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Abstract

We summarize important recent advances in quantum metrology, in connection to
experiments in cold gases, trapped cold atoms and photons. First we review simple
metrological setups, such as quantum metrology with spin squeezed states, with
Greenberger—-Home—Zeilinger states, Dicke states and singlet states. We calculate
the highest precision achievable in these schemes. Then, we present the funda-
mental notions of quantum metrology, such as shot-noise scaling, Heisenberg
scaling, the quantum Fisher information and the Cramér—Rao bound. Using these,
we demonstrate that entanglement is needed to surpass the shot-noise scaling in
very general metrological tasks with a linear interferometer. We discuss some
applications of the quantum Fisher information, such as how it can be used to
obtain a criterion for a quantum state to be a macroscopic superposition. We show
how it is related to the speed of a quantum evolution, and how it appears in the
theory of the quantum Zeno effect. Finally, we explain how uncorrelated noise
limits the highest achievable precision in very general metrological tasks.
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1. Introduction

Metrology plays a central role in science and engineering. In short, it is concerned with the
highest achievable precision in various parameter estimation tasks, and with finding mea-
surement schemes that reach that precision. Originally, metrology was focusing on mea-
surements using classical or semiclassical systems, such as mechanical systems described by
classical physics or optical systems modelled by classical wave optics. In the last decades, it
has become possible to observe the dynamics of many-body quantum systems. If such
systems are used for metrology, the quantum nature of the problem plays an essential role in
the metrological setup. Examples of the case above are phase measurements with trapped ions
[1], inteferometry with photons [2-5] and magnetometry with cold atomic ensembles [6—11].

In this paper, we review various aspects of quantum metrology with the intention to give
a comprehensive picture to scientists with a quantum information science background. We
will present simple examples that, while can be used to explain the fundamental principles,
have also been realized experimentally. The basics of quantum metrology [12-21] can be
perhaps best understood in the fundamental task of magnetometry with a fully polarized
atomic ensemble. It is easy to deduce the precision limits of the parameter estimation, as well
as the methods that can improve the precision. We will also consider phase estimation with
other highly entangled states such as for example Greenberger—Horne—Zeilinger (GHZ)
states [22].

After discussing concrete examples, we present a general framework for computing the
precision of the parameter estimation in the quantum case, based on the Cramér—Rao bound
and the quantum Fisher information. In the many-particle case, most of the metrology
experiments have been done in systems with simple Hamiltonians that do not contain
interaction terms. Such Hamiltonians cannot create entanglement between the particles. For
cold atoms, a typical situation is that the input state is rotated with some angle and this angle
must be estimated. We will show that quantum states with particles exhibiting quantum
correlations, or more precisely, quantum entanglement [23, 24], provide a higher precision
than an ensemble of uncorrelated particles. The most important question is how the
achievable precision A8 scales with the number of particles. Very general derivations lead to,
at best,

2 b
40)" ~ 5 ey
for non-entangled particles. Equation (1) is called the shot-noise scaling, the term originating
from the shot-noise in electronic circuits, which is due to the discrete nature of the electric
charge. 6 is a parameter of a very general unitary evolution that we would like to estimate. On
the other hand, quantum entanglement makes it possible to reach

1
(40)* ~ ., @)

which is called the Heisenberg-scaling. Note that if the Hamiltonian of the dynamics has
interaction terms then even better scaling is possible (see, e.g., [25-31]).
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All the above calculations have been carried out for an idealized situation. When a
uncorrelated noise is present in the system, it turns out that for large enough particle numbers
the scaling becomes a shot-noise scaling. The possible survival of a better scaling under
correlated noise, under particular circumstances, or depending on some interpretation of the
metrological task, is at the centre of attention currently. All these are strongly connected to the
question of whether strong multipartite entanglement can survive in a noisy environment.

Our paper is organized as follows. In section 2, we will discuss examples of metrology
with large particle ensembles and show simple methods to obtain upper bounds on the
achievable precision. In section 3, we define multipartite entanglement and discuss how
entanglement is needed for spin squeezing, which is a typical method to improve the precision
of some metrological applications in cold gases. We also discuss some generalized spin
squeezing entanglement criteria. In section 4, we introduce the Cramér—Rao bound and the
quantum Fisher information, and other fundamental notions of quantum metrology. In
section 5, we show that multipartite entanglement is a prerequisite for maximal metrological
precision in many very general metrological tasks. We also discuss how to define macro-
scopic superpositions, how the entanglement properties of the quantum state are related to the
speed of the quantum mechanical processes and to the quantum Zeno effect. We will also
very briefly discuss the meaning of inter-particle entanglement in many-particle systems. In
section 6, we review some of the very exciting recent findings showing that uncorrelated
noise can change the scaling of the precision with the particle number under very general
assumptions.

2. Examples for simple metrological tasks with many-particle ensembles

In this section, we present some simple examples of quantum metrology, involving an
ensemble of N spin-l particles in an external magnetic field. We demonstrate how simple
ideas of quantum metrology can help to determine the precision of some basic tasks in
parameter estimation. We consider completely polarized ensembles, as well as GHZ states,
symmetric Dicke states [10, 32-34] and singlet states [35, 36].

First, let us explain the characteristics of the physical system we use for our discussion.
In a large particle ensemble, typically only collective quantities can be measured. For spin-%
particles, such collective quantities are the angular momentum components defined as

N
VEDY (3)
n=1

for [ = x, y, z, where jl(”) are the components of the angular momentum of the nth particle.
More concretely, we can measure the expectation values and the variance of the angular
momentum component J; = Y, I=xy, .nJj, where 7i is a unit vector describing the component.

The typical Hamiltonians involve also collective observables, such as the Hamiltonian
describing the action of a magnetic field pointing in the b -direction

Hp = yBJj, “4)

where y is the gyromagnetic ratio, B is the strength of the magnetic field, b is the direction of
the field, and J; is the angular momentum component parallel with the field. Hamiltonians of
the type (4) do not contain interaction terms, thus starting from a product state we arrive also
at a product state. Interferometry with dynamics determined by (4) is discussed in the context
of SU(2) interferometers [37], as the J; are the generators of the SU(2) group. We will mostly
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Figure 1. Calculating the precision of estimating the small parameter € based on
measuring M given by the error propagation formula (7). Solid curve: the expectation
value (M) as a function 6. Dashed curves: uncertainty of M as a function of § given as a
confidence interval. Vertical arrow: the uncertainty AM = \/(AM)? for 0 = 0. Dashed
line: tangent of the curve (M) (0) at @ = 0. Its slope is 0g(M). Horizontal arrow: A0 is
the uncertainty of the parameter estimation.

study this type of interferometry in multiparticle systems, as it gives a good opportunity to
relate the entanglement of many-particle states to their metrological performance.
The Hamiltonian (4), with the choice of 7 = 1, generates the dynamics

Up = e, 5)
where we defined the angle 6 that depends on the evolution time ¢
0 = yBt. (6)

A basic task in quantum metrology is to estimate the small parameter € by measuring the
expectation value of a Hermitian operator, which we will denote by M in the following. If the
evolution time ¢ is a constant then estimating @ is equivalent to estimating the magnetic field
B. The precision of the estimation can be characterized with the error-propagation formula as

(49)2 _ (AM)Z

=@M 7
‘(39<M>‘2 "

where (M) is the expectation value of the operator M, and its variance is given as
AM)? = (M?) = (M)?. ®)

Thus, the precision of the estimate depends on how sensitive (M) is to the change of 8, and
also on how large the variance of M is. Based on the formula (7), one can see that the larger
the slope 10,(M )|, the higher the precision. On the other hand, the larger the variance (AM )?,
the lower the precision.

The formula (7) above can be calculated for any given 6. Thus, this formalism can be
used to characterize small fluctuations around a given 6. For simplicity we will calculate the
precision typically for 8 = 0. (To be more precise, if both the numerator and the denominator
in (7) are zero, then we will take the & — 0 limit instead.) This approach is connected to the
estimation theory based on the quantum Fisher information discussed in this review and could
be called a local approach. Figure 1 helps to interpret the quantities appearing in (7). We note

4
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(b)

Figure 2. (a) Magnetometry with an ensemble of spins, all pointing into the z direction.
Solid arrow: the large collective spin precesses around the magnetic field pointing into
the y direction. Dashed arrow: after a precession of an angle A6,,, the uncertainty
ellipse of the spin is not overlapping with the uncertainty ellipse of the spin at the
starting position. Hence, A6, is close to the uncertainty of the phase estimation, which
coincides with the shot-noise limit. (b) Magnetometry with an ensemble of spins, all
pointing to the z direction and spin squeezed along the x direction. The uncertainty of
the phase estimation is close to the angle Af, which is smaller than A6, due to the

spin squeezing.

that the global alternative is the Bayesian estimation theory. There, the parameter to be
estimated is a random variable with a certain probability density p(6). For a recent review
discussing this approach in detail, see [19]. For an application, see [38].

Finally, note that often, instead of (40)? one calculates (40)~2, which is large for a high
precision. It scales as ~N for the shot-noise scaling, and as ~N* for the Heisenberg scaling.
(Compare with (1) and (2).)

2.1. Ramsey-interferometry with spin squeezed states

Let us start with a basic scheme for magnetometry using an almost completely polarized state.
The total spin of the ensemble, originally pointing into the z-direction, is rotated by a
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magnetic field pointing to the y-direction, as can be seen in figure 2(a). Hence, the unitary
giving the dynamics of the system is

Up = e ©)

The stronger the field, the faster the rotation. The rotation angle can be obtained by measuring
(Jy), a spin component perpendicular to the initial spin. The estimation of rotation angle in
such an experiment is a particular case of Ramsey-interferometry (see, e.g., [13, 19]) and has
been realized for magnetometry in cold atoms [39]. This idea has been used in experiments
with cold gases to get even a spatial information on the magnetic field and its
gradient [6-9, 11].

So far, it looks as if the mean spin behaves like a clock arm and its position tells us the
value of the magnetic field. At this point one has to remember that we have an ensemble of
particles governed by quantum mechanics, and the uncertainty of the spin component per-
pendicular to the mean spin is not zero. For the completely polarized state, the squared
uncertainty is

2
(ar) =17 (10)

Hence, the angle of rotation can be estimated only with a finite precision as can be seen in
figure 2(a). Intuitively speaking, we can detect a rotation 6 only if the uncertainty ellipses of
the spin in the original position and in the position after the rotation do not overlap with each
other too much. Based on these ideas and (10), with elementary geometric considerations, we
arrive at

A
oy ~ 2 _ 1 (11)

Thus, we obtained the shot-noise scaling (1), even with very simple, qualitative arguments.
A more rigorous argument is based on the formula (7), where we measure the operator

M=, (12)
The expectation value and the variance of this operator, as a function of 0, are
(M)(@) = (J.) sin () + (J,) cos (0),
@MY (0) = (4J,) cos*(@) + (AL, ) sin’(6)
+ (%Wz + i) — (Jx)(fz)) sin (20). (13)

Hence, using (J,) = 0, we obtain for the precision

_(an)
-

which equals %, demonstrating a shot-noise scaling for the totally polarized states.

(40)?| : (14)

We can see that (460)? could be smaller if we decrease (AJ,)* [40]. A comparison between
figures 2(a) and (b) also demonstrates the fact that a smaller (AJ;)? leads to a higher precision.
The variances of the angular momentum components are bounded by the Heisenberg
uncertainty relation [41]
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2 2 1 2
(A% (A%)" = 5[ (&)~ (15)
Thus, the price of decreasing (AJ;)? is increasing (AJy)z.
Let us now characterize even quantitatively the properties of the state that can reach an
improved metrological precision. For fully polarized states, (15) is saturated such that

(a1 = (a1 = £ |(1)].
Due to decreasing (AJ,)?, our state fulfils

(A% <5 | (%)] (17)

where 7 is the direction of the mean spin, and the bound in (17) is the square root of the bound
in (15). Such states are called spin squeezed states [41-44]. In practice this means that the
mean angular momentum of the state is large, and in a direction orthogonal to the mean spin
the uncertainty of the angular momentum is small. An alternative and slightly different
definition of spin squeezing considers the usefulness of spin squeezed states for reducing
spectroscopic noise in a setup different from the one discussed in this section [42]. Spin
squeezing has been realized in many experiments with cold atomic ensembles. In some
systems the particles do not interact with each other, and light is used for spin squeezing
[13, 39, 45-48], while in Bose-Finstein condensates the spin squeezing can be generated
using the inter-particle interaction [11, 49-51].

Next, we can ask, what the best possible phase estimation precision is for the metrolo-
gical task considered in this section. For that, we have to use the following inequality based
on general principles of angular momentum theory

(16)

N(N+2)

<J,§+J§+J§>< - (18)

Note that equation (18) is saturated only by symmetric multiqubit states. Together with the
identity connecting the second moments, variances and expectation values

(a0) + (n)* = (7). (19)
equation (18) leads to a bound on the uncertainty in the squeezed orthogonal direction

e e C 20)

Introducing the maximal spin length

N

Jnax = 2 (21)

we arrive at the inequality
2 _ N, N ()

(Aly) <5+ 4(1 - J) (22)

This leads to a simple bound on the precision
2
J. 2
40)2 = % <4(an) <N+ N2(1 _ ) (23)

which indicates that the precision is limited for almost completely polarized spin squeezed
states with (J;) = Jnax. Here, the equality in (23) is based on (14), while the first inequality is

7
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Figure 3. The best precision achievable (14) divided by N? as the function of the total
spin, from top to bottom, for N = 10, 100, 1000 particles. The curves converge to the
same curve for large N, which demonstrates an N* scaling for the precision. Note that
the maximum appears in the limit in which the spin length is zero.

due to (15), and the second one comes from (22). The bound in (23) is not optimal, as for the
fully polarized state we would expect (A9)~2 = N, while (23) allows for a higher precision
for (JZ> = Jmax'

It is possible to obtain the best achievable precision numerically for our case, when (J, ) is
measured for a state that is almost completely polarized in the z-direction in a field pointing
into the y-directon. For even N, states giving the smallest (AJ,)*> for a given {J.) can be
obtained as a ground state of the Hamiltonian [43]

HA) =J? - A, (24)

where A > 0 plays the role of a Lagrange multiplier. This also means that the ground states of
H (A) give the best (40) for a given (J;), when collective operators are measured for
estimating 6. Since the ground state of (24) is symmetric, it is possible to make the
calculations in the symmetric subspace and hence model large systems. We plotted the
precision (460)~2 as a function of the polarization (J,) for different values of N in figure 3,
which demonstrates that (A9)~2 scales as N2. Hence, for the precision of phase-estimation the
Heisenberg scaling (2) can be reached.

Paradoxically the maximum is reached in the limit of zero mean spin. An added noise can
radically change this situation. If the mean spin is small, and its direction is the information
that we use for metrology, then a very small added noise can change the direction of the spin,
making the metrology for this case impractical. Thus, if we consider local noise acting on
each particle independently, then the maximum (46)~2 will be reached at a finite spin length.

2.2. Metrology with a GHZ state

Next, we will show another example where the Heisenberg scaling for the precision of phase
estimation can be reached. The scheme is based on a GHZ state defined as

8
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|GHZ ) = %(|0>®N + |1>®N), (25)

where we follow the usual convention defining the |0) and I1) states with the eigenstates of j,
aslo) =1 + %)Z andI1) =1 — %)Z. Such states have been created in photonic systems [52-56]
and in cold trapped ions [1, 57, 58]. Let us consider the dynamics given by

Up = e 0. (26)

Under such dynamics, the GHZ state evolves as
|GHZ ) () = %(|0)®N + e—iN9|1)®N), 27)

hence the difference of the phases of the two terms scales as ~N. Let us consider measuring
the operator

M = c®, (28)

which is essentially the parity in the x-basis. Note that this operator needs an individual access
to the particles. For the dynamics of the expectation value and the variance we obtain

(M) = cos (NO), (AM)? = sin®(NO). (29)

Hence, based on (7), for small @ the precision is

(460)%|g=0 = =, (30)
which means that we reached the Heisenberg scaling (2). In [1], the scheme described above
has been realized experimentally with three ions and a precision above the shot-noise limit
has been achieved.

Note, however, that the GHZ state is very sensitive to noise. Even if a single particle is
lost, it becomes a separable state. Thus, it is a very important question, how well such a state
can be created, and how noise is influencing the scaling of the precision with the particle
number. This question will be discussed in section 6. Concerning spin squeezed states and
GHZ states, it has been observed that under local noise, such as dephasing and particle loss,
for large particle numbers, the GHZ state becomes useless while the spin squeezed states,
discussed in the previous section, are optimal [59].

A related metrological scheme for two-mode systems is based on a Mach—Zender
interferometer [60-66], using as inputs NOON states defined as [18]

INOON) = %(w, 0) + 10, N)). (31)

Here, the state |ny, n,) describes a system with n; particles in the first bosonic mode and n,
particles in the second bosonic mode. For example, the two modes can be two optical modes,
or, two spatial modes in a double-well potential. Thus, similarly to GHZ states, the state is a
superposition of two states: all particles in the first state and all particles in the second state.
However, in this scheme we do not have a local access to the particles. Hence, we cannot
easily measure the operator (28), which is a multi-particle correlation operator, and instead the
following operator has to be measured

M = [N, 0)(0, N| + 10, N)(N, 0]. 32)

The basic idea of the N-fold gain in precision is similar to the idea used for the method
based on the GHZ state. The expectation value of M and the variance of M as a function of 6
is the same as before, given in (29). With that, the Heisenberg scaling can be reached.

9
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Metrological experiments with NOON states have been carried out in optical systems that
surpassed the shot-noise limit [2-5].

2.3. Metrology with a symmetric Dicke state

As a third example, we will consider metrology with N-qubit symmetric Dicke states

%)= (2 En 0 o),
k

where the summation is over all the different permutations of m 1’s and (N — m) 0’s. One of
such states is the W-state for which m = 1, which has been prepared with photons and
ions [67, 68].

From the point of view of metrology, we are interested mostly in the symmetric Dicke
state for even N and m = % This state is known to be highly entangled [69]. In the following,
we will omit the superscript giving the number of 1’s and use the notation

D ,(V%) > : (34)

Symmetric Dicke states of the type (34) have been created in photonic systems [33, 70-73]
and in cold gases [10, 34, 74]. In reference [10, 72], their metrological properties have also
been verified.

The state (34) has (J;) = 0 for all [ = x, y, z. For the second moments we obtain

()= () =1 ()0 5

|Dy) =

It can be seen that (JZZ) is minimal, (J2) and (J?) are close to the largest possible value, Ly

The state has a rotational symmetry around the z axis. Thus, the state is not changed by
dynamics of the type exp ( — iJ,8). Based on these considerations, we will use dynamics of
the type (9). Moreover, since the total spin length is zero, a rotation around any axis remains
undetected if we measure only the expectation values of the collective angular momentum
components. Hence, our setup will measure the expectation value of

M= (36)

Note that this is also a collective measurement. In practice, to measure (M), we have to
measure J, many times and compute the average of the squared values.
For the dynamics of the expectation value we obtain

Nv+2) L = cos (20)
8 2 ’

(M) = %”) sin?(0) = (37)

The expectation value (Jzz) starts from zero, and oscillates with a frequency twice as large as
the frequency of the oscillation was for the analogous case for {J; ) in (13). This is due to fact
that after a rotation with an angle z we obtain again the original Dicke state. Following the
calculations given in reference [10], we arrive at

(40)*| 9= = (38)

2
NWN+2)’

which again means that we reached the Heisenberg scaling (2). The quantum dynamics of the
Dicke state used for metrology is depicted in figure 4.

10
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Figure 4. Magnetometry with Dicke states of the form (34). The uncertainty ellipse of
the state is rotated around the magnetic field pointing to the x-direction. The rotation
angle can be estimated by measuring the uncertainty of the z-component of the
collective spin. Note that, unlike in the case of a fully polarized state, after a rotation of
an angle 7 we obtain the original Dicke state.

0 &) 6@ (2) 99
on% et

Figure 5. For spin—% particles, the permutationally invariant singlet is an equal mixture

of all possible arrangements of two-particle singlets. Three of such arrangements are
shown for eight particles. Note that the eight atoms are arranged in the same way on the
figures, only the pairings are different.

2.4. Singlet states

Finally, we show another example for states that can be used for metrology in large particle
ensembles. Pure singlet states are simultaneous eigenstates of J; for / = x, y, z with an
eiganvalue zero, that is,

h|#®)=0. (39)

Mixed singlet states are mixtures of pure singlet states, and hence < Jﬁm> = 0 for any direction
i and any power m. Such states can be created in cold atomic ensembles by squeezing the
uncertainties of all the three collective spin components [35, 75, 76]. Since in large systems
practically all initial states and all the possible dynamics are permutationally invariant, they
are expected to be also permutationally invariant. For spin-% particles, there is a unique
permutationally invariant singlet state [36]

o= 2 (|#)(#] @ - © [#7) (¥ “0)
Tk
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where the summation is over all permutation operators /7, and
|#) = —=(jo1) - [10)). 1)
NG

A realization of the singlet state (40) with an ensemble of particles is shown in figure 5.

A singlet state is invariant under exp (—iJ; ) for any 7. Thus, it is completely insensitive
to rotations around any axis. How can it be useful for magnetometry? Let us now assume that
we would like to analyse a magnetic field pointing in the y-direction using spins placed in an
equidistant chain. While the singlet (40) is insensitive to the homogenous component of the
magnetic field, it is very sensitive to the dynamics

—i nj‘™e
. Z/ o (42)

where 6 is proportional to the field gradient. This makes the state useful for differential
magnetometry, since singlets are insensitive to external homogeneous magnetic fields, while
sensitive to the gradient of the magnetic field [36]. Similar ideas work even if the atoms are in
a cloud rather than in a chain. The quantity to measure in order to estimate 0 is again (Jzz) as
was the case in section 2.3. This idea is also interesting even for a bipartite singlet of two large
spins [77].

3. Spin squeezing and entanglement

As we have seen in section 2.1, spin squeezed states have been more useful for metrology
than fully polarized product states. Moreover, states very different from product states, such
as GHZ states and Dicke sates could reach the Heisenberg limit in parameter estimation.
Thus, large quantum correlations, or entanglement, can help in metrological tasks. In this
section, we will discuss some relations between entanglement and spin squeezing, showing
why entanglement is necessary to surpass the shot-noise limit. We also discuss that not only
entanglement, but true multipartite entanglement is needed to reach the maximal precision in
the metrology with spin squeezed states.

3.1. Entanglement and multi-particle entanglement

Next, we need the following definition. A quantum state is (fully) separable if it can be written
as [78]

Qsep = Zgnplitl) ® prf) ® ® p’EIN), (43)
m

where pn(;’) are single-particle pure states. Separable states are essentially states that can be
created without an inter-particle interaction, just by mixing product states. States that are not
separable are called entangled. Entangled states are more useful than separable ones for
several quantum information processing tasks, such as quantum teleportation, quantum
cryptography, and, as we will show later, for quantum metrology [23, 24].

In the many-particle case, it is not sufficient to distinguish only two qualitatively different
cases of separable and entangled states. For example, an N-patrticle state is entangled, even if
only two of the particles are entangled with each other, while the rest of the particles are, say,
in the state 10). Usually, such a state we would not call multipartite entangled. This type of
entanglement is very different from the entanglement of a GHZ state (25).

12
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2-producible

Separable

(N-1)-producible
N-producible

Figure 6. Sets of states with various forms of multipartite entanglement. k-producible
states form larger and larger convex sets, 1-producible states being equal to the set of
separable states, while the set of physical quantum states is equal to the set of N-
producible states.

Hence, the notion of genuine multipartite entanglement [57, 79] has been introduced to
distinguish partial entanglement from the case when all the particles are entangled with each
other. It is defined as follows. A pure state is biseparable, if it can be written as a tensor
product of two multi-partite states

%) = %) @ | ). @)

A mixed state is biseparable if it can be written as a mixture of biseparable pure states. A state
that is not biseparable, is genuine multipartite entangled. In many quantum physics
experiments the goal was to create genuine multipartite entanglement, as this could be used to
demonstrate that something qualitatively new has been created compared to experiments with
fewer particles [33, 52-58, 70, 71, 73].

In the many-particle scenario, further levels of multi-partite entanglement must be
introduced as verifying full N-particle entanglement for N = 1000 or 10° particles is not
realistic. In order to characterize the different levels of multipartite entanglement, we start first
with pure states. We call a state k-producible, if it can be written as a tensor product of the
form

1¥) = @ |%,)- (45)

where ly;, ) are multiparticle states with at most k particles. A k-producible state can be created
in such a way that only particles within groups containing not more than k particles were
interacting with each other. This notion can be extended to mixed states by calling a mixed
state k-producible if it can be written as a mixture of pure k-producible states. A state that is
not k-producible contains at least (k + 1)-particle entanglement [80, 81]. Using another
terminology, we can also say that the entanglement depth of the quantum state is larger than
k [43].

It is instructive to depict states with various forms of multipartite entanglement in set
diagrams as shown in figure 6. Separable states are a convex set since if we mix two separable
states, we can obtain only a separable state. Similarly, k-producible states also form a convex
set. In general, the set of k-producible states contain the set of /-producible states if k > I.

13
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3.2. The original spin squeezing criterion

Let us see now how entanglement and multiparticle entanglement is related to spin squeezing.
It turns out that spin squeezing, discussed in section 2.1, is strongly related to entanglement.
A ubiquitous entanglement criterion in this context is the spin squeezing inequality [82]

(AL

= Nzi >1
(5) + (2

If a state violates (46), then it is entangled (i.e., not fully separable). In order to violate (46),
its denominator must be large while its numerator must be small, hence, it detects states that
have a large spin in some direction, while a small variance of a spin component in an
orthogonal direction. That is, (46) detects the entanglement of spin squeezed states depicted in
figure 2(b).

For spin squeezed states, it has also been noted that multipartite entanglement, not only
simple nonseparability is needed for large spin squeezing [43]. To be more specific, for a
given mean spin length, larger and larger spin squeezing is possible only if the state has
higher and higher levels of multipartite entanglement. Moreover, larger and larger spin
squeezing leads to larger and larger measurement precision. Such strongly squeezed states
have been created experimentally in cold gases and a 170-particle entanglement has been
detected [83].

At this point note that only the first and second moments of the collective quantities are
needed to evaluate the spin squeezing condition (46). It is easy to show that all these can be
obtained from the average two-particle density matrix of the quantum state defined as [84]

(46)

1
O R e —— > (47)
NWN-1) mz#n
where g,,, is the reduced two-particle state of particles m and n.

In summary, entangled states seem to be more useful than separable ones for magne-
tometry with spin squeezed states discussed in section 2.1. Moreover, states with k-particle
entanglement can be more useful than states with (k — 1)-particle entanglement for the same
metrological task. This finding will be extended to general metrological tasks in section 5.

3.3. Generalized spin squeezing criteria

The original spin squeezing entanglement criterion (46) can be used to detect the entangle-
ment of almost completely polarized spin squeezed states. However, there are other highly
entangled states, such as Dicke states (34) and singlet states defined in (39). For these states,
the denominator of the fraction in (46) is zero, thus they are not detected by the original
squeezing entanglement criterion.

A complete set of entanglement conditions similar to the condition (46) has been
determined, called the optimal spin squeezing inequalities. They are called optimal since, in
the large particle number limit, they detect all entangled states that can be detected based on
the first and second moments of collective angular momentum components. For separable
states of the form (43), the following inequalities are satisfied [84]

(72) + (17) + (12) < 2522, (48a)



J. Phys. A: Math. Theor. 47 (2014) 424006 G Téth and | Apellaniz

(ALY + (A%) + (L) > Y, (48b)
(72) + () = ¥ <V = (A ), (48¢)
WV = D[ (A4) + (a4 | > (2) + =2, (48d)

where k, [, m take all the possible permutations of x, y, z. The inequality (48a), identical to
(18), is valid for all quantum states. On the other hand, violation of any of the inequalities
(48b—48d) implies entanglement.

Based on the entanglement conditions (48), new spin squeezing parameters have been
defined. For example, (48c) is equivalent to [85]

(ar) (49)
() +(2) -5

provided that the denominator of (49) is positive. The criterion (49) can be used to detect
entanglement close to Dicke states, discussed in section 2.3. One can see that for the Dicke
state (34), the numerator of the fraction in (49) is zero, while the denominator is maximal (see
(35)). Apart from entanglement, it is also possible to detect multiparticle entanglement close
to Dicke states. A condition linear in expectation values and variances of collective
observables has been presented in [86] for detecting multipartite entanglement. A nonlinear
criterion is given in [74], which detects all states as multipartite entangled that can be detected
based on the measured quantities. The criterion has been used even experimentally [74]. An
entanglement depth of 28 particles has been detected in an ensemble of around 8000 cold
atoms.
The inequality (48b) is equivalent to [35, 76]

E2:=(N-1)

ALY + (a4 + (ALY
fs%nglet:=( X) ( Ey) ( Z) > 1. (50)
2

The parameter .fs%nglet can be used to detect entanglement close to singlet states discussed in
section 2.4. It can be shown that the number of non-entangled spins in the ensemble is
bounded from above by N ﬁnglet.

Finally, it is interesting to ask, what the relation of the new spin squeezing parameters is
to the original one. It can be proved that the parameters st%nglet and &2 detect all entangled

states that are detected by 552. They detect even states not detected by 552, such as entangled
states with a zero mean spin, like Dicke states and singlet states. Moreover, it can be shown
that for large particle numbers, £2 in itself is also strictly stronger than £ [85].

4. Quantum Fisher information

In this section, we review the theoretical background of quantum metrology, such as the
Fisher information, the Cramér—Rao bound and the quantum Fisher information.

15
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0 U(6)=exp(—id0) Q¢

Figure 7. The basic problem of linear interferometry. The parameter € must be
estimated by measuring ;.

4.1. Classical Fisher information

Let us consider the problem of estimating a parameter 6 based on measuring a quantity M. Let
us assume that the relationship between the two is given by a probability density function
f (x; 6). This function, for every value of the parameter 6, gives a probability distribution for
the x values of M.

Let us now construct an estimator 0 (x), which would give for every value x of M an
estimate for 8. In general it is not possible to obtain the correct value for 8 exactly. We can
still require that the estimator be unbiased, that is, the expectation value of é(x) should be
equal to 0. This can be expressed as

0=/(9—é(x))f(x; 0) dx. (51)

How well the estimator can estimate 8? The Cramér—Rao bound provides a lower bound on
the variance of the unbiased estimator as

var(6) 2 2o (52

where the Fisher information is defined with the probability distribution function f (x; 8) as

2
Fo = [ (% log f (x; 9))f(x; 0)dx. (53)

The inequality (52) is a fundamental tool in metrology that appears very often in physics and
engineering, and can even be generalized to the case of quantum measurement. Finally, note
that the inequality (52) is giving a lower bound for parameter estimation in the vicinity of a
given 6. This is the local approach discussed in section 2.

4.2. Quantum Fisher information

In quantum metrology, as can be seen in figure 7, one of the basic tasks is phase estimation
connected to the unitary dynamics of a linear interferometer

0p = e—ié)AQeHé)A, (54)

where ¢ is the input state, g, is the output state, and A is a Hermitian operator. The operator A
can be, for example, a component of the collective angular momentum J;. The important
question is, how well we can estimate the small angle 6 by measuring g,.

Let us use the notion of Fisher information to quantum measurements assuming that the
estimation of @ is done based on measuring the operator M. Let us denote the projector
corresponding to a given measured value x by I1,. Then, we can write

16
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f(x; 6) = Tr (@11, (55)

which can be used to define an unbiased estimator based on (51). Then, the Fisher information
can be obtained using (53). Finally, using (55), the Cramér—Rao bound (52) gives a lower
bound on the precision of the estimation. A similar formalism works even if the
measurements are not projectors, but in the more general case, positive operator valued
measures (POVM).

We could calculate a bound for the precision of the estimation for given dynamics and a
given operator to be measured using this formalism. However, it might be difficult to find the
operator that leads to the best estimation precision just by trying several operators. For-
tunately, it is possible to find an upper bound on the precision of the parameter estimation that
is valid for any choice of the operator. The phase estimation sensitivity, assuming any type of
measurement, is limited by the quantum Cramér—Rao bound as [87, 88]

1
Fole. Al

where F is the quantum Fisher information. As a consequence, based on (7), for any operator
M we have

(40)* > (56)

@My 1
laoa)| >~ Fole. AT’

(57)

The quantum Fisher information F, can be computed easily with a closed formula. Let us
assume that a density matrix is given in its eigenbasis as

0= D k) (k|. (58)
k
Then, the quantum Fisher information is given as [87-90]
(4 = 4)’
Folo, Al = 2) ~——— [(k|A|])|2. (59)
ole, A] kzl: Py

Next, we will review some fundamental properties of the quantum Fisher information
which relate it to the variance.
(i) For pure states, from (59) follows

Fylo. A] = 4(AA). (60)

(i1) For all quantum states, it can be proven that

Fplo, A] < 4(4AA)%. (61)

This provides an easily computable upper bound on the quantum Fisher information.

For quantum states with (AA)?> = 0 we obtain that Fy[g, A] = 0. Such a state does not
change under unitary dynamics of the type e ?. It is instructive to consider the example
when A = J; forl € x, v, z. Then, (4J;)> = 0 also implies that the state does not change under
the dynamics e, as we could see in the case of the singlet states in section 2.4.
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(iii) More generally, the quantum Fisher information is convex in the state, that is

Fo[ pey + (1 = pyey, A] < pRy[ 01 A] + (1 = p)Fo[ 05, A]- (62)

(iv) Recently, it has turned out that the quantum Fisher information is the largest convex
function that fulfils (i) [91, 92]. This can be stated in a concise form as follows. Let us
consider a very general decomposition of the density matrix

EDY LA

where p, > 0 and ), p, = 1. With that, the quantum Fisher information can be given
as the convex roof of the variance,

Folo, Al =4 inf 'p (AA),, (64)
{pk“’k)}k

) (63)

where the optimization is over all the possible decompositions (63).

At this point we have to note that if I¥ ) in the decomposition (63) were pairwise
orthogonal to each other, then the decomposition (63) would be an eigendecomposition. For
density matrices with a non-degenerate spectrum, it would even be unique and easy to obtain
by any computer program that diagonalizes matrices. However, the pure states |¥,) are not
required to be pairwise orthogonal, which leads to an infinite number of possible decom-
positions. Convex roofs over all such decompositions appear often in quantum information
science [23, 24] in the definitions of entanglement measures, for example, the entanglement of
formation [93, 94]. These measures can typically be computed only for small systems. Here,
surprisingly, we have the quantum Fisher information given by a convex roof that can also be
obtained as a closed formula (59) for any system sizes.

There are generalized quantum Fisher informations different from the original one (59).
They are convex and have the same value for pure states as the quantum Fisher information
does [91]. However, they cannot be larger than the quantum Fisher information. This is
counterintuitive: the quantum Fisher information is defined with an infimum, still it is easy to
show that it is the largest, rather than the smallest, among the generalized quantum Fisher
informations. As an example, we mention one of the generalized quantum Fisher informa-
tions, defined as four times the the Wigner—Yanase skew information given as [95]

I A = Tr (A2) = Tr (AQ%AQ%). (65)

For pure states, I [g, A] equals the variance and it is convex. There are even other types of
generalized quantum Fisher informations. References [96, 97] introduce an entire family of
generalized quantum Fisher informations, together with a family of generalized variances.

Analogously to (64), it can also be proven that the concave roof of the variance is itself
[91]

(BAY, = sup Y p (4A)%,. (66)
{Pel ¥} &

Hence, the main statements can be summarized as follows. For any decomposition {p, , I'¥) }
of the density matrix ¢ we have
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LFylo. Al < Y, (A4, < (4AY2,, (67)
k

where the upper and the lower bounds are both tight in the sense that there are decompositions
that saturate the first inequality, and there are others that saturate the second one”.

Let us now discuss an alternative way to interpret the inequalities of (67), relating them to
the theory of quantum purifications, which play a fundamental role in quantum information
science. A mixed state ¢ with a decompostion (63) can be represented as a reduced state
0 = Tra(I¥) (1) of a pure state, called the purification of ¢, defined as

1¥) = X\ JPr | #) ® [K)a- (68)
k

Here |k) is an orthogonal basis for the ancillary system, and Tru(.) denotes tracing out the
ancilla. Note that all purification can be obtained from each other using a unitary acting on the
ancilla. This way one can obtain purifications corresponding to all the various
decompositions.

Let us now assume that a friend controls the ancillary system and can assist us to achieve
a high precision with the quantum state, or can even hinder our efforts. Our friend can choose
between the purifications with unitaries acting on the ancilla. Then, our friend makes a
measurement on the ancilla, and sends us the result k. This way we receive the states %)
together with the label &, corresponding to some decomposition of the type (63). The average
quantum Fisher information for the |'%,) states is bounded from below and from above as
given in (67). The worst case bound is given by the quantum Fisher information. We can
always achieve this bound even if our friend acts against us.

On the other hand, if the friend acting on the ancilla helps us, a much larger average
quantum Fisher information can be achieved, equal to four times the variance. At this point,
there is a further connection to quantum information science. Besides entanglement measures
defined with convex roofs, there are measures defined with concave roofs [100-102]. For
example, the entanglement of assistance is defined as the maximum average entanglement
that can be obtained if the party acting on the ancilla helps us. Thus, in quantum information
language, the variance can be called the quantum Fisher information of assistance over four.
Later, we will see another connection between purifications and the quantum Fisher infor-
mation in section 6.

After the discussion relating the quantum Fisher information to the variance, and
examining its convexity properties, we list some further useful relations for the quantum
Fisher information. From (59), we can obtain directly the following identities.

(1) The formula (59) does not depend on the diagonal elements (ilAli). Hence,

FQ [(), A] = FQ [Q, A + D], (69)

where D is a matrix that is diagonal in the basis of the eigenvectors of g, i.e., [¢, D] = 0.
(i1) The following identity holds for all unitary dynamics U

FQ[UQUT, A] = FQ[Q, UTAU]. (70)

The left- and right-hand sides of (70) are similar to the Schrodinger picture and the
Heisenberg picture, respectively, in quantum mechanics. Hence, in particular, the quantum

* The fact that the second inequality of (67) can be saturated means that there is a decomposition such that the
average variance of the pure states of the decomposition equals the variance of the mixed state. It is possible to prove
an analogous statement for 2 x 2 covariance matrices, while this is not always true for 3 x 3 covariance
matrices [98, 99].
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Fisher information does not change under unitary dynamics governed by A as a Hamiltonian

Fylo. A] = FQ[e_iAGQeiAg, A]. (71)

(iii) The quantum Fisher information is additive under tensoring
Fo[ ¢V ® 0@, AV @ 1+ 1® A2 | = Fp[ o™, AV ]| + Fp[ @@, A ]. (72)

For N-fold tensor product of the system, we obtain an N-fold increase in the quantum Fisher
information

N
Fglow ZA(”)] = NFgle. Al, (73)

n=1

where A™ denotes the operator A acting on the nth subsystem.
(iv) The quantum Fisher information is additive under a direct sum [103]

Fol @« prow @ Av] = YopiFol o Ac, (74)
k

where gy are density matrices with a unit trace and ), p, = 1. Equation (74) is relevant, for
example, for experiments where the particle number variance is not zero, and the gy
correspond to density matrices with a fixed particle number [104, 105].

(v) If a pure quantum state |¥') of N d-dimensional particles is mixed with white noise as
[106, 107]

1
Qnoisy(p) =p |T><l[/| + (1 - p)d_N’ (75)
then
_ P’
Fo| Guoisy (): A] = mFQ[|Y1><‘1’|, Al. (76)

Thus, an additive global noise decreases the quantum Fisher information by a constant factor.
If p does not depend on N then it does not influence the scaling of the quantum Fisher
information with the number of particles. Note that this is not the case for a local uncorrelated
noise. A constant uncorrelated local noise contribution can destroy the scaling of the quantum
Fisher information and lead back to the shot-noise scaling for large N, as will be discussed in
section 6.

(vi) If we have a bipartite density matrix and we trace out the second system, the
quantum Fisher information cannot increase (see, e.g. [108])

FQ[Q, AD ® u<2>] > FQ[ Trs (o), AU)]. (77)

In fact, in many cases it decreases even if the operator A" was acting on the first subsystem,
and thus the unitary dynamics changed only the first subsystem. This is due to the fact that
measurements on the entire system can lead to a better parameter estimation than
measurements on the first system. Let us see a simple example with the following
characteristics

20
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o= [¥){¥.
AV= 4, (78)

where |¥7) is defined in (41). Since Tr,(¢) is the completely mixed state, the right-hand side
of the inequality (77) is zero, while the left-hand side is positive. On the other hand, (77) is
always saturated if ¢ is a product state of the form oV ® .

(vii) It is instructive to write the quantum Fisher information in an alternative form as
[109]

Ak

@m¢r=42mummﬁ—8zl ;|wmm2
k.l o kA
vy
= 4(A%) -8 [(k|AllY]2. (79)
< > kZJﬂk + /11

(ix) Following a similar idea, equation (64) can also be rewritten as

Folo, Al = 4(A%), — 4 Sup>}zpk (A, (80)
Pl )| k

By removing the second moments of the operator from the infimum, we make the
optimization simpler.

Similarly, we can also rewrite the formula (66) as

(AA)?, = (A%), — inf > p (AN (81)
pk"ylk” k

{

(x) Finally, based on (80) and (81), the difference between the variance and the quantum
Fisher information over four is obtained as

1 .

(447, = JFole. Al = sup D (AYy — inf  3p (A)y. (82)
Pl )}k {pel ¥} T

Clearly, (82) is zero for all pure states. It can also be zero for some mixed states. For example,

based on (61), we see that for all states for which we have (AA)2(, = 0, we also have

Fylo, Al = 0. Thus, the difference (82) is also zero for such quantum states.

4.3. Optimal measurement

The Cramér—Rao bound (56) defines the achievable largest precision of parameter estimation,
however, it is not clear what has to be measured to reach this precision bound. An optimal
measurement can be carried out if we measure in the eigenbasis of the symmetric logarithmic
derivative L [89, 90]. This operator is defined such that it can be used to describe the quantum
dynamics of the system with the equation

de 1
= 2(Loy + opl)- (83)
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Unitary dynamics are generally given by the von Neumann equation with the Hamiltonian A

20 = i(0pA — Adgy). (84)

The operator L can be found based on knowing that the right-hand side of (83) must be equal
to the right-hand side of (84). Hence, the symmetric logarithmic derivative can be expressed
with a simple formula as

A — A
L =21 ——— |k){I|{k|A|]), 85
§M+Mnuu|> (85)

where 1, and |k) are the eigenvalues and eigenvectors, respectively, of the density matrix g.
Based on (59) and (85), the symmetric logarithmic derivative can be used to obtain the
quantum Fisher information as

Fylo, A1 =Tr (QL2). (86)

For a pure state 1¥), the formula (85) can be simplified and the symmetric logarithmic
derivative can be obtained as

L =2i[|¥)(¥], A]. (87)

It is instructive to consider a concrete example. Let us find L for the setup based on
metrology with the fully polarized ensemble discussed in section 2.1. In this case, A = J, and
the quantum state evolves according to the equation

0y = e‘“"‘ggoe““ﬂ, (88)

where the initial state is

2o = 10){01®". (89)
For short times, the dynamics can be written as

Qo F Qo+ ia(gojy - ]yQo)- (90)
Using the identity with 2 x 2 matrices

i((10)(01j, = jy 10)401) = 10)(01 j, +j, [0}(0] 1)

the short-time dynamics can be rewritten as

0y~ Q) + Q(QOJX + JXQO). (92)
Hence, for this case the symmetric logarithmic derivative is
L=2J. ©3)

Indeed, in the example of section 2.1 we measured J,, which now turned out to be the optimal
operator to be measured.

Let us now see what can be obtained from the explicit formula (87) for the symmetric
logarithmic derivative. Together with (91), it leads to

L = 2(10)(0/®J; + J.[0)(0®Y). (94)

As the example shows, (93) and (94) are different, hence L is not unique. Nevertheless, the
right-hand side of (83) is the same for (93) and (94). This is because the symmetric
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logarithmic derivative is defined unambiguously within the support of g,, while in the
orthogonal space it can take any form as long as (83) is satisfied.

4.4. Multi-parameter metrology

The formalism of section 4.2 can be generalized to the case of estimating several parameters.
The Cramér—Rao bound for this case is

C-F'>0, (95)

where the inequality in (95) means that the left-hand side is a positive semidefinite matrix, C
is now the covariance matrix with elements

Con = <9m9n> - <9m><9n>v (96)

and F is the Fisher matrix. It is defined as for the case of a unitary evolution

A= A)

Fon = Folo, A, Ay] = 22(1 = (k| Aw|1) (1| A k), 97)

where A, and |k) are the eigenvalues and eigenvectors of the density matrix g, respectively
(see (598)).

The bound of (95) cannot always be saturated, as it can happen that the optimal mea-
surement operators for the various 6, parameters do not commute with each other. Examples
of multiparameter estimation include estimating parameters of unitary evolution as well as
parameters of dissipative processes, such as for example phase estimation in the presence of
loss such that the loss is given [38], the estimation of both the phase and the loss [110],
estimation of phase and diffusion in spin systems [111], joint estimation of a phase shift and
the amplitude of phase diffusion at the quantum limit [112], the joint estimation of the two
defining parameters of a displacement operation (i.e., x and p) in phase space [113], optimal
estimation of the damping constant and the reservoir temperature [114], estimation of the
temperature and the chemical potential characterizing quantum gases [115], estimation of
two-parameter rotations in spin systems [116], and the simultaneous estimation of multiple
phases [117]. Multiparameter estimation is considered in a very general framework in [118].
Note that not all from the examples discussed above carry out a multi-parameter estimation in
the sense it was explained in this section.

5. Quantum Fisher information and entanglement

In this section, we review some important facts concerning the relation between the phase
estimation sensitivity in linear interferometers and entanglement. We will show that entan-
glement is needed to overcome the shot-noise sensitivity in very general metrological tasks.
Moreover, not only entanglement but multipartite entanglement is necessary for a maximal
sensitivity. All these statements will be derived in a very general framework, based on the
quantum Fisher information. We will also discuss related issues, namely, meaningful defi-
nitions of macroscopic entanglement, the speed of the quantum evolution, and the quantum
Zeno effect. We will also briefly discuss the question whether inter-particle entanglement is
an appropriate notion for our systems.
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5.1. Entanglement criteria with the quantum Fisher information

Let us first examine the upper bounds on the quantum Fisher information for general quantum
states and for separable states. These are also bounds for the sensitivity of the phase esti-
mation, since due to the Cramér—Rao bound (56) we have

40)2 < Fp[o, 4], (98)

Entanglement has been recognized as an advantage for several metrological tasks (see,
e.g., [82, 119]). For a general relationship for linear interferometers, we can take advantage of
the properties of the quantum Fisher information discussed in section 4.2. Since for pure
states the quantum Fisher information equals four times the variance, for pure product states
we can write

Fole. 7] = 4(any =43 (4 ) <N 99)

n

for [ = x, y, z. For the second equality in (99), we used the fact that for a product state the
variance of a collective observable is the sum of the single-particle variances. Due to the
convexity of the quantum Fisher information, this upper bound is also valid for separable
states of the form (43) and we obtain [120]

Fyle. ] <N. (100)

All states violating (100) are entangled. Such states make it possible to surpass the shot-noise
limit and are more useful than separable states for some metrological tasks.

The maximum for general states, including entangled states, can be obtained similarly.
For pure states, we have

Folo, 5] = 4(4a4) < N?, (101)

which is a valid bound again for mixed states. Thus, we obtained in (100) the shot-noise
scaling (1), while in (101) the Heisenberg scaling (2) for the quantum Fisher information
Fylo, Ji]. Note that our derivation is very simple, and does not require any information about
what we measure to estimate 6. Equation (100) has already been used to detect entanglement
based on the metrological performance of the quantum states in reference [10, 72].

At this point one might ask whether all entangled states can provide a sensitivity larger
than the shot-noise sensitivity. This would show that entanglement is equivalent to metro-
logical usefulness. Concerning linear interferometers, it has been proven that not all entangled
states violate (100), even allowing local unitary transformations. Thus, not all quantum states
are useful for phase estimation [121]. It has been shown that there are even highly entangled
pure states that are not useful. Hence, the presence of entanglement seems to be rather a
necessary condition.

The quantum Fisher information can be used to define the entanglement parameter [120]

2 N
Fo[ e, ]
Based on (100), y2 > 1 holds for separable states, while y> < 1 indicates entanglement and

also implies that the quantum state is more useful for metrology than separable states. For
pure states the new parameter )(2 can be rewritten as

X (102)
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){2 = L (103)

4(AJy)2'

Thus, while 552 <1 (552 is given in (46)) indicates a small variance (4J,)%, y> < 1 indicates a
large variance (AJ,)* in the orthogonal direction. Thus, the quantum state is metrologically
useful not because it has a small variance along the x-direction, but because it has a large
variance in the y-direction (see figure 2).

Next, we will relate the parameter (102) to the original spin squeezing parameter &2 given
in (46). Equation (14) can be rewritten for the case that the axis of the rotation is in the z—y
plane, and it is not necessarily the z axis as

(40)? = % (104)
2 2
(5) + ()

combining (104) and the Cramér-Rao bound (56) leads to [120]
&2 > 42 (105)

Hence, if £2 < 1 then y2 < 1. Thus, the parameter x> is more sensitive to entanglement than
£2. One reason might be that £2 has information only about the reduced two-particle matrix of
the state, as explained at the end of section 3.2, while y* contains the quantum Fisher
information that does not depend only on the two-particle state, but, in a sense, on the entire
quantum state. In another context, we can say that due to (105), the spin squeezing parameter
&2 detects entanglement that is useful for metrology.

The previous ideas can be extended to construct relations that include the quantum Fisher
information corresponding to several metrological tasks. In order to construct such a relation,
let us consider the average quantum Fisher information for any direction defined as

avg;Fole. Ji] = /

| 1FQ[Q, Jg]dfi. (106)
Equation (106) is relevant for the following metrological task. It gives an upper bound on the
average (A0)~? for a quantum state g, if the direction of the magnetic field is chosen randomly
based on a uniform distribution.

Simple calculations show that the integral (106) equals the average of the quantum Fisher
information corresponding to the three angular momentum components

avg; oo, Ji] = 3 (Fole. 4] + Fol e, 4] + Fo[ 0. ])- (107)

Bounds similar to (100) can be obtained also for separable states for the average quantum
Fisher information [106, 107]. It can be proven that for separable states

ave;Fol e, Ji] < %N (108)

holds. Comparing (108) with (100) shows that the bound for the average quantum Fisher
information is lower than the bound for quantum Fisher information for a single metrological
task for a given direction. The bound for all quantum states, including entangled states is

ave; Fol e, Ji] < %N(N +2). (109)

The bound for the average quantum Fisher information is again smaller than the bound for a
given direction appearing in (101).
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Let us now calculate the quantum Fisher information for concrete highly entangled
quantum states. For GHZ states (25), the quantum Fisher information values for the three
angular momentum components are

Folo, k] =N%  Fole. ] =Fole L] =N, (110)
while for N-qubit symmetric Dicke states with % excitations given in (34) we have
Fole. 1] =Fol e, | = 3NN +2),  Fple, L] =0. (111)

Hence, GHZ states have a maximal sensitivity for the metrology of the type considered in
section 2.2 and hence saturate (101). As can be seen in (111), Dicke states (34) almost reach
the maximum for Fyp[e, J;] and Fy[g, J,]. Note that both states are unpolarized, that its, their
mean spin is zero. It is easy to show that Fy [, J;] can be maximal only if (J;) = 0, which can
be seen from the inequality

Folo. 7] < 4(A%) < N* = 4(J). (112)

Let us turn to the average sensitivity of the quantum states. Both GHZ states (25) and
symmetric Dicke states (34) saturate the inequality for the average quantum Fisher infor-
mation (109). In general, simple algebra shows that all pure symmetric states for which
(J;) = 0 forl = x, y, z saturate (109), that is, their average sensitivity is maximal [107]. This
indicates that states without a large spin can be more useful for metrological purposes than
polarized quantum states.

Let us formulate this statement in a more quantitative way, by bounding the average
quantum Fisher information with the spin length. We can construct such an inequality using
(19) and (61) as

Folo, 1] + Fol o, ] + Fo[ @, 4] < 4( (72407 +02) - <f)2), (113)

where the mean spin vector is defined as

(Jy = ((Jx), (%), <JZ>). (114)

Equation (113) expresses the fact that a large average precision (107) can be reached if the
state is close to symmetric and thus the inequality (18) is close to being saturated. Moreover,
for a large average precision, I(j »| must be small. The maximal average precision can be
reached only if the state is symmetric and (7 Y = 0. Hence, states that are almost fully
polarized have an average precision that is far from the maximum. With this we generalized
the discussions at the end of section 2.1.

5.2. Criteria for multipartite entanglement

After defining the basic notions, we will find the bounds for the metrological sensitivity of
quantum states with various levels of multipartite entanglement. For N-qubit k-producible
states, the quantum Fisher information is bounded from above by [106, 107]

Folo. Ji] < sk* + (N — sk)?, (115)
where s is the integer part of % It is instructive to write (115) for the case N divisible by k as

Fole. Ji] = Nk. (116)
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Figure 8. Entanglement criteria in the (Fple, Ji1, Fple, J,1, Fple, J.1)—space for
N = 6 qubits. (a) Entanglement criteria with Fy[g, J;]. The planes correspond to the
inequalities, from bottom to top, equation (100), (118a) and (101) with J; = J,. (b)
Entanglement criteria with ), Fp [0, J;]. The planes correspond to the inequalities, from

bottom to top, equation (108), (118b) and (109), respectively. For the description of the
inequalities and the points see text.

Thus, the bounds reached by k-producible states are distributed linearly, i.e., (2k)-poducible
states can reach a twice as large value for (46)? as k-producible states can.

Similar bounds can be obtained for the average quantum Fisher information. For N-qubit
k-producible states, for k > 2, the sum of the three Fisher information terms is bounded from
above by [106, 107]

%sk(k+2)+§(N—sk)(N—sk+2) it N—sk#1,
avg;Fole, Ji] <9 ] ; . (117)
Tok(k+2)+ 2 if N—sk=1,

where s is again the integer part of % Any state that violates this bound is not k-producible
and contains (k + 1)-particle entanglement. These inequalities have been used to detect
experimentally useful multipartite entanglement in [72].

It is also instructive to find bounds for genuine N-particle entanglement (see section 3.1).
The bounds for biseparable states for the left-hand side of (115) and (117) can be obtained

taking n = 1 and maximizing the bounds over k = g g +1,....,N — 1foreven N, while over

k= %, % +1,..,N — 1 for odd N. Hence, we arrive at

Fole. i] < (N = 1)* + 1, (118a)

ave;Fple, Ji] < 3(N? +1). (118b)
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Any state that violates (118a) or (118b) is genuine multipartite entangled. Comparing these to
the bounds for general entangled states, (101) and (109), we can conclude that full N-partite
entanglement is needed to reach a maximal metrological sensitivity.

Finally, we also mention that bound entangled states can also be detected with the
entanglement criteria based on the quantum Fisher information. Bound entanglement is a
weak type of entanglement, which is not distillable with local operations and classical
communication [23, 24]. Thus, it is a surprise that such states are useful for metrology.
Reference [106] presented states that were detected as bound entangled based on the criterion
for the average quantum Fisher information (108). Reference [122] presented states that
violate the criterion based on a bound for the quantum Fisher information for a single
metrological task (115) and showed that even the Heisenberg scaling can be reached with
bound entangled states.

The results presented in this section are summarized in figure 8, which shows various
quantum states in the (Fp[e, J1, Fple, /1, Fyle, J.]1)—space for N = 6 particles. A similar
figure can be drawn for any even N.

In figure 8(a), the entanglement conditions given in terms of an inequality with the
quantum Fisher information F;[g, J.] are shown. The completely mixed state corresponds to
the point C at the origin. The entanglement criterion (100) corresponds to the bottom plane.
Any state above this plane is entangled. For even N, product states corresponding to the S,
points are defined as

05, = 10N (03 @ |1)(1185 (119)

for [ = x, y, z. The entanglement criterion (118a) corresponds to the second plane. Any state
above this plane is genuine multipartite entangled. The point GHZ’ refers to the state

1
Oz = |GHZy_1)(GHZy_i| ® > (120)

Finally, the inequality (101) corresponds to the top plane. The point GHZ in figure 8(a) refers
to the GHZ state given in (25).

Let us now turn to figure 8(b), in which the entanglement conditions involving the
average quantum Fisher information (107) are shown. The plane of the triangle S, — S, — S
corresponds to the inequality (108), all states above this plane are entangled. States corre-
sponding to the points S; are given in (119). The GHZ' — D" — D, — D.’ plane corresponds
to the inequality (118b), and all states above this plane are genuine multipartite entangled. A
tensor product of a Dicke state and a single-particle state corresponds to the point D,’

D) =

N _
<gv2_ 1)1)> ®[1), (121)

where we used the definition of the symmetric Dicke state given in (33). Note that since
(N —1) is odd, ‘D((A?__ 11))> has unequal number of 0’s and 1’s. The points D; and Dy are
defined similarly with Dicke states in the x and y-basis, respectively. The
GHZ — D, — D, — D, plane corresponds to (109). There are no physical states above this
plane. The Dicke state in the z-basis characterized by (111) corresponds to the point D,. The
Dicke states in the x and y-basis correspond to the points D, and D,, respectively. GHZ states
given in the x and y-basis, not shown in the figure 8(b), would also be in the same plane.
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5.3. Macroscopic superposition

After describing the relation between the quantum Fisher information and multiparticle
entanglement, we will discuss one of the related interesting questions, namely, the proper
definition of a macroscopic superposition [123—125]. The question whether a quantum state is
a macroscopic superposition makes sense only if we consider a state that can be defined for
any number of particles, such as the GHZ state. Then, we examine the properties of this
family of states for an increasing N.

A very meaningful definition has been proposed for pure states based on the variance of
collective quantities as follows [123]. Let us define Ao as the set of collective operators
given as

N
Acort = Ya™. (122)

n=1

Here a'™ are single-particle operators acting on the nth particle and for the operator norm we
require lla®™ 1l = 1. Note that before A was just a general Hermitian operator, however, from
now on we require that it is the sum of single-particle operators. For spin-% particles and

traceless a™, the operators of the type (122) are just the collective angular momentum
component J, apart from local unitaries and a constant factor.
Then, we can define the index p as

max (4A)*> = O(NP). (123)

A eoAcoll

*x)

Here, f (x) = O (x™) means that limx_,mfxT = constant > 0. The index p in (123) is confined
in a range 1 < p <2 and for any product state we have p = 1. The state is called
macroscopically entangled if p = 2. These ideas can be extended to mixed states using the
quantum Fisher information rather than the variance [124, 125]. The effective size of a

macroscopic superposition is defined as

Nii(©) = 7 max Fole, Al (124)
We call a quantum state a macroscopic superposition if N (¢) = O(N).

We can compare this definition to our findings concerning the relationship between
multipartite entanglement and the quantum Fisher information in section 5.2. Based on (116),
we can see that for N divisible by , for k-producible states we have NJ; (¢) = k. Hence, for a
quantum state to be a macroscopic superposition, it is necessary that the state is k-particle
entangled such that k = O (). Thus, k must grow linearly with N, while we do not need to
have full N-body entanglement.

Since the quantum Fisher information is convex, as discussed in section 4.2, if we mix
two states with each other that are not macroscopic quantum superpositions, we will always
get a state that is not a macroscopic quantum superposition either. Hence, states that are not
macroscopic quantum superpositions form a convex set. This is, of course, expected for a
meaningful definition. Moreover, since the quantum Fisher information is the convex roof of
the variance, as discussed in section 4.2, it is always larger or equal to other convex functions
that for pure states equal four times the variance. Hence our definition gives a larger set of
states forming a macroscopic superpositions than if we used instead of the quantum Fisher
information (59) generalized quantum Fisher informations, like four times the Wigner—
Yanase skew information (65) mentioned earlier.
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5.4. Speed of quantum evolution

In this section, we discuss that the entanglement properties of a quantum state are related to
the speed of the quantum evolution starting out from the state, via the quantum Fisher
information [126, 127]. We will show that states with a large quantum Fisher information,
and thus, a large multiparticle entanglement can evolve faster than states with a small
quantum Fisher information.

We use the Bures fidelity to describe the speed of the evolution. This quantity plays a
central role in quantum information science. It is defined as

Fatey 0) = Tr ([ Jaresyar ) - (125)

Clearly, 0 < Fp(g,, 0,) < 1. The fidelity is 1 only if ¢; = @,, while it is O if the two states live
in orthogonal subspaces. If ¢, is a pure state, then the fidelity can be expressed in a simpler
form

Fg(oy, 0,) = Tr (0,0,). (126)

If both states are pure, then the fidelity is just the square of the absolute value of the overlap
Fo(| %), %)) = | (%]%)]* (127)

The fidelity can be used to characterize the speed of the evolution by calculating the
fidelity between the initial state ¢ and the final state g,. Using the fact that the quantum Fisher
information is proportional to the second derivative of the fidelity with respect to € in this
case, we can write [126, 127]

_ ZFQ[QHA] 3
Fy(0, 0p) = 1 = 020~ + 0(0?), (128)
where the parameter € is small and the system Hamiltonian is given by A. Note that there
cannot be a term linear in @ since such a term would result in F3 (g, ¢4) > 1 either for @ < 0
or for § > 0 for small |18]. Apart from the expansion (128), a bound for the fidelity can be
obtained from the improved Madelstam—Tamm bound [128]

Fs(o, 0p) > cosz( fele. 0) (129)

with the condition

[Folo. Al \9| < (130)

Based on the properties of the fidelity described above, we can interpret the relation (128) in
the following way. As @ is increasing, the fidelity with respect to the initial state starts to
decrease. The quantum Fisher information Fy[@, A] in (128) characterizes the speed at which
the quantum state evolves into a state orthogonal to the initial state.

If A is the sum of single-particle operators, i.e., A € Aoy then the speed of the evolution
is related to the entanglement of the quantum state. One can see that large quantum Fisher
information is needed for a large speed. Based on section 5.2, it is also clear that for a large
quantum Fisher information a large multipartite entanglement is needed. Thus, large multi-
particle entanglement is needed for a large speed of the quantum evolution.
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5.5. Quantum Zeno effect

The quantum Zeno effect is one of the most discussed paradoxical features of quantum
mechanics. It has been recently shown that it is related to the quantum Fisher information.
Due to the Zeno effect, if we have a quantum system in an initial state, that starts to evolve
under a Hamiltonian, and we perform a projective measurement, projecting the state to the
initial state, with a sufficient frequency then the system will be unable to evolve, and stays in
the initial state. This can be expressed more quantitatively as follows. If we perform m
measurements at times ¢, = kr fork = 0, 1,..,m such that m — oo, 7 — 0, and mz = t, then
we find that the quantum system does not evolve and it stays in its initial state. It turns out that
the characteristic quantum Zeno time is [129, 130]

2
Q7 = —F/——.
JFole. A]

In order to see the quantum Zeno effect, we need to perform the projective measurements with
a frequency larger than 1 /zqz.

As in the case of the speed of the quantum evolution, it is interesting to consider the case
when A is the sum of single-particle operators. Then, based on (131), we see that for states
with a large quantum Fisher information 7oz is small. Hence, based on section 5.2, for

(131)

entangled states 7gz can be N% while for separable states we obtain 7oz ~ LN These show
that the entanglement properties of a quantum state are reflected in its behaviour in the
quantum Zeno effect.

5.6. Multi-particle entanglement versus mode-entanglement

In this section, we discuss the meaning of multipartite entanglement of very many particles.
The full discussion of this topic is outside of the scope of our review. However, we would
mention connections of this problem to the topics covered here.

Entanglement is typically considered between two- or more parties that are spatially
separated from each other and are individually accessible. This is due to the fact that
entanglement theory developed from the theory of Bell inequalities that required even a
space-like separation of the detection events at the parties [23, 24]. Moreover, distillation of
entanglement by local operations and classical communication, and many other quantum
information processing tasks need a local access to the particles [23, 24].

However, in a many-particle system, where we have 10° — 10'? particles, this picture
cannot be maintained, since even with a large technological advancement we would not be
able to access the particles individually. The situation is even more complicated when we
consider Bose—Einstein condensates of two-state atoms. In this case, ideally, all the atoms
occupy the same spatial state.

Internal quantum states of Bose—Einstein condensates of two-state atoms can be written
as an N-qubit symmetric quantum state or as a two-mode quantum state. The two descriptions
are equivalent to each other. For example, the GHZ state as a multiparticle state is given in
(25), while as a two-mode state can be given in (31). It can happen that a state that is highly
entangled in one description is not entangled in the other, and vice versa. It has been argued
by some authors that for states of Bose—FEinstein condensates, the entanglement between the
modes has to be considered rather than entanglement between particles [131, 132]. It has been
shown that the precision can surpass the shot-noise limit in a linear interferometer with non-
entangled states, i.e., states without entanglement between the modes [131].
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Figure 9. The dilute cloud argument. While in the Bose—FEinstein condensate, the two-
state particles occupy the same spatial mode. If we let the cloud expand, and we detect
the particle positions with detectors that do not disturb the internal state of the atoms,
we obtain an ensemble of distinguishable particles with the same internal state that they
had in the Bose—FEinstein condensate. If we have much more detectors than particles in
a dilute cloud, we can achieve that no two particles end up at the same detector.

The previous sections of this review help us to analyse this question from the point of
view of quantum metrology. As discussed in section 5.1, inter-particle entanglement is
needed to overcome the shot-noise limit for linear interferometers. The entanglement con-
dition based on metrological usefulness is equally valid for ensembles of individually
accessible particles and ensembles of particles that are not accessible individually. In fact, it is
also valid for quantum states of Bose—Einstein condensates. If the state satisfies the definition
of separability (43) then it cannot surpass the shot-noise limit, even in a Bose—Einstein
condensate. The same is true for multiparticle entanglement, as discussed in section 5.2. Full
multiparticle entanglement is needed to reach the maximum precision. Moreover, the defi-
nition of macroscopic superposition given in section 5.3 does not require individually
accessible particles. Finally, this is also true for our findings relating the quantum Fisher
information to the speed of evolution discussed in section 5.4. There is a maximal speed for
separable multi-particle states satisfying (43), regardless of whether the particles can be
individually accessed or not. Based on these, it seems to be reasonable to say that inter-
particle entanglement is a very useful notion even for large ensembles and even for a
Bose-Einstein condensate of two-state atoms.

Still, it remains an important question whether the interparticle entanglement within
Bose-FEinstein condensates can be converted into entanglement between individually acces-
sible particles. An insight concerning this question can be gained from the dilute cloud
argument [105]. This thought-experiment, shown in figure 9, demonstrates that an ensemble
of two-state particles in a Bose—Einstein condensate can be converted to an ensemble of
localized particles, while the internal state of the ensemble remains unchanged. Finally,
entanglement within a Bose—Einstein condensate of two-state atoms can be converted to
entanglement between two spatial modes of the same particles with straightforward non-
entangling operations [133]. This statement can even be generalized to the case of splitting
the condensate into three or more ensembles entangled with each other.

6. Metrology in a noisy environment

In this section, we examine what happens if noise appears in the quantum metrological setup.
We will show that uncorrelated noise can easily destroy the Heisenberg scaling (2) and restore
the shot-noise scaling (1), above a certain particle number.

In order to gain an intuitive understanding, let us consider the example of magnetometry
with spin squeezed states discussed in section 2.1 and examine the effect of uncorrelated
noise. Let us assume that a particle with a state ¢; passes trough a map that turns its internal
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state to the fully mixed state with some probability p as

ep(e) =1 - p)o +p%- (132)

If this map acts in parallel on all particles, the state can be given as a mixture

N
N = Y ne. 133)
n=0
where the state obtained after n particles decohered into the completely mixed state is
®n
0 = %an[ ()" @, n(g)]n,j. (134)
k

Here the summation is over all permutations /7, since we took advantage of the fact that the
spin squeezed state is permutationally invariant. This is a reasonable assumption, as both the
initial state and the spin squeezing dynamics are typically permutationally invariant. The
quantity p,, in the decomposition (133) is obtained with the binomial coefficients as

n=(N)pra-po. (135)

For the noisy state (133), the variance of the collective angular momentum component
can be bounded from below as

(A% > ¥p(aLy, > ¥ni =" (136)

For the first inequality in (136), we used the concavity of the variance. For the second
inequality, we used the fact that for a product state of the form ¢ = ¢, ® ¢, the variance is
the sum of the variances for g,

2 2 2
(ALe), = (AL), + (L), . (137)
Note that ¢, and @ are possibly multi-particle states. To obtain the bound on the right-hand

side of (136), we used a well-known identity for the binomial coefficients

an% = pN, (138)
n
where p,, is defined in (135). The equality (138) expresses the fact that the expectation value
of the number of spins that undergo decoherence is pN. In the bound on the variance (136)
the term linear in N appears since, in average, the same fraction of the spins is affected for all
N and all the decohered spins introduce the same additional noise for the collective angular
momentum component. Based on these and on the formula (14) giving the precision, we
obtain
NZ
(A0)72 < ;LN N, (139)
4
which means that the precision has a shot-noise scaling for large N. It is important to note that
this is true whenever p > 0, hence any nonzero decoherence will lead to a shot-noise scaling.
After this instructive example, let us review the existing literature on the subject. The
effect of the noise has been analysed for a setup based on metrology with GHZ states
described in section 2.2. Let us consider the dynamics
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e —i[yBL. o] + €2 (0. (140)
where the first term describes the coherent evolution, while the second term is the
decoherence. The single-particle decoherence is given as

€x2(0)) = =2 (0) — Ax0:0,0x — Ay0,0,0y — A:0.0,02), (141)

where y, is the overall noise strength, ¢; is a single-particle state, oy are the Pauli spin
matrices, a; > 0, and a, + a, + a; = 1. In [134], it has been shown that for o, = 1 the GHZ
state does not provide a better scaling of the precision with the particle number than
uncorrelated states. On the other hand, states leading to an optimal precision are different
from the GHZ state.

Recently, it has been proven in a very general framework that in the presence of even
very small decoherence, (A0)2 scales with N rather than with N? for large particle numbers
[59, 108, 135]. Let us consider the single-particle map

olol = Y Ec(0)E, (0), (142)
k

where E; are the usual POVM elements. Let us assume that this map acts on the input state on
all particles independently, and we use the state obtained from this map to estimate the
parameter 6. Thus, while before we estimated the parameter in a unitary evolution, now we
need to estimate the parameter of the incoherent dynamics. The corresponding quantum
Fisher information will be denoted by Fp [Aéj@N [e]].

According to reference [135], the quantum Fisher information for this incoherent evo-
lution can be computed as

Fo[ 4" 11] = mino[ | ) ] (143)

On the right-hand side, there is a minimization carried out over all the purifications of the
dynamics 1%¥) for which

AP ol = Tre(| %) (¥

): (144)

where Trg(.) means tracing out the environment and the extended system consists of the
original system and the environment. The minimization in (143) is analogous to the infimum
in the convex roof construction of (64). If we find a purification which is not the optimal one,
based on (143), it will still give an upper bound on the quantum Fisher information, which
can be used to prove the shot-noise scaling of particular quantum metrological setups.

Reference [108] presented an alternative proof based on the classical simulation of
channels. Let us assume that a single-particle channel is obtained as a mixture of other
channels as

Aglel = f dxp, (A, []. (145)

Then, the Cramér—Rao bound gives a lower bound on the variance of the parameter to be
estimated as

1 [aepem]
20N > ——, , 146
(40) NF,1lp,]l / Do (X) (146)
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where F; is the classical Fisher information. Note that F characterizes the single-particle
channel, thus it does not depend on N. Thus, if F; < oo then we obtain (46y)> > O (%) which
means a shot-noise scaling for large N. It can be shown that F; < oo for all channels that are
not f-extremal. The behaviour of such channels for small 8 can always be described by the
mixture of two channels that are at the boundary of the set of channels. A third proof in [108],
working also for f-extremal channels, makes it possible to avoid the optimization over
purifications by carrying out the optimization in an extended system.

Reference [136] presents a general formalism for open system metrology, which is able
handle complicated non-unitary dynamics and provides a lower and an upper bound for the
quantum Fisher information. In general, there has been a large recent interest in parameter
estimation in non-unitary processes, however, this topic is outside of the scope of the review
(e.g., see [119, 137]).

Due the uncorrelated noise, the states obtained can efficiently be described by matrix
product states [138]. The change of the scaling of the precision to a shot-noise scaling for
large N has been observed also in the analysis of the scaling for the squeezed-light-enhanced
gravitational wave detector GEO 600 [139].

There have been several attempts to beat the shot-noise scaling in the large particle
number limit even in the light of the above results. For example, in metrology with GHZ
states described in section 2.2, [140] considers a frequency measurement such that there is an
optimization over the duration of the dynamics. Hence, the single-particle channel depends on
N, while it was independent of N in the discussion above. It is shown that the shot-noise limit
can be surpassed for a particular type of dephasing, concretely, for the a, = 1 case in the
decoherence model given in (141). Note, however, that the shot-noise scaling is restored for
large N whenever a, < 1, e.g., if a, > 0. Moreover, very recently, quantum error correction
has been used in proposals to reach a Heisenberg scaling in a noisy environment [141, 142].

So far we have been discussing metrological setups for an ensemble of particles that do
not interact with each other. Such setups play an important role in metrology, as it is much
easier to create dynamics with non-interacting particles in a controlled manner, than dynamics
based on two-body interactions. With interactions, the precision can surpass the shot-limit of
the non-interacting case even starting from a product state, or it can surpass the Heisenberg
limit of the non-interacting case [25-31]. It is instructive to obtain the maximal scaling for
systems with g-body interactions as follows. Let us take the Hamiltonian H, = JJ!. For this

Hamiltonian, Fp[e, H,] / 4 < (AH))? < (g)z‘f = (9 (N%). Similar derivation works also for
any Hamiltonian with at most g-particle interactions. However, for a wide class of noise
models, uncorrelated noise affects these setups in way analogous to the linear case: due to the
uncorrelated noise, only @ (N?4=D) can be reached for large N [143].

All the statements above are for uncorrelated noise. The case of correlated noise has also
been studied intensively (e.g., see [144—147]). For certain types of correlated noise, the
Heisenberg scaling can be reached.

Finally, it is important to recognize that our observations concerning the effect of the
noise in quantum metrology are connected to fundamental questions in quantum physics. In
section 5.2, we have shown that for a large metrological precision a large entanglement depth
is also needed. Naturally arises the question whether it is possible to reach a large entan-
glement depth, especially for large particle numbers in a noisy environment. Hence, quantum
metrology is connected to several other fields examining the survival of large scale entan-
glement in a noisy environment [138]. For example, a related topic is the physics of nano-
systems at a finite temperature [148, 149]. For such systems, the density matrix of a system is
very close to a tensor product of density matrices of subsystems. The larger the temperature,
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the smaller the size of the terms can be. This is connected to the fact that multipartite
entanglement cannot survive easily at finite temperatures.

7. Conclusions

We have discussed the basics of quantum metrology through simple examples of metrology
with a fully polarized ensemble of particles or with highly entangled states. After this
introduction, we presented the basic formalism of quantum metrology based on the quantum
Fisher information and the Cramér—Rao bound. We discussed that for dynamics with a
Hamiltonian that does not contain interaction terms, the usefulness of quantum states for
metrology is closely related to their entanglement properties. We found that separable states
can achieve only a shot-noise scaling, while for states with high level of entanglement even
the Heisenberg scaling is possible. Finally, we discussed how uncorrelated noise can affect
this situation, leading back to a shot-noise scaling for large particle numbers even for
entangled states.
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