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Resumen

El presente trabajo de investigación se adentra en el estudio de las Generalized Quasi-
Topological Gravities (GQTG’s), un campo emergente en la física teórica que profun-
diza en las teorías de gravedad en curvatura superior. Esta investigación se centra
especialmente en el análisis de las propiedades y aplicaciones de los agujeros ne-
gros y fenómenos afines dentro del marco de las GQTG’s. Aunque se han logrado
avances significativos en este ámbito, aún quedan numerosos desafíos y preguntas
sin resolver respecto a las características fundamentales de estas teorías.

Con un enfoque orientado hacia la revisión bibliográfica, este trabajo de in-
vestigación se dedica a examinar y compilar los hallazgos más importantes en el
campo de las GQTG’s. Se realiza un análisis exhaustivo de los progresos recientes,
así como de los retos que enfrenta la investigación en GQTG’s y su aplicación en
la física teórica. El objetivo es identificar áreas con potencial para investigaciones
futuras y contribuir de manera significativa al conocimiento en esta área.

Con el objetivo de profundizar en la comprensión de los cálculos y análisis
realizados, este trabajo de investigación incorpora el uso de Python, cuyos detalles
se especifican en los apéndices. Esta integración es clave para entender los procesos
matemáticos empleados tanto en este trabajo como en los artículos que sirven de
guía. Adicionalmente, en los apéndices se presentan cálculos detallados que facilitan
la comprensión de las fórmulas utilizadas a lo largo de la investigación.

Reflejando el compromiso de esta investigación con la profundización en las
GQTG’s a lo largo de este estudio, se ha efectuado una revisión meticulosa y actuali-
zada de la literatura científica. Se abarcan aspectos como los fundamentos teóricos,
las propiedades específicas y las aplicaciones prácticas en el estudio de agujeros ne-
gros y otros fenómenos conexos, como también la inflación geométrica. Asimismo,
se identifican y discuten las áreas de investigación actuales y los interrogantes pen-
dientes en el campo de las GQTG’s, con el propósito de esclarecer las limitaciones
existentes y proponer direcciones innovadoras para futuras investigaciones.
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1

INTRODUCCIÓN

El campo de la física teórica, siempre en la vanguardia del conocimiento cien-

tífico, ha visto surgir un interés creciente por las Generalized Quasi-Topological Gravi-

ties (GQTG’s), tal como lo documentan Bueno, Cano y Hennigar (2019). Estas teorías

amplían la comprensión de la gravedad de Einstein (1915) y se extienden más allá

de los modelos convencionales de gravedad en curvatura superior (Lovelock, 1970;

Sotiriou & Faraoni, 2010). El vasto potencial de las GQTG’s se extiende a fenóme-

nos tan diversos como la formación de agujeros negros, la estructura del espacio-

tiempo bajo condiciones extremas y las interpretaciones holográficas, en línea con

la correspondencia AdS/CFT (Adair et al., 2020; Bueno & Cano, 2017b). Este trabajo

de investigación representa una contribución substancial al cuerpo de conocimien-

to sobre las GQTG’s, ofreciendo una revisión meticulosa de sus principios teóricos,

aplicaciones y su importancia en la física de altas energías.

El objetivo de este trabajo de investigación es doble: consolidar la literatura

sobre las GQTG’s para facilitar el acceso a descubrimientos fundamentales y, pa-

ralelamente, identificar y explorar nuevas áreas de investigación y preguntas aún

sin respuesta. Pretende ser un recurso referencial para investigadores y estudiantes,

proporcionando una base teórica robusta y un marco conceptual coherente.

La estructura del trabajo de investigación se ha diseñado con esmero pa-

ra abarcar aspectos fundamentales de las GQTG’s. En el Capítulo 1 se introducen

conceptos esenciales para entender estas teorías, tratando sus dimensiones físicas y

matemáticas, y discutiendo las limitaciones de la Relatividad General. Se abordan

las teorías de gravedad más allá de Einstein, como las teorías de f (R) (Sotiriou &

Faraoni, 2010) y Lovelock (1970), estableciendo así la base para una comprensión

profunda de las GQTG’s. Se detallan las ecuaciones de movimiento fundamentales
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y definiciones críticas, como la analogía con el tensor de Ricci [véase la Ecuación

(1.9)]. Se define formalmente a los agujeros negros, además se clarifican sus pro-

piedades termodinámicas y las soluciones esféricamente simétricas, culminando en

la solución de Schwarzschild-Tangherlini (Tangherlini, 1963). El desarrollo de las

teorías de Lovelock en agujeros negros, usando la teoría de Gauss-Bonnet, que es

fundamental, para D = 5 y D = 6, demuestra la aplicabilidad de las GQTG’s (véase

cálculos detallados en el Apéndice B).

El capítulo 2 profundiza en la definición detallada de las GQTG’s, sus pro-

piedades, las subclases, además se presenta a una pieza fundamental la teoría Eins-

teinian Cubic Gravity (Bueno & Cano, 2016a), haciendo una descripción completa

de esta teoría, y un desarrollo detallado de la aplicación a la solución de agujeros

negros, entendiendo así el comportamiento asintótico y cerca del horizonte. Por úl-

timo, se presentan sus fórmulas de recurrencia (Bueno, Cano & Hennigar, 2019) y

los cálculos necesarios para entender las áreas en desarrollo que se explorarán en

los capítulos subsiguientes.

Los Capítulos 3 y 4 se centran en la aplicabilidad de las GQTG’s, explorando

nuevos desafíos y oportunidades. Se discute la estabilidad de agujeros negros en

cuatro dimensiones, las contribuciones de las GQTG’s a la cosmología contemporá-

nea y su relevancia en la física de altas energías, ofreciendo una nueva perspectiva

sobre el proceso inflacionario como alternativa al modelo ΛCDM. Estos capítulos

integran avances recientes y perspectivas emergentes con un análisis crítico y pro-

positivo.

Finalmente, este trabajo no solo recopila y organiza de manera exhaustiva

el conocimiento existente, sino que también fomenta la discusión y el intercambio

de ideas en la comunidad científica. Además, que contribuye significativamente al

avance del conocimiento en el área de la física teórica y la gravedad en curvatura

superior, estableciendo un punto de referencia importante para futuras investiga-

ciones y descubrimientos en el campo de las Generalized Quasi-Topological Gravities.
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CAPÍTULO 1

GRAVEDADES MÁS ALLÁ DE LA

RELATIVIDAD GENERAL

La teoría de la Relatividad General describe la gravedad como la curvatu-

ra del espacio-tiempo. Es una teoría fundamental que fue propuesta por Albert

Einstein (1915). Las ecuaciones de Campo de Einstein relacionan la geometría del

espacio-tiempo con la distribución de materia y energía en el universo. En situacio-

nes apropiadas, la Relatividad General reproduce las predicciones de la teoría de la

gravedad de Newton y ha sido confirmada por una gran cantidad de experimentos

y observaciones.

Sin embargo, la teoría de la Relatividad General presenta algunas limitacio-

nes y problemas teóricos que han llevado a la búsqueda de teorías alternativas. Una

de estas limitaciones es la falta de una descripción adecuada de la gravedad cuán-

tica, que se observa a escalas muy pequeñas, especialmente en su capacidad para

describir la física de altas energías. Además, predice la existencia de singularida-

des en el espacio-tiempo, como las encontradas en el centro de los agujeros negros,

donde las leyes de la física ya no se aplican. Por otro lado, existen numerosos mo-

tivos que nos hacen pensar que la acción de Einstein-Hilbert es solo la primera de

una torre infinita de correcciones de orden superior en curvatura. Estos motivos han

llevado a la investigación de teorías como las Generalized Quasi-Topological Gravities
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(GQTG’s), que buscan superar estas limitaciones y proporcionar una comprensión

más profunda de la gravedad.

En este trabajo de investigación, nos centraremos en el estudio de las GQTG’s

como una posible alternativa a la teoría de la Relatividad General para describir la

gravedad en situaciones de curvatura espacio-temporal grande. Para ello, conside-

raremos una modificación de la acción de Einstein-Hilbert definida como1:

SEH,Λ =
∫

d4x
√

−g(R − 2Λ), (1.1)

donde R es el escalar de Ricci, también conocido como escalar de curvatura y Λ la

constante cosmológica.

Esta acción tiene una larga historia que se remonta a los primeros días de

la Relatividad General. A través del estudio de las soluciones de las ecuaciones de

campo correspondientes a esta acción modificada, esperamos obtener una compren-

sión más profunda de la gravedad y de cómo se comporta en condiciones extremas.

1.1. Gravedad en curvatura superior

Las teorías de curvatura superior aparecieron originalmente propuestas por

Weyl (1952) y Eddington (1921) para una unificación geométrica del electromagne-

tismo y la gravedad. Estas teorías han sido estudiadas en varias áreas de física de

altas energías, como la cosmología, la física de agujeros negros (Hawking, 1972a),

la holografía (Padmanabhan, 2005) y la teoría de cuerdas (Maldacena, 1999). Estas

teorías han sido utilizadas para entender el origen del universo y su expansión, des-

cribiendo fenómenos como la inflación cosmológica y la dinámica del universo en

etapas tempranas; asimismo, parece ser que un fenómeno general de estas teorías,

permite que la inflación pueda ser provocada por un mecanismo diferente conocido

como inflación geométrica (Arciniega, Bueno et al., 2020), como se verá en el Capítu-

lo 4. En física de agujeros negros, las teorías de gravedad de curvatura superior han

1Extraída de (Blau, 2023) en el capítulo 20.
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sido utilizadas para entender su estructura y comportamiento, permitiendo encon-

trar la solución de problemas como la paradoja de la información y la no unitariedad

en la evolución del estado (Myers, 1999). En teoría de cuerdas, las teorías de grave-

dad de curvatura superior son esenciales para entender los aspectos de altas ener-

gías, tales como la descripción de estados excitados y la resolución de problemas

relacionados con la unificación de la gravedad con otras fuerzas fundamentales.

El estudio de estas teorías permite una comprensión más profunda de la gra-

vedad de Einstein y sus propiedades, al proporcionar un marco para probar qué ca-

racterísticas de la teoría son únicas y cuáles persisten cuando se consideran términos

adicionales en la acción. Además, esto ofrece una forma de superar las limitaciones

de la teoría de la Relatividad General.

La idea principal es agregar términos adicionales a la acción de Einstein-

Hilbert, lo que implica potencias superiores del tensor de curvatura de Riemann.

La acción modificada se puede expresar mediante una integral, como se muestra en

la siguiente ecuación2:

S =
∫

dDx
√

−gL
(

gαβ, Rαβγδ,∇εRαβγδ, ...
)

, (1.2)

donde S es la acción, g es el determinante del tensor de métrica, L es la densidad

lagrangiana y R, ∇ son los términos de curvatura y derivadas respectivamente.

1.1.1. Ecuaciones de Movimiento

Las ecuaciones de campo de la teoría de la Relatividad General, también co-

nocidas como ecuaciones de campo de Einstein, son una generalización de la Ley

de Gravitación Universal Newtoniana, mientras que esta ley asume la existencia

de solo un potencial que describe el campo gravitacional, la teoría de la Relativi-

dad General cuenta con 10 potenciales. Estos potenciales, se identifican en las 10

componentes del tensor métrico simétrico gµν de la geometría del espacio-tiempo

Riemanniano curvado, como se discute en el libro de Carmeli (1982).

2Revisar (Bueno & Cano, 2017b)
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Las ecuaciones de campo de Einstein muestran una propiedad importante,

su no linealidad en las funciones de campo, lo cual es fácil de ver a partir de la

estructura del tensor de Ricci. Este hecho diferencia las ecuaciones de campo gravi-

tacional de las ecuaciones de campo de otras teorías conocidas, como la teoría del

campo electromagnético. Sin embargo, no son tan diferentes de otras teorías de gau-

ge, que generalmente también son no lineales. Debido a esta propiedad, el principio

de superposición ya no es válido para las ecuaciones de campo de Einstein.

La distribución y movimiento de la materia son determinadas por las fun-

ciones de campo gravitacional, es decir, las componentes del tensor métrico, y al

mismo tiempo el tensor métrico es determinado por la distribución y movimiento

de la materia a través de las ecuaciones de campo de Einstein.

Desde un punto de vista moderno, las ecuaciones de campo para la teoría de

la Relatividad General, se pueden obtener a partir del principio de acción como se

discute p.e., en las notas de Blau (2023).3 Así, variando la acción [véase la Ecuación

(1.1)] con respecto a la métrica, se tiene:

Rαβ −
1
2

gαβR + Λgαβ = 0 , (1.3)

donde la parte izquierda de (1.3) representa la parte geométrica del espacio-tiempo;

además, al considerar cero en el lado derecho de la ecuación, significa que no hay

fuentes de energía y masa presentes, a excepción por la energía del vacío represen-

tada por la constante cosmológica. Las soluciones a esta ecuación son soluciones de

la teoría de la Relatividad General en un espacio-tiempo vacío con constante cosmo-

lógica. En el caso maximalmente simétrico, a tales soluciones se las conoce como de

Sitter o Anti-de Sitter, dependiendo del signo de Λ ya puesto (de Sitter, 1916).

Asimismo la acción que abarca tanto la relación entre materia y gravedad

para la Relatividad General es:

S[gαβ, ϕ] =
1

16πG
SEH[gαβ] + SM[ϕ, gαβ] , (1.4)

3Las siguientes ecuaciones se extraen de (Blau, 2023)
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donde SM es la acción para la materia.

De la misma manera, variando la acción general, se pueden obtener las ecua-

ciones de campo de Einstein asociado al tensor de Energía-Momento, el cual es la

fuente de las ecuaciones del campo gravitatorio:

δS[gαβ, ϕ]

δgµν = 0 ⇐⇒ Gµν = 8πGTµν . (1.5)

donde, Gµν representa el tensor de Einstein. Por otro lado, el tensor de Energía-

Momento Tµν, se define como:

Tµν =
−2√−g

δSM

δgµν . (1.6)

A partir de trabajar con la acción, uno puede ver que es relativamente sencillo lle-

gar a generalizaciones covariantes de la acción de Einstein-Hilbert, se asume que la

acción modificada se reduce a la acción de Einstein-Hilbert cuando todos los aco-

plamientos de orden superior se fijan en cero. Gracias a esto, podemos escribir el

Lagrangiano anterior de la forma p.e., (Bueno & Cano, 2017b):

L
(

gαβ, Rαβγδ,∇εRαβγδ, ...
)

=
1

16πG
[−2Λ0 + R + términos de derivada superior] .

(1.7)

Consideremos el caso en el que no hay derivadas covariante del tensor de Riemann.

Se debe enfatizar que el Lagrangiano gravitacional presentado anteriormente, de-

pende tanto de la curvatura como de la métrica, pero no de las derivadas de la

curvatura, es decir, el Lagrangiano contiene términos solo hasta derivados de se-

gundo orden de la métrica. La cantidad más importante, que será útil para nuestro

propósito posterior, derivada del Lagrangiano, es el siguiente tensor4:

Pαβγδ =

(

∂L

∂Rαβγδ

)

guv

. (1.8)

4Revisar el trabajo de Bueno et al. (2023)
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También este tensor es útil para poder construir un tensor análogo al tensor de Ricci,

definiéndolo así:

Rαβ ≡ PαγκλR
γκλ

β , (1.9)

Al tener ya definido el funcional de la acción, y para obtener las ecuaciones de cam-

po, se requiere variar la acción, dando como resultado:

δS =
∫

∂M

dDx
√

−gEαβδgαβ +
∫

∂M

dD
√

−g∇λδvλ , (1.10)

donde Eαβ representa el término de las ecuaciones de campo, que resulta de la va-

riación de la parte principal de la acción y δvλ es el término de la frontera. Así, las

ecuaciones de campo de una teoría L(gαβ, Rαβγδ) tienen la forma:

Eαβ ≡ Rαβ −
1
2

gαβL − 2∇γ∇δPαγδβ = 0 . (1.11)

La cantidad5 Pαβγδ involucra derivadas de segundo orden de la métrica, lo que im-

plica que el término ∇γ∇δPαγδβ en Eαβ contiene derivadas de cuarto orden de la

métrica.

1.1.2. Ejemplos de gravedad de orden superior

Teorías de f (R)

Las teorías f (R) de la gravedad, surgen a partir de la generalización del La-

grangiano en la acción Einstein-Hilbert [véase la ecuación (1.1)]. Además, el escalar

de Ricci R, se sustituirá por una función general de R, es decir:

S =
1

16πG

∫

d4x
√

−g f (R) . (1.12)

Las acciones f (R), son suficientemente generales para abarcar algunas caracterís-

ticas básicas de gravedad en orden superior y al mismo tiempo son lo suficiente

5Véase más a detalle sus propiedades en el trabajo de Padmanabhan (2011)
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simples a la hora de ser manipuladas en los cálculos a realizar (Sotiriou & Faraoni,

2010).

Considerando y definiendo f (R) = R, obtenemos nuevamente la acción de

Einstein-Hilbert (con Λ = 0). Además, f (R) se puede considerar con la constante

cosmológica no nula (Λ ̸= 0), es decir, la función f (R) = R − 2Λ obtenemos la

acción de Hilbert-Einstein [véase la Ecuación (1.1)].

Como se observa, tanto la acción de Hilbert-Einstein con la Constante Cosmo-

lógica, como sin la Constante Cosmológica, son parte de la familia de las funciones

f (R).

Utilizando el procedimiento visto en la sección anterior, es decir agregando

el término de materia SM, la acción total para gravedad f (R) toma la forma:

S f (R) =
1

16πG

∫

d4x
√

−g f (R) + SM(gµν, ϕ) , (1.13)

donde ϕ denota colectivamente los campos de materia. La variación con respecto a

la métrica da, después de algunas manipulaciones y términos del módulo de super-

ficie, la siguiente expresión general:

f ′(R)Rµν −
1
2

f (R)gµν −
[

∇µ∇ν − gµν□
]

f ′(R) = 8πGTµν . (1.14)

Gravedad de Lovelock

La teoría de Lovelock (1970) es una extensión natural de la teoría de Einstein

de la gravedad a dimensiones superiores, y es de gran interés en la física teórica, ya

que describe una amplia clase de modelos. La teoría de Lovelock es la teoría más

general de la gravedad que produce ecuaciones de movimiento de segundo orden

en un número arbitrario de dimensiones. A su vez, es la generalización natural de

la teoría de la Relatividad General de Einstein a dimensiones superiores. En tres y

cuatro dimensiones la teoría de Lovelock coincide con la teoría de Einstein, pero

en dimensiones superiores ambas teorías son en realidad diferentes. De hecho, para

D > 4, la gravedad de Einstein se puede considerar como un caso particular de
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la gravedad de Lovelock, ya que el término de Einstein-Hilbert es uno de varios

términos que constituyen la acción de Lovelock (2003).

El Lagrangiano de la teoría se da como una suma de densidades de Euler,

siendo la densidad de Euler 2n − dimensional:

χ(M) =
(−)n+1Γ(2n + 1)
22+nπnΓ(n + 1)

∫

M
d2nx

√

−gRn , (1.15)

extendidas dimensionalmente, y se puede escribir de la siguiente manera6:

L =
D/2

∑
n=0

αnRn, Rn =
1
2n

δ
µ1ν1···µnνn

α1β1···αnβn

n

∏
r=1

R
αrβr

µrνr , (1.16)

donde δ
µ1ν1···µnνn

α1β1···αnβn
es la delta de Kronecker generalizada.

Cada término Rn corresponde a la extensión dimensional de la densidad de

Euler en 2n dimensiones, por lo que esto solo contribuye a las ecuaciones de movi-

miento para n < D/2.

Expandiendo (1.16) el Lagrangiano toma la forma familiar:

L =
√

−g
(

α0 + α1R + α2

(

R2 + RαβµνRαβµν − 4RµνRµν
)

+ α3O(R3)
)

. (1.17)

En particular, el término de segundo orden es el término de Gauss-Bonnet.

R2 = R2 + RαβµνRαβµν − 4RµνRµν . (1.18)

La condición de segundo orden para las ecuaciones de campo nos lleva a imponer

una condición sobre Pαβγδ:

∇αPαβγδ = 0 . (1.19)

Esta condición caracteriza precisamente a las gravedades de Lovelock, al eliminar

los posibles términos de más de dos derivadas en las ecuaciones de movimiento.

6Para una detallada explicación, ver (Garraffo & Giribet, 2008)
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1.2. Agujeros Negros

Un agujero negro es una solución exacta de las ecuaciones de la Relatividad

General de Einstein. Describe una región del espacio-tiempo caracterizada por la

presencia de un horizonte de eventos, es decir, una región donde la gravedad es tan

fuerte que nada, ni siquiera la luz, puede escapar.

Un agujero negro,7 en un espacio-tiempo asintóticamente plano (M, gµν) se

define como una región

B = M− I−(I+) , (1.20)

donde I+ es el infinito nulo futuro y I− es el pasado cronológico. En otras palabras,

esto significa que el futuro de B no está contenido en la región asintótica. El hori-

zonte de eventos del agujero negro es una hipersuperficie nula que corresponde a la

frontera común entre B y el pasado de I+. Es importante destacar que el horizonte

de eventos es una característica global del espacio-tiempo que requiere conocer toda

su historia futura, por lo que carece de un significado local.

Hoy por hoy tenemos evidencia experimental directa de los agujeros negros

gracias a los detectores de ondas gravitacionales LIGO/Virgo8 y a The Event Hori-

zon Telescope.9

En este trabajo de investigación trabajaremos con agujeros negros estáticos y

esféricamente simétricos. Schwarzschild (1915) fue el primero en encontrar una so-

lución exacta no trivial a las ecuaciones de campo de Einstein para un agujero negro

estático, sin carga ni momento angular. En coordenadas esféricamente simétricas la

componente temporal se anula para cierto radio, y ahí existe un horizonte.

La importancia del estudio de los agujeros negros es que este es un excelente

laboratorio para probar la relación entre la mecánica cuántica y la gravedad, ya que

muchas de sus propiedades tienen un origen mecánico cuántico, además, permite

entender mejor el comportamiento de esta interacción fundamental.

7Revisar el trabajo de Cano (2019)
8Revisar los hallazgos de Abbott et al. (2016)
9Revisar los hallazgos de The Event Horizon Telescope Collaboration et al. (2019)
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1.2.1. Termodinámica de agujeros negros

Clásicamente, se considera que un agujero negro, por su naturaleza absorben-

te, no puede emitir nada. Esta característica conlleva a la noción de que un agujero

negro carece de temperatura, ya que no emite radiación alguna. Sin embargo, este

concepto entra en conflicto con las leyes de la termodinámica. Por un lado, la idea de

que los agujeros negros no tienen temperatura implica una violación de la segunda

ley de la termodinámica. Teóricamente, uno podría “ocultar” entropía dentro de un

agujero negro, lo que reduciría la entropía observable del universo, contraviniendo

esta ley. Observaciones relevantes indican que el área de los agujeros negros nunca

disminuye; siempre crece o permanece constante10 . Esta propiedad llevó a Bekens-

tein (1973) a proponer una relación directa entre la entropía y el área de un agujero

negro. Este autor sugirió que la entropía de un agujero negro es proporcional a su

área, pues entonces, la segunda ley de la termodinámica en presencia de agujeros

negros se satisface sin problema lo que se llama La Segunda Ley Generalizada. La en-

tropía de un agujero negro, es dada por la fórmula de Bekenstein-Hawking:

SBH =
A

4G
, (1.21)

donde G es la constante gravitacional y A es el área.

Sin embargo, si se asocia una entropía a un agujero negro, tiene que ser un

objeto termodinámico, es decir que debería tener temperatura, pero previamente se

mencionó que los agujeros negros no tienen temperatura. Hawking (1975) demos-

tró que un agujero negro emite radiación térmica. La temperatura de esta radiación

es directamente proporcional a la superficie gravitacional del agujero negro, deno-

tada por κg. Esta superficie gravitacional se define como la aceleración debida a la

gravedad que un observador experimentaría cerca del horizonte del agujero negro,

medida de forma asintótica. La relación entre la temperatura (TH) y la superficie

10Los primeros en observar que un agujero negro muestra una tendencia a incrementar el área de
la superficie de su horizonte cuando experimenta cualquier transformación fueron Penrose y Floyd
(1971), quienes además sugirieron que un aumento en el área podría ser una característica general de
las transformaciones de agujeros negros, lo cual permitió sentar las bases para las ideas posteriores
desarrolladas por Bekenstein (1973) y Hawking (1975) sobre la relación entre la entropía y el área del
horizonte de los agujeros negros.
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gravitacional se expresa mediante la fórmula:

TH =
κg

2π
, (1.22)

donde κg representa la superficie gravitacional. Este descubrimiento valida la pro-

puesta de Bekenstein (1973) y Hawking (1975), mostrando que los agujeros negros

tienen tanto temperatura como entropía.

Existen varias similitudes entre la física de agujeros negros y la termodiná-

mica. La similitud más llamativa es la que existe entre los comportamientos del área

de un agujero negro y de la entropía, debido a que ambas cantidades tienden a au-

mentar de manera irreversible. A partir de la analogía entre agujeros negros y la

termodinámica, se pueden describir las 4 leyes de la mecánica de agujeros negros

(Bardeen et al., 1973), las cuales son las leyes ordinarias de la termodinámica, que

rigen los grados de libertad UV 11,12 microscópicos que forman los agujeros negros.

Mediante esta analogía existente se pueden identificar a aquellas cargas conserva-

das como la Masa, Momento angular o la carga eléctrica, que permiten caracterizar

a los agujeros negros como las variables termodinámicas.

La ley cero de la mecánica de los agujeros negros, establece que dado un agu-

jero negro estacionario, κg es siempre constante en el horizonte (Hawking, 1972a,

1972b); esto nos lleva a pensar en la ley cero de la termodinámica que establece que

la temperatura es uniforme en todas partes en un sistema en equilibrio térmico.

La primera ley de la mecánica de la agujeros negros establece que al conside-

rar un proceso cuasiestático durante el cual un agujero negro estacionario de masa

M, momento angular J y área superficial A es llevado a un nuevo agujero negro

estacionario con parámetros M + δM, J + δJ y A + δA. Los cambios en la masa, el

momento angular y el área superficial están relacionados por13:

dM =
κg

8πG
dA + Ω dJ + ... , (1.23)

11Revisar el trabajo de Moffat (2011)
12Se refiere a UV-complete theory of gravity.
13Revisar el Apéndice A para ver cómo se obtiene la ecuación (1.23)
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estos últimos puntos suspensivos indican variables adicionales de las que puede

depender la solución del agujero negro, tal como la carga de este agujero negro.

El trabajo de Hawking (1971), introdujo el importante teorema del área en la

mecánica de los agujeros negros. Este teorema, conocido como la segunda ley de la

mecánica de los agujeros negros, establece que bajo la condición de la energía nula,

el área de la superficie de un agujero negro no puede disminuir. Esto se representa

matemáticamente mediante la ecuación:

δA ≥ 0 , (1.24)

donde δA simboliza la variación en el área de la superficie del agujero negro. La ley

implica que, en cualquier proceso físico, el área de la superficie de un agujero negro

tiende a permanecer constante o a aumentar, pero nunca a disminuir.

Por último, la tercera ley de la mecánica de los agujeros negros establece que

la gravedad superficial del horizonte no puede ser reducida a cero en un número

finito de pasos.14

Termodinámica de agujeros negros en gravedad de curvatura superior

La ley del área en la fórmula de entropía de Bekenstein-Hawking, puede ser

reemplazada por la fórmula de entropía de Wald (1993), en el caso de teorías más

generales que la de Einstein definidas por un lagrangiano dependiente de la métrica

y el tensor de Riemann L(gµν, Rµνρσ).

SW = −2π
∫

H
dD−2x

√
h

δL
δRµνρσ

ϵµνϵρσ , (1.25)

donde:

H es el horizonte de eventos del agujero negro.

h es la métrica inducida en el horizonte de eventos.
14Una formulación más precisa de la tercera ley es probada y propuesta por W. Israel (Israel, 1986)
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ϵµν es el tensor binormal al horizonte de eventos.

Además Wald mostró que la entropía definida de esta manera, satisface la primera

ley de la mecánica de agujeros negros:

δM =
κg

2π
δSW + ΩδJ + ... (1.26)

1.2.2. Soluciones de agujeros negros esféricamente simétricos

El ansatz estático y esféricamente simétrico general15 tiene la forma:

ds2
N, f = −N(r)2 f (r)dt2 +

dr2

f (r)
+ r2dΩ2

D−2 , (1.27)

donde N(r) y f (r) son dos funciones independientes, además dΩ2
D−2 es la métrica

de (D − 2)− es f era.

Tanto las funciones N(r) y f (r), en general, son determinadas por un sistema

de ecuaciones diferenciales que pueden ser elegidas como las componentes Ett = 0

y Err = 0 de las ecuaciones de movimiento. Usando las identidades de Bianchi de

las ecuaciones de movimiento ∇µEµν = 0, el resto de componentes resultan de una

combinación de estas.

En el caso de Relatividad General con una constante cosmológica:

L =
1

16πG
(R − 2Λ) , (1.28)

su única solución corresponde a N(r) = N0
16:

ds2
f = − f (r)dt2 +

dr2

f (r)
+ r2dΩ2

(D−2) , (1.29)

15Revisar (Bueno & Cano, 2017b)
16Usualmente N0 = 1, dado que siempre se puede redefinir el tiempo, pero no necesariamente

tiene que ser 1, por ejemplo se podría tomar N(r) = 5, esto quiere decir que el nuevo tiempo es 5
veces el tiempo inicial, entonces la métrica se modificaría y en la parte temporal habría un factor de
25, así como t′ = 5t, esto solo es para gtt.
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donde:

f (r) = 1 − 16πGM

(D − 2)ΩD−2rD−3 − 2Λ0r2

(D − 1)(D − 2)
. (1.30)

Esta es la conocida solución de Schwarzschild-Tangherlini. Para cuatro dimensiones

y en ausencia de la constante cosmológica, esta se reduce a la solución usual de

Schwarzschild (1915),17 según lo propuesto por Tangherlini (1963).

Agujeros Negros en la Gravedad de Lovelock

La gravedad de Lovelock, como la forma más general de gravedad de cur-

vatura superior, se caracteriza por ecuaciones de movimiento de segundo orden.

Esta teoría propone modificaciones a la Relatividad General en contextos de dimen-

siones superiores. Inicialmente, enfocamos nuestra atención en un espacio de cinco

dimensiones, dado que en dimensiones menores a siete (D < 7), el término R3 no

influye en las ecuaciones de movimiento. En cinco dimensiones, la teoría de Love-

lock se alinea esencialmente con la gravedad de Einstein, integrada con la extensión

dimensional de la densidad de Euler de cuatro dimensiones, conocida comúnmente

como la teoría de Einstein-Gauss-Bonnet (EGB).18

La teoría de Gauss-Bonnet es crucial para extender la teoría convencional de

la gravedad, especialmente en dimensiones superiores. La acción de Einstein-Gauss-

Bonnet en un espacio-tiempo de dimensión D se expresa mediante la ecuación:

SEGB =
1

16πG

∫

dDx
√

−g[−2Λ0 + R + αχ4] . (1.31)

Para un espacio de D = 5, la generalización se describe con:

f (r) = 1 +
r2

4α
±
√

1 +
Λ0r4

12α
+

r4

16α2 +
2GM

αr3 . (1.32)

Esta formulación indica una solución que amplía nuestra comprensión de la grave-

dad más allá de las cuatro dimensiones habituales. Al expandir la teoría a un espacio

17 f (r) = 1 − 2GM
r

18La solución estática con simetría esférica en la teoría EGB fue desarrollada por Boulware y Deser,
como se detalla en (Boulware & Deser, 1985)
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de D = 6, obtenemos la siguiente ecuación

f (r) = 1 +
r2

12α
∓
√

2πGM

3αrΩ
+

r4

144α2 +
Λ0r4

60α
. (1.33)

Estas ecuaciones para D = 5 y D = 6 dimensiones se exploran en profundidad en

el Apéndice B, basándose en las características presentadas en el siguiente capítulo.
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CAPÍTULO 2

GRAVEDADES CUASITOPOLÓGICAS

GENERALIZADAS (GQTG’s)

2.1. Introducción

En este capítulo, se examinará en detalle las Generalized Quasi-Topological Gra-

vities (GQTG’s) y su relación con la gravedad y los agujeros negros. Se discutirán las

definiciones y propiedades generales de estas teorías, así como su aplicación especí-

fica en la Einsteinian Cubic Gravity (ECG). Se analizarán las soluciones esféricamente

simétricas de ECG y el comportamiento asintótico de los agujeros negros asintóti-

camente planos, incluyendo el análisis del horizonte. También se discutirán las fór-

mulas de recurrencia y cómo se utilizan para calcular la evolución temporal de estas

teorías en relación a los agujeros negros. Este capítulo proporcionará una compren-

sión detallada de cómo las GQTG’s pueden contribuir a nuestra comprensión de la

gravedad y la física de los agujeros negros.

2.2. Definición y propiedades generales

En estos últimos años se comenzó a trabajar en una nueva familia de teorías

de gravedad de curvatura superior, las cuales resultan muy interesantes a la hora de
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describir y calcular propiedades de la gravedad. La acción de las llamadas Generali-

zed Quasi-Topological Gravities se puede escribir como1:

S =
1

16πG

∫

dDx
√

−g

[

−2Λ + R + ∑
n=2

∑
in

ℓ
2(n−1)µ

(n)
in

R(n)
in

]

, (2.1)

donde ℓ es alguna escala de longitud, µ
(n)
in

son acoplamientos adimensionales, R(n)
in

son combinaciones lineales de densidades construidas en cada caso desde la con-

tracción de n tensores de Riemann.

Estas teorías, que ahora se sabe que existen en órdenes generales y en dimen-

siones arbitrarias (Bueno et al., 2023), son muy interesantes, dado que cuando se

evalúa sobre backgrounds esféricamente simétricos, las ecuaciones de campo se re-

ducen a ecuaciones diferenciales de segundo orden y admiten soluciones exactas de

una forma muy parecida a la gravedad de Lovelock (Hennigar et al., 2017). Una par-

ticularidad interesante de las Generalized Quasi-Topological Gravities es que en back-

grounds de simetría máxima, las ecuaciones de movimiento linealizadas coinciden

con las ecuaciones de Einstein linealizadas excepto un prefactor global.

Para saber si una teoría genérica como L(gαβ, Rαβγδ,∇αRβγδϵ, ...) pertenece

a la familia de las GQTG’s, se necesita evaluar en
√

gL el ansatz general estático y

esféricamente simétrico:

ds2
SSS = −N2(r) f (r)dt2 +

1
f (r)

dr2 + r2dΩ2
D−2 . (2.2)

Obteniendo como resultado LN, f siendo este el Lagrangiano efectivo. Definiendo

con mayor precisión, se tiene que este Lagrangiano efectivo:

LN, f (r, f (r), N(r), f ′(r), N′(r), ...) ≡ N(r)rD−2L
∣

∣

∣

gαβ=g
αβ
N, f

. (2.3)

Por definición, extraída del trabajo de Bueno, Cano, Moreno y Murcia (2019), dire-

mos entonces que, para que L(gαβ, Rαβγδ,∇αRβγδϵ, ...) pertenezca a la familia de

las GQTG’s se debe cumplir que las ecuaciones de Euler-Lagrange de L f se anulen

1Revisar (Bueno, Cano & Hennigar, 2019)
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idénticamente, es decir, si:

∂L f

∂ f
− d

dr

∂L f

∂ f ′
+

d2

dr2

∂L f

∂ f ′′
− ... = 0, ∀ f (r) . (2.4)

2.2.1. Propiedades

I. Cuando se linealiza alrededor de cualquier fondo simétrico máximo, las ecua-

ciones de movimiento de las GQTG’s se vuelven de segundo orden, es decir,

solo propagan el gravitón habitual sin masa y sin traza de la gravedad de Eins-

tein en dichos backgrounds.

II. Tienen un límite de gravedad de Einstein continuo y bien definido, que corres-

ponde a establecer µ
(n)
in

→ 0 para todo n y in

III. Admiten generalizaciones del agujero negro de Schwarzschild (asintóticamen-

te plano, de Sitter o Anti-de Sitter), es decir, soluciones que se reducen a él en

el límite de gravedad de Einstein, caracterizados por una única función f (r).

Para ellos, N(r) = 1 (o alguna otra constante) en la ecuación (2.2) y gttgrr = −1

IV. Cualquier acción efectiva de gravedad puede ser mapeada, mediante una re-

definición de la métrica, a una Generalized Quasi-Topological Gravity, orden por

orden en términos de los acoplamientos.

2.3. Subclases

Por la forma de las densidades GQTG’s, se pueden clasificar en tres grupos o

subclases:

Primer Grupo: La densidad correspondiente no contribuye, en absoluto, a la

ecuación de f (r) se les llama “triviales”

Segundo Grupo: Entre las GQTG’s densidades, se encuentran las teorías lla-

madas Quasi-Topological, en las cuales, la ecuación que caracteriza a la función
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métrica f (r) es algebraica y no involucra derivadas de f (r); además, alguna de

ellas que satisfacen el teorema de Birkhoff2 . Las teorías de esta subclase solo

existen para D ≥ 5 con la excepción de Eintein Gravity. Un subconjunto de esta

subclase son las teorías de Lovelock. También las soluciones de un agujero ne-

gro estático de esta subclase está, caracterizada, por una simple función que es

determinada por una ecuación algebraica, esto ocurre de manera similar para

las teorías de Lovelock (Boulware & Deser, 1985).

Tercer Grupo: En este grupo la densidad contribuye a la ecuación con términos

que contienen derivadas de segundo orden para f (r), un ejemplo claro sería

Einsteinian Cubic Gravity en D = 4 la cual se desarrollará en la Sección (2.4.)

2.4. Einsteinian cubic gravity

Antes del descubrimiento de Einsteinian Cubic Gravity (ECG), las únicas teo-

rías quasitopológicas conocidas operaban en 5 dimensiones o más. Todas estas teo-

rías eran válidas para dimensiones iguales o superiores a 5. Einsteinian Cubic Gravity

fue pionera al ser la primera teoría de este tipo aplicable a 4 dimensiones, lo que

impulsó un auge en la investigación en este campo. Es notable mencionar que este

avance no se realizó a través del estudio de sus agujeros negros, sino mediante el

análisis del espectro linealizado (Bueno & Cano, 2016a).

Esta teoría fue construida al inicio como una modificación generalizada pa-

ra curvatura superior de la gravedad de Einstein que, hasta el orden cúbico, solo

propaga el gravitón sin traza y transverso sobre un background maximalmente si-

métrico en dimensiones generales. A partir de esta teoría se pudo definir y clasificar

las GQTG’s (Adair et al., 2020). Siendo la acción de esta teoría dada por:

EECG =
∫

dDx
√

−gL . (2.5)

2En Relatividad General, el teorema de Birkhoff establece que las soluciones esféricamente simé-
tricas de las ecuaciones de Einstein en el vacío son localmente isométricas a la solución de Schwarzs-
child, para su generalización a teorías de derivadas superiores de la gravedad. Revisar (Oliva & Ray,
2011)
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Para poder construir la teoría Einsteinian Cubic Gravity, Bueno y Cano (2016a) se

basaron en que tenía que satisfacer las propiedades (I.) y (I I.) de la Sección (2.2.1)

para dimensiones generales. Obteniendo, así, la densidad lagrangiana de esta teoría

que está dada por:

L =
1

2κ
[−2Λ + R] + αχ4 + κ [βχ6 + λP ] , (2.6)

donde3:

P = 12R
γ δ

α β R ϵ λ
γ δ R

α β
ϵ λ + R

γδ
αβ R ϵλ

γδ R
αβ

ϵλ − 12RαβγδRαγRβδ + 8R
β

α R
γ

β R α
γ ,

(2.7)

además, χ4 y χ6 son las densidades de Euler de 4 y 6 dimensiones4,5 o también

conocidas como el término de Gauss-Bonnet y el término cúbico de Lovelock res-

pectivamente. Siendo χ4 topológico en D = 4 y trivial para D ≤ 3, mientras que χ6

es topológico en D = 6 y trivial para D ≤ 5. Las ecuaciones de movimiento de ECG

son (Adair et al., 2020) :

PαβγδR
βγδ

κ − 1
2

gακ − 2∇β∇γPαβγκ = 0, Pαβγδ ≡
∂LECG

∂Rαβγδ
. (2.8)

2.4.1. Soluciones esféricamente simétricas de ECG

Si se restringe el estudio a agujeros negros de vacío asintóticamente planos,

estáticos y esféricamente simétricos (SSS) en 4 dimensiones (Adair et al., 2020; Bueno

& Cano, 2016b; Hennigar & Mann, 2017; Hennigar et al., 2018; Poshteh & Mann,

2019), la acción se reduce a:

SECG =
1

16πG

∫

d4x
√

−g
[

R − G2λP
]

, (2.9)

3κ ≡ 8πG
4χ4 = R2 − 4RαβRαβ + RαβγδRαβγδ
5χ6 = −8R

γ δ
α β R ϵ λ

γ δ + 4R
γδ

αβ R ϵλ
γδ R

αβ
ϵλ − 24RαβγδR

αβγ
ϵRδϵ + 3RαβγδRαβγδ + 24Rαβγδ +

RαγRβδ + 16R
β
α R

γ
β Rα

γ + 12RαβRαβ + R3
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así, utilizando el elemento de línea

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2

(

dθ2 + sin2 θdϕ2
)

. (2.10)

Se obtiene la única ecuación de campo independiente:

−( f − 1)r − G2λ

[

4 f ′3 + 12
f ′2

r
− 24 f ( f − 1)

f ′

r2 − 12 f f ′′
(

f ′ − 2( f − 1)
r

)]

= r0 , (2.11)

donde la cantidad r0 que aparece en el lado derecho de la ecuación está asociada

con la masa ADM6 del agujero negro, este valor se trabajará en la Sección (2.4.2) con

más detalles.

2.4.2. Agujero Negro asintóticamente plano

La ecuación (2.11) no tiene solución analítica; sin embargo, se puede analizar

mediante expansiones y aproximaciones, permitiendo entender la naturaleza de la

solución.

Comportamiento asintótico

Fijémonos en el comportamiento asintótico. Para ello, se realiza una expan-

sión alrededor de r → +∞. La solución puede expresarse como la solución de Sch-

warzschild más una corrección pequeña:

f (r) = 1 − r0

r
+ f1(r) , (2.12)

6La masa ADM (Arnowitt-Deser-Misner) se refiere a la masa total de un sistema gravitacional
aislado. El nombre proviene de los físicos Richard Arnowitt, Stanley Deser y Charles W. Misner,
quienes la definieron en el contexto de su formulación del formalismo de descomposición 3+1 de la
relatividad general, conocido también como formalismo ADM.
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donde | f1(r)| ≪ 1. Luego de introducir (2.12) en (2.11) y expandiendo linealmente

en f1(r) se obtiene la ecuación diferencial con la corrección:

−r6 f1 − G2λ

(

108r2
0 −

92r2
0

r

)

+ 12G2λr0

[

(6r − 14r0) f1

+ 3r(r0 − 2r) f ′1 + 3r2(r − r0) f ′′1

]

= 0 . (2.13)

La solución de esta ecuación diferencial de segundo orden es la suma entre la solu-

ción particular y la homogénea f1 = f1,p + f1,h.

Para primer orden en λ, la solución particular es:

f1,p(r) = G2λ

(

−108r2
0

r6 +
92r3

0
r7

)

+O
(

λ2,
r4

0
r8

)

, (2.14)

los primeros términos dan una buena aproximación, debido a que los términos de

orden superior para λ decaen tan rápido como r → ∞.

La ecuación homogénea puede escribirse de la siguiente manera:

f ′′1,h − γ(r) f ′1,h − ω2(r) f1,h = 0 , (2.15)

donde:

ω2(r) =
r4

36G2λr0(r − r0)
− 6r − 14r0

3r2(r − r0)

γ(r) =
2r − r0

r(r − r0)
.

(2.16)

Ahora, cuando r is muy grande, se tiene que ω′/ω2 ≪ 1 y γ ≪ ω. En esta situación,

la solución de la ecuación anterior es aproximadamente:

f1,h ≈ A exp
[

∫

drω(r)

]

+ B exp
[

−
∫

drω(r)

]

, (2.17)

donde A y B son constantes arbitrarias. Cuando r → +∞, se obtiene:

ω2 =
r3

36G2λr0
+O(r2) , (2.18)
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así, la solución se da de manera muy aproximada por:

f1,h(r) ≃ A exp

(

r5/2

15G
√

λr0

)

+ B exp

(

− r5/2

15G
√

λr0

)

, (2.19)

entonces, debido a que se quiere que la métrica sea asintóticamente plana, debemos

fijar A = 0. Esto nos deja con una familia uniparamétrica de soluciones que son

asintóticamente planas. Por lo tanto, en el límite de r grande, la solución se da por:

f (r) ≃ 1 − r0
r − G2λ

(

108r2
0

r6 − 92r3
0

r7

)

+O
(

λ2, r4
0

r8

)

+ B exp
(

− r5/2

15G
√

λr0

)

.

(2.20)

La expansión asintótica permite determinar la masa del agujero negro. En el con-

texto de un espacio-tiempo asintóticamente plano, la fórmula de Abbott-Deser para

calcular la masa no se ve alterada por términos de curvatura de orden superior. Esto

nos permite emplear el método convencional para este cálculo. De manera espe-

cífica, la masa total del agujero negro en este escenario se determina mediante la

siguiente ecuación:

M =
1

2G
lı́m

r→+∞
r(grr(r)− 1) . (2.21)

Tal como se mencionó anteriormente, las correcciones de orden superior en λ de-

crecen más rápidamente que el término principal −r0/r cuando r tiende a infinito.

Esto implica que el término principal no se ve afectado significativamente por estas

correcciones. En consecuencia, aplicando esta fórmula obtenemos:

r0 = 2GM , (2.22)

lo cual coincide con los resultados estándar. A partir de esta relación y de la ecuación

(2.20), es posible expresar la expansión asintótica de f (r) para valores pequeños de

λ y cuando r se aproxima a infinito:

f (r → ∞) = 1 − 2GM

r
− G2

(

108(2GM)2

r6 − 92(2GM)3

r7

)

. (2.23)
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Cerca del Horizonte

La superficie r = rh es el horizonte para la métrica de la forma (2.10), en la

cual f (rh) = 0 y f ′(rh) ≥ 0, esto quiere decir que la función debe ser diferenciable

en rh. La superficie gravitacional (κg) sobre el horizonte para este tipo de métrica

es κg = f ′(r)
2 . Considerando que la función f (r) es completamente regular y que se

puede expandir en una serie de Taylor, obtenemos:

f (r) = 2κg(r − rh) +
∞

∑
n=2

an(r − rh)
n , (2.24)

donde an = f (n)(rh)/n!, esta expansión la introducimos en la ecuación7 (2.11) y

se resolverá orden por orden para (r − rh)
n. Expandiendo hasta segundo orden se

obtiene:

+ rh − 2GM − 16λG2κ2
g

(

2κg +
3
rh

)

+ (r − rh)

(

1 − 2κgrh −
48λG2κ2

g

r2
h

)

+ (r − rh)
2

[

− 2κg − a2rh

+ λ

(

48G2κg

(

a2
2 +

κg(3 + 4κgrh)

r3
h

)

− a2

(

192G2κ2
g

rh
+

144G2κg

r2
h

)

+ a3

(

144G2κ2
g +

144G2κg

rh

))]

+ O
(

(r − rh)
3
)

= 0 ,

(2.25)

como se observa en la expresión (2.25), las dos primeras ecuaciones determinan el

radio del horizonte rh y la gravedad superficial κg como funciones de la masa:

rh − 2GM − 16λG2κ2
g

(

2κg +
3
rh

)

= 0 , (2.26)

1 − 2κgrh −
48λG2κ2

g

r2
h

= 0 . (2.27)

Es esencial enfatizar la precisión de las relaciones discutidas. La habilidad de derivar

conexiones exactas entre la masa, el radio del horizonte y la gravedad superficial es

notable y distingue a esta teoría de la gravedad de otras de orden superior. Estas

relaciones establecen que, una vez fijados los valores de rh y kg, se puede obtener

una relación lineal entre los coeficientes a2 y a3 usando la tercera ecuación . Esta

linealidad en a3 simplifica su determinación como función de a2. De manera similar,

la cuarta ecuación presenta una linealidad en a4, facilitando su cálculo en función

7r0 = 2GM, ver (Bardeen et al., 1973)
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de los coeficientes anteriores. Generalizando este proceso8, el coeficiente an puede

determinarse a partir de la enésima ecuación. Como resultado, emergen soluciones

caracterizadas por un único parámetro libre, a2.

Respecto a los términos de orden superior, resulta que todos están determi-

nados exclusivamente por el parámetro a2. Al elegir adecuadamente a2, es posible

lograr que la solución se acerque asintóticamente a Minkowski. Esto implica que

hay un parámetro que define la solución cerca del horizonte y otro que evita la pre-

sencia de un modo exponencial, lo cual es crucial para asegurar que la solución no

tenga pelo.

Estas observaciones llevan a dos conclusiones clave. Primero, la teoría ECG

admite soluciones de agujeros negros con horizontes regulares. Segundo, la con-

dición de un horizonte regular limita las soluciones posibles a una familia con un

único parámetro. Esto subraya la singularidad y las restricciones impuestas por la

condición de horizonte regular en esta teoría específica.

Las expresiones (2.26) y (2.27), nos permiten determinar κg y rh como funcio-

nes de la masa. Sin embargo, es más fácil obtener las relaciones8 κg(rh) y M(rh) . Es

decir:

κg =
1

rh

(

1 +
√

1 + 48G2λ/r4
h

) , (2.28)

2GM

rh
= 1 − 16G2λ

r4
h

(

5 + 3
√

1 + 48G2λ/r4
h

)

(

1 +
√

1 + 48G2λ/r4
h

)3 . (2.29)

Si representamos gráficamente M(rh) y la comparamos con la solución de Schwarzs-

child, observamos diferencias significativas, como se detalla a continuación:

8Revisar el Apéndice D
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FIGURA 2.1: Representación de 2GM como función de rh para la so-
lución ECG (en amarillo) con λ > 0 y la solución de Schwarzschild
estándar (en azul). Hemos introducido las definiciones M ≡ M

(G2λ)1/3 y

rh ≡ rh

(G2λ)1/3 para una mayor claridad en la presentación de los resulta-
dos. Es importante notar que la gráfica en azul es aplicable para todos
los valores de λ > 0.

Como se puede observar en la Figura 2.1, esta representación nos indica que

para valores elevados de rh, las predicciones de la teoría ECG se vuelven indistin-

guibles de la solución de Schwarzschild, lo que resalta la motivación de investigar

en teorías de gravedad con curvatura superior, las cuales podrían proporcionar una

comprensión más profunda de la singularidad gravitatoria.

2.5. Fórmulas de recurrencia

Las fórmulas de recurrencia son una técnica matemática utilizada para gene-

rar una secuencia de números, funciones o elementos de un conjunto, donde cada

elemento de la secuencia se define en términos de los elementos anteriores. Es una

técnica común en matemáticas, física, informática y otras áreas.

En el caso de las teorías de gravedad generalizadas como las GQTG’s, las

fórmulas de recurrencia permiten construir teorías de gravedad con órdenes de cur-

vatura más altas a partir de teorías de gravedad con órdenes de curvatura inferiores.

Como se muestra en el trabajo de Bueno, Cano y Hennigar (2019) es posible cons-

truir teorías Quasi-Topological y GQTG’s de órdenes de curvatura arbitrarias a partir
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de relaciones recursivas simples que involucran densidades de órdenes inferiores

del mismo tipo. Es decir, que se utilizan las fórmulas de recurrencia para generar

las densidades de estas teorías. Cada término de la densidad se define en términos

de los términos anteriores, utilizando una relación recursiva específica [véase más

adelante Sección (2.5.1)].

Esto ha servido para completar la demostración general de que cualquier ac-

ción efectiva de curvatura superior, que involucre contracciones arbitrarias del ten-

sor de Riemann y la métrica, se puede escribir en términos de una teoría Generalized

Quasi-Topological (GQTG) mediante redefiniciones de la métrica (Bueno, Cano, Mo-

reno & Murcia, 2019).

2.5.1. Fórmulas de Recurrencia

La ecuación (2.30) es la fórmula de recurrencia que forma parte del proceso

de construcción de estas teorías. Estas relaciones recursivas permiten obtener las

teorías GQTG’s de órdenes de curvatura superiores a partir de las teorías de órdenes

inferiores, lo que facilita el estudio de las propiedades y soluciones de estas teorías.

La fórmula de recurrencia9 dada por,

S(n+5) = −
3(n + 3)S(1)S(n+4)

4(D − 1)(n + 1)
+

3(n + 4)S(2)S(n+3)

4(D − 1)n
−

(n + 3)(n + 4)S(3)S(n+2)

4(D − 1)n(n + 1)
(2.30)

está definida de tal manera que hace uso de las densidades semilla, es decir, las

siguientes densidades definidas de la forma:

S(1) =− R , (2.31)

S(2) =− D

4(D − 2)(D − 3)

[

R2 − 4RαβRαβ + RαβγδRαβγδ
]

, (2.32)

S(3) =
3DRRαβRαβ

4(D − 1)(D − 2)2 − (D2 + 8D − 8)R3

16(D − 1)2(D − 2)2 −
3RαβRγδWαγβδ

2(D − 2)(D − 3)

−
3DRWαβγδWαβγδ

16(D − 1)(D − 2)(D − 3)
+

(D − 2)(2D − 1)W γδ
αβ W ϵλ

γδ W
αβ

ϵλ

8(D − 3)(D3 − 9D2 + 26D − 22)
,

(2.33)

9Revisar el Apéndice C para el cálculo de la verificación de la fórmula de recurrencia.
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S(4) =+
3D

8(D − 1)2(D − 2)2 R2RαβRαβ

− (D2 + 20D − 20)
64(D − 1)3(D − 2)2 R4 − 3

2(D − 1)(D − 2)(D − 3)
RRαβRγδWαβγδ

− 3(2D5 − 17D4 + 33D3 + 16D2 − 64D + 32)
32(D − 1)2(D − 2)(D − 3)(2D4 − 17D3 + 49D2 − 48D + 16)

R2WαβγδWαβγδ

− 3D

(D − 3)(2D4 − 17D3 + 49D2 − 48D + 16)
RRαβW

γδϵ
α Wβγδϵ

+
3D2

4(D − 3)(2D4 − 17D3 + 49D2 − 48D + 16)
RαβRγδW ϵλ

αγ Wβδϵλ

+
(D − 2)(2D − 1)

8(D − 1)(D − 3)(D3 − 9D2 + 26D − 22)
RW ϵλ

αβ WαβγδWγδϵλ

+
3D2

4(D − 3)(2D4 − 17D3 + 49D2 − 48D + 16)
R

γ
αRαβW δϵλ

β Wγδϵλ

− 3(D − 2)2(3D − 2)
64(D − 3)(D5 − 14D4 + 79D3 − 224D2 + 316D − 170)

W ϵλ
αβ W

αβ
γδ W

γδ
χξ W

χξ
ϵλ ,

(2.34)

donde Wαβγδ es el tensor de Weyl. Por ejemplo si deseamos obtener S(5), lo que

debemos hacer es que en en (2.30) se considera n = 0, observando que estará en

términos de S(1), S(2), S(3) y S(4), siendo esta una expresión covariante. S(5) además

es una expresión tensorial, que va a ser lagrangiano escrito en términos de tensores

de Rienmann de orden 5, esto es porque se obtiene a base de multiplicar densidades

de órdenes más bajos. La expresión (2.30) vale a cualquier orden.

Esto demuestra que existen a todos los órdenes, debido a que si se pudo obte-

ner hasta orden cinco, (2.30) podemos aplicarlo de manera recursiva para cualquier

orden, es decir, se está sugiriendo que es posible construir densidades de curva-

tura de orden arbitrariamente alto mediante la aplicación iterativa de la ecuación

(2.30). Además, se puede afirmar que tales densidades construidas de esta manera

pertenecerán automáticamente a la clase GQTG y que la existencia de esta relación

recursiva demuestra la existencia de estas densidades GQTG en todos los órdenes

de curvatura.

Demostración: Para demostrar esto es conveniente reescribir el tensor de Rie-

mann para la métrica de la forma (1.29) como:

R
αβ

γδ | f = 2
[

−A + T
[α
[β

T
γ]
δ]

+ 2BT
[α
[γ

σ
β]
δ]
+ ψσ

[α
[γ

σ
β]
δ]

]

, (2.35)



2.5. Fórmulas de recurrencia 31

donde T
β
a , son los proyectores en las direcciones (t, r) y σb

a , son los proyectores en

las direcciones angulares. Además se definen las funciones A, B y ψ como:

A ≡ f ′′(r)
2

, B ≡ − f ′(r)
2r

, ψ ≡ κ − f (r)

r2 . (2.36)

Las densidades GQTG’s al ser evaluadas on shell deben tomar la forma de:

rD−2S(n)| f =
d

dr

[

2(n − 2)rD−1
(

B +
(D − 4)

4
ψ

)n−1 (

B − (D − 4 + 2n)

2(n − 2)
ψ

)

]

. (2.37)

O expandiendo la ecuación (2.37) toma la siguiente forma:

S(n)| f =+
1
2

[

(n − 1)
(

(D − 4)ψ − (D − 6)B + 2A)
)(

(D − 4 + 2n)ψ − 2(n − 2)B)
)

− 2

(

B +
(D − 4)

4
ψ

)(

(D − 3)(D − 4 + 2n)ψ

+
(

(6 − 2n)D + 8(n − 2)
)

B + 2(n − 2)A

)]

(

B +
(D − 4)

4
ψ

)n−2

.

(2.38)

Ahora, para poder demostrar que (2.30) construye densidades GQTG’s, esto para un

n arbitrario, lo que se debe de hacer es:

A partir de (2.38) escribir las densidades para S(1)| f , S(n+4)| f , S(2)| f , S(n+3)| f ,

S(3)| f , S(n+2)| f y S(n+2)| f .

Evaluar estas densidades en el lado derecho de (2.30)

Evaluar estas densidades en el lado izquierdo de (2.30), es decir:

−
3(n + 3)S(1)| f S(n+4)| f

4(D − 1)(n + 1)
+

3(n + 4)S(2)| f S(n+3)| f

4(D − 1)n
−

(n + 3)(n + 4)S(3)| f S(n+2)| f

4(D − 1)n(n + 1)
. (2.39)

Al hacer los productos correspondientes de las densidades mencionadas, y realizar

la suma de estos valores, obtendremos precisamente que el resultado de esto que

toma la forma de una única densidad de orden (n + 5), dando así esta densidad de

la forma (2.38) para S(n+5)| f , siendo esta la forma que debe de tomar una densidad

GQTG’s. Lo que demuestra que (2.30) es válida y construye las densidades GQTG’s

de órdenes arbitrarios a partir de las densidades de orden inferior.
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CAPÍTULO 3

ESTABILIDAD DE AGUJEROS

NEGROS EN CUATRO DIMENSIONES

3.1. Introducción

Un estudio sobre la estabilidad de los agujeros negros en cuatro dimensiones

muestra que la adición de términos de curvatura superior a la acción gravitatoria

de Einstein-Hilbert puede estabilizar los agujeros negros por debajo de cierta masa.

Estos nuevos agujeros negros tienen un comportamiento termodinámico universal

para valores generales de los acoplamientos de orden superior. Además, estos nue-

vos agujeros negros pueden tener una entropía enorme y una vida infinita, lo que

cambia completamente el proceso de evaporación. También se discute cómo estos

nuevos agujeros negros afectan la teoría de la relatividad general y se proporcionan

ecuaciones detalladas para las propiedades termodinámicas de estos nuevos agu-

jeros negros. Así, se presenta una nueva familia de gravedades de orden superior

que admiten generalizaciones no peludas, estáticas y esféricamente simétricas del

agujero negro de Schwarzschild, y que tienen propiedades termodinámicas univer-

sales y un comportamiento completamente diferente al de los agujeros negros de

Schwarzschild (Bueno & Cano, 2017a).



3.2. Estabilidad universal de agujeros negros en cuatro dimensiones 33

3.2. Estabilidad universal de agujeros negros en cuatro

dimensiones

3.2.1. Agujeros Negros de Orden Superior

Como se mostró en capítulos anteriores,1 podemos trabajar con el Ansatz

(1.27), pero para este caso se considerará D = 4, debido a que trabajaremos en 4

dimensiones.

Así mismo, podemos definir el lagrangiano de la familia de gravedades de

orden superior, que admiten extensiones simples de la solución de Schwarzschild y

cuyas propiedades termodinámicas son de fácil acceso.

L =
1

16πG

[

R +
∞

∑
n=3

λn

M
2(n−1)
c

R(n)

]

, (3.1)

donde se considera que Mc es alguna nueva escala de energía, además los λn son

acoplamientos sin dimensión y n es el orden de la curvatura para cada R(n)
2 inva-

riante, estos, como se vió en capítulos anteriores, están formados por las contraccio-

nes de la métrica y el tensor de Riemann, en este caso no sus derivadas covariantes.

Una vez definido el Lagrangiano, podemos evaluar el ansatz mencionado

anteriormente en este y así obtener la siguiente expresión:

2GM − (1 − f )r =−
∞

∑
n=3

λn

M
2(n−1)
c

(

f ′

r

)n−3 [
f ′3

n
+

(n − 3) f + 2
(n − 1)r

f ′2

− 2
r2 f ( f − 1) f ′ − 1

r
f f ′′( f ′r − 2( f − 1))

]

. (3.2)

Se puede aproximar a una solución analítica en el Horizonte y comprobar el compor-

tamiento asintótico [véase la Sección (2.4.2)]; debido a esto se plantea una solución

numérica que permitirá analizar el comportamiento de los agujeros negros cuando

se aplica la corrección a la acción de Hilbert-Einstein.

1véase la Sección (1.2.2)
2véase en el Capítulo 1 cómo se obtienen estos R(n).
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Además se pueden obtener las siguientes relaciones a partir de utilizar la ex-

presión (2.24), considerando 2kg = 4πT, siendo T la temperatura del agujero negro.

Entonces, reemplazando esta expresión en (3.2) para los dos primeros órdenes en

(r − rh), se obtienen las siguientes relaciones:

2GM = rh −
∞

∑
n=3

λn(4πT)n−1

M
2(n−1)
c rn−1

h

(2n + (n − 1)4πTrh)

n(n − 1)
, (3.3)

1 = 4πTrh +
∞

∑
n=3

λn(4πT)n−1

M
2(n−1)
c rn−3

h

(2n + (n − 1)4πTrh)

n(n − 1)
. (3.4)

Después de este análisis se observa que cambiando los valores de λn, no modifi-

ca cualitativamente estas curvas; esto significa que al cambiar los valores de estos

parámetros, las curvas no cambian en su forma o características generales. En otras

palabras, aunque los valores numéricos de las curvas pueden cambiar, su apariencia

y comportamiento general permanecen iguales.

3.2.2. Termodinámica de Agujeros Negros

En teorías de gravedad con acoplamientos de orden superior, los agujeros ne-

gros muestran un comportamiento termodinámico que se distingue de los agujeros

negros de Schwarzschild. Al aplicar la fórmula de Wald para calcular la entropía de

estas soluciones, se verifica que cumplen con la primera ley de la termodinámica,

que relaciona el cambio en la masa del agujero negro (dM) con su temperatura (T) y

el cambio en su entropía (dS) a través de la ecuación dM = TdS.

En contraste con los agujeros negros de Schwarzschild, estas soluciones pre-

sentan un máximo en la temperatura para un valor específico de masa (Mmax).

Cuando la masa de un agujero negro es mayor que Mmax, su comportamiento es

similar al de un agujero negro de Schwarzschild. Sin embargo, para masas menores

a Mmax, el calor específico de las soluciones es positivo, lo que implica que los aguje-

ros negros pequeños se comportan como sistemas termodinámicos convencionales,

enfriándose a medida que emiten radiación y tendiendo a alcanzar el equilibrio en

presencia de un entorno térmico.
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Este comportamiento termodinámico se observa tan pronto como al menos

uno de los acoplamientos de orden superior es distinto de cero, y no se modifica

cualitativamente al encender acoplamientos adicionales. Todos los agujeros negros

posibles con diferentes valores de λn(≥ 0), excepto el agujero negro de Schwarzs-

child, pertenecen a la misma clase de universalidad.

Cuando la masa de un agujero negro es mucho menor que Mmax (M ≪
Mmax), las expresiones para el radio del horizonte (rh) en función de la masa coin-

ciden con las de una teoría conforme de campos (CFT; del inglés, Conformal field

Theory) tridimensional a temperatura finita, si se identifica la masa M con la den-

sidad de energía de la CFT. En este régimen, la relación M = 2
3 TS es válida para

cualquier valor de λn, siempre que al menos uno sea distinto de cero. Este resulta-

do coincide con lo encontrado en agujeros negros planares asintóticamente Anti-de

Sitter (AdS). Esta relación termodinámica difiere de la relación análoga en agujeros

negros de Schwarzschild, que es M = 2TS. La relación de Schwarzschild también

es válida para valores generales de λn cuando M ≫ Mmax(véase Figura 3.1).

FIGURA 3.1: Temperatura del agujero negro en función de la masa pa-
ra la solución de Schwarzschild (rojo) y para los agujeros negros de
orden superior con λ3 = λ4 = λ5 = λ6 = 1, λn > 6 = 0 (se de-
be tener en cuenta que la línea azul es válida para cualquier Mc). Los
agujeros negros de orden superior se vuelven estables por debajo de
Mmax ∽ M2

P/Mc. La forma de esta curva es cualitativamente la mis-
ma para cualquier otra elección de acoplamientos (excepto λn = 0 para
todos los n). Adaptado de “Universal Black Hole Stability in Four Dimen-
sions” por Bueno y Cano (2017a).
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3.2.3. Evaporación de los agujeros Negros

Se puede analizar cómo el proceso de evaporación de agujeros negros se ve

afectado por el comportamiento termodinámico especial de las nuevas soluciones

en el régimen de masa pequeña. La tasa de pérdida de masa de un agujero negro en

el vacío se puede calcular utilizando la ley de Stefan-Boltzmann

dM(t)

dt
= −4πr2

hσ · T4 , (3.5)

con σ = π2/60. Integrando esta expresión para M ≪ Mmax, se obtiene

M(t) =
M0

(1 + t/t1/2)
, (3.6)

donde t1/2 es la vida media del agujero negro.

Se observa que se requiere un tiempo infinito para que los agujeros negros se

evaporen por completo. La vida media es enorme siempre que Mc sea mucho menor

que MP. Para que la física de los agujeros negros macroscópicos no se vea afectada

por los nuevos acoplamientos, se puede elegir Mc alrededor de 10−9eV.

La descripción semiclásica es válida cuando el radio del horizonte es mucho

mayor que la longitud de onda de Compton correspondiente (rh ≫ λCompton), y la

descripción termodinámica es válida cuando S ≫ 1. Un agujero negro de Schwarzs-

child alcanza la masa de Planck en un tiempo ∆t ∽ M3
0/M4

P, después del cual ambas

condiciones se violan. Sin embargo, en los nuevos agujeros negros, la condición so-

bre la entropía nunca se viola si Mc ≪ MP.

Al comparar cuantitativamente con el caso de Schwarzschild, se muestra que

los nuevos agujeros negros pequeños tienen una vida mucho más larga o incluso

infinita para todos los propósitos prácticos, en contraste con los agujeros negros de

Schwarzschild. Además, todos los agujeros negros, grandes o pequeños, que perte-

necen a la nueva familia tienen vidas útiles infinitas. En el caso de agujeros negros

con M0 > Mmax, el proceso de evaporación sería similar al de Schwarzschild hasta

que la masa restante sea menor que Mmax. A partir de ese momento, la discusión en
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esta sección comenzaría a aplicarse.

Estos resultados sugieren que el proceso de evaporación de agujeros negros

puede verse drásticamente modificado en escalas en las que las correcciones a la

relatividad general se vuelven importantes.
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CAPÍTULO 4

INFLACIÓN GEOMÉTRICA

4.1. Introducción

En el campo de la cosmología teórica, una perspectiva interesante ha surgido

respecto a cómo las correcciones de alta curvatura en la gravedad podrían influir

en la evolución temprana del universo. Según esta visión, modificando la acción de

Einstein-Hilbert, que es la base de la teoría de la relatividad general, para incluir una

serie de términos de alta curvatura, se puede capturar efectos de alta energía que no

están presentes en la teoría estándar. Estas correcciones geométricas, derivadas de

las contracciones del tensor métrico y el tensor de Riemann, llevan a una genera-

lización de las ecuaciones de Friedman (1922). Tradicionalmente, estas ecuaciones

describen cómo el factor de escala del universo, a(t), evoluciona con el tiempo ba-

jo la influencia de la gravedad. Sin embargo, al introducir las correcciones de alta

curvatura, las ecuaciones resultantes se convierten en un conjunto de ecuaciones di-

ferenciales de segundo orden que ofrecen una nueva perspectiva sobre la expansión

o contracción del universo. Dentro de este marco, se han explorado modelos espe-

cíficos, que sugieren una era inflacionaria en el universo temprano como resultado

directo de estas correcciones. Estos modelos propuestos por Arciniega, Bueno et al.

(2020), conocidos como “GeomInf 1” y “GeomInf 2”, indican que el tradicional Big

Bang, propuesto por Lemaître (1927), dominado por la radiación podría ser reem-

plazado por un período de crecimiento exponencial del factor de escala. Es decir,
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en lugar de un inicio con un Big Bang, el universo podría haber experimentado una

fase de inflación geométrica, que eventualmente se enlaza con la fase de materia

oscura fría observada en épocas más tardías del universo. Lo más notable de esta

inflación geométrica es que surge de manera natural a partir de la propia estructu-

ra geométrica del espacio-tiempo, sin la necesidad de introducir campos escalares

adicionales, que son una característica común en muchos modelos de inflación con-

vencionales. Esta nueva aproximación no solo ofrece una interpretación alternativa

de la inflación y la aceleración tardía del universo, sino que también establece una

base para futuras investigaciones. Por ejemplo, el análisis de perturbaciones cosmo-

lógicas dentro de este marco podría proporcionar comparaciones valiosas con los

datos observacionales actuales, desafiando y posiblemente enriqueciendo nuestra

comprensión de la cosmología temprana y la expansión del universo.

4.2. Inflación Geométrica

La acción con la que se trabaja en esta teoría está dada por:

S =
∫ d4x

√
g

16πG

{

−2Λ + R +
∞

∑
n=3

λnL2n−2R(n)

}

. (4.1)

Aquí en esta acción se introducen acoplamientos sin dimensión λn, así como tam-

bién, una nueva escala de energía ∼ L−1.

Los R(n) son GQTG’s que además satisfacen ciertas propiedades deseables,

como tener ecuaciones linealizadas de segundo orden, admitir generalizaciones de

agujeros negros de Schwarzschild(-AdS) y tener un problema de valor inicial bien

planteado en el contexto cosmológico.

i. Alrededor de cualquier fondo con simetría máxima, la teoría posee ecuacio-

nes linealizadas de segundo orden. Esto quiere decir que cuando se estudian

pequeñas perturbaciones alrededor de un espacio-tiempo simétrico, las ecua-

ciones que describen estas perturbaciones son de segundo orden en sus deri-

vadas.
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ii. La teoría admite generalizaciones sin pelo (non-hairy) del agujero negro de

Schwarzschild(-AdS) y, más en general, de las soluciones de Taub-NUT/bolt

en gravedad de Einstein. Estas generalizaciones están caracterizadas por una

única función, gttgrr = −1, y sus propiedades termodinámicas pueden ser

analizadas de manera completamente analítica.

iii. La teoría posee un problema de valor inicial bien planteado en el contexto cos-

mológico. Es decir, admite soluciones cosmológicas de Friedmann-Lemaître-

Robertson-Walker (FLRW), que son las soluciones más comunes utilizadas pa-

ra describir la evolución del universo en la teoría de la relatividad general.

ds2 = −dt2 + a(t)2
(

dr2

1 − kr2 + r2dΩ2
)

, (4.2)

donde las ecuaciones generalizadas de Friedmann asociadas al factor de escala a(t)

son de segundo orden.

Esta teoría gravitacional en cuatro dimensiones cuenta propiedades notables,

como la capacidad de generalizar agujeros negros de Schwarzschild y admitir solu-

ciones cosmológicas de FLRW (Robertson, 1935). Estas teorías están relacionadas

con teorías de dimensiones superiores y han sido estudiadas en diversos grados de

complejidad y orden de curvatura. La representación cúbica en la teoría gravitacio-

nal involucra una combinación lineal de la densidad de Einsteinian Cubic Gravity

(2.7) con:

C = RαβµνR
αβµ

δRνδ − 1
4

RαβµνRαβµνR − 2RαβµνRαµRβν +
1
2

RαβRαβR . (4.3)

Lo cual es trivial cuando se evalúa sobre un ansatz estática y esféricamente simétri-

ca. Quedando la combinación exacta:

R(3) ∝ P − 8C , (4.4)

R(3) =
3
16

[

R3 − 4Q1R − Q2R − 16
3 C1 − 2C2 + 8C3

]

= 1
8(P − ∀C)− 1

16 χ6 + T3 ,

(4.5)

donde P es la densidad correspondiente a Einsteinian cubic gravity, C es una densi-

dad definida por (Hennigar et al., 2017), χ6 es la densidad de Euler de 6-dimensional,
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y T3 es el término definido anteriormente en la ecuación (1) en (Arciniega, Edelstein

& Jaime, 2020), como se mostró en capítulos anteriores, estos dos últimos términos

desaparecen idénticamente para métricas en cuatro dimensiones. En el caso de cur-

vaturas de orden superior, las invariantes son, por supuesto, más complicadas. Para

observar las formas explícitas revisar el apéndice A del trabajo de (Arciniega, Bueno

et al., 2020).

4.3. Ecuaciones de Friedmann generalizadas.

Evaluando sobre un ansatz FLRW de la forma (4.2), siendo este un universo

que es homogéneo e isotrópico, las ecuaciones no lineales completas de (4.1), se

reducen a un par de ecuaciones diferenciales de segundo orden para el factor de

escala, dado que el factor de escala es básicamente una medida de cómo el tamaño

del universo cambia con el tiempo. Si se considera además la métrica de un espacio

plano, k = 0, se obtienen las ecuaciones generalizadas de Friedmann:

3F(H) = 8πGρ + λ , (4.6)

− Ḣ

H
F′(H) = 8πG(ρ + P) , (4.7)

donde:

F(H) ≡ H2 + L−2
∞

∑
n=3

(−1)nλn(LH)2n . (4.8)

Para esto consideraremos el parámetro usual de Hubble H ≡ ȧ/a, siendo este la me-

dida de la tasa a la que el universo se está expandiendo, además ρ es la densidad y P

es la presión de un fluido perfecto, esto nos permite describir de manera idealizada

la materia y la energía del universo. Una vez más si nosotros fijamos el conjunto de

todos los acoplamientos de curvatura superior a cero, tanto (4.6) como (4.7) se redu-

cen a la versión usual de la gravedad de Einstein. Además, al usar ambas ecuaciones

se puede obtener la ecuación de conservación.

dρ

dt
+ 3H(P + ρ) = 0 . (4.9)
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4.4. Modelos Específicos

En este lagrangiano con el que se está trabajando, lo acoplamientos gravita-

cionales λn son parámetros libres. Esto permite o da pie a un gran rango de posibles

modelos con sus propias peculiaridades. Bajo esto se necesita restringir ese gran

rango imponiendo o requiriendo agujeros negros de masa positiva, esto permite

arreglar el signo del primer acoplamiento que no desaparece, esto se podría hacer

λ3 > 0, también es conveniente elegir F(H) como una función bijectiva. Al trabajar

de esta manera se logra evitar situaciones inusuales, como la ausencia de soluciones

para densidades de energía suficientemente altas o la aparición de singularidades

en puntos en los que F(H) alcanza un extremo. El imponer que todos los acopla-

mientos de orden par sean positivo y que los acoplamientos de orden impar sean

cero, es la forma más sencilla de satisfacer estos requisitos. Es decir:

λ2k+1 = 0, λ2k > 0, ∀ k ∈ Z
+ . (4.10)

Cabe resaltar que los impares pueden incluirse de manera segura si son negativas,

excepto para λ3, o también podrían elegirse positivas pero suficientemente peque-

ñas. Así como en la Sección (1.2.2), se pueden elegir los valores relativos de los dife-

rentes acoplamientos. Para observarlo de mejor manera, se considerarán dos mode-

los [véase en la Figura 4.1 y la Figura 4.2] que se pueden comparar con el estándar

ΛCDM1:

Modelo GeomInf 1 : λ2k+1 = 0, λ4+2k =
λ

4!
, k ∈ Z

+ . (4.11)

1ΛCDM; del inglés,Lambda Cold Dark Matter
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FIGURA 4.1: En figura se compara el modelo estándar ΛCDM y Mo-
delo GeomInf 1 . El factor de escala a(t) está en función del tiempo t,
además el factor de escala a se normaliza por a0, que es su valor en un
tiempo posterior t0, cuando las correcciones de alta curvatura se vuel-
ven insignificantes. El modelo ΛCDM predice una singularidad de Big
Bang en t − t0 = −5L, pero el Modelo GeomInf 1 con correcciones de
curvatura superior nunca alcanza el valor a = 0, sino que se aproxima
asintóticamente a cero a medida que t tiende a menos infinito. Adapta-
do de “Geometric Inflation” por Arciniega, Bueno et al. (2020)

Modelo GeomInf 2 : λ3 > 0, λn≥4 =
(−1)nλ3

(n − 4)!
. (4.12)

FIGURA 4.2: Se muestra log(a/a0) en función de (t − t0)/L. En los mo-
delos de inflación geométrica, el Big Bang es reemplazado por un pe-
riodo de crecimiento exponencial, el cual se hace evidente. Adaptado
de “Geometric Inflation” por Arciniega, Bueno et al. (2020)

Asimismo para los modelos anteriores se encuentra F(H). Para el Modelo

GeomInf 1, se tiene:

F(H) = H2 + λ4H8L6e(HL)4
, (4.13)
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y para el Modelo GeomInf 2:

F(H) = H2 + λ2L4H6
[

1 − (HL)2e(HL)2
]

. (4.14)

4.5. Cosmología del universo temprano.

Si consideramos valores pequeños para el factor de escala, se observa que la

radiación domina sobre la materia y la energía oscura. En este régimen, el universo

escala como a(t) ∼ t1/2, lo que predice una aceleración negativa (o desaceleración)

ä/a ∼ −1/(4t2), siendo esto problemático desde la perspectiva de la inflación cós-

mica, que postula que el universo temprano experimentó una rápida expansión,

pero al introducir términos de orden superior en las ecuaciones cosmológicas, este

comportamiento cambia significativamente; impacta la aceleración predicha de la

expansión del universo.

a(t) ∼ tnmax/2 cuando t → 0 . (4.15)

Esto se reduce al resultado en la gravedad de Einstein para nmax = 1. La introduc-

ción crucial de términos de curvatura superior cambia el signo de la aceleración del

factor de escala haciéndola positiva, es decir:

ä(t) > 0 ⇔ nmax > 2 . (4.16)

Asimismo, cuando se incluye la torre completa de términos de curvatura superior,

el factor de escala crecerá más rápido que cualquier polinomio cerca de a = 0. Por

lo tanto, la expansión será al menos exponencial. Esto se puede verificar en los dos

modelos planteados anteriormente, en particular, cuando t → −∞ se encuentra que:

Modelo 1:

a(t) ∼ e−(
−3t

L )
4/3

, (4.17)

Modelo 2:

a(t) ∼ e−(t2/L2) . (4.18)
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Un detalle importante a resaltar y destacar es que gracias a trabajar con estos mo-

delos podemos entender que no hay un “inicio” claro para el universo, es decir no

existe un t = 0 donde comience el universo. En lugar de ello, el comienzo del uni-

verso solo se aproxima asintóticamente a medida que t → −∞, lo que significa que

el universo se extiende infinitamente hacia el pasado.

4.6. Comparación entre Inflación Geométrica y Λ CDM

Al analizar estos modelos y compararlos con el modelo Λ CDM el cual mues-

tra una expansión que parte de una singularidad conocida como el Big Bang. En

cambio, el Modelo de Inflación Geométrica, definido matemáticamente en la ecua-

ción (4.11) y que incorpora correcciones de mayor curvatura, sugiere que el univer-

so nunca partió de una singularidad, sino que se aproximó a ella asintóticamente.

Estas correcciones buscan abordar ciertos problemas asociados con la singularidad

del Big Bang en la cosmología tradicional. Ambos modelos, aunque diferentes en

sus predicciones para el universo temprano, convergen en sus predicciones para el

universo más reciente, lo que demuestra la complejidad y diversidad de las teorías

cosmológicas. Es a través de este tipo de comparaciones y estudios que la ciencia

avanza, refinando constantemente nuestra comprensión del vasto y misterioso uni-

verso en el que residimos.
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CONCLUSIONES

El presente trabajo de investigación ha representado una incursión profunda

y rigurosa en el estudio de las Generalized Quasi-Topological Gravities (GQTG’s), un

área emergente y desafiante en la física teórica. Los objetivos planteados al inicio de

esta investigación se han cumplido satisfactoriamente. A continuación, se presentan

las conclusiones que sintetizan los resultados de esta investigación.

Cumplimiento de Objetivos Generales

Se realizó una revisión exhaustiva de la literatura en GQTG’s, abarcando los

fundamentos teóricos, propiedades y aplicaciones en el estudio de agujeros

negros y evolución cosmológica, lo cual ha permitido establecer un marco ac-

tualizado en este campo emergente.

Se identificaron áreas de investigación y cuestiones abiertas en GQTG’s, como

lo son los modelos inflacionarios y la estabilidad de agujeros negros, ofrecien-

do una visión clara de las limitaciones actuales y delineando caminos promete-

dores para indagaciones futuras, lo que servirá de guía para próximos trabajos

en esta área.

Cumplimiento de Objetivos Específicos

Se analizaron las subclases de GQTG’s y su conexión con otras teorías de gra-

vedad, proporcionando una síntesis de resultados clave que resalta la comple-

mentariedad y el contraste con teorías de curvatura superior como la gravedad
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de Lovelock y las teorías f (R).

Se presentaron y evaluaron soluciones de agujeros negros esféricamente simé-

tricos, enriqueciendo el catálogo de soluciones conocidas y ofreciendo nuevos

insights para la interpretación de observaciones astronómicas y experimen-

tales, así como el desarrollo detallado de los cálculos necesarios para enten-

der tanto el comportamiento asintótico como cerca del horizonte para la teoría

Einsteinian Cubic Gravity.

Se examinaron las fórmulas de recurrencia y las propiedades estructurales ge-

nerales de las GQTG’s, demostrando cómo estos resultados pueden simplificar

y proporcionar nuevas perspectivas en el cálculo de soluciones complejas en

estas teorías, como el proporcionar un código que permite verificar su validez.

Se discutieron los avances en el análisis de la estabilidad de agujeros negros en

cuatro dimensiones, destacando la relevancia de la estabilidad termodinámica

y la relación con la evaporación de agujeros negros, aportando claridad a este

aspecto crucial de la física de agujeros negros.

Se examinaron los modelos alternativos al Modelo ΛCDM, “GeomInf 1” y “Geo-

mInf 2”. Estos modelos destacan en la nueva información que proporcionan al

trabajar con modificaciones de curvatura superior, lo mismo que en cómo el

factor de escala es afectado. Se observa, particularmente en estos modelos, la

idea de que no hay una singularidad, sino que se acerca asintóticamente a ella,

dando así más información que el modelo cosmológico actual.

Contribuciones Adicionales

La integración Python ha resultado favorable para los cálculos extensos, per-

mitiendo una comprensión más profunda de los procesos matemáticos implicados

y ofreciendo una herramienta que permite comprobar los resultados de la literatura

existente, así como se obtuvieron los coeficientes del análisis de la solución cerca del

horizonte, dando así una forma de comprobar lo que se explicaba de la importancia
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del coeficiente a2, observando que todos los an son funciones de a2, esto se obser-

va de manera concreta en los outputs del código en mención. También, como ya se

mencionó, el permitir comprobar la veracidad de la fórmula de recurrencia.

Los apéndices de este trabajo de investigación no solo facilitan la reproduc-

ción de los cálculos realizados, sino que también sirven como material de referencia

valioso para futuras investigaciones, permitiendo a otros investigadores construir

sobre la base sólida establecida por este trabajo.

Perspectivas Futuras

Las Generalized Quasi-Topological Gravities presentan un campo muy intere-

sante para la exploración continua. Este trabajo de investigación sienta las bases

para futuros estudios que pueden expandir el entendimiento de las implicaciones

cosmológicas de estas teorías y su potencial para resolver enigmas en la física fun-

damental. Se espera que los métodos y análisis presentados aquí inspiren y facili-

ten dichos avances. Asimismo, las nuevas investigaciones, se pueden basar en el

análisis proporcionado en los capítulos 3 y 4, ya que son áreas de interés en la in-

vestigación y entendimiento de nuestro universo. Además, se pueden destacar las

áreas de investigación futura prometedoras derivadas del estudio de las Generalized

Quasi-Topological Gravities, subrayando su potencial para avanzar en la física teórica

a través de tres direcciones principales:

1. Implicaciones Cosmológicas: Se destaca la importancia de desarrollar y pro-

fundizar en modelos que incorporen las GQTG’s en consonancia con las ob-

servaciones astronómicas actuales. Esto no solo promete avanzar en nuestra

comprensión del universo temprano y la naturaleza de la energía oscura, sino

que también abre la posibilidad de predecir y explicar fenómenos cosmológi-

cos aún no observados.

2. Unificación de Fuerzas: La estructura matemática de las GQTG’s, como se ha

discutido en este trabajo, sugiere un camino intrigante hacia la exploración de

nuevas geometrías del espacio-tiempo, que podrían ser clave en la búsqueda
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de una teoría unificada de las fuerzas fundamentales. Investigaciones futuras

en este ámbito podrían descubrir las conexiones subyacentes entre la relativi-

dad general, la mecánica cuántica, y potencialmente otras teorías fundamen-

tales.

3. Física de Agujeros Negros: El análisis detallado realizado en este trabajo so-

bre las soluciones de agujeros negros y sus propiedades dentro de las GQTG’s

establece un punto de partida sólido para exploraciones más profundas en la

física de agujeros negros. Esto incluye la termodinámica, la radiación de Haw-

king, y la posible solución a problemas como la paradoja de la información de

los agujeros negros.

La investigación en estos campos no solo promete avanzar en la teoría, sino

también en nuestra comprensión del cosmos, marcando potencialmente el camino

hacia descubrimientos revolucionarios en física teórica.
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APÉNDICE A

PRIMERA LEY DE LA

TERMODINÁMICA DE AGUJEROS

NEGROS

A.1. Primera Ley para un Agujero negro de Kerr

Consideremos un agujero negro de Kerr de masa M, carga Q y momento

angular L⃗. Además su área racionalizada está dada por:

α = r2
+ + a2

= 2Mr+ − Q2 .
(A.1)

Considerando que:

a⃗ = L⃗/M , (A.2)

r± = M ± (M2 − Q2 − a2)1/2 , (A.3)

donde r+ es el horizonte de eventos y r− es el horizonte de Cauchy.
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Para lograr obtener una expresión para dM, lo primero que haremos será

diferenciar (A.1), es decir:

dα =
∂α

∂M
dM +

∂α

∂⃗L
dL +

∂α

∂Q
dQ . (A.4)

Despejando dM, tenemos la siguiente expresión:

dM = Θdα + Ω⃗ · d⃗L + ΦdQ , (A.5)

donde:

Θ =
1
∂α
∂M

=

√

− L2

M2 + M2 − Q2

4M

(

√

− L2

M2 + M2 − Q2 + M

)

− 2Q2
, (A.6)

Ω⃗ =
1
∂α
∂M

∂α

∂⃗L
=

2⃗L

M

(

4M

(

√

− L2

M2 + M2 − Q2 + M

)

− 2Q2

) , (A.7)

Φ =
1
∂α
∂M

∂α

∂Q
=

MQ3
(

M −
√

− L2

M2 + M2 − Q2

)

+ 2L2Q

M (4L2 + Q4)
, (A.8)

Las expresiones anteriores se pueden reescribir como:

Θ =
1
4
(r+ − r−)

α
, (A.9)

Ω⃗ =
a⃗

α
, (A.10)

Φ =
Qr+

α
. (A.11)
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APÉNDICE B

APLICACIÓN DEL MÉTODO PARA

IDENTIFICAR GRAVEDADES DE

DERIVADA SUPERIOR

En el trabajo realizado por Bueno y Cano (2017b), se propone un método muy

simple y eficiente para identificar las teorías de gravedad de curvatura superior con

soluciones simples de agujeros negros y para caracterizar esas soluciones. Al mismo

tiempo, las soluciones construidas de esta manera corresponden al campo exterior

de una distribución de masa esféricamente simétrica, y las teorías correspondientes

son automáticamente equivalentes a la gravedad de Einstein a nivel linealizado.

Para ilustrar este método, utilizando lo planteado en el Capítulo (2), aquí se

aplicará a la teoría cuadrática en D dimensiones,

Lcuadrático =
1

16πG

[

−2Λ0 + R + α1R2 + α2RαβRαβ + α3RαβγδRαβγδ
]

. (B.1)

Evaluando el ansatz (1.27) en (B.1), se obtiene el lagrangiano efectivo (B.2) que de-

pende de N y de f siendo este un lagrangiano unidimensional, es decir, es como un

lagrangiano de mecánica clásica, donde lo que hace las veces de tiempo es r y lo que
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hace las veces de la posición son dos funciones (Bueno & Cano, 2017b):

LN, f = NL f + N′F1 + N′′F2 , (B.2)

donde F1 y F2 son funciones a determinar.

Considerando este lagrangiano efectivo, y calculando las ecuaciones de Euler-

Lagrange asociados a f y N, se puede demostrar que:

A partir de variar la ecuación de E-L con respecto a f , se impone que N = 1.

A partir de variar la ecuación de E-L con respecto a N da una ecuación para F

que se puede integrar una vez y se obtiene (B.3)

F0 − F1 + F′
2 = C . (B.3)

Para dimensión D, se obtiene la siguiente forma del Lagrangiano efectivo:

L f =
1

16πG

[

−2Λ0rD−2 + (D − 2)(D − 3)rD−4( f − 1) + 2(D − 2)rD−3 f ′ + rD−2 f ′′

α1rD−6((D − 2)(D − 3)( f − 1) + 2(D − 2)r f ′ + r2 f ′′)2

α2rD−6((D − 2)((D − 3)( f − 1) + r f ′) + ((D − 2)r f ′ + r2 f ′′)2/2)

α3rD−6(2(D − 2)(D − 3)( f − 1)2 + 2(D − 2)r2 f ′2 + r4 f ′′4)
]

.

(B.4)

A partir de la ecuación anterior, es sencillo calcular la derivada de Euler-

Lagrange, lo que da:

δL f

δ f
=
(D − 2)
16πG

[

(3α1 + α2 + α3)(4(D − 3)( f − 1)− 2r2 f ′′)

+(2α1 + α2 + 2α3)((D − 4)r2 f ′′ + 2r2 f (3) + r4 f (4))
]

.
(B.5)



54
Apéndice B. Aplicación del Método para identificar gravedades de derivada

superior

Obteniendo F0, F1, F2, considerando δL f /δ f = 0 ∀ f (r) fijando los valores de: α1 =

α3 = −α2/4 = α

16πGF0 =(D − 2)rD−3(1 − 2r2Λ0/((D − 2)(D − 1))− f )

+ f ′(2(D − 3)(D − 2)rD−4( f − 1)α − rD−2)

+ (D − 4)(D − 3)(D − 2)rD−5( f − 1)2α , (B.6)

16πGF1 =rD−5(−3 f ′r3 + 2(D − 3)(D − 2)(5 f − 3) f ′rα

− 2(D − 2) f (r2 − 2(D − 4)(D − 3)( f − 1)α)) , (B.7)

16πGF2 =− 2rD−4 f (r2 + 2(D − 3)(D − 2)α(1 − f )) . (B.8)

Utilizando estos resultados en la ecuación (B.3) podemos obtener la ecuación para

f (r)

f (r) = 1 + r2

2(D−3)(D−4)α

[

1 ∓
√

1 + 8αΛ0(D−4)(D−3)
(D−2)(D−1) + 64απGM(D−3)(D−4)

(D−2)Ω
(D−2)rD−1

]

(B.9)

B.1. Gauss-Bonnet D = 5

Para observar un caso particular, se considerará la acción de Einstein-Gauss-

Bonnet en D = 5. Es decir:

SEGB =
1

16πG

∫

d5xL =
1

16πG

∫

d5x
√

−g [−2Λ0 + R + αχ4] , (B.10)

siendo χ4 el término de Gauss-Bonnet1 . Para poder obtener la función f(r), utiliza-

remos el Ansatz (1.27) para D = 5:

ds2
N, f = −N2(r) f (r)dt2 +

1
f (r)

dr2 + r2
[

dθ2
1 + sin2 θ1

(

dθ2
2 + sin2 θ2dθ2

3

)]

, (B.11)

1χ4 = R2 − 4RαβRαβ + RαβγδRαβγδ.
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donde:

L f =− r3 f ′′(r)− 12αr f ′′(r) + 12αr f (r) f ′′(r)− 6r2 f ′(r) + 12αr f ′(r)2

− 24α f ′(r) + 24α f (r) f ′(r)− 6r f (r)− 2Λ0r3 + 6r ,

F1 =− 3r3 f ′(r)− 36αr f ′(r) + 60αr f (r) f ′(r)− 6r2 f (r) + 24α f (r)2 − 24α f (r) ,

F2 =− 2r3 f (r) + 24αr f (r)2 − 24αr f (r) .

(B.12)

Además, se puede demostrar que L f es una derivada total, es decir, que existe una

función F0 tal que:

L f = F′
0 . (B.13)

Integrando (B.12) se tiene:

F0(r, f , f ′) = − 1
12α

[

r3 f ′(r)2 − 4α(r f (r) f ′(r)− 2 f (r)) + 2r3 f (r) + 2r3Λ0
]

+ C ,

F0 = −r
(

12α − 12α f (r) + r2
)

f ′(r)− 3 f (r)
(

4α + r2
)

+ 6α f (r)2 − Λ0r4

2 + 3r2 . (B.14)

Una vez que tenemos F0, F1 y F2, reemplazamos en (B.3), se reduce a la siguiente

expresión:

−3 f (r)
(

4α + r2
)

+ 6α f (r)2 − Λ0r4

2
+ 3r2 = C . (B.15)

Como se observa, se obtuvo una ecuación polinómica de grado 2. Resolviendo la

ecuación (B.15) con C = 16πGM
Ω(D−2)

para f (r):

f (r) = 1 +
r2

4α
±
√

1 +
Λ0r4

12α
+

r4

16α2 +
8πGM

3αΩ
, (B.16)

f (r) = 1 +
r2

4α
±
√

1 +
Λ0r4

12α
+

r4

16α2 +
2GM

αr3 . (B.17)

Esta función nos permite calcular rh, siendo rh aquel valor para que f (rh) = 0.
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superior

B.2. Gauss-Bonnet D=6

Utilizando el siguiente Ansatz en D = 6:

ds2 = − f (r)N(r)2dt2 +
dr2

f (r)
+ r2dΩ2

6 , (B.18)

donde dΩ2
4 = dθ2

1 + sin2(θ1)dθ2
2 + sin2(θ1)sin2(θ2)dθ2

3 + sin2(θ1)sin2(θ2)sin2(θ3)dθ2
4

es el elemento de ángulo sólido en 6 dimensiones.

Obteniendo así:

L f =24α − r4 f ′′(r)− 24αr2 f ′′(r) + 24αr2 f (r) f ′′(r)− 8r3 f ′(r) + 24αr2 f ′(r)2 − 96αr f ′(r)

+ 96αr f (r) f ′(r)− 12r2 f (r) + 24α f (r)2 − 48α f (r)− 2Λ0r4 + 12r2 ,
(B.19)

F0(r) = −r4 f ′(r)− 24αr2 f ′(r) + 24αr2 f (r) f ′(r)− 4r3 f (r) + 24αr f (r)2

− 48αr f (r)− 1
5

2Λ0r5 + 4r3 + 24αr , (B.20)

F1(r) = −3r4 f ′(r)− 72αr2 f ′(r) + 120αr2 f (r) f ′(r)− 8r3 f (r) + 96αr f (r)2

− 96αr f (r) , (B.21)

F2(r) = −2r4 f (r) + 48αr2 f (r)2 − 48αr2 f (r) . (B.22)

Reemplazando en:

F0 − F1 + F′
2 = 0 . (B.23)

Se obtiene:

−4 f (r)
(

r3 + 12αr
)

+ 24αr f (r)2 − 1
5

2Λ0r5 + 4r3 + 24αr = C . (B.24)

Resolviendo esta ecuación cuadrática, donde C = 16πGM
Ω

, se obtienen las siguientes

2 soluciones:

f (r) = 1 +
r2

12α
∓

√

480παGMr
Ω

+ 12αΛ0r6 + 5r6

12
√

5αr
. (B.25)

Reduciendo (B.25) se tiene:

f (r) = 1 +
r2

12α
∓
√

2πGM

3αrΩ
+

r4

144α2 +
Λ0r4

60α
. (B.26)
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APÉNDICE C

VERIFICACIÓN DE LA FÓRMULA DE

RECURRENCIA

El código Python desarrollado tiene como objetivo principal verificar la fór-

mula de recurrencia (2.30) [véase la Sección (2.5.1)]. Una característica destacada

de este código es su capacidad para calcular las densidades GQTG’s en cualquier

orden deseado. Lo notable es que no solo realiza estos cálculos, sino que también

ofrece la posibilidad de exportar las densidades de forma visual, lo que facilita su

interpretación y análisis. Además, este código está diseñado para permitir el manejo

simbólico de las densidades obtenidas, brindando así un enfoque versátil y eficiente

para trabajar con estos datos en un contexto más amplio.

C.1. Código en Python

#Paquetes.

from sympy import symbols , Function , diff , expand , collect , apart

from sympy import init_printing , Eq , simplify , factor , cancel

#Salida en formato Latex

init_printing(use_latex=True)
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# Definir Variables.

D, n, r, A, B, psi = symbols(’D n r A B psi’, real=True)

S1 , S2 , S3 = symbols(’S_ {(1)}| _f S_ {(2)}| _f S_ {(3)}| _f’, real=True)

Sn2 , Sn3 = symbols(’S_{(n+2)}| _f S_{(n+3)}| _f ’,real=True)

Sn4 , Sn5 = symbols(’S_{(n+4)}| _f S_{(n+5)}| _f’,real=True)

S = Function(’S’)(n)

# Definicion de las densidades GQT usando la ecuacion (2.31).

def S_density(n):

T11 = (D-4)* psi - (D-6)*B+2*A

T12 = (D-4 + 2*n)*psi - 2*(n-2)*B

term1 = (n-1) * (T11) * (T12)

T21 = (D -3)*(D -4+2*n)*psi

T22 = ((6 -2*n)*D + 8*(n -2))*B+2 * (n-2) * A

term2 = -2 * (B + (D -4)/4* psi) * ( T21 + T22)

return 0.5 * (term1 + term2) * (B + (D -4)/4* psi )**(n-2)

# Obtener las densidades para diferentes valores de n.

S1_f = S_density (1)

S2_f = S_density (2)

S3_f = S_density (3)

Sn2_f = S_density(n+2)

Sn3_f = S_density(n+3)

Sn4_f = S_density(n+4)

Sn5_f = S_density(n+5)

# Evaluacion de los terminos en formula de recurrencia (2.23) usando (2.31).

def S_recurrency(m):

n = m - 5

term1 = -(3*(n+3)* S1_f*Sn4_f )/(4*(D -1)*(n+1))

term2 = (3*(n+4)* S2_f*Sn3_f )/(4*(D-1)*n)

term3 = -((n+3)*(n+4)* S3_f*Sn2_f )/(4*(D-1)*n*(n+1))

return term1 + term2 + term3
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#Comprobacion de la premisa propuesta.

if S_recurrency(n+5). equals(S_density(n+5)):

print(’Lo que queda demostrado ’)

else:

print(’No se pudo demostrar ’)

#Modelo para exportar las distintas densidades.

display(Eq(S1 ,S1_f))

display(Eq(S2 ,S2_f))

display(Eq(S3 ,S3_f))

display(Eq(Sn2 ,Sn2_f ))

display(Eq(Sn3 ,Sn3_f ))

display(Eq(Sn4 ,Sn4_f ))
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APÉNDICE D

COMPORTAMIENTO EN EL

HORIZONTE

D.1. Valores para los coeficientes a3, a4

Como se indicó en la Sección (2.4.2), a partir de expandir en más ordenes,

podemos encontrar los coeficientes, donde se observa, ya que aparecen de manera

lineal, en función del coeficiente a2, así, vemos que:

a3 =
1

144G2κgλr2
h(κgrh + 1)

[

− 48a2
2G2κgλr3

h + 192a2G2κ2
gλr2

h + 144a2G2κgλrh

+ a2r4
h − 144G2κ2

gλ − 192G2κ3
gλrh + 2κgr3

h

]

,
(D.1)

a4 =
1

384G2r3
hκg(1 + rhκg)λ

[

− 16a3
2G2λr4

h + 192a2
2G2κgλr3

h + 48a2
2G2λr2

h

− 48a2a3G2λr3
h − 576a2G2κ2

gλr2
h − 288a2G2κgλrh + a2r4

h + 576a3G2κ2
gλr3

h

+ 336a3G2κgλr2
h + a3r5

h + 240G2κ2
gλ + 384G2κ3

gλrh − 336a2a3G2κgλr4
h

]

.

(D.2)

D.2. Código Python

El código Python que se presenta a continuación está diseñado para evaluar

la función f (r), tal como se describe en la forma (2.24), en el contexto de la ecuación
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diferencial (2.11). Esta implementación facilita una comprensión más profunda del

comportamiento de f (r) cerca del horizonte. El código no solo calcula los valores de

f (r) en diferentes órdenes (n) de la expansión de Taylor, sino que también ofrece la

posibilidad de visualizar estos cálculos, mejorando así la interpretación y el análisis

de los resultados obtenidos.

from sympy import symbols , diff , simplify , Eq

from sympy import init_printing , series ,collect

#Salida en formato Latex

init_printing(use_latex=True)

# Definicion de simbolos

kappaG , rh , r0 , G, lambda_ , M = symbols(’kappa_G r_h r_0 G lambda M’)

r = symbols(’r’)

nmax = int(input(’Ingresar n=’))

# Definicion de f(r)

a = symbols(’a2 a3 a4 a5 a6’) # Simbolos para los coeficientes a2 ,...

f = 2 * kappaG * (r - rh)

f += sum([a[n-2] * (r - rh)**n for n in range(2, nmax + 1)])

# Calculo de las derivadas de f(r)

f_prime = diff(f, r)

f_double_prime = diff(f_prime , r)

# Sustitucion de f(r) en la ecuacion diferencial

eq1 = -(f - 1) * r - G**2 * lambda_ * (

4 * f_prime **3 + 12 * f_prime **2 / r

- 24 * f * (f - 1) * f_prime / r**2

- 12 * f * f_double_prime * (f_prime - 2 * (f - 1) / r)) - 2*G*M

# Expansion hasta el n orden

eq_expanded = series(eq1 , r, rh , nmax). removeO ()
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# Organizar en funcion de las potencias de (r - rh)

eq_organized = collect(eq_expanded , (r - rh))

# Visualizacion

display(Eq(eq_organized ,0))
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from sympy import symbols , diff , simplify , Eq

from sympy import init_printing , series ,collect

#Salida en formato Latex

init_printing(use_latex=True)

# Definicion de simbolos

kappaG , rh , r0 , G, lambda_ , M = symbols(’kappa_G r_h r_0 G lambda M’)

r = symbols(’r’)

nmax = int(input(’Ingresar n=’))

# Definicion de f(r)

a = symbols(’a2 a3 a4 a5 a6’) # Simbolos para los coeficientes a2 ,...

f = 2 * kappaG * (r - rh)

f += sum([a[n-2] * (r - rh)**n for n in range(2, nmax + 1)])

# Calculo de las derivadas de f(r)

f_prime = diff(f, r)

f_double_prime = diff(f_prime , r)

# Sustitucion de f(r) en la ecuacion diferencial

eq1 = -(f - 1) * r - G**2 * lambda_ * (

4 * f_prime **3 + 12 * f_prime **2 / r

- 24 * f * (f - 1) * f_prime / r**2

- 12 * f * f_double_prime * (f_prime - 2 * (f - 1) / r)) - 2*G*M

# Expansion hasta el n orden

eq_expanded = series(eq1 , r, rh , nmax). removeO ()

# Organizar en funcion de las potencias de (r - rh)

eq_organized = collect(eq_expanded , (r - rh))

# Visualizacion

display(Eq(eq_organized ,0))
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