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Summary

The conformal bootstrap program has proven to be an effective tool for the study

of vacuum correlators and extending this development to finite temperature

correlators is of great interest. In particular, for conformal field theories with a

holographic dual, finite temperature correlators maps to correlation functions

in a black hole background. Probing black hole physics and interpreting its

properties in terms of the CFT data, in other words, the spectrum and the OPE

coefficients, is an exciting direction of research. This thesis aims to explore some

developments in this direction by studying correlation functions in heavy states

which are expected to thermalize.

In Section 2, we provide a summary of heavy-heavy-light-light correlators in

holographic CFTs that will be the main object of study in this thesis. This

section begins with the two-dimensional case where the exchange of the stress

tensor and its composites is determined by the Virasoro symmetry. We then

consider the same object in space-time dimension d > 2 and review the lightcone

and the Regge limits.

In Section 3, we study the lightcone limit of a scalar heavy-heavy-light-light

correlator in d = 4 and following [2]. Imposing crossing symmetry, we determine

the contribution due to minimal-twist multi-stress tensor operators, related to

the gravitational interaction between a light probe and a black hole in the bulk.

This further allows us to extract the OPE coefficients between light scalars and

minimal-twist multi-stress tensor operators in holographic CFTs.

In Section 4, we explore the connection between the multi-stress tensor ex-

changes in d = 4 to higher-spin theories in d = 2 and following [3]. The

four-dimensional results from Section 3 are reminiscent of heavy-heavy-light-

light vacuum blocks in d = 2, in the latter case this structure is completely

fixed by the infinite-dimensional symmetry algebras. This indicates an emer-

gent symmetry algebra in the lightcone limit of the stress tensor sector in four

dimensions. Connections to generalized Catalan numbers and diagrammatic

rules are explored.



In Section 5, we consider the heavy-heavy-light-light correlator in the Regge

limit following [1]; the dual picture is that of a highly energetic particle traveling

in a black hole background following [8]. Using the phase shift, related to the

Shapiro time delay and the angle deflection of a null geodesic due to the presence

of the black hole, we compute, among other things, the anomalous dimensions

of heavy-light double-trace operators to next-to-leading order in a perturbative

expansion. Whenever the regime of validity overlap, the results agree with the

lightcone bootstrap. The phase shift effectively resums an infinite family of

multi-stress tensor operators which at each order yields a softer behavior in the

Regge limit than any single term in the sum.

In Section 6, we study the leading and next-to-leading singularities in the Regge

limit following from exponentiation of the phase shift following [5]. The posi-

tion space correlator is obtained by a suitable Fourier transform from which we

extract the contribution from multi-stress tensor operators. The leading sin-

gularity at each order agrees with a light particle propagating in a shockwave

background and, when available, the results further agree with expectations

from the lightcone bootstrap.

In Section 7, we consider the stress tensor two-point function at finite temper-

ature in holographic CFTs following [4]. In the bulk, this is related to metric

fluctuations around a black hole background. We solve the EOM of the met-

ric fluctuations in a near-boundary expansion which partially determines the

boundary correlators. In particular, the near-lightcone behavior of the correla-

tors is determined. We further decompose the correlators using the OPE be-

tween the stress tensors and read off the anomalous dimensions of double-stress

tensors with spin J = 0, 2, 4.
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1. Introduction

In the 20th century, two main frameworks describing fundamental physics were

developed – Einstein’s theory of general relativity (GR) describing the effects

of gravity as a curved space-time, and quantum field theory (QFT) describing

the electromagnetic-, weak- and strong-interactions according to the Standard

model. A unification of these forces into a single framework has been a long-

standing open problem within the modern high-energy physics community. As

in all of physics, the relevant scales of the problems are of fundamental impor-

tance. The planetary orbits around stars are accurately described by the theory

of general relativity without including quantum effects and likewise, the effects

of gravity on scattering experiments taking place at the Large Hadron Collider

at CERN are negligible. There are, however, scenarios where the effects of grav-

ity and quantum physics become of comparable order and it is not justified to

neglect one over the other. One possible such scenario is when studying very

massive objects, such as black holes, where regions of spacetime become singular

and our current description breaks down.

An important puzzle where a better understanding of the interplay be-

tween gravity and quantum field theory is necessary was introduced by Stephen

Hawking in [9]. He considered quantum field theory in a black hole background

and showed that black holes emit thermal radiation at a temperature depending

only on a few parameters such as the mass, spin, and charge of the black hole.

This leads to a conflict with the unitarity of an underlying quantum theory

which predicts that information is preserved. Bekenstein and Hawking [9,10]

further pointed out that properties of black hole mechanics were reminiscent

of the laws of thermodynamics which, in particular, led to the prediction that

black holes have an entropy determined by their area

SBH =
c3AkB
4GN~

, (1.1)

which beautifully contains several constants of nature and where A is the area

of the black hole. The fact that entropy scales with the area rather than the

volume of the black hole is an indication that a theory of quantum gravity

should be “holographic”. This is currently best understood in the context of

the AdS/CFT correspondence which states that a theory of quantum gravity

1



in (d+ 1)-dimensional Anti de-Sitter space has an equivalent, dual, description

as a conformal field theory (CFT) living on the d-dimensional boundary. How-

ever, there is currently a surge of developments in holographic descriptions of

quantum gravity also for asymptotically flat spacetime as well as for de-Sitter

space.

The AdS/CFT correspondence was conjectured in ’97 by Maldacena [11]

using an explicit string theory setup of string and branes leading to the famous

duality between Type IIB string theory on AdS5 × S5 and N = 4 SYM in

d = 4. The dictionary between the bulk theory of gravity and the CFT on

the boundary was then further developed by Gubser-Klebanov-Polyakov [12]

and Witten [13]. An actual proof of the correspondence is naturally hard to

construct due to it being a strong-weak duality. At this point, there is, however,

a wealth of evidence for the validity of the correspondence. The property of

it being a strong-weak duality is likewise one of the prominent features of the

correspondence, it makes it possible to study a class of strongly coupled quantum

field theories using semi-classical Einstein gravity. While the dictionary provides

a conceptually clear path to obtaining CFT observables from a semi-classical

weakly coupled Einstein’s theory of gravity, the opposite question of when a

CFT is “holographic” is more subtle. An important step in this direction was

provided by HPPS in [14] which conjectured that a theory is holographically

dual to such a theory of gravity if the central charge CT is large1 and the

dimension of the lightest (single-trace) operator with spin greater than two is

large (∆gap ≫ 1). This was motivated by showing a one-to-one correspondence

between bulk EFT in AdS and solutions to the crossing equations in the dual

CFT. Another important development in this direction was provided by CEMZ

[15] which argued using bulk causality that corrections to the stress tensor three-

point function compared to that of pure GR should be suppressed by powers of

∆−1
gap.

Conformal field theories, that is quantum field theories that are also invari-

ant under local rescaling of lengths, are important points in the landscape of

quantum field theories. In particular, a typical scenario is to start from a CFT

1 This is an approximate measure of the number of degrees of freedom.
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at high energies (UV) and to add relevant deformations which becomes impor-

tant as one flows to lower energies (IR). Deep enough in the IR the theory could

either have a mass gap, contain massless particles or be a CFT. In the latter

case, both the start- and end-point of the RG flow are CFTs connected by a

flow through QFTs. Understanding the restricted space of CFTs then provides

us with insights about the much larger landscape of QFTs. This is intriguing

as our understanding of CFTs in dimension d > 2 has developed significantly

in the last two decades. This broad development goes under the name of the

conformal bootstrap. The idea of bootstrapping theories, that is to extract as

much information as possible or even solve the theory using symmetries and

consistency conditions alone, is not new. The S-matrix bootstrap program be-

gan already in the late 50’s which, however, at the time only led to partial

success. Lately, partly based on the developments of the conformal bootstrap,

new ideas have led to another wave of exciting research in this direction.

The goal of the conformal bootstrap program is to fully extract the con-

straints that come from imposing conformal symmetry and various consistency

conditions, such as the associativity of the operator product expansion (OPE).

In dimension d > 2, seminal work was done in [16] and since then the numerical

bootstrap has been used successfully to e.g. “solve the Ising model” [17-21]. The

numerical bootstrap has been a prosperous direction leading to many impressive

results. It is, however, also of interest to find analytical results when possible.

Two important examples when this is feasible consist of weakly coupled the-

ories with a small parameter or when considering a kinematical regime where

observables simplify and, in a certain sense described below, become universal.

A pioneering development of the analytic bootstrap was presented in

[22,23]. Rather than considering the short-distance expansion x2 → x1 (OPE)

between two operators at x1 and x2 in Euclidean signature, they considered the

so-called lightcone limit in Minkowski signature. This is done by letting the

space-time distance go to zero when one operator gets close to the lightcone

of the other. The major simplification arising in this limit is that the main

contribution is due to operators of low twist τ2. This led the authors of [22,23]

2 The twist τ of an operator in a CFT is defined as τ = ∆ − J where ∆ is the

dimension and J is the spin of the operator.
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to conclude the existence of double-twist operators with large spin in any uni-

tary CFT in d > 2, with universal corrections due to the stress tensor exchange

which is fixed by conformal symmetry.

Micro-causality, that is commutativity of space-like separated operators,

translates into analytic properties of correlators and turns out to be another

powerful statement of consistency for CFT correlators. Causality in conjunc-

tion with unitarity in the UV was used to prove the ANEC and the conformal

collider bounds [24] in [25,26], it was also proven using quantum information

theory in [27]. This is closely related to the universality in the lightcone limit in

any unitary CFT. Stronger statements are available in holographic CFTs. Es-

sentially, this is due to the fact that the Regge limit (high-energy limit) [28-32]

is dominated by operators with high spin, in theories with gravity duals, this

will be the stress tensor contribution. This has led to many important results

on the role of bulk causality along the lines of [15] from the boundary point of

view, see e.g. [26,33-37].

Good behavior in the Regge limit is closely connected to analyticity in

spin as shown in [38] who derived the Lorentzian inversion formula, see also

[39]. The Lorentzian inversion formula extracts the OPE data in a four-point

function from a double-commutator integrated over a Lorentzian region of space-

time. The double-commutator is in many circumstances easier to calculate than

the full correlator and further possesses important properties such as being

non-negative and bounded. In particular, in holographic CFTs the double-

commutator suppresses the contribution from multi-trace operators compared

to single-trace operators.

The non-negativity of the ANEC operator, that is the integral of the stress

tensor along a null geodesic, leads to important bounds on OPE coefficients

which, as mentioned above, is deeply connected to causality. More generally,

the role of such non-local operators, light-ray operators, has been emphasized

lately and important developments have been made, see e.g. [40-43]. Light-ray

operators, and commutativity of such operators, further provide, at least in

certain cases, a physical interpretation of dispersive sum rules. Recently there

has been significant progress in the understanding of such sum rules [44-50],

leading to, among other things, sharp bounds on corrections to theories dual to

Einstein gravity in the bulk, further strengthening the work of [14] and [15].
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What happens, in the context of holography, if we consider CFT correlators

in non-trivial states? According to the AdS/CFT dictionary, vacuum correla-

tors in the CFT are computed by considering fluctuations of fields in a pure

AdS background. In particular, stress tensor correlators on the boundary are

related to metric perturbations in pure AdS. However, the correspondence fur-

ther makes prediction about correlation functions in states dual to non-trivial

backgrounds in the bulk. The best-known example that will play an important

role in this thesis is an asymptotically AdS-Schwarzschild black hole – it is dual

to a finite temperature state on the boundary. To fully capture the physics in

the bulk, including black holes, one needs to consider a world beyond vacuum

correlators of “light” operators. Consistency between finite temperature corre-

lators on the boundary and black hole physics in the bulk impose constraints

on the “heavy” sector of the CFT.

Perhaps one of the most interesting results obtained from the AdS/CFT

correspondence is in the context of hydrodynamics of strongly coupled QFTs

at finite temperature. Hydrodynamics is an effective field theory describing

long-wavelength excitations of conserved currents and the dynamical data is

contained in transport coefficients. These transport coefficients are further con-

tained in the microscopic finite temperature correlators in the limit of small

energy and momenta. Through the duality, this translates to perturbations

propagating on a black hole background. This line of work was initiated in

[51-55] and led to, among other things, the universality of the shear viscosity η

to entropy density s ratio in theories holographically dual to Einstein gravity:

η/s = ~(4πkB)
−1 [54,55].

Extending recent developments in the conformal bootstrap to finite tem-

perature correlators is, therefore, of great interest, both from the CFT point

of view but also due to the interesting application to black hole physics in

holographic CFTs3. One approach in this direction is to consider correlators

of light operators in heavy states, that is high-energy eigenstates. According

to the Eigenstate Thermalization Hypothesis [66-70], typical such high-energy

states are expected to thermalize in the sense that expectation values of simple

observables in a heavy state will be close to the expectation value in the thermal

3 See e.g. [56-65].
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state. It opens the possibility to apply the machinery of the conformal boot-

strap to correlators that effectively look thermal. Implementing the consistency

conditions mentioned above in this context is of great interest. A step in this

direction is what we will explore in this thesis.

1.1. The conformal bootstrap

In this section we give a brief review of some elements of conformal field theory,

this will lay the foundation for the rest of thesis. For reviews on CFTs, see [71-

74] that inspired this section. A conformal theory is covariant under conformal

transformations, that is coordinate transformations x → x′(x) that leave the

metric invariant up to an overall local dilatation Ω2(x) (rescaling):

(ds′)2 = δµν
dx′µ

dxρ
dx′ν

dxσ
dxρdxσ

= Ω2(x)ds2.

(1.2)

The stress tensor operator in a conformal theory is further traceless4 Tµµ = 0.

Because of the tracelessness of the stress tensor, one can construct conserved

charges from a larger set of vector fields ξ satisfying the conformal Killing equa-

tion

∂µξν + ∂νξµ = ω(x)δµν . (1.3)

The vector fields on Rd satisfying (1.3) are given by

pµ = ∂µ

mµν = xν∂µ − xµ∂ν

d = xµ∂µ

kµ = 2xµ(x · ∂)− x2∂µ,

(1.4)

where pµ and mµν corresponds to translations and rotations, respectively, and

d and kµ corresponds to dilatations and special conformal transformations, re-

spectively. Using (1.3) one sees that the divergence of the current Jµξ = ξνT
µν ,

when ξ = d or ξ = kµ, is proportional to the trace Tµµ = 0 in conformal

theories. From the currents in (1.4), one can construct conserved charges Qξ
5

4 This is true in Rd but on a general curved spacetime there can be Weyl anomalies.
5 In the language of [71] these are topological surface operators.
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which satisfy the conformal algebra SO(1, d+ 1), these will be denoted by the

same but capitalized, letters as the conformal Killing vectors in (1.4).

An important notion is that of primary and descendant operators. Consider

for simplicity a scalar operator O(x), it is primary if

[D,O(0)] = ∆O(0)

[Kµ,O(0)] = 0,
(1.5)

where ∆ is the scaling dimension of O(x), D and Kµ are the generators of di-

latations and special conformal transformations, respectively. A corresponding

conformal family of O(0) can then by built by acting with Pµ to construct de-

scendant operators Pµ1
. . . PµlP

2nO(0) with dimension ∆ + l + 2n and spin l.

Correlators of descendant operators can then be obtained from correlators of

the corresponding primary operators and we will therefore restrict our attention

to correlators of primary operators.

In conformally invariant theories on Rd it is natural to foliate the space

into spheres with different radii and quantize the theory on Sd−1. “Time evo-

lution” then corresponds to radial evolution using the dilatation generator D –

this leads to the notion of radial quantization. The states on a sphere Sd−1 cen-

tered around some point x ∈ Rd are then formally obtained as a path integral

over a ball centered around the same point. If there are no operator insertions

inside this ball this will be the vacuum state while on the other hand, we can

define states |O〉 by inserting the operator O(x) inside the path integral before

performing the path integral. Likewise, it is possible to define an operator from

an eigenstate of the dilatation operator. The equivalence between these two

constructions leads to the state-operator correspondence – the 1− 1 correspon-

dence between local operators and eigenstates of the dilatation operator. See

e.g. [71] for a more complete discussion on the state-operator correspondence.

The conformal symmetry imposes strong constraints on correlations func-

tions. E.g., the two- and three-point functions of scalar primary operators are

given by

〈O1(x1)O2(x2)〉 =
δ∆1∆2

x2∆1
12

〈O1(x1)O2(x2)O3(x3)〉 =
λ123

x∆1+∆2−∆3
12 x∆1+∆3−∆2

13 x∆2+∆3−∆1
23

,

(1.6)
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where xij := |xi − xj | and λijk is a coefficient undetermined by symmetry. It

is common to chosen the two-point function of operators to be equal to 1, up

to the position-dependent part fixed by conformal symmetry. An important

exception to this is the case of the stress tensor operator

〈Tµν(x)Tρσ(0)〉 =
CT
x2d

[1
2
(Iµρ(x)Iνσ(x) + Iµσ(x)Iνρ(x))−

1

d
δµνδρσ

]
, (1.7)

where CT is the central charge and Iµν(x) = δµν − 2xµxν
x2 . It plays an important

role as it (approximately) counts the number of degrees of freedom in a CFT.

In two dimensions6 this can be made rigorous via the c-theorem which states

that c1 ≥ c2 when there is an RG flow from CFT1 with central charge c1 to a

CFT2 with central charge c2.

Before moving on to four-point functions we will introduce the operator

product expansion (OPE). Consider a sphere Sd−1 centered at the origin which

contains two local operators O1(x) and O2(0). The path integral over the inte-

rior of the sphere defines a state on the boundary which can be evolved inwards

to define a state at the center of the sphere. The state-operator correspondence

implies that this state can be obtained as a linear combination of local operators

acting on the origin. This leads to the OPE:

O1(x)O2(0) =
∑

Ok primary

λ12kC12k(x, ∂)Ok(0), (1.8)

which holds true inside correlation functions given that all other |xi| > |x|78.
Here C12k is a differential operator that is fixed by conformal symmetry and

λ12k are the OPE coefficients which already appeared in (1.6)9. Using the OPE,

one can reduce an n-point function to an (n− 1)-point function and recursively

6 In two dimensions it is conventional to consider CT = c
2
.

7 The origin is not a special point and we are free to perform the OPE around

any point as long as we can find a sphere that contains the two operators under

consideration and no other appearing in the correlation function.
8 Here O1 and O2 are assumed to be scalar and we have suppressed the indices of

C12k and Ok.
9 Generally the OPE coefficients and the coefficient appearing in the three-point

function might differ by the normalization of Ok but here we for simplicity assume

that all operators are unit-normalized.
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reduce the problem to a sum over one-point functions; in particular, in the

vacuum, only the identity operator has a non-vanishing one-point function.

Defining a CFT in terms of its correlation functions, we are led to the statement

that we can abstractly define a CFT as the set of CFT data, that is the spectrum

of primary operators (∆i, Ji) and the OPE coefficients λijk for all operators in

the theory.

1.1.1. Four-point functions, conformal blocks, and crossing symmetry

The two- and three-point functions of scalar primary operators are fixed by

conformal symmetry up to the choice of normalization and the OPE coefficient.

The first non-trivial correlation functions turns out to be four-point functions –

they are therefore the main protagonists of the conformal bootstrap program (as

well as this thesis). Conformal symmetry still puts constraints of the four-point

function which takes the following form

〈O∆1
(x1)O∆2

(x2)O∆3
(x3)O∆4

(x4)〉 = K∆i(xi)A(u, v),

K∆i(xi) =
1

(x212)
∆1+∆2

2 (x234)
∆3+∆4

2

(x224
x214

)∆1−∆2
2
(x214
x213

)∆3−∆4
2

,
(1.9)

where (u, v) are the conformally invariant cross-ratios

u = zz̄ =
x212x

2
34

x213x
2
24

v = (1− z)(1− z̄) =
x214x

2
23

x213x
2
24

.

(1.10)

On the other hand, one can also use the OPE repeatedly to decompose the

four-point function in terms of conformal blocks. Consider for simplicity the

case O1 = O2 = O and O3 = O4 = ψ. We perform two OPE’s of O(x1)O(x2)

and ψ(x3)ψ(x4), leading to infinite double sums of two-point functions 〈OkOk′〉,
weighted by a product of OPE coefficients and the action of the differential

operators appearing in (1.8). Because the two-point functions are diagonal (1.6),

this reduces a single infinite sum over exchanged operators Ok weighted by the

product of OPE coefficients and a function g∆k,Jk that is fixed by conformal
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symmetry. Together with the structure (1.9), this leads to the conformal block

decomposition of four-point functions10

〈O(x1)O(x2)ψ(x3)ψ(x4)〉 = K(xi)
∑

Ok

(
−1

2

)Jk
λOOOkλψψOkg∆k,Jk(z, z̄).

(1.11)

where K(xi) = (x212)
−∆O (x234)

−∆ψ and g∆k,Jk(z, z̄) are conformal blocks cap-

turing the contribution from a primary operator Ok and all its descendants.

In principle one could use the knowledge of the OPE to try and sum up the

contribution from the primary and all the descendants in order to obtain the

conformal block. In practice this is difficult and a more convenient method was

developed by Dolan and Osborn [75,76]. The idea is to insert in the four-point

function a projection operator POk which projects onto the operator Ok and all

its descendants. Now the key point is that the conformal Casimir C = 1
2
LabLba

commute with Pµ and the eigenvalue CPOk = c∆,JPOk = [∆(∆ − d) + J(J +

d − 2)]POk is the same for all the operators in the conformal family of Ok.

On the other hand, we can let the generators act on, say, the operators O(x1)

and O(x2) and note that the vacuum is conformally invariant, which leads to

a differential equation satisfied by the conformal blocks. This was the strategy

taken by Dolan and Osborn which solved this differential equation in terms of

(z, z̄). More specifically, the conformal blocks satisfy the following differential

equation (Here we consider the more general case of four scalar primaries with

scaling dimensions ∆i and ∆ij := ∆i −∆j) [75,76]

Dg∆12,∆34

∆,J (z, z̄) = c∆,Jg
∆12,∆34

∆,J (z, z̄) (1.12)

where the differential operator D is given by

D = Dz +Dz̄ + 2(d− 2)
zz̄

z − z̄
[(1− z)∂z − (1− z̄)∂z̄],

Dz = 2z2(1− z)∂2z − (2 + ∆34 −∆12)z
2∂z +

∆12∆34

2
z

(1.13)

10 The conformal blocks and the conformal partial waves differ by the overall factor

of K(xi), below we will mainly consider the former which only depends on the cross-

ratios.
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and similarly for Dz̄. Notice that for d = 2, the operator D simplifies and the

conformal blocks factorize. The normalization of the blocks11 can be found by

comparing to the OPE limit x12, x34 → 0 which is equivalent to z, z̄ → 0:

g∆12,∆34

∆,J (z, z̄) ∼ J !

(d2 − 1)l
(zz̄)

∆
2 C

( d2−1)
J

( z + z̄

2
√
zz̄

)
, (1.14)

where C
( d2−1)
J are the Gegenbauer polynomials. An important piece of the

conformal blocks in both d = 2 and d = 4 are the SL(2, R) blocks

ka(z) = za 2F1(a−
∆12

2
, a+

∆34

2
; 2a, z), (1.15)

where 2F1 is the hypergeometric function and ka is an eigenfunction of the

operator Dz with eigenvalue Dzka(z) = 2a(a − 1)ka(z). A special role will be

played by these functions when ∆12 = ∆34 = 0 and we therefore define

fa(z) = za 2F1(a, a; 2a, z). (1.16)

These are not only the constituents of the conformal blocks, as will be seen

below but will also play a crucial role in the remainder of the thesis since they

are also what builds up the so-called stress tensor sector of heavy-heavy-light-

light correlators in holographic CFTs. In d = 2, the conformal blocks are given

by

g∆12,∆34

∆,J (z, z̄) =
1

1 + δJ0
(k∆+J

2
(z)k∆−J

2
(z̄)− (z ↔ z̄)) (1.17)

while in d = 4 they are given by

g∆12,∆34

∆,J (z, z̄) =
zz̄

z − z̄
(k∆+J

2
(z)k∆−J−2

2
(z̄)− (z ↔ z̄)). (1.18)

The cornerstone of the bootstrap program of four-point functions is the

statement of crossing symmetry. In its essence, it boils down to the fact that

we are free to perform the OPE expansion of the four-point functions between

any pair of operators. This leads to the decomposition of the four-point function

in three different channels typically denoted as the s-, t-, and u-channel. The

convergence of the OPE in different channels depends on the operator insertions

11 See [74] for a collection of common conventions for the normalization in the

literature.
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but the crucial point is that there are overlapping regions of convergence where

at least two of the conformal block decompositions are simultaneously valid.

The equality of these two expansions is the statement of crossing symmetry.

Importantly, the operators that contribute in one channel can be different from

the operators that dominate in another channel. It is therefore often fruitful

to consider cases where the expansion in one channel is particularly easy. It

is then the bootstrapper’s objective to determine how this is reflected in the

other channel where the same physics often is not manifest. This is typical in

e.g. a weakly coupled theory where there is a small parameter ǫ in which one

channel simplifies. In the context of holographic CFTs, this could be the inverse

of the central charge CT ≫ 1. Another example that has led to important

progress in our understanding of CFTs corresponds to a certain kinematical

limit where some spacetime distance |x| (this could be e.g. the cross-ratio z

or z̄) becomes small and the conformal block decomposition can be effectively

organized perturbatively in x. This is an incredibly powerful idea when one

uses the fact that the spacetime dependence of the contribution of an operator

O can be deduced by looking at (limits of) the conformal block. By a cleverly

chosen kinematical limit, one can isolate certain operators in one channel.

An important example of such a kinematical limit is the lightcone limit.

Let us consider a pair of identical scalar operators ψ(x) and ψ(0) that become

light-like separated by taking x+ → 0 with x− fixed where x± = t ± x and

the transverse separation set to zero. Using the OPE one finds the following

contribution due to an operator Oµ1...µJ with twist-(τ := ∆− J) and spin-J :

ψ(x)ψ(0) ∼ (x+)
τ
2 (x−)

∆+J
2

(−x)2∆ψ λψψOO−,...,−(0) + . . . , (1.19)

where the ellipses denote the contribution from descendants and all operators.

From (1.19) one sees that operators with low twist τ dominate in the lightcone

limit x+ → 0. In unitary CFTs in d > 2 there is a twist gap and the identity

operator with twist τ = 0 gives the leading contribution in the lightcone limit.

This was translated to the cross-channel in [22,23] which found that there exist

universal “double-twist” operators [O1O2]n,l with large spin l ≫ 1. Moreover,

assuming there are no light scalars (∆ ≤ d − 2), the subleading correction is

due to conserved currents with twist τ = d − 2. Especially, the stress tensor
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operator is present in any CFT and give further universal corrections to the OPE

data of the exchanged double-twist operators. We further note that the scaling

(1.19) is reflected in the limit of the conformal blocks. Consider a four-point

function 〈O2(∞)O1(1)O1(z, z̄)O2(0)〉 with the cross-ratios given by (1.10). The

lightcone limit then corresponds to taking 1− z̄ ≪ 1 with z fixed, in this limit

the conformal blocks behave as follows

g
(0,0)
∆,J (1− z, 1− z̄) ∼ (1− z̄)

τ
2 f τ+2J

2
(1− z), (1.20)

where fa is given in (1.16) and encodes the contribution from O∆,J and all its

descendants (which contribute in the lightcone limit).

A major role in this thesis will be played by the conformal bootstrap,

described above, applied to heavy-heavy-light-light correlators in holographic

CFTs.

1.2. Outline

In Section 2, we review the scalar heavy-heavy-light-light correlator in holo-

graphic CFTs. We start in dimension d = 2 based on [3] that will be used later

in Section 4 when studying higher-spin algebras in two dimensions. Then we

move on to holographic CFTs in d > 2, with the main focus being d = 4. This

part contains the conformal block expansion in both the direct-channel and the

cross-channel together with a summary of which operators will contribute in

the lightcone and the Regge limit, respectively.

In Section 3, we study the heavy-heavy-light-light correlator in the lightcone

limit. By imposing crossing symmetry, we bootstrap the contribution due to

minimal-twist multi-stress tensor in holographic CFTs in d = 4. This section is

based on the work in [2].

In Section 4, we explore the emergent structure in the lightcone limit of

heavy-heavy-light-light correlators in d = 4 and higher-spin vacuum blocks in

d = 2. This further leads us to consider generalized Catalan numbers and

diagrammatic rules as possible guiding principles to reconstruct the correlator

to all orders. This section is based on [3]. Some related details can be found in

Appendix A.

In Section 5, we turn away from the lightcone limit and study the heavy-

heavy-light-light correlator in the Regge limit. This is dual to a highly-energetic
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particle propagating in a black hole background. The corresponding Shapiro

time delay and the angle deflection are related to the anomalous dimensions of

heavy-light double-trace operators. This section is based on [1]. Some related

details can be found in Appendix B.

In Section 6, we continue the study of the Regge limit and determine the

consequences due to the exponentiation of the phase shift to higher orders. We

find that the leading term at each order agrees with a corresponding shockwave

calculation and further read off the subleading term at each order. This section

is based on [5]. Some related details can be found in Appendix C.

In Section 7, we move on from the world of scalar correlators to the stress

tensor two-point function at finite temperature. First, we study metric fluctu-

ations around a planar AdS-Schwarzschild black hole in semi-classical Einstein

gravity and determine the boundary stress tensor two-point function up to sub-

sub-leading order in the OPE expansion. In the CFT, we perform the stress

tensor OPE and decompose the thermal two-point function into the contribution

due to the identity, the stress tensor, and double-trace stress tensor operators

with spin J = 0, 2, 4. The exchange of the identity is fixed by conformal sym-

metry and agrees with the bulk calculations. The stress tensor OPE coefficients

are further known in theories dual to Einstein gravity and we find agreement

with the bulk and the boundary computations. At the next order, we match

the bulk computations to the CFT decomposition which allows us to read off

the anomalous dimensions of the double-trace stress tensors and, partially, the

product of OPE coefficients and thermal one-point functions. We further de-

termine the near-lightcone behavior of the correlators. This section is based on

[4]. Some related details can be found in Appendix D.
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2. Stress tensor sector of correlators in heavy state

In this section we provide a review of the scalar heavy-heavy-light-light

correlator in holographic CFTs since it plays a central role in the rest of this

thesis. We begin in Section 2.1 by reviewing the two-dimensional case where the

exchange of the stress tensor and composites thereof, is completely determined

by the Virasoro symmetry. This will serve as a useful source of intuition before

considering CFTs in d > 2. In Section 2.2, we move on to holographic CFTs

in d > 2, mainly considering d = 4. This part contains the conformal block

expansion in both the direct-channel and the cross-channel together with a

summary of which operators will contribute in the lightcone and the Regge

limit, respectively.

2.1. Two dimensions and the Virasoro vacuum block

In this section we consider the case of large-c CFTs in d = 2 and a heavy-

heavy-light-correlator where the scaling weight H of the heavy scalar operator

is large, H ∼ c≫ 1. The Virasoro vacuum block was first computed in [77,78].

Below we will review the explicit mode calculation [79], parts of which was

extended for WN=3,4 in [3] that will be reviewed in Section 4.

Conformal field theories in d = 2 are different from the higher-dimensional

counterparts, this is so because the conformal symmetry enhances to the infinite-

dimensional Virasoro algebra. This is especially powerful in constraining the

effect of stress tensor dynamics since operators now live in representations of the

full Virasoro algebra rather than just the global part. Since much of this thesis

focus on the contribution of multi-stress tensors to correlators, this provides a

powerful toy model where the analogous quantities can be computed explicitly

using the extended symmetry. In the content of heavy-heavy-light correlators,

this is captured in the heavy-heavy-light-light Virasoro vacuum block which

will be reviewed below. This further lays the foundation for an extension to

theories with higher-spin currents, so called WN theories. These were shown in

[3] to possess interesting similarities with the lightcone limit of the stress tensor

sector in higher-dimensional CFTs pointing towards a potential extension of

symmetries in this limit for holographic CFTs.
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The Virasoro algebra is given by

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm,−n, (2.1)

where Lm are the modes of the stress tensor T (z)

T (z) =
∞∑

m=−∞

Lm
zm+2

(2.2)

and can therefore be obtained by

Lm =

∮

C

dz

2πi
zm+1T (z). (2.3)

The algebra (2.1) corresponds to the following OPE of stress tensors

T (z)T (0) =
c

2z4
+

2T (0)

z2
+
∂T (0)

z
+ . . . , (2.4)

where the ellipses denote regular terms in the OPE limit z → 0. Here c is the

central charge. Virasoro primary operator have the following OPE with the

stress tensor

T (z)O(w) =
[ h

(z − w)2
+

∂

z − w

]
O(w), (2.5)

which is equivalent to the following action of the modes

[Lm,O(z)] = zm
[
h(m+ 1) + z∂

]
O(z). (2.6)

In this section, we use the Virasoro modes to explicitly calculate the first terms

due to Virasoro descendants of the vacuum following [77,78].

We consider a four point function of pair-wise identical operators OH and

OL with conformal weightH and h, respectively, given by 〈OH(∞)OH(1)OL(z)OL(0)〉.
We further suppress the anti-holomorphic part and have used conformal sym-

metry to fix the operators at 0, z, 1,∞ and set OH(∞) = limz→∞ z2HOH(z).

The limit that will be considered is c→ ∞ with h and H
c
fixed.

We are interested in the contribution due to Virasoro descendants of the

vacuum, i.e. states of the schematic form

G2(z) = 〈OH(∞)OH(1)

×
∑

{mi},{nj}

L−m1
L−m2

. . . L−mi |0〉〈0|Lnj . . . Ln2
Ln1

N{mi},{nj}
OL(z)OL(0)〉,

(2.7)
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where N{mi},{nj} is a normalization factor and G2(z) is defined as the HHLL

correlator restricted to the contribution of the identity block in the direct chan-

nel (the subscript (2) here stands for the Virasoro algebra as opposed to (N)

for the WN ). In [79] an orthogonal basis was constructed in the limit c → ∞
and it was shown how to perform this sum using a recursion relation. The cor-

relator organizes into powers of H
c
and we will study the first two terms in this

expansion. These are due to single and double mode states respectively.

To begin with, consider the contribution from states of the form L−n|0〉 in
(2.7). We can evaluate 〈0|LnO(z)O(0)〉 and 〈OH(∞)OH(1)L−n|0〉 for n ≥ 2

with the help of (2.6). We find that

〈0|LnO(z)O(0)〉 = zn[h(n+ 1) + z∂]z−2h = h(n− 1)zn−2h

〈OH(∞)OH(1)L−n|0〉 = H(n− 1).
(2.8)

The norm of these states is given by the central term

Nn,n = 〈LnL−n〉 =
c

12
n(n2 − 1). (2.9)

Combining the above allows one to obtain the single mode state contribution

to the vacuum block

G2(z)|H
c
= z−2h

∞∑

n=2

12Hh

c

(n− 1)

(n+ 1)

zn

n
=

2Hh

c
f2(z)z

−2h, (2.10)

where we note the appearance of f2, which is the conformal block due to the ex-

change of the quasi-primary T (z) and its global descendants. By quasi-primary

we refer to a primary under the global part {L±1, L0} of the Virasoro algebra.

Consider now states of the schematic form L−mL−n|0〉. These are not

orthogonal to the single mode states L−m−n|0〉 since

〈Lm+nL−nL−m〉 = (2n−m)
c

12
m(m2 − 1) 6= 0. (2.11)

Removing this overlap one can construct states |Xm,n〉12 that are orthogonal to

L−m−n|0〉:

|Xm,n〉 =
[
L−nL−m − 〈Lm+nL−nL−m〉

〈Lm+nL−m−n〉
L−m−n

]
|0〉, (2.12)

12 Note that the states |Xm,n〉 thus defined are not unit normalised.
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which contribute at O(H
2

c2
) to G(z). The contribution of these states are found

to be

〈0|LmLnOL(z)OL(0)〉 =
[
h2(n− 1)(m− 1) + hm(m− 1)

]
zs−2h,

〈0|Lm+nOL(z)OL(0)〉 = h(s− 1)zs−2h,
(2.13)

where s = m+ n. Using (2.13), we find that

〈Xm,n|OL(z)OL(0)|0〉 =
[
h2(n− 1)(m− 1) + hm(m − 1)

− (2n−m) c
12
m(m2 − 1)

c
12s(s

2 − 1)
h(s− 1)

]
zs−2h

=
[
h2(m− 1)(n− 1) + h

n(n− 1)m(m− 1)

s(s+ 1)

]
zs−2h

(2.14)

as in [79]. Furthermore, keeping only the leading term for large H gives

〈OH(∞)OH(1)|Xm,n〉 = H2(n− 1)(m− 1). (2.15)

The norm of the states |Xm,n〉 in the large-c limit is given by the square of the

central terms, i.e.,

NXm,n = 〈LmLnL−nL−m〉 =
( c
12

)2
m(m2 − 1)n(n2 − 1) + . . . , (2.16)

where the ellipses refer to terms subleading in c. Combining the above one finds

the contribution of the states |Xm,n〉 to the vacuum block in (2.7) to be

G2(z)|H2

c2
=
z−2h

2

(12Hh
c

)2 ∞∑

m,n=2

(m− 1)(n− 1)

(m+ 1)(n+ 1)

zm+n

mn

+ z−2h 72H
2h

c2

∞∑

m,n=2

(m− 1)(n− 1)

(m+ 1)(n+ 1)

zm+n

(m+ n)(m+ n+ 1)
,

(2.17)

where we have included a symmetry factor of 1
2 due to the exchange symmetry

(m ↔ n). The first line in (2.17) comes from the exponentiation of the first

term, i.e., it is the square of (2.10) divided by 2

G2(z)|H2h2

c2
=

1

2

(2Hh
c

f2

)2
z−2h. (2.18)

The second line in (2.17) can be written as a sum of products of functions fafb

such that a+ b = 4 in the following way

G2(z)|H2h

c2
= z−2h 2H

2h

c2

[
− f2

2 +
6

5
f1f3

]
(2.19)
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as was pointed out in [8].

The relative coefficient between the terms in the bracket of (2.19) is pre-

cisely such that in the limit z → 1 the coefficient in front of log2(1−z) vanishes
and (2.19) behaves as

G2(z)|H2h
c2

≈
z→1

# log(1− z). (2.20)

In [79] it was found that this behaviour persists to all orders, i.e, the coefficients

of all the logp (1− z) with p > 1 vanish in the limit z → 1 and hence G2(z) has a

simple logarithmic behavior in this limit. Moreover, the authors of [79] observed

that the coefficients in front of the log(1 − z) terms at each order in H
c form

the Catalan numbers’ sequence. In Section 4, we will see a similar statement

being true for WN=3,4 vacuum blocks13. In [79] they further showed that the

generating function of the Catalan numbers could be uplifted to a differential

equation, whose solution gave the Virasaoro vacuum block for any value of z

and not only z → 1 as in (2.20). A similar story holds true for the WN case

while in d = 4 it was found in [3] that there is again an interesting sequence

appearing, of which much less is known however.

2.2. Stress tensor sector and correlators in heavy states in d > 2

Below we review the setup of a heavy-heavy-light-light correlator in holographic

CFTs. By holographic CFTs we refer to a family of CFTs with a large central

charge CT ≫ 1 and a large gap in the spectrum of higher-spin single trace

operators ∆gap ≫ 1, where ∆gap = min∆J>2. This follows the review in

[2] which is further based on [8,1,80]. In holographic CFTs with large central

charge CT , there exists multi-trace operators [O1O2 . . .Ok]n,l. The simplest

example are double-trace operators of [O1O2]n,l which are schematically given

by O∂2n∂µ1
∂µ2

. . . ∂µlO, appropriately symmetrized to make a primary. Their

scaling dimension is given by

∆[O1O2]n,l = ∆1 +∆2 + 2n+ l + γ(n, l), (2.21)

where γ(n, l) are anomalous dimension which are suppressed in the limit CT →
∞. An important example that will play a significant role in this thesis are

13 We expect this to be true for arbitrary N .
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multi-trace operators made out of stress tensors, which we will call multi-stress

tensors and denote schematically by [T k]n,l.

The object that we study is a four-point function of pairwise identical

scalars G(xi) = 〈OH(x4)OL(x3)OL(x2)OH(x1)〉. Here OH and OL are scalar

operators with scaling dimension ∆H ∝ O(CT ) and ∆L ∝ O(1), with CT ≫ 1

the central charge. Using conformal transformations we define the stress tensor

sector of the correlator by

G(z, z̄) = lim
x4→∞

x2∆H4 〈OH(x4)OL(1)OL(z, z̄)OH(0)〉
∣∣∣
multi−stress tensors

, (2.22)

where z and z̄ are the usual cross-ratios

(1− z)(1− z̄) =
x214x

2
23

x213x
2
24

,

zz̄ =
x212x

2
34

x213x
2
24

.

(2.23)

In (2.22) the“multi-stress tensor” subscript stands to indicate the contribution

of the identity and all multi-stress tensor operators, i.e. multi-trace operators

made out of the stress tensors, as discussed above, present in holographic CFTs.

The correlator G(z, z̄) can be expanded in the “T-channel” OL(1) ×
OL(z, z̄) → Oτ,s as

14

G(z, z̄) = [(1− z)(1− z̄)]−∆L
∑

Oτ,s
P

(HH,LL)
Oτ,s g(0,0)τ,s (1− z, 1− z̄), (2.24)

where τ = ∆ − s and s denote the twist and spin of the exchanged operator,

respectively, and g
(0,0)
τ,s (z, z̄) the conformal block of the primary operator Oτ,s.

Moreover, P
(HH,LL)
Oτ,s are defined as

P
(HH,LL)
Oτ,s =

(
−1

2

)s
λOHOHOτ,sλOLOLOτ,s , (2.25)

where λOLOLO and λOHOHO denote the respective OPE coefficients. The CT

scaling for generic single-trace operators is given by

〈OH,LOH,LO〉 ∼ 1√
CT

, (2.26)

14 For reasons of convenience, here and in the rest of the thesis we refer to G(z, z̄)
as the correlator; the reader should keep in mind that G(z, z̄) is not the full correlator

but only its stress tensor sector, as defined in (2.22).
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while for k-trace operators [Ok]

〈OH,LOH,L[Ok]〉 ∼ 1

C
k
2

T

. (2.27)

2.2.1. Lightcone limit

The lightcone limit is defined by z̄ → 1 with z held fixed. In this limit the

T-channel expansion (2.24) is dominated by minimal-twist operators as follows

from the behaviour of the conformal blocks

G(u, v) ≈
u→0

1

[(1− z)(1− z̄)]∆L

∑

Oτ,s
P

(HH,LL)
Oτ,s (1− z̄)

τ
2 f τ

2 +s
(1− z), (2.28)

where τ = ∆− s is the twist.

For any CFT in d > 2 the leading contribution in the lightcone limit comes

from the exchange of the identity operator with twist τ = 0. Another operator

present in any unitary CFT is the stress tensor with twist τ = d − 2. Its

contribution to the correlator is completely fixed by a Ward identity and

P
(HH,LL)
Tµν

= µ
∆L

4

Γ(d2 + 1)2

Γ(d+ 2)
, (2.29)

where

µ :=
4Γ(d+ 2)

(d− 1)2Γ(d2 )
2

∆H

CT
. (2.30)

The correlator admits a natural perturbative expansion in µ

G(z, z̄) =
∑

k

µkG(k)(z, z̄) . (2.31)

Using (2.28) and (2.29), we find the following contribution due to the stress

tensor at O(µ)

G(1)(z, z̄) ≈
z̄→1

(1− z̄)
d−2
2

[(1− z)(1− z̄)]∆L
∆LΓ(

d
2 + 1)2

4Γ(d+ 2)
(1− z)

d+2
2

× 2F1

(d+ 2

2
,
d+ 2

2
; d+ 2; 1− z

)
.

(2.32)

Let us study the correlator in powers of µ in the lightcone limit. At k-th

order in that expansion we expect contributions from minimal-twist multi-stress
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tensor operators of the schematic form [T k]τ,s =: Tµ1ν1 . . . ∂λ1
. . . ∂λlTµkνk :,

where the minimal-twist τ and spin s of these operators are given by

τ = k(d− 2) +O(C−1
T ),

s = 2k + l
(2.33)

and l an even integer denoting the number of uncontracted derivatives. The

scaling dimension, and the twist, is not protected and receives corrections in

the C−1
T expansion. We moreover define the product of OPE coefficients for

minimal-twist operators at order k as

P
(HH,LL)

[Tk]τ,s
= µkP (HH,LL);(k)

τ,s . (2.34)

Compared to the k = 1 case, there exists an infinite number of minimal-twist

multi-stress tensor operators for each value of k > 1. To obtain their contribu-

tion to the correlator in the lightcone limit, we thus have to sum over all these

operators.

The correlator can likewise be expanded in the “S-channel” OL(z, z̄) ×
OH(0) → Oτ ′,s′ as

G(z, z̄) = (zz̄)−
1
2 (∆H+∆L)

∑

Oτ′,s′
P

(HL,HL)
Oτ′,s′ g

(∆HL,−∆HL)
τ ′,s′ (z, z̄). (2.35)

where P
(HL,HL)
Oτ′,s′ are the products of the corresponding OPE coefficients and

∆HL = ∆H − ∆L. The operators contributing in the S-channel are “heavy-

light double-twist operators” [8,1]1516 that can be schematically written as

[OHOL]n,l =: OH∂
2n∂lOL :, with scaling dimension ∆n,l = ∆H + ∆L + 2n +

l + γ(n, l) and spin l. In the ∆H → ∞ limit the d = 4 blocks are given by

g
(∆HL,−∆HL)
∆H+∆L+2n+γ,l(z, z̄) ≈

(zz̄)
1
2 (∆H+∆L+2n+γ)

z̄ − z

(
z̄l+1 − zl+1

)
. (2.36)

15 This the naive analogue of light-light double-twist operators for large spin l ≫ 1

that are present in the cross channel of 〈O1O2O2O1〉, with O1 and O2 both light, in

any CFT [23,22]. See, however, [65] for a recent interpretation in terms of quasi-normal

modes.
16 We expect that generic single-trace operators are not enhanced by factors of

∆H ∼ CT and will therefore be subleading in the large CT expansion.
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The anomalous dimensions γ(n, l) admit an expansion in µ17

γ(n, l) =

∞∑

k=1

µkγ
(k)
n,l . (2.37)

Likewise, we expand the product of the OPE coefficients of the double-twist

operators as

P
(HL,HL)
n,l = P

(HL,HL);MFT
n,l

∞∑

k=0

µkP
(HL,HL);(k)
n,l , (2.38)

with P
(HL,HL);(0)
n,l = 1. The zeroth order OPE coefficients P

(HL,HL);MFT
n,l in the

S-channel are those of Mean Field Theory found in [81]

P
(HL,HL);MFT
n,l =

(∆H + 1− d/2)h̄(∆L + 1− d/2)h̄(∆H)h(∆L)h
h̄!(h− h̄)!(∆H +∆L + h̄+ 1− d)h̄(∆H +∆L + h+ h̄− 1)h−h̄

× 1

(h− h̄+ d/2)h̄(∆H +∆L + h− d/2)h̄
,

(2.39)

where h̄ = n and h = n+ l18 and (a)b is the Pochhammer symbol. In the limit

∆H → ∞ they are given by

P
(HL,HL);MFT
n,l ≈ (∆L − d/2 + 1)n(∆L)l+n

n! l! (l+ d/2)n
, (2.40)

where (a)n denotes the Pochhammer symbol. For large l (2.40) simplifies

P
(HL,HL);MFT
n,l ≈ l∆L−1(∆L − d

2
+ 1)n

n! Γ(∆L)
. (2.41)

To reproduce the correct singularities manifest in the T-channel one has to sum

over infinitely many heavy-light double-twist operators with l ≫ 1. For such

17 The exact analytic structure is not known. However, the anomalous dimensions

are related to the phase shift which has been calculated holographically to all orders

in [8] with a finite radius of convergence. We further expect that there will be non-

perturbative corrections which in the bulk are due to tunneling effects recently explored

in [65].
18 We will switch between using (n, l) and (h̄, h) as it should be clear from the

context which is used.

23



operators the dependence of the OPE data on the spin l for l ≫ 1 is19:

P
(HL,HL);(k)
n,l =

P
(k)
n

l
k(d−2)

2

,

γ
(k)
n,l =

γ
(k)
n

l
k(d−2)

2

.

(2.42)

Note that generally the OPE data in the S-channel receives corrections needed

to reproduce double-twist operators in the T-channel; however, since we are

interested in the stress tensor sector we consider only contributions of the form

given in (2.42).

2.2.2. Regge limit

The lightcone limit plays an important role in the analytical CFT boot-

strap. It is typically realized inside a four-point function with all operators

defined at a fixed time and then one considers the limit where one operator

approaches the lightcone of another operator. As discussed above, this singles

out operators with low-twist which is a part of the spectrum that is typically

well understood [22,23]. Another interesting limit is the so-called Regge limit.

It was first studied in detail in the context of AdS/CFT in [28-32] and has

further played an important role in our understanding of CFTs, especially in

holographic CFTs. For a review of the Regge limit, see e.g. Sec. 5.1 in [40].

The Regge limit of a four-point function is again a limit where operators

become lightlike separated, it can be obtained by starting with all operators at

a fixed timeslice and two operators in the left Rindler wedge and two in the

right Rindler wedge. We now consider a limit where one operator in the left

wedge and one in the right become close to lightlike separated while remaining

in their respective Rindler wedges. However, in this limit, the operators in

the left wedge become timelike separated and also the ones in the right wedge

become timelike separated. By carefully keeping track of the ordering of the

operators, one finds that in terms of the cross-ratios, we need to perform an

analytic continuation before taking an OPE-like limit. This is described in

19 This behaviour in the large l limit is different from that of the OPE data of

light-light double-twist operators [23,22]. Note further that the small µ expansion is

closely connected to the large-spin expansion.
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detail in e.g. Sec. 5.1 in [40]. Compared to the lightcone limit, this will isolate

(in one OPE channel) operators with highest spin rather than lowest twist. In

generic CFTs we typically do not have good control over the high spin part of

the spectrum, making it difficult to study the Regge limit in practice. However,

in holographic CFTs with a large gap for higher-spin operators typically one

has more control see e.g. [15,33-37].

The Regge limit for the heavy-heavy-light-light correlator was first explored

in [8]. In order to study the Regge limit of the heavy-heavy-light-light corre-

lator, it is convenient to introduce the following coordinates after the analytic

continuation ( z → ze−2iπ):

1− z = σeρ

1− z̄ = σe−ρ.
(2.43)

The Regge limit then corresponds to σ → 0 with ρ kept fixed20. We further

refer to the ρ → ∞ limit as the Regge-lightcone limit, it is related to large

impact parameter in the bulk.

To approach the Regge limit we analytically continue z → e−2πiz, under

which the blocks in the S-channel transform as (see e.g. [82, 35])

g∆,J (z, z̄) → e−iπ(∆−J)g∆,J (z, z̄). (2.44)

In particular, for double-trace operators [OHOL]n,l with scaling dimension ∆ =

∆H +∆L + 2n+ l + γ(n, l), the blocks transform as

g∆HL,−∆HL
[OHOL]n,l (z, z̄) → e−iπ(∆H+∆L)e−iπγ(n,l)g∆HL,−∆HL

[OHOL]n,l (z, z̄). (2.45)

In what follows it will be convienent to do a change of variables to h = n + l

and h̄ = n and to denote the block due to a heavy-light double-trace operator

[OHOL]h̄,h−h̄ as g∆HL,−∆HL
h,h̄

. Substituting the µ expansion (2.37)-(2.38) in the

S-channel (2.35) and performing the analytic continuation to O(µ) leads to

G(z, z̄)|µ0 =(zz̄)−
1
2 (∆H+∆L)

∞∑

h≥h̄≥0

P
(HL,HL);MFT

h̄,h
g∆HL,−∆HL
h,h̄

(z, z̄)

G(z, z̄)|µ1 =(zz̄)−
1
2 (∆H+∆L)

∞∑

h≥h̄≥0

P
(HL,HL);MFT

h̄,h

(
P

(HL,HL);(1)

h̄,h

+ γ(1)
(1
2
(∂h + ∂h̄)− iπ

))
× g∆HL,−∆HL

h,h̄
(z, z̄).

(2.46)

20 Without the analytic continuation this would be an OPE limit with z, z̄ → 1 with

(1− z)/(1− z̄) fixed.
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The new single trace operators that can possibly appear here would be sublead-

ing in 1/CT . Continuing to O(µ2), the imaginary part of the S-channel is given

by

Im(G(z, z̄))|µ2 = −iπ(zz̄)− 1
2 (∆H+∆L)×

×
∞∑

h≥h̄≥0

P
(HL,HL);MFT

h̄,h

(
γ(2) + γ(1)P

(HL,HL);(1)

h̄,h

+
(γ(1))2

2
(∂h + ∂h̄)

)
g∆HL,−∆HL
h,h̄

(z, z̄).

(2.47)

Moreover, the real part of the correlator at the same order is given by

Re(G(z, z̄))|µ2 = (zz̄)−
1
2 (∆H+∆L)

∞∑

h≥h̄≥0

P
(HL,HL);MFT

h̄,h

(
P

(HL,HL);(2)

h̄,h
− 1

2
π2(γ(1))2+

+
1

2
(γ(2) + P

(HL,HL);(1)

h̄,h
γ(1))(∂h + ∂h̄) +

1

8
(γ(1))2(∂h + ∂h̄)

2
)
g∆HL,−∆HL
h,h̄

(z, z̄) .

(2.48)

The MFT OPE coefficients are given in (2.39). As we will see in Section

5, in the Regge limit the dominant contribution in the S-channel comes from

double-trace operators with h ∼ h̄≫ 1. In this limit the MFT OPE coefficients

are given by

P
(HL,HL);MFT

h̄,h
≈ C∆L(hh̄)

∆L− d
2 (h− h̄)

d
2−1. (2.49)

Let us now change perspective and consider the OPE in the direct-channel

OL × OL. Naively, at O(µ2) there are three infinite families of double-stress

tensors of the following schematic form:

[T 2]
(0)
n,l = : Tµν(∂

2)n∂µ1
. . . ∂µlTρκ :,

[T 2]
(1)
n,l = : Tµρ(∂

2)n∂µ1
. . . ∂µlT

ρ
ν :,

[T 2]
(2)
n,l = : Tρκ(∂

2)n∂µ1
. . . ∂µlT

ρκ :,

(2.50)

where the superscript denotes the number of contracted pair of indices between

stress tensors and n = 0, 1, 2, . . . and l = 0, 2, 4, . . .. The double-stress tensors

in (2.50) have the following twist τ
(2,i)
n,l and spin s

(2,i)
l :

τ
(2,0)
n,l = 4 + 2n s

(2,0)
l = 4 + l,

τ
(2,1)
n,l = 6 + 2n s

(2,1)
l = 2 + l,

τ
(2,2)
n,l = 8 + 2n s

(2,2)
l = l.

(2.51)
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From (2.51) it is seen that the operators in (2.50) have the same quantum

numbers for suitable values of n, l and therefore possibly mix among each other.

At O(µk), for k > 1, there again exist different multi-stress tensor operators

with overlapping quantum numbers, similar to the double-stress tensor case in

(2.50).

We define the leading behaviour of the T-channel block in the Regge limit,

that is the analytic continuation z → ze−2πiz and then σ → 0, by g�∆,J (σ, ρ)

and it is given by

g�,d=2
∆,J (σ, ρ) = ic̄∆,J

e−(∆−1)ρ

σJ−1
+ . . . ,

g�,d=4
∆,J (σ, ρ) = ic̄∆,J

e−(∆−1)ρ

(1− e−2ρ)σJ−1

×
[
1− σ

4

(
(∆ + J − 2)eρ + (2 + J −∆)e−ρ

)
+O(σ2)

]
(2.52)

with

c̄∆,J =
4∆+J−1Γ

(
∆+J−1

2

)
Γ
(
∆+J+1

2

)

Γ(∆+J
2

)2
. (2.53)

Here we have included the first subleading correction in σ → 0 in four dimensions

since this will be needed later on. More generally, the leading behaviour in the

Regge limit in any dimension is given by, see e.g. [83,34],

g�∆,J (σ, ρ) = ic∆,Jσ
1−JΠ∆−1,d−1(ρ) + . . . , (2.54)

where Π∆−1,d−1(ρ) is (d−1)-dimensional hyperbolic space propagator of a par-

ticle with mass-squared m2 = (∆− 1)2

Π∆−1,d−1(ρ) =
π1− d

2Γ(∆− 1)

2Γ(∆− d−2
2 )

e−(∆−1)ρ

× 2F1

(d− 2

2
,∆− 1;∆− d− 2

2
; e−2ρ

)
,

(2.55)

and

c∆,J =
4∆+J−1Γ

(
∆+J−1

2

)
Γ
(
∆+J+1

2

)

Γ(∆+J
2 )2

2Γ
(
∆− d

2
+ 1
)

π1− d
2Γ (∆− 1)

. (2.56)
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3. Leading Multi-Stress Tensors and Conformal Bootstrap

3.1. Introduction and summary of results

In two spacetime dimensions conformal symmetry is described by the infinite-

dimensional Virasoro algebra. This symmetry strongly constrains correlators,

especially when combined with the CT → ∞ limit. Of particular interest is

the “heavy-heavy-light-light” correlator, which involves two “heavy” operators

with conformal dimension ∆H ∼ CT and two “light” operators with conformal

dimension ∆L ∼ O(1). In this case the contribution of the identity operator

and all its Virasoro descendants is known as the Virasoro vacuum block and

has been calculated in several ways [77-87]. The Virasoro vacuum block (and

finite CT corrections to it) is instrumental in a variety of settings, such as

e.g. the problem of information loss [88-93] and properties of the Renyi and

entanglement entropies [94-97] (see also [98,99] for the original applications of

large CT correlators in this context).

The heavy-heavy-light-light Virasoro vacuum block exponentiates (see e.g.

[79])

〈OH(∞)OL(1)OL(z)OH(0)〉 ∼ e∆LF(µ;z), (3.1)

with F a known function which admits an expansion in powers of µ ∼ ∆H/CT

F(µ; z) =
∑

k

µkF (k)(z). (3.2)

The explicit expression can be found in e.g. [79] and the expansion in small µ

was studied in detail in [8] and is given by:

F(µ; z) = −1

2
log z − log(−2sinh(

ᾱ

2
log z)) + log ᾱ, (3.3)

where ᾱ =
√
1− µ.

One can consider contributions of various quasi-primaries made out of the

stress tensor to F (k). At k = 1 the only such quasi-primary is the stress tensor

itself, while for k = 2 one needs to sum an infinite number of quasi-primaries

quadratic in the stress tensor (double-stress operators) and labelled by spin.

The situation is similar for all other values of k. It is possible to compute the

OPE coefficients of the corresponding quasi-primaries, starting from the known
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result for the Virasoro vacuum block. Interestingly, at each order in µ, F (k) can

be written as a sum of particular terms [8]21

F (k)(z) =
∑

{ip}
bi1...ikfi1 ...fik ,

k∑

p=1

ip = 2k, (3.4)

where fa = fa(1− z) = (1− z)a2F1(a, a, 2a, 1− z).

It is an interesting question whether a similar structure appears when the

number of spacetime dimensions d is greater than two. Unlike in two spacetime

dimensions, in addition to spin, multi-stress tensor operators are also labelled by

their twist. An interesting subset of multi-stress tensor operators is comprised

out of those with minimal twist. These operators dominate in the lightcone limit

over those of higher twist. In [80] an expression for the OPE coefficients of two

scalars and minimal-twist double-stress tensor operators in d = 4 was obtained,

and the sum was performed to obtain a remarkably simple expression for the

near lightcone O(µ2) term in the heavy-heavy-light-light correlator. It was

shown to have a similar form to (3.4). One may now wonder if the minimal-twist

multi-stress tensor part of the correlator in higher dimensions exponentiates

〈OH(∞)OL(1)OL(z, z̄)OH(0)〉
∣∣
multi−stress tensors

∼ e∆LF(µ;z,z̄), (3.5)

and whether F(µ; z, z̄) can be expressed as

F(µ; z, z̄) =
∑

k

µkF (k)(z, z̄), (3.6)

with

F (k)(z, z̄) = (1− z̄)k(
d−2
2 )
∑

{ip}
bi1...ikfi1 ...fik ,

k∑

p=1

ip = k

(
d+ 2

2

)
, (3.7)

and d an even number.

In the section we investigate this following [2]. We start by assuming that

the multi-stress tensor sector of the heavy-heavy-light-light correlator in the

near lightcone regime z̄ → 1 admits an expansion in µ22

〈OH(∞)OL(1)OL(z, z̄)OH(0)〉
∣∣
multi−stress tensors

∼
∑

k

µkG(k)(z, z̄), (3.8)

21 Similar expressions in a slightly different context appeared in [100].
22 This is motivated by the fact that in the lightcone limit operators with low-twist

dominates and each [T k] with minimal-twist k(d− 2) comes with a factor µk.
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where each coefficient function G(k)(z, z̄) takes a particular form:

G(k)(z, z̄) =
(1− z̄)k(

d−2
2 )

[(1− z)(1− z̄)]∆L

∑

{ip}
ai1...ikfi1 ...fik ,

k∑

p=1

ip = k

(
d+ 2

2

)
.

(3.9)

We subsequently use this ansatz to compute the contributions of the multi-stress

tensor operators to the near lightcone correlator and extract the corresponding

OPE coefficients.

For even d, the hypergeometric functions in (3.9) reduce to terms which

contain at most one power of log(z) each. Their products contain multi-logs

whose coefficients turn out to be rational functions of z. We use the confor-

mal bootstrap approach initiated in [16] (for a review and references see eg.

[71,74,101]) to relate these functions to the anomalous dimensions and OPE

coefficients of the heavy-light double-twist operators in the cross channel. The

ansatz (3.9) has just a few coefficients at any finite k which can be determined

completely from the cross-channel data derived using the (k − 1)th term. This

is related to the fact that all the logm(z) terms with 2 ≤ m ≤ k are completely

determined by the anomalous dimensions and OPE coefficients at O(µk−1). At

each step, we obtain an overconstrained system of equations solved by the same

set of ai1...ik . This provides strong support to the ansatz (3.7). We then pro-

ceed to derive the OPE coefficients of the multi-stress tensor operators with two

light scalars from our result. In practice, we complete this program to O(µ3) in

d = 4 and to O(µ2) in d = 623. However the procedure outlined can be easily

generalised to arbitrary order in µ and any even d.

In [102] the authors considered holographic CFTs dual to gravitational the-

ories defined by the Einstein-Hilbert Lagrangian plus higher derivative terms

and a scalar field minimally coupled to gravity in AdSd+1. Interpreting the

scalar propagator in an asymptotically AdSd+1 black hole background as a

heavy-heavy-light-light four point function, enabled the authors of [102] to ex-

tract the OPE coefficients of a few multi-stress tensor operators from holography

(see also [103-105] for related work). Ref. [102] also argued that the OPE coef-

ficients of the leading, minimal-twist multi-stress operators are universal – they

do not depend on the gravitational higher derivative terms in the Lagrangian.

Their results agree with the general expressions obtained in [2], upon substitu-

tion of the relevant quantum numbers.

23 For d = 6 results, we refer the reader to [2].
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Summary of results

In this section we argue that for holographic CFTs in even d, the contri-

bution of minimal-twist multi-stress tensors to the correlator in the lightcone

limit can be written as a sum of products of the functions fa(z).

The stress tensor contribution to the correlator in the lightcone limit is given

in any dimension d by

G(1)(z, z̄) ≈
z̄→1

(1− z̄)
d−2
2

[(1− z)(1− z̄)]∆L
∆LΓ(

d
2
+ 1)2

4Γ(d+ 2)
f d+2

2
. (3.10)

At O(µ2) the contribution from twist-four double-stress tensor operators in

d = 4 is

G(2)(z, z̄) ≈
z̄→1

(1− z̄)2

[(1− z)(1− z̄)]∆L

(
∆L

28800(∆L − 2)

)
×

(
(∆L − 4)(∆L − 3)f2

3 +
15

7
(∆L − 8)f2f4

+
40

7
(∆L + 1)f1f5

)
.

(3.11)

This result agrees with the expression obtained by different methods in [80].

The contribution from twist-six triple-stress tensors in the lightcone limit

in d = 4 at order O(µ3) is

G(3)(z, z̄) ≈
z̄→1

(1− z̄)3

[(1− z)(1− z̄)]∆L

(
a117f

2
1 f7

+ a126f1f2f6 + a135f1f3f5 + a225f
2
2 f5

+ a234f2f3f4 + a333f
3
3

)
,

(3.12)

where coefficients aijk are given by Eq. (3.31).

Furthermore, from (3.12) and (3.31), we find the OPE coefficients of twist-

six triple-stress tensor operators as a finite sum (for details see Section 3.2.5).

Two such OPE coefficients for twist-6 triple-stress tensors were calculated holo-

graphically in [102] and agree with our results.

In general we propose in [2] that the minimal-twist multi-stress tensor con-

tributions to the correlator in even d at O(µk) in the lightcone limit is given

by

G(k)(z, z̄) ≈
z̄→1

(1− z̄)k(
d
2−1)

[(1− z)(1− z̄)]∆L

∑

{ip}
ai1...ikfi1 ...fik ,

k∑

p=1

ip = k
(d+ 2

2

)
,

(3.13)
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where the sum goes over all sets of {ip} with ip ≤ ip+1 and ai1...ik coefficients

that need to be fixed.24

We also check that the stress tensor sector of the near lightcone correlator

exponentiates25

G(z, z̄) ≈
z̄→1

1

[(1− z)(1− z̄)]∆L
e∆LF(µ;z,z̄), (3.14)

where F(µ; z, z̄) is a rational function of ∆L that remains O(1) as ∆L → ∞.

We explicitly verify this up to O(µ3) in d = 4 and to O(µ2) for d = 6 in [2].

This section is organized as follows. In Section 3.2, we find the contribution

of minimal-twist double- and triple-stress tensor operators in d = 4 in the

lightcone limit. We show that this contribution exponentiates and we write an

expression for the OPE coefficients of minimal-twist triple-stress tensors of spin

s with scalar operators, in the form of a finite sum. We end with a discussion

in Section 3.3.

3.2. Multi-stress tensors in four dimensions

In this section we describe how to use crossing symmetry to fix the contribution

of minimal-twist multi-stress tensors to the heavy-heavy-light-light correlator

in d = 4 to O(µ3). The methods described generalize to other even spacetime

dimensions, with the six-dimensional case to O(µ2) described in [2]. In principle

the same technology can also be used to determine the correlator at higher

orders. Moreover, the resulting expression can be decomposed into multi-stress

tensor blocks of minimal-twist, allowing us at each order to read off the OPE

coefficients of minimal-twist multi-stress tensors.

The idea is to study the S-channel expansion in (2.35) in the limit 1− z̄ ≪
z ≪ 1. In this limit operators with l ≫ 1 and low values of n dominate.

Expanding the conformal blocks in (2.36) for small γ(n, l) and z̄ → 1, the

blocks in d = 4 reduce to

(zz̄)−
1
2 (∆H+∆L)g

(∆HL,−∆HL)
∆H+∆L+2n+γ,l(z, z̄) ≈

z̄→1
z̄lp(log z, γ(n, l))

zn

1− z
, (3.15)

24 One only needs to sum the linearly independent products of functions fa.
25 The leading large ∆L → ∞ limit can be computed holographically by a geodesic

analysis in the AdS BH blackground. Further subleading terms have been obtained in

[106].
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where p(log z, γ(n, l)) is given by

p(log z, γ(n, l)) = z
1
2γ(n,l) =

∞∑

j=0

1

j!

(
γ(n, l) log z

2

)j
. (3.16)

Inserting (3.15) into (2.35) and converting the sum into an integral, we have the

following expression for the correlator in the limit z̄ → 1

G(z, z̄) ≈
z̄→1

∞∑

n=0

zn

1− z

∫ ∞

0

dlP
(HL,HL)
n,l z̄lp(log z, γ(n, l)). (3.17)

In the following we consider an expansion of (3.17) around z = 0. The key point

is to note that by expanding the anomalous dimensions and OPE coefficients,

as in (2.37) and (2.38) respectively, terms proportional to zp logi z with i =

2, 3, . . . , k and any p at O(µk), in (3.17) are completely determined in terms of

OPE data at O(µk−1). Moreover, using (2.42) one sees that the integral over

the spin l yields

∫ ∞

0

dll∆L−1−k z̄l =
Γ(∆L − k)

(− log z̄)∆L−k
≈
z̄→1

Γ(∆L − k)

(1− z̄)∆L−k
, (3.18)

at O(µk) in the limit z̄ → 1. This correctly reproduces the expected z̄ behaviour

of minimal-twist multi-stress tensors in the T-channel, thus verifying (2.42).

We now make the following ansatz for the correlator

G(k)(z, z̄) ≈
z̄→1

(1− z̄)k

[(1− z)(1− z̄)]∆L

∑

{ip}
ai1...ikfi1 . . . fik , (3.19)

where the sum goes over all sets of {ip} with ip integers and ip ≤ ip+1 such that
∑k
p=1 ip = 3k and ai1...ik coefficients that need to be fixed. Generally fa(1− z)

are given by

fa(z) = q1,a(z) + q2,a(z) log z, (3.20)

where q(1,2),a(z) are rational functions and the ansatz (3.19) at O(µk) is there-

fore a polynomial in log z of degree k. By crossing symmetry terms with loga z,

with 2 ≤ a ≤ k, are determined by OPE data at O(µk−1). This is what we will

use to determine the coefficients ai1...ip .
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3.2.1. Stress tensor

We start by determining the OPE data at O(µ). This is obtained by matching

(3.17) at O(µ) with the stress tensor contribution (2.32). Explicitly, multiplying

both channels by (1− z) we have at O(µ)

∆Lf3(1− z)

120[(1− z)(1− z̄)]∆L−1
=

1

(1− z̄)∆L−1

∞∑

n=0

Γ(∆L + n− 1)zn

Γ(∆L)n!

(
P (1)
n

+
γ
(1)
n

2
log z

)
.

(3.21)

Expanding the LHS in (3.21) for z ≪ 1 we find

∆L/120

[(1− z)(1− z̄)]∆L−1
f3(1− z) =

1

(1− z̄)∆L−1

(
− ∆L

4
(3 + log z)

− z
∆L

4
(3(∆L + 1) + (∆L + 5) log z)

− z2
∆L

8

(
3∆L(∆L + 3)

+ (12 + ∆L(∆L + 11))
)

+O(z3, z3 log z)
)
,

(3.22)

while the RHS is given by

∑∞
n=0

Γ(∆L+n−1)zn

Γ(∆L)n!
(P

(1)
n +

γ(1)
n

2 log z)

(1− z̄)∆L−1
=

1

(1− z̄)∆L−1

×
(P (1)

0 +
γ
(1)
0

2
log z

∆L − 1
+ z(P

(1)
1 +

γ
(1)
1

2
log z)+

+ z2
∆L

2
(P

(1)
2 +

γ
(1)
2

2
log z) +O(z3, z3 log z)

)
.

(3.23)

Comparing (3.22) and (3.23) order-by-order in z one finds the following OPE

data

γ
(1)
0 = −∆L(∆L − 1)

2
,

γ
(1)
1 = −∆L(∆L + 5)

2
,

γ
(1)
2 = −12 + ∆L(∆L + 11)

2
,

(3.24)
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which agrees with eq. (6.10) in [8], and the OPE coefficients

P
(1)
0 = −3∆L(∆L − 1)

4
,

P
(1)
1 = −3∆L(∆L + 1)

4
,

P
(1)
2 = −3∆L(∆L + 3)

4
.

(3.25)

It is straightforward to continue and compute the O(µ) OPE data in the S-

channel for any value of n26.

3.2.2. Twist-four double-stress tensors

From (3.19) we infer the following expression for the contribution due to twist-

four double-stress tensors to the heavy-heavy-light-light correlator in the limit

z̄ → 1:

G(2)(z, z̄) ≈
z̄→1

(1− z̄)2

[(1− z)(1− z̄)]∆L

(
a15f1f5 + a24f2f4 + a33f

2
3

)
. (3.26)

By expanding (3.26) further in the limit z ≪ 1 and collecting terms that goes

as zp log2 z, we will match with known contributions obtained from (3.17).

Inserting (3.24) and (3.25) in the S-channel (3.17) fixes terms proportional

to zp log2 z up to O(z2 log2 z). Expanding the ansatz (3.26) and matching with

the S-channel reproduces the result obtained in [80]:

G(2)(z, z̄) ≈
z̄→1

(1− z̄)2

[(1− z)(1− z̄)]∆L

(
∆L

28800(∆L − 2)

)
×

{
(∆L − 4)(∆L − 3)f2

3 +
15

7
(∆L − 8)f2f4 +

40

7
(∆L + 1)f1f5

}
.

(3.27)

Using the O(µ) OPE data in the S-channel for n > 2 in (3.22) and (3.23) one

gets an overconstrained system which is still solved by (3.27). This is a strong

argument in favor of the validity of our ansatz (3.19).

We can now use (3.27) to derive the O(µ2) OPE data in the S-channel by

matching terms proportional to zp logi z as z → 0, with i = 0, 1, by comparing

26 One can then do the sum over n and explicitly recover the full light-cone limit of

the stress tensor block.
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with (3.17). This is done in the same way it was done for O(µ) OPE data in

the S-channel. For example, one finds the following data for n = 0, 1, 2, 3:

γ
(2)
0 = −(∆L − 1)∆L(4∆L + 1)

8
,

γ
(2)
1 = −∆L(∆L + 1)(4∆L + 35)

8
,

γ
(2)
2 = −(3 + ∆L)(68 + ∆L(69 + 4∆L))

8
,

γ
(2)
3 = −(5 + ∆L)(204 + ∆L(4∆L + 103))

8
,

(3.28)

which agrees with Eq. (6.39) in [8], and for the OPE coefficients

P
(2)
0 =

(∆L − 1)∆L(−28 + ∆L(−145 + 27∆L))

96
,

P
(2)
1 =

∆L(−596 + ∆L(−399 + ∆L(−64 + 27∆L)))

96
,

P
(2)
2 =

−1248 +∆L(−2252 +∆L(−699 +∆L(44 + 27∆L)))

96
,

P
(2)
3 =

−3744 +∆L(−4940 +∆L(−783 +∆L(152 + 27∆L)))

96
.

(3.29)

It is again straightforward to extract the OPE data for any value of n.

3.2.3. Twist-six triple-stress tensors

We now consider the multi-stress tensor sector of the correlator at O(µ3) and

proceed similarly to the previous section. From (3.19) we infer the following

expression for the contribution due to twist-six triple-stress tensors:

G(3)(z, z̄) ≈
z̄→1

(1− z̄)3

[(1− z)(1− z̄)]∆L

(
a117f

2
1 f7 + a126f1f2f6 + a135f1f3f5

+a225f
2
2 f5 + a234f2f3f4 + a333f

3
3

)
,

(3.30)

where fi = fi(1 − z) is given by (1.16).27 Taking the limit 1 − z̄ ≪ z ≪ 1 of

(3.30), we fix the coefficients by matching with terms proportional to zp log2 z

27 Note that we omitted a potential term of the form f1f
2
4 . This can be written in

terms of f3
3 , f1f3f5, f

2
2 f5 and f2f3f4:

f3
3 =

20

21
f1f3f5 −

27

28
f1f

2f4 −
20

21
f2
2 f5 +

55

28
f2f3f4. (3.31)
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and zp log3 z, with p = 0, 1, 2 from (3.17). This requires using the OPE data of

the heavy-light double-twist operators [OHOL]n,l for n = 0, 1, 2 and l ≫ 1 to

O(µ2), given in (3.24), (3.25), (3.28) and (3.29).

We find the following solution:

a117 =
5∆L(∆L + 1)(∆L + 2)

768768(∆L − 2)(∆L − 3)
,

a126 =
5∆L(5∆

2
L − 57∆L − 50)

6386688(∆L − 2)(∆L − 3)
,

a135 =
∆L(2∆

2
L − 11∆L − 9)

1209600(∆L − 3)
,

a225 = − ∆L(7∆
2
L − 51∆L − 70)

2903040(∆L − 2)(∆L − 3)
,

a234 =
∆L(∆L − 4)(3∆2

L − 17∆L + 4)

4838400(∆L − 2)(∆L − 3)
,

a333 =
∆L(∆L − 4)(∆3

L − 16∆2
L + 51∆L + 24)

10368000(∆L − 2)(∆L − 3)
.

(3.32)

We can also consider higher values of p and obtain an overconstrained system of

equations, whose solution is still (3.32). Inserting (3.32) into (3.30), we obtain

the contribution from minimal-twist triple-stress tensor operators to the heavy-

heavy-light-light correlator in the lightcone limit.

Note that for ∆L → ∞, the correlator is determined by the exponentiation

of the stress tensor, discussed e.g. in [80], i.e.

G(3)(z, z̄) ≈
z̄→1

(1− z̄)3

[(1− z)(1− z̄)]∆L
1

3!

(
∆L

120
(1− z)32F1(3, 3; 6; 1− z)

)3

+ · · · ,
(3.33)

which one indeed obtains by taking ∆L → ∞ of (3.30) with (3.32). Here ellipses

denote terms subleading in ∆L.

By analytically continuing z → e−2πiz and sending z → 1, one can access

the large impact parameter regime of the Regge limit. To do this we use the

following property of the hypergeometric function (see e.g. [25]):

2F1(a, a, 2a, 1− ze−2πi) = 2F1(a, a, 2a, 1− z) + 2πi
Γ(2a)

Γ(a)2
2F1(a, a, 1, z). (3.34)
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Using (3.34) the leading term from (3.30) with the coefficients (3.32) in the limit

1− z̄ ≪ 1− z ≪ 1 is given by

G(3)(z, z̄) ≈
z̄→1,z→1

1

[(1− z)(1− z̄)]∆L
×

(
−9iπ3∆L(∆L + 1)(∆L + 2)(∆L + 3)(∆L + 4)

2(∆L − 2)(∆L − 3)

(
1− z̄

(1− z)2

)3
)
.

(3.35)

This agrees with the holographic calculation in a shockwave background at

O(µ3) given by Eq. (45) in [104] based on techniques developed in [28-32]. The

Regge limit will be discussed further in Section 5 and 6.

3.2.4. Exponentiation of leading-twist multi-stress tensors

In d = 2 the heavy-heavy-light-light correlator is determined by the heavy-

heavy-light-light Virasoro vacuum block. This block contains the exchange of

any number of stress tensors and derivatives thereof in the T-channel [77,78,87],

and therefore all multi-stress tensor contributions. This block, together with the

disconnected part, exponentiates as

〈OH(∞)OL(1)OL(z)OH(0)〉 = e∆LF(z), (3.36)

for a known function F(z) independent of ∆L. It is interesting to ask if some-

thing similar happens for the contribution of the minimal-twist multi-stress

tensors in the lightcone limit of the correlator in higher dimensions. By this we

mean whether the stress tensor sector of the correlator can be written as

G(z, z̄) ≈
z̄→1

1

[(1− z)(1− z̄)]∆L
e∆LF(µ;z,z̄), (3.37)

for some function F(µ; z, z̄) which is a rational function of ∆L and remains O(1)

as ∆L → ∞.

The z̄ dependence implies the following form of F(µ; z, z̄):

F(µ; z, z̄) = µ(1− z̄)F (1)(z) + µ2(1− z̄)2F (2)(z) + µ3(1− z̄)3F (3)(z) +O(µ4).

(3.38)

At leading order we observe F (1)(z) = 1
120

f3(1 − z), which is just the stress

tensor contribution. At second order we find:

F (2)(z) =
(12− 5∆L)f

2
3 + 15

7
(∆L − 8)f2f4 +

40
7
(∆L + 1)f1f5s

28800(∆L − 2)
. (3.39)
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Note that F (2)(z) is independent of ∆L in the limit ∆L → ∞.

To find F (3)(z) we parametrise it as

F (3)(z) =
(
b117f

2
1 f7 + b126f1f2f6 + b135f1f3f5

+ b225f
2
2 f5 + b234f2f3f4 + b333f

3
3

)
.

(3.40)

It is clear that for terms which do not contain a factor of f3(z), the coefficients

bijk should satisfy bijk = aijk/∆L. This is not true for terms which contain a

factor of f3. Inserting F (1), F (2) and Eq. (3.40) in (3.37), expanding in µ and

matching with (3.30) yields

b117 =
a117
∆L

,

b126 =
a126
∆L

,

b225 =
a225
∆L

,

b135 = − 11∆2
L − 19∆L − 18

1209600(∆L − 2)(∆L − 3)
,

b234 =
(∆L − 2)(∆L + 2)

1209600(∆L − 2)(∆L − 3)
,

b333 =
7∆2

L − 18∆L − 24

2592000(∆L − 2)(∆L − 3)
.

(3.41)

From (3.39) and (3.41), one finds that the correlator exponentiates to O(µ3) in

the sense described above, i.e. F(µ; z, z̄) is a rational function of ∆L of O(1) as

∆L → ∞.

To leading order in ∆L, exponentiation for large ∆L is a prediction of the

AdS/CFT correspondence. The two-point function of the operator OL in the

state created by the heavy operator OH is given in terms of the exponential

of the (regularized) geodesic distance between the boundary points in the dual

bulk geometry. For details on this, see e.g. [80].

3.2.5. OPE coefficients of triple-stress tensors

In this section we describe how to decompose the correlator (3.30) into an infinite

sum of minimal-twist triple-stress tensor operators. In order to do this we use

the following multiplication formula for hypergeometric functions [80]:

2F1(a, a; 2a;w)2F1(b, b; 2b;w) =
∞∑

m=0

p[a, b,m]w2m

× 2F1[a+ b+ 2m, a+ b+ 2m, 2a+ 2b+ 4m,w],

(3.42)
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where

p[a, b,m] =
2−4mΓ(a+ 1

2 )Γ(b+
1
2 )√

πΓ(a)Γ(b)Γ(m+ 1)

×Γ(m+ 1
2 )Γ(a+m)Γ(b+m)Γ(a+ b+m− 1

2 )Γ(a+ b+ 2m)

Γ(a+m+ 1
2 )Γ(b+m+ 1

2 )Γ(a+ b+m)Γ(a+ b+ 2m− 1
2 )
.

(3.43)

It is useful to note that by using (3.42) we can write a similar formula for the

functions fa defined in (1.16):

fa(z)fb(z) =
∞∑

m=0

p[a, b,m]fa+b+2m(z), (3.44)

where p[a, b,m] is defined in (3.43). It is now clear that the correlator (3.30)

can be written as a double sum over functions f9+2(n+m). We can thus write

the stress tensor sector of the correlator in the lightcone limit at O(µ3) as

G(3)(z, z̄) ≈
z̄→1

(1− z̄)3

[(1− z)(1− z̄)]∆L

∞∑

n,m=0

c[m,n]f9+2(n+m)(z), (3.45)

with

c[m,n] =
(
a333p[3, 3, m]p[3, 6 + 2m,n] + a117p[1, 7, m]p[1, 8 + 2m,n]

+ a126p[2, 6, m]p[1, 8 + 2m,n] + a135p[3, 5, m]p[1, 8 + 2m,n]

+ a225p[2, 5, m]p[2, 7 + 2m,n] + a234p[3, 4, m]p[2, 7 + 2m,n]
)
,

(3.46)

where coefficients aijk are fixed in (3.32).

Comparing (3.45) with (2.28) we see that the contribution at O(µ3) comes

from operators of the schematic form : TαβTγδ∂ρ1 . . . ∂ρ2lTµν :. These operators

have τ
2
+ s = 9 + 2l, where s is total spin s = 6 + 2l. The corresponding OPE

coefficients of such operators will be a sum of all contributions in (3.45) for

which n+m = l.

Now, one can write OPE coefficients of operators of type : TαβTγδ∂ρ1 . . . ∂ρ2lTµν :

as

P
(HH,LL);(3)
6,6+2l =

l∑

n=0

c[l − n, n]. (3.47)
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Let us write a few of the coefficients explicitly here:

µ3P
(HH,LL);(3)
6,6 = µ3∆L(3024 + ∆L(7500 + ∆L(7310 + 143∆L(25 + 7∆L))))

10378368000(∆L − 2)(∆L − 3)
,

µ3P
(HH,LL);(3)
6,8 = µ3∆L(2688 + ∆L(7148 + ∆L(9029 + 13∆L(464 + 231∆L))))

613476864000(∆L − 3)(∆L − 2)
,

µ3P
(HH,LL);(3)
6,10 = µ3∆L(888 + ∆L(2216 +∆L(3742 + 17∆L(181 + 143∆L))))

9468531072000(∆L − 3)(∆L − 2)
.

(3.48)

We further find that P
(HH,LL);(3)
6,6 and P

(HH,LL);(3)
6,8 agree with the expression

obtained holographically in [102].

3.3. Discussion

In this section we considered the minimal-twist multi-stress tensor contribu-

tions to the heavy-heavy-light-light correlator of scalars in large CT CFTs in

even spacetime dimensions. We provide strong evidence for the conjecture that

all such contributions are described by the ansatz (3.13) and determine the co-

efficients by performing a bootstrap procedure. In practice this is completed for

twist-four double-stress tensors and twist-six triple-stress tensors in four dimen-

sions as well as twist-eight double-stress tensors in six dimensions. In principle

it is straightforward to use our technology to determine the coefficients ai1...ik

to arbitrarily high order in µ; this must be related to the universality of the

minimal-twist OPE coefficients.

In two dimensions the heavy-heavy-light-light Virasoro vacuum block expo-

nentiates [see eq. (3.1)], with F(µ; z) independent of ∆L. In higher dimensions

we observe a similar exponentiation with F(µ; z, z̄) a rational function of ∆L

that remains O(1) as ∆L → ∞. It would be interesting to see whether it is

possible to write down a closed-form recursion formula for F(µ; z, z̄). Solv-

ing such a recursion formula would give a higher-dimensional analogue of the

two-dimensional Virasoro vacuum block.

An immediate technical question concerns CFTs in odd spacetime dimen-

sions. We could not immediately generalize our results in this context – the

ansatz in eq. (3.13) fails in odd dimensions. However, the heavy-light conformal

blocks are known [1], so a similar approach should be feasible.

Another interesting direction concerns the study of the bulk scattering

phase-shift in the presence of a black hole background. In the context of higher
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dimensional CFTs, this problem was first considered in [8] where the gravita-

tional expression was given to all orders in µ and the CFT computation was

performed to O(µ). Subsequently, O(µ2) was discussed in [1]. In [104] the O(µ)

contribution was exponentiated to yield the scattering phase shift in the pres-

ence of a shock-wave geometry. A CFT computation of the phase shift to all

orders in µ is still lacking. This would in principle involve understanding Regge

theory beyond the leading order. It would be interesting to see whether the

results of this section could be helpful in this regard.
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4. CFT correlators, W-algebras and Generalized Catalan Numbers

4.1. Introduction and summary of results

The Virasoro algebra induces a natural decomposition of correlation functions

into Virasoro conformal blocks, capturing the contribution from a given Vi-

rasoro primary and all its Virasoro descendants. With respect to the global

conformal algebra, each Virasoro representation contains an infinite number of

quasi-primaries – the Virasoro symmetry therefore imposes strong constraints

on the theory as seen from the perspective of someone that only knew about its

global part. Further, the presence of symmetries in CFTs is deeply connected

to universal features. An example is Cardy’s formula for the density of high

energy of states in two-dimensional CFTs [108]. It follows from the large con-

formal transformation of the torus and the dominance of the lowest dimension

operator in the partition function in the low-temperature limit.

A priori, the multi-stress tensor [T k] OPE coefficients in the OPE of identi-

cal scalar operators, [T k]τ,s ⊂ O∆×O∆, are not fixed by symmetries in d > 2, in

contrast to the two-dimensional case. These operators are, however, ubiquitous

in theories with gravity duals since they are related to the exchange of multi-

graviton states in the bulk. In order to understand the emergence of gravity in

the bulk from the CFT data on the boundary, these operators play a vital role.

It is further interesting to ask if there is a notion of universality in the exchanges

of multi-stress tensors in holographic CFTs with large CT and a large gap in

the spectrum of higher-spin single trace operators.

An important case where the exchange of these multi-stress tensors is ex-

pected to dominate compared to that of generic operators is when considering

heavy states. This is so because the OPE coefficients of multi-stress tensors

[T k] in a scalar OPE O∆×O∆ scale like ∆k for large ∆28. An extreme example

of this is when the heavy states have dimension ∆ of order CT . Such heavy

states are expected to thermalize in holographic CFTs and according to the

AdS/CFT dictionary, thermal states on the boundary are dual to black holes

in the bulk. Correlation functions of light operators in heavy states therefore

28 This was seen explicitly in the previous section where these contributions were

studied in the lightcone limit. Holographically, this is also expected from a geodesic

calculation at large scaling dimension (mass).
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provide a possible window into one of the most interesting questions in the

AdS/CFT correspondence, the physics of black holes.

As explained in Section 3, progress can be made using the conformal boot-

strap techniques as well as using the gravitational dual description. In Section

3 based on [2], see also [80], it was argued that the contribution of all minimal-

twist operators [T k]τmin,s, with τmin = 2k and spin s = 2k + l for l = 0, 2, 4, . . .,

in holographic CFTs, takes a specific form which is reminiscent to that ob-

tained from the Virasoro vacuum block. It repackages an infinite number of

minimal-twist multi-stress tensor OPE coefficients in the HHLL correlator and

it is natural to ask if this is governed by an underlying emergent symmetry. It

would play a role similar to how the Virasoro algebra determines the heavy-

heavy-light-light vacuum blocks in d = 2.

In this section based on [3], we study the HHLL vacuum blocks in two-

dimensional CFTs with WN higher-spin symmetry29, see [109-113] for related

work,

GN (z) := 〈OH(∞)OH(1)OL(z)OL(0)〉|1WN
, (4.1)

where the |1WN
denotes that we restrict to the WN vacuum block, i.e. the

exchange of all operators that are WN descendants of the vacuum30. The semi-

classical vacuum blocks were found for N = 3 in [111,114] and for general

N in [112]. In this case, the charges of the “light” operator are large but

much smaller than those of the heavy operator which scale with the central

charge c ≫ 1. Expanding the WN vacuum blocks in
q
(i)
H

c
, where q

(i)
H is the

spin−i charge of the heavy operator, we find that the result is again similar to

the expansion of the Virasoro vacuum block, with a decomposition in terms of

composite operators with the correct weight under the global conformal algebra.

29 We will mainly consider N = 3, 4 but the methods used and the structure remains

similar for any N .
30 The precise correlator will be defined below. Note that compared to the d = 4

case discussed above, the light operators are inserted at OL(0) and OL(z) since this

simplifies some of the calculations in d = 2. This is the same as in the Virasoro case

in Section 2.1.
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In particular, when q
(3)
H ∼ c ≫ q

(i6=3)
H , the dominant contributions31 are due

to composite quasi-primary operators with the schematic form [W k]2l made

out of the spin-three current W (z). The resulting functions, which are linear

combinations of products of hypergeometric functions, are also present in the

result for the minimal-twist stress tensor sector of the d = 4 HHLL correlator.

This is one of the main motivations for our work.

We further explicitly compute the first few terms of the WN HHLL vac-

uum blocks for N = 3, 4 in the limit q
(3)
H ∼ c ≫ q

(i6=3)
H using an explicit mode

calculation. This limit has the advantage that the charges of the light operators

are kept fixed as c → ∞ and sheds further light on how the resulting structure

that appears in the four-dimensional stress tensor sector of the HHLL corre-

lator could appear from an underlying symmetry algebra. The results agree

with those obtained from the expansion of the semi-classical vacuum blocks

which assumed that the charges of the light operators were large. This gives

further evidence that those results remain true also for finite charge. The mode

calculation presented in this work can in principle also be used to compute 1
c

corrections to the HHLL vacuum blocks.

Focusing on the logarithm of the W3 HHLL vacuum block we further show

that it satisfies a non-linear differential equation which, in a certain limit, re-

duces to a cubic equation for the generating function for the sequence of integers

given by A085614 in [115]. The W3 HHLL vacuum block can also be obtained

from a set of diagrammatic rules similar to the Virasoro vacuum block [79].

The story can be generalized in the case of the W4 HHLL block both in the

limit where the spin-4 charge scales with the central charge and is paramet-

rically larger than all other charges and in the limit where the spin-3 charge

scales with the central charge and is parametrically larger than the rest of the

charges. We expect a similar story to hold for all WN blocks. From a mathe-

matician’s point of view, the WN vacuum blocks provide generating functions

31 Note that it is only the spin-3 charge of the “heavy” operators that scales with c

and, in particular, their scaling dimension is small compared to c. We will still refer

to these as heavy. It is possible to extend our results to the case when all the charges

of the heavy operators are large but we will not attempt to do so since it is the spin-3

sector that resembles the stress tensor sector in four dimensions.
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for several new sequences which can be understood as different generalizations

of the Catalan numbers’ sequence.

Further, we examine the stress tensor sector of the four-dimensional HHLL

correlator when the conformal dimension of the light operator vanishes, ∆L →
032. A similar picture emerges with the relevant sequence of numbers given

by the number of linear extensions of the one-level grid partially ordered set

(poset)33 G[(1k−1), (0k−2), (0k−2)].34 We observe the same structure appearing

in d = 6, 8 as well. In this case, the sequences of numbers are related to the linear

extensions of the G[(d−2
2 )k−1, (0)k−2, (0k−2)] posets. In the spirit of the two-

dimensional cases examined here, one would hope that knowing the algebraic

equation satisfied by the generating function of this sequence, would allow the

determination of a differential equation satisfied by the all-orders stress-tensor

sector of the HHLL correlator in the lightcone limit for ∆L → 0. However, to

our knowledge, the generating functions of the number of linear extensions of

G[(d−2
2 )k−1, (0)k−2, (0k−2)] are not known.

Consider a heavy-heavy-light-light (HHLL) four-point function in a two-

dimensional CFT with a large central charge c and a higher-spin WN symmetry

〈OH(∞)OH(1)OL(z)OL(0)〉. The operators OH and OL are WN primaries and

carry higher-spin charges q
(i)
H and q(i), with i = 2, 3, . . . , N , respectively. Such a

four-point function can be decomposed into blocks which contain contributions

from a WN primary O and all its WN -descendants. We define GN (z) as the

holomorphic part of the HHLL correlator restricted to the identity block con-

tribution in the direct channel OL × OL → 1WN
→ OH ×OH . We specify our

discussion to the cases N = 3, 4 although it can be generalized to any N .

32 Note that this is below the unitarity bound. However, certain observables are

independent on ∆L, such as the phase shift. Obtaining a closed-form expression in

this limit might be a step towards obtaining such observables to all orders from the

CFT.
33 Partially ordered sets (posets) have a notion of ordering between some of the

elements but not necessarily all of them. A linear extension of a partial ordering is a

linear extension to a totally ordered set where all the elements are ordered in such a

way that the original partial ordering is preserved.
34 The Catalan numbers are also the numbers of linear extensions of the one-level

grid poset G[(0k−1), (0k−2), (0k−2)].
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We start by considering the case N = 3 where the CFT protagonists are

the stress tensor T (z) and a spin-3 field W (z). G3(z) contains the exchange of

all states schematically denoted by

|{ai, bj}〉 :=Wa1Wa2 . . .WanLb1Lb2 . . . Lbk |0〉 − (. . .)|0〉, (4.2)

where Lb andWa are the modes of T (z) andW (z), respectively, and the ellipses

ensure that these states are mutually orthogonal. In particular, the subsector

consisting of only states with modes Lb acting on the vacuum is that of the

Virasoro vacuum block and was studied in detail in [79]. We are interested in

heavy states with a large spin-3 charge wH ≡ q
(3)
H with35

hH ≪ wH ∼ c→ ∞,

h, w ≪ c.
(4.3)

The effect of using (4.3) is that the dominant contribution to G3(z) is due to

states of the form

|{ai}〉 =Wa1Wa2 . . .Wan |0〉 − (. . .)|0〉 (4.4)

because each W -mode will to leading order contribute a factor of wH when

acting on the heavy operators. Inserting the projection on the single mode

states W−m|0〉 in the correlator one finds the O(wHc ) term of the vacuum block

G3(z)
∣∣∣
wH
c

=
3wwH
c

f3(z)

z2h
, (4.5)

where z−2h is the disconnected correlator. The result in (4.5) is the conformal

block due to the exchange of the quasi-primary W (z) and all its descendants

under the global conformal group.

It is useful to recall the behavior of a d-dimensional conformal block,

g
(0,0)
τ,s (z, z̄), in the lightcone limit z̄ → 0

g(0,0)τ,s (z, z̄) ∼ z̄
τ
2 f τ

2 +s
(z). (4.6)

35 It is straightforward to extend our results to the case when all the heavy charges

are O(c) but we will not attempt to do so. See however Appendix A.1 and A.2. For

notational simplicity, we drop the light subscript on the light operators.
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In four dimensions, the stress tensor block with τ = s = 2 has the same z-

dependence as (4.5) (as can be seen from (4.6)).

Going back to d = 2, we consider the O(
w2
H

c2
) contribution to G3(z). This

is due to the (unnormalized) states

|Ym,n〉 =
[
W−nW−m − (3n+ 2m)m(m2 − 1)(m2 − 4)

30(m+ n)((m+ n)2 − 1)
L−m−n

]
|0〉, (4.7)

where the second term ensures that they are orthogonal to the states L−n−m|0〉.
Projecting onto these states one finds that

G3(z)
∣∣∣w2

H

c2

=
[1
2

(3wwH
c

f3(z)
)2

− 9w2
Hh

70c2
w3(z)

]
z−2h, (4.8)

where w3 = −14f2
3 + 15f2f4. The resulting simple-looking expression can be

decomposed into global conformal blocks of [W 2]2l, with weights h = 6, 8, . . .,

with the use of a product formula for hypergeometric functions found in [80].

Eq. (4.8) shows that the vacuum block contribution to the correlation func-

tion at quadratic order in the heavy charge expansion can be written as a sum

of products fafb such that a + b = 6, where h = 6 is the weight of the lightest

operator [W 2]0. In higher, even spacetime dimension a similar picture emerges.

In particular it was shown in [80,2] that the minimal-twist double-stress ten-

sor contributions to HHLL correlators in four dimensions can be written as

Gd=4|∆2
H
/C2

T
∝ a15f1f5 + a24f2f4 + a33f

2
3 , for some ∆L dependent coefficients

aij .

Let us now include a spin-4 current U(z). With the four-dimensional results

quoted above in mind, we consider the W4 HHLL vacuum block in the limit

where the spin-3 charge is parametrically larger than the rest (this is done in

Appendix A). The states (4.7) have a non-vanishing overlap with the single mode

states U−m−n|0〉 and by removing this overlap, one finds that the correction to

the O(
w2
H

c2
) term in (4.8) is proportional to the spin-4 charge u of the light

operator. The result takes the form

G4(z)
∣∣∣w2

H

c2

∝ a4,15f1f5 + a4,24f2f4 + a4,33f
2
3 , (4.9)
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with coefficients a4,ij linear in the charges (h, u) of the light operator and

quadratic in w due to the first term in (4.8)36.

The results herein, obtained using explicit mode calculations, are in agree-

ment with those for the WN semi-classical vacuum blocks obtained in [112].

While the mode calculation becomes tedious at higher orders in wH
c , the expan-

sion of the semi-classical vacuum block is straightforward. Generally, we find

that the expansion of the logarithm of the HHLL vacuum block in powers of
wH
c

can be written as a linear combination of products of hypergeometric:

log
(
z2hGN (z)

)
=

∞∑

k=1

(wH
c

)k∑

{ip}
bN,i1...ikfi1(z) . . . fik(z), (4.10)

where we have normalized the expression by the (holomorphic) part of the

disconnected correlator z−2h. ip are integers such that i1 + . . . + ik = 3k and

the coefficients bN,i1,...ip are linear in the charges q(i) of the light operator37.

It is instructive to examine the behavior of the vacuum blocks when z →
1. Similarly to the case of the Virasoro vacuum block, we observe that the

logarithm of the WN vacuum block, with one of the heavy charges qH ∼ c →
∞ and all other charges fixed and parametrically smaller, has the following

behavior in the limit z → 1:

log(GN (z)) ∼ BN

(
q(i),

qH
c

)
log(1− z), (4.11)

where the function BN is linear in the light charges q(i) and can be perturba-

tively expanded in qH
c
. This behavior is non-trivial since generally a product of

k functions fa is a k-th order polynomial in log(1− z) with coefficients that are

rational functions of z.

For the Virasoro case, the corresponding function B2 is the generating func-

tion of the Catalan numbers. For W3 in the limit wH ∼ c→ ∞, with the other

charges parametrically smaller and for certain values of the ratio of the charges

36 Whilst the form of the G4(z) at quadratic order matches that of the four-

dimensional result (notice the presence of the f1f5-term), there is no choice of the

charges of the light operators which would yield an exact match.
37 Although the form of the WN vacuum block expansion resembles that of the

four-dimensional one, there is no value of N that would yield an exact match.
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of the light operator, we find that B3 satisfies a cubic equation. Inspired by it,

one can construct similarly to the Virasoro case, a cubic differential equation

satisfied by F3 ≡ logG3 with (4.3). We present it below in the case h = 3w:

1

6w

d3

dz3
F3(z) = − 1

54w3

(
d

dz
F3(z)

)3

+
1

6w2

(
d2

dz2
F3(z)

)(
d

dz
F3(z)

)
+

2x

(1− z)3
,

(4.12)

where x = 6wHc . We also derive diagrammatic rules for the W3 HHLL vacuum

block satisfies.

We also consider the W4 HHLL vacuum block in Appendix A.2. We study

its behavior in the region z ∼ 1 in two different cases; when the spin-4 charge,

uH ∼ c ≫ 1 while hH , wH ≪ c and when the spin-3 charge scales with c,

wH ∼ c≫ 1 but uH , hH ≪ c. In both cases the logarithm of the HHLL vacuum

block behaves as F4 ∼ log (1− z) in the limit z → 1. In the former case, the

generating function B4 defined according to (4.11), satisfies a quartic equation

for four different choices of the ratio h/u. In particular, when h = 5u one can

show that logG(z) solves a differential equation whose form is inspired by the

algebraic equation satisfied by B4. The situation is similar but slightly more

involved when the spin-3 charge, wH ∼ c.

Finally, we study the stress tensor sector of the HHLL correlator in d-

spacetime dimensions in the limit z → 1. In this case, we further have to

take the ∆L → 0 limit in order to remove higher log terms and find that the

corresponding sequence of numbers are those of the number of linear extensions

of posets G[(d−2
2 )k−1, (0)k−2, (0k−2)]. These are generalizations of the Catalan

numbers which can be obtained as the number of linear extensions of the simpler

poset G[(0k−1), (0k−2), (0k−2)].

Outline

Section 4.2 is devoted to explicit mode calculations of the HHLL vacuum blocks.

In Section 2.1 we reviewed the Virasoro counterpart and in Section 4.2 we gen-

eralize this calculation to the case of the W3 HHLL vacuum block. In Section

4.3, we study the behavior of the HHLL vacuum blocks in the region z ∼ 1.

After a short review of the Virasoro case, we focus on the W3 vacuum block.

We observe the appearance of a generalized Catalan sequence, determine its

generating function and the algebraic equation the latter satisfies. Inspired by

this algebraic equation, we determine a cubic differential equation satisfied by
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the logarithm of the W3 vacuum block for certain ratios of the charges of the

light operators. We conclude the discussion of the spin-3 case with new dia-

grammatic rules for the W3 vacuum block expansion. We then investigate in

a similar manner the stress tensor sector of the four-dimensional HHLL corre-

lator in holographic CFTs. We conclude with a discussion in Section 4.4. In

Appendix A.1, one finds further details on the explicit mode calculations for the

W3 HHLL vacuum block. In Appendix A.2, we consider the W4 HHLL vacuum

block. When wH is the only large charge, we show using the W4-algebra that

one gets an extension of the W3 result which takes a form similar to that of the

stress tensor sector of the HHLL correlator in d = 4. When uH is the only large

charge, we show that the HHLL vacuum block and a specific choice of the light

charges is again governed by a generalization of the Catalan numbers, and that

a corresponding non-linear differential equation can be written down analogous

to the W3 case. A similar albeit more involved story emerges in the z → 1 limit

when the only large charge is wH .

4.2. W3 HHLL blocks by mode decomposition

In this section we perform a mode calculation of WN higher-spin vacuum blocks

in two-dimensional CFTs with large central charge. We review the calculation

of the Virasoro vacuum block in Section 2.1 following [77,78] and extend this to

include higher-spin currents in this section. The semi-classical vacuum block,

for large charges, in WN theories has been calculated in [111,114] for N = 3 and

in [112] for general N in the dual bulk theory using a Wilson line prescription.

Expanding these known results we find agreement with those obtained from the

mode calculation. The calculation of the WN vacuum block using an explicit

mode expansion can in principle be extended to include finite central charge as

well as finite charges of the external operators.

In an effort to elucidate the connection between the structure of the vacuum

block in the H
c expansion and the underlying symmetry algebra, we consider

now a 2d CFT with a spin-3 current W (z). The spin-3 modes are defined by

W (z) =
∑

n

Wnz
−n−3, (4.13)
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and satisfy the W3 algebra

[Lm,Wn] = (2m− n)Wm+n,

[Wm,Wn] =
c

360
m(m2 − 1)(m2 − 22)δm+n+

+ (m− n)
[ 1

15
(m+ n+ 3)(m+ n+ 2)− 1

6
(m+ 2)(n+ 2)

]
Lm+n

+
16

22 + 5c
(m− n)Λm+n,

(4.14)

where Λm =
∑
p : Lm−pLp : − 3

10 (m+ 2)(m+ 3)Lm. The spin-3 current W (z)

is a primary operator normalised so that 〈W (z)W (0)〉 = c
3z6 . Note that the

non-linear terms in (4.14) are suppressed in the large-c limit.

We will study the W3 vacuum block G3 contribution to the four point

function of pairwise identical scalars OH and OL. These are W3 primaries and

have conformal weights H and h, as before, as well spin-3 charges ±wH and

±w, respectively, with the following scaling as c→ ∞: 38

wH ≫ H, h, w,
wH
c

= fixed. (4.15)

As we will see, the contribution from the pure Virasoro modes considered in the

previous section is suppressed compared to that containing the spin-3 charge

modes of the “heavy” operator and is due to states of the schematic form

W−m1
. . .W−miL−n1

. . . L−nj |0〉. To evaluate the contribution of such states

explicitly, we need to construct an orthogonal basis using the algebra (4.14)

and find the commutator [Wm,O].

Consider first the commutator [Wm,O]. This is determined by the singular

terms in the OPE

W (z)O(0)|0〉 = z−3W0|h, w〉+ z−2W−1|h, w〉+ z−1W−2|h, w〉+O(z0)

= z−3wO|0〉+ z−2(Oh+1 +
3w

2h
∂O)|0〉

+ z−1(Oh+2 +
2

h+ 1
∂Oh+1 +

3w

h(2h+ 1)
∂2O)|0〉+ . . . ,

(4.16)

38 In [116] it was shown that unitary representations have weight h̃ ∼ c and therefore

neither the heavy nor the light operators we consider are unitary.
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where Oh+1 and Oh+2 are quasi-primary operators with conformal weight h+1

and h+ 2, respectively, and are given by

Oh+1(0)|0〉 :=
[
W−1O − 3w

2h
L−1O

]
|0〉,

Oh+2(0)|0〉 :=
[
W−2O − 2

h+ 1
L−1Oh+1 −

3w

h(2h+ 1)
L2
−1O

]
|0〉.

(4.17)

Being quasi-primaries, they satisfy [L1,Oh+1(0)] = [L1,Oh+2(0)] = 0 which

can be verified using the algebra (4.14). The commutator [Wn,O] can be found

using translation invariance, multiplying with
∫
C(z)

dw
2πiw

n+2 and using the OPE

(4.16) :

[Wm,O(z)] =
w(m+ 1)(m+ 2)

2
zmO(z) + (m+ 2)zm+1(Oh+1(z) +

3w

2h
∂O(z))

+ zm+2(Oh+2(z) +
2

h+ 1
∂Oh+1(z) +

3w

h(2h+ 1)
∂2O(z)).

(4.18)

Consider now the contribution to G(z) from states W−n|0〉. In order to

calculate 〈WnO(z)O(0)〉39, we note that 〈Oh+1(z)O(0)〉 = 〈Oh+2(z)O(0)〉 =

0 since these and O are quasi-primaries with different conformal weights.

It follows that only O and its global descendants in (4.18) contribute to

〈WmO(z)O(0)〉, leading to

〈WnO(z)O(0)〉 = zn
[w
2
(n+ 1)(n+ 2) +

3w

2h
(n+ 2)z∂z +

3w

h(2h+ 1)
z2∂2z

]
z−2h

=
w

2
(n− 1)(n− 2)zn−2h,

(4.19)

where the operator at z has spin-3 charge w and the operator at 0 has charge

(−w). On the other hand, for the heavy part, one finds that

〈OH(∞)OH(1)Wn〉 =
wH
2

(n− 1)(n− 2), (4.20)

where the operator at z = 1 carries spin-3 charge (−wH) and the one at z → ∞,

charge wH . Multiplying (4.19) with (4.20), dividing with the norm given by the

central term in (4.14) and summing over n = 3, 4, . . ., one finds the expected

result for the W3 vacuum block due to the exchange of a spin-3 quasi-primary

G3(z)|wHw
c

= z−2h 90wHw

c

∞∑

n=3

(n− 1)(n− 2)

(n+ 1)(n+ 2)

zn

n
=

3wHw

c
f3(z)z

−2h. (4.21)

39 We denote OL ≡ O to simplify the notation.
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Consider now states of the form W−nW−m|0〉. These are orthogonal to

W−n|0〉 since W (0) does not appear in the OPE W (z)W (0). On the other

hand, the stress tensor appears in this OPE and the overlap 〈Lm+nW−nW−m〉
is non-zero. The overlap can be calculated using the fact thatW (z) is a primary

field. With the help of the first line in (4.14) one finds

〈Lm+nW−nW−m〉 = c

360
(3n+ 2m)m(m2 − 1)(m2 − 4). (4.22)

Removing this overlap leads to states orthogonal to the single-mode ones

|Ym,n〉 =
[
W−nW−m − (3n+ 2m)m(m2 − 1)(m2 − 4)

30(m+ n)((m+ n)2 − 1)
L−m−n

]
|0〉, (4.23)

with norm NYm,n = 〈Ym,n|Ym,n〉 = ( c
360 )

2m(m2 − 1)(m2 − 4)n(n2 − 1)(n2 − 4).

The overlap with the double-mode states L−mL−n|0〉 is suppressed in the large-c

limit.

The next step is to compute 〈WmWnO(z)O(0)〉 using the commutator

[Wn,O(z)] in (4.18). We find that

〈WmWnO(z)O(0)〉 = zn
[w
2
(n+ 1)(n+ 2) +

3w

2h
(n+ 2)z∂z

+
3w

h(2h+ 1)
z2∂2z

]
〈WmO(z)O(0)〉

+ zn+1
[
(n+ 2) +

2

h+ 1
z∂
]
〈WmOh+1(z)O(0)〉

+ zn+2〈WmOh+2(z)O(0)〉.

(4.24)

To evaluate (4.24) one may use the commutators [Wm,Oh+1(z)] and [Wm,Oh+2(z)]

which are found in Appendix A. Alternatively, recall that the three-point func-

tions 〈W (z)Oh+1(z)O(z)〉, and 〈W (z)Oh+2(z)O(z)〉, are fixed by conformal

symmetry up to the respective OPE coefficients. This gives

zn+1
[
(n+ 2) +

2

h+ 1
z∂
] ∫ dz3

2πi
zm+2
3 〈W (z3)Oh+1(z)O(0)〉

= λWOh+1O
m(m− 1)(m− 2)(h(n− 2) + 2m+ n)

6(h+ 1)
zm+n−2h,

(4.25)

where λWOh+1O is the OPE coefficient of O in the OPE W × Oh+1. Likewise,

〈WmOh+2(z)O(0)〉 is given by

zn+2〈WmOh+2(z)O(0)〉 = λWOh+1O
24

(m− 2)(m− 1)m(m+1)zm+n−2h. (4.26)

54



The OPE coefficients are found with the help of the algebra, (4.14), by

taking the limit z → 0

〈O(z3)W (z)Oh+1(0)〉 ≈ z−4〈O(z3)W1(W−1 −
3w

2h
L−1)O(0)〉

= z−4z−2h
3

[h(2− c+ 32h)

22 + 5c
− 9w2

2h

]
,

(4.27)

and

〈O(z3)W (z)Oh+2(0)〉

≈ z−5〈O(z3)W2(W−2 −
2

h+ 1
L−1W−1 +

3w

(h+ 1)(2h+ 1)
L2
−1)O(0)〉

= z−5z−2h
3

[8h(6 + c+ 8h)

22 + 5c
− 2

h+ 1

4h(2− c+ 32h)

22 + 5c
+

36w2

(h+ 1)(2h+ 1)

]
.

(4.28)

From (4.27) and (4.28) we deduce that for large-c

λWOh+1O = −h
5
− 9w2

2h
,

λWOh+2O =
8h

5
+

8h

5(h+ 1)
+

36w2

(h+ 1)(2h+ 1)
.

(4.29)

Using (4.25) and (4.26) and the OPE coefficients given in (4.29) to evaluate

(4.24), we find that 〈Ym,n|O(z)O(0)〉 is given by

〈Ym,n|O(z)O(0)〉 =
[w2

4
(m− 1)(m− 2)(n− 1)(n− 2)

− h

30

m(m− 1)(m− 2)n(n− 1)(n− 2)

(m+ n)(m+ n+ 1)

]
zm+n−2h,

(4.30)

with |Ym,n〉 defined in (4.23). The heavy part 〈OH(∞)OH(1)|Ym,n〉 can be

calculated in a similar manner,

〈OH(∞)OH(1)|Ym,n〉 =
w2
H

4
(m− 1)(m− 2)(n− 1)(n− 2), (4.31)

in the limit wH ≫ H. Multiplying (4.30) and (4.31), dividing by the norm

( c
360)

2m(m2 − 1)(m2 − 4)n(n2 − 1)(n2 − 4) and summing over m,n = 3, 4, . . .

we determine the contribution of the states |Ym,n〉 to the W3 vacuum block to

be:

G3(z)|w2
H

c2

=
z−2h

2

∞∑

m,n=3

[(90wHw
c

)2 (m− 1)(m− 2)(n− 1)(n− 2)

(m+ 1)(m+ 2)(n+ 1)(n+ 2)

1

mn

− 540w2
Hh

c2
(m− 1)(m− 2)(n− 1)(n− 2)

(m+ 1)(m+ 2)(n+ 1)(n+ 2)

1

s(s+ 1)

]
zs,

(4.32)
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where s = m + n. The first line in (4.32) is the exponentiated term analogous

to the Virasoro case:

G3(z)|w2
H
w2

c2

=
1

2

(3wHw
c

f3

)2
z−2h, (4.33)

while the second line can be summed to

G3(z)|w2
H
h

c2

= −9w2
Hh

70c2
w3(z)z

−2h, (4.34)

where w3(z) is a sum of products fafb with a+ b = 6:

w3(z) ≡− 14f2
3 (z) + 15f2(z)f4(z)

=4200

∞∑

m,n=3

(m− 1)(m− 2)(n− 1)(n− 2)

(m+ 1)(m+ 2)(n+ 1)(n+ 2)

zs

s(s+ 1)
.

(4.35)

Similar to the Virasoro case, it is easy to verify that the non-exponentiated term

w3(z) behaves as log(1− z) when z → 1.

We can also calculate the contribution to the W3 vacuum block from states

of the form
[
L−mW−n − 〈Wm+nL−mW−n〉

〈Wm+nW−m−n〉 W−m−n
]
|0〉. This results in a term

that contributes to exponentation and takes the form ∝ wHHwh
c2 f2f3, as well as

a term ∝ wHHw
c2 (f1f4− 7

9f2f3). Such terms are subleading in the limit wH ≫ H

(see Appendix A.1 for further details).

4.3. Generalized Catalan numbers and differential equations

In this section we study the logarithm of the correlator defined by FN ≡ logGN .

We start by reviewing the behavior of the logarithm of the Virasoro vacuum

block, F2 = logG2, in the limit z → 1, the appearance of the Catalan numbers’s

sequence, and the differential equation satisfied by F2, following [79]. Next, we

focus on the case N = 3 where a very similar story emerges. Besides a cer-

tain generalization of the Catalan sequence, we also find a set of diagrammatic

rules governing the expansion of the W3 vacuum block along with a differential

equation satisfied by F3 for certain ratios of the values of the charges of the

light operators. We also consider the logarithm of the stress-tensor sector of the

four-dimensional correlator in the lightcone limit, which we denote by Gd=4 and

Fd=4 respectively. We investigate the behavior in the limit z → 1 and observe

similarities with the two-dimensional cases when ∆L → 0.
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4.3.1. The Virasoro vacuum block

In [79] it was shown how one can derive a differential equation satisfied by

the logarithm of the Virasoro vacuum block, by studying its behavior in the

z → 1 limit. Expanding F2 in powers of hH/c the authors of [79] observed

that F2 behaves logarithmically when z → 1. Furthermore they noticed that

the sequence of the numerical coefficients multiplying the logarithm at the each

order forms the sequence of Catalan numbers given by c2,k:

c2,k =
Γ(2k − 1)

Γ(k)Γ(k + 1)
, k ≥ 1. (4.36)

These numbers are generated by the following generating function

B2(x) =

∞∑

k=1

c2,kx
k =

1−
√
1− 4x

2
, (4.37)

which satisfies

B2(x) = B2(x)
2 + x. (4.38)

The Catalan numbers c2,k are known to appear in various problems in combina-

torics. Here we would like to point out that they can also be understood as the

numbers of linear extensions of one-level grid posets40 G([0k−1], [0k−2], [0k−2]),

for k ≥ 1. Generally, one-level grid-like posets G[v, t,b], where v = (v1, . . . , vn),

t = (t1, . . . , tn−1) and b = (b1, . . . , bn−1), can be represented with Hasse dia-

grams of the following type:

Fig. 1: Posets denoted byG([0, 0, 0, 0], [0, 0, 0], [0, 0, 0]) andG([1, 0, 2], [1, 1], [2, 1]),

respectively.

40 Partially ordered sets (posets) have a notion of ordering between some of the

elements but not necessarily all of them. A linear extension of a partial ordering is a

linear extension to a totally ordered set where all the elements are ordered in such a

way that the original partial ordering is preserved.
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The numbers vi denote the number of nodes in the i-th vertical edge, ti denote

the number of nodes in the i-th top edge and bi denote the number of nodes in

the i-th bottom edge, with the endpoints excluded. The Catalan numbers are

the numbers of linear extensions of posets of the type depicted in the left Hasse

diagram of Fig. 1.

The logarithm of the correlator F2(z) = logG2(z) when z → 1 therefore

behaves as

F2(z) ≈
z→1

− 2hB2(x) log(1− z), (4.39)

with x = 6hHc . Inspired by (4.38) and (4.39) the authors of [79] find a differential

equation satisfied by F2(z) for all z:

1

2h

d2

dz2
F2(z) =

1

4h2

(
d

dz
F2(z)

)2

+
x

(1− z)2
. (4.40)

4.3.2. The W3 vacuum block

Here we uncover a similar story for the W3 vacuum block G3. Expanding in

powers of wHc ,

log G3 ≡ F3(z) =

∞∑

k=0

(wH
c

)k
F (k)

3 (z), (4.41)

with

F (0)
3 (z) = −2h log(z), (4.42)

and using the exact expression known for the W3 vacuum block (see for example

eq. (4.24) in [113]) one finds that

{
lim
z→1

(
− F (k)

3 (z)

6k+1 log(1− z)

)∣∣∣∣∣k = 1, 2, . . .

}
=

w ×
{
1, n, 16, 35n, 768, 2002n, 49152, 138567n, . . .

}
,

(4.43)

where we set n ≡ h/w. F3 in the limit z → 1 is given by

F3(z) ≈
z→1

− 6w log(1− z)B3(x, n), (4.44)

where B3(x, n) is the generating function of the sequence (4.43)

B3(x, n) =
∞∑

k=1

c3,kx
k =

1

6

√
3 sin(

1

3
arcsin(6

√
3x))

− n cos(
1

3
arcsin(6

√
3x)) + n).

(4.45)
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Remarkably, there exist exactly three values of n for which B3(x, n) satisfies

a cubic equation; these are n = ±3 and n = 0. For these values of the ratios

of the light charges, the W3 vacuum block simplifies dramatically; it can be

expressed in terms of a single function of z raised to a given power41.

For n = ±3 the sequence of (4.43) reduces to

{
lim
z→1

[
−
(
±1

6

)k+1 F (k)
3 (z)

log(1− z)

] ∣∣∣∣∣k = 1, 2, . . .

}
=

= w ×
{
1,±3, 16,±105, 768,±6006, 49152,±415701, . . .

}
.

(4.46)

Each term in this sequence can be derived from the following formula

c3,k =
(±2)k−1(3k − 3)!!

k!(k − 1)!!
, k ≥ 1. (4.47)

Moreover, one can check that function (4.45) with n = ±3 satisfies the following

relation

B3(x,±3) = −2B3(x,±3)3 ± 3B3(x,±3)2 + x. (4.48)

with x = 6wH
c
. Inspired by (4.48) we search for a cubic differential equation

satisfied by F3(z). It is easy to see, using the exact expression for the W3 block

given for example in eq. (4.24) of [113], that F3(z, n = 3) ≡ F̂3(z) satisfies the

following differential equation

1

6w

d3

dz3
F̂3(z) = − 1

54w3

(
d

dz
F̂3(z)

)3

+
1

6w2

(
d2

dz2
F̂3(z)

)(
d

dz
F̂3(z)

)
+

2x

(1− z)3
.

(4.49)

When h
w
= −3 a similar equation can be found by taking w → −w and 1− z →

1
1−z . The case n = 0 is special and is discussed in Appendix A.

4.3.3. Diagrammatic rules for the W3 block

Here we formulate diagrammatic rules for computing the logarithm of W3 vac-

uum block F3(z) = logG3(z), in the limit where wH ∼ c ≫ 1 and all other

charges are parametrically suppressed. The ratio of the charges of the light op-

erator, n, is left arbitrary . The rules are similar to those in [79] for computing

the logarithm of the Virasoro vacuum block.

41 For other values of n the generating function satisfies a sixth order algebraic

equation. As a result writing a differential equation becomes cumbersome.

59



We now have cubic and quartic vertices and the exchanged states are modes

of the stress tensor and spin-3 current, which we refer to collectively as currents.

The only relevant diagrams in the limit we consider, are those where a single

propagator connects to the light operatorOL. The rules can be stated as follows:

1. Label the k initial currents connected to operator OH with integers

a1, a2, . . . , ak.

2. Draw all diagrams where the k initial currents combine via 3-pt and 4-pt

vertices to become a single current, which connects with the light operators.

3. For each propagator define its momentum p as the sum of the ai flowing

through it. Momentum is conserved at vertices. Each propagator comes with a

factor
1

(p+ 1)(p+ 2)
.

4. For each vertex coupling a current of momentum ai to the external

operator OH , include a factor of

wH√
c
(ai − 1)(ai − 2).

5. For each vertex coupling a current of momentum p to the external

operator OL, include a factor of

1

6
√
c

(
(−1)k(h− 3w) + h+ 3w

)
(p− 1)(p− 2).

Fig. 2: Vertices denoting the coupling of an exchanged current with

the external states OH and OL, respectively.
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6. For each 4-current vertex, include a factor of −2/3c. For each 3-current

vertex, where two currents carry momentum m and n, while the third current

carries momentum m+ n (see fig. 3), include a factor of

1√
c
(m+ n+ 2).

Fig. 3: Vertices denoting 3-pt and 4-pt coupling of currents, respec-

tively.

7. Take the product of the propagators and vertices and then multiply the

result by

36k

k!

zs

s(s− 1)(s− 2)
,

where s =
∑k
i=1 ai.

8. Sum the resulting tree diagrams over all ai from 3 to ∞ to obtain the

wkH
ck

term in F(z)|W3
.

At orders wH/c and w
2
H/c

2 there is just one diagram to take into account,

while at order w3
H/c

3 there are two different types of diagrams. This way, one

obtains the expansion of the logarithm of W3 vacuum block, which is given by

eq. (4.24) in [113].42

42 We explicitly checked this up to O(w4
H/c4).
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Fig. 4: Diagrams at orders wH/c and w2
H/c2, respectively.

Fig. 5: Diagrams at order w3
H/c3.

4.3.4. Stress tensor sector in d = 4

The stress tensor sector of the HHLL correlator in four-dimensional spacetime

and in the lightcone limit (z̄ → 0)43 is given according to [2] by

Gd=4(z, z̄) =
1

(zz̄)
∆L

(
1 +

∞∑

k=1

µkz̄kG(k)
d=4(z)

)
, (4.50)

G(k)
d=4(z) =

∑

{ip}
ai1...ikfi1(z) . . . fik(z), (4.51)

where the sum goes over all sets of {ip} with ip ≤ ip+1 and ai1...ik coefficients

that depend on ∆L, and the expansion parameter µ is given by

µ ≡ 160

3

∆H

CT
. (4.52)

43 Note that in this section we change conventions and put the light operators at

OL(0) and OL(z, z̄) since it is more convenient when comparing to the d = 2 case.
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Explicit expressions for G(k)
d=4 with k = 1, 2, 3 are given in [2]. There it was also

shown that Gd=4(z, z̄) can be written as

Gd=4(z, z̄) = e∆LFd=4(z,z̄), (4.53)

Fd=4(z, z̄) being of O(1) in the limit ∆L → ∞ and which can be expanded as

follows

Fd=4(z, z̄) = F (0)
d=4(z, z̄) +

∞∑

k=1

µkz̄kF (k)
d=4(z). (4.54)

with F (k)
d=4 being schematically of the same form as the G(k)

d=4 in (4.51). For

k = 0, 1, 2, 3 for instance, we have

F (0)
d=4(z, z̄) = − log(zz̄),

F (1)
d=4(z) =

1

120
f3(z),

F (2)
d=4(z) =

(12− 5∆L)f3(z)
2 + 15

7 (∆L − 8)f2(z)f4(z) +
40
7 (∆L + 1)f1(z)f5(z)

28800(∆L − 2)
,

F (3)
d=4(z) = b117f

2
1 (z)f7(z) + b126f1(z)f2(z)f6(z) + b135f1(z)f3(z)f5(z)

+ b225f
2
2 (z)f5(z) + b234f2(z)f3(z)f4(z) + b333f

3
3 (z),

(4.55)

where

b117 =
5(∆L + 1)(∆L + 2)

768768(∆L − 2)(∆L − 3)
,

b126 =
5(5∆2

L − 57∆L − 50)

6386688(∆L − 2)(∆L − 3)
,

b225 = − 7∆2
L − 51∆L − 70

2903040(∆L − 2)(∆L − 3)
,

b135 = − 11∆2
L − 19∆L − 18

1209600(∆L − 2)(∆L − 3)
,

b234 =
(∆L − 2)(∆L + 2)

1209600(∆L − 2)(∆L − 3)
,

b333 =
7∆2

L − 18∆L − 24

2592000(∆L − 2)(∆L − 3)
.

(4.56)

Inspired by the two-dimensional case, we consider the F (k)
d=4(z) in the limit

z → 1. We observe that all terms proportional to logi(1− z) with i ≥ 2 vanish

in this limit as long as ∆L → 0. In this special case, one can show that
{

lim
z→1,∆L→0

(−4)k(k!)F (k)
d=4(z)

log(1− z)

∣∣∣∣∣k = 1, 2, 3, 4, 5, . . .

}
=
{
1, 1, 6, 71, 1266, . . .

}
.

(4.57)
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The sequence of numbers in the (4.57) is known as the number of linear exten-

sions of the one-level grid poset G[(1k−1), (0k−2), (0k−2)], for k ≥ 1, given by

A274644 in [115]. As an example, the k = 5 case is represented by the Hasse

diagram in Fig. 2.

Fig. 6: The poset denoted by G([1, 1, 1, 1], [0, 0, 0], [0, 0, 0]).

We do not explicitly discuss it here but the relevant posets in even num-

ber of dimension d are G[(d−2
2 )k−1, (0)k−2, (0k−2)]. The generating func-

tions and the general formulas for the numbers of linear extensions of posets

G[(d−2
2

)k−1, (0)k−2, (0k−2)] are not (currently) known.

4.4. Discussion

We consider the WN vacuum block contributions to heavy-heavy-light-light cor-

relators in two-dimensional CFTs with higher-spin symmetries. We perform

explicit mode calculations for W3 and W4 blocks and show that they reproduce

the semi-classical vacuum blocks whose explicit form can be found in e.g. [112].

We observe that terms in the expansion of these blocks in powers of (q
(i)
H /c) sat-

isfy the suitably modified ansatz which was used to compute the stress tensor

sector of the d = 4 HHLL correlator in [2].

The HHLL Virasoro vacuum block is governed by the Catalan numbers

whose generating function satisfies a quadratic equation allowing the construc-

tion of a non-linear differential equation for the logarithm of the vacuum block

[79]. We show that the W3 and W4 HHLL vacuum blocks are governed by

generalizations of the Catalan numbers; for certain values of the light operator

charges, their generating functions satisfy cubic and quartic algebraic equations

respectively. We further show that these equations uplift to non-linear differ-

ential equations satisfied by the logarithm of the blocks. What’s more, the
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leading twist stress tensor sector of HHLL correlators in even number of space-

time dimensions d has the same structure in the limit ∆L → 0. The relevant

generalization of the Catalan numbers is now the number of linear extensions

of partially ordered sets G[(d−2
2

)k−1, (0)k−2, (0)k−2]. For d > 2 the generating

functions for these sequences are not known.

The appearance of the generating function BN (x) comes from the limit

z → 1 of the logarithm FN of the block, where FN ∼ BN (x) log(1 − z). For

example, eq. (4.48) defines generalizations of Catalan numbers; this and similar

equations were studied in [117]. For the W3 case, we observe that for generic

light charges h and w, the generating function satisfies a polynomial equation

of degree 6, rather than 3, which however does not take the form studied in

[117]. The numbers relevant for the d = 4 result also do not seem to come from

equations of this form; it would be interesting to understand this better.

Note that in the d = 4 case, the logarithm of the minimal-twist stress tensor

sector of HHLL correlators, Fd=4, is a rational function of ∆L which is O(1)

for large ∆L. An important difference with the d = 2 WN result is that in the

limit z → 1, at k-th order in the µ ≃ ∆H
CT

expansion, F (k)
d=4 ∼ g(∆L) log

k(1− z)

for some function g(∆L). However, in the limit ∆L → 0, we do find that

Fd=4 ∼ Bd=4(µ) log(1 − z) with Bd=4 being the generating function of the

number of linear extensions of the G[(1k−1), (0k−2), (0k−2)] posets (this is also

the number of Young tableaux with restrictions; similar numbers were recently

studied in [118])44. If we knew an algebraic equation satisfied by Bd=4, we could

perhaps construct a differential equation whose solution would give the full

minimal-twist stress tensor sector in d = 4 large-N CFTs in the limit ∆L → 0.

Heavy-heavy-light-light WN vacuum blocks where the spin-3 charge q
(3)
H ∼

c and qi6=3
H ≪ c take a form similar to the minimal-twist stress tensor sector

in four spacetime dimensions. In both cases, at order (
q
(3)

H

c )k in d = 2 and

order µk ≃ (∆HCT )k in d = 4, the result is a sum of products fa1fa2 . . . fak with

a1 + a2 + . . . + ak = 3k. In two dimensions, we have shown how at k = 1, 2

and N = 3, 4, this follows from an explicit mode calculation and the knowledge

of the higher-spin algebra. It would be interesting to understand if the d = 4

44 A similar story holds in d dimensions with the relevant poset now being

G[( d−2
2

)k−1, (0)k−2, (0k−2)].
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minimal-twist stress tensor sector can also be related to an emergent symmetry

algebra in the lightcone limit. Recently there have been several works devoted

to the lightray operators made out of the stress tensor and to the study of the

algebra of such operators [105-49]. It would be interesting to understand if there

is a connection to our work.
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5. Black Holes and Conformal Regge Bootstrap

5.1. Introduction and summary of results

Holographic CFTs satisfy the following defining properties: (1) large cen-

tral charge CT together with factorization of correlation functions and (2) a

parametrically large gap in the spectrum of single trace operators above spin-2.

As argued in [14], they are dual to theories of quantum gravity in asymptot-

ically AdS spacetimes with local physics below the AdS scale. In holographic

CFTs the Regge limit of a four-point function, extensively studied in [28-32]45,

is dominated by operators of spin two – the stress tensor and the double-trace

operators (this is a consequence of the gap in the spectrum). In gravity, it re-

produces a Witten diagram with graviton exchange (see e.g. [137]). The Regge

limit corresponds to special kinematics, which on the gravity side is described

by the scattering of highly energetic particles whose trajectories in the bulk are

approximately null.

Such scattering can be described in the eikonal approximation where par-

ticles follow classical trajectories but their wavefunctions acquire a phase shift

δ(S, L). The phase shift is a function of the total energy S and the impact

parameter L. In the CFT language, this phase shift can be extracted from the

Fourier transform of the four-point function. In [29] the phase shift extracted

from the four-point function of the type 〈O1O1O2O2〉 was shown to be equal

(up to a factor of −π) to the anomalous dimension of the double-trace operators

[O1O2]n,l at leading order in 1/N2. The Regge limit implies that the calcula-

tion is valid for n, l ≫ 1. These anomalous dimensions have been subsequently

verified in [138,139-147].

Above, the operators O1 and O2 were assumed to have conformal dimen-

sions of order one. What happens if one pair of the operators become heavy?

As explained in [8], one can define the phase shift as a Fourier transform of the

〈OHOHOLOL〉 four-point function. It is related to the time delay and angle

deflection of a highly energetic particle traveling along a null geodesic in the

background of an asymptotically AdS black hole. The black hole corresponds

45 See also [123-136] for other recent applications of Regge limit in CFTs.
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to the insertion of the heavy operator OH ; its mass in the units of AdS radius

is proportional to µ.

The phase shift δ(S, L) was computed in gravity in [8] as an infinite series

expansion in µ, i.e.,

δ(S, L) =

∞∑

k=1

δ(k)µk , (5.1)

with terms subleading in 1/CT suppressed. The anomalous dimensions of heavy-

light double-trace operators [OHOL]n,l admit a similar expansion

γ(n, l) =

∞∑

k=1

γ(k)µk. (5.2)

In [8] it was also proven that

γ(1) = −δ
(1)

π
(5.3)

where the following identifications are implied:

h = n+ l, h̄ = n, S = 4hh̄, e−2L =
h̄

h
. (5.4)

However, it was observed that this relation does not hold for higher order terms,

i.e. in general γ(k) is not proportional to δ(k). One of the aims of the paper [1]

reviewed in this section is to explain how higher order anomalous dimensions

are related to higher order terms in the phase shift.

Summary of results

In this section we explain how to compute the anomalous dimensions of

heavy-light double-trace operators [OHOL]n,l order by order in µ, using the

phase shift result of [8]. In particular, we show that the O(µ2) anomalous

dimensions in any d are given by

γ(2) = −δ
(2)

π
+
γ(1)

2
(∂h + ∂h̄)γ

(1), ∆H ≫ l, n≫ 1. (5.5)

Using known results for δ(1) and δ(2) from [8], we find an explicit expression for

γ(2) and compare it with the known results in the lightcone limit ( ∆H ≫ l ≫
n≫ 1). We find perfect agreement.

The rest of the section is organized as follows. In Section 5.2, we focus

on four-dimensional holographic CFTs. At O(µ), we use the crossing equation
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between the S- and T-channel to solve for the anomalous dimensions of heavy-

light double-trace operators [OHOL]n,l. The result is Eq. (5.3), valid for l, n≫
1. We then introduce the impact parameter representation which allows us to

rewrite the S-channel expansion as a Fourier transform. We use this to relate

the phase shift to the anomalous dimensions of [OHOL]n,l at O(µ2), thereby

deriving (5.5). Using a known result for the phase shift δ(2), we write down an

explicit expression for γ(2). In the subsequent l ≫ n limit, , corresponding to

a large impact parameter, it reduces to the result which has been obtained in

[8] in a completely different way (by computing corrections to the energies of

excited states in the AdS-Schwarzschild background).

In Section 5.3, we generalize these results to any d (d = 2 is treated

separately in Appendix B). By solving the Casimir equation in the limit

∆H ≫ ∆L, l, n, we obtain the conformal blocks for heavy-light double-trace

operators in the S-channel. Using the explicit expression for the blocks together

with the mean field theory OPE coefficients, we derive an impact parameter

representation valid in general dimensions. Just as in the d = 4 case, this allows

us to write the S-channel sum as a Fourier transform. Hence, we show that

(5.5) holds for any d. We compute γ(2) in the lightcone limit and find perfect

agreement with the results quoted in [8]. In addition, we find an expression for

the O(µ2) corrections to the OPE coefficients.

Section 5.5 discusses various observations and mentions some open prob-

lems. Appendix B contain additional technical details. The conformal bootstrap

calculations are summarized in Appendix B.1, the proof of the impact parame-

ter representation in d = 4 in Appendix B.2 and the proof in general dimension

d in Appendix B.3. The special case of d = 2 is treated in Appendix B.4. Ap-

pendix B.5 discusses the fate of some boundary terms. Appendices B.6 and B.7

contain some identities which are used in the main part of this section.

5.2. Anomalous dimensions of heavy-light double-trace operators in d = 4

Consider

G(z, z̄) = lim
x4→∞

x2∆H4 〈OH(x4)OL(1)OL(z, z̄)OH(0)〉. (5.6)
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Inserting the conformal blocks in (2.46) together with the MFT OPE co-

efficients in the Regge limit (2.49), we approximate the sums in the S-channel

expansion by integrals and find the following expression at O(µ0)

G(z, z̄)|µ0 =
C∆L

z − z̄

∫ ∞

0

dh

∫ h

0

dh̄(hh̄)∆L−2(h− h̄)
(
zh+1z̄h̄ − zh̄z̄h+1

)
. (5.7)

The integrals are computed in Appendix B.1; the result is the disconnected

correlator in the T-channel [(1− z)(1− z̄)]−∆L in the Regge limit σ → 0, where

1− z = σeρ and 1− z̄ = σe−ρ.

At O(µ) in holographic CFTs the leading corrections in the T-channel come

from the exchanges of the stress tensor and double-trace operators [OLOL]n,l=2

([OHOH ]n,l=2 are heavy and therefore decouple). The conformal block for the

T-channel exchange of the stress tensor is found after z → e−2πiz and then

σ → 0 to be given by

gTµν =
360iπe−ρ

σ(e2ρ − 1)
+ . . . , (5.8)

where . . . denotes non-singular terms. The contribution from the stress tensor

exchange in the T-channel is thus imaginary for real values of σ and ρ. The

only imaginary term at order µ in the S-channel expansion (2.46) comes from

the term proportional to −iπγ; it must reproduce (5.8).

In the Regge limit, we approximate the sum in the S-channel by an integral

and insert the OPE coefficients from (2.49); the imaginary part at O(µ) in the

S-channel is thus given by

Im(G(z, z̄))|µ1 =
−iπC∆L

z − z̄

∫ ∞

0

dh

∫ h

0

dh̄(hh̄)∆L−2(h− h̄)γ(1)(h, h̄)

×
(
zh+1z̄h̄ − zh̄z̄h+1

)
.

(5.9)

With the ansatz γ(1)(h, h̄) = c1h
ah̄b/(h− h̄) the integrals in (5.9) can be com-

puted (for more details see Appendix B.1). In order to reproduce the exchange

of the stress tensor, the anomalous dimensions at O(µ) must be equal to

γ(1) = −90λOHOHTµνλOLOLTµν
µ∆L

h̄2

h− h̄

= − 3h̄2

h− h̄
,

(5.10)
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where in the second line we inserted the OPE coefficients from (2.29). With

the form (5.10) not only the stress tensor exchange is reproduced, but also an

infinite sum of spin-2 double-trace operators [OLOL]n,l=2 with scaling dimension

∆n = 2∆L+2+2n. This is similar to what happens in the light-light case [35].

To determine the second order corrections to the anomalous dimensions we

use the derivative relationship:

P (0)P (1) =
1

2
(∂h + ∂h̄)

(
P (0)γ(1)

)
. (5.11)

We will prove below (see Section 5.3.3) that this relationship is true in the limit

h, h̄ ≫ 1. The imaginary part at O(µ2) in the S-channel from (2.46) is then

given by

Im(G(z, z̄))|µ2 =− iπ

∫ ∞

0

dh

∫ h

0

dh̄P (0)
(
γ(2) + γ(1)P (1)

+
(γ(1))2

2
(∂h + ∂h̄)

)
gh,h̄.

(5.12)

With the help of (5.11), one can write (5.12) as

Im(G(z, z̄))|µ2 =− iπ

∫ ∞

0

dh

∫ h

0

dh̄P (0)

(
γ(2) − γ(1)

2
(∂h + ∂h̄)γ

(1)

)
gh,h̄

+ total derivative,

(5.13)

where the total derivate term does not contribute (see Appendix B.5 for de-

tails). In order to fix γ(2) completely from crossing symmetry, we would need

to consider the exchange of infinitely many double-trace operators made out of

the stress tensor in the T-channel. Instead, we will use an impact parameter

representation to relate γ(2) to the bulk phase shift calculated from the gravity

dual in [8].

5.2.1. 4d impact parameter representation and relation to bulk phase shift

In [29] the anomalous dimensions of light-light double-trace operators in

the limit h, h̄≫ 1 were shown to be related to the bulk phase shift. An impact

parameter representation for the case when one of the operators is heavy was

introduced in [8], where it was also shown that the bulk phase shift and the

anomalous dimensions are equal at O(µ). The goal of this section is to see
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explicitly how the bulk phase shift and the anomalous dimensions are related

to O(µ2).

The correlator (5.6) can be written in an impact parameter representation

as

G(z, z̄) =

∫ ∞

0

dh

∫ h

0

dh̄ Ih,h̄f(h, h̄), (5.14)

with Ih,h̄ given by

Ih,h̄ = (zz̄)−
(∆H+∆L)

2 P (0)g∆HL,−∆HL
h,h̄

(z, z̄) (5.15)

and f(h, h̄) some function that generically depends on the anomalous dimension

and corrections to the OPE coefficients. In particular, for f(h, h̄) = 1, (5.14) is

equal to the disconnected correlator. In Appendix B it is shown that Ih,h̄ can

be equivalently written as

Ih,h̄ ≡ C(∆L)

∫

M+

d4p

(2π)4
(−p2)∆L−2e−ipx(h− h̄)δ(p · ē+ h+ h̄) δ

(
p2

4
+ hh̄

)

(5.16)

where M+ is the upper Milne wedge with {p2 ≤ 0, p0 ≥ 0}, C(∆L) given by

(with d = 4)

C(∆) ≡ 2d+1−2∆π1+ d
2

Γ(∆)Γ(∆− d
2 + 1)

(5.17)

and ē = (1, 0, 0, 0). Moreover, following [8], we will set z = eix
+

and z̄ = eix
−

,

with x+ = t+ r and x− = t− r in spherical coordinates.

Using the identity

δ(p · ē+ h+ h̄) δ

(
p2

4
+ hh̄

)
=

1

|h− h̄|

(
δ

(
p+

2
− h

)
δ

(
p−

2
− h̄

)
+ (h↔ h̄)

)
,

(5.18)

with p+ = pt + pr, p− = pt − pr, the integrals over h, h̄ in (5.14) are easily

computed. With the identification h = p+

2
and h̄ = p−

2
it follows that a generic

term like (5.14) can be written as a Fourier transform

∫ ∞

0

dh

∫ h

0

dh̄ Ih,h̄f(h, h̄) = C(∆L)

∫

M+

d4p

(2π)4
(−p2)∆L−2e−ipxf

(
p+

2
,
p−

2

)
.

(5.19)

We thus see that the impact parameter representation allows us to rewrite the

S-channel expression as a Fourier transform.
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The phase shift δ(p) for a pair of operators OH and OL, with scaling

dimensions ∆H/CT ∝ µ and ∆L/CT ≪ 1, respectively, was defined in [8] by

B(p) ≡
∫
d4xeipxG(x) = B0(p)e

iδ(p), (5.20)

where G(x) is given in (5.6) and B0(p) denotes the Fourier transform of the

disconnected correlator. The phase shift admits an expansion in µ:

δ(p) = µδ(1)(p) + µ2δ(2)(p) + . . . , (5.21)

where . . . denotes higher order terms in the expansion. Expanding the expo-

nential in (5.20) in µ we get

B(p) = B0(p)
(
1 + iµδ(1) + µ2(−(δ(1))2

2
+ iδ(2)) + . . .

)
. (5.22)

With (5.22) the relationship between the anomalous dimensions and the bulk

phase shift to O(µ2) can be established using (2.46), (2.47) and (5.19):

γ(1) = −δ
(1)

π

γ(2) = −δ
(2)

π
+
γ(1)

2
(∂h + ∂h̄)γ

(1)(h, h̄).

(5.23)

The phase shift was calculated in closed form to all orders in µ for the

four-dimensional case [8], with the first and second order terms given by

δ(1) =
3π

2

√
−p2 e−L

e2L − 1

δ(2) =
35π

8

√
−p2 2e

L − e−L

(e2L − 1)3
,

(5.24)

where

−p2 = p+p−, coshL =
p+ + p−

2
√
−p2

. (5.25)

Using (5.24) and (5.25), the O(µ) corrections to the anomalous dimensions are

given by γ(1) = −3n2/l, which agrees with (5.10). From (5.24) and (5.23), we

deduce the anomalous dimensions at O(µ2):

γ(2) = −35

4

(2l + n)n3

l3
+ 9

n3

l2
. (5.26)

Taking the lightcone limit (l ≫ n≫ 1) in (5.26) we find

γ
(2)
l.c. = −17

2

n3

l2
. (5.27)

The anomalous dimensions in the lightcone limit (5.27) agree with eq. (6.40) in

[8], which was obtained independently by considering corrections to the energy

levels in the AdS-Schwarzschild background.
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5.3. OPE data of heavy-light double-trace operators in generic d

In this section we will write the general form of conformal blocks for heavy-

light double-trace operators in the limit ∆H ∼ CT ≫ 1 and general d > 2. These

blocks will be used to confirm the validity of the impact parameter representa-

tion in Appendix B.2 and B.3. Using the impact parameter representation the

OPE data will be related to the bulk phase shift. In particular, we show that

(5.23) remains valid in any number of dimensions and find explicit expressions

for the corrections to the OPE coefficients up to O(µ2).

5.3.1. Conformal blocks in the heavy limit

In order to find conformal blocks in general spacetime dimension d in the

limit ∆H ≫ ∆L, h, h̄, we write them in the following form:

g∆HL,−∆HL
h,h̄

(z, z̄) = (zz̄)
∆H+∆L

2 F (z, z̄), (5.28)

where the function F (z, z̄) does not depend on ∆H and is symmetric with

respect to the exchange z ↔ z̄. Let us now insert the expression (5.28) into the

Casimir equation and consider the leading O(∆H) term:

z
∂

∂z
F (z, z̄) + z̄

∂

∂z̄
F (z, z̄)− (h+ h̄)F (z, z̄) = 0. (5.29)

The most general solution to eq. (5.29) is:

F (z, z̄) = zh+h̄f
( z̄
z

)
, (5.30)

where f is an arbitrary function that satisfies f( 1
x
) = x−h−h̄f(x), since confor-

mal blocks must be symmetric with respect to the exchange z ↔ z̄.

The behaviour of the conformal blocks as z, z̄ → 0 and z/z̄ fixed is given

by [75,148]

g∆12,∆34

∆,l (z, z̄) → l!

(d
2
− 1)l

(zz̄)
∆
2 C

( d2−1)

l

( z + z̄

2
√
zz̄

)
, (5.31)

where ∆ = ∆1 + ∆2 + 2n + l and C
(p)
q (x) are the Gegenbauer polynomials.

Using (5.31), we can completely determine the function f :

f
( z̄
z

)
=

(h− h̄)!

(d
2
− 1)h−h̄

( z̄
z

)h+h̄
2

C
( d2−1)

h−h̄

( z + z̄

2
√
zz̄

)
. (5.32)
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That is, the conformal blocks in the limit of large ∆H are given by

g∆HL,−∆HL
h,h̄

(z, z̄) =
(h− h̄)!

(d2 − 1)h−h̄
(zz̄)

∆H+∆L+h+h̄

2 C
( d2−1)

h−h̄

( z + z̄

2
√
zz̄

)
. (5.33)

It is easy to explicitly check that this form of the conformal blocks agrees with

the one we used in d = 4 in the previous Section.

5.3.2. Anomalous dimensions

In Appendix B.3, we prove the validity of the impact parameter repre-

sentation in any d. This means that the derivation of (5.23) goes through for

arbitrary d. Using known results for the bulk phase shift from [8], we thus find

γ(1) = − h̄
d
2

h
d
2−1

Γ(d)

Γ(d
2
)Γ(d

2
+ 1)

2F1(
d

2
− 1, d− 1,

d

2
+ 1,

h̄

h
). (5.34)

In the lightcone limit (h = l ≫ h̄ = n) this reduces to

γ
(1)
l.c. = − h̄

d
2

h
d
2−1

Γ(d)

Γ(d2 )Γ(
d
2 + 1)

. (5.35)

Similarly, using (5.23) together with Eq. (2.29) and Eq. (A.5) from [8], we find

the O(µ2) corrections to the anomalous dimensions in the limit h, h̄≫ 1:

γ(2) = −δ
(2)

π
+

1

2
γ(1)

{
2

h+ h̄
γ(1) − Γ(d)

Γ
(
d
2

)2 h̄
d
2−1h

d
2−1 (h− h̄)3−d

h+ h̄

}
=

= −
(
h̄d−1

hd−2

)
22d−4Γ

(
d+ 1

2

)
√
πΓ(d)

2F1[2d− 3, d− 2, d,
h̄

h
] +

+
h̄dh2−d

(h+ h̄)

4Γ2(d)

d2 Γ4
(
d
2

)
(

2F1[
d

2
− 1, d− 1,

d

2
+ 1,

h̄

h
]

)2

+

+
h̄d−1(h− h̄)3−d

h+ h̄

Γ2(d)

dΓ4
(
d
2

) 2F1[
d

2
− 1, d− 1,

d

2
+ 1,

h̄

h
]

(5.36)

Taking further the lightcone limit (h≫ h̄) we find that

γ
(2)
l.c. =

h̄d−1

hd−2

22d−4

π

(
dΓ
(
d+1
2

)2

Γ
(
d+2
2

)2 −
√
πΓ
(
d+ 1

2

)

Γ (d)

)
. (5.37)
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The result (5.37) agrees with Eq. (6.42) in [8] which was obtained independently

using perturbation theory in the bulk. In order to see this explicitly, one should

notice the following expression for the hypergeometric function:

3F2(1,−
d

2
,−d

2
; 1 +

d

2
, 1 +

d

2
; 1) =

1

2

(
1 +

Γ4(1 + d
2
)Γ(2d+ 1)

Γ4(d+ 1)

)
. (5.38)

5.3.3. Corrections to the OPE coefficients

So far, we have only considered the imaginary part of the S-channel. The

real part at O(µ) is given by the following expression:

Re(G(z, z̄))|µ =(zz̄)−
1
2 (∆H+∆L)

∫ +∞

0

dh

∫ h

0

dh̄P (0)
(
P (1)

+
1

2
γ(1)(∂h + ∂h̄)

)
g

∆HL,−∆HL

h,h̄
(z, z̄),

(5.39)

which can be rewritten as:

Re(G(z, z̄))|µ = (zz̄)−
1
2 (∆H+∆L)

∫ +∞

0

dh

∫ h

0

dh̄g
∆HL,−∆HL

h,h̄
×

×
(
P (0)P (1) − 1

2
(∂h + ∂h̄)(P

(0)γ(1))
)
+ total derivative.

(5.40)

The total derivative term in (5.40) can be shown to vanish as explained in

Appendix B.5.

To derive a relation between the corrections to the OPE coefficients and the

anomalous dimensions at O(µ), let us consider the limit h, h̄≫ 1 and substitute

h̄ by h everywhere. Using (5.34), one can deduce γ(1) ∝ h. Then, it follows

that (∂h + ∂h̄)(P
(0)γ(1)) ∝ P (0) and hence the second term on the right hand

side of (5.40) behaves as:

(zz̄)−
1
2 (∆H+∆L)

∫ +∞

0

dh

∫ h

0

dh̄
(
− 1

2
g∆HL,−∆HL
h,h̄

(∂h + ∂h̄)(P
(0)γ(1))

)

∝ 1

σ2∆L
.

(5.41)

On the other hand, we know that in the Regge limit the leading contribution

in the T-channel at O(µ) comes from the exchange of the stress tensor. The

real part of its conformal block is proportional to σd, so the T-channel result

behaves as 1
σ2∆L−d . This is way less singular than (5.41). Hence (5.41) must be
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canceled by the first term on the right hand side of (5.40), at least in the limit

h, h̄≫ 1. That is:

P (0)P (1) =
1

2
(∂h + ∂h̄)(P

(0)γ(1)). (5.42)

A similar relation holds for the OPE coefficients of light-light double-trace oper-

ators, e.g. see [14,81,149]. In that case it was observed in [138] that the relation

is not exact in (h, h̄). We expect the same to be true here. Furthermore, the

real part at O(µ2) was given in (2.48) as:

Re(G(z, z̄))|µ2 = (zz̄)−
1
2 (∆H+∆L)

∞∑

h≥h̄≥0

P (0)
(
P (2) − 1

2
(πγ(1))2+

+
1

2
(γ(2) + P (1)γ(1))(∂h + ∂h̄) +

1

8
(γ(1))2(∂h + ∂h̄)

2
)
g∆HL,−∆HL
h,h̄

.

(5.43)

Using the impact parameter representation this can be expressed as:

Re(G(z, z̄))|µ2 =

∫ ∞

0

dh

∫ h

0

dh̄Ih,h̄
(
P (2) − π2

2
(γ(1))2

− 1

2P (0)
(∂h + ∂h̄)(P

(0)(γ(2) + P (1)γ(1))) +
1

8P (0)
(∂h + ∂h̄)

2(P (0)(γ(1))2)
)
,

(5.44)

where we repeatedly integrated by parts. It follows from (5.22) and (5.19),

together with πγ(1) = −δ(1), that the corrections to the OPE coefficients at

O(µ2) satisfy the following relationship:

P (0)P (2) =
1

2
(∂h+∂h̄)(P

(0)(γ(2)+P (1)γ(1)))− 1

8
(∂h+∂h̄)

2(P (0)(γ(1))2). (5.45)

The arguments above are similar to the ones used in [35,29].

5.3.4. Flat space limit

In the flat space limit the relation between the scattering phase shift and

the anomalous dimensions has been previously discussed in [150]. Hence, it is

interesting to consider the flat space limit of eq. (5.5). This limit is achieved by

taking the apparent impact parameter to be much smaller than the AdS radius.

This corresponds to the small L regime or, equivalently, using e−2L = h̄/h to

the 1 ≪ l ≪ n≪ ∆H limit.
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In this limit, according to (5.34), the behavior of γ(1) is given by

γ(1) ∝ n
(n
l

)d−3

. (5.46)

Hence, the γ(1)(∂h + ∂h̄)γ
(1) term in eq. (5.5) behaves as

γ(1)∂nγ
(1) ∝ n

(n
l

)2d−6

. (5.47)

Similarly, using equation (A.5) from [8], one finds that δ(2) behaves as

δ(2) ∝ n
(n
l

)2d−5

. (5.48)

Since (5.47) is subleading to (5.48), in the flat space limit the anomalous di-

mensions are proportional to the phase shift,

γ(2) ≈ −δ
(2)

π
(5.49)

5.4. Discussion

In this section we studied, following [1], a four-point function of pairwise iden-

tical scalar operators, OH and OL, in holographic CFTs in generic dimensions.

Scaling ∆H with the central charge, the CFT data admits an expansion in the

ratio µ ∼ ∆H/CT which we keep fixed. Using crossing symmetry and the bulk

phase shift calculated in [8], we studied O(µ2) corrections to the OPE data of

heavy-light double-trace operators [OHOL]n,l for large l and n. In particular,

the relationship between the bulk phase shift and the OPE data of heavy-light

double-trace operators is found using an impact parameter representation. Fur-

thermore, this allows us in principle to determine the OPE data of [OHOL]n,l,

for l, n≫ 1 to all orders in µ, i.e., to all orders in an expansion in the dual black

hole Schwarzschild radius.

It is interesting that each term in the µ-expansion of the bulk phase shift,

computed in gravity in [8], can be rewritten as an infinite sum of “Regge con-

formal blocks” corresponding to operators of dimension ∆ = k(d− 2) + 2n+ 2

and spin J = 2. Explicitly,

i δ(k)(S, L) = f(k)

∞∑

n=0

λk(n) g
R
k(d−2)+2n+2, 2(S, L) , (5.50)
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where the coefficients (f(k), λk(n)) are listed in Appendix B.6 and we set S ≡
√

−p2 compared to [8]. Here gR
∆,J

(S, L) denotes a “Regge conformal block”,

and is equal to the leading behaviour of the analytically continued T-channel

conformal block in the Regge limit [151,34]

gR∆,J(S, L) = i c∆,J S
J−1 Π∆−1,d−1(L) (5.51)

defined in terms of

1− z =
eL

S
, 1− z̄ =

e−L

S
(5.52)

as S → ∞ and L fixed. Here c∆,J are known coefficients which can be found

in Appendix B.6 and Π∆−1,d−1(L) denotes the (d− 1)-dimensional hyperbolic

space propagator for a massive scalar of mass square m2 = (∆− 1).

To understand the implications of (5.50) consider double-stress tensors

in the lightcone limit. For these, one expect that the dominant contribu-

tion to the bulk phase shift comes from the infinite sum of the minimal twist

double-trace operators built from the stress tensor, schematically denoted by

Tµν∂µ1
· · ·∂µℓTρσ. The expression in (5.50) implies that this infinite sum gives

rise to a contribution which yields a softer Regge behaviour and that it effec-

tively looks like the exchange of a single “effective” operator of the same twist

τ = 2(d − 2), but spin J = 2. At finite impact parameter, one would then

need to add the contributions of an infinite tower of such effective operators

of twist τ = 2(d − 2) + 2n and spin J = 2, as in (5.50). From this point of

view, the coefficients λn in (5.50) can be interpreted as ratios of sums of OPE

coefficients of double-trace operators. A similar structure is present for any k

and we discuss this further in Section 6.5.

It would be interesting to investigate whether Rindler positivity constrains

the Regge behaviour of the bulk phase shift to grow at most linearly with the

energy S, similarly to Section 5.2 in [34]. If this were the case, one would perhaps

only need to understand the origin of the λn to compute the bulk phase shift

purely from the boundary point of view.
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6. Multi-Stress tensors and next-to-leading singularities in the Regge

limit

6.1. Introduction and summary of results

Restricting to CFTs that are holographic, much progress has been made

in using the bootstrap approach to constrain the CFT data perturbatively in

an expansion in 1/CT . Especially interesting are gravitational interactions in

the bulk; these are related to the exchange of multi-stress tensor operators in

the boundary theory, schematically denoted by [T k]n,l. In this Section we will

continue the study of the Regge limit of heavy-heavy-light-light correlators and

the exchange of such operators.

Following [5] and Section 5, the Regge limit of a four-point function of pair-

wise identical light scalar operators is related to the phase shift of 2 → 2 elastic

scattering of highly energetic particles at fixed impact parameter in the bulk

[28-32]46. In the heavy-heavy-light-light case, the phase shift [8] was defined in

the bulk in terms of the Shapiro time delay and the angle deflection of a highly

energetic particle propagating in an AdS-Schwarzschild background. In the

CFT the phase shift is related to a Fourier transform of the correlator and the

expansion parameter is given by µ ∼ ∆H
CT

. At k-th order, the phase shift is given

by a massive scalar propagator in (k(d − 1) − (k − 1))-dimensional hyperbolic

space. On the other hand, the leading Regge behaviour of a conformal block

in d dimensions takes the form of a scalar propagator in (d − 1)-dimensional

hyperbolic space. The higher-dimensional propagators appearing in the phase

shift can, however, be decomposed into infinite sums of propagators with in-

creasing scaling dimensions in Hd−1 [1]. This appears to be a more natural

representation of the phase shift from the boundary point of view.

In particular, we will study the leading and next-to-leading singularities of

the stress tensor sector of the heavy-heavy-light-light correlator in the Regge

limit. This is done perturbatively in µ and the stress tensor sector of the

46 For further discussion about the Regge limit and the phase shift in holographic

CFTs, see also [36,35,34,15].
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correlator G(z, z̄) is given by (after z → e−2πiz, see Section 2.2.2 for a review

on the Regge limit.)

G(σ, ρ) := G0(σ)

∞∑

k=0

µkG(k)(σ, ρ), σeρ = 1− z

σe−ρ = 1− z̄,

(6.1)

where G0(σ) := σ−2∆L is the disconnected correlator and σ → 0 in the Regge

limit with ρ fixed. The stress tensor sector G of the correlator contains the

contribution of multi-stress tensor operators in the direct-channel expansion of

the correlator OL × OL → µk[T k]n,l. Here it is seen that the contribution at

k-th order is due to multi-stress tensors made out of k stress tensors.

At k-th order, the stress tensor sector G(k) behaves as follows in the Regge

limit:

G(k)(σ, ρ) =
Fk,L(ρ)

σk
+
Fk,NL(ρ)

σk−1
+O(σ−k+2) σ → 0, ρ−fixed, (6.2)

for some functions Fk,L(ρ) and Fk,NL(ρ). We define the leading and next-to-

leading Regge singularity of the stress tensor sector of the correlator G(k) at

O(µk) by

Leading Regge singularity :
Fk,L(ρ)

σk
,

Next−to−leading Regge singularity :
Fk,NL(ρ)

σk−1
.

(6.3)

The aim of [5], reviewed in this section, is to calculate Fk,L and Fk,NL for any

value of k and fixed ρ. This is done by Fourier transforming the momentum

space correlator given in terms of the bulk phase shift.

We recall the definition of the Regge limit,

Regge limit : z → e−2πiz with σ → 0, ρ−fixed,

σeρ = 1− z σe−ρ = 1− z̄.
(6.4)

In this limit, we assume that the momentum space correlator B(S, L) is given

by the exponentiation of the bulk phase shift δ(S, L;µ), where S is the energy

and L the impact parameter:

B(S, L) = B0(S)e
iδ(S,L;µ), (6.5)
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where B0(S) is the Fourier transform of the disconnected correlator. The phase

shift δ(S, L;µ) was calculated in Einstein gravity in [8] to all orders in µ and

we denote the k-th term in that expansion δ(k). In the Regge limit S ≫ 1, the

phase shift is linear in S and the leading (∼ σ−k) and next-to-leading Regge

singularities (∼ σ−k+1) of G(k)(σ, ρ) are due to terms in (6.5) of the form:

B(S, L)
∣∣∣
µk

= B0(S)
[(iδ(1))k

k!
+ iδ(2)

(iδ(1))k−2

(k − 2)!
+ . . .

]
, (6.6)

where the ellipses denote terms that contribute at subleading order in σ → 0.

By Fourier transforming the first term in the brackets in (6.6), it is found

that the leading Regge singularities of G are given by

G(k)(σ, ρ)
∣∣∣
σ−k

=
∞∑

n=0

(3iπ)k

k!

(
n+ k − 2

n

)
(∆L)2k+n−1(∆L − 1)1−k−n

× e−(3k+2n)ρ

σk(1− e−2ρ)
,

(6.7)

for k = 1, 2, . . . . This agrees with the result in [104] obtained by considering a

light particle propagating in a shockwave background. In this case, we see that

the leading Regge singularities are fully determined by the phase shift at first

order in µ. The first-order phase shift is in turn fixed by the exchange of the

stress tensor in the CFT and is therefore universal in holographic CFTs (with

a large gap).

The next-to-leading Regge singularity ∼ σ−k+1 at O(µk) gets two contri-

butions, there is a subleading correction in σ coming from (δ(1))k in (6.6) as

well as a contribution from δ(2)(δ(1))k−2 in (6.6). The former gives the following

contribution:

G(k)(σ, ρ)
∣∣∣
(δ(1))k,σ−k+1

=
1

2

∞∑

n=0

(3iπ)k

k!

(
n+ k − 2

n

)
(∆L)2k+n−1(∆L − 1)1−k−n

×
[
(k + n− 1)e−ρ − (2k + n)eρ

] e−(3k+2n)ρ

σk−1(1− e−2ρ)
,

(6.8)

while the latter gives:

G(k)(σ, ρ)
∣∣∣δ(2)(δ(1))k−2,σ−k+1 =

1

320

∞∑

p=0

p∑

n=0

ik−1(3π)k−2

(k − 2)!

(
k + p− n− 3

p− n

)

× (∆L)2k+p−2(∆L − 1)1−k−pλ2(n)c̄6+2n,2
e−(3k+2p−1)ρ

σk−1(1− e−2ρ)
,

(6.9)
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where c̄6+2n,2 are constants given in (2.17). The coefficients λ2(n) are related to

the decomposition of the second-order phase shift into Regge conformal blocks

in (4.3) and are valid assuming there are no higher-derivative corrections in the

bulk gravitational action. Adding (6.8) and (6.9) gives the full expression for

the next-to-leading singularities ∼ σ−k+1 at O(µk) due to multi-stress tensor of

the schematic form [T k]n,l.

In particular, in the limit ρ→ ∞, only the p = 0 term in (6.9) contributes

G(k)(σ, ρ)
∣∣∣
δ(2)(δ(1))k−2,σ−k+1

≈
ρ→∞

35

6

(3iπ)k−1

(k − 2)!
(∆L)2k−2(∆L − 1)1−k

e−(3k−1)ρ

σk−1
.

(6.10)

The result in (6.9) is obtained using the phase shift obtained in Einstein gravity

in the bulk. In the limit ρ → ∞ given in (6.10), the result is expected to be

universal in theories with large gap since there is by now much evidence of uni-

versality in the minimal-twist subsector of multi-stress tensors [102,104,105,2].

In other words, we expect (6.10) to be independent of higher-derivative terms

in the gravitational action. We find perfect agreement between (6.7)-(6.9) and

known results for minimal-twist double-stress and triple-stress tensors obtained

using lightcone bootstrap [80,2].

In Section 6.2, general properties of the heavy-heavy-light-light correlator

in CFTs with large central charge is considered as well as its connection to the

bulk phase shift. In Section 6.3, the procedure for decomposing products of

Regge conformal blocks in d = 2, 4 is described. In Section 6.4, the leading

and next-to-leading Regge singularities in four dimensions are found from the

exponentiation of the phase shift. Section 6.5 is devoted to discussion and the

appendices contain some technical details and further matching with results

obtained from lightcone bootstrap.

6.2. Heavy-heavy-light-light correlator in holographic CFTs

In the lightcone limit, multi-stress tensors with minimal twist and arbitrary

spin dominate. Since the twist is bounded from below, one can study the

correlator perturbatively in a kinematical expansion close to the lightcone. On

the other hand, in the Regge limit multi-stress tensors of highest spin dominate

due to the behaviour σ1−J of the blocks in the Regge limit σ → 0, with J being

the spin. This limit is therefore difficult to study a priori in CFTs. Instead, we
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use the bulk phase shift calculated in the dual gravitational theory to extract

contributions to the stress tensor sector of the correlator in the Regge limit.

Approaching the large impact parameter limit of the Regge limit, we can make

contact with results obtained using lightcone bootstrap.

In Section 6.2, the heavy-heavy-light-light correlator in CFTs is reviewed

with emphasis on its behaviour in the lightcone- and the Regge limit. We then

review known results for the subsector of minimal-twist double- and triple-stress

tensors are studied in the large impact parameter regime of the Regge limit.

Then the connection between the bulk phase shift and the heavy-heavy-light-

light correlator is explained following [8].

6.2.1. The Regge limit of minimal-twist double- and triple-stress tensors

It was argued in [2], as covered in Section 3, that the subsector of minimal-

twist multi-stress tensor operators is universally fixed by crossing symmetry in

terms of the exchange of the stress tensor. The contribution of minimal-twist

multi-stress tensors [T k]
(0)
0,l to the heavy-heavy-light-light correlator takes the

following particular form47:

G(k)
LC(z, z̄) = (1− z̄)k(

d−2
2 )
∑

{ip}
ai1...ikfi1 . . . fik ,

k∑

p=1

ip = k

(
d+ 2

2

)
, (6.11)

with coefficients that were determined in Section 3. Note that each term G(k)
LC

sums an infinite number of multi-stress tensor operators [T k]0,l with twist k(d−
2) and spin 2k + l, for l = 0, 2, . . .. For more details on the minimal-twist

multi-stress tensors, see [2] and Section 3 and 4.

Here we assume a large CT CFT with large ∆gap. Explicitly, we use the

bulk phase shift calculated in the gravitational dual to study the CFT correlator

in the Regge limit. To make contact between the Regge limit and the lightcone

limit, we analytically continue G(k)
LC(z, z̄) according to z → e−2πiz:

G(k),�
LC (z, z̄) := G(k)

LC (ze
−2πi, z̄). (6.12)

Sending also z → 1, we refer to this as the Regge-Lightcone limit.

47 In this section we refer to the results obtained using the light-cone bootstrap by

GLC to distinguish it from the results obtained from the phase shift in this section.

84



Using the explicit results (3.11) for G(2)
LC in d = 4 [80,2], we find the following

leading and next-to-leading singularities in the Regge-Lightcone limit due to

minimal-twist double-stress tensors

G(2),�
LC (σ, ρ) = −9π2∆L(∆L + 1)(∆L + 2)

2(∆L − 2)

e−6ρ

σ2
+

+
[35iπ∆L(∆L + 1)

2(∆L − 2)
+

18π2∆L(∆L + 1)(∆L + 2)

2(∆L − 2)

]e−5ρ

σ
+ . . . ,

(6.13)

where the ellipses denote non-singular terms as σ → 0. Likewise, in the Regge-

Lightcone limit of G(3),�
LC due to the exchange of minimal-twist triple-stress ten-

sors [2], one finds the following leading and next-to-leading singularities in the

Regge limit from (3.12):

G(3),�
LC (σ, ρ)

∣∣∣
σ−3

= −9iπ3∆L(∆L + 1)(∆L + 2)(∆L + 3)(∆L + 4)

2(∆L − 2)(∆L − 3)

e−9ρ

σ3
,

G(3),�
LC (σ, ρ)

∣∣∣
σ−2

=
[
− 105π2∆L(∆L + 1)(∆L + 2)(∆L + 3)

2(∆L − 2)(∆L − 3)

+
27iπ3∆L(∆L + 1)(∆L + 2)(∆L + 3)(∆L + 4)

2(∆L − 2)(∆L − 3)

]e−8ρ

σ2
.

(6.14)

The results (6.13)-(6.14) from lightcone bootstrap will be compared to the re-

sults obtained using the bulk phase shift to study the Regge limit. While we

are mainly interested in terms that behave as σ−k and σ−k+1 at O(µk) in the

Regge limit, the term proportional to σ−1 at O(µ3) is further given by:

G(3),�
LC (σ, ρ)

∣∣∣
σ−1

=
[
i
(1155π∆L(∆L + 1)(∆L + 2)

8(∆L − 2)(∆L − 3)

− 9π3∆L(∆L + 1)(∆L + 2)(∆L + 4)(19 + 7∆L)

4(∆L − 2)(∆L − 3)

)

+
525π2∆L(∆L + 1)(∆L + 2)(∆L + 3)

4(∆L − 2)(∆L − 3)

]e−7ρ

σ
.

(6.15)

6.2.2. Bulk phase shift of a light particle in an AdS black hole background

The relationship between the bulk phase shift and the heavy-heavy-light-

light correlator was described in [8] which we briefly review here for complete-

ness. We consider a four-point function defined on the cylinder parameterized

by time τ and a unit vector n̂ on Sd−1:

G(x) ≡ 〈Ocyl
H (τ4, n̂4)Ocyl

L (τ3, n̂3)Ocyl
L (τ2, n̂2)Ocyl

H (τ1, n̂1)〉. (6.16)
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Inserting the heavy operators at τ4,1 = ±∞ and going to the plane using the

transformation r = eτ , we have

G(x) = (r2r3)
∆L

Ĝ(z, z̄)
x2∆L32

, (6.17)

where the cross-ratios are given by

zz̄ =
x22
x23

= e2(τ2−τ3)

(1− z)(1− z̄) =
x223
x23

= 1 + e2(τ2−τ3) − 2eτ2−τ3 n̂2 · n̂3.

(6.18)

The function Ĝ(z, z̄) can be expanded in conformal blocks on the plane. Espe-

cially, we will be interested in the stress tensor sector G of Ĝ:

G(z, z̄) ≡ Ĝ(z, z̄)
∣∣∣
multi−stress tensors

(6.19)

As we will see, when Fourier transforming the phase shift, there are contribu-

tions to Ĝ(z, z̄) coming from double-trace operators that are of the schematic

form [OLOL]n,l. By definition, these do not contribute to G(z, z̄)
We introduce two points P2 and P3 on the cylinder which differ by

Lorentzian time π and are diametrically opposite on the sphere48, i.e. n̂(P3) =

−n̂(P2). By translational and rotational invariance, the operator OL(x2) is

inserted at P2 and OL(x3) is inserted close to P3 with n̂3 · n̂(P3) = cosϕ.

Starting from Euclidean kinematics, we Wick-rotate by τi → iti and set

t3 − t2 = π + x0 − i ǫ2 , where x0 ≥ 0 parameterizes the time delay. Using

(6.18) one can solve for z, z̄ in terms of x± = x0 ± ϕ:

z = e−ix
+

z̄ = e−ix
−

.
(6.20)

Note that a highly energetic light particle in pure AdS starting at P2 will prop-

agate to the point P3; the (x0, ϕ)-coordinates measure the position of OL(x3)

48 In pure AdS, a null geodesic starting at P2 traverse the bulk and ends at P3.

Below we explore the deviation from this due to the presence of the black hole as first

explored in [8].

86



relative to the point P3. These kinematics are obtained starting with the opera-

tors close to P2, corresponding to x+ ≈ −2π, and then OL(τ3, n̂3) is moved close

to P3 by taking x+ → x+ + 2π. In terms of the cross-ratios, this corresponds

to taking z → e−2πiz. With these kinematics, the correlator G(x) in (6.17) is

given in the Regge limit x± → 0, with their ratio kept fixed, by

G(x) =
Ĝ(z, z̄)

(−x2 − iǫx0)∆L

[
1 +O((x+)2)

]
, (6.21)

with −x2 = (x0)2 − ϕ2.

The phase shift is defined by the following Fourier transform:

B(p) ≡ B0(p)e
iδ =

∫
ddxG(x)e−ipx, (6.22)

where B0(p) denotes the Fourier transform of the disconnected correlator and

eiδ contain the (non-trivial) dynamics of the correlator. Explicitly, the Fourier

transform of the disconnected correlator is given by

B0(p) =

∫
ddx

e−ipx

(−x2 − iǫx0)∆L
= θ(p0)θ(−p2)eiπ∆LC(∆L)(−p2)∆L−

d
2 (6.23)

where

C(∆L) =
2d+1−2∆Lπ1+d

2

Γ(∆L)Γ(∆L − d−2
2 )

. (6.24)

Here the combination θ(p0)θ(−p2) ensures that p lies in the upper Milne wedge

M+.

We further introduce the parametrization pµ =
√

−p2ωµ in terms of two

vectors ω and ē, such that ω2 = ē2 = −1 and ē0 = 1 with all other components

set to 0. Then
S =

√
−p2,

coshL = −ē · ω =
p+ + p−

2
√

−p2
.

(6.25)

Likewise, we define xµ =
√
−x2eµ with e2 = −1 such that
√
−x2 =

√
− log z log z̄,

−e · ē = i log zz̄

2
√− log z log z̄

.
(6.26)

Expanding (6.26) in the Regge limit σ → 0, one finds
√

−x2 = −iσ
(
1 +

σ

2
coshρ+ . . .

)
,

−e · ē = coshρ+
e−2ρ(1− eρ)2(1 + eρ)2

8
σ + . . . ,

(6.27)

where the ellipses denote subleading corrections in σ.
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6.3. Fourier transforming products of Regge conformal blocks

Following [8], we review how a single Regge conformal block in momentum

space can be transformed into position space in any dimension. The leading

result in σ → 0 can then be identified with the leading Regge behaviour of

a conformal block due to an operator exchange in the direct-channel. In the

case when the operator appears in the spectrum, its coefficient is related to the

product of OPE coefficients49.

In Section 6.3.1, we show that a product of Regge conformal blocks in

two dimensions is again a Regge conformal block. In Section 6.3.2, the four-

dimensional case is considered where, on the other hand, it is shown that prod-

ucts of Regge conformal blocks can be decomposed into an infinite sum of Regge

conformal blocks of different twist ∆−J . Using this decomposition, one can do

the Fourier transform and read off the contribution to the position space cor-

relator. In particular, in the limit ρ ≫ 1, only the term with minimal twist in

the decomposition is important. In this limit one can, therefore, approximate

products of Regge conformal blocks in d = 4 with a single Regge conformal

block. This is reminiscent of what happens in d = 2.

A Regge conformal block was defined in [1] by

gR∆,J(S, L) = ic∆,JS
J−1Π∆−1,d−1(L), (6.28)

with Π∆−1,d−1(L) a (d− 1)-dimensional hyperbolic space propagator of a par-

ticle with mass-squared m2 = (∆ − 1)2, defined in (2.55)50, and c∆,J given

by (2.56). Note that the Regge conformal blocks in (6.28) is identical to the

leading Regge behaviour of the analytically continued blocks in (2.54) with the

following replacement S → σ−1 and L→ ρ.

The hyperbolic space propagator in (2.55) can be written in terms of func-

tions Ωiν = iν
2π (Πiν+ d

2−1 −Π−iν+ d
2−1) as

51

Π∆−1(L) =

∫ ∞

−∞
dν

Ωiν(L)

ν2 + (∆− d
2 )

2
, (6.29)

49 The term “effective operator” is used below when the Fourier transform of a Regge

conformal block can be identified with the leading Regge behaviour of a conformal

block even though such an operator does not appear in the t-channel expansion .
50 See e.g. [152] for further details.
51 For brevity, we denote Π∆−1 ≡ Π∆−1,d−1 and likewise for Ωiν .
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which can be shown using (2.55) and deforming the integration contour to com-

pute the integral. The functions Ωiν constitute a basis of regular eigenfunctions

of the Laplacian operator on Hd−1, for more details, see e.g. [152].

Consider the contribution to the correlator due to a single Regge conformal

block of dimension ∆ and spin J :

B(S, L)
∣∣∣
∆,J

= B0(S)λg
R
∆,J(S, L), (6.30)

where λ is a numerical coefficient and B0(S) is the disconnected correlator given

in (6.23). The position space result from (6.30) is given by the Fourier transform

G(x)
∣∣∣
∆,J

= λ

∫

M+

ddp

(2π)d
eipxB0(S)g

R
∆,J(S, L), (6.31)

which by inserting (6.28) and using (6.29) can be written as

G(x)
∣∣∣
∆,J

= ic∆,Jλ

∫

M+

ddp

(2π)d
eipxB0(S)S

J−1

∫ ∞

−∞
dν

Ωiν(ω · ē)
ν2 + (∆− d

2
)2
. (6.32)

We then need the following identity derived in [8]:

21−ae
iπa
2

π
d−2
2

∫

M+

ddpeipxSa−dΩiν(ω · ē) = Γ(
a− d−2

2 +iν

2
)Γ(

a− d−2
2 −iν
2

)

(−x2) a2 Ωiν(e · ē).
(6.33)

Using this identity with a = 2∆L + J − 1 and the disconnected correlator in

(6.23), (6.32) gives

G(x)
∣∣∣
∆,J

=λic∆,J2
J−1e

−iπ(J−1)
2 (−x2)

−2∆L−J+1

2

×
∫ ∞

−∞
dν

Γ(
2∆L+J− d

2+iν

2
)Γ(

2∆L+J− d
2−iν

2
)

ν2 + (∆− d
2
)2

Ωiν(e · ē).
(6.34)

The integrand in (6.34) has simple poles at ±iν = ∆ − d
2
coming from the

denominator as well as poles due to the Γ-functions. The latter corresponds

to the exchange of the double-trace operators [OLOL]n,l; we will not consider

these since by definition they do not contribute to the stress tensor sector. One

can perform the integral in (6.34) by deforming the contour in the lower half-

plane where, in particular, one picks up the pole at iν = ∆− d
2
. This gives the

following contribution to the correlator:

G(x)
∣∣∣
∆,J

= (−x2)−∆Lλ p[∆, J ]
ic∆,JΠ∆−1,d−1(e · ē)

(e
iπ
2

√
−x2)J−1

+ . . . (6.35)
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with the ellipses denoting double-trace operators which will not contribute to

the stress tensor sector G(z, z̄) and we have defined

p[∆, J ] = 2J−1(∆L)∆+J−d
2

(∆L − d− 2

2
)−∆+J+d−2

2
. (6.36)

In particular, we see that by Fourier transforming a contribution in mo-

mentum space of the form (6.30), i.e. the disconnected correlator times a Regge

conformal block, one finds from (6.35) the following contribution to the stress

tensor sector of the correlator:

G(σ, ρ)
∣∣∣
∆,J

= λ p[∆, J ] gR∆,J(
√

−x2, e · ē), (6.37)

valid to subleading order in σ → 0 and we have defined the position space Regge

conformal block

gR∆,J(
√
−x2, e · ē) = ic∆,J

Π∆−1,d−1(e · ē)
(e

iπ
2

√
−x2)J−1

. (6.38)

Note that in (6.37), we have used the relation (6.21) between the correlator on

the cylinder and G(z, z̄) which is valid to subleading order in the Regge limit.

In particular, we will be interested in d = 4 where (6.38) can be written in

terms of (z, z̄) as

gR∆,J (z, z̄) = ic̄∆,Je
iπ(1−J)

2

( log z
log z̄

)−(∆−1)
2 (− log z log z̄)

1−J
2

1− log z̄
log z

, (6.39)

which to subleading order in the Regge limit σ → 0 reduces to

gR∆,J(σ, ρ) = ic̄∆,J
e−(∆−1)ρ

σJ−1(1− e−2ρ)

[
1− σ

4

(
(∆ + J − 2)eρ + (2 + J −∆)e−ρ

)

+O(σ2)
]
.

(6.40)

Comparing the position space Regge conformal block in (6.40) with the con-

formal block in the Regge limit (2.52), it is seen that in four dimensions, the

former can to subleading order in σ → 0 be identified with a conformal block

g�∆,J(σ, ρ). To leading order this holds in any dimension, i.e., using the rela-

tion between (σ, ρ) and (z, z̄) in (6.27) and the known form of the conformal
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blocks (2.54), the contribution to the stress tensor sector G(z, z̄) in (6.37) can

be identified with52:

G(σ, ρ)
∣∣∣
∆,J

= λ2J−1(∆L)∆+J−d
2

(∆L − d− 2

2
)−∆+J+d−2

2
g�∆,J(σ, ρ) + . . . . (6.41)

In what follows, we describe how to decompose products of Regge conformal

blocks into sums of Regge conformal blocks. As we will see in Section 6.4, this is

relevant when one considers the exponentiation of the phase shift which, when

expanded into a series, will result in products of Regge conformal blocks. After

having decomposed these products into sums of Regge conformal blocks, it is

straightforward to use (6.37) to find the contribution to the stress tensor sector

of the correlator. We further note that while the phase-shift is only known

to leading order in S ≫ 1, the leading and next-to-leading singularities in the

Regge limit σ → 0 are not affected by subleading corrections to the phase shift.

6.3.1. Two dimensions

Consider a Regge conformal block in two dimensions:

gR∆,J = ic̄∆,JS
J−1e−(∆−1)L, (6.42)

where c̄∆,J a constant given in (2.53). A product of Regge conformal blocks

with (∆i, Ji) weighted with constants λi is trivially given by:

p∏

i=1

λig
R
∆i,Ji

= ip−1λgR∆,J(S, L), (6.43)

with

∆ =

p∑

i=1

∆i − (p− 1)

J =

p∑

i=1

Ji − (p− 1)

λ =
1

c∆,J

p∏

i=1

λic̄∆i,Ji .

(6.44)

52 We have not checked if this holds also at subleading order in arbitrary dimensions.
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From (6.43), it is seen that the product of Regge conformal blocks in d = 2 is also

a Regge conformal block with (∆, J, λ) given by (6.44). Assume a contribution

in momentum space of the form

B(p)
B0(p)

∣∣∣
{∆i,Ji}

:=

p∏

i=1

λig
R
∆i,Ji

(S, L). (6.45)

Using (6.43)-(6.44), it follows from the Fourier transform in (6.37) that the

product of Regge conformal blocks in (6.45) gives the following contribution to

the stress tensor sector to subleading order in σ:

G(
√
−x2, e · ē)

∣∣∣
{∆i,Ji}

= ip−1λ2J−1(∆L)∆+J−2
2

(∆L)−∆+J
2

gR∆,J(
√

−x2, e · ē).
(6.46)

Because a product of Regge conformal blocks in two dimensions is again a Regge

conformal block, we see that it is trivial to perform the Fourier transform.

6.3.2. Four dimensions

In this section, products of Regge conformal blocks in four dimensions are

considered. In particular, the decomposition of such products into a sum of

Regge conformal blocks is described. Using this decomposition, one can do the

Fourier transform using (6.37).

A Regge conformal block in four dimensions is given by:

gR∆,J = ic̄∆,J
SJ−1e−(∆−1)L

1− e−2L
. (6.47)

Consider a product of p Regge conformal blocks with scaling dimension and

spin (∆i, Ji), i = 1, 2, . . . , p, together with some weights λi:

p∏

i=1

λig
R
∆i,Ji

= ip−1S
J−1e−(∆0−1)L

(1− e−2L)p

p∏

i=1

λic̄∆i,Ji , (6.48)

where

∆0 =

p∑

i=1

∆i − (p− 1),

J =

p∑

i=1

Ji − (p− 1).

(6.49)
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Expanding the factor (1−e−2L)−p+1 in (6.48) into a sum, the product of Regge

conformal blocks in (6.48) can be written as

p∏

i=1

λig
R
∆i,Ji

=
ip−1SJ−1e−(∆0−1)L

(1− e−2L)

p∏

i=1

λic̄∆i,Ji

∞∑

n=0

(
n+ p− 2

n

)
e−2nL. (6.50)

Compared to the two-dimensional case, it is seen from (6.48)-(6.50) that prod-

ucts of Regge conformal blocks in four dimensions decompose into an infinite

sum of Regge conformal blocks with dimensions ∆n = ∆0 + 2n and spin J .

Explicitly, the product of Regge conformal blocks have the following decompo-

sition:
p∏

i=1

λig
R
∆i,Ji

(S, L) = ip−1
∞∑

n=0

λng
R
∆n,J

(S, L), (6.51)

with

∆n =

p∑

i=1

∆i + 2n− (p− 1),

J =

p∑

i=1

Ji − (p− 1),

λn =
1

c∆n,J

(
n+ p− 2

n

) p∏

i=1

λic̄∆i,Ji .

(6.52)

Using the decomposition (6.51), it is straightforward to write down the

Fourier transform of products of Regge conformal blocks using (6.37). Explicitly,

a term in momentum space of the form (6.51)

B(p)
B0(p)

∣∣∣
{∆i,Ji}

:=

p∏

i=1

λig
R
∆i,Ji

(S, L), (6.53)

with ∆n, J, λn given by (6.52), gives the following contribution to the stress

tensor sector:

G(
√

−x2, e · ē)
∣∣∣
{∆i,Ji}

= ip−1
∞∑

n=0

p[∆n, J ]λng
R
∆n,J

(
√

−x2, e · ē), (6.54)

to subleading order in σ. Here p[∆, J ] is the product of Pochhammer symbols

defined in (6.36).
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6.4. Regge limit of the stress tensor sector and the bulk phase shift

In this section, the heavy-heavy-light-light correlator is studied assuming that

the correlator in momentum space is given by

B(p) = B0(p)e
iδ(S,L;µ), (6.55)

where δ(S, L;µ) is the bulk phase shift. The phase shift was calculated to all

orders in a perturbative expansion in µ in [8]:

δ(S, L;µ) =

∞∑

k=0

µkδ(k)(S, L). (6.56)

It was further shown in [1] that δ(k) :=
∑∞
n=0 δ

(k)
n can be decomposed in terms

of Regge conformal blocks as

i δ(k)n (S, L) = f(k) λk(n) g
R
τ0(k)+2n+2,2

(S, L)

λk(n) = a(n)
2−4n

[(
τ0(k)+4

2

)

n

]2

(
τ0(k)+3

2

)

n

(
τ0(k)+5

2

)

n

, τ0(k) = k(d− 2)
(6.57)

with

f(k) =

√
π

64

1

2k(d−2) k!

Γ
(
kd+1

2

)
Γ
(
k(d−2)+4

2

)

Γ
(
k(d−2)+5

2

)
Γ
(
k(d−2)+3

2

) ,

a(n) =
22n

n!

τ0(k) + 2

τ0(k) + 2 + 2n

( τ0(k)−d+2
2 )n(

τ0(k)+1
2 )n

(τ0(k) + n+ 2− d
2 )n

.

(6.58)

Note that λ1(n) = 0 for n = 1, 2, . . . implying that the first-order phase shift

reduces to a single term in (6.57). Expanding the exponential in (6.55) results

in a sum of products of Regge conformal blocks. Using the decomposition

of such products in four dimensions described in Section 6.3, we read off the

contribution to the stress tensor sector G of the correlator from the phase shift.

At k-th order, the stress tensor sector of the correlator behaves as

G(k)(σ, ρ) =
Fk,L(ρ)

σk
+
Fk,NL(ρ)

σk−1
+O(σ−k+2) σ → 0, ρ−fixed, (6.59)
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for some functions Fk,L(ρ) and Fk,NL(ρ) in the Regge limit. The leading and

next-to-leading Regge singularity of the stress tensor sector of the correlator

G(k) at O(µk) were defined in (6.3) by

Leading Regge singularity :
Fk,L(ρ)

σk
,

Next−to−leading Regge singularity :
Fk,NL(ρ)

σk−1
.

(6.60)

By expanding (6.55) and Fourier transforming terms propoportional to Sk and

Sk−1 at O(µk), the leading- and next-to-leading singularities are found pertur-

batively in µ53. In particular, the leading singularities in the Regge limit comes

from the exponentiation of the first-order phase shift. We find perfect agreement

with the calculation of a light particle propagating in a shockwave background

in [104]. It is then shown, from the exchange of stress tensor, that there is no

correction to δ(1) of O(S0) for large S ≫ 1. Using this knowledge, we calcu-

late the next-to-leading Regge singularities to all orders in µ. Both the leading

and next-to-leading order Regge singularities agree in the Regge-Lightcone limit

with known results obtained using lightcone bootstrap [80,2].

6.4.1. Leading Regge singularities

In this section, the leading terms in the correlator as σ → 0, which were

defined in (6.60) as the leading Regge singularities, at each order in µ are studied

in four dimensions. Expanding (6.55), these come from the exponentiation of

the first-order phase shift δ(1):

B(p) = B0(p)e
iµδ(1) + . . .

= B0(p)
∞∑

k=0

µk
[ ik
k!
(δ(1))k +O(Sk−1)

]
.

(6.61)

A term proportional to Sk will, after Fourier transform to position space, scale

as σ−k when σ → 0. This will be the leading Regge singularity at O(µk).

53 For fixed value of n the sum over k can be performed with a finite radius of

convergence.
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The first-order phase shift is given by (6.57)

iδ(1) =
1

240
g4,2(S, L)

= i
3π

2

Se−3L

1− e−2L
.

(6.62)

The term at O(µk) in (6.61) is a product of k Regge conformal blocks with

dimension ∆ = 4 and spin J = 2. Using the decomposition of products of

Regge conformal blocks (6.51)-(6.52), the expansion of the momentum space

correlator in (6.61) can be written in terms of Regge conformal blocks with

∆k,n = 3k + 2n+ 1,

Jk = k + 1,
(6.63)

where n = 0, 1, . . .. Using (6.37) to do the Fourier transform of each Regge

conformal block, this gives the following contribution to the stress tensor sector

of the correlator:

G(k)(σ, ρ)
∣∣∣
(δ(1))k

=
∞∑

n=0

1

k!

(
ic̄4,2
240

)k (
n+ k − 2

n

)
(∆L)∆k,n+Jk−4

2

× (∆L − 1)−∆k,n+Jk+2

2

(−i)
c∆k,n,Jk

gR∆k,n,Jk(
√

−x2, e · ē),
(6.64)

valid to subleading order in σ with k = 1, 2, . . ..

The leading Regge singularities can be written in terms of (σ, ρ) using√
−x2 ≈ −iσ and −e · ē ≈ coshρ. From (6.64) we find:

G(k)(σ, ρ)
∣∣∣
(δ(1))k

=

∞∑

n=0

(3iπ)k

k!

(
n+ k − 2

n

)
(∆L)∆k,n+Jk−4

2

× (∆L − 1)−∆k,n+Jk+2

2

e−(∆k,n−1)ρ

σJk−1(1− e−2ρ)
+ . . . ,

(6.65)

where the ellipses denote terms subleading in σ → 0. Explicitly, inserting the

dimensions and spins (∆k,n, Jk) given in (6.63), we find

G(k)(σ, ρ)
∣∣∣
(δ(1))k

=

∞∑

n=0

(3iπ)k

k!

(
n+ k − 2

n

)
(∆L)2k+n−1(∆L − 1)1−k−n

× e−(3k+2n)ρ

σk(1− e−2ρ)
+ . . . .

(6.66)
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The sum over n can further be written as a hypergeometric function:

G(k)(σ, ρ)
∣∣∣
(δ(1))k

=
(3iπ)k

k!σk(1− e−2ρ)
(∆L)2k−1(∆L − 1)1−k

× e−3kρ
2F1(k − 1,∆L + 2k − 1;−∆L + k + 1;−e−2ρ) + . . . .

(6.67)

These are the leading Regge singularities, i.e., terms that behave as σ−k at

O(µk), to all orders in µ. The result (6.67) agrees with the calculation in a

shockwave background in [104], for details, see Appendix C.1. In particular,

consider the terms in the sum in (6.67) with k = 2, 354:

G(2)(σ, ρ)
∣∣∣
σ−2

≈
ρ→∞

− 9π2∆L(∆L + 1)(∆L + 2)

2(∆L − 2)

e−6ρ

σ2
,

G(3)(σ, ρ)
∣∣∣
σ−3

≈
ρ→∞

− 9iπ3∆L(∆L + 1)(∆L + 2)(∆L + 3)(∆L + 4)

2(∆L − 2)(∆L − 3)

e−9ρ

σ3
,

(6.68)

where we have further taken the limit ρ → ∞. The leading Regge singularities

in (6.68) agree with those in (6.13)-(6.14); the latter were found using lightcone

bootstrap [80,2] and are due to minimal-twist double-stress and triple-stress

tensors.

We note that the first-order phase shift is to leading order in σ fixed by the

exchange of stress tensor in the direct channel in the CFT [8]. It is therefore

universally fixed by Ward identities and does not depend on higher derivative

corrections to the gravity action.

It is seen that the leading Regge singularities in (6.66), which can be iden-

tified with the leading behaviour of a conformal block in the Regge limit with

dimension ∆k,n = 3k + 2n + 1 and spin Jk = k + 1, have poles and zeroes

specified by the Pochhammer symbols to be given by:

Zeroes : ∆L = −(2k + n− 2),−(2k + n− 3), . . . , 0

Poles : ∆L = 2, 3, . . . , k + n.
(6.69)

The position of the poles and zeroes are seen to be related to the dimension

and spin of the blocks that are present in the decomposition of (δ(1))k. Possible

54 Note that we assume that ∆L is not an integer. For integer ∆L, there is a

mixing problem between multi-stress tensors and double-trace operators [OLOL]n,l

for suitable choice of n, l. This is discussed e.g. in [104].
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implications of the position of poles and zeroes were discussed in [104]. In

particular, it is expected that the OPE coefficients of multi-stress tensors with

minimal-twist have the same poles as predicted by (6.69) with n = 0. This

agrees with the results in [102,80,2]. Moreover, we further expect from (6.69)

the OPE coefficients for non-minimal-twist multi-stress tensors to have poles at

∆ = 2, 3, . . . , k+n, with n being related to the twist by τ = k(d−2)+2n. This

is expected due to the potential mixing when ∆L is an integer and there no

longer a clean separation between the multi-stress tensors and the double-trace

operators [OLOL]n,l.

6.4.2. The first-order phase shift and the stress tensor exchange

The phase shift in (6.56) calculated in the bulk is linear in the energy

S ≫ 1. In principle, it could receive corrections in an 1
S expansion that will be

important when expanding (6.55). On the other hand, from the CFT point of

view, the stress tensor is the only operator that appears at O(µ) in the stress

tensor sector. Using this, we show that there is no correction to δ(1) in four

dimensions of order O(S0).

The stress tensor exchange in four dimensions is found using the known

OPE coefficients and the conformal block given. Explicitly, one finds the fol-

lowing contribution as σ → 0:

P
(HH,LL)
Tµν

g�4,2(σ, ρ) = µ
3πi∆Le

−3ρ

(1− e−2ρ)

1

σ
− µ

3πi∆Le
−2ρ

(1− e−2ρ)
+O(σ). (6.70)

On the other hand, expanding the momentum space correlator in (6.55)

one finds at O(µ):

B(p) = B0(p)iµδ
(1) +O(µ2), (6.71)

with the first-order phase shift in d = 4 given in (6.62). Fourier transforming

(6.71) using (6.37) gives the following contribution to the correlator in position

space:

G(σ, ρ)
∣∣∣
δ(1)

= µ
3πi∆Le

−3ρ

(1− e−2ρ)

1

σ
− µ

3πi∆Le
−2ρ

(1− e−2ρ)
+O(σ). (6.72)

where we used p[4, 2] = 2∆L. Comparing the contribution from the stress tensor

in the Regge limit (6.70), with the contribution from δ(1) in (6.72), we find that

both the leading and next-to-leading terms as σ → 0 agree55. This shows that

there is no O(S0) correction to the first-order phase shift.

55 Since the leading terms were known to agree, this follows immediately from the

observation below (6.40).
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6.4.3. Next-to-leading Regge singularities

In this section, the next-to-leading Regge singularities are considered, i.e.

terms proportional to σ1−k at O(µk), to all orders in µ. These will be due to

terms in (6.55) of the form (δ(1))k that were calculated in Section 6.4, and terms

of the form (δ(1))k−2δ(2) which are of O(Sk−1) for S ≫ 1. The contribution

to the next-to-leading Regge singularities from terms of the form (δ(1))k are

therefore given by (6.64).

Consider terms in (6.55) of the form (δ(1))k−2δ(2):

B(p)
B0(p)

∣∣∣
δ(2)(δ(1))k−2

=
µkik−1

(k − 2)!
(δ(1))k−2δ(2), (6.73)

with k = 2, 3, . . .. Inserting the decomposition of δ(2) from (6.57)

iδ(2) = f(2)
∞∑

n=0

λ2(n)g
R
4+2n,2(S, L) (6.74)

and the first-order phase shift (6.62), we rewrite (6.73) as

B(p)
B0(p)

∣∣∣
δ(2)(δ(1))k−2

=
µkik−1

(k − 2)!

(3π
2

)k−2 ∞∑

n=0

f(2)λ2(n)c̄6+2n,2

× Sk−1e−(3k+2n−1)L

(1− e−2L)k−1
.

(6.75)

Expanding (1− e−2L)−k+2, we find

B(p)
B0(p)

∣∣∣
δ(2)(δ(1))k−2

= f(2)
µkik−1

(k − 2)!

(3π
2

)k−2

×
∞∑

n,m=0

(
m+ k − 3

m

)
λ2(n)c̄6+2n,2 ×

Sk−1e−(∆n,m−1)L

1− e−2L
,

(6.76)

with

∆n,m = 3k + 2(n+m). (6.77)

Comparing the product of Regge conformal blocks in (6.73) with (6.76), it is seen

that the latter is a decomposition into Regge conformal blocks with dimensions

3k+ 2(n+m) and spin k. This can conveniently be organized into blocks with

different twists

B(p)
B0(p)

∣∣∣
δ(2)(δ(1))k−2

= f(2)
µkik−1

(k − 2)!

(3π
2

)k−2
∞∑

p=0

p∑

n=0

(
k + p− n− 3

p− n

)

×λ2(n)c̄6+2n,2
Sk−1e−(3k+2p−1)L

1− e−2L
.

(6.78)
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To get the next-to-leading order Regge singularities from (6.78), it is enough

to use the leading order relation
√
−x2 = −iσ and −e · ē = coshρ. This is so

since terms in (6.78) are of O(Sk−1) and therefore start to contribute at σ−k+1

in position space. Using (6.37) to perform the Fourier transform of each term

in the sum, one finds that (6.78) gives the following contribution to the next-

to-leading order Regge singularities in the stress tensor sector:

G(k)(σ, ρ)|δ(2)(δ(1))k−2 = 2f(2)

∞∑

p=0

p∑

n=0

ik−1(3π)k−2

(k − 2)!
(∆L)2k+p−2

(∆L − 1)1−k−p

(
k + p− n− 3

p− n

)
λ2(n)c̄6+2n,2

e−(3k+2p−1)ρ

σk−1(1− e−2ρ)

+ . . . ,

(6.79)

where the ellipses denote subleading corrections in σ. To get the full result for

the next-to-leading Regge singularities we need to add the contribution from

(6.64). This is found using the correction to the position Regge conformal block

(6.40) and the leading order expression (6.66)

G(σ, ρ)(k)
∣∣∣
(δ(1))k,σ−k+1

=
1

2

∞∑

n=0

(3iπ)k

k!

(
n+ k − 2

n

)
(∆L)2k+n−1(∆L − 1)1−k−n

×
[
(k + n− 1)e−ρ − (2k + n)eρ

] e−(3k+2n)ρ

σk−1(1− e−2ρ)
.

(6.80)

The next-to-leading Regge singularities to all orders in µ is therefore given by

the sum of (6.79) and (6.80).

Consider the ρ → ∞ limit in which only the p = n = 0 term in (6.79)

contributes. In this limit, (6.79) reduces to

G(σ, ρ)(k)|δ(2)(δ(1))k−2 ≈
ρ→∞

35

6

(3iπ)k−1

(k − 2)!
(∆L)2k−2(∆L − 1)1−k

e−(3k−1)ρ

σk−1
. (6.81)

This is the contribution of δ(2)(δ(1))k−2 to the next-to-leading Regge singularity

at k-th order in the Regge-Lightcone limit.

Including the contribution to the next-to-leading Regge singularity from

(6.80) due to (δ(1))k together with (6.81), we find for ρ→ ∞ at O(µ2):

G(2)(σ, ρ)
∣∣∣
σ−1

=
[35iπ∆L(∆L + 1)

2(∆L − 2)
+

18π2∆L(∆L + 1)(∆L + 2)

2(∆L − 2)

]e−5ρ

σ
. (6.82)
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Likewise, consider the next-to-leading singularity at O(µ3) which using (6.80)

and (6.81) gives

G(3)(σ, ρ)
∣∣∣
σ−2

=
[
− 105π2∆L(∆L + 1)(∆L + 2)(∆L + 3)

2(∆L − 2)(∆L − 3)

+
27iπ3∆L(∆L + 1)(∆L + 2)(∆L + 3)(∆L + 4)

2(∆L − 2)(∆L − 3)

]e−8ρ

σ2
.

(6.83)

Comparing the next-to-leading Regge singularities when ρ → ∞, (6.82) and

(6.83), with (6.13)-(6.14), respectively, we find agreement between the result

obtained here using the phase shift and known results obtained using lightcone

bootstrap.

Similarily to the leading Regge singularities, the next-to-leading singular-

ities due to δ(2)(δ(1))k−2 have a simple dependence on the scaling dimension

∆L – the poles and zeroes are fixed by the dimension and spin of the Regge

conformal blocks appearing in the decomposition (6.78). From (6.79), the poles

and zeroes are found to be given by:

Zeroes : ∆L = −(2k + p− 3),−(2k + p− 3), . . . , 0

Poles : ∆L = 2, 3, . . . , k + p.
(6.84)

Note that the poles are the same as those for the leading Regge singularities in

(6.69).

6.5. Discussion

Using the first- and second-order phase shift, we derived the leading and

next-to-leading Regge singularities of the stress tensor sector to all orders. The

leading Regge singularity at each order was shown to be determined by the first-

order phase shift. This is universally fixed by the stress tensor exchange and our

results agree with the expression obtained in [104]. The next-to-leading Regge

singularity at each order further depends on the second-order phase shift. In

general, the second-order phase shift is expected to be non-universal in the sense

that it depends on higher derivative corrections to the gravitational action in

the bulk. However, it is expected to be universal in the large impact parameter,

see [6] for the phase shift calculated in Gauss-Bonnet gravity where this indeed

is the case.
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It has been argued in [102,104,105,2] that the minimal-twist multi-stress

tensor sector of CFTs with large central charge is universal, i.e. independent

of higher-derivative corrections to the gravitational action. This was argued

from the holographic point of view in [102,104]. There the two-point function

of a minimally coupled scalar propagating in an AdS black hole background was

studied in higher derivative gravity56. In [2] it was shown that the ansatz (6.11)

solves the crossing relations and that the minimal-twist subsector of the stress

tensor sector is, therefore, determined in terms of the exchange of the stress

tensor. Since the stress tensor exchange is fixed by Ward identities, this implies

that the minimal-twist subsector is universal. In terms of the phase shift, this

would imply that when decomposing the phase shift in terms of Regge conformal

blocks, the contribution proportional to the block with the lowest twist at each

order is universal. It would be interesting to study explicitly the effect of higher

derivative terms on the phase shift and verify this. Universality in the minimal-

twist sector would imply that the Regge-Lightcone limit of our results for the

next-to-leading Regge singularities is universal.

While we have focused on d = 4, it would be interesting to understand how

to extend this to general dimensions. In particular, in d = 6, the hyperbolic

space propagators take a similar form as in d = 4 and it would be interesting to

find a similar decomposition of products of Regge conformal blocks. Moreover,

for large impact parameter L, the hypergeometric function in (2.55) can be set

to 1 in any dimension. In this limit the Regge conformal blocks in any dimension

resemble the two-dimensional blocks.

Consider the exponentiation of the phase shift in d = 4 at O(µ3):

B(p)
∣∣∣
µ3

= B0(p)
[
− i

(δ(1))3

3!
− δ(1)δ(2) + iδ(3)

]
. (6.85)

The leading and next-to-leading Regge singularities obtained from (6.85) were

already discussed in Section 6.4. In Appendix C.2, it is shown that including

56 A non-minimally coupled scalar was considered in [153] and was shown to lead

to corrections. However, such corrections are suppressed by inverse powers of the

higher-spin gap ∆gap as shown in [37]
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the first subleading correction for σ → 0 to the Fourier transform of the δ(1)δ(2)

term in (6.85), one finds for ρ→ ∞

G(3)(σ, ρ)
∣∣∣
δ(1)δ(2),σ−1

≈
ρ→∞

525π2∆L(∆L + 1)(∆L + 2)(∆L + 3)

4(∆L − 2)(∆L − 3)

e−7ρ

σ
. (6.86)

This agrees with the third line in (6.15) obtained using lightcone bootstrap.

More interesting is the last term in (6.85) given by the phase shift at third

order. It gives the following contribution to the stress tensor sector of the

correlator:

G(3)(σ, ρ)
∣∣∣
δ(3)

= f(3)
∞∑

n=0

λ3(n)p[τ0(3) + 2n+ 2, 2] g�
τ0(3)+2n+2,2

(σ, ρ), (6.87)

to leading order in σ → 0 and λk(n) is given by the decomposition of the phase

shift in (6.57). In particular, when ρ→ ∞, only the n = 0 term contributes:

G(3)(σ, ρ)
∣∣∣
δ(3)

≈
ρ→∞

1155iπ∆L(∆L + 1)(∆L + 2)

8(∆L − 2)(∆L − 3)

e−7ρ

σ
. (6.88)

This agrees with the term in the first line in (6.15) due to minimal-twist triple-

stress tensors obtained from lightcone bootstrap. The remaining term in (6.15)

presumably comes from subsubleading corrections to (δ(1))3 as well as possible

subleading corrections to the second-order phase shift.

Following the discussion57 above on the term linear in S at O(µ3), it is

interesting to study terms linear in S at any order in µ:

B(p)
∣∣∣
µk,S

= B0(p)iδ
(k). (6.89)

The corresponding contribution to the stress tensor sector to leading order in

σ → 0 can, in any dimension, be identified with the leading Regge behaviour of

operators O∆k,n,J=2 with scaling dimension and spin given by

∆k,n = k(d− 2) + 2n+ 2,

J = 2.
(6.90)

We refer to these operators as effective58 in the sense that they are not nec-

essarily present in the spectrum, but rather are due to the resummation of

57 A similar discussion was previously considered in [1] and we elaborate on it here.
58 Or poles at J = 2 in the complex J -plane.
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multi-stress tensor with arbitrary spin. The contribution linear in S in (6.89) is

easily Fourier transformed using (6.37) and the decomposition of the phase shift

in terms of Regge conformal blocks (6.57). Explicitly, it is found that (6.89)

gives the following contribution to the stress tensor sector of the correlator to

leading order in σ → 0 in any dimension d:

µkG(k)(σ, ρ)
∣∣∣
δ(k)

= µkf(k)

∞∑

n=0

p[k(d− 2) + 2n+ 2, 2]λk(n) g
�

k(d−2)+2n+2,2(σ, ρ),

(6.91)

where λk(n) and f(k) are given in (6.57), p[∆, J ] is a combination of Pochham-

mer symbols defined in (6.36) and g�∆,J(σ, ρ) is the leading contribution of a

conformal block in the Regge limit. Interpreting each term in (6.91) as due to

the exchange of an effective operator O∆k,n,2, the coefficients in (6.91) are prod-

ucts of the corresponding OPE coefficients for such exchanges59 PHH,LLO∆k,n,J=2
=

µkf(k)p[k(d− 2) + 2n+ 2, 2]λk(n):

PHH,LLO∆k,n,2
= µk

√
π(k(d− 2) + 2)( (k−1)(d−2)

2
)n

[
(k(d−2)+4

2
)n

]2
(k(d−2)+1

2
)n

25+k(d−2)+2nk!n!(k(d− 2) + 2n+ 2)( 2k(d−2)−d+2n+4
2 )n

× Γ(k(d−2)+4
2

)Γ(dk+1
2

)Γ(∆L + k(d−2)+2n−d+4
2

)Γ(∆L − k(d−2)+2n
2

)

Γ(∆L)Γ(∆L − d−2
2

)Γ(k(d−2)+2n+3
2

)Γ(k(d−2)+2n+5
2

)
.

(6.92)

In [40] it was shown using conformal Regge theory that when the correlator is

dominated by an isolated pole in the J-plane, the corresponding exchange is

due to a light-ray operator60. It would be interesting to understand if there is

an interpretation of the operators O∆k,n,2 mentioned here, which are directly

related to the phase shift, in terms of such light-ray operators. See also [41,42].

Note that λk(n) from (6.57) are valid assuming Einstein gravity in the bulk.

While expected to be non-universal for general n, we expect the λk(0) coefficient

in the phase shift to be universal and therefore (6.92) with n = 0 to be universal,

i.e. independent of higher-derivative gravitational terms in the action.

59 Note that we assume that ∆L is not an integer.
60 The simplest light-ray operator is the ANEC operator, which is the stress tensor

operator integrated over a light-ray. See [40] for a detailed discussion and definition

of light-ray operators.

104



7. Thermal Stress Tensor Correlators, OPE and Holography

In this section we move on from the study of scalar correlators in heavy

states to the study of the stress tensor two-point function at finite temperature

(in holographic CFTs) based on [4].

7.1. Introduction and summary of results

Hydrodynamics describes low-energy excitations in matter at finite tem-

perature and density [154]. A lot of interest was attracted to the hydrodynam-

ics of conformal field theories at strong coupling and large central charge CT ,

which admit a dual gravitational (holographic) description [11-13]. Transport

coefficients can be extracted from the two-point functions of the stress tensor

(TT-correlators) at finite temperature and holography maps these correlators to

two-point functions of metric perturbations in a black hole background [51-54].

Holographic value of the shear viscosity is much closer to the experimentally

observed values for quark-gluon plasma than perturbative calculations (see e.g.

[155,156] for reviews). The ratio of the shear viscosity to the entropy density

was shown to be universal, η/s = ~/4πkB, in all theories with Einstein gravity

duals [53,54,157,55] However, the addition of higher derivative terms to the

gravity Lagrangian changes this value [158-160]. What does this imply for the

hydrodynamics of strongly interacting field theories?

In a way, gravity provides a minimal model for strongly interacting matter,

where the only degrees of freedom are the stress tensor and its composites,

multi-stress tensors – they are encoded by the fluctuations of the metric in

the dual theory. From a CFT point of view, such a minimal model is defined

by the OPE coefficients and the spectrum of anomalous dimensions of multi-

trace operators. Consider the OPE coefficients which determine the three-point

functions of the stress-tensor, which are specified by the three parameters in d >

3 dimensions. They change as the bulk couplings in front of the gravitational

higher derivative terms are varied.61 Presumably these OPE coefficients do not

completely determine the theory, but is it possible that some sector of the theory

is universal?

61 Note that we expect consistent holographic models with generic graviton three-

point couplings to also contain higher spin fields [15].
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We can make progress in answering this question by decomposing the TT

correlator using the OPE expansion. In a minimal theory the operators that

appear are multi-stress tensor operators62 and one can in principle deduce the

conformal data working order-by-order in the temperature T = β−1 [in d space-

time dimensions k-stress tensors naturally contribute terms O(β−dk)]. A simi-

lar question was recently asked in a simpler setting where a finite temperature

state (dual to a black hole) was probed by scalars [102]. A scalar two-point

function has a piece which can be computed near the boundary of asymptoti-

cally AdS spacetime – this is precisely the term which encodes the contribution

of multi-stress tensors. Another piece, left undetermined in the near-boundary

expansion, contains the contributions of multi-trace operators which involve the

external scalar operator.

To compute it, one needs to solve the equation of motion in the whole

spacetime – a nontrivial task in practice. 63

What happens when a thermal state (or, in the dual language, a black

hole) is probed by the stress-tensor operators? In this work we attempt to

decompose this correlator by generalizing the analysis of [102] to the case of

external operator being the stress tensor. Here we consider the contributions of

the identity operator, the stress tensor and the double stress tensors to the cor-

relator. One immediate technical complication that we face is that the external

operator with which we probe the system, namely the stress tensor, has inte-

ger conformal dimension. In [102] it was observed that some OPE coefficients

have poles for integer values of the conformal dimension of the external scalar

62 In this work we consider Einstein gravity as a holographic model – it is believed

to be a consistent truncation. In other words, in the dual CFT language, couplings to

other operators and corrections to the OPE coefficients are suppressed by the (large)

gap in the spectrum of the conformal dimensions of higher spin operators – see e.g.

[37] for a recent discussion.
63 In [2] an alternative way of computing the stress-tensor sector of the scalar corre-

lator using conformal bootstrap and an ansatz, motivated by [80], was proposed. The

procedure of [2] allows one to compute the OPE coefficients with the leading twist

multi-stress tensors. The result has many similarities to the Virasoro HHLL vacuum

block (see e.g. [3,8,77,78]) but at the moment the full resummed correlator in d > 2

is only known in the ∆ → ∞ limit [106]. (see [1,5,6,7,104,65,105,161-169] for related

work).
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operator. This feature is related to mixing of double stress and double trace

operators. The OPE coefficients for both series have poles which cancel, leaving

behind logarithmic terms. One can also observe that the coefficients of these

terms cannot be fixed by the near-boundary analysis [102,163]. See Appendix

D.1 for a discussion on the appearance of logarithmic terms in the case when

the scaling dimension is an integer.

In the case of the stress tensor the double-trace operators made out of the

external operator Tµν are also double stress tensor operators. One may wonder

if their OPE coefficients can be determined from the near boundary analysis.

The answer turns out to be no. Another important difference from [102] is

related to the leading behavior of the OPE coefficients of two stress tensors

and a double stress tensor. This OPE coefficient scales like one, as opposed

to O(C−1
T ) in the scalar case, and gives rise to the disconnected part of the

correlator. This implies that the connected part of the TT correlator contains

information about conformal data which is subleading in the 1/CT expansion.

This leads to some complications, but in the end, we succeed at extracting the

leading 1/CT contributions to the anomalous dimensions of the double trace

operators. Other conformal data at this order remains undetermined – it should

be thought of as an analog of the double trace operator data in the external

scalar case.

Let us mention another technical difficulty that we need to confront in the

case of external stress tensors. In [102] the symmetry implies that the bulk-

to-boundary propagator depends on the time t, the spatial radial coordinate ρ

and the AdS radial coordinate r. This is no longer the case in the stress-tensor

case, due to the presence of distinct polarizations. We handle this by computing

stress-tensor correlators integrated over two parallel (xy)-planes separated in the

transverse spatial direction, which we denote by z. There are three indepen-

dent choices of polarization, distinguished by the transformational properties

with respect to rotations of the plane of integration. A suitable modification

of the ansatz used in [102] allows us to solve the stress tensor problem. How-

ever, integrating over the xy-plane leads to some divergent contributions and

to additional logarithmic terms. Fortunately, this does not affect our ability to

extract the anomalous dimensions.
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The rest of this section is organized as follows. In Section 7.2, we consider

metric perturbations on top of a planar AdS-Schwarzschild black hole and com-

pute the stress tensor two-point function in a near-boundary expansion (OPE

limit in the dual CFT). In Section 7.3, we perform the OPE expansion of the

stress tensor thermal two-point function in d = 4 and by comparison to the

bulk calculations in the previous section, we read off the anomalous dimensions

of double-stress tensor operators with spin J = 0, 2, 4. We conclude with a dis-

cussion in Section 7.4. In Appendix D.1, we treat the simpler example of scalar

perturbations in the bulk as a toy model for the metric perturbations, focusing

on the subtleties that arise for external operators with integer dimensions. In

addition, we consider scalar correlators integrated over the xy-plane and show

how the correct OPE data is recovered in this case. Appendix D.2 lists some of

the results that are too lengthy to present in Section 7.2. In Appendix D.3 we

introduce conventions and details on the spinning conformal correlators relevant

for the decomposition of thermal stress tensor two-point functions.

7.2. Holographic calculation of thermal TT correlator in d = 4

Recently some OPE coefficients of scalars and multi-stress tensors were cal-

culated in the context of holographic models [102,163]. This was accomplished

by making a comparison between the CFT conformal block decomposition of

HHLL correlators on the CFT side and a near-boundary expansion of the bulk-

to-boundary propagator in the AdS-Schwarzschild background on the bulk side.

Our goal in this work is to use an analogous approach to extract the CFT

data64 for the stress tensor two-point function in a thermal state dual to the

AdS-Schwarzschild black hole, in this section we will focus on the bulk part

of this calculation. In practice we will consider the integrated version of the

correlator

Gµν,ρσ(t, z) :=

∫

R2

dxdy〈Tµν(xα)Tρσ(0)〉β. (7.1)

To compute the TT correlator, it is necessary to consider the linearized

Einstein equations in the black hole background. For technical reasons, we will

64 By the CFT data we mean products of the OPE coefficients and thermal one-

point functions and anomalous dimensions of the double-trace stress tensors. This will

be explained in greater detail in the next section.
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take the large volume limit, where all conformal descendants decouple and an

expansion in terms of conformal blocks becomes the OPE expansion. On the

bulk side, this corresponds to considering the planar asymptotically AdS black

hole. The corresponding system of PDEs is technically difficult to solve because

different polarizations mix with each other65. To make the problem tractable,

we integrate the correlator over two spatial directions in (7.1). The resulting

fluctuation equations simplify to three independent PDEs for the three different

polarizations. We show explicitly that an ansatz of [102,163], suitably modified

to fit our needs, successfully solves these equations.

As a warm-up exercise, we consider the scalar case, discussed in [102,163],

but now integrate over the xy-plane. The details of this calculation are de-

scribed in D.1, but the summary is as follows. For non-integer values ∆L of

the conformal dimensions of the scalar operator all coefficients in the ansatz are

fixed, order-by-order, by imposing the scalar field equations of motion in the

bulk. Matching to the conformal block expansion then yields the OPE coeffi-

cients of scalars and multi-stress tensors, which reproduce the results of [102].

Note that the integrals are only convergent for large ∆L, but their analytic

continuation to small ∆L yields the correct results.

For integer ∆L there is mixing between multi-stress and multi-trace op-

erators, which results in logarithmic terms [102]. This mixing is reflected in

the appearance of the log r terms in the bulk ansatz [163]; a closely related

fact is that not all coefficients in the ansatz are now determined by the bulk

equations of motion. For example, for ∆L = 4 there is one undetermined pa-

rameter at O(µ2); it corresponds to an undetermined factor in a double-trace

OPE coefficient.

As explained in Appendix D.1, the addition of spatial integration leads

to an additional undetermined coefficient in the ansatz. This coefficient is,

roughly speaking, related to the volume of the xy-plane we are integrating over.

In practice, we use dimensional regularization, so instead of the volume, a 1/ǫ

pole appears in the expression for this undetermined coefficient. The other

65 Because of this complication, we have to deal with the set of metric fluctuations

that depend on all five bulk coordinates, hence one can not use the approach introduced

in [102,163].
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undetermined coefficient is related to the logarithmic term, just as in the non-

integrated case. In summary, we conclude that in the scalar case, the spatial

integration does not affect our ability to read off the OPE data.

In this section we perform the bulk calculations for the case where the

external operator is the stress-tensor. In other words, we compute the OPE

expansion for the thermal TT correlator in holographic CFTs. This section is

organized as follows. First we consider metric perturbations around a planar

AdS-Schwarzschild black hole. Then we integrate out two out of five space-

time directions and, following [170,171], we utilize the resulting O(2) symmetry

together with the bulk gauge freedom to reformulate the problem in terms of

the three gauge invariant combinations of the gravitational fluctuations in the

AdS-Schwarzschild background. The resulting PDEs can then be solved one by

one using the ansatz [102,163], naturally adapted to the integrated case. Finally,

using the holographic dictionary, we derive the stress tensor two-point function

in a thermal state for various polarizations. In Section 7.3 we compare these

results with the CFT conformal block decomposition and extract conformal

data.

7.2.1. Linearized Einstein equations

We consider the Einstein-Hilbert action with a cosmological constant66

S =
1

16πG5

∫
d5x

√
g(R− 2Λ), (7.2)

where G5 is the five-dimensional gravitational constant, R is the Ricci scalar

and Λ is the cosmological constant. Decomposing the metric in the background

part plus a small perturbation hµν , one obtains the linearized Einstein equations

in the form

R(1)
µν + dhµν = 0, (7.3)

where R
(1)
µν is the linearized Ricci tensor and d is the dimension of the conformal

boundary, i.e. d = 4 in our case.

We will be interested in the planar AdS-Schwarzschild black hole as the

background spacetime,

ds2 = r2f(r)dt2 + r2d~x2 +
1

r2f(r)
dr2, (7.4)

66 We will be using the Euclidean signature throughout.

110



where ~x = (x, y, z) and f(r) = 1− µ
r4 .

By solving the linearized Einstein equations (7.3) with the appropriate

boundary conditions, we obtain the metric perturbation hµν and, in principle,

the holographic dictionary then precisely determines the correlators in the four-

dimensional CFT on the boundary. However, due to the complicated form of

these equations, this is difficult to do in practice.

To make this problem tractable, we integrate the bulk-to-boundary prop-

agator over the xy-plane. This will simplify the equations of motion to three

independent PDEs, which we will be able to solve using the ansatz [102,163]. As

a result, the corresponding CFT correlators, which we obtain via holographic

dictionary, will be integrated over the xy directions. This will be studied in

Section 7.3 from the CFT point of view.

7.2.2. Polarizations and gauge invariants

Our aim is to solve the linearized Einstein equations (7.3) in the background

(7.4), with the solution integrated over two spatial directions, which we can

choose to be x and y.

Upon integration, the (linearized) gravitational action will exhibit an O(2)

rotational symmetry. This property allows us to divide the components hµν

into three representations (referred to as channels in this context) which can be

studied separately:

Sound− channel : htt, htz, hzz, hrr, htr, hzr, hxx + hyy

Shear− channel : htx, hty, hzx, hzy, hrx, hry

Scalar− channel : hαβ − δαβ(hxx + hyy)/2.

(7.5)

The sound channel has spin 0, shear channel has spin 1 and the scalar channel

(whose equations of motion will be identical to that of the scalar) has spin 2

under O(2).

In every channel, we can define a quantity Zi [170,171], that is invariant

under the gauge transformations hµν → hµν −∇µξν−∇νξµ of the gravitational

bulk theory. In the position space these are

Z1 = ∂zHtx − ∂tHxz

Z2 = 2f∂2zHtt − 4∂t∂zHtz + 2∂2tHzz −
(
(f +

r

2
f ′)∂2z + ∂2t

)
(Hxx +Hyy)

Z3 = Hxy,

(7.6)
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whereHtt = htt/fr
2, Hti = hti/r

2 andHij = hij/r
2 for i, j ∈ {x, y, z}, f = f(r)

is the function appearing in the black hole metric and the prime denotes the

derivative with respect to r. As is conventional, we refer to Z1, Z2 and Z3 as

the shear channel invariant, the sound channel invariant and the scalar channel

invariant, respectively.

We can now choose a particular channel, take the linearized Einstein equa-

tions (7.3) and assume the metric perturbation to be of the form hµν =

hµν(t, z, r). Combining the resulting equations, we get PDEs for the invari-

ants. To express the explicit form of these equations it will be useful to define

the following quantities:

c1 = (3µ2 − 8µr4 + 5r8)/r5

c2 = 2µ(r4 − µ)/r5

c3 = (µ− r4)2/r4

c4 = 16µ2(r4 − µ)/(3r10)

c5 = 1 + µ(µ− 4r4)/(3r8)

c6 = 2− 4µ/(3r4)

c7 = (µ2 − 6µr4 + 5r8)/r5

c8 = (r4 − µ)(9µ2 − 16µr4 + 15r8)/(3r9)

c9 = −(µ− 3r4)(µ− r4)2/(3r8).

(7.7)

The equations of motion for the invariants are then given by67

0 = (∂2t + f∂2z)
2Z1 +

(
c1(∂

2
t + f∂2z ) + c2(∂

2
t − f∂2z)

)
Z ′
1 + c3(∂

2
t + f∂2z )Z

′′
1

0 = (c4∂
2
z + c5∂

4
z + c6∂

2
t ∂

2
z + ∂4t )Z2 + (c7∂

2
t + c8∂

2
z )Z

′
2 + (c3∂

2
t + c9∂

2
z )Z

′′
2

0 = (∂2t + f∂2z)Z3 + c7Z
′
3 + c3Z

′′
3 .

(7.8)

7.2.3. Ansatz and the vacuum propagators

In order to solve (7.8) we need to find the bulk-to-boundary propagators

Zi, which are related to the invariants by

Zi(t, z, r) =

∫
dt′dz′Zi(t− t′, z − z′, r)Ẑi(t

′, z′), (7.9)

67 These are the equations one obtains by Wick rotating and Fourier transforming

the corresponding PDEs in [170].
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where Ẑi is related to the boundary value (up to derivatives) of Zi as will be

explained below. To solve the equations of motion we use the ansatz [102,163]

introduced for the case of a scalar field in a black hole background, suitably

modified for our integrated case. Let us briefly review its derivation and the

logic behind its construction.

Although in d = 4 the bulk equations cannot be solved analytically, one

can try to find an expansion of the solution corresponding to the OPE limit on

the boundary and extract the CFT data. The intuition behind this limit is the

expectation that the bulk solution becomes sensitive only to the near-boundary

region as the CFT operators approach each other. It was demonstrated in

[102,163] that such a bulk regime is given by68

r → ∞ with rt, rz fixed. (7.10)

In [102,163] it was found by explicit computation that this regime partly deter-

mined the correlator in the OPE limit and therefore contains information about

the CFT data. In this section we will explore the same near-boundary limit,

suitably generalized for the integrated correlator. To realize (7.10), it is useful

to introduce new coordinates defined by

ρ = rz

w2 = 1 + r2t2 + r2z2 .
(7.11)

In these coordinates the limit is r → ∞ with w and ρ held fixed. By explicit

calculations, we will again see that this is a relevant near-boundary expansion

which will retain interesting CFT data in the OPE limit that we read off.

According to [102], one expects the solution to be of the form of the product

of the AdS propagator and an expansion in 1/r, where at each order we have

a polynomial
∑
i αi(w)ρ

i. Substituting this into the equations of motion, we

can find analytical solutions for all αi(w). Imposing regularity in the bulk

and demanding the proper boundary behaviour69, we determine the integration

constants and find the coefficients αi(w) as polynomials in w.

68 Note that in the original non-integrated case one has |~x| instead of z.
69 By the proper boundary behaviour we mean that the boundary limit of the bulk

solution should reproduce the form of the boundary correlators expected from the

boundary CFT.
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If there are logarithmic terms70 Zi takes the form [163]

Zi = ZAdS
i

(
1 +

1

r4

(
G4,1
i +G4,2

i log r
)
+

1

r8

(
G8,1
i +G8,2

i log r
)
+ . . .

)
,

(7.12)

where ZAdS
i is the vacuum bulk-to-boundary propagator for the invariant Zi

and G4,j
i , G8,j

i , . . ., j ∈ {1, 2}, i ∈ {1, 2, 3} are given by71 (we suppress the

channel index for simplicity)

G4,j =
2∑

m=0

4−m∑

n=−2

(a4,jn,m + b4,jn,m logw)wnρm,

G8,j =
6∑

m=0

8−m∑

n=−6

(a8,jn,m + b8,jn,m logw)wnρm.

(7.13)

Here G4,j corresponds to the stress tensor contribution (∝ µ1) and G8,j cor-

responds to the double-stress tensor contributions. We expect to find b4,1 = 0

and G4,2 = 0 in all three channels.

The vacuum propagator ZAdS
i for the i-th channel can be determined us-

ing the AdS bulk-to-boundary propagators for the various components of the

metric perturbation. Let us describe this calculation in more detail. The AdS

propagator for Hµν was computed in [172] and in the five dimensional bulk case

can be expressed as

Gµν,ρσ =
10r4

π2(1 + r2(t2 + ~x2))4
JµαJνβPαβ,ρσ, (7.14)

where Jµν and Pµν,ρσ are given by

Jµν = δµν −
2xµxν

1
r2

+ t2 + ~x2

Pµν,ρσ =
1

2
(δµρδνσ + δνρδµσ)−

1

4
δµνδρσ.

(7.15)

70 Logarithmic terms appear, for example, in the case of a scalar field with integer

conformal dimension ∆L or in the presence of anomalous dimensions as in the case

of the stress tensor thermal two-point function. They can also be produced upon

integration. We comment more on the origin of these terms in Appendix D.1.
71 We use the bounds of the sums as they were derived for the case of a scalar field

[102,163]. As we will see, this will be valid also for the stress tensor case in the scalar

and shear channels. In the sound channel we will need a slight modification of the

ansatz.
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Integrating over the x and y directions, we get

Gµν,ρσ(t, z, r) ≡
∫

R2

dxdyGµν,ρσ(t, x, y, z, r), (7.16)

and the (integrated) AdS solution for Hµν is given by

Hµν(t, z, r) =

∫
dt′dz′Gµνρσ(t− t′, z − z′, r)Ĥρσ(t

′, z′), (7.17)

where Ĥµν are the sources, i.e. the values of the bulk solution on the conformal

boundary.

Substituting (7.17) into the definitions of the invariants (7.6), one can ac-

cordingly read off the AdS bulk-to-boundary propagators ZAdS
i .

Here we list the resulting expressions for some particular choices of the

sources:

Sources (t, z, r)-result (w, ρ, r)-results

Ĥxy ZAdS
3 = r2

π(r2(t2+z2)+1)3
= r2

πw6

Ĥtx ZAdS
1 = − 6r4z

π(r2(t2+z2)+1)4
= −6r3ρ

πw8

Ĥxz ZAdS
1 = 6r4t

π(r2(t2+z2)+1)4
=

6r3
√
w2−1−ρ2
πw8

Ĥtz ZAdS
2 = − 192r6tz

π(r2(t2+z2)+1)5
= −192r4ρ

√
w2−1−ρ2

πw10

Ĥtt ZAdS
2 = −24(r6(t2−7z2)+r4)

π(r2(t2+z2)+1)5
= −24r4(w2−8ρ2)

πw10

Ĥxx ZAdS
2 =

24r4−72r6(t2+z2)
π(r2(t2+z2)+1)5

= 24r4(4−3w2)
πw10

Ĥzz ZAdS
2 =

24r4(r2(7t2−z2)−1)
π(r2(t2+z2)+1)5

= 24r4(7w2−8(1+ρ2))
πw10

At this point, we have all the pieces needed for the ansatz (7.12). Inserting

it into equations (7.8), we can determine the coefficients ak,jn,m and bk,jn,m. We

next proceed to discuss the results channel by channel.

7.2.4. Scalar channel

We begin by considering the scalar channel where the equation of motion

(7.8) has the simplest form. We confine our attention to the contributions due

to the identity operator (µ0), the stress tensor (µ1) and double-stress tensors

(µ2). We are therefore interested in finding G4,1
i , G4,2

i , G8,1
i and G8,2

i in the

ansatz (7.12).

In the scalar channel, we may either turn on the source Ĥxy 6= 0 or Ĥxx =

−Ĥyy 6= 0. Since these differ only by an O(2) rotation, the corresponding bulk

115



solutions, as well as the form of the action will be identical. For this reason, we

will restrict our attention to the case where Ĥxy 6= 0. Hence, the invariant Z3

is given by

Z3(t, z, r) =

∫
dt′dz′Z(xy)

3 (t− t′, z − z′, r)Ĥxy, (7.18)

where Z(xy)
3 is the bulk-to-boundary propagator72.

Transforming equation (7.8) into the (w, ρ, r)-coordinates with Z(xy)
3 given

by (7.12), we find the solution at O(µ),

Z(xy)
3

∣∣∣
µ1

=
µ
(
w6 + w4 + 6w2 − 2ρ2

(
w4 + 2w2 + 3

)
− 12

)

10πr2w8
. (7.19)

As expected, there are no log terms in this case. At O(µ2) we find

Z(xy)
3

∣∣∣
µ2

=
µ2

8400πr6w10

[
120w10

(
−4ρ2 + 5w2 − 6

)
(log(w)− log(r)) + 655w8

+ 448w6 + 3136w4 − 12656w2 + 56ρ4
(
10w8 + 20w6 + 35w4 + 44w2 + 36

)

− 4ρ2
(
750w10 + 40w8 + 345w6 + 476w4 + 448w2 − 2016

)
+ 8064

]

+
1

πr6

[(
1− 6ρ2

)
a
8,1(xy)
6,0 + a

8,1(xy)
8,0

(
w2 − 8ρ2

)]
,

(7.20)

where the coefficients a
8,1(xy)
6,0 and a

8,1(xy)
8,0 are not fixed by the near-boundary

analysis. We also see the presence of log terms which are due to the xy-

integration and the anomalous dimensions of the double-stress tensors.

7.2.4.1. Gxy,xy

We now use the holographic dictionary to determine the thermal correlator

Gxy,xy. The action for the scalar invariant Z3 (and Z1 and Z2 below) can be

obtained by Fourier transforming and Wick rotating the result obtained in [170]:

S3 =
π2CT
160

lim
r→∞

∫
dtdzr5

(
1− µ

r4

)
∂rZ3(t, z, r)Z3(t, z, r). (7.21)

The invariant Z3(t, z, r) is fully determined by the bulk-to-boundary propagator

Z(xy)
3 via Eq. (7.18). To compute the action (7.21) we expand Z(xy)

3 near r = ∞
as

Z(xy)
3 (t, z, r) =

1

2
δ(2)(t, z) +

1

r4
ζ
(xy)
3 (t, z) + . . . , (7.22)

72 The superscript index in the parenthesis specifies the choice of the non-zero

sources.

116



where the dots represent subleading contact terms of O(r−2) of the schematic

form ∂nδ/rn as well as contributions analytic in (t, z) that are O(r−6). As we

will see, in the scalar channel Gxy,xy ∝ ζ
(xy)
3 .

To proceed, we substitute the bulk-to-boundary propagator into the action

(7.21):

S3 =
π2CT
160

lim
r→∞

∫
d2xd2x′d2x′′(r5 − µr)∂rZ(xy)

3 (x− x′, r)Z(xy)
3 (x− x′′, r)Ĥxy(x

′)Ĥxy(x
′′)

=− π2CT
20

∫
d2xd2x′ζ(xy)3 (x− x′)Ĥxy(x)Ĥxy(x

′),

(7.23)

where in the second line we have integrated the delta function. We have used

an abbreviated notation x = {t, z}, x′ = {t′, z′} and x′′ = {t′′, z′′} and omitted

contact terms (see e.g. [173] for a review on holographic renormalization and

the treatment of contact terms).

We can now compute the CFT correlator,

G(bulk)
xy,xy = 〈Txy(t, z)Txy(0, 0)〉β = − δ2S3

δĤxy(t, z)δĤxy(0, 0)
=
π2CT
20

ζ
(xy)
3 (t, z)

(7.24)

Inserting the explicit bulk solution, we obtain the following results order-by-

order in µ:

G(bulk)
xy,xy

∣∣∣
µ0

=
πCT

10(t2 + z2)3

G(bulk)
xy,xy

∣∣∣
µ1

=
πµCT (t

2 − z2)

100(t2 + z2)2

G(bulk)
xy,xy

∣∣∣
µ2

=
πµ2CT
4200

(
3
(
5t2 + z2

)
log
(
t2 + z2

)
− 2

(
75t2z2 + 61z4

)

t2 + z2

)

+
1

10
πCT

(
a
8,1(xy)
8,0

(
t2 − 7z2

)
− 6z2a

8,1(xy)
6,0

)
.

(7.25)

We will compare them with the CFT calculations in the next section.

7.2.5. Shear channel

We can repeat the procedure above to solve the shear channel bulk equation

(7.8) the sources Ĥtx and Ĥxz and express the results in terms of w, ρ and r.

The explicit expressions are listed in Appendix D.2. We will now use them to

determine Gtx,tx and Gxz,xz using the AdS/CFT dictionary; these calculations

are summarized below.
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7.2.5.1. Gtx,tx and Gxz,xz

The action for the shear channel invariant is given by73 [170]

S1 =
π2CT
160

lim
r→∞

∫
dtdz

(
1− µ

r4

)
r5

∂2t + ∂2z
(
1− µ

r4

)∂rZ1(t, z, r)Z1(t, z, r)

=
π2CT
160

lim
r→∞

∫
dtdz

(
r5

∂2t + ∂2z
+O(r2)

)
∂rZ1(t, z, r)Z1(t, z, r).

(7.26)

We begin by turning on the source Ĥtx and follow the same approach as in

the previous section. The shear channel invariant is given by

Z1(t, z, r) =

∫
dt′dz′Z(tx)

1 (t− t′, z − z′, r)Ĥtx, (7.27)

where Z(tx)
1 is the bulk-to-boundary propagator corresponding to our choice of

source.

The near-boundary expansion of Z(tx)
1 reads

Z(tx)
1 =

1

2
∂zδ

(2)(t, z) +
1

r4
ζ
(tx)
1 +

log r

r4
ζ
(tx)
1,log + . . . , (7.28)

where the dots correspond to contact terms which are O
(
r−2
)
and non-contact

terms which are O
(
r−6
)
. Here, however, we encounter log r terms in the ex-

pansion,

ζ
(tx)
1,log = −

z
(
840a

8,2(tx)
8,0 + 41µ2

)

140π
. (7.29)

The log r term in (7.28) will lead to a divergence in the correlator as r → ∞,

unless the value of the coefficient a
8,2(tx)
8,0 is fixed to be

a
8,2(tx)
8,0 = − 41

840
µ2. (7.30)

Using the expansion (7.28) in the action (7.26) and proceeding as in the

tensor channel case, we obtain

Gbulktx,tx =
π2CT
10

∂z
∂2t + ∂2z

ζ
(tx)
1 (7.31)

73 Note the presence of the inverse operator (∂2
t +∂2

z)
−1 which is a Fourier transform

of (ω2 + q2)−1 that appears in the action derived in [170].
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Thus, we arrive at

G
(bulk)
tx,tx

∣∣∣
µ0

=− 1

∂2t + ∂2z

3πCT
(
t2 − 7z2

)

5 (t2 + z2)
5

G
(bulk)
tx,tx

∣∣∣
µ1

=
1

∂2t + ∂2z

3πµCT
(
t4 − 6t2z2 + z4

)

200 (t2 + z2)
4

G
(bulk)
tx,tx

∣∣∣
µ2

=− 1

∂2t + ∂2z

[
πµ2CT
8400

(
2
(
669t4z2 + 804t2z4 + 271z6

)

(t2 + z2)
3 + 123 log

(
t2 + z2

)
)

+
3

5
πa

8,1(tx)
8,0 CT

]
.

(7.32)

Here we keep the inverse operator (∂2t +∂
2
z )

−1 explicit, as in the later comparison

we will act on the corresponding CFT expressions with the operator ∂2t + ∂2z .

The correlator G
(bulk)
xz,xz can be computed in a similar way and the result is

presented order-by-order in µ in Appendix D.2.

7.2.6. Sound channel

We now consider the sound channel. Closer inspection reveals that in the

sound channel the form of the ansatz must be modified due to a technical issue

present for the diagonal sources. We first explain how it arises and how to treat

it and then proceed with the computation of the holographic TT correlators.

7.2.6.1. Modified ansatz

We find that for the source Ĥtz, we are able to extract the corresponding

results in the sound channel using the same ansatz as in the scalar and shear

channels. However, we observe that if we turn on any of the diagonal sources

Ĥtt, Ĥzz, Ĥxx or Ĥyy, then the ansatz of the form (7.12) is no longer valid.

The reason for this stems from the structure of the vacuum solution ZAdS
2

in these cases. Let us take Ĥtt 6= 0 as an example. In this case the AdS

propagator has the form −24r4(w2−8ρ2)
πw10 . From (7.12) it is clear that the ansatz

will only be valid if the actual solution of the bulk equations is proportional to

(w2 − 8ρ2) to all orders in µ. This condition is too restrictive and, as one can

show directly, is not satisfied in the case of the equation (7.8).
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To solve this issue for the diagonal terms, we separate the vacuum contri-

bution74:

Zdiag
i = ZAdS

i +
(
G4,1
i +G4,2

i log r
)
+

1

r4

(
G8,1
i +G8,2

i log r
)
+ . . . , (7.33)

with G4, G8, . . . defined by

G4,j =
4∑

m=0

−4−m∑

n=−12

(a4,jn,m + b4,jn,m logw)wnρm,

G8,j =
8∑

m=0

−m∑

n=−16

(a8,jn,m + b8,jn,m logw)wnρm.

(7.34)

The upper and lower bounds of the sums were determined in the same way as it

was done at the beginning of this Section. Ultimately, using the original ansatz

(7.12) for the off-diagonal sources and the modified one (7.33) for the diagonal

ones, allows us to solve the equation of motion (7.8). The results are presented

in Appendix D.2.

7.2.6.2. Gtz,tz, Gtt,tt, Gzz,zz and Gxx,xx

The action for the sound invariant has the form [170]

S2 =− 3π2CT
640

lim
r→∞

∫
dtdz

r5
(
1− µ

r4

)
(
3∂2t + ∂2z

(
3− µ

r4

))2 ∂rZ2(t, z, r)Z2(t, z, r)

=− π2CT
1920

lim
r→∞

∫
dtdz

(
r5

(∂2t + ∂2z )
2
+O(r2)

)
∂rZ2(t, z, r)Z2(t, z, r).

(7.35)

Expanding bulk-to-boundary propagators for our choices of the sources,

eliminating the non-local divergent log r term and proceeding as above, we even-

tually obtain

Gbulkab,ab =
1

(∂2t + ∂2z )
2
Dabζ

(ab)
2 , (7.36)

74 The form of this ansatz is deduced from the structure of the expected CFT results,

see the next section.
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where ζ
(ab)
2 is the 1/r4 term in the near-boundary expansion of the correspond-

ing bulk-to-boundary propagator Z(ab)
2 for the source Ĥab and the operator Dab

is given by

Dtz = −π
2CT
30

∂t∂z,

Dtt =
π2CT
30

∂2z ,

Dzz =
π2CT
30

∂2t .

(7.37)

Using the explicit form of the bulk-to-boundary solution we find that the

correlation function G
(bulk)
tz,tz is given by

G
(bulk)
tz,tz

∣∣∣
µ0

=− 1

(∂2t + ∂2z )
2

96πCT
(
3t4 − 34t2z2 + 3z4

)

5 (t2 + z2)
7

G
(bulk)
tz,tz

∣∣∣
µ1

=
1

(∂2t + ∂2z )
2

4πµCT
(
−t6 + 15t4z2 − 15t2z4 + z6

)

15 (t2 + z2)
6

G
(bulk)
tz,tz

∣∣∣
µ2

=− 1

(∂2t + ∂2z )
2

2πµ2CT
(
133t8 − 1408t6z2 − 110t4z4 + 88t2z6 + 65z8

)

1575 (t2 + z2)
5 ,

(7.38)

and analogously for the G
(bulk)
tt,tt and G

(bulk)
zz,zz (see Appendix D.2).

We find that we need to be more careful when analyzing the case of G
(bulk)
xx,xx

(and, similarly, G
(bulk)
yy,yy ). If we turn on the source Ĥxx we find a contribution

not only from the action S2 but also from S3; the result is

Gbulkxx,xx = Gbulkxy,xy −
π2CT
60

1

(∂2t + ∂2z )
ζ
(xx)
2 . (7.39)

The resulting expression for Gbulkxx,xx can be found in Appendix D.2. In the

following section we will compare these results to their CFT counterparts.

7.3. Stress tensor thermal two-point function in d = 4

In this section we study the stress tensor two-point function on S1
β ×Rd−1,

where β = T−1 is the inverse temperature, in holographic CFTs, that is, CFTs

with large central charge CT ≫ 1 and a large gap in the spectrum of higher-spin

single-trace operators ∆gap ≫ 1. The case of the purely scalar correlator is re-

viewed and extended to the integrated correlator in Appendix D.1, it serves as

a useful toy model to study before considering the technically more complicated
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spinning correlator. Using the stress tensor OPE, we isolate the contribution

from multi-stress tensor operators [T k]J and read off the CFT data (OPE coeffi-

cients, thermal one-point functions and anomalous dimensions) via a comparison

to the bulk calculations of metric perturbations around a black hole background

in the previous section. In particular, we read off the anomalous dimensions of

multi-stress tensor operators of the schematic form : TµνTρσ :, : Tµ
ρTρν : and

: T ρσTρσ : with spin J = 0, 2, 4, respectively.

7.3.1. OPE expansion and multi-stress tensor contributions

The contributions of the multi-stress tensor operators to the thermal two-

point function of the stress-tensor in (7.1) can be computed using the OPE,

which can be schematically written as

Tµν(x)× Tρσ(0) ∼
1

x2d

[
1 +

3∑

i=1

xdλ
(i)
TTTA

(i), αβ
µνρσ Tαβ(0)

+ x2d
∑

J=0,2,4

∑

i∈iJ
λ
(i)
TT [T 2]J

B(i), µ1...µJ
µνρσ [T 2]µ1...µJ (0) + . . .

]
,

(7.40)

where [T k]µ1...µJ are spin-J multi-stress tensor operators, the ellipses denote

higher multi-trace operators and their descendants and i0 = {1}, i2 = {1, 2}
and i4 = {1, 2, 3}. On S1

β × Rd−1 only multi-stress tensors [T k]µ1...µJ with

dimension ∆k,J = dk+O(C−1
T ) contribute since the thermal one-point function

of operators with derivatives will vanish due to translational invariance see e.g.

[57,4] 75. Here the label (i) denotes the different structures appearing in the

OPE of spinning operators. The structures A
(i), αβ
µνρσ and B

(i), µ1...µJ
µνρσ are further

fixed by conformal symmetry and depend on xµ/|x|. Upon inserting the OPE

(7.40) in the thermal two-point function (7.1), we find that each term consists of

a product of a kinematical piece and the thermal one-point functions 〈[T k]J〉β,
weighted by the OPE coefficients λ

(i)

TT [Tk]J
. The thermal one-point functions

are fixed by symmetry up to an overall coefficient (see e.g. [56,57])

〈[T k]µ1...µJ 〉β =
b[Tk]J
β∆k

(eµ1
· · · eµJ − traces), (7.41)

75 In other words, only operators [T k]J with no derivatives but various contractions

of indices survive. We therefore denote these operators by the total spin J and the

number of stress tensors k. Note also that descendants do not contribute to the two-

point function on S1
β ×Rd−1.
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where eµ is a unit vector on S1
β . Rather than using the explicit OPE (7.40)

together with the thermal expectation value (7.41), we will use the conformal

block expansion in a scalar state and take the OPE limit, see Appendix D.3 and

[102,7]. To read off the CFT data we compare this to the bulk computations

in a planar black hole background. The bulk result is shown to be consistent

with the OPE expansion and we determine the O(C−1
T ) anomalous dimensions

γ
(1)
J of the double-stress tensor operators of the schematic form : TµνTρσ :,

: Tµ
ρTρν : and : T ρσTρσ :. We further determine the product of coefficients

〈[T 2]J=0,2,4〉βλ(i)TT [T 2]J
to leading order in C−1

T and partially at subleading order.

Let us now review the expected scaling with CT due to multi-stress tensors

appearing in the OPE. The central charge CT is defined by the stress tensor

two-point function in the vacuum

〈Tµν(x)Tρσ(0)〉 =
CT
x2d

[1
2
(IµρIνσ +

1

2
IµσIνρ)−

1

d
δµνδρσ

]
, (7.42)

where Iµν = Iµν(x) = δµν − 2xµxν
x2 . The CFT data is encoded in a perturbative

expansion in C−1
T and a generic k-trace operator [Ok] with dimension ∆k gives

the following contribution in the OPE limit76 |x|/β → 0:

〈Tµν(x)Tρσ(0)〉β|[Ok] ∝ |x|∆k−2d 〈TµνTρσ[Ok]〉〈[Ok]|〉β
〈[Ok][Ok]〉 . (7.43)

Here we are interested in the case of multi-trace stress tensor operators [Ok] =

[T k]J which have a natural normalization

〈[T k]J [T k]J 〉 ∼ CkT , (7.44)

which follows from the completely factorized contribution. In holographic CFTs

dual to semi-classical Einstein gravity, the connected part of correlation func-

tions of stress tensors is proportional to CT :

〈TµνTρσ[T k 6=2]J〉 ∼ CT . (7.45)

76 In general, the OPE expansion is a complicated function of xµ, below, we just

keep the scaling with |x|. We further suppress the indices of the operators appearing

in the OPE.
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An important exception to (7.45) occurs for k = 2 where there is a disconnected

contribution such that

〈TµνTρσ[T 2]J〉 ∼ C2
T + . . . , (7.46)

where the dots refer to subleading corrections in C−1
T which will play an impor-

tant role later. Lastly, the expectation value of a multi-stress tensor operator

in the thermal state has the following scaling with CT

〈[T k]J〉β ∼ CkT
βdk

, (7.47)

where we also included the dependence on β which is fixed on dimensional

grounds.

Using (7.44)(7.47), we see that the contribution of multi-stress tensor op-

erators [T k]J with dimensions ∆k = dk+O(C−1
T ) to the stress tensor two-point

function in the thermal state has the following scaling with CT for k 6= 2

〈Tµν(x)Tρσ(0)〉β|[Tk 6=2]J ∝ 1

x2d
CT

(
x

β

)dk
, (7.48)

Meanwhile, for k = 2, the double stress tensor contributions [T 2]J=0,2,4

to the thermal two-point function give rise to the disconnected part of the

correlator due to the fact that the three-point function 〈TµνTρσ [T 2]J〉 ∼ C2
T ,

compared to the O(CT ) contribution from the connected part. The contribution

at O(CT ) will therefore contain the first subleading correction to the OPE

coefficients λ
(i)
TT [T 2]J

, the corrections to the thermal one-point functions, as well

as the anomalous dimensions of the double-stress tensor operators.

We define coefficients ρi,J for the double-stress tensor [T 2]J with dimensions

∆J := ∆2,J by:

Ĝµν,ρσ(x)|µ2 = |x|−8
[
ρ1,0g∆0,0,µν,ρσ(x) +

∑

i=1,2

ρi,2g
(i)
∆2,2,µν,ρσ

(x)

+
∑

i=1,2,3

ρi,4g
(i)
∆4,4,µν,ρσ

(x)
]
,

(7.49)

where Ĝµν,ρσ(x) := 〈Tµν(x)Tρσ(0)〉β is the thermal correlator and g
(i)
∆,J,µν,ρσ can

be obtained by taking the OPE limit of the conformal blocks in the differential
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basis [174,175], see Appendix D.3. The coefficients ρi,J are therefore products

of OPE coefficients and thermal one-point functions, see (7.43). The coefficients

ρi,J and the anomalous dimensions γJ have a perturbative expansion in C−1
T

ρi,J = ρ
(0)
i,J

[
1 +

ρ
(1)
i,J

CT
+O(C−2

T )
]
,

∆J = 2d+
γ
(1)
J

CT
+O(C−2

T ),

(7.50)

and lead to the following schematic contribution to the stress tensor two-point

function from [T 2]J :
77

Ĝµν,ρσ |[T 2]J ∝
∑

i

ρi,J |x|γ
(1)
J

∝
∑

i

ρ
(0)
i,J

[
1 +

1

CT

(
ρ
(1)
i,J + γ

(1)
J log |x|

)
+O(C−2

T )
]
.

(7.51)

Note that the number of structures for the three point functions 〈TµνTρσ[T 2]J=0,2,4〉
is (in d ≥ 4) 1, 2, 3 for J = 0, 2, 4, respectively, giving a total of 6 different struc-

tures at this order. From now on we will mainly consider d = 4.

7.3.2. Thermalization of heavy states

The thermal one-point function of an operator O with dimension ∆ and

spin J on S1
β ×Rd−1 is fixed up to an overall coefficient bO [56,57]

〈Oµ1...µJ 〉β =
bO
β∆

(eµ1
· · · eµJ − traces), (7.52)

where eµ is a unit vector along the thermal circle. To leading order in the C−1
T

expansion, we expect multi-stress tensor operators to thermalize in heavy states

|ψ〉 = |OH〉 with scaling dimension ∆H ∼ CT : (see [7] for a discussion on the

thermalization of multi-stress tensors and [58,176] for a discussion on ETH in

CFTs.)

〈[T k]J〉H ≈ 〈[T k]J〉β , (7.53)

where we have suppressed the indices. This statement holds to leading order in

C−1
T . In (7.53), the inverse temperature β = T−1 is fixed by the thermalization

77 We stress that this only contains the scaling with |x| → 0 while the explicit

expression have a more complicated dependence on xµ captured in (7.49).
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of the stress tensor. In particular, thermalization of the stress tensor 〈Tµν〉H =

〈Tµν〉β78 leads to the following relation between β and the scaling dimension

∆H in d = 4
bTµν
β4

= −muCTS4

40
, (7.54)

where µ is given by79

µ =
4Γ(d+ 2)

(d− 1)2Γ(d2 )
2S2
d

∆H

CT
(7.55)

and Sd =
2π

d
2

Γ( d2 )
.

To leading order in C−1
T , the multi-stress tensor operators are expected to

thermalize while the expectation value in the heavy state and the thermal state

might differ at subleading order. As evident from (7.50), the O(CTµ
2) part of

the correlator contains corrections subleading in C−1
T to the dynamical data.

When we compare these results to the corresponding bulk results computed in

the black hole background these are therefore understood as corrections to the

thermal one-point functions of these operators. More specifically, ρ
(1)
i,J contain

the following terms

ρ
(1)
i,J = λ

(i,1)
TT [T 2]J

+ b
(1)
[T 2]J

, (7.56)

where λ
(i,1)
TT [T 2]J

and b
(1)
[T 2]J

are the subleading C−1
T corrections to the OPE coef-

ficients and the thermal one-point functions, respectively.

7.3.3. Identity contribution

In this section we compare the contribution of the identity operator in the

Tµν × Tρσ OPE on the CFT side using (7.42) to the bulk results. To make a

comparison to the bulk calculation, we integrate (7.42) over the (x, y) plane

Gxy,xy|µ0 =
πCT

10 (t2 + z2)
3 ,

Gtx,tx|µ0 = −πCT
(
t2 − 5z2

)

40 (t2 + z2)
4 ,

Gtz,tz|µ0 = −πCT
(
5t4 − 38t2z2 + 5z4

)

60 (t2 + z2)
5 ,

(7.57)

78 We will take the large volume limit β

R
→ 0 of this equation and further set R = 1.

79 Note that the definition of CT differs by a factor of S2
d compared to [8].
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where Gµν,ρσ is the integrated correlator defined in (7.1). The Gxy,xy correlator

in (7.57) agrees with (7.25) obtained in the bulk. In order to compare the

remaining two polarizations Gtx,tx and Gtz,tz, we further apply the differential

operator (∂2t +∂
2
z )
p with p = 1, 2, respectively, to match these CFT results with

their bulk counterparts. Doing so, we find that

(∂2t + ∂2z )Gtx,tx|µ0 = −3πCT
(
t2 − 7z2

)

5 (t2 + z2)
5 ,

(∂2t + ∂2z )
2Gtz,tz|µ0 = −96πCT

(
3t4 − 34t2z2 + 3z4

)

5 (t2 + z2)
7 ,

(7.58)

which agree with (7.32) and (7.38), respectively.

7.3.4. Stress tensor contribution

In this section we consider the stress tensor contribution. The stress tensor

three-point function is fixed up to three coefficients in d ≥ 4 [177]80

〈Tµν(x1)Tρσ(x2)Tαβ(x3)〉 =
∑

i=1,2,3

λ
(i)
TTTI

(i)
µν,ρσ,αβ , (7.59)

for three tensor structures I(i)
µν,ρσ,αβ(xj) determined by conservation and con-

formal symmetry. One way to parametrize these coefficients is in terms of

(CT , t2, t4), for further details and conventions see Appendix D.3. In particular,

in holographic CFTs dual to semi-classical Einstein gravity it is known that

t2 = t4 = 0 [24]. This fixes two of the coefficients, with the remaining one being

fixed by Ward identities in terms of CT [177].

Using the explicit form of the stress tensor conformal block in the OPE

limit together with t2 = t4 = 0, we can find the explicit contribution of the

stress tensor to Gµν,ρσ , see Appendix D.3.1 for details. To compare to the

corresponding bulk results we further need to integrate the correlator over the

xy-plane. This is done in Appendix D.3.1 and we find:

Gxy,xy|µ =
πCTµ

100

t2 − z2

(t2 + z2)2
,

Gtx,tx|µ =
πCTµ

800

−9t4 + 6t2z2 + 7z4

(t2 + z2)3
,

Gtz,tz|µ =
πCTµ

3600

−105t6 + 3t4z2 + 137t2z4 + 77z6

(t2 + z2)4
.

(7.60)

80 At zero temperature.
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The result for Gxy,xy in (7.60) agrees with (7.25). For the remaining polariza-

tions we apply the relevant differential operators to find

(∂2t + ∂2z )Gtx,tx|µ =
3πCTµ

200

t4 − 6t2z2 + z4

(t2 + z2)4
(7.61)

and

(∂2t + ∂2z )
2Gtz,tz|µ = −4πCTµ

15

t6 − 15t4z2 + 15t2z4 − z6

(t2 + z2)6
. (7.62)

Upon comparing (7.61) with (7.32) and (7.62) with (7.38) we find perfect agree-

ment between the bulk and the CFT calculation.

7.3.5. Double stress tensor contributions

In this section we consider the contribution due to the double-stress tensor

operators of the schematic form : TµνTρσ :, : Tµ
ρTρν : and : T ρσTρσ :. These are

captured by (7.49) with ∆J and ρi,j given by (7.50). Details on the conformal

blocks are given in Appendix D.3. At O(C2
Tµ

2) we see from (7.51) that there are

6 undetermined coefficients ρ
(0)
i,J and at O(CTµ

2) there is a total of 9 coefficients,

in particular, the 6 coefficients ρ
(1)
i,J and the 3 anomalous dimensions γ

(1)
J :

X = {ρ(1)1,0, ρ
(1)
1,2, ρ

(1)
2,2, ρ

(1)
1,4, ρ

(1)
2,4, ρ

(1)
3,4, γ

(1)
0 , γ

(1)
2 , γ

(1)
4 }. (7.63)

7.3.5.1. Disconnected part

As expected from thermalization, the O(C2
Tµ

2) disconnected contribution

to the stress tensor two-point function in the thermal states factorizes and is

independent of the position x:

Ĝµν,ρσ = 〈Tµν〉β〈Tρσ〉β(1 +O(C−1
T )), (7.64)

where β is the inverse temperature related to µ by (7.54). In particular, only

the diagonal terms of 〈Tµν〉β are non-zero:

Ĝxy,xy = 0 +O(CTµ
2),

Ĝtx,tx = 0 +O(CTµ
2),

Ĝtz,tz = 0 +O(CTµ
2),

(7.65)
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while

Ĝtt,tt =

(
3

4

)2 b2Tµν
β8

[
1 +O(C−1

T )
]
. (7.66)

Comparing the conformal block expansion (7.49) to (7.65), we find that 5 out of

6 of the leading order coefficients ρ
(0)
i,J are determined in terms of the remaining

undetermined coefficient ρ
(0)
1,0:

ρ
(0)
1,2 =

324

7
ρ
(0)
1,0,

ρ
(0)
2,2 =

−1728

7
ρ
(0)
1,0,

ρ
(0)
1,4 =

160

7
ρ
(0)
1,0,

ρ
(0)
2,4 =

−1760

7
ρ
(0)
1,0,

ρ
(0)
3,4 =

−480

7
ρ
(0)
1,0.

(7.67)

The remaining coefficient is fixed by imposing (7.66) which gives

ρ
(0)
1,0 =

π4µ2C2
T

480000
. (7.68)

7.3.5.2. Corrections to double stress tensor CFT data

At O(CTµ
2) there is a total of 9 coefficients that fix Gµν,ρσ . The goal of this

section is to (partially) determine the CFT data X by comparing the conformal

block decomposition at O(CTµ
2) to the bulk calculations. In particular, our

analysis will allow us to extract the anomalous dimensions γ
(1)
J of double-stress

tensors [T 2]J , J = 0, 2, 4.

In order to do so we again need to integrate the correlator over the (x, y)

plane. This is divergent, as is manifest from dimensional analysis(see also(7.48)).

We will tame this divergence by including a factor of |x|−ǫ in the integrals

which produces simple poles as ǫ → 081. These will then be absorbed in the

undetermined bulk coefficients, see Appendix D.3.6.

We will fix the CFT data by comparing the polarizations,Gxy,xy, Gtx,tx and

Gtz,tz, with the corresponding conformal block decomposition given in D.3.5,

81 Alternatively, one can introduce an IR cutoff in the integrals and the result for

the anomalous dimensions and the coefficients ρ
(1)
i,J will remain the same.
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with the bulk results given in (7.25), (7.32) and (7.38), respectively. For the

latter two polarizations, we apply the differential operators (∂2t + ∂2z )
p, with

p = 1, 2, on the OPE expansion in order to match against the bulk calculations,

just as for the identity and stress tensor operator, which give

G(CFT )
xy,xy −G(bulk)

xy,xy

∣∣∣
µ2CT

= 0,

(∂2t + ∂2z )
[
G

(CFT )
tx,tx −G

(bulk)
tx,tx

] ∣∣∣
µ2CT

= 0,

(∂2t + ∂2z )
2
[
G

(CFT )
tz,tz −G

(bulk)
tz,tz

] ∣∣∣
µ2CT

= 0.

(7.69)

There is a common solution which unambiguously fixes the anomalous di-

mensions to the values:

γ
(1)
0 = −2480

63π4
,

γ
(1)
2 = − 4210

189π4
,

γ
(1)
4 = −1982

35π4
,

(7.70)

where we note that the anomalous dimensions in (7.70) are all negative. Further,

we find the following relations among three out of the six coefficients ρ
(1)
i,J

ρ
(1)
2,2 = − 14465

1296π4
+ ρ

(1)
1,2,

ρ
(1)
2,4 =

379

210π4
+ ρ

(1)
1,4,

ρ
(1)
3,4 =

3083

1260π4
+ ρ

(1)
1,4,

(7.71)

while the remaining CFT data {ρ(1)1,0, ρ
(1)
1,2, ρ

(1)
1,4} is undetermined and the bulk

coefficients are given in Appendix D.3.6. We have further checked that this solu-

tion is consistent with several other polarizations such as Gzx,zx, Gtx,zx, Gzz,zz

and Gtt,tt by inserting (7.70), (7.71) and the solution for the a-coefficients

Appendix D.3.6 in the OPE expansion and comparing to the explicit bulk

calculations. Comparing Gxx,xx from the CFT to the bulk calculation, one

finds one more linearly independent equation 82. The undetermined coefficients

{ρ(1)1,0, ρ
(1)
1,2, ρ

(1)
1,4} can then be expressed in terms of the undetermined bulk coef-

ficients, see Eqs. (D.3.50) and (D.3.51).

82 The reason for this can be seen from (7.36), when comparing to the CFT result

we only apply a differential operator of degree 2 for the Gxx,xx polarization compared

to a degree 4 operator for other polarizations in the sound channel.
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7.3.6. Lightcone limit

In this section we consider the lightcone limit which is obtained by Wick-

rotating t → it and taking v → 0, with u = t − z and v = t + z. Imposing

unitarity on the stress tensor contribution lead to the conformal collider bounds,

see e.g. [24,178,25,26,179,180]. Consider now the lightcone limit of the double-

stress tensor contribution. One finds the following result for the integrated

correlators in the lightcone limit v → 0:

G(CFT )
xy,xy (u, v)|µ2CT ≈

v→0
π5µ2CT

2γ
(1)
4 − 41ρ

(1)
1,4 + 11ρ

(1)
2,4 + 30ρ

(1)
3,4

48000

u3

v
,

G
(CFT )
tx,tx (u, v)|µ2CT ≈

v→0
π5µ2CT

−113γ
(1)
4 + 16(188ρ

(1)
1,4 − 77ρ

(1)
2,4 − 111ρ

(1)
3,4)

10752000

u4

v2
,

G
(CFT )
tz,tz (u, v)|µ2CT ≈

v→0
π5µ2CT

29γ
(1)
4 − 740ρ

(1)
1,4 + 308ρ

(1)
2,4 + 432ρ

(1)
3,4

16128000

u5

v3
, ,

(7.72)

where as expected only the spin-4 operator of the schematic form : TµνTρσ :

contributes83. Inserting the solution (7.70)(7.71) we find

G(CFT )
xy,xy (u, v)|µ2CT ≈

v→0
− πµ2CT

2400

u3

v
,

G
(CFT )
tx,tx (u, v)|µ2CT ≈

v→0
− 17πµ2CT

1075200

u4

v2
,

G
(CFT )
tz,tz (u, v)|µ2CT ≈

v→0
− 11πµ2CT

6048000

u5

v3
,

(7.73)

where we note that the undetermined coefficient ρ
(1)
1,4 drops out in the lightcone

limit. The solution in (7.70) - (7.71) obtained from the bulk computations

therefore determines completely the lightcone limit of the correlator to this

order.

7.4. Discussion

We have examined the thermal two-point function of stress tensors in holo-

graphic CFTs. In the dual picture, this corresponds to studying metric per-

turbations around a black hole background. The thermal two-point function

83 We have dropped the divergent terms from the integration since does not contain

negative powers of v when v → 0.
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can be decomposed into contributions of individual operators using the OPE.

Important contributions to the OPE of two stress-tensors include the identity

operator, the stress tensor itself, and composite operators made out of the stress

tensor (multi-stress tensors).

The holographic contribution of the identity reproduces the vacuum result.

We also verify that the stress-tensor contribution to the holographic TT corre-

lator agrees with the CFT result, which is fixed by the three-point functions of

the stress-tensor in CFTs dual to Einstein gravity (our CFT result agrees with

[178]). The leading contribution from the double-stress tensors corresponds to

the disconnected part of the correlator.

The anomalous dimensions and the corrections to the OPE coefficients

and thermal one-point functions contribute at next-to-leading order in the C−1
T

expansion. Comparing the CFT and holographic calculations, we are able to

read off the anomalous dimensions of the double-stress tensors with spin J =

0, 2, 4 and obtain partial relations for the subleading corrections to the products

of OPE coefficients and thermal one-point functions. It would be interesting to

compare our results with the one-loop results of [181,182,183,184].

We are unable to fully determine the double-stress tensor contribution from

the near-boundary analysis in the bulk; indeed some OPE coefficients remain

unfixed, although the leading lightcone behavior of the TT correlators at this

order is completely determined. The situation is reminiscent of the scalar case

[102], where the contributions of double-trace operators of external scalars were

not determined by the near-boundary analysis. It would be interesting to go

beyond the near-boundary expansion to further determine this remaining data.

In contrast to the scalar case considered in [102], in our analysis we further

integrated the correlator over a plane to account for different polarizations of

the stress tensor. This feature introduces some technical complications and it

would be interesting to study the correlator without integration.

Holography provides a powerful tool to study hydrodynamics of strongly

coupled quantum field theories and transport coefficients can be read off

from the stress tensor two-point function at finite temperature84. The con-

formal bootstrap provides another window into strongly coupled phenomena

84 The expansion in small momenta compared to the temperature is opposite of the

OPE limit and interpolating between the two is challenging. See e.g. [185-193] for

recent work on the convergence of the hydrodynamic expansion.
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when perturbation theory is not applicable. While the bootstrap program

for vacuum correlators has led to significant developments in the past decade,

the corresponding tools for thermal correlators are still developing, see e.g.

[194,56,60,57,59,61,62,7,64,65] for related work. In particular, due to an im-

portant role played by the stress tensor thermal two-point function, it would

be interesting to better understand the constraints imposed by the conformal

bootstrap on this correlator as well as the implications for a gravitational dual

description.

By the nature of a duality, there are two sides to the same story. We have

used the structure of the stress-tensor two-point functions at finite temperature,

imposed by conformal symmetry, in order to read off the CFT data by making

a comparison to the corresponding calculations in the bulk. At the same time,

it would be very interesting to study properties of black holes in AdS by boot-

strapping thermal correlators on the boundary. We expect a major role to be

played by the stress tensor operator and its composites which are related to the

metric degrees of freedom in the bulk.
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8. Conclusions and discussion

In this thesis, we have explored some aspects of the conformal bootstrap pro-

gram in the context of holographic CFTs. In particular to the study of heavy-

heavy-light-light correlators, where the heavy operators create high-energy

eigenstates which for many observables are expected to thermalize. This was

mainly achieved by studying the correlator in two different kinematical limits

common in the bootstrap literature. The first one is the lightcone limit which in

one channel isolates operators with low-twist. In our case, this is typically the

stress tensor and the multi-stress tensor operators. The second one is the Regge

limit which, in this setup, is dual to a highly energetic probe particle propa-

gating in an AdS-Schwarzschild black hole background. The physical data in

this limit is captured by the Shapiro time delay and the angle deflection of a

null geodesic in this background. This can be calculated and used to extract

information about the CFT correlator or, when available, be compared against

expectations from the CFT obtained by bootstrap methods. Lastly, we studied

the thermal two-point functions of stress tensors in holographic CFTs. This

was done by solving the equations of motions, in a near-boundary expansion,

for metric fluctuations around the black hole background in the bulk. By de-

composing the resulting correlators in terms of (spinning) conformal blocks, we

read off the underlying CFT data.

In Section 3, we used the conformal bootstrap in the lightcone limit to

obtain the contribution due to minimal-twist multi-stress tensors. This lead

to, among other things, the OPE coefficients for multi-stress tensors in the

OPE of two light scalar operators. Some of these have been calculated in the

bulk and are in agreement with the results obtained from the boundary point

of view. One of the key features of the minimal-twist multi-stress tensor ex-

changes is that it takes a remarkable, somewhat, simple form analogous to the

two-dimensional Viraosoro vacuum block. There this form is a consequence of

the infinite-dimensional Virasoro algebra. An interesting open problem is to un-

derstand if there is a similar, emergent, symmetry algebra in the lightcone limit

of heavy-heavy-light-light correlators in higher-dimensional holographic CFTs.

In Section 4, this was explored by studying two-dimensional CFTs with a higher-

spin symmetry algebra. In the case of an additional spin-3 current, the result is
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reminiscent of the four-dimensional counter-part discussed above. It would be

interesting to understand this connection explicitly from first principles.

In Section 4 and 5, we studied the Regge limit of the heavy-heavy-light-

light correlators. Partly using bootstrap techniques that led to agreement with

expectations from the bulk, and partly by extracting information about the CFT

data using known results from the bulk. The Regge limit plays an important role

in the conformal bootstrap and exploring it more in this context is interesting.

For example, there is a critical impact parameter for which the probe particle

gets trapped by the black hole. A slight change in the impact parameter leads

to significant change in the behavior of the correlator. Understanding this from

the CFT point of view would be interesting.

The stress tensor correlator at finite temperature plays an important role

in CFTs, as well as in holography. By studying metric fluctuations around a

black hole background, dual to a finite temperature state in the CFT, we were

able in Section 7 to obtain this correlator order-by-order in the OPE expansion.

Furthermore, by applying the machinery of spinning conformal blocks, we could

read off the underlying CFT data. While the OPE limit is opposite of the

hydrodynamical limit, it would be interesting to understand what the conformal

bootstrap has to say about hydrodynamics.

The stress tensor OPE occupies a central role in the AdS/CFT correspon-

dence. In conformal field theories dual to semi-classical Einstein gravity, its

vacuum correlation functions are determined by fluctuations of the Einstein-

Hilbert action with a cosmological constant around pure AdS. The absence of

higher-spin fields and causality implies that corrections are suppressed by the

gap. On the other hand, the black hole background is a solution to the non-

linear Einstein’s equations. A holographic CFT in this sense should reproduce

not only vacuum correlators, but also correlation functions in states dual to

other semi-classical solutions to the bulk equations of motions reflecting the

full non-linear structure of the bulk gravity. This is an interesting avenue to

explore; in this thesis we hope to have made some steps in this direction that

can be further built upon.
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Appendix A.1. Some details on the calculation of the W3 block

We now make explicit the contribution of the operatorO to the commutator

[Wm,Oh+j(z)]. To this end, consider the OPE between two quasiprimaries

φi(z1)× φj(z2)|φk :

φi(z1)× φj(z2)|φk = λijk

∞∑

p=0

ap(hi, hj , hk)

p!

∂pz2φ
k(z2)

(z1 − z2)hi+hj−hk−p
, (A.1.1)

where ap(hi, hj , hk) = (hi − hj + hk)p(2hk)
−1
p . Setting φi(z1) = W (z1), φj =

Oh+j(z2), φ
k = O and integrating against

∫
C(z2)

dz1
2πiz

m+2
1 W (z1)Oh+j(z2) we

find that

[Wm,Oh+j(z2)]|O = λWOh+jO

∫

C(z2)

dz1
2πi

zm+2
1

j+2∑

n=0

ap(3, h+ j, h)∂pz2O(z2)

(z1 − z2)3+j−pp!
,

(A.1.2)

and performing the integral we find that

[Wm,Oh+j(z2)]|O = λWOh+jO

j+2∑

p=0

ap(3, h+ j, h)(m+ 2)!

(m+ p− j)!(j + 2− p)!p!
zm+n+p−j
2 ∂pz2O(z2).

(A.1.3)

A.1.1. Mixed states W−nL−m|0〉

We now consider the following states

|Am,n〉 = L−mW−n|0〉 −
〈Wm+nL−mW−n〉
〈Wn+mW−n−m〉 W−m−n|0〉, (A.1.4)

where (for c→ ∞)

〈Wm+nL−mW−n〉 = (3m+ n)
c

360
n(n2 − 1)(n2 − 4),

〈Wn+mW−n−m〉 = c

360
(m+ n)((m+ n)2 − 1)((m+ n)2 − 4),

〈WnLmL−mW−n〉 =
c2

12× 360
n(n2 − 1)(n2 − 4)m(m2 − 1).

(A.1.5)

Now, one finds that 〈Am,n|OL(z)OL(0)〉
〈Am,n|OL(z)OL(0)〉 = DL,mDW,n〈OL(z)OL(0)〉

− 〈Wm+nL−mW−n〉
〈Wn+mW−n−m〉 DW,m+n〈OL(z)OL(0)〉

=
1

2
(m− 1)(n− 1)(n− 2)whzm+n−2h+

+
(m− 1)m(n− 2)(n− 1)n(4 +m+ 3n)

2(m+ n)(m+ n+ 1)(m+ n+ 2)
wzm+n−2h,

(A.1.6)
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where

[Q(N)
m ,Oh,q(N)(z)]|O

h,q(N)
= q(N)

∫

C(z)

dz1
2πi

zm+N−1
1

×
N−1∑

p=0

ap(N, h, h)

(z1 − z)N−pp!
∂pzOh,q(N)(z)

= q(N)
N−1∑

p=0

ap(N, h, h)

p!

(m+N − 1)!

(N − p− 1)!(m+ p)!
zm+p∂pzOh,q(N)(z)

:= DN,mOh,q(N)(z).

(A.1.7)

For the heavy part, we keep only the quadratic part in the charges such

that

lim
z4→∞

z2H4 〈OH(z4)OH(1)|Am,n〉 =
1

2
(m− 1)(n− 2)(n− 1)wHH. (A.1.8)

Multiplying (A.1.6) with (A.1.8) and dividing by the norm 〈WnLmL−mW−n〉
in (A.1.5), we find that

∞∑

m,n=2

lim
z4→∞

z2hH4

〈OH(z4)OH(1)|Am,n〉〈Am,n|OL(z)OL(0)〉
〈WnLmL−mW−n〉

∣∣∣
wHHwh

c2

=
1080wHHwh

c2
z−2h

∞∑

m,n=2

(m− 1)(n− 1)(n− 2)

(m+ 1)(n+ 1)(n+ 2)

zm+n

mn

=
6wHHwh

c2
f2f3,

(A.1.9)

which as expected is the “exponentiated term”. On the other hand, consider

∞∑

m,n=2

lim
z4→∞

z2H4
〈OH(z4)OH(1)|Am,n〉〈Am,n|OL(z)OL(0)〉

〈WnLmL−mW−n〉
∣∣∣
wHHw

c2

=
1080wHHw

c2
z−2h

×
∞∑

m,n=2

(m− 1)(n− 1)(n− 2)

(m+ 1)(n+ 1)(n+ 2)

(4 +m+ 3n)zm+n

(m+ n)(m+ n+ 1)(m+ n+ 2)

∝ wHHw

c2
(f1f4 −

7

9
f2f3).

(A.1.10)

Note that in both sums we have trivially extended the summation from m > 3

to m > 2.
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On the other hand, by expanding the vacuum block we find precisely the

same structure

〈OH(∞)OH(1)OL(z)OL(0)〉|1W3
,
wHHwh

c2
∝ f2f3,

〈OH(∞)OH(1)OL(z)OL(0)〉|1W3
,
wHHw

c2
∝ (f1f4 −

7

9
f2f3).

(A.1.11)

Appendix A.2. W4 vacuum block

In this appendix we further include a spin-4 current and consider theW4 algebra.

We will show that including a spin-4 current modifies the term proportional to
w2
H

c2 discussed in Section 4. The result can again be written as a sums of the

following combination fa(z)fb(z), with a+ b = 6. Compared to the case of W3,

the term proportional to
w2
H

c2 in the vacuum block will now depend also on the

spin-4 charge u of the light operator.

We denote the spin-4 current by U(z) and the external operators carry

eigenvalues ±uH and ±u. The heavy operator again has a spin-3 charge of O(c)

while the conformal weight H and the spin-4 charge are small compared to wH ,

i.e. H, uH ≪ wH . In this limit, there are no new contributions due to the states

U−m|0〉 since they will be proportional to uHu
c f4z

−2h, which is suppressed as

c → ∞. The first contribution will appear at O(
w2
H

c2 ) and is due to the fact

that the modes |Ym,n〉 are not orthogonal to U−m−n|0〉. In this section we will

therefore study the contribution due to the following states:

|Ỹm,n〉 =
[
W−nW−m−〈Lm+nW−nW−m〉

〈Lm+nL−m−n〉
L−m−n−

〈Um+nW−nW−m〉
〈Um+nU−m−n〉

U−m−n
]
|0〉.

(A.2.1)

There are two new contributions to 〈Ỹm,n|O(z)O(0)〉 compared to 〈Ym,n|O(z)O(0)〉,
one is simply that we need to include the last term in (A.2.1). The second is a

correction to the OPE coefficients λWOh+1O and λWOh+2O, these pick up a con-

tribution that depends on the spin-4 charge u due to the fact that [Wm,W−m]

contain the spin-4 zero mode U0. Note that the heavy part remains unchanged

since wH ≫ uH and is therefore given by (4.31):

〈OH(∞)OH(1)|Ỹm,n〉 =
w2
H

4
(m− 1)(m− 2)(n− 1)(n− 2), (A.2.2)
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and the norm of |Ỹm,n〉 is also the same as that of |Ym,n〉 (to leading order in

c):

NỸm,n
= 〈Ỹm,n|Ỹm,n〉 = (

c

360
)2m(m2 − 1)(m2 − 4)n(n2 − 1)(n2 − 4). (A.2.3)

We therefore only need to calculate 〈Ỹm,n|O(z)O(0)〉.
The modes Um of U(z) are defined by

U(z) =
∑

m

Umz
−m−4, (A.2.4)

and since U is primary we know that

[Lm, Un] = (3m− n)Um+n. (A.2.5)

Consider now various OPEs of the spin-3 and spin-4 field 85, in terms of quasi-

primaries

W (z)W (0) =
c

3z6
+

2T (0)

z4
+
λWWUU(0)

z2
+ . . . ,

W (z)U(0) =
λWUWW (0)

z4
+ . . . ,

U(z)U(0) =
c

4z8
+

2T (0)

z6
+ λUUU

U(0)

z4
+ . . . ,

(A.2.6)

where λWUW = 3
4λWWU = 3

4
4√
3

√
(2+c)(114+7c)
(7+c)(22+5c) ≈

√
21
5 and the ellipses denote

non-linear terms that will be suppressed when c → ∞. From (A.2.6), we can

derive the commutator of the various modes. Especially, we want to consider

[Wn, Um], [Wn,Wm] and [Un, Um]. The last one is given by

[Um, Un] =
c

20160
m(m2 − 1)(m2 − 4)(m2 − 9)δm+n

+
(m− n)

1680

[
3(m4 + n4) + 4m2n2 − (2mn+ 39)(m2 + n2)

+ 20mn+ 108
]
Lm+n + . . . ,

(A.2.7)

while [Wn,Wm]|U is given by

[Wm,Wn]|U = λWWU
m− n

2
Un+m, (A.2.8)

85 See e.g. App A.2 in [195] for the W4 algebra.
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as well as

[Wm, Un]|W =
λWUW

84

[
5m3 +9n− 5m2n−n3 − 17m+3mn2)

]
Wm+n. (A.2.9)

Using (A.2.8) and (A.2.9), we find that

〈Um+nW−nW−m〉 = λWUW cm(m2 − 1)(m2 − 4)

30240

×
[
− 9m+m3 − 26n+ 6m2n+ 14mn2 + 14n3

] (A.2.10)

and

〈Um+nU−m−n〉 =
c

20160
s(s2 − 1)(s2 − 4)(s2 − 9). (A.2.11)

From the three-point function 〈U(z3)O(z)O(0)〉 and λUOO = u one finds that

〈Um+nO(z)O(0)〉 = u

6
(m+ n− 1)(m+ n− 2)(m+ n− 3)zm+n−2h. (A.2.12)

Lastly, we need to compute the corrections to the OPE coefficients λWOh+1O

and λWOh+2O. This is similar to the calculation in the W3 case and one finds

that (c→ ∞, z → 0)

〈O(z3)W (z)Oh+1(0)〉 ≈ z−4〈O(z3)W1(W−1 −
3w

2h
L−1)O(0)〉

= z−4z−2h
3

[
− h

5
+ λWWUu− 9w2

2h

]
,

(A.2.13)

where we used [W1,W−1] = . . .+ λWWUU0 and that U0O(0)|0〉 = uO|0〉. Like-
wise, one finds that

〈O(z3)W (z)Oh+2(0)〉 ≈

z−5〈Oh(z3)W2(W−2 −
2

h+ 1
L−1W−1 +

[ 3w

h(h+ 1)
− 3w

h(2h+ 1)

]
L2
−1)O(0)〉

= z−5z−2h
3

[8h
5

+
8h

5(h+ 1)
+

36w2

(2h+ 1)(h+ 1)
+ 2λWWUu− 8u

h+ 1
λWWU

]
,

(A.2.14)

to leading order when c→ ∞ and using [W2,W−2]|U = . . .+ 2U0. Putting this

altogether gives

〈Ỹm,n|O(z)O(0)〉 = 〈Ym,n|O(z)O(0)〉

+
uλWWU (m− 2)(m− 1)m(n− 2)(n− 1)nzm+n−2h

12s(s+ 1)(s+ 2)(s+ 3)

× (17 + 2m2 + 15n+ 2n2 + 15m+ 9mn) + . . . .

(A.2.15)
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Given (A.2.15), (A.2.2) and (A.2.3), we find the contribution to the vacuum

block from the states |Ỹm,n〉 proportional to u is given by

G(z)|w2
H
u

c2

=
37800w2

HuλWWUz
−2h

c2

[
25w̃4(z) + 3w3(z)

]
, (A.2.16)

where w3 is given by (4.35) and w̃4 is a sum of products of functions fafb with

a+ b = 6 given by

w̃4 = 3(−f2f4 +
4

3
f1f5) =

∞∑

m=3

∞∑

n=3

1260
(m− 2)(n− 2)(n− 1)n(m2 + 6(n+ 2)(n+ 3) +m(9 + 4n))

m(n+ 2)(n+ 3)(n+ 4)s(s+ 1)(s+ 2)(s+ 3)
zm+n.

(A.2.17)

A.2.1. Differential equation for the W4 vacuum block

Here we study the W4 vacuum block, or rather its logarithm, as z → 1. The W4

HHLL vacuum block is known exactly. One can find it for instance in eq. (C.1) of

[113]. In this case, we can choose to scale the spin-3 charge wH with the central

charge c – as in Appendix A.1 – with the hope of uncovering relations similar to

those valid for the stress-tensor sector of the four-dimensional correlator in the

light cone limit. However, we may also choose to consider the limit uH ∼ c≫ 1,

with all other charges parametrically smaller.

Remarkably, F4(z) behaves logarithmically in the limit z → 1 in both cases.

A sequence of numbers, the numerical coefficients of log (1− z) in the expan-

sion of the relevant heavy charge can be determined, and a quartic differential

equation satisfied by the logarithm of the block for certain ratios of the light

charges can be found.

Let us first consider the scaling uH ∼ c≫ 1 and expand F4(z) = logG4(z)

in powers of uH/c as F4(z) =
∑∞
k=0

(
uH
c

)k F (k)
4 (z) to obtain in the limit z → 1:

{
lim
z→1

(
− F (k)(z)

20× 6k log(1− z)

) ∣∣∣∣∣k = 1, 2, . . .

}
=

= u×
{
1, n− 7, 458− 14n, 1001n− 13307, 732374− 34034n,

1939938n− 31667622, . . .
}
,

(A.2.18)
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where we set

n =
18

5

h

u
. (A.2.19)

If B4(x, n) with x ≡ 6uHc is the generating function of (A.2.18), then F(z)

behaves in the limit z → 1 as

F4(z) ≈
z→1

− 20u log(1− z)B4(x, n) (A.2.20)

There exist four different values of n for which the generating function B4(x, n)

satisfies a quartic equation. These are: n = {18, 3,−2,−12}.
When n = 18, we find the following quartic order equation for the gener-

ating function:

B4(x, 18) = 36B4(x, 18)
4 − 36B4(x, 18)

3 + 11B4(x, 18)
2 + x. (A.2.21)

Inspired by this relation one finds that F4(z, n = 18) ≡ F̃4(z) satisfies the

following differential equation

F̃ ′′′′(z) = 120u

(
x

(1− z)4
+

9F̃ ′(z)4

40000u4
− 9F̃ ′(z)2F̃ ′′(z)

2000u3

+
3F̃ ′′(z)2 + 4F̃ ′′′(z)F̃ ′(z)

400u2

)
,

(A.2.22)

which reduces to the equation (A.2.21) in the limit z → 1 using (A.2.20).

When n = −12 the generating function B4(x,−12) satisfies

B4(x,−12) = −144B4(x,−12)4−96B4(x,−12)3−19B4(x,−12)2+x, (A.2.23)

whilst F4(z, n = −12) ≡ F̂(z) is a solution of the following differential equation

F̂ ′′′′(z) = 120u

(
x

(1− z)4
− 9F̂ ′(z)4

10000u4
− 3F̂ ′(z)2F̂ ′′(z)

250u3

− 7F̂ ′′(z)2 + 6F̂ ′′′(z)F̂ ′(z)

400u2

)
.

(A.2.24)

For n = −2, 3 we find the following quartic order equations for the gener-

ating function:

n = 3, B4(x, 3) = −2304B4(x, 3)
4 + 384B4(x, 3)

3 − 4B4(x, 3)
2 + x,

n = −2, B4(x,−2) = 2916B4(x,−2)4 + 324B4(x,−2)3 − 9B4(x,−2)2 + x.

(A.2.25)
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In these cases however, the differential equations similarly constructed do not

correctly reproduce the vacuum block beyond z → 1 limit. This is analogous

to what happens in the case of the W3 vacuum block for h = 0, where the

generating function satisfies

n = 0, B3(x, 0) = 16B3(x, 0)
3 + x. (A.2.26)

It is curious that these special cases correspond to values for the ratios of the

light charges for which h < w, u.

Let us now consider the case with wH ∼ c ≫ 1 and the other charges

parametrically smaller. For notational simplicity, we will use here the same

symbol F4(z). We hope that this will not create any confusion. In this case,

F4(z) is expanded as

F4(z) =

∞∑

k=0

(wH
c

)k
F (k)(z), (A.2.27)

with

F (0)
4 = −2h log(z). (A.2.28)

Using the exact expression for the W4 block one finds that

{
lim
z→1

(
(−1)k+1F (k)

4 (z)

2k+132k log(1− z)

)∣∣∣k = 1, 2, . . .

}
=

= w ×
{
1,

2

45
(18n+ 85m), 10,

2

81
(882n+ 2785m), 318,

44

3645
(67158n+ 225635m), 13620, . . .

}
,

(A.2.29)

where n,m denote the ratios of the light charges n = h
w
andm = u

w
, respectively.

Notice that in this case ratios of both charges appear as opposed to the previous

scaling for which additional simplifications occurred that eliminated w. This

may be related to the fact that a spin-3 current, having odd spin, does not

appear in the OPE of two spin-4 currents.
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Appendix B.1. Details on the conformal bootstrap

Below we review some of the details of the conformal bootstrap calculations.

Explicitly, we will show that exchanges of heavy-light double-trace operators in

the S-channel reproduce the disconnected correlator at O(µ0) and the stress

tensor exchange at O(µ).

B.1.1. Solving the crossing equation to O(µ) in d = 4

We start with the leading O(µ0) term in the S-channel that should repro-

duce the disconnected propagator in the T-channel. This is given in d = 4

by

G(z, z̄)|µ0 =
C∆L

z − z̄

∫ ∞

0

dh

∫ h

0

dh̄(hh̄)∆L−2(h− h̄)(zh+1z̄h̄ − zh̄z̄h+1). (B.1.1)

Let us look at the following piece of (B.1.1):

−
∫ ∞

0

dh

∫ h

0

dh̄(hh̄)∆L−2(h− h̄)zh̄z̄h+1 = −
∫ ∞

0

dh̄

∫ ∞

h̄

dh(hh̄)∆L−2(h− h̄)zh̄z̄h+1

=
z̄

z

∫ ∞

0

dh

∫ ∞

h

dh̄(hh̄)∆L−2(h− h̄)zh+1z̄h̄ .

(B.1.2)

Setting z̄/z = 1 to leading order in the Regge limit, we find that the S-channel

expression reproduces the disconnected correlator:

G(z, z̄)|µ0 =
zC∆L

z − z̄

∫ ∞

0

dh

∫ ∞

0

dh̄(hh̄)∆L−2(h− h̄)zhzh̄

=
zC∆L

z − z̄

(log z̄ − log z)

(log z log z̄)∆L
Γ(∆L)Γ(∆L − 1) ≃ 1

(1− z)∆L(1− z̄)∆L
.

(B.1.3)

Notice that to arrive in the last equality we expanded (z, z̄) around unity and

substituted C∆L = (Γ(∆L)Γ(∆L − 1))−1.

Consider now the imaginary part at O(µ) in the S-channel. For convenience

we define

I(d=4) ≡ Im(G(z, z̄))|µ , (B.1.4)

which is then equal to:

I(d=4) =
−iπC∆L

σ(e−ρ − eρ)
×

×
∫ ∞

0

dh

∫ h

0

dh̄(hh̄)∆L−2(h− h̄)γ(h, h̄)
(
(1− σeρ)h+1(1− σe−ρ)h̄ − (h↔ h̄)

)
.

(B.1.5)
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Notice that we used the variables (σ, ρ) defined as z = 1−σeρ and z̄ = 1−σe−ρ.
Consider the following ansatz for γ = chah̄b

h−h̄ , where (a, b, c) are numbers tobe

determined by the crossing equation. Substituting into (B.1.5) and collecting

the leading singularity σ−k as σ → 0 with k = 2∆L + a+ b− 1 leads to

I(d=4)|σ−k =
−icπC∆L

(e−ρ − eρ)

(
Γ(∆L + a− 1)Γ(∆L + b− 1)(e(b−a)ρ − e(a−b)ρ)+

+
Γ(2∆L + a+ b− 2)

∆L + a− 1
e−(2∆L+a+b−2)ρ×

× 2F1(∆L + a− 1, 2∆L + a+ b− 2,∆L + a,−e−2ρ)− Γ(2∆L + a+ b− 2)

∆L + a− 1

× e(2∆L+a+b−2)ρ
2F1(∆L + a− 1, 2∆L + a+ b− 2,∆L + a,−e2ρ)

)
.

(B.1.6)

Note that in order to do these integrals we need ∆L + a > 1 and ∆L + b > 1.

Using the following identity of the hypergeometric function

2F1(a, b, c, x) =
Γ(b− a)Γ(c)

Γ(b)Γ(c− a)
(−x)−a2F1(a, a− c+ 1, a− b+ 1,

1

x
)

+
Γ(a− b)Γ(c)

Γ(a)Γ(c− b)
(−x)−b2F1(b, b− c+ 1,−a+ b+ 1,

1

x
),

(B.1.7)

the third line in (B.1.6) can be simplified and we are left with

I(d=4)|σ−k =
icπC∆L

(e2ρ − 1)

(
− Γ(∆L + a− 1)Γ(∆L + b− 1)e(a−b+1)ρ

+
Γ(2∆L + a+ b− 2)

∆L + a− 1
e−(2∆L+a+b−3)ρ×

× 2F1(∆L + a− 1, 2∆L + a+ b− 2,∆L + a,−e−2ρ) +
Γ(2∆L + a+ b− 2)

∆L + b− 1

× e−(2∆L+a+b−3)ρ
2F1(∆L + b− 1, 2∆L + a+ b− 2,∆L + b,−e−2ρ)

)
.

(B.1.8)

On the other hand, the Regge limit in the T-channel is dominated by

operators of maximal spin. In a holographic CFT, we have J = 2. If we further

take the lightcone limit, ρ ≫ 1, the dominant contribution is due to the stress

tensor exchange and behaves as σ−1e−(d−1)ρ. To reproduce this behavior from

the S-channel, we must set a = 0 and b = 2 and make an appropriate choice

for the overall constant c. Substituting the designated values of (a, b, c) revals

that the first term in (B.1.8) precisely matches the T-channel stress tensor
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contribution, which in the Regge limit (after analytic continuation) behaves

like:

g∆,J ∝ 1

σJ−1

e−(∆−3)ρ

(e2ρ − 1)
+ . . . , (B.1.9)

with ∆ = d and J = 2. Furthermore, the remaining terms correspond to the

exchange of operators with spin 2 and dimension 2∆L + 2 + 2n; these are the

double-trace operators [OLOL]n,l=2.

B.1.2. Integrating the S-channel result at O(µ2) in d = 4

Below we describe how to use the results for the anomalous dimensions at

O(µ2) in order to recover the imaginary part of the correlator to the same order.

Using the obtained expressions for the anomalous dimensions (5.10) and (5.26),

we note that the integrand in (5.13) can be written as

P (0)

(
γ(2) − γ(1)

2
(∂h + ∂h̄)γ

(1)

)
= −35h̄3(2h− h̄)

4(h− h̄)3
P (0)

= − 35h∆L−3h̄∆L+1

2Γ(∆L − 1)Γ(∆L)

∞∑

n=0

(
h̄

h

)n
(1 +

n

2
).

(B.1.10)

Therefore we see that (5.13) can be written as an infinite sum of integrals of

the same form that appeared at O(µ) in (B.1.5). It then follows that the full

S-channel result can be integrated in order to obtain the correlator in position

space. Especially, the lightcone result is obtained by setting k = 0 in (B.1.10)

and taking ρ→ ∞ which gives

Im(G(z, z̄))|µ2 =
i35π∆L(∆L + 1)

2(∆L − 2)

e−3ρ

σ2∆L+1(e2ρ − 1)
+ . . . , (B.1.11)

with . . . denoting terms that are subleading in the lightcone limit. The result

(B.1.11) has a form consistent with the contribution of an operator with spin-

2 and ∆ = 6. The full result (beyond the lightcone limit) further contains

an infinite number of operators with spin-2 of dimension ∆ = 6 + 2n and

∆ = 2∆L + 2n+ 2.
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B.1.3. Solving the crossing equation to O(µ) in d = 2

Here we review the calculations needed for the d = 2 case. To O(µ0) the

S-channel (2.46) is given by

G(z, z̄)|µ0 =
1

Γ(∆L)2

∫ ∞

0

∫ h

0

dh̄(hh̄)∆L−1(zhz̄h̄ + (z ↔ z̄)). (B.1.12)

The integrand in (B.1.12) is symmetric w.r.t. h↔ h̄ and can thus be rewritten

as

G(z, z̄)|µ0 =
1

Γ(∆L)2

∫ ∞

0

∫ ∞

0

dh̄(hh̄)∆L−1zhz̄h̄, (B.1.13)

which can easily be seen to reproduce the disconnected correlator [(1− z)(1−
z̄)]−∆L in the Regge limit.

As in the previous subsection we proceed to consider the imaginary part of

the correlator in the S-channel expansion to O(µ). Using a similar notation,

I(d=2) ≡ Im(G(z, z̄))|µ , (B.1.14)

combined with the ansatz γ1(h, h̄) = c hah̄b, allows us to write:

I(d=2) = − ic π

Γ(∆L)2

∫ ∞

0

∫ h

0

dh̄(hh̄)∆L−1hah̄b(zhz̄h̄ + (z ↔ z̄)). (B.1.15)

The integrals in (B.1.15) can be easily performed given that a + ∆L > 0 and

b+∆L > 0. Changing variables to z = 1−σeρ, z̄ = 1−σe−ρ and collecting the

most singular term σ−k, with k = 2∆L + a+ b, leads to

I(d=2)|σ−k =
icπ

Γ(∆L)2

(
Γ(a+∆L)Γ(b+∆L)(−eρ(b−a) − eρ(a−b))

+
Γ(a+ b+ 2∆L)e

−ρ(a+b+2∆L)

a+∆L
2F1(a+∆L, a+ b+ 2∆L, 1 + a+∆L,−e−2ρ)

+
Γ(a+ b+ 2∆L)e

ρ(a+b+2∆L)

a+∆L
2F1(a+∆L, a+ b+ 2∆L, 1 + a+∆L,−e2ρ)

)
.

(B.1.16)

Using again (B.1.7) we express (B.1.16) as follows

I(d=2)|σ−k =
icπ

Γ(∆L)2

(
− Γ(a+∆L)Γ(b+∆L)e

ρ(a−b)

+
Γ(a+ b+ 2∆L)e

−ρ(a+b+2∆L)

a+∆L
2F1(a+∆L, a+ b+ 2∆L, 1 + a+∆L,−e−2ρ)

− Γ(a+ b+ 2∆L)e
−(a+b+2∆L)ρ

b+∆L
2F1(b+∆L, a+ b+ 2∆L, 1 + b+∆L,−e−2ρ)

)
.

(B.1.17)
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In matching (B.1.17) with the T-channel expansion, following the same logic

as in the previous subsection we deduce that a = 0 and b = 1 and fix c. The

first line in (B.1.17) then reproduces the exchange of the stress tensor in the T-

channel. The other two lines match the contribution of double-trace operators

[OLOL]n,l=2 with dimension ∆ = 2∆L + 2n + 2 and spin 2 in the T-channel

expansion.

Appendix B.2. Details on the impact parameter representation in

d = 4

Here we will see how the impact parameter representation in four dimen-

sions leads to the expression for the disconnected correlator in the Regge limit,

in terms of the integral over h, h̄.

The objective of this section is to explicitly see that the disconnected con-

tribution of the correlator in the Regge limit

1

[(1− z)(1− z̄)]∆
=

1

Γ(∆)Γ(∆− 1)

∫ ∞

0

dh

∫ h

0

dh̄(hh̄)∆−2 h− h̄

z − z̄

× (zh+1z̄h̄ − zh̄z̄h+1) ,

(B.2.1)

can be equivalently written as

∫ ∞

0

dh

∫ h

0

dh̄ Ih,h̄ , (B.2.2)

with

Ih,h̄ ≡ C(∆)

∫

M+

d4p

(2π)4
(−p2)∆−2e−ipx(h− h̄)δ(p · ē+ h+ h̄) δ

(
p2

4
+ hh̄

)
.

(B.2.3)

where M+ is the upper Milne wedge with {p2 ≤ 0, p0 ≥ 0} and

C(∆) ≡ 2d+1−2∆π1+ d
2

Γ(∆)Γ(∆− d
2 + 1)

, (B.2.4)

with d the dimensionality of the spacetime, here d = 4.
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In practice, we need to perform the integral over p in (B.2.3). To do so, we

will use spherical polar coordinates and write:

Ih,h̄ =
C(∆)

(2π)3

∫ ∞

−∞
dp0

∫ ∞

0

dpr (pr)2
∫ 1

−1

d(cos θ) (−p2)∆−2 θ(p0)θ(−p2)×

eip
0x0

e−irp
r cos θ

[
δ

(
p0 + pr

2
− h

)
δ

(
p0 − pr

2
− h̄

)
+ h↔ h̄

]
.

(B.2.5)

The overall factor of (2π) is simply the result of the integration with respect to

the angular variable φ. Next we perform the integral over cos θ:

Ih,h̄ =
C(∆)

(2π)3

∫ ∞

−∞
dp0

∫ ∞

0

dpr (pr)2 (−p2)∆−2 eip
0x0

×
(
e−irp

r − eirp
r

−irpr
)
θ(p0)θ(−p2) (δ δ),

(B.2.6)

where we set

(δ δ) ≡ δ

(
p0 + pr

2
− h

)
δ

(
p0 − pr

2
− h̄

)
+ h↔ h̄ . (B.2.7)

Notice that
∫ ∞

0

dpr
pr

ir
(−p2)∆−2 eirp

r

(δ δ)−
∫ ∞

0

dpr
pr

ir
(−p2)∆−2 e−irp

r

(δ δ) =

=

∫ ∞

−∞
dpr

pr

ir
(−p2)∆−2 eirp

r

(δ δ) .

(B.2.8)

Hence we can write (B.2.6) as follows

Ih,h̄ =
C(∆)

(2π)3

∫ ∞

−∞

dp+ dp−

2

p+ − p−

i(x+ − x−)
(−p2)∆−2 e

i
2 (p

+x−+p−x+)

× θ(p+)θ(p−) (δ δ) .

(B.2.9)

Performing the last two integrations is trivial due to the delta-functions. The

result is

Ih,h̄ =
1

Γ(∆)Γ(∆− 1)

h− h̄

i(x+ − x−)
(hh̄)∆−2 (eihx

+

eih̄x
− − eih̄x

+

eihx
−

) ,

(B.2.10)

which allows us to write (B.2.2) as follows:

∫ ∞

0

dh

∫ h

0

dh̄ Ih,h̄ =
1

Γ(∆)Γ(∆− 1)

∫ ∞

0

dh

∫ h

0

dh̄
h− h̄

i(x+ − x−)
(hh̄)∆−2

(zhz̄h̄ − zh̄z̄h) .

(B.2.11)
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Here we also used the identification (z = eix
+

, z̄ = eix
−

).

Observe that (B.2.11) is equal to (B.2.1) in the Regge limit, where

z

z − z̄
≃ 1

i(x+ − x−)
,

z̄

z − z̄
≃ 1

i(x+ − x−)
. (B.2.12)

However, when considering next order corrections in (x+, x−) the impact pa-

rameter represention may require corrections. Below we show that these are

irrelevant for the questions we are interested in.

B.2.1. Exact Fourier transform

Here we will compute the Fourier transform for the S-channel expression

with the identification (z = eix
+

, z̄ = eix
−

) and show that the leading order

results in the Regge limit given in the previous section do not miss any important

contributions.

The generic term in the S-channel which we would like to Fourier transform

looks like: ∫
dh dh̄ g(x+, x−)f̃(h, h̄) , (B.2.13)

where

g(x+, x−) =
ei(1+h)x

+

eih̄x
− − eih̄x

+

ei(h+1)x−

(eix+ − eix−)
, (B.2.14)

and

f̃(h, h̄) = iπ(hh̄)∆−2(h− h̄)f(h, h̄) , (B.2.15)

where f(h, h̄) stands for all the contributions in the S-channel to a given order.

The Fourier transform is:

∫
d4x eipx

∫
dh dh̄ g(x+, x−)f̃(h, h̄) =

∫
dh dh̄f̃(h, h̄)

∫
d4x eipxg(x+, x−) ,

(B.2.16)

where we simply reversed the order of integration. Our focus in what follows

will be the integral:

I ≡
∫
d4x eipxg(x+, x−) . (B.2.17)

Since x+ = t + r and x− = t − r, it is convenient to use spherical polar coor-

dinates to perform the integration. The angular integration over φ gives us an

overall factor of (2π) as the integrand is independent of φ. Next we perform

150



the integration over the other angular variable. Similar to what was discussed

in the previous section,
∫ 1

−1

d(cos θ) eip
rr cos θ =

eirp
r − e−irp

r

irpr
. (B.2.18)

Combining the above we can write:

I = 2π

∫ ∞

−∞
dte−itp

t

∫ ∞

0

drr
eirp

r − e−irp
r

ipr
g(t, r) . (B.2.19)

It is easy to see that g(t, r) = g(t,−r) and as a result:
∫ ∞

0

dr re−irp
r

g(t, r) = −
∫ 0

−∞
dr reirp

r

g(t, r) , (B.2.20)

which allows us to write the integral as:

I = 2π

∫ ∞

−∞

dx+dx−

2
eip·x

x+ − x−

i(p+ − p−)
g(x+, x−) . (B.2.21)

Here eip·x = e−
i
2 (p

+x−+p−x+) and the above integral can be thought of as a

two-dimensional Fourier transform.

To proceed we need the explicit form of g(x+, x−) which we write as

g(x+, x−) =
eihx

+

eih̄x
−

1− e−i(x+−x−)
+ (x+ ↔ x−) (B.2.22)

and then expand the denominator in the Regge limit

1

1− e−i(x+−x−)
=

1

i(x+ − x−)

[
1− i

2
(x+ − x−) + · · ·

]
. (B.2.23)

Substituting into (B.2.21) leads to:

I = 2π
1

(−p+ + p−)

∫
dx+dx−

2
eip·x{eihx+

eih̄x
−

[1− i

2
(x+ − x−) + · · ·]

+ (x+ ↔ x−)} .
(B.2.24)

Let us compute the integral term by term. The leading term in the Regge limit

yields the standard delta functions:

I0 = 22π3 1

p− − p+
δ(
p+

2
− h̄)δ(

p−

2
− h) + (p+ ↔ p−) =

= 2π3 1

h− h̄

{
δ(
p+

2
− h̄)δ(

p−

2
− h) + (p+ ↔ p−)

}
=

= 2π3 1

h− h̄
δ(p · ē+ h+ h̄)δ(

p2

4
+ hh̄) .

(B.2.25)
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The subleading terms on the other hand produce the same result except that

the delta functions are replaced with derivatives of themselves with respect to

pr = p+−p−
2 .

Let us now consider the full result which up to an overall numerical coeffi-

cient can be written as:

∫
dh dh̄ f̃(h, h̄)

(
1− ∂

∂pr
+ · · ·

)
δ(p · ē+ h+ h̄)δ(

p2

4
+ hh̄) . (B.2.26)

To evaluate the terms with derivatives of the delta function we need to integrate

by parts. Now recall that we are interested in the imaginary piece of the S-

channel whose leading behaviour is ∼
√
−p2 (this dependence is hidden in

what we called f̃). It is obvious that the derivatives will produce subleading

terms which we are not interested in.

What about the other pieces in the S-channel which are not imaginary? To

O(µ2) in this case, we know that the leading behaviour grows like ∼ (
√

−p2)2,
so by differentiation, a term of the order

√
−p2 may be produced. However,

it is clear that this term will never contribute to the imaginary term of the S-

channel (note that the coefficient in the first term in the parenthesis in (B.2.26)

is real). We thus deduce that the subleading terms in (B.2.24) are irrelevant for

our study.

Appendix B.3. Impact parameter representation in general spacetime

dimension d

Here we want to prove the following equation for general spacetime dimen-

sion d:

Ih,h̄ = (zz̄)−
(∆H+∆L)

2 P (0)g∆HL,−∆HL
h,h̄

(z, z̄), (B.3.1)

using the form of conformal blocks given in (5.33). We start with the definition

of Ih,h̄ that is given as:

Ih,h̄ = C(∆L)

∫

M+

ddp

(2π)d
(−p2)∆L− d

2 e−ipx(h− h̄)δ(p · ē+ h+ h̄)δ(
p2

4
+ hh̄),

(B.3.2)

where:
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C(∆L) ≡
2d+1−2∆Lπ1+d

2

Γ(∆L)Γ(∆L − d
2
+ 1)

. (B.3.3)

Using spherical coordinates we write (B.3.2) as:

Ih,h̄ = C(∆L)

∫ ∞

−∞
dpteip

tt

∫ ∞

0

dpr(pr)d−2

∫

Sd−2

sind−3 φ1dφ1 dΩd−3

× e−ip
rr cos φ1(−p2)∆L− d

2 θ(−p2)θ(pt)
{
δ

(
pt + pr

2
− h

)
δ

(
pt − pr

2
− h̄

)

+ (h↔ h̄)
}
,

(B.3.4)

where Ωd−3 = 2π
d−2
2

Γ( d−2
2 )

denotes the area of the unit (d − 3)-dimensional hyper-

sphere.

Notice now that
∫ π

0

sind−3 φ1e
−iprr cosφ1dφ1 =

√
πΓ(

d

2
− 1)0F1(

d− 1

2
;−1

4
(pr)2r2) . (B.3.5)

Substituting (B.3.5) back in to (B.3.4), one is left with integrals with respect

to pt and pr only. These integrals are trivial due to the presence of delta

functions.86 When these integrations are done, the expression for Ih,h̄ is given

as:

Ih,h̄ =
23−d

√
π

Γ(∆L)Γ(∆L − d
2
+ 1)

eit(h+h̄)(h− h̄)d−2(hh̄)∆L−
d
2

0F1R(
d− 1

2
;−1

4
(h− h̄)2r2),

(B.3.6)

where 0F1R(a, x) = Γ(a)−1
0F1(a, x). Relations between coordinates t and r

with x+ and x− are given as: x+ = t+ r and x− = t− r.

On the other hand, using the explicit form for conformal blocks (5.33) and

OPE coefficients in the Regge limit (2.49) one finds that:

(zz̄)−
(∆H+∆L)

2 P (0)g∆HL,−∆HL
h,h̄

(z, z̄) =
Γ(d

2
− 1)

Γ(∆L)Γ(∆L − d
2
+ 1)

× (hh̄)∆L+
d
2 (h− h̄)(zz̄)

h+h̄
2 C

( d2−1)

h−h̄

( z + z̄

2
√
zz̄

)
.

(B.3.7)

86 One only needs to remember that h ≥ h̄ ≥ 0.
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Using the relations between coordinates r, t and z, z̄ it is easy to see that

(zz̄)
h+h̄

2 = eit(h+h̄). Next, one can use the relation between Gegenbauer poly-

nomials and hypergeometric functions:

C(α)
n (z) =

(2α)n
n!

2F1(−n, 2α+ n, α+
1

2
;
1− z

2
), (B.3.8)

which for h− h̄ = l ≫ 1 gives:

C
( d2−1)

l

( z + z̄

2
√
zz̄

)
=

ld−3

Γ(d− 2)
2F1(−l, l + d− 2,

d− 1

2
;
1

2
− 1

2
(
z + z̄

2
√
zz̄

)). (B.3.9)

With the help of the following properties of hypergeometric functions:

2F1(a, b, c; z) = (1− z)−b2F1(c− a, b, c;
z

z − 1
),

lim
m,n→∞2F1(m,n, b;

z

mn
) = 0F1(b; z).

(B.3.10)

Using these, together with the assumption that in the Regge limit the values

of x+l and x−l are fixed constants: x+l = a1 and x−l = a2 while l → ∞, one

can easily see87 that (B.3.6) reproduces (B.3.1). This confirms the validity of

the impact parameter representation.

Appendix B.4. Anomalous dimensions of heavy-light double-trace

operators in d = 2

The OPE data of the heavy-light double trace operators in d = 2 dimensions

can be directly obtained from the heavy-light Virasoro vacuum block [77,78].

For completeness, in this appendix we investigate the anomalous dimension

of [OHOL]h̄,h−h̄ in d = 2. As in d = 4, we introduce an impact parameter

representation following [8]. We calculate the anomalous dimensions to O(µ) by

solving the crossing equation and then use the impact parameter representation

to relate them to the bulk phase shift. We find a precise agreement between

the two. Using the bulk phase shift we furthermore determine the anomalous

dimension to second order in µ. Much of the discussion follows closely the

four-dimensional case and will be briefer.

87 By noting that:

Γ(x− 1

2
) = 22−2x√π

Γ(2x− 1)

Γ(x)
. (B.3.11)
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B.4.1. Anomalous dimensions in the Regge limit using bootstrap

The conformal blocks in two dimension are given by [75,74]

g∆12,∆34

∆,J (z, z̄) = f∆+J (z)f∆−J (z̄) + (z ↔ z̄) , (B.4.1)

where fa(z) was defined in (1.16). Similar to the four dimensional case, the

blocks for heavy-light double-trace operators simplify in the heavy limit (∆H ∼
CT )

g∆HL,−∆HL
[OHOL]h,h̄ (z, z̄) = (zz̄)

1
2 (∆H+∆L)(zhz̄h̄ + (z ↔ z̄)) . (B.4.2)

Inserting this form of the conformal blocks in (2.46) together with the OPE

coefficients in the Regge limit (2.49) and approximating the sums with integrals,

one can due to symmetry extend the region of integration and it is easily found

that the disconnected correlator in the T-channel is reproduced.

Similar to the four-dimensional case the stress tensor dominates at order µ

in the T-channel. The block of the stress tensor after analytic continuation in

the Regge limit is given by

gTµν =
24iπe−ρ

σ
+ . . . , (B.4.3)

where . . . denote non-singular terms. As in the four-dimensional case, this has

to be reproduced in the S-channel by the term in (2.46) proportional to −iπγ.
With the conformal blocks (B.4.2), the imaginary part in the S-channel to

O(µ) is given by

Im(G(z, z̄))|µ = −iπC∆L

∫ ∞

0

dh

∫ h

0

dh̄(hh̄)∆L−1γ(1)(h, h̄)
(
zhz̄h̄ + zh̄z̄h

)
.

(B.4.4)

Using the ansatz γ(1)(h, h̄) = c1h
ah̄b we find that the T-channel contribution is

reproduced for a = 0 and b = 1 (see Appendix B.1 for details). We thus find

using (2.29)

γ(1) = −6λOHOHTµνλOLOLTµν
µ∆L

h̄ = −h̄. (B.4.5)

To O(µ2) we can use (5.13) to find the following contribution to the purely

imaginary terms in the S-channel

Im(G(z, z̄))|µ2 = −iπC∆L

∫ ∞

0

dh

∫ h

0

dh̄(hh̄)∆L−1

(
γ(2) − c21h̄

2

)
(zhz̄h̄ + zh̄z̄h).

(B.4.6)

155



B.4.2. 2d impact parameter representation and relation to bulk phase shift

Similar to the four-dimensional case we introduce an impact parameter

representation in order to relate the anomalous dimension with the bulk phase

shift. The impact parameter representation in d = 2 is given by

Ih,h̄ ≡ C(∆L)

∫

M+

d2p(−p2)∆−1e−ipx(h− h̄)δ(p · ē+ h+ h̄) δ

(
p2

4
+ hh̄

)
,

(B.4.7)

with straightforward generalization of the d = 4 case explained above. This is

again chosen such that when the impact parameter represetation is integrated

over h, h̄ the disconnected correlator is reproduced:

∫ ∞

0

dh

∫ h

0

Ih,h̄ =
1

[(1− z)(1− z̄)]∆L
. (B.4.8)

The discussion of the phase shift is completely analogous to the four-

dimensional case, as in (5.23) we find the following relation between the bulk

phase shift and the anomalous dimension to second order in µ

γ(1) = −δ
(1)

π

γ̃(2) − c21p
−

4
= −δ

(2)

π
.

(B.4.9)

In [8] the phase shift in d = 2 was found to be

δ(1) =
π

2

√
−p2e−L

δ(2) =
3π

8

√
−p2e−L.

(B.4.10)

Using the identification p+ = 2h and p− = 2h̄ together with (5.25) we find for

the anomalous dimension in the Regge limit

γ(1) = −h̄

γ(2) = −1

4
h̄.

(B.4.11)

We thus see that the first order result agrees with that obtained from bootstrap

(B.4.5). Furthermore, the second order correction agrees also in d = 2 with the

result (6.40) in [8].
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Appendix B.5. Discussion of the boundary term integrals

There are a few integrals containing total derivative terms that we have

ignored throughout Section 5 [1] and we analyze more carefully here. Let us start

with a total derivative term which shows up in the real part of the correlator at

O(µ). It is given by88:

I1 =
1

2
(zz̄)−

1
2 (∆H+∆L)

∫ +∞

0

dl
[
P (0)γ(1)g∆HL,−∆HL

n+l,n (z, z̄)
]n→∞

n=0
. (B.5.1)

Let us focus on the integrand:
[
P (0)γ(1)g∆HL,−∆HL

n+l,n (z, z̄)
]n→∞

n=0
. When n = 0,

the expression within the brackets trivially vanishes. On the other hand,

when n → ∞, it takes the form n2∆L−2(zz̄)n × f(l), where f is some

function of l only. We are instructed here to take the limit n → ∞ in-

dependently of all other limits (recall that the Regge limit is taken af-

ter the integration). For generic values 0 < (z, z̄) < 1 it is clear that

limn→∞
[
P (0)γ(1)g∆HL,−∆HL

n+l,n (z, z̄)
]

= limn→∞ n2∆L−2(zz̄)n × f(l) → 0. In

other words, the expression
[
P (0)γ(1)g∆HL,−∆HL

n+l,n (z, z̄)
]n→∞

n=0
→ 0, and we con-

clude that the integral (B.5.1) does not contribute to the S-channel expansion

of the correlator.

There are a few more integrals of similar kind that appear at O(µ2). We

will analyse one of them here:

I2 =
−iπ
2

(zz̄)−
1
2 (∆H+∆L)

∫ +∞

0

dl
[
P (0)(γ(1))2g∆HL,−∆HL

n+l,n (z, z̄)
]n→∞

n=0
. (B.5.2)

The same logic can be applied here. Again, the value of the expression in brack-

ets at n = 0 is trivially zero, while for large n it behaves like: n2∆L+d−4(zz̄)nf̃(l).

As long as (z, z̄) < 1, this vanishes exponentially in the limit n→ ∞. One con-

cludes therefore that the integral (B.5.2) vanishes. The same logic is valid for

all other integrals of similar total derivative terms that appear at O(µ2).

88 We are again using variables n and l, one can notice that n = h̄ and l = h − h̄.

It is trivial to prove that ∂n = ∂h + ∂h̄.
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Appendix B.6. An identity for the bulk phase shift.

The aim is to elaborate on the results of [8] for the bulk phase shift in a black hole

background as computed in gravity. Firstly, let us note the following identity

involving hypergeometric functions:

∞∑

n=0

a(n)xn 2F1[τ0 + 2n+ 1,
d

2
− 1, τ0 + 2n− d

2
+ 3, x] = 2F1[τ0 + 1,

τ0
2
,
τ0
2

+ 2, x]

a(n) =
22n

n!

τ0 + 2

τ0 + 2 + 2n

( τ0
2
+ 1− d

2
)n
(
τ0+1
2

)
n

(τ0 + n+ 2− d
2 )n

, τ0 6= 0 .

(B.6.1)

Given that both sides of the equality can be expressed as an infinite series ex-

pansion around x = 0, one simply needs to show that the expansion coefficients

match to all orders in x. This is proven in Appendix G.

Consider now the case τ0 = k(d− 2) where k ∈ N⋆. Setting x ≡ e−2L and

multiplying both sides with e−[k(d−2)+1]L yields:

Πk(d−2)+1,k(d−2)+1(L) =

∞∑

n=0

βnΠk(d−2)+2n+1,d−1(L)

β(n) ≡ π
(1−k)(d−2)

2
a(n)

(k(d− 2) + 1)n

Γ
[
k(d− 2)− d

2 + 2n+ 3
]

Γ
[
k(d−2)

2 + 2
] .

(B.6.2)

The left hand side represents the hyperbolic space propagator for a scalar field

of squared mass equal to k(d − 2) + 1 in a hyperbolic space of dimensionality

k(d− 2) + 1 and is proportional to the k-th order expression for the bulk phase

shift computed in gravity in [8], where

δ(k)(S, L) =
1

k!

2Γ
(
dk+1

2

)

Γ
(
k(d−2)+1

2

) π1+
k(d−2)

2

Γ
(
k(d−2)

2 + 1
)S Πk(d−2)+1,k(d−2)+1(L) . (B.6.3)

On the other hand, the right-hand side of (B.6.2) expresses the k-th order

term of the bulk phase shift as an infinite sum of (d−1)-dimensional hyperbolic

space propagators for fields with mass-squared equal to m2 = k(d−2)+1+2n.

It can be shown [151,34] that the analytically continued T-channel scalar

conformal block in the Regge limit behaves like:

g∆,J(σ, ρ) = i c∆,J
Π∆−1,d−1(ρ)

σJ−1
, (B.6.4)
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where

c∆,J =
4∆+J−1Γ

(
∆+J−1

2

)
Γ
(
∆+J+1

2

)

Γ(∆+J
2

)2
2Γ
(
∆− d

2 + 1
)

π1− d
2 Γ (∆− 1)

. (B.6.5)

Here Π∆−1,d−1 denotes as usual the (d− 1)-dimensional hyperbolic space prop-

agator for a massive scalar of mass-squared m2 = (∆− 1).

It follows that the k-th order term in the µ-expansion of the bulk phase

shift in a black hole background can be expressed as an infinite sum of conformal

blocks corresponding to operators of twist τ = τ0(k) + 2n = k(d− 2) + 2n and

spin J = 2 in the Regge limit. In other words, we can write:

i δ(k)(S, L) = f(k)
∞∑

n=0

λk(n) g
R
τ0(k)+2n+2,2

(S, L)

λk(n) = a(n)
2−4n

[(
τ0(k)+4

2

)

n

]2

(
τ0(k)+3

2

)

n

(
τ0(k)+5

2

)

n

, τ0(k) = k(d− 2)

(B.6.6)

where

f(k) ≡
√
π

64

1

2k(d−2) k!

Γ
(
kd+1

2

)
Γ
(
k(d−2)+4

2

)

Γ
(
k(d−2)+5

2

)
Γ
(
k(d−2)+3

2

) , (B.6.7)

and

gR
∆,J

(S, L) = ic∆,J S
J−1 Π∆−1,d−1(L) . (B.6.8)

Appendix B.7. An identity for hypergeometric functions.

Here we will show that for q 6= 0,
∞∑

n=0

a(n)xn 2F1[q + 2n+ 1,
d

2
− 1, q + 2n− d

2
+ 3, x] = 2F1[q + 1,

q

2
,
q

2
+ 2, x]

a(n) =
22n

n!

q + 2

q + 2 + 2n

( q2 + 1− d
2 )n

(
q+1
2

)
n

(q + n+ 2− d
2 )n

, q 6= 0 .

(B.7.1)

Given that both sides of the equality can be expressed as an infinite series ex-

pansion around x = 0, one simply needs to show that the expansion coefficients

match to all orders in x. Let us first set:

b(n,m) ≡ 1

m!

(q + 1 + 2n)m
(
d
2 − 1

)
m(

q − d
2
+ 2n+ 3

)
m

c(ℓ) ≡ 1

ℓ!

(q + 1)ℓ
(
q
2

)
ℓ(

q
2 + 2

)
ℓ

=
(q + 1)ℓ

ℓ!

q(q + 2)

(q + 2ℓ)(q + 2ℓ+ 2)
,

(B.7.2)
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such that:

2F1[q + 2n+ 1,
d

2
− 1, q + 2n− d

2
+ 3, x] =

∞∑

m=0

b(n,m)xm,

2F1[q + 1,
q

2
,
q

2
+ 2, x] =

∞∑

ℓ=0

c(ℓ)xℓ.

(B.7.3)

It is easy to check that the coefficients of the first few powers of x precisely

match. Indeed, e.g.,

a(0)b(0, 0)− c(0) = 0

a(1)b(1, 0) + a(0)b(0, 1)− c(1) = 0

a(2)b(2, 0) + a(1)b(1, 1) + a(0)b(0, 2)− c(2) = 0.

(B.7.4)

To show that the above identity is true for all powers of x we must show that:

ℓ∑

k=0

a(k)b(k, ℓ− k) = c(ℓ) , (B.7.5)

for all ℓ ∈ N . The left-hand side of (B.7.5) can be easily summed to yield:

ℓ∑

k=0

a(k)b(k, ℓ− k) =
1

ℓ!

Γ[q + 1 + ℓ]

Γ[q]

(q + 2)

(q + 2ℓ)(2 + 2ℓ+ q)
, (B.7.6)

which can be trivially shown to be equal to c(ℓ).
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Appendix C.1. Comparing leading Regge singularities with the

shockwave calculation

In order to compare the leading Regge singularities in (6.66) with the stress

tensor sector calculated in [104], the following identity is useful

e2(∆L+
k
2 )ρ

e2ρ − 1

Γ(1− k)Γ(∆L + 2k − 1)Γ(2∆L + k)

k!Γ(∆L)Γ(∆L − 1)Γ(∆L + k)(2∆L + k − 1)

[
F̃∆L,n,−1

+
(e2ρ − 1)(∆L + 2k − 1)

∆L + k
F̃∆L,n,0 −

e2ρ(∆L + 2k − 1)(∆L + 2k)

(∆L + k)(∆L + k + 1)
F̃∆L,n,1

]

=
e−3kρ

1− e−2ρ

Γ(∆L − k)Γ(∆L + 2k − 1)

k!Γ(∆L − 1)Γ(∆L)

× 2F1(k − 1,∆L + 2k − 1;−∆L + k + 1,−e−2ρ),

(C.1.1)

where89

F̃∆L,n,a(e
−2ρ) =

Γ(∆− k − a)Γ(∆L + k + a+ 1)

Γ(1− k)Γ(2∆L + k)

×e−2(∆L+2k+a)ρ
2F1(∆L + 2k + a, k;−∆L + k + a+ 1;−e−2ρ).

(C.1.2)

With (C.1.1) one can check that (6.66) agrees with the contribution from the

stress tensor sector for fixed ρ, or η, in [104].

Appendix C.2. Further comparison with lightcone results

In this section, we further compare predictions obtained using the phase

shift with known results in the lightcone limit.

C.2.1. Triple-stress tensors in four dimensions

Consider the momentum space correlator (6.55) at O(µ3). In the large

impact parameter limit, this is compared with the explicit resummation of

minimal-twist triple-stress tensors discussed in Section 6.2.

Consider the correlator (6.55) at O(µ3):

B(p)
B0(p)

∣∣∣
µ3

= −i (δ
(1))3

3!
− δ(1)δ(2) + iδ(3). (C.2.1)

89 F̃∆L,n,a is related to F∆L,n,a in [104] if one uses their identity Eq. (44) and keep

only the part relevant to the stress tensor sector and set (η)there = (e−2ρ)here.
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The leading and next-to-leading singularities are due to the first two terms in

(C.2.1) and were discussed in Section 6.4. At O( 1σ ) there will be a contribution

from the last term iδ(3) in (C.2.1). Using the decomposition of the phase shift in

(6.57), it is straightforward to use (6.37) to find the corresponding contribution

to the stress tensor sector:

G(3)(σ, ρ)|δ(3) = f(3)

∞∑

n=0

λ3(n)p[τ0(3) + 2n+ 2, 2] g�
τ0(3)+2n+2,2

(σ, ρ) + . . . ,

(C.2.2)

in any dimension d and the ellipses denote subleading corrections in σ → 0. Here

τ0(k) = k(d − 2) is the minimal-twist of multi-stress tensors at k-th order. To

compare the large impact parameter limit with the contribution from minimal-

twist multi-stress tensors, consider the term in (C.2.2) with n = 0:

G(3)(σ, ρ)|δ(3) ≈
ρ→∞

1155iπ∆L(∆L + 1)(∆L + 2)

8(∆L − 2)(∆L − 3)

e−7ρ

σ
. (C.2.3)

We thus see that (C.2.3) agree with the first line in (6.15) at O(µ3) due to

minimal-twist triple-stress tensors in d = 4.

There will also be a contribution at O( 1σ ) due to the first subleading cor-

rection to the second term −δ(1)δ(2) in (C.2.1). One can include the correction

to the position space Regge conformal block in (6.40) to the expression (6.79)

found in Section 6.4. Taking the large impact parameter with k = 3 one finds:

G(3)(σ, ρ)|δ(1)δ(2),σ−1 ≈
ρ→∞

525π2∆L(∆L + 1)(∆L + 2)(∆L + 3)

4(∆L − 2)(∆L − 3)

e−7ρ

σ
, (C.2.4)

which agree with the last line in (6.15) obtained using lightcone bootstrap.

C.2.2. Double-stress tensors in six dimensions

Consider the correlator (6.55) at O(µ2) in d = 6:

B(p)
B0(p)

∣∣∣
µ2

= −(δ(1))2 + iδ(2). (C.2.5)

The last term iδ(2) in (C.2.5) can be transformed to position space using (6.37).

From (6.57), one finds that the lowest-twist contribution to the second-order

phase shift in six dimensions is given by

δ
(2),d=6
0 =

693π

16

S(4e2L − 3)e−11L

(1− e−2L)3
. (C.2.6)
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Explicitly, Fourier transforming (C.2.6), we find the following contribution to

the stress tensor sector in the limit ρ→ ∞

G(2),d=6(σ, ρ)|δ(2) ≈
ρ→∞

iπ693p[10, 2]

4

e−9ρ

σ
. (C.2.7)

This agrees with the imaginary term at O( 1σ ) after analytically continuing the

resummation of minimal-twist double-stress tensors given by Eq. (4.8) in [2].
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Appendix D.1. Integrated Scalar

As several new features emerge in the case of integrated correlators, we will

first discuss a toy model – (d = 4) scalar field, that will serve as a consistency

check. We will show that one is able to extract the same OPE data when working

with correlators integrated over the xy plane, as in the original approach.

This appendix is divided into two parts: first subsection focuses on the case

of a scalar field with non-integer scaling dimension, while the second one studies

the ∆ = 4 case, which is more relevant for the stress tensor calculations.

In both subsections we begin by solving the bulk equations of motion where

two spatial dimensions were integrated out. We find the solution using the

ansatz introduced recently in [102,163], naturally adapted for the integrated

case.

On the CFT side we examine the integrated conformal blocks in the OPE

limit. In the integer case we explain the emergence of the log term as a result

of mixing of the scalar and stress tensor sectors. We also find that further

regularization is needed as a result of the integration.

Finally we extract the OPE coefficients90 from the comparison of the bulk

calculations and the structures expected by CFT and comment on the emergence

of the log terms and undetermined coefficients. We conclude that the integrated

problem can be equivalently well used for the extraction of the OPE data as

was the original one.

D.1.1. Scalar field with non-integer scaling dimension

D.1.1.1. Bulk-side

Our aim is to calculate the bulk-to-boundary propagator satisfying the

scalar field equation
(∂2 −m2)φ = 0

∆(∆− 4)−m2 = 0,
(D.1.1)

on the planar Euclidean AdS-Schwarzschild black hole background

ds2 = r2(1− µ

r4
)dt2 + r2d~x2 +

1

r2(1− µ
r4 )

dr2, (D.1.2)

90 In the leading order in the large CT limit.
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where ~x = (x, y, z).

According to the AdS/CFT dictionary we obtain the thermal two-point

function of the corresponding scalar operator in the limit

〈OL(x1)OL(x2)〉β = lim
r→∞

r∆φ(r, x1, x2). (D.1.3)

In this subsection we consider the conformal dimension ∆L is not an integer.

We now integrate over the xy-plane, hence we work with the integrated

bulk-to-boundary propagator

Φ(t, z, r) =

∫

R2

dxdy φ(t, ~x, r) . (D.1.4)

Equation (D.1.1) in the background (D.1.2) is then given by[
∆(∆− 4)− r(4 + f)∂r − r2f∂2r −

1

r2
∂2z −

1

r2f
∂2t

]
Φ = 0, (D.1.5)

where f = 1− µ
r4 .

To solve this equation, we first transform coordinates (t, z, r) to (w, ρ, r)

defined by
ρ ≡ rz

w2 ≡ 1 + r2t2 + r2z2.
(D.1.6)

These are the natural integrated analogues of the variables introduced in [102].

In these coordinates we have the following equation for Φ:
[
C1 + C2∂r + C3∂ρ + C4∂w + C5∂

2
r + C6∂

2
ρ

+ C7∂
2
w + C8∂r∂ρ + C9∂ρ∂w + C10∂w∂r

]
Φ = 0,

(D.1.7)

where

C1 = −r4w3(∆− 4)∆(r4 − µ)

C2 = rw3(5r8 − 6r4µ+ µ2)

C3 = ρw3(5r8 − 6r4µ+ µ2)

C4 = w2(w2 − 1)(5r8 − 6r4µ+ µ2) + r8(1 + ρ2)

+ (r4 − µ)2(w2 − 1) + r4(r4 − µ)(w2 − ρ2)

C5 = (r4 − µ)2r2w3

C6 = (r4 − µ)2w3ρ2 + r4(r4 − µ)w3

C7 = r8w(w2 − ρ2 − 1) + (r4 − µ)2w(w2 − 1)2 + r4(r4 − µ)wρ2

C8 = 2rw3ρ(r4 − µ)2

C9 = 2(r4 − µ)2w2(w2 − 1)ρ+ 2r4(r4 − µ)w2ρ

C10 = 2rw2(r4 − µ)2(w2 − 1).

(D.1.8)
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Here, using the same logic as in [102], we assume the ansatz (focusing only

on the solution that corresponds to the stress tensor sector on the CFT side,

see [102] for more details) as

Φ = ΦAdS

(
1 +

G4

r4
+
G8

r8
+ . . .

)
, (D.1.9)

where

G4 =
2∑

m=0

4−m∑

n=−2

a4n,mw
nρm

G8 =

6∑

m=0

8−m∑

n=−6

a8n,mw
nρm.

(D.1.10)

The vacuum propagator ΦAdS can be obtained by integrating the known vacuum

bulk-to-boundary propagator for the scalar field:

ΦAdS(t, z, r) =

∫
dxdy

[
r

1 + r2(t2 + x2 + y2 + z2)

]∆
=
πr∆−2

∆− 1

(
1 + r2(t2 + z2)

)1−∆
.

(D.1.11)

Changing the coordinates in this prefactor to (w, ρ, r) we get

ΦAdS(w, ρ, r) ∝
r∆−2

w2−2∆
. (D.1.12)

Inserting the ansatz into equation (D.1.7) we can determine the coefficients ajn,m

as functions of ∆ and µ. In the non-integer case all coefficients a4n,m and a8n,m

can be found. Here we list the non-zero ones appearing at O(µ1):

a4−2,0 =
2µ(1−∆)

5

a40,0 =
µ(∆− 1)

5

a42,0 =
3µ∆(∆− 1)

20(∆− 2)

a44,0 =
µ∆(∆− 1)(3∆− 10)

120(∆− 3)(∆− 2)

a4−2,2 = −µ(∆− 1)

5

a40,2 = −µ∆
10

a42,2 = −µ∆(∆− 1)

30(∆− 2)
.

(D.1.13)
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D.1.1.2. CFT-side

On the CFT side, the object dual to the scalar field two-point func-

tion in the black hole background, is the heavy-heavy-light-light correlator

〈OHOLOLOH〉.
Decomposing this four-point function into conformal blocks and integrat-

ing, we obtain

G∆ ≡
∫
dxdy〈OHOLOLOH〉 =

∫
dxdy

∑

∆i,J

C∆i,J
g∆i,J(Z, Z)

(ZZ)∆
, (D.1.14)

where Z and Z91 are the cross ratios defined in terms of t, x, y and z as:

Z = −t− i
√
x2 + y2 + z2

Z = −t+ i
√
x2 + y2 + z2,

(D.1.15)

and C∆i,J is the product of OPE coefficients corresponding to the exchange of

an operator with conformal dimension ∆i and spin J .

In the heavy-heavy-light-light correlator, the important set of operators

contributing in the T-channel are the multi- stress tensors, which we consider

below. The first nontrivial contribution to the correlator (D.1.14) comes from

the exchange of the stress tensor. In the OPE limit the corresponding conformal

block is

g4,2(Z, Z) ≈ ZZ(Z2 + ZZ + Z
2
). (D.1.16)

Hence, at this order we find that (D.1.14) becomes

G∆

∣∣∣
µ1

= −C4,2
π(t2 + z2)2−∆(t2(10− 3∆) + z2(∆− 2))

(∆− 3)(∆− 2)
. (D.1.17)

Following the same approach, one gets the corresponding integrated con-

formal blocks for the double-trace stress tensors.

91 We will temporarily use this unusual notation, as we have to distinguish the cross

ratios and the space coordinate z.

167



D.1.1.3. Comparison

To determine the OPE coefficients, we compare the bulk and the CFT

results. We connect the two sides by equation (D.1.3), which is now of the form

G∆ = lim
r→∞

r∆ΦAdS
(
1 +GT +Gφ

)
. (D.1.18)

Where GT = G4

r4 + G8

r8 + . . . corresponds to the stress tensor sector and Gφ

corresponds to the double-trace scalars (possibly dressed with Tµν). As we

mentioned above, these two sectors are decoupled for non-integer ∆L, hence we

can consider only the multi-stress tensors. The stress tensor contribution to

(D.1.18) is given by

G∆

∣∣∣
µ1

= lim
r→∞

πr2∆−6

∆− 1

G4(t, z, r)

(1 + r2(t2 + z2))∆−1

=
π(t2 + z2)2−∆(t2(3∆− 10) + z2(2−∆))∆µ

120(∆− 3)(∆− 2)
,

(D.1.19)

where in the second equality we have used the bulk results for G4.

Comparing (D.1.17) and (D.1.19) we extract the OPE coefficient:

C4,2 =
∆µ

120
, (D.1.20)

which is in agreement with the result (3.65) in [102].

The OPE coefficients at higher orders in µ can be determined in a similar

way.

D.1.2. Scalar field with ∆ = 4

D.1.2.1. Bulk-side

We now consider ∆ = 4. The setup for this case is identical as above, i.e.

we have to solve the bulk equation of motion (D.1.7) but now for ∆ = 4.

Here, however, the situation becomes more tricky as some of the OPE

coefficients are singular for ∆ = 4. On the other hand, for integer ∆ the multi-

stress-tensor sector and double-trace scalar sector are no longer decoupled. We

expect the contribution from the [OO] to compensate for these divergent parts

in the [Tn] OPE coefficients. As a result, log terms will appear in the solution.

We will explain this in more details below.
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In the bulk this leads to a slightly modified ansatz [163]:

Φ = ΦAdS

(
1 +

1

r4
(
G4,1 +G4,2 log r

)
+

1

r8
(
G8,1 +G8,2 log r

)
+ . . .

)
,

(D.1.21)

where ΦAdS is the same vacuum propagator as in the previous section and G4,j

and G8,j are given by

G4,j =
2∑

m=0

4−m∑

n=−2

(a4,jn,m + b4,jn,m logw)wnρm

G8,j =

6∑

m=0

8−m∑

n=−6

(a8,jn,m + b8,jn,m logw)wnρm.

(D.1.22)

Inserting this ansatz into the equation (D.1.7), we can determine the coefficients

ak,jn,m and bk,jn,m.

The result (in the w, ρ and r coordinates) is

Φ =
π

25200r6w10

[
8400w4(r8 + w6((1− 6ρ2)a8,16,0 + (w2 − 8ρ2)a8,18,0))

+ 840r4w2(−12 + 6w2 + w4 + w6 − 2(3 + 2w2 + w4)ρ2)µ

+ (8064− 12656w2 + 3136w4 + 448w6 + 655w8 − 4(−2016

+ 448w2 + 476w4 + 345w6 + 40w8 + 750w10)ρ2

+ 56(36 + 44w2 + 35w4 + 20w6 + 10w8)ρ4

+ 120w10(−6 + 5w2 − 4ρ2)(log r + logw))µ2
]
+O(µ3).

(D.1.23)

For the stress tensor exchange all log terms vanish and we are also able to

determine all the coefficients. We get the same results as in the non-integer

case, as expected.

For the double stress tensor exchange (µ2) the coefficients a8,16,0 and a8,18,0 are

not fixed by near-boundary analysis.

D.1.2.2. CFT-side

At order O(µ0) and O(µ1) the contribution for ∆ = 4 will be the same as

was for non-integer ∆. Let us therefore focus on the µ2 terms.

Here the contributions of the double-trace stress tensors mix with the

double-trace scalar [OO]. We thus have to consider 4 contributions to the
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correlator at order µ2 – three from the double stress tensor (we label them by

the conformal dimension and the spin: (∆i, J)):

TµνT
µν (8, 0)

TµνT
ν
α (8, 2)

TµνTαβ (8, 4)

(D.1.24)

and one contribution from the double-trace scalar:

[OO] ⇐⇒ (8, 0), (D.1.25)

which will mix with the (8, 0) contribution from [T 2]. This agrees with the fact

that it is only the coefficient CTT (8, 0), that is expected to diverge.

Let us have a closer look at the divergencies that appear here. First, as the

coefficient CTT8,0 has a pole in ∆ = 4 [102] we can write it as

C8,0 =
Csing
∆− 4

+ CTTreg (D.1.26)

where the term CTTreg is regular in ∆ = 4 and Csing is the residue. In order for

the singular part to be cancelled, the OPE coefficient of the double-trace scalar

must also have a pole at ∆ = 4 with the same residue but with an opposite sign

[102]:

COO
8,0 = − Csing

∆− 4
+ COO

reg (D.1.27)

Now, since the conformal block for J = 0 in the OPE limit is g∆′,0 ≈ (ZZ)∆
′

, we

can study what happens if the contributions from [T 2] and [OO] mix. Consider

first ∆ = 4 + δ, sum the contributions from [T 2] and [OO] and then take the

limit δ → 0:

lim
δ→0

[
CTT8,0 (ZZ)

4−(4+δ) + COO
8+2δ,0(ZZ)

(4+δ)−(4+δ)
]

(D.1.28)

Using (D.1.26) and (D.1.27) we see that the singular parts result in a log term:

lim
δ→0

Csing
δ

[
(ZZ)−δ− 1

]
= lim
δ→0

Csing
δ

[
1−δ log ZZ +O(δ2)−1

]
= −Csing log ZZ

(D.1.29)
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Thus the complete contribution at O(µ2) is

G4

∣∣∣
µ2

=

∫
dxdy

(
CTTreg + COO

reg − Csing logZZ+

C8,2
Z2 + ZZ + Z

2

ZZ

+ C8,4
Z4 + Z3Z + Z2Z

2
+ ZZ

3
+ Z

4

Z2Z
2

)
.

(D.1.30)

where g8,2 and g8,4 are composed out of the corresponding conformal blocks in

the OPE limit:

g8,2 =
Z2 + ZZ + Z

2

ZZ

g8,4 =
Z4 + Z3Z + Z2Z

2
+ ZZ

3
+ Z

4

Z2Z
2 .

(D.1.31)

It is evident, that the integral (D.1.30) is divergent and thus needs to be

regulated. In practise we can do this using the dimensional regulatization: we

multiply the integrand by a factor |x|−ǫ =
(
t2 + x2 + y2 + z2

)− ǫ
2 , integrate and

then expand the resulting expression around ǫ = 0. This way we get:

G4

∣∣∣
µ2

=
8πt2(C8,2 − 3C8,4)

ǫ

+ π

[
C8,4

(
15t4 − 2t2z2 − z4 + 12t2

(
t2 + z2

)
log
(
t2 + z2

))

t2 + z2

+ C8,2

(
t2 + z2 − 4t2 log

(
t2 + z2

) )

+ (t2 + z2)
(
Csing(log(t

2 + z2)− 1)

− CTTreg − COO
reg

)]
+O(ǫ1).

(D.1.32)

D.1.2.3. Comparison

To compare the bulk and the CFT results, we can use equation (D.1.18).

We are only interested in the double-trace sector

G4

∣∣∣
µ2

= lim
r→∞

r4ΦAdS
G8,1 +G8,2 log r

r8
. (D.1.33)
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The RHS of this relation is obtained by taking the limit of the O(µ2) term in

the bulk result (D.1.23), yielding:

G4

∣∣∣
µ2

=
π

1260

[
420
(
− 6z2a8,16,0 + (t2 − 7z2)a8,18,0

)

+ µ2

(
− 2(75t2z2 + 61z4)

t2 + z2
+ 3(5t2 + z2) log

(
t2 + z2

))
]
.

(D.1.34)

Comparing (D.1.32) and (D.1.34) we can extract the coefficients C8,2, C8,4

and Csing:

C8,2 =
µ2

560

C8,4 =
µ2

720

Csing =
µ2

420
,

(D.1.35)

while for the coefficients CTTreg , C
OO
reg and the parameter ǫ we get the following

relations

COO
reg + CTTreg = 2a8,16,0 +

7

3
a8,18,0 +

239µ2

2520

1

ǫ
= −

420(3a8,16,0 + 4a8,18,0) + 47µ2

12µ2
.

(D.1.36)

To conclude, our double-trace results for C8,2, C8,4 and the residual part

of CTT8,0 are in a perfect agreement with the results for the non-integer case

extrapolated to ∆ = 4, see [102], while the remaining CFT data is related to

the undetermined coefficients on the bulk side by the relations (D.1.36).

Appendix D.2. List of bulk results for Z1 and Z2

In this appendix we list some expressions for the invariants in the shear

and sound channels.

D.2.1. Results in the shear channel

For the source Ĥtx we find the solution of equation (7.8) at O(µ1) as

Z(tx)
1

∣∣∣
µ1

=
µρ
(
96
(
ρ2 + 2

)
+ 3w6 +

(
6− 4ρ2

)
w4 − 12

(
ρ2 + 8

)
w2
)

10πrw10
(D.2.1)
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and at O(µ2) as

Z(tx)
1

∣∣∣
µ2

=
µ2ρ

8400πr5w12

[
− 40320

(
ρ2 + 2

)2 − 4920w12 log(w)

+
(
6920− 7280ρ2

)
w10 + 5

(
272ρ4 − 2880ρ2 + 271

)
w8

+ 40
(
136ρ4 − 331ρ2 − 154

)
w6

+ 280
(
33ρ4 + 26ρ2 − 268

)
w4 + 896(ρ4 + 140ρ2

+ 262)w2
]
−

12ρ
(
a
8,2(tx)
8,0 log(r) + a

8,1(tx)
8,0

)

πr5
,

(D.2.2)

where a
8,1(tx)
8,0 and a

8,2(tx)
8,0 are undetermined coefficients.

Choosing a source Ĥxz, we get the bulk result as

Z(xz)
1

∣∣∣
µ1

= −f0
√

−ρ2 + w2 − 1

10πrw10

[
96
(
ρ2 + 2

)
+ w6 +

(
2− 4ρ2

)
w4

− 12
(
ρ2 + 6

)
w2
] (D.2.3)

and

Z(xz)
1

∣∣∣
µ2

=
µ2
√

−ρ2 + w2 − 1

8400πr5w12

[
40320

(
ρ2 + 2

)2 − 4200w12 log(w)

+ 120
(
38ρ2 + 17

)
w10 + 5

(
−272ρ4 + 1792ρ2 + 437

)
w8

+ 8
(
−680ρ4 + 885ρ2 + 448

)
w6−

− 168
(
55ρ4 + 46ρ2 − 284

)
w4 − 896

(
ρ4 + 122ρ2 + 226

)
w2
]
+

+
12
√

−ρ2 + w2 − 1
(
a
8,2(xz)
8,0 log(r) + a

8,1(xz)
8,0

)

πr5
.

(D.2.4)

Using the results for the bulk-to-boundary propagator Z(xz)
1 (D.2.3) and

(D.2.4) we obtain the correlator G
(bulk)
xz,xz as

G(bulk)
xz,xz

∣∣∣
µ0

=− 1

∂2t + ∂2z

3πCT
(
z2 − 7t2

)

5 (t2 + z2)
5

G(bulk)
xz,xz

∣∣∣
µ1

=− 1

∂2t + ∂2z

3πµCT
(
t4 − 6t2z2 + z4

)

200 (t2 + z2)
4

G(bulk)
xz,xz

∣∣∣
µ2

=
1

∂2t + ∂2z

[
πµ2CT

8400 (t2 + z2)
3

(
210t6 + 648t4z2 + 6t2z4 − 160z6

+ 105
(
t2 + z2

)3
log
(
t2 + z2

) )
− 3

5
πa

8,1(xz)
8,0 CT

]
.

(D.2.5)
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D.2.2. Results in the sound channel

First we list the solutions of the sound channel equations of motion (7.8)

for various polarizations.

For the source Ĥtz we get

Z(tz)
2

∣∣∣
µ1

=
16µρ

√
−ρ2 + w2 − 1

5πw12

[
−w6−3w4−96w2+2ρ2

(
w4 + 4w2 + 60

)
+240

]

(D.2.6)

and

Z(tz)
2

∣∣∣
µ2

=− 4µ2ρ
√
−ρ2 + w2 − 1

315πr4w14

[
18144

(
ρ2 + 2

)2
+ 798w12

+
(
1356− 584ρ2

)
w10 +

(
176ρ4 − 2240ρ2 + 1779

)
w8

+ 12
(
88ρ4 − 384ρ2 + 147

)
w6

+ 336
(
9ρ4 − 17ρ2 + 58

)
w4 + 672

(
7ρ4 − 55ρ2 − 131

)
w2
]
.

(D.2.7)

For the source Ĥtt we get

Z(tt)
2

∣∣∣
µ1

=− 2µ

5πw12

[
8ρ4

(
w4 + 4w2 + 60

)
− 8ρ2

(
w6 + 3w4 + 66w2 − 120

)

+ w2
(
w6 + 2w4 + 48w2 − 96

) ]

(D.2.8)

and

Z(tt)
2

∣∣∣
µ2

=
µ2

3150πr4w14

[
362880ρ2

(
ρ2 + 2

)2
+ 15960w14 log(w)

+ 120
(
279ρ2 − 113

)
w12 − 15

(
1072ρ4 − 4048ρ2 + 593

)
w10

+ 20
(
176ρ6 − 3120ρ4 + 4083ρ2 − 294

)
w8

+ 120
(
176ρ6 − 1083ρ4 + 651ρ2 − 406

)
w6

+ 1344(5
(
9ρ4 − 24ρ2 + 91

)
ρ2

+ 131)w4 + 3360
(
28ρ6 − 265ρ4 − 632ρ2 − 36

)
w2
]

+
a
8,1(tt)
0,0 + a

8,2(tt)
0,0 log(r)

r4
(D.2.9)

For the source Ĥzz we get

Z(zz)
2

∣∣∣
µ1

=
2µ

5πw12

[
480

(
ρ4 + 3ρ2 + 2

)
+ w8 +

(
2− 8ρ2

)
w6

+ 8
(
ρ4 − 3ρ2 + 31

)
w4 + 16

(
2ρ4 − 43ρ2 − 72

)
w2
] (D.2.10)
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and

Z(zz)
2

∣∣∣
µ2

=
µ2

630πr4w14

[
− 72576

(
ρ2 + 1

) (
ρ2 + 2

)2
+ 1560w14 log(w)

− 24
(
99ρ2 + 16

)
w12 + 3

(
720ρ4 − 1776ρ2 − 37

)
w10

− 4
(
176ρ6 − 2240ρ4 + 1791ρ2 + 75

)
w8

− 24
(
176ρ6 − 781ρ4 + 177ρ2 − 1806

)
w6

− 4032
(
3ρ6 − 5ρ4 + 37ρ2 + 81

)
w4

− 672
(
28ρ6 − 255ρ4 − 1032ρ2 − 848

)
w2
]

+
a
8,1(zz)
0,0 + a

8,2(zz)
0,0 (0, 0) log(r)

r4
.

(D.2.11)

For the source Ĥxx we get

Z(xx)
2

∣∣∣
µ1

= − 8µ

5πw12

[
60
(
ρ2 + 2

)
+ 25w4 − 4

(
5ρ2 + 33

)
w2
]

(D.2.12)

and

Z(xx)
2

∣∣∣
µ2

=
µ2

3150πr4w14

[
181440

(
ρ2 + 2

)2 − 11880w14 log(w)

+ 180
(
43− 60ρ2

)
w12 + 15

(
176ρ4 − 1136ρ2 + 315

)
w10

+ 10
(
880ρ4 − 2292ρ2 + 369

)
w8

+ 120
(
151ρ4 − 237ρ2 − 700

)
w6 + 672

(
45ρ4 + 100ρ2 + 1084

)
w4

+ 3360
(
5ρ2

(
ρ2 − 40

)
− 406

)
w2
]
+
a
8,1(xx)
0,0 + a

8,2(xx)
0,0 log(r)

r4
.

(D.2.13)

Using the prescription (7.39) for the sound channel and the solutions above,

we get the correlator order-by-order in µ for the source Ĥtt as

G
(bulk)
tt,tt

∣∣∣
µ0

=
1

(∂2t + ∂2z )
2

96πCT
(
t4 − 18t2z2 + 21z4

)

5 (t2 + z2)
7

G
(bulk)
tt,tt

∣∣∣
µ1

=
1

(∂2t + ∂2z )
2

4πµCT
(
t6 − 15t4z2 + 15t2z4 − z6

)

15 (t2 + z2)
6

G
(bulk)
tt,tt

∣∣∣
µ2

=− 2πµ2CT
(∂2t + ∂2z )

2

(
−691t8 + 1900t6z2 + 1910t4z4 + 860t2z6 + 133z8

)

1575 (t2 + z2)
5 ,

(D.2.14)
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and for the source Ĥzz as

G(bulk)
zz,zz

∣∣∣
µ0

=
1

(∂2t + ∂2z )
2

96πCT
(
21t4 − 18t2z2 + z4

)

5 (t2 + z2)
7

G(bulk)
zz,zz

∣∣∣
µ1

=
1

(∂2t + ∂2z )
2

4πµCT
(
t6 − 15t4z2 + 15t2z4 − z6

)

15 (t2 + z2)
6

G(bulk)
zz,zz

∣∣∣
µ2

=
2πµ2CT

(∂2t + ∂2z )
2

(
−65t8 − 724t6z2 + 810t4z4 + 140t2z6 + 79z8

)

1575 (t2 + z2)
5 .

(D.2.15)

Finally, using the relation (7.39) we get the Gbulkxx,xx in the form

G(bulk)
xx,xx

∣∣∣
µ0

=
1

∂2t + ∂2z

24πCT

5 (t2 + z2)
4

G(bulk)
xx,xx

∣∣∣
µ1

=0

G(bulk)
xx,xx

∣∣∣
µ2

=
1

∂2t + ∂2z

[
πµ2CT
3150

(
126 log

(
t2 + z2

)
+

−135t4 + 90t2z2 − 71z4

(t2 + z2)
2

)

− 1

60
πCT

(
72
(
a
8,1(xy)
6,0 + a

8,1(xy)
8,0

)
+ πa

8,1(xx)
0,0

)]
,

(D.2.16)

where the undetermined coefficients a
8,1(xy)
6,0 and a

8,1(xy)
8,0 come from the scalar

channel contribution and a
8,1(xx)
0,0 originates in the sound channel.

Appendix D.3. Conventions and details on spinning conformal cor-

relators

In this appendix we summarize our conventions and provide some details

on spinning conformal correlators in embedding space that is used in the main

part of Section 7.4 following [175,174]. The basic building blocks are

Vi,jk =
(Zi · Pj)(Pi · Pk)− (Zi · Pk)(Pi · Pj)

Pj · Pk
,

Hij = −2[(Zi · Zj)(Pi · Pj)− (Zi · Pj)(Zj · Pi)],
(D.3.1)

where V1 ≡ V1,23, V2 ≡ V2,31 and V3 ≡ V3,12. Here Pi and Zi are null vectors in

R1,d+1.
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One possible basis for the three-point function of two stress tensors and a

spin-J operator with dimension ∆ is given by (Pij = −2Pi · Pj)

〈T (P1, Z1)T (P2, Z2)O(P3, Z3)〉 =
∑10
p=1 x

(TTO)
p Qp

(P12)
d+2−∆+J

2 (P23)
∆+J

2 (P31)
∆+J

2

, (D.3.2)

where

Q1 = V 2
1 V

2
2 V

J
3 ,

Q2 = (H23V
2
1 V2 +H13V

2
2 V1)V

J−1
3 ,

Q3 = H12V1V2V
J
3 ,

Q4 = (H13V2 +H23V1)H12V
J−1
3 ,

Q5 = H13H23V1V2V
J−2
3 ,

Q6 = H2
12V

J
3 ,

Q7 = (H2
13V

2
2 +H2

23V
2
1 )V

J−2
3 ,

Q8 = H12H13H23V
J−2
3 ,

Q9 = (H13H
2
23V1 +H23H

2
13V2)V

J−3
3 ,

Q10 = H2
13H

2
23V

J−4
3 .

(D.3.3)

Conservation of the stress tensor further reduces the number of independent

structures. In particular, when O = T there are 3 independent structures while

for non-conserved operators of dimension ∆ and spin J = 0, 2, 4, there are 1, 2

and 3 independent structures, respectively. However, we will mainly consider

the differential basis introduced in [175] since this is powerful when considering

the four-point conformal blocks. It is based on multiplication by H12 as well as

the differential operators

D11 =(P1 · P2)(Z1 ·
∂

∂P2
)− (Z1 · P2)(P1 ·

∂

∂P2
)

− (Z1 · Z2)(P1 ·
∂

∂Z2
) + (P1 · Z2)(Z1 ·

∂

∂Z2
),

D12 =(P1 · P2)(Z1 ·
∂

∂P1
)− (Z1 · P2)(P1 ·

∂

∂P1
) + (Z1 · P2)(Z1 ·

∂

∂Z1
),

(D.3.4)

and D22 and D21 obtained from D11 and D12 by 1 ↔ 2. We further define the
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following differential operators:

D1 = D2
11D

2
22Σ

2,2,

D2 = H12D11D22Σ
2,2,

D3 = D21D
2
11D22Σ

3,1
L +D12D

2
22D11Σ

1,3
L ,

D4 = H12(D21D11Σ
3,1
L +D12D22Σ

1,3
L ),

D5 = D12D21D11D22Σ
2,2,

D6 = H2
12Σ

2,2,

D7 = D2
21D

2
11Σ

4,0
L +D2

12D
2
22Σ

0,4
L ,

D8 = H12D12D21Σ
2,2,

D9 = D2
12D

2
21Σ

2,2,

D10 = D12D
2
21D11Σ

3,1 +D21D
2
12D22Σ

1,3,

(D.3.5)

where Σm,nL denotes a shift ∆1 → ∆1 +m and ∆2 → ∆2 + n. The three-point

functions in the differential basis are then given by

〈T (P1, Z1)T (P2, Z2)O∆,J(P3, Z3)〉

=

10∑

i=1

λ
(i)
TTO∆,J

Di
V J3

P∆1+∆2−∆−J
12 P∆+∆2−∆1+J

23 P∆+∆1−∆2+J
13

,

(D.3.6)

where we kept ∆1,2 to keep track of the action of Σ
(·,·)
L in (D.3.5).

The spinning conformal partial waves can be obtained from the scalar par-

tial waves WO:

WO =

(
P24

P14

)∆12
2
(
P14

P13

)∆34
2 g

(∆12,∆34)
∆,J (z, z̄)

P
∆1+∆2

2
12 P

∆3+∆4
2

34

(D.3.7)

with ∆ij = ∆i −∆j and the cross-ratios (u, v) are given by

u =
P12P34

P13P24
,

v =
P14P23

P13P24
.

(D.3.8)

The scalar blocks are normalized as follows in the limit u→ 0, v → 1:

g
(∆12,∆34)
∆,J (z, z̄) ∼ J !

(−2)J (d
2
− 1)J

(zz̄)
∆
2 C

( d2−1)

J

(v − 1

2
√
u

)
, (D.3.9)
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where C
(n)
J are Gegenbauer polynomials and (a)J denote the Pochammer sym-

bol. The spinning conformal partial waves are then obtained by

W
{i}
O = DLDRWO, (D.3.10)

where

DL = Hn12
12 Dn10

12 Dn20
21 Dm1

11 D
m2
22 Σm1+n20+n12,m2+n10+n12

L , (D.3.11)

where i labels the structure in the scalar partial wave and DR is similarly defined

with 1 → 3 and 2 → 4. The integers nij ≥ 0 and mi that labels the structure

are determined by the solutions to the following equations ensuring the correct

homogeneity under P → αP and Z → βZ:

m1 = J1 − n12 − n12 ≥ 0,

m2 = J2 − n12 − n20 ≥ 0,

m0 = J0 − n10 − n20 ≥ 0,

(D.3.12)

where J = J0 is the spin of the exchanged operator. In the case of two spin-2

operators at P1 and P2 and scalar operators at P3 and P4, the possible combi-

nations appearing in (D.3.11) can be taken to be the ones given in (D.3.5).

We are interested in the OPE limit of the contribution of individual blocks

to

Ĝ := P∆H
34 〈T (P1, Z1)T (P2, Z2)OH(P3)OH(P4)〉 (D.3.13)

where OH is a scalar operator with dimension ∆H . In this case we have using

(D.3.10)

Ĝ(Pi, Zi)|O∆,J
=

10∑

i=1

λ
(i)
TTO∆,J

λOHOHO∆,J
Di

(
P24

P14

)∆12
2 g

(∆12,0)
∆,J (u, v)

P
∆1+∆2

2
12

,

(D.3.14)

where the differential operators Di are given by (D.3.5) and ∆1 = ∆2 = d.

The spinning correlator in embedding space with indices is then obtained

using

ĜMN,PS(Pi) =
1

22(d
2
− 1)2

D̂
(1)
M D̂

(1)
N D̂

(2)
P D̂

(2)
S Ĝ(Pi, Zi) (D.3.15)
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where D̂
(i)
M is given by

D̂
(i)
M =

(
d− 2

2
+ Zi ·

∂

∂Zi

)
∂

∂ZMi
− 1

2
ZiM

∂2

∂Z2
. (D.3.16)

In order to project down to physical space one imposes PMi = (1, x2i , x
µ
i ) and

contract indices in embedding space with
∂PMi
∂xν

= (0, 2x
(i)
ν , δµν ) [175,174]. We

then set xµ1 = (1,~0), xµ2 = (1 + t, ~x), xµ3 = (0,~0) and x4 → ∞ with |x21| ≪ 1 in

the OPE limit, such that u→ 0 and v → 1.

D.3.1. Stress tensor block

The relation between different basis for the stress tensor three-point func-

tion can be found in e.g. Appendix C.1 in [180], some of which we summarize

here for convenience. In embedding space formalism [175,174] the stress tensor

three-point function can be built from (D.3.2)

〈T (P1, Z1)T (P2, Z2)T (P3, Z3)〉 =
∑8
p=1 xpQp

P
d+2
2

12 P
d+2
2

23 P
d+2
2

31

, (D.3.17)

and the coefficients xp ≡ x
(TTT )
p are constrained due to permutation symmetry

and conservation to satisfy

x1 = 2x2 +
1

4
(d2 + 2d− 8)x4 −

1

2
d(d+ 2)x7,

x8 =
1

d2

2
− 2

[
x2 −

(d
2
+ 1
)
x4 + 2dx7

]
,

x2 = x3,

x4 = x5,

x6 = x7.

(D.3.18)

The stress tensor three-point function can be parameterized in terms of

(â, b̂, ĉ) [177] where one of these can further be traded for CT using the Ward

identity

CT = 4Sd
(d− 2)(d+ 3)â− 2b̂− (d+ 1)ĉ

d(d+ 2)
. (D.3.19)

For the relation between the xp basis, (â, b̂, ĉ) and the (t2, t4) coefficients that

are natural when considering a conformal collider setup, we refer the reader to
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App. C in [180]. However, we recall C.10 in [24] that relates these to t2 and t4

in d = 4:

t2 =
30(13â+ 4b̂− 3ĉ)

14â− 2b̂− 5ĉ

t4 =− 15(81â+ 32b̂− 20ĉ)

2(14â− 2b̂− 5ĉ)

(D.3.20)

and for t2 = t4 = 0 one finds â = 4ĉ
23 and b̂ = 17ĉ

92 . On the other hand, the ratio

of the anomaly coefficients a, c are given by C.12 in [24]

a

c
=

9â− 2b̂− 10ĉ

3(14â− 2b̂− 5ĉ)
, (D.3.21)

with a = c when t2 = t4 = 0. We further need stress tensor three-point function

with the two heavy scalar operators

〈OH(x1)OH(x2)Tµν(x3)〉 = λOHOHTµν
WµWν − 1

dW
2δµν

x2∆H−2
12 x223x

2
31

, (D.3.22)

where Wµ =
xµ13
x2
13

− xµ23
x2
23
. Conformal Ward identities fixes λOHOHT to be

λOHOHTµν = − d

d− 1

∆H

Sd
, (D.3.23)

where Sd =
2π

d
2

Γ( d2 )
and is related to µ and β according to (7.54) and (7.55).

From now on we consider d = 4. For the stress tensor block we will work

with parametrization in terms of (â, b̂, ĉ). In the channel Ĝxy,xy, following the

procedure described above, one obtains

Ĝxy,xy|T =
∆H

2π4(14â− 2b̂− 5ĉ)(t2 + ~x2)5
×

×
[
4b̂(−5t4(x2 + y2) + ~x2(x4 + 6x2y2 + y4 + (x2 + y2)z2)− 4t2(x4 + 9x2y2 + y4

+ (x2 + y2)z2)) + ĉ(−3t6 + t4(13(x2 + y2)− 5z2)− ~x2(5x4 − 6x2y2 + 5y4

+ 4(x2 + y2)z2 − z4) + t2(11x4 + 102x2y2 + 11y4 + 10(x2 + y2)z2 − z4))

+ 4â(t6 + t4(−17(x2 + y2) + 3z2)− t2(13x4 + 106x2y2 + 13y4 + 10(x2 + y2)z2

− 3z4) + ~x2(5x4 − 6x2y2 + 5y4 + 6(x2 + y2)z2 + z4))
]
,

(D.3.24)
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where ~x = (x, y, z) which after integrating over x and y gives

Gxy,xy|T =

∫
dxdyĜxy,xy|T = − 2(7â+ 2b̂− ĉ)∆H(t

2 − z2)

3π3(14â− 2b̂− 5ĉ)(t2 + z2)2
. (D.3.25)

and for t2 = t4 = 0:

Gxy,xy|T =
2∆H(t2 − z2)

15π3(t2 + z2)2
. (D.3.26)

The results (D.3.25) and (D.3.26) are in agreement with [178] which used the

explicit OPE in order to evalute the stress tensor two-point function in a thermal

state.

Consider now Ĝtx,tx|T , one finds that it is given by

Ĝtx,tx|T =
∆H

2π4(14â− 2b̂− 5ĉ)(t2 + ~x2)5
×

×
[
4b̂(−t6 − x2~x4 + t4(−23x2 + 4(y2 + z2))

+ t2~x2(9x2 + 5(y2 + z2))) + ĉ(15t6 − (5x2 − y2 − z2)~x4 + t4(41x2

+ 7(y2 + z2))− t2~x2(43x2 + 7(y2 + z2)))

+ 4â(−13t6 + (3x2 − y2 − z2)~x4 − 3t4(13x2 + y2 + z2) + t2~x2(41x2

+ 9(y2 + z2)))
]
,

(D.3.27)

which after integrating over x and y gives

Gtx,tx|T = −∆H
(64â+ 14b̂− 19ĉ)t4 − 12(16â+ 5b̂− 4ĉ)t2z2 + 3(2b̂+ ĉ)z4

12(14â− 2b̂− 5ĉ)π3(t2 + z2)3
.

(D.3.28)

For t2 = t4 = 0 this reduces to

Gtx,tx|T = ∆H
−9t4 + 6t2z2 + 7z4

60π3(t2 + z2)3
. (D.3.29)

Consider now Ĝtz,tz. Before integration there is an SO(3) rotational sym-

metry so Ĝtz,tz can be obtained from (D.3.27) by x ↔ z. Integrating over the

xy-plane one finds

Gtz,tz|T =
∆H

(14â− 2b̂− 5ĉ)π3(t2 + z2)4

[
(−6â+ b̂+ 2ĉ)t6

+ (−10â− 7b̂+ 3ĉ)t4z2 + (30â+ 7b̂− 8ĉ)t2z4 + (2â− b̂− ĉ)z6
]

(D.3.30)
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For t2 = t4 = 0 this reduces to

Gtz,tz|T = ∆H
−105t6 + 3t4z2 + 137t2z4 + 77z6

270π3(t2 + z2)4
. (D.3.31)

D.3.2. Spin-0 double-stress tensor block

The simplest double-stress tensor operator is the scalar operator [T 2]J=0

with dimension ∆0. In the differential basis we need the differential operators

D1, D2 and D6 from (D.3.5) and the three-point function is give by (D.3.6) with

λi,0 ≡ λ
(i)
TT [T 2]J=0

. In order to impose conservation one demands that ∂
∂PM

D̂M

acting on (D.3.6) is 0 [174], where D̂M is given by (D.3.16). This implies that

the number of structures reduce

λ2,0 = −3

4
(∆0 − 6)(∆0 + 2)λ1,0,

λ6,0 =
3

32
(∆0 − 6)(∆0 − 4)∆0(∆0 + 2)λ1,0,

(D.3.32)

and one is left with a single coefficient λ1,0. The corresponding contribution to

the correlator Ĝ(Pi, Zi) (in embedding space) is given by

Ĝ(Pi, Zi)|[T 2]0 =
∑

i=1,3,6

ρi,0DiW[T 2]0 , (D.3.33)

where the conformal partial wave W[T 2]0 is given by (D.3.7). Note that the

coefficients ρi,0 are related to λi,0 by an overall factor of the one-point function

in the scalar state, they therefore satisfy the same conservation condition as the

λ’s in (D.3.32). The projection to the physical space and the relevant kinematics

are described in the first part of this appendix.

D.3.3. Spin-2 double-stress tensor block

Because the spin-2 double-stress tensor [T 2]J=2 is not conserved there will

be only two structures in the three-point function compared to 3 for the stress

tensor, even though they both have J = 2. In the differential basis these can

be labelled λi,2 ≡ λ
(i)
TT [T 2]J=2

with i = 1, 2, . . .8 in (D.3.6), which are reduced

to two coefficients by imposing conservation:
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λ3,2 =
(∆2 + 2) (192λ2,2 − (∆2 − 4)∆2 ((3∆2 − 16) (3∆2 + 4)λ1,2 + 20λ2,2))

6∆2 (∆2 (∆2 ((∆2 − 8)∆2 + 2) + 56) + 96)
,

λ4,2 =
(∆2 − 4) (∆2 + 2)

16 (∆2 (∆2 ((∆2 − 8)∆2 + 2) + 56) + 96)

[
(((∆2 − 4)∆2(3(∆2 − 4)∆2

− 52)− 64)λ1,2 + 4(∆2 − 8)(∆2 + 4)λ2,2)
]
,

λ5,2 =
(∆2 − 4)∆2 ((15 (∆2 − 4)∆2 + 52)λ1,2 + 52λ2,2)− 96λ2,2

12 (∆2 (∆2 ((∆2 − 8)∆2 + 2) + 56) + 96)
,

λ6,2 =
(∆2 − 4)∆2

128 (∆2 (∆2 ((∆2 − 8)∆2 + 2) + 56) + 96)

[
((256

− (∆2 − 4)∆2((∆2 − 4)∆2(3(∆2 − 4)∆2 − 56) + 688))λ1,2

− 4((∆2 − 4)∆2(5(∆2 − 4)∆2 − 52) + 416)λ2,2)
]

− 48λ2,2
∆2(∆2((∆2 − 8)∆2 + 2) + 56) + 96

,

λ7,2 =
(∆2 + 2) (∆2 + 4)

12 (∆2 − 2)∆2 (∆2 (∆2 ((∆2 − 8)∆2 + 2) + 56) + 96)

[
((∆2 − 4)∆2×

× ((3(∆2 − 4)∆2 − 44)λ1,2 + 4λ2,2)− 96λ2,2)
]
,

λ8,2 = − (3 (∆2 − 4)∆2 + 16)

48 (∆2 (∆2 ((∆2 − 8)∆2 + 2) + 56) + 96)

[
((∆2 − 4)∆2((3(∆2 − 4)∆2

− 44)λ1,2 + 4λ2,2)− 96λ2,2)
]
.

(D.3.34)

The corresponding contribution to the correlator Ĝ(Pi, Zi) is given by

Ĝ(Pi, Zi)|[T 2]2 =
8∑

i=1

ρi,2DiW[T 2]2 , (D.3.35)

where the conformal partial wave W[T 2]2 is given by (D.3.7). Again, the coeffi-

cients ρi,2 are related to λi,2 by an overall factor of the one-point function in the

scalar state, they therefore satisfy the same conservation condition as the λ’s in

(D.3.34). The projection to the physical space and the relevant kinematics are

described in the first part of this appendix.

D.3.4. Spin-4 double-stress tensor block

For the spin-4 double-stress tensor operator [T 2]J=4 there are a priori 10

structures labelled by λi,4 ≡ λ
(i)
TT [T 2]J=4

with i = 1, 2, . . .10 in (D.3.6). Conser-
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vation reduces the number of structures to 3 according as follows

λ4,4 =
1

96((∆4 − 4)∆4((∆4 − 4)∆4 − 44) + 192)

[
(−((∆4 − 4)∆4((∆4 − 4)×

×∆4((∆4 − 4)∆4(3(∆4 − 4)∆4 − 200) + 5712)− 92032))− 485376)λ3,4

− 2(∆4 − 6)(∆4 + 4)(((∆4 − 4)∆4((∆4 − 4)∆4(3(∆4 − 4)∆4 − 68)− 1024)

+ 13056)λ1,4 + 2((∆4 − 4)∆4(3(∆4 − 4)∆4 − 116) + 768)λ2,4)
]
,

λ5,4 =
1

8
(2((∆4 − 4)∆4 + 16)λ1,4 + (∆4 − 8)(∆4 + 2)λ3,4 + 4λ2,4),

λ6,4 =
1

256(∆4 − 6)(∆4 + 4)((∆4 − 4)∆4((∆4 − 4)∆4 − 44) + 192)

[
2(∆4 − 6)×

× (∆4 + 4)(((∆4 − 4)∆4((∆4 − 4)∆4((∆4 − 4)∆4((∆4 − 4)∆4((∆4 − 4)∆4

− 64) + 1040) + 11392)− 262144) + 2162688)λ1,4 + 2((∆4 − 4)∆4×
× ((∆4 − 4)∆4((∆4 − 4)∆4((∆4 − 4)∆4 − 88) + 2448)− 17408)

+ 86016)λ2,4) + ((∆4 − 4)∆4((∆4 − 4)∆4((∆4 − 4)∆4×
× ((∆4 − 4)∆4((∆4 − 4)∆4((∆4 − 4)∆4 − 108) + 5104)− 131904)

+ 2009088)− 18300928) + 81788928)λ3,4

]
,

λ7,4 =
1

24((∆4 − 4)∆4((∆4 − 4)∆4 − 44) + 192)

[
(∆4 − 4)(∆4 + 6)×

× (2(∆4 − 6)(∆4 + 4)(((∆4 − 4)∆4 + 20)λ1,4 + 2λ2,4) + ((∆4 − 4)∆4×

× ((∆4 − 4)∆4 − 36) + 704)λ3,4)
]
,

λ8,4 =
1

32(∆4 − 6)(∆4 + 4)((∆4 − 4)∆4((∆4 − 4)∆4 − 44) + 192)

[
2(∆4 − 6)×

× (∆4 + 4)(((∆4 − 4)∆4((∆4 − 4)∆4((∆4 − 4)∆4 − 20)((∆4 − 4)∆4

+ 24) + 4736) + 135168)λ1,4 + 2((∆4 − 4)∆4((∆4 − 6)(∆4 − 4)∆4(∆4 + 2)

− 320) + 7680)λ2,4) + (∆4(∆4(∆4(∆4(∆4(((∆4 − 20)∆4 + 120)∆3
4 − 1968∆4

+ 2112) + 23296)− 78848)− 327680) + 1638400) + 5111808)λ3,4

]
,
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and

λ9,4 =
1

3(∆4 − 6)(∆4 + 4)((∆4 − 4)∆4((∆4 − 4)∆4 − 44) + 192)

[
(∆4 − 6)×

× (∆4 + 4)× (((∆4 − 4)∆4(9(∆4 − 4)∆4 + 68)− 768)λ1,4

+ 16((∆4 − 4)∆4 − 6)λ2,4) + ((∆4 − 4)∆4((∆4 − 4)∆4×

× (3(∆4 − 4)∆4 − 116) + 3136)− 15360)λ3,4

]
,

λ10,4 =
1

12((∆4 − 4)∆4((∆4 − 4)∆4 − 44) + 192)

[
((∆4 − 4)∆4 + 12)×

× (−2(∆4 − 6)× (∆4 + 4)(((∆4 − 4)∆4 + 20)λ1,4 + 2λ2,4)

− ((∆4 − 4)∆4((∆4 − 4)∆4 − 36) + 704)λ3,4)
]
.

(D.3.37)

The corresponding contribution to the correlator Ĝ(Pi, Zi) is given by

Ĝ(Pi, Zi)|[T 2]4 =
10∑

i=1

ρi,4DiW[T 2]4 , (D.3.38)

where the conformal partial wave W[T 2]4 is given by (D.3.7). The coefficients

ρi,4 are related to λi,4 by an overall factor of the one-point function in the

scalar state, they therefore satisfy the same conservation condition as the λ’s

in (D.3.36) and (D.3.37). The projection to the physical space and the relevant

kinematics are described in the first part of this appendix.

D.3.5. Integrated double stress tensor contribution

In this section we list the explicit expression for the integrated O(CTµ
2)

part of the conformal block expansion of Gxy,xy, Gtx,tx and Gtz,tz obtained

using the procedure described above. The integrals over the double-stress ten-

sor blocks are divergent which we regulate by including a factor of |x|−ǫ, this
produces simple poles at ǫ→ 0. For Gxy,xy one finds as ǫ→ 0:

Gxy,xy|µ2CT = p(0)xy,xy(t, z) + p(1)xy,xy(t, z) log(t
2 + z2) +

c1t
2 + c2z

2

ǫ
(D.3.39)

where c1, c2 are some constants depending on the CFT data and

p(0)xy,xy(t, z) =
π5µ2CT

1693440000(t2 + z2)

2∑

j=0

p(0,2j)xy,xyt
4−2jz2j (D.3.40)
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with

p(0,0)xy,xy = −8(22050ρ
(1)
1,0 − 162243ρ

(1)
1,2 − 11683490ρ

(1)
1,4 + 129168ρ

(1)
2,2 + 4702775ρ

(1)
2,4

+ 6991740ρ
(1)
3,4) + 4410γ

(1)
0 + 304479γ

(1)
2 − 3577875γ

(1)
4 ,

p(0,2)xy,xy = 2
(
− 8(22050ρ

(1)
1,0 − 89343ρ

(1)
1,2 − 3641540ρ

(1)
1,4 + 56268ρ

(1)
2,2 + 1646645ρ

(1)
2,4

+ 2005920ρ
(1)
3,4) + 4410γ

(1)
0 + 14364γ

(1)
2 − 964005γ

(1)
4

)
,

p(0,4)xy,xy = 7
(
8(−3150ρ

(1)
1,0 + 2349ρ

(1)
1,2 − 215350ρ

(1)
1,4 + 2376ρ

(1)
2,2 + 90475ρ

(1)
2,4

+ 123300ρ
(1)
3,4) + 630γ

(1)
0 − 39393γ

(1)
2 + 74415γ

(1)
4

)
,

(D.3.41)

and

p(1)xy,xy(t, z) = − π5µ2CT
15680000

1∑

j=0

p(1,2j)xy,xyt
2−2jz2j (D.3.42)

with

p(1,0)xy,xy = 3
(
16(−702ρ

(1)
1,2 − 19565ρ

(1)
1,4 + 702ρ

(1)
2,2 + 8085ρ

(1)
2,4

+ 11480ρ
(1)
3,4) + 490γ

(1)
0 − 5607γ

(1)
2 + 12040γ

(1)
4

)
,

p(1,2)xy,xy =
(
16(486ρ

(1)
1,2 − 6055ρ

(1)
1,4 − 486ρ

(1)
2,2

+ 2695ρ
(1)
2,4 + 3360ρ

(1)
3,4 + 280γ

(1)
4 ) + 1470γ

(1)
0 − 189γ

(1)
2

)
.

(D.3.43)

For (∂2t + ∂2z )Gtx,tx one finds

(∂2t + ∂2z )Gtx,tx|µ2CT = p
(0)
tx,tx(t, z) + p

(1)
tx,tx log(t

2 + z2) +
c3
ǫ

(D.3.44)

for some constant c3 and where

p(0)xy,xy(t, z) = − π5µ2CT

423360000 (t2 + z2)
3

3∑

j=0

p
(0,2j)
tx,tx t

6−2jz2j (D.3.45)
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with

p
(0,0)
tx,tx = 176400ρ

(1)
1,0 − 265032ρ

(1)
1,2 + 30139760ρ

(1)
1,4 + 529632ρ

(1)
2,2 − 12698840ρ

(1)
2,4

− 17881920ρ
(1)
3,4 + 97020γ

(1)
0 − 345492γ

(1)
2 − 792435γ

(1)
4 ,

p
(0,2)
tx,tx =

1

48
(25401600ρ

(1)
1,0 + 203700096ρ

(1)
1,2 − 9623496960ρ

(1)
1,4 − 165597696ρ

(1)
2,2

+ 3983253120ρ
(1)
2,4 + 5576739840ρ

(1)
3,4 + 21591360γ

(1)
0 + 81539136γ

(1)
2

+ 356907600γ
(1)
4 ),

p
(0,4)
tx,tx =

1

48
(25401600ρ

(1)
1,0 + 270884736ρ

(1)
1,2 + 270063360ρ

(1)
1,4 − 232782336ρ

(1)
2,2

− 40360320ρ
(1)
2,4 − 293207040ρ

(1)
3,4 + 29211840γ

(1)
0 + 125629056γ

(1)
2

− 45889200γ
(1)
4 ),

p
(0,6)
tx,tx = 176400ρ

(1)
1,0 + 1134648ρ

(1)
1,2 − 6309520ρ

(1)
1,4 − 870048ρ

(1)
2,2 + 2824360ρ

(1)
2,4

+ 3044160ρ
(1)
3,4 + 255780γ

(1)
0 + 573048γ

(1)
2 − 71715γ

(1)
4 ,

(D.3.46)

and

p
(1)
tx,tx = −3π5µ2CT

15680000

[
− 8

(
4
(
81ρ

(1)
1,2 + 35ρ

(1)
1,4 − 81ρ

(1)
2,2 − 35ρ

(1)
3,4

)
+ 315γ

(1)
4

)

+ 980γ
(1)
0 + 63γ

(1)
2

]
.

(D.3.47)

Lastly, for (∂2t + ∂2z )
2Gtz,tz one finds

(∂2t + ∂2z )
2Gtz,tz|µ2CT =

π5µ2CT

2940000 (t2 + z2)
5

4∑

j=0

p
(0,2j)
tz,tz t

8−2jz2j , (D.3.48)
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where

p
(0,0)
tz,tz = −7776ρ

(1)
1,2 + 197120ρ

(1)
1,4 + 7776ρ

(1)
2,2 − 86240ρ

(1)
2,4 − 110880ρ

(1)
3,4

+ 1470γ
(1)
0 + 189γ

(1)
2 − 1400γ

(1)
4 ,

p
(0,2)
tz,tz = −248832ρ

(1)
1,2 + 19983040ρ

(1)
1,4 + 248832ρ

(1)
2,2 − 8451520ρ

(1)
2,4

− 11531520ρ
(1)
3,4 − 5880γ

(1)
0 − 152712γ

(1)
2 − 845320γ

(1)
4 ,

p
(0,4)
tz,tz = 233280ρ

(1)
1,2 − 82577600ρ

(1)
1,4 − 233280ρ

(1)
2,2 + 34496000ρ

(1)
2,4

+ 48081600ρ
(1)
3,4 − 14700γ

(1)
0 + 82530γ

(1)
2 + 3193400γ

(1)
4 ,

p
(0,6)
tz,tz = 435456ρ

(1)
1,2 + 29986880ρ

(1)
1,4 − 435456ρ

(1)
2,2 − 12246080ρ

(1)
2,4

− 17740800ρ
(1)
3,4 − 5880γ

(1)
0 + 218736γ

(1)
2 − 1147160γ

(1)
4 ,

p
(0,8)
tz,tz = −38880ρ

(1)
1,2 − 257600ρ

(1)
1,4 + 38880ρ

(1)
2,2 + 86240ρ

(1)
2,4 + 171360ρ

(1)
3,4

+ 1470γ
(1)
0 − 16695γ

(1)
2 + 12320γ

(1)
4 .

(D.3.49)

D.3.6. Comparison with the bulk calculations

Solving (7.69) one finds the anomalous dimensions (7.70), the relations

(7.71) and the bulk coefficients (a
(xy)
8,1 (6, 0), a

(xy)
8,1 (8, 0), a

(tx)
8,1 (8, 0)):

a
8,1(xy)
6,0 =

π4µ2
(
2ρ

(1)
1,0 − 3ρ

(1)
1,2 + ρ

(1)
1,4

)

1440
− 3150449µ2

47628000
+

1441µ2

37800ǫ
,

a
8,1(xy)
8,0 = −

π4µ2
(
2ρ

(1)
1,0 − 3ρ

(1)
1,2 + ρ

(1)
1,4

)

1920
+

1820863µ2

127008000
− 1801µ2

50400ǫ
,

a
8,1(tx)
8,0 =

π4µ2
(
2ρ

(1)
1,0 + 3ρ

(1)
1,2 − 5ρ

(1)
1,4

)

2880
− 132403µ2

1411200
− 47µ2

45360ǫ
,

(D.3.50)

which are divergent as ǫ→ 0. Note that by studying also the Gxx,xx polarization

one finds one more linearly independent equation:

a
8,1(xx)
0,0 =

π3µ2
(
ρ
(1)
1,0 + 2ρ

(1)
1,4

)

80
− 6713281µ2

5292000π
+

11741µ2

6300πǫ
. (D.3.51)
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