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Summary

The conformal bootstrap program has proven to be an effective tool for the study
of vacuum correlators and extending this development to finite temperature
correlators is of great interest. In particular, for conformal field theories with a
holographic dual, finite temperature correlators maps to correlation functions
in a black hole background. Probing black hole physics and interpreting its
properties in terms of the CF'T data, in other words, the spectrum and the OPE
coefficients, is an exciting direction of research. This thesis aims to explore some
developments in this direction by studying correlation functions in heavy states

which are expected to thermalize.

In Section 2, we provide a summary of heavy-heavy-light-light correlators in
holographic CFTs that will be the main object of study in this thesis. This
section begins with the two-dimensional case where the exchange of the stress
tensor and its composites is determined by the Virasoro symmetry. We then
consider the same object in space-time dimension d > 2 and review the lightcone

and the Regge limits.

In Section 3, we study the lightcone limit of a scalar heavy-heavy-light-light
correlator in d = 4 and following [2]. Imposing crossing symmetry, we determine
the contribution due to minimal-twist multi-stress tensor operators, related to
the gravitational interaction between a light probe and a black hole in the bulk.
This further allows us to extract the OPE coefficients between light scalars and

minimal-twist multi-stress tensor operators in holographic CFTs.

In Section 4, we explore the connection between the multi-stress tensor ex-
changes in d = 4 to higher-spin theories in d = 2 and following [3]. The
four-dimensional results from Section 3 are reminiscent of heavy-heavy-light-
light vacuum blocks in d = 2, in the latter case this structure is completely
fixed by the infinite-dimensional symmetry algebras. This indicates an emer-
gent symmetry algebra in the lightcone limit of the stress tensor sector in four
dimensions. Connections to generalized Catalan numbers and diagrammatic

rules are explored.



In Section 5, we consider the heavy-heavy-light-light correlator in the Regge
limit following [1}]; the dual picture is that of a highly energetic particle traveling
in a black hole background following [§]. Using the phase shift, related to the
Shapiro time delay and the angle deflection of a null geodesic due to the presence
of the black hole, we compute, among other things, the anomalous dimensions
of heavy-light double-trace operators to next-to-leading order in a perturbative
expansion. Whenever the regime of validity overlap, the results agree with the
lightcone bootstrap. The phase shift effectively resums an infinite family of
multi-stress tensor operators which at each order yields a softer behavior in the

Regge limit than any single term in the sum.

In Section 6, we study the leading and next-to-leading singularities in the Regge
limit following from exponentiation of the phase shift following [5§]. The posi-
tion space correlator is obtained by a suitable Fourier transform from which we
extract the contribution from multi-stress tensor operators. The leading sin-
gularity at each order agrees with a light particle propagating in a shockwave
background and, when available, the results further agree with expectations

from the lightcone bootstrap.

In Section 7, we consider the stress tensor two-point function at finite temper-
ature in holographic CFTs following [4]. In the bulk, this is related to metric
fluctuations around a black hole background. We solve the EOM of the met-
ric fluctuations in a near-boundary expansion which partially determines the
boundary correlators. In particular, the near-lightcone behavior of the correla-
tors is determined. We further decompose the correlators using the OPE be-
tween the stress tensors and read off the anomalous dimensions of double-stress

tensors with spin J =0, 2, 4.
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1. Introduction

In the 20th century, two main frameworks describing fundamental physics were
developed — Einstein’s theory of general relativity (GR) describing the effects
of gravity as a curved space-time, and quantum field theory (QFT) describing
the electromagnetic-, weak- and strong-interactions according to the Standard
model. A unification of these forces into a single framework has been a long-
standing open problem within the modern high-energy physics community. As
in all of physics, the relevant scales of the problems are of fundamental impor-
tance. The planetary orbits around stars are accurately described by the theory
of general relativity without including quantum effects and likewise, the effects
of gravity on scattering experiments taking place at the Large Hadron Collider
at CERN are negligible. There are, however, scenarios where the effects of grav-
ity and quantum physics become of comparable order and it is not justified to
neglect one over the other. One possible such scenario is when studying very
massive objects, such as black holes, where regions of spacetime become singular
and our current description breaks down.

An important puzzle where a better understanding of the interplay be-
tween gravity and quantum field theory is necessary was introduced by Stephen
Hawking in [9]. He considered quantum field theory in a black hole background
and showed that black holes emit thermal radiation at a temperature depending
only on a few parameters such as the mass, spin, and charge of the black hole.
This leads to a conflict with the unitarity of an underlying quantum theory
which predicts that information is preserved. Bekenstein and Hawking [9,10]
further pointed out that properties of black hole mechanics were reminiscent
of the laws of thermodynamics which, in particular, led to the prediction that

black holes have an entropy determined by their area

(1.1)

which beautifully contains several constants of nature and where A is the area
of the black hole. The fact that entropy scales with the area rather than the
volume of the black hole is an indication that a theory of quantum gravity
should be “holographic”. This is currently best understood in the context of
the AdS/CFT correspondence which states that a theory of quantum gravity

1



in (d 4 1)-dimensional Anti de-Sitter space has an equivalent, dual, description
as a conformal field theory (CFT) living on the d-dimensional boundary. How-
ever, there is currently a surge of developments in holographic descriptions of
quantum gravity also for asymptotically flat spacetime as well as for de-Sitter
space.

The AdS/CFT correspondence was conjectured in '97 by Maldacena [11]
using an explicit string theory setup of string and branes leading to the famous
duality between Type IIB string theory on AdSs x S® and N' = 4 SYM in
d = 4. The dictionary between the bulk theory of gravity and the CFT on
the boundary was then further developed by Gubser-Klebanov-Polyakov [12]
and Witten [13]. An actual proof of the correspondence is naturally hard to
construct due to it being a strong-weak duality. At this point, there is, however,
a wealth of evidence for the validity of the correspondence. The property of
it being a strong-weak duality is likewise one of the prominent features of the
correspondence, it makes it possible to study a class of strongly coupled quantum
field theories using semi-classical Einstein gravity. While the dictionary provides
a conceptually clear path to obtaining CFT observables from a semi-classical
weakly coupled Einstein’s theory of gravity, the opposite question of when a
CFT is “holographic” is more subtle. An important step in this direction was
provided by HPPS in [14] which conjectured that a theory is holographically
dual to such a theory of gravity if the central charge C7p is laurge:l'I and the
dimension of the lightest (single-trace) operator with spin greater than two is
large (Agap > 1). This was motivated by showing a one-to-one correspondence
between bulk EFT in AdS and solutions to the crossing equations in the dual
CFT. Another important development in this direction was provided by CEMZ
[15] which argued using bulk causality that corrections to the stress tensor three-
point function compared to that of pure GR should be suppressed by powers of
AL

Conformal field theories, that is quantum field theories that are also invari-
ant under local rescaling of lengths, are important points in the landscape of

quantum field theories. In particular, a typical scenario is to start from a CFT

I This is an approximate measure of the number of degrees of freedom.
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at high energies (UV) and to add relevant deformations which becomes impor-
tant as one flows to lower energies (IR). Deep enough in the IR the theory could
either have a mass gap, contain massless particles or be a CFT. In the latter
case, both the start- and end-point of the RG flow are CFTs connected by a
flow through QFTs. Understanding the restricted space of CFTs then provides
us with insights about the much larger landscape of QFTs. This is intriguing
as our understanding of CFTs in dimension d > 2 has developed significantly
in the last two decades. This broad development goes under the name of the
conformal bootstrap. The idea of bootstrapping theories, that is to extract as
much information as possible or even solve the theory using symmetries and
consistency conditions alone, is not new. The S-matrix bootstrap program be-
gan already in the late 50’s which, however, at the time only led to partial
success. Lately, partly based on the developments of the conformal bootstrap,
new ideas have led to another wave of exciting research in this direction.

The goal of the conformal bootstrap program is to fully extract the con-
straints that come from imposing conformal symmetry and various consistency
conditions, such as the associativity of the operator product expansion (OPE).
In dimension d > 2, seminal work was done in [1G] and since then the numerical
bootstrap has been used successfully to e.g. “solve the Ising model” [17-21]. The
numerical bootstrap has been a prosperous direction leading to many impressive
results. It is, however, also of interest to find analytical results when possible.
Two important examples when this is feasible consist of weakly coupled the-
ories with a small parameter or when considering a kinematical regime where
observables simplify and, in a certain sense described below, become universal.

A pioneering development of the analytic bootstrap was presented in
[22,23]. Rather than considering the short-distance expansion xo — 21 (OPE)
between two operators at 1 and x2 in Euclidean signature, they considered the
so-called lightcone limit in Minkowski signature. This is done by letting the
space-time distance go to zero when one operator gets close to the lightcone
of the other. The major simplification arising in this limit is that the main

contribution is due to operators of low twist 74, This led the authors of [22,23]

2 The twist 7 of an operator in a CFT is defined as 7 = A — J where A is the

dimension and J is the spin of the operator.
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to conclude the existence of double-twist operators with large spin in any uni-
tary CF'T in d > 2, with universal corrections due to the stress tensor exchange
which is fixed by conformal symmetry.

Micro-causality, that is commutativity of space-like separated operators,
translates into analytic properties of correlators and turns out to be another
powerful statement of consistency for CFT correlators. Causality in conjunc-
tion with unitarity in the UV was used to prove the ANEC and the conformal
collider bounds [24] in [25,26], it was also proven using quantum information
theory in [27]. This is closely related to the universality in the lightcone limit in
any unitary CFT. Stronger statements are available in holographic CFTs. Es-
sentially, this is due to the fact that the Regge limit (high-energy limit) [28-32]
is dominated by operators with high spin, in theories with gravity duals, this
will be the stress tensor contribution. This has led to many important results
on the role of bulk causality along the lines of [15] from the boundary point of
view, see e.g. [26,83-87).

Good behavior in the Regge limit is closely connected to analyticity in
spin as shown in [B§] who derived the Lorentzian inversion formula, see also
[89]. The Lorentzian inversion formula extracts the OPE data in a four-point
function from a double-commutator integrated over a Lorentzian region of space-
time. The double-commutator is in many circumstances easier to calculate than
the full correlator and further possesses important properties such as being
non-negative and bounded. In particular, in holographic CFTs the double-
commutator suppresses the contribution from multi-trace operators compared
to single-trace operators.

The non-negativity of the ANEC operator, that is the integral of the stress
tensor along a null geodesic, leads to important bounds on OPE coefficients
which, as mentioned above, is deeply connected to causality. More generally,
the role of such non-local operators, light-ray operators, has been emphasized
lately and important developments have been made, see e.g. [40-43]. Light-ray
operators, and commutativity of such operators, further provide, at least in
certain cases, a physical interpretation of dispersive sum rules. Recently there
has been significant progress in the understanding of such sum rules [42-50],
leading to, among other things, sharp bounds on corrections to theories dual to

Einstein gravity in the bulk, further strengthening the work of [14] and [15].
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What happens, in the context of holography, if we consider CFT correlators
in non-trivial states? According to the AdS/CFT dictionary, vacuum correla-
tors in the CFT are computed by considering fluctuations of fields in a pure
AdS background. In particular, stress tensor correlators on the boundary are
related to metric perturbations in pure AdS. However, the correspondence fur-
ther makes prediction about correlation functions in states dual to non-trivial
backgrounds in the bulk. The best-known example that will play an important
role in this thesis is an asymptotically AdS-Schwarzschild black hole — it is dual
to a finite temperature state on the boundary. To fully capture the physics in
the bulk, including black holes, one needs to consider a world beyond vacuum
correlators of “light” operators. Consistency between finite temperature corre-
lators on the boundary and black hole physics in the bulk impose constraints
on the “heavy” sector of the CFT.

Perhaps one of the most interesting results obtained from the AdS/CFT
correspondence is in the context of hydrodynamics of strongly coupled QFTs
at finite temperature. Hydrodynamics is an effective field theory describing
long-wavelength excitations of conserved currents and the dynamical data is
contained in transport coefficients. These transport coefficients are further con-
tained in the microscopic finite temperature correlators in the limit of small
energy and momenta. Through the duality, this translates to perturbations
propagating on a black hole background. This line of work was initiated in
[61-55] and led to, among other things, the universality of the shear viscosity n
to entropy density s ratio in theories holographically dual to Einstein gravity:
n/s = h(drkp)~" [53,55].

Extending recent developments in the conformal bootstrap to finite tem-
perature correlators is, therefore, of great interest, both from the CFT point
of view but also due to the interesting application to black hole physics in
holographic CFTSE-B:. One approach in this direction is to consider correlators
of light operators in heavy states, that is high-energy eigenstates. According
to the Eigenstate Thermalization Hypothesis [66G-70], typical such high-energy
states are expected to thermalize in the sense that expectation values of simple

observables in a heavy state will be close to the expectation value in the thermal

3 See e.g. [66-65].



state. It opens the possibility to apply the machinery of the conformal boot-
strap to correlators that effectively look thermal. Implementing the consistency
conditions mentioned above in this context is of great interest. A step in this

direction is what we will explore in this thesis.

1.1. The conformal bootstrap

In this section we give a brief review of some elements of conformal field theory,
this will lay the foundation for the rest of thesis. For reviews on CFTs, see [T1-
74] that inspired this section. A conformal theory is covariant under conformal
transformations, that is coordinate transformations z — z’(z) that leave the

metric invariant up to an overall local dilatation Q?(z) (rescaling):

dx'® dx'"
ds')? = 6,, — dzPdx’
(ds') e dge T (1.2)
= O?(x)ds>.

The stress tensor operator in a conformal theory is further traceless®* T+ p=0.
Because of the tracelessness of the stress tensor, one can construct conserved
charges from a larger set of vector fields £ satisfying the conformal Killing equa-
tion

Oy + 00€ = w(@)dpu- (1.3)

The vector fields on RY satisfying (I.3) are given by

Pu = 0O

My = ,0, — 2,0,
d=az"0,

ky = 2x,(z-0) — 229,

where p,, and m,,, corresponds to translations and rotations, respectively, and
d and k,, corresponds to dilatations and special conformal transformations, re-
spectively. Using (1:3) one sees that the divergence of the current J£ = &, TH,
when £ = d or { = k,, is proportional to the trace T#, = 0 in conformal

theories. From the currents in (1.4), one can construct conserved charges Q¢ 2

4 This is true in R? but on a general curved spacetime there can be Weyl anomalies.

® In the language of [71] these are topological surface operators.
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which satisfy the conformal algebra SO(1,d + 1), these will be denoted by the
same but capitalized, letters as the conformal Killing vectors in (1.4).
An important notion is that of primary and descendant operators. Consider

for simplicity a scalar operator O(z), it is primary if

[D,0(0)] = AO(0)

(K., 0(0)] =0, 9

where A is the scaling dimension of O(z), D and K, are the generators of di-
latations and special conformal transformations, respectively. A corresponding
conformal family of O(0) can then by built by acting with P, to construct de-
scendant operators P, ... P, P>*O(0) with dimension A + [ + 2n and spin .
Correlators of descendant operators can then be obtained from correlators of
the corresponding primary operators and we will therefore restrict our attention
to correlators of primary operators.

In conformally invariant theories on R? it is natural to foliate the space
into spheres with different radii and quantize the theory on S¢~!. “Time evo-
lution” then corresponds to radial evolution using the dilatation generator D —
this leads to the notion of radial quantization. The states on a sphere S?~1 cen-
tered around some point € R? are then formally obtained as a path integral
over a ball centered around the same point. If there are no operator insertions
inside this ball this will be the vacuum state while on the other hand, we can
define states |O) by inserting the operator O(x) inside the path integral before
performing the path integral. Likewise, it is possible to define an operator from
an eigenstate of the dilatation operator. The equivalence between these two
constructions leads to the state-operator correspondence — the 1 — 1 correspon-
dence between local operators and eigenstates of the dilatation operator. See
e.g. [71] for a more complete discussion on the state-operator correspondence.

The conformal symmetry imposes strong constraints on correlations func-
tions. E.g., the two- and three-point functions of scalar primary operators are

given by

(O1(21)O2(22)) = 53?21AA12
) (1.6)

A123
<Ol ($1)02(.’£2)03($3)> T A tA2 A, A +A3—DAs Dotz -AL°
12 13 L23
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where x;; := |x; — x;| and A;j;, is a coefficient undetermined by symmetry. It
is common to chosen the two-point function of operators to be equal to 1, up
to the position-dependent part fixed by conformal symmetry. An important

exception to this is the case of the stress tensor operator

Crrl 1
(L (2)Tp0 (0)) = —54 | 5 Zup (@) Lvo (2) + Lo (2)Z0p(2)) = —0ubpo |, (1.7)
where Cr is the central charge and T, (z) = §,, — Qﬁ*f” . It plays an important

role as it (approximately) counts the number of degrees of freedom in a CFT.
In two dimensionsz-i: this can be made rigorous via the c-theorem which states
that ¢; > ¢o when there is an RG flow from CFT; with central charge ¢; to a
CFTy with central charge c,.

Before moving on to four-point functions we will introduce the operator
product expansion (OPE). Consider a sphere S9~1 centered at the origin which
contains two local operators O;(x) and O2(0). The path integral over the inte-
rior of the sphere defines a state on the boundary which can be evolved inwards
to define a state at the center of the sphere. The state-operator correspondence
implies that this state can be obtained as a linear combination of local operators

acting on the origin. This leads to the OPE:

O1(2)02(0) = Z A2k Crax (2, 0) Ok (0), (1.8)

Oy, primary

X
which holds true inside correlation functions given that all other |z;| > \x|‘3"§.

Here (9 is a differential operator that is fixed by conformal symmetry and
12k are the OPE coefficients which already appeared in (ﬂ:G)E Using the OPE,

one can reduce an n-point function to an (n — 1)-point function and recursively

6 In two dimensions it is conventional to consider Cr = 5

" The origin is not a special point and we are free to perform the OPE around
any point as long as we can find a sphere that contains the two operators under
consideration and no other appearing in the correlation function.

8 Here O; and O are assumed to be scalar and we have suppressed the indices of
Char and Oy.

9 Generally the OPE coefficients and the coefficient appearing in the three-point
function might differ by the normalization of Oy but here we for simplicity assume

that all operators are unit-normalized.



reduce the problem to a sum over one-point functions; in particular, in the
vacuum, only the identity operator has a non-vanishing one-point function.
Defining a CF'T in terms of its correlation functions, we are led to the statement
that we can abstractly define a CFT as the set of CFT data, that is the spectrum
of primary operators (A;, J;) and the OPE coefficients \;j;, for all operators in
the theory.

1.1.1. Four-point functions, conformal blocks, and crossing symmetry

The two- and three-point functions of scalar primary operators are fixed by
conformal symmetry up to the choice of normalization and the OPE coefficient.
The first non-trivial correlation functions turns out to be four-point functions —
they are therefore the main protagonists of the conformal bootstrap program (as
well as this thesis). Conformal symmetry still puts constraints of the four-point

function which takes the following form

(On, (21)0n, (22)On, (23)On, (24)) = Ka, (i) A(u, v),
x§4> ~ip=2 (mi) ~apoe (1.9)

G

KAi (xl) =

2
T13

where (u,v) are the conformally invariant cross-ratios

2 .2
u=zz= iéQig‘L
13L24
x%4m%3 (1.10)
v=(1-2)(1-%2)= .
m%3m§4

On the other hand, one can also use the OPE repeatedly to decompose the
four-point function in terms of conformal blocks. Consider for simplicity the
case 01 = O3 = O and O3 = Oy = ¥. We perform two OPE’s of O(x1)O(x2)
and ¥ (z3)Y(x4), leading to infinite double sums of two-point functions (O Oy ),
weighted by a product of OPE coefficients and the action of the differential
operators appearing in (I.8). Because the two-point functions are diagonal (1.6),
this reduces a single infinite sum over exchanged operators Oy weighted by the

product of OPE coefficients and a function ga, s, that is fixed by conformal

9



symmetry. Together with the structure (1.9), this leads to the conformal block

decomposition of four-point functionst?

Jk
(O(21)O(x2) Y (23) Y (24)) = K (24) Z <—%) A000, App0, IA,, 7, (2, Z)-

Oy
(1.11)

where K (x;) = (22,)720(23,) 2 and ga, s, (2, Z) are conformal blocks cap-
turing the contribution from a primary operator Oy and all its descendants.
In principle one could use the knowledge of the OPE to try and sum up the
contribution from the primary and all the descendants in order to obtain the
conformal block. In practice this is difficult and a more convenient method was
developed by Dolan and Osborn [75,76]. The idea is to insert in the four-point
function a projection operator Pp, which projects onto the operator Oy and all
its descendants. Now the key point is that the conformal Casimir C' = %L“bLba
commute with P, and the eigenvalue CPo, = ca,jPo, = [AA —d) + J(J +
d — 2)]Po, is the same for all the operators in the conformal family of Oy.
On the other hand, we can let the generators act on, say, the operators O(z1)
and O(x2) and note that the vacuum is conformally invariant, which leads to
a differential equation satisfied by the conformal blocks. This was the strategy
taken by Dolan and Osborn which solved this differential equation in terms of
(z,Z). More specifically, the conformal blocks satisfy the following differential

equation (Here we consider the more general case of four scalar primaries with

scaling dimensions A; and A;; := A; — A;) [75,75]
Dgn'3%% (2, 2) = ca,uga'35% (2, 2) (1.12)
where the differential operator D is given by

D=D, + D, +2(d-2)—=

[(1=2)0. — (1 —2)0],

A12Az
—2z
2

z—Z

Dz = 22’2(1 - Z)@g - (2 + A34 - A12)2’28Z +

(1.13)

10" The conformal blocks and the conformal partial waves differ by the overall factor
of K(z;), below we will mainly consider the former which only depends on the cross-

ratios.
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and similarly for D;. Notice that for d = 2, the operator D simplifies and the
conformal blocks factorize. The normalization of the blockst! can be found by

comparing to the OPE limit x5, x34 — 0 which is equivalent to z,z — 0:

J' A d__ z+z
A12,A34 oo Y 5\ (£-1)
950 ~ g )R (Gr=): (1.14)

d_
where C’gz Y are the Gegenbauer polynomials. An important piece of the
conformal blocks in both d = 2 and d = 4 are the SL(2, R) blocks

A A
ka(2) = 2% o Fy (a — 712,a+ %;2@2’), (1.15)

where oF} is the hypergeometric function and k, is an eigenfunction of the
operator D, with eigenvalue D,k,(z) = 2a(a — 1)ko(z). A special role will be
played by these functions when A5 = A3y = 0 and we therefore define

fa(2) = 2% 2F1(a, a; 2a, 2). (1.16)

These are not only the constituents of the conformal blocks, as will be seen
below but will also play a crucial role in the remainder of the thesis since they
are also what builds up the so-called stress tensor sector of heavy-heavy-light-
light correlators in holographic CFTs. In d = 2, the conformal blocks are given
by

1
23;,A34(z, 2) = 14070 (kA;—J (Z)k¥(2) — (Z e 2)) (1.17)
while in d = 4 they are given by
ghdes oy P2 g (kais s (2) — (2 © 2)) (1.18)
A ’ z—z Tz MRS : :

The cornerstone of the bootstrap program of four-point functions is the
statement of crossing symmetry. In its essence, it boils down to the fact that
we are free to perform the OPE expansion of the four-point functions between
any pair of operators. This leads to the decomposition of the four-point function
in three different channels typically denoted as the s-, t-, and u-channel. The

convergence of the OPE in different channels depends on the operator insertions

11 See [i74] for a collection of common conventions for the normalization in the

literature.
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but the crucial point is that there are overlapping regions of convergence where
at least two of the conformal block decompositions are simultaneously valid.
The equality of these two expansions is the statement of crossing symmetry.
Importantly, the operators that contribute in one channel can be different from
the operators that dominate in another channel. It is therefore often fruitful
to consider cases where the expansion in one channel is particularly easy. It
is then the bootstrapper’s objective to determine how this is reflected in the
other channel where the same physics often is not manifest. This is typical in
e.g. a weakly coupled theory where there is a small parameter € in which one
channel simplifies. In the context of holographic CF'Ts, this could be the inverse
of the central charge Cpr > 1. Another example that has led to important
progress in our understanding of CFTs corresponds to a certain kinematical
limit where some spacetime distance |z| (this could be e.g. the cross-ratio z
or Z) becomes small and the conformal block decomposition can be effectively
organized perturbatively in x. This is an incredibly powerful idea when one
uses the fact that the spacetime dependence of the contribution of an operator
O can be deduced by looking at (limits of) the conformal block. By a cleverly
chosen kinematical limit, one can isolate certain operators in one channel.

An important example of such a kinematical limit is the lightcone limit.
Let us consider a pair of identical scalar operators 1 (x) and (0) that become
light-like separated by taking 2t — 0 with 2~ fixed where z* = ¢t 4+ z and
the transverse separation set to zero. Using the OPE one finds the following

contribution due to an operator O, . ,, with twist-(7 := A — J) and spin-J:

(z)% ()=
@) ~ a0 0~ (0) + (1.19)

where the ellipses denote the contribution from descendants and all operators.
From (1.19) one sees that operators with low twist 7 dominate in the lightcone
limit T — 0. In unitary CFTs in d > 2 there is a twist gap and the identity
operator with twist 7 = 0 gives the leading contribution in the lightcone limit.
This was translated to the cross-channel in [22,23] which found that there exist
universal “double-twist” operators [O1Oz2],,; with large spin [ > 1. Moreover,
assuming there are no light scalars (A < d — 2), the subleading correction is

due to conserved currents with twist 7 = d — 2. Especially, the stress tensor
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operator is present in any CF'T and give further universal corrections to the OPE
data of the exchanged double-twist operators. We further note that the scaling
(1:19) is reflected in the limit of the conformal blocks. Consider a four-point
function (O2(00)O01(1)O4 (%, 2)O2(0)) with the cross-ratios given by (1.10). The
lightcone limit then corresponds to taking 1 — z < 1 with z fixed, in this limit

the conformal blocks behave as follows
(0,0) - NI
In s (1=21=2)~ (1 =2)2 fre2s (1 - 2), (1.20)

where f, is given in (1.16) and encodes the contribution from Oa ; and all its
descendants (which contribute in the lightcone limit).

A major role in this thesis will be played by the conformal bootstrap,
described above, applied to heavy-heavy-light-light correlators in holographic
CFTs.

1.2. Outline

In Section 2, we review the scalar heavy-heavy-light-light correlator in holo-
graphic CFTs. We start in dimension d = 2 based on [3] that will be used later
in Section 4 when studying higher-spin algebras in two dimensions. Then we
move on to holographic CFTs in d > 2, with the main focus being d = 4. This
part contains the conformal block expansion in both the direct-channel and the
cross-channel together with a summary of which operators will contribute in
the lightcone and the Regge limit, respectively.

In Section 3, we study the heavy-heavy-light-light correlator in the lightcone
limit. By imposing crossing symmetry, we bootstrap the contribution due to
minimal-twist multi-stress tensor in holographic CF'Ts in d = 4. This section is
based on the work in [2].

In Section 4, we explore the emergent structure in the lightcone limit of
heavy-heavy-light-light correlators in d = 4 and higher-spin vacuum blocks in
d = 2. This further leads us to consider generalized Catalan numbers and
diagrammatic rules as possible guiding principles to reconstruct the correlator
to all orders. This section is based on [3]. Some related details can be found in
Appendix A.

In Section 5, we turn away from the lightcone limit and study the heavy-

heavy-light-light correlator in the Regge limit. This is dual to a highly-energetic
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particle propagating in a black hole background. The corresponding Shapiro
time delay and the angle deflection are related to the anomalous dimensions of
heavy-light double-trace operators. This section is based on [1]. Some related
details can be found in Appendix B.

In Section 6, we continue the study of the Regge limit and determine the
consequences due to the exponentiation of the phase shift to higher orders. We
find that the leading term at each order agrees with a corresponding shockwave
calculation and further read off the subleading term at each order. This section
is based on [§]. Some related details can be found in Appendix C.

In Section 7, we move on from the world of scalar correlators to the stress
tensor two-point function at finite temperature. First, we study metric fluctu-
ations around a planar AdS-Schwarzschild black hole in semi-classical Einstein
gravity and determine the boundary stress tensor two-point function up to sub-
sub-leading order in the OPE expansion. In the CFT, we perform the stress
tensor OPE and decompose the thermal two-point function into the contribution
due to the identity, the stress tensor, and double-trace stress tensor operators
with spin J = 0,2,4. The exchange of the identity is fixed by conformal sym-
metry and agrees with the bulk calculations. The stress tensor OPE coeflicients
are further known in theories dual to Einstein gravity and we find agreement
with the bulk and the boundary computations. At the next order, we match
the bulk computations to the CFT decomposition which allows us to read off
the anomalous dimensions of the double-trace stress tensors and, partially, the
product of OPE coefficients and thermal one-point functions. We further de-
termine the near-lightcone behavior of the correlators. This section is based on

[4]. Some related details can be found in Appendix D.
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2. Stress tensor sector of correlators in heavy state

In this section we provide a review of the scalar heavy-heavy-light-light
correlator in holographic CFTs since it plays a central role in the rest of this
thesis. We begin in Section 2.1 by reviewing the two-dimensional case where the
exchange of the stress tensor and composites thereof, is completely determined
by the Virasoro symmetry. This will serve as a useful source of intuition before
considering CFTs in d > 2. In Section 2.2, we move on to holographic CFTs
in d > 2, mainly considering d = 4. This part contains the conformal block
expansion in both the direct-channel and the cross-channel together with a
summary of which operators will contribute in the lightcone and the Regge

limit, respectively.

2.1. Two dimensions and the Virasoro vacuum block

In this section we consider the case of large-c CFTs in d = 2 and a heavy-
heavy-light-correlator where the scaling weight H of the heavy scalar operator
is large, H ~ ¢>> 1. The Virasoro vacuum block was first computed in [77,7§].
Below we will review the explicit mode calculation [79], parts of which was
extended for Wy —3 4 in [3] that will be reviewed in Section 4.

Conformal field theories in d = 2 are different from the higher-dimensional
counterparts, this is so because the conformal symmetry enhances to the infinite-
dimensional Virasoro algebra. This is especially powerful in constraining the
effect of stress tensor dynamics since operators now live in representations of the
full Virasoro algebra rather than just the global part. Since much of this thesis
focus on the contribution of multi-stress tensors to correlators, this provides a
powerful toy model where the analogous quantities can be computed explicitly
using the extended symmetry. In the content of heavy-heavy-light correlators,
this is captured in the heavy-heavy-light-light Virasoro vacuum block which
will be reviewed below. This further lays the foundation for an extension to
theories with higher-spin currents, so called Wy theories. These were shown in
[8] to possess interesting similarities with the lightcone limit of the stress tensor
sector in higher-dimensional CF'Ts pointing towards a potential extension of

symmetries in this limit for holographic CFTs.
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The Virasoro algebra is given by
Loy L] = (m — 1) Ly + ém(mQ — )6, (2.1)

where L, are the modes of the stress tensor T'(z)

o0

Ly,
T(z) = _Z e (2.2)
and can therefore be obtained by
dz
L= ¢ —2"HMT(2). 2.
5= (23)

The algebra (2.1) corresponds to the following OPE of stress tensors

T()1(0) = & 4 210 9T0O)

224 22 z Y

(2.4)

where the ellipses denote regular terms in the OPE limit z — 0. Here c is the
central charge. Virasoro primary operator have the following OPE with the

stress tensor

h 0

(z—w)?  z-—w

T(2)O(w) = [ ]O(w), (2.5)

which is equivalent to the following action of the modes
(Lo, O(2)] = 2™ [h(m F1)+ za} O(2). (2.6)

In this section, we use the Virasoro modes to explicitly calculate the first terms
due to Virasoro descendants of the vacuum following [77,78].

We consider a four point function of pair-wise identical operators Oy and
O, with conformal weight H and h, respectively, given by (O (00)Og(1)OL(2)OL(0)).
We further suppress the anti-holomorphic part and have used conformal sym-
metry to fix the operators at 0, z, 1,00 and set Og(00) = lim, o, 222 O0g(2).
The limit that will be considered is ¢ — oo with h and % fixed.

We are interested in the contribution due to Virasoro descendants of the

vacuum, i.e. states of the schematic form

Ga(z) = (Om(c0)On(1)
5 Lomi Ly Lo |0)(O| Ly, - Loy L,
Nimiy (n;}

(2.7)

X

OL(2)0r(0)),
{mi}.{n;}
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where N,y (n,} is a normalization factor and Ga(2) is defined as the HHLL
correlator restricted to the contribution of the identity block in the direct chan-
nel (the subscript (2) here stands for the Virasoro algebra as opposed to (V)
for the Wy). In [79] an orthogonal basis was constructed in the limit ¢ — oo
and it was shown how to perform this sum using a recursion relation. The cor-
relator organizes into powers of % and we will study the first two terms in this
expansion. These are due to single and double mode states respectively.

To begin with, consider the contribution from states of the form L_,,|0) in
(2.7). We can evaluate (0|L,O(2)O(0)) and (Og(o00)Op(1)L_,|0) for n > 2

with the help of (2.6). We find that

(0|L,,O(2)0(0)) = 2"[h(n + 1) + 20]2 72" = h(n — 1)z" 2"

(2.8)
(O (c0)Ox(1)L_y|0) = H(n — 1).
The norm of these states is given by the central term
Non = ALuL-y) = Tn(n® = 1). (2.9)

Combining the above allows one to obtain the single mode state contribution

to the vacuum block

12Hh (n—1) 2" _ 2Hh
(n+1) n

Ga(z

f2(2)7 (2.10)

where we note the appearance of fs5, which is the conformal block due to the ex-
change of the quasi-primary 7T'(z) and its global descendants. By quasi-primary
we refer to a primary under the global part {L4;, Lo} of the Virasoro algebra.

Consider now states of the schematic form L_,,L_,|0). These are not

orthogonal to the single mode states L_,,_,|0) since
(LinsnL_nL_m) = (2n — m)%m(mQ —1)£0. (2.11)

Removing this overlap one can construct states | X,,, n>.12 that are orthogonal to
L_,,_p]0):

_ Lminlonlom) L_pnl]0), (2.12)

‘Xm,n> - L—nL—m
<Lm—|—nL—m—n>

12 Note that the states | Xom,n) thus defined are not unit normalised.
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which contribute at O(Z- ) to G(z). The contribution of these states are found
to be

(0| Ly L, Or(2)O,(0)) [ n—1)(m—1)+ hm(m — 1)] 252
(0| LpynOr(2)OL(0)) = h(s — 1)2°~2",

(2.13)

where s = m + n. Using (2.13), we find that

(Xinn|OL(2)OL(0)[0) = |h*(n — 1)(m — 1) + hm(m — 1)

~ 2n—m)fGm(m? —1) 2
1—628(82 —1) hls - 1)}2 ' (2.14)

2 n(n —m(m—1)1
h*(m—1)(n—1)+h ST D ]z h

as in [79]. Furthermore, keeping only the leading term for large H gives
(O (00)On(1)| X n) = H*(n — 1)(m — 1). (2.15)

The norm of the states | X,, ) in the large-c limit is given by the square of the
central terms, i.e.,

C

Nx D

mon = LmLnL_nL_p) = ( )Qm(mQ - 1)n(n2 -1 +..., (2.16)

where the ellipses refer to terms subleading in ¢. Combining the above one finds
the contribution of the states | X, ,) to the vacuum block in (2.7) to be

12Hh\2 = (m —1)(n—1) zm*tn
)Z( )( )

—2h
Ga(2) 2 = 5

2 c s (m+1)(n+1) mn
o T2H?h S (m—1)(n—1) Jmtn (2.17)
z c? Z (m+1)(n+1)(m+n)(m+n+1)

m,n=2

where we have included a symmetry factor of % due to the exchange symmetry
(m <> n). The first line in (2.17%) comes from the exponentiation of the first
term, i.e., it is the square of (2.10) divided by 2

6o (o) gz = 5 (P fo) = (218

The second line in (2.17) can be written as a sum of products of functions f, fj

such that a + b = 4 in the following way

gQ(Z)|H2h QhQir h|: fQ + = f1f3:| (2'19>

c2
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as was pointed out in [§].
The relative coefficient between the terms in the bracket of (2.19) is pre-
cisely such that in the limit z — 1 the coefficient in front of log?(1 — z) vanishes

and (2:19) behaves as
Ga(2)| thzil#log(l — 2). (2.20)

2

In [79] it was found that this behaviour persists to all orders, i.e, the coefficients
of all the log? (1 — z) with p > 1 vanish in the limit z — 1 and hence G3(2) has a
simple logarithmic behavior in this limit. Moreover, the authors of [79] observed
that the coefficients in front of the log(1l — z) terms at each order in % form
the Catalan numbers’ sequence. In Section 4, we will see a similar statement
being true for Wy—3 4 vacuum blockst3. Tn [79] they further showed that the
generating function of the Catalan numbers could be uplifted to a differential
equation, whose solution gave the Virasaoro vacuum block for any value of z
and not only z — 1 as in (2.20). A similar story holds true for the Wy case
while in d = 4 it was found in [3] that there is again an interesting sequence

appearing, of which much less is known however.

2.2. Stress tensor sector and correlators in heavy states in d > 2

Below we review the setup of a heavy-heavy-light-light correlator in holographic
CFTs. By holographic CFTs we refer to a family of CFTs with a large central
charge C'7r > 1 and a large gap in the spectrum of higher-spin single trace
operators Ag,, > 1, where Ag,, = minAjso. This follows the review in
[2] which is further based on [8,1,80]. In holographic CFTs with large central
charge Cr, there exists multi-trace operators [O10s...Okl,,;. The simplest
example are double-trace operators of [O;Os],,; which are schematically given
by 09?"8,,0,, - ..0,,0, appropriately symmetrized to make a primary. Their

scaling dimension is given by
A0,0,),, = A1+ Ag +2n+ 1+ y(n, 1), (2.21)

where y(n, ) are anomalous dimension which are suppressed in the limit Cp —

00. An important example that will play a significant role in this thesis are

13 We expect this to be true for arbitrary N.
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multi-trace operators made out of stress tensors, which we will call multi-stress
tensors and denote schematically by [T*],, ;.

The object that we study is a four-point function of pairwise identical
scalars G(z;) = (O (x4)Or(23)OL(x2)Og(x1)). Here Oy and Of are scalar
operators with scaling dimension Ay o« O(Cr) and A o< O(1), with Cp > 1
the central charge. Using conformal transformations we define the stress tensor
sector of the correlator by

9(2,2): lim .’BiAH<OH(.’B4)0L(1)0L(Z,Z)OH(O» , (2.22)

XTg4—>00 multi—stress tensors

where z and z are the usual cross-ratios

2 2
(1-2)(1—z) =112
2 .2 :
__ L12T3y
2Z = —5—5=.
T13%o4

In (2.22) the“multi-stress tensor” subscript stands to indicate the contribution
of the identity and all multi-stress tensor operators, i.e. multi-trace operators
made out of the stress tensors, as discussed above, present in holographic CFTs.

The correlator G(z,Z) can be expanded in the “T-channel” Op(1) X
Or(z,2) = Or 5 asid

G(z,2) = [(1-2)(1 - 2] % > P00 - 2122, (229)
OT s

where 7 = A — s and s denote the twist and spin of the exchanged operator,

respectively, and gg,)s’o)(z, Z) the conformal block of the primary operator O; ;.

HH,LL
Moreover, Pé) ) are defined as
T,8

1

Péff’“) = (‘5) AOHOH O, AOLOLO, s (2.25)

where Ao, 0,0 and Ao, 0,0 denote the respective OPE coefficients. The Cr

scaling for generic single-trace operators is given by

(O1.L0.LO) ~ (2.26)

N

14 For reasons of convenience, here and in the rest of the thesis we refer to G(z, z)

as the correlator; the reader should keep in mind that G(z, z) is not the full correlator

but only its stress tensor sector, as defined in (2.22).
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while for k-trace operators [OF]

(On,L0p,L[0F]) ~ (2.27)

2.2.1. Lightcone limit

The lightcone limit is defined by z — 1 with z held fixed. In this limit the
T-channel expansion (2:24) is dominated by minimal-twist operators as follows

from the behaviour of the conformal blocks

G) 2 i e 2 P A s oa, @

where 7 = A — s is the twist.

For any CFT in d > 2 the leading contribution in the lightcone limit comes
from the exchange of the identity operator with twist 7 = 0. Another operator
present in any unitary CFT is the stress tensor with twist 7 = d — 2. Its

contribution to the correlator is completely fixed by a Ward identity and

AL T(24+1)2
P(HHLL)_ |SALtiy T ) 99
Ty 1 T(d+2) (2:29)

where

_4AT(d+2) Ag
T ([d-1)r(d) Cr

(2.30)

The correlator admits a natural perturbative expansion in p

(z,2) => pFGg®(z,2). (2.31)
k

Using (2.28) and (2:29), we find the following contribution due to the stress
(1)

tensor at O

W oo (=9)%  ATE+D? ae
g (Z’Z>z:1[(1—z)(1—2>]AL 4F(d+2) (1 Z) (2.32)
d+2 d+2
X 2F1( 2 ) 2 d+2 1-2,’)

Let us study the correlator in powers of i in the lightcone limit. At k-th

order in that expansion we expect contributions from minimal-twist multi-stress
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tensor operators of the schematic form [T%], , =: Tyyvy - Oa - O Ty o,

where the minimal-twist 7 and spin s of these operators are given by

T =k(d—2)+0(C:"),

(2.33)
s =2k +1

and [ an even integer denoting the number of uncontracted derivatives. The
scaling dimension, and the twist, is not protected and receives corrections in
the C 1 expansion. We moreover define the product of OPE coefficients for
minimal-twist operators at order k as
(HH,LL) _  kp(HH,LL);(k

Pog =0 pHHLL)(k), (2.34)
Compared to the k£ = 1 case, there exists an infinite number of minimal-twist
multi-stress tensor operators for each value of £ > 1. To obtain their contribu-
tion to the correlator in the lightcone limit, we thus have to sum over all these
operators.

The correlator can likewise be expanded in the “S-channel” Op(z,Zz) x

OH(O) — OT/,S/ as

G(2,7) = (z7) 2 (Butan) N7 pUILIL g Brumbm)(; 7). (2.35)
O /7 ’
(HL,HL) . .
where P, are the products of the corresponding OPE coefficients and

Apgr = Ag — Ap. The operators contributing in the S-channel are “heavy-
light double-twist operators” [_8,@1']:-1-5"-1-6-; that can be schematically written as
[OrOL]n1 = Ogd*0' Oy, :, with scaling dimension A,,; = Ay + Ap, + 2n +
I+ ~(n,l) and spin [. In the Ay — oo limit the d = 4 blocks are given by

1 n
(Arr,~Anr) (2,2) = (27)2(ArtAL+2nty)

IAg+AL+2n+7,1 (ZH—l - Zl+1) : (236>

z—Zz

15 This the naive analogue of light-light double-twist operators for large spin [ > 1
that are present in the cross channel of (O1020201), with @1 and O2 both light, in
any CFT [23,22]. See, however, [65] for a recent interpretation in terms of quasi-normal
modes.

16 We expect that generic single-trace operators are not enhanced by factors of

Apg ~ Cr and will therefore be subleading in the large Cr expansion.
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The anomalous dimensions 7(n, ) admit an expansion in zi”

y(n, 1) =D uFal). (2.37)
k=1

Likewise, we expand the product of the OPE coefficients of the double-twist

operators as

HL,HL HL,HL);MFT HL,HL);(k
pUTEAL) = pUTLHLMETN ™, ) pUIL AL (2.38)
k=0

with PT(L?L’HL);(O) = 1. The zeroth order OPE coefficients PT(LiIL’HL);MFT in the

S-channel are those of Mean Field Theory found in [RI]

p(HLHL)MFT _ _(AH +1-— d/2>E(AL +1-— d/2>B(AH>h(AL)_h
i hl(h— W) (Ag+Ar+h+1—d)(Ag+AL +h+h—1), 5
1

“h—htd/2n(Bu + AL+ h—dj2);
(2.39)

where i = n and h = n + &3 and (a)p is the Pochhammer symbol. In the limit

Apg — oo they are given by

pUHLHL)MFT (AL —d/2+ 1), (AL)14n
n,l ~

W0t d2), (2:40)

where (a),, denotes the Pochhammer symbol. For large [ (2.40) simplifies

p(HLHL)MFT _ A=A — % +1)n
n,l ~

TS (2.41)

To reproduce the correct singularities manifest in the T-channel one has to sum

over infinitely many heavy-light double-twist operators with { > 1. For such

1T The exact analytic structure is not known. However, the anomalous dimensions
are related to the phase shift which has been calculated holographically to all orders
in [§ with a finite radius of convergence. We further expect that there will be non-
perturbative corrections which in the bulk are due to tunneling effects recently explored
in [63].

18 We will switch between using (n,l) and (h,h) as it should be clear from the

context which is used.
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operators the dependence of the OPE data on the spin [ for [ > 1 jid.

(k)
(HL,HL);(k) _ Pn
P, = Fa—o

ZM’
2
2.42
) (2.42)
kY _ In
an,l T k(d—=2) "
==

Note that generally the OPE data in the S-channel receives corrections needed
to reproduce double-twist operators in the T-channel; however, since we are
interested in the stress tensor sector we consider only contributions of the form

given in (2243).

2.2.2. Regge limit

The lightcone limit plays an important role in the analytical CFT boot-
strap. It is typically realized inside a four-point function with all operators
defined at a fixed time and then one considers the limit where one operator
approaches the lightcone of another operator. As discussed above, this singles
out operators with low-twist which is a part of the spectrum that is typically
well understood [22,23]. Another interesting limit is the so-called Regge limit.
It was first studied in detail in the context of AdS/CFT in [2882] and has
further played an important role in our understanding of CFTs, especially in
holographic CFTs. For a review of the Regge limit, see e.g. Sec. 5.1 in [40].

The Regge limit of a four-point function is again a limit where operators
become lightlike separated, it can be obtained by starting with all operators at
a fixed timeslice and two operators in the left Rindler wedge and two in the
right Rindler wedge. We now consider a limit where one operator in the left
wedge and one in the right become close to lightlike separated while remaining
in their respective Rindler wedges. However, in this limit, the operators in
the left wedge become timelike separated and also the ones in the right wedge
become timelike separated. By carefully keeping track of the ordering of the
operators, one finds that in terms of the cross-ratios, we need to perform an

analytic continuation before taking an OPE-like limit. This is described in

19 This behaviour in the large I limit is different from that of the OPE data of
light-light double-twist operators [23,22]. Note further that the small ;1 expansion is

closely connected to the large-spin expansion.

24



detail in e.g. Sec. 5.1 in [40]. Compared to the lightcone limit, this will isolate
(in one OPE channel) operators with highest spin rather than lowest twist. In
generic CFTs we typically do not have good control over the high spin part of
the spectrum, making it difficult to study the Regge limit in practice. However,
in holographic CFTs with a large gap for higher-spin operators typically one
has more control see e.g. [15,33-87].

The Regge limit for the heavy-heavy-light-light correlator was first explored
in [§]. In order to study the Regge limit of the heavy-heavy-light-light corre-
lator, it is convenient to introduce the following coordinates after the analytic

continuation ( z — ze™2"):

1—2z=o0¢€
(2.43)
1—zZ=o0e".
The Regge limit then corresponds to ¢ — 0 with p kept fixed2?. We further
refer to the p — oo limit as the Regge-lightcone limit, it is related to large
impact parameter in the bulk.

—270

To approach the Regge limit we analytically continue z — e z, under

which the blocks in the S-channel transform as (see e.g. [82, 85])
an.j(z, 2). (2.44)

In particular, for double-trace operators [Oy O], with scaling dimension A =
Ag + Ap +2n+ 1+ ~(n,l), the blocks transform as

QA’J(Z, Z) N e—iﬂ'(A—J)

Aprn,—A _ —im —imy(n,l) Aprp,—A >
g[oiLoL]n,IjL(%Z)—w (Brrdn)emiml l)g[oli;LoL]n,IjL<Z’Z)' (245)

In what follows it will be convienent to do a change of variables to h = n +1
and h = n and to denote the block due to a heavy-light double-trace operator
OuOL)jh_1 s gﬁgL’_AHL. Substituting the p expansion (2:37)-(2.38) in the
S-channel (2.35) and performing the analytic continuation to O(u) leads to

G(Z,2>|H0 :(22>—%(AH+AL) Z P}_EiL:HL);MFTgAI_-IL,—AHL (Z,Z)

h,h
h>h>0
> \—3 HL,HL);MFT HL,HL);(1 .
G(z,2)|,n =(22) 3(Ar+ArL) Z p}{h ) (Pfg,h )3(1) (2.46)
h>h>0

+ A0 (% (0 -+ 05) — i) ) x g2mdme (2, 2),

20 Without the analytic continuation this would be an OPE limit with z, Z — 1 with
(1-2)/(1—2) fixed.
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The new single trace operators that can possibly appear here would be sublead-
ing in 1/Cp. Continuing to O(p?), the imaginary part of the S-channel is given
by

Im(G(z, 2))|,2 = —im(zz) " 2(AnTAL)
(HL HL);MFT [ _(2) (1) p(HL,HL);(1)
X Z Py ( SRS WS (2.47)
h>h>0

(1)
T ) Y o)

Moreover, the real part of the correlator at the same order is given by

- 1
Re(G(z,2)),2 = (22)_%(AH+AL) Z P(HL HL);MFT (PigliL JHL);(2) 57r2(,y(1))2_|_

h>h>0
HL,HL);(1 1 Anr,—A _
(0 PED)On ok 05) + (20 + 05 g™ (21 2)
(2.48)
The MFT OPE coefficients are given in (2.39). As we will see in Section
5, in the Regge limit the dominant contribution in the S-channel comes from

double-trace operators with kA ~ h > 1. In this limit the MFT OPE coefficients

+

DN | —

are given by

PITPIIINIT o Gy, (W) (h = Ry E (2.49)

Let us now change perspective and consider the OPE in the direct-channel
Or x Or. Naively, at O(u?) there are three infinite families of double-stress

tensors of the following schematic form:

12} = : T, (9%)"8p, + .- 0 Ty 2,
[TQ]S,? = TNP(aQ)na/h te 8ulTpu 5 (250)
T2)?) = £ T, (0%)" 0, - 0 TP .

where the superscript denotes the number of contracted pair of indices between

stress tensors and n = 0,1,2,... and [ = 0,2,4,.... The double-stress tensors

in (2.50) have the following twist 7'( ) and spin 3(2 D,

(20)
nl
(2 1)
nl
(2,2)
n,l

520

=4+2n =441,

=6+2n sPV =241, (2.51)

=8+ 2n 81(2’2) =1.
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From (2.51) it is seen that the operators in (2.50) have the same quantum
numbers for suitable values of n, [ and therefore possibly mix among each other.
At O(p¥), for k > 1, there again exist different multi-stress tensor operators

with overlapping quantum numbers, similar to the double-stress tensor case in

(2.50).
We define the leading behaviour of the T-channel block in the Regge limit,
that is the analytic continuation z — ze~2™%* and then ¢ — 0, by gg’J(U, )

and it is given by

—(A-1)p
= o — e
039720, 0) = itns e
—(A-1)p
O,d=4 o € 2.52
gA,J (07 p) - ZCAaJ (1 _ —20>O'J—1 ( 5 )
< 1= Z((A+T=2)ef + 2+ = A)e™) + O(0?)]
with AdJ—1p (A+J—1 A+J+1
4 -T — )T
EA,J — ( 2 ) ( 2 ) (2.53)

At+J
I'( %)2
Here we have included the first subleading correction in ¢ — 0 in four dimensions

since this will be needed later on. More generally, the leading behaviour in the

Regge limit in any dimension is given by, see e.g. [R3,84],

gg’J(a, p) =ica g0 " A _1.a-1(p) + ..., (2.54)

where ITa_1,4—1(p) is (d — 1)-dimensional hyperbolic space propagator of a par-

ticle with mass-squared m? = (A — 1)

T ST (A — ]')e—(A—l)p
20 (A - 4552) (2.55)

-2 d—2
X2F1<d A 1 A — T 6_2p>,

Ma—1.4-1(p) =

and

4A+J_1F(A+g_1)F(A+é]+l) i (A_%l+1)
D(834)2 TEN (A - 1)

CA,J = (2.56)
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3. Leading Multi-Stress Tensors and Conformal Bootstrap

3.1. Introduction and summary of results

In two spacetime dimensions conformal symmetry is described by the infinite-
dimensional Virasoro algebra. This symmetry strongly constrains correlators,
especially when combined with the Cpr — oo limit. Of particular interest is
the “heavy-heavy-light-light” correlator, which involves two “heavy” operators
with conformal dimension Ay ~ Cp and two “light” operators with conformal
dimension Ay, ~ O(1). In this case the contribution of the identity operator
and all its Virasoro descendants is known as the Virasoro vacuum block and
has been calculated in several ways [77-87]. The Virasoro vacuum block (and
finite Cp corrections to it) is instrumental in a variety of settings, such as
e.g. the problem of information loss [88-93] and properties of the Renyi and
entanglement entropies [94-97] (see also [08,99] for the original applications of
large Cp correlators in this context).
The heavy-heavy-light-light Virasoro vacuum block exponentiates (see e.g.
[79)
(O1(00)OL(1)OL(2) 05 (0)) ~ 307152, (3.1)

with F a known function which admits an expansion in powers of y ~ Ay /Cr
Fluz) =Y uFF®(z). (3.2)
k

The explicit expression can be found in e.g. [79] and the expansion in small

was studied in detail in [§] and is given by:
1 e _
F(u; z) = ~3 logz — log(—QSlnh(§ log z)) + log &, (3.3)

where a = /1 — p.

One can consider contributions of various quasi-primaries made out of the
stress tensor to F(®). At k = 1 the only such quasi-primary is the stress tensor
itself, while for £k = 2 one needs to sum an infinite number of quasi-primaries
quadratic in the stress tensor (double-stress operators) and labelled by spin.
The situation is similar for all other values of k. It is possible to compute the

OPE coefficients of the corresponding quasi-primaries, starting from the known
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result for the Virasoro vacuum block. Interestingly, at each order in y, F*) can
be written as a sum of particular terms ['8]é¥
k
FO@) =Y biyinfir o fir D iy = 2K, (3.4)
{ip} p=1
where f, = fo(1 —2) = (1 — 2)%2Fi(a,a,2a,1 — z).

It is an interesting question whether a similar structure appears when the
number of spacetime dimensions d is greater than two. Unlike in two spacetime
dimensions, in addition to spin, multi-stress tensor operators are also labelled by
their twist. An interesting subset of multi-stress tensor operators is comprised
out of those with minimal twist. These operators dominate in the lightcone limit
over those of higher twist. In [B0] an expression for the OPE coefficients of two
scalars and minimal-twist double-stress tensor operators in d = 4 was obtained,
and the sum was performed to obtain a remarkably simple expression for the
near lightcone O(u?) term in the heavy-heavy-light-light correlator. It was
shown to have a similar form to (3.4). One may now wonder if the minimal-twist

multi-stress tensor part of the correlator in higher dimensions exponentiates

(O (00)OL(OL (2 2)O01 (0)) |yt stress temsons ~ €7 W55, (3.5)
and whether F(u; z, Z) can be expressed as
Fpsz,2)=> pFF®(z2), (3.6)
k
with
F®)(z,2) = (1 - 2)H5) > biyifin e fis zk:z'p =k <¥) , (3.7
fin} p=1

and d an even number.
In the section we investigate this following [2]. We start by assuming that
the multi-stress tensor sector of the heavy-heavy-light-light correlator in the

near lightcone regime z — 1 admits an expansion in ug%

<OH(OO)OL(1)OL(Z’ 2)0H(0)> ‘multi—stress tensors ~ Z ng(k) (’Z? 2)7 (38)
k

21 Qimilar expressions in a slightly different context appeared in [:_1-9-9']
22 This is motivated by the fact that in the lightcone limit operators with low-twist

dominates and each [T"] with minimal-twist k(d — 2) comes with a factor u*.
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where each coefficient function G*)(z, z) takes a particular form:

1 — 5)k(452) b d+2
GH(z,2) = [(1(_ z)?)l o S it fin D ip=k (%) .
{ip}

p=1

(3.9)
We subsequently use this ansatz to compute the contributions of the multi-stress
tensor operators to the near lightcone correlator and extract the corresponding
OPE coefficients.

For even d, the hypergeometric functions in (8.9) reduce to terms which
contain at most one power of log(z) each. Their products contain multi-logs
whose coefficients turn out to be rational functions of z. We use the confor-
mal bootstrap approach initiated in [16] (for a review and references see eg.
[71,,724,101]) to relate these functions to the anomalous dimensions and OPE
coefficients of the heavy-light double-twist operators in the cross channel. The
ansatz (8.9) has just a few coefficients at any finite & which can be determined
completely from the cross-channel data derived using the (k — 1)th term. This
is related to the fact that all the log™(z) terms with 2 < m < k are completely
determined by the anomalous dimensions and OPE coefficients at O(u*~1). At
each step, we obtain an overconstrained system of equations solved by the same
set of a;,. ;.. This provides strong support to the ansatz (B.7%). We then pro-
ceed to derive the OPE coefficients of the multi-stress tensor operators with two
light scalars from our result. In practice, we complete this program to O(u?) in
d =4 and to O(p?) in d = 623, However the procedure outlined can be easily
generalised to arbitrary order in p and any even d.

In [102] the authors considered holographic CFTs dual to gravitational the-
ories defined by the Einstein-Hilbert Lagrangian plus higher derivative terms
and a scalar field minimally coupled to gravity in AdSgy;. Interpreting the
scalar propagator in an asymptotically AdSgzy; black hole background as a
heavy-heavy-light-light four point function, enabled the authors of [102] to ex-
tract the OPE coefficients of a few multi-stress tensor operators from holography
(see also [103-105] for related work). Ref. [102] also argued that the OPE coef-
ficients of the leading, minimal-twist multi-stress operators are universal — they
do not depend on the gravitational higher derivative terms in the Lagrangian.
Their results agree with the general expressions obtained in [2], upon substitu-

tion of the relevant quantum numbers.

23 For d = 6 results, we refer the reader to [Z].
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Summary of results

In this section we argue that for holographic CFTs in even d, the contri-
bution of minimal-twist multi-stress tensors to the correlator in the lightcone
limit can be written as a sum of products of the functions f,(2).
The stress tensor contribution to the correlator in the lightcone limit is given

in any dimension d by
_\d=2 d 2
(1) 2\ ~ (1—2) 2 ALF(§—|—1) )

At O(p?) the contribution from twist-four double-stress tensor operators in
d=141is

2) (s ) au (1-2)? Ap
R [(1—2)(1—2)]Ar (28800(AL - 2)) 8
((AL —4) (AL = 3)fF + %(AL — 8) fof4 (3.11)

40
+ 7(AL + 1)f1f5) :
This result agrees with the expression obtained by different methods in [80].

The contribution from twist-six triple-stress tensors in the lightcone limit
in d = 4 at order O(p?) is

1—% 3
9(3) (27 2)2§1 [(1 _<Z)(1Z_) 2)]AL <a117f12f7
+ a126.f1 fofo + a13s5f1f3f5 + azasfa fs (3.12)

+ agzafofafa+ asssfg’),

where coefficients a;;, are given by Eq. (3.31).

Furthermore, from (8.123) and (3.31), we find the OPE coefficients of twist-
six triple-stress tensor operators as a finite sum (for details see Section 3.2.5).
Two such OPE coefficients for twist-6 triple-stress tensors were calculated holo-
graphically in [102] and agree with our results.

In general we propose in [2] that the minimal-twist multi-stress tensor con-
tributions to the correlator in even d at O(u*) in the lightcone limit is given
by

(1— g)k(%—l)

k) (5 %) ~ S .
ACRIGN T ;ff

) (3.13)
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where the sum goes over all sets of {i,} with i, < i,11 and a;, ,, coefficients

that need to be fixed.2%

k

We also check that the stress tensor sector of the near lightcone correlator

exponentiates:-z“i‘

1 3
G(z,2) ~ eALF Hiz2) (3.14)

S - -2

where F(u;z,Z) is a rational function of Ay that remains O(1) as A — 0.
We explicitly verify this up to O(u?) in d = 4 and to O(u?) for d = 6 in [2].

This section is organized as follows. In Section 3.2, we find the contribution
of minimal-twist double- and triple-stress tensor operators in d = 4 in the
lightcone limit. We show that this contribution exponentiates and we write an
expression for the OPE coefficients of minimal-twist triple-stress tensors of spin
s with scalar operators, in the form of a finite sum. We end with a discussion

in Section 3.3.

3.2. Multi-stress tensors in four dimensions

In this section we describe how to use crossing symmetry to fix the contribution
of minimal-twist multi-stress tensors to the heavy-heavy-light-light correlator
in d =4 to O(p?). The methods described generalize to other even spacetime
dimensions, with the six-dimensional case to O(u?) described in [2]. In principle
the same technology can also be used to determine the correlator at higher
orders. Moreover, the resulting expression can be decomposed into multi-stress
tensor blocks of minimal-twist, allowing us at each order to read off the OPE
coefficients of minimal-twist multi-stress tensors.

The idea is to study the S-channel expansion in (2.3%) in the limit 1 — z <
z < 1. In this limit operators with [ > 1 and low values of n dominate.
Expanding the conformal blocks in (2.36) for small y(n,l) and z — 1, the
blocks in d = 4 reduce to

n

-1 Anp,—A _ _ z
(s2) HOu A0 Oue ool (52) & Hplloga(n )T, (315)

24 One only needs to sum the linearly independent products of functions f,.
25 The leading large Az — oo limit can be computed holographically by a geodesic
analysis in the AdS BH blackground. Further subleading terms have been obtained in

106
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where p(log z,v(n,1)) is given by

= 1 [)log 2\’
p(log z,v(n, 1)) = »37(l) _ Z - (M) ) (3.16)

= g! 2

Inserting (8.15) into (2.35) and converting the sum into an integral, we have the

following expression for the correlator in the limit z — 1

oo
3 z
g(27 Z) 2:1 ZO 1

- / AP HD) 2y (log 2, y(n, 1)). (3.17)
ey ,

In the following we consider an expansion of (3.17) around z = 0. The key point
is to note that by expanding the anomalous dimensions and OPE coefficients,
as in (2:37%) and (2.38) respectively, terms proportional to z”log’ z with i =
2,3,...,k and any p at O(u¥), in (B.17) are completely determined in terms of
OPE data at O(u*~1). Moreover, using (2:43) one sees that the integral over
the spin [ yields

o0 g (AL — k) (AL — k)
ZZAL 1-kzl _ ~ 1
/0 d : (—log z)AL—Fk 251 (1 — z)AL—k’ (3.18)

at O(p*) in the limit z — 1. This correctly reproduces the expected z behaviour
of minimal-twist multi-stress tensors in the T-channel, thus verifying (2:43).

We now make the following ansatz for the correlator

1 —
g(k)(z7 2) z [(1 _(Z 12_ Z ]AL Za“ zkle flkv (319)
{Zp}

where the sum goes over all sets of {i,,} with 4, integers and 4, < 4,41 such that
2221 ip = 3k and a;, . ;, coeflicients that need to be fixed. Generally f,(1 — 2)

are given by

fa(2) = q1.0(2) + q2,0(2) log z, (3.20)

where q(1 2),4(2) are rational functions and the ansatz (3:19) at O(p*) is there-
fore a polynomial in log z of degree k. By crossing symmetry terms with log® z,
with 2 < a < k, are determined by OPE data at O(p*~1). This is what we will

use to determine the coeflicients i, ...,
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3.2.1. Stress tensor

We start by determining the OPE data at O(u). This is obtained by matching
(B.I7) at O(p) with the stress tensor contribution (2.32). Explicitly, multiplying
both channels by (1 — z) we have at O(u)

ALfg(l —Z) . AL+TL )Zn (1)
120[(1 — 2)(1 — 2)]2c=1 (1 —2) AL 1 Z (p”
o (3.21)
Tn
Expanding the LHS in (3.21) for z < 1 we find
AL/]-20 1 AL
l—2)=—— (- 2341
D S re v ( 7 (B+loez)
A
- ZTL(s(AL +1)+ (AL 4 5)log 2)
A
F (124 AL(AL + 11)))
+ O(2*, 2° log z)),
while the RHS is given by
LR U I LR S
(1—z)Arc—1 T (1—z)A-1
1)
P+ 1 log 2 @ 7“) (3.23)
X ( A1 +2(Py + ——logz)+
S AL (1)
+z ) (P(l) logz) +0O(23, 2% log z))

Comparing (8.22) and (8.23) order-by-order in z one finds the following OPE

data
(1) AL (AL ]-)
"YO -_—

2 )
%1) _ _AL(A2L + 5), (3.24)
(1) 12—|—AL(AL+11)
Yo = — 9 ’
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which agrees with eq. (6.10) in [§], and the OPE coefficients

pél) _SAL(AZJ:L _1>7
PO = 3AL(A4L +1) (3.25)
P(l) SAL(AL + 3)

2 B 4

It is straightforward to continue and compute the O(u) OPE data in the S-

channel for any value of n2¢.

3.2.2. Twist-four double-stress tensors

From (8.19) we infer the following expression for the contribution due to twist-
four double-stress tensors to the heavy-heavy-light-light correlator in the limit
z—1:

(1-2)?

G (=, 5>2§1 (1= 2)(1 = 2)]A <a15f1f5 +agafafs+ GSSfP?)- (3.26)

By expanding (3.26) further in the limit z < 1 and collecting terms that goes
as 2P log® z, we will match with known contributions obtained from (3.17).

Inserting (3.24) and (B.25) in the S-channel (B.17) fixes terms proportional
to 27 log® z up to O(z2log? z). Expanding the ansatz (3.26) and matching with
the S-channel reproduces the result obtained in [80]:

2 =\ o (1 — 2)2 AL X
G )(z, Z>2:1 [(1—2)(1—2)]Ac (28800(AL - 2))

(3.27)
{0980 =3B+ (A0 - 8)fafs+ DB+ DS}

Using the O(p) OPE data in the S-channel for n > 2 in (8:23) and (B:23) one

gets an overconstrained system which is still solved by (3.27). This is a strong
argument in favor of the validity of our ansatz (3.19).
We can now use (8:27) to derive the O(u?) OPE data in the S-channel by

matching terms proportional to z” log' z as z — 0, with ¢ = 0, 1, by comparing

26 One can then do the sum over n and explicitly recover the full light-cone limit of

the stress tensor block.

35



with (3.17). This is done in the same way it was done for O(u) OPE data in
the S-channel. For example, one finds the following data for n =0, 1,2, 3:

7(2) B (AL — 1)AL(4AL + 1)
5 =—

8 )
O Ar(Ar +1)(4AL +35)
1 )
: (3.28)
@ (B+AL)(68+AL(69+4AL))
Yo = — 3 ,
NON (54 Ar)(204+ Ar(4AL + 103))
3 - )
8

which agrees with Eq. (6.39) in [8], and for the OPE coefficients

p@ _ (AL~ 1DAL(=28+ Ar(—145 + 27AL))
0 - )
96
P(g) B AL(—596 + AL(—399 + AL(—64 -+ 27AL)))
1 o )
00 (3.29)
p2) _ 1248+ Ap(=2252 + Ap(—699 + Ay (44 + 27A,)))
2 o )
96
() _ 3744+ AL (4940 + Ap(~T783 + Ap (152 +27A,)))
3 .
96

It is again straightforward to extract the OPE data for any value of n.

3.2.3. Twist-six triple-stress tensors

We now consider the multi-stress tensor sector of the correlator at O(u?) and
proceed similarly to the previous section. From (8:.19) we infer the following
expression for the contribution due to twist-six triple-stress tensors:

o (1-2)3
ANCR e 1 v

(a117f12f7 + a6 f1f2fe + a13sf1f3f5
(3.30)

+a225f3 f5 + aozafofsfa+ a333f§’),

where f; = fi(1 — z) is given by (El:l:@):-z-? Taking the limit 1 — 2 < z < 1 of

(B230), we fix the coefficients by matching with terms proportional to z” log? z

27 Note that we omitted a potential term of the form fi fZ. This can be written in

terms of f3, fifsfs, f3fs and fafsfa:

13 = D fifofs = ek fof2 i o2 fifs 2 fofufa (3.31)
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and 2 log® z, with p = 0,1,2 from (3.17). This requires using the OPE data of
the heavy-light double-twist operators [OgOpr],,; for n = 0,1,2 and [ > 1 to

O(p?), given in (3:24), (8:25), (B:28) and (3.29).

[ =gty

We find the following solution:

SAL(AL +1)(AL +2)

T = 768768(Ar, — 2)(Ar, — 3)
v DALBAT -~ 5TAL —50)
6386688(A7, — 2) (AL — 3)°
Ap(2A2 — 11A, — 9)
4135 = T900600(A, — 3)
s — — AL(7TA2 —51AL —70) (3:32)
2003040(A 7 — 2)(Af — 3)°
vy = Ar(Ar —(3AF —17AL +4)
4838400(Af, — 2)(Ar, —3)
tag — A (A —4)(A3 —16A2 + 51A + 24)

10368000(A L, — 2)(A — 3)

We can also consider higher values of p and obtain an overconstrained system of
equations, whose solution is still (8:32). Inserting (8.32) into (3.30), we obtain
the contribution from minimal-twist triple-stress tensor operators to the heavy-
heavy-light-light correlator in the lightcone limit.

Note that for A;, — oo, the correlator is determined by the exponentiation

of the stress tensor, discussed e.g. in [80], i.e.

GI(z,2) = =20 — 2 3

a-2p . (%(1—2)321}71(373;6;1—2))3+"' ;
(3.33)
which one indeed obtains by taking A; — oo of (8:30) with (3.32). Here ellipses
denote terms subleading in Ap.
By analytically continuing z — e~2™z and sending z — 1, one can access

the large impact parameter regime of the Regge limit. To do this we use the

following property of the hypergeometric function (see e.g. [25)]):

P29 b (ara,1,2). (3.34)

QFl(a,CL,QCL,l—Ze_ZWi> = QFl(CL’CL,QCL,l—Z) +27r21_‘(a)2
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Using (3.34) the leading term from (8.30) with the coefficients (3.32) in the limit
1-z2<1—-2<«1is given by
1
(3) ~ ~
S () e

<_ 9im3 AL (AL + 1)(AL +2) (AL + 3)(AL +4) ( 1 _3 )3> (3.35)
( 2

2(A1 — 2)(AL — 3) 1-2)

This agrees with the holographic calculation in a shockwave background at
O(u?) given by Eq. (45) in [104] based on techniques developed in [28-32]. The
Regge limit will be discussed further in Section 5 and 6.

3.2.4. Exponentiation of leading-twist multi-stress tensors

In d = 2 the heavy-heavy-light-light correlator is determined by the heavy-
heavy-light-light Virasoro vacuum block. This block contains the exchange of
any number of stress tensors and derivatives thereof in the T-channel 77,7887,
and therefore all multi-stress tensor contributions. This block, together with the

disconnected part, exponentiates as
(On(0)0L(1)0L(2)0m(0)) = e2+7), (3.36)

for a known function F(z) independent of Ay. It is interesting to ask if some-
thing similar happens for the contribution of the minimal-twist multi-stress
tensors in the lightcone limit of the correlator in higher dimensions. By this we
mean whether the stress tensor sector of the correlator can be written as

N 1
R T (e

et iz z) (3.37)

for some function F(u; z, Z) which is a rational function of Az, and remains O(1)
as A; — oo.

The z dependence implies the following form of F(u; z, Z):

Fli2,2) = p(1 = HFO(2) + (1 = 22FD (3) + 131 — 2)F O (2) + O,

(3.38)
At leading order we observe F(1(z) = = f3(1 — 2), which is just the stress
tensor contribution. At second order we find:

_ (12-5AL)f3 + (AL = 8) fafs + P (AL 4+ 1) f1fss
B 28800(Af, — 2) '

FA(z) (3.39)
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Note that F(?)(2) is independent of Ay, in the limit Ap — oo.

To find F®)(2) we parametrise it as

FO(z) = (b117f12f7 + bi2s f1f2f6 + D135 f1/3/5

+ boos f3 f5 + basafofafs + b333f§’>~

It is clear that for terms which do not contain a factor of f3(z), the coefficients

(3.40)

bi;i should satisfy b;jr = a;j5/Ar. This is not true for terms which contain a
factor of f3. Inserting F), F?) and Eq. (3.40) in (3:37), expanding in x and
matching with (8.30) yields

aiiy
bi1r = —— L
117 AL )
a126
Diop = —=2
126 AL )
a225
baos = ——
225 AL 9
b 11A%2 —19A; — 18 (3.41)
1957 71209600(A L — 2)(AL — 3)°
b (AL —2)(Ap+2)
2347 1209600(A L, — 2)(AL, — 3)°
7TA? — 18AL — 24
b33z =

2592000(Ap — 2)(Ar —3)°

From (B.39) and (8.41), one finds that the correlator exponentiates to O(u?) in
the sense described above, i.e. F(u;z, 2z) is a rational function of Ay of O(1) as
A — oo.

To leading order in Ay, exponentiation for large Ay is a prediction of the
AdS/CFT correspondence. The two-point function of the operator Oy, in the
state created by the heavy operator Op is given in terms of the exponential
of the (regularized) geodesic distance between the boundary points in the dual

bulk geometry. For details on this, see e.g. [B0].

3.2.5. OPE coeflicients of triple-stress tensors

In this section we describe how to decompose the correlator (3.30) into an infinite
sum of minimal-twist triple-stress tensor operators. In order to do this we use

the following multiplication formula for hypergeometric functions [80)]:
2F1 (CL, a; 26L; w)2F1<b7 b; 2b7 w) = Z p[a7 b7 m]me
m=0

X oFi[a+ b+ 2m,a+ b+ 2m,2a + 2b + 4m, w],

(3.42)
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where

274ml(a+ 2)0(b+ 2)
ST (@) TG (m + 1)

L(m+ 2)T(a+m)Tb+m)I(a+b+m— T (a+b+2m)
8 Tla+m+ 3 b+m+3HTa+b+m)T(a+b+2m— 1)

pla,b,m] =
(3.43)

It is useful to note that by using (3.42) we can write a similar formula for the

functions f, defined in (1.16):

fa(2) fo(2) = D pla.bym] farprom(2), (3.44)

m=0

where pla, b, m] is defined in (3.43). It is now clear that the correlator (8.30)
can be written as a double sum over functions foio(n4m). We can thus write

the stress tensor sector of the correlator in the lightcone limit at O(u?) as

0V 2, e 2 e () (49

with

c[m, n] =(ass3p[3,3,m|p[3, 6 + 2m, n] + a117p[1, 7, m]p[1, 8 + 2m, n]
+ a126p[2, 6, m|p[l, 8 + 2m, n| + a135p(3, 5, m|p[1, 8 + 2m, n]
+ ag95p[2, 5, m|p[2, T+ 2m, n| + a34p[3, 4, m|p[2, 7+ 2m, n]),
(3.46)
where coefficients a; ;) are fixed in (3.32).
Comparing (8.45) with (2.28) we see that the contribution at O(u?) comes

from operators of the schematic form : T,,37T550,, ...0

or L 1 These operators

have 7 + s = 9 + 2[, where s is total spin s = 6 + 2[. The corresponding OPE
coefficients of such operators will be a sum of all contributions in (8.45) for
which n +m = [.

Now, one can write OPE coefficients of operators of type : To,37450,, - . . Opy, Ty -

as
l

HH,LL);(3
P6(’6+2l B3 = Z c[l —n,nl. (3.47)

n=0
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Let us write a few of the coefficients explicitly here:

s p(HLL:E) _ 5 AL(3024+ Ap(T500 + Ap(7310 + 143A1(25 + TAL))))
o P6,6 =H ,
10378368000(A1, — 2)(AL — 3)

3 p(HH.LLNE) _ 3 AL(2688 + Ap(T148 + AL(9029 + 134 (464 +231A,)))
1* Py = p 613476864000(A 7, — 3)(AL — 2) ’
3 p(HH.LL)(3) _  3OL(888 + Ap(2216 + A7 (3742 + 17AL(181 + 143A7))))

6,10 = H 9468531072000(A 7, — 3)(Ar, — 2) '

(3.48)
We further find that PégH’LL);(S) and PG(;IH’LL);(?’) agree with the expression

obtained holographically in [102].

3.3. Discussion

In this section we considered the minimal-twist multi-stress tensor contribu-
tions to the heavy-heavy-light-light correlator of scalars in large Cp CFTs in
even spacetime dimensions. We provide strong evidence for the conjecture that
all such contributions are described by the ansatz (3.13) and determine the co-
efficients by performing a bootstrap procedure. In practice this is completed for
twist-four double-stress tensors and twist-six triple-stress tensors in four dimen-
sions as well as twist-eight double-stress tensors in six dimensions. In principle
it is straightforward to use our technology to determine the coefficients a;, . ;,
to arbitrarily high order in p; this must be related to the universality of the
minimal-twist OPE coefficients.

In two dimensions the heavy-heavy-light-light Virasoro vacuum block expo-
nentiates [see eq. (8.1)], with F(u; z) independent of Ay. In higher dimensions
we observe a similar exponentiation with F(u; z, Z) a rational function of Ap,
that remains O(1) as Ay — oo. It would be interesting to see whether it is
possible to write down a closed-form recursion formula for F(u;z,z). Solv-
ing such a recursion formula would give a higher-dimensional analogue of the
two-dimensional Virasoro vacuum block.

An immediate technical question concerns CFTs in odd spacetime dimen-
sions. We could not immediately generalize our results in this context — the
ansatz in eq. (8.13) fails in odd dimensions. However, the heavy-light conformal
blocks are known [1], so a similar approach should be feasible.

Another interesting direction concerns the study of the bulk scattering

phase-shift in the presence of a black hole background. In the context of higher
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dimensional CFTs, this problem was first considered in [§] where the gravita-

tional expression was given to all orders in y and the CFT computation was

performed to O(p). Subsequently, O(u?) was discussed in [1]. In [104] the O(u)
contribution was exponentiated to yield the scattering phase shift in the pres-
ence of a shock-wave geometry. A CFT computation of the phase shift to all
orders in  is still lacking. This would in principle involve understanding Regge
theory beyond the leading order. It would be interesting to see whether the

results of this section could be helpful in this regard.
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4. CFT correlators, VW-algebras and Generalized Catalan Numbers
4.1. Introduction and summary of results

The Virasoro algebra induces a natural decomposition of correlation functions
into Virasoro conformal blocks, capturing the contribution from a given Vi-
rasoro primary and all its Virasoro descendants. With respect to the global
conformal algebra, each Virasoro representation contains an infinite number of
quasi-primaries — the Virasoro symmetry therefore imposes strong constraints
on the theory as seen from the perspective of someone that only knew about its
global part. Further, the presence of symmetries in CFTs is deeply connected
to universal features. An example is Cardy’s formula for the density of high
energy of states in two-dimensional CFTs [10§]. It follows from the large con-
formal transformation of the torus and the dominance of the lowest dimension
operator in the partition function in the low-temperature limit.

A priori, the multi-stress tensor [T*] OPE coefficients in the OPE of identi-
cal scalar operators, [T*], ; C Oa x O, are not fixed by symmetries in d > 2, in
contrast to the two-dimensional case. These operators are, however, ubiquitous
in theories with gravity duals since they are related to the exchange of multi-
graviton states in the bulk. In order to understand the emergence of gravity in
the bulk from the CFT data on the boundary, these operators play a vital role.
It is further interesting to ask if there is a notion of universality in the exchanges
of multi-stress tensors in holographic CFTs with large Cr and a large gap in
the spectrum of higher-spin single trace operators.

An important case where the exchange of these multi-stress tensors is ex-
pected to dominate compared to that of generic operators is when considering
heavy states. This is so because the OPE coeflicients of multi-stress tensors
[T*] in a scalar OPE Oa x O scale like A¥ for large Aéé. An extreme example
of this is when the heavy states have dimension A of order C'r. Such heavy
states are expected to thermalize in holographic CFTs and according to the
AdS/CFT dictionary, thermal states on the boundary are dual to black holes

in the bulk. Correlation functions of light operators in heavy states therefore

28 This was seen explicitly in the previous section where these contributions were
studied in the lightcone limit. Holographically, this is also expected from a geodesic

calculation at large scaling dimension (mass).
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provide a possible window into one of the most interesting questions in the
AdS/CFT correspondence, the physics of black holes.

As explained in Section 3, progress can be made using the conformal boot-
strap techniques as well as using the gravitational dual description. In Section
3 based on [2], see also [B{], it was argued that the contribution of all minimal-
twist operators [T*],, . s, With Ty, = 2k and spin s = 2k + 1 for [ = 0,2,4,.. .,
in holographic CFTs, takes a specific form which is reminiscent to that ob-
tained from the Virasoro vacuum block. It repackages an infinite number of
minimal-twist multi-stress tensor OPE coefficients in the HHLL correlator and
it is natural to ask if this is governed by an underlying emergent symmetry. It
would play a role similar to how the Virasoro algebra determines the heavy-
heavy-light-light vacuum blocks in d = 2.

In this section based on [B], we study the HHLL vacuum blocks in two-

work,

Gn(2) = (Or(0)On(1)OL(2)OL(0)) 1, » (4.1)

where the denotes that we restrict to the Wy vacuum block, i.e. the

|1WN

exchange of all operators that are Wy descendants of the Vacuuméé. The semi-
N in [112]. In this case, the charges of the “light” operator are large but
much smaller than those of the heavy operator which scale with the central
charge ¢ > 1. Expanding the Wy vacuum blocks in Lfg), where qg) is the
spin—i charge of the heavy operator, we find that the result is again similar to
the expansion of the Virasoro vacuum block, with a decomposition in terms of

composite operators with the correct weight under the global conformal algebra.

29 We will mainly consider N = 3, 4 but the methods used and the structure remains
similar for any N.

30 The precise correlator will be defined below. Note that compared to the d = 4
case discussed above, the light operators are inserted at Or(0) and Op(z) since this
simplifies some of the calculations in d = 2. This is the same as in the Virasoro case

in Section 2.1.
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In particular, when qg’) ~c > qg;’é?’), the dominant contributionsg® are due

to composite quasi-primary operators with the schematic form [W*]y; made
out of the spin-three current W(z). The resulting functions, which are linear
combinations of products of hypergeometric functions, are also present in the
result for the minimal-twist stress tensor sector of the d = 4 HHLL correlator.
This is one of the main motivations for our work.

We further explicitly compute the first few terms of the Wy HHLL vac-
uum blocks for N = 3,4 in the limit qg’) ~Cc> qgis) using an explicit mode
calculation. This limit has the advantage that the charges of the light operators
are kept fixed as ¢ — oo and sheds further light on how the resulting structure
that appears in the four-dimensional stress tensor sector of the HHLL corre-
lator could appear from an underlying symmetry algebra. The results agree
with those obtained from the expansion of the semi-classical vacuum blocks
which assumed that the charges of the light operators were large. This gives
further evidence that those results remain true also for finite charge. The mode
calculation presented in this work can in principle also be used to compute %
corrections to the HHLL vacuum blocks.

Focusing on the logarithm of the W3 HHLL vacuum block we further show
that it satisfies a non-linear differential equation which, in a certain limit, re-
duces to a cubic equation for the generating function for the sequence of integers
given by A085614 in [115]. The W5 HHLL vacuum block can also be obtained
from a set of diagrammatic rules similar to the Virasoro vacuum block [7Y].
The story can be generalized in the case of the YW, HHLL block both in the
limit where the spin-4 charge scales with the central charge and is paramet-
rically larger than all other charges and in the limit where the spin-3 charge
scales with the central charge and is parametrically larger than the rest of the
charges. We expect a similar story to hold for all Wy blocks. From a mathe-

matician’s point of view, the Wy vacuum blocks provide generating functions

31 Note that it is only the spin-3 charge of the “heavy” operators that scales with ¢
and, in particular, their scaling dimension is small compared to c. We will still refer
to these as heavy. It is possible to extend our results to the case when all the charges
of the heavy operators are large but we will not attempt to do so since it is the spin-3

sector that resembles the stress tensor sector in four dimensions.
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for several new sequences which can be understood as different generalizations
of the Catalan numbers’ sequence.

Further, we examine the stress tensor sector of the four-dimensional HHLL
correlator when the conformal dimension of the light operator vanishes, Ay —
032, A similar picture emerges with the relevant sequence of numbers given
by the number of linear extensions of the one-level grid partially ordered set
(poset)éé G[(1k=1), (0F=2), (Ok_Q)].éé We observe the same structure appearing
in d = 6, 8 as well. In this case, the sequences of numbers are related to the linear
extensions of the G[(252)%~1, (0)¥=2,(0¥~2)] posets. In the spirit of the two-
dimensional cases examined here, one would hope that knowing the algebraic
equation satisfied by the generating function of this sequence, would allow the
determination of a differential equation satisfied by the all-orders stress-tensor
sector of the HHLL correlator in the lightcone limit for A;, — 0. However, to
our knowledge, the generating functions of the number of linear extensions of
G[(452)F1, (0)%=2, (0¥~2)] are not known.

Consider a heavy-heavy-light-light (HHLL) four-point function in a two-
dimensional CFT with a large central charge ¢ and a higher-spin Wy symmetry
(Op(00)0Oy(1)OL(2)OL(0)). The operators Oy and Of, are Wy primaries and
carry higher-spin charges qg) and ¢, with i = 2,3,..., N, respectively. Such a
four-point function can be decomposed into blocks which contain contributions
from a Wy primary O and all its Wy-descendants. We define Gy (z) as the
holomorphic part of the HHLL correlator restricted to the identity block con-
tribution in the direct channel O x O — 1y, — Ox x Of. We specify our

discussion to the cases N = 3,4 although it can be generalized to any N.

32 Note that this is below the unitarity bound. However, certain observables are
independent on Ay, such as the phase shift. Obtaining a closed-form expression in
this limit might be a step towards obtaining such observables to all orders from the
CFT.

33 Partially ordered sets (posets) have a notion of ordering between some of the
elements but not necessarily all of them. A linear extension of a partial ordering is a
linear extension to a totally ordered set where all the elements are ordered in such a
way that the original partial ordering is preserved.

34 The Catalan numbers are also the numbers of linear extensions of the one-level
grid poset G[(0%71), (052), (0F~2)].
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We start by considering the case N = 3 where the CFT protagonists are
the stress tensor T'(z) and a spin-3 field W(z). G3(z) contains the exchange of
all states schematically denoted by

Hai, bj}) :==We, Wa, ... Wa, L, Ly, ... Ly, |0) — (...)|0), (4.2)

where L, and W, are the modes of T'(z) and W (z), respectively, and the ellipses
ensure that these states are mutually orthogonal. In particular, the subsector
consisting of only states with modes L; acting on the vacuum is that of the
Virasoro vacuum block and was studied in detail in [79]. We are interested in
heavy states with a large spin-3 charge wy = qg’) withi?

hgy < wyg ~ ¢ — 00,

(4.3)

h,w < c.

The effect of using (4.3) is that the dominant contribution to G3(z) is due to

states of the form
H{a;}) = W, Wy, ... W, 10) — (...)|0) (4.4)

because each W-mode will to leading order contribute a factor of wy when
acting on the heavy operators. Inserting the projection on the single mode

states W_,,,|0) in the correlator one finds the O(*%) term of the vacuum block

_ Bwwy f3(2)
wg c ~2h

c

G3(2) (4.5)

2h is the disconnected correlator. The result in (4.5) is the conformal

where 2~
block due to the exchange of the quasi-primary W (z) and all its descendants
under the global conformal group.

It is useful to recall the behavior of a d-dimensional conformal block,

gg?éo)(z, Z), in the lightcone limit z — 0

90 (2,2) ~ 2% 5 14(2). (4.6)

35 Tt is straightforward to extend our results to the case when all the heavy charges
are O(c) but we will not attempt to do so. See however Appendix A.1 and A.2. For
notational simplicity, we drop the light subscript on the light operators.
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In four dimensions, the stress tensor block with 7 = s = 2 has the same z-
dependence as (4.5) (as can be seen from (4.6)).
Going back to d = 2, we consider the O(i—z’) contribution to Gs(z). This

is due to the (unnormalized) states

(3n + 2m)m(m? — 1)(m? — 4)
30(m+n)((m+mn)2—1)

Vo) = [W W — Lom-a]l0),  (47)

where the second term ensures that they are orthogonal to the states L_,,_,,|0).

Projecting onto these states one finds that

1/ 3wwy 2 uw¥h _on
PO (T AE) - )] (4.8)
where w3 = —14f§ + 15f2f4. The resulting simple-looking expression can be

decomposed into global conformal blocks of [W?2]y;, with weights h = 6,8, ...,
with the use of a product formula for hypergeometric functions found in [80].

Eq. (4.8) shows that the vacuum block contribution to the correlation func-
tion at quadratic order in the heavy charge expansion can be written as a sum
of products f,f, such that a + b = 6, where h = 6 is the weight of the lightest
operator [W?2]y. In higher, even spacetime dimension a similar picture emerges.
In particular it was shown in [80,2] that the minimal-twist double-stress ten-
sor contributions to HHLL correlators in four dimensions can be written as
gd:4|A%/C% X a15f1fs5 + asafofs + CL33f32, for some A dependent coefficients
@i

Let us now include a spin-4 current U(z). With the four-dimensional results
quoted above in mind, we consider the W, HHLL vacuum block in the limit
where the spin-3 charge is parametrically larger than the rest (this is done in
Appendix A). The states (4.7) have a non-vanishing overlap with the single mode
states U_,,_,|0) and by removing this overlap, one finds that the correction to
the (’)(uc)—z’) term in (41.8) is proportional to the spin-4 charge u of the light
operator. The result takes the form

Ga(2)| w2 X agasfifs + asoafofs + aszsf3, (4.9)

H
2

c

48



with coefficients a4 ;; linear in the charges (h u) of the light operator and
quadratic in w due to the first term in (4.8)2¢

The results herein, obtained using explicit mode calculations, are in agree-
ment with those for the Wy semi-classical vacuum blocks obtained in [112].
While the mode calculation becomes tedious at higher orders in “, the expan-
sion of the semi-classical vacuum block is straightforward. Generally, we find
that the expansion of the logarithm of the HHLL vacuum block in powers of

“I can be written as a linear combination of products of hypergeometric:

02 (03 (9) = 3 () Ty i fule)on fulh (410)

k=1 {in}

where we have normalized the expression by the (holomorphic) part of the

2h

disconnected correlator z=<". i, are integers such that iy +... 4+ i, = Sk and

the coefficients by ;,,..;, are linear in the charges ¢ of the hght operator

“p

It is instructive to examine the behavior of the vacuum blocks when z —
1. Similarly to the case of the Virasoro vacuum block, we observe that the
logarithm of the Wy vacuum block, with one of the heavy charges qg ~ ¢ —
oo and all other charges fixed and parametrically smaller, has the following

behavior in the limit z — 1:

log(Gn (2)) ~ By ( (@), )log(l —2), (4.11)

where the function By is linear in the light charges ¢(¥ and can be perturba-
tively expanded in 2. This behavior is non-trivial since generally a product of
k functions f, is a k-th order polynomial in log(1 — z) with coefficients that are
rational functions of z.

For the Virasoro case, the corresponding function Bs is the generating func-
tion of the Catalan numbers. For W3 in the limit wgy ~ ¢ — 0o, with the other

charges parametrically smaller and for certain values of the ratio of the charges

36 Whilst the form of the Gs(z) at quadratic order matches that of the four-
dimensional result (notice the presence of the fifs-term), there is no choice of the
charges of the light operators which would yield an exact match.

37 Although the form of the Wy vacuum block expansion resembles that of the

four-dimensional one, there is no value of N that would yield an exact match.
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of the light operator, we find that Bj satisfies a cubic equation. Inspired by it,
one can construct similarly to the Virasoro case, a cubic differential equation

satisfied by F3 = log Gs with (4.3). We present it below in the case h = 3w:

3 3 2
%%Fg,(z) = s (%]—},(z)) Yo <%f3(z)) (%f3<z))+_(1 %2)37
(4.12)
where x = 6%, We also derive diagrammatic rules for the W3 HHLL vacuum
block satisfies.
We also consider the YW, HHLL vacuum block in Appendix A.2. We study

its behavior in the region z ~ 1 in two different cases; when the spin-4 charge,

upg ~ ¢ > 1 while hy,wy < ¢ and when the spin-3 charge scales with c,
wg ~c>1but uy, hy < c. In both cases the logarithm of the HHLL vacuum
block behaves as Fy ~ log (1 — z) in the limit 2 — 1. In the former case, the
generating function By defined according to (4.11), satisfies a quartic equation
for four different choices of the ratio hA/u. In particular, when h = bu one can
show that log G(z) solves a differential equation whose form is inspired by the
algebraic equation satisfied by By. The situation is similar but slightly more
involved when the spin-3 charge, wg ~ c.

Finally, we study the stress tensor sector of the HHLL correlator in d-
spacetime dimensions in the limit z — 1. In this case, we further have to
take the Ay — 0 limit in order to remove higher log terms and find that the
corresponding sequence of numbers are those of the number of linear extensions
of posets G[(452)*~1,(0)%~2, (0"=2)]. These are generalizations of the Catalan
numbers which can be obtained as the number of linear extensions of the simpler
poset G[(0%71), (0%72), (02)].

Outline
Section 4.2 is devoted to explicit mode calculations of the HHLL vacuum blocks.
In Section 2.1 we reviewed the Virasoro counterpart and in Section 4.2 we gen-
eralize this calculation to the case of the W3 HHLL vacuum block. In Section
4.3, we study the behavior of the HHLL vacuum blocks in the region z ~ 1.
After a short review of the Virasoro case, we focus on the W3 vacuum block.
We observe the appearance of a generalized Catalan sequence, determine its
generating function and the algebraic equation the latter satisfies. Inspired by

this algebraic equation, we determine a cubic differential equation satisfied by
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the logarithm of the W5 vacuum block for certain ratios of the charges of the
light operators. We conclude the discussion of the spin-3 case with new dia-
grammatic rules for the W5 vacuum block expansion. We then investigate in
a similar manner the stress tensor sector of the four-dimensional HHLL corre-
lator in holographic CFTs. We conclude with a discussion in Section 4.4. In
Appendix A.1, one finds further details on the explicit mode calculations for the
W3 HHLL vacuum block. In Appendix A.2, we consider the W, HHLL vacuum
block. When wp is the only large charge, we show using the W,-algebra that
one gets an extension of the Wj result which takes a form similar to that of the
stress tensor sector of the HHLL correlator in d = 4. When uy is the only large
charge, we show that the HHLL vacuum block and a specific choice of the light
charges is again governed by a generalization of the Catalan numbers, and that
a corresponding non-linear differential equation can be written down analogous
to the Wj case. A similar albeit more involved story emerges in the z — 1 limit

when the only large charge is wy.

4.2. W3 HHLL blocks by mode decomposition

In this section we perform a mode calculation of Wy higher-spin vacuum blocks
in two-dimensional CFTs with large central charge. We review the calculation
of the Virasoro vacuum block in Section 2.1 following [77,78] and extend this to
include higher-spin currents in this section. The semi-classical vacuum block,
in [112] for general N in the dual bulk theory using a Wilson line prescription.
Expanding these known results we find agreement with those obtained from the
mode calculation. The calculation of the Wy vacuum block using an explicit
mode expansion can in principle be extended to include finite central charge as
well as finite charges of the external operators.

In an effort to elucidate the connection between the structure of the vacuum
block in the % expansion and the underlying symmetry algebra, we consider

now a 2d CFT with a spin-3 current W (z). The spin-3 modes are defined by
W(z) =) Wpz "3, (4.13)
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and satisfy the Ws algebra

[Lon, Wp] = (2m — n) Wi in,
c

_ = 2 2 92
(Wi, W] = 360m(m 1)(m* —2%)0man+
1 1
+ (m —n) B(m+n+3)<m+n+z)—6(m+:z)<n+2)]Lm+n
16
* ot 5c T W Amen,

(4.14)

where Ay, = 37 Lin—pLy + —15(m + 2)(m + 3) Ly,,. The spin-3 current W (z)

is a primary operator normalised so that (W(z)W(0)) = 35. Note that the
non-linear terms in (4.14) are suppressed in the large-c limit.

We will study the W3 vacuum block G3 contribution to the four point

function of pairwise identical scalars Oy and Op. These are W3 primaries and

have conformal weights H and h, as before, as well spin-3 charges +wpy and

+w, respectively, with the following scaling as ¢ — oo: 38

wi > H, hw, 2 — fixed. (4.15)
C

As we will see, the contribution from the pure Virasoro modes considered in the
previous section is suppressed compared to that containing the spin-3 charge
modes of the “heavy” operator and is due to states of the schematic form
Wom .. . Wom, Ly, ...L_y,|0). To evaluate the contribution of such states
explicitly, we need to construct an orthogonal basis using the algebra (4.14)
and find the commutator [W,,, O].

Consider first the commutator [W,,,, O]. This is determined by the singular
terms in the OPE

W (2)0(0)[0) = 27 3Wylh, w) + 2z 2W_1|h,w) + 2z *W_g|h, w) + O(2°)

— 27 3w0|0) + 272(Opy1 + i—?:aon())

2 3w

I~ ¥/
100t T O

(4.16)

+ 27 (Opy2 +

38 In [16] it was shown that unitary representations have weight h ~ ¢ and therefore

neither the heavy nor the light operators we consider are unitary.
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where Op41 and Op 49 are quasi-primary operators with conformal weight h+ 1

and h + 2, respectively, and are given by

3
On11(0)]0) := [W_lo - %L_lo 10),
(4.17)
. 2 I CR
Ohs2(0)|0) := [W_Qo i L10nn h(2h+1)L_1O]|O>'

Being quasi-primaries, they satisfy [L1, Op+1(0)] = [L1, Op+2(0)] = 0 which
can be verified using the algebra (4.14). The commutator [W,,, O] can be found

using translation invariance, multiplying with fc(z) %w”‘m and using the OPE
(4.16) :

[ty

w(m+1)(m +2)

Wi, O(2)] = 5 2"O(2) + (m+2)2" T (Oppa(2) + %30(2))
+ zm+2((’)h+2(2) + hiﬂﬁ(’)hﬂ(z) + %820(2))

(4.18)

Consider now the contribution to G(z) from states W_,|0). In order to

caleulate (W, O(2)O0(0))82, we note that (Op11(2)O(0)) = (Opsa(2)O(0)) =

0 since these and (O are quasi-primaries with different conformal weights.

It follows that only O and its global descendants in (4.1§) contribute to
(WimO(2)0(0)), leading to

3w

(W,0(2)0(0)) = 2" [%(n +1)(n+2)+ 2—1;:(71 +2)20, + mﬁ@g »—2h
= S(n—1)(n-2):"""",
(4.19)

where the operator at z has spin-3 charge w and the operator at 0 has charge

(—w). On the other hand, for the heavy part, one finds that
wH
(On(0)On(1)Wn) = —=(n —1)(n - 2), (4.20)
where the operator at z = 1 carries spin-3 charge (—wy ) and the one at z — oo,
charge wy. Multiplying (4.19) with (2.20), dividing with the norm given by the

central term in (4.14) and summing over n = 3,4, ..., one finds the expected

result for the W3 vacuum block due to the exchange of a spin-3 quasi-primary

5,90 (n—=1)(n-2)2z" 3 _
Goege ==Y g e

n=3

(4.21)

39 We denote O, = O to simplify the notation.
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Consider now states of the form W_,W_,,|0). These are orthogonal to
W_,|0) since W(0) does not appear in the OPE W (z)W(0). On the other
hand, the stress tensor appears in this OPE and the overlap (L, +,W_,W_,,)
is non-zero. The overlap can be calculated using the fact that W (z) is a primary
field. With the help of the first line in (4.14) one finds

(LonanWonWem) = —— (30 + 2m)m(m? — 1)(m? — 4). (4.22)

360

Removing this overlap leads to states orthogonal to the single-mode ones

~ (Bn+ 2m)m(m? — 1)(m? — 4)
30(m+n)((m+mn)? —1)

Vo) = [W_nW_m Lomnll0),  (4.23)

with norm Ny, , = (Yo n|Yimn) = (555)°m(m? — 1)(m? — 4)n(n* — 1)(n?® — 4).
The overlap with the double-mode states L_,,, L_,|0) is suppressed in the large-c

limit.
The next step is to compute (W,,W,,O(2)O(0)) using the commutator
[(W,,,O(2)] in (4.18). We find that

(WoVaO(2)0(0) = 2" [2n+ 1)(0+2) + o (n +2)20.

2h
3w

+ 722&3] (W O(2)0(0))

h(2h +1) (4.24)

§nt [(n 1)+ za} (Wi Ops1(2)O(0))

2
h+1
+ 2" (W,,0h42(2)0(0)).
To evaluate (4.24) one may use the commutators [W,,, Op11(2)] and [W,,,, Op42(2)]
which are found in Appendix A. Alternatively, recall that the three-point func-
tions (W (2)On4+1(2)O0(z)), and (W (z)Op42(2)O(z)), are fixed by conformal
symmetry up to the respective OPE coefficients. This gives

44 2) 4 0] [ G V()0 (900)
_ m(m —1)(m —2)(h(n —2) +2m+1) 0 on (4.25)
= AW0,,,0 ~

6(h+1) ’
where A\w o, 0 is the OPE coefficient of O in the OPE W x O, 1. Likewise,
(WinOn42(2)0O(0)) is given by

2" P2 (W, O 42(2)0(0)) = )\W(;%(m —2)(m — D)m(m +1)zmT"2" (4.26)
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The OPE coefficients are found with the help of the algebra, (4.14), by
taking the limit 2 — 0

_ 3w
(O(23)W (2)On41(0)) & 2~ HO(23) W1 (W1 = Z5-L1)O(0))
4.2
4 _onTh(2—c+32h) 9w? (4.27)
=Z Z3 [ - )
22 + 5¢ 2h
and
(O(23)W(2)On12(0))
2 3w
~ 20 o——L_ {W_ L?
s, on[Sh(O et 8h) 2 4h2—ct32h) 36w’
B 3 22 + 5c h+1  22+5¢ (h+1)2h+1)1"
(4.28)
From (4.27) and (4.28) we deduce that for large-c
\ h  9uw?
WO 10 = —% — o7
5 2k , (4.29)
8h 8h 36w
AWO,4.0 = — + +

5 5h+1) (h+1)(2h+1)
Using (4.25) and (4.26) and the OPE coefficients given in (4.29) to evaluate
(4:24), we find that (Y;, ,|O(2)O(0)) is given by
2

(Yin.n|O(2)0(0)) = wz(m C1)(m— 2 — 1)(n—2)
Chmm = Dm =2 = D0 -] pinan )
30 (m+n)(m+n+1) :

with |Y),, ) defined in (1.23). The heavy part (Op(00)On(1)|Yy,n) can be
calculated in a similar manner,

(On(00)Ou(1)[Yimn) = %(m —1(m—2)(n-1)(n - 2), (4.31)

in the limit wy > H. Multiplying (4.30) and (4.31), dividing by the norm
(355)*m(m? — 1)(m? — 4)n(n® — 1)(n? — 4) and summing over m,n = 3,4,. ..
we determine the contribution of the states |Y, ) to the W5 vacuum block to

be:
—2h

Go(2)] e = - i [(90wHw>2(m—1;(m—2)(n—1)(n—2)i
(
(

“h 2 c (m+1)(m+2)(n+1)(n+2) mn

c m,n=3
540w%h (m —1)(m —2)(n — 1)
2 (m4+Dm+2)(n+1)

n—2) 1
n+2)s(s+1)

S
Y

(4.32)
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where s = m + n. The first line in (4.33) is the exponentiated term analogous

to the Virasoro case:

Gs(2)] e = 5 (2 gy o, (133

2

c

while the second line can be summed to

Qw? h
5" T 70c2

(&3

Gs(2)] ws(2)z~ %", (4.34)

where w3(z) is a sum of products f, f, with a + b = 6:

w(2) = = 145 (2) + 15f2(2) fa(2)

_ X (m-D(m-2)(n—-1)n-2) =z° (4.35)
0 ;:3 (m+1)(m+2)(n+1)(n+2)s(s +1)°

Similar to the Virasoro case, it is easy to verify that the non-exponentiated term
ws(z) behaves as log(1 — z) when z — 1.

We can also calculate the contribution to the W5 vacuum block from states
of the form |L_,,W_, — <X§”anLw_313>W—m—n] |0). This results in a term
that contributes to exponentation and takes the form o< chibzlwh fafs, as well as

a term o wHHw (fifa— fgfg). Such terms are subleading in the limit wg > H

(see Appendlx A.1 for further details).

4.8. Generalized Catalan numbers and differential equations

In this section we study the logarithm of the correlator defined by Fn = log Gy .
We start by reviewing the behavior of the logarithm of the Virasoro vacuum
block, Fo = log Gs, in the limit z — 1, the appearance of the Catalan numbers’s
sequence, and the differential equation satisfied by F», following [79]. Next, we
focus on the case N = 3 where a very similar story emerges. Besides a cer-
tain generalization of the Catalan sequence, we also find a set of diagrammatic
rules governing the expansion of the W5 vacuum block along with a differential
equation satisfied by Fj3 for certain ratios of the values of the charges of the
light operators. We also consider the logarithm of the stress-tensor sector of the
four-dimensional correlator in the lightcone limit, which we denote by G4—4 and
Fai—4 respectively. We investigate the behavior in the limit z — 1 and observe

similarities with the two-dimensional cases when Ay — 0.
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4.3.1. The Virasoro vacuum block

In [79] it was shown how one can derive a differential equation satisfied by
the logarithm of the Virasoro vacuum block, by studying its behavior in the
z — 1 limit. Expanding F» in powers of hy/c the authors of [79] observed
that F5 behaves logarithmically when z — 1. Furthermore they noticed that
the sequence of the numerical coefficients multiplying the logarithm at the each

order forms the sequence of Catalan numbers given by c3 j:

L(2k —1) k> 1. (4.36)

O

These numbers are generated by the following generating function

> 1—+1—4x
B (z) = ZCQ,kxk = 9 (4.37)
k=1
which satisfies
By (z) = Bo(x)? + 2. (4.38)

The Catalan numbers ¢ j, are known to appear in various problems in combina-
torics. Here we would like to point out that they can also be understood as the
numbers of linear extensions of one-level grid posetsé(i G([0%~1], [0%=2], [0F2]),
for k > 1. Generally, one-level grid-like posets G[v, t, b], where v = (vy,...,v,),
t = (t1,...,tn—1) and b = (by,...,b,_1), can be represented with Hasse dia-

grams of the following type:

> > > *

> > >

Fig. 1: Posets denoted by G([0, 0,0, 0], [0,0, 0], [0,0,0]) and G([1,0, 2], [1,1],[2,1]),
respectively.

40" Partially ordered sets (posets) have a notion of ordering between some of the
elements but not necessarily all of them. A linear extension of a partial ordering is a
linear extension to a totally ordered set where all the elements are ordered in such a

way that the original partial ordering is preserved.
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The numbers v; denote the number of nodes in the i-th vertical edge, ¢; denote
the number of nodes in the i-th top edge and b; denote the number of nodes in
the i-th bottom edge, with the endpoints excluded. The Catalan numbers are
the numbers of linear extensions of posets of the type depicted in the left Hasse
diagram of Fig. 1.
The logarithm of the correlator Fa(z) = logGa(z) when z — 1 therefore
behaves as
Fo(z) = —2hBs(x)log(l — 2), (4.39)

z—1
with 2 = 622, Inspired by (4.38) and (2:39) the authors of [79] find a differential
equation satisfied by Fa(z) for all z:

1 d? 1 (d ?

4.3.2. The W3 vacuum block

Here we uncover a similar story for the W5 vacuum block Gs. Expanding in
powers of &
logGs = Fa(z) = Y ( ) FB (), (4.41)
k=0
with
FO2) = —2nlog(2), (4.42)

and using the exact expression known for the W3 vacuum block (see for example

eq. (4.24) in [113]) one finds that

| F3(2) _ _
{ilﬂ <_6k+1 log(1 — z)) k=12, } a (4.43)

w x {1,n,16,35n, 768, 2002n, 49152, 138567n, . .. },

where we set n = h/w. F3 in the limit z — 1 is given by
F3(z) = —6wlog(l — z)Bs(x,n), (4.44)

where Bs(x,n) is the generating function of the sequence (4.43)

- 1 1
n) = E 3 pat :6\/§Sin(§ arcsin(6v/3z))
k=1 (4.45)

—-n cos(% arcsin(6v/3z)) + n).
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Remarkably, there exist exactly three values of n for which Bs(z, n) satisfies
a cubic equation; these are n = £3 and n = 0. For these values of the ratios
of the light charges, the W3 vacuum block simplifies dramatically; it can be
expressed in terms of a single function of z raised to a given power‘gl-:.

For n = +3 the sequence of (4.43) reduces to

k41 (k)
{lim —<i1> Fa (2) k:1,2,...}:
z—1

6 log(1 — 2)
=w x {1,43,16, 105, 768, £6006, 49152, £415701, ... }.
Each term in this sequence can be derived from the following formula

(4.46)

(£2)F~1(3k — 3)!!
El(k—1)1 7

o k> 1. (4.47)

Moreover, one can check that function (4.45) with n = +3 satisfies the following
relation
Bs(z,+3) = —2B3(z, +3)3 + 3Bs(x, £3)% + . (4.48)

with 2 = 6%, Inspired by (4.48) we search for a cubic differential equation
satisfied by F3(z). It is easy to see, using the exact expression for the W5 block
given for example in eq. (4.24) of [113], that F3(z,n = 3) = F3(2) satisfies the

following differential equation
1 d3 . 1 (d - o1 (d? d 2
6wdn” ) = "5 (@f 3<Z>) w2 (@f 3<Z>) (@f 3<Z>)+i<1 —
(4.49)

When % = —3 a similar equation can be found by taking w — —w and 1 — z —

1
1—=z-

The case n = 0 is special and is discussed in Appendix A.

4.3.3. Diagrammatic rules for the Ws block

Here we formulate diagrammatic rules for computing the logarithm of W5 vac-
uum block F3(z) = logGs(z), in the limit where wy ~ ¢ > 1 and all other
charges are parametrically suppressed. The ratio of the charges of the light op-
erator, m, is left arbitrary . The rules are similar to those in [79] for computing

the logarithm of the Virasoro vacuum block.

41 For other values of n the generating function satisfies a sixth order algebraic

equation. As a result writing a differential equation becomes cumbersome.
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We now have cubic and quartic vertices and the exchanged states are modes
of the stress tensor and spin-3 current, which we refer to collectively as currents.
The only relevant diagrams in the limit we consider, are those where a single
propagator connects to the light operator Oy,. The rules can be stated as follows:

1. Label the k initial currents connected to operator Oy with integers
1,09, ...,0%.

2. Draw all diagrams where the £ initial currents combine via 3-pt and 4-pt
vertices to become a single current, which connects with the light operators.

3. For each propagator define its momentum p as the sum of the a; flowing
through it. Momentum is conserved at vertices. Each propagator comes with a

factor
1

(p+1)(p+2)

4. For each vertex coupling a current of momentum a; to the external

operator Op, include a factor of

w—\/lg(ai—l)(ai—Q).

5. For each vertex coupling a current of momentum p to the external

operator Oy, include a factor of

o ((=1)*(h = 3w) + h+ 3w) (p— 1)(p — 2).

RV VAVAVAVAVAV) CRVAVAVAVAVVAV,

H L

Fig. 2: Vertices denoting the coupling of an exchanged current with
the external states Oy and Op, respectively.
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6. For each 4-current vertex, include a factor of —2/3c¢. For each 3-current
vertex, where two currents carry momentum m and n, while the third current

carries momentum m + n (see fig. 3), include a factor of

%(m—l—n—i—Q).

m

m-+n

n

Fig. 3: Vertices denoting 3-pt and 4-pt coupling of currents, respec-
tively.

7. Take the product of the propagators and vertices and then multiply the
result by
36" 28
k! s(s—1)(s—2)’

where s = Zle a;.

8. Sum the resulting tree diagrams over all a; from 3 to co to obtain the
lz—:H term in F(2)|w,-

At orders wy /c and w% /c? there is just one diagram to take into account,
while at order w?;/c® there are two different types of diagrams. This way, one

obtains the expansion of the logarithm of W3 vacuum block, which is given by

eq. (4.24) in [113).43

42 We explicitly checked this up to O(wi /c*).
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H L H L

Fig. 4: Diagrams at orders wg/c and w? /c?, respectively.

Fig. 5: Diagrams at order w3 /c>.

4.3.4. Stress tensor sector in d = 4

The stress tensor sector of the HHLL correlator in four-dimensional spacetime

and in the lightcone limit (z — O) ? is given according to [2] by

Gims(59) = s <+Zu’“ G, (2 ) (4.50)

(k) Zazl ’kah . flk (Z>7 (45]‘>
{ip}

where the sum goes over all sets of {i,} with i, < i,11 and a;, ;, coefficients

that depend on Ay, and the expansion parameter pu is given by

160 Ay
=" 4.52
3 Cr (4.52)

43 Note that in this section we change conventions and put the light operators at

Or(0) and Or(z, z) since it is more convenient when comparing to the d = 2 case.
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Explicit expressions for gfl’24 with & = 1,2, 3 are given in [2]. There it was also

shown that G4—4(2, Z) can be written as

gd:4(27 2) = eAL]:d:4(Z’Z)7 (453)
Fa=4(z, Z) being of O(1) in the limit A;, — oo and which can be expanded as
follows
Facs(:9) = F(25) + 3 i 7O, 2. (4.54)
k=1

with .Fc(l )4 being schematically of the same form as the gd 4 in (4.51). For

k =0,1,2,3 for instance, we have

.7:5{24(2, z) = —log(z22),

FD(2) = 135 Fo(2),

(12 = 5AL) f3(2)* + 2 (AL — 8) fa(2) fa(2) + P (AL + 1) f1(2) f5(2)
28800(A 7, — 2) ’

FD(2) = binf2(2) f2(2) + bros f1(2) f2(2) fo (2) + brzs f1(2) f3(2) f5(2)
+ boos f3(2) f5(2) + bazafo(2) f3(2) fa(2) + b3zs f3(2),

FP(2) =

(4.55)
where
 5(AL+1)(AL+2)
M 768768(AL — 2)(AL — 3)
o — 5(5A2 — 57AL — 50)
6386688(Ar, — 2)(AL — 3)’
b — TA2 —51A, — 70
2903040(A L, — 2)(AL — 3)° (456)
b — AT —19A; —18 '
1957 1209600(A L — 2)(AL — 3)°
b234 - <AL - 2)<AL * 2) )
1209600(A;, — 2)(AL, — 3)
TA2 — 18AL — 24
b33z =

2592000(Ap — 2)(Ar —3)°

Inspired by the two-dimensional case, we consider the Fék:)4(z) in the limit
z — 1. We observe that all terms proportional to logi(l — z) with ¢ > 2 vanish
in this limit as long as Ay, — 0. In this special case, one can show that

{ I G V() F S E)

z—1,A—0 log(l — Z)

k= 1,2,3,4,5,...} ={1,1,6,71,1266,...}.
(4.57)
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The sequence of numbers in the (4.57) is known as the number of linear exten-
sions of the one-level grid poset G[(1¥1), (0%=2), (0*=2)], for k > 1, given by
A274644 in [115]. As an example, the k = 5 case is represented by the Hasse
diagram in Fig. 2.

4
A
4

4
A 4
\ 4

Fig. 6: The poset denoted by G([1,1,1,1],[0,0,0],[0,0,0]).

We do not explicitly discuss it here but the relevant posets in even num-
ber of dimension d are G[(452)*~1,(0)k=2,(0¥72)]. The generating func-
tions and the general formulas for the numbers of linear extensions of posets

G[(%)"?—l7 (0)*=2,(0¥=2)] are not (currently) known.

4.4. Discussion

We consider the Wy vacuum block contributions to heavy-heavy-light-light cor-
relators in two-dimensional CFTs with higher-spin symmetries. We perform
explicit mode calculations for W3 and W, blocks and show that they reproduce
the semi-classical vacuum blocks whose explicit form can be found in e.g. [112].
We observe that terms in the expansion of these blocks in powers of (qg) /c) sat-
isfy the suitably modified ansatz which was used to compute the stress tensor
sector of the d = 4 HHLL correlator in [2].

The HHLL Virasoro vacuum block is governed by the Catalan numbers
whose generating function satisfies a quadratic equation allowing the construc-
tion of a non-linear differential equation for the logarithm of the vacuum block
[79]. We show that the W53 and W, HHLL vacuum blocks are governed by
generalizations of the Catalan numbers; for certain values of the light operator
charges, their generating functions satisfy cubic and quartic algebraic equations
respectively. We further show that these equations uplift to non-linear differ-

ential equations satisfied by the logarithm of the blocks. What’s more, the
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leading twist stress tensor sector of HHLL correlators in even number of space-
time dimensions d has the same structure in the limit A;, — 0. The relevant
generalization of the Catalan numbers is now the number of linear extensions
of partially ordered sets G[(452)"1, (0)*=2, (0)*~2]. For d > 2 the generating
functions for these sequences are not known.

The appearance of the generating function By (z) comes from the limit
z — 1 of the logarithm Fy of the block, where Fn ~ By(z)log(l — z). For
example, eq. (1.48) defines generalizations of Catalan numbers; this and similar
equations were studied in [117]. For the Ws5 case, we observe that for generic
light charges h and w, the generating function satisfies a polynomial equation
of degree 6, rather than 3, which however does not take the form studied in
[117]. The numbers relevant for the d = 4 result also do not seem to come from
equations of this form; it would be interesting to understand this better.

Note that in the d = 4 case, the logarithm of the minimal-twist stress tensor
sector of HHLL correlators, F4—4, is a rational function of Ay which is O(1)
for large Ar. An important difference with the d = 2 Wy result is that in the
limit z — 1, at k-th order in the p ~ %—f expansion, .7:6(124 ~ g(Ar)logh(1 — 2)
for some function g(Ap). However, in the limit A, — 0, we do find that
Fa=a ~ Bg=a(p)log(l — 2z) with Bg—4 being the generating function of the
number of linear extensions of the G[(1*~1), (0¥=2), (0¥~2)] posets (this is also
the number of Young tableaux with restrictions; similar numbers were recently
studied in [11§] ):3‘2‘3 If we knew an algebraic equation satisfied by By—4, we could
perhaps construct a differential equation whose solution would give the full
minimal-twist stress tensor sector in d = 4 large-N CFTs in the limit A; — 0.

Heavy-heavy-light-light Wy vacuum blocks where the spin-3 charge qg’) ~
¢ and q??’ < ¢ take a form similar to the minimal-twist stress tensor sector

(3)
in four spacetime dimensions. In both cases, at order (q%)k ind = 2 and

Ag
Cr

a1 +as + ...+ ar = 3k. In two dimensions, we have shown how at £k = 1,2

order p¥ ~ (22)* in d = 4, the result is a sum of products fu, fu, - - - fa, With

and N = 3,4, this follows from an explicit mode calculation and the knowledge

of the higher-spin algebra. It would be interesting to understand if the d = 4

44 A similar story holds in d dimensions with the relevant poset now being
GI(452)F1, (02, (02,
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minimal-twist stress tensor sector can also be related to an emergent symmetry
algebra in the lightcone limit. Recently there have been several works devoted

to the lightray operators made out of the stress tensor and to the study of the

is a connection to our work.
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5. Black Holes and Conformal Regge Bootstrap

5.1. Introduction and summary of results

Holographic CFTs satisfy the following defining properties: (1) large cen-
tral charge Cr together with factorization of correlation functions and (2) a
parametrically large gap in the spectrum of single trace operators above spin-2.
As argued in [14], they are dual to theories of quantum gravity in asymptot-
ically AdS spacetimes with local physics below the AdS scale. In holographic
CFTs the Regge limit of a four-point function, extensively studied in [28—:8:2]:4-5,
is dominated by operators of spin two — the stress tensor and the double-trace
operators (this is a consequence of the gap in the spectrum). In gravity, it re-
produces a Witten diagram with graviton exchange (see e.g. [137]). The Regge
limit corresponds to special kinematics, which on the gravity side is described
by the scattering of highly energetic particles whose trajectories in the bulk are
approximately null.

Such scattering can be described in the eikonal approximation where par-
ticles follow classical trajectories but their wavefunctions acquire a phase shift
0(S,L). The phase shift is a function of the total energy S and the impact
parameter L. In the CFT language, this phase shift can be extracted from the
Fourier transform of the four-point function. In [29] the phase shift extracted
from the four-point function of the type (O1010203) was shown to be equal
(up to a factor of —) to the anomalous dimension of the double-trace operators
[0105),,; at leading order in 1/N?. The Regge limit implies that the calcula-
tion is valid for n,l > 1. These anomalous dimensions have been subsequently
verified in [138133-137.

Above, the operators O; and Oy were assumed to have conformal dimen-
sions of order one. What happens if one pair of the operators become heavy?
As explained in [B], one can define the phase shift as a Fourier transform of the
(OgOpOLOy) four-point function. It is related to the time delay and angle
deflection of a highly energetic particle traveling along a null geodesic in the

background of an asymptotically AdS black hole. The black hole corresponds
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to the insertion of the heavy operator Op; its mass in the units of AdS radius
is proportional to pu.

The phase shift (S, L) was computed in gravity in [8] as an infinite series

{

expansion in u, i.e.,

0(S, L) =Y 6®uk, (5.1)
k=1

with terms subleading in 1/Cr suppressed. The anomalous dimensions of heavy-

light double-trace operators [OgOp],,; admit a similar expansion
yn 1)y =>4k, (5.2)
k=1

In [§] it was also proven that

1
w8

5.3
g p. (5.3)
where the following identifications are implied:
7 7 —op B
h=n+I, h=n, S = 4hh, e =3 (5.4)

However, it was observed that this relation does not hold for higher order terms,
i.e. in general 4(*) is not proportional to §*). One of the aims of the paper ]
reviewed in this section is to explain how higher order anomalous dimensions
are related to higher order terms in the phase shift.
Summary of results

In this section we explain how to compute the anomalous dimensions of
heavy-light double-trace operators [OgOL],,; order by order in p, using the
phase shift result of [§]. In particular, we show that the O(u?) anomalous
dimensions in any d are given by

52 A1)

’)/(2) = —?%—7(8;1—1—35)7(1), AH>>l7n>>1- (55)

Using known results for 6 and §® from [§], we find an explicit expression for
~2) and compare it with the known results in the lightcone limit (Ag>1>
n > 1). We find perfect agreement.

The rest of the section is organized as follows. In Section 5.2, we focus

on four-dimensional holographic CFTs. At O(u), we use the crossing equation
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between the S- and T-channel to solve for the anomalous dimensions of heavy-
light double-trace operators [OgOpr], . The result is Eq. (5.3), valid for I,n >
1. We then introduce the impact parameter representation which allows us to
rewrite the S-channel expansion as a Fourier transform. We use this to relate
the phase shift to the anomalous dimensions of [OgOpr],; at O(u?), thereby
deriving (5.5). Using a known result for the phase shift §(2), we write down an
explicit expression for 4(2). In the subsequent ! > n limit, , corresponding to
a large impact parameter, it reduces to the result which has been obtained in
[§] in a completely different way (by computing corrections to the energies of
excited states in the AdS-Schwarzschild background).

In Section 5.3, we generalize these results to any d (d = 2 is treated
separately in Appendix B). By solving the Casimir equation in the limit
Ay > Ap,l,n, we obtain the conformal blocks for heavy-light double-trace
operators in the S-channel. Using the explicit expression for the blocks together
with the mean field theory OPE coefficients, we derive an impact parameter
representation valid in general dimensions. Just as in the d = 4 case, this allows
us to write the S-channel sum as a Fourier transform. Hence, we show that
(5-5) holds for any d. We compute 7(?) in the lightcone limit and find perfect
agreement with the results quoted in [§]. In addition, we find an expression for
the O(u?) corrections to the OPE coefficients.

Section 5.5 discusses various observations and mentions some open prob-
lems. Appendix B contain additional technical details. The conformal bootstrap
calculations are summarized in Appendix B.1, the proof of the impact parame-
ter representation in d = 4 in Appendix B.2 and the proof in general dimension
d in Appendix B.3. The special case of d = 2 is treated in Appendix B.4. Ap-
pendix B.5 discusses the fate of some boundary terms. Appendices B.6 and B.7

contain some identities which are used in the main part of this section.

5.2. Anomalous dimensions of heavy-light double-trace operators in d = 4

Consider

G(z,2) = lim 2227 (O (x4)0L(1)OL (2, 2) O (0)). (5.6)

Tr4—>00
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Inserting the conformal blocks in (2:46) together with the MFT OPE co-
efficients in the Regge limit (2.49), we approximate the sums in the S-channel

expansion by integrals and find the following expression at O(u°)

G(z %), CAL/ dh/ dh(hR)AE=2(h — h) (,zh“zﬁ—zﬁzh“). (5.7)

zZ—Zz

The integrals are computed in Appendix B.1; the result is the disconnected
correlator in the T-channel [(1 — 2)(1—2)]~Z in the Regge limit o — 0, where
l—z2=c0e’and 1 -2z =ce™".

At O(p) in holographic CFTs the leading corrections in the T-channel come
from the exchanges of the stress tensor and double-trace operators [OrOp ]y, 1=2
([OuOm]n,1=2 are heavy and therefore decouple). The conformal block for the

271

T-channel exchange of the stress tensor is found after z — e ™2z and then

o — 0 to be given by
360ime™"

gTuV:m—F..., (5.8)

where ... denotes non-singular terms. The contribution from the stress tensor
exchange in the T-channel is thus imaginary for real values of o and p. The
only imaginary term at order p in the S-channel expansion (2.46) comes from
the term proportional to —i7my; it must reproduce (5.8).

In the Regge limit, we approximate the sum in the S-channel by an integral
and insert the OPE coefficients from (2.49); the imaginary part at O(u) in the
S-channel is thus given by

—Zﬂ'CAL

Im(G(2,2)) |0 =——— / dh/ dh(hh)*r=2(h — h)y®Y (h, h)

% (Zh+12h _ Zh2h+1) .

(5.9)

With the ansatz v (h, ) = c1h®h®/(h — h) the integrals in (5.9) can be com-
puted (for more details see Appendix B.1). In order to reproduce the exchange

of the stress tensor, the anomalous dimensions at O(u) must be equal to

S = 90204051 A0L0L T, B
NE poL heh (5.10)
= — h — ]_,L7
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where in the second line we inserted the OPE coefficients from (2.29). With
the form (5.10) not only the stress tensor exchange is reproduced, but also an
infinite sum of spin-2 double-trace operators [OOf ]y, 1—2 with scaling dimension
A, = 2A[ +2+2n. This is similar to what happens in the light-light case [85].

To determine the second order corrections to the anomalous dimensions we

use the derivative relationship:
1
pO) p) _ 5 (On + 95) (P(0)7(1)> , (5.11)

We will prove below (see Section 5.3.3) that this relationship is true in the limit
h,h > 1. The imaginary part at O(u?) in the S-channel from (2:46) is then
given by

oo h
Im(G(z,2))],2 = — iﬂ'/ dh/ dhP©® (7(2) + D pd)
0 0

(1))2
+ 0 60+

(5.12)

With the help of (b.111), one can write (5.12) as

Im(G(2,2))|,2 = — im / Can / PO (7@) - ?(ah + am“)) I
0 0
+ total derivative,

(5.13)
where the total derivate term does not contribute (see Appendix B.5 for de-
tails). In order to fix v(*) completely from crossing symmetry, we would need
to consider the exchange of infinitely many double-trace operators made out of
the stress tensor in the T-channel. Instead, we will use an impact parameter

representation to relate 42 to the bulk phase shift calculated from the gravity
dual in [§].

5.2.1. 4d impact parameter representation and relation to bulk phase shift

In [29] the anomalous dimensions of light-light double-trace operators in
the limit h, h > 1 were shown to be related to the bulk phase shift. An impact
parameter representation for the case when one of the operators is heavy was
introduced in [§], where it was also shown that the bulk phase shift and the

anomalous dimensions are equal at O(u). The goal of this section is to see
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explicitly how the bulk phase shift and the anomalous dimensions are related
to O(u?).

The correlator (H.6) can be written in an impact parameter representation

as
oo h
G(z,2) :/ dh/ dhT, f(h, h), (5.14)
0 0
with Z,, ;, given by
Tyg=(z2) % 2 PO gl An () (5.15)

and f(h, h) some function that generically depends on the anomalous dimension
and corrections to the OPE coefficients. In particular, for f(h, h) = 1, (514) is
equal to the disconnected correlator. In Appendix B it is shown that Zj, ;, can

be equivalently written as

IS

d4
T, 5 =C(AL) / p

M+ (27'(') (_pQ)AL—Qe—ipw(h — ?L)(s(p e+ h+ ?L) ) (%TQ + hﬁ)

(5.16)
where M is the upper Milne wedge with {p? < 0, p° > 0}, C(AL) given by

(with d = 4)
9d+1-2A 1+
cA) = y (5.17)
F(AT(A-5+1)

and € = (1,0,0,0). Moreover, following [8], we will set z = e’ and z = e
with 2T = ¢ +r and £~ =t — r in spherical coordinates.

Using the identity

_ S (P 1 p* P .
6(p~e+h+h)6(z+hh) = W= (6 (7 —h)6(7—h) +(hHh)),
(5.18)
with pt = p' +p", p~ = pt — p", the integrals over h,h in (5.14) are easily
computed. With the identification h = % and h = % it follows that a generic

term like (5.14) can be written as a Fourier transform

o0 he _ i oy d*p Ar—2 —ipsp (PT P
/O dh/o cmzhﬁf(h,h)_G(AL)/M+ (27r)4(_p2) 2,—ip f(7,7).
(5.19)

We thus see that the impact parameter representation allows us to rewrite the

S-channel expression as a Fourier transform.
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The phase shift §(p) for a pair of operators Oy and Op, with scaling
dimensions Ay /Cr o p and A /Cp < 1, respectively, was defined in [§] by

B(p) = /d4xeipr(:v) = Bo(p)e®®), (5.20)

where G(x) is given in (5.6) and By(p) denotes the Fourier transform of the

disconnected correlator. The phase shift admits an expansion in pu:
3(p) = M (p) + 126 (p) + ..., (5.21)

where ... denotes higher order terms in the expansion. Expanding the expo-
nential in (5.20) in p we get

B(p):Bo(p)(l-l-i,u(S(l)-l-uQ( (CAR 6@ + ) (5.22)

With (5.29) the relationship between the anomalous dimensions and the bulk

phase shift to O(u?) can be established using (2:46), (2:47) and (5.19):
) 5

o
(5.23)
52) (1) _
@) =~ + T (@0 + 07 (8, ).

The phase shift was calculated in closed form to all orders in p for the

v

four-dimensional case [§], with the first and second order terms given by

325 62 L (5.24)
§2) 20T 5 T ¢©
g p (2L —1)3’
where N B
—p>=ptp, coshl = 2 P (5.25)

ENe3
Using (5.24) and (5.25), the O(u) corrections to the anomalous dimensions are
given by (1) = —3n?/l, which agrees with (5.10). From (5.24) and (5.23), we
deduce the anomalous dimensions at O(p?):

7(2) _ _§ (2l + n)n?’ n3

—_— . 2
1 B +9 2 (5.26)
Taking the lightcone limit (I > n > 1) in (5.26) we find
(2) 17 ’I’L3

The anomalous dimensions in the lightcone limit (5.27) agree with eq. (6.40) in
[§], which was obtained independently by considering corrections to the energy
levels in the AdS-Schwarzschild background.
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5.3. OPE data of heavy-light double-trace operators in generic d

In this section we will write the general form of conformal blocks for heavy-
light double-trace operators in the limit Ay ~ Cp > 1 and general d > 2. These
blocks will be used to confirm the validity of the impact parameter representa-
tion in Appendix B.2 and B.3. Using the impact parameter representation the
OPE data will be related to the bulk phase shift. In particular, we show that
(5.23) remains valid in any number of dimensions and find explicit expressions

for the corrections to the OPE coefficients up to O(u?).

5.3.1. Conformal blocks in the heavy limit

In order to find conformal blocks in general spacetime dimension d in the

limit Ay > Az, h, h, we write them in the following form:

Ag+Ar,

Gu TR (2,2) = (22) 2 F(2,2), (5.28)

where the function F(z,Z) does not depend on Apy and is symmetric with
respect to the exchange z <+ Z. Let us now insert the expression (5.28) into the

Casimir equation and consider the leading O(Ap) term:

0 . _0 _ = _
zaF(z, Z) + ng(z, Z)— (h+h)F(z,2) = 0. (5.29)

The most general solution to eq. (5.29) is:

F(z,7) = zh+ﬁf(§>, (5.30)

z

where f is an arbitrary function that satisfies f(1) = 2~ h=h f(z), since confor-
mal blocks must be symmetric with respect to the exchange z < Z.

The behaviour of the conformal blocks as z,zZ — 0 and z/Zz fixed is given

by [73,148]

Alg A34 — =\ = ( 1)
(2 2) - ———(22)2C)2 , 5.31

where A = Ay + Ay + 2n + [ and C(gp ) (z) are the Gegenbauer polynomials.

Using (5.31)), we can completely determine the function f:

f@) - (g(}i_%@)#cif)(%) (5.32)
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That is, the conformal blocks in the limit of large Ay are given by

B h—}_l)! Ag+Ap+hth  (d_1y/ 2+ Z
AppBnn, oy o (BT sassgpah (g (2HEY g g
h,h T h—=h (2\/,22)

It is easy to explicitly check that this form of the conformal blocks agrees with

the one we used in d = 4 in the previous Section.

5.3.2. Anomalous dimensions

In Appendix B.3, we prove the validity of the impact parameter repre-
sentation in any d. This means that the derivation of (5.23) goes through for
arbitrary d. Using known results for the bulk phase shift from [§], we thus find

e I'(d) d d h
M= Fi(; -1,d-1,5+1,7). 5.34
h%—lr(%)f’(g-{-l)Q 1(2 9 72 ,h) ( )
In the lightcone limit (h = [ >> h = n) this reduces to
_ h® I'(d)
(1)
= : 5.35

Similarly, using (5.23) together with Eq. (2.29) and Eq. (A.5) from [g], we find

the O(u?) corrections to the anomalous dimensions in the limit A, h > 1:

@ _ 6@ L (1){ 2 4 T B%_lh%_l(h_fL)B—d}_
T

2 h+h p(g)Q h+h
Bd—l 22d—4r (d+ %) B
__(hd—Q) ﬁr(d) 2F1[2d_37d_27dvﬁ] + (5 36>
RR2=4  4T2(d) d ITNAY '
Fi[=—1,d— 1, -
Ttk @ri(d) ( 5 ba T ’h]) "
he=1(h — h) -4 T2(d) d d h

Fl-—-1,d-1,-+1, -

(5.37)

©) _ pi-to2i-a (ar (41)° /AT (d+ )
T (M)Q ' (d) '



The result (5.37) agrees with Eq. (6.42) in [§] which was obtained independently
using perturbation theory in the bulk. In order to see this explicitly, one should

notice the following expression for the hypergeometric function:

d d d d 1(1 r4(1+g)r(2d+1)) (5.38)

Frl,— —— 14+ -1+ —1)= =
3 2(7 27 27 +'27 +'27 ) 9 F4(d%—1)
5.3.3. Corrections to the OPE coefficients

So far, we have only considered the imaginary part of the S-channel. The

real part at O(u) is given by the following expression:

+o0 h
Re(G(z, 2))|, :(22)_%(AH+AL)/O dh/o dhP© (P(l)

1 (5.39)
5700+ 00) g 2 2),
which can be rewritten as:
1 +o0 h
Re(G(z,2)), = (2) 4@t [ [ g2
" ° (5.40)

1
X ( pOpM) _ 5 (On +95)( p<0>7<1>)> + total derivative.

The total derivative term in (5.40) can be shown to vanish as explained in
Appendix B.5.

To derive a relation between the corrections to the OPE coefficients and the
anomalous dimensions at O(u), let us consider the limit h, h > 1 and substitute
h by h everywhere. Using (5.34), one can deduce y(!) o h. Then, it follows
that (0), + 0;)(P©~M) o« PO and hence the second term on the right hand
side of (5.40) behaves as:

1

+oo h
(o) ean) [ an [FaR( = e on 4 o) (PO )
X

L ZAYAN

On the other hand, we know that in the Regge limit the leading contribution
in the T-channel at O(u) comes from the exchange of the stress tensor. The
real part of its conformal block is proportional to o?, so the T-channel result

behaves as ﬁ This is way less singular than (5.41). Hence (5.41) must be
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canceled by the first term on the right hand side of (5.40), at least in the limit
h,h > 1. That is:
1
POPML) — 5 (O + 97) (PO, (5.42)

A similar relation holds for the OPE coefficients of light-light double-trace oper-
ators, e.g. see [14,81,149]. In that case it was observed in [13§] that the relation
is not exact in (h,h). We expect the same to be true here. Furthermore, the

real part at O(p?) was given in (2.48) as:

oo

> _ ~ —%(AH-‘FAL 0 2 1
Re(G(z,2))|,2 = (22) ) Z P! )<P( ) — 2(7rfy( 24
h>h>0
1
+ 50+ POYOY@, 4 35) + SO0 + 05t

(5.43)

Using the impact parameter representation this can be expressed as:

Re(G(2, 2) 2_/ dh/ dhT;, 5 (PP - 2(70))

(O + 0) (PO (y1)?)),

(O + 05) (PO (v 4 P4y 4

2P(0) 8P<0>
(5.44)
where we repeatedly integrated by parts. It follows from (5.22) and (5.19),
together with 7y(1) = —§(1)_ that the corrections to the OPE coefficients at

O(u?) satisfy the following relationship:
1 1
POPE = 23 105) (PO (O + POA1) (044252 (PO (1)) (5.45)
The arguments above are similar to the ones used in [35,29].

5.3.4. Flat space limit

In the flat space limit the relation between the scattering phase shift and
the anomalous dimensions has been previously discussed in [150]. Hence, it is
interesting to consider the flat space limit of eq. (5.5). This limit is achieved by
taking the apparent impact parameter to be much smaller than the AdS radius.
This corresponds to the small L regime or, equivalently, using e=2Y = h/h to

the 1 € Il < n < Ay limit.
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In this limit, according to (5.34), the behavior of v(1) is given by

VW (%)d_?’ _ (5.46)

Hence, the vV (9, + 05 )y term in eq. (5.5) behaves as

2d—6
F 9,4 x n (%) . (5.47)

Similarly, using equation (A.5) from [§], one finds that 6(® behaves as
2d—5
§® o n (%) . (5.48)

Since (5.47) is subleading to (5.48), in the flat space limit the anomalous di-
mensions are proportional to the phase shift,
52)

@ 27 4
v - (5.49)

5.4. Discussion

In this section we studied, following [l], a four-point function of pairwise iden-
tical scalar operators, Oy and Oy, in holographic CFTs in generic dimensions.
Scaling Ay with the central charge, the CFT data admits an expansion in the
ratio p ~ Ay /Cr which we keep fixed. Using crossing symmetry and the bulk
phase shift calculated in [§], we studied O(u?) corrections to the OPE data of
heavy-light double-trace operators [OgOp],,; for large | and n. In particular,
the relationship between the bulk phase shift and the OPE data of heavy-light
double-trace operators is found using an impact parameter representation. Fur-
thermore, this allows us in principle to determine the OPE data of [OgOp ],
for [,n > 1 to all orders in u, i.e., to all orders in an expansion in the dual black
hole Schwarzschild radius.

It is interesting that each term in the p-expansion of the bulk phase shift,
computed in gravity in [§], can be rewritten as an infinite sum of “Regge con-
formal blocks” corresponding to operators of dimension A = k(d — 2) 4+ 2n + 2
and spin J = 2. Explicitly,

108, L) = f(k) Y A1) gy ) ionin (S L), (5.50)
n=0
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where the coefficients (f(k), Ax(n)) are listed in Appendix B.6 and we set S =
v/—p? compared to [§]. Here g% (S, L) denotes a “Regge conformal block”,

and is equal to the leading behaviour of the analytically continued T-channel

gf,.](S7 L)=ica,; SR a—1,4-1(L) (5.51)
defined in terms of
< c 5.52
loz=", l-2=-" ,

as S — oo and L fixed. Here ca j are known coefficients which can be found
in Appendix B.6 and IIan_; 4—1(L) denotes the (d — 1)-dimensional hyperbolic
space propagator for a massive scalar of mass square m? = (A —1).

To understand the implications of (5.50) consider double-stress tensors
in the lightcone limit. For these, one expect that the dominant contribu-
tion to the bulk phase shift comes from the infinite sum of the minimal twist
double-trace operators built from the stress tensor, schematically denoted by
T304, -+ O0u,Tpo. The expression in (5.50) implies that this infinite sum gives
rise to a contribution which yields a softer Regge behaviour and that it effec-
tively looks like the exchange of a single “effective” operator of the same twist
7 = 2(d — 2), but spin J = 2. At finite impact parameter, one would then
need to add the contributions of an infinite tower of such effective operators
of twist 7 = 2(d — 2) + 2n and spin J = 2, as in (5.50). From this point of
view, the coefficients A, in (5.50) can be interpreted as ratios of sums of OPE
coefficients of double-trace operators. A similar structure is present for any k
and we discuss this further in Section 6.5.

It would be interesting to investigate whether Rindler positivity constrains
the Regge behaviour of the bulk phase shift to grow at most linearly with the
energy S, similarly to Section 5.2 in [B4]. If this were the case, one would perhaps
only need to understand the origin of the A, to compute the bulk phase shift

purely from the boundary point of view.
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6. Multi-Stress tensors and next-to-leading singularities in the Regge

limit
6.1. Introduction and summary of results

Restricting to CFTs that are holographic, much progress has been made
in using the bootstrap approach to constrain the CFT data perturbatively in
an expansion in 1/Cp. Especially interesting are gravitational interactions in
the bulk; these are related to the exchange of multi-stress tensor operators in
the boundary theory, schematically denoted by [T*], ;. In this Section we will
continue the study of the Regge limit of heavy-heavy-light-light correlators and
the exchange of such operators.

Following [5] and Section 5, the Regge limit of a four-point function of pair-
wise identical light scalar operators is related to the phase shift of 2 — 2 elastic
scattering of highly energetic particles at fixed impact parameter in the bulk
@_8—:_3_2]@ In the heavy-heavy-light-light case, the phase shift [B] was defined in
the bulk in terms of the Shapiro time delay and the angle deflection of a highly
energetic particle propagating in an AdS-Schwarzschild background. In the
CF'T the phase shift is related to a Fourier transform of the correlator and the
expansion parameter is given by u ~ %—g. At k-th order, the phase shift is given
by a massive scalar propagator in (k(d — 1) — (k — 1))-dimensional hyperbolic
space. On the other hand, the leading Regge behaviour of a conformal block
in d dimensions takes the form of a scalar propagator in (d — 1)-dimensional
hyperbolic space. The higher-dimensional propagators appearing in the phase
shift can, however, be decomposed into infinite sums of propagators with in-
creasing scaling dimensions in H¢~! [I]. This appears to be a more natural
representation of the phase shift from the boundary point of view.

In particular, we will study the leading and next-to-leading singularities of
the stress tensor sector of the heavy-heavy-light-light correlator in the Regge

limit. This is done perturbatively in g and the stress tensor sector of the

46 For further discussion about the Regge limit and the phase shift in holographic
CFTs, see also [36,55,84,15].
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correlator G(z, z) is given by (after z — e 2™z, see Section 2.2.2 for a review

on the Regge limit.)

k=0 (6.1)

where Go(o) := 072A¢ is the disconnected correlator and o — 0 in the Regge
limit with p fixed. The stress tensor sector G of the correlator contains the
contribution of multi-stress tensor operators in the direct-channel expansion of
the correlator Op, x Or, — p*[T*], ;. Here it is seen that the contribution at
k-th order is due to multi-stress tensors made out of k stress tensors.

At k-th order, the stress tensor sector G*) behaves as follows in the Regge
limit:

Fynw(p)
ok—1

_ Frilp)

- + O(c7*+?) o—0, p—fixed, (6.2)

G™ (o, p)

_|_

for some functions Fj 1,(p) and Fi nL(p). We define the leading and next-to-

leading Regge singularity of the stress tensor sector of the correlator G*) at
O(p*) by

F,
Leading Regge singularity : ’@%(p),
7 (6.3)
1 1 1 . Fk,NL(p)
Next—to—leading Regge singularity : —=
o

The aim of [f], reviewed in this section, is to calculate Fy 1, and Fj Ny, for any
value of k and fixed p. This is done by Fourier transforming the momentum
space correlator given in terms of the bulk phase shift.

We recall the definition of the Regge limit,

271

Regge limit : z—e ‘Mz with o — 0, p—fixed, (6.4)
6.4

geP=1—2z ce P=1-2.

In this limit, we assume that the momentum space correlator B(S, L) is given
by the exponentiation of the bulk phase shift 6(S, L; 1), where S is the energy

and L the impact parameter:
B(S, L) = By(S)e (S Lin), (6.5)
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where By(S) is the Fourier transform of the disconnected correlator. The phase
shift (S, L; 1) was calculated in Einstein gravity in [§] to all orders in p and
we denote the k-th term in that expansion 6(*). In the Regge limit S > 1, the
phase shift is linear in S and the leading (~ o~*) and next-to-leading Regge
singularities (~ o~**1) of G*) (5, p) are due to terms in (6.5) of the form:

5Dk i6())k—2
B(S.L)| = Bo(S) [+ (2)%

+..., (6.6)
where the ellipses denote terms that contribute at subleading order in o — 0.

By Fourier transforming the first term in the brackets in (6.6), it is found
that the leading Regge singularities of G are given by

> (3im)k [n —
:Z(3k') ( +k 2)(AL)2,€+”_1(AL_1)1_,€_”

n=0 " 6.7
6—(3k—|—2n)p ( ’ )

ok(1 —e=2r)’

6" (o, p)

o—k
X

for k = 1,2,.... This agrees with the result in [104] obtained by considering a
light particle propagating in a shockwave background. In this case, we see that
the leading Regge singularities are fully determined by the phase shift at first
order in y. The first-order phase shift is in turn fixed by the exchange of the
stress tensor in the CFT and is therefore universal in holographic CFTs (with
a large gap).

The next-to-leading Regge singularity ~ o~**1 at O(u*) gets two contri-
butions, there is a subleading correction in ¢ coming from (6(V)* in (5.6) as

well as a contribution from §(2)(§(1)*=2 in (6.6). The former gives the following

contribution:
1 n+k—2
G%®) (o, p) 50yt T3 Z ( " )(AL)2k+n—1(AL —1)i-k—n
n=0
B e~ (Bk+2n)p
X [(k +n—1)e " —(2k+ n)ep] Y —TI
(6.8)
while the latter gives:
37r F=2 k+p—n—3
g( )(o' p) S ((D)k—2 gkl = 320 ZZ ( p—n )
(6.9)

~ e —(3k+2p—1)p
X (Ar)2k+p—2(AL — 1)1-k—pA2(n)Co12n 2 (1= e 20)’
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where Cg.y25,2 are constants given in (2.17). The coefficients A2(n) are related to
the decomposition of the second-order phase shift into Regge conformal blocks
in (4.3) and are valid assuming there are no higher-derivative corrections in the
bulk gravitational action. Adding (6.8) and (6.9) gives the full expression for
the next-to-leading singularities ~ o ~**1 at O(u*) due to multi-stress tensor of
the schematic form [T*],, ;.

In particular, in the limit p — oo, only the p = 0 term in (6.9) contributes

35 (3im)k1 e~ (3k—1)p
(k) ~ 22T _ -
G (o, p) 5 (5DYe—2 g k41500 6 (k — 2)! (Ar)2k—2(AL — 1)1k g
(6.10)

The result in (6.9) is obtained using the phase shift obtained in Einstein gravity
in the bulk. In the limit p — oo given in (6.10), the result is expected to be
universal in theories with large gap since there is by now much evidence of uni-
versality in the minimal-twist subsector of multi-stress tensors [102,104,105,2).
In other words, we expect (6.10) to be independent of higher-derivative terms
in the gravitational action. We find perfect agreement between (6.7)-(6.9) and
known results for minimal-twist double-stress and triple-stress tensors obtained
using lightcone bootstrap [80,2].

In Section 6.2, general properties of the heavy-heavy-light-light correlator
in CFTs with large central charge is considered as well as its connection to the
bulk phase shift. In Section 6.3, the procedure for decomposing products of
Regge conformal blocks in d = 2,4 is described. In Section 6.4, the leading
and next-to-leading Regge singularities in four dimensions are found from the
exponentiation of the phase shift. Section 6.5 is devoted to discussion and the
appendices contain some technical details and further matching with results

obtained from lightcone bootstrap.

6.2. Heavy-heavy-light-light correlator in holographic CFTs

In the lightcone limit, multi-stress tensors with minimal twist and arbitrary
spin dominate. Since the twist is bounded from below, one can study the
correlator perturbatively in a kinematical expansion close to the lightcone. On
the other hand, in the Regge limit multi-stress tensors of highest spin dominate
due to the behaviour o'~ of the blocks in the Regge limit ¢ — 0, with .J being
the spin. This limit is therefore difficult to study a priori in CFTs. Instead, we
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use the bulk phase shift calculated in the dual gravitational theory to extract
contributions to the stress tensor sector of the correlator in the Regge limit.
Approaching the large impact parameter limit of the Regge limit, we can make
contact with results obtained using lightcone bootstrap.

In Section 6.2, the heavy-heavy-light-light correlator in CFTs is reviewed
with emphasis on its behaviour in the lightcone- and the Regge limit. We then
review known results for the subsector of minimal-twist double- and triple-stress
tensors are studied in the large impact parameter regime of the Regge limit.
Then the connection between the bulk phase shift and the heavy-heavy-light-

light correlator is explained following [§].

6.2.1. The Regge limit of minimal-twist double- and triple-stress tensors

It was argued in [2], as covered in Section 3, that the subsector of minimal-
twist multi-stress tensor operators is universally fixed by crossing symmetry in
terms of the exchange of the stress tensor. The contribution of minimal-twist
multi-stress tensors [Tk](()ol) to the heavy-heavy-light-light correlator takes the

following particular formm:

s k d+2
g(k)( ) (l—z k( 3 )Za“ zkfu---fika Zip:k‘(T), (6.11)

{ip} p=1

with coefficients that were determined in Section 3. Note that each term Qikc)
sums an infinite number of multi-stress tensor operators [T%]o; with twist k(d —
2) and spin 2k + [, for [ = 0,2,.... For more details on the minimal-twist
multi-stress tensors, see [2] and Section 3 and 4.

Here we assume a large Cr CFT with large Ag,p. Explicitly, we use the
bulk phase shift calculated in the gravitational dual to study the CF'T correlator
in the Regge limit. To make contact between the Regge limit and the lightcone

27Tiz:

limit, we analytically continue QI(JkC)(z, Z) according to z — e~

GOz, 2) == G (ze 2, 7). (6.12)

Sending also z — 1, we refer to this as the Regge-Lightcone limit.

47 1n this section we refer to the results obtained using the light-cone bootstrap by

Grc to distinguish it from the results obtained from the phase shift in this section.
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Using the explicit results (B.1T) for g£20) in d = 4 [80,2], we find the following

leading and next-to-leading singularities in the Regge-Lightcone limit due to

minimal-twist double-stress tensors

620, p) = ~TALAL + )(Ar +2) 7
7P 2(AL—2) O'2
|:35Z7TAL<AL—|—1) 187T2AL(AL—|—1)(AL—|—2) 6_5p+
Q(AL—Q) Q(AL—2> g o

(6.13)
where the ellipses denote non-singular terms as 0 — 0. Likewise, in the Regge-
Lightcone limit of QI%’O due to the exchange of minimal-twist triple-stress ten-
sors [2], one finds the following leading and next-to-leading singularities in the
Regge limit from (8.12):

690, )‘ _ 9imAL(AL +1)(AL +2) (AL +3)(Ap +4) e
-3 2(A1 — 2)(Ar — 3) o3
_ [_ 1057T2AL(AL +1)(Ap +2)(AL + 3)
o2 2(A — 2)(AL — 3)
27im3 AL (AL + 1) (AL +2) (AL + 3) (AL + 4)] e8P
2(AL — 2)(AL — 3) o2

G (7,)

(6.14)
The results (6.13)-(6.14) from lightcone bootstrap will be compared to the re-
sults obtained using the bulk phase shift to study the Regge limit. While we
are mainly interested in terms that behave as 0=% and o=**! at O(u*) in the

Regge limit, the term proportional to o=t at O(u?) is further given by:

3).0) (11557 AL(AL + 1)(AL +2)
G2 (o, )’ - [’( 8(A; —2)(AL — 3)
Im3AL(AL + 1) (AL +2) (AL +4)(19+ TAL)
B 4(Ap —2)(AL —3) )
5257T2AL(AL + 1)(AL + 2)(AL + 3)] e
4(Ap —2) (AL —3) o

6.2.2. Bulk phase shift of a light particle in an AdS black hole background

(6.15)

The relationship between the bulk phase shift and the heavy-heavy-light-
light correlator was described in [§] which we briefly review here for complete-
ness. We consider a four-point function defined on the cylinder parameterized

by time 7 and a unit vector 7 on S¢1:
G(z) = (OF (14, 714) OF (13, 713) OF (79, 712) OF (71, 711 ). (6.16)
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Inserting the heavy operators at 741 = 400 and going to the plane using the

transformation » = €7, we have

Q 2,2
G(z) = <r2r3>AL—§AL), (6.17)
T32
where the cross-ratios are given by
2
2Z = % = (2= s)
) (6.18)
(1—2)(1—2) =22 = 1 4 &22™) _ 2e™ 1y i,
x3

The function G (z,Z) can be expanded in conformal blocks on the plane. Espe-
cially, we will be interested in the stress tensor sector G of C;:

G(z,2) = G(z, 2) (6.19)

multi—stress tensors

As we will see, when Fourier transforming the phase shift, there are contribu-
tions to G (z,Z) coming from double-trace operators that are of the schematic
form [OOpL],,. By definition, these do not contribute to G(z, 2)

We introduce two points P, and P; on the cylinder which differ by
Lorentzian time 7 and are diametrically opposite on the Sphere:fl-é, ie. n(P3) =
—n(P2). By translational and rotational invariance, the operator Op(z2) is
inserted at P, and Op(x3) is inserted close to P3 with ng - n(P3) = cos .
Starting from Euclidean kinematics, we Wick-rotate by 7; — it; and set
t3 —ty = ™+ 19 — i5, where 20 > 0 parameterizes the time delay. Using

(6-18) one can solve for z, z in terms of = = 20 + ¢

—igT
2 =c 1T

(6.20)

Z=e "
Note that a highly energetic light particle in pure AdS starting at P» will prop-

agate to the point P3; the (2, ¢)-coordinates measure the position of Op (z3)

48 In pure AdS, a null geodesic starting at P> traverse the bulk and ends at Ps.
Below we explore the deviation from this due to the presence of the black hole as first

explored in [§].
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relative to the point Ps;. These kinematics are obtained starting with the opera-
tors close to P, corresponding to 2+ &~ —2m, and then Oy (73, 713) is moved close
to Py by taking 2+ — 2™ 4+ 27. In terms of the cross-ratios, this corresponds
to taking z — e 2™z, With these kinematics, the correlator G(z) in (6.17) is
given in the Regge limit % — 0, with their ratio kept fixed, by

G(z, %)

(—x2 — dexV)

G(z) = - [1+0((@")?)], (6.21)

with —z% = (29)? — ¢

The phase shift is defined by the following Fourier transform:
B(p) = Bo(p)e®® = /dde(m)e_im, (6.22)

where By(p) denotes the Fourier transform of the disconnected correlator and
' contain the (non-trivial) dynamics of the correlator. Explicitly, the Fourier

transform of the disconnected correlator is given by

—ipxT

Bo(p) = / dle s = 0(p°)0(—p?)e™ A C(AL) (—p?)AETF (6.23)

(—x2 —iex0)Ar

where
9d+1-2A1 11+4

P(ALT(AL = 952)
Here the combination 6(p")0(—p?) ensures that p lies in the upper Milne wedge
M.

We further introduce the parametrization p* = /—p2w* in terms of two

vectors w and €, such that w? = é? = —1 and € = 1 with all other components

set to 0. Then
S =/ —pZ?,

coshl = —¢ - w

C(AL) = (6.24)

B pt+p (6.25)
NS
Likewise, we define z# = V—x2e” with €2 = —1 such that
V—a? = \/~logzlogz,
1log 2z (6.26)
2y/~logzlogz
Expanding (6.26) in the Regge limit o — 0, one finds

V—z? = —ia(l + g(:oshp—i—...),

2
—20(1 — e”)2(1 P)2
—e.ézcoshp—l—6 ( 88>( +8)0+...,

where the ellipses denote subleading corrections in o.

_6.é:

(6.27)
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6.3. Fourier transforming products of Regge conformal blocks

Following [§], we review how a single Regge conformal block in momentum
space can be transformed into position space in any dimension. The leading
result in ¢ — 0 can then be identified with the leading Regge behaviour of
a conformal block due to an operator exchange in the direct-channel. In the
case when the operator appears in the spectrum, its coefficient is related to the
product of OPE coefficientsA9.

In Section 6.3.1, we show that a product of Regge conformal blocks in
two dimensions is again a Regge conformal block. In Section 6.3.2, the four-
dimensional case is considered where, on the other hand, it is shown that prod-
ucts of Regge conformal blocks can be decomposed into an infinite sum of Regge
conformal blocks of different twist A —J. Using this decomposition, one can do
the Fourier transform and read off the contribution to the position space cor-
relator. In particular, in the limit p > 1, only the term with minimal twist in
the decomposition is important. In this limit one can, therefore, approximate
products of Regge conformal blocks in d = 4 with a single Regge conformal
block. This is reminiscent of what happens in d = 2.

A Regge conformal block was defined in [1] by
R _ . J—1
ga. (S, L) =ica 7 S° " Ha-1,a-1(L), (6.28)

with ITa_1 4—1(L) a (d — 1)-dimensional hyperbolic space propagator of a par-

ticle with mass-squared m? = (A — 1)2, defined in (2_5_5_)59, and ca j given
by (2:56). Note that the Regge conformal blocks in (6.28) is identical to the

leading Regge behaviour of the analytically continued blocks in (2.54) with the
following replacement S — ¢~ and L — p.

The hyperbolic space propagator in (2:55) can be written in terms of func-
5

: __ av !
tions €2;, = ﬂ(HizA-%—l — H_iu+%_1) as

L=

HA_l(L):/OO dy— (L) (6.29)

e 2 (A D)

49 The term “effective operator” is used below when the Fourier transform of a Regge
conformal block can be identified with the leading Regge behaviour of a conformal
block even though such an operator does not appear in the t-channel expansion .

%0 See e.g. [T59] for further details.

51 For brevity, we denote IIa—1 = IIa_1 4—1 and likewise for €2;,.
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which can be shown using (2.55) and deforming the integration contour to com-
pute the integral. The functions €2;, constitute a basis of regular eigenfunctions
of the Laplacian operator on Hy_1, for more details, see e.g. [152].
Consider the contribution to the correlator due to a single Regge conformal
block of dimension A and spin J:
B(S,L)| | =Bo(S)\k (5. D), (6.30)

where ) is a numerical coefficient and By (.S) is the disconnected correlator given

in (6.23). The position space result from (6.30) is given by the Fourier transform
G)| = / AP vy ($)gE (5. 1) (6.31)
ALJ fyn (27T)d 0 ALJ ) ) .

which by inserting (6.28) and using (6:29) can be written as

. dp ipx g1 [T Qiy(w - €)
G(x)’A’J = ZCA7J>\/M+ —(27r)d6 By (S)S /_OO dqu . g)Q- (

We then need the following identity derived in [§]:

21—(1 ima T a—%—i—il/ T a—%—iu
dfzz / ddpeipxsa—iny(w . é) _ ( ) ( )
M+

m 2

(6.33)
Using this identity with a = 2A; + J — 1 and the disconnected correlator in

(6.23), (6.32) gives

Gla)|  =Niea 2/ e T () T
0o F(2AL—|—JQ—%+Z'V>F(2AL+JQ—%—1'V) ) (6.34)
X dv 5 Iy Qi(e-e).
— 00 1% + (A — 5)
The integrand in (8:34) has simple poles at +iv = A — 2 coming from the

denominator as well as poles due to the I'-functions. The latter corresponds
to the exchange of the double-trace operators [OrOL]n.; we will not consider
these since by definition they do not contribute to the stress tensor sector. One
can perform the integral in (6.34) by deforming the contour in the lower half-
plane where, in particular, one picks up the pole at iv = A — %. This gives the

following contribution to the correlator:

_ tea gJlIIa—1 g-1(e-€
6], = (e e Apin, g AR A
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with the ellipses denoting double-trace operators which will not contribute to

the stress tensor sector G(z, z) and we have defined

d—2
plA, J] = 2J_1<AL)A+é]—d (AL — T)—A+é+d—2. (6.36)

In particular, we see that by Fourier transforming a contribution in mo-
mentum space of the form (6.30), i.e. the disconnected correlator times a Regge
conformal block, one finds from (6.35) the following contribution to the stress
tensor sector of the correlator:

G(o,p) = Ap[A, J]gR ;(V/—a2, e €), (6.37)

A,J

valid to subleading order in ¢ — 0 and we have defined the position space Regge

conformal block

_ Ia—14-1(e-€)
R,(V-a2e o) = ot S 6.38
gA,J( T, € 6) A, J (6%\/——.%2)‘]_1 ( )
Note that in (6.37), we have used the relation (6:21) between the correlator on
the cylinder and G(z, z) which is valid to subleading order in the Regge limit.
In particular, we will be interested in d = 4 where (6.38) can be written in

terms of (z, z) as

‘ =L _\ 1=
gg’J(Z,z) :Z'EANJGM (10g25> 2 (—logzlogz) 5

log z _ logz ’
& 1 log 2

(6.39)

which to subleading order in the Regge limit ¢ — 0 reduces to

—(A-1)p
R s e o
gA,J(U7 P) = ZCAJO_J_1(1 — 8_2/’) [1 T u

+ (9(02)]

((A b —2)ef + (24T — A)e"’)

(6.40)
Comparing the position space Regge conformal block in (6.40) with the con-
formal block in the Regge limit (2.52), it is seen that in four dimensions, the
former can to subleading order in ¢ — 0 be identified with a conformal block
gg’ s(o,p). To leading order this holds in any dimension, i.e., using the rela-

tion between (o, p) and (z,2) in (6.27%) and the known form of the conformal
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blocks (2.54), the contribution to the stress tensor sector G(z, z) in (6.37) can
be identified with22:
d—2

g(0.7 p> R — )\2J—1(AL>A+(277L1 (AL — T) 7A+.;+d72gg"](0', p) 4+ .... (641)

)

In what follows, we describe how to decompose products of Regge conformal
blocks into sums of Regge conformal blocks. As we will see in Section 6.4, this is
relevant when one considers the exponentiation of the phase shift which, when
expanded into a series, will result in products of Regge conformal blocks. After
having decomposed these products into sums of Regge conformal blocks, it is
straightforward to use (6.37%) to find the contribution to the stress tensor sector
of the correlator. We further note that while the phase-shift is only known
to leading order in S > 1, the leading and next-to-leading singularities in the

Regge limit ¢ — 0 are not affected by subleading corrections to the phase shift.

6.3.1. Two dimensions

Consider a Regge conformal block in two dimensions:
gn g =iea, ;S " tem(ATDL, (6.42)

where ¢a, ; a constant given in (2.53). A product of Regge conformal blocks

with (A, J;) weighted with constants A; is trivially given by:

p
[T2igR, . =" Agk (S, L), (6.43)
=1
with
p
A=) Ai—(p-1)
=1

p

J=> Ji—(p-1) (6.44)

1 p
A=— T[] Nea,.s

CA,J ="

=1

52 We have not checked if this holds also at subleading order in arbitrary dimensions.
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From (6.43), it is seen that the product of Regge conformal blocks in d = 2 is also
a Regge conformal block with (A, J, \) given by (6.44). Assume a contribution

in momentum space of the form

B

) p
5 ’{A“J} H1 R (6.45)

Using (6.43)-(6.44), it follows from the Fourier transform in (6.37%) that the

product of Regge conformal blocks in (6.45) gives the following contribution to

the stress tensor sector to subleading order in o:

G(v—z?e- é)‘{A y PTINTTHAL) ars2 (Ar) —avs gR (V=22 e €).
irJi 2 2 ’
(6.46)
Because a product of Regge conformal blocks in two dimensions is again a Regge

conformal block, we see that it is trivial to perform the Fourier transform.

6.3.2. Four dimensions

In this section, products of Regge conformal blocks in four dimensions are
considered. In particular, the decomposition of such products into a sum of
Regge conformal blocks is described. Using this decomposition, one can do the
Fourier transform using (6.37).

A Regge conformal block in four dimensions is given by:

§J—1le—(A-1)L

98,5 =ieas (6.47)

Consider a product of p Regge conformal blocks with scaling dimension and
spin (A;, J;), i =1,2,...,p, together with some weights \;:
p §J—le—(Ao—1)L P

R _ p—1 -
H AigAi,Ji =i’ (1 _ e_QL)p Z];[l/\ZCAi:Jw (648>

where
p

Ag=> A;—
=1

p

J= ZJZ— —1).

92

(6.49)



Expanding the factor e 2L)=P*1in (6.48) into a sum, the product of Regge

(1-
conformal blocks in (6.48) can be written as

Z‘p—lsj—le—(AQ—l)L p

p o)
R _ - n+p—2\ _onp
H NidA, g, = (1—ec2L) H NiCA; T, Z ( n )e . (6.50)
i=1 n=0

=1

Compared to the two-dimensional case, it is seen from (6.48)-(6.50) that prod-
ucts of Regge conformal blocks in four dimensions decompose into an infinite
sum of Regge conformal blocks with dimensions A,, = Ag + 2n and spin J.

Explicitly, the product of Regge conformal blocks have the following decompo-

sition:
H)\ZgA 5(S, L) =it Z Angh (S, L), (6.51)
= n=0
with
p
=Y Ai+2n—(p—1),
=1
p

J = ZJl— —1), (6.52)

1 [m+p—2\1vr. _
\, = NCA. T -
(") T rves.

CAn,J i=1

Using the decomposition (6.51), it is straightforward to write down the

Fourier transform of products of Regge conformal blocks using (6.37). Explicitly,

[

a term in momentum space of the form (5.51)

B p
. )’{A“J} H1 R (6.53)

with A,,, J, A, given by (6.53), gives the following contribution to the stress

tensor sector:

:ip_lzp[An,J])\ngng(\/ —z2 e @), (6.54)

n=0

G(v/—22, e é>}

{Ag,J:}

to subleading order in o. Here p[A, J] is the product of Pochhammer symbols
defined in (6.36).
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6.4. Regge limit of the stress tensor sector and the bulk phase shift

In this section, the heavy-heavy-light-light correlator is studied assuming that

the correlator in momentum space is given by
B(p) = Bo(p)e >, (6.55)

where 6(S, L; ) is the bulk phase shift. The phase shift was calculated to all

orders in a perturbative expansion in u in [g]:

6(S,Lyp) = i pEs®F) (S, L). (6.56)

k=0

It was further shown in [ that §*) := 3> | 5% can be decomposed in terms

of Regge conformal blocks as

267(1k)(57 L) = f(k) )‘k(n) gﬁ)(k)+2n+2,2(s7 L)

G o P R

A:(n) = a(n) (%) (%) )

kd k(d—2)+4
i1 T(yr(kespe
64 92k(d—2) LI r (k(d—22)+5> r (k(d—22)+3) ’

with

f(k) =

(6.58)

ay = Do) r2 (R, (2,
n! (k) +2+2n (ro(k) +n+2-49),

Note that A\j(n) = 0 for n = 1,2,... implying that the first-order phase shift
reduces to a single term in (6.57%). Expanding the exponential in (6.55) results
in a sum of products of Regge conformal blocks. Using the decomposition
of such products in four dimensions described in Section 6.3, we read off the
contribution to the stress tensor sector G of the correlator from the phase shift.

At k-th order, the stress tensor sector of the correlator behaves as

_ Frnlp) | Fenwu(p)

e e o Ol G o0, p—fixed, (6.59)
o g

6" (o, p)
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for some functions Fj 1,(p) and Fj n1,(p) in the Regge limit. The leading and
next-to-leading Regge singularity of the stress tensor sector of the correlator

G at O(u*) were defined in (6.3) by

Py L(p)

Leading Regge singularity : -
o

)

(6.60)
Next—to—leading Regge singularity : 1: S )
By expanding (6:55) and Fourier transforming terms propoportional to S* and
Sk=1 at O(u¥), the leading- and next-to-leading singularities are found pertur-
batively in ,uéé In particular, the leading singularities in the Regge limit comes
from the exponentiation of the first-order phase shift. We find perfect agreement
with the calculation of a light particle propagating in a shockwave background
in [104]. Tt is then shown, from the exchange of stress tensor, that there is no
correction to §(V) of O(S°) for large S > 1. Using this knowledge, we calcu-
late the next-to-leading Regge singularities to all orders in pu. Both the leading
and next-to-leading order Regge singularities agree in the Regge-Lightcone limit

with known results obtained using lightcone bootstrap [80,2].

6.4.1. Leading Regge singularities

In this section, the leading terms in the correlator as ¢ — 0, which were
defined in ($.60) as the leading Regge singularities, at each order in y are studied
in four dimensions. Expanding (6.55), these come from the exponentiation of

the first-order phase shift 6(1):

B(p) = Bo(p)e?"”

o

o (6.61)
k:O

A term proportional to S* will, after Fourier transform to position space, scale

as 0~ when o — 0. This will be the leading Regge singularity at O(u*).

53 For fixed value of n the sum over k can be performed with a finite radius of

convergence.
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The first-order phase shift is given by (6.5%)

1
26(1) = %94 Q(S L)

37r Se—3L
Ty 1 ez

(6.62)

The term at O(p*) in (6:61) is a product of k& Regge conformal blocks with
dimension A = 4 and spin J = 2. Using the decomposition of products of
Regge conformal blocks (6.51)-(6.53), the expansion of the momentum space

correlator in (6.61) can be written in terms of Regge conformal blocks with

Ak,n:3k—l—2n—|—1,
Jpy=k+1,

(6.63)

where n = 0,1,.... Using (6.37) to do the Fourier transform of each Regge
conformal block, this gives the following contribution to the stress tensor sector

of the correlator:

%) . k
1 [ic n+k—2
(k) — il P -
G o, p>)(5(1))k HZO k! (240) ( n )(AL)L’"?% :

g B
X (Ap — 1) —ay pt7,+2 Qgﬁkymjk(\/ —z2 e €),

2 CAL n, Tk

(6.64)

valid to subleading order in ¢ with k£ =1,2,....
The leading Regge singularities can be written in terms of (o, p) using
V—1? ~ —ijo and —e - € ~ coshp. From (6.64) we find:

g(k) }(5(1))19 — < n )(AL)Akyn—ng—él
n=0 (6.65)
e_(Ak,n_l)p
x (Ap —1) —Ak7n2+Jk+2 e T +...,

where the ellipses denote terms subleading in ¢ — 0. Explicitly, inserting the

dimensions and spins (A, Ji) given in (6.63), we find

> (3i n+k—2
g(k)( >’(5(1>)k :Z kl) < n )(AL)QIH—H HBs = Dk
n=0
oy (6.66)
X —————— + ...

ok(1 —e=2p)
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The sum over n can further be written as a hypergeometric function:

G (o, p) (e FloR(1 = 8_2p>(AL>2k—1(AL 1)1k (6.67)

x e MRy (k—1,AL + 2k — L, —AL +k+1;—e ) + ...

k at

These are the leading Regge singularities, i.e., terms that behave as o~
O(p*), to all orders in pu. The result (6:67) agrees with the calculation in a
shockwave background in [10%], for details, see Appendix C.1. In particular,

consider the terms in the sum in (6.67) with k& = 2, 384,

Om2AL (AL + 1) (AL +2) e 6r
o), - TN T
oT2p—00 2<AL —2) o
6O (.0  ~ - HTALAL T DAL+ (AL +3)(AL +4) e
1P| g5 p 500 2(A1 — 2)(AL — 3) o3
(6.68)

where we have further taken the limit p — co. The leading Regge singularities
in (6.68) agree with those in (6.13)-(6.14); the latter were found using lightcone
bootstrap [8U,2] and are due to minimal-twist double-stress and triple-stress
tensors.

We note that the first-order phase shift is to leading order in o fixed by the
exchange of stress tensor in the direct channel in the CFT [§]. It is therefore
universally fixed by Ward identities and does not depend on higher derivative
corrections to the gravity action.

It is seen that the leading Regge singularities in (6.66G), which can be iden-
tified with the leading behaviour of a conformal block in the Regge limit with
dimension Ay, = 3k + 2n + 1 and spin J; = k + 1, have poles and zeroes
specified by the Pochhammer symbols to be given by:

Zeroes : Ap=—-2k+n—-2),—(2k+n—-3),...,0
(6.69)
Poles : Ap=2.3,....k+n.
The position of the poles and zeroes are seen to be related to the dimension

and spin of the blocks that are present in the decomposition of (§(1))*. Possible

54 Note that we assume that Az is not an integer. For integer Ap, there is a
mixing problem between multi-stress tensors and double-trace operators [OrOfL]n,

for suitable choice of n,l. This is discussed e.g. in [104].
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implications of the position of poles and zeroes were discussed in [104]. In
particular, it is expected that the OPE coefficients of multi-stress tensors with
minimal-twist have the same poles as predicted by (6.69) with n = 0. This
agrees with the results in [102,80,2]. Moreover, we further expect from (6.69)
the OPE coefficients for non-minimal-twist multi-stress tensors to have poles at
A =2,3,...,k+n, with n being related to the twist by 7 = k(d —2) +2n. This
is expected due to the potential mixing when Ay is an integer and there no
longer a clean separation between the multi-stress tensors and the double-trace

operators [OrOpL]n.

6.4.2. The first-order phase shift and the stress tensor exchange

The phase shift in (6.56) calculated in the bulk is linear in the energy
S > 1. In principle, it could receive corrections in an % expansion that will be
important when expanding (6.55). On the other hand, from the CFT point of
view, the stress tensor is the only operator that appears at O(u) in the stress
tensor sector. Using this, we show that there is no correction to 6(*) in four
dimensions of order O(S?).

The stress tensor exchange in four dimensions is found using the known
OPE coefficients and the conformal block given. Explicitly, one finds the fol-
lowing contribution as o — 0:

. _3 . )
P g0 0) = 1 ey~ G ey +Ol0). (670)

134 6—20) g
On the other hand, expanding the momentum space correlator in (6.55)
one finds at O(p):

B(p) = Bo(p)ipd'™) + O(u?), (6.71)
with the first-order phase shift in d = 4 given in (6.62). Fourier transforming
(6.711) using (6.37) gives the following contribution to the correlator in position
space:
3miApe 3P 1 3miApe 2P
G(o,p)|,, = H A—e2) o F=e
where we used p[4, 2] = 2A . Comparing the contribution from the stress tensor
in the Regge limit (6.70}), with the contribution from 6(*) in ($.72), we find that
both the leading and next-to-leading terms as o — 0 agreeéé. This shows that
there is no O(S?) correction to the first-order phase shift.

+ O(o). (6.72)

55 Since the leading terms were known to agree, this follows immediately from the

observation below (6.40).

98



6.4.3. Next-to-leading Regge singularities

In this section, the next-to-leading Regge singularities are considered, i.e.
terms proportional to o'=% at O(u*), to all orders in . These will be due to
terms in ($.55) of the form (6(1))* that were calculated in Section 6.4, and terms
of the form (§()*=25(2) which are of O(S*~') for S > 1. The contribution
to the next-to-leading Regge singularities from terms of the form (§()* are
therefore given by (6.64).

Consider terms in (6.55) of the form (6(1))k_26(2):

B(p)
Bo(p)

with k& = 2,3, .... Inserting the decomposition of 62 from (5:57)

= ,u i (1)\k—2 (2)
s@ @2 (k—2)! (5 )"0 (6.73)

6 = ZAQ )94 2n2(S, L) (6.74)

and the first-order phase shift (6.62), we rewrite (6.73) as

B(p) kiR
Bo(p) ls@wye—2 (k- ( ) Zf JA2(n)C612n,2

(6.75)
Sk 1o—(3k+2n—1)L
X (1 e—2L)k—1
Expanding (1 — e=2£)=k*+2 we find
B(p) prit ! (3m
- f(2) — 91 (_>
By (p) 5<2>(5(1>)k 2 (k—2)!'\ 2
e rls Ght—bunr (670
X Z ( ))\Q(n)EG—l—Zn,Q X s ;
n,m=0
with
Apm =3k +2(n+ m). (6.77)

Comparing the product of Regge conformal blocks in (6.73) with (6.76), it is seen
that the latter is a decomposition into Regge conformal blocks with dimensions
3k 4+ 2(n + m) and spin k. This can conveniently be organized into blocks with

different twists

B(p) T o
Bo(];) s (syk-2 f(2)(/7f ( ) ;)nzo <k+p_n 3) (6.78)

Sk—le—(3k+2p—1)L

1—e 2L

X A2(n)Cot2n,2
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To get the next-to-leading order Regge singularities from (6.78), it is enough
to use the leading order relation v/—22 = —io and —e - € = coshp. This is so
since terms in (6.78) are of O(S¥~1) and therefore start to contribute at o—*+!
in position space. Using (6.37) to perform the Fourier transform of each term
in the sum, one finds that (6.78) gives the following contribution to the next-

to-leading order Regge singularities in the stress tensor sector:

oo VY )
2
g* )(U P)|5<2>(5<1>)k 2 =2f(2 ZZ (AL)2k+p—2
p=0n=0
k+p—n—3 ~ e~ Bk+2p=1)p  (6.79)

+...,

where the ellipses denote subleading corrections in o. To get the full result for
the next-to-leading Regge singularities we need to add the contribution from
(6.64). This is found using the correction to the position Regge conformal block
(6.40) and the leading order expression (6.66)

1o~ (3im)* (n+k—2
G(o, p) (6OYkmktt 2 . < )(AL>2k—|—n—1(AL —1)1-k—n
., ) e~ (3k+2n)p
X [(k:-l—n— e ” — (2k +n)e ]U’“—l(l—e—%)'

(6.80)
The next-to-leading Regge singularities to all orders in p is therefore given by
the sum of (6.79) and (6.80).
Consider the p — oo limit in which only the p = n = 0 term in (5.79)
contributes. In this limit, (6.79) reduces to

35 (3im)F 1 e~ (Bk=1)p

k ~
g(O’, p)( )|5(2)(5(1))k—2p:oo€m(AL)Qk_Q(AL - 1)1_k?. (681)

This is the contribution of §()(§(1))*=2 to the next-to-leading Regge singularity
at k-th order in the Regge-Lightcone limit.

Including the contribution to the next-to-leading Regge singularity from
(6:80) due to (§())* together with (6:81), we find for p — oo at O(u?):

35irAL(AL +1)  1872AL(AL + 1)(AL +2)7e %
2(AL - 2) Q(AL — 2) o

G (a, p>’0_1 _ [ . (6.82)
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Likewise, consider the next-to-leading singularity at O(u?) which using (6:80)
and (6.81) gives

GO0, =~ 105w AL(Ar + V(AL + 9)(Ar +3)

2(AL = 2)(AL = 3)
27imS AL (AL + 1) (AL +2)(AL +3)(AL +4) e
2(AL —2)(Ar —3) E

(6.83)

g

Comparing the next-to-leading Regge singularities when p — oo, (6.82) and
(6.83), with (6.13)-(6.14), respectively, we find agreement between the result
obtained here using the phase shift and known results obtained using lightcone
bootstrap.

Similarily to the leading Regge singularities, the next-to-leading singular-
ities due to 62 (6(0)%=2 have a simple dependence on the scaling dimension
Ay — the poles and zeroes are fixed by the dimension and spin of the Regge
conformal blocks appearing in the decomposition (6.78). From (6.79), the poles
and zeroes are found to be given by:

Zeroes : Ar=—2k+p—3),—-(2k+p—3),...,0

(6.84)
Poles : AL =2,3,....k+p.

Note that the poles are the same as those for the leading Regge singularities in

(569

[

6.5. Discussion

Using the first- and second-order phase shift, we derived the leading and
next-to-leading Regge singularities of the stress tensor sector to all orders. The
leading Regge singularity at each order was shown to be determined by the first-
order phase shift. This is universally fixed by the stress tensor exchange and our
results agree with the expression obtained in [104]. The next-to-leading Regge
singularity at each order further depends on the second-order phase shift. In
general, the second-order phase shift is expected to be non-universal in the sense
that it depends on higher derivative corrections to the gravitational action in
the bulk. However, it is expected to be universal in the large impact parameter,
see [@] for the phase shift calculated in Gauss-Bonnet gravity where this indeed

is the case.
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It has been argued in [102/104,105,2] that the minimal-twist multi-stress
tensor sector of CFTs with large central charge is universal, i.e. independent
of higher-derivative corrections to the gravitational action. This was argued
from the holographic point of view in [102,104]. There the two-point function
of a minimally coupled scalar propagating in an AdS black hole background was
studied in higher derivative gravity:-gé. In [2] it was shown that the ansatz (6.1T)
solves the crossing relations and that the minimal-twist subsector of the stress
tensor sector is, therefore, determined in terms of the exchange of the stress
tensor. Since the stress tensor exchange is fixed by Ward identities, this implies
that the minimal-twist subsector is universal. In terms of the phase shift, this
would imply that when decomposing the phase shift in terms of Regge conformal
blocks, the contribution proportional to the block with the lowest twist at each
order is universal. It would be interesting to study explicitly the effect of higher
derivative terms on the phase shift and verify this. Universality in the minimal-
twist sector would imply that the Regge-Lightcone limit of our results for the
next-to-leading Regge singularities is universal.

While we have focused on d = 4, it would be interesting to understand how
to extend this to general dimensions. In particular, in d = 6, the hyperbolic
space propagators take a similar form as in d = 4 and it would be interesting to
find a similar decomposition of products of Regge conformal blocks. Moreover,
for large impact parameter L, the hypergeometric function in (2.55%) can be set
to 1 in any dimension. In this limit the Regge conformal blocks in any dimension
resemble the two-dimensional blocks.

Consider the exponentiation of the phase shift in d = 4 at O(u?):

(0

= Bo(p) [ PN (OF ON7 01 (6.85)

B(p) 3

3

The leading and next-to-leading Regge singularities obtained from (6.85) were
already discussed in Section 6.4. In Appendix C.2, it is shown that including

56 A non-minimally coupled scalar was considered in [153] and was shown to lead
to corrections. However, such corrections are suppressed by inverse powers of the

higher-spin gap Agap as shown in [37]
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the first subleading correction for ¢ — 0 to the Fourier transform of the §(1)§(2)

term in (6.85), one finds for p — oo

. 525m* AL (AL + 1)(AL +2)(AL +3) e
5D §(2) =1 p—ro0 4(Ap —2) (AL —3) o

G®(a,p) (6.86)

This agrees with the third line in (6.15) obtained using lightcone bootstrap.
More interesting is the last term in (6.85) given by the phase shift at third
order. It gives the following contribution to the stress tensor sector of the

correlator:

g(S)(U

5(3) o Z >\3 + Qn + 2 2] gT0(3)+2'n+2 2(0- p) (6'87>

to leading order in o — 0 and Ag(n) is given by the decomposition of the phase

shift in (6.57). In particular, when p — oo, only the n = 0 term contributes:

1155ir AL (AL + 1)(Ap +2) e 7

3) ~
G, p) §(3) p—oo 8(Ar —2)(AL —3) o

(6.88)

This agrees with the term in the first line in (6.15) due to minimal-twist triple-
stress tensors obtained from lightcone bootstrap. The remaining term in (6.15)
presumably comes from subsubleading corrections to (6(1)3 as well as possible
subleading corrections to the second-order phase shift.

Following the discussion®® above on the term linear in S at O(p?), it is

interesting to study terms linear in S at any order in p:
B(p)| = By(p)is™. (6.89)
pk,S
The corresponding contribution to the stress tensor sector to leading order in
o — 0 can, in any dimension, be identified with the leading Regge behaviour of
operators Op, . j=2 With scaling dimension and spin given by
Apn =k(d—2)+2n+2,

(6.90)
J =2

We refer to these operators as effectived® in the sense that they are not nec-

essarily present in the spectrum, but rather are due to the resummation of

5T A similar discussion was previously considered in [l] and we elaborate on it here.

58 Or poles at J = 2 in the complex J-plane.
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multi-stress tensor with arbitrary spin. The contribution linear in S in (6.89) is
easily Fourier transformed using (6.3%) and the decomposition of the phase shift
in terms of Regge conformal blocks (6.57). Explicitly, it is found that (6.89)
gives the following contribution to the stress tensor sector of the correlator to

leading order in ¢ — 0 in any dimension d:

pEG® (0, p)| =P F(k) D plk(d—2) + 20+ 2,2]M(n) Gi(g_0)1ani22(0:0);

§5(k)
(6.91)
where \x(n) and f(k) are given in (6.57), p[A, J] is a combination of Pochham-

n=0

mer symbols defined in (6:36) and 927 ;(o,p) is the leading contribution of a

conformal block in the Regge limit. Interpreting each term in (6.91) as due to

the exchange of an effective operator On, ,, 2, the coefficients in (6.91) are prod-

ucts of the corresponding OPE coefficients for such exchanges?? PgAH’Li , =
k,n’=

pF f(k)plk(d — 2) + 2n + 2, 2] Ak (n):

2
PHHLL _ K V(k(d —2) 4+ 2)( (k—1)2(d—2) ) [(k(d—22)+4)n] (w)n
Oz M g5 bh(a—22n kil (k(d — 2) + 2n + 2)( U2tz
F(k(d—22)+4)r(dk2—|—1)F(AL + k(d—2)—|—22n—d+4)F(AL _ k(d_?””)
— k(d— n k(d— n
T(AL)D(Ay — 452 0 (BE=2l2ndS ) p hd=2) £2n 45

X

(6.92)
In [40] it was shown using conformal Regge theory that when the correlator is
dominated by an isolated pole in the J-plane, the corresponding exchange is
due to a light-ray operatoréé. It would be interesting to understand if there is
an interpretation of the operators Op, , 2 mentioned here, which are directly
related to the phase shift, in terms of such light-ray operators. See also [41,42)].
Note that Ag(n) from (6.57%) are valid assuming Einstein gravity in the bulk.
While expected to be non-universal for general n, we expect the A\, (0) coefficient
in the phase shift to be universal and therefore (6.92) with n = 0 to be universal,

i.e. independent of higher-derivative gravitational terms in the action.

59 Note that we assume that Ay is not an integer.
60" The simplest light-ray operator is the ANEC operator, which is the stress tensor
operator integrated over a light-ray. See [40] for a detailed discussion and definition

of light-ray operators.

104



7. Thermal Stress Tensor Correlators, OPE and Holography

In this section we move on from the study of scalar correlators in heavy
states to the study of the stress tensor two-point function at finite temperature
(in holographic CFTs) based on [4].

7.1. Introduction and summary of results

Hydrodynamics describes low-energy excitations in matter at finite tem-
perature and density [154]. A lot of interest was attracted to the hydrodynam-
ics of conformal field theories at strong coupling and large central charge C'r,
which admit a dual gravitational (holographic) description [11-13]. Transport
coefficients can be extracted from the two-point functions of the stress tensor
(TT-correlators) at finite temperature and holography maps these correlators to
two-point functions of metric perturbations in a black hole background [51-54].

Holographic value of the shear viscosity is much closer to the experimentally
observed values for quark-gluon plasma than perturbative calculations (see e.g.
[155,156] for reviews). The ratio of the shear viscosity to the entropy density
was shown to be universal, /s = h/4mkpg, in all theories with Einstein gravity
duals [53,54,157,65] However, the addition of higher derivative terms to the
hydrodynamics of strongly interacting field theories?

In a way, gravity provides a minimal model for strongly interacting matter,
where the only degrees of freedom are the stress tensor and its composites,
multi-stress tensors — they are encoded by the fluctuations of the metric in
the dual theory. From a CFT point of view, such a minimal model is defined
by the OPE coefficients and the spectrum of anomalous dimensions of multi-
trace operators. Consider the OPE coefficients which determine the three-point
functions of the stress-tensor, which are specified by the three parameters in d >
3 dimensions. They change as the bulk couplings in front of the gravitational
higher derivative terms are varied B Presumably these OPE coefficients do not
completely determine the theory, but is it possible that some sector of the theory

is universal?

61 Note that we expect consistent holographic models with generic graviton three-

point couplings to also contain higher spin fields [iL5].
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We can make progress in answering this question by decomposing the TT

correlator using the OPE expansion. In a minimal theory the operators that

s92 and one can in principle deduce the

appear are multi-stress tensor operator
conformal data working order-by-order in the temperature T' = 5~ [in d space-
time dimensions k-stress tensors naturally contribute terms O(8-9%)]. A simi-
lar question was recently asked in a simpler setting where a finite temperature
state (dual to a black hole) was probed by scalars [102]. A scalar two-point
function has a piece which can be computed near the boundary of asymptoti-
cally AdS spacetime — this is precisely the term which encodes the contribution
of multi-stress tensors. Another piece, left undetermined in the near-boundary
expansion, contains the contributions of multi-trace operators which involve the
external scalar operator.

To compute it, one needs to solve the equation of motion in the whole
spacetime — a nontrivial task in practice. 63

What happens when a thermal state (or, in the dual language, a black
hole) is probed by the stress-tensor operators? In this work we attempt to
decompose this correlator by generalizing the analysis of [102] to the case of
external operator being the stress tensor. Here we consider the contributions of
the identity operator, the stress tensor and the double stress tensors to the cor-
relator. One immediate technical complication that we face is that the external
operator with which we probe the system, namely the stress tensor, has inte-

ger conformal dimension. In [102] it was observed that some OPE coefficients

have poles for integer values of the conformal dimension of the external scalar

62 Tn this work we consider Einstein gravity as a holographic model — it is believed
to be a consistent truncation. In other words, in the dual CFT language, couplings to
other operators and corrections to the OPE coefficients are suppressed by the (large)
gap in the spectrum of the conformal dimensions of higher spin operators — see e.g.
[37] for a recent discussion.

63 In [2] an alternative way of computing the stress-tensor sector of the scalar corre-
lator using conformal bootstrap and an ansatz, motivated by [80], was proposed. The
procedure of [2] allows one to compute the OPE coefficients with the leading twist
multi-stress tensors. The result has many similarities to the Virasoro HHLL vacuum
block (see e.g. [3,8,77.8]) but at the moment the full resummed correlator in d > 2
is only known in the A — oo limit [[06]. (see [i,5,8,n104,65,.105,[61-16Y] for related

work).
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operator. This feature is related to mixing of double stress and double trace
operators. The OPE coefficients for both series have poles which cancel, leaving
behind logarithmic terms. One can also observe that the coefficients of these
terms cannot be fixed by the near-boundary analysis [102,163]. See Appendix
D.1 for a discussion on the appearance of logarithmic terms in the case when
the scaling dimension is an integer.

In the case of the stress tensor the double-trace operators made out of the
external operator T}, are also double stress tensor operators. One may wonder
if their OPE coefficients can be determined from the near boundary analysis.
The answer turns out to be no. Another important difference from [102] is
related to the leading behavior of the OPE coefficients of two stress tensors
and a double stress tensor. This OPE coefficient scales like one, as opposed
to O(CL 1) in the scalar case, and gives rise to the disconnected part of the
correlator. This implies that the connected part of the T'T correlator contains
information about conformal data which is subleading in the 1/Cr expansion.
This leads to some complications, but in the end, we succeed at extracting the
leading 1/C7p contributions to the anomalous dimensions of the double trace
operators. Other conformal data at this order remains undetermined — it should
be thought of as an analog of the double trace operator data in the external
scalar case.

Let us mention another technical difficulty that we need to confront in the
case of external stress tensors. In [102] the symmetry implies that the bulk-
to-boundary propagator depends on the time ¢, the spatial radial coordinate p
and the AdS radial coordinate r. This is no longer the case in the stress-tensor
case, due to the presence of distinct polarizations. We handle this by computing
stress-tensor correlators integrated over two parallel (xy)-planes separated in the
transverse spatial direction, which we denote by z. There are three indepen-
dent choices of polarization, distinguished by the transformational properties
with respect to rotations of the plane of integration. A suitable modification
of the ansatz used in [102] allows us to solve the stress tensor problem. How-
ever, integrating over the xy-plane leads to some divergent contributions and
to additional logarithmic terms. Fortunately, this does not affect our ability to

extract the anomalous dimensions.
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The rest of this section is organized as follows. In Section 7.2, we consider
metric perturbations on top of a planar AdS-Schwarzschild black hole and com-
pute the stress tensor two-point function in a near-boundary expansion (OPE
limit in the dual CFT). In Section 7.3, we perform the OPE expansion of the
stress tensor thermal two-point function in d = 4 and by comparison to the
bulk calculations in the previous section, we read off the anomalous dimensions
of double-stress tensor operators with spin J = 0, 2,4. We conclude with a dis-
cussion in Section 7.4. In Appendix D.1, we treat the simpler example of scalar
perturbations in the bulk as a toy model for the metric perturbations, focusing
on the subtleties that arise for external operators with integer dimensions. In
addition, we consider scalar correlators integrated over the zy-plane and show
how the correct OPE data is recovered in this case. Appendix D.2 lists some of
the results that are too lengthy to present in Section 7.2. In Appendix D.3 we
introduce conventions and details on the spinning conformal correlators relevant

for the decomposition of thermal stress tensor two-point functions.

7.2. Holographic calculation of thermal TT correlator in d = 4

Recently some OPE coefficients of scalars and multi-stress tensors were cal-
culated in the context of holographic models [102,163]. This was accomplished
by making a comparison between the CFT conformal block decomposition of
HHLL correlators on the CFT side and a near-boundary expansion of the bulk-
to-boundary propagator in the AdS-Schwarzschild background on the bulk side.

Our goal in this work is to use an analogous approach to extract the CFT
datagé for the stress tensor two-point function in a thermal state dual to the
AdS-Schwarzschild black hole, in this section we will focus on the bulk part
of this calculation. In practice we will consider the integrated version of the

correlator

Gppr(t:2) = [ ddy(T,u @) Ty 015 (7.1)

To compute the TT correlator, it is necessary to consider the linearized

Einstein equations in the black hole background. For technical reasons, we will

64 By the CFT data we mean products of the OPE coefficients and thermal one-
point functions and anomalous dimensions of the double-trace stress tensors. This will

be explained in greater detail in the next section.
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take the large volume limit, where all conformal descendants decouple and an
expansion in terms of conformal blocks becomes the OPE expansion. On the
bulk side, this corresponds to considering the planar asymptotically AdS black
hole. The corresponding system of PDEs is technically difficult to solve because
different polarizations mix with each other8?. To make the problem tractable,
we integrate the correlator over two spatial directions in (7.1). The resulting
fluctuation equations simplify to three independent PDEs for the three different
to fit our needs, successfully solves these equations.

As a warm-up exercise, we consider the scalar case, discussed in [102,163],
but now integrate over the xy-plane. The details of this calculation are de-
scribed in D.1, but the summary is as follows. For non-integer values Ay of
the conformal dimensions of the scalar operator all coefficients in the ansatz are
fixed, order-by-order, by imposing the scalar field equations of motion in the
bulk. Matching to the conformal block expansion then yields the OPE coeffi-
cients of scalars and multi-stress tensors, which reproduce the results of [102].
Note that the integrals are only convergent for large Ay, but their analytic
continuation to small Ay, yields the correct results.

For integer Ay there is mixing between multi-stress and multi-trace op-
erators, which results in logarithmic terms [102]. This mixing is reflected in
the appearance of the logr terms in the bulk ansatz [163]; a closely related
fact is that not all coefficients in the ansatz are now determined by the bulk
equations of motion. For example, for Ay = 4 there is one undetermined pa-
rameter at O(u?); it corresponds to an undetermined factor in a double-trace
OPE coefficient.

As explained in Appendix D.1, the addition of spatial integration leads
to an additional undetermined coefficient in the ansatz. This coefficient is,
roughly speaking, related to the volume of the xy-plane we are integrating over.
In practice, we use dimensional regularization, so instead of the volume, a 1/e

pole appears in the expression for this undetermined coefficient. The other

65 Because of this complication, we have to deal with the set of metric fluctuations

that depend on all five bulk coordinates, hence one can not use the approach introduced
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undetermined coefficient is related to the logarithmic term, just as in the non-
integrated case. In summary, we conclude that in the scalar case, the spatial
integration does not affect our ability to read off the OPE data.

In this section we perform the bulk calculations for the case where the
external operator is the stress-tensor. In other words, we compute the OPE
expansion for the thermal TT correlator in holographic CFTs. This section is
organized as follows. First we consider metric perturbations around a planar
AdS-Schwarzschild black hole. Then we integrate out two out of five space-
time directions and, following [170,171], we utilize the resulting O(2) symmetry
together with the bulk gauge freedom to reformulate the problem in terms of
the three gauge invariant combinations of the gravitational fluctuations in the
AdS-Schwarzschild background. The resulting PDEs can then be solved one by
using the holographic dictionary, we derive the stress tensor two-point function
in a thermal state for various polarizations. In Section 7.3 we compare these
results with the CFT conformal block decomposition and extract conformal
data.

7.2.1. Linearized Einstein equations

We consider the Einstein-Hilbert action with a cosmological constant®

16; e / d°z\/g(R — 2A), (7.2)

where G5 is the five-dimensional gravitational constant, R is the Ricci scalar

S =

and A is the cosmological constant. Decomposing the metric in the background

part plus a small perturbation h,,, one obtains the linearized Einstein equations

uvs
in the form

RG) +dhy, =0, (7.3)

where R,(},,) is the linearized Ricci tensor and d is the dimension of the conformal
boundary, i.e. d =4 in our case.
We will be interested in the planar AdS-Schwarzschild black hole as the

background spacetime,

ds® = r2f(r)dt* + r?’di* + dr?, (7.4)

1
r2f(r)

66 We will be using the Euclidean signature throughout.
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where ¥ = (2,y,2) and f(r) =1— 1.

By solving the linearized Einstein equations (7.3) with the appropriate
boundary conditions, we obtain the metric perturbation h,, and, in principle,
the holographic dictionary then precisely determines the correlators in the four-
dimensional CF'T on the boundary. However, due to the complicated form of
these equations, this is difficult to do in practice.

To make this problem tractable, we integrate the bulk-to-boundary prop-
agator over the xy-plane. This will simplify the equations of motion to three
a result, the corresponding CFT correlators, which we obtain via holographic
dictionary, will be integrated over the xy directions. This will be studied in
Section 7.3 from the CF'T point of view.

7.2.2. Polarizations and gauge invariants

Our aim is to solve the linearized Einstein equations (;7.3) in the background
(7.4), with the solution integrated over two spatial directions, which we can
choose to be x and y.

Upon integration, the (linearized) gravitational action will exhibit an O(2)
rotational symmetry. This property allows us to divide the components h,,
into three representations (referred to as channels in this context) which can be

studied separately:

Sound — channel : Pity sy Bazy Py gy By gy =+ By
Shear — channel : Pizy Dys hawy Bay,y Brg, By (7.5)
Scalar — channel : hag — 0ap(hay + hyy)/2.

The sound channel has spin 0, shear channel has spin 1 and the scalar channel
(whose equations of motion will be identical to that of the scalar) has spin 2
under O(2).

under the gauge transformations h,, — h,, —V 6 —V,§, of the gravitational

bulk theory. In the position space these are
Zy = 0;Hyy — OtHy,
Zo = 2f 02 Hyy — 49,0, Hy, + 202H.,, — (( fr g £10% + af) (Hyw + Hyy)
Z3=H

TY>

(7.6)
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where Hy = hyt/ fr?, Hy = hyi/7? and H;j = hyj/r* for i, j € {z,y, 2}, f = f(r)
is the function appearing in the black hole metric and the prime denotes the
derivative with respect to r. As is conventional, we refer to Z;, Zy and Z3 as
the shear channel invariant, the sound channel invariant and the scalar channel
invariant, respectively.

We can now choose a particular channel, take the linearized Einstein equa-
tions (723) and assume the metric perturbation to be of the form h,, =
huu(t,z,7). Combining the resulting equations, we get PDEs for the invari-
ants. To express the explicit form of these equations it will be useful to define

the following quantities:
¢ = (3u% — 8ur* 4+ 5r®) /r®
2 = 2p(r" = ) r°
cs = (p—r*)?/rt
cq = 164°(r — p)/(3r7)
cs =1+ p(p —4r*)/(3r%) (7.7)
co =2 —4p/(3r")
cr = (p? — 6ur* +5r%) /r°
cg = (r* — p)(9p® — 16pr* + 15r%)/(3r9)
cg = —(p—3r")(u—1")?/(3r%).
The equations of motion for the invariants are then given byb-z:
0= (07 + f02)°Z1 + (c1(87 + [02) + c2(0F — f02)) Z3 + c3(0F + £02) 2}
0 = (c40? + 502 + 60202 + O Zy + (c702 + cg02) Zh + (307 + ¢90?) ZY
0= (02 + f0°) Z3 + 1 Z% + c3 75 .
(7.8)
7.2.3. Ansatz and the vacuum propagators

In order to solve (7.8) we need to find the bulk-to-boundary propagators

Z;, which are related to the invariants by

Zi(t, z,r) = /dt’dz'Zi(t —t' 2= 2 " Zi(t, 2, (7.9)

67 These are the equations one obtains by Wick rotating and Fourier transforming

the corresponding PDEs in [[70].
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where Z; is related to the boundary value (up to derivatives) of Z; as will be
explained below. To solve the equations of motion we use the ansatz [102,163]
introduced for the case of a scalar field in a black hole background, suitably
modified for our integrated case. Let us briefly review its derivation and the
logic behind its construction.

Although in d = 4 the bulk equations cannot be solved analytically, one
can try to find an expansion of the solution corresponding to the OPE limit on
the boundary and extract the CFT data. The intuition behind this limit is the
expectation that the bulk solution becomes sensitive only to the near-boundary

region as the CFT operators approach each other. It was demonstrated in

r — 00 with rt, rz fixed. (7.10)

mined the correlator in the OPE limit and therefore contains information about
the CFT data. In this section we will explore the same near-boundary limit,
suitably generalized for the integrated correlator. To realize (7.10), it is useful
to introduce new coordinates defined by
IZ - 2,2 2.2 (7.11)
w=1+7r"t"4+r"2".
In these coordinates the limit is » — oo with w and p held fixed. By explicit
calculations, we will again see that this is a relevant near-boundary expansion
which will retain interesting CFT data in the OPE limit that we read off.
According to [102], one expects the solution to be of the form of the product
of the AdS propagator and an expansion in 1/7, where at each order we have
a polynomial >, a;(w)p’. Substituting this into the equations of motion, we
can find analytical solutions for all «;(w). Imposing regularity in the bulk
and demanding the proper boundary behaviouréé, we determine the integration

constants and find the coefficients «o;(w) as polynomials in w.

68 Note that in the original non-integrated case one has |Z| instead of z.

69 By the proper boundary behaviour we mean that the boundary limit of the bulk
solution should reproduce the form of the boundary correlators expected from the
boundary CFT.
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If there are logarithmic terms?® Z; takes the form M63]

2, = gAdS (1 + %4 (G;“ + G log r) + r—lg (G?’l + G log r) + .. ) ,
(7.12)

is the vacuum bulk-to-boundary propagator for the invariant Z;

and G?’j, Gf’j, .7 €A{1,2}, 1 € {1,2,3} are given byﬁ' (we suppress the

where ZiAdS

channel index for simplicity)

2 4—m
GV = 30 (al + B log
m=0n=-—2

6 Sem (7.13)
G® = Z Z (aiﬂn + biﬂn logw)w"p™.
m=0n=—6
Here G*J corresponds to the stress tensor contribution (o u!') and G897 cor-
responds to the double-stress tensor contributions. We expect to find b*! = 0
and G*?2 = 0 in all three channels.

The vacuum propagator Z:24% for the i-th channel can be determined us-
ing the AdS bulk-to-boundary propagators for the various components of the
metric perturbation. Let us describe this calculation in more detail. The AdS
propagator for H,, was computed in [172] and in the five dimensional bulk case

can be expressed as

o = 107! TuodusP (7.14)
uv,po — F2(1+T2(t2+d_fq>)4 padvplag, po; :
where J,, and P, ,, are given by
2x,x
Ty = O,y — v
1 © 7%2 + t2 + x? (7 15)

1 1
Puwpo = 5(5up‘5v0 + 5V05/M> - Zéuv(gm-

70 Logarithmic terms appear, for example, in the case of a scalar field with integer
conformal dimension Ay or in the presence of anomalous dimensions as in the case
of the stress tensor thermal two-point function. They can also be produced upon
integration. We comment more on the origin of these terms in Appendix D.1.

"l We use the bounds of the sums as they were derived for the case of a scalar field
and shear channels. In the sound channel we will need a slight modification of the

ansatz.
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Integrating over the x and y directions, we get
Guv,po(t, 2,1) E/ dxdy &, 50 (t, T, Y, 2,7), (7.16)
R2

and the (integrated) AdS solution for H,, is given by
Hy(t, z,7r) = / dt'dz' Guupo (t —t', 2 — 2/, 1) Hyo (', 7)), (7.17)

where H uv are the sources, i.e. the values of the bulk solution on the conformal
boundary.

Substituting (7.17) into the definitions of the invariants (7.6), one can ac-
cordingly read off the AdS bulk-to-boundary propagators Z:45.

Here we list the resulting expressions for some particular choices of the

sources:
Sources (t,z,r)-result (w, p, r)-results
H ZAdS _ r? _
Yy 3 w(r2(t24-22)+1)3 Tw®
] AdS _ 6rtz __6r3
Hix Zl T ow(r2(t2422)+1)r T wwd
2 4 613 2_1_p2
H,. ZAdS o't _ Gyl
w(r2(t2422)+1) Tw
3 AdS _ 192752 o 192rtpy /w2 —1—p?
H ZQ T m(r2(t2+422)+1)5 T mwlo
}AI ZAdS o 24(7’6 (t2—7z2>—|—r4>_ 24T4(w2—8p2)
tt 2 - ﬂ(rz(t2+z2)+1)5 — Twlio
s ZAdS _ 24r*—72r% (1242%) 2474 (4—3w?)
T 2 T ow(r2(t2422)+1)° - Twl0
4 2 2 2
ek zads _ A (P (12 -27) 1) | 2408 (Tw? —8(14p?))
zz 2 m(r2(2422)+1)° Twlio

At this point, we have all the pieces needed for the ansatz (7.13). Inserting
it into equations (7.8), we can determine the coefficients a’fl’jn and b’fl’jn. We

next proceed to discuss the results channel by channel.

7.2.4. Scalar channel

We begin by considering the scalar channel where the equation of motion
(7.8) has the simplest form. We confine our attention to the contributions due
to the identity operator (u"), the stress tensor (') and double-stress tensors
(u?). We are therefore interested in finding Gf’l, Gf’Q, G3" and G? in the
ansatz (7.19).

In the scalar channel, we may either turn on the source H 2y 7 0 or H rr =

—ﬁyy # 0. Since these differ only by an O(2) rotation, the corresponding bulk
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solutions, as well as the form of the action will be identical. For this reason, we
will restrict our attention to the case where H. zy 7 0. Hence, the invariant Z3
is given by
Zs(t, z,1) = / dt'dz Z8 (6 —t' 2 — 2 r)H,,, (7.18)

where Z:,(,xy) is the bulk-to-boundary propagatorﬁé.

Transforming equation (7.8) into the (w, p, r)-coordinates with Zg()xy) given
by (7.12), we find the solution at O(u),
(w8 + wt + 6w? — 2p% (wh + 2w? + 3) — 12)

pt B 107r2ws ’ (7.19)

Z?(’xy)

As expected, there are no log terms in this case. At O(u?) we find

2
1+ “BIoeST 1200 (—49? + 5w? — 6) (log(w) — log(r)) + 6550

+ 448w + 3136w* — 12656w? + 56p* (10w® + 20w° + 35w* + 44w? + 36)

— 4p? (7500 + 40u® + 34500 + 476w + 448w? — 2016) + 8064]

]‘ xr xT
b [0 60%) a0l (w? — 807)]

(7.20)

:é(””y) are not fixed by the near-boundary

where the coefficients ag and agjé(xy)
analysis. We also see the presence of log terms which are due to the zy-

integration and the anomalous dimensions of the double-stress tensors.

7.24.1. Guyay

We now use the holographic dictionary to determine the thermal correlator
Gzy,zy- The action for the scalar invariant Zs (and Z; and Z, below) can be
obtained by Fourier transforming and Wick rotating the result obtained in [170]:

20
T2 yim | dtder® (1 - rﬂ‘l) O0rZs(t, z,1m) Zs(t, z,1). (7.21)

160 r—o

S3 =

The invariant Z3(t, z, r) is fully determined by the bulk-to-boundary propagator
Zg()xy) via Eq. (7.18). To compute the action (7.21) we expand Zg()xy) near r = oo
as ) |

2™ (t,z,r) = 6P (62) + G (6 + (7.22)

"2 The superscript index in the parenthesis specifies the choice of the non-zero

sources.
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where the dots represent subleading contact terms of O(r—2) of the schematic

form 9™§/r™ as well as contributions analytic in (¢, 2) that are O(r=°). As we

will see, in the scalar channel Gy 4y Cémy)

To proceed, we substitute the bulk-to-boundary propagator into the action

(7221):

[ gy

2
S3 = ”16? Tim [ ded®s P (0 — )9, 257 (v — ' r) 257 (@ — 2" v) Hoy (27) Hoy (27)
2
= WQST / Pad®a' (™ (2 — 2) Hyy (2) Hey ('),
(7.23)

where in the second line we have integrated the delta function. We have used
an abbreviated notation x = {t, 2}, 2’ = {t/, 2’} and 2” = {t”, 2"} and omitted
contact terms (see e.g. [173] for a review on holographic renormalization and
the treatment of contact terms).

We can now compute the CFT correlator,

2 2
Giiyiey = (T (t2) Ty (0,00)5 = _5ﬁlxy(t,i)5sjﬁy(0,o) - W2§T 5 (t:2)
(7.24)
Inserting the explicit bulk solution, we obtain the following results order-by-
order in u:
G (bulk) nCr

| o T10(2 4 229
G (bulk) :WHCT(t2 —2%)
w.wy | T 00(2 + 22)?

2 2
Gg’;‘é@ , :WLOC(;T (3 (51&2 + 22) log (t2 + 22) — (
o

(7.25)

75t22% + 6127)
12 + 22

1 x xX
+ EWC’T (agjé( ¥) (t* —172%) — 622a2:(1)( y)) :
We will compare them with the CFT calculations in the next section.

7.2.5. Shear channel

We can repeat the procedure above to solve the shear channel bulk equation
(7:8) the sources Hy, and H,. and express the results in terms of w, p and r.
The explicit expressions are listed in Appendix D.2. We will now use them to
determine Gyy 1, and Gy, . using the AdS/CFT dictionary; these calculations

are summarized below.
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7.2.5.1. Gigte and Gys 12

The action for the shear channel invariant is given by'l-mi: [170]

w2Cr . (1— £)r°
1= 160 rlggo dtdZaQ 32( )(9 21 (t, 2,m) 21 (¢, 2,7)
" (7.26)
WQCT 5

- lim [ dtdz < 7y -

60 A2 (9(1‘2)) 0rZ1(t, z,m) Z1(t, 2, 7).

62

We begin by turning on the source H,, and follow the same approach as in

the previous section. The shear channel invariant is given by

Zy(t, z,7) = /dt’dz’Zl(m)(t —t', 2 — 2, r)Hy,, (7.27)

where Zl(m) is the bulk-to-boundary propagator corresponding to our choice of
source.

The near-boundary expansion of Zl(m) reads

log r

¢l (7.28)

1 log

where the dots correspond to contact terms which are O (r_Q) and non-contact
terms which are O (7"_6). Here, however, we encounter logr terms in the ex-

pansion,
z (840agzg(m) + 41u2>

(tz) _ 2
C1,log 1407 : (7 9)

The logr term in (7.28) will lead to a divergence in the correlator as r — oo,

unless the value of the coefficient agzg(m) is fixed to be

 20) _ 41,

80 = TgaoM (7.30)

Using the expansion (7.28) in the action (7.26) and proceeding as in the

tensor channel case, we obtain

Ghulk Cr 0. (tx)
tx,tx 10 83-1—63 1

(7.31)

73 Note the presence of the inverse operator (82 +82) ! which is a Fourier transform

of (w? + ¢®)! that appears in the action derived in [[{70].
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Thus, we arrive at

G(bulk) _ 1 37TCT (t2 — 722)
tx,tx 10 8152 + 63 5 (tg + 22)5
(bulk) - 1 3TuCr (t4 — 6t222 + 24)
e T OF 02 200 (12 + 22)*
mu2Cr <2 (669t22 + 804tz 4 27129)

G

1
G(bulk) _
tx,tx 2 atQ _i_ag

8400 (t2 + 22)3

+123log (¢ + 22)>
3 @
+ >cT] |
(7.32)
Here we keep the inverse operator (92 +92)~! explicit, as in the later comparison
we will act on the corresponding CFT expressions with the operator 92 + 92.
(bulk)

The correlator G;z,z2 can be computed in a similar way and the result is

presented order-by-order in p in Appendix D.2.

7.2.6. Sound channel

We now consider the sound channel. Closer inspection reveals that in the
sound channel the form of the ansatz must be modified due to a technical issue
present for the diagonal sources. We first explain how it arises and how to treat

it and then proceed with the computation of the holographic T'T correlators.

7.2.6.1. Modified ansatz

We find that for the source Hy,, we are able to extract the corresponding
results in the sound channel using the same ansatz as in the scalar and shear
channels. However, we observe that if we turn on any of the diagonal sources
Hy, H,., H,, or ﬁyy, then the ansatz of the form (7.13) is no longer valid.

The reason for this stems from the structure of the vacuum solution 234

in these cases. Let us take ﬁtt # 0 as an example. In this case the AdS

240 (" —80%) Pyom (7:19) it is clear that the ansatz

propagator has the form — s

will only be valid if the actual solution of the bulk equations is proportional to
(w? — 8p?) to all orders in pu. This condition is too restrictive and, as one can

show directly, is not satisfied in the case of the equation (7.8).
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To solve this issue for the diagonal terms, we separate the vacuum contri-
butionf?:

i 1
Z;:hag _ Z,LAdS + (G;Ll + G;LQ 10g 7“) + 7,_4 (G?J + GZS’Q log r) + ..., (733)

with G*, G8, ... defined by

4 —4—m
G =3 Y (b + b g
m=0n=—12
J | (7.34)
G®I = Z Z (ai’fm + bi’fm log w)w™p™.
m=0n=-—16

The upper and lower bounds of the sums were determined in the same way as it
was done at the beginning of this Section. Ultimately, using the original ansatz
(7.12) for the off-diagonal sources and the modified one (7.33) for the diagonal
ones, allows us to solve the equation of motion (7.8). The results are presented

in Appendix D.2.

7.2.6.2. Gtz,tza Gtt,tt7 Gzz,zz and Gmx,a:x

The action for the sound invariant has the form [177]

2 5(1—- £
Sy = — 3TCT i /dtdz( (1 5%) 50rZa(t, 2,1) Za(t, 2,7)

610 =) T o v o2 (5 1))

7I-QC’T . r 9
=~ Tog0 L, | didz (W +O(r )) OnZs(t, z,1) Za(t, 2,7).
(7.35)

Expanding bulk-to-boundary propagators for our choices of the sources,

5

eliminating the non-local divergent log r term and proceeding as above, we even-

tually obtain

U ab
ngbe = (6152 +82>2Dab<§ )7 (736)

™ The form of this ansatz is deduced from the structure of the expected CFT results,

see the next section.
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where Céab) is the 1/r* term in the near-boundary expansion of the correspond-

ing bulk-to-boundary propagator Zéab) for the source ﬁab and the operator D,

is given by ,
D= "0,
Dy = ”ng 02, (7.37)
20
D..= "5 ;.

Using the explicit form of the bulk-to-boundary solution we find that the
)

. : bulk) . .
correlation function Gizutz is given by

1 96wCr (3t* — 34t%2% 4 324)

k)|
quum)| _ 1 AmuCr (—t® + 15¢%2% — 15t%2* + 29)
tztz |0 (81,2 + 02)2 15 (2 + Z2>6
(bulk) 1 22 Cr (133t — 1408t522 — 110¢*2* 4 88225 + 652°)
Gtz,tz 5 - 2 2\2 5 o5 ,
L (07 +02) 1575 (2 + 22)
(7.38)
and analogously for the Gﬁfjﬁ’“) and Gg’f;fi’? (see Appendix D.2).
We find that we need to be more careful when analyzing the case of G%fékx)

and, similarly, GLUR)Y 1 we turn on the source ﬁm we find a contribution
Y, Gyy,yy

not only from the action S5 but also from Ss; the result is

Ghulk  _ cbulk mCr 1 (zz)

7.39

The resulting expression for G®“* can be found in Appendix D.2. In the

TT,xT

following section we will compare these results to their CF'T counterparts.

7.8. Stress tensor thermal two-point function in d = 4

In this section we study the stress tensor two-point function on 5/13 x R,
where 3 = T~! is the inverse temperature, in holographic CFTs, that is, CFTs
with large central charge C'r > 1 and a large gap in the spectrum of higher-spin
single-trace operators Ag,, > 1. The case of the purely scalar correlator is re-
viewed and extended to the integrated correlator in Appendix D.1, it serves as

a useful toy model to study before considering the technically more complicated
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spinning correlator. Using the stress tensor OPE, we isolate the contribution
from multi-stress tensor operators [T%] ; and read off the CFT data (OPE coeffi-
cients, thermal one-point functions and anomalous dimensions) via a comparison
to the bulk calculations of metric perturbations around a black hole background
in the previous section. In particular, we read off the anomalous dimensions of
multi-stress tensor operators of the schematic form : 7, T, :, : 1,,°T,, : and

:TP°T,  with spin J = 0, 2, 4, respectively.

7.3.1. OPE expansion and multi-stress tensor contributions

The contributions of the multi-stress tensor operators to the thermal two-
point function of the stress-tensor in (7.I) can be computed using the OPE,

which can be schematically written as
1 > N
Ty (@)  Tpr(0) ~ —3 |14+ D A A5 T (0)
i=1

Y Ag)T[TZ]JBlgiy)bgl...uJ 72, .. (0) +...],
J=0,2,4iCi,

(7.40)
where [T*] are spin-J multi-stress tensor operators, the ellipses denote
higher multi-trace operators and their descendants and ig = {1}, io = {1,2}

and iy = {1,2,3}. On Si x R*! only multi-stress tensors [T"] with

K1 Hg

[y
dimension Ay, ; = dk+ O(C; ') contribute since the thermal one-point function
of operators with derivatives will vanish due to translational invariance see e.g.
(57,4 73, Here the label (i) denotes the different structures appearing in the
OPE of spinning operators. The structures Aff,};,?ﬁ and B,Siy)};’él“'“ 7 are further
fixed by conformal symmetry and depend on z*/|x|. Upon inserting the OPE
(740) in the thermal two-point function (7.1), we find that each term consists of
a product of a kinematical piece and the thermal one-point functions ([T*];)gs,
weighted by the OPE coefficients )\’(If’)]“[Tk]J' The thermal one-point functions
are fixed by symmetry up to an overall coefficient (see e.g. [56,57])

bk
<[Tk],“...,“>[3 = [ﬁA;]eJ (€u, -+ -e,, — traces), (7.41)

7> In other words, only operators [T¥]; with no derivatives but various contractions

of indices survive. We therefore denote these operators by the total spin J and the
number of stress tensors k. Note also that descendants do not contribute to the two-

point function on S}; x RI71,
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where e, is a unit vector on 5[13. Rather than using the explicit OPE (7:40)
together with the thermal expectation value (7:41), we will use the conformal
block expansion in a scalar state and take the OPE limit, see Appendix D.3 and
[102,7]. To read off the CFT data we compare this to the bulk computations
in a planar black hole background. The bulk result is shown to be consistent
with the OPE expansion and we determine the O(C 1) anomalous dimensions
’y!(]l) of the double-stress tensor operators of the schematic form : 7,,7T,, :,
: 1,°T,, : and : TPT,, :. We further determine the product of coefficients
([T?)j=0.2.4) BAgf)T[TQ]J to leading order in C;' and partially at subleading order.

Let us now review the expected scaling with Cp due to multi-stress tensors
appearing in the OPE. The central charge Cr is defined by the stress tensor

two-point function in the vacuum

Crrl 1 1
(T ()T (0)) = —57 | 5 o Tue + Lo Lup) = anapg], (7.42)

where 1, = I, () = 0, — Q‘T;rf” . The CFT data is encoded in a perturbative

expansion in C ! and a generic k-trace operator [OF] with dimension A, gives

the following contribution in the OPE limit70 z|/B — 0:

T Tpe [OF) (O]
([OF][O*])

(T (2) Ty (0)) e o [ 3+~ (7.43)

Here we are interested in the case of multi-trace stress tensor operators [OF] =

[T*]; which have a natural normalization
([T*],[T*)5) ~ CF, (7.44)

which follows from the completely factorized contribution. In holographic CFT's
dual to semi-classical Einstein gravity, the connected part of correlation func-

tions of stress tensors is proportional to Cp:

<T;U/Tpa [TIC#Q]J> ~ CT- (745)

76 In general, the OPE expansion is a complicated function of z*, below, we just
keep the scaling with |z|. We further suppress the indices of the operators appearing
in the OPE.
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An important exception to (7:45) occurs for k = 2 where there is a disconnected

contribution such that
(T T, T ] )~ C’T (7.46)

where the dots refer to subleading corrections in C, ! which will play an impor-
tant role later. Lastly, the expectation value of a multi-stress tensor operator

in the thermal state has the following scaling with Cp

ch

where we also included the dependence on S which is fixed on dimensional

([T*]1)p ~ (7.47)

grounds.
Using (7.44)(7.47%), we see that the contribution of multi-stress tensor op-

erators [T%]; with dimensions Ay, = dk+O(C7") to the stress tensor two-point
function in the thermal state has the following scaling with Cp for k # 2

1 dk
Tyl T Ol x 32 () (7.49)

Meanwhile, for k = 2, the double stress tensor contributions [T7?] J=0,2,4
to the thermal two-point function give rise to the disconnected part of the
correlator due to the fact that the three-point function (7}, T, [1?]s) ~ C%,
compared to the O(Cr) contribution from the connected part. The contribution
at O(Cr) will therefore contain the first subleading correction to the OPE
coefficients /\gf)T[TQ]J, the corrections to the thermal one-point functions, as well
as the anomalous dimensions of the double-stress tensor operators.

We define coefficients p; y for the double-stress tensor [T2] ; with dimensions
A J = A27 J by:

Cavypo ()2 = 12178 91,090,000 (T) + D 01205 5 19 (%)

i=1,2
(7.49)
+ Z pZ 4gA47 ,ul/,pa( ) )
1=1,2,3
where CA?W’M () := (T}, (x)T,5(0)) g is the thermal correlator and gX?LW’pU can

be obtained by taking the OPE limit of the conformal blocks in the differential
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basis [174,175], see Appendix D.3. The coefficients p; ; are therefore products
of OPE coefficients and thermal one-point functions, see (7.43). The coefficients

. . . . . -1
pi,; and the anomalous dimensions v have a perturbative expansion in C,

(7.50)

and lead to the following schematic contribution to the stress tensor two-point

function from [T?] J:ﬁ

A ey
Guwpolir=), & D piglal™

' . L w a (7.51)
oo 3o Lt g (o 42 doglad ) + 0],
Note that the number of structures for the three point functions (7}, T, [1?]7=0,2.4)
is (ind >4) 1,2,3 for J = 0, 2, 4, respectively, giving a total of 6 different struc-

tures at this order. From now on we will mainly consider d = 4.

7.3.2. Thermalization of heavy states

The thermal one-point function of an operator O with dimension A and

spin J on Sé x R4~1 is fixed up to an overall coefficient bp [58,57)

bo
<OM1~~~MJ>5 = 5—A<6H1 €y T traces), (752)

where e/ is a unit vector along the thermal circle. To leading order in the C7. !
expansion, we expect multi-stress tensor operators to thermalize in heavy states
|) = |Og) with scaling dimension Ay ~ Crp: (see [7] for a discussion on the
thermalization of multi-stress tensors and [b8,176] for a discussion on ETH in
CFTs.)

([T*0) = ([T*)s, (7.53)

where we have suppressed the indices. This statement holds to leading order in

C7'. In (7253), the inverse temperature 3 = T~ is fixed by the thermalization

7T We stress that this only contains the scaling with |z| — 0 while the explicit

expression have a more complicated dependence on z* captured in (i7.49).
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of the stress tensor. In particular, thermalization of the stress tensor (1),,)g =
(Tyw) 5:-75-’ leads to the following relation between S and the scaling dimension

AHind:4

br,, ~ muCrSy

g4 40 7

(7.54)

where p is given byﬁé
AT (d+2) Apg

(d—1)20(£)282 Cr

o= (7.55)

d
and Sy = 127{—%2).

To leading order in C’;l, the multi-stress tensor operators are expected to
thermalize while the expectation value in the heavy state and the thermal state
might differ at subleading order. As evident from (7:50), the O(Cru?) part of
the correlator contains corrections subleading in C7, ! to the dynamical data.
When we compare these results to the corresponding bulk results computed in
the black hole background these are therefore understood as corrections to the
thermal one-point functions of these operators. More specifically, p,E’l} contain
the following terms

1 i1 1
pl) = A<TT[>T2]J + bfTL]J, (7.56)

where )\gf’q}[)Tz] ; and bfqlq)Q] | are the subleading C, L corrections to the OPE coef-

ficients and the thermal one-point functions, respectively.

7.3.3. Identity contribution

In this section we compare the contribution of the identity operator in the
T, x Tpe OPE on the CFT side using (7.42) to the bulk results. To make a

comparison to the bulk calculation, we integrate (7.42) over the (z,y) plane

7Cr
G.’E xX - S o3
Y, '!/|le0 10 (tQ + 22)3
7wCr (t2 — 5z2)
Gtw,t$|u0 - - 40 (tQ N 22)4 (757)
mCrp (5t* — 38t%2% + 52%)
Gtz,tz|u0 = - )

60 (2 + 22)°

78 We will take the large volume limit % — 0 of this equation and further set R = 1.
™ Note that the definition of Cr differs by a factor of S2 compared to [§].
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where G, o is the integrated correlator defined in (7.1). The G,y 4, correlator
in (7.57) agrees with (7.25) obtained in the bulk. In order to compare the
remaining two polarizations Gy, and Gy, .., we further apply the differential
operator (07 +0%)P with p = 1, 2, respectively, to match these CFT results with
their bulk counterparts. Doing so, we find that
3nCr (2 — 72?)

5(t% + z2)5
96mCr (3t* — 341222 + 32*)

5(t2 + 22)7

which agree with (7.32) and (7.38), respectively.

(61%2 + a?)Gtw,tﬂuO = =

(7.58)
(8162 + az)ZGtz,chﬂ = -

Y

7.3.4. Stress tensor contribution

In this section we consider the stress tensor contribution. The stress tensor

three-point function is fixed up to three coefficients in d > 4 [:1_7?:]59

<TH’/($1)TPU($2) af $3 Z A%%T ,ul/ po,af3? (759>
1=1,2,3

for three tensor structures Z.%) (x;) determined by conservation and con-

v,po,a
formal symmetry. One Way“ t(/)) pzframetrlze these coefficients is in terms of
(Cr,ta,ty), for further details and conventions see Appendix D.3. In particular,
in holographic CFTs dual to semi-classical Einstein gravity it is known that
to = t4 = 0 [24]. This fixes two of the coefficients, with the remaining one being
fixed by Ward identities in terms of Cp [177].

Using the explicit form of the stress tensor conformal block in the OPE
limit together with ¢t = t4 = 0, we can find the explicit contribution of the
stress tensor to G .0, see Appendix D.3.1 for details. To compare to the
corresponding bulk results we further need to integrate the correlator over the
xy-plane. This is done in Appendix D.3.1 and we find:

Gay,ayly = mOru £ —%
’ 100 (t2 + 22)2’
7Cru —9t* + 61222 + 724

Gtw,tm‘y, = 300 (tQ T 22)3 5 (760)
Grorels = 7Crp —105t% + 3t*22 + 137t22% 4 7720
Bt 3600 (12 + 22)4 ‘

80 At zero temperature.
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The result for Ggy 4y in (7.60) agrees with (7.25). For the remaining polariza-

tions we apply the relevant differential operators to find

3nCrpth — 66222 + 24
200 (12 + 22)4

(8t2 + 8§)Gtx,tx|u = (761)

and

AnCpp t® — 15t422 4 15¢22% — 26
15 (t? + 22)6

(8? + 6,3)2Gtz,tz|u - — (762)

Upon comparing (7.61) with (7.32) and (7.62) with (7.38) we find perfect agree-
ment between the bulk and the CFT calculation.

7.3.5. Double stress tensor contributions

In this section we consider the contribution due to the double-stress tensor
operators of the schematic form : T),, T}, :, : T, T}, : and : T*°T), :. These are
captured by (7.49) with A and p; ; given by (7.50). Details on the conformal
blocks are given in Appendix D.3. At O(C2u?) we see from (7.511) that there are
6 undetermined coeflicients pg’O} and at O(Crpu?) there is a total of 9 coefficients,

in particular, the 6 coefficients pg}} and the 3 anomalous dimensions 731):

1 1 1 1 1 1 1 1 1
X = {pg,é,pg,%,pé,%,pg,i,pé,i,pé,i,%() R S a8 (7.63)

7.3.5.1. Disconnected part

As expected from thermalization, the O(C2u?) disconnected contribution
to the stress tensor two-point function in the thermal states factorizes and is

independent of the position z:

~

Guvpo = (Tu)p{Tpe) (1 + O(CL 1), (7.64)

where (3 is the inverse temperature related to u by (7.54). In particular, only

the diagonal terms of (7},,)g are non-zero:

éxy,xy =0+ O(CTN2)7
Gtz =04+ O(Crp?), (7.65)
étz,tz =0+ O(CT,UQ)a
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while

1) B8
Comparing the conformal block expansion (7.49) to (7.63), we find that 5 out of

6 of the leading order coefficients ,0503 are determined in terms of the remaining

undetermined coefficient pg?()):

Cooae = (§)2 't [1 n O(C;l)] (7.66)

0y 324 (o
Pg% :705,3,
0y —1728 (o
Ay =120,
160 (o)

Pg(,)z); :7,01,07 (7.67)

0 —1760 (g
0 =100

0 —480 (o
Y=,

The remaining coefficient is fixed by imposing (7.66) which gives

0 _ TuC3

P10~ 7480000 (7.68)

7.3.5.2. Corrections to double stress tensor CFT data

At O(Cpp?) there is a total of 9 coefficients that fix G, o. The goal of this
section is to (partially) determine the CFT data X by comparing the conformal
block decomposition at O(Cru?) to the bulk calculations. In particular, our
analysis will allow us to extract the anomalous dimensions 751) of double-stress
tensors [12] 7, J = 0,2,4.

In order to do so we again need to integrate the correlator over the (z,y)
plane. This is divergent, as is manifest from dimensional analysis(see also(7.48)).
We will tame this divergence by including a factor of |z|~¢ in the integrals
which produces simple poles as ¢ — Ogy These will then be absorbed in the
undetermined bulk coefficients, see Appendix D.3.6.

We will fix the CF'T data by comparing the polarizations, Gy 4y, Gia,tx and

G212, with the corresponding conformal block decomposition given in D.3.5,

81 Alternatively, one can introduce an IR cutoff in the integrals and the result for

the anomalous dimensions and the coefficients pz(.I} will remain the same.
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with the bulk results given in (7.25), (7.33) and (7.38), respectively. For the
latter two polarizations, we apply the differential operators (97 + 9%)P, with
p = 1,2, on the OPE expansion in order to match against the bulk calculations,

just as for the identity and stress tensor operator, which give

CFT bulk _
G(wy,wy) B Ga(vywy) 420 =0,
C U
OF + o) [en” - ei] | L, =0 (7.69)
CFT bulk
(6152 + 63>2 |:G1(Sz,tz ) - Gl(fz,tz)i| §2Cr =0.

There is a common solution which unambiguously fixes the anomalous di-

mensions to the values:

1) _2480
0 7 6374
4210

% = g (7.70)
1 1982
47 3507

where we note that the anomalous dimensions in (7.70) are all negative. Further,

we find the following relations among three out of the six coefficients ,01(13

(1) 14465 (1)
P22 = T 159674 + P12
m_ 319 o

- 7.71

P24 = 5704 + P14 (7.71)
1y _ 3083
P3.4= Tog0qt  PLA

while the remaining CFT data {pf()), pgg, pgli} is undetermined and the bulk
coefficients are given in Appendix D.3.6. We have further checked that this solu-
tion is consistent with several other polarizations such as G.z .o, Gtz 20 G2z 22
and Gy by inserting (7.70), (7.71) and the solution for the a-coefficients
Appendix D.3.6 in the OPE expansion and comparing to the explicit bulk
calculations. Comparing G4 2, from the CFT to the bulk calculation, one
finds one more linearly independent equation }_s-g The undetermined coefficients
{ p%, pgg, ,0%121} can then be expressed in terms of the undetermined bulk coef-

ficients, see Egs. (D.3.50) and (D.3.51).

82 The reason for this can be seen from (7.36), when comparing to the CFT result
we only apply a differential operator of degree 2 for the Gz 4 polarization compared

to a degree 4 operator for other polarizations in the sound channel.
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7.3.6. Lightcone limit

In this section we consider the lightcone limit which is obtained by Wick-
rotating t — it and taking v — 0, with u = ¢t — 2z and v = t + 2. Imposing
unitarity on the stress tensor contribution lead to the conformal collider bounds,
see e.g. [R4178,25,26,179,180]. Consider now the lightcone limit of the double-
stress tensor contribution. One finds the following result for the integrated

correlators in the lightcone limit v — 0:

294" = 41p{}) + 1195 + 30944 u?

G(CFT) (’LL, U) |M20T Uioﬂjll’QCT

e 43000 0
GLOFD) (w4, v)| 20y ~ 7OU2Cr —1137Y +16(188p{") — 77p8) — 111p51)) ut
’ v—0 10752000 2
GO (4 0) oy ~ 7OH2C 294" — T40p{') + 308513 + 4325} u® )
o v0 16123000 3

(7.72)

where as expected only the spin-4 operator of the schematic form : T},,T,, :

________

2 3
CFT ™ Cru
Ga(vy,xy)(u7v>|uzCTU:O_ 2400 7’
2 4
(CFT) o VTmptCru” 7.73
Claa (W 0)20r B0 = 75500 02 (7-73)
GI(CFT) _ Ump*Cru?

S (U7U>|H2CTU:O ~ 76048000 03’

(1

where we note that the undetermined coefficient pL) drops out in the lightcone
limit. The solution in (7.70) - (7.71) obtained from the bulk computations
therefore determines completely the lightcone limit of the correlator to this

order.

7.4. Discussion

We have examined the thermal two-point function of stress tensors in holo-
graphic CFTs. In the dual picture, this corresponds to studying metric per-

turbations around a black hole background. The thermal two-point function

83 We have dropped the divergent terms from the integration since does not contain

negative powers of v when v — 0.
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can be decomposed into contributions of individual operators using the OPE.
Important contributions to the OPE of two stress-tensors include the identity
operator, the stress tensor itself, and composite operators made out of the stress
tensor (multi-stress tensors).

The holographic contribution of the identity reproduces the vacuum result.
We also verify that the stress-tensor contribution to the holographic TT corre-
lator agrees with the CF'T result, which is fixed by the three-point functions of
the stress-tensor in CFTs dual to Einstein gravity (our CFT result agrees with
[178]). The leading contribution from the double-stress tensors corresponds to
the disconnected part of the correlator.

The anomalous dimensions and the corrections to the OPE coefficients
and thermal one-point functions contribute at next-to-leading order in the C. !
expansion. Comparing the CFT and holographic calculations, we are able to
read off the anomalous dimensions of the double-stress tensors with spin J =
0, 2,4 and obtain partial relations for the subleading corrections to the products
of OPE coefficients and thermal one-point functions. It would be interesting to

We are unable to fully determine the double-stress tensor contribution from
the near-boundary analysis in the bulk; indeed some OPE coefficients remain
unfixed, although the leading lightcone behavior of the TT correlators at this
order is completely determined. The situation is reminiscent of the scalar case
[102], where the contributions of double-trace operators of external scalars were
not determined by the near-boundary analysis. It would be interesting to go
beyond the near-boundary expansion to further determine this remaining data.
In contrast to the scalar case considered in [102], in our analysis we further
integrated the correlator over a plane to account for different polarizations of
the stress tensor. This feature introduces some technical complications and it
would be interesting to study the correlator without integration.

Holography provides a powerful tool to study hydrodynamics of strongly
coupled quantum field theories and transport coefficients can be read off
from the stress tensor two-point function at finite temperaturegé. The con-

formal bootstrap provides another window into strongly coupled phenomena

84 The expansion in small momenta compared to the temperature is opposite of the

recent work on the convergence of the hydrodynamic expansion.
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when perturbation theory is not applicable. While the bootstrap program
for vacuum correlators has led to significant developments in the past decade,
the corresponding tools for thermal correlators are still developing, see e.g.
[194,56,60,57%,59,61.62,7.64.65] for related work. In particular, due to an im-
portant role played by the stress tensor thermal two-point function, it would
be interesting to better understand the constraints imposed by the conformal
bootstrap on this correlator as well as the implications for a gravitational dual
description.

By the nature of a duality, there are two sides to the same story. We have
used the structure of the stress-tensor two-point functions at finite temperature,
imposed by conformal symmetry, in order to read off the CF'T data by making
a comparison to the corresponding calculations in the bulk. At the same time,
it would be very interesting to study properties of black holes in AdS by boot-
strapping thermal correlators on the boundary. We expect a major role to be

played by the stress tensor operator and its composites which are related to the

metric degrees of freedom in the bulk.
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8. Conclusions and discussion

In this thesis, we have explored some aspects of the conformal bootstrap pro-
gram in the context of holographic CFTs. In particular to the study of heavy-
heavy-light-light correlators, where the heavy operators create high-energy
eigenstates which for many observables are expected to thermalize. This was
mainly achieved by studying the correlator in two different kinematical limits
common in the bootstrap literature. The first one is the lightcone limit which in
one channel isolates operators with low-twist. In our case, this is typically the
stress tensor and the multi-stress tensor operators. The second one is the Regge
limit which, in this setup, is dual to a highly energetic probe particle propa-
gating in an AdS-Schwarzschild black hole background. The physical data in
this limit is captured by the Shapiro time delay and the angle deflection of a
null geodesic in this background. This can be calculated and used to extract
information about the CF'T correlator or, when available, be compared against
expectations from the CF'T obtained by bootstrap methods. Lastly, we studied
the thermal two-point functions of stress tensors in holographic CFTs. This
was done by solving the equations of motions, in a near-boundary expansion,
for metric fluctuations around the black hole background in the bulk. By de-
composing the resulting correlators in terms of (spinning) conformal blocks, we
read off the underlying CFT data.

In Section 3, we used the conformal bootstrap in the lightcone limit to
obtain the contribution due to minimal-twist multi-stress tensors. This lead
to, among other things, the OPE coefficients for multi-stress tensors in the
OPE of two light scalar operators. Some of these have been calculated in the
bulk and are in agreement with the results obtained from the boundary point
of view. One of the key features of the minimal-twist multi-stress tensor ex-
changes is that it takes a remarkable, somewhat, simple form analogous to the
two-dimensional Viraosoro vacuum block. There this form is a consequence of
the infinite-dimensional Virasoro algebra. An interesting open problem is to un-
derstand if there is a similar, emergent, symmetry algebra in the lightcone limit
of heavy-heavy-light-light correlators in higher-dimensional holographic CFTs.
In Section 4, this was explored by studying two-dimensional CFTs with a higher-

spin symmetry algebra. In the case of an additional spin-3 current, the result is

134



reminiscent of the four-dimensional counter-part discussed above. It would be
interesting to understand this connection explicitly from first principles.

In Section 4 and 5, we studied the Regge limit of the heavy-heavy-light-
light correlators. Partly using bootstrap techniques that led to agreement with
expectations from the bulk, and partly by extracting information about the CFT
data using known results from the bulk. The Regge limit plays an important role
in the conformal bootstrap and exploring it more in this context is interesting.
For example, there is a critical impact parameter for which the probe particle
gets trapped by the black hole. A slight change in the impact parameter leads
to significant change in the behavior of the correlator. Understanding this from
the CF'T point of view would be interesting.

The stress tensor correlator at finite temperature plays an important role
in CFTs, as well as in holography. By studying metric fluctuations around a
black hole background, dual to a finite temperature state in the CFT, we were
able in Section 7 to obtain this correlator order-by-order in the OPE expansion.
Furthermore, by applying the machinery of spinning conformal blocks, we could
read off the underlying CFT data. While the OPE limit is opposite of the
hydrodynamical limit, it would be interesting to understand what the conformal
bootstrap has to say about hydrodynamics.

The stress tensor OPE occupies a central role in the AdS/CFT correspon-
dence. In conformal field theories dual to semi-classical Einstein gravity, its
vacuum correlation functions are determined by fluctuations of the Einstein-
Hilbert action with a cosmological constant around pure AdS. The absence of
higher-spin fields and causality implies that corrections are suppressed by the
gap. On the other hand, the black hole background is a solution to the non-
linear Einstein’s equations. A holographic CFT in this sense should reproduce
not only vacuum correlators, but also correlation functions in states dual to
other semi-classical solutions to the bulk equations of motions reflecting the
full non-linear structure of the bulk gravity. This is an interesting avenue to
explore; in this thesis we hope to have made some steps in this direction that

can be further built upon.
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Appendix A.1. Some details on the calculation of the W; block

We now make explicit the contribution of the operator O to the commutator

(Wi, Ontj(2)]. To this end, consider the OPE between two quasiprimaries
¢i(21) X ¢j(22)]gn:

o ap(hi by, b)) 08,0F (22)
¢i(z1) X ¢j(22)|px = )\ijkpz_o p p!J CETs =T (A.1.1)
where ap,(h;, hj, hy) = (h; — h; + hk)p(Qhk);l. Setting ¢;(21) = W(z21), ¢; =

Oh+j(22), ¢¥ = O and integrating against fc( )3;12 22 (21) O j(20) we

find that

dz m+2§ ap(3, h+ j, h)a? O(z)
) 2mi

)

[Wm, Oh+j(22)]|(’) = >\W(’)h+j(’) /C( 21 _ Z2 3+] ppl

(A.1.2)

and performing the integral we find that
J+2 .

ap(3,h+ g, h)(m+2)l oy
Win, Ongj = . LA : m"“apo .
| wilz2)llo Wohﬂopzz;) (m+p—)G+2-pip (z2)

(A.1.3)
A.1.1. Mized states W_, L_,,|0)
We now consider the following states
Ay = Ly W0y — WontnLomWon) g (A.1.4)

<Wn—|—mW—n—m>

where (for ¢ — 00)

(WianL_mW_p) = (3m + n)%n(n —1)(n® —4),

WoenWo) = oo+ m)(m +m)? = D((m ) ). (415
(WyLp L_pyyW_,,) = mn(n2 — 1)(n* —4)m(m?* - 1).

Now, one finds that (A, ,|OL(2)OL(0))

(Am.n|OL(2)OL(0)) = DrmDPw,n(OL(2)OL(0))
(Wonsn L W)

W Wen—m) Dw,m+n(OL(2)O0L(0))
— L= 1= 1) - sy

n (m—1)m(n—2)(n—1)n(4+m+ Sn)wszrn_Qh
2(m+n)(m+n+1)(m+n+2)

Y

(A.1.6)
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X
p=0 (21 —2)N—Ppl #
— (N)IVZ_lap(N7h7h> (m+N—1>' m+pp () (Z)
T =g DA OOk
= DN,mOp, g (2)

(A.1.7)
For the heavy part, we keep only the quadratic part in the charges such

that

lim 277 (Og(24) 05 (1)|Apm ) = %(m - 1(n—2)(n—1)wygH. (A.1.8)

24—>00

S i 22t (O GOOB(D ) (A O1()O10)
m,n=2 FaToo ! <WanL—mW—n> chiI;wh
1080wHHwh _oh Z (m — —1)(n — 2) zmtn (A.1.9)
mn2 m+1 —|—1)(n+2) mn
6w Hwh
4 f2f37
which as expected is the “exponentiated term”. On the other hand, consider
S i 301008 (V)] A} (Al O2(2)01(0)
m,n=2 FaToo ! <WanL—mW—n> U)I-(I:#
_ 1080wHHwZ_2h
c? (A.1.10)
n—1)(n—2) (4 +m + 3n)zmt"

sz (m+1Dn+1)n+2)(m+n)(m+n+1)(m+n+2)

wHHw

o« —5—(f1fa— —fzfa)
Note that in both sums we have trivially extended the summation from m > 3

tom = 2.
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On the other hand, by expanding the vacuum block we find precisely the

same structure

(Or(00)Or()OL(2)OL(0))],,, wairwn < fofs,
‘ 7 (A.1.11)
(O (00)0(N)OL(2)OLO0)],,, wumw o< (fifs = g5f2Fs).

Appendix A.2. W, vacuum block

In this appendix we further include a spin-4 current and consider the W, algebra.
We will show that including a spin-4 current modifies the term proportional to
u;—z’ discussed in Section 4. The result can again be written as a sums of the
following combination f,(2)fy(z), with a +b = 6. Compared to the case of Ws,
the term proportional to 12—21 in the vacuum block will now depend also on the
spin-4 charge u of the light operator.

We denote the spin-4 current by U(z) and the external operators carry
eigenvalues tuy and +u. The heavy operator again has a spin-3 charge of O(c)
while the conformal weight H and the spin-4 charge are small compared to wgy,
i.e. Hyug < wg. In this limit, there are no new contributions due to the states
U_n|0) since they will be proportional to “&* fa272" which is suppressed as
¢ — 00. The first contribution will appear at (9(12—21’) and is due to the fact

that the modes |Y;, ) are not orthogonal to U_,,_,|0). In this section we will

therefore study the contribution due to the following states:

<Lm—|—nW—nW—m> )’ _ <Um—|—nW—nW—m>

U_—nl|0).
<Lm—|—nL—m—n> <Um—|—nU—m—n> ] |

(A.2.1)
There are two new contributions to (Y, ,|O(2)O(0)) compared to (Y, ,|O(2)O(0)),

V) = [W_nW_m—

one is simply that we need to include the last term in (A.2.T). The second is a
correction to the OPE coefficients Awo, ,,0 and Awo,,,0, these pick up a con-
tribution that depends on the spin-4 charge u due to the fact that [W,,, W_,,]
contain the spin-4 zero mode Uy. Note that the heavy part remains unchanged

since wy > uy and is therefore given by (4.31):

(Op(00) O (1)|Yin) = =2 (m — 1)(m — 2)(n — 1)(n — 2), (A.2.2)
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and the norm of |Y;, ) is also the same as that of |Y;,,) (to leading order in

c):

o )mlm® = 1)(m? — n(n® — 1)(n® —4). (A23)

Ny = pn

m,n

1~/Vm,n> = (

We therefore only need to calculate (Y, ,|O(2)O(0)).
The modes U, of U(z) are defined by

U(z)=> Unz ™4, (A.2.4)
and since U is primary we know that
(L, Upn] = (3m — n)Upyin- (A.2.5)

Consider now various OPEs of the spin-3 and spin-4 field 55, in terms of quasi-

primaries
c 270)  AwwoU(0)
W(Z)W(O):?)?‘F 24 + 22 + ...,
A W (0
W()U(0) = M b (A.2.6)
c  27(0) U(0)
URUO) =5+ trvov—g +..,

derive the commutator of the various modes. Especially, we want to consider
(W, Unl, [Wh, W] and [Uy,, U,,]. The last one is given by

— L 2 2 2
+ (TTG_SOTL) [3(7”4 +n) +4m?n? — (2mn + 39)(m? +n?) (A.2.7)

+ 20mn + 108} Lomn 4+

while [W,,, W,,]|u is given by

m-—n
2

[Wmv Wn”U = A\wwu Un—l—m, (A.Q.S)

85 See e.g. App A.2 in [[95] for the W, algebra.
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as well as

A
(W, Unllw = V;ZW 5m® 4+ 9n — 5m?n —n® — 17Tm + 3mn?) | Wi, (A.2.9)

30240 (A.2.10)
X [ —9m 4+ m> — 26n + 6m?n + 14mn® + 14n3}

and
c
<Um—|—nU—m—n> - 20160 S

From the three-point function (U(z3)O(z)O(0)) and Ayoo = u one finds that

(52 —1)(s* —4)(s* - 9). (A.2.11)

(U snO(2)0(0)) = %(m tn—1)(m+n—2)(m+n—3)zm+"2h (A.2.12)

Lastly, we need to compute the corrections to the OPE coefficients Awo, ., 0
and Awo,_ ,0. This is similar to the calculation in the W3 case and one finds
that (¢ — o0, 2 — 0)

3w
2h

2
—4 —2h h Yw
=2 "2 — - +F A\wwuu —

5 2h I’
where we used [W1, W_1] = ...+ AwwuUp and that UyO(0)|0) = uO|0). Like-

wise, one finds that

(O(23)W (2)On41(0)) = 2~ HO(23) Wi (W_1 — - L-1)O(0))

(A.2.13)

(O(23)W (2)On42(0)) ~

25O (2) W (W5 — hiHL_lw_1 + [h(s’:‘i 5 h(;fi 1)}L31)0(0)>

_ 5,2k [@ N 8h N 36w? o) - }
— % U5 Thh+1) " h+1)(h+1) WWUET e tvwe
(A.2.14)

to leading order when ¢ — oo and using [Wa, W_s]|y = ...+ 2Uy. Putting this

altogether gives

(Yin,n|O(2)0(0)) = (Yin | O(2)0(0))
udwwu(m —2)(m —1)m(n —2)(n — 1)nz
12s(s+ 1)(s 4+ 2)(s + 3)

x (17 4 2m? 4+ 15n + 2n® + 15m + 9mn) + .. ..
(A.2.15)

m-+n—2h
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________________

block from the states |l~/m7n) proportional to u is given by

37800w%u\ —2h
)= CHTEWWUE 95i(2) + 3ws(2) |, (A.2.16)
5 C

G(2)

where ws is given by (4:3%) and w4 is a sum of products of functions f, fp with

a+ b =6 given by

B4 =3~ fofa + 3 1fs) =

S (m—2)(n—2)(n—1)n(m?+6(n+2)(n+3) +m(9 +4n)) S
D D 1260 m(n +2)(n+3)(n +4)s(s + 1)(5 + 2)(s + 3) .

m=3 n=3

(A.2.17)

A.2.1. Differential equation for the W, vacuum block

Here we study the W, vacuum block, or rather its logarithm, as z — 1. The W,
HHLL vacuum block is known exactly. One can find it for instance in eq. (C.1) of
[113]. In this case, we can choose to scale the spin-3 charge wy with the central
charge ¢ — as in Appendix A.1 — with the hope of uncovering relations similar to
those valid for the stress-tensor sector of the four-dimensional correlator in the
light cone limit. However, we may also choose to consider the limit ug ~ ¢ > 1,
with all other charges parametrically smaller.

Remarkably, F4(z) behaves logarithmically in the limit z — 1 in both cases.
A sequence of numbers, the numerical coefficients of log (1 — z) in the expan-
sion of the relevant heavy charge can be determined, and a quartic differential
equation satisfied by the logarithm of the block for certain ratios of the light
charges can be found.

Let us first consider the scaling ug ~ ¢ > 1 and expand F4(z) = log G4(2)

in powers of ug /c as Fa(z) =Y 1o (“—H)k Fik)(z) to obtain in the limit z — 1:

k:1,2,...}:

. f(k)(z)
lim ( —
=1\ 20 x 6Flog(1 — 2)

—u x {1,n — 7,458 — 14n,1001n — 13307, 732374 — 34034n,

(A.2.18)

1939938n — 31667622, . .. },
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where we set 18 h
= ——. A.2.19
n=— ( )

Fu(2) ~ — 20u log(1 — z)By(z,n) (A.2.20)

There exist four different values of n for which the generating function By(x,n)
satisfies a quartic equation. These are: n = {18,3, -2, —12}.
When n = 18, we find the following quartic order equation for the gener-

ating function:

By(z,18) = 36 B4(x, 18)* — 36 B4(x, 18)> + 11B,(x, 18)* + . (A.2.21)

Inspired by this relation one finds that Fy(z,n = 18) = F4(z) satisfies the

following differential equation

~ 9F'(z)4  9F(2)2F"(z)
1111 — 12 x _
Fz) = 120u < (1—2)* " 40000u* 200043
N L (A.2.22)
3F(2)2 + AF" (2)F'(2)
400u2 ’

When n = —12 the generating function By(x, —12) satisfies

By(x, —12) = —144By(x, —12)* =96 B4 (2, —12)* —19By4(z, —12)* 4+, (A.2.23)

A

whilst Fy(z,n = —12) = F(z) is a solution of the following differential equation

- 9.7:"’(2)4 3.7:"'(2)2.7:"”(2)
111! — 12 z _ _
Fz) 0“((1 —2)* 100000 25003
) . ) (A.2.24)
_ TF"(2)2 + 6F"(2)F'(2)
400u? '
For n = —2,3 we find the following quartic order equations for the gener-

ating function:
n=3, By(z,3) = —2304By(x,3)* + 384By(x, 3)® — 4B4(x, 3)* + =,

n=-2,  By(z,—2) =2916B4(z, —2)* + 324By(z, —2)% — 9B, (x, —2)* + .
(A.2.25)
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In these cases however, the differential equations similarly constructed do not
correctly reproduce the vacuum block beyond z — 1 limit. This is analogous
to what happens in the case of the W3 vacuum block for A = 0, where the

generating function satisfies
n=0, Bs(z,0) = 16B3(x,0)® 4 . (A.2.26)

It is curious that these special cases correspond to values for the ratios of the
light charges for which A < w, u.

Let us now consider the case with wyg ~ ¢ > 1 and the other charges
parametrically smaller. For notational simplicity, we will use here the same
symbol F4(z). We hope that this will not create any confusion. In this case,
Fu(z) is expanded as

N FO)(
kz_o ( ) (2), (A.2.27)

with
.7:(0) —2hlog(z). (A.2.28)

Using the exact expression for the W, block one finds that

k+1 (k)
i (D ‘k L\
z—1 \ 264132k ]og(1 — 2)

2
=w x {1, 4—5(18n + 85m), 10, g(882n + 2785m), 318,

(A.2.29)

1 22 13620, ...
3645(67 58n + 225635m), 13620, . .. },

where n, m denote the ratios of the light charges n = % and m = -, respectively.
Notice that in this case ratios of both charges appear as opposed to the previous
scaling for which additional simplifications occurred that eliminated w. This
may be related to the fact that a spin-3 current, having odd spin, does not

appear in the OPE of two spin-4 currents.
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Appendix B.1. Details on the conformal bootstrap

Below we review some of the details of the conformal bootstrap calculations.
Explicitly, we will show that exchanges of heavy-light double-trace operators in
the S-channel reproduce the disconnected correlator at O(u") and the stress

tensor exchange at O(pu).

B.1.1. Solving the crossing equation to O(u) in d =4

We start with the leading O(u°) term in the S-channel that should repro-
duce the disconnected propagator in the T-channel. This is given in d = 4
by

Ca,

G(z,2)] 0 = / dh/ dh(hR)A: =2 (h — B)(2MT1E0 — 2hzh Y. (B.1.1)
z—Z

.....

—/ dh/ dh(hh)Ar=2(h — h)Z "t = —/ dB[ dh(hh)Ar=2(h — h)Zzh+!
0 0 0 h

= f/ dh/ dh(hh)A2 2 (h — h) 2"zl
< Jo h
(B.1.2)
Setting zZ/z = 1 to leading order in the Regge limit, we find that the S-channel
expression reproduces the disconnected correlator:
G(z,2)|0 = 2Cay / dh / dh(hh)2r=2(h — )" 2"
z2—Z
2Ca, (logz — log z) 1
= I'ApI(Ap — 1) ~ .
z — z (log zlog z)~r PALT( ) (1—2)2c(1—2z)~r
(B.1.3)
Notice that to arrive in the last equality we expanded (z, z) around unity and
substituted Ca, = (T'(AL)[(Ap — 1))~ !

Consider now the imaginary part at O() in the S-channel. For convenience

we define

1= = Im(G(z,2)|,., (B.1.4)
which is then equal to:

pla=t) _ _—1mCa,
o(e=P —eP)

0o h
x/ dh/ dﬁ(hB)AL_Q(h—B)fy(h,B)((l—aep)h“(l ge=P)h (h<—>h)>.

0 0
(B.L5)
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Notice that we used the variables (o, p) defined as z = 1—ce” and z = 1 —cge™".

Chaab
h—h ’

determined by the crossing equation. Substituting into (B.1.5) and collecting

Consider the following ansatz for v = where (a, b, ¢) are numbers tobe

the leading singularity 0= as ¢ — 0 with k = 2A; +a + b — 1 leads to

_ —ienC
1@=9__, = % (F(AL ta—1DD(AL +b—1)(eb=9r — glablryy
n F(QAAL +a+b—2) o—(2Ar+atb—2)p

r+a—-1

I2AL +a+b—2)
AL+CL—1

X 6(2AL+a+b_2)p2F1(AL +a — 1,2AL + a4+ b— Q,AL + a, —82p>>.

><2F1(AL—|—CL—1,2AL+a+b—2,AL+a,—6_2p)—

(B.1.6)
Note that in order to do these integrals we need Ay +a > 1 and Ay +b > 1.
Using the following identity of the hypergeometric function

oFy(a,b, ¢, x) :%(—x)_aglﬂ(a,a —c+1l,a—-b+1, i)
['(a—b)'(c) N 1
m(—x) LR (b,b—c+1,—a+b+1, 5),

(B.1.7)
the third line in (B.1.6) can be simplified and we are left with

T, = (LCAU (~D(AL+a— DAL +b- 1)l
020 _
F(QAAL +a+b—2) o—(2AL+a+tb—3)p
L +a— 1

QAL +a—+ b— 2)
Ap+b—1
x e (GALTatb =30, (AL +b—1,2A,+a+b—2, AL +b, —e—29)>.
(B.1.8)
On the other hand, the Regge limit in the T-channel is dominated by

T
X2F1<AL+CL—1,2AL+a+b—2,AL+a,_e—2p)+ (

operators of maximal spin. In a holographic CFT, we have J = 2. If we further
take the lightcone limit, p > 1, the dominant contribution is due to the stress
tensor exchange and behaves as o~ le~(@=1?_ To reproduce this behavior from
the S-channel, we must set @ = 0 and b = 2 and make an appropriate choice
for the overall constant c¢. Substituting the designated values of (a, b, ¢) revals

that the first term in (B.1.8) precisely matches the T-channel stress tensor
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contribution, which in the Regge limit (after analytic continuation) behaves

like:
1 6_(A_3)p

ZNPAE S (@ 1) +..., (B.1.9)

with A = d and J = 2. Furthermore, the remaining terms correspond to the
exchange of operators with spin 2 and dimension 2A + 2 + 2n; these are the

double-trace operators [OrOL]p, 1=2.

B.1.2. Integrating the S-channel result at O(u?) in d = 4

Below we describe how to use the results for the anomalous dimensions at

O(u?) in order to recover the imaginary part of the correlator to the same order.

Using the obtained expressions for the anomalous dimensions (5.10) and (5.26),

we note that the integrand in (5.13) can be written as

W 7302k — T
plO) <,y<2> S0t (95)7(1)) _ _% pl©)
35hAr =3t A" n
T TA0(A, - DAL & <E) (1+3)
(B.1.10)

Therefore we see that (5.13) can be written as an infinite sum of integrals of

the same form that appeared at O(u) in (B.1.5). It then follows that the full

S-channel result can be integrated in order to obtain the correlator in position

and taking p — oo which gives

_ . 2357TAL(AL + 1) 8_3p
Im(G(z, 2))| 2 = 2(AL —2)  o2Brti(e2r —1) to (B.1.11)
with ... denoting terms that are subleading in the lightcone limit. The result

______

an infinite number of operators with spin-2 of dimension A = 6 + 2n and

A =2A; +2n+2.
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B.1.3. Solving the crossing equation to O(u) in d = 2

Here we review the calculations needed for the d = 2 case. To O(u°) the
S-channel (2.46) is given by

oo rh _
G2, 2)|0 = ﬁ/ / dR(RR)AL (20 4 (2 ¢ 2)). (B.1.12)

______

as
- _ 1 0 o S A1 .-
G(z,2)|0 = 7F(AL)2/0 /0 dh(hh)Ar—1zh 2l (B.1.13)

which can easily be seen to reproduce the disconnected correlator [(1 — z)(1 —
Z)]7A¢ in the Regge limit.
As in the previous subsection we proceed to consider the imaginary part of

the correlator in the S-channel expansion to O(u). Using a similar notation,
1= = Im(G(2,2))|,., (B.1.14)

combined with the ansatz v (h, h) = ¢ h®h, allows us to write:

(d=2) _ icm / / dh hh Ap— 1hahb(2 = -|—(Z<—)2)>. (B.1.15>

......

b+Ap > 0. Changlng Varlables toz=1—0e’, Z=1—0e " and collecting the
most singular term o, with k = 2A; + a + b, leads to

1@=2) ., = % (r(a +ALD(b+ Ap)(—ePt=a) _ erla=b)y
L
D(a+ b+ 24, )eplatb+2an)
+ (o + +ai>Ae WFi(a+Ap,a+b+2A0,1+a+ A, —e2P)
L
T(a+ b+ 2Ap)erlattt2AL)
+ (a a;ie 2F1(a+AL,a—|—b—|—2AL,1+a—|—AL,—62p)).
L

(B.1.16)
Using again (B.1.7) we express (B.1.16) as follows

[V N =St

15 o = % ( —T(a+AL)T(b+ Ap)ete
L
I b+ 2A; e Platb+2AL)
+ (CL—|— + af)Ae 2F1(Q+AL’a+b+2AL71+CL—|—AL,_8—2/7>
L
r bt 2A; e (atb+2AL)p
_ (CL+ + b—ff 2F1<b+AL’a+b+2AL71+b+AL,—e_2p)>.
L

(B.1.17)
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In matching (B.1.17) with the T-channel expansion, following the same logic

as in the previous subsection we deduce that a = 0 and b = 1 and fix ¢. The

channel. The other two lines match the contribution of double-trace operators
[OLOL]n,1=2 with dimension A = 2A, + 2n + 2 and spin 2 in the T-channel

expansion.

Appendix B.2. Details on the impact parameter representation in

d=4

Here we will see how the impact parameter representation in four dimen-
sions leads to the expression for the disconnected correlator in the Regge limit,
in terms of the integral over h, h.

The objective of this section is to explicitly see that the disconnected con-

tribution of the correlator in the Regge limit

1 A_oh—h
(A-21-2] T(@& —1/ dh/ PETTIZ o

h—l—l h h h+1)

Y

can be equivalently written as

) h
/ dh/ dhT, (B.2.2)
0 0

with

d*p ; - p
Th i A —(=p*)2 2P (h — h)S(p-é+ h+ h hh
=) [ e -+ s (4 +
(B.2.3)
where M is the upper Milne wedge with {p? <0, p° > 0} and
9d+1-2A - 1+4

C(A) = FOTG_TeD" (B.2.4)

with d the dimensionality of the spacetime, here d = 4.
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In practice, we need to perform the integral over p in (B.2:3). To do so, we

will use spherical polar coordinates and write:

T, = dp T ( / d(cos8) (—p*)>2 0(°)0(—p?)x
o_ .7 _ _
o w(’e—““p cos 0 [5(17 ;p h) 5(p 2p —h)+h<—>h] .
(B.2.5)

The overall factor of (27) is simply the result of the integration with respect to

the angular variable gb Next we perform the integral over cos 6:

dp )A—Q eipow0

x (—‘) 00")0(—1) (55), o

—irp”

where we set
0 T o _ r _ _
(55>55<p ‘2”9 —h)5<p 2p —h>+h<—>h. (B.2.7)
Notice that

| T ga) - [Tt e ) -

" . Z;T (B.2.8)
_ / dp & (—p)A=2 e (56).
oo ir
Hence we can write (B.2.6) as follows
T — C(A> /OO dp+ dp~ p+ —p (_pQ)A_Qeé(p‘f‘m—_'_p—x-i-)
PR e 2 (et —ar) (B.2.9)

x 0(p*)0(p™) (69) -

Performing the last two integrations is trivial due to the delta-functions. The

result is
1 h—h _ o
7 p— hh A—=2 ¢ thx™ jthx™ _ _ithx™ jihx
mh = TATA 1) i(et o) P e e ),
(B.2.10)

.....

o) h
/ dh/ dBIh;L: / dh/ dh (hh)A~2
0 0 ’ —1) )

ZZ—ZZ
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+

Here we also used the identification (2 = e |z = €@ ).

z 1 z 1
~ ~ . B.2.12
z—z (et —z7) z—z d(at—z7) ( )

However, when considering next order corrections in (z,xz~) the impact pa-
rameter represention may require corrections. Below we show that these are

irrelevant for the questions we are interested in.

B.2.1. Exact Fourier transform

Here we will compute the Fourier transform for the S-channel expression
with the identification (z = €',z = € ) and show that the leading order
results in the Regge limit given in the previous section do not miss any important
contributions.

The generic term in the S-channel which we would like to Fourier transform
looks like:

/dhdﬁg(x+,x—)f(h, h), (B.2.13)
where (Lehyot iF Bt i(ht1)
i(1+h)x ithx™ _ _ihx i(h+1)x™
glat,zm) =° S , (B.2.14)
(ezx _ T )
and

f(h,h) = im(hh)2~2(h — h) f(h, h), (B.2.15)

where f(h, h) stands for all the contributions in the S-channel to a given order.

The Fourier transform is:

/d4xeim/dhdﬁg(m+,x_)f(h, h) = /dhdﬁf(h, B)/d4xeip$g(x+,x_),
(B.2.16)
where we simply reversed the order of integration. Our focus in what follows
will be the integral:
I= /d4m ePg(zT 7). (B.2.17)

Since £ =t 4+ r and £~ =t — r, it is convenient to use spherical polar coor-
dinates to perform the integration. The angular integration over ¢ gives us an

overall factor of (27) as the integrand is independent of ¢. Next we perform
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the integration over the other angular variable. Similar to what was discussed

in the previous section,

1 . irp” _ _—irp"
/ d(cos ) ' T8t = R (B.2.18)
_1 1rp”
Combining the above we can write:
) ot 0o eirp” _ e—irpr
I= 27r/ dte™""? / drr ————— g(t,r). (B.2.19)
—o0 0 Zpr
It is easy to see that g(¢,7) = g(t, —r) and as a result:
oo . 0 .
/ drre”™"? g(t,r) = —/ drre'™ g(t,r), (B.2.20)
0 —00
which allows us to write the integral as:
*© dxtdx~ T —z
I= 27r/ T cipa .x+ x_ glzt,z7). (B.2.21)
—o0 2 Z(p -Dp )

Here P = ¢~3(@ 2 +p72") and the above integral can be thought of as a
two-dimensional Fourier transform.
To proceed we need the explicit form of g(z™, 2~ ) which we write as

6z'h$Jr 6il77,$7
faT) = ey e ea) (B.2.22)

g(x

and then expand the denominator in the Regge limit

1 1 ?
: = 1— (@t —a7)+--|. B.2.2
1 e i@ =) gzt —z) { @ —e) (B.2.23)
Substituting into (B.2.21) leads to:
1 drtde ip-x g ihat iha™ i + -
I:27r(_p++p_>/ 5 P e e [l—i(x —x7 )+
+ (T < 27)}.

(B.2.24)
Let us compute the integral term by term. The leading term in the Regge limit

yields the standard delta functions:

1 AN -
Iy = 2278 P hs - + -
1 p* P _
_ 9.3 _ — £ + = B.2.25
ot 1 {60 = oy — 1)+ 0 7)) (5.2.25)
-9 3 1 ) > p2 7



The subleading terms on the other hand produce the same result except that

the delta functions are replaced with derivatives of themselves with respect to

p" =

p"—p~
5
Let us now consider the full result which up to an overall numerical coeffi-

cient can be written as:

. 0
/dhdhf(h, h) <1 s

To evaluate the terms with derivatives of the delta function we need to integrate

+) 5(p.g+h+ﬁ)5(%2 + hh). (B.2.26)

by parts. Now recall that we are interested in the imaginary piece of the S-
channel whose leading behaviour is ~ \/—7]32 (this dependence is hidden in
what we called f ). It is obvious that the derivatives will produce subleading
terms which we are not interested in.

What about the other pieces in the S-channel which are not imaginary? To
O(p?) in this case, we know that the leading behaviour grows like ~ (y/—p2)?,
so by differentiation, a term of the order \/—7])2 may be produced. However,

it is clear that this term will never contribute to the imaginary term of the S-

our study.

Appendix B.3. Impact parameter representation in general spacetime

dimension d

Here we want to prove the following equation for general spacetime dimen-
sion d:
— (AH;LAL) P(O)g

Aur, AL (2 3), (B.3.1)

Ih,fz = (ZZ) h,h

using the form of conformal blocks given in (5.33). We start with the definition

of Z,, j, that is given as:

I, =CA d’p 2\AL—§ ,—ipT 7 _ oD 7
hh = L) (—p*) 2e (h—h)(?(p-e—l-h-l—h)é(z-l—hh),
(B.3.2)

152



9d+1-2A1 - 1+4
(AT(AL — 24 1)

Using spherical coordinates we write (B.3.2) as:

T 5 =C(AL) / dpte?'t / dp” (p")4=2 / sin?=3 1 dey dQy_s

— 00 0 Sd72
t T t T
—ip"rcos ¢1 —4a P +p p =D T
x e eont (—p2)e 39<—p2>0<pt>{6( . —h)a( . —h)

+(h<—>7z)},

d—2

(B.3.4)
where Qy_3 = IQ,(WT;Z) denotes the area of the unit (d — 3)-dimensional hyper-
sphere.

Notice now that
d—1 1

57, p")r?).  (B.3.5)

" sd— —ip" rcos d
/ sin?=® ¢re” P Pdepy = \/%F(g — 1)oFi( 4(
0

to p' and p” only. These integrals are trivial due to the presence of delta

functions.B® When these integrations are done, the expression for Z, 7 is given
) h,h

as:

Ih ;= 23_dﬁ 8it(h+ﬁ)(h o B>d—2(hﬁ)AL—g
d—1 1 -
oFiR( 5 ;—Z(h—h)%’z),

where oFig(a,z) = T'(a)"'oFi(a,z). Relations between coordinates ¢t and r
with 2% and 2~ are given as: a7 =t+rand z~ =t —r.

On the other hand, using the explicit form for conformal blocks (5.33) and
OPE coefficients in the Regge limit (2.49) one finds that:

r(g-1)
DAL)AL — 2 41)

(Ag+Ap) _
(22)” AL p(O)gﬁgL, AHL(Z,Z):

(B.3.7)

- d TN kiR (do1yz+ 2
x (hh)Ae+8 (h— ) (22)" 3" C\% >(2\/§).

86 One only needs to remember that h > h > 0.
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Using the relations between coordinates r,t and z,Z it is easy to see that

(zz)# = ¢it(hth) Next, one can use the relation between Gegenbauer poly-

nomials and hypergeometric functions:

20),, 11—
O\ (z) = ( S') 2F1(—n,2a+n,a+§;TZ), (B.3.8)
which for h — h = 1> 1 gives:
(g_1)(2+2> [d-=3 d—1 1 1 z+2z2
C = F(-ll4+d—2,——;=— = . (B.3.9
l 0zz) T(d—2)° (b 2 2 2(2\/2«2)) (B:3.9)

With the help of the following properties of hypergeometric functions:

2Fi(a,b,¢;2) = (1= 2) "9 Fi(c —a,b,¢; ©

1)7

z
li F b;—) = oF1(b; 2).
m 9 1(m7n7 7mn) 0 1( 72)

m,n— 00

(B.3.10)

Using these, together with the assumption that in the Regge limit the values
of 211 and 2~ are fixed constants: 271 = a; and 271 = a, while [ — oo, one

can easily seef? that (B.376) reproduces (B.37L). This confirms the validity of

the impact parameter representation.

Appendix B.4. Anomalous dimensions of heavy-light double-trace

operators in d = 2

The OPE data of the heavy-light double trace operators in d = 2 dimensions
can be directly obtained from the heavy-light Virasoro vacuum block [77.78].
For completeness, in this appendix we investigate the anomalous dimension
of [OgOLlpp_p iIn d = 2. As in d = 4, we introduce an impact parameter
representation following [§]. We calculate the anomalous dimensions to O(u) by
solving the crossing equation and then use the impact parameter representation
to relate them to the bulk phase shift. We find a precise agreement between
the two. Using the bulk phase shift we furthermore determine the anomalous
dimension to second order in . Much of the discussion follows closely the

four-dimensional case and will be briefer.

87 By noting that:
1 2-2x ['(2z — 1)
INe—=)=2 —_. B.3.11
(- 3) VAt (B.3.11)
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B.4.1. Anomalous dimensions in the Regge limit using bootstrap

The conformal blocks in two dimension are given by [75,74]

I8 (2,2) = fars(2) facs(2) + (2 ¢ 2), (B.4.1)

where f,(z) was defined in (1.16). Similar to the four dimensional case, the
blocks for heavy-light double-trace operators simplify in the heavy limit (Ag ~
Cr)

Apr,—A - " h 5
9i0uOLinn (#5) = (22)z B0+ 8L (P20 4 (2 0 2)). (B4.2)

Inserting this form of the conformal blocks in (2.46) together with the OPE
coefficients in the Regge limit (2.49) and approximating the sums with integrals,
one can due to symmetry extend the region of integration and it is easily found
that the disconnected correlator in the T-channel is reproduced.

Similar to the four-dimensional case the stress tensor dominates at order p
in the T-channel. The block of the stress tensor after analytic continuation in
the Regge limit is given by

gnw::gigé—f4—“., (B.4.3)
where ... denote non-singular terms. As in the four-dimensional case, this has
to be reproduced in the S-channel by the term in (2.4G) proportional to —imy.

.....

O(u) is given by

) h _ -
Im(G(z, 2))|, = —inCa, / dh/ dh(hh)A:= (W) (b, R) (thh + 2" _h) .
0 0
(B.4.4)
Using the ansatz v()(h, h) = c;h®h® we find that the T-channel contribution is
reproduced for ¢ = 0 and b = 1 (see Appendix B.1 for details). We thus find
using (2.29)
(1) _ 6>\C)H OHTH,V AOLOLTH,V
T A

HAL

To O(u?) we can use (5.13) to find the following contribution to the purely

h = —h. (B.4.5)

imaginary terms in the S-channel

-
cih

oo h _ _
Im(G(z,2))|u2 = —inCa, / dh / dh(hh)Ar~1 (%2) -5 )(zhzh+zhzh).
0 0

(B.4.6)
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B.4.2. 2d impact parameter representation and relation to bulk phase shift

Similar to the four-dimensional case we introduce an impact parameter
representation in order to relate the anomalous dimension with the bulk phase

shift. The impact parameter representation in d = 2 is given by

L= C@) [ g e -t e+h s (L +in)
" (B.AT)

with straightforward generalization of the d = 4 case explained above. This is

again chosen such that when the impact parameter represetation is integrated

over h, h the disconnected correlator is reproduced:

/O dh/o Tui = 14— Z)& e (B.4.8)

The discussion of the phase shift is completely analogous to the four-

dimensional case, as in (5.23) we find the following relation between the bulk

phase shift and the anomalous dimension to second order in u

s
A1) = - |
B.4.9
@ _ar. ¥ |
v 4 T

In [§] the phase shift in d = 2 was found to be

s = I /e L

: (B.4.10)
62 = gv—p%_’:.

Using the identification p* = 2h and p~ = 2h together with (5.25) we find for

the anomalous dimension in the Regge limit

(B.4.11)

_____

result (6.40) in [R].
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Appendix B.5. Discussion of the boundary term integrals

There are a few integrals containing total derivative terms that we have
ignored throughout Section 5 [I] and we analyze more carefully here. Let us start
with a total derivative term which shows up in the real part of the correlator at

O(w). It is given byéé:

1 1 Fo0 n—o0
I = 5(zz)—a(AHJrAL)/ dl [P(O)V(l)gfﬁ%_AHL(% 2)} . (B.5.1)
0 n=
n—roo
Let us focus on the integrand: [P(O)V(l)gfﬁLﬁ_AHL (2, 2)] . When n = 0,
’ n=0

the expression within the brackets trivially vanishes. On the other hand,
when n — oo, it takes the form n?2:=2(zz)" x f(I), where f is some
function of [ only. We are instructed here to take the limit n — oo in-
dependently of all other limits (recall that the Regge limit is taken af-

ter the integration). For generic values 0 < (z,2) < 1 it is clear that

limy,, 00 [P(O)’y(l)gﬁ_flfﬁ_AHL(z,Z)] = lim, 0o n?2272(22)" x f(I) — 0. In
n— o0
other words, the expression [P(O)fy(l)gffl%_AHL(z, Z) — 0, and we con-

clude that the integral (B.5.1) does not contribute to the S-channel expansion
of the correlator.
There are a few more integrals of similar kind that appear at O(u?). We

will analyse one of them here:

—iTtagtan [ ) (o (N2, Az, —Arr g, 5] °
IQIT(ZZ) 2 ; dl[P (A i (2,2) o (B.5.2)

The same logic can be applied here. Again, the value of the expression in brack-
ets at n = 0 is trivially zero, while for large n it behaves like: n22r4=4(2z)" f(1).
As long as (z, Z) < 1, this vanishes exponentially in the limit n — co. One con-

_____

all other integrals of similar total derivative terms that appear at O(u?).

88 We are again using variables n and I, one can notice that n = h and [ = h — h.

It is trivial to prove that 9, = 0 + 05,
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Appendix B.6. An identity for the bulk phase shift.

The aim is to elaborate on the results of [§] for the bulk phase shift in a black hole
background as computed in gravity. Firstly, let us note the following identity

involving hypergeometric functions:

oo
d d
Za(n)x”2F1[70+2n+1,§—1,TO+2n—§+3,x]:2F1[70+1,%,%+2,:E]
n=0
P ey Brl-f.E),
a(n) = — . T :
n! 70 +2+2n (To+n_|_2_g)n 0
(B.6.1)

Given that both sides of the equality can be expressed as an infinite series ex-
pansion around x = 0, one simply needs to show that the expansion coefficients

match to all orders in z. This is proven in Appendix G.

Consider now the case 79 = k(d — 2) where k € N*. Setting z = e~ 2L and
multiplying both sides with e~ [F(d=2)+1]L yields:
y(a—2)+1,k(d—2)+1(L) = Z Bnlli(a—2)+2n+1,d—1(L)
n=0
B.6.2
B(n) = G-k)@=2) a(n) U [k(d—2)— £ +2n+3] ( )
=T .
(b(d=2)+1),  p[HE2 o]

The left hand side represents the hyperbolic space propagator for a scalar field
of squared mass equal to k(d — 2) + 1 in a hyperbolic space of dimensionality
k(d —2)+ 1 and is proportional to the k-th order expression for the bulk phase

shift computed in gravity in [§], where

1 2T (dk—l—l) 71_1_1_’“(‘17*2)
(k) _ 1 2
08, L) = klp (Bd=2+1) p (kd=2) | 4 S Mk(a-2)+1.k(d-2)+1(L) - (B.6.3)
2 5 T

_____

term of the bulk phase shift as an infinite sum of (d — 1)-dimensional hyperbolic

space propagators for fields with mass-squared equal to m? = k(d —2) + 1+ 2n.

hhhhh

conformal block in the Regge limit behaves like:

. IIA_1 g—
ga,i(o,p) = ZCA,JAU{}—d_ll(p), (B.6.4)
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where

4D (A1) P (A1) or (A 4 4 1)
g Pir (A1)

Here ITa_1,4—1 denotes as usual the (d — 1)-dimensional hyperbolic space prop-

CA,J = (B.6.5)

agator for a massive scalar of mass-squared m? = (A — 1).

It follows that the k-th order term in the p-expansion of the bulk phase
shift in a black hole background can be expressed as an infinite sum of conformal
blocks corresponding to operators of twist 7 = 79(k) + 2n = k(d — 2) 4+ 2n and

spin J = 2 in the Regge limit. In other words, we can write:

Zd(k)(s L = f Z )‘k -ro(k)+2n+2 2(57 L)

9—4n [(WUQ (B.6.6)
Ak(n) = a(n) () (2] To(k) = k(d — 2)
e e 1 T(eyr(aeps)
fk) = 64 92k(d—2) LI r (k(d—2)+5> r (k(d—22)+3) ’ (B.6.7)
and 2

gf’,J(S, L) =ica,s S71 HOa—1,4-1(L). (B.6.8)

Appendix B.7. An identity for hypergeometric functions.

Here we will show that for g # 0,

> d d
Za(n)xngFl[q+2n—|—1,2 1 q—|—2n—§—|—3 x) = oF1[g+ 1, g g+2 x|
n=0

(B.7.1)

Given that both sides of the equality can be expressed as an infinite series ex-
pansion around x = 0, one simply needs to show that the expansion coefficients
match to all orders in x. Let us first set:

1 (g+1+2n),(§-1)

b(n,m)zm CEEFEIE)
m (B.7.2)
(0) = 1(a+D(3), _ (g+1) q(g+2)
S0 (8+2), 0 (¢+20(q+20+2)°
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such that:

d d > .
2F1[q_|—2n+17§_17q+2n_§+37x]:Z_Ob(n7m)x 9
" (B.7.3)

4q e /

It is easy to check that the coefficients of the first few powers of x precisely
match. Indeed, e.g.,

0
a(1)b(1,0) + a(0)b(0,1) — c(1) = 0 (B.7.4)
a(2)b(2,0) + a(1)b(1, 1) + a(0)b(0,2) — ¢(2) = 0

To show that the above identity is true for all powers of x we must show that:
¢
> a(k)b(k, £ k) = c(0), (B.7.5)

k=0

for all £ € N. The left-hand side of (B.7.5) can be easily summed to yield:

_____

: _1Tlg+1+1 (¢+2)
Zoa ok L=k = Tlg]  (¢+20)(2+2(+q)’ (B.76)

which can be trivially shown to be equal to ¢(¢).
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Appendix C.1. Comparing leading Regge singularities with the

shockwave calculation

In order to compare the leading Regge singularities in (6.66) with the stress

tensor sector calculated in [104], the following identity is useful

2Bt3)r (1 — k(AL + 2k — D)T(2AL + k) .
e2r — 1 k'F(AL)F<AL — 1) (AL + k)(QAL +k— 1) Ap,n,—1

(€2’ —1)(AL + 2k — 1)F e?P (A + 2k — 1)(AL+21<;)F
* AL+ A0 T TN TR (AL A k1) A
e 3k T(Ap — kK)T(Ap + 2k —1)
T1-e2 KD(AL- DI(A7)
X o (k—1,Ap +2k — 1; =Ap +k+1,—e2P),
(C.1.1)

T'A—k—a)l'(AL +k+a+1)

B [(1—k)T(2AL + k)

xe_Q(AL+2k+“)p2F1(AL +2k+a,k;—Ap+k+a+1; —6_2’)).
(C.1.2)

stress tensor sector for fixed p, or 7, in [:IQ%]

Appendix C.2. Further comparison with lightcone results

In this section, we further compare predictions obtained using the phase

shift with known results in the lightcone limit.

C.2.1. Triple-stress tensors in four dimensions

Consider the momentum space correlator (6.55) at O(p?). In the large
impact parameter limit, this is compared with the explicit resummation of
minimal-twist triple-stress tensors discussed in Section 6.2.

Consider the correlator (6.55) at O(u3):

Bp) | _ _2-(5(1))3
Bo(p) luz 3!

—6W§@ 4463, (C.2.1)

89 Fa, n.a is related to Fa, n.q in [{04] if one uses their identity Eq. (44) and keep

only the part relevant to the stress tensor sector and set (1)there = (6 2”)here-
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The leading and next—to—leading singularities are due to the first two terms in

_____

(6.57), it is straightforward to use (Q:?Zﬁ) to find the corresponding contribution

to the stress tensor sector:

g( )(U P ‘6(3) Z)‘3 +2n+2 2] 970(3)+2n+2 2(0 p)+ K
(C.Q.Q)

in any dimension d and the ellipses denote subleading corrections in ¢ — 0. Here
70(k) = k(d — 2) is the minimal-twist of multi-stress tensors at k-th order. To

compare the large impact parameter limit with the contribution from minimal-

_____

11555 AL (AL + 1) (AL +2) e 7

SAL—2)(A,—3) o (C.2.3)

We thus see that (C.2.3) agree with the first line in (6.15) at O(u?®) due to
minimal-twist triple-stress tensors in d = 4.

There will also be a contribution at (’)(%) due to the first subleading cor-
rection to the second term —¢(1§() in (T.27T). One can include the correction
to the position space Regge conformal block in (6.40) to the expression (5.79)

found in Section 6.4. Taking the large impact parameter with £ = 3 one finds:

(C.2.4)

(3) 5257T2AL<AL + 1)(AL + 2)(AL + 3) e 7P
g (07 p)|5(1)5(2),0*1 ~ 5
pP—>00 4(AL — 2)(AL — 3) g

which agree with the last line in (6.15) obtained using lightcone bootstrap.

C.2.2. Double-stress tensors in six dimensions

Consider the correlator (6.55) at O(u?) in d = 6:

B(p) — (52 ;52
Bo(p) e~ (6Y)= 6", (C.2.5)

The last term 76(?) in (0.225) can be transformed to position space using (6.37).

From (6.57), one finds that the lowest-twist contribution to the second-order

phase shift in six dimensions is given by

5(2),d=6 _ 6937 S(462L — 3)6_11L
0 16 (1—e2L)3

(C.2.6)
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the stress tensor sector in the limit p — oo

_ im693p[10, 2] e~
G2-d=6 (4, Al ~ 0 — (C.2.7)

This agrees with the imaginary term at O(%) after analytically continuing the

resummation of minimal-twist double-stress tensors given by Eq. (4.8) in [2].
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Appendix D.1. Integrated Scalar

As several new features emerge in the case of integrated correlators, we will
first discuss a toy model — (d = 4) scalar field, that will serve as a consistency
check. We will show that one is able to extract the same OPE data when working
with correlators integrated over the xy plane, as in the original approach.

This appendix is divided into two parts: first subsection focuses on the case
of a scalar field with non-integer scaling dimension, while the second one studies
the A = 4 case, which is more relevant for the stress tensor calculations.

In both subsections we begin by solving the bulk equations of motion where
two spatial dimensions were integrated out. We find the solution using the
ansatz introduced recently in [102,163], naturally adapted for the integrated
case.

On the CFT side we examine the integrated conformal blocks in the OPE
limit. In the integer case we explain the emergence of the log term as a result
of mixing of the scalar and stress tensor sectors. We also find that further
regularization is needed as a result of the integration.

Finally we extract the OPE coefficients?® from the comparison of the bulk
calculations and the structures expected by CFT and comment on the emergence
of the log terms and undetermined coefficients. We conclude that the integrated
problem can be equivalently well used for the extraction of the OPE data as

was the original one.

D.1.1. Scalar field with non-integer scaling dimension
D.1.1.1. Bulk-side

Our aim is to calculate the bulk-to-boundary propagator satisfying the

scalar field equation

(02 —=m?)p =0
(D.1.1)
A(A —4) —m? =0,
on the planar Euclidean AdS-Schwarzschild black hole background
ds? = r2(1 — 2)at? + r2dz? + __ (D.1.2)
r4 r2(1— L&) 7

90 Tn the leading order in the large Cr limit.
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where ¥ = (z,y, 2).
According to the AdS/CFT dictionary we obtain the thermal two-point

function of the corresponding scalar operator in the limit
(Orp(21)0L(22))p = Tl;nolo r2o(r, x1, T2). (D.1.3)
In this subsection we consider the conformal dimension Ay is not an integer.

We now integrate over the zy-plane, hence we work with the integrated

bulk-to-boundary propagator

O(t,z,1) = / dxdy ¢(t,Z, ). (D.1.4)
R2
Equation (D.1.1) in the background (D.I1.2) is then given by
1 1
AA—4) —r(4+ )0 — 2 f02 — =02 of| ® =0, (D.1.5)

202~ 5
where f=1- 4.
To solve this equation, we first transform coordinates (t,z,7) to (w,p,r)

defined by
p=r2
(D.1.6)
w? =14 722 +r222,
These are the natural integrated analogues of the variables introduced in [102].
In these coordinates we have the following equation for ®:

[C1 + C20, + C30, + C40u + C50} + Co0;

(D.1.7)
+ Cr02 + C50,0,) + Co0,0, + Cr000y,] ® =0,
where
C1 = —r*wd(A — HA@ — p)
Cy = rw(5r% — 6rtp + u?)
Cs = pw?(5r® — 6r'p + p?)
Cy = w?(w? — 1)(5r® — 6r*pu + p?) +r8(1 + p?)
+(rt = ) (w? = 1)+t = ) (w? = p?)
Cs = (r* — p)*r?w?® (D.1.8)

Cs = (r* — 1)2w?p? + r4(rt — p)w®

Cr = rfw(w® = p* = 1) + (r* — p)*w(w? — 1)* + 14 (1" — p)wp?
Cs = 2rw’p(r* — p)*

Co = 2(r" — p)*w?(w® — p + 2 (r* — p)w?p

Cro = 2rw?(r* — p)*(w? — 1).
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Here, using the same logic as in [102], we assume the ansatz (focusing only
on the solution that corresponds to the stress tensor sector on the CFT side,

see [102] for more details) as

G G
q>_q>AdS(1+—j+T—88+ ) (D.1.9)
where
2 4—m
G* = Z ai Lt
m=0n=-—2
6 Som (D.1.10)
GB = Z ai Lt

The vacuum propagator ® 445 can be obtained by integrating the known vacuum

bulk-to-boundary propagator for the scalar field:

A A—2
r mr 1-A
() t = dxd — 1 2 t2 2
AdS(7Z7T) / xy{1+r2(t2—|—x2+y2+22)} A—l( —|—7“( +Z>)
(D.1.11)
Changing the coordinates in this prefactor to (w, p,r) we get
TA_Z
@Ads(w,p,’l") X m (D112>
Inserting the ansatz into equation (D.1.7) we can determine the coefficients a{hm
as functions of A and p. In the non-integer case all coefficients ai’m and ai’m
can be found. Here we list the non-zero ones appearing at O(u!):
P - 2pu(1 — A)
—2,0 5
_ AT
Qo0 = 5
ot = 3pAA —1)
207 20(A - 2)
4 uA(A —1)(3A —10)
= D.1.13
9407 120(A — 3)(A — 2) ( )
4 _M(A —1)
A_22 = 5
1 KA
0.2 = 70
4 _MA(A —-1)

“227 T30Aa 2y
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D.1.1.2. CFT-side

On the CFT side, the object dual to the scalar field two-point func-
tion in the black hole background, is the heavy-heavy-light-light correlator
(OgOLOLOK).

Decomposing this four-point function into conformal blocks and integrat-

ing, we obtain

QA J( 277)

i (D.1.14)

Ga = / dxdy(OpOL0LOg) = / dady Z Ca,

where Z and Z?2! are the cross ratios defined in terms of ¢, z, y and z as:

7 =—t—i/2?2+y?+ 22
7 = —t+ivVa? +y2 + 22,

and Cp, s is the product of OPE coefficients corresponding to the exchange of

(D.1.15)

an operator with conformal dimension A; and spin J.
In the heavy-heavy-light-light correlator, the important set of operators

contributing in the T-channel are the multi- stress tensors, which we consider

the exchange of the stress tensor. In the OPE limit the corresponding conformal

block is

012(2,2) ~ Z2(Z2 + ZZ + 7). (D.1.16)

B 712 4 22)2-B(12(10 — 3A) + 22(A — 2))
gAul__C4’2 B339 .

(D.1.17)

Following the same approach, one gets the corresponding integrated con-

formal blocks for the double-trace stress tensors.

91 We will temporarily use this unusual notation, as we have to distinguish the cross

ratios and the space coordinate z.
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D.1.1.3. Comparison

To determine the OPE coefficients, we compare the bulk and the CFT

results. We connect the two sides by equation (D.1:3), which is now of the form
Ga = lim r2® 445 (1+ G+ G?). (D.1.18)

Where G7 = f—f + f—: + ... corresponds to the stress tensor sector and G¢
corresponds to the double-trace scalars (possibly dressed with 7),,). As we
mentioned above, these two sectors are decoupled for non-integer Ay, hence we

can consider only the multi-stress tensors. The stress tensor contribution to

. qr2A6 G(t, z,7)
Ga| | = lim 2(42 4 ,2))A—1
pt r—oo A —1 (14 72(t2 + 22))
(2 4+ 22)27A(12(3A — 10) + 22(2 — A)) A
120(A — 3)(A — 2) :

(D.1.19)

where in the second equality we have used the bulk results for G*.

____________

Ap
Cpo=— D.1.20
12 = T90 ( )
which is in agreement with the result (3.65) in [102].
The OPE coefficients at higher orders in y can be determined in a similar

way.

D.1.2. Scalar field with A =4
D.1.2.1. Bulk-side

We now consider A = 4. The setup for this case is identical as above, i.e.
Here, however, the situation becomes more tricky as some of the OPE
coefficients are singular for A = 4. On the other hand, for integer A the multi-
stress-tensor sector and double-trace scalar sector are no longer decoupled. We
expect the contribution from the [OO] to compensate for these divergent parts
in the [T"] OPE coefficients. As a result, log terms will appear in the solution.

We will explain this in more details below.
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In the bulk this leads to a slightly modified ansatz [163]:

1 1
d = Dyyg <1 + v’ (G4’1 + G4’210gr) + 5 (G8’1 + G8’210gr) +.. ) ,
(D.1.21)
where ® 445 is the same vacuum propagator as in the previous section and G*47

and G®J are given by

2 4—m
G4 = Z Z (af{’{n + bfl”{n logw)w™p™

m=0n=-—2

6 8—m
6= 3 3 (@ B gty

m=0n=—6

(D.1.22)

a’;’bz% and b’;’bﬂn.
The result (in the w, p and r coordinates) is

B s
252007010
+ 840r*w? (=12 + 6w? + w* + w® — 2(3 + 2w? + w*)p?)u

® (8400w (r® + wS((1 — 6p%)aSd + (w® — 8p%)abh))

+ (8064 — 12656w? + 3136w + 448w + 655w — 4(—2016
(D.1.23)

+ 448w? 4 476w* 4 345w° + 40w® + 750w0) p?
+ 56(36 + 44w? + 35w* + 20w’ + 10w®)p*
+120w'(—6 + 5w® — 4p*) (log r + logw))u*] + O(1?).

For the stress tensor exchange all log terms vanish and we are also able to
determine all the coefficients. We get the same results as in the non-integer
case, as expected.

For the double stress tensor exchange (u?) the coefficients ag:(l) and agj(l) are

not fixed by near-boundary analysis.

D.1.2.2. CFT-side

At order O(u®) and O(pu!) the contribution for A = 4 will be the same as
was for non-integer A. Let us therefore focus on the p? terms.
Here the contributions of the double-trace stress tensors mix with the

double-trace scalar [OO]. We thus have to consider 4 contributions to the

169



correlator at order p? — three from the double stress tensor (we label them by

the conformal dimension and the spin: (4;, J)):

T, 7"  (8,0)
T.,T%,  (8,2) (D.1.24)
TwTas  (8,4)

and one contribution from the double-trace scalar:
[00] <= (8,0), (D.1.25)

which will mix with the (8,0) contribution from [T?]. This agrees with the fact
that it is only the coefficient CT7(8,0), that is expected to diverge.
Let us have a closer look at the divergencies that appear here. First, as the

coefficient C¢ " has a pole in A = 4 [102] we can write it as

Csing TT
= N9 D.1.2
Cs,0 x4 +C ( 6)

reg

where the term C;TI;E is regular in A = 4 and Cg;yg4 is the residue. In order for
the singular part to be cancelled, the OPE coefficient of the double-trace scalar
must also have a pole at A = 4 with the same residue but with an opposite sign

[102]:

Csin
CcsS = _T—Z +CRY (D.1.27)

Now, since the conformal block for J = 0 in the OPE limit is ga o =~ (ZZ)A/, we
can study what happens if the contributions from [7?] and [OO] mix. Consider
first A = 4 + §, sum the contributions from [T?] and [OO] and then take the
limit § — 0:

lim [cgoT (2Z)1-(4+9) 4 C§°+€570(ZZ)(4+5)‘(4+5)] (D.1.28)

____________

. Csing S\—§ Y Csing 2 2 _ ) 7
lim —<=< [(22)7°=1] = lim —5 [1=6log ZZ + O(0°) —1] = —Cling log ZZ
(D.1.29)
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Thus the complete contribution at O(u?) is

G4

= / dzdy <CZ;§ + C5S — Cuinglog ZZ+
)7

22472747
Cs2 —
77
Lc Z4+Z37+2272+273+74>
8,4 .

(D.1.30)

> Z272

where gg 2 and gg 4 are composed out of the corresponding conformal blocks in

the OPE limit:

477+ 7
Tz (D.1.31)
AL BT+ 2T+ 72+ 7
gs.4 = —»o .
VAV

regulated. In practise we can do this using the dimensional regulatization: we
multiply the integrand by a factor |z|~¢ = (t2 + 22+ 4% + 22)_5, integrate and

then expand the resulting expression around € = 0. This way we get:

g :Smf?(c&2 —3C3.4)
! w2 €
(15¢% — 2222 — 2% + 1262 (12 + 22) log (1% + 22))
o {08’4 2 + 22
+ Cs 2 (2 4 2% — 4% log (2 + 2°) ) (D.1.32)

+ (12 + 22)(Cuing(log(? + %) — 1)

TT 0o 1
— CTT _ ¢ )} +0().
D.1.2.3. Comparison

We are only interested in the double-trace sector

G81 + G®2logr
r8 ’

Gy = 1l>m T4(I)Ads (D.1.33)

U2
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The RHS of this relation is obtained by taking the limit of the O(u?) term in

G4

e 1;% [420(— 62%2:% + (1* — 722)a§:(1)>

(D.1.34)

I ( 2(75t%2% 4 612%)

PR + 3(5t% 4 2%) log (t2—|—22)>].

and Ciing:
2
1
Cso= —=
27 560
i (D.1.35)
Cay= 1.
ST 720
2
_
Cszng — 4207
while for the coefficients CE;E, ng and the parameter € we get the following
relations )
7 239
CQO + CIT = 2ag7; + gag;g + 252’6
D.1.36
1 420(3ag + dag) + 4742 ( )
e 1242

To conclude, our double-trace results for Cg o, Cg 4 and the residual part
of C’8T7 I are in a perfect agreement with the results for the non-integer case

extrapolated to A = 4, see [102], while the remaining CFT data is related to

Appendix D.2. List of bulk results for Z; and 7>

In this appendix we list some expressions for the invariants in the shear
and sound channels.
D.2.1. Results in the shear channel

For the source Hy, we find the solution of equation (7.8) at O(u!) as

9 6 _ 2 4 2 2
_ 1p (96 (p° +2) +3w° + (6 — 4p?) w' — 12 (p* + 8) w?) (D.2.1)

Z(tﬂﬁ)
Lofn 10mrwio
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and at O(u?) as

Zl(tx)

2
H-p [ 2 2 12
= — 4032 2)” — 4920w'?1
s T RI0050TE |~ 40320 (0 +2)7 — 4920w log(w)

I
+ (6920 — 7280p%) w'® + 5 (272p" — 2880p” + 271) w®
+40 (136p* — 331p> — 154) w°

(D.2.2)
+280 (33p* + 26p — 268) w* + 896(p* + 140p”
12p (as O(m) log(r) + ay m’x))
+262)w?| — - ,
r
where ag 8, (m) and a8 2(t%) 3re undetermined coefficients.
Choosmg a source H,., we get the bulk result as
(z2) fO\/ _P2+w2_1[ 2 6 2 4
z = — 96 2 2—-4
L 107rw!o (07 +2) -l ( o) v (D.2.3)
—12 (p + 6) w?|
and
2 2 2
—pe+w=—1 2
zlE| _HNVD 40320 (p* + 2)* — 4200w'21
L P 84007152 ('0 + ) w* log(w)

+120 (3807 + 17) w'® + 5 (—272p* + 1792p* + 437) w®
+ 8 (—680p" + 885p% + 448) w—
— 168 (55p" + 46p — 284) w* — 896 (p* + 122p° + 226) wﬂ +

12 _,02 + 'LU2 -1 (agzg(aw) lOg( ) + CL8 1(a:z)>

rd

+

(D.2.4)

_____

G(bulk) _ 1 3rCr (22 — 7t2)
TZ,T2 p0 atQ + (93 5 <t2 + 22)5
oy _ 1 3mpCr (t* — 61222 + 2%)
rzZ,x2 pt 6t2 + 82 200 (tQ + 22>4
qur) | _ 1 TuCr

(bulk) ) = 210t% + 648t*2% + 6t°2* — 1602°
u2 OF 02| 8400 (12 + 22)° (

+ 105 (t2 + 22)310g (t2 + z2) ) . gﬁ 8, l(m)CT

(D.2.5)
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D.2.2. Results in the sound channel

First we list the solutions of the sound channel equations of motion (7.8)
for various polarizations.

For the source ﬁtz we get

. 1 /2 2 _ 1
wl 57T'LU12
(D.2.6)
and
Ap’py/—p* +w? — 1 2
ACl [1 144 (p? + 2 12
2 e 315mrdwld SL (o7 +2)" 4 798w
+ (1356 — 584p%) w' + (176p* — 2240 + 1779) w® (D.2.7)

+ 12 (88p* — 384p” + 147) w°
+336 (9p* — 17p% + 58) w* + 672 (7p* — 55p* — 131) wQ].

For the source I:Itt we get,

2
2| == (80t (w + 4w? 4 60) — 897 (w® + 3w’ + 66w — 120)
ul 57Tw12
+ w? (w6 + 2w + 48w? — 96) }
(D.2.8)
and
Z(th) Y S [362880;)2 (n* + 2)2 + 15960w'* log(w)
2 luz 31507rdw!d

+120 (279p — 113) w'® — 15 (1072p" — 4048p* + 593) w'®
+20 (176p° — 3120p" + 4083p* — 294) w®

+120 (176p° — 1083p" + 651p° — 406) w°

+1344(5 (9p" — 24p% + 91) p?

+131)w? + 3360 (28p° — 265" — 63202 — 36) wﬂ

8,1 8,2
ao’o(tt) + ao’o(tt) log(r)

4
(D.2.9)
For the source H ., We get
(22) 2p 4 2 8 g2\ .6
Z, =——5 1480 (p* +3p” +2) + w® + (2 - 8p°) w
uwt o STw (D.2.10)

+8 (p = 307+ 31) w' + 16 (2" — 4307 — 72) w?]
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and

12

I T | = 72576 (02 + 1) (p* +2)° + 15600 log(w)

2

"
— 24 (99p° + 16) w'? + 3 (720p* — 1776p — 37) w'°
— 4 (176p° — 2240p* + 1791p* + 75) w®
— 24 (176p° — 781p* + 177p* — 1806) w°
— 4032 (3p° — 5p" 4 37p* + 81) w’
— 672 (28p°% — 255p" — 1032p? — 848) uﬂ]

(D.2.11)

ags ) + ags*?(0,0) log(r)

4
For the source I:Im we get

= 57?512 [60 (p* +2) + 25w* — 4 (5p° + 33) w2] (D.2.12)

w
and

12

2| —ae (181440 (p* + 2)” — 1880w log(w)

I
+ 180 (43 — 60p*) w'? 4 15 (176p* — 1136p* + 315) w'°
+10 (880p" — 2292p% + 369) w®
+120 (151p* — 237p” — 700) w® + 672 (45p 4 100p” + 1084) w*

8,1(zx) 8,2(zx)
a +a log(r
+3360 (502 (0 — 40) — 406) wﬂ L %00 0.0 g(r)

r4 i
(D.2.13)
Using the prescription (7.39) for the sound channel and the solutions above,

we get the correlator order-by-order in u for the source Hy, as

quk)| 1 967 Cr (t* — 186222 + 212%)
0 (02 + 02)2 5 (t2 +22>7
GEum| 1 4drpCp (5 — 15¢%2% + 151224 — 20)
wt (07 +02)? 15 (£2 + 22)°
qum| 2mp2Cy  (—691t% + 19002622 + 1910t*2* 4 860¢22° + 1332%)
et |2 (@2 + 02)2 1575 (12 + 22)5 ,

(D.2.14)
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and for the source H,, as

1 967 Cr (21t* — 18222 + 2*)

G(bulk) _
T e (07 +0z2)? B(£2 4 22)7
Glulk)| 1 AruCr (1% — 15122 + 15¢22% — 26)
e (07 + 02)° 15 (2 + 22)°
(bulk) 2np2Cr  (—65t% — 724522 + 810t*2* + 140¢225 + 7928)
Gzz zz 2 = 82 62 2 5 5 )
pr (00 +02) 1575 (12 + 22)

(D.2.15)
Finally, using the relation (7.39) we get the G2“* in the form

L=< rr,rxr

TXT,TT HO atQ 4 ag 5 (t2 + 22)4
) =0
) ,lLl
1 TuC —135¢t* + 90t%22 — 712*
(bulk)| _ H 2T 9610 (12 + 22
T2 92 4 92 | 3150 ( og (1 +27) + (2 1 22)?

1 xX x xrxr

(D.2.16)

8, (wy) 8, (wy)

where the undetermined coefficients ag and ag come from the scalar

( )

channel contribution and a orlglnates in the sound channel.

Appendix D.3. Conventions and details on spinning conformal cor-

relators

In this appendix we summarize our conventions and provide some details

on spinning conformal correlators in embedding space that is used in the main

(Zi - Pj)(P; - Pr) — (Zi - P) (P - P))
P - Py ’ (D.3.1)
Hi; = =2((Z; - Z;)(P; - Py) — (Z; - Pj)(Z; - Py)),

Vijk =

where Vi = V) 23, Vo = V5 31 and V3 = V3 12. Here P; and Z; are null vectors in
Rl’d+1.
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One possible basis for the three-point function of two stress tensors and a

spin-J operator with dimension A is given by (P;; = —2F; - P;)

(T(Py, Z,)T(Py, Z2)O(P3, Z3)) =

where

10 TTO
Zp:l x1(7 ) Qp

, (D.3.2)
(P12)d+2_ A-2|-J (ng) A-2|-J (P31) A-2',-J

Q1= V12V22V3J7

Q2 = (HasV3Vy + H13V22V1)V3J_17
Qs = His Vo V5,

Qs = (H13Va + HozVi)Hio V5 7,

Qs = Hi3Hops Vi VoV 2,

Qs = H, V5,

Q7 = (Hi3Vs + Hy V)V 2,

Qs = HioH13Ho3Vy 2,

Qo = (H13H33V1 + HagHisVa) Vi ~2,
Qo = HizHz Vi ™

(D.3.3)

Conservation of the stress tensor further reduces the number of independent

structures. In particular, when O = T there are 3 independent structures while

for non-conserved operators of dimension A and spin J = 0,2, 4, there are 1,2

and 3 independent structures, respectively. However, we will mainly consider

the differential basis introduced in [175] since this is powerful when considering

the four-point conformal blocks. It is based on multiplication by Hy5 as well as

the differential operators

Dyy =(P1 - P2) (2,

Dyo =(Py - P5)(Z4

—(Z1 - Z2) (P

B 0
'6—]32)_<Z1'P2)(P1'8—P2)
B 0
: 8—Z2) + (P - Z2)(Z: - 8—Z2>’
) 9 4
: 6—]31) —(Z1- P)(Pr - 6—]31> +(Z1- P2) (21 - 6—Z1>’
(D.3.4)

and Doy and Doy obtained from Dq; and Dqs by 1 <+ 2. We further define the
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following differential operators:
D, = D%1D§222’27
Dy = Hy3Dy1 D9 %2,
D3 = Dy D? Doy¥3" + D13 D3, D1 27,
Dy = 15712(17211711222’1 + D12D2221L’3),
Ds = D12D21D11D2222’27
(D.3.5)
D6 = H12222’27
D7 = D§1D%121’0 + D%QDSQE%Aa
Dg = H12D12D2122’2,
Do = D3, D35, 5%?,
D1y = D13D3, D11 2% + Day D3y Dap 323,
where X7"" denotes a shift A; — Ay +m and Ay — Ay + n. The three-point

functions in the differential basis are then given by

(T'(Pr, Zl)T(Pz, Z2)Ona,1(Ps, Z3))

VJ
§ :)\TTO >
- A, ] A1+A2—A—J A+A2—A1+J A+A1—A2+J’
P12 P23 P13

(D.3.6)

The spinning conformal partial waves can be obtamed from the scalar par-

tial waves Wp:

34 A12,A34 —
W — Pay Py g(A,J (2, 2) D37
(O P— P A1 fAgy  Azt+dy ( +J. )
14 13 P12 2 P34 2

with A;; = A; — A, and the cross-ratios (u,v) are given by
J J

_ P1aP3y
P3Py’

D.3.8

_ PraPys ( )
P13Poy

The scalar blocks are normalized as follows in the limit ©v — 0,v — 1:
(A12,A34) - J! A (4 1)(1)—1)
2,Z) ~ 22 , D.3.9

178



where an) are Gegenbauer polynomials and (a); denote the Pochammer sym-

bol. The spinning conformal partial waves are then obtained by
Wi = D DrWo, (D.3.10)
where
Dy, = HJy> D10 Dyz0 DIt ey tnzotmz metniotnz (D.3.11)

where ¢ labels the structure in the scalar partial wave and Dp, is similarly defined
with 1 — 3 and 2 — 4. The integers n;; > 0 and m,; that labels the structure
are determined by the solutions to the following equations ensuring the correct

homogeneity under P — aP and Z — 8Z:

my = Ji —nig —niz2 >0,
mo — JQ — Ni12 —NYo Z O, (D312)

mgy = Jo — nig — noo > 0,

where J = Jj is the spin of the exchanged operator. In the case of two spin-2
operators at P; and P, and scalar operators at P3 and P4, the possible combi-
We are interested in the OPE limit of the contribution of individual blocks

to
G = Py (T(Py, Z1)T (P2, Z2) O (P3)Op (Py)) (D.3.13)

where Oy is a scalar operator with dimension Ay. In this case we have using

______

(A1270)

Py QA 7 (u,v)
G(PwZ |OA J Z)‘TT(’)A J)\OHOHOA,.]Di <P14) W?
Py, 2

(D.3.14)
where the differential operators D; are given by (D.3.5) and A; = Ay =d.

The spinning correlator in embedding space with indices is then obtained

using
Carwps(P) = ———— DYDY DD DO (P, 2,) (D.3.15)
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where 155\14) is given by

Ao _ (d=2 , 0\ 0 1, 9%
DM—< —+7 621) 57 SZii (D.3.16)

In order to project down to physical space one imposes PM = (1,22, zt) and

contract indices in embedding space with 88};1’]:,4 = (0,22, 61) [M75174]. We

then set ¥ = (1,0), i = (1 4+ t,7), & = (0,0) and x4 — 0o with |zo;| < 1 in
the OPE limit, such that v — 0 and v — 1.

D.3.1. Stress tensor block

The relation between different basis for the stress tensor three-point func-

tion can be found in e.g. Appendix C.1 in [180], some of which we summarize

31 @
(T(Py, Z1)T(P2, Z2)T(Ps, Z3)) = — sy o (D.3.17)
Py’ Pog' Py’
: _ (TTT) . .
and the coefficients z, = are constrained due to permutation symmetry
and conservation to satisfy
1, 5 1
r1 = 29 + Z(d + 2d — 8>$4 — §d(d+ 2).@7,
1 d
Ty = 7 |:.’132 — <§ + 1>x4 + 2dx7],
2 (D.3.18)
T2 = T3,
L4 = Ts,
T = X7.

The stress tensor three-point function can be parameterized in terms of
(a,b, &) [177) where one of these can further be traded for Cp using the Ward
identity

(d—2)(d+3)a—2b— (d+1)é

Cr = 454 d(d+2)

(D.3.19)

For the relation between the x, basis, (a, b, ¢) and the (to,t4) coefficients that

are natural when considering a conformal collider setup, we refer the reader to
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App. C in [180]. However, we recall C.10 in [24] that relates these to t2 and t4

in d = 4: A

~30(13a + 4b — 3¢)

 14a—2b—heé
15(81a + 32b — 20¢)

 2(14a — 2b — 5¢)

(D.3.20)

4 =

and for to = t4 = 0 one finds a = g—g and b = 19—72‘3. On the other hand, the ratio

of the anomaly coefficients a, ¢ are given by C.12 in [24]

a 94— 2b—10é (D.3.21)
¢ 3(14a — 2b — 5¢) o

with a = ¢ when t; = t4 = 0. We further need stress tensor three-point function
with the two heavy scalar operators
W, W, —1W?25,,

(On(21)O0n (22) T (23)) = A0pOnT — 38,53 3 (D.3.22)
L2 L23T31

W W
where WH = % - % Conformal Ward identities fixes Ao, 0,7 to be
13 23

d Apg

_ﬁs—d7 (D.3.23>

A(/)H OHTH,V -

d
where Sy = % and is related to p and B according to (7.54) and (7.55).

From now on we consider d = 4. For the stress tensor block we will work

with parametrization in terms of (a, b, ¢). In the channel G following the

rY,xryY>

procedure described above, one obtains

~ AH
Goy,eylr = ~ ; A s
274 (14a — 2b — 5¢)(t? + ¥2)5

X [413(—5t4(x2 +9%) + (2 + 62%y* + vt + (2% + y?)2?%) — 4t? (2t + 927y + y*
+ (2 + y?)2?)) + &(—3t° + t*(13(2* + y?) — 527) — #2(52* — 62%y* + 5y*
+4(x? +92)2% = 2N + 2 (112t 4 1022%% + 11y* + 10(2? + y?) 22 — %))
+4a(t8 +t*(—=17(x* + y?) + 32%) — t2(132* + 1062y> + 13y* 4+ 10(z? + y?)2?
—32Y) 4+ 22(52% — 62%y% + 5yt + 6(2? + %)% + 24))],

(D.3.24)
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where ¥ = (z,y, z) which after integrating over x and y gives

2(Ta + 2b — &) A (12 — 22)
3m3(14a — 2b — 5¢)(t2 + 22)2

G$ya$y‘T = /dxdyéxy,xy‘T = - (D325)
and for to = t4 = O:

QAH <t2 — 22)
15m3 (12 + 22)2°

Gayaylr = (D.3.26)

explicit OPE in order to evalute the stress tensor two-point function in a thermal

state.
Consider now étm,tw|T7 one finds that it is given by
Ag "
2m4 (146 — 2b — 5¢)(¢2 + i2)5
X [413(—156 — 2?7 + 4 (—232% + 4(y? + 2?))

étw,tm|T -

+ 282 (922 4 5(y? + 22))) + e(15t° — (5% — y? — %)t + t* (4122
+ 7%+ 22)) — 222 (432% + 7(y% + 22)))
4 4a(—13t° + (322 — y? — 27 — 311 (1322 + 2 + 22) + 272 (4122
+9(y° +2%)))|

(D.3.27)

which after integrating over x and y gives

(64 4 14b — 19¢)t* — 12(16a + 5b — 4¢&)t%2% + 3(2b + &)2*

GipizlTr = —A >
to talT " 12(14a — 2b — 5e)w3(2 + 22)3

(D.3.28)
For to = t4 = 0 this reduces to
—9t* + 6222 + 72
6073 (2 + 22)3

Gtx,tw‘T — AAH (D329)

Consider now (A?tz,tz. Before integration there is an SO(3) rotational sym-
metry so Gtz’tz can be obtained from (D.3727) by = <> z. Integrating over the

1
e - ==

xy-plane one finds
AH |:<
(146 — 2b — 5¢)m3 (12 + 22)*
+ (=106 — 7b + 3¢)t*22 + (304 + 7b — 8&)t%z* + (2 — b — 6)26]
(D.3.30)

—6a + b+ 2¢)t°

Gtz,tz|T -
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For t5 = t4 = 0 this reduces to

—105t0 + 3t*22 4+ 137t22* + 7726

Giztz|lr = A
ta.talt " 27073 (12 + 22)4

(D.3.31)

D.3.2. Spin-0 double-stress tensor block

The simplest double-stress tensor operator is the scalar operator [T2];—¢

with dimension Ag. In the differential basis we need the differential operators

i = Agf)T[TQ]J:O. In order to impose conservation one demands that 55— gM Dy

the number of structures reduce

3
A2 = _Z(AO —6)(Ag+2)A1 0,

3
X6,0 = 3—2(A0 —6)(Ag —4)Ap(Ag + 2)A1,0,

(D.3.32)

and one is left with a single coefficient A; 9. The corresponding contribution to

the correlator G(P;, Z;) (in embedding space) is given by

G(P, Z)iw21, = Y pioDiWiray,, (D.3.33)
1=1,3,6

_____

coefficients p; o are related to \; o by an overall factor of the one-point function
in the scalar state, they therefore satisfy the same conservation condition as the

are described in the first part of this appendix.

D.3.3. Spin-2 double-stress tensor block

Because the spin-2 double-stress tensor [T?];—5 is not conserved there will
be only two structures in the three-point function compared to 3 for the stress
tensor, even though they both have J = 2. In the differential basis these can
be labelled \; 2 = )\g%ﬂ[Tz]J:z with ¢ = 1,2,...8 in (D.3.6), which are reduced
to two coefficients by imposing conservation:
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(AQ + 2) (192)\2’2 - (AQ - 4) AQ ((3A2 — 16) (3A2 + 4) )\1,2 + 20)\2’2))
625 (Ag (As ((Ay — 8) Ag + 2) + 56) + 96) ’
Ny = (Ay —4) (Az +2)
12716 (Ag (As ((Ag — 8) Ay + 2) + 56) + 96)
—52) — 64) A1 2 + 4(A2 — 8)(Az + 4)/\2,2)]7

(Agy —4) Ag ((15 (Agy — 4) Ag 4 52) Ay 5 + 52X0.5) — 9605
12 (Ag (Ag ((Ay — 8) Ay + 2) + 56) + 96) ’
Noo = (B;—4) As [((256
027 128 (Ag (As ((As — 8) Ay + 2) + 56) + 96)
— (Ag — ) As((Ag — 1) Ay(3(Ag — 4)Ag — 56) + 688))Aq

— 4((A2 — 4)A2(5(A3 — 4) A — 52) +416)As2) |
48)s.5
As(As((Ag —8)Ag +2) + 56) + 96
_ (A2 +2) (Ax+14)
T 12(Ag — 2) Ag (Ag (Ag ((Ag — 8) Ay +2) + 56) + 96)
% ((3(Ag — 4)Ag — 44) A1 5 + 4hg0) — 96)\2,2)],
B (3(Ag — 4) Ay + 16)
2T 48 (Ag (Ag ((As — 8) Ay + 2) + 56) + 96)
— A4) A0+ Ahg) — 96)\272)} .

A3 =

(22— 9)22(3(82 - 1A,

A5 =

[((A2 — 4)Agx

(B2 = )25((3(25 = ),

(D.3.34)

The corresponding contribution to the correlator G’(Pi, Z;) is given by

8
G(P;, Zi)|r2), = Zpi,ZDiW[T2]27 (D.3.35)
i=1

cients p; o are related to \; o by an overall factor of the one-point function in the

scalar state, they therefore satisfy the same conservation condition as the A’s in

described in the first part of this appendix.

D.3.J. Spin-4 double-stress tensor block
For the spin-4 double-stress tensor operator [T2];—4 there are a priori 10
structures labelled by A; 4 = )\gf)T[TQ]Jﬂ with i =1,2,...10 in (D.3.G). Conser-
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vation reduces the number of structures to 3 according as follows

1
T 96((As — DAL((Ag — 4)Ay — 44) + 192)
% Ag((Ag — 4)A4(3(Ag — 4) Ay — 200) + 5712) — 92032)) — 485376) s .4

~ (A — 6)(Ag + D)(((Ag — ) AL((As — D ALB(As — 4)Ay — 68) — 1024)
1 13056) A1 4+ 2((Ag — 4) Ay (3(Ag — 4)A, — 116) + 768))\2,4)],

1
As4 = §(2((A4 — DAL+ 16)A1 4+ (Ay — 8)(Ay +2)A3 4 + 4X2.4),

1
4= 256(Ag — 6)(Ag 4+ 4)((Ag — DAL((Ag — 4) Ay — 44) + 192) [2(A4 —6)x

x (Ag + ) (((Ag — DAL(Ag — DAL((Ag — HAL((Ag — DAL(Ag — 4)Ay
— 64) + 1040) + 11392) — 262144) + 2162688) A1 4 + 2((Ay — 4)Ayx

< ((Ag — D)AL((Ag — )AL ((Ag — 4) Ay — 88) + 2448) — 17408)
+86016)A2,4) + (Ag — 4)Ag((Ag — ) A4 ((Ag — 4)Ag %

% ((Ag — D)AL((Ag — )AL ((Ag — 4)Ag — 108) + 5104) — 131904)

Aa [(—((A4 ~D)AL((Ay — 4)x

+ 2009088) — 18300928) + 81788928»3,4} :

1
T 24((Ay — 4)A4((Ay — 4)A, — 44) + 192)
X (2(A4 — 6)(Ag + ) (((Agy — DAL +20)A1 4 + 2h04) + ((Ag — 4)Ayx
x ((Ay — 4)Ay — 36) + 704))\3,4)],

1

T 32(80 — 6)(As + D(As — DAL (Mg — DA, — 44) +192)
X (A4 + 4)(((A4 — 4)A4((A4 — 4)A4((A4 — 4)A4 — 20)((A4 — 4)A4
+ 24) 4 4736) + 135168) A1 4 + 2((Ay — 4)Ay((Ag — 6)(Agy — ) Ay(Ay +2)
—320) + 7680)Aa.4) + (Ag(As(Ag(As(A(((Ag — 20)A4 + 120)A3 — 1968A

+2112) + 23296) — 78848) — 327680) + 1638400) + 5111808))\3,4} :
(D.3.36)

A4 [(A4 — 4)(Ay £ 6)x

)\8,4 2(A4 — 6))(
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and

1
Ao = 3(Ag — 6)(As +4)(As — 4)A4((Ay — 4)Ay — 44) + 192) (A4 = 6)x
X (A4 —+ 4) X (((A4 — 4)A4(9(A4 — 4>A4 + 68) — 768))\174
+ 16((A4 — 4)A4 — 6))\2’4) + ((A4 — 4)A4((A4 — 4)A4X
% (3(Ag — 4)Aq — 116) + 3136) — 15360)/\3’4},
1
A0 = A, D) A (Ag — 1) Ay — 44) +192) (A=A +12)%
X (—2(A4 — 6) X (A4 + 4)(((A4 — 4>A4 + 20>>\1,4 + 2/\14)
~(Ag— DAL((Ag — 4) Ay — 36) + 704))\3,4)].
(D.3.37)

The corresponding contribution to the correlator G (P;, Z;) is given by

10
G(P, Z)ir2), = sz 2DiWir2,, (D.3.38)

pi.a are related to A\; 4 by an overall factor of the one-point function in the
scalar state, they therefore satisfy the same conservation condition as the \’s

kinematics are described in the first part of this appendix.

D.3.5. Integrated double stress tensor contribution

In this section we list the explicit expression for the integrated O(Cru?)
part of the conformal block expansion of Gy 2y, Giztz and Gy, s, obtained
using the procedure described above. The integrals over the double-stress ten-
sor blocks are divergent which we regulate by including a factor of |z|~¢, this

produces simple poles at € — 0. For G, ., one finds as € — 0:

(0) ) 2 2y, Gt +e
Gmy,$y|u2C’T pxy $y<t7 Z) + pwy,wy(t7 Z) lOg(t +z ) + f <D339)
where cq, ¢ are some constants depending on the CFT data and
PO (t,z) = e Cr Zp(o 2004427 527 (D.3.40)
Y 1693440000 (t2 + 22) .y
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with

pl00 = —8(22050p") — 162243p{') — 11683490p}") + 129168p5') + 4702775
+6991740p5')) + 4410~V + 30447945" — 357787574,

plo2 = ( 8(22050p\") — 89343p\") — 3641540p{") + 56268055 + 1646645
+2005920p5')) + 4410~§" + 14364~ — 964005 <1>>

(0.4) _ <8( 3150p") + 2349p1") — 215350p1") + 23764} + 904755

pﬂcy Ty

+123300p5")) + 630" — 39393781 + 744157“)),

(D.3.41)
and
oM (t,2) = mwCr Z (1,2))42=2] ;2] (D.3.42)
Y,y T 15680000 £~ Prv-y o
with
pbo) = (16( 702"} — 19565p.") + 7025} + 80855
+11480p5) + 4907 — 5607/5" + 1204079),
. o o " (D.3.43)
pb2) = <16(486p — 6055p!") — 486
+ 269505 + 33605, + 2805") + 14704 — 18975”).
For (0} + 02)Gy 1o one finds
(97 + 02)Gtwtalwror = Plana(t:2) + Pl log(® +2) + =2 (D.3.44)
for some constant ¢z and where
o p?Cr ’ 0,2
Py (t,2) = — Pl 02 2% (D.3.45)

423360000 (2 + 22)° =
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with

P09 = 176400p") — 265032p") + 30139760p") + 529632} — 126988405
— 178819205} + 970207 — 3454924) — 792435+,

p02) = 8(25401600,0(1)—1—203700096,0(1) 9623496960p'") — 16559769675

+ 39832531205 ) + 5576739840p5) + 21591360~") + 8153913675
+ 3569076007(1)),

Plae = 33 L (254016000 + 270884736{') + 2700633600} — 2327823365

— 403603205} — 203207040p) + 29211840~ + 1256290565 "
— 458892007\,
piod) = 176400p\") + 1134648p!") — 6309520p}") — 870048p3') + 28243605

+ 304416005 + 25578075 + 573048757 — 71715+5",
(D.3.46)

and

5,2
W, = 3Tk Cr -8 (4 (81011 + 35p{1) — 8153 — 35611 ) + 3154(")
+ 9307V + 637(1)] .

(D.3.47)

Lastly, for (02 + 0%)2GY. 1. one finds

4

5 20
02 + 02)2Giats| p20y = TR (02821221 (D.3.48
(0 + 02V Gretelizer = 5015000 @+ 2 = ( )
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where

pivy) = —TT76p) + 197120p\") + 77765’y — 86240p5') — 11088005

tz,tz
+ 147078V + 18978 — 1400+,
pive) = —248832p\") + 19983040p\") + 248832} — 8451520
— 115315205} — 588075" — 15271295" — 845320+4",
piv) = 233280p") — 82577600p1") — 23328053 + 3449600005
+ 480816005} — 147007 + 8253075 + 3193400+(",
Pive) = 435456\ + 29986880p\") — 4354565} — 1224608005
— 17740800p5") — 588075" + 21873675 — 1147160~",
Piv) = —38880p — 257600p\") + 38880p%') + 8624005 + 1713605

+ 147078 — 1669575 + 12320~ .
(D.3.49)

D.3.6. Comparison with the bulk calculations

Solving (7.69) one finds the anomalous dimensions (7.70), the relations

(7.7T) and the bulk coefficients (aémly)(G,O) aémly)(&O) aétf)( 0)):

<1> CONNNEY
Sol@w) ' ( —3pi2t P 4) 315044947 N 14412

6,0 1440 47628000 = 37800¢’
4,2 (1) (1) (1)
sy _ "M (2/)1 —3pi2t o 4> | 18208634 1801p*  (D.3.50)
8,0 1920 127008000  50400¢’
(1) (1) (1)
i) _ ™ (2p +3p12 — 5p1,4) 132403p% 47
8,0 2880 1411200  45360¢’

which are divergent as e — 0. Note that by studying also the G, ., polarization

one finds one more linearly independent equation:

(1) (1)
Sl@) _ g (Pl ot 201,4) 671328142 N 117412
0,0 80 5292000r  63007e

(D.3.51)
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