
2.32.4

Quantum Correlation Resource
Recycling via Sequential
Measurements: Theoretical Models
and Optical Experiments

Xianzhi Huang, Liyao Zhan, Liang Li, Suhui Bao, Zipeng Tao and Jiayu Ying

Special Issue
Quantum Optics: Science and Applications

Edited by

Dr. Hua-Lei Yin, Dr. Peng Xu and Dr. Jie Chen

Review

https://doi.org/10.3390/photonics10121314

https://www.mdpi.com/journal/photonics
https://www.scopus.com/sourceid/21100833027
https://www.mdpi.com/journal/photonics/stats
https://www.mdpi.com/journal/photonics/special_issues/Quantum_Optics_Science_and_Applications
https://www.mdpi.com
https://doi.org/10.3390/photonics10121314


Citation: Huang, X.; Zhan, L.; Li, L.;

Bao, S.; Tao, Z.; Ying, J. Quantum

Correlation Resource Recycling via

Sequential Measurements:

Theoretical Models and Optical

Experiments. Photonics 2023, 10, 1314.

https://doi.org/10.3390/

photonics10121314

Received: 1 November 2023

Revised: 24 November 2023

Accepted: 27 November 2023

Published: 28 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Review

Quantum Correlation Resource Recycling via Sequential
Measurements: Theoretical Models and Optical Experiments

Xianzhi Huang 1,* , Liyao Zhan 1 , Liang Li 2, Suhui Bao 2, Zipeng Tao 3 and Jiayu Ying 3

1 Institute for Quantum Technology and Engineering Computing, School of JiaYang, Zhejiang Shuren

University, Hangzhou 310015, China; zhanliyao@zjsru.edu.cn
2 College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
3 College of Information Science and Technology, Zhejiang Shuren University, Hangzhou 310015, China

* Correspondence: huangxianzhi@zjsru.edu.cn

Abstract: Quantum correlation is a key resource for a variety of quantum information processing

and communication tasks, the efficient utilization of which has been a longstanding concern, and

it is also one of the main challenges in the application of quantum technology. In this review, we

focus on the interaction between quantum measurements and quantum correlations by designing

appropriate measurement strategies, specifically exploring the trade-off between information gain

and disturbance degree in weak measurements to ensure that quantum correlations from the same

source can be shared among multiple independent observers. We introduce the basic knowledge and

classification of quantum measurements, investigate the weak measurement scenario, and show the

theoretical model construction of quantum correlation recycling in the original works. We summarize

the theoretical and experimental development process and the latest progress in this field. Finally, we

provide an outlook for more quantum resource applications that can profit from the optimization of

quantum measurement strategies.

Keywords: quantum correlation recycling; weak measurement; Bell nonlocality; quantum random

number; optical setup

1. Introduction

Quantum correlation is the cornerstone in the field of quantum fundamental problems,
and a property that is different from the locality and reality intuition of the macro world has
attracted wide attention. Two particles at a certain distance can share an entanglement state
to establish quantum correlations [1,2], specific forms of which are quantum entanglement,
EPR (Einstein–Podolsky–Rosen) steering, and Bell nonlocality, constituting three quantum
correlation hierarchies from weak to strong [3,4]. For illustration, we can demonstrate the
general form of a two-qubit entangled state as

|Ψ〉 = a|00〉+ b|01〉+ c|10〉+ d|11〉, (1)

where a, b, c, and d are complex coefficients satisfying |a|2 + |b|2 + |c|2 + |d|2 = 1, and
|00〉, |01〉, |10〉, |11〉 represent the ground states of two qubits, respectively. For the above
bipartite scenarios from quantum entanglement to nonlocality, the entanglement of an
unknown state ρAB is certified by a sequence of semi-definite programs (SDP) [5], a single
SDP test [6], and a linear program [3]. It can be concluded that EPR steering is a form of
quantum correlation, of which the corresponding test can be seen as a scenario lying in
between the nonlocality test [3] and standard entanglement test [7,8].

In addition, quantum discord [9], as a complementary form of quantum correlations,
has been shown to exist in the absence of quantum entanglement. A recent study [10]
has also experimentally realized a form of quantum correlation that does not require
the premise of entanglement and discord. For single-particle systems, more attention
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has been paid to the quantum correlation between multiple commutative measurements,
that is, the contradiction between noncontextual realism and quantum theory proved by
Kochen and Specker (KS) [11], also known as quantum contextuality. These multiple
forms of quantum correlations reveal the difference between quantum mechanics and
classical mechanics, and give rise to disciplines such as quantum information and quantum
computing, which have important application potentials in quantum teleportation [12],
quantum key distribution [13], quantum dense coding [14], quantum secret sharing [15],
quantum digital signatures [16], quantum conference key agreement [17], and multi-party
quantum network [18–21].

All quantum correlations, in essence, are monogamous: when there are multiple ob-
servers, the limit on quantum correlation sharing is quantitatively expressed as a one-to-one
relationship [22–25]; i.e., two observers cannot simultaneously prove quantum correlations
with a third observer. This restriction makes it difficult to utilize quantum correlation
resources effectively. To overcome this difficulty, the effect of quantum measurement might
be considered. Unlike classical measurements, quantum measurements inevitably disturb
the target system [26], and, when projective measurements are manipulated, the system
collapses into the eigenstates of observables [27]. This method of measurement guarantees
the maximum amount of information extracted, but also unquestionably breaks quantum
correlations. In contrast, other measurement schemes, such as weak measurements, despite
obtaining only part of the system information, can still retain some quantum correlation
corresponding to the degree of disturbance to the system [28–30]. Therefore, considering the
trade-off between the degree of disturbance to quantum states and information gain by mea-
surements [31–33], it provides inspiration for exploring the recycling of quantum correlations.

In 2015, Silva et al. [34] started by studying the trade-off between information gain
and disturbance of a von Neumann-type measurement. They define the measurement
quality factor F (which represents the preservation of original states) and precision G
(which represents the ability to obtain measured state information), respectively. By ad-
justing the relative strength of these two parameters and applying this model to quantum
nonlocality problems, it is proposed that an entangled pair can be shared by multiple
observers measuring sequentially that are independent of each other. If two observers are
represented by Alice and Bob, then Alice will be quantum-correlated to more than one Bob.
It should be noted that this situation does not give rise to arguments about monogamous
relationships because, in the above scenario, Bob1 implicitly signals to Bob2 by choosing
its measurement settings, so the no-signaling condition in the sequential measurement is
relaxed without violating relativistic causality [35]. This study is pioneering in showing
that quantum correlations from an entangled pair can be recycled in the sequence of in-
dependent observers. As an efficient way to use quantum resources, this trade-off both
guarantees enough information extraction to violate classical bounds and preserves enough
correlations for subsequent independent quantum information tasks. Building on the
above results, recent theoretical research has focused on the areas of entanglement witness,
EPR steering, quantum contextuality, and, most famously, Bell nonlocality. Noteworthy
application work is also investigated in the field of quantum randomness extraction, which
builds a natural scenario for certified quantum instruments and is an important resource
in scientific simulation and cryptography [36–38]. In terms of experimental verification,
a variety of research teams have also continuously proposed new achievements in the
direction of quantum correlation recycling, most of which rely on optical platforms. These
works extensively discuss the quantum correlation sharing in different sequential weak
measurement scenarios, where adjustable parameters include, but are not limited to, input
qubit biases, the sharpness of different measurement settings, and one-sided/two-sided
sequences, which are of great significance for efficient utilization of quantum correlations.
The quantum correlation recycling experiments currently implemented in optical setups
are also conducive to the development of emerging quantum technology at the practical
and application level and provide guidance for other important qubit platforms, such as
solid-state qubits [39,40].
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This review summarizes and discusses the theoretical and experimental developments
in quantum correlation recycling under sequential weak measurements, aiming to provide
readers with more insights on quantum resource utilization based on different measurement
strategies. The structure of this review is as follows. In Section 2, we introduce the theory
of measurement in quantum physics and describe the differences and connections between
general measurement, projective measurement, and POVM measurement, paving the way
for introducing the concept of weak measurement. In Section 3, we learn from the works
of Silva et al. [34] and Mal et al. [41], who mainly demonstrate the original scenario of
quantum correlation sharing among multiple observers under weak measurements, deduce
the theoretical models, and show the numerical results. Next, in Section 4, we summarize
the progress in theoretical exploration and experimental verification regarding the direction
of quantum correlation recycling under sequential measurements, and then make some
brief comments. The discussion part is in Section 5; we present a table to exhibit the main
theoretical progress mentioned in the review and further discuss the relevant applications
and experiments. The latest development in the projection measurement strategy is also
introduced. Finally, we look forward to the reality that utilization of quantum resources
will benefit further from the design of measurement strategies in Section 6.

2. Measurement in Quantum Physics

For a given quantum system, we need to understand what is going on inside through
the operation of observation, which is specifically called “quantum measurement”. The
interpretation of quantum measurement is the core problem in the construction of quantum
physics [42,43], and also the application basis of quantum information and quantum
computing fields. The general description of quantum measurement is based on the
following assumption [44]: a group of operators {Mm} represents measurements upon the
Hilbert space associated with an observed physical system, where subscript m indicates
possible measurement results. If the most recent state of this quantum system before
measurement is |ψ〉, then the probability for the outcome m is provided by

p(m) = 〈ψ|M†
m Mm|ψ〉, (2)

while the quantum state is updated to

|ψ〉 → |ψ′〉 = Mm|ψ〉
√

〈ψ|M†
m Mm|ψ〉

. (3)

Measurement operators satisfy the completeness condition: ∑
m

M†
m Mm = I and natu-

rally guarantee that the sum of probabilities for possible outcomes is equal to 1.
In particular, if operators {Mm} in the above general measurement also meet the

requirements for orthogonal projection operators, which means

1. {Mm} are Hermitian, Mm = M†
m;

2. {Mm} satisfy Mm Mm′ = δm,m′ Mm,

and their derivative properties

3. {Mm} are positive semi-definite matrices;

4. {Mm} are idempotent: M2
m = Mm = Mn

m,

we can define von Neumann, or projective measurement with these additional constraints.
For a given state |ψ〉, the projection operator is specified by Pm = |ψm〉〈ψm|, and the
probability of obtaining the measurement outcome m is

p(m) = 〈ψ|Pm|ψ〉, (4)
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where the post-measurement quantum state is described by

|ψ〉 → |ψ′〉 = Pm|ψ〉
√

p(m)
. (5)

Here, the projection operator Pm and corresponding outcome m constitute the spectral
decomposition of the observable mechanical quantity M upon the above quantum state
space, that is

M = ∑
m

mPm. (6)

For any observable M, the measurement expectation value for a quantum state can be
calculated by

〈M〉 = tr(Mρ), (7)

where ρ is the density matrix corresponding to a pure or mixed state. From the mathemati-
cal expression of projection measurement, we can easily obtain its repeatability; that is, a
projection operation Pm will obtain an outcome m, and the measurement result remains un-
changed after repeatedly applying Pm to the quantum state. The above point suggests that
projection measurement is significantly different from general measurement because the
latter usually destroys the quantum state and makes the corresponding result unrepeatable.

However, if we ignore the description of the post-measurement quantum state in
the specific application scenario and only care about the possibility of obtaining different
outcomes from the measurement, a mathematical tool named positive-operator-valued
measure (POVM) is generalized [44,45]. In a POVM measurement, the new set of Hermitian
operators {Em} is defined as

Em = M†
m Mm, (8)

and it is obvious that {Em} are positive semi-definite operators satisfying ∑
m

Em = I and

p(m) = 〈ψ|Em|ψ〉. Each operator Em is referred to as a POVM element related to the out-
come m, and a complete set of {Em} defines a POVM. In essence, POVM measurements do
not introduce new concepts in physics but can be viewed more as a simple and convenient
mathematical approach just to provide additional inspiration for studying the statistical
properties of general measurements.

Now, let us discuss the relationship between these different types of measurement
settings. A projection-valued measure (PVM) defined by a set of projection operators {Pm}
is a special case of POVMs, in which each element of this POVM satisfies the equation:
Em = P†

mPm = Pm. For PVMs, the projectors {Pm} have rank 1, which is not necessary for
POVMs. However, Neumark’s theorem [46,47] demonstrates the way to achieve POVMs
through PVMs acting on a higher dimension space, and here we discuss the brief explana-
tion of this theorem in two cases of POVM operators:

• Rank = 1: a set of un-normalized vectors {ei} satisfying
k

∑
i=1

|ei〉〈ei| = I

Considering an n-dimension space (n ≤ k), the above k un-normalized vectors can
construct a n × k matrix M, and each element Mi,j corresponds to the i th coordinate of |ej〉,
written as 〈i|ej〉. Next, we calculate the inner product of row i and i′ to prove orthogonality,
that is

k

∑
j=1

〈i|ej〉〈ej|i′〉 = 〈i|(
k

∑
j=1

|ej〉〈ej|)|i′〉

= 〈i|i′〉
= δi,i′ .

(9)



Photonics 2023, 10, 1314 5 of 26

Thus, we obtain n orthogonal rows within a k-dimension space, and the next step
is to extend the number of rows from n to k using the Gram-Schmidt process. Since this
k × k square matrix M′ is unitary: M′M′† = Ik = M′† M′, we can rewrite M′ in the form of
orthogonal columns:

M′ = {|p1〉, |p2〉, . . . , |pk〉}, (10)

and each column of this new matrix M′ can construct a projector Pi = |pi〉〈pi| forming
a PVM {Pi, i = 1, 2, . . . , k}, while the original n-dimensional subspace defines the above
POVM with rank-1.

• Rank > 1: a set of Hermitian operators {Ei} satisfying ∑
i

Ei = I

The set {Ei} can be diagonalized using the spectral theorem:

Ei = ∑
j

λij| fij〉〈 fij| = ∑
j

|eij〉〈eij|. (11)

Here, λij and | fij〉 are eigenvalues and eigenvectors of the matrix Ei, while

|eij〉 =
√

λij| fij〉. Thus, we can turn this problem into the case of rank-1 and transform the

POVM {Ei} to a projective measurement {Pi} formulated by orthogonal vectors {|pij〉} in
the higher dimension space. The above two cases fully demonstrate that POVMs can be
physically realized by PVMs with the higher dimension in practical measurements, whose
result is crucial in quantum physics [48].

For PVMs and general measurements, we introduce a complex quantum system
Q1 ⊗ Q2 and define a unitary operator U working on the state |ψ〉1|0〉2:

U|ψ〉1|0〉2 = ∑
m

Mm|ψ〉1|m〉2. (12)

After that, we propose the projective measurement Pm = I1 ⊗ |m〉〈m|2, and the proba-
bility for obtaining the outcome m is

p(m) = 〈ψ|1〈0|2U†PmU|ψ〉1|0〉2

= ∑
m′ ,m′′

〈ψ|1〈m′|2M†
m′(I1 ⊗ |m〉〈m|2)Mm′′ |ψ〉1|m′′〉2

= 〈ψ|1M†
m Mm|ψ〉1,

(13)

while the post-measurement quantum state for the system Q1 becomes

|ψ〉 → |ψ′〉 = Mm|ψ〉
√

〈ψ|M†
m Mm|ψ〉

. (14)

As we can see, after introducing additional auxiliary systems, projective measurements
under the unitary operation are equivalent to general measurements of any form. Moreover,
in complex quantum systems, there exists one of the most magical properties of quantum
physics, entanglement, whose interaction with quantum measurements will be discussed
further in the next section.

3. Bell NonLocality Sharing: The Unsharp Measurement Formalism

Entanglement is a marvelous phenomenon in a complex quantum system [1,49], and
its anticlassical property not only questions the description of local realism in classical
physics [2] but also provides a key quantum resource for surpassing classical computing
power [8]. For a given quantum resource, how to better achieve recycling is also very
important to ensure the effective use of quantum technology. Among them, the design of
a quantum measurement scheme provides an effective idea for this quantum correlation
sharing by multiple independent observers, especially in the sequential network.
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The original scenario [34] was first introduced by investigating the trade-off between
the information gain and disturbance upon the entangled states. The generalization from
projective measurements to general forms can be achieved by investigating von Neumann-
type measurement pointers [27] for spin- 1

2 particles: the system to be measured is called the
target, while the measurement pointer system is prepared independently and then interacts
with the target. By performing quantum measurements upon the pointer, the information
of the target can be obtained. For a von Neumann-type measurement, the initial state of
the target and pointer is therefore

|Ψ〉tar ⊗ |ϕ(q)〉poi, (15)

while the post-measurement state is described using the coupling constant g0

∑
a

〈a|Ψ〉 · |a〉tar ⊗ |ϕ(q − g0a)〉poi. (16)

Here, we take the index a to denote a set of basis states for the measured target
observable and the drift of position parameter q to indicate the measurement outcome. For
simplicity, we set g0 = 1. For a strong or projective measurement, the initial state of pointer
is narrow enough to distinguish different eigenvalues, which means

〈ϕ(q − a)|ϕ(q − a′)〉 = δaa′ , (17)

so that the position of the pointer after measurement can fully reflect the information of
measured physical system and project the target quantum state onto the corresponding
eigenstate |a〉.

However, if considering the opposite case that the spread of pointer is extremely wide
to cover the whole spectrum of eigenvalues, we cannot obtain the target system information
by reading the post-measurement position of the pointer. In the above scenario,

〈ϕ(q − a)|ϕ(q − a′)〉 ≈ 1 → |Ψ′〉|q0
= ∑

a

〈a|Ψ〉〈q0|ϕ(q − a′)〉|a〉

≈ 〈q0|ϕ(q)〉∑
a

〈a|Ψ〉|a〉

= 〈q0|ϕ(q)〉|Ψ〉,

(18)

which leaves the target quantum state undisturbed and defines the limit for a weak or
nonprojective measurement.

Now, let us discuss measurement schemes between the above two extremes: taking
spin- 1

2 particles, for example, the initial state for target system is linear combination of
eigenstates corresponding to the measured observable, that is |Ψ〉 = α| ↑〉+ β| ↓〉; thus

|Ψ〉 ⊗ |ϕ(q)〉 → α| ↑〉 ⊗ |ϕ(q − 1)〉+ β| ↓〉 ⊗ |ϕ(q + 1)〉. (19)

The post-measurement state of target system is obtained after tracing over all position
information of the pointer

ρ′ = F|Ψ〉〈Ψ|+ (1 − F)(| ↑〉〈↑ ||Ψ〉〈Ψ|| ↑〉〈↑ |+ | ↓〉〈↓ ||Ψ〉〈Ψ|| ↓〉〈↓ |). (20)

Here, the parameter F is calculated using the displacement of pointer states

F =
∫ +∞

−∞
ϕ(q + 1)ϕ(q − 1)dq, (21)

which reflects the effect of pointer initial state on the target post-measurement state and
characterizes the proportion of original states avoiding to be decohered; hence, we label it
as the “quality factor”.
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Next, we turn to determine the measurement outcome through reading the pointer’s
positions, of which positive/negative results are associated with +1/−1 outcomes from
dichotomic spin values. The probabilities for reading the outcome +1 are then provided by

p(+1) = G〈Ψ|| ↑〉〈↑ ||Ψ〉+ (1 − G)
1

2
, (22)

and a similar derivation leads to P(−1) under symmetry simplifications, i.e.,
|ϕ(q)| = |ϕ(−q)|. The information gain, or labeled as the “precision” of measurements, G
is calculated by

G =
∫ +1

−1
ϕ2(q)dq. (23)

Here, F and G are both independent of the spin state and able to co-describe a von
Neumann–type measurement. For example, ϕ(q) = 1/(

√
2∆)(−∆ < q < +∆) in a square

pointer state, and there are two cases that satisfy the following

i f ∆ ≤ 1 → a strong measurement : F = 0, G = 1;

or else ∆ > 1 → a weak measurement : G = 1 − F.
(24)

However, this example does not achieve an optimal trade-off between F and G, nor
the commonly used Gaussian wave packet. The calculation result shows that the optimal
pointer distribution is related to the measurement precision G

ϕ(q) = f (q − 2n)(

√

1 − G

1 + G
)|n|

∀q ∈ (2n − 1, 2n + 1], n ∈ Z,

(25)

and the trade-off is given by
F2 + G2 = 1. (26)

Consider the Bell scenario shown in Figure 1a, in which Alice and Bob share a pair of
entangled particles with spin- 1

2 but, unlike usual, Bob performs two independent measure-
ments sequentially. Now, for Alice–Bob1 and Alice–Bob2, we will see if the nonlocality is
maintained by testing the Bell-CHSH inequality [50]

I
(n)
CHSH = E

(n)
00 + E

(n)
01 + E

(n)
10 − E

(n)
11 ≤ 2 (27)

where E
(n)
xyn is the correlation of measurement outcomes along the corresponding directions

related to Alice’s input x ∈ {0, 1} and each Bob’s input yn ∈ {0, 1}. A measure for
the magnitude of Bell nonlocality is described by the violation visibility of Bell-CHSH

inequality: Vn = I
(n)
CHSH − 2. It is worth noting that there is an implicit signal passing

between Bob1 and Bob2 through the selection of measurement settings first, thus avoiding
the conventional monogamy arguments for entanglement and nonlocality. The original
article divided this Bell scenario into two cases according to the input bias of Bob1, which
means the frequency ratio between the input 0 and input 1 received:

• Unbiased: 0 and 1 are inputted with the same frequency for both Bob1 and Bob2

The CHSH values for Alice–Bobn are calculated by

I
(1)
CHSH = 2

√
2G, I

(2)
CHSH =

√
2(1 + F). (28)

Here, Bob1 performs first measurement within intermediate strength while Alice and
Bob2 measure strongly. A comparison between the classical bound of ICHSH values and
the measured results is plotted in Figure 1b. As a result, we can see a Gaussian or optimal
distributed pointer are both able to violate the Bell-CHSH inequality twice with tuned G,
which is impossible to observe using a square pointer setting.
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(a) (b)

Figure 1. (a) A single Alice and several Bobs share nonlocality in Bell-CHSH scheme [34]. (b) (Solid)

I
(1)
CHSH is plotted as a function of G, the measurement precision of Bob1. (Dashed) I

(2)
CHSH varies with

G for optimal, Gaussian, and square pointer (from the top down) [34].

• Biased: 0 and 1 are inputted with different frequencies for all Bobs

In this case, we design a biased measurement protocol to investigate the limit for
Bob’s number to violate the Bell-CHSH inequality, and the answer is No: as the input
bias increases, the sequence of violated Bobs becomes longer. Specifically, for the above
measurement scheme where the 0/1 input frequency ratio approaches infinity, the n-th

maximum violation of the inequality Vn = I
(n)
CHSH − 2 decreases superexponentially with

large values of n

Vn+1 ≈ V3
n

4
. (29)

This work brings the concept of weak measurements into Bell nonlocality theory for
the first time, and explores the possibility for achieving multiple observer violations of
the Bell-CHSH inequality under constraints of different trade-offs. However, although
numerical evidence is used to demonstrate that it is impossible for an unbiased input
Bob sequence to violate the classical CHSH bound twice, the concrete analytical proof
still remains an open problem. Soon afterwards, Mal et al. [41] resolve the upper bound
for Bell-CHSH violations analytically, using the formalism of a one-parameter class of
POVMs [42,51,52]. It has been shown that the effect operator for weak measurements in
the form of single parameter POVMs is described as

Eλ = (I+ λniσi)/2, i = 1, 2, 3. (30)

Here, λ ∈ (0, 1] represents the precision of measurements. We can also derive the
relation between Eλ and sharp projectors P considering the white noise. For a two-energy-
level system, Eλ is provided by

Eλ ≡ {Eλ
+, Eλ

−|Eλ
+ + Eλ

− = I}, (31)

which satisfies

Eλ
± = λP± +

1 − λ

2
I. (32)

The post-measurement state is now rewritten with the parameter λ as

ρ′ =
√

1 − λ2ρ + (1 −
√

1 − λ2)(P+ρP+ + P−ρP−), (33)

and the probabilities to obtain the corresponding outcomes ± are also calculated by

p(±) = tr[Eλ
±ρ] = λtr[P±ρ] +

1 − λ

2
. (34)
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By comparing Equation (20) with Equation (33) and Equation (22) with Equation (34),
we can easily obtain the transform between parameters of the above two formalisms:
G = λ, F =

√
1 − λ2. Thus, λ describes the measurement precision for POVMs, while

the optimal pointer setting is naturally derived: F2 + G2 = 1. That is to say, the weak or
unsharp measurements described by a one-parameter class of POVMs are able to satisfy
the optimal trade-off between information gain and disturbance for original states.

Next, we are going to discuss the upper bound of Bob’s number for sharing Bell
nonlocality with a single Alice. Following the work by Silva et al., we focus on a spin- 1

2
entangled pair while Alice measures in the X̂ or Ẑ direction, and Bobs measure in the
−(Ẑ+X̂)√

2
or −Ẑ+X̂√

2
directions. In the above Bell-CHSH scenario, n − 1 of Bobs must perform

unsharp measurements, and the last Bob measures projectively. For Alice and the n-th Bob,
the corresponding outcome a and bn are obtained with the joint probability The

p(a, bn) = p(a)p(bn|a) =
1

2
tr[

I+ λnbnŷn ·~σ
2

ρn|y1···yn−1
]. (35)

Here, we use ρn|y1···yn−1
to denote the state after the measurements of Alice and Bobn−1,

and the example for two Bobs to measure sequentially is described by the probability

p(a, b2) =

√

1 − λ2
1

2

1 − ab2λ2ŷ2 · x̂

2
+

1 −
√

1 − λ2
1

2

1 − ab2λ2 x̂ · ŷ1ŷ1 · ŷ2

2
, (36)

the CHSH values are provided by I
(1)
CHSH = 2

√
2λ1 and I

(2)
CHSH =

√
2(1 +

√

1 − λ2
1). A dou-

ble violation is obtained when the first Bob keeps its precision λ1 in the

range ∈ (1/
√

2,
√

2(
√

2 − 1)). Next, we further increase the number of Bobs to 3, in
which case the third Bob measures projectively while the first two Bobs both measure
weakly. Thus, we calculate the joint probability as

p(a, b3) =
1

2
[
√

1 − λ2
1

√

1 − λ2
2

1 − ab3λ3ŷ3 · x̂

2

+ (1 −
√

1 − λ2
1)
√

1 − λ2
2

1 − ab3λ3 x̂ · ŷ1ŷ1 · ŷ3

2

+
√

1 − λ2
1(1 −

√

1 − λ2
2)

1 − ab3λ3 x̂ · ŷ2ŷ2 · ŷ3

2

+ (1 −
√

1 − λ2
1)(1 −

√

1 − λ2
2)

1 − ab3λ3 x̂ · ŷ1ŷ1 · ŷ2ŷ2 · ŷ3

2
],

(37)

where λ2 is, similarly, the measurement precision of the second Bob. After averaging over
earlier inputs in all cases, we can obtain the CHSH value between Alice and the third Bob

I
(3)
CHSH =

(1 +
√

1 − λ2
1)(1 +

√

1 − λ2
2)√

2
. (38)

It is required to use λ1 > 1/
√

2 and λ2 > 2/(
√

2+ 1) to achieve Bell-CHSH inequality
violations for the first and second Bob; thus, we can obtain the upper bound for the CHSH
value for the third Bob from Equation (38), which is impossible to be greater than 2.

In the above discussion, Bob’s measurement settings conform to orthogonality by
default, and next Mal et al. further consider the more general POVM operators, relaxing
the orthogonality constraint. In this case, we can rewrite the measurement directions for
Bobn as

y0
n = cos θn0Ẑ + sin θn0X̂

y1
n = cos θn1Ẑ + sin θn1X̂,

(39)
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which remain unchanged for Alice (X̂ or Ẑ). With the nonorthogonal measurement settings
defined above, we calculate the violations for three Bobs and find that it is impossible for
more than two Bobs to share Bell-CHSH nonlocality with Alice, even if we introduce more
variables in the measurement settings. In particular, the above paper shows that those
entangled Alice–Bob pairs are not special, which means Bobs can be selected from (Bob1,
Bob2), (Bob1, Bob3), and (Bob2, Bob3) with different unsharpness parameters, respectively.

At present, the research on multi-party sharing of quantum correlation based on
sequence measurement mainly focuses on quantum entanglement, EPR steering, and Bell
nonlocality. Among them, EPR steering describes the nonclassical phenomenon for a pair
of entangled qubits, where one side can apply local measurements to change the state of
the other side. EPR steering has a natural asymmetry and is considered to be a necessary
resource for one-sided device-independent quantum information processing [4]. For these
levels of quantum correlations, as explained in Section 1, the constraint requirements are
successively enhanced from quantum entanglement, EPR steering, and to Bell nonlocality
(Figure 2a), while the corresponding sequential measurement scenarios are described in
the next section.

(a) (b)

Figure 2. (a) Illustration of quantum correlation hierarchy. (b) A scenario of entangled states to

achieve nonlocality sharing in sequential measurement, divided into active (“A”) and passive (“P”)

cases by carefully examining the motivation of Bob1, where “B” and “UB” represent biased and

unbiased input settings [53].

4. Advances in Sequential Unsharp Measurements for Quantum Correlation Recycling

4.1. Theoretical Exploration in Quantum Mechanics Foundation

In 2018, Bera et al. [54] characterized quantum entanglement from the entanglement
witness [7,55–58], which is provided by a Hermitian operator and substituted with the
parameter λ corresponding to the POVM form. Thus, for the state |ψ+〉〈ψ+| = 1√

2
(|01〉+

|10〉), the effective entanglement witness is written as

Wλ
0 =

1

4
(I⊗ I+ σz ⊗ λσz − σx ⊗ λσx − σy ⊗ λσy). (40)

For all separable states ρs from Alice–Bob pairs, the expectation value after witness
detection is calculated by

tr(Wλ
0 ρs) = tr[(λW0 +

1

4
(1 − λ)I⊗ I)ρs] ≥ 0

W0 =
1

4
(I⊗ I+ σz ⊗ σz − σx ⊗ σx − σy ⊗ σy).

(41)

The negative measured values of a witness demonstrate the nontrivial lower bound
for entanglement measures [59], which requires weaker quantum correlation than the Bell
inequality [60,61]. For the entangled state shared between Alice and Bob, the measurement
process is of the form
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tr[ρ(Pi
n̂ ⊗ Eλ

j|m̂)], (42)

where Pi
n̂ corresponds to the projective measurement by Alice, and Eλ

j|m̂ is an effective

operator in the POVM form for weak measurements performed by Bobs.
For the maximally entangled state |ψ+〉〈ψ+|, there are up to 12 Bobs that can detect

entanglement with one Alice through witness evidences (higher than the 2 represented
by the Bell inequality) under arbitrary and possibly unequal sharpness parameters (i.e.,
λ1 < λ2 < · · · < λn). It is also found that the number of Bobs is positively correlated with
the entanglement degree of the initial nonmaximally entangled quantum pure state, which
provides a rough but operable measure of entanglement.

In the field of EPR steering, Sasmal et al. [62] investigate an upper bound on the
number of Bobs to steer a single Alice analogous to the Bell-CHSH inequality. They
propose the Cavalcanti–Foster–Fuwa–Wiseman (CFFW) inequality [63] to detect steering
from Bob to Alice, of which Alice performs two unbiased dichotomic measurements A1, A2

and Bob performs B1, B2. The inequality is provided by

SBA =
√

〈(B1 + B2)A1〉2 + 〈(B1 + B2)A2〉2

+
√

〈(B1 − B2)A1〉2 + 〈(B1 − B2)A2〉2 ≤ 2.
(43)

Similarly, a series of steering inequalities is constructed assuming that both sides of
an entangled pair are allowed to perform n dichotomic measurements on their respective
subsystems, and the mathematical form is as follows

Fn =
1√
n

∣

∣

∣

∣

∣

n

∑
i=1

〈Ai ⊗ Bi〉
∣

∣

∣

∣

∣

≤ 1. (44)

Here, Ai = ûi ·~σ, Bi = v̂i ·~σ,~σ = (σx, σy, σz), ûi are unit vectors and v̂i are orthonormal
for n = 2 or 3. The above inequality is called the Cavalcanti–Jones–Wiseman–Reid (CJWR)
inequality [64]. They study the preservation of quantum steering after multiple sequential
measurements and find that, when all observers take dichotomous measurements, two
Bobs can achieve steering over Alice simultaneously, beyond the monogamy relation limit.
Furthermore, when increasing the number of measurement basis settings, the steering
from three Bobs to Alice can be achieved through 3-setting CJWR inequality. Thus, they
conclude that there are at most n Bobs that can prove EPR steering with one Alice using the
n−setting CJWR inequality. Subsequently, the work by Shenoy H. et al. [65] shows that, in
an isotropic entangled state of local dimension d, there are N ∼ d/log d number of Bobs
that can steer single Alice, indicating that an arbitrarily large number of continuous EPR
steering is able to be realized with independent and unbiased inputs. In addition, they
prove that the above conclusion also applies in cases where each Bob does not know its
position in the sequence. Recently, a study [66] investigating the sharing of EPR steering by
two-sided sequences shows that, for the initial shared state of a two-qubit entangled pure
state, there are unbounded measurement sequences from both sides that can generate EPR
steering between multiple independent observers. This conclusion also applies to a specific
class of mixed entangled states.

Quantum nonlocality multi-observer sharing under sequential weak measurements is
mainly focused on the violations of Bell-CHSH inequality and its derived forms. In 2019,
Das et al. [35] successively increased the number n of measurement settings per observer
to study the nonlocality sharing among multiple Bobs and a single Alice. In practice,
they use the derivative forms of the Bell-CHSH inequality to deal with arbitrary number
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of dichotomic measurements, taking the chained three and four settings of Bell-CHSH
inequality [48,67,68] as an example; the mathematical form is expressed as follows

chain3 = |〈A1B1〉+ 〈A2B1〉+ 〈A2B2〉
+ 〈A3B2〉+ 〈A3B3〉 − 〈A1B3〉| ≤ 4,

chain4 = |〈A1B1〉+ 〈A2B1〉+ 〈A2B2〉+ 〈A3B2〉
+ 〈A3B3〉+ 〈A4B3〉+ 〈A4B4〉 − 〈A1B4〉| ≤ 6.

(45)

Here, A1, A2, A3, A4 and B1, B2, B3, B4 denote the dichotomic measurement settings
within different inequalities for Alice and Bob, respectively. In addition, there are many
other forms of n-setting Bell-CHSH inequality, such as three-setting Gisin inequality [69]
and the I3322 inequality [70] derived by Collins et al., and four-setting Gisin inequality [69],
DZC (Deng–Zhou–Chen) inequality [71], BG (Brunner–Gisin) inequality [72], and the first
and second AIIG (Avis–Imai–Ito–Gisin) inequalities [73,74]. The results show that, when
the entangled pair performs three or four dichotomic measurements, the number of Bobs
that can share nonlocality with one Alice does not increase; in other words, there are still
no more than two (unlike in the case of EPR steering), and this result can be extrapolated to
the n-settings case. Using these inequalities, they further investigate nonlocality sharing in
nonmaximally entangled pure states, where any two-particle pure state can be written in
the form of Schmidt decomposition [48,75].

|ψ(α)〉 = cos α|00〉+ sin α|11〉. (46)

The parameter α satisfies 0 ≤ α ≤ π
2 and describes the maximum entangled pure state

with the value π
4 . They calculate the minimum C (C = sin 2α [76]) that holds the double

violation of Bobs with a single Alice using the above local realist inequalities. The result
shows that, when the initial state is nonmaximally entangled pure state, the sharing of Bell
nonlocality among multiple Bobs and one Alice is the most robust for CHSH inequality,
which is also observed in the case of mixed states.

The work by Ren et al. [53] provides an in-depth analysis for two types of nonlocality
sharing via weak measurements. Based on whether Bob1 has the conscious thought for
sharing nonlocality to Bob2, that is, whether there is the motivation for Bob1 to help Bob2

achieve the maximum CHSH inequality violation, nonlocality sharing is divided into active
and passive cases. In particular, active nonlocality sharing has never been mentioned in
previous studies, and there are many counterintuitive results extremely different from
the passive one. It is found that these two sharing scenarios (Figure 2b) are distinct
under sequential measurement: in active nonlocality sharing, the measurement sharpness
performed by Bob1 is not limited except for the ideal strong measurement (which completely
destroys the quantum entanglement). Even if Bob1 is weakly measured using a square
pointer rather than an optimal pointer, a double violation of the CHSH inequality can still be
observed, which is impossible for passive nonlocality sharing. These results undoubtedly
shed new light on the interaction between Bell nonlocality and quantum measurements.

Furthermore, Saha et al. [77] consider the case of nonlocality sharing in the tripartite
scenario and study it from the two aspects of standard tripartite nonlocality [78] and gen-
uine tripartite nonlocality [79]. The standard tripartite nonlocality detection is implemented
by a violation of the Mermin inequality (derived from Bell-type inequality) [78] and written
as follows

M = |〈A2B1C1〉+ 〈A1B2C1〉+ 〈A1B1C2〉 − 〈A2B2C2〉| ≤ 2, (47)

where Alice, Bob, and Charlie perform two dichotomic measurements {Ax, By, Cz, x, y, z ∈
{1, 2}}, respectively. For quantum mechanics, the maximum violation value of the Mermin
inequality is 4, which is achieved within the three-qubit GHZ state [80]
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|ψGHZ〉 =
1√
2
(|000〉+ |111〉). (48)

Nevertheless, the violation of Mermin inequality does not represent genuine tripartite
nonlocality, which means that quantum nonlocality can be observed in any possible parti-
tions of the tripartite state [79,81]. This strongest form is characterized by the Svetlichny
inequality [79], which is mathematically provided as

S = |〈A1B1C1〉+ 〈A2B1C1〉 − 〈A1B2C1〉+ 〈A2B2C1〉
+ 〈A1B1C2〉 − 〈A2B1C2〉+ 〈A1B2C2〉+ 〈A2B2C2〉| ≤ 4.

(49)

The maximum quantum violation in this situation is 4
√

2. They set up a scenario
similar to that of the bipartite one, where three particles of spin- 1

2 share an entangled state
and are spatially separated from each other. Alice and Bob perform measurements on the
first and second particles, respectively, and multiple Charlies perform sequential weak
measurements on the third particle. The results demonstrate that, in the case of sequential
measurement scheme, the standard tripartite nonlocality is able to have more observers
than the genuine tripartite nonlocality, that is, at most six, and two Charlies can simultane-
ously prove the corresponding tripartite nonlocality with a single Alice and a single Bob.
This interesting result also illustrates the concept that two tripartite nonlocalities are not
equivalent in the context of quantum correlation sharing. In a similar work later, Maity
et al. [82] employ the witness operator of genuine tripartite entanglement [7,83–85] rather
than entanglement inequalities. By abandoning the requirement of device independence
for the inequality test, the number of Charlies that can share genuine tripartite entangle-
ment for the GHZ state is increased to 12. This is of great significance for the recycling of
genuine multipartite entanglement resources in various quantum information processing
tasks [20,86–90].

For the single-particle quantum system, we pay more attention to another important
property, namely quantum contextuality. Noncontextuality is an intuitive feature of classical
systems; however, Kochen and Specker propose that classical noncontextuality is in conflict
with quantum mechanics, which is known as the Kochen–Specker (KS) theorem [11].
The relationship between contextuality and nonlocality of quantum physics lies in the
fact that local hidden variable theory is a special type of noncontextual hidden variable
theory [91], and some proofs of KS theorem can also be converted into logical proofs of Bell
theorem [80,92]. Kumari et al. [93] investigate the multi-observer sharing of nonlocality and
nontrivial preparation contextuality by violating Bell’s local realist inequalities. Considering
that Alice and Bob set the number of dichotomic measurements to 2n−1 and n, they write
the family of Bell expressions as

Bn =
n

∑
y=1

2n−1

∑
i=1

(−1)xi
y An,i ⊗ Bn,y, (50)

where xi
y is the yth bit of Alice’s n-bit input string xi used in implementation for an

n-bit parity-oblivious multiplexing (POM) game, which aims to achieve the preparation
noncontextual assumptions. When n = 2, the above Bn becomes the CHSH expression.
The local and nontrivial preparation noncontextuality upper bounds are

(Bn)local ≤ n

(

n − 1

⌊ n−1
2 ⌋

)

,

(Bn)pnc ≤ 2n−1.

(51)

It can be seen that, when n > 2, (Bn)pnc < (Bn)local . This suggests that nontrivial
preparation contextuality is a weaker form of quantum correlations that may also exist in
local models, so it is easier to achieve multi-observer sharing than that of nonlocality. Their
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results validate this point of view with numerical solutions, where an arbitrary number
of Bobs can demonstrate a violation of nontrivial preparation noncontextuality under
sequential weak measurements, even if the measurement setting is chosen to be unbiased.

In 2020, Brown et al. [94] proposed a new idea to break the limit on Bob’s number
in sequential nonlocality sharing. They note that there is an implicit assumption within
the previous study in which each Bob sets up the equal sharpness for its two dichotomic
measurements. Their new scheme takes into account the most general measurement
strategy, employing measurement settings with unequal sharpness. Similarly, they define
POVM operators for Alice and n Bobs:

A0|0 :=
1

2
(I+ cos(θ)σz + sin(θ)σx),

A0|1 :=
1

2
(I+ cos(θ)σz − sin(θ)σx);

B
(k)
0|0 :=

1

2
(I+ σz),

B
(k)
0|1 :=

1

2
(I+ γkσx).

(52)

Here, A(B)b|y is the POVM operator for the measurement outcome b with input y,
θ ∈ (0, π

4 ], and k = 1, 2, · · · , n, which corresponds to the indexes of multiple Bobs. γk

is the measurement sharpness parameter for each Bob, where γk = 1 means an ideal
projective (sharp) measurement, and γk = 0 does not cause any disturbance to the quantum
state. In practice, they design an appropriate measurement strategy, which defines that
ε > 0, γ1(θ) = (1 + ε)(1 − cos(θ))/ sin(θ), and then the recursive relation for γk(k > 1) is
provided as

γk(θ) =

{

(1 + ε) 2k−1−cos(θ)Pk
sin(θ)

i f γk−1(θ) ∈ (0, 1)

∞ otherwise
. (53)

Here, Pk = ∏
k−1
j=1

(

1 +
√

1 − γ2
j (θ)

)

, and, if the expected CHSH value I
(k)
CHSH is less

than the classical bound (= 2), then γk(θ) = ∞.
Using the above strategy, they can define n valid sharpness parameters γ sequentially

using applicable θ within the specified range, and then each Bob can achieve the expected
ICHSH value beyond the classical bound. The numerical result shows that arbitrarily many
independent Bobs can achieve Bell-CHSH nonlocality sequential sharing with a single
Alice (Figure 3a). They also discuss the requirement for θ and find that this value rapidly
decreases double-exponentially as the number of Bob n increases. Later on, the work of
Zhang et al. [95] extends the above conclusion to the higher dimensional case, verifying the
unbounded sharing of a single bipartite entangled state in any dimension rather than just
a two-qubit entangled state. They also discuss the genuine tripartite nonlocality sharing
following the updated measurement strategy by Brown et al. For the generalized GHZ
state |ψα〉 = cos α|000〉+ sin α|111〉, through violations of the Svetlichny inequality [79], it
is found that no more than two Charlies can share genuine nonlocality with one Alice and
one Bob.
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(a)

(b)

Figure 3. (a) The maximum number n of Bobs that can simultaneously violate the Bell-CHSH

inequality using the updated measurement strategy as a function of θ. These numerical results take

into account different values of ε to satisfy γk(θ) < 1 and likewise show that θ decreases faster

exponentially as the number n increases [94]. (b) Multi-observer Bell nonlocality sharing in two-sided

sequential measurements [96].

The number of two-sided nonlocality recycling is also an open and interesting question
when considering multiple Alice–Bob measurement scenarios. In 2021, Cheng et al. [96]
considered that two qubits are simultaneously recycled by multiple observers on both sides,
achieving Bell nonlocality sequential sharing (Figure 3b). Their measurement assumptions
are the same as those of Brown et al. [94], but the results are quite opposite. They present
strong analytical and numerical evidence that Bell nonlocality cannot be shared simulta-
neously between multiple observers on two sides (Alices and Bobs). This restriction on
recycling qubits can be viewed as a type of one-sided monogamous relationship for Bell
nonlocality sharing. The more detailed analyses and corresponding semi-analytical results
are published in a companion paper [97], and they argue that, if more measurements of
higher-dimensional quantum systems (multi-qubit entangled states) can be allowed, then
each pair of Alices and Bobs has the potential to share Bell nonlocality arbitrarily. This
conjecture is later developed by Chirag et al. [98], who investigate the sequential detection
of genuine multipartite entanglement (GME) of the shared state. They set the initial state to
an N-partite GHZ state, shared among N space-separated parties, i.e., Alices, Bobs, Char-
lies, · · · . Their strategy is to detect genuine multipartite entanglement in turn by recycling
any fixed subset of all qubits to form a hierarchical measurement scenario. The results
show that, in such a measurement hierarchy, each partite performs sequential genuine
multipartite entanglement detections on the corresponding qubit, leading to an unbounded
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sequence. It is worth noting that, although the current measurement scheme cannot realize
the sharing of Bell-CHSH nonlocality from both sides for two-qubit entangled states [96],
the recycling sequence for pairs of observers to reach entanglement witnessing can be
arbitrarily long for any pure entangled two-qubit state initially [99]. This finding can be
seen as strong evidence for a clear distinction between “entanglement nonlocality” and
“Bell nonlocality”, which have similar performance [94,100] in the context of one-sided
multi-observer sharing.

In addition to the conceptual appeal of fundamental physics, the recycling of quantum
correlations has also been studied in the extraction of quantum randomness. Random
numbers play an important role in science and engineering as an essential resource for cryp-
tography [101], scientific simulations [102], and fundamental physics tests [2]. The intrinsic
unpredictability of quantum mechanics gives it a natural advantage over deterministic clas-
sical physics in describing true randomness [36–38]. Specifically, the device-independent
certification of randomness [38] can be achieved by violations of Bell inequality with the
measured output on the entangled state.

In 2017, Curchod et al. [103] combined this scheme with a sequential weak measure-
ment scenario to overcome the limited amount of randomness that previous projective
measurements could certify in an entangled pair. In the previous study [104,105], it is
shown that, for d-dimensional particles sharing entangled states, at most 2 log2 d bits
of randomness can be certified on either side with a single measurement. In the weak
measurement scenario, the quantum state after measurement retains a certain degree of
entanglement and can still be used as a subsequent randomness source. Based on this, their
proposed scheme performs sequentially weak measurements with n Bobs and constructs
a corresponding exponentially increasing number (∑n

i=1 2i = 2(2n − 1)) of measurement
choices for n measurements by a single Alice. They use min entropy to quantify the number
of random bits and find that the n-Bob sequence can be extracted for m random bits (n > m)
with the appropriate parameter selection, which means that the above random source is
potentially unbounded. However, their work put no control for the robustness of noise
into effect, and this shortcoming is remedied in later studies [106], which also migrates
to the one-sided device-independent sequential measurement scenario. In 2020, Bowles
et al. [107] used the NPA hierarchy [108,109] as an effective tool to investigate randomness
certification bounding sets utilizing the measurement sequence. They introduce noise
parameter η into the two-qubit entangled state

ρ(η) = (1 − η)

[

(|00〉+ |11〉)√
2

]

+ ηI/4, (54)

and set up one Alice and two Bobs to perform the one-sided sequential measurement. The
results show that more than 2.3 bits of local randomness can be reliably certified, exceeding
the theoretical maximum (2 bits) in the nonsequential measurement scheme. The numerical
results also indicate that, at the noise level approaching 4 %, an advantage of sequential
strategy in generating randomness can be observed, which is of great significance in guiding
relevant experiments.

4.2. Experimental Demonstration Based on Optical Qubits

At present, the experimental verification of quantum correlation multi-observer shar-
ing mainly relies on optical systems. In 2017, Schiavon et al. [110] built a theoretical model
of a two-photon state with maximum polarization entanglement, designing and demon-
strating the corresponding experiments to achieve a double violation of the Bell-CHSH
inequality under sequential weak measurements. Their theoretical model follows Silva
et al. [34], with three observers represented by Alice, Bob1, and Bob2, respectively, while
the weak measurement scheme requires an ancillary qubit system. They use the ancilla to
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achieve a controllable strength entanglement with the measured system, and then perform
a strong readout on the ancillary qubit. For Bob1, a controlled phase gate

CPε = |H〉〈H| ⊗ I+ |V〉〈V| ⊗ eiεσz (55)

is used to establish the entanglement between the ancilla and Bob’s side qubit. The ancilla
system is first prepared in the state |+〉 and then measured in the {|+〉, |−〉} basis after
the gate operation. Thus, they can control the measurement strength by adjusting the
amount of gate rotation parameter ε to measure the particle in the {|H〉, |V〉} basis, while
a strong projective measurement is performed with ε = π/2. More generally, to perform
the measurement on an arbitrary basis {|ωy1

〉, |ω⊥
y1
〉}, they should use a rotation operator

Ry1
satisfying

Ry1
|ωy1

〉 = |H〉, Ry1
|ω⊥

y1
〉 = |V〉. (56)

The entangled two particles share a singlet state

|Ψ−〉 = |H〉|V〉 − |V〉|H〉√
2

, (57)

where one Alice and two Bobs perform measurements on its side. Alice selects from the
measurement choice x ∈ {0, 1}, measures the system projectively, and obtains the result
a ∈ {+,−}. On Bob’s side, the observed state collapses into |ψa|x〉, and the joint system
with the ancillary qubit |ψa|x〉 ⊗ |+〉 is rotated into (α|H〉+ β|V〉)|+〉, where α = 〈ωy1

|ψa|x〉
and β = 〈ω⊥

y1
|ψa|x〉. Then, they use the controlled phase gate (parameter ε) to transform

the ancillary state while the system qubit is |V〉, and the joint state becomes

(α|H〉+ β|V〉)|+〉 → α|H〉|+〉+ β|V〉(cos ε|+〉+ i sin ε|−〉). (58)

The last step is to rotate the state back to the measurement basis of Bob1 inversely by
R†

y1
; after that, the state is provided by

α|ωy1
〉|+〉+ β|ω⊥

y1
〉(cos ε|+〉+ i sin ε|−〉). (59)

In the sequential measurement scheme, Bob1 performs the measurement on the second
qubit in the basis {|+〉, |−〉}, and Bob2 measures the first qubit in the basis {|νy2〉, |ν⊥y2

〉}
projectively, according to the input y2 ∈ {0, 1}. When Alice measures in the directions

− (Z+X)√
2

or
(−Z+X)√

2
and Bob measures in the direction Z or X, they can obtain the predictive

CHSH value with the parameter ε

I
(1)
CHSH = 2

√
2 sin2 ε, I

(2)
CHSH =

√
2(1 + cos ε). (60)

Experimentally, they utilize the optical setup (Figure 4) to verify the above theoretical
model. The entangled photon pairs are collected from a periodically poled potassium titanyl
phosphate (PPKTP) crystal in a polarization-based Sagnac interferometer [111] and sent
to the Alice and Bob sides. Alice and Bob2 implement a projective measurement scheme
including an HWP (HWP1 and HWP6) and a PBS to obtain the polarization information,
while Bob1 designs a receiving apparatus for the weak measurement. The photons go
through Bob1’s apparatus and then reach Bob2, where HWP2 and HWP5 are employed to
achieve polarization rotation R and R†. Inside the Sagnac interferometer, they use HWP3
and HWP4 as phase retarders within spatially separated clockwise and anticlockwise paths,
which correspond to the ancillary qubit. For an input pure state on Bob’s side

|ψin〉 = α|ωy1
〉+ β|ω⊥

y1
〉, (61)
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the output state is transformed into

|ψout〉 = α|ωy1
〉|2〉+ β|ω⊥

y1
〉(cos ε|2〉+ sin ε|3〉), (62)

of which |2〉 and |3〉 correspond to the two output ports of the Sagnac interferometer,

and also represent the measurement basis {|+〉, |−〉}. They plot the I
(1)
CHSH and I

(2)
CHSH

measured with the parameter ε varying from 0 to π
2 in Figure 5a, and the experimental

results show a high agreement with the theoretical model. It is demonstrated by the
experimental evidence that the double violation of CHSH inequalities is achieved, and
hence Bell nonlocality can be shared between three observers (Alice–Bob1 and Alice–Bob2)
using two-photon maximally entangled state. A similar work [112] is proposed by Hu et al.
and realizes optimal weak measurements by employing the path degree of freedom of
photons as the pointer. Note that, in practice, they both use the Bob2 part to detect the
output value of Bob1 because the weak measurement of Bob1 is achieved by coupling the
photons’ polarization to two separated paths, and then outcomes are encoded in the path
information after the measurement.

Figure 4. The demonstration of the optical experimental setup [110].

The experimental demonstration of multiple-observer quantum EPR steering is ex-
ploited both in one-sided and two-sided sequential weak measurement schemes. In 2020,
Choi et al. [113] investigated violations of the linear EPR steering inequality in the form
of Equation (43) [64] by a single Alice and three Bobs, with the number of measurement
settings i = 3. They use a beta-barium borate (BBO) crystal under type-II spontaneous
parametric down-conversion (SPDC) process [114] to produce entangled photon pairs,
and the initial state is the singlet state, maximally entangled. In the experimental setup,
Bob1 and Bob2 employ a half-wave plate to adjust the measurement strength λ1 and λ2,
while Bob3 performs the projective measurement. The steering parameters of Alice–Bob1,
Alice–Bob2, and Alice–Bob3 are obtained simultaneously from the joint measurement prob-
ability, that is, experimentally measured and normalized data between two detectors in
the end. As a result, they observe the quantum correlations sharing between four par-
ties and the triple violations of EPR steering inequality setting λ1 = 0.64 and λ2 = 0.76,
with more than 40 standard deviations. The other EPR steering sharing among multi-
ple observers in the two-sided scheme is explored by Zhu et al. [115] later, and they
experimentally achieve quantum correlations sharing with two Alices and two Bobs. Specif-
ically, it is shown that double EPR steering is realizable between two pairs of Alice–Bob
(Alice1–Bob1/Alice2–Bob2) under two-sided sequential weak measurements when Alice1

and Bob1 measure with equal strength, which cannot be achieved in the Bell-CHSH sce-
nario. It needs to be emphasized that, in the one-sided case, multiple Bobs are required
to realize the steering of a single Alice with the same measurement settings, while, in
the two-sided steering case, the target of Bobs is to steer the corresponding Alices, the
measurement settings choice of which is mutually independent.
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Anwer et al. [116] theoretically prove that an arbitrary number of observers can
share nonclassicality via preparation contextuality, which is robust even in the existence
of realistic white noise. In the following experiment, they demonstrate sequential weak
measurements for a single photon within shifted Sagnac interferometers, while Alice
randomly chooses the preparation state, which is then reaching Bob1, passing to Bob2, and
ending at Bob3. Here, Bob1 and Bob2 perform weak measurements, while Bob3 measures
projectively. They test three preparation noncontextuality inequalities for Alice–Bob1,
Alice–Bob2, and Alice–Bob3, and the experimental data show that all these pairs can violate
inequalities and share preparation contextuality without requiring entanglement.

(a) (b)

Figure 5. (a) Experimental results of I
(1)
CHSH (red squares) and I

(2)
CHSH (blue circles) with the values

of ε varying. The corresponding solid lines demonstrate their expected values. In particular, the

ε-value region that implements the double CHSH violation is highlighted in green [110]. (b) The

experimental report for Bell nonlocality sharing via not-so-weak measurements. The brown curve is

calculated by the theoretical model for G > 0.8 and I
(1)
CHSH = I

(2)
CHSH in that situation. The red and

blue dots represent experimental results for I
(2)
CHSH and I

(1)
CHSH and show good agreement with model

predictions [117].

The 2020 work by Feng et al. [117] improves the measurement protocol to achieve
nonlocality sharing with near-maximum strength, that is, not-so-weak measurements. They
point out that the original scheme from Silva et al. [34] only takes the maximization of

I
(1)
CHSH into consideration for the measurement directions selection of Bob1, which comes

at the expense of lowering the upper bound of I
(2)
CHSH [53]. A more appropriate choice to

achieve the double Bell-CHSH violation with wider range of the measurement strength

falls on maximizing the min value between I
(1)
CHSH and I

(2)
CHSH , rather than I

(1)
CHSH or I

(2)
CHSH

separately. Their scheme can be demonstrated as follows, Alice measures in the directions
Z or X while the measurement directions for Bob depend on the value of precision G:

• if G ≤ 0.8, the maximization of min(I
(1)
CHSH , I

(2)
CHSH) is equivalent to maximize the

value of I
(1)
CHSH because that I

(1)
CHSH is always no more than I

(2)
CHSH in this region, and

the setting of measurement directions may be same as the original proposal [34];

• if G > 0.8, I
(2)
CHSH may be not greater than I

(1)
CHSH in that case, so they choose to consider

raising the Bell-CHSH nonlocality sharing between Alice and Bob2 by the increase of

I
(2)
CHSH . Their analysis shows that the similarity of Bob1’s two measurement directions

can raise the quantum correlation for the Alice–Bob2 pair, and the measurement
directions setting (µ̂/υ̂) and (µ̂′/υ̂′) for Bob1/Bob2 is now written as

µ̂ = cos γX + sin γZ, µ̂′ = cos γX − sin γZ,

υ̂ = cos δX + sin δZ, υ̂′ = cos δX − sin δZ.
(63)

Here, γ and δ are in the range between 0 and π
4 , determined by the measurement

precision G. They also demonstrate their scheme in the optical experiment, where different
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precision factors G and the corresponding measurement direction settings have been
selected. They plot the two CHSH results in Figure 5b, and it clearly shows a double
violation of Bell-CHSH inequality even when the value of G = 0.96, that is, the near-
maximum strength unattainable (0.910 < G < 1) using the origin protocol [34].

The other measurement protocol to certify sustained entanglement and nonlocality is
proposed by Foletto et al. [118]. They design a sequential measurement scenario where
the measurements performed and outcomes obtained previously decide on subsequent
measurement choices. The history of a given measurement setting sequence and the
corresponding observed results represent the evolution of an initial state, and the next task
is to exhibit sustained entanglement at every possible branch of this tree-like evolutionary
structure. In their theoretical model, Alice performs unsharp measurements sequentially,
while, at first, it randomly chooses one of two measurement settings, A0 or A1 (sharpness
µ1), and the post-measurement state has four possible configurations for two observed
outcomes (±1) for each measurement direction. Then, the second Alice applies a unitary
transformation UA,2 to its system depending on its knowledge of the previous measurement
setting and outcome data, and continues to randomly choose between measurements with
sharpness µ2. The configuration for the state after Alice’s second measurement also has four
choices and can be written in a similar form to the first post-measurement state. The above
process can continue analogically by using a suitable sharpness parameter µk at each step
k, and thus the measurement sequence achieved on Alice’s side can be unbounded long.
They point out that the above sequence can be interrupted at any k-th Alice for proving
the entanglement and nonlocality still shared with Bob, which is the other part of an
entangled state and measures projectively. In that time, Bob needs to know measurements
and outcomes history for Alice1, Alice2, · · · , and Alicek−1 to define the unitary operation
UB,k and measurement directions on its side. For the experiments, they demonstrate a
proof-of-concept optical implementation and certify that three Alices can share quantum
correlations between a single Bob via violating the Bell-CHSH inequality or entanglement
witnesses [119] using their protocol. Such a tree-like structure can theoretically continue
indefinitely, but, in the experiment, they choose to set the stopping point after Alice3. This
finding is important for quantum information tasks that require certified entanglement, a
typical application of which is the generation of unbounded quantum random numbers.
In 2021, the same group [120] reported experimental results for randomness extraction
following the previous theoretical model [103], which is similar to the above protocol. They
consider the imperfections in a realistic situation, add noise to the initial shared state, and
conclude that the random extraction gain from increasing the number of measurements in
the sequence is offset by bringing in depolarization noise, even if it is small. In order to
take advantage of the long sequence, the prepared state should be as close to the ideal case
as possible. They verify the feasibility of certified randomness for imperfect preparation
through the long-exposure test on the optical platform and compare the measured data
with the predicted value of the theoretical model (Table 1). The two rightmost columns
of the table indicate that the min-entropy Hmin,k measured in the experiment is slightly
lower than the predicted value, which is attributed to the systematic misalignment in
the experimental setup. This work lays the foundation for higher-precision experimental
setups in the next stage.

Table 1. Comparison of experimental measurements and theoretical predictions data in the long-

exposure feasibility tests [120].

Step k Previous
Outcome

Strength
(Rad)

Hmin,k (Model)
(Bits)

Hmin,k (Experiment)
(Bits)

1 Not applicable 0.4 0.165 0.13 ± 0.002
2 0 Projective 0.263 0.38 ± 0.04
2 1 Projective 0.263 0.13 ± 0.02
1 Not applicable 0.47 0.085 0.057 ± 0.002
2 0 0.1 0.303 0.32 ± 0.02
2 1 0.1 0.303 0.25 ± 0.02
1 Not applicable 0.52 0.035 0.005 ± 0.001
2 0 0.1 0.369 0.38 ± 0.02
2 1 0.1 0.369 0.33 ± 0.01
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5. Discussion

The effective utilization of quantum resources is one of the main challenges in the
current development of quantum technology, and many important advances have been
achieved in the direction of how to recycle quantum correlations from the same source. The
core of such research is to adjust the disturbance degree of the measurement process to the
quantum state by designing different weak measurement sequences and deduce and verify
that the quantum correlations of a single entangled pair can be shared among multiple
independent observers so as to efficiently reuse this quantum resource. This possibility
of realizing qubit cycling through the sequence of multiple independent observers has
aroused great theoretical interest, and here we list the major developments in Table 2.
These theoretical studies not only benefit from fundamental conceptual exploration in
quantum physics but also have important application potential for quantum randomness
extraction. Up to now, related experimental studies have focused on optical devices, which
also provide important insights into photon-based quantum computing [121–123].

Table 2. Theoretical advances and challenges for quantum correlation recycling in sequential unsharp

measurement scenarios.

Publication
Time

Quantum
Correlation
Scenarios

Observer
Type

One-
Sided

Multi-
Sided

Measurement
Settings

Upper Bound
Analysis Ref

2015 Bell
nonlocality

Alice–
Bob

X Equal
sharpness

Bell-CHSH inequality: 2 Bobs (unbiased
input)/no limit (biased input) [34]

2016 Bell
nonlocality

Alice–
Bob

X Equal
sharpness

Bell-CHSH inequality: 2 Bobs (unbiased
input) [41]

2018 Entangle-
ment

Alice–
Bob

X Equal
sharpness

Entanglement witness: 12 Bobs [54]

2018 EPR
steering

Alice–
Bob

X Equal
sharpness

2-settings CFFW inequality: 2 Bobs
n-settings CJWR inequality: n Bobs [62]

2019 EPR
steering

Alice–
Bob

X Equal
sharpness

An isotropic entangled state of local
dimension d: d/ log d Bobs [65]

2019 Bell
nonlocality

Alice–
Bob

X Equal
sharpness

n-settings local realist inequality:
2 Bobs (unbiased input) [35]

2019
Standard/

genuine
nonlocality

Alice–
Bob–

Charlie

X Equal
sharpness

Mermin inequality: 6 Charlies
Svetlichny inequality: 2 Charlies

(unbiased input)
[77]

2019 Preparation
contextuality

Alice–
Bob

X Equal
sharpness

Nontrivial preparation noncontextual
inequalities: unbounded Bobs [93]

2020
Genuine
Entangle-

ment

Alice–
Bob–

Charlie

X Equal
sharpness

Tripartite entanglement witness:
12 Charlies [82]

2020 Bell
nonlocality

Alice–
Bob

X Unequal
sharpness

Bell-CHSH inequality: unbounded
Bobs [94]

2021 Genuine
nonlocality

Alice–
Bob–

Charlie

X Unequal
sharpness

Svetlichny inequality: 2 Charlies [95]

2021 Bell
nonlocality

Alice–
Bob

X Unequal
sharpness

Bell-CHSH inequality: not applicable
(unbiased input) [96]

2022
Genuine
Entangle-

ment

N-qubit
pair

X Unequal
sharpness

Genuine multipartite entanglement
witnesses: an unboundedly long

sequence
[98]

2022 Entangle-
ment

Alice–
Bob

X Unequal
sharpness

Entanglement witness: an
unboundedly long sequence [99]

2023 EPR
steering

Alice–
Bob

X Unequal
sharpness

3-settings CJWR inequality:
unbounded Alices and Bobs [66]
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Recently, a new study [124] has shown that it is possible to overcome the apparent
inabilities for projective measurement strategies in recycling quantum resources by in-
troducing classical randomness, realizing the effective sharing of quantum correlations.
Specifically, the above measurement scheme uses the shared randomness between entan-
gled pairs to randomly combine three different projective measurement strategies for Bobs
and achieve the recycling of Bell nonlocality represented by two sequential violations
of the CHSH inequality. This work generalizes the form of measurement strategies for
efficient recycling of quantum correlations and is also validated by specific experiments
in optical systems [125] that do not require entanglement assistance. These works demon-
strate that projective measurements are an effective resource for recycling Bell nonlocality
and leave open questions about their application to other sequential quantum correlation
recycling protocols.

6. Concluding Remarks and Outlook

In this review, we summarize the relevant theoretical and experimental progress for
quantum correlation resource recycling via sequential measurements. These results lay
the foundation for more quantum correlation sharing schemes with higher experimental
operability in the next step, which is expected to be applied in the field of the quantum
network [126–128] and quantum teleportation [129,130]. It can be predicted that, by de-
signing suitable measurement strategies, i.e., the sequences of weak measurements with
adjustable intensity and measurement settings or a combination of projective measurements
that introduce randomness, the study for multi-observer sharing of quantum correlations
will help to provide a deeper explanation of the interplay among quantum measurement,
quantum correlation, and quantum resource recycling.
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