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Abstract. We discuss an alternative picture of neutrino oscillation. In this phe-
nomenological model, the flavor-changing phenomena of massless neutrinos
arise from scattering processes between neutrinos and four types of undetected
spin-0 massive particles pervading throughout the Universe, instead of neutri-
nos’ own nature. These scattering processes are kinematically similar to Comp-
ton scattering. One type of left-handed massless sterile neutrino is needed in
order to reproduce the neutrino oscillation modes predicted in the theory of
neutrino mixing. Implications of our model include the existence of sterile neu-
trinos, the nonconservation of active neutrinos, the possible mismatch among
three neutrino mass squared differences ∆m2

i j interpreted in the theory of neu-
trino mixing, the spacetime dependence of neutrino oscillation, and the impos-
sibility of neutrinoless double beta decay. Several important open problems in
neutrino physics become trivial or less severe in our model, such as the small-
ness of neutrino masses, neutrino mass hierarchy, the mechanism responsible
for neutrino masses, and the Dirac/Majorana nature of neutrinos.

1 Introduction

The concept of neutrinos historically originated from Wolfgang Pauli’s proposal in 1930 to
explain the continuous energy spectra of electrons produced in beta decay [1]. In the Standard
Model (SM) of particle physics [2], neutrinos are described together with the left-handed
components of charged leptons as doublets of the SU(2)L group,
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"
,

!
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"
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Each of the right-handed components of charged leptons (eR, µR, τR) forms singlet of SU(2)L

by itself. All interactions involving neutrinos in the SM can be described by the following
charged current (CC) interaction and neutral current (NC) interaction Lagrangian densities
[3],
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in which θW is the Weinberg angle and g is the SU(2) coupling coefficient.
It is assumed that no right-handed components of neutrinos exist in the SM, which stops us
from writing down the neutrino Dirac mass term LD = −mD(ν̄RνL + ν̄LνR) where mD =

yv√
2

is
determined by the neutrino Yukawa coupling coefficient y and vacuum expectation value of
Higgs field v√

2
[4]. Moreover, a Majorana mass term will not be SU(2)L invariant and cannot

be generated within the SM containing only the Higgs doublet [5]. Hence, neutrinos must be
massless in the SM if no further extensions or modifications are introduced.
However, from the late 1960s, a number of observations convincingly suggest that there exist
flavor-changing phenomena of neutrinos during their propagation in spacetime, later called
neutrino oscillation, which are obviously not predicted by the SM. One example is the well-
known Homestake experiment headed by Raymond Davis Jr. and John N. Bahcall [6]. In
Homestake experiment, the electron neutrinos coming from 8B decay in the Sun were de-
tected and counted, which revealed a significant deficit compared with the theoretical predic-
tion based on the standard solar model and gave rise to the solar neutrino problem. At the
present stage, the most widely accepted solution to this dilemma is to introduce a unitary ma-
trix U called Pontecorvo–Maki–Nakagawa–Sakata matrix (PMNS matrix) which describes
the mismatch of neutrino mass eigenstates and neutrino flavor eigenstates [7]. For three-
neutrino case, the neutrino mixing is encoded in the following equation,
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where (νe, νµ, ντ) are neutrino flavor eigenstates and (ν1, ν2, ν3) are neutrino mass eigenstates.
There are many different ways to parametrize PMNS matrix. One of the commonly used
parameterizations of PMNS matrix, the so-called standard parameterization, is as follows
[3]:

U =
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1
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where si j ≡ sin θi j and ci j ≡ cos θi j. There are six parameters in the standard parameter-
ization, including three neutrino mixing angles (θ12, θ13, θ23) and three CP-violating phases
(δ, φ1, φ2). Without loss of generality, we may assume that θi j ∈ [0, π2 ] for all neutrino mixing
angle θi j. The range of three CP-violating phases is [0, 2π]. The first CP-violating phase
δ is called the Dirac phase, upon which the CP-violating effects and T-violating effects of
neutrino oscillation depend. The remaining two CP-violating phase φ1 and φ2 are called the
Majorana phases that are irrelevant in neutrino oscillation phenomena and needed only when
massive neutrinos are Majorana particles [3][8]. It is assumed in this paper that there are
three and only three types of light left-handed active neutrinos, since this is suggested by the
measurement of the total decay width of the Z0 bosons [3].
The following neutrino flavor transition probability formulas in the theory of neutrino mixing
are easily derived [2],

Pmassive
να→νβ, α!β =

3#

i=1

|Uαi|2|Uβi|2 + 2Re
*#

j<k

Uα jUβkU∗αkU∗β je
−i
∆m2

k j L

2E

+
(6)

where three neutrino mass squared differences ∆m2
k j = m2

k − m2
j are defined. Uαi represent

entries of PMNS matrix with α = e, µ, τ and i = 1, 2, 3. Note that the rows of PMNS matrix
are labeled by three neutrino flavors (e, µ, τ).
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Although this three-neutrino mixing scheme neatly explains the observed flavor-changing
phenomena of neutrinos, it is still accompanied by some unsolved problems, both on the
theoretical side and on the experimental side. We need a mechanism that generates the tiny
neutrino masses, which requires appropriate extension in the SM such as existence of heavy
neutrinos in the seesaw mechanism [9]. The absolute values of neutrino masses are also yet to
be confirmed, for which we can only give nonzero upper bounds inferred from cosmological
observations (such as cosmic microwave background and Type Ia Supernovae) [10], energy
of electrons from nuclear beta decay [11], and the half life of neutrinoless double beta decay
(0νββ) [12]. We do not know whether massive neutrinos are Dirac particles or Majorana
particles, awaiting hints from neutrinoless double beta decay that can happen only if massive
neutrinos are Majorana particles [13]. The list goes on. There are much more problems
existing in our way to a full understanding of massive neutrinos.
Although the neutrino mixing model is sufficient to produce flavor-changing phenomena of
neutrinos, it is logically not a necessary condition. The possibility of massless neutrinos is
still not ruled out because the direct hint about the absolute scale of neutrino masses currently
known is upper bound instead of nonzero lower bound. Note that three nonzero neutrino mass
squared differences ∆m2

i j, appearing in the neutrino transition probability formulas mentioned
above, are model-dependent thus cannot be used to rule out massless neutrinos. From the next
section, we look at the flavor-changing behavior of neutrinos from another point of view. This
trial is not meant to challenge the mainstream theory of neutrino mixing, but to explore some
new possibilities.

2 The Model

Neutrinos (anti-neutrinos) are understood as massless left-handed (right-handed) particles in
our phenomenological model, whose flavor-changing behaviors are due to their interactions
with some undetected particles pervading throughout the Universe instead of their own in-
trinsic properties. In the following analysis, the formulas of neutrino transition probabilities
in our model are given, which mathematically have the same form as those in the theory of
neutrino mixing.
We propose that there are 4 types of undetected massive spin-0 particles filling the Universe
together with their anti-particles. Each particle carries a specific combination of three lep-
tonic numbers. For convenience of reference, we call these particles R and their anti-particles
R̄. The letter R stands for reservoir, since these undetected particles together act as a reser-
voir of leptonic numbers. Subscripts are introduced to specify the leptonic numbers of each
R. An Rab carries one unit of a-leptonic number and one unit of b-leptonic number, which are
opposite to those of R̄ab. For example, the electron number, muon number, and tau number
of Reµ are respectively +1, +1, and 0. Besides Reµ, Reτ, and Rµτ, which carry two nonzero
leptonic numbers, there also exists Reµτ. In our model, it is these particles that exchange lep-
tonic numbers with massless neutrinos and induce the neutrino flavor-changing phenomena,
somewhat similar to the change of color charges of quarks caused by gluons.
For convenience of reference, we list and label all 12 flavor-changing processes in Table 1.
The labels are used as subscripts for the corresponding cross sections. For simplicity instead
of theoretical necessity, we assume that each type of R has the same number density distri-
bution in spacetime, denoted by η. Note that η is a function of x ≡ (t, x), which is generally
not constant since R at least takes part in gravitational interaction. It is easy to notice that all
12 processes listed in Table 1 respect the conservation of total number of neutrinos includ-
ing sterile neutrino νs, which is important in our model to reproduce the neutrino transition
probability formulas in the theory of neutrino mixing.
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To ensure that in each flavor-changing process the outgoing neutrino and the incoming neu-
trino move in the same direction, it suffices to assign zero spin to all R. According to the
conservation of angular momentum, it is obvious that the intrinsically left-handed neutrinos
must keep the direction of propagation unchanged after scattering. Furthermore, we can show
that the outgoing neutrino and the incoming neutrino have the same amount of energy. Ob-
serve that all 12 processes are similar to Compton scattering, in which a massless photon is
scattered by a massive electron. The wavelength shift formula for the scattered photon in
Compton scattering is [14]

λ′ − λ = h
mc

(1 − cos θ), (7)

where m is the rest mass of the massive target particle; θ is the scattering angle of the massless
particle; λ′ and λ respectively represent the initial and final wavelengths of the massless
particle. In our case, the feature that the outgoing neutrino and the incoming neutrino move
in the same direction, i.e., θ = 0, implies

λ′ − λ = 0. (8)

It means that the outgoing neutrino has the same energy as the incoming neutrino. Note that
Compton’s formula works only in the inertial frame of reference in which the target particle
is initially at rest. However, since the outgoing neutrino and the incoming neutrino move in
the same direction, the energy equality will be invariant under any Lorentz transformation.
In the following analysis, ρνα with α = e, µ, τ, s represent the normalized neutrino number
densities such that

,
α ρνα = 1; σ j with j = 1, 2, ..., 12 are the cross sections of those 12

processes listed in Table 1. The flavor-changing behavior of neutrinos is described by the
following differential equation:

d
dt

$
%%%%%%%%%%%%&
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ρντ
ρνs

'
(((((((((((()
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$
%%%%%%%%%%%%&
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σ7 σ9 σ11 −(σ8 + σ10 + σ12)

'
(((((((((((()

$
%%%%%%%%%%%%&

ρνe
ρνµ
ρντ
ρνs

'
(((((((((((()
, (9)

where A is some real constant. For convenience of reference, we name the 4× 4 matrix in the
above equation by M.
It is easy to see that one eigenvalue of M is 0, which arises from the conservation of neutrinos
encoded in M. It is this zero eigenvalue that contributes the constant term in each neutrino
transition probability formula. The other three eigenvalues of M are generally nonzero. To
reproduce the nontrivial oscillating behaviour predicted in the theory of neutrino mixing,
all the remaining three eigenvalues must be nonzero and purely imaginary. It can be easily
achieved by assuming that M is skew-Hermitian, i.e., M† = −M. This condition greatly
reduces the degrees of freedom in our model and simplifies M as follows,

M =

$
%%%%%%%%%%%%&

−(σ1 + σ2 + σ7) −σ∗1 −σ∗2 −σ∗7
σ1 σ∗1 − σ4 − σ9 −σ∗4 −σ∗9
σ2 σ4 σ∗2 + σ

∗
4 − σ11 −σ∗11

σ7 σ9 σ11 σ∗7 + σ
∗
9 + σ

∗
11

'
(((((((((((()
. (10)

We denote four eigenvalues of M by (λ1, λ2, λ3, λ4), including λ1 = 0. All four eigenvalues
can be directly calculated and explicitly given. Note that in our equation cross sections are
living in the complex plane instead of the real axis. For a square matrix with all entries
being real, any purely imaginary eigenvalue must have a complex conjugate partner. Since
one eigenvalue of our 4 × 4 matrix M is zero, it is impossible for M to have three nonzero
purely imaginary eigenvalues if all cross sections are real numbers. There are some important
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features about the relations among eigenvalues of M:
1. All nonzero eigenvalues are purely imaginary as M is skew-Hermitian. They correspond
to three frequencies of neutrino transition probabilities.
2. In general, eigenvalues of M are not degenerate.
3. There exist parameters (σ1,σ2,σ4,σ7,σ9,σ11) such that (λ2 + λ3 + λ4), (λ2 + λ3 − λ4),
(λ2 − λ3 + λ4), and (−λ2 + λ3 + λ4) are simultaneously nonzero.
For each eigenvalue, we can explicitly determine its eigenvector up to a complex scale factor.
All degrees of freedom hidden in the four complex scale factors can be completely eliminated
by imposing initial condition. We represent the four eigenvectors as the following complex
column matrices: $

%%%%%%%%%%%%&

α1
α2
α3
α4

'
(((((((((((()
,

$
%%%%%%%%%%%%&

β1
β2
β3
β4

'
(((((((((((()
,

$
%%%%%%%%%%%%&

γ1
γ2
γ3
γ4

'
(((((((((((()
,

$
%%%%%%%%%%%%&

δ1
δ2
δ3
δ4

'
(((((((((((()
, (11)

which satisfy the initial condition physically corresponding to a beam of neutrinos that are
all electron neutrinos at t = 0,
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'
(((((((((((()
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$
%%%%%%%%%%%%&

1
0
0
0

'
(((((((((((()
. (12)

Then the solution to the flavor-changing equation is
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%%%%%%%%%%%%&
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ρνµ
ρντ
ρνs

'
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$
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α2
α3
α4

'
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eAηλ1t +

$
%%%%%%%%%%%%&
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β4

'
(((((((((((()

eAηλ2t +

$
%%%%%%%%%%%%&
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γ2
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'
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eAηλ3t +

$
%%%%%%%%%%%%&

δ1
δ2
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'
(((((((((((()

eAηλ4t. (13)

Note that, although the entries of column vector
-
ρνe ρνµ ρντ ρνs

.T
are all real number at

t = 0, complex entries will arise from time evolution. Fortunately, this problem can be easily
solved if we focus on the real parts. Observe that the matrix M contains the conservation rule

d
dt

#

α=e,µ,τ,s

ρνα = 0, (14)

which immediately implies

d
dt

Re(
#

α=e,µ,τ,s

ρνα ) =
d
dt

#

α=e,µ,τ,s

Re(ρνα ) = 0. (15)

We interprete Re(ρνα ) as the physical normalized number density of να . Now we can write
down the neutrino transition probability formulas in our model. Note that we have chosen
the initial condition such that the neutrinos are all initially electron neutrinos. The transition
probability formulas for processes starting from muon neutrinos and tau neutrinos can be
easily obtained by imposing appropriate initial conditions.
The transition probabilities for νe → νµ, νe → ντ, and νe → νs are respectively

Pmassless
νe→νµ = Re(α2) + Re(β2eAηλ2t) + Re(γ2eAηλ3t) + Re(δ2eAηλ4t), (16)

Pmassless
νe→ντ = Re(α3) + Re(β3eAηλ2t) + Re(γ3eAηλ3t) + Re(δ3eAηλ4t), (17)
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Pmassless
νe→νs

= Re(α4) + Re(β4eAηλ2t) + Re(γ4eAηλ3t) + Re(δ4eAηλ4t). (18)

One remarkable property of the above formulas is that they mathematically have the same
form as their counterparts in the theory of neutrino mixing. As we can notice, the phase
factors Im(Aηλit) with i = 2, 3, 4 in our model do not necessarily match the physical inter-

pretation of the phase factors −∆m2
k jL

2E with 1 ≤ j < k ≤ 3 in the theory of neutrino mixing,
due to the third feature of eigenvalues of M mentioned previously. Another crucial difference
between our model and the theory of neutrino mixing is that in our model the total number of
active neutrinos (νe, νµ, ντ) is not conserved during time evolution. The sterile neutrino νs is
not introduced for fun, but necessary for the existence of three nontrivial oscillation frequen-
cies in the neutrino transition probabilities.
We would like to remark that, as a special case of our model, the relation among three os-
cillation frequencies in the theory of neutrino mixing can emerge in our model if we simply
demand that all diagonal entries of skew-Hermitian M vanish. This condition further simpli-
fies matrix M as follows:

M =

$
%%%%%%%%%%%%&

0 −σ∗1 −σ∗2 σ∗1 + σ
∗
2

σ1 0 −σ∗4 −σ1 + σ
∗
4

σ2 σ4 0 −σ2 − σ4
−σ1 − σ2 σ∗1 − σ4 σ∗2 + σ

∗
4 0

'
(((((((((((()

(19)

with σ1 + σ2 + σ4 ∈ R. The nonzero eigenvalues of this matrix satisfy

λ2 + λ3 + λ4 = 0. (20)

There is no need to worry about any minus sign appearing in the oscillation phase factors
since they can be absorbed by the coefficients in front of corresponding sine functions.
We would like to make a remark for the above analysis. The first point is about some pro-
cesses which are seemingly possible to take part in neutrino flavor-changing phenomena but
unmentioned. By massaging 12 processes in Table 1, it seems that there are some other
processes, including the following typical examples:

νe → νµ + Reτ + R̄µτ , νµ + Reτ + R̄µτ → νe , (21)

Rµτ → νµ + Reτ + ν̄e , νµ + Reτ + ν̄e → Rµτ , (22)

νe + ν̄µ → R̄µτ + Reτ , R̄µτ + Reτ → νe + ν̄µ , (23)

νe + R̄eτ → νµ + R̄µτ . (24)

This list is not arbitrarily given, but has exhausted all possible types of processes we can
obtain from playing with the processes in Table 1. Since our analysis in the previous section
is based only on the processes in Table 1, it is necessary to give reasons for ignoring other
possibilities, which are as follows:
(1) νe → νµ + Reτ + R̄µτ represents those processes in which one neutrino (anti-neutrino)
becomes one neutrino (anti-neutrino), one R, and one R̄. These processes are kinematically
forbidden in our model since all R and R̄ have nonzero rest mass m. Similarly, we can see
that the inverse processes of them are also kinematically forbidden.
(2) Rµτ → νµ+Reτ+ ν̄e represents those processes in which one R (R̄) becomes one R (R̄), one
neutrino, and one anti-neutrino. In the center-of-momentum frame, it is obvious that such
processes and their inverse processes are all kinematically forbidden.
(3) νe+ν̄µ → R̄µτ+Reτ represents those processes in which a pair of neutrino and anti-neutrino
with different flavors annihilate and produce a pair of R and R̄ with different combinations of
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Table 1. Labels of neutrino flavor-changing processes

Label Process
1 νe + Rµτ → νµ + Reτ

2 νe + Rµτ → ντ + Reµ

3 νµ + Reτ → νe + Rµτ
4 νµ + Reτ → ντ + Reµ

5 ντ + Reµ → νe + Rµτ
6 ντ + Reµ → νµ + Reτ

7 νe + Rµτ → νs + Reµτ

8 νs + Reµτ → νe + Rµτ
9 νµ + Reτ → νs + Reµτ

10 νs + Reµτ → νµ + Reτ

11 ντ + Reµ → νs + Reµτ

12 νs + Reµτ → ντ + Reµ

leptonic numbers. According to the conservation of angular momentum, the incoming pair
of neutrino and anti-neutrino must move in the same direction so that the total spin angular
momentum vanishes. Then there exists an inertial frame of reference in which the total en-
ergy of them is less than 2mc2. Hence, this type of processes is kinematically forbidden. It is
easily understood that the same conclusion can be made for their inverse processes.
(4) νe + R̄eτ → νµ + R̄µτ represents those processes in which one neutrino (anti-neutrino)
and one R̄ (R) interact and exchange leptonic numbers. For such processes only the incom-
ing neutrino and the outgoing neutrino are indirectly known, therefore these processes are
indistinguishable from those processes listed in Table 1. We can effectively regard them as
forbidden processes and own their contributions all to corresponding processes listed in Ta-
ble 1.
Another assumption we have implicitly made in the analysis of our model is that the number
density η is treated as a constant independent of position in spacetime while solving differen-
tial equation, which is generally not true since the massive particles R (and their anti-particles
R̄) at least take part in the gravitational interaction. This assumption should be relaxed when
the propagation distance of neutrinos is comparable with the size of large scale structure of
the Universe and when the propagation time of neutrinos is comparable with the age of the
Universe. As particles that only participate in the neutrino flavor-changing scattering pro-
cesses and gravitational interaction, R and R̄ can be deemed to be new candidates of dark
matters.
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3 Discussion

Besides reproducing the neutrino transition probability formulas, our phenomenological
model gives the following implications showing essential difference from the theory of neu-
trino mixing.
The first implication is the existence of exactly one type of sterile neutrino coupling with ac-
tive neutrinos via Compton-like scattering processes involving R and R̄. It is the experimental
verification of the existence of three nonzero oscillation frequencies in the neutrino transition

probabilities, interpreted as
∆m2

k j

2E in the theory of neutrino mixing, that requires the dimension
of matrix M in our model to be 4 × 4. In contrast, if neutrinos are allowed to oscillate among
sterile type and active types in the theory of neutrino mixing, there will be more than three
oscillation frequencies in the neutrino transition probabilities. Since in our model active neu-
trinos can become sterile neutrinos during propagation, the second implication is obvious:
the total number of active neutrinos during propagation is generally not conserved. This im-
plication can in principle be tested by precise measurement of total flux of active neutrinos
from the Sun or nuclear reactors. The third implication is about the relation among three
oscillation frequencies, which in the theory of neutrino mixing is inferred from the interpre-

tation of oscillation frequencies
∆m2

k j

2E and the self-evident equality ∆m2
31 = ∆m2

32 + ∆m2
21. As

mentioned previously, for the skew-Hermitian matrix M in our model, there exist parameters
(σ1,σ2,σ4,σ7,σ9,σ11) such that (λ2+λ3+λ4), (λ2+λ3−λ4), (λ2−λ3+λ4), and (−λ2+λ3+λ4)
are simultaneously nonzero. The fourth implication is that neutrino oscillation has nontrivial
spacetime dependence, determined by the distribution of R and R̄ in the Universe, which is
nonnegligible for long-range propagation of neutrinos. This property may shed some light on
the role of dark matters in the large scale structure of the Universe. Furthermore, the unusual
complex nature of scattering cross sections in our model may hint at something deeper behind
the flavor-changing scattering processes.
It is worth noticing that the smallness of neutrino masses and the neutrino mass hierarchy are
no longer problems in our model since neutrinos return to their roles in the SM as massless
fermions. Moreover, these massless neutrinos are Dirac particles instead of Majorana parti-
cles because they have chirality opposite to their corresponding anti-particles, which implies
the impossibility of neutrinoless double beta decay.

4 Conclusion

We have given a phenomenological model in which neutrinos (anti-neutrinos) are all massless
left-handed (right-handed) particles as assumed in the SM. There are totally three types of
active neutrinos (νe, νµ, ντ) and one type of sterile neutrino (νs) in our model, which interact
with four types of undetected spin-0 massive particles via Compton-like scattering processes
and change flavors during propagation. Although the neutrino transition probability formulas
in our model are similar to those in the theory of neutrino mixing, two models are essentially
different from each other, as shown by the implications of our model mentioned above.
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