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Abstract We study the Standard Model (SM) in Weyl con-
formal geometry. This embedding is truly minimal with no
new fields beyond the SM spectrum and Weyl geometry. The
action inherits a gauged scale symmetry D(1) (known as
Weyl gauge symmetry) from the underlying geometry. The
associated Weyl quadratic gravity undergoes spontaneous
breaking of D(1) by a geometric Stueckelberg mechanism in
which the Weyl gauge field (ωμ) acquires mass by “absorb-
ing” the spin-zero mode of the R̃2 term in the action. This
mode also generates the Planck scale and the cosmological
constant. The Einstein-Proca action emerges in the broken
phase. In the presence of the SM, this mechanism receives
corrections (from the Higgs) and it can induce electroweak
(EW) symmetry breaking. The EW scale is proportional to
the vev of the Stueckelberg field. The Higgs field (σ ) has
direct couplings to the Weyl gauge field (σ 2ωμωμ). The
SM fermions only acquire such couplings for non-vanishing
kinetic mixing of the gauge fields of D(1) × U (1)Y . If this
mixing is present, part of the mass of Z boson is not due
to the usual Higgs mechanism, but to its mixing with mas-
sive ωμ. Precision measurements of Z mass then set lower
bounds on the mass of ωμ which can be light (few TeV). In
the early Universe the Higgs field can have a geometric ori-
gin, by Weyl vector fusion, and the Higgs potential can drive
inflation. The dependence of the tensor-to-scalar ratio r on
the spectral index ns is similar to that in Starobinsky infla-
tion but mildly shifted to lower r by the Higgs non-minimal
coupling to Weyl geometry.

1 Motivation

The Standard Model (SM) with the Higgs mass parameter
set to zero has a scale symmetry. This may indicate that this
symmetry plays a role in model building for physics beyond
the SM [1]. Scale symmetry is natural in physics at higher
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scales or in the early Universe when all states are essentially
massless. In such scenario, the scales of the theory such as
the Planck scale and the electroweak (EW) scale will be gen-
erated by the vacuum expectations values (vev’s) of some
scalar fields. In this work we consider the SM with a gauged
scale symmetry (also called Weyl gauge symmetry) [2–4]
which we prefer to the more popular global scale symmetry,
since the latter is broken by black-hole physics [5]. A natural
framework for this symmetry is the Weyl conformal geome-
try [2–4] where this symmetry is built in. We thus consider
the SM embedded in the Weyl conformal geometry and study
the implications.

The Weyl geometry is defined by classes of equivalence
(gαβ, ωμ) of the metric (gαβ ) and the Weyl gauge field (ωμ),
related by the Weyl gauge transformation, see (a) below. If
matter is present, (a) must be extended by transformation (b)
of the scalars (φ) and fermions (ψ)

(a) ĝμν = 	d gμν, ω̂μ = ωμ − 1

α
∂μ ln 	,

√
ĝ = 	2d√g,

(b) φ̂ = 	−d/2φ, ψ̂ = 	−3d/4 ψ, (d = 1). (1)

Here d is the Weyl charge of gμν , α is the Weyl gauge
coupling,1 g = | det gμν | and 	 > 0. This is a non-
compact gauged dilatation symmetry, denoted D(1). Since it
is Abelian, the normalization of the charge d is not fixed.2 In
this paper we take d = 1. The case of arbitrary d is recovered
from our results by simply replacing α → d α. A discussion
on symmetry (1) and a brief introduction to Weyl geometry
are found in Appendix A.

To study the SM in Weyl geometry, all one needs to know
for the purpose of this work is the expression of the con-
nection (�̃) of this geometry, which differs from the Levi–

1 Our convention is gμν = (+,−,−,−) while the curvature tensors
are defined as in [6].
2 For example d = 1 is a convention used in e.g. [7] while d = 2 was
considered in [8,9].
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Civita connection (�) of (pseudo-)Riemannian case used
in Einstein gravity. The Weyl connection is a solution to
∇̃λgμν = −α ωλgμν where ∇̃μ is defined by �̃λ

μν . This solu-
tion is (see Appendix)

�̃λ
μν = �λ

μν + (1/2) α[δλ
μ ων + δλ

ν ωμ − gμν ωλ]. (2)

�̃ is invariant under (1), as it should be, since the parallel
transport of a vector must be gauge independent. Taking the
trace in (2), with a notation �̃μ = �̃ν

μν and �μ = �ν
μν , then

ωμ ∝ �̃μ − �μ. (3)

The Weyl field is thus a measure of the (trace of the) deviation
from a Levi–Civita connection.

The general quadratic gravity action defined by Weyl
geometry [2–4], invariant under (1), is written in terms of
scalar and tensor curvatures of this geometry. Using �̃ of
(2) and standard formulae one can express these curvatures
in terms of their Riemannian counterparts and re-write the
action in a more familiar Riemannian notation (as we shall
do). In the limit ωμ = 0 i.e. if: (i) ωμ is ‘pure gauge’ or if (ii)
ωμ becomes massive and decouples, then �̃ = � and then
Weyl geometry becomes Riemannian! This is an interesting
transition, relevant later. In (i) invariance under (1) reduces
to local scale invariance (no ωμ).

The role of Weyl gauge symmetry in model building
beyond SM was studied before [7–27]. We go beyond these
models which were limited to actions linear in the scalar cur-
vature R̃ of Weyl geometry and also introduced additional
states (scalar fields beyond the Higgs field) to maintain sym-
metry (1) and to generate the mass scales (Planck, etc) of the
theory.

Our approach here to model building is truly minimal, in
the sense that no new fields are added to the SM spectrum –
we simply embed the SM in Weyl geometry! Note that the
Weyl gauge field present here is part of the underlying geom-
etry and of Weyl gravity.3 The gravity part of the action is
fixed by the Weyl geometry [2–4], is actually quadratic and
is automatically invariant under (1) (a) (since �̃ is invari-
ant). This minimal approach builds on our recent results in
[28,29] (also [30–32]) that showed that the original Weyl
quadratic gravity action in the absence of matter is broken
spontaneously to the Einstein–Proca action. Therefore, this
breaking is geometric in nature (no scalar field is added to
this purpose).

With this result, embedding the SM in Weyl geometry is
very natural: one sets the Higgs mass parameter to zero and
‘upgrades’ the SM covariant derivatives, to respect symmetry
(1) inherited from Weyl geometry. Thus, both the Lagrangian
and its underlying geometry (�̃) have the same Weyl gauge

3 The literature often calls Weyl gravity the square of the Weyl tensor in
Riemannian geometry. We actually consider the original Weyl quadratic
gravity in Weyl geometry which has additional terms (Sect. 2.1).

symmetry. This is a unique feature, not present in models
with local scale symmetry based on Riemannian geometry
(i.e. with no ωμ). It adds mathematical consistency to the
model and motivated this study. Hereafter we refer to this
model as SMW.

There is additional motivation to study the SMW and the
Weyl geometry:

(a) Einstein gravity emerges naturally. After a Stueckelberg
mechanism, the Weyl gauge field ωμ acquires a mass
mω ∼ α Mp (Mp: Planck scale) by “eating” the spin
zero-mode (φ0) of geometric origin propagated by the
(1/ξ2)R̃2 term in the action of coupling ξ . The gauge
fixing of symmetry (1) is dynamical, as shown by the
equations of motion. After ωμ decouples, the Einstein
action is naturally obtained as a broken phase of Weyl
gravity. Mp and the cosmological constant (�) are both
generated by 〈φ0〉 and are related: �/M2

p = (3/2)ξ2.
(b) The theory has a symmetry D(1) ×U (1)Y × SU (2)L ×

SU (3). A gauge kinetic mixing of ωμ with the hyper-
charge field Bμ of U (1)Y is not forbidden by this sym-
metry.

(c) The Higgs has couplings to ωμ, of type σ 2ωμωμ. The
SM gauge bosons and fermions do not couple to ωμ [8,9].
Only if a gauge kinetic mixing exists, can fermions couple
to ωμ.

(d) The SM Higgs potential is recovered for small Higgs
field values (relative to Planck scale). The EW symmetry
breaking is then induced by gravitational effects, with the
Higgs mass and electroweak scale obtained for perturba-
tive couplings of the Weyl quadratic gravity.

(e) If a gauge kinetic mixing is present, part of the Z boson
mass is not due to the Higgs mechanism, but to the geo-
metric Stueckelberg mechanism (giving mass to ωμ).
Experimental data onmZ provide constraints on the Weyl
gauge coupling α and on the mass of ω.

(f) The Higgs potential at large field values drives inflation.
Interestingly, the origin of the Higgs field in the early
Universe is geometrical, from the Weyl boson fusion,
see c). The prediction for the tensor-to-scalar ratio (r )
(for given spectral index ns) is bounded from above by
that in the Starobinsky model with similar dependence
r(ns), due to the R̃2 term.

(g) The SMW can provide a successful alternative to the
�CDM, as discussed in [33].

These interesting properties of the SMW are studied in
Sect. 2. The relation to other scale-invariant models follows
(Sect. 3). The Conclusions are in Sect. 4. The Appendix has
an introduction to Weyl conformal geometry and additional
calculations for Sect. 2.
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2 SM in Weyl conformal geometry

2.1 Einstein action from spontaneous breaking of Weyl
quadratic gravity

Consider first the original Weyl gravity action [2–4] and here
we follow [28,29]. The action is

L0 = √
g

[
1

4!
1

ξ2 R̃2 − 1

4
F 2

μν − 1

η2 C̃ 2
μνρσ

]
, (4)

with couplings ξ, η ≤ 1. Here Fμν = ∇̃μων − ∇̃μων is the
field strength of ωμ, with ∇̃μων = ∂μων − �̃

ρ
μνωρ . Since

�̃α
μν = �̃α

νμ is symmetric, Fμν = ∂μων − ∂νωμ. C̃μνρσ and

R̃ are the Weyl tensor and scalar curvature in Weyl geom-
etry, derived from Eq. (2). Their relations to Riemannian
Weyl-tensor Cμνρσ and scalar curvature R are shown in Eqs.
(A-11), (A-14):

C̃2
μνρσ = C2

μνρσ + 3

2
α2 F2

μν,

R̃ = R − 3 α ∇μωμ − 3

2
α2 ωμωμ. (5)

The rhs of these equations is in a Riemannian notation, so
∇μωλ = ∂μωλ + �λ

μρ ωρ .

Each term in L0 is invariant under D(1) of (1). Indeed, R̃
transforms as R̃ → (1/	) R̃ (see Appendix), so

√
g R̃2 is

invariant. Also
√
g C2

μνρσ and F2
μν

√
g are invariant; similar

for
√
g C̃2

μνρσ . The term C̃2
μνρσ ensures that L0 is a general

Weyl action and is largely spectator under the transformations
below, so its impact could be analysed separately. But it is
needed at a quantum level, so we included it here anyway (it
brings a massive spin-2 ghost [34]).

In L0 we replace R̃2 → −2φ2
0 R̃ − φ4

0 with φ0 a scalar
field. Doing so gives a classically equivalent L0, since by
using the solution φ2

0 = −R̃ of the equation of motion of φ0

in the modified L0, one recovers action (4). With Eq. (5), L0

becomes in a Riemannian notation

L0 = √
g

{ −1

12 ξ2 φ2
0

[
R − 3α∇μωμ − 3

2
α2 ωμωμ

]

− φ4
0

4! ξ2 − 1

4

[
1 + 6

α2

η2

]
F2

μν − 1

η2 C2
μνρσ

}
(6)

or, making the symmetry manifest

L0 = √
g

{ −1

2ξ2

[
1

6
φ2

0 R + (∂μφ0)
2 − α

2
∇μ (ωμφ2

0)

]

− φ4
0

4! ξ2 + α2

8 ξ2 φ2
0

[
ωμ − 1

α
∂μ ln φ2

0

]2

− 1

4 γ 2 F2
μν − 1

η2 C2
μνρσ

}
,

with 1/γ 2 ≡ 1 + 6 α2/η2 ≥ 1. (7)

Every term of coefficient ∝ 1/ξ2 and the entireL0 are invari-
ant under (1); we must then “fix the gauge” of this symmetry.
This follows dynamically from the equations of motion of φ0,
ωμ (see later), while at the level of the Lagrangian this is done
by applying toL0 a specific form of transformation (1) that is
scale-dependent 	 = φ2

0/〈φ2
0〉 which is fixing φ0 to its vev

(we shall see shortly how φ0 acquires a vev); naively, one
simply sets φ0 → 〈φ0〉 in (7). In terms of the transformed
fields (with a “hat”), L0 becomes

L0 =
√
ĝ

[
− 1

2
M2

p R̂ + 3

4
M2

p α2 γ 2ω̂μω̂μ − 1

4
〈φ2

0 〉M2
p

−1

4
F̂2

μν − 1

η2 C2
μνρσ

]
, M2

p ≡ 〈φ2
0〉

6 ξ2 . (8)

In (8) a total divergence in the action, δS = α/(4ξ2)〈φ2
0〉∫

d4x
√
ĝ∇μω̂μ was ignored – it may be replaced by a local

condition ∇μω̂μ = 0. This constraint will be obtained shortly
from the current conservation of the symmetric phase, Eqs.
(6), (7).

In (8) we identify Mp with the Planck scale. Equation
(8) is the Einstein gauge (frame) and also the unitary gauge
of action (7). By Stueckelberg mechanism [35–37], ωμ has
become a massive Proca field, after “eating” the derivative
∂μ ln φ0 of the Stueckelberg field (ln φ0) in (7) [28,29]. The
number of degrees of freedom is conserved: in addition to
the graviton, the massless φ0 and massless ωμ were replaced
by massive ωμ with a mass m2

ω = (3/2)α2γ 2M2
p. We expect

mω be near Planck scale Mp, but the Weyl gravity coupling
may be naturally α << 1, so mω �Mp.

The Einstein–Proca action in (8) is a broken phase of L0

of (7). After ωμ decouples from (8), below mω the Einstein-
Hilbert action is obtained as a ‘low-energy’ effective theory
of Weyl gravity [28,29]. Hence, Einstein gravity appears to
be the “Einstein gauge”-fixed version of the Weyl action.
However, the breaking is more profound and is not the result
of a mere ‘gauge choice’: it is accompanied by a Stueckel-
berg mechanism and by a transition from Weyl to Rieman-
nian geometry: indeed, when massive ωμ decouples then �̃

of (2) is replaced by�.
In the other case, when ωμ is very light (α � 1), it does

not decouple in the flat space-time limit and may exist at low
energies provided that non-metricity bounds (usually TeV-
like [38–40]) do not forbid this. It could also act as a dark
matter candidate, see e.g. [41].

Note that the Stueckelberg term in (7)

(α2/4) φ2
0

[
ωμ − (1/α) ∂μ ln φ2

0

]2 = (D̃μφ0)
2,

D̃μφ0 ≡
[
∂μ − α/2 ωμ

]
φ0, (9)

is simply a Weyl-covariant kinetic term of the Stueckel-
berg field that became the mass term of ωμ in (8). That
is, a Weyl gauge-invariant kinetic term of a (Weyl-charged)
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scalar in Weyl geometry is a mass term for ωμ in the
(pseudo)Riemannian geometry underlying (8). This gives an
interesting geometric interpretation to the origin of mass, as
a transition from Weyl to Riemannian geometry, without any
scalar field present in the final spectrum. The field φ0 also
generated the Planck mass and was “extracted” from the R̃2

term i.e. is of geometric origin (like ωμ), giving an elegant
breaking mechanism.

This leaves the question of how φ0 acquired a vev and how
the “gauge fixing” (for ωμ) emerges. This is seen from the
equations of motion shown in Appendix B. First, from (6)
one immediately writes the equation of motion of gμν and
takes its trace. From this “traced” equation, one subtracts the
equation of motion of φ0 itself, also obtained from (6). As
shown in Appendix B, one immediately finds

�K = 0, where � = ∇μ∇μ, K = φ2
0 , (10)

so there is a conserved (onshell) current ∇μKμ = 0,
with Kμ = ∂μφ2

0 in our Weyl gauge invariant model,
similar to the global scale invariant case [42–46]. For a
Friedmann–Robertson–Walker (FRW) Universe, with gμν =
(1,−a(t)2,−a(t)2,−a(t)2), Eq. (10) gives K̈ + 3H K̇ = 0
which has a solution φ2

0(t) = c1
∫ t
t0
dτ/a(τ )3 + c2, with

constants c1,2 and H = ȧ/a. At large t , φ0(t) evolves to a
constant and this is how φ0 acquires a vev 〈φ0〉, similar to
[44–46].

Further, from (6) one writes the equation of motion of ωμ

and applying ∇ρ to it, one finds a conserved current [28,29]
(see also Appendix B)

Jρ = ξα φ0 (∂ρ − α/2 ωρ)φ0, ∇μ J
μ = 0. (11)

Using (10), the last equation simply gives ∇μ(ωμ φ2
0) = 0.

With φ0 replaced by its vev 〈φ0〉, then ∇μωμ = 0; this the
“gauge fixing” condition, specific to a massive Proca field,
that emerged from the conserved current of the Weyl gauge
symmetry (it was also inferred earlier from Eq. (8)). This
concludes our discussion on the “gauge fixing”.

Finally, one may ask what Weyl geometry tells us about
the cosmological constant (�). From Lagrangians (7) and (8)
we find

� = 1

4
〈φ2

0〉, �

M2
p

= 3

2
ξ2. (12)

Both the cosmological constant and the Planck scale are gen-
erated by φ0 and are thus related; hence, in models based on
Weyl geometry � > 0. In the formal limit 〈φ0〉 → 0 then
�, Mp → 0 and the Weyl gauge symmetry is restored.4

In conclusion, Weyl action (4), (7) is more fundamental
than Einstein–Proca action (8) which is its “low-energy”, bro-
ken phase. When the massive Weyl gauge boson decouples,

4 This limit is formal, since the linearisation of (4) with φ0 = −R̃
implicitly assumes that φ0 is non-zero.

the geometry becomes Riemannian and the Einstein gravity
is recovered. In some sense this picture is entirely geomet-
rical, since we did not include matter. Thus, ultimately the
underlying geometry of our Universe may actually be Weyl
conformal geometry. Its Weyl gauge symmetry could then
explain a small (non-vanishing, positive) cosmological con-
stant.

2.2 Weyl quadratic gravity and “photon”: photon mixing

Consider now L0 in the presence of the SM hypercharge
gauge group U (1)Y . A kinetic mixing of ωμ (Weyl “pho-
ton”) with the Bμ gauge field of U(1)Y is allowed by the
direct product symmetry U (1)Y × D(1). Such mixing was
mentioned in the literature [21] but not investigated. Consider
then5

L1 = √
g

{
1

4! ξ2 R̃2 − 1

4

[
F 2

μν + 2 sin χ Fμν Fμν
y + F 2

y μν

]

− 1

η2 C̃
2
μνρσ

}
. (13)

where Fy is the field strength of Bμ. The source of Bμ is
the SM fermionic Lagrangian (not shown in Eq. (13)) which
is invariant under (1) and is independent of the Weyl gauge
field [8,9] (see next section).

We repeat the steps in Sect. 2.1 and after transformation
(1) under which Bμ is invariant, B̂μ = Bμ, we find L1 in
terms of the new fields (with a hat):

L1 =
√
ĝ

{
− 1

2
M2

p R̂ + 3

4
M2

p α2ω̂μω̂μ − 3ξ2

2
M4

p

−1

4

[
1

γ 2 F̂
2

μν + 2 sin χ F̂μν F̂μν
y + F̂ 2

y μν

]
− 1

η2 C
2
μνρσ

}
.

(14)

The kinetic mixing is removed by a transformation [47]
to new (’primed’) fields

ω̂μ = γ ω′
μ sec χ̃ , B̂μ = B ′

μ − ω′
μ tan χ̃ , with

sin χ̃ ≡ γ sin χ, (15)

5 Note that ωμ is C-even [8,9] and the photon is C-odd; the mixing
violates C and CP. Global or discrete symmetries (C, CP, Z2 etc) can
be used to forbid the kinetic mixing; such symmetries can however
be broken by black-hole physics/gravity [5]. Also, the CPT invariance
theorem applies only if the theory is local, unitary and in flat space-
time, so it cannot be used here: the Weyl-geometry actions are neither
unitary (C̃2 term in Weyl action has a ghost) nor in flat space-time. The
consequences of χ �= 0 are further studied in Sect. 2.7.
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where, for a simpler notation, we introduced sin χ̃ (note that
γ ≤ 1).6 The result is

L1 =
√
ĝ

{
− 1

2
M2

p R̂ + 1

η2C
2
μνρσ

+3

4
M2

p α2 γ 2 sec χ̃2 ω′
μω′μ

−1

4
(F ′ 2

μν + F ′ 2
y μν) − 1

η2 C2
μνρσ

}
, (16)

with F ′
y μν = ∇μB ′

ν − ∇νB ′
μ = ∂μB ′

ν − ∂νB ′
μ and F ′

μν =
∂μω′

ν − ∂νω
′
μ.

As in the previous section, we obtain again the Einstein–
Proca action but with diagonal gauge kinetic terms for
both gauge fields. However, the final, canonical hypercharge
gauge field B ′

μ has acquired a dependence on the Weyl gauge
field, see (15), due to the initial kinetic mixing. In the full
model, upon the electroweak symmetry breaking the photon
field (Aμ) is a mixing of the hypercharge (B ′

μ) with SU(2)L
neutral gauge field (A3

μ)

Aμ = B ′
μ cos θw + A3

μ sin θw

=
[
B̂μ + ω̂μ sin χ

]
cos θw + sin θwA3

μ. (17)

where θw is the Weinberg angle and in the second step we
used Eq. (15).

Due to the gauge kinetic mixing the photon field includes
a small component of the initial Weyl gauge field, suppressed
by sin χ and by the mass (∼ Mp) of ωμ, but still present;7

however, it exists only in the presence of matter e.g. fermionic
fields that act as the source of Bμ. Such mixing in models
with Abelian gauge fields beyond the hypercharge exists in
string models, with similar massive and anomaly-free gauge
fields (as ωμ, see later) and similar mass mechanism [48,49].
However, here ωμ is a gauge field of a space-time (dilatation)
symmetry. The mixing is not forbidden by the Coleman–
Mandula theorem – the overall symmetry is always a direct
productU (1)Y ×D(1) and both symmetries are subsequently
broken spontaneously.8

2.3 Fermions

Consider now the SM fermions (ψ) in Weyl geometry and
examine their action. To begin with, to avoid a complicated

6 In the limit γ = 1 there is no C̃2
μνρσ term in the initial action (formally

η → ∞).
7 In some sense this says that Weyl’s unfortunate attempt to identify
ωμ to the photon was not entirely wrong, if the aforementioned mixing
is present.
8 The theorem implies that D(1) cannot be part of an internal non-
Abelian symmetry so d cannot be fixed.

notation we do not display the SM gauge group dependence:

L f = 1

2
√
g ψ i γ a eμ

a ∇̃μψ + h.c.,

∇̃μψ =
(

∂μ − 3

4
α ω̂μ + 1

2
s̃ ab
μ σab

)
ψ. (18)

Here s̃ ab
μ is the Weyl geometry spin connection. In (18),

the Weyl charge of the fermions is (−3/4) according to our
convention in (1) (d = 1). The relation of the Weyl spin con-
nection to the spin connection s ab

μ of (pseudo-)Riemannian
geometry is (see Appendix A)

s̃ ab
μ = s ab

μ + 1

2
α (eaμ eνb − ebμe

νa) ω̂ν,

s ab
μ = (−1) eλb (∂μ e a

λ − e a
ν �ν

μλ), (19)

where σab = 1
4 [γa, γb] while �ν

μλ is the Levi–Civita connec-

tion, gμν = e a
μ e b

ν ηab and eμ
ae a

ν = δ
μ
ν . It can be checked

that, similar to the Weyl connection (�̃), the Weyl spin con-
nection s̃ ab

μ is invariant under (1). This is seen by using that
s ab
μ transforms under (1) as

ŝ ab
μ = s ab

μ + (eaμ eνb − ebμ eνa) ∂ν ln 	1/2. (20)

With s̃ ab
μ invariant, one checks that L f is Weyl gauge invari-

ant. In fact one can easily show that (−3/4)α ω̂μ in γ μ ∇̃μψ

is cancelled by the ω̂μ-presence in the Weyl spin connec-
tion. This cancellation also happens between fermions and
anti-fermions [8,9] (eqs. 36, 37).9 This is so because both
fermions and anti-fermions have the same real Weyl charge
(no i factor in ∇̃μψ). As a result, we have

L f = 1

2
√
g ψ i γ a eμ

a ∇μψ + h.c.,

∇μψ =
(

∂μ + 1

2
s ab
μ σab

)
ψ. (21)

Thus the SM fermions do not couple [8,9] to the Weyl field
ωμ and there is no gauge anomaly.

We can now restore the SM gauge group dependence and
the Lagrangian becomes

L f = 1

2
√
g ψ i γ a eμ

a

[
∂μ − ig �T �̂Aμ − i Yg′ B̂μ

+1

2
s ab
μ σab

]
ψ + h.c., (22)

with the usual quantum numbers of the fermions under the
SM group (not shown), �T = �σ/2, and with g and g′ the
gauge couplings of SU (2)L and U (1)Y . But this is not the
final result.

9 But only for the Weyl charge in (18) can we write a Weyl invariant
L f without a scalar compensator in [8,9].
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Since the fermions are U (1)Y charged and the initial field
B̂μ in (22) is shifted by the gauge kinetic mixing, as seen in
Eq. (15), then ω′

μ is still present in L f :

L f = 1

2
√
g ψ i γ a eμ

a

[
∂μ − ig �T �̂Aμ − i Yg′

(
B ′

μ − ω′
μ tan χ̃

)

+1

2
s ab
μ σab

]
ψ + h.c. (23)

We found a new coupling of the SM fermions to ω′
μ,

of strength Yg′ tan χ̃ . This coupling comes with the usual
fermions hypercharge assignment (which is anomaly-free).
After the electroweak symmetry breaking B ′

μ is replaced
in terms of the mass eigenstates Aμ, Zμ, Zω

μ and ω′
μ is

a combination of Zμ, Zω
μ (see later, Eq. (47)). If χ ∼

χ̃ = 0, the fermions Lagrangian is identical to that in the
(pseudo)Riemannian case, with no Weyl gauge symmetry.

Regarding the Yukawa interactions notice that the SM
Lagrangian is invariant under (1)

LY = √
g

∑

ψ=l,q

[
ψ LYψ HψR + ψ LY

′
ψ H̃ψ ′

R

]
+ h.c. (24)

where H is the Higgs SU (2)L doublet and H̃ = iσ2H†, the
sum is over leptons and quarks; Y,Y ′ are the SM Yukawa
matrices. LY is invariant under (1): indeed, since the Weyl
charge is real, the sum of charges of the fields in each Yukawa
term is vanishing: two fermions (charge 2 × (−3)/4), the
Higgs (charge −1/2) and

√
g (charge 2). Hence the Yukawa

interactions have the same form as in SM in the (pseudo-
)Riemannian space-time.

2.4 Gauge bosons

Regarding the SM gauge bosons, their SM action is invariant
under transformation (1) [8,9]. A way to understand this is
that a gauge boson of the SM enters under the corresponding
covariant derivative acting on a field charged under it and
should transform (have same weight) as ∂μ acting on that
field; since coordinates are kept fixed under (1), the gauge
fields do not transform either. Their kinetic terms are then
similar to those of the SM in flat space-time, since the Weyl
connection is symmetric. Explicitly, this is seen from the
equation below, where the sum is over the SM gauge group
factors: SU (3) × SU (2)L ×U (1)Y

Lg = −
∑

groups

√
g

4
gμρgνσ FμνFρσ , (25)

Fμν involves the difference ∇̃μAν − ∇̃ν Aμ, where A is a
generic notation for a SM gauge boson and since ∇̃μAν =
∂μAν − �̃

ρ
μν Aρ , then for a symmetric �̃

ρ
μν = �̃

ρ
νμ one sees

that �̃ and its ωμ-dependence cancel out in the field strength

Fμν . Hence, Lg does not depend on ωμ and has the same
form in Weyl and in (pseudo)Riemannian geometries.

2.5 Higgs sector

• The action: Let us now consider the SM Higgs doublet
(H ) in Weyl conformal geometry:

LH = √
g

{
R̃2

4! ξ2 − C̃2
μνρσ

η2 − ξh

6
|H |2 R̃ + |D̃μH |2

−λ |H |4 − 1

4

(
F 2

μν + 2 sin χ Fμν Fμν
y + F 2

y μν

)}
.

(26)

The SU (2)L ×U (1)Y × D(1) derivative acting on H is

D̃μH = [
∂μ − iAμ − (1/2) α ωμ

]
H, (27)

where Aμ = (g/2) �σ . �Aμ + (g′/2) Bμ; �Aμ is the SU (2)L
gauge boson, Bμ is the U (1)Y boson. The case of no gauge
kinetic mixing in (26) (χ = 0) is obvious; we keep χ �= 0
for generality.

We consider the electroweak unitary gauge where H =
(1/

√
2) h ζ , with ζ T ≡ (0, 1). Then

|D̃μH |2 = |(∂μ − α/2 ωμ)H |2 + H†AμAμH, (28)

with

H†AμAμH = (h2/8)Z,

Z ≡ [
g2(A1 2

μ + A2 2
μ ) + (gA3

μ − g′Bμ)2]. (29)

As done earlier, in LH replace R̃2 → −2φ2
0 R̃ − φ4

0 to find a
classically equivalent action; using the equation of motion of
φ0 and its solution φ2

0 = −R̃ back in the action, one recovers
(26). After this replacement, the non-minimal coupling term
in (26) is modified

− 1

6
ξh |H |2 R̃ → −1

12

( 1

ξ2 φ2
0 + ξh h

2
)
R̃. (30)

It is interesting to notice that the initial term in the action,
(1/ξ2) R̃2, (where ξ < 1) in (26) was replaced by a term
above with a large non-minimal coupling 1/ξ2 > 1 (plus an
additional φ4

0). For details, the Lagrangian LH after step (30)
is presented in the Appendix, see Eq. (C-1).

Next, to fix the gauge, apply transformation (1) toLH with
a special scale-dependent 	 which fixes the fields combina-
tion (φ2

0/ξ2 + ξhh2) to a constant:

ĝμν = 	 gμν, φ̂2
0 = φ2

0

	
, ω̂μ = ωμ − 1

α
∂μ ln 	, B̂μ = Bμ,

Âμ = Aμ, 	 ≡ φ2
0/ξ2 + ξhh2

〈
φ2

0/ξ2 + ξh h2
〉 . (31)
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In terms of the transformed fields and metric (with a ‘hat’),
LH becomes

LH =
√
ĝ

{
− 1

2
M2

p

[
R̂ − 3α∇μω̂μ − 3

2
α2ω̂μω̂μ

]
− 1

η2 C
2
μνρσ

+1

2

∣∣(∂μ − α/2 ω̂μ) ĥ
∣∣2 + 1

8
ĥ2 Ẑ

−V̂ − 1

4

(
1

γ 2 F̂
2

μν + 2 sin χ F̂μν F̂μν
y + F̂ 2

y μν

)}
, (32)

were we used (5), the notation Ẑ = Z(Bμ → B̂μ, �Aμ →
�̂Aμ), with γ ≤ 1 defined in (7) and

M2
p ≡ 1

6

{
1

ξ2

〈
φ2

0

〉 + ξh
〈
h2〉

}
, (33)

and finally

V̂ = 1

4!
[

6 λ ĥ4 + ξ2 (6M2
p − ξh ĥ

2)2
]
. (34)

We found again a massive ωμ in (32) by Stueckelberg mecha-
nism after ‘eating’ the radial direction field (1/ξ2 φ2

0 +ξhh2),
with constraint ∇μωμ = 0. We identify Mp with the Planck
scale; Mp and thus also mω receive contributions from both
the Higgs and φ0 (due to R̃2).

The term proportional to ξ2 in V̂ is ultimately due to the
(1/ξ2) R̃2 term in the action and is ultimately responsible for
the EW symmetry breaking and for inflation, see later.

Equation (32) contains a mixing term ω̂μ∂μĥ from the
Weyl-covariant derivative of ĥ. We choose the unitary gauge
for the D(1) symmetry i.e. eliminate this term by replacing

ĥ = Mp
√

6 sinh
σ

Mp
√

6
,

ω̂μ = ω̂′
μ + 1

α
∂μ ln cosh2 σ

Mp
√

6
. (35)

Then LH becomes

LH =
√
ĝ

{
− 1

2
M2

p R̂ − 1

η2C
2
μνρσ

+3

4
M2

pα
2 ω̂′

μω̂′μ cosh2 σ

Mp
√

6

+1

2
(∂μσ)2 − V̂ + 3

4
M2

p Ẑ sinh2 σ

Mp
√

6

−1

4

(
1

γ 2 F̂
′ 2
μν + 2 sin χ F̂ ′

μν F̂μν
y + F̂ 2

y μν

)}
. (36)

with the potential V̂ expressed now in terms of the field σ ,
using (34), (35).

The term (3/4)M2
pα

2ω̂′
μω̂′μ cosh2 σ/(Mp

√
6) contains a

leading coupling (1/8)α2ω̂′
μω̂′μσ 2 (expand for σ ≤ Mp),

with additional corrections suppressed by M2
p. If there is no

kinetic mixing, χ = 0, this is the only coupling of ωμ to the
Higgs and the SM states!
• Kinetic mixing: Finally, remove the gauge kinetic mixing
in LH by replacing ω̂′

μ, B̂μ by

ω̂′
μ = γ ω′

μ sec χ̃ , B̂μ = B ′
μ − ω′

μ tan χ̃ ,

(sin χ̃ ≡ γ sin χ); (37)

and LH becomes:

LH =
√
ĝ

{
− 1

2
M2

p R̂ − 1

η2C
2
μνρσ

+3

4
M2

p α2 γ 2(sec2 χ̃) ω′
μω′μ + 1

2
(∂μσ)2 − V̂

+3

4
M2

p

[
Z ′ + α2γ 2 (sec2 χ̃) ω′

μω′μ]
sinh2 σ

Mp
√

6

−1

4
(F ′ 2

μν + F ′ 2
y μν)

}
. (38)

where F ′ (F ′
y) is the field strength of ω′ (B ′) and

Z ′ =
[
g′(B ′

μ − ω′
μ tan χ̃ ) − g Â3

μ

]2 + g2( Â1 2
μ + Â2 2

μ ) (39)

Note the presence inLH of a coupling �LH = (1/8) σ 2 ω′
μ

ω′μ (g′2 tan2 χ̃ + α2 γ 2 sec2 χ̃ ); this is due to 1) the gauge
kinetic mixing χ and 2) to the Higgs coupling to ωμ,
Eq. (27). This coupling is non-zero even if there is no
gauge kinetic mixing (χ = 0) when it becomes �LH =
(α2γ 2/8) σ 2ω′

μω′μ. This is relevant for Higgs physics and
can constrain α.
• Higgs potential: One may write LH in a more compact
form

LH =
√
ĝ

{−1

2
M2

p R̂ − 1

η2C
2
μνρσ − 1

4
(F ′2

μν + F ′2
y μν)

+Lh + m2
W (σ )W−

μ W+μ + 1

2
XTM2(σ )X

}
(40)

with the σ -dependent massmW (σ ) of SU(2)L bosons W±
μ =

1/
√

2 (A1
μ ∓ i A2

μ) given by

m2
W (σ ) = 3g2

2
M2

p sinh2 σ

Mp
√

6
= g2

4
σ 2 + O(σ 4/M2

p).

(41)

The σ -dependent matrix M(σ ) written in Eq. (40) in the
basis X ≡ (B ′

μ, A3
μ, ω′

μ) is presented in the Appendix, Eq.
(C-3). Finally we have

Lh = 1

2
(∂μσ)2 − V̂ (σ ) (42)
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and

V̂ (σ ) = 3

2
M4

p

{
6λ sinh4 σ

Mp
√

6

+ξ2
(

1 − ξh sinh2 σ

Mp
√

6

)2}
(43)

= 1

4

(
λ − 1

9
ξh ξ2 + 1

6
ξ2
h ξ2

)
σ 4

−1

2
ξhξ

2M2
p σ 2 + 3

2
ξ2M4

p + O(σ 6/M2
p). (44)

This is the Higgs potential in our SMW model in the uni-
tary gauge for the EW and D(1) symmetries. The second line
is valid for small field values σ � Mp when we recover a
Higgs potential similar to that in the SM; the quadratic term
has a negative coefficient (with ξh > 0, as needed for infla-
tion, see later). This follows when the Higgs field contributes
positively to the Planck scale, Eq. (33) and “to compensate”
for its contribution to Mp, a negative sign emerges in (34)
and in V̂ (σ ). The EW symmetry is thus broken at tree level.

2.6 EW scale and Higgs mass

The small field regime σ � Mp in (44) gives realistic predic-
tions in the limit ξh ξ2 � 1; indeed, in this case the quartic
Higgs coupling becomes λ and the EW scale 〈σ 〉 and the
Higgs mass are

〈σ 〉2 = 1

λ
ξh ξ2 M2

p, m2
σ = 2 ξh ξ2 M2

p. (45)

To comply with the values of the Higgs mass and EW
vev we must set ξ

√
ξh ∼ 3.5 × 10−17. This means one or

both perturbative couplings ξh and ξ take small values, while
λ ∼ 0.12 as in the SM and the regime σ � Mp is respected.
Recall that ξ is the coupling of the term (1/ξ2)R̃2, hence we
see the relevance of this term for the hierarchy of scales.

The SMW model with the Higgs action as in Eqs. (26), (40)
has similarities to Agravity [50,51] which is a global scale
invariant model. Unlike in Agravity, we only have the Higgs
scalar, while the role of the second scalar field (s) in [50],
that generated the Planck scale and Higgs mass in Agravity
is played in our model by the “geometric” Stueckelberg field
(φ0). This field was not added “ad-hoc” and cannot couple to
the Higgs field, being extracted from the R̃2 term itself (see
Eq. (26)). Hence, there is no classical coupling between the
Higgs field and the field generating Mp in SMW, while in
[50] a coupling λHSh2s2 is present.

However, the SMW contains the field ωμ (part of Weyl
geometry), not present in [50]. Our preference here for a
local, gauged scale symmetry, that brought in the Weyl gauge
field, is motivated by three aspects: firstly, we already have
a “geometric” mass generation mechanism which does not
need adding ad-hoc an extra scalar; secondly, global sym-

metries do not survive black-hole physics [5] and finally, the
Weyl gauge symmetry of the action is also a symmetry of
the underlying geometry (connection �̃), as it should be the
case.

Although the quantum corrections to mσ deserve a sepa-
rate study, note that large corrections to mσ could arise from
quantum corrections due to ωμ, via coupling ωμwμσ 2. But
ωμ may in principle be light (mω ∼ αMp) possibly near the
TeV scale [39,40], rather than near Mp, if α � 1; this is pos-
sible if the Weyl gauge symmetry breaking scale is low. The
mass of ωμ is then the only physical scale for the low-energy
observer above which the full gauged scale invariant action
is restored together with its ultraviolet (UV) protection role
for mσ . Hence, if the mass of ωμ, is not far above TeV-scale,
its loop corrections to mσ can be under control. In this way
the Weyl gauge symmetry may protect the Higgs sector.

From (45), using the Planck scale expression Eq. (33) then

〈σ 〉2 ≈ ξh

6λ
〈φ2

0〉. (46)

With ξ
√

ξh ∼ 3 × 10−17 fixed earlier, one still has a
freedom of either a hierarchy or comparable values of these
two vev’s, depending on the exact values of ξh < 1. Equation
(46) relates the EW scale physics to the underlying Weyl
geometry represented by the R̃2 term in the action (from
which φ0 is “extracted”).

2.7 Constraints from Z mass

Let us now compute the eigenvalues of the Higgs-dependent
matrix M2(σ ), Eqs. (40), (C-3), and examine the constraints
from the mass of Z on the model parameters α and χ .
Since Zμ and ωμ mix, part of Z boson mass is not due the
Higgs mechanism, but to this mixing and ultimately, to the
Stueckelberg mechanism giving mass to ωμ. After the elec-
troweak symmetry breaking, in the mass eigenstates basis of
M2(〈σ 〉), one has the photon field (Aμ) (it is massless, since
det M2 = 0), the neutral gauge boson (Z ) and the Weyl field
(Zω).

M2(σ ) is brought to diagonal form by two rotations (C-4),
(C-5) giving
⎛

⎝
B ′

μ

A3
μ

ω′
μ

⎞

⎠ =
⎛

⎝
cos θw − sin θw cos ζ − sin θw sin ζ

sin θw cos θw cos ζ cos θw sin ζ

0 − sin ζ cos ζ

⎞

⎠

⎛

⎝
Aμ

Zμ

Zω
μ

⎞

⎠

(47)

Denote by U the matrix relating the gauge eigenstates (B ′
μ,

A3
μ, ω′

μ) to the mass eigenstates (Aμ, Zμ, Zω
μ); then M2(σ )

is diagonalised into M2
d = UTM2U for a suitable ζ

123
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tan 2ζ = −2g′ (g2 + g′2)1/2

g2 (1 − 2 δ2) csc 2χ̃ + (g2 + 2g′2) cot 2χ̃
with

δ2 = α2 γ 2

g2 coth2 〈σ 〉
Mp

√
6
. (48)

The masses of Z boson (mZ ) and Weyl gauge field (mω) are
then found10

m2
Z , ω = 3

4
M2

p sinh2 〈σ 〉2

Mp
√

6

{
g2 + 1

2
sec2 χ̃

[
2 g′2

+2 α2γ 2 coth2 〈σ 〉
Mp

± √
P

]}
, (50)

where P = 4 g′2(g2 + g′2) sin2 2χ̃

+
[
g2 (1 − 2 δ2) + (g2 + 2g′2) cos 2χ̃

]2

.

(51)

Since 〈σ 〉 � Mp (see conditions after Eq. (45))

m2
Z = 1

4
(g2 + g′2) 〈σ 〉2

{
1 + 〈σ 〉2

18M2
p

[
1 − 3 g′2

α2 sin2 χ
]

+O(〈σ 〉4/M4
p)

}
. (52)

The factor in front is the mass of Z boson (hereafter mZ0 )
in the SM;mZ has a negligible correction from Einstein grav-
ity (∝ 〈σ 2〉/M2). But there is also a correction (∝ sin2 χ/α2)
from the Weyl field i.e. due to deviations from Einstein grav-
ity induced by Weyl geometry. This can be significant and it
reduces mZ by a relative amount:

ε ≡ �mZ

mZ0

= −g′ 2 〈σ 〉2

12 M2
p

sin2 χ

α2 + O
( 〈σ 〉4

M4
p

)

= −1

8

( 〈σ 〉
mω

)2

(g′ tan χ̃ )2 + O
( 〈σ 〉4

m4
w

)
. (53)

In the second step we replaced the mass of ω and the defini-
tion of χ̃ in Eq. (37).

The effect in (53) is significant if sin χ/α � 1. From the
mass of Z boson and with �mZ at 1 σ deviation, one has

10 If there is no mixing, χ = 0, then in Eq. (48), also (47), ζ = 0, and
with Mp of (33) and h of (35) then

m2
ω = 3α2

2
γ 2M2

p

[
1 + sinh2 〈σ 〉

Mp
√

6

]
(49)

= α2

4
γ 2

[
(1 + ξh)〈h〉2 + 〈φ0〉2

ξ2

]
,

m2
Z = 3

2
(g2 + g′2)M2

p sinh2 〈σ 〉
Mp

√
6
.

|ε| ≤ 2.3 × 10−5, then Eq. (53) gives a lower bound on the
Weyl gauge coupling α, for a given non-zero gauge kinetic
mixing:

α ≥ 2.17 × 10−15 sin χ. (54)

Note that for an arbitrary charge d of the metric, the results
depending on α are modified by replacing α → d × α. In
terms of the mass of ωμ one finds

mω

TeV
≥ 6.35 × tan χ̃ . (55)

This gives a lower bound on the mass of the Weyl field in
terms of the mixing angleχ andγ . A largermω allows a larger
amount of mixing. For a mixing angle of e.g. χ̃ = π/4 then
mw ≥ 6.35 TeV. Note that if there is no term (1/η) C̃2

μνρσ

in the original gravity action, then γ = 1 and then χ =
χ̃ . Alternatively, using the current lower bound on the non-
metricity scale (represented by mω) which is of the order of
the TeV scale [39,40], then

tan χ̃ ≤ 0.16 (56)

This is consistent with the non-metricity constraint.
These bounds are significant and affect other phenomeno-

logical studies. To give an example, consider the impact of
ωμ on the g − 2 muon magnetic moment, due to the new
coupling of ωμ in L f , Eq. (23). Using [52,53] an estimate
of the correction of ωμ to �aμ is

�aμ ∼ 1

12π2

m2
μ

m2
ω

(g′ tan χ̃)2 = 2.56 × 10−13, (57)

where we used constraints (53), (55). These do not allow �aμ

to account for the SM discrepancy with the experiment [54];
however, this discrepancy may be only apparent, according to
lattice-based results [55]. One can also use these constraints
when studying the role of ωμ for phenomenology in other
examples, such as the dark matter problem [41], in which
case it may even provide a solution (of geometric origin!)
to this problem; other implications can be for example in
the birefringence of the vacuum induced by ωμ. This can
impact on the propagation of the observed polarization of
the gamma-ray bursts [56]11 or of the CMB [57].

2.8 Inflation

The SMW model can have successful inflaton. The Higgs
potential in (43) can drive inflation as discussed in [30,31,
58]. But who “ordered” the Higgs in the early Universe? the
Higgs could initially be produced by the Weyl gauge boson
fusion, by the couplingωμωμHH† dictated by the symmetry,
Eq. (26). This means, rather interestingly, that the Higgs can

11 I thank Tiberiu Harko (Babeş-Bolyai University) for bringing this
paper to my attention.
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be regarded as having a geometric origin like ωμ which is
part of the Weyl connection.12

As seen from (38) this coupling becomes ωμωμ f (σ ) with
σ the neutral Higgs. But in a Friedmann–Robertson–Walker
universe considered below, gμν = (1,−a(t)2,−a(t)2,

−a(t)2), the vector field background compatible with the
metric is ωμ(t) = 0 [31]. The fluctuations of σ and of (lon-
gitudinal component of) ωμ do not mix since ωμ(t)δωμδσ

is then vanishing. As a result, the single-field inflation for-
malism in the Einstein gravity applies, with σ as the inflaton.
Since Mp is simply the scale of Weyl gauge symmetry break-
ing, σ > Mp is natural.

The predictions of the Higgs inflation are then [30,31]

r = 3 (1 − ns)
2 − 16

3
ξ2
h + O(ξ3

h ). (58)

Here r is the tensor-to-scalar ratio and ns is the scalar spectral
index. Up to small corrections from ξh that can be neglected
for ξh < 10−3, the above dependence r = r(ns) is similar
to that in the Starobinsky model [59,60] of inflation where
r = 3(1−ns)2. For mildly larger ξh ∼ 10−3−10−2, Eq. (58)
departs from the Starobinsky model prediction and r is mildly
reduced relative to its value in the Starobinsky case, for given
ns . These results require a hierarchy λ � ξ2

h ξ2 which may be
respected by a sufficiently small λ and13 ξh ∼ 10−3 − 10−2.

A relatively very small λ means that it is actually the
squared term in (43) that is multiplied by ξ2 (see also (34))
that is mostly responsible for inflation, and that is ultimately
due to the initial term φ4

0 “extracted” from the initial quadratic
curvature (1/ξ2) R̃2 term in (26); this then explains the close
similarities to the Starobinsky R2-inflation. Thus, we actually
have a Starobinsky-Higgs inflation. The initial Higgs field h
(which has ξh �= 0) still plays a role as it brings a minimum
in14 V̂ (σ ) of (43). In conclusion, a negligible λ is required
for successful inflation (as the numerical values of r below
also show it). This is consistent with SM prediction for λ at
the high scales, while a value of λ at the EW scale as in the
SM can then be induced by the SM quantum corrections.

The numerical results give that for N = 60 efolds and
with ns = 0.9670 ± 0.0037 at 68% CL (TT, TE, EE+low E
+ lensing + BK14 + BAO) [62] then [30,31,58]15

0.00257 ≤ r ≤ 0.00303, (59)

12 In a sense this is also true for fermions, by subsequent Higgs decay
(24), or for Bμ by Higgs-ωμ → Bμ-Higgs.
13 From the normalization of the CMB anisotropy one also finds that
ξ2 < 1.45 × 10−9 [30].
14 The Higgs and Starobinsky/R2 inflation usually mix, especially at
the quantum level [61].
15 Our results quoted above from [30,31] were obtained from potential
V̂ (σ ) of Eq. (43) and they agree both analytically and numerically to
those in [58] obtained by a different method using a two-field analysis.

while for ns at 95% CL:

0.00227 ≤ r ≤ 0.00303. (60)

The case of Starobinsky model for N = 60 corresponds to
the upper limit of r above and is reached for the smallest ξh ,
when this limit is saturated, according to relation (58).

The small value of r found above may be reached by the
next generation of CMB experiments CMB-S4 [63,64], Lite-
BIRD [65,66], PICO [67], PIXIE [68] that have sensitivity
to r values as low as 0.0005. Such sensitivity will be able to
test this inflation model and to distinguish it from other mod-
els. For example, similarly small but distinct values of r are
found in other models with Weyl gauge symmetry [31,32]
based on the Palatini approach to gravity action (4) used in
this paper; however these models do not respect relation (58)
and the slope of the curve r(ns) is different, due to their differ-
ent vectorial non-metricity. The above experiments also have
the sensitivity to distinguish inflation in this model from the
Starobinsky model for ξh ∼ 10−2 when the curve r(ns) is
shifted by ξh below that of the Starobinsky model, towards
smaller r (for fixed ns).

3 SMW and its properties

In this section we discuss some features of our model and
the differences from other SM-like models with local scale
invariance. The main aspect of our model is that scale symme-
try is gauged, Eq. (1). The Weyl gauge symmetry is not only a
symmetry of the action but also of the underlying Weyl geom-
etry; indeed, the Weyl connection is invariant under (1). This
adds consistency to SMW and distinguishes it from models
with an action that is Weyl or conformal invariant (with no
ωμ) and built in a (pseudo-)Riemannian space – their con-
nection and thus their underlying geometry do not share this
symmetry of the action.

An important feature of the SMW is the spontaneous
breaking of Weyl gauge symmetry even in the absence of
matter, as seen in Sect. 2.1. Hence, this breaking is ulti-
mately of geometric origin. This is different from previous
models with this symmetry [7–27] where some scalar fields
were introduced “ad-hoc” to induce spontaneous breaking
of their symmetry and to generate Mp and Einstein action
from a φ2R term. In the SMW the necessary scalar field (φ0)
is “extracted” from the (geometric) R2-term, plays the role
of the Stueckelberg field and is eaten by ωμ which becomes
massive. This was possible since the model was quadratic
in curvature – this is another difference from models [7–27]
which were linear-only in R. Therefore, the Einstein–Proca
action and the Planck scale emerge in the broken phase of
the SMW.

The breaking of the Weyl gauge symmetry is accompanied
by a change of the underlying geometry. When massive ωμ
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decouples at some (high) scale, the Weyl connection becomes
Levi–Civita, so Weyl geometry becomes Riemannian and the
theory is then metric.16 Thus, the breaking of the symmetry in
Sect. 2.1 (see [28,29]) is not just a result of a “gauge fixing”
to the Einstein frame, as it happens in Weyl or conformal
theories with no ωμ; it is accompanied by the Stueckelberg
mechanism and by a change of the underlying geometry.17

The SMW avoids some situations present in interesting
models with local scale invariance (without ωμ), like a neg-
ative kinetic term of the scalar field [73] (also [74–76]), or
an imaginary vev [77–79] of the scalar that generates18 Mp.
Such situations may not be a cause of concern, see however
the discussion in [16,18]. Gauging the scale symmetry avoids
such situations – in SMW this scalar field plays the role of a
would-be Goldstone of the Weyl gauge symmetry (eaten by
ωμ). See also Eq. (7) where the (negative) kinetic term in the
first square bracket is cancelled by that in the second square
bracket corresponding to a Stueckelberg mechanism.19

In local scale invariant models (without ωμ) the associated
current can be trivial, leading to so-called “fake conformal
symmetry” [81,82]; in the SMW the current is non-trivial
even in the absence of matter [28,29] due to dynamical ωμ.
If ωμ were not dynamical (Fμν = 0) it could be integrated
out algebraically to leave a local scale-invariant action [28,
29]; in this case Weyl geometry would be integrable and
metric, see e.g. [17,18]. But since ωμ is dynamical, the theory
is also non-metric. This non-metricity would indeed be a
physical problem if ωμ were massless (assuming this, non-
metricity of a theory was used as an argument against such
theory by Einstein20 [2]). However, non-metricity became
here an advantage, since Weyl geometry with dynamical ωμ

enabled the Stueckelberg breaking mechanism, ωμ acquired

16 A similar Weyl gauge symmetry breaking and change of geometry
exists in a Palatini version [31,32].
17 An aspect of models with Weyl gauge symmetry relates to their
geodesic completeness, see [16,18]. In conformal/Weyl invariant mod-
els (without ωμ) this aspect seems possible in the (metric) Riemannian
spacetime where geodesic completeness or incompleteness is related to
a gauge choice (and singularities due to an unphysical conformal frame)
[69–71]. In models in Weyl geometry, the geodesics are determined by
the affine structure. Differential geometry demands the existence of the
Weyl gauge field [72] for the construction of the affine connection,
because this ensures that geodesics are invariant (as necessary on phys-
ical grounds, the parallel transport of a vector should not depend on
the gauge choice). Hence the Weyl gauge field/symmetry may actually
be required! After the breaking of this symmetry, wμ decouples, we
return to (pseudo)Riemannian geometry and geodesics are then given
by extremal proper time condition. Since a dynamical ωμ also brings in
non-metricity, geodesic completeness seems related to non-metricity.
18 It seems to us this means a negative 	 and therefore a metric signature
change in transformation (1).
19 This Stueckelberg mechanism may apply to more general metric
affine theories studied in detail in [80].
20 Actually, a similar situation exists [31,32] in quadratic gravity in
Palatini approach due to Einstein [83].

a mass (above current non-metricity bounds [39,40]), and the
Einstein–Proca action was naturally obtained in the broken
phase.

The SMW differs from the SM with conformal symmetry
of [84] or [77–79] and from conformal gravity models [85–
87] formulated in the (pseudo)Riemannian space and based
on C2

μνρσ term; these models are metric and do not have a
gauged scale symmetry; in our case theC2

μνρσ term is largely
spectator and may even be absent in a first instance; it was
included because its Weyl geometry counterpart contributed
a threshold correction to α and it is needed at the quantum
level. And unlike the conformal gravity action [88] which
is metric, the SMW has a gauge kinetic term for the Weyl
field, which 1) makes the geometry non-metric and 2) breaks
the special conformal symmetry; this symmetry and non-
metricity do not seem compatible.

Concerning the quantum calculations in the SMW, one has
two options: one can use the “traditional” dimensional regu-
larization (DR) that breaks explicitly the Weyl gauge symme-
try by the presence of the subtraction scale (μ); alternatively,
one can use a regularisation similar to [89] that preserves
Weyl gauge symmetry at the quantum level. This is possible
by using our Stueckelberg field φ0 as a field-dependent reg-
ulator, to replace the subtraction scale μ generated later by
μ ∼ 〈φ0〉 (after symmetry breaking). This would allow the
computation of the quantum corrections without explicitly
breaking the Weyl gauge symmetry.21

It is interesting to study the renormalizability of the
Weyl quadratic gravity and of the SMW. The usual (met-
ric) quadratic gravity theory in the (pseudo-)Riemannian
case is known to be renormalizable but not unitary due to
the massive spin-2 ghost [96]. Considering now the Weyl
quadratic gravity alone, note that for computing the quan-
tum corrections Eq. (8) is not appropriate since this is the
(non-renormalizable) unitary gauge of Weyl gauge symme-
try. Therefore, one should consider computing the necessary
quantum corrections in the symmetric phase, for example
in L0 of Eq. (6). Note that no higher order operators are
allowed in (4), (6) by the symmetry since there is no ini-
tial mass scale to suppress them, and this is an argument in
favour of its renormalizability. Finally, regarding the SMW
itself, in a Riemannian notation it simply has an additional
(anomaly-free) Weyl gauge field which becomes massive by
the Stueckelberg mechanism which cannot affect renormal-
izability; naively, one then expects the SMW be renormaliz-
able.

21 A similar approach exists in the global case [90–95].
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4 Conclusions

Since the SM with a vanishing Higgs mass parameter is scale
invariant, it is natural to study the effect of this symmetry.
This is relevant for physics at high scales or in the early Uni-
verse, where this symmetry seems natural. Since a global
scale symmetry does not survive black-hole physics, we
explored the possibility that the SM has a gauged scale sym-
metry. The natural framework is the Weyl geometry where
this symmetry is built in. Hence, we considered the SM
in Weyl geometry. This embedding is minimal i.e. no new
degrees of freedom were added beyond those of the SM and
of Weyl geometry.

The model has the special feature that both the action and
its underlying geometry (connection �̃ and spin connection
w̃ab

μ ) are Weyl gauge invariant. This adds consistency to the
model and distinguishes it from previous SM-like models
with local scale symmetry, built in a (pseudo-)Riemannian
geometry whose connection is not local scale invariant.

The SMW model has another attractive feature. In Weyl
geometry there exists a (geometric) Stueckelberg mechanism
in which this symmetry is spontaneously broken. The Weyl
quadratic gravity associated to this geometry is broken spon-
taneously to the Einstein–Proca action of ωμ. The Stueckel-
berg field φ0 has a geometric origin, being “extracted” from
R̃2 in the Weyl action, and is subsequently eaten by ωμ.
Once the Weyl gauge field decouples, the Weyl connection
becomes Levi–Civita and Einstein gravity is recovered. The
Planck scale and a positive cosmological constant are both
generated by the Stueckelberg field vev. Also, the mass term
of the Weyl field is on the Weyl geometry side just a Weyl-
covariant kinetic term of the same Stueckelberg field. These
aspects relate symmetry breaking and thus mass generation
to a geometry change (from Weyl to Riemannian) which is
itself related to the non-metricity due to dynamical ωμ.

The SMW gauge group is a direct product of the SM gauge
group and D(1) of the Weyl gauge symmetry, both broken
spontaneously. In general, it is only the Higgs field of the SM
spectrum that couples to ωμ, (through the term ωμωμσ 2).
The presence of the Weyl gauge symmetry may have a pro-
tective role for the Higgs mass at a quantum level, if broken
at low scales. This would need α�1 and a light ωμ, possibly
few TeV, (mω ∼ α Mp). The (ultra)weak couplings ξ, α of
Weyl quadratic gravity would play a crucial role in providing
a solution to the hierarchy problem. A very small ξ is also
necessary for successful inflation, which is interesting.

The fermions can acquire a direct coupling (Yg′ tan χ̃ ) to
ωμ only in the case of a (very small) kinetic mixing (χ̃) of
the gauge fields of U (1)Y × D(1), allowed by this symmetry
and present at classical level (or due to quantum corrections).
As a result of this mixing and Higgs coupling to ωμ, part of
Z boson mass is not due to the Higgs mechanism, but to the
mixing of Z with the massive Weyl field which has a Stueck-

elberg mass; hence, part of Z mass has a geometric origin, due
to a departure from the (pseudo-)Riemannian geometry and
Einstein gravity. Since the Z boson mass is accurately mea-
sured, one finds strong bounds on the Weyl gauge coupling
and the mass of ωμ, for a given amount of kinetic mixing. We
showed how these bounds can be used in other phenomeno-
logical studies. If ωμ is light (few TeV) its effects may be
amenable to experimental tests, with consequences for phe-
nomenology e.g. for the dark matter, vacuum birefringence,
etc, that can test the model.

The SMW has successful inflation. Intriguingly, in the
early Universe the Higgs may be produced via Weyl vec-
tor fusion, thus having a geometric origin. With Mp a sim-
ple phase transition scale in Weyl gravity, Higgs field values
larger than Mp are natural. Note that while the inflationary
potential is that of the Higgs, due to the scalar fields mixing
it is ultimately a contribution to this potential from the initial
scalar mode (φ0) in the R̃2 term that is actually responsible for
inflation. This explains the close similarities to the Starobin-
sky R2-inflation. With the scalar spectral index ns fixed
to its measured value, the tensor-to-scalar ratio 0.00227 ≤
r ≤ 0.00303. Compared to the Starobinsky model, the curve
r(ns) is similar but shifted to smaller r (for same ns) by the
Higgs non-minimal coupling (ξh) to Weyl geometry. These
interesting results deserve further investigation.
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Appendix

A: Brief guide to Weyl conformal geometry

Weyl conformal geometry is defined by equivalent classes of
(gμν, ωμ) of the metric and Weyl gauge field (ωμ) related by
Weyl gauge transformations:

ĝμν = 	d gμν,
√
ĝ =	2d√g,

ω̂μ = ωμ − 1

α
∂μ ln 	,

ê a
μ =	d/2 e a

μ , êμ
a =	−d/2 eμ

a (A-1)

where d is the Weyl weight (charge) of gμν and α is the Weyl
gauge coupling. Various conventions exist in the literature for
d e.g. d = 1 in [7] and d = 2 in [8,9]. The latter may be more
motivated since from the relation ds2 = gμνdxμdxν with
dxμ and dxν fixed under (A-1) the metric gμν transforms
like ds2. In the text we used d = 1, but our results can be
immediately changed to arbitrary d by simply rescaling the
coupling in our results α → α × d.

The Weyl gauge field is related to the Weyl connection
(�̃) which is the solution of

∇̃λgμν = −d α ωλgμν (A-2)

where ∇̃μ is defined by �̃λ
μν

∇̃λgμν = ∂λgμν − �̃
ρ
μλgρν − �̃

ρ
νλ gρμ. (A-3)

Equation (A-2) says that Weyl geometry is non-metric; it
may be written as (∇̃λ + d α ωλ) gμν = 0 as in a metric
case, indicating that one can use metric formulae in which
replaces the partial derivative ∂λ acting on a field, metric, etc,
by a Weyl-covariant counterpart as in:

∂λ → ∂λ + weight × α × ωλ, (A-4)

where ’weight’ is the corresponding Weyl charge (of the field,
etc). We shall use this later.

The solution to (A-2) is found using cyclic permutations
of the indices and combining the equations so obtained, then

�̃λ
μν = �λ

μν + α
d

2

[
δλ
μ ων + δλ

ν ωμ − gμν ωλ
]
. (A-5)

where �λ
μν is the usual Levi–Civita connection

�λ
μν = 1

2
gλρ(∂μgρν + ∂νgρμ − ∂ρgμν). (A-6)

�̃ is invariant under (A-1) as one can easily check. Con-
versely, one may actually derive the transformation of the
Weyl gauge field in (A-1) by imposing that �̃ be invariant
under the metric change in (A-1), since parallel transport
should be independent of the gauge choice. Taking the trace
in the last equation and denoting �μ ≡ �λ

μλ and �̃μ ≡ �̃λ
μλ

then

�̃μ = �μ + 2d α ωμ. (A-7)

Thus, the Weyl gauge field can be thought of as the trace of
the departure of the Weyl connection from the Levi–Civita
connection. Using �̃ one computes the scalar and tensor cur-
vatures of Weyl geometry, using formulae similar to those in
Riemannian case but with �̃ instead of �. For example

R̃λ
μνσ = ∂ν�̃

λ
μσ − ∂σ �̃λ

μν + �̃λ
νρ �̃ρ

μσ − �̃λ
σρ �̃ρ

μν,

R̃μν = R̃λ
μλσ , R̃ = gμσ R̃μσ . (A-8)

After some algebra one finds

R̃μν = Rμν + 1

2
(αd)(∇μων − 3 ∇νωμ − gμν ∇λω

λ)

+1

2
(αd)2 (ωμων − gμν ωλω

λ), (A-9)

R̃μν − R̃νμ = 2 dα Fμν, (A-10)

R̃ = R − 3 d α ∇μωμ − (3/2) (d α)2 ωμ ωμ, (A-11)

where the rhs is in a Riemannian notation, so ∇μ is given by
the Levi–Civita connection (�).

An important property is that R̃ transforms covariantly
under (A-1)

ˆ̃R = (1/	d) R̃, (A-12)

which follows from the transformation of gμσ that enters its
definition above and from the fact that R̃μν is invariant (since
�̃ is so). Then the term

√
g R̃2 is Weyl gauge invariant.

In Weyl geometry one can also define a Weyl tensor C̃μνρσ

that is related to that in Riemannian geometry Cμνρσ as fol-
lows

C̃μνρσ = Cμνρσ − α d

4
(gμρFνσ + gνσ Fμρ − gμσ Fνρ

−gνρFμσ ) + α d

2
Fμνgρσ (A-13)

which gives [20]

C̃2
μνρσ = C2

μνρσ + 3

2
(α d)2 F2

μν, (A-14)

used in the text, Eq. (4).
√
g C̃2

μνρσ and its above separation
are invariant under (A-1).

To introduce the Weyl spin connection, consider first the
spin connection in the Riemannian geometry

s ab
μ = 1

2

[
eνa(∂μe

b
ν − ∂νe

b
μ) − eνb (∂μe

a
ν − ∂νe

a
μ)

−eρa eσb ecμ(∂ρeσc − ∂σ eρc)
]
. (A-15)

One verifies that an equivalent form is

s ab
μ = −eλb(∂μe

a
λ − �ν

μλ e
a
ν ). (A-16)
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Under a transformation of the metric (A-1)

ŝ ab
μ = s ab

μ + (eaμ eνb − ebμ eνa) ∂μ ln 	d/2. (A-17)

For the Weyl geometry spin connection, one simply
replaces the partial derivative in Eq. (A-15) by a Weyl-
covariant derivative that takes into account the charge of
the field on which it acts (A-4). For the spin connection
∂μebν → [∂μ + (d/2)α ωμ] ebν since according to (A-1) ebν
has Weyl weight d/2. Using this replacement in (A-15) we
find the spin connection s̃ ab

μ in Weyl geometry

s̃ ab
μ = s ab

μ + (d/2) α (eaμ eνb − ebμ eνa) ων. (A-18)

Under transformation (A-1) one checks that s̃abμ is invariant,

similar to Weyl connection �̃.
Let us now consider matter fields and find their charges in

Weyl geometry by demanding that: a) their Weyl-covariant
derivatives transform under (A-1) like the fields themselves
and b) that their kinetic terms be invariant. More explicitly,
take the kinetic term for a scalar of charge dφ :

√
g(D̃μφ)2

where D̃μ is the Weyl-covariant derivative which we demand
it transform under (A-1) just like the scalar field itself, i.e.
it has same charge dφ . From the invariance of this action
under (A-1) one has that dφ = −d/2. The Weyl covariant
derivative is then found according to (A-4) and the kinetic
term is

Lφ = √
g gμν D̃μφ D̃νφ, D̃μφ = (∂μ − d/2 α ωμ) φ.

(A-19)

with Lφ invariant, while φ transforms as

φ̂ = 	−d/2 φ. (A-20)

For a fermion ψ the Weyl charge is found in a similar way,
by using (A-4) to write their Weyl covariant derivative, hence
the action has the form

Lψ = i

2
√
gψ γ a eμ

a ∇̃μψ + h.c.,

∇̃μψ =
[
∂μ + dψ α ωμ + 1

2
s̃ ab
μ σab

]
ψ (A-21)

where σab = 1/4[γa, γb]. Since we saw earlier that s̃ ab
μ is

Weyl gauge invariant then the above derivative ∇̃μψ trans-
forms covariantly just like a fermion field itself of charge
dψ . From the structure of the kinetic term and its invariance
it follows that dψ = −3d/4 so, under (A-1)

ψ̂ = 	−3d/4 ψ. (A-22)

With this charge and using (A-21), (A-18) one shows that ωμ

cancels out:

γ a eμ
a ∇̃μψ = γ a eμ

a

[
∂μ + 1

2
s ab
μ σab

]
ψ. (A-23)

Hence, the fermionic kinetic term has the same form as in
the Riemannian geometry

Lψ = i

2
√
gψγ a eμ

a ∇μψ + h.c.,

∇μψ =
[
∂μ + 1

2
s ab
μ σab

]
ψ, (A-24)

used in Sect. 2.3. Equations (A-1), (A-20), (A-22) define
the Weyl gauge transformation in the presence of matter, as
introduced in the text, Eq. (1). For more information see also
[8,9,20].

B: Weyl quadratic gravity: equations of motion and gauge
fixing

Here we present the equations of motion of L0 of Eq. (6)
and derive some results that were used in the text, Sect. 2.1.
Variation of L0 with respect to gμν gives

1√
g

δL0

δgμν
= − 1

12

φ2
0

ξ2

(
Rμν

−1

2
gμν R

)
+ 1

12

(
gμν� − ∇μ∇ν

)φ2
0

ξ2

−α2

16

φ2
0

ξ2

(
gμν ωρ ωρ − 2ωμ ων

)

+α

8

φ2
0

ξ2

(
∇μων + ∇νωμ − gμν ∇ρωρ

)

+1

2
gμν V + 1

2

(1

4
gμν Fαβ Fαβ − gαβ FμαFνβ

)
.

(B-1)

where we denoted V ≡ φ4
0/(4! ξ2). Taking the trace of (B-1)

1

12

φ2
0

ξ2 R + 1

4

1

ξ2 �φ2
0 − α2

8

φ2
0

ξ2 ωρ ωρ

−α

4

φ2
0

ξ2 ∇ρ ωρ + 2V = 0. (B-2)

The equation of motion of φ0

1

12

φ2
0

ξ2 R − α2

8

φ2
0

ξ2 ωρ ωρ − α

4

φ2
0

ξ2 ∇ρ ωρ + 1

2
φ0

∂V

∂φ0
= 0

(B-3)

On the ground state this gives 〈φ2
0〉 = −R̃ = −[R −

(3/2)α2ωρ wρ], which we already know from the equation
φ2

0 =−R̃ introduced to linearise (4) into (6).
The equation of motion of ωμ

α2

4

φ2
0

ξ2 ωρ − α

4 ξ2 gρσ ∇σ φ2
0 + ∇σ F

ρσ = 0, (B-4)

Subtracting (B-2) from (B-3) then

�φ2
0 = 0, ⇒ ∂μ(

√
g ∂μφ2

0) = 0. (B-5)
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where � = ∇μ∇μ. In a FRW universe with gμν =
(1,−a2(t),−a2(t),−a2(t)), Eq. (B-5) gives−3H = (d/dt)[

ln(dφ2
0/dt)

]
with H = ȧ/a, so (d/dt)φ2

0 ∼ 1/a3(t); there-
fore, φ0(t) evolves to a constant (vev) at large t , and this is
used in the text after Eq. (10).

Further, by applying ∇σ to (B-4) we find a conserved cur-
rent

∇μ J
μ = 0, Jμ = − α

4 ξ2 g
μν

(
∂ν − α ων

)
φ2

0 . (B-6)

where we used the antisymmetry of Fμν . This was used in
Eq. (11). Since �φ2

0 = 0 then

∇μ J
μ = α2

4ξ2

√
g∇μ(ωμ φ2

0), (B-7)

which vanishes. Whenφ0 acquires a vev (as discussed above),
then ∇μ(φ2

0ωμ) = 0 becomes ∇μωμ = 0. This is the gauge
fixing condition for a massive gauge field ωμ for action (8).

Finally, after the decoupling of massive ωμ from the
Einstein–Proca L0 of Eq. (8) (together with (12)), the equa-
tion of motion for gμν gives, after taking the trace

R = −4�. (B-8)

This equation is also seen from (B-2) in the absence of ωμ, by
replacing φ0/(6ξ2) → M2

p. Equation (B-8) is consistent with

the equation φ2
0 =−R̃ introduced to linearise (4) into (6). To

see this, apply (1) to φ2
0 = −R̃, which becomes 〈φ2

0〉 = −R̃
as already found above; after decoupling of massive ωμ this
gives 〈φ2

0〉 = −R. With notation � = 〈φ2
0〉/4), then 4� =

−R, in agreement with (B-8).

C: Higgs sector: LH and the matrix M2(σ )

For convenience, we write here in the Riemannian notation
and in the symmetric phase the form of LH shown in the text
in the Weyl geometry notation Eq. (26) after step (30)

LH = √
g

{−1

2

[1

6
θ2R + (∂μθ)2 − α

2
∇μ(θ2ωμ)

]

− 1

η2C
2
μνρσ + 1

8
α2 θ2

[
ωμ − 1

α
∇μ ln θ2

]2 − V

+1

2

∣∣(∂μ − α/2 ωμ) h |2 + 1

2
h2AμAμ

−1

4

[ 1

γ 2 F2
μν + 2 sin χ FμνF

μν
y + F2

y μν

]}
, (C-1)

where θ2 = (1/ξ2) φ2
0 + ξh h2 denotes the radial direction

in the fields space with

V = 1

4!
[
6λ h4 + ξ2(θ2 − ξhh

2)2
]
, (C-2)

and 〈θ〉2 = 6M2
p. The first line in LH is similar to that of a

single field case, see Eq. (7) for θ2 ↔ (1/ξ2) φ2
0 . Note that

LH is invariant under the Weyl gauge transformation Eq. (1)

(one checks that the first square bracket is invariant, while for
the remaining terms this is easily verified). From this action
Eq. (32) then follows, via a Stueckelberg mechanism.

In the formal limit when the radial direction in field space
〈θ〉 → 0 (Mp → 0) which restores the Weyl gauge sym-
metry, then from the definition of θ we see that φ0 → 0
and h → 0 (EW symmetry is also restored) and therefore
the potential vanishes V → 0, as expected due to the Weyl
gauge symmetry.

The Higgs-dependent matrix M2(σ ) introduced in Eq.
(40) in basis X =(B ′

μ, A3
μ, ω′

μ) is

M2(σ ) = 3M2
p

2
sinh2 σ

Mp
√

6

×
⎛

⎜
⎝

g
′2 −gg′ −g

′2 tan χ̃

−gg′ g2 gg′ tan χ̃

−g
′2 tan χ̃ gg′ tan χ̃ g

′2 tan2 χ̃+α2γ 2 sec2 χ̃ coth2 σ

Mp
√

6

⎞

⎟
⎠

(C-3)

This mass matrix is diagonalised by two successive rotations
of the fields; first:
⎛

⎝
Aμ

Z1 μ

Z2 μ

⎞

⎠ =
⎛

⎝
cos θw sin θw 0

− sin θw cos θw 0
0 0 1

⎞

⎠

⎛

⎝
B ′

μ

A3
μ

ω′
μ

⎞

⎠ (C-4)

After this, Z1 − Z2 mass mixing usually exists, diagonalized
by a final rotation of suitable ζ

⎛

⎝
Aμ

Zμ

Zω
μ

⎞

⎠ =
⎛

⎝
1 0 0
0 cos ζ − sin ζ

0 sin ζ cos ζ

⎞

⎠

⎛

⎝
Aμ

Z1 μ

Z2 μ

⎞

⎠ (C-5)

Combining these two rotations we find a matrix relating
the mass eigenstates (Aμ, Zμ, Zω

μ) to the gauge eigenstates
Xμ = (B ′

μ, A3
μ, ω′

μ). The inverse of this matrix is shown in
Eq. (47).
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