos en los que F(H) alcanza un extremo. El imponer que todos los acopla-
mientos de orden par sean positivo y que los acoplamientos de orden impar sean

cero, es la forma mads sencilla de satisfacer estos requisitos. Es decir:
Ags1 =0, Ay >0, VkezZ". (4.10)

Cabe resaltar que los impares pueden incluirse de manera segura si son negativas,
excepto para A3, o también podrian elegirse positivas pero suficientemente peque-
fias. Asi como en la Seccién (1.2.2), se pueden elegir los valores relativos de los dife-
rentes acoplamientos. Para observarlo de mejor manera, se consideraran dos mode-
los [véase en la Figura 4.1 y la Figura 4.2] que se pueden comparar con el estdndar

ACDM!:

A
Modelo GeomInf 1: Aokr1 =0, Agiop = g kez". (4.11)

LACDM; del inglés,Lambda Cold Dark Matter
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FIGURA 4.1: En figura se compara el modelo estdindar ACDM y Mo-
delo GeomlInf 1 . El factor de escala a(t) estd en funcién del tiempo ¢,
ademads el factor de escala a se normaliza por a9, que es su valor en un
tiempo posterior g, cuando las correcciones de alta curvatura se vuel-
ven insignificantes. El modelo ACDM predice una singularidad de Big
Bang en t — tg = —5L, pero el Modelo GeomlInf 1 con correcciones de
curvatura superior nunca alcanza el valor a = 0, sino que se aproxima
asintéticamente a cero a medida que t tiende a menos infinito. Adapta-
do de “Geometric Inflation” por Arciniega, Bueno et al. (2020)

—1)"A3
Modelo GeomInf 2: Az >0, Anz4 = )
= (n—4)!
o .
[ ¥ e
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=
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FIGURA 4.2: Se muestra log(a/ap) en funcién de (t — t) /L. En los mo-
delos de inflacién geométrica, el Big Bang es reemplazado por un pe-
riodo de crecimiento exponencial, el cual se hace evidente. Adaptado

de “Geometric Inflation” por Arciniega, Bueno et al. (2020)

(4.12)

Asimismo para los modelos anteriores se encuentra F(H). Para el Modelo

GeomInf 1, se tiene:

F(H) = H* + A H8L6e(HL)"

(4.13)
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y para el Modelo GeomInf 2:

F(H) = H? + A, L*H® [1 - (HL)ze(HL)Z} . (4.14)

4.5. Cosmologia del universo temprano.

Si consideramos valores pequefios para el factor de escala, se observa que la
radiacion domina sobre la materia y la energia oscura. En este régimen, el universo
escala como a(t) ~ t1/2, 1o que predice una aceleraciéon negativa (o desaceleracién)
i/a ~ —1/(4t?), siendo esto problematico desde la perspectiva de la inflacién c6s-
mica, que postula que el universo temprano experiment6 una rdpida expansion,
pero al introducir términos de orden superior en las ecuaciones cosmolégicas, este
comportamiento cambia significativamente; impacta la aceleracién predicha de la

expansion del universo.
a(t) ~ t"max/2 cyando  t— 0. (4.15)

Esto se reduce al resultado en la gravedad de Einstein para 7,y = 1. La introduc-
cién crucial de términos de curvatura superior cambia el signo de la aceleracion del

factor de escala haciéndola positiva, es decir:
i(t) >0 & Nax > 2 . (4.16)

Asimismo, cuando se incluye la torre completa de términos de curvatura superior,
el factor de escala crecerd mas rdpido que cualquier polinomio cerca de a = 0. Por
lo tanto, la expansién serd al menos exponencial. Esto se puede verificar en los dos
modelos planteados anteriormente, en particular, cuando t — —oo se encuentra que:
Modelo 1:

a(t) ~ e ()7 (4.17)
Modelo 2:

a(t) ~ e (2/17) (4.18)
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Un detalle importante a resaltar y destacar es que gracias a trabajar con estos mo-
delos podemos entender que no hay un “inicio” claro para el universo, es decir no
existe un t = 0 donde comience el universo. En lugar de ello, el comienzo del uni-
verso solo se aproxima asintéticamente a medida que t — —oo, lo que significa que

el universo se extiende infinitamente hacia el pasado.

4.6. Comparacion entre Inflaciéon Geométricay A CDM

Al analizar estos modelos y compararlos con el modelo A CDM el cual mues-
tra una expansion que parte de una singularidad conocida como el Big Bang. En
cambio, el Modelo de Inflacion Geométrica, definido matematicamente en la ecua-
cién (4.11) y que incorpora correcciones de mayor curvatura, sugiere que el univer-
so nunca partié de una singularidad, sino que se aproxim¢ a ella asintéticamente.
Estas correcciones buscan abordar ciertos problemas asociados con la singularidad
del Big Bang en la cosmologia tradicional. Ambos modelos, aunque diferentes en
sus predicciones para el universo temprano, convergen en sus predicciones para el
universo maés reciente, lo que demuestra la complejidad y diversidad de las teorias
cosmoldgicas. Es a través de este tipo de comparaciones y estudios que la ciencia
avanza, refinando constantemente nuestra comprensién del vasto y misterioso uni-

verso en el que residimos.
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CONCLUSIONES

El presente trabajo de investigacién ha representado una incursiéon profunda
y rigurosa en el estudio de las Generalized Quasi-Topological Gravities (GQTG's), un
area emergente y desafiante en la fisica tedrica. Los objetivos planteados al inicio de
esta investigacion se han cumplido satisfactoriamente. A continuacion, se presentan

las conclusiones que sintetizan los resultados de esta investigacion.

Cumplimiento de Objetivos Generales

» Se realizé una revisién exhaustiva de la literatura en GQTG’s, abarcando los
fundamentos teéricos, propiedades y aplicaciones en el estudio de agujeros
negros y evolucién cosmolégica, lo cual ha permitido establecer un marco ac-

tualizado en este campo emergente.

= Se identificaron dreas de investigacion y cuestiones abiertas en GQTG’s, como
lo son los modelos inflacionarios y la estabilidad de agujeros negros, ofrecien-
do una vision clara de las limitaciones actuales y delineando caminos promete-
dores para indagaciones futuras, lo que servira de guia para proximos trabajos

en esta area.

Cumplimiento de Objetivos Especificos

= Se analizaron las subclases de GQTG’s y su conexién con otras teorias de gra-
vedad, proporcionando una sintesis de resultados clave que resalta la comple-

mentariedad y el contraste con teorias de curvatura superior como la gravedad
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de Lovelock y las teorias f(R).

= Se presentaron y evaluaron soluciones de agujeros negros esféricamente simé-
tricos, enriqueciendo el catdlogo de soluciones conocidas y ofreciendo nuevos
insights para la interpretaciéon de observaciones astronémicas y experimen-
tales, asi como el desarrollo detallado de los calculos necesarios para enten-
der tanto el comportamiento asintético como cerca del horizonte para la teorfa

Einsteinian Cubic Gravity.

= Se examinaron las férmulas de recurrencia y las propiedades estructurales ge-
nerales de las GQTG’s, demostrando como estos resultados pueden simplificar
y proporcionar nuevas perspectivas en el calculo de soluciones complejas en

estas teorias, como el proporcionar un c6digo que permite verificar su validez.

= Se discutieron los avances en el andlisis de la estabilidad de agujeros negros en
cuatro dimensiones, destacando la relevancia de la estabilidad termodinamica
y la relacién con la evaporacion de agujeros negros, aportando claridad a este

aspecto crucial de la fisica de agujeros negros.

= Se examinaron los modelos alternativos al Modelo ACDM, “GeomlInf1” y “Geo-
mlInf 2”. Estos modelos destacan en la nueva informacién que proporcionan al
trabajar con modificaciones de curvatura superior, lo mismo que en cémo el
factor de escala es afectado. Se observa, particularmente en estos modelos, la
idea de que no hay una singularidad, sino que se acerca asintéticamente a ella,

dando asi méas informacién que el modelo cosmolégico actual.

Contribuciones Adicionales

La integracién Python ha resultado favorable para los célculos extensos, per-
mitiendo una comprensién mds profunda de los procesos matematicos implicados
y ofreciendo una herramienta que permite comprobar los resultados de la literatura
existente, asf como se obtuvieron los coeficientes del andlisis de la solucién cerca del

horizonte, dando asi una forma de comprobar lo que se explicaba de la importancia
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del coeficiente a5, observando que todos los a, son funciones de a;, esto se obser-
va de manera concreta en los outputs del c6digo en mencién. También, como ya se

menciono, el permitir comprobar la veracidad de la férmula de recurrencia.

Los apéndices de este trabajo de investigacién no solo facilitan la reproduc-
cién de los célculos realizados, sino que también sirven como material de referencia
valioso para futuras investigaciones, permitiendo a otros investigadores construir

sobre la base solida establecida por este trabajo.

Perspectivas Futuras

Las Generalized Quasi-Topological Gravities presentan un campo muy intere-
sante para la exploracion continua. Este trabajo de investigacion sienta las bases
para futuros estudios que pueden expandir el entendimiento de las implicaciones
cosmoldgicas de estas teorias y su potencial para resolver enigmas en la fisica fun-
damental. Se espera que los métodos y andlisis presentados aqui inspiren y facili-
ten dichos avances. Asimismo, las nuevas investigaciones, se pueden basar en el
andlisis proporcionado en los capitulos 3 y 4, ya que son dreas de interés en la in-
vestigacion y entendimiento de nuestro universo. Ademas, se pueden destacar las
areas de investigacion futura prometedoras derivadas del estudio de las Generalized
Quasi-Topological Gravities, subrayando su potencial para avanzar en la fisica tedrica

a través de tres direcciones principales:

1. Implicaciones Cosmolégicas: Se destaca la importancia de desarrollar y pro-
fundizar en modelos que incorporen las GQTG’s en consonancia con las ob-
servaciones astronémicas actuales. Esto no solo promete avanzar en nuestra
comprensioén del universo temprano y la naturaleza de la energia oscura, sino
que también abre la posibilidad de predecir y explicar fenémenos cosmolégi-

cos atin no observados.

2. Unificacion de Fuerzas: La estructura matematica de las GQTG’s, como se ha
discutido en este trabajo, sugiere un camino intrigante hacia la exploracién de

nuevas geometrias del espacio-tiempo, que podrian ser clave en la bisqueda
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de una teoria unificada de las fuerzas fundamentales. Investigaciones futuras
en este &mbito podrian descubrir las conexiones subyacentes entre la relativi-
dad general, la mecénica cuantica, y potencialmente otras teorfas fundamen-

tales.

3. Fisica de Agujeros Negros: El andlisis detallado realizado en este trabajo so-
bre las soluciones de agujeros negros y sus propiedades dentro de las GQTG's
establece un punto de partida s6lido para exploraciones mas profundas en la
fisica de agujeros negros. Esto incluye la termodindmica, la radiaciéon de Haw-
king, y la posible solucién a problemas como la paradoja de la informacién de

los agujeros negros.

La investigaciéon en estos campos no solo promete avanzar en la teoria, sino
también en nuestra comprensién del cosmos, marcando potencialmente el camino

hacia descubrimientos revolucionarios en fisica tedrica.
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APENDICE A

PRIMERA LEY DE LA
TERMODINAMICA DE AGUJEROS
NEGROS

A.1. Primera Ley para un Agujero negro de Kerr

Consideremos un agujero negro de Kerr de masa M, carga Q y momento

angular L. Ademads su drea racionalizada estd dada por:

2 2
a=r_+4+a
" (A1)
= 2Mr, — Q>.
Considerando que:
i=L/M, (A.2)
re =M+ (M? - Q*—a*)'/?, (A3)

donde 7 es el horizonte de eventos y r_ es el horizonte de Cauchy.
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Para lograr obtener una expresion para dM, lo primero que haremos sera

diferenciar (A.1), es decir:

azx 8

Despejando dM, tenemos la siguiente expresion:

AM = Oda + Q - dL + ®dQ, (A.5)
donde:
1 LM 2
= ) (A.6)
<\/ L4 M2 — Q2+M)—2Q2
Q= ia—f‘, — 2L , (A.7)

d
an oL M(4M( —]\L4—ZZ+M2—Q2+M> —2Q2>

. _MQ3( — M2 )+2L2Q

= —— = A.8)
] 2 4 ’ (
2.0Q M (412 + Q%)
Las expresiones anteriores se pueden reescribir como:
1(ry —r2)
= A9
o=, (A9)
~
QO=—, A.10
- (A10)
o (A.11)
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APENDICE B

APLICACION DEL METODO PARA
IDENTIFICAR GRAVEDADES DE
DERIVADA SUPERIOR

En el trabajo realizado por Bueno y Cano (2017b), se propone un método muy
simple y eficiente para identificar las teorias de gravedad de curvatura superior con
soluciones simples de agujeros negros y para caracterizar esas soluciones. Al mismo
tiempo, las soluciones construidas de esta manera corresponden al campo exterior
de una distribucién de masa esféricamente simétrica, y las teorfas correspondientes

son automaticamente equivalentes a la gravedad de Einstein a nivel linealizado.

Para ilustrar este método, utilizando lo planteado en el Capitulo (2), aqui se

aplicara a la teoria cuadrética en D dimensiones,

1
L cvadratico = 16% —2Ag+ R+ ‘Xle + ‘XZR/x‘BR“'B + 0‘3Rtxﬁ'y(5Raﬁ75 . (B.1)

Evaluando el ansatz (1.27) en (B.1), se obtiene el lagrangiano efectivo (B.2) que de-
pende de N y de f siendo este un lagrangiano unidimensional, es decir, es como un

lagrangiano de mecénica cldsica, donde lo que hace las veces de tiempo es r y lo que
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hace las veces de la posicién son dos funciones (Bueno & Cano, 2017b):
LN,f = NLf—l—N/Fl—l—NHFz, (B.2)

donde F; y F, son funciones a determinar.

Considerando este lagrangiano efectivo, y calculando las ecuaciones de Euler-

Lagrange asociados a f y N, se puede demostrar que:

= A partir de variar la ecuaciéon de E-L con respecto a f, se impone que N = 1.

= A partir de variar la ecuacién de E-L con respecto a N da una ecuacién para F

que se puede integrar una vez y se obtiene (B.3)
Fo—F1+Fé:C. (B.3)
Para dimensién D, se obtiene la siguiente forma del Lagrangiano efectivo:

—2AgrP 2+ (D —2)(D =3)rP 7 (f — 1) +2(D = 2)rP 3 f 4 P2 f”

P=O((D=2)(D =3)(f = 1) +2(D = 2)rf' + ")
P (D =2)((D=3)(f = 1) +7f") + (D = 2)rf' +7*")?/2)
ocgrD_6(2(D —2)(D=3)(f—1)2+2(D —2)r*f? + r4f”4)} .

167‘[G

(B.4)

A partir de la ecuacién anterior, es sencillo calcular la derivada de Euler-

Lagrange, lo que da:
oLy (D -2) 2 c11
57 = Tenc 0w+ as) (D —3)(f —1) —2r%f") 55

(201 + a2 +203) (D = )P + 272 F0) 4 |
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Obteniendo Fy, Fy, F>, considerando 6L¢/6f =0V f (r) fijando los valores de: a1 =

n3 = —0r/4=u

16mGFy =(D —2)rP=3(1 — 2r*Ag/((D —2)(D — 1)) — f)
+ f(2(D = 3)(D — 2)rP74(f — 1)a — rP72)
+ (D —4)(D -3)(D—2)rP>(f —1)%a, (B.6)

16mGF, =rP=5(=3f'r* +2(D —3)(D — 2)(5f — 3)f'ra
—2(D —=2)f(r* =2(D —4)(D = 3)(f = 1)a)), (B.7)

16mGF, = —2rP4f(r> + 2(D — 3)(D — 2)a(1 — f)) . (B.8)

Utilizando estos resultados en la ecuacion (B.3) podemos obtener la ecuacion para

f(r)

r2 8aAy(D—4)(D-3 64arGM(D—-3)(D—4
f(ﬂ::fl+'ﬂ5i§ﬁﬁiﬂallq:x/1+' Byt b, | (B9

(D—2)rD-1

B.1. Gauss-Bonnet D =5

Para observar un caso particular, se considerara la accién de Einstein-Gauss-

Bonnet en D = 5. Es decir:

_ 1 5,.p_ L 5. o1
SEGB_167TG/dx£_167TG/dx\/ g[ 2A0+R+0€X4], (B.10)

siendo x4 el término de Gauss-Bonnet! . Para poder obtener la funcién f(r), utiliza-

remos el Ansatz (1.27) para D = 5:

b
f(r)

Xa = R? — 4R, R + R,y sRAPT.

ds3, ;= —N2(r) f(r)df + ——~dr? + 12 [d9%+sin291 (d9§+sin292d9§)}, (B.11)
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donde:

Lf=— P (r) — 12arf" (r) + 12ar f(r) f" (r) — 6r%F' (r) + 12ar f' (r)?
—24af'(r) +24af(r)f' (r) — 6rf(r) —2Aor° + 61,

(B.12)
Fi = —373f(r) — 36arf'(r) 4+ 60arf(r)f (r) — 6r*f(r) + 24af(r)*> — 24af(r),

Fy = —2r%f(r) 4 24arf(r)*> — 24arf(r) .

Ademds, se puede demostrar que Ly es una derivada total, es decir, que existe una
funcién F tal que:

Ly=F. (B.13)

Integrando (B.12) se tiene:

Fo(r, f,f') = =13 [PPf/(r)? = 4a(rf (r) f'(r) = 2f (r)) +2r°f (r) + 2" Ao] + C,

Fo = —r (12a — 12af(r) + 1) f'(r) = 3f(r) (4a +1?) + 6af(r)* — A%# +3r2. (B.14)

Una vez que tenemos Fy, F; y F,, reemplazamos en (B.3), se reduce a la siguiente
expresion:

Anr
—3f(r) (4a+1?) + 6af(r)? - %’ 132 =C. (B.15)
Como se observa, se obtuvo una ecuacién polinémica de grado 2. Resolviendo la

ecuacion (B.15) con C = 1067%;[ para f(r):

r2 \/ Aort rd 8ntGM
=14+ —=+1/1 B.1
f(r) + 4 + 12« + 1642 + 3a() 7 (B.16)
r2 \/ Aort r4 2GM
flry=1+ dn HyLE a0 162 T ald (B.17)

Esta funciéon nos permite calcular ry, siendo r, aquel valor para que f(r;,) = 0.
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superior
B.2. Gauss-Bonnet D=6
Utilizando el siguiente Ansatz en D = 6:
2 20, A 2 1092
ds® = —f(r)N(r)~dt + ) +r7dQg , (B.18)

donde dQ); = d6% + sin?(01)d03 + sin?(6;)sin?(6,)d63 + sin® (61 )sin*(6;)sin*(03)d6;
es el elemento de angulo s6lido en 6 dimensiones.

Obteniendo asi:

Ly =24a — r*f"(r) — 24ar® " (r) + 24ar?f (r) f" (r) — 87 f'(r) + 24ar*f'(r)* — 96arf'(r)

(B.19)
+96arf(r)f'(r) — 12,2 f (r) + 24af (r)* — 48af(r) — 2Aor* + 1212,
Fo(r) = —r*f/(r) — 24ar®f'(r) + 24ar? f (r) f' (r) — 47 f(r) + 24ar f(r)?
—48arf(r) — %2/\01’5 + 413 4 24ar, (B.20)
Fi(r) = =3r*f'(r) — 72ar?f'(r) + 12002 f (r) f'(r) — 872 f(r) + 96ar f(r)?
—96arf(r), (B.21)
F(r) = —2r*f(r) +48ar*f(r)? — 48ar*f(r) . (B.22)
Reemplazando en:
Fpb—L+F=0. (B.23)
Se obtiene:
1
—4f(r) <r3 + 12061”) + 24arf(r)2 = 2200r° +4r° + 24ar = C. (B.24)
Resolviendo esta ecuacién cuadrética, donde C = w, se obtienen las siguientes
2 soluciones:
2y BUCM 19y Agr6 + 516
r)=1+ . B.25
Reduciendo (B.25) se tiene:
r2 \/ 2nGM r4 Agr?t
FO) =14 55 ¥V 3w T 1222 T 600 (B.26)
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APENDICE C

VERIFICACION DE LA FORMULA DE
RECURRENCIA

El cédigo Python desarrollado tiene como objetivo principal verificar la for-
mula de recurrencia (2.30) [véase la Seccion (2.5.1)]. Una caracteristica destacada
de este c6digo es su capacidad para calcular las densidades GQTG’s en cualquier
orden deseado. Lo notable es que no solo realiza estos célculos, sino que también
ofrece la posibilidad de exportar las densidades de forma visual, lo que facilita su
interpretacion y andlisis. Ademas, este codigo estd disefiado para permitir el manejo
simbdlico de las densidades obtenidas, brindando asi un enfoque versétil y eficiente

para trabajar con estos datos en un contexto mas amplio.

C.1. Cédigo en Python

from sympy import symbols, Function, diff, expand, collect, apart

from sympy import init_printing, Eq, simplify, factor, cancel

init_printing(use_latex=True)
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D, n, r, A, B, psi = symbols(’D n r A B psi’, real=True)
S1, 82, 83 = symbols(’S_{(1)}|_f S_{(2)FI_f S_{(3)}|_f’, real=True)

Sn2, Sn3 symbols (’S_{(n+2)}| _f S_{(n+3)}|_f ’,real=True)

Sn4, Sn5 symbols (’S_{(n+4)}|_f S_{(n+5)}|_f’,real=True)

S = Function(’S’)(n)

def S_density(n):

T11

(D-4)*psi - (D-6)*B+2%A
T12 = (D-4 + 2*n)x*psi - 2*(n-2)*B
terml = (n-1) * (T11) * (T12)
T21

I

(D-3)*(D-4+2%*n)*psi
T22 = ((6-2*n)*D + 8*(n-2))*B+2 * (n-2) * A
term2 = -2 * (B + (D-4)/4xpsi) *x ( T21 + T22)

return 0.5 * (terml + term2) * (B + (D-4)/4*psi)**(n-2)

S1_f = S_density (1)
S2_f = S_density(2)
S3_f = S_density(3)
Sn2_f = S_density(n+2)
Sn3_f = S_density(n+3)
Snd4_f = S_density(n+4)
Sn5_f = S_density(n+5)

def S_recurrency (m):

n=m-25

terml = -(3*(n+3)*S1_f*Sn4_f)/(4x(D-1)*(n+1))

term2 = (3*(n+4)*S2_f*Sn3_f)/(4*(D-1)*n)

term3 = -((n+3)*(n+4)*S3_f*Sn2_f)/(4*(D-1)*n*x(n+1))

return terml + term2 + term3
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#Comprobacion de la premisa propuesta.

if S_recurrency(n+5).equals(S_density(n+5)):
print (’Lo que queda demostrado’)

else:

print (’No se pudo demostrar’)

#Modelo para exportar las distintas densidades.

display (Eq(S1,S1_f))
display (Eq(S82,82_f))
display (Eq(S3,83_f))
display (Eq(Sn2,8n2_f))
display (Eq(Sn3,8n3_f))
display (Eq(Sn4,Sn4_f))



60

APENDICE D

COMPORTAMIENTO EN EL
HORIZONTE

D.1. Valores para los coeficientes a3, a4

Como se indicé en la Seccién (2.4.2), a partir de expandir en mds ordenes,
podemos encontrar los coeficientes, donde se observa, ya que aparecen de manera
lineal, en funcién del coeficiente a5, asi, vemos que:

1

as = — 4883 G K Ar> + 192, G212 Ar2 + 1440, GP i Ar
> 144Gk A2 (g + 1) { 2G K ATy + 1920 GRHeg AT, o+ 184a2 7Kg AT o
+ ayry, — 144G\ — 192Gk Ar, + 2Kgr2] ,
1
ag = — 163 G*Art + 19283 G x AP + 4842 G2 Ar?
* 384G2rxcg (1 + rpig) A [ 2 h 2= Tk 2 h
— 48a2a3G2)\r2 — 576a2G2K§/\r% — 288a2G2Kg/\rh + azrﬁ + 576a3G2K§/\r;°’1 (D.2)

+336a3G g A1}, + asr) + 240G KA + 384G KA ry — 336a2a3G2KgAr§] .

D.2. Cédigo Python

El c6digo Python que se presenta a continuacién esta disefiado para evaluar

la funcién f(r), tal como se describe en la forma (2.24), en el contexto de la ecuacién
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diferencial (2.11). Esta implementacion facilita una comprensién més profunda del
comportamiento de f(r) cerca del horizonte. El c6digo no solo calcula los valores de
f(r) en diferentes 6rdenes () de la expansion de Taylor, sino que también ofrece la
posibilidad de visualizar estos calculos, mejorando asi la interpretacion y el analisis

de los resultados obtenidos.

from sympy import symbols, diff, simplify, Eq

from sympy import init_printing, series,collect

init_printing(use_latex=True)

kappaG, rh, r0, G, lambda_, M = symbols(’kappa_G r_h r_O0 G lambda M’)
r = symbols(’r’)

nmax = int(input(’Ingresar n=’))

symbols (’a2 a3 a4 ab a6’)

)
]

f = 2 x kappaG * (r - rh)

f += sum([a[n-2] * (r - rh)#**n for n in range(2, nmax + 1)])

f_prime = diff(f, r)

f_double_prime = diff (f_prime, r)

eql = -(f - 1) * r - Gx**2 *x lambda_ * (
4 x f_primex**3 + 12 * f_primex*2 / r
- 24 x f x (f - 1) * f_prime / rx*2

- 12 * f * f_double_prime * (f_prime - 2 *x (f - 1) / r)) - 2*%Gx*M

eq_expanded = series(eql, r, rh, nmax).remove0()
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Apéndice D. Comportamiento en el Horizonte

eq_organized

collect (eq_expanded, (r - rh))

display (Eq(eq_organized ,0))
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from sympy import symbols, diff, simplify, Eq

from sympy import init_printing, series,collect

#Salida en formato Latex

init_printing(use_latex=True)

# Definicion de simbolos
kappaG, rh, r0, G, lambda_, M = symbols(’kappa_G r_h r_0 G lambda M’)
r = symbols(’r’)

nmax = int(input(’Ingresar n=’))

# Definicion de f(r)
a = symbols(’a2 a3 a4 ab a6’) # Simbolos para los coeficientes a2,...
f = 2 % kappaG * (r - rh)

f += sum([a[n-2] * (r - rh)**n for n in range(2, nmax + 1)])

# Calculo de las derivadas de f(r)
f_prime = diff(f, r)

f_double_prime = diff(f_prime, r)

# Sustitucion de f(r) en la ecuacion diferencial
eql = -(f - 1) * r - Gx*2 * lambda_ * (

4 x f_primex*3 + 12 * f_primex**2 / r

- 24 x £ x (f - 1) *x f_prime / r**2

- 12 * f * f_double_prime * (f_prime - 2 * (£ - 1) / r)) - 2*Gx*M

# Expansion hasta el n orden

eq_expanded = series(eql, r, rh, nmax).remove0()

# Organizar en funcion de las potencias de (r - rh)

eq_organized = collect(eq_expanded, (r - rh))

# Visualizacion

display(Eq(eq_organized ,0))
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