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This article reviews one of the most intriguing properties of black hole spacetimes known
in the literature- gravitational memory effect, and its connection with asymptotic sym-
metries, also termed as Bondi-van der Burg-Metzner-Sachs (BMS) symmetries, emerg-
ing near the horizon of black holes. Gravitational memory is a non-oscillatory part of
the gravitational wave amplitude which generates a permanent displacement for freely
falling test particles or test detectors. We highlight a model scenario where asymptotic
symmetries appear as a soldering freedom in the context of stitching of two black hole
spacetimes, and examine the impact of the interaction between test detectors and horizon
shells. Further, we provide a more realistic approach of computing displacement memory
for near-horizon asymptotic symmetries which is analogous to the conventional memory
originally obtained at asymptotic null infinity.
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1. Introduction

The observational facets of gravitational waves (GWs)!'2? have opened a new win-
dow to look for various aspects of black hole spacetimes; gravitational memory> 8
is one of such intriguing features that has not been detected yet. GW induces a
permanent relative change in the position of test detectors by imparting a memory
to the configuration. This permanent relative change is referred to as gravitational
memory. The term memory implies the information or properties of spacetimes from
where it is being generated and carried by gravitational waves. The first practical
computation of memory’s evolution was done by Marc Favata using post-Newtonian
formalism where he accounted for all stages of BBH coalescence.” 2 In this direc-
tion, recently, there have been several implications of detecting GW memory using
advanced detectors.!320

On the other hand, it has been shown that the gravitational memory is closely
related to the asymptotic symmetries of spacetimes originally discovered by Bondi-
van der Burg-Metzner-Sachs (BMS) in the early sixties,?! and such symmetries can
also be recovered near the horizon of black holes which motivated us to probe the
near horizon properties of black holes. The recent findings in this direction have
provided some strong grounds for the information loss puzzle. In the context of
asymptotic symmetries, the existence of soft hair on black holes is necessary for
charge conservation of supertranslation and superrotation.” 2?24 As the conserva-
tion principles are derived from the long-distance behaviour of fields close to spatial
infinity, the presence of black holes should have no effect on them. We know that



The Sixteenth Marcel Grossmann Meeting Downloaded from www.worl dscientific.com

by GERMAN ELECTRON SYNCHROTRON @ HAMBURG on 01/30/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

1180

the conserved charges can be expressed as bulk integrals over any Cauchy surface.
A contribution from the future event horizon should be taken into account for con-
served charges as future null infinity is no longer a Cauchy surface in the presence of
a classical black hole. In this direction, Strominger and Hawking’s latest discovery
uses the asymptotic symmetries of the BMS group to prove that information is not
lost rather stored in something called as a soft particle. Therefore, soft hair or low-
energy quantum excitations may be carried by a black hole and leak information
when it evaporates. This brings a direct motivation for the emergence of asymptotic
symmetries near the horizon of black holes from conservation perspectives.

Let us understand how memory and BMS symmetries are inter-connected with
each other. Classically, for a given spacetime geometry, BMS transformations pro-
duce an infinite class of spacetime metrics that are physically unique or distinct.
Assume that BMS transformations act on a given metric g,,,, (z#) with z# = (2, 2%),
i.e., one time and three spatial coordinates. Such an action on the metric generates
a completely different metric.

BMS transformation -~ m
g;w(l' )

g/w(x#)

The metric g, (z*) and g, (z") are distinct and this relative change implies the
generation of GW memory, and also motivates us to seek for a connection between
memory and BMS symmetries. This change can be understood in the following
way- GWs generated from a black hole spacetime carrying information or properties
in terms of BMS parameters would interact with the detector setup placed at the
asymptotic null infinity, this would induce a permanent relative change in the initial
configuration of the setup. A similar setup can also be considered at a place near
the horizon of a black hole. A persistent effect similar to that of null-infinity may
again be observed. It provides a physical meaning to the inter-connection between
GW memory and asymptotic symmetries emerging near the horizon of black holes.
Technically, g, (z*) can be thought of as a metric of a given asymptotically flat
spacetime and §,,(z") is the resultant metric appears as a consequence of the
interaction between GWs and detectors which implies a net relative change in the
configuration and gives a definition to the memory. Briefly, if we have two nearby
timelike geodesics or inertial detectors described by the tangent vector T# together
with a deviation vector s, and let us position them at the future null infinity. The
evolution of the deviation vector before and after the interaction with gravitational
waves will be captured in the geodesic deviation equation (GDE), written as

D?sH

dr?
The solution of the GDE will give us a permanent relative change in the displace-
ment vector s* which can further be related to supertranslation and will implicate
the achievement of BMS displacement memory effect. Our study provides an anal-

ogous effect and its connection with asymptotic symmetries for near the horizon of
black holes.

= —RFs5,\T°T 5. (1)
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There are two methods to recover asymptotic symmetries near the horizon of
a black hole. As a recent progress, Donnay et al. showed the first way of obtain-
ing such symmetries near the horizon of a stationary black hole?® with asymptotic
form of the Killing vectors preserving the boundary conditions. It turns out that
the near-horizon region of a stationary black hole spacetime induces supertransla-
tions including semi-direct sum with extended asymptotic symmetry superrotations
which is being represented by Virasoro algebra. Hence, one can recover asymptotic
symmetries that would mimic the ones originally obtained at asymptotic null in-
finity2%:26 by preserving the near-horizon asymptotic structure of black holes. The
second method for recovering asymptotic symmetries deals with the soldering of
two spacetimes across a common null hypersurface.2”>23
can stitch them in infinite ways by demanding that the induced metric remains
invariant under the translations generated by the null generators of the shell 2723

It has been shown that we

The freedom for the choice of the intrinsic coordinates on null hypersurface in the
null-direction is termed as soldering freedom, and also known as BMS-like soldering
freedom. Since these appear as a metric preserving transformations, hence, known
as BMS-like symmetries or BMS-like transformations. We shall discuss the related
details in section 2.

The article is organized as follows. In section 2, we discuss the intrinsic formula-
tion of null shells placed at the horizon and how near-horizon asymptotic symmetries
are recovered in the context of stitching of two black hole spacetimes. Further, in
section 3.1, we show how horizon shells carrying memory affect the displacement
between two nearby test detectors or test particles for Schwarzschild and Extreme
Reissner Nordstrom (ERN) black holes. We have also studied the impact of in-
teraction between null geodesics and horizon shells; since we shall be completely
focusing on timelike geodesics in this article, we do not include the discussion on
null geodesics crossing the horizon shells. However, the study can be found in.3!:32
We further consider a more realistic approach in section 3.2 for determining the
displacement memory effect and its connection with near-horizon asymptotic sym-
metries. In the end, we conclude our findings in section 4 by providing some remarks
on possible future outlooks to our studies which might be relevant from theoretical
as well as observational perspectives.

2. Horizon shell and asymptotic symmetries

In general relativity, a shell is a geometric configuration that can be used to inves-
tigate the propagation of thin distribution of null matter (e.g. neutrino) and im-
pulsive gravitational waves (IGWs). The thin surface layer of null matter together
with impulsive waves is precisely referred to as thin-shell or thin null shell.?%30
The generated impulsive signals are usually produced during violent astrophysical
phenomena like supernova explosions or coalescence of black holes. If we stitch two
black hole spacetimes along a common null hypersurface which also happens to be
the horizon of black holes, and stitching is consistent with junction conditions, we
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Fig. 1. Null hypersurface ¥ separating manifolds M1, _ and Ma 4+ each with a different metric.

obtain horizon shell. The soldering formalism shows that the stess-energy tensor
of the stitched spacetime satisfying Einstein field equation carries a singular term
proportional to the Dirac delta distribution function, given by

Ty = T, H(®) + T, H(—®) + S,,0(D), (2)

where H(®) is a Heaviside step function for a given null surface ¥ = & = 0. The
last term of Eq. (2) corresponds to the stress-energy tensor of the null surface, and
further investigation on the same shows the generation of impulsive gravitational
wave or thin surface layer of null matter or a mixture of both. The null hypersurface,
representing the history of impulsive lightlike signals, separates spacetime manifold
into two parts (Mj, Ms) or (M_, M) as depicted in the Fig. 1 each with a
different metric. n* is a null-normal or a generator of the null hypersurface, and
N* is a transverse or auxiliary normal which is not tangent to the null surface,
satisfying n- NV = —1. N* carries the transversal properties of 3. One can study the
intrinsic quantities of a horizon shell known as surface energy density (i), surface
current (J4) and surface pressure (p) in terms of transverse curvature by analyzing
the stress tensor on the null surface. The intrinsic quantities can be written in the
following form

_ 1 4B oA _ 1 oap oo 1
p=-g0 Wmﬂ7j-—%0 Kvsl ; p= &ﬁhﬂ7 (3)
where ‘[ |’ denotes the difference between a quantity computed on the null surface

Y for both sides M 5 separately. We notice that the null shell quantities depend

AB and jump in the extrinsic curvature 4 p?. The other
27,30-32

on the induced metric o
related details can be found in.

An induced tensor field v,, on ¥ is related to the jump of the induced metric
gap and transverse normal N* which helps us to examine the intrinsic formulation
of the horizon shell. The tensor field ~,, can be written in terms of the jump in the
derivative of the induced metric along the auxiliary normal N* which can further
be written in terms of transverse curvature, i.e., Yop = N*[0u0a6] = 2[Kqp). The
analysis for intrinsic expression of stress tensor ensures that there is a part of 7,

2We have taken Kruskal-like coordinates. Also, Capital Latin letters denote spatial or spherical
coordinates of the 2-sphere metric, and lower Latin letters denote hypersurface coordinates.
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which does not contribute to stress-energy tensor. We denote this non-contributing
part as J4p. In general, one can write down 74, containing both null matter (y4s)
and GW degree of freedom (94) in the following way

Yab = 's/ab + Vab, (4)

with

) 1
Yab =%Yab — ig*d’)’cdgab - 2nd7d(aNb) + ’YTNaNb (5)

1 2
’Vab =167 (gacSCdeNb + gchCdeNa - igcdSCdNaNb - igabSCchNd)a (6)

where 71 = y4nnd, and g2 is the pseudo-inverse of gup, i.e., g%gp. = 0% —
n®Ne, ¢°%veq = g3Pvyap. The 44 carries the pure impulsive gravitational wave
degree of freedom whereas 7,; contains the null matter part of the horizon shell. In
general, a null shell is being considered the combination of both IGWs and null mat-
ter. Further, using the expressions of intrinsic quantities of the null surface together
with 445 and 74p, in Kruskal coordinates, one obtains,

vp = 16mg5cSYC ; Yap = —87SVVgap. (7)

Now, we shall examine the interaction of such impulsive lightlike signals carrying
BMS parameters on timelike geodesics. Let us first investigate the appearance of
BMS symmetries in gluing formalism.

2.1. Emergence of asymptotic symmetries

Here, we investigate the emergence of near-horizon asymptotic symmetries in the
context of soldering of two black hole spacetimes. This, in gluing formalism, can be
achieved via obtaining the freedom in the choice of intrinsic coordinates along the
null direction. The soldering freedom of stitching the two spacetimes along a com-
mon null surface provides BMS-like transformation on the horizon shell. It emerges
as a coordinate transformation which preserves the induced metric on the null hy-
persurface X. This implies us to figuring out the Killing vectors of the hypersurface
metric in a suitable coordinate system.?”2® Therefore, the analysis is based on the
Lie derivative of the induced metric along the Killing direction (say Z%9, with com-
ponents Z%). We consider Kruskal coordinates (U, V, %) with coordinates (V,z*)
on Y. Further, we also consider the metric with g,y = 0. Therefore, the Killing
equation for spatial metric gap is

Lz9ap =0 = ZV0vgap + Z°0cgap + (0429 gcn + (08Z%)gac = 0. (8)

Now, we may separately examine the emergence of near-horizon BMS symmetries-
supertranslation and superrotation.
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2.1.1. Supertranslation

The first special case is when metric does not depend on V' parameter, i.e., Oy gap =
0. This induces a new type of translation which has angle dependent notion, termed
as Supertranslation. It is similar to the one obtained at asymptotic null infinity
for asymptotically flat spacetimes. Keeping in mind the impact of the Z-generated
transformations on the null normal n® of X, as a result, Eq. (8) gives

zZV =0 = V — V+T(xA) : BMS Supertranslation (9)

This is instantly indentified as a supertranslation in the literature with 7'(z*) being
a supertranslation parameter, where 24 = (0, ¢). It is interpreted as an angle de-
pendent translation, hence named supertranslation. The soldering group that keeps
this structure preserved is still infinite dimensional. Let us now turn our discussion

to investigate the extended form of asymptotic symmetry.

2.1.2. Superrotation

A new type of symmetry labeled as superrotation has just been discovered in an
extended form of BMS symmetries near the horizon of black holes which mimics
the one obtained at asymptotic null infinity.2%27:28:33:34 Tt is a local conformal
transformation of the spatial slice of the metric, or local conformal transformation of
celestial sphere at null infinity.?? 33 Let us determine the extended BMS symmetry
by considering the case when the spatial slice of the metric depends on the V
parameter, i.e., Oy gap # 0. The analysis begins with the Eq. (8) in search of possible
non-trivial soldering freedoms. If one performs the conformal transformation in
spatial coordinates represented in complex coordinates via z — f(z) and z —

f(2) such that the Eq. (8) can be written in the following way
ZY 0vgap +QUz")gap =0, (10)
A

where 24 = (2,2) and Q(z?) denotes the conformal factor. We have the equa-
tion whose feasible solution can be written as, gap = r2(U,V)gap(z?). It gives

A
a suitable choice along V direction, i.e., ZV (= —%) which compensates the
conformal transformation. This ensures that the metric remains preserved under
such transformations. Thus, the analysis gives rise metric preserving extended BMS

transformations known as superrotation-like symmetries.

3. Displacement memory and asymptotic symmetries

As a first approach, we wish to examine the relative change in the displacement vec-
tor between two nearby timelike geodesics which arises due to interaction with im-
pulsive lightlike signals. We also discuss the appearance of near-horizon asymptotic
symmetries in the context of soldering of two ERN and Schwarzschild spacetimes.
Second, we would be considering a more realistic approach of computing displace-
ment memory which is analogous to the one obtained at asymptotic null infinity.
Let us first start with the case where horizon shell interacts with test detectors.
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3.1. Memory € BMS symmetries due to impulsive lightlike signals

Cataclysmic processes such as black hole mergers and supernovae explosions pro-
duce shockwave type of gravitational radiations. We wish to estimate the finite
difference in the displacement vector between two nearby timelike test particles
or geodesics upon crossing the horizon shell®. It turns out that the asymptotic
symmetries, associated with impulsive lightlike signals, leave footprints on test par-
ticles upon passing through them. As a result, we studied the effects of horizon
shell for Schwarzschild and extreme RN spacetimes on the separation vector of two
nearby timelike geodesics. The displacement between the geodesics is identified by
supertranslation parameter which gives us Supertranslation memory effect. Let us
consider a congruence having T* to be a tangent vector with T-T = —1. A displace-
ment or separation vector between two test particles is X* satisfying 7' - X = 0.
Thus one can compute the relative change in the separation vector before and the
passage of impulsive lightlike signals by analyzing the GDE Eq. (1). Riemann ten-
sor is the memory generating factor for the given configuration. The solution of
the GDE will generate a non-vanishing finite change in the deviation vector upon
interacting with IGWs. Following the basic framework of the analyses from,2:31:32
we use the expressions written in section 2 and X = §%° X}, we obtain components
of deviation vectors as

Xy =87UgpcSY O X (11)
U _
Xa=Xa0) + 57ABX(BB) +UVigyas (12)

where Vi), = ddX—U; o’ and Gab = gab+(T(0yueh)(Ti0yvey) with e, defined as a triad

on the null surface. The X (%) is some function evaluated on the null surface, and it is
denoted by subscript (0). It is to note that when SV¢ is nonzero, then we have Xy #
0. This implies that the particle will be displaced off from the initial two dimensional
surface. On the other hand, if SV¢ = 0, the component X vanishes which means
that the particle will reside on the initial two dimensional surface but with a relative
displacement. In this particular consideration, the nonzero displacement vector X 4
is written as

U,
Xa=(1- 47TUSVV)<gAB + E'YAB)X(%)- (13)

The factor y4p is the one which carries the BMS memory part of the wave, and
generates the distortion effect on the test particles. This sets our first goal to in-
vestigate the memory signal arises in the context of soldering of two black hole
spacetimes. Further, we show our studies for extreme RN and Schwarzschild black
holes. Let us understand these two cases separately.

bThe study (B-memory) of interaction between null congruence and horizon shell can be found in
Bhattacharjee et al.31 32
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3.1.1. Extreme RN case (ERN)

As we know that 70% astrophysical black holes are near extremal and many super-
massive black holes are also near extremal.?> 38 Further, Strominger and Vafa3?
determined the Bekenstein-Hawking area-entropy relation for extreme black hole.
So extreme black holes are important from experimental as well as theoretical per-
spectives. Here, we investigate the asymptotic symmetries together with intrinsic
properties of the shell and its interaction with test detectors in terms of BMS pa-
rameters. It is known that Carter investigated the maximal analytic extension of RN
black hole for e2 = M?2.4% As the Carter’s metric is not C' i.e. the first derivative
of the metric component is discontinuous. Secondly, he certainly did a conceptual
analysis without providing the exact Kruskal analogue for the extreme case. For our
purpose, it is important to have an exact form of the Kruskal metric which enables
us to write U = 0 on the horizon. This helps us to perform off-shell extension of the
soldering transformation without any obscurities. Therefore, we adopt a Kruskal
extension that unambiguously places the shell at U = 0, and also better suited for

memory effect. The ERN metric in Kruskal coordinates can be written as*!

ds* = ~ZLp (VY dUAY + 2 (U)(d6? + sin® 0d?), (14)

where, ¥(V)' is a regular, defined as, (V) = 4M (an M) AlsoU = —(r— M)
where r = M is the horizon.

Immediately, by looking at the spherical part of the metric, we observe that
supertranslation-like symmetries can be recovered, written as: V.— V + T(0, ¢).
We also find that coordinate r is independent of V', thus interestingly, ERN con-
sideration does not induce the superrotation-like symmetries whereas it is not the
case with Schwarzschild discussed in section 3.1.2. For explicit details, we refer to
Bhattacharjee et al.3?

Further, we examine some measurable effects on timelike test particles due to
interaction with horizon shell of ERN spacetime. In this process, we first extend
the soldering transformation off the horizon shell to the linear order in U. The
transformations are give by3!

Up =UC(V,z?) 5 Vi =F(V,2*) +UA(V,2?) ; 2% =2* + UBA(V,2?),
(15)

where 24 = (6, ¢), with

vip(V
3V¢(F

M2 Fy
2 oyyp(V)

oapBABB ; B4 =0yy(V) ! oA P Fp

¢= M2Fy,

-
(16)

Here, o4p denotes the unit 2-sphere metric. One side of the spacetime M_ is
completely ERN and the another side of the spacetime M is off-shell extended
with the transformations (15). The process of obtaining the intrinsic quantities is
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known as off-shell extension of the soldering transformations. It is to note here
that one can also obtain the intrinsic properties of the horizon shell using extrinsic
curvature algorithm. Both the results would exactly match. The benefit of the later
approach is that it makes the computational algebra significantly simplified. As a
result, we find that the surface current (j4) together with surface energy density (1)
and pressure (p) is nonvanishing, and can be expressed in terms of supertranslation
parameter T'(0, ¢). For example, the surface current is given by

a1 (1)
e VL (75 (T) ) (17)

The expressions for 1 and p can also be found in.?? The presence of nonzero surface

current induces a finite change in the Xy, component of the deviation vector, i.e.,
Xy # 0 ; therefore, test particles get displaced off the initial 2-dimensional surface
with a relative change in the displacement vector. The Xy component is given by

U
Xg = Xg(o) + 5(’799)(&90) + ’YQ¢X$])> + UV'(E)O’ (18)
where,
T24(T)" M M
Y66 =2¢(V)’<Tea + Ow(;)/) - ,l/}(T)/ + 1/1(‘/)/) (19)
ToT,
Yoo =Vo0 = 20(V)’ ( w?TW(T)" + Ty — Ts cot 9). (20)

This helps in determining GW degree of freedom 4. One can determine Xy compo-
nent in a similar way. We notice that the deviation is written in terms of supertrans-
lation parameter T'(0, ¢). The integration with respect to the geodesic parameters
would give rise the displacement memory which would mimic the one obtained at
null infinity. The Fig. 2 depicts the ultimate result of the test particles getting
displaced off from the initial spatial slice with a comparison on Schwarzschild dis-
cussed in the section below. This completes our analyses of examining the role of
near-horizon asymptotic symmetries on test particles upon interacting with impul-
sive lightlike signals together with the intrinsic properties of ERN horizon shell.

2D-surface
2D-surface 2D-surface

Before interacting with IGW Schwarzschild BH: Before and after inferacting with IGW  Extreme RN BH: Before and after interacting with IGW

Fig. 2. Timelike geodesics 1 & 2 get displaced upon interacting with IGW, depicted as 1’ & 2’
with a new relative displacement vector.
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3.1.2. Schwarzschild case

Now, we start with the Schwarzschild spacetime in order to examine the intrinsic
formulation of the horizon shell and study the interaction with test particles.?! Let
us write down the metric in Kruskal coordinates,

ds* = —2G(r)dUdV + r*(U,V)(d6? + sin? 0d¢?), (21)

where, G(r) = 167{‘/13 and UV — (ﬁ - 1)eT/2M. The horizon is defined as

U = 0. One can clearly see the supertranslation-like transformation, written as
V — V 4+ T(0,¢). Further, we notice that spherical part of the metric can be
2_d¢dC
(1+¢¢)?°
in (2.1.2), in contrast to ERN spacetime, we obtain superrotations for the null shell

written as y.¢ = r and given the conformal transformations as discussed
placed just outside the horizon U = € with a compensation along null direction V'
which makes sure that the soldering transformations also preserve the form of the
metric. These transformations mimic the ones originally obtained at asymptotic null
infinity. We also compute the intrinsic quantities of the horizon shell which contain
supertranslation parameter T'(f, ¢), can be seen in Bhattacharjee et al.3!

Next, we show the non-vanishing finite change in the components of the deviation
or displacement vector between two nearby timelike geodesics upon passing through
the horizon shell. We follow Blau et al.?” to extend the soldering transformations off
the horizon shell in order to compute the induced tensor field 7,;. The computation
of the deviation vectors further require the GW degree of freedom which can be
expressed as

N . 1
oo = 29005T(0,0) 5 500 = 2(V0T(0,0) - —=VP0,10.9)). (22

where T'(60, ¢) is a supertranslation parameter. Thus the framework of section 2 and
section 3.1 generates the #-component of the deviation vector,

Xo =(1+ 55 (V27(0,6) - T(6,6)) ((4m* + U(VP0,7(0, )
1
15V 05T(0.0))) Xloy + UV 0,T(0.0)X, ). (23)

S

The X4 component can also be computed in the similar way which again carries
supertranslation parameter. It turns out that the surface current vanishes, i.e., J4 =
0, hence the test particles will remain on the spatial slice of the metric since Xy = 0,
but with a relative change in the displacement as it can clearly be seen in Fig. 2,
and opposes the result of ERN spacetime. Therefore, the nonvanishing displacement
vector X 4 depicts the BMS displacement memory in the context of soldering of
two Schwarzschild spacetime geometries. One can further integrate Eq. (23) with
respect to the parameter of the geodesics in order to have the explicit form of the
displacement memory. Next, we shall discuss a more realistic approach of estimating
the displacement memory which is analogous to the far region analysis.
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3.2. Memory and BMS symmetries: Analogous to far region

In this section, we adopt a more realistic approach of computing displacement mem-
ory near the horizon of black holes and its possible connection with asymptotic
symmetries. The analysis of this section is independent of section 2, i.e., it is not
based on soldering of black hole spacetimes. We study displacement memory for
non-extremal (fixed temperature) and extremal (zero temperature) black holes.*?
This shows an analogous effect of conventional GW-memory which was originally
established at asymptotic null infinity (/™). The emergence of asymptotic symme-
tries near the horizon of black holes (not in the context of null shell formalism)
has been established by.?%34 In this respect, we are interested in measuring the
permanent relative change in the deviation or displacement of the test detectors in-
duced due to the interaction with GW, and its connection with near-horizon BMS
symmetries. In this realistic approach, as it can be seen in the schematic diagram
below, the detectors are being placed near the horizon of a black hole (H*), and
we estimate a relative change in the deviation vector of configuration before and
after the passage of GWs. The displacement vector S* between the detector setup
or geodesics evolves according to GDE Eq. (1). Let us consider the general form of

the 4-dimensional near-horizon metric26-43

ds® =gy, dv® + 2kdvdp + 2g, advdz? + gapda?da®, (24)
with following fall-off conditions for the horizon p = 0:
Guv = — 2Kp + O(pQ) ) k=1+ O(p2)
gva =pfa + O(p°) ; gaB =48+ prap + O(p?)

where 04, Q and A® are functions of (v, z4). For computational purpose, we con-
sider € to be unity. v4 g represents the 2-sphere metric. In stereographic coordinates,
x4 = (¢, ), the 2-sphere metric is yapdridz® = ﬁd{dé. The asymptotic
Killing vectors preserving fall-off boundary conditions together with the charges

Time

-

gravitational waves

Fig. 3. Schematic diagrams depicting displacement memory effect for the detectors d; and da.
Separation L gets modified permanently before and after the passage of GWs depicted as L+ AL.
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can be found in Donnay et al.?8 It turns out that the variation of x along Killing
direction, when fixed temperature configuration considered, generates a copy of su-
pertranslation together with a superrotation.?®26 We use this fact in section 3.2.1.
Let us consider the fixed temperature configuration first in order to compute dis-
placement memory.

3.2.1. Memory: Fized temperature configuration

The fixed temperature configuration enables us to take k non-zero but constant.

With this consideation, the solution of the GDE for the given metric is*?

Agé = PO+CO?
4

((AAESS + ArSS) = K(AVA(HSS +GS9)) + O(?), (25)
where S¢ and S¢ denote the ¢ and ¢ components of the deviation vector. Here, we
have also used the vA-component of the Einstein field equation, the O(p®) term
gives 9,04 =0 = 04 = C(x?). Using vv-component of the Einstein field equation,
we replace changes A) 4 in Eq. (25) to obtain an explicit form of the memory which
also ensures that Asp can be written in terms of 4. The resultant displacement
memory is

ASC = p(l%w (((xGav- (111?02)55 + RBS) Av — k(A2 (HS +G5°))

2

)
26)

+0(p),

(
where G, Q, B.H and G are functions of (¢,€), also H is written in terms of metric
parameter 6 4. Thus the analyses suggest that the displacement memory is restored
in terms of metric parameters. This completes our study of achieving the displace-
ment memory near the horizon of non-extremal black holes. Further, we relate it
with the asymptotic symmetries.

Relation with BMS symmetry: We show the explicit relation between BMS
symmetries and displacement memory. One can obtain the variation of the metric
parameters Aap, 04 and & along the Killing direction. Since the the memory (25)
or (26) is independent of v coordinate, we only mention the relevant expression of
Aap-variation,?8 given by

L Aa = [OuAaB — AaBOuf + LyAap +040pf +00af —2VaVpf.  (27)

On the other hand, the v component of the Killing vector for the fixed temperature
configuration generates two sets of supertranslations T'(¢) and X (¢), i.e

f(v,z?) = T(x?) + e ™ X (). (28)

Also, the Lie derivative of g, 4 along Killing direction yields superrotation Y4 (x4).26
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Now, in order to make the variation of A4p along the killing direction indepen-
dent of v, we set v coefficients to be zero. Using the general solutions of Agp from
relevant component of Einstein field equations, and for computational simplification
switching off the supertranslation parameter 7', we obtain Y¢(¢) = ae” I3 as a
solution. where, @ and p are functions of (¢, () and @ appears as an integration con-
stant; it would be a function of ¢ with respect to ¢ differential equation. Similarly,
one can also find the solution for Y¢({). Therefore, we can find a solution for Y4
that will induce the desired shift in the displacement vector, and serves our purpose
of establishing relation between displacement memory and asymptotic symmetries
near the horizon of black holes.

3.2.2. Memory: Zero temperature configuration & BMS symmetries

We have also provided an explicit approach for zero-temperature configuration (ex-
tremal consideration). For this, the metric coefficients remain same as appear in the
non-extreme case except the g,, component which becomes N'(¢, {)p? 4+ O(p?). The
displacement memory with this consideration can be achieved by setting x = 0 in
Eq. (25), and written as

ASS, = 2(1 + (0P (ANESS + A SS) + O(p?), (29)

where subscript E stands for the change in the displacement vector for extremal
or zero temperature configuration. One can again take the variation of A4p along
Killing direction and obtain set of differential equations similar to the fixed-
temperature analyses. The related details can be found in Bhattacharjee et al.?

3.2.3. Memory & BMS symmetries: for a less generic form of the metric

In this section, we consider a less generic form of the full metric (24) by setting
gua = 0 which can be regarded as an asymptotic form of a metric near the horizon of
a spherically symmetric black hole deformed in the spatial sector. The displacement
memory for this setup can be computed in similar way as obtained for the full metric.

We find that the fixed temperature configuration does not produce very inter-
esting result. However, the displacement memory is written in terms of A\ 45, and
further set of conditions can be obtained in order to have the connection with BMS
symmetries. The interesting finding appears if we consider zero temperature config-
uration. The change in the displacement vector is written in terms of AX4p. Using
the vv-component of Einstein field equation, the displacement memory is given by

ASG = (14 COPH(C.OALSS + O, (30)

We notice that the displacement memory is proportional to p whereas in the far
region case?? the memory is proportional to % This implies that the displacement
memory near the horizon of black holes is mimicking the one obtained null infinity.
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One can further relate it with the BMS symmetries. It turns out that if we freeze
off the superrotation, we have an exact solution: X (¢,¢) = X;(¢) + X2(¢). Hence,
there is a supertranslation X (¢, ) that can induce the same shift in the displace-
ment memory. We have also considered the three dimensional analyses for extreme
and non-extreme cases, and its connection with near-horizon BMS symmetries in
Bhattacharjee et al.*?

4. Discussion and outlook

The primary motivation of this article is to provide a review study on the dis-
placement memory effect near the horizon of black holes and its connection with
asymptotic symmetries which is similar to the one established at null infinity
for asymptotically flat spacetimes. In this respect, we started with a brief intro-
duction of the intrinsic formulation of null shell. As a result, we show that the
supertranslation-like transformations can be achieved in the context of soldering
of two black hole spacetimes. We explicitly provided the results for Schwarzschild
and ERN cases. However, interestingly, superrotation can not be recovered for ERN
spacetime whereas it can be recovered for Schwarzschild. Further, as a result of in-
teraction between horizon shell and test particles, we find that the particles remain
on the initial 2-dimensional surface for Schwarzschild consideration as surface cur-
rent is zero whereas for ERN spacetime, particles get displaced off from the initial
2-dimensional surface. We compute the components of deviation vectors which carry
the supertranslation parameter ensuring that the memory can be obtained in terms
of BMS parameters.

We have provided a detailed description of GW memory effect near the horizon
of black holes as a more realistic approach which is analogous to the one obtained at
null infinity. As a major distinguishing feature in order to establish a connection with
asymptotic symmetries, we observed that there are two supertranslation parameters
T(z*) and X (z?) and one superrotation Y (z4) in near horizon analyses whereas
there is only one supertranslation in the far region case. We also notice that A\, p
is the data available to be considered in the detection which mimics the data C.,,
present near the null infinity.22 The form of the GDE is also quite different with
respect to the far region case. These are the brief and major distinguishing features
between displacement memory obtained near the horizon of black holes and at
asymptotic null infinity, together with its possible connection to BMS symmetries.

The observational features of GW will be extremely useful in investigating the
signatures of the asymptotic symmetries in displacement memory effect. As a result,
we might be able to look into such symmetries in greater detail as a firm evidence in
near future. The theoretical aspects of our study might help as a model framework
in the detection prospects of the near-horizon BMS memory effect. It is expected
that present-day detectors like LIGO might not be able to play a crucial role in the
detection prospects. We hope that advanced detectors like alLIGO or LISA might
be able to capture this effect as LISA is looking for a much longer wavelength
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opening up the detection realm to a wider range of gravitational wave sources.
In this direction, building up the theoretical framework of post-Newtonian (PN)
formalism having relevance for asymptotic symmetries, it is interesting to investigate
the contribution of supertranslation-like symmetries in non-oscillatory signals of the
gravitational wave polarizations. This would surely provide a more direct approach
to gravitational wave data analysts in order to search for asymptotic symmetries in
GW memory signal.

The alternative approach of detecting astrophysical signatures of asymptotic
symmetries from gravitational lensing might not be an appropriate direction as su-
pertranslated geometry of the spacetime will not lead to any deviations from stan-
dard results in general relativity for static configurations.** The underlying reason
to the problem is that given a supertranslated Schwarzschild black hole, one can
always choose a coordinate patch in a finite solid angular range where the metric
will be given by the Schwarzschild. Hence, the signatures of asymptotic symmetries
seem to be difficult from gravitational lensing. However, we still have a hope to
detect such symmetries in black hole shadows and lensing if we have a dynamically
evolving spacetime, and in this consideration, it is not sure whether one can again
have some coordinate transformations which would give rise to indistinguishable
features. So this might set a stronger grounds for detecting the asymptotic sym-
metries through deflection angle approach and black hole shadows. Interestingly, it
is not difficult to understand that why gravitational memory is suitable for detect-
ing such symmetries, because it appears as a physical effect where initial and final
vacua differ by a BMS supertranslation. On another hand, the post-Newtonian tidal
environment analysis especially in terms of BMS symmetries can also be explored
from BMS-detection prospects.

Furthermore, as we have been investigating the issues from classical perspectives,
the quantum memory effect has also got considerable attention in very recent, and
it is yet to be explored extensively. This would certainly give a new meaning to the
quantum treatment of the memory to catch on to the hawking information paradox.
We know that the displacement memory is induced by the radiative energy flux,
and it has been shown that there exists a new kind of gravitational memory- spin
memory effect which is sourced by angular momentum flux.*® It is interesting to
examine the signatures of asymptotic symmetries in the context of spin memory
effect near the horizon of black holes from BMS-detection point of view. Further,
the algebra of asymptotic symmetries on null surface situated at a finite location of
the manifold might determine some fascinating role of symmetries on GW memory.
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