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Abstract

A search for squarks and gluinos in final states containing high-pT jets, missing trans-
verse momentum and no electrons or muons is presented. The data were recorded in 2012
by the ATLAS experiment in

√
s = 8 TeV proton-proton collisions at the Large Hadron

Collider, with a total integrated luminosity of 20.3 fb−1. No significant excess above the
Standard Model expectation is observed. In a simplified model with only gluinos and the
lightest neutralino, gluino masses below 1350 GeV are excluded at the 95% confidence level
when the lightest neutralino is massless. For a simplified model involving the strong pro-
duction of squarks of the first two generations, with decays to a massless lightest neutralino,
squark masses below 780 GeV are excluded. In MSUGRA/CMSSM models with tan β = 30,
A0 = −2m0 and µ > 0, squarks and gluinos of equal mass are excluded for masses below
1700 GeV. These limits extend the region of supersymmetric parameter space excluded by
previous searches with the ATLAS detector.

The following have been revised with respect to the version dated May 16, 2013:
squark mass contours in Figures 5 and 16 (left), mg̃ − mq̃ plane exclusion limits in Figures
5 and 16 (right) and mass limit values for the MSUGRA/CMSSM scenario; cross-sections

and resulting exclusion limits for the simplified phenomenological MSSM scenario (Figures
6 and 17).
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1 Introduction

Many extensions of the Standard Model (SM) include heavy coloured particles, some of which could be
accessible at the Large Hadron Collider (LHC) [1]. The squarks and gluinos of supersymmetric (SUSY)
theories [2–10] form one class of such particles. This note presents a new ATLAS search for squarks
and gluinos in final states containing only jets and large missing transverse momentum. Interest in this
final state is motivated by the large number of R-parity conserving models [11–15] in which squarks, q̃,
and gluinos, g̃, can be produced in pairs {g̃g̃, q̃q̃, q̃g̃} and can decay through q̃ → qχ̃0

1 and g̃ → qq̄χ̃0
1

to weakly interacting lightest neutralinos, χ̃0
1. The χ̃0

1 is the lightest SUSY particle (LSP) and escapes
the detector unseen. The analysis presented here updates previous ATLAS results obtained using similar
selections [16–19]. Events with reconstructed electrons or muons are vetoed to avoid overlap with a
related ATLAS search [20, 21]. The search strategy was optimised in the (mg̃,mq̃)-plane (where mg̃,mq̃

are the gluino and squark masses respectively) for a range of models, including a simplified one in which
all other supersymmetric particles, except for the lightest neutralino, were given masses beyond the reach
of the LHC. Although mostly interpreted in terms of SUSY models, the main results of this analysis (the
data and expected background event counts in the signal regions) are relevant for constraining any model
of new physics that predicts production of jets in association with missing transverse momentum.

2 The ATLAS Detector and Data Samples

The ATLAS detector [22] is a multipurpose particle physics detector with a forward-backward sym-
metric cylindrical geometry and nearly 4π coverage in solid angle.1 The layout of the detector fea-
tures four superconducting magnet systems, which comprise a thin solenoid surrounding inner track-
ing detectors (covering |η| < 2.5) and three large toroids supporting a muon spectrometer (covering
|η| < 2.5). The calorimeters are of particular importance to this analysis. In the pseudorapidity region
|η| < 3.2, high-granularity liquid-argon (LAr) electromagnetic (EM) sampling calorimeters are used. An
iron/scintillator-tile calorimeter provides hadronic coverage over |η| < 1.7. The end-cap and forward
regions, spanning 1.5 < |η| < 4.9, are instrumented with LAr calorimeters for both EM and hadronic
measurements.

The data sample used in this analysis was collected in 2012 with the LHC operating at a centre-
of-mass energy of 8 TeV. Application of beam, detector and data-quality requirements resulted in a
total integrated luminosity of 20.3 fb−1. The uncertainty on the integrated luminosity is ±2.8%, derived
by following the same methodology as that detailed in Ref. [23] using a preliminary calibration of the
luminosity scale derived from beam-separation scans performed in November 2012. The trigger required
events to contain a leading jet with an uncorrected transverse momentum (pT) above 80 GeV and an
uncorrected missing transverse momentum above 100 GeV. The trigger reached its full efficiency for
events with a reconstructed jet with pT exceeding 130 GeV and more than 160 GeV of missing transverse
momentum. For the data sample studied the trigger is fully efficient.

3 Object Reconstruction

Jet candidates are reconstructed using the anti-kt jet clustering algorithm [24,25] with a radius parameter
of 0.4. The inputs to this algorithm are clusters [26,27] of calorimeter cells seeded by those with energy
significantly above the measured noise. Jet momenta are constructed by performing a four-vector sum

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector
and the z-axis along the beam pipe. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle
around the beam pipe. The pseudorapidity η is defined in terms of the polar angle θ by η = − ln tan(θ/2).
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over these cell clusters, treating each as an (E, ~p) four-vector with zero mass. The jets are corrected for
energy from additional proton-proton collisions in the same or neighbouring bunch crossings (pile-up)
using a method, suggested in Ref. [28], which estimates the pile-up activity in any given event, as well as
the sensitivity of any given jet to pile-up. The method subtracts a contribution from the jet energy equal
to the product of the jet area and the event average energy density. The local cluster weighting (LCW)
jet calibration method [26, 29] is used to classify topological cell clusters within the jets as either being
of electromagnetic or hadronic origin and based on this classification applies specific energy corrections
derived from a combination of Monte Carlo (MC) simulation and data. Further corrections, referred to
as ‘jet energy scale’ or ‘JES’ corrections below, are derived from MC and data and used to calibrate the
energies of jets to the mean scale of their constituent particles [26]. Only jet candidates with pT > 20 GeV
after all corrections are retained. Jets are identified as originating from heavy-flavour decays using the
‘MV1’ neural network based b-tagging algorithm with a 70% efficiency operating point [30]. Candidate
b-tagged jets must possess pT > 40 GeV and |η| < 2.5.

Electron candidates are required to have pT > 10 GeV and |η| < 2.47, and to pass electron shower
shape and track selection criteria based upon those described in Ref. [31], but modified to reduce the
impact of pile-up and to match tightened trigger requirements. Muon candidates are formed by combin-
ing information from the muon spectrometer and inner tracking detectors as described in Refs. [32, 33]
and are required to have pT > 10 GeV and |η| < 2.4. Reconstructed photons are used to constrain Z+jet
backgrounds (see below), although they are not used in the main analysis. Photon candidates are required
to possess pT > 130 GeV and |η| < 1.37 or 1.52 < |η| < 2.47, and to pass photon shower shape and
electron rejection criteria [34].

Following the steps above, overlaps between candidate jets with |η| < 2.8 and leptons (electrons or
muons) are resolved as follows. First, any such jet candidate lying within a distance ∆R ≡

√
(∆η)2 + (∆φ)2 =

0.2 of an electron is discarded; then any lepton candidate remaining within a distance ∆R = 0.4 of any
surviving jet candidate is discarded.

The measurement of the missing transverse momentum two-dimensional vector Emiss
T (and its magni-

tude Emiss
T ) is based on the calibrated transverse momenta of all jet and lepton candidates and all calorime-

ter clusters not associated to such objects [35]. Following this step, all jet candidates with |η| > 2.8 are
discarded. Thereafter, the remaining lepton and jet candidates are considered “reconstructed”, and the
term “candidate” is dropped.

4 Signal and Control Region Definitions

Following the object reconstruction described above, events are discarded if any electrons or muons
with pT > 10 GeV remain, or if they have any jets failing quality selection criteria designed to suppress
detector noise and non-collision backgrounds (see e.g. Ref. [36]), or if they lack a reconstructed primary
vertex associated with five or more tracks. The criteria applied to jets include requirements on the fraction
of the transverse momentum of the jet carried by charged tracks, and on the fraction of the jet energy
contained in the electromagnetic layers of the calorimeter. A consequence of these requirements is that
events containing hard photons have a high probability of failing the signal region selection criteria.

This analysis aims to search for the production of heavy SUSY particles decaying into jets and stable
lightest neutralinos, with the latter creating missing transverse momentum. Because of the high mass
scale expected for the SUSY signal, the ‘effective mass’, meff , is a powerful discriminant between the
signal and most Standard Model backgrounds. When selecting events with at least N jets, meff is defined
to be the scalar sum of the transverse momenta of the leading N jets and Emiss

T . The final signal selection
uses requirements on meff(incl.), which sums over all jets with pT > 40 GeV and Emiss

T . Requirements
placed on meff and Emiss

T , which suppress the multi-jet background, formed the basis of the previous
ATLAS jets + Emiss

T + 0-lepton SUSY searches [17–19]. The same strategy is adopted in this analysis.
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Requirement

Channel

A (2-jets) B (3-jets) C (4-jets) D (5-jets) E (6-jets)

L M M T M T – L M T

Emiss
T [GeV] > 160

pT( j1) [GeV] > 130

pT( j2) [GeV] > 60

pT( j3) [GeV] > – 60 60 60 60

pT( j4) [GeV] > – – 60 60 60

pT( j5) [GeV] > – – – 60 60

pT( j6) [GeV] > – – – – 60

∆φ(jeti,Emiss
T )min > 0.4 (i = {1, 2, (3 if pT( j3) > 40 GeV)}) 0.4 (i = {1, 2, 3}), 0.2 (pT > 40 GeV jets)

Emiss
T /meff(N j) > 0.2 –a 0.3 0.4 0.25 0.25 0.2 0.15 0.2 0.25

meff(incl.) [GeV] > 1000 1600 1800 2200 1200 2200 1600 1000 1200 1500

(a) For SR A-medium the cut on Emiss
T /meff(N j) is replaced by a requirement Emiss

T /
√

HT > 15 GeV1/2.

Table 1: Selection criteria used to define each of the channels in the analysis. Each channel is divided
into between one and three signal regions on the basis of the requirements listed in the bottom two rows.
The signal regions are indicated in the third row from the top and are denoted ‘loose’ (L), ‘medium’
(M) and ‘tight’ (T). The Emiss

T /meff cut in any N jet channel uses a value of meff constructed from only
the leading N jets (indicated in parentheses in the second row). However, the final meff(incl.) selection,
which is used to define the signal regions, includes all jets with pT > 40 GeV.

The requirements used to select jets and leptons are chosen to give sensitivity to a broad range of
SUSY models. In order to achieve maximal reach over the (mg̃,mq̃)-plane, several analysis channels are
defined. Squarks typically generate at least one jet in their decays, for instance through q̃ → qχ̃0

1, while
gluinos typically generate at least two jets, for instance through g̃ → qq̄χ̃0

1. Processes contributing to
q̃q̃, q̃g̃ and g̃g̃ final states therefore lead to events containing at least two, three or four jets, respectively.
Decays of heavy SUSY and SM particles produced in q̃ and g̃ cascades tend to further increase the final
state multiplicity.

Five inclusive analysis channels, labelled A to E and characterised by increasing jet multiplicity from
two to six, are defined in Table 1. Each channel is used to construct between one and three signal regions
(SRs) with ‘loose’, ‘medium’, or ‘tight’ selections distinguished by requirements placed on Emiss

T /meff

and meff(incl.). The lower jet multiplicity channels focus on models characterised by squark pair pro-
duction with short decay chains, while those requiring high jet multiplicity are optimised for gluino pair
production and/or long cascade decay chains. In SR A-medium the cut on Emiss

T /meff is replaced by
a requirement on Emiss

T /
√

HT (where HT is defined as the scalar sum of the transverse momenta of all
pT > 40 GeV jets), which has been found to lead to enhanced sensitivity to models characterised by q̃q̃
production with a large q̃–χ̃0

1 mass splitting.
In Table 1, ∆φ(jet,Emiss

T )min is the smallest of the azimuthal separations between Emiss
T and the re-

constructed jets. For channels A and B, the selection requires ∆φ(jet,Emiss
T )min > 0.4 using up to three

leading jets with pT > 40 GeV if present in the event. For the other channels an additional requirement
∆φ(jet,Emiss

T )min > 0.2 is placed on all jets with pT > 40 GeV. Requirements on ∆φ(jet,Emiss
T )min and

Emiss
T /meff are designed to reduce the background from multi-jet processes.

Standard Model background processes contribute to the event counts in the signal regions. The
dominant sources are: W+jets, Z+jets, top quark pairs, single top quarks, and multiple jets. The produc-
tion of semi-leptonically decaying dibosons is a small component (<13%) of the total background and
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CR SR background CR process CR selection

CRY Z(→ νν)+jets γ+jets Isolated photon

CRQ multi-jets multi-jets Reversed ∆φ(jet,Emiss
T )min and Emiss

T /meff(N j) requirementsa

CRW W(→ `ν)+jets W(→ `ν)+jets 30 GeV < mT (`, Emiss
T ) < 100 GeV, b-veto

CRT tt̄ and single-t tt̄ → bbqq′`ν 30 GeV < mT (`, Emiss
T ) < 100 GeV, b-tag

(a) For SR A-medium the selection requirement placed on Emiss
T /
√

HT is reversed.

Table 2: Control regions used in the analysis: the main targeted background in the SR, the process
used to model the background, and main CR cut(s) used to select this process are given. The transverse
momenta of leptons(photons) used to select CR events must exceed 25(130) GeV.

is estimated with MC simulated data normalised to theoretical cross-section predictions. The majority
of the W+jets background is composed of W → τν events, with the τ-lepton decaying to hadrons, or
W → eν, µν events in which no electron or muon candidate is reconstructed. The largest part of the
Z+jets background comes from the irreducible component in which Z → νν̄ decays generate large Emiss

T .
Top quark pair production followed by semi-leptonic decays, in particular tt̄ → bb̄τνqq′ with the τ-lepton
decaying to hadrons, as well as single top quark events, can also generate large Emiss

T and pass the jet and
lepton requirements at a non-negligible rate. The multi-jet background in the signal regions is caused by
misreconstruction of jet energies in the calorimeters leading to apparent missing transverse momentum,
as well as by neutrino production in semileptonic decays of heavy quarks. Extensive validation of the
Monte Carlo simulation against data has been performed for each of these background sources and for a
wide variety of control regions (CRs).

To estimate the backgrounds in a consistent and robust fashion, four control regions are defined for
each of the 10 signal regions, giving 40 CRs in total. The orthogonal CR event selections are designed to
provide independent data samples enriched in particular background sources. Each ensemble of one SR
and four CRs constitutes a different ‘stream’ of the analysis. The CR selections are optimised to maintain
adequate statistical weight and low SUSY signal contamination, while minimising as far as possible the
systematic uncertainties arising from the extrapolation to the SR.

The CRs are listed in Table 2. CRY is used to estimate the contribution of Z(→ νν)+jets background
events to each SR by selecting a sample of γ+jets events with pT(γ) > 130 GeV. CRQ uses reversed
selection requirements placed on ∆φ(jet,Emiss

T )min and on Emiss
T /meff(N j) (Emiss

T /
√

HT in SR A-medium)
to produce data samples enriched in multi-jet background events. CRW and CRT use respectively a b-jet
veto or b-jet requirement together with a requirement on the transverse mass (mT) of a pT > 25 GeV
lepton and Emiss

T to select samples of W(→ `ν)+jets and semi-leptonic tt̄ background events. These sam-
ples are used to estimate respectively the W+jets and combined tt̄ and single-top background populations.
With the exception of SR A-loose, the CRW and CRT selections do not use the SR selection requirements
applied to ∆φ(jet,Emiss

T )min or Emiss
T /meff(N j) (Emiss

T /
√

HT in SR A-medium) in order to increase CR data
event statistics without significantly increasing theoretical uncertainties associated with the background
estimation procedure. For the same reason the final meff(incl.) requirements are loosened to 1300 GeV
in CRW and CRT for signal regions D and E-tight. Cross-checks are performed using several ‘validation
region’ samples selected with requirements minimally correlated with those used in the CRs. For exam-
ple, CRY estimates of the Z(→ νν̄)+jets background are validated with samples of Z(→ ``)+jets events
selected by requiring lepton pairs of opposite sign and identical flavour for which the di-lepton invariant
mass lies within 25 GeV of the mass of the Z boson. The results of these cross-checks are found to be
consistent with background expectations obtained from the CRs described above.
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5 Analysis procedure

The observed numbers of events in the CRs for each SR are used to generate internally consistent SM
background estimates for the SR via a likelihood fit. This procedure enables CR correlations due to
common systematic uncertainties and contamination by other SM processes and/or SUSY signal events
to be taken into account. The same fit also allows the statistical significance of the observation in the SR
to be determined. Key ingredients in the fit are the ratios of expected event counts (the transfer factors
TFs) from each background process between the SR and each CR, and between CRs. The TFs enable
observations in the CRs to be converted into background estimates in the SR using:

N(SR, scaled) = N(CR, obs) ×
[

N(SR, unscaled)
N(CR, unscaled)

]
, (1)

where N(SR, scaled) is the estimated background contribution to the SR by a given process, N(CR,
obs) is the observed number of data events in the CR for the process, and N(SR, unscaled) and N(CR,
unscaled) are a priori estimates of the contributions from the process to the SR and CR, respectively. The
ratio appearing in the square brackets in Eqn. 1 is defined to be the transfer factor TF. Similar equations
containing inter-CR TFs enable the background estimates to be normalised coherently across all the CRs
in a given stream.

Background estimation requires determination of the central expected values of the TFs for each SM
process, together with their associated correlated and uncorrelated uncertainties. The multi-jet TFs are
estimated using a data-driven technique [17], which applies a resolution function to well-measured multi-
jet events in order to estimate the impact of jet energy mismeasurement and heavy-flavour semileptonic
decays on Emiss

T and other variables. The other TF estimates use fully simulated Monte Carlo samples
validated with data. Some systematic uncertainties, for instance those arising from the jet energy scale
(JES), or theoretical uncertainties in MC cross-sections, largely cancel when calculating the event count
ratios constituting the TFs.

The result of the likelihood fit for each SR-CR ensemble is a set of background estimates and un-
certainties for the SR together with a p-value giving the probability for the hypothesis that the SR event
count is compatible with background alone. However, an assumption has to be made about the migration
of signal events between regions. When searching for a signal in a particular SR, first it is assumed that
the signal contributes only to the SR, i.e. the signal TFs are all set to zero, giving no contribution from the
signal in the CRs. If no excess is observed, then limits are set within specific SUSY model planes, taking
into account the contribution of signal in the CRs and the theoretical and experimental uncertainties on
the SUSY production cross-section and kinematic distributions. Exclusion limits are obtained using a
likelihood test which compares the observed event rates in the signal regions with the fitted background
expectation and expected signal contribution for a given model.

Monte Carlo samples are used to develop the analysis, optimise the selections, determine the transfer
factors used to estimate the W+jets, Z+jets and top quark backgrounds, determine the diboson back-
grounds, and to assess the sensitivity to specific SUSY signal models. The following MC generators are
used:

• Samples of Z/γ∗ and γ events with accompanying jets are generated with SHERPA [37] with mas-
sive b and c quarks. Theoretical uncertainties are evaluated by comparison with samples produced
using ALPGEN [38].

• Samples of W events with accompanying jets are generated with ALPGEN. Theoretical uncertainties
are evaluated by comparison with samples produced using SHERPA.

• Samples of top quark pair events with accompanying jets, assuming mtop = 172.5 GeV, are gen-
erated with MC@NLO [39, 40]. Theoretical uncertainties are evaluated by comparison with samples
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produced using SHERPA, POWHEG [41, 42] interfaced to PYTHIA6 [43], or POWHEG interfaced to
HERWIG [44, 45] using JIMMY [46] for the underlying event.

• Samples of single top quark events with accompanying jets are generated with MC@NLO [47,48] for
the s-channel and Wt processes and AcerMC [49] interfaced to PYTHIA6 for the t-channel process.

• Samples of top quark pair events with accompanying jets and a W or Z boson are generated with
MADGRAPH [50, 51] and PYTHIA6.

• Samples of WZ, ZZ and Zγ events are generated with SHERPA, while samples of WW and Wγ

events are generated with ALPGEN. The samples are normalised to the Next-to-Leading Order
(NLO) cross-sections obtained from MCFM [52], except for the νν̄qq, `+`−qq, Zγ and Wγ final
states which are normalised to Leading Order (LO) cross-sections, with the resulting scale depen-
dence (.25%) included in the theoretical uncertainties on these processes. Samples of WWW,
WWZ and WWW events are generated with MADGRAPH and PYTHIA6, however their contribution
is found to be null or negligible in all regions and hence they have not been used in the analysis.

Fragmentation and hadronisation for all ALPGEN and MC@NLO samples is performed with HERWIG, using
JIMMY for the underlying event. The NLO PDF set CT10 [53] is used with SHERPA, MC@NLO and POWHEG,
while the LO PDF set CTEQ6L1 [54] is used with all other generators.

SUSY signal samples are generated with HERWIG++ [55] or MadGraph/PYTHIA6 using PDF set
CTEQ6L1. Signal cross-sections are calculated to next-to-leading order in the strong coupling constant,
including the resummation of soft gluon emission at next-to-leading-logarithmic accuracy (NLO+NLL)
[56–60].

The MC samples are generated using the same parameter set as Refs. [61–63]. Most SM background
samples are passed through the ATLAS detector simulation [64] based on GEANT4 [65], while SHERPA
W/Z+jets and SUSY signal samples are passed through a fast simulation using a parameterisation of the
performance of the ATLAS electromagnetic and hadronic calorimeters. The fast simulation of SUSY
signal events has been validated against full GEANT4 simulation for several signal model points. Differ-
ing pile-up (multiple proton-proton interactions in a given event) conditions as a function of the LHC
instantaneous luminosity are taken into account by overlaying simulated minimum-bias events generated
with PYTHIA8 onto the hard-scattering process and reweighting them according to the mean number of
interactions expected.

6 Systematic Uncertainties

Systematic uncertainties arise through the use of the transfer factors relating observations in the control
regions to background expectations in the signal regions, and from the MC modelling of minor back-
grounds and the SUSY signal.

Systematic uncertainties in the background estimates are presented in Table 3. For the MC-derived
transfer factors the primary common sources of systematic uncertainty are the jet energy scale (JES)
calibration, jet energy resolution (JER), theoretical uncertainties, MC statistics and the reconstruction
performance in the presence of pile-up. In all cases correlations between uncertainties (for instance
between scale uncertainties in CRs and SRs) are taken into account where appropriate.

The JES uncertainty has been measured using the techniques described in Refs. [26, 66], leading to
a slight dependence upon pT and η. The JER uncertainty is estimated using the methods discussed in
Ref. [67]. Contributions are added to both the JES and the JER uncertainties to account for the effect
of pile-up at the relatively high luminosity delivered by the LHC in the 2012 run. A further uncertainty
on the low-pT calorimeter activity included in the Emiss

T calculation is taken into account. The combined
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Signal Region A-loose A-medium B-medium B-tight C-medium C-tight
Total bkg 4700 122 33 2.4 210 1.6
Total bkg unc. ±500 ±18 ±7 ±1.4 ±40 ±1.4
∆µMulti−jets ±0.5 [0%] – ±0.1 [0%] – – –
∆µTop ±120 [3%] ±1.6 [1%] ±0.7 [2%] ±0.6 [25%] ±4 [2%] ±0.9 [56%]
∆µW+jets ±110 [2%] ±5 [4%] ±2.0 [6%] ±0.7 [29%] ±6 [3%] ±0.5 [31%]
∆µZ+jets ±90 [2%] ±6 [5%] ±2.7 [8%] ±0.5 [21%] ±7 [3%] –
MC statistics – ±9 [7%] ±3.1 [9%] ±0.5 [21%] – ±0.4 [25%]
Jet/MET ±50 [1%] ±1.9 [2%] ±1.2 [4%] ±0.3 [13%] ±7 [3%] ±1.0 [63%]
Theory Z+jets ±310 [7%] ±8 [7%] ±4 [12%] ±0.1 [5%] ±27 [13%] –
Theory W+jets ±230 [5%] ±9 [7%] ±2.6 [8%] ±1.0 [42%] ±17 [8%] ±0.5 [31%]
Theory Top ±130 [3%] ±1.9 [2%] ±1.3 [4%] ±0.3 [14%] ±10 [5%] ±0.4 [25%]
Theory Diboson ±190 [4%] ±6 [5%] ±1.9 [6%] – ±11 [5%] –
Theory scales unc. ±24 [1%] ±0.2 [0%] ±0.6 [2%] ±0.1 [6%] ±0.4 [0%] ±0.03 [2%]
Other ±34 [1%] ±1.6 [1%] ±0.2 [1%] ±0.3 [10%] ±0.6 [0%] ±0.4 [25%]

Signal Region D E-loose E-medium E-tight
Total bkg 15 113 30 2.9
Total bkg unc. ±5 ±21 ±8 ±1.8
∆µMulti−jets ±0.1 [1%] ±0.1 [0%] – –
∆µTop ±0.8 [5%] ±10 [9%] ±3.1 [10%] ±0.3 [11%]
∆µW+jets ±0.6 [4%] ±5 [4%] ±1.4 [5%] ±0.2 [8%]
∆µZ+jets ±1.3 [9%] ±2.2 [2%] ±0.8 [3%] ±0.4 [14%]
MC statistics ±2.0 [13%] ±8 [7%] ±4 [13%] ±0.7 [24%]
Jet/MET ±0.7 [5%] ±2.4 [2%] ±4 [13%] ±1.4 [48%]
Theory Z+jets ±2.0 [13%] ±6 [5%] ±2.2 [7%] ±0.3 [10%]
Theory W+jets ±2.3 [15%] ±4 [4%] ±2.0 [7%] ±0.4 [14%]
Theory Top ±1.4 [9%] ±15 [13%] ±4 [13%] ±0.5 [17%]
Theory Diboson ±1.9 [13%] ±2.1 [2%] ±0.8 [3%] –
Theory scales unc. ±0.1 [1%] ±0.04 [0%] ±0.02 [0%] ±0.03 [1%]
Other ±0.3 [2%] ±1.3 [1%] ±1.0 [3%] ±0.2 [7%]

Table 3: Breakdown of the dominant components of the systematic uncertainties on background esti-
mates. Hyphens indicate negligible contributions. Note that components may be correlated and hence
may not sum quadratically to the total background uncertainty. ∆µ uncertainties arise from limited CR
statistics and systematic uncertainties related to the CR. Uncertainties relative to the expected total back-
ground yields are listed in parenthesis.
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JES, JER and Emiss
T uncertainty ranges from 2% of the expected background in SR E-loose to 63% in SR

C-tight (where it dominates).
Uncertainties arising from theoretical models of background processes are evaluated by comparing

TFs obtained from samples generated with a variety of different MC generators, as described in Section 5.
In addition, the impact of uncertainties in renormalisation, factorisation and jet-parton matching scales is
assessed with dedicated MC samples. The dominant such uncertainty is associated with the modelling of
W/Z+jets in the lower jet multiplicity signal regions (channels A–D), while in the higher jet multiplicity
signal regions (channel E) the uncertainty on top quark pair production dominates. The overall largest
theoretical modelling uncertainty arises from W+jet production in SR B-tight (42%).

Statistical uncertainties arising from the use of finite-size MC samples range up to 25% in SR C-tight.
Uncertainties arising from finite data statistics and systematics in the control regions (listed as ‘∆µ’ in
Table 3) are most important for the tighter signal regions, reaching 56% for CRT in SR C-tight. The
CR systematic uncertainties considered include photon and lepton reconstruction efficiency, energy scale
and resolution (CRY, CRW and CRT), b-tag/veto efficiency (CRW and CRT) and photon acceptance
(CRY). Uncertainties on the multi-jet transfer factors are conservatively set to 100% in all signal regions,
however the small magnitude of this background in all signal regions reduces the contribution made by
this uncertainty to the overall uncertainty budget. When combined with the uncertainty associated with
the modelling of pile-up in MC events the resulting uncertainty (labelled ‘other’ in Table 3) is found to
be less than 10% in all signal regions except SR C-tight, where its value (25%) is nevertheless smaller
than the JES, MC statistics and theoretical modelling uncertainties.

Initial state radiation (ISR) can significantly affect the signal acceptance for SUSY models with small
mass splittings. Systematic uncertainties arising from the treatment of ISR are studied with MC data by
varying the value of αS , renormalisation and factorisation scales, and the MadGraph/PYTHIA matching
parameters. For mass splittings ∆m < 100 GeV the uncertainty ranges from 25% to 45% depending on
the signal region. For fixed ∆m the uncertainty is found to be independent of the sparticle mass, while for
fixed mass it falls approximately exponentially with increasing ∆m, with a characteristic decay constant
∼ 200 – 300 GeV.

7 Results, Interpretation and Limits

The number of events observed in the data and the number of SM events expected to enter each of the
signal regions, determined using the likelihood fit, are shown in Table 4. Good agreement is observed
between the data and the SM prediction, with no significant excess. The largest observed excess across
the ten SRs, with a p-value for the background-only hypothesis of 0.03, occurs in SR E-loose. Predictions
obtained from the likelihood fits for the numbers of events in the validation regions also agree well
with the observations. Distributions of meff(incl.) before the final cut on this quantity for data and the
different MC samples normalised with the theoretical cross-sections are shown in Figs. 1–4 for each
of the channels. Examples of typical expected SUSY signals are shown for illustration. These signals
correspond to the processes to which each SR is primarily sensitive – q̃q̃ production for the lower jet
multiplicity SRs (channel A), q̃g̃ associated production for intermediate jet multiplicity SRs (channel B),
and g̃g̃ production for the higher jet multiplicity SRs (channels C, D and E).
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Signal Region A-loose A-medium B-medium B-tight C-medium C-tight
MC expected events

Diboson 428.6 15.0 4.3 0.0 25.5 0.0
Z/γ∗+jets 2044.4 83.1 20.6 2.3 119.4 2.6
W+jets 2109.0 58.8 16.4 2.1 88.7 1.0
tt̄(+EW) + single top 785.9 8.2 2.0 0.3 45.9 0.3

Fitted background events
Diboson 430 ± 190 15 ± 7 4.3 ± 2.0 – 26 ± 11 –
Z/γ∗+jets 1870 ± 320 57 ± 11 16 ± 5 0.2 ± 0.5 80 ± 29 0.0+0.6

−0.0
W+jets 1540 ± 260 42 ± 11 10 ± 4 1.6 ± 1.2 55 ± 18 0.7 ± 0.9
tt̄(+EW) + single top 870 ± 180 7.8 ± 2.8 2.2 ± 2.0 0.6 ± 0.7 50 ± 11 0.9 ± 0.9
Multi-jets 33 ± 33 – 0.1 ± 0.1 – – –
Total bkg 4700 ± 500 122 ± 18 33 ± 7 2.4 ± 1.4 210 ± 40 1.6 ± 1.4
Observed 5333 135 29 4 228 0
〈εσ〉95

obs[fb] 66.07 2.52 0.73 0.33 4.00 0.12
S 95

obs 1341.2 51.3 14.9 6.7 81.2 2.4
S 95

exp 1135.0+332.7
−291.5 42.7+15.5

−11.4 17.0+6.6
−4.6 5.8+2.9

−1.8 72.9+23.6
−18.0 3.3+2.1

−1.2
p0 (Zn) 0.45 (0.1) 0.27 (0.6) 0.50 (0.0) 0.34 (0.4) 0.34 (0.4) 0.50 (0.0)

Signal Region D E-loose E-medium E-tight
MC expected events

Diboson 2.0 5.5 1.7 0.0
Z/γ∗+jets 8.5 19.6 6.3 1.9
W+jets 4.8 23.1 5.2 0.8
tt̄(+EW) + single top 5.0 67.3 16.8 1.5

Fitted background events
Diboson 2.0 ± 2.0 5.5 ± 2.1 1.7 ± 0.8 –
Z/γ∗+jets 3.8 ± 2.5 12 ± 7 2.9 ± 2.6 0.4 ± 0.6
W+jets 3.3 ± 2.5 18 ± 7 4.9 ± 2.7 0.7 ± 0.5
tt̄(+EW) + single top 5.8 ± 2.1 76 ± 19 20 ± 6 1.7 ± 1.4
Multi-jets – 1.0 ± 1.0 – –
Total bkg 15 ± 5 113 ± 21 30 ± 8 2.9 ± 1.8
Observed 18 166 41 5
〈εσ〉95

obs[fb] 0.77 4.55 1.41 0.41
S 95

obs 15.5 92.4 28.6 8.3
S 95

exp 13.6+5.1
−3.5 57.3+20.0

−14.4 21.4+7.6
−5.8 6.5+3.0

−1.9
p0 (Zn) 0.32 (0.5) 0.03 (1.9) 0.14 (1.1) 0.22 (0.8)

Table 4: Numbers of events observed in the signal regions used in the analysis (L = 20.3 fb−1) compared
with background expectations obtained from the fits described in the text. Background uncertainties
include both TF systematics (see Section 6) and CR data statistical uncertainties. No signal contribution
is considered in the CRs for the fit. Empty cells correspond to estimates lower than 0.1 events. Also
shown are 95% CL upper limits on the visible cross-section (〈εσ〉95

obs), the visible number of signal
events (S 95

obs ) and the number of signal events (S 95
exp) given the expected number of background events,

as well as ±1σ excursions on the expectation. The p0-values give the probabilities of the observations
being consistent with the estimated backgrounds and are constrained to ≤ 0.5. Also presented are the
equivalent Gaussian significances Zn.
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Figure 1: Observed meff(incl.) distributions for channel A for ‘loose’ (left) and ‘medium’ (right) selec-
tion criteria. With the exception of the multi-jet background (which is estimated using the data-driven
technique described in the text), the histograms denote the MC background expectations, normalised to
cross-section times integrated luminosity. In the lower panels the yellow error bands denote the experi-
mental and MC statistical uncertainties, while the green bands show the total uncertainty. The red arrows
indicate the values at which the requirements on meff(incl.) are applied. Expected distributions for two
benchmark model points characterised by q̃q̃ production are also shown for comparison (masses in GeV).
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Figure 2: Observed meff(incl.) distributions for channel B for ‘medium’ (left) and ‘tight’ (right) selec-
tion criteria. With the exception of the multi-jet background (which is estimated using the data-driven
technique described in the text), the histograms denote the MC background expectations, normalised to
cross-section times integrated luminosity. In the lower panels the yellow error bands denote the experi-
mental and MC statistical uncertainties, while the green bands show the total uncertainty. The red arrows
indicate the values at which the requirements on meff(incl.) are applied. Expected distributions for two
benchmark model points characterised by q̃g̃ production are also shown for comparison (masses in GeV).
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Figure 3: Observed meff(incl.) distributions for channels C (left) and D (right). With the exception
of the multi-jet background (which is estimated using the data-driven technique described in the text),
the histograms denote the MC background expectations, normalised to cross-section times integrated
luminosity. In the lower panels the yellow error bands denote the experimental and MC statistical uncer-
tainties, while the green bands show the total uncertainty. The red arrows indicate the values at which
the requirements on meff(incl.) are applied. Expected distributions for two benchmark model points are
also shown for comparison (masses in GeV).
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Figure 4: Observed meff(incl.) distributions for channel E for ‘loose’ (top left), ‘medium’ (top right) and
‘tight’ (bottom) selection criteria. With the exception of the multi-jet background (which is estimated
using the data-driven technique described in the text), the histograms denote the MC background ex-
pectations, normalised to cross-section times integrated luminosity. In the lower panels the yellow error
bands denote the experimental and MC statistical uncertainties, while the green bands show the total
uncertainty. The red arrows indicate the values at which the requirements on meff(incl.) are applied. Ex-
pected distributions for two benchmark model points characterised by g̃g̃ production are also shown for
comparison (masses in GeV).
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Figure 5: Exclusion limits for MSUGRA/CMSSM models with tan β = 30, A0 = −2m0 and µ > 0 pre-
sented (left) in the m0–m1/2 plane and (right) in the mg̃–mq̃ plane. Exclusion limits are obtained by using
the signal region with the best expected sensitivity at each point. The blue dashed lines show the expected
limits at 95% CL, with the light (yellow) bands indicating the 1σ excursions due to experimental and
background-theory uncertainties. Observed limits are indicated by medium (maroon) curves, where the
solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross-
section by the theoretical scale and PDF uncertainties. The black star indicates the MSUGRA/CMSSM
benchmark model used in Fig. 3(left).

In the absence of a statistically significant excess limits are set on contributions to the SRs from new
physics. Model independent limits are listed in Table 4 for the number of new physics events and the
visible cross-section σvis (defined as the product of the production cross-section times reconstruction
efficiency times acceptance), computed assuming an absence of signal in the control regions.

Data from all the channels are used to set limits on SUSY models, taking the SR with the best
expected sensitivity at each point in several parameter spaces. A profile log-likelihood ratio test in
combination with the CLs prescription [68] is used to derive 95% CL exclusion regions. The nominal
signal cross-section and the uncertainty are taken from an ensemble of cross-section predictions using
different PDF sets and factorisation and renormalisation scales, as described in Ref. [69]. Observed limits
are calculated for both the nominal cross-section, and ±1σ uncertainties. Numbers quoted in the text are
evaluated from the observed exclusion limit based on the nominal cross-section less one sigma on the
theoretical uncertainty.

In Fig. 5 the results are interpreted in the tan β = 30, A0 = −2m0, µ > 0 slice of MSUGRA/CMSSM
models 2. The best performing signal regions are E-tight for m0 & 1500 GeV and C-tight for m0 .
1500 GeV. Results are presented in both the m0–m1/2 and mg̃–mq̃ planes. The sparticle mass spectra and
decay tables are calculated with SUSY-HIT [70] interfaced to the SOFTSUSY spectrum generator [71] and
SDECAY [72].

An interpretation of the results is also presented in Fig. 6 as a 95% CL exclusion region in the
(mg̃,mq̃)-plane for a simplified set of phenomenological MSSM (Minimal Supersymmetric extension of
the SM) models with mχ̃0

1
equal to 0, 395 GeV or 695 GeV. In these models the gluino mass and the

masses of the ‘light’-flavour squarks (of the first two generations, including both q̃R and q̃L, and assum-
ing mass degeneracy) are set to the values shown on the axes of the figure. All other supersymmetric
particles, including the squarks of the third generation, are decoupled.

2Five parameters are needed to specify a particular MSUGRA/CMSSM model: the universal scalar mass, m0, the universal
gaugino mass m1/2, the universal trilinear scalar coupling, A0, the ratio of the vacuum expectation values of the two Higgs fields,
tan β, and the sign of the higgsino mass parameter, µ = ±.
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Figure 6: Exclusion limits for a simplified phenomenological MSSM scenario with only strong produc-
tion of gluinos and first- and second-generation squarks (of common mass), with direct decays to jets
and lightest neutralinos. Three values of the lightest neutralino mass are considered: mχ̃0

1
= 0, 395 and

695 GeV. Exclusion limits are obtained by using the signal region with the best expected sensitivity at
each point. The dashed lines show the expected limits at 95% CL, with the light (yellow) band indicating
the 1σ experimental and background-theory uncertainties on the mχ̃0

1
= 0 limit. Observed limits are

indicated by solid curves. The dotted lines represent the mχ̃0
1

= 0 observed limits obtained by varying the
signal cross-section by the theoretical scale and PDF uncertainties. Previous results for mχ̃0

1
= 0 from

ATLAS at 7 TeV [17] are represented by the shaded (light blue) area. Results at 7 TeV are valid for
squark or gluino masses below 2000 GeV, the mass range studied for that analysis.

In Fig. 7 limits are shown for three classes of simplified model in which only direct production of
(a) gluino pairs, (b) light-flavour squarks and gluinos or (c) light-flavour squark pairs is kinematically
possible, with all other superpartners, except for the neutralino LSP, decoupled. This forces each light-
flavour squark or gluino to decay directly to jets and an LSP. Cross-sections are evaluated assuming
decoupled light-flavour squarks or gluinos in cases (a) and (c), respectively. In all cases squarks of the
third generation are decoupled. In case (b) the masses of the light-flavour squarks are set to 0.96 times
the mass of the gluino. The expected limits for case (c) do not extend substantially beyond those obtained
from the previous published ATLAS analysis [17] because the events closely resemble the predominant
W/Z + 2-jet background, leading the background uncertainties to be dominated by systematics.

In Fig. 8 limits are shown for pair produced gluinos each decaying via an intermediate χ̃±1 to two
quarks, a W boson and a χ̃0

1, and pair produced light squarks each decaying via an intermediate χ̃±1 to
a quark, a W boson and a χ̃0

1. Results are presented for models in which either the χ̃0
1 mass is fixed to

60 GeV, or the mass splitting between the χ̃±1 and the χ̃0
1, relative to that between the squark or gluino

and the χ̃0
1, is fixed to 0.5.

In Fig. 9 the results are interpreted in the context of a Non-Universal Higgs Mass model with gaugino
mediation (NUHMG) [73] with parameters tan β = 10, µ > 0, m2

H2
= 0, and A0 chosen to maximize the

mass of the lightest Higgs boson. The two remaining free parameters of the model m1/2 and m2
H1

are
chosen such that the next-to-lightest SUSY particle (NLSP) is a tau-sneutrino with properties satisfying
Big Bang Nucleosynthesis constraints.

In Fig. 10(left) limits are presented for a simplified phenomenological SUSY model in which pairs
of gluinos are produced, each of which then decays to a top squark and a top quark, with the top squark
decaying to a charm quark and χ̃0

1.
In addition to these interpretations in terms of SUSY models, an alternative interpretation in the

context of the minimal universal extra dimension (mUED) model [75] with similar phenomenological
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Figure 7: Exclusion limits for direct production of (case a – top left) gluino pairs with decoupled squarks,
(case b – top right) light-flavour squarks and gluinos and (case c – bottom) light-flavour squark pairs with
decoupled gluinos. Gluinos (light-flavour squarks) are required to decay to two jets (one jet) and a neu-
tralino LSP. Exclusion limits are obtained by using the signal region with the best expected sensitivity
at each point. The blue dashed lines show the expected limits at 95% CL, with the light (yellow) bands
indicating the 1σ excursions due to experimental and background-theory uncertainties. Observed limits
are indicated by medium (maroon) curves, where the solid contour represents the nominal limit, and the
dotted lines are obtained by varying the signal cross-section by the theoretical scale and PDF uncertain-
ties. Previous results from ATLAS [17] are represented by the shaded (light blue) areas and light blue
dotted lines. The black stars indicate the benchmark models used in Figs. 1–4.

properties to R-parity conserving SUSY is also presented in Fig. 10(right). This scenario is the minimal
extension of the SM with one additional spatial dimension. The properties of the model are fully deter-
mined by three parameters: the compactification radius of the extra dimension R, the cut-off scale Λ and
the Higgs boson mass mh. In this analysis the Higgs boson mass is fixed to 125 GeV while R and Λ are
treated as free parameters. 1/R sets the mass scale of the new Kaluza-Klein (KK) particles predicted by
the model while Λ · R is related to the degree of compression of the KK-particle mass spectrum: mod-
els with small values of Λ · R possess small mass splittings between KK-particle states and vice versa.
Exclusion limits are set in the 1/R versus Λ · R plane.

In the CMSSM/MSUGRA case, the limit on m1/2 is greater than 340 GeV for m0 < 6 TeV and
reaches 800 GeV for low values of m0. Equal mass light-flavour squarks and gluinos are excluded below
1700 GeV in this scenario. A limit of 1700 GeV for equal mass light-flavour squarks and gluinos is found
for the simplified MSSM scenario with a massless lightest neutralino shown in Fig. 6. In the simplified
model cases of Fig. 7 (a) and (c), when the lightest neutralino is massless the limit on the gluino mass
(case (a)) is 1350 GeV, and that on the light-flavour squark mass (case (c)) is 780 GeV.
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Figure 8: Exclusion limits for pair produced gluinos each decaying via an intermediate χ̃±1 to two quarks,
a W boson and a χ̃0

1 (top) or pair produced light squarks each decaying via an intermediate χ̃±1 to a quark,
a W boson and a χ̃0

1 (bottom). The left-hand figures show results for models with fixed m(χ̃0
1) = 60

GeV and varying values of x = (mχ̃±1
− mχ̃0

1
)/(my − mχ̃0

1
), where y = g̃(y = q̃) for the top(bottom) figure.

The right-hand plots show results for models with a fixed value of x = 1/2 and varying values of mχ̃0
1
.

Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point.
The blue dashed lines show the expected limits at 95% CL, with the light (yellow) bands indicating the
1σ excursions due to experimental and background-theory uncertainties. Observed limits are indicated
by medium (maroon) curves, where the solid contour represents the nominal limit, and the dotted lines
are obtained by varying the signal cross-section by the theoretical scale and PDF uncertainties. Previous
results from ATLAS [17] are represented by the shaded (light blue) areas.
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Figure 10: Exclusion limits for pair produced gluinos each decaying into a t̃ and a χ̃0
1, with the subse-

quent decay t̃ → c χ̃0
1 and ∆M(t̃, χ̃0

1) = 20 GeV (left), and in the 1/R versus Λ · R plane for the mUED
model described in the text (right). Exclusion limits are obtained by using the signal region with the best
expected sensitivity at each point. The blue dashed lines show the expected limits at 95% CL, with the
light (yellow) bands indicating the 1σ excursions due to experimental and background-theory uncertain-
ties. Observed limits are indicated by medium (maroon) curves, where the solid contour represents the
nominal limit. In the left-hand figure the dotted lines are obtained by varying the signal cross-section
by the theoretical scale and PDF uncertainties. In the right-hand figure theoretical uncertainties are not
available. Models with 1/R . 650 GeV are excluded by previous analyses as described in Ref. [74].
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8 Summary

This note reported a search for new physics in final states containing high-pT jets, large missing trans-
verse momentum and no electrons or muons, based on a 20.3 fb−1dataset recorded by the ATLAS ex-
periment at the LHC in 2012. Good agreement was seen between the numbers of events observed in the
data and the numbers of events expected from SM processes.

Results were presented for a variety of SUSY models and for a specific model of extra dimensions.
In particular the results were interpreted in terms of MSUGRA/CMSSM models with tan β = 30, A0 =

−2m0 and µ > 0, and in terms of simplified models with only light-flavour squarks, or gluinos, or both,
together with a neutralino LSP, with the other SUSY particles decoupled. In the MSUGRA/CMSSM
models, values of m1/2 < 340 GeV are excluded at the 95% confidence level for m0 < 6 TeV and
m1/2 < 800 GeV for low m0. Equal mass squarks and gluinos are excluded below 1700 GeV in this
scenario. A limit of 1700 GeV for equal mass light-flavour squarks and gluinos was found for simplified
MSSM models with a massless lightest neutralino. For a massless lightest neutralino, gluino masses
below 1350 GeV are excluded at the 95% confidence level in a simplified model with only gluinos and
the lightest neutralino. For a simplified model involving the strong production of squarks of the first two
generations, with decays to a massless lightest neutralino, squark masses below 780 GeV are excluded.
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Appendix A: Control Region meff(incl.) plots
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Figure 11: Observed meff(incl.) distributions in control regions CRY (top left for ‘loose’ selection criteria,
top right for ‘medium’ selection criteria), CRW (bottom left) and CRT (bottom right) corresponding to
channel A. The histograms denote the MC background expectations, normalised to cross-section times
integrated luminosity. The error bands shown in the lower panels denote the experimental and MC
statistical uncertainties in yellow and the total uncertainty including theory uncertainties in green. The
red arrows indicate the values at which the requirements on meff(incl.) are applied.
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Figure 12: Observed meff(incl.) distributions in control regions CRY (top left for ‘medium’ selection
criteria, top right for ‘tight’ selection criteria), CRW (bottom left) and CRT (bottom right) corresponding
to channel B. The histograms denote the MC background expectations, normalised to cross-section times
integrated luminosity. The error bands shown in the lower panels denote the experimental and MC
statistical uncertainties in yellow and the total uncertainty including theory uncertainties in green. The
red arrows indicate the values at which the requirements on meff(incl.) are applied.
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Figure 13: Observed meff(incl.) distributions in control regions CRY (top left), CRW (top right) and
CRT (bottom) corresponding to channel C. The histograms denote the MC background expectations,
normalised to cross-section times integrated luminosity. The error bands shown in the lower panels
denote the experimental and MC statistical uncertainties in yellow and the total uncertainty including
theory uncertainties in green. The red arrows indicate the values at which the requirements on meff(incl.)
are applied.
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Figure 14: Observed meff(incl.) distributions in control regions CRY (top left), CRW (top right) and
CRT (bottom) corresponding to channel D. The histograms denote the MC background expectations,
normalised to cross-section times integrated luminosity. The error bands shown in the lower panels
denote the experimental and MC statistical uncertainties in yellow and the total uncertainty including
theory uncertainties in green. The red arrows indicate the values at which the requirements on meff(incl.)
are applied.
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Figure 15: Observed meff(incl.) distributions in control regions CRY (top left for ‘loose’, top right for
‘medium’ selection criteria, middle left for ‘tight’ selection criteria), CRW (middle right) and CRT (bot-
tom) corresponding to channel E. The histograms denote the MC background expectations, normalised
to cross-section times integrated luminosity. The error bands shown in the lower panels denote the exper-
imental and MC statistical uncertainties in yellow and the total uncertainty including theory uncertainties
in green. The red arrows indicate the values at which the requirements on meff(incl.) are applied.
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Appendix B: Alternative versions of limit plots
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Figure 16: Exclusion limits for MSUGRA/CMSSM models with tan β = 30, A0 = −2m0 and µ > 0 pre-
sented (left) in the m0–m1/2 plane and (right) in the mg̃–mq̃ plane. Exclusion limits are obtained by using
the signal region with the best expected sensitivity at each point. The blue dashed lines show the expected
limits at 95% CL, with the light (yellow) bands indicating the 1σ excursions due to experimental and
background-theory uncertainties. Observed limits are indicated by medium (maroon) curves, where the
solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross-
section by the theoretical scale and PDF uncertainties. The black star indicates the MSUGRA/CMSSM
benchmark model used in Fig. 3(left). The signal regions providing the best expected sensitivity at a
selection of model points are indicated.
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Figure 17: Exclusion limit for a simplified phenomenological MSSM scenario with only strong produc-
tion of gluinos and first- and second-generation squarks (of common mass), with direct decays to jets
and lightest neutralinos. The mass of the lightest neutralino is set to zero. Exclusion limits are obtained
by using the signal region with the best expected sensitivity at each point. The dashed line shows the
expected limit at 95% CL, with the light (yellow) band indicating the 1σ experimental and background-
theory uncertainties. The observed limit is indicated by the solid curve. The dotted lines represent the
observed limits obtained by varying the signal cross-section by the theoretical scale and PDF uncertain-
ties. Previous results for mχ̃0

1
= 0 from ATLAS at 7 TeV [17] are represented by the shaded (light blue)

area. Results at 7 TeV are valid for squark or gluino masses below 2000 GeV, the mass range studied for
that analysis. The signal regions providing the best expected sensitivity at a selection of model points are
indicated.
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Figure 18: Exclusion limits for direct production of (case a – top left) gluino pairs with decoupled
squarks, (case b – top right) light-flavour squarks and gluinos and (case c – bottom) light-flavour squark
pairs with decoupled gluinos. Gluinos (light-flavour squarks) are required to decay to two jets (one jet)
and a neutralino LSP. Exclusion limits are obtained by using the signal region with the best expected sen-
sitivity at each point. The blue dashed lines show the expected limits at 95% CL, with the light (yellow)
bands indicating the 1σ excursions due to experimental and background-theory uncertainties. Observed
limits are indicated by medium (maroon) curves, where the solid contour represents the nominal limit,
and the dotted lines are obtained by varying the signal cross-section by the theoretical scale and PDF
uncertainties. Previous results from ATLAS [17] are represented by the shaded (light blue) areas and
light blue dotted lines. The black stars indicate the benchmark models used in Figs. 1–4. The signal
regions providing the best expected sensitivity at a selection of model points are indicated.
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Figure 19: Exclusion limits for direct production of (case a – top left) gluino pairs with decoupled
squarks, (case b – top right) light-flavour squarks and gluinos and (case c – bottom) light-flavour squark
pairs with decoupled gluinos. Gluinos (light-flavour squarks) are required to decay to two jets (one jet)
and a neutralino LSP. Exclusion limits are obtained by using the signal region with the best expected sen-
sitivity at each point. The blue dashed lines show the expected limits at 95% CL, with the light (yellow)
bands indicating the 1σ excursions due to experimental and background-theory uncertainties. Observed
limits are indicated by medium (maroon) curves, where the solid contour represents the nominal limit,
and the dotted lines are obtained by varying the signal cross-section by the theoretical scale and PDF
uncertainties. Previous results from ATLAS [17] are represented by the shaded (light blue) areas and
light blue dotted lines. The black stars indicate the benchmark models used in Figs. 1–4. The upper limit
on the cross-section times branching ratio (in fb) is indicated for each model point.
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Figure 20: Exclusion limits for pair produced gluinos each decaying via an intermediate χ̃±1 to two quarks,
a W boson and a χ̃0

1 (top) or pair produced light squarks each decaying via an intermediate χ̃±1 to a quark,
a W boson and a χ̃0

1 (bottom). The left-hand figures show results for models with fixed m(χ̃0
1) = 60

GeV and varying values of x = (mχ̃±1
− mχ̃0

1
)/(my − mχ̃0

1
), where y = g̃(y = q̃) for the top(bottom) figure.

The right-hand plots show results for models with a fixed value of x = 1/2 and varying values of mχ̃0
1
.

Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point.
The blue dashed lines show the expected limits at 95% CL, with the light (yellow) bands indicating the
1σ excursions due to experimental and background-theory uncertainties. Observed limits are indicated
by medium (maroon) curves, where the solid contour represents the nominal limit, and the dotted lines
are obtained by varying the signal cross-section by the theoretical scale and PDF uncertainties. Previous
results from ATLAS [17] are represented by the shaded (light blue) areas. The signal regions providing
the best expected sensitivity at a selection of model points are indicated.
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Figure 21: Exclusion limits for pair produced gluinos each decaying via an intermediate χ̃±1 to two quarks,
a W boson and a χ̃0

1 (top) or pair produced light squarks each decaying via an intermediate χ̃±1 to a quark,
a W boson and a χ̃0

1 (bottom). The left-hand figures show results for models with fixed m(χ̃0
1) = 60

GeV and varying values of x = (mχ̃±1
− mχ̃0

1
)/(my − mχ̃0

1
), where y = g̃(y = q̃) for the top(bottom) figure.

The right-hand plots show results for models with a fixed value of x = 1/2 and varying values of mχ̃0
1
.

Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point.
The blue dashed lines show the expected limits at 95% CL, with the light (yellow) bands indicating the
1σ excursions due to experimental and background-theory uncertainties. Observed limits are indicated
by medium (maroon) curves, where the solid contour represents the nominal limit, and the dotted lines
are obtained by varying the signal cross-section by the theoretical scale and PDF uncertainties. Previous
results from ATLAS [17] are represented by the shaded (light blue) areas. The upper limit on the cross-
section times branching ratio (in fb) is indicated for each model point.
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Figure 22: Exclusion limits in the m1/2 versus m2
H1

plane for the NUHMG model described in the text.
Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point.
The blue dashed lines show the expected limits at 95% CL, with the light (yellow) bands indicating the
1σ excursions due to experimental and background-theory uncertainties. Observed limits are indicated
by medium (maroon) curves, where the solid contour represents the nominal limit, and the dotted lines
are obtained by varying the signal cross-section by the theoretical scale and PDF uncertainties. The
signal regions providing the best expected sensitivity at a selection of model points are indicated.
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Figure 23: Exclusion limits for pair produced gluinos each decaying into a t̃ and a χ̃0
1, with the subse-

quent decay t̃ → c χ̃0
1 and ∆M(t̃, χ̃0

1) = 20 GeV (left), and in the 1/R versus Λ · R plane for the mUED
model described in the text (right). Exclusion limits are obtained by using the signal region with the best
expected sensitivity at each point. The blue dashed lines show the expected limits at 95% CL, with the
light (yellow) bands indicating the 1σ excursions due to experimental and background-theory uncertain-
ties. Observed limits are indicated by medium (maroon) curves, where the solid contour represents the
nominal limit. In the left-hand figure the dotted lines are obtained by varying the signal cross-section
by the theoretical scale and PDF uncertainties. In the right-hand figure theoretical uncertainties are not
available. Models with 1/R . 650 GeV are excluded by previous analyses as described in Ref. [74]. The
signal regions providing the best expected sensitivity at a selection of model points are indicated.
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Figure 24: Exclusion limits for pair produced gluinos each decaying into a t̃ and a χ̃0
1, with the subsequent

decay t̃ → c χ̃0
1 and ∆M(t̃, χ̃0

1) = 20 GeV. Exclusion limits are obtained by using the signal region with
the best expected sensitivity at each point. The blue dashed lines show the expected limits at 95%
CL, with the light (yellow) bands indicating the 1σ excursions due to experimental and background-
theory uncertainties. Observed limits are indicated by medium (maroon) curves, where the solid contour
represents the nominal limit. The dotted lines are obtained by varying the signal cross-section by the
theoretical scale and PDF uncertainties. The upper limit on the cross-section times branching ratio (in
fb) is indicated for each model point.
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