
Computational techniques for efficient

Bayesian analysis of the Cosmic

Microwave Background

Thesis submitted for the degree of Philosophiae Doctor

by

Dag Sverre Seljebotn

Institute of Theoretical Astrophysics
University of Oslo

2017

Preface

In 2009 ESA launched the Planck space observatory. For four years it scanned
the microwave frequencies in all directions around us. Goal: Gather the best
measurements to date of the Cosmic Microwave Background (CMB). The CMB,
originating from roughly 380,000 years after the Big Bang, is our richest source
of data for learning about the universe as a whole, and enables us to check
cosmological hypotheses and estimate cosmological parameters. CMB mea-
surements of ever-increasing sensitivity and resolution has turned modern cos-
mology from a theory-driven science to a data-driven science.

As the amount of available CMB data explodes, the statistical modelling
and computational algorithms need to follow suit. This thesis advances the
state of the art in two areas: 1) New algorithms for CMB component seperation;
and 2) novel approaches for computing the Spherical Harmonic Transform.

As seen by Planck and other telescopes, the CMB radiation is contaminated
by radiation from matter in the Milky Way on the same microwave frequencies.
Eriksen et al. (2008) developed an elegant framework for component seperation;
providing estimates of the pure CMB disentangled from this foreground radia-
tion. As it stood, the method could only be applied to the data from Planck
if the data was first downgraded to lower resolution, throwing away more than
90% of the data in the process. This thesis presents a novel algorithm for multi-
resolution component seperation that enables analysis of Planck data at full
resolution. The estimates produced are still exact, faithfully propagating the
instrumental noise in every pixel to the final parameter condidence intervals
– what has changed is that the estimates are computed between twice as fast
(full sky coverage) to 1000s of times faster (mask applied)1.

The computational bottleneck of the CMB component seperation problem
is the Spherical Harmonic Transform (SHT); the spherical analogue to the
much more popular Fourier transform. This thesis implements an experimental
research code for approximate SHTs that beat the speed record for computing
the SHT by a factor of 2x–6x, and presents a novel strategy for computing
the SHT on the GPU2. The author also contributed to the development of
the Libsharp SHT library, which is included with the very popular HEALPix
library, used by thousands of researchers every day3.

1Paper II, Paper VI
2Paper III, Technical Report I
3Paper IV

3

Acknowledgements

This thesis is dedicated to my wife Åshild and my children Eskil and Astrid.

Thanks to my supervisor Hans Kristian Eriksen for a great time. If I had only
followed your advice more often I would have gotten twice as much done in half
the time.

Thanks to Martin Reinecke for many discussions about spherical harmonic
transforms, Ingunn Wehus for helping me get hold of and understand Planck
data, Kent-André Mardal and Mikolaj Szydlarski for being my guides in the
world of linear solvers, Jeff Jewell for chasing many crazy ideas with me, Mark
Tygert for being enthusiastic about my work on his algorithm, and Xing Cai
for co-supervising.

Thanks to my office-mates and co-group-members over the years; Phil Bull,
Unni Fuskeland, Eirik Gjerløw, Kristin Mikkelsen, Sigurd Næss, Benjamin
Racine and Tone Ruud, for all the things I have learned from you and for
making my time at the institute enjoyable.

5

Contents

I Synopsis 9

1 A primer on CMB analysis 11
1.1 Cosmology and the CMB . 11
1.2 The microwave sky . 13
1.3 CMB extraction . 19
1.4 Spherical harmonic transforms 20
1.5 Cosmological parameters . 21
1.6 Polarization . 24

2 Bayesian CMB analysis with Commander 27
2.1 Basic Gibbs sampling . 27
2.2 Constrained realizations of the CMB 30
2.3 Modelling foreground components 31
2.4 Multi-resolution component separation 34
2.5 Priors on component amplitudes 34

3 Preconditioning the CR system 39
3.1 Iterative linear solvers . 39
3.2 A closer look on A . 41
3.3 Preconditioning strategies for the CR system 47
3.4 Preconditioning in spherical harmonic domain 48

4 Spherical harmonic transforms 53
4.1 Wavemoth: Fast SHT by matrix compression 53
4.2 libsharp: The standard SHT library 57
4.3 Data ordering in SHTs . 58
4.4 SymPix: A grid for efficient sampling of rotationally invariant

linear operator . 59
4.5 Legendre transforms on the GPU 60

5 Application to Planck 63
5.1 Planck 2013 results . 63
5.2 Planck 2015 results . 65
5.3 Planck 2017 results . 66

6 Summary and outlook 69

7

CONTENTS

A Bibliography 73

II Papers 77

Paper I:
A multi-level solver for Gaussian constrained CMB realiza-
tions 79

Paper II (submitted):
Multi-resolution Bayesian CMB component separation through
Wiener-filtering with a pseudo-inverse preconditioner 95

Paper III:
Wavemoth – Faster spherical harmonic transforms by butterfly
matrix compression 111

Paper IV:
Libsharp – spherical harmonic transforms revisited 125

Paper V:
SymPix: A spherical grid for efficient sampling of rotationally
invariant operators 137

Paper VI (draft):
Planck 2017 results. II. Low Frequency Instrument data pro-
cessing 149

Paper VII (draft):
Planck 2017 results. IV. Diffuse component separation 175

Paper VIII:
CMB likelihood approximation for banded probability distri-
butions 215

Technical Report I:
Efficient spherical harmonic transform codes for CPU and GPU227

8

Part I

Synopsis

9

Chapter 1

A primer on CMB analysis

1.1 Cosmology and the CMB

As one looks out into the universe, one observes electromagnetic radiation
(light) that has travelled for a very long time. Looking past all of the stars and
galaxies, way in the back, one can see a wall of electromagnetic radiation in the
microwaves. This radiation originates from roughly 380,000 years after the Big
Bang, at the moment where the universe cooled sufficiently for electrons to bond
together with protons to form hydrogen, thus marking the start of a translucent
universe. This Cosmic Microwave Background radiation (CMB) was discovered
by accident in 1964 by Arno Penzias and Robert W. Wilson (Penzias and
Wilson, 1965) while they were testing new radio equipment for Bell Labs. The
remarkable thing they noted about the CMB is that it was exactly the same no
matter where on the sky they pointed their antenna. This discovery established
the Big Bang theory, and Penzias and Wilson were awarded the 1978 Nobel
Prize in Physics.

While the most important feature of the CMB is simply its existence, it
was theorised that it should have tiny fluctuations originating from the uneven
distribution of matter in the universe. The NASA-funded Cosmic Background
Explorer (COBE) Differential Microwave Radiometers (DMR) launched in 1989
and made the first observation of these so-called anisotropies (see figures 1.1,
1.2). The intensity of the CMB is given in Kelvin; and while the main back-
ground is at 2.73 Kelvin, the anisotropies on top are at the 100µK level. Thus
observing the anisotropies requires highly sensitive instruments.

After COBE there has been a large number of CMB experiments, each
pushing the boundaries in sensitivity and resolution, leading to an explosion in
the available data. Most of the experiments focus on smaller patches of sky,
using telescopes on the ground or in balloons. This thesis will primarily focus
on full sky missions, of which there are three: After COBE, NASA funded
the Wilkinson Microwave Anisotropy Probe (WMAP) which launched 2001,
and ESA funded the Planck space telescope which launched in 2009. Figure
1.2 shows the gradual increase in resolution from these three missions. As the
resolution and sensitivity is increased, new computational techniques must be

11

CHAPTER 1. A PRIMER ON CMB ANALYSIS

Figure 1.1: An estimate of the CMB anisotropies over the full sky, made by the Planck
team. The anisotropies are simply the difference between the measured temperature
in a direction and the mean CMB temperature of 2.725 K. The measurements are in
every direction around us in the universe, i.e. a sphere. This so-called “map”, and
every other spherical map in this thesis, is displayed in the Mollweide projection. The
Mollweide projection gives an accurate representation of areas and scales, at the expense
of having inaccurate angles and shapes. How to make this estimate of the CMB and the
limitations inherent in this image is covered later in this thesis. This image is taken from
a ESA/Planck 2013 press release.

Figure 1.2: Comparison of resolution of temperature anisotropies from fullsky CMB
missions. The patches cover 10 square degrees of sky. Illustration by NASA/JPL-
Caltech/ESA.

.

12

CHAPTER 1. A PRIMER ON CMB ANALYSIS

developed for analysis of the data. The data recorded by Planck is still being
analysed, and this effort is the backdrop of this thesis.

It is believed that Planck has retrieved all of the information that is available
in the temperature anisotropies. However, there is additional information in
the polarization of the radiation (that is, the orientation of the photons as they
hit the detectors), and here the race is still very much on to make the best
observations first. If sufficiently sensitive observations are made, one should be
able to see a signature of the so-called gravity waves, which would be a huge
scientific discovery.

The importance of the anisotropies is not to give us a concrete physical map
of the early universe. Rather, the insights comes from studying the statistical
pattern of the anisotropies. How strong are large waves compared to the smaller
waves in general? From such studies much can learn much about the physical
laws that govern the universe at large. If our universe had been fundamentally
different from the one we live in, there would have perhaps have been stronger
large-scale waves and weaker small-scale waves, or vice versa.

The systematic way to study the CMB is through its power spectrum, which
is a way of estimating the intensity of each wavelength. Different cosmologi-
cal models with different cosmological parameters will predict different power
spectra, and so proposed cosmological models can be tested against the CMB
data, and the CMB data used to estimate associated parameters. Some of the
cosmological parameters tell us something about the fundamental nature of the
universe at the time the CMB was generated: How much regular matter was
present, the existence and quantity of dark matter and dark energy, and the
specific time the universe went from opaque to translucent. Then, after the
CMB photons started passing freely through the universe, they have travelled
for a long time through space; this further processes the power spectrum, and
makes it possible to learn both how long the photons have travelled, and prop-
erties of the space-time through which they went. Our best estimate of the age
of the universe, 13.8 billion years, comes directly from the CMB observations
made by Planck. We return to this topic in section 1.5.

1.2 The microwave sky

If we possessed a perfect photo of the CMB, we could simply read off its power
spectrum directly (as detailed in the next section on spherical harmonic trans-
forms) and then see how well different cosmological models fits and, assuming
a model, translate the spectrum to cosmological parameters.

However, we do not possess such a perfect photo. In this section we explain
how to go from data to cosmology, with emphasis on the “Commander” Gibbs
sampling approach (Jewell et al., 2004; Wandelt et al., 2004; Eriksen et al.,
2008).

Figure 1.3 shows some full sky images taken by the Planck space observatory
on different frequencies. It is evident that there are other sources of microwave
radiation beside the CMB. In particular the horizontal band present on all
frequencies is radiation from matter within our own galaxy. Figure 1.4 displays
estimates of radiation from different types of sources (components) estimated

13

CHAPTER 1. A PRIMER ON CMB ANALYSIS

−700 700µK

(a) 30 GHz map, Planck LFI (Planck Collaboration VI, 2015)

−200 200µK

(b) 70 GHz map, Planck LFI (Planck Collaboration VI, 2015)

(c) 857 GHz, Planck HFI (Planck Collaboration VIII, 2015)

Figure 1.3: Three of the nine fullsky images of microwave radiation produced by the
Planck space observatory, in the Mollweide projection. The orientation is such that the
Milky Way galactic plane is along the horizontal axis. Comparing with 1.4, The 30 GHz
map is a sum of CMB, free-free, spinning dust and synchrotron emissions, the CMB is
dominant in the 70 GHz map outside of the galactic plane, and thermal dust emissions
dominate in the 857 GHz map. Panel (e) in 1.4 lists all the 9 frequencies that Planck
scanned. In addition to the intensity components shown here, each frequency also has
two polarization components, see section 1.6.

14

CHAPTER 1. A PRIMER ON CMB ANALYSIS

ACMB

-250 0 250
µKCMB

(a) CMB

As

10 30 100 300
KRJ @ 408 MHz

(b) Synchrotron emission
Aff

0 10 100 1000

cm−6pc

(c) Free-free emission

Ad

0.01 0.1 1 10
mKRJ @ 545 GHz

(d) Thermal dust emission

10 30 100 300 1000

Frequency (GHz)

1
0

-1
1
0

0
1
0

1
1
0

2

R
m

s
b
ri

g
h
tn

es
s

te
m

p
er

at
u
re

 (
µ

K
R

J)

CM
B

Thermal dust

Free-free
Synchrotron

30 44 70 100 143 217 353 545 857

S
p
in

n
in

g
 d

u
st

CO 1-0

Sum
 fg

(e) Spectral energy density (SED) of each component

Figure 1.4: Figures from Planck Collaboration X (2015) illustrating component seper-
ation. Panels (a) to (d): Estimates of some of the components of the microwave sky.
Other components present in the model are spinning dust emissions and CO emission
lines. The sum of these, plus instrumental noise and beam convolution effects, make up
the observed microwave sky shown in figure 1.3. The CMB is obviously mis-estimated
in the galactic band, this is taken into account during further analysis as described in
section 1.3. Panel (e): Illustration of the rough energy density on different frequencies
by different sources of microwave raditation. The functions are sometimes known from
physics, but parameters must be fitted to the data and varies a little bit between different
positions on the sky, hence bands instead of lines in this figure.

15

CHAPTER 1. A PRIMER ON CMB ANALYSIS

by Planck Collaboration X (2015); of these, the CMB originates at the edge of
the observable universe, while the remainder mainly originates from the Milky
Way.

We will not dwell on the how the galactic radition arises, but simply consider
them input given by astrophysicists to the statistical models. The important
feature is that each of the components emits different levels of energy on dif-
ferent frequencies, as indicated in panel (e) of figure 1.4. The fundamental
behaviour of this “spectral energy density” (SED) is sometimes known from
physics, although for some components one or more parameters has to be esti-
mated.

For instance consider thermal radiation from dust clouds (component (d) in
the figure). Depending on the nature of the dust particle, the SED slope, shown
by the green band in (e), will the a bit different. Therefore Planck Collaboration
X (2015), in addition to the energy density, also estimate a different slope
parameter for each position on the sky for some of the components. Naturally
this is also an approximation, but it is much better than assuming a single
average parameter for the full sky.

Comparing figures 1.3 and 1.4, notice that the CMB component can be seen
clearly in the 70 GHz channel, and also faintly as part of the background in the
30 GHz channel. In the latter case there is also a strong presence of synchrotron
emissions, free-free emissions and spinning dust emissions. In contrast, the 857
GHz channel is almost a direct image of the thermal dust emissions. Planck
Collaboration X (2015) describes each of these components in further detail.

One could now look at the power spectrum of the 70 GHz channel away
from the galactic plane, and use that to make crude estimates of cosmological
parameters. Our estimates will however be much better if we use all the data
we have to reconstruct the underlying CMB. Consider that while the 857 GHz
image in figure 1.3 contains no information about the CMB directly, it does
contain indirect information about the CMB because it provides a good map
of where dust is located around us. What we learn about dust in the high-
frequency channels we can extrapolate to the other channels, so that they in
turn become more informative about the CMB. A major part of this thesis is
dedicated to developing numerical algorithms for such component separation.

For successful component seperation we need to understand both the phys-
ical effects processing the CMB, and the data gathering process, as illustrated
in figure 1.5. Below we will focus on three aspects: Foregrounds, instrumental
noise, and beam convolution.

Instrumental noise and beam convolution are best understood by describing
how the images of the microwave sky were captured. The images in figure 1.3
specifically comes from the Planck space observatory, which scanned the sky
from the L2 Lagrange point from 2010 to 2013. It spins around its own axis
so that its detectors points in different directions, covering all of the sky over
the course of half a year. The resulting data can be viewed in two ways. First
you have the detector values as a function of time, so called Time-Ordered
Data (TOD). Combining these with where the detectors pointed at the given
time one gets the spherical images or maps. Thus the instrumental noise is
fundamentally connected to the timestamp of each detector value, not the

16

CHAPTER 1. A PRIMER ON CMB ANALYSIS

Mono- and dipole

Fore
grou

nds

Beam smoothing

Instr
umenta

l noise

Pixeli
zatio

n

Figure 1.5: Schematic illustration of how the underlying CMB anisotropies are processed
on its way to our data files. The Commander approach, described in chapter 2, is to
model this processing of the signal, then use Bayesian statistical technqiues to recover
the statistical properties the original CMB. The mono- and dipole is not discussed much
in this thesis as they are currently removed in a pre-processing step.

Figure 1.6: Example of Time Ordered Data (TOD), that is, detector value as a function
of time. The figure is taken from Planck Collaboration X (2014). This example is from
a single bolometer at the 143 GHz channel. The spikes come from energetic particles
hitting the bolometer and causing a sudden increase in temperature, it then takes some
time to cool down after each particle hit. These spikes are fitted to templates (red line);
then these templates are a) subtracted and b) flags that some data should be thrown
away (lines at the bottom of the plot). Some of the remaining variation on top of the red
lines is instrumental/electrical noise; the properties of this noise is estimated from the
TOD, but it cannot be subtracted. Below all these sources of noise, there is a response
to varying levels of microwave radiatation as the detector points in different directions
on the sky. Since the microwave radiation stays the same in a given direction, while
noise is independent of the direction of the instrument, the noise is reduced by scanning
the same spot many times.

.

17

CHAPTER 1. A PRIMER ON CMB ANALYSIS

Figure 1.7: The standard deviation of the instrumental noise in each pixel for one of
several 143 GHz maps produced by Planck Collaboration VIII (2015). Units in µK. This
so-called “RMS map” is a primarily a function of the scanning strategy of the instrument;
the two blue regions are aligned with our solar system and have been scanned a lot of
times. Another contributing factor is data filtering, as shown in figure 1.6. Finally there
is variation in instrumental noise properties over time.

.

−2 −1 0 1 2

Cross-scan [◦]

−2

−1

0

1

2

C
o-

sc
an

[◦
]

100-1

100-2

100-3

100-4

143-1

143-2

143-3

143-4

143-5

143-6

143-7

217-5

217-6

217-7

217-8

217-1

217-2

217-3

217-4

353-3

353-4

353-5

353-6

353-1

353-2

353-7

353-8

545-1

545-2

545-4

857-1

857-2

857-3

857-4

Figure 1.8: Beams reconstructed from scans of Mars, Saturn and Jupiter. Figure taken
from Planck Collaboration VII (2015). The countours are logarithmic at -3, -10, -20,
and -30 dB from the peak. Note in particular that the higher frequencies (857 GHz)
have smaller beams than on lower frequencies (100 GHz). Note that in the final map
data, each pixel will have been scanned many times, with the beam in several different
orientations, which gives a certain averaging effect. In analysis of the kind done in this
thesis, we usually aproximate these beam profiles with radially symmetric beams. Beam
convolution can then be done in spherical harmonic domain. An alternative would have
been to make use of the code of Mitra et al. (2011) which computes an effective beam
for each pixel, but this is computationally more expensive.

.

18

CHAPTER 1. A PRIMER ON CMB ANALYSIS

position on the sky; unlike 2D images taken in a single instant.
Planck contains two different types of detectors: The High Frequency Instru-

ment (HFI) using bolometers, and the Low Frequency Instrument (LFI) using
radiometers. Each has their own unique noise characteristics. For instance,
bolometers has a problem with getting hit by relativistic particles, which de-
posits some energy that temporarily inflate measurements. In general instru-
mental noise is correlated in time. Much effort is spent analysing and filtering
the data in time-domain (see figure 1.6). After projection of the time-ordered
data to the spherical maps we in general assume i) that correlations between
different pixels can be neglected, ii) that the noise contribution in each pixel is
Gaussian, distributed with a known standard deviation per pixel given in the
so-called RMS map, as seen in figure 1.7.

The final effect to take into consideration is the Point Spread Function,
or, as it is commonly referred to in the CMB community, the beam. When
a detector points in a given direction it doesn’t observe in an infinitely small
point, but rather integrates over a “blob” of a given size. Each detector has a
specific beam associated with it; the ones used in the HFI part of Planck can be
seen in figure 1.8. In the final maps, each pixel is a sum of many observations
within the same pixel, and each observation will have the detector (and thus
beam) oriented in a different way. Ideally one would try to observe each pixel
in as many orientations as possible, to get a nice symmetric beam. In the case
of Planck pixels tend to only be observed in two main orientations, leading to
somewhat slanted effective beams. Symmetric beams must often be assumed
anyway for computational reasons.

The important point to take away about beams at this point is that they
are by nature different for every frequency. While the 30 GHz channel of figure
1.3 was observed with a beam with a Full Width Half Max (FWHM) of 32
arc minutes, the 857 GHz channel has a much smaller beam of only 3.67 arc
minutes. This translates directly into higher resolution maps for the higher-
frequency channels.

1.3 CMB extraction

So, how does one move from the observed microwave sky of figure 1.3 to an es-
timate of the CMB such as the one in figure 1.1? There are multiple techniques
in use, with different philosophies and trade-offs. The official Planck releases do
not even pick a single estimate, but present four different ones, named NILC,
SEVEM, SMICA, and Commander (see chapter 5).

The focus of this thesis has been to improve the Commander method, first
described by Jewell et al. (2004), Wandelt et al. (2004) and Eriksen et al. (2004),
and subsequently developed in Eriksen et al. (2008). The main approach is
simply to translate what was just laid out in the previous section as accurately
as we can into a statistical model; then use Bayesian statistics and Monte
Carlo Markov Chain (MCMC) methods to recover posterior distributions for
each cosmological parameter. A strength of this approach is that it should in
principle give the most correct answer in the end. The uncertainty in each pixel
due to instrumental noise, and any other uncertainties one cares to introduce

19

CHAPTER 1. A PRIMER ON CMB ANALYSIS

(a)
(b)

Figure 1.9: A spherical image (a) can be represented as a sum of spherical harmonic
basis functions Y`m(n̂) (b). Plotted here are the real parts of Y2,1(n̂), Y4,4(n̂), Y10,6(n̂),
and Y30,4(n̂). Higher ` corresponds to more waves / higher frequencies / smaller scales.

such as in educated guesses in the model, are faithfully propagated all the way
through to the the posterior distribution of the final cosmological parameters.

The downside of such modelling is that if the assumptions one make about
the physics are too wrong, one can end up with biased estimates. The Bayesian
framework leads to imposing an astrophysical prior on the emissions from syn-
chroton, dust, and so on; both implicitly by stating their existence, and explic-
itly by putting some statistical priors on their properties. Whether introducing
such astrophysical knowledge from the outside and letting them affect the final
parameter estimate is an advantage or disadvantage may be a matter of per-
spective, and of how confident we are in our knowledge of astrophysics and of
instrumental effects.

1.4 Spherical harmonic transforms

The key to linking cosmological models with CMB observations is to look at
the angular power spectrum of the CMB. How strong are the longer waves
versus the shorter waves? Usually one associates the power spectrum with
the Fourier transform, but those are only defined for Euclidian spaces, not on
spheres. The corresponding tool for analysing spherical images is the spherical
harmonic transform (SHT). Assume that we have a real field on the sphere
f(n̂), with n̂ a unit vector on the sphere. Then we can represent the same field
using the spherical harmonic coefficients a`m,

f(n̂) =
∞∑

`=0

∑̀

m=−`
a`mY`m(n̂), (1.1)

where Y`m(n̂) are the spherical harmonic basis functions. See figure 1.9 for
examples of such basis functions. Computing f in a set of pixel positions n̂i,
given a`m, is known as spherical harmonic synthesis. The opposite action of
spherical harmonic analysis is given by

a`m =

∫
f(n̂)Y ∗`m(n̂)dΩ (1.2)

20

CHAPTER 1. A PRIMER ON CMB ANALYSIS

where dΩ indicates integration over the sphere. In one sense these transforms
are analogous to Fourier transforms; representing an image with a set of orthog-
onal basis functions that allow us to directly inspect and filter on frequencies.

The angular power spectrum is defined as the statistical variance of these
coefficients, averaged over m,

C` = Var(a`m). (1.3)

Assuming that the mean is zero, which is usually the case, a simple estimator
is the observed power spectrum,

σ̂2
` =

1

2`+ 1

∑̀

m=−`
a∗`ma`m. (1.4)

Cosmological theory predicts a certain power spectrum C` for the CMB, and
it is this that allows us to build a bridge from CMB observations to cosmology,
and which makes SHTs so important to CMB analysis.

In contrast to Euclidian spaces, there is no grid on the sphere such that
all grid points have the same distances to their neighbors. Therefore several
spherical grids are in active use, each with individual strengths and weaknesses.
Most commonly used by far in the CMB community is the HEALPix grid
(Górski et al., 2005), which has the advantage that one can define pixel borders
such that all pixels have the same area, as well as a convenient nesting property
where each such pixel can be divided into four child pixels. The trade-off paid
is that quadrature rules for equation (1.2) can only be approximate. For other
grids there exists quadrature rules that perfectly recover a`m.

The discrete Fourier transforms are convenient to work with numerically as
a simple basis change from Rn to Rn. No equivalent concept exists for SHTs,
and one must work with approximations to the continuous transforms. This
follows from the irregular spacing of grid points on the sphere, which ensures
that some parts of the grid will always see higher frequencies than other parts.
One may either use more pixels than spherical harmonic coefficients, and a
spherical harmonic signal will survive a round-trip to pixel domain, but not
vice versa – or, one may use more spherical harmonic coefficients than pixels,
and have the opposite problem.

The currently known algorithms for SHTs are slow compared to the FFT.
One part of this thesis is the development of improved computational techniques
and code for computing SHTs; we will return to this in chapter 4.

1.5 Cosmological parameters

To recap, we have covered observations of the microwave sky, how the CMB
can be extracted from observations of the microwave sky, and how we can get
hold of a power spectrum which tells how strong the large waves are relative to
shorter waves in the CMB. In order to link this to astrophysical insights, what
remains is a cosmological model that predicts a CMB power spectrum, such as
the one displayed in figure 1.10.

21

CHAPTER 1. A PRIMER ON CMB ANALYSIS

0

1000

2000

3000

4000

5000

6000

D
T
T

`
[µ

K
2
]

30 500 1000 1500 2000 2500
`

-60
-30
0
30
60

∆
D
T
T

`

2 10
-600
-300

0
300
600

Figure 1.10: The Planck 2015 CMB power spectrum. The blue dots, with 1σ uncer-
tainties, shows estmates of how strong each frequency is in the full-sky CMB shown in
figure 1.1. The red line is the one predicted by the best-fit cosmological model, after 5
parameters have been fit. Figure from Planck Collaboration XIII (2015).

Cosmology is the science of how our universe — or all of space-time — has
evolved since the Big Bang, some 13.8 billion years ago. According to Ein-
stein’s Theory of General Relativity (GR), the presence of energy and matter
is coupled to space and time itself, and as the universe expands, space and
energy and time evolve together. The current picture is that right after the
Big Bang there was a very short period of exponential expansion (known as
“inflation”), followed by a deceleration in the expansion of the universe, while
about 5 billion years ago the expansion of the universe started to accelerate
again.

The simplest model that currently best fits the available data is known as
the ΛCDM model, where the energy of the universe is currently present in about
5% regular matter, about 26% cold dark matter (CDM), which is something
we do not know what is and that we cannot see, but which interacts through
gravity with regular matter; and finally about 70% dark energy (Λ), which is
again something we do not know what is, but which has to be plugged in for the
equations to match the data. The model is however dynamic; the same model
predicts that right after Big Bang the majority of the energy was present in
photons, not matter nor dark energy.

The ΛCDM model depends on six different parameters, including, e.g., the
age of the universe. Given such parameters, it is possible to set up a set of
differential equations that govern how matter and space-time evolves. Software
such as CAMB (Lewis et al., 2000) can quickly solve these differential equations,
leading directly to a prediction of what the CMB power spectrum should look
like. The red line in figure 1.10 is such a power spectrum predicted from the
parameters that best fit the data from Planck.

22

CHAPTER 1. A PRIMER ON CMB ANALYSIS

0.04 0.08 0.12 0.16

τ

0.0200

0.0225

0.0250

0.0275

Ω
b
h

2

0.10

0.11

0.12

0.13

Ω
c
h

2

2.96

3.04

3.12

3.20

ln
(1

01
0
A

s)

0.93

0.96

0.99

1.02

n
s

1.038 1.040 1.042

100θMC

0.04

0.08

0.12

0.16

τ

0.0200 0.0225 0.0250 0.0275

Ωbh2
0.10 0.11 0.12 0.13

Ωch2
2.96 3.04 3.12 3.20

ln(1010As)
0.93 0.96 0.99 1.02

ns

Planck EE+lowP

Planck TE+lowP

Planck TT+lowP

Planck TT,TE,EE+lowP

Figure 1.11: Constraints for the 6 cosmological parameters fitted in Planck 2015. Figure
from Planck Collaboration XIII (2015).

23

CHAPTER 1. A PRIMER ON CMB ANALYSIS

We do not know up front what the values of the six parameters are, that
is something we want to learn from the data. A convenient way to fit the
parameters to the data is by using Monte Carlo Markov Chain (MCMC); Cos-
moMC (Lewis and Bridle, 2002) is a popular code for this purpose. Figure 1.11
summarizes such an MCMC run that fits the ΛCDM model to recent Planck
data. In addition to best fit values and confidence intervals, we see whether
our belief about a parameter should be strongly correlated with or independent
from what we believe about another parameter.

1.6 Polarization

So far we have only discussed the radiation intensity of the microwave sky.
However, there is additional data available. The photons arriving at the de-
tectors has an orientation in a specific plane, and by using polarization filters
one can detect this orientation. It turns out that different cosmological and
astrophysical effects leaves signatures in the polarization.

Concretely, instead of representing the radiation on each position on the
sky as a single temperature scalar T , we represent the radiation with a tuple
(T,Q,U), where Q and U indicate the amplitude of polarization in different
directions. These quantities are again related to the E power spectrum and the
B power spectrum, which, given parameters, can be predicted by CAMB just
like the temperature power spectrum. There are also “cross power spectra”, so
that we in total have six power spectra: TT, EE, BB, TE, TB, EB.

The E-mode power spectrum is actively used to constrain cosmological pa-
rameters. In figure 1.11 the different colors indicate which power spectra were
used to constrain the parameters; note that TT+TE+EE (blue) has tighter
constraints than TT alone (red).

The smaller scales (` > 200) of the B-mode power spectrum can be used
to measure lensing, that is, to what degree the light has been warped on its
way from the CMB background to us by the mass of clusters of galaxies. Sev-
eral ground based telescopes, such as South Pole Telescope (SPT), Atacama
Cosmology Telescope (ACT), Background Imaging of Cosmic Extragalactic
Polarization (BICEP) and POLARBEAR, have observed this effect.

It has been predicted that the inflationary era have caused a signature of
gravitational waves in the CMB. If it is there, it will take the form of a peak
in the CMB BB power spectrum on large scales (low `). None of the current
telescopes are sensitive enough to detect this peak1. Detection of such a peak
would be a major scientific discovery, and the chase for this discovery is the
primary motivation behind the next generation of CMB telescopes.

Polarization has not been treated much in this thesis, but most of the re-
sults discussed generalize in a straightforward manner from working with only
a temperature map to working with three scalar maps instead. For spherical
harmonics there are special “spin-weighted” transforms which are used to trans-
form (E,B) in pixel domain to (Q,U) in spherical harmonic domain; these are

1Much fuss was made in 2014 when BICEP2 claimed detection of gravitational wave signa-
tures in the CMB, but this was later shown to be radiation from foregrounds (BICEP2/Keck
Collaboration and Planck Collaboration, 2015).

24

CHAPTER 1. A PRIMER ON CMB ANALYSIS

Figure 1.12: A view on the polarization in the CMB, as seen by the ACT Polarimeter
(figure taken from Næss et al., 2014). The upper left pane (T) displays a small patch
of the CMB sky as displayed in figure 1.1. The panes marked Q and U displays the
polarization intensity in the way it is observed by telescope. The Q and U maps are
orientation-specific and not very useful in this form; during analysis they are transformed
into rotationally invariant E- and B-maps. The +-pattern in Q and ×-pattern in U is
typical when there is more E-power than B-power.

computationally very similar to the regular SHTs. The libsharp code (Paper
IV) has excellent support for spin-weighted SHTs, while Wavemoth (Paper III)
has no such support.

25

Chapter 2

Bayesian CMB analysis
with Commander

The idea behind the Commander code is to simply take our physical knowledge
of the microwave sky as described in section 1.2, summarize that in a statistical
model, and then solve whatever computational challenges that crops up.

Sections 2.1 through 2.3 provide an informal summary of the “Comman-
der 1” paper by Eriksen et al. (2008), which built on the foundation laid by
Eriksen et al. (2004), Jewell et al. (2004) and Wandelt et al. (2004).

A weakness of the Commander 1 approach is that it requires single reso-
lution for all sky maps. This worked well enough for data from the WMAP
mission, but in the case of Planck, the 30 GHz channel has a beam of nearly 33
arcminutes, compared to only 3.7 arc-minutes for the 857 GHz channel. Section
2.4 describes extension of the Commander framework to a joint analysis across
different resolutions, dubbed “Commander 2”. Finally, section 2.5 discusses
priors on component amplitudes, including an example on using a Conditional
Auto-Regressive (CAR) prior not previously published.

2.1 Basic Gibbs sampling
Review of Eriksen et al. (2008)

Let us first consider a single observation of the microwave sky on a single fre-
quency sky, and that the CMB is the only physical component. That is, either
we live in a universe where radiation from dust, synchrotron, etc. does not ex-
ist; or those components have been satisfactorily removed in a pre-processing
step. Our model for the observed data then reads

d = YBs + n, (2.1)

where d denotes the observed data as a set of pixels on the sphere; s is the
CMB component we seek and n is instrumental noise in each pixel. The instru-
mental noise is of course unknown, but we assume that we know its statistical

27

CHAPTER 2. BAYESIAN CMB ANALYSIS WITH COMMANDER

properties, and specifically that it is Gaussian with zero mean and a known
diagonal covariance matrix N.

Note that s is in fact a physical continuous field and has no relation to the
pixelization chosen. Because we are primarily interested in its power spectrum,
it is best to discretize s in spherical harmonic domain. This is done simply by
saying that s is a vector of spherical harmonic coefficients s`m for ` less than or
equal some L, above which we assume that all coefficients are zero; then argue
that this truncation does not impact the solution for s on smaller scales. The
signal s has a covariance matrix which we will denote S. We will assume that
the CMB is statistically isotropic and Gaussian, in which case S is diagonal in
spherical harmonic domain with the CMB power spectrum C` on its diagonal.

As earlier mentioned, the telescope does not observe infinitely small points
in the sky, but rather measures how much radiation is present within a beam
(a “cone”, although with varying density) that is moved across the sky. This
has the effect of smoothing out the signal. As long as this smoothing effect is
symmetric, which we typically assume, then the smoothing action is simply a
diagonal matrix in spherical harmonic domain, and is written as B above. We
could in principle also have applied it in pixel domain, and write BY rather
than YB, but the computational overhead would be significant.

Finally, Y represents the spherical harmonic synthesis, that is, the projec-
tion of the spherical harmonic coefficients to the observed pixels. Note that this
projection does not need to be across the full sky – often one will apply a mask
across some parts of the sky, and the corresponding pixels are then missing
from d and n and the corresponding rows missing from Y. For ground-based
telescopes only patches of the sky are observed, so that most of the sky is
masked out. For full-sky observations one may still wish to mask out partic-
ular regions of the sky where the modelling is not trusted to be an accurate
representation of the truth.

Now, what we are interested in is not in fact an estimate of the CMB signal
s as such, but the cosmological parameters, which we denote θ. These can be
fit to the CMB signal by going through the computed power spectrum function
C`(θ), shown in figure 1.10.

So, what do we know about the universe we live in given the observed data?
The Bayesian answer to that question is that we want to compute the posterior
distribution for the power spectrum,

p(C`|d) ∝ |S(C`) + N|−1/2e− 1
2d

T (S(C`)+N)−1d (2.2)

Note that while the density for d is Gaussian, but the posterior, as a function
of C`, is very much non-Gaussian. We now hit a computational issue: The S
matrix is diagonal in spherical harmonic domain, and the N matrix is diagonal
in pixel domain, but their sum S + N is dense in either domain. This means
that simply storing the covariance matrix, at O(N2

pix), would require several
petabytes of storage, and that running regular routines for dense linear algebra,
at O(N3

pix), is a computational impossibility. While solving linear systems such

as (S(C`) + N)−1d is still possible by using iterative methods, computing the
determinant |S(C`) + N| is firmly out of reach.

28

CHAPTER 2. BAYESIAN CMB ANALYSIS WITH COMMANDER

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600 700 800

C
(0)
` ← start value s(1) ← p(s|C` = C

(0)
` ,d)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600 700 800

C
(1)
` ← p(C`|s = s(1)) s(2) ← p(s|C` = C

(1)
` ,d)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600 700 800

C
(2)
` ← p(C`|s = s(1)) s(3) ← p(s|C` = C

(2)
` ,d)

Figure 2.1: Gibbs sampling. We alternative between sampling s given C` and C` given
s. Notice that the different CMB signals are slightly different near the center (galactic
plane), since a mask has been applied so that the signal is not constrained by data in
this region. Outside of the mask the signal is almost completely constrained, variations
between each sample is only on the order of the noise in each pixel.

We can, however, draw samples from the posterior by applying Gibbs sam-
pling, a form of Monte Carlo Markov Chain (MCMC). The idea is to introduce
the true CMB signal s as a proxy between the C` and the data, and alternate
between sampling s and C`.

The distribution of s conditional on a cosmological model C` is given by

p(s|d, C` = C
(0)
`) ∝ e− 1

2 (d−YBs)TN−1(d−YBs)T e−
1
2 s

TS(C`)
−1s (2.3)

∝ e− 1
2 s

T (S(C`)
−1+BTYTN−1YB)−1s

As a function of the signal s the distribution is Gaussian and the troublesome
determinant can be elided for most purposes. Drawing a sample from this
distribution is computationally tractable using methods described in the next
section.

The distribution of C` conditional on a true CMB signal s is given by

p(C`|d, s = s(1)) = p(C`|s = s(1)) ∝|S(C`)|−1/2e−
1
2 s

TS(C`)
−1s.

Note that if we already know the true CMB signal s, the observed microwave
data d can tell us no more about C`, allowing us to simplify the posterior.
Since S is a diagonal matrix, this distribution can be written as an inverse
Gamma distribution.

29

CHAPTER 2. BAYESIAN CMB ANALYSIS WITH COMMANDER

So, we have a distribution for s conditional on C` and for C` conditional
on s, creating somewhat of a circular dependency. This is where the Gibbs
sampling algorithm comes into play. We start the process with some arbitrary

power spectrum C
(0)
` , and then alternate between sampling s given C` and C`

given s, as illustrated in figure 2.1. According to MCMC theory, this process

will converge to the true distribution, so that the (C
(i)
` , s(i)) samples (after

an initial burn-in phase) comes from the joint posterior, and represents our
knowledge given the data.

2.2 Constrained realizations of the CMB
Review of Eriksen et al. (2008)

A main focus of this thesis is the computational aspects of drawing samples
of the true CMB signal s from p(s|d, C`). We will we refer these as (data-
and model-)constrained realizations. According to equation (2.3), p(s|d, C`) is
a Gaussian density, with mean vector and covariance matrix given by

E(s|d, C`) = (S−1 + BYTN−1YB)−1YTN−1d,

Var(s|d, C`) = (S−1 + BYTN−1YB)−1.

If we had less data the natural way to proceed computationally is to form the
covariance matrix and then employ the Cholesky factorization. In our case this
approach is not computationally tractable. Instead our computations revolve
around the following linear system:

Ax ≡
(
S−1 + BTYTN−1YB

)
x = b (2.4)

with
b ≡ BTYTN−1d + BTYTN−1/2ω1 + S−1/2ω2.

We will deal with two cases:

� If we let ω1 and ω2 be zero, the solution x will be the mean E(s|d, C`),
known as the Wiener-filtered map. This is particularly relevant in a
component seperation setting.

� If we let ω1 and ω2 be vectors with coefficients drawn from the standard
Gaussian distribution, the solution x will be a sample from p(s|d, C`).

Figure 2.2 illustrates the difference. Both results can be verified by simply
computing E(x) and Var(x) in the expression above.

The matrix A of equation (2.4) is still huge; the improvement over conven-
tional methods for working with the Gaussian distribution is that we do not
need to factorize it (the linear algebra equivalent of taking the square root),
but only need to solve a linear system. We can then apply iterative solvers,
which do not require access to the elements of the matrix, but solve the sys-
tem by performing a number of matrix-vector products Ax. Such products
can be efficiently computed as A consists only of diagonal matrices, scaling as
O(L2), and spherical harmonic transforms, scaling as O(L3). A direct dense
factorization would in contrast have a memory use of O(L4) and require O(L6)
arithmetic operations.

30

CHAPTER 2. BAYESIAN CMB ANALYSIS WITH COMMANDER

(a) d (b) Wiener-filtered E(s|d, C`)

(c) Random realization (d) Sample s from p(s|d, C`)

Figure 2.2: (a) The observed CMB sky, where foregrounds have been removed
using other methods, and a mask applied to regions we do not trust. (b) The
Wiener-filtered map is the most likely signal. It looks “washed out” as it lacks
power; this is analogous to how 0 is the single most likely value for a univariate
standard Gaussian. (c) Random realization added to the Wiener-filtered map. In
the region within the mask the signal is not constrained by data and consists of
entirely random fill-in from the prior p(s|C`). In the data-constrained region the
realization is at the level of the instrumental noise in each pixel. (d) The sum
of (b) and (c) is a realization of the underlying CMB signal, constrained by the
data and a cosmological model C`.

2.3 Modelling foreground components

Review of Eriksen et al. (2008)

So far we have considered a single CMB component and an observation of the
microwave sky at a single frequency. In the final model, we need to incorporate
the foreground components as well. We do this by direct extension; in addition
to scmb, we also want to use Gibbs sampling to sample from the posterior of
a thermal dust emission component sdust, a synchrotron emission component
ssynch, and so on. In general, we will refer to these as sk.

As discussed in section 1.2, the key to seperating the different components of
the microwave radiation is to look at the frequency response of each component
as seen in figure 1.4 (e). The spectral energy density (SED) of most components
is assumed to be proportional to νβ for some component-specific β. Note that
β varies across the sky. For instance, figure 2.3 displays β for the low-frequency
foregrunds as seen by Planck.

In order to avoid degenerate results it is important to provide sky maps
on at least as many frequencies as we have components in the model. Thus a
multi-component analysis is implicitly always a multi-frequency analysis too.
To simplify notation we stack together the vectors for different sky maps and

31

CHAPTER 2. BAYESIAN CMB ANALYSIS WITH COMMANDER

βlf

−3.6 −2.0

Figure 2.3: Example spectral index map taken from Planck Collaboration X (2015). This
map is fitted to the joint WMAP, Planck and 408 MHz data assuming a single combined
low-frequency component representing all of synchrotron, free-free and spinning dust.
The spectral energy density is taken to be proportional to νβ ; see figure 1.4 (e).

.

components and write

d ≡




d30GHz

d70GHz

...


 n ≡




n30GHz

n70GHz

...


 s ≡




scmb

sdust
...


 .

An extension of the single-component model of equation (2.1) can now be
written

d = Ps + n, (2.5)

where P is a block matrix that projects all of the components stacked in s to
all of the sky maps stacked in d:

P =




P30GHz,cmb P30GHz,dust . . .
P70GHz,cmb P70GHz,dust . . .

...
...


 .

We return to defining the projection operator of each component below. Fur-
ther, we assume that each component sk is assigned a Bayesian prior p(sk)
that is Gaussian, so that Var(s) = S forms a block-diagonal matrix of the
prior covariance matrices Sk. This prior is discussed further in section 2.5; as
a simple starting point, one may consider C` on the diagonal of Scmb, while
the other components have infinite-variance priors, so that S−1k = 0. Finally,
N = Var(n) is also a block-diagonal matrix of Nν , since each frequency map
is observed by seperate detectors with independent instrumental errors.

From here on we can proceed in the same way as in section 2.2. The joint
posterior of the component vectors is a Gaussian,

p(s|d,S) ∝ e− 1
2 s

T (S−1+PTN−1P)−1s. (2.6)

32

CHAPTER 2. BAYESIAN CMB ANALYSIS WITH COMMANDER

We explore the posterior by solving the linear system

Ax ≡
(
S−1 + PTN−1P

)
x = PTN−1d + PTN−1/2ω1 + S−1ω2, (2.7)

where ω1 and ω2 are once again standard Gaussian variates to draw a sample
from the posterior, or zero to find the posterior mean. Chapter 3 contains the
computational details.

The projection of the CMB component is the same as the single-component
projection in equation (2.1), so that

Pν,cmb = YνBν .

For the foregrounds, the choice of projection Pν,k depends on whether we
are working in a single resolution setup, dubbed “Commander 1”, or a multi-
resolution setup, dubbed “Commander 2”. We will now proceed with the single-
resolution setup of Eriksen et al. (2008), and return to multi-resolution in
section 2.4.

Assuming a common beam B for all data dν , we then define the foreground
components sk as vectors of pixels after beam convolution. The CMB compo-
nent scmb is still defined as a vector of spherical harmonic coefficients before
beam convolution. This choice of basis lets us use a simple diagonal matrix as
the projection operator,

Pν,k = Qν,k.

This mixing matrix Qν,k defines the response of component k on frequency ν
in each pixel; in most cases this is a diagonal matrix with (ν/ν0,k)βk on the
diagonal, for some reference frequency ν0 for the component, and where βk is
a map that varies from pixel to pixel. Finally, it should be mentioned that
sometimes templates are fitted to the maps in addition to diffuse foregrounds;
e.g., for point sources, or for the mono- and dipole. In this case the component
vector sk is template amplitudes, and Pν,k contains the templates (Eriksen
et al., 2008).

The missing piece at this point is the spectral index maps. One of the ad-
vantages of the Gibbs sampling framework is its flexibility. Additional effects
in the model, whether physical or instrumental in nature, can simply be ap-
pended to the Gibbs cycle and sampled over1. So, as the β-maps are unknown,
we append β-sampling as additional steps in the Gibbs cycle. If we have two
foreground components, “dust” and “synch”, a Gibbs cycle might look like this
(ignoring C` and other model parameters):

s
(n+1)
cmb , s

(n+1)
dust , s

(n+1)
synch ← p(sk|βk = β

(n)
k)

β
(n+1)
dust ← p(βdust|d30GHz,d70GHz, . . . , sk = s

(n+1)
k , βsynch = β

(n)
synch)

β
(n+1)
synch ← p(βsynch|d30GHz,d70GHz, . . . , sk = s

(n+1)
k , βdust = β

(n+1)
dust)

1The only problem being that if one introduces parameters that are too strongly correlated
in the posterior, convergence will grind to a standstill.

33

CHAPTER 2. BAYESIAN CMB ANALYSIS WITH COMMANDER

When sampling such β-maps the idea is to take each band and subtract what
we, at that point, assume is the contribution from the CMB and the other
foreground components. The remainder is assumed to be the foreground of
interest in isolation, only contaminated by instrumental noise. Furthermore we
have conditioned on the amplitude of the component, and only sample β in
isolation. Further details can be found in Eriksen et al. (2008).

2.4 Multi-resolution component separation
Paper II, Paper VII

While the basis and projection operator chosen for the signal components sk in
the previous section are convenient for implementation and computation, they
require a common resolution on all input data. In reality, observations of the
microwave sky have very different resolutions. For the analysis in the Planck
2015 release the resolution spanned from 3.7 arc minutes to 1 degree, measured
in the full-width half-max (FWHM) of the beam.

In Commander 2 we change this so that the analysis is inherently multi-
resolution. Recall that in the previous section we defined the projection oper-
ator as

Pν,k = Qν,k (single-resolution),

with foreground components sk defined in pixel domain after beam convolution.
We now instead define sk as being the coefficients of the spherical harmonic
expansion of the real, unconvolved foreground emissions, and define projection
to the sky as

Pν,k = YνBνQ̃ν,k (multi-resolution). (2.8)

Here, Bν contains the spherical harmonic transfer function specifically for the
beam that applies to input sky map ν. Further the pixelization may differ, and
with Yν we denote projection to the specific pixelization in use for sky map ν.
This means that for WMAP data, Yν is using the Nside = 512 HEALPix grid,
for Planck LFI the Nside = 1024 grid and for Planck HFI the Nside = 2048 grid.

The mixing matrix Q̃ν,k is now defined in spherical harmonic domain. How-
ever, mixing (that is, point-wise multiplication) is something that is naturally
defined in pixel domain, in the same manner as in the previous section, so we
define

Q̃ν,k = YT
k WkQν,kYk, (2.9)

where Yk denotes spherical harmonic synthesis to and YT
k Wk denotes spher-

ical harmonic analysis from an appropriate grid. The inner matrix Qν,k is
diagonal with each entry corresponding to the energy density of component k
at frequency ν in a given position on the sky.

Further details on the multi-resolution component seperation model are
given in Paper II.

2.5 Priors on component amplitudes
Paper II, Paper VII

CAR model example only published in this thesis

34

CHAPTER 2. BAYESIAN CMB ANALYSIS WITH COMMANDER

-0.2 1

(a) S−1 (C` for CMB)

-0.2 1

(b) S−1 (CAR)

Figure 2.4: The inverse prior covariance S−1 visualized in pixel domain. Priors may vary
in their specific shape, but what they will have in common is a negative ring around a
positive peak, which penalizes solutions whose smoothness properties are not as specified
by the prior. The square root matrix S−1/2, present in equation (2.10), also has this
basic shape. (a) Prior for CMB component assuming a ΛCDM power spectrum. (b)
Pixel-domain CAR prior as discussed in section 2.5

In our model each signal component vector, scmb, sdust, and so on, has an as-
sociated prior covariance matrix Sk. The role of this matrix is to couple the
value of the component in each pixel to the values of the surrounding pixels, i.e.,
it represents a prior on the smoothness of the component. Loosely speaking,
without a prior, more noise will be explained as being part of the signal. With
a prior, we assume a given smoothness in the resulting components, and abber-
ations that cause a departure from this smoothness will to a stronger degree
be explained as noise. The tendency to take the prior into account depends on
the noise characteristics – in regions with very low instrumental noise the com-
ponent posterior will lie close to the data, in regions with more instrumental
noise the component posterior will lie closer to the prior. If a mask is applied
to the data, then the use of a prior is required, and the prior alone takes effect
inside the masked-out region.

This is most easily seen if equation (3.1) is re-formulated as a weighted least
squares problem. Solving equation (3.1) for x is equivalent to finding the x
that minimizes

∥∥∥∥
[

N−1/2P
S−1/2

]
x−

[
N−1/2b + ω1

ω2

]∥∥∥∥ . (2.10)

Now, consider the shape of S−1/2 in pixel domain; it looks similar to the S−1

operators given in figure 2.4, with a negative ring around a positive peak. If
ω1 = ω2 = 0, it is clear from the expression above that the prior impose a
penalty to abrupt changes in x when finding the least squares solution. How
severe this penalty is, and how strong it is on different harmonic scales, depends
on the prior. If ω1 and ω2 are drawn randomly as described above, then the
least squares solution will be penalized to the degree that the smoothness of
the solution does not match S.

As mentioned above, in the case of CMB Gibbs sampling, where we pri-
marily seek the CMB power spectrum, we initialize the CMB “prior” C` to a

35

CHAPTER 2. BAYESIAN CMB ANALYSIS WITH COMMANDER

neutral starting point, then iterate between sampling the CMB signal and C`.
That is, S is only the prior if considering one sub-step of the Gibbs chain in
isolation.

For component seperation, where we primarily want to produce accurate
maps of both the CMB and the foreground components, we ideally do not want
to specify any priors. Especially for the CMB we typically leave it zero; except
perhaps gradually introduce smoothness at very small scales that are noisy. For
the foreground components there is a difference between regions on the sky. In
regions with a high amount of foreground radiation, the signal amplitude so
dominates the instrumental noise that the solution is essentially data-driven no
matter what the prior is. In regions with less foreground radiation a prior can
be used to ensure that one defaults to a smooth field; it can be argued that, in
the lack of a high signal, it is better to estimate using a smooth field through
the region than to fit what we know is essentially instrumental noise.

The currently implemented computational methods, including the state of
the art algorithm in Paper II, assume that the priors are isotropic; that is, that
the smoothness of the component is the same everywhere on the sky. In this
case a typical foreground prior will be estimated from how the component acts
for low ` (where the signal is strong) and extrapolated to high ` (small scales
where the signal is weak). This procedure for instance gives a prior for thermal
dust power spectrum of about Cdust,` ∝ `−2.5, and the Sdust covariance matrix
is then defined as a diagonal matrix with this power spectrum on its diagonal.

In the future, an attractive alternative is the Conditional Auto-Regressive
(CAR) model, which allows the prior to vary between different regions of the
sphere. Let si denote some pixel of the foreground component and r(si) denote
a weighted average of the pixels in a neighbourhood around si. Then, we
define the prior in each pixel conditional on its neighbourhood, p(si|r(si)), as
a Gaussian with mean r(si) and some standard deviation τi. Each pixel has its
own standard deviation τi, making this a much more flexible model than the
isotropic power spectrum. See figure 2.5 for a demonstration, and, e.g., Cressie
and Wikle (2011) for more information on the CAR model.

Computationally, CAR is a convenient model because it leads directly to the
construction of a sparse inverse covariance matrix S−1. Computationally this is
the biggest hurdle to solving the CR equation of (3.1). The other required piece
is the computation of S−1/2ω2 for the right-hand side. Here one could either
i) use MCMC methods to draw a random vector S1/2ω2 by iterating through
pixels and draw each pixel from the prior conditional on its neighbours, and
then compute S−1S1/2ω2, or ii) use a CAR-like specification to define S−1/2,
and let S−1 be defined implicitly as the product S−1/2S−1/2.

36

CHAPTER 2. BAYESIAN CMB ANALYSIS WITH COMMANDER

(a) True thermal dust radiation

(b) Synthetic input data: True radiation plus instrumental noise

(c) Reconstruction using only input data and CAR prior

Figure 2.5: Example of the effect of a prior. In this case we have attempted reconstruction
the thermal dust from a single frequency band. Without a prior there is nothing to go
on in this case, and the best estimate would simply be the input data itself. By adding
a prior stating that we assume the underlying emission to be a smooth field, some of the
noise can be “removed”. In this case we have used a CAR prior, stating that every pixel
is expected to be the mean of its neighbouring pixel plus a random normal variate with
with standard deviation of τi. We have constructed the prior such that τi is larger in
regions with high emission (again using the input map, but smoothed with a Gaussian
low-pass filter). Thus the prior adds more stabilization in regions where the noise is
stronger relative to the emission, while still giving the component enough flexibility to
climb up to the “hills”. 37

Chapter 3

Preconditioning the CR
system

The compute time of the Commander code is dominated by drawing con-
strained realizations; that is, by solving the linear system of equation (2.7),
which we will refer to as the CR system. The main challenge in my PhD has
been to develop better algorithms for this problem.

Paper II presents the result of this endeavour: An algorithm for solving
the CR system that is intuitive, easy to implement, and very fast, providing
a solution of the CR system in between 5 and 40 iterations of the algorithm.
This chapter will provide some more intuition behind the CR system and how
to build solvers for it, as well as describe the relationship between Paper I
and Paper II. Finally another partial success is presented for the first time in
section 3.4 (not submitted to a journal).

An implementation of some of the algorithms presented here can be found
in the CMBCR code1. The code is experimental in nature and serves as a testbed
for development of new algorithms. CMBCR runs on a single node only, only
supports temperature analysis, and is written in a mixture of Python, Cython
and Fortran. For production analysis within the Planck project we instead use
the Commander 2 code2. Commander 2 supports polarization, is distributed
using MPI, is implemented in pure Fortran, and includes many other features
beyond solving the CR system.

3.1 Iterative linear solvers

To recap, our system reads

(S−1 + PTN−1P)x = PTN−1d + PTN−1/2ω1 + S−1/2ω2, (3.1)

which we will write simply as
Ax = b.

1https://github.com/dagss/cmbcr/
2https://github.com/hke/commander/

39

https://github.com/dagss/cmbcr/
https://github.com/hke/commander/

CHAPTER 3. PRECONDITIONING THE CR SYSTEM

Computationally we are not able to store all of the elements of this matrix,
let alone employ routines for dense linear algebra. We are however able to
efficiently apply the matrix to a vector, by applying the terms from the right
to the left: First compute Px, then N−1(Px), and so on.

Luckily there is an entire field of research devoted to solving linear systems
simply by multiplying with the system matrix. The fundamental idea is to guess
a starting vector, say, x1 = 0. Then, for each iteration, a residual ri = b−Axi
is computed, which is used to produce an updated iterate xi+1 that lies closer
to the true solution.

Note that the residual, which is readily available, is used as a proxy for the
error, ei = xtrue − xi, which is unavailable as we do not know xtrue. The key
is that since Axtrue = b,

ri = b−Axi = A(xtrue − xi) = Aei,

and since A is linear, reducing the magnitude of ri will also lead to a reduction
in the error ei. The aim of a good iterative solver is to reduce the magnitude
of the residual as quickly as possible. If the residual becomes close enough to
zero we have the solution (or one of the solutions) to the system.

In a production run the error ei is naturally unavailable, but during de-
velopment and debugging it is highly recommended to track it. This can be
done by generating some xtrue, then generate b = Axtrue, and track the error
ei while running the solver on this input. The error has better information
than the residual about where convergence is slow and where convergence is
quick. If convergence lags behind in some specific region in the sky, or on some
particular scales `, then this lag is immediately obvious from inspecting the
error, and less so by looking at the residual.

Since A in our case is symmetric and positive definite, the recommended
iterative solver is the Conjugate Gradients (CG) method (see Shewchuk, 1994,
for a tutorial). The number of iterations required depends on how clustered
the eigenspectrum of the matrix is. There are a couple of rules of thumb to
gauge convergence. The ratio of the highest eigenvalue divided by the lowest
eigenvalue is known as the condition number, and the higher this number is the
more iterations are required. Furthermore it helps to have eigenvalues clustered
in regions with relatively flat behaviour; CG then uses a few iterations for each
such cluster. In exponentially decaying parts of the spectrum the solver might
almost break down, requiring one iteration for each coefficient in the solution
vector.

Usually A has a condition number that makes the application of iterative
solvers directly intractable. The trick is to come up with a preconditioner
M that in some sense approximates the inverse matrix A−1, and then solve
the transformed system MAx = Mb instead. A good preconditioner is a
symmetric, positive definite matrix M such that Mx can be quickly computed,
and where the condition number of MA is low.

A large chunk of my research consisted of trying to come up with better
preconditioners / linear solvers for the matrix A of equation (3.1). Precondi-
tionering is the cornerstone of efficient solvers for partial differential equations
(PDEs), and many relevant papers on preconditioners only considers them in

40

CHAPTER 3. PRECONDITIONING THE CR SYSTEM

the context of such systems. However, most methods are fairly general and
much of the PDE literature can be employed in statistical data analysis as
well.

Our system can be re-written in other forms, which is a useful exercise
since some of the literature on image processing and iterative solvers uses these
variations. We already touched on formulating it as a weighted least squares
problem in equation (2.10) in section 2.5. Another formulation is the saddle-
point problem,

[
N P
PT −S−1

] [
y
x

]
=

[
d + N1/2ω1

S−1/2ω2

]
, (3.2)

where x is the solution we seek and y is an auxiliary vector we solve for and
then ignore. Note that it really does say N instead of N−1, and that PTN−1

is implicitly applied to the top block of the right-hand side. This is called a
saddle-point problem because the eigenspectrum is split in two; one positive
part and one negative part. The formulation does not really bring us any
further, because a good preconditioner for a saddle-point system should embed
an approximation to its Schur complement, and the Schur complement of the
matrix above is again the matrix in equation (3.1). Much has been written
about approximating Schur complements in this context. Benzi et al. (2005)
contains an extensive review on the numerical solution of such systems, and
much of what is said there applies to our system. In particular, it mentions the
use of pseudo-inverses, which was the crucial clue that led to the state of the
art solver presented in Paper II.

3.2 A closer look on A
Paper I, Paper II, Paper VII

We write the block representation of the basic multi-resolution component
seperation system:

Ak,k′ = S−1k,k′ +
∑

ν

QT
ν,kB

T
ν YT

ν N−1ν YνBνQν,k′ . (3.3)

We describe the operators present in turn:

Prior term S−1

The prior term was discussed in more detail in section section 2.5. If and only
if there is no mask defined in the system, so that the second term above in
the system matrix above is non-singular, the prior term is optional. In Paper
I and Paper II we assume an isotropic prior, in which case the S−1 operator
represents full sky convolution; the convolution kernel in pixel domain is shown
in figure 3.1 (a).

By its nature, the prior term takes effect in regions where the data fails
to effectively constrain the solution. In regions with very low instrumental
noise it does not have much effect on the solution, whereas in areas with high

41

CHAPTER 3. PRECONDITIONING THE CR SYSTEM

-0.2 1

(a) S−1 (C`)

-0.2 1

(b) B

-0.2 1

(c) BTN−1B

Figure 3.1: Some of the operators that make up A, visualized in pixel domain on an
arbitrary scale. Each plot show the effect that the operator has when applied to a
single-pixel unit vector, corresponding to the single column of the pixel-domain operator
matrix. The prior shown in (a) take the form of a ring of negative coefficients around
a positive peak. This is similar in nature to the Laplacian arising in elliptical PDEs,
where multi-level solvers are very effective in solving the system in pixel-domain. In (c)
we hold the inverse-noise map constant at unity so that BTN−1B = BTB, for demon-
stration purposes. The inverse-noise matrix BTN−1B never has negative coefficients,
and inverting it by itself represents deconvolution of a low-pass filter, which is difficult
to do efficiently in pixel domain. In principle all of these operators may vary based on
location on the sphere; in practice modelling and approximations often make B and S−1

invariant to location, while N−1 varies.

0 1000 2000 3000 4000 5000 6000
`

10−2

10−1

100

B
ea

m
tr

an
sf

er
b `

857 GHz

545 GHz

353 GHz

217 GHz

143 GHz

100 GHz

070 GHz

044 GHz

030 GHz

Figure 3.2: Spherical harmonic transfer functions b` for the Planck sky maps (diagonal
of matrices Bν). Note that the inverse-noise term BTN−1B behaves as b2` in harmonic
domain.

42

CHAPTER 3. PRECONDITIONING THE CR SYSTEM

0 1000 2000 3000 4000 5000 6000
`

10−8

10−6

10−4

10−2

100

102

A
rb

it
ra

ry
no

rm
al

iz
at

io
n

p
er

co
m

p. CMB

Dust

Synchrotron

Figure 3.3: The significance of the prior term versus the inverse-noise term (full-sky) as
a function of scale. Plotted are the coefficients of the prior matrix S−1 (solid lines) and
the inverse-noise matrix

∑
ν Q

T
ν,kB

T
νY

T
ν N
−1
ν YνBνQν,k (lighter bands between mini-

mum and maximum values). Adding small amounts of synthetic noise to the 1% least
noisy pixels in the RMS map significantly reduces the coefficient spread while not really
affecting the statistical analysis (darker bands between minimum and maximum values).
The bands follow the trajectory of a weighted sum over b2ν,`, with bν,` as displayed in

figure 3.2, and the weights determined by the mixing maps.

0.0

0.5

1.0

Sy
nc

h.

70 GHz
100 GHz
353 GHz
Prior

0.0

0.5

1.0

C
M

B

0 1000 2000 3000 4000 5000 6000
`

0.0

0.5

1.0

D
us

t

Figure 3.4: Visualization of the effect of the mixing matrices Qν,k and how they interact
with the beam matrices Bν . For each component k we plot the magnitude (averaged
over spatial position) of each of the terms that makes up the A matrix in equation (3.3);
normalized so that the the sum is 1 for each `. Note how the CMB has most support
from the 100 GHz band for low `, then gradually switches to the 353 GHz band and
finally the prior as ` increases. In this demonstration only 3 frequencies were included
for clarity; a full analysis of Planck data has 9 frequencies.

43

CHAPTER 3. PRECONDITIONING THE CR SYSTEM

instrumental noise it can be the dominating term. If parts of the sky is masked
out and one still seeks to predict a signal in this region, the prior term stands
alone in this region of the sphere. Furthermore the prior plays a strong role
on the smallest scales (high `), and a weak role on the largest scales (low `).
Figure 3.3 shows typical diagonals of S−1 in spherical harmonic domain (solid
lines), and how they compare in magnitude with the inverse-noise term for each
`.

Instrumental beam convolution B

The instrumental beams are also currently modelled as isotropic convolution
operators, and so, like S−1, act as full sky convolutions. A pixel-domain exam-
ple is given in figure 3.1 (b); more relevant for the solution of equation (3.3) is
the shape of the squared beam in figure 3.1 (c).

While both B and S−1 are rotationally and locationally invariant full sky
convolutions, the are very different operators. The prior term is a high-pass
filter, whereas the beam is a low-pass filter whose pixel domain convolution
kernel only takes positive values.

Inverse-noise matrices N−1ν

The role of this term is to propagate the effect of instrumental noise to the
solution. It allows us to assign different weight to different pixels in the data
vectors dν , so that pixels with more noise gets less weight. The inverse-noise
matrix N−1ν itself is assumed to be diagonal in pixel domain in our case, so
that measurement noise is assumed to not be correlated between neighbouring
pixels, this is simply an approximation for computational reasons.

The diagonal of N−1ν is given by the inverse of the square of the RMS
map. A typical RMS map in use for Planck is shown in figure 1.7. The RMS
map primarily follows the scanning pattern of the telescope. The inverse-noise
matrix is the primary driver behind spatial variability in the system. Consider
again figure 3.3 — in the noisiest regions the CMB component is constrained
mainly by the prior instead of the data already at ` ∼ 900, whereas in regions
with less noise the data constrains the CMB solution all the way to ` ∼ 28003.

Mixing matrices Qν,k

The mixing matrices are present in a multi-component, multi-observation setup
to make it possible to seperate the components. Often, such as for the CMB
component, these just represents multiplication by a scalar. For other compo-
nents such as thermal dust, they are derived from spectral index maps such as
the one in figure 2.3.

Either way, they interact with the b` seen in figure 3.2 to produce a matrix
representing the weight that should be given to each sky map. This weight
varies as a function of `, so that, e.g., the larger scales of the CMB component is

3This discusses constraining the CMB component signal in isolation on different parts of
the sky. Constraining the CMB power spectrum C` is a different question.

44

CHAPTER 3. PRECONDITIONING THE CR SYSTEM

Figure 3.5: Eigendecomposition of the CR system using a diagonal preconditioner. The
top pane displays the eigenvalues in sorted order, while in the middle we plot four
eigenvectors corresponding to very low eigenvalues. They all build up the large scales
within the mask. The CG algorithm would need to spend very many iterations to pin
down these eigenvectors. See Paper I for further details.

first supported by low-frequency data, and the smaller scales by high-frequency
data. Figure 3.4 visualizes this effect, ignoring spatial variability in the system.

Mask

So far we have mainly discussed each operator as acting on the full sky. In
many practical applications, we additionally want to mask out parts of the sky,
either because of missing data, or because we do not trust our statistical model
in a given region of the sky. Within such scenarios, it is useful to distinguish
between two very different cases:

i) Partial sky coverage, where only a small patch of the sky has been ob-
served, and we wish to perform component separation only within this
patch. The typical use-case is for this setup is ground-based or sub-orbital
CMB experiments. This case is in many ways very similar to the full sky
case, but has been outside the scope of the work in this thesis.

ii) Natively full-sky coverage, but too high foregrounds in a given part of the
sky to trust our model. In this case, one often masks out part of the sky,
but still seeks a solution to the system under the mask, constrained by
the observed sky at the edges of the mask and determined by the prior
inside the mask. By ignoring data from this region we at least avoid
that the CMB component is contaminated by foreground emission. Of
course, the solution will not be the true CMB sky either, but it will have
statistically correct properties for use inside of a Gibbs sampler (Jewell
et al., 2004; Wandelt et al., 2004; Eriksen et al., 2004, 2008).

In Paper I the mask was introduced in the N−1ν operator, while in Paper II
it was moved to the Qν,k operator. Either way, it causes high contrasts in A
which must be taken into account when designing the preconditioner.

45

CHAPTER 3. PRECONDITIONING THE CR SYSTEM

10−10

10−7

10−4

10−1

102

105

R
el

at
iv

e
er

ro
r

0 10 20 30 40 50 60 70 80 90
Iterations

10−10

10−7

10−4

10−1

102

105

R
el

at
iv

e
er

ro
r

(a) Full-sky component seperation

0 10 20 30 40 50 60 70
Iterations

10−10

10−8

10−6

10−4

10−2

100

R
el

at
iv

e
er

ro
r

(b) Constrained realization with a mask

Figure 3.6: Benchmark results from Paper II, which describes the best solver developed
in this thesis. We plot the the error ‖x − xtrue‖ as a function of the number of CG
iterations, using the preconditioner developed in Paper II (solid circles) and a simple
diagonal preconditioner (gray ticks). (a) Solving the CR system for the purposes of
full sky component seperation, using 3 components and 9 sky maps at their individual
resolutions. In the top plot the RMS map has higher contrasts than in in the bottom
plot, corresponding to the wide and narrow bands for N−1 in figure 3.3, respectively.
(b) Solving the CR system for the purposes of constrained realization in a Gibbs chain,
applying a mask to the galactic center. This case is much harder for the diagonal
preconditioner, which essentially fails to converge, while the method in Paper II is hardly
affected. See Paper II for further details.

46

CHAPTER 3. PRECONDITIONING THE CR SYSTEM

3.3 Preconditioning strategies for the CR system
Paper I, Paper II

The conceptually simplest preconditioner for A would be to use a subset of the
coefficients of the matrix A in spherical harmonic domain; in particular the di-
agonal. Section 3.4 covers this technique and presents a moderate improvement
on these preconditioners which has not been submitted as a seperate paper.

The problem with preconditioning in spherical harmonic domain is that
one becomes blind to spatial variations. These are most severe in the presence
of a mask. Figure 3.5 shows how the large modes within the mask results
in a poorly conditioned system. The effect is that the spherical harmonic
preconditioners fails to converge in high-resolution setups. Even in the full sky
case, the inhomogenities in the RMS maps slows down these preconditioners
significantly.

To get around this problem, Paper I introduced a pixel-domain solver. The
focus is on the solution of the prior term S−1 in pixel domain. In isolation, the
convolution kernel of S−1 is rather similar to the operator in Laplacian partial
differential equations, and this similarity carries over to preconditioning. In
short, for efficient pixel domain preconditioning one has to apply multi-grid
(MG) methods, and when using such methods the resulting convergence is
very good.

The method in Paper I breaks down if de-convolution of the instrumental
beam must be performed. Consider figure 3.3 again. The pixel-domain MG
method is only able to find a solution where the inverse-noise term has still not
decayed significantly (below about 10% of the maximum value). Luckily, in the
case of Planck, this is the regime where the prior term crosses over and starts
to dominate the system. Paper I was therefore able to use the pixel-domain
multigrid method for ` < 2200, and a spherical harmonic preconditioner for ` ≥
2200 — since this high-` regime is dominated by the prior, it does not hurt that
spatial variations are not taken into account. This combined method resulted
in excellent convergence; however, a model with a single CMB component
fitted against the Planck dataset is just barely within the regime where the
solver will work. If there had been less instrumental noise at the same angular
resolution, or less angular resolution (wider beam) at the same noise level,
then the instrumental-noise band in figure 3.3 would have been able to decay
to, say, about 0.01 before it was overtaken by the prior. That would have left
a range of `s without an efficient preconditioner. For the same reason, solving
for the thermal dust component using this method is not possible, at least
without specifying a prior which smoothens out the smallest scales of the dust
component. These restrictions of the method were only realized after Paper I
was published. In addition, the solver of Paper I is rather complex and requires
significant compute and memory resources for pre-computed data (although the
spherical grid described in Paper V reduces the cost of the precomputations
significantly).

This is where Paper II picks up. It introduces three new elements:

� First it introduces a so-called pseudo-inverse preconditioner which es-
sentially works in spherical harmonic domain, but includes a very good

47

CHAPTER 3. PRECONDITIONING THE CR SYSTEM

approximation to the spatially varying effects, as long as the contrasts in
the RMS map and mixing maps are reasonable.

� A pixel-domain multi-grid method is used only in the domain under the
mask, in contrast to Paper I which used the same method on the full sky.
As a result it does not matter that the MG method is unable to deconvolve
the instrumental beam; as there is no data to deconvolve under the mask.

� The mask was moved from the inverse-noise operator to the component
mixing operator. This is a numerical measure which significantly reduces
the ringing problems encountered in Paper I.

The resulting method is robust against different priors and instrumental mod-
els, and is also significantly easier to implement. The amount of pre-computation
required is very modest.

Paper II goes into the concrete details of this solver. To complement this
paper, the following section 3.4 gives an introduction to preconditioning in
spherical harmonic domain, and develops a banded preconditioner. Informal
tests indicate that this preconditioner converges up to twice as fast as the
diagonal preconditioner for the Planck scanning pattern. The pseudo-inverse
preconditioner of Paper II converges in as many or fewer iterations, is more
versatile as it does not depend on the scanning pattern, and is much easier to
implement. Still, the preconditioner developed in section 3.4 could potentially
have an edge in some future experiment as it does not require expensive SHTs
as part of the preconditioner, and so I publish it as part of this thesis. In
theory, employing a seperate multi-grid solver within the mask can be com-
bined with either the pseudo-inverse solver, or the banded spherical harmonic
solver, although no numerical experiments have been carried out for the latter
combination.

3.4 Preconditioning in spherical harmonic domain
Published for the first time in this thesis

The simplest preconditioner is the diagonal preconditioner, M = diag(A)−1,
and we then need individual elements of the matrix. There are two ways to
compute these:

Sum over associated Legendre functions This method is given in equa-
tion (19) in Paper I, and is accurate to numerical precision. Routines
that compute the necessary associated Legendre functions are included
in the latest version of Libsharp4.

Sum over Wigner 3j-symbols This method is given in Hivon et al. (2002),
and represents an approximation, as the spherical grid is neglected and
it is assumed that the operator is continuous. It is popular as the drc3jj

routine for computing Wigner 3j symbols has been easily available since
1975.

4Available from https://github.com/dagss/libsharp

48

CHAPTER 3. PRECONDITIONING THE CR SYSTEM

0 10 20 30 40 50 60

2|m|+ I(m < 0)

0

10

20

30

`

10−2

10−1

100

(a) N−1 for Planck 100 GHz, galactic coordinates

0 10 20 30 40 50 60

2|m|+ I(m < 0)

0

10

20

30

`

10−2

10−1

100

(b) N−1 for Planck 100 GHz, ecliptic coordinates

0 10 20 30 40 50 60

2|m|+ I(m < 0)

0

10

20

30

`

10−2

10−1

100

(c) Random N−1 constrained by τ(n̂) ≥ 0 and τ`m = 0 for ` > 4

0 10 20 30 40 50 60

2|m|+ I(m < 0)

0

10

20

30

`

10−2

10−1

100

(d) Random N−1 constrained by τ(n̂) ≥ 0 and τ`m = 0 for m 6= 0, ` > 4

Figure 3.7: Exploring N̂−1 ≡ YTN−1Y. The left panels display the diagonal of N−1,
scaled so that the maximum value is 1. The right panels display a single column (or

row) from the corresponding matrix N̂−1; specifically, |N̂−1
`m,`′m′ |/N̂

−1
`m,`m for `′ = 20,

m′ = 10 (bright yellow). Note the logarithmic scale; we are primarily concerned with
the relation between the diagonal element and other matrix elements in terms of orders
of magnitude. The patterns displayed are largely the same independent of which column
is chosen. That is, the main dependence of matrix element magnitude is on |`− `′| and
|m−m′|, while ` and m play a smaller role.

49

CHAPTER 3. PRECONDITIONING THE CR SYSTEM

Both methods require O(L) arithmetic operations to compute a single element
of the matrix, and the difference is slight on high resolution grids. The latter
method provide us with some analytical insights, and so we repeat it here.
Let τ be the diagonal of N−1, viewed as a map, and further let τ`,m be the
expansion of this map to spherical harmonics. Then we have

(YTN−1Y)`m,`′m′ ≈
Npix

4π
(−1)m

∑

`′′

τ`′′,|m−m′|Y
`,`′,`′′

m,m′,|m−m′|, (3.4)

where Y `,`
′,`′′

m,m′,m′′ denotes the Gaunt integral, a normalized product of two Wigner
3j-symbols. The Gaunt integral has several useful symmetry and orthogonality
properties (Hivon et al., 2002, and references therein). Now, the bandwidth of
A, that is, how far from the diagonal elements are non-zero, depends on the
inverse-noise map τ . The relationship is illustrated in figure 3.7. Analytically,
we have:

Along `: The Gaunt integral vanishes unless |` − `′| ≤ `′′. If τ is smooth /
band-limited so that τ`′′,m′′ = 0 for `′′ < `∗ then |A`m,`′m′ | = 0 whenever
|`− `′| > `∗, according to equation (3.4).

Along m: If τ only varies in the latitudinal direction, that is, it is azimuthally
symmetric around the poles, we have that τ`,m = 0 for m 6= 0. From
equation (3.4) it is then straightforward to see that |A`m,`′m′ | = 0 if
m 6= m′, so that A becomes block-diagonal matrix in `-major ordering.

More generally, the first step of spherical harmonic analysis is to compute
a set of Fourier transform along iso-latitude rings (see section 4.1). If
the signal in τ along all such rings is smooth / band-limitedm so that
the Fourier coefficients qm = 0 for all m > m∗ and |A`m,`′m′ | = 0 if
|m−m′| > m∗, according to equation (3.4). Note that this results holds
even in the presence of abrupt changes and small scale fluctuations in the
latitudinal direction.

These results also hold in less absolute terms; if τ`,m decays by an order of
magnitude for large ` or m then |A`m,`′m′ | also decays by an order of magnitude
as one moves away from the diagonal, outside of the band indicated. Also note
that if τ is entirely flat one can show that A ≈ (Npix/4π)τI, where the quality
of the approximation depends on the spherical grid.

Figure 3.7 was generated by computing YTN−1Yu for some unit vector u
using SHTs, so the figure serves simultaneously as numerical verification and a
demonstration of the results given above. Note the effect of rotating the τ -map
in such a way it is mostly azimuthally symmetric in panel (b); elements where
|m −m′| 6= 0 to have low magnitude relative to the diagonal. Also elements
with odd |`− `′| have low magnitude, due to the north/south symmetry in τ .

Now, a natural way to construct a preconditioner is to ignore elements
that are small relative to the diagonal. The sparsity in panel (b) in figure
3.7 looks promising, and we construct a banded preconditioner based on this.
First, we rotate the system into ecliptic coordinates, as described below. Then,
we include in our preconditioner M−1 ≈ A all elements where |m −m′| = 0,

50

CHAPTER 3. PRECONDITIONING THE CR SYSTEM

|` − `′| ≤ 8, and |` − `′| is even; ignoring other elements of A. The resulting
approximant M−1 is both banded and block-diagonal, which makes for a very
efficient preconditioner, as it can be parallelized over m, and LAPACK contains
routines for working directly on banded representations of matrices.

When applying the preconditioner to the multi-component equation (3.1),
we interleave the coefficients from each component together, so that every ele-
ment in a single-component A turns into an Ncomp ×Ncomp block. Repeating
equation (3.3), the system then also includes the mixing matrix for each com-
ponent, with the block between component k and k′ given by

Ak,k′ = S−1k,k′ +
∑

ν

Q̃ν,kBνY
T
ν N−1ν YνBνQ̃ν,k′ .

The mixing maps are relatively flat, so we simply approximate Q̃ν,k′ with a
scalar. Another idea would be to make an approximation where we exchange
the order of Q̃ and B in the equation above, so that the mixing matrices
can be multiplied directly with the inverse-noise maps, but this approximation
performed worse in our tests.

The Planck data files are given in galactic coordinates, and we now turn
to rotating the system into ecliptic coordinates. It is important at this point
to stress that we do not want to rotate the inverse-noise map in HEALPix
basis, as the HEALPix grid contains important information about how the
TOD data has been binned together within each pixel. Rotation is most easily
carried out in spherical harmonic domain, as the Wigner d-matrices can be used
to transform the spherical harmonic coefficients directly to another coordinate
system (see Paper IV and references therein)5. We denote the rotation operator
from ecliptic to galactic as R, with RT = R−1, so that the system in ecliptic
coordinates is written

RTARx = RTb.

The prior and beam matrices are rotationally invariant, so that

RT (S−1 + BYTN−1YB)R = S−1 + BRTYTN−1YRB

The HEALPix (HP) grid is however not rotationally invariant. The solution is
to first resample the HEALPix inverse-noise map τ to a Gauss-Legendre grid
following the procedure in Paper I and Paper V. This procedure takes care of
accurately emulating the HEALPix pixelization effects on the Gauss-Legendre
(GL) grid, and the resulting map can then be safely rotated:

τGL-Rot = YGLWGLRYT
HPτHP.

We have verified that

RTYTN−1HPYR = YTN−1GL-RotY (3.5)

5HEALPix contains the rotate alm routine for this purpose. Unfortunately, no MPI-
distributed implementation has been written; writing such an implementation is feasible but
non-trivial, beacuse the rotation treats coefficients of the same ` together, while the spherical
harmonic coefficients are distributed between nodes by m (see section 4.3)

51

CHAPTER 3. PRECONDITIONING THE CR SYSTEM

to relative error about 10−13 (typical of SHTs); thus we can construct the
system

Arotx = RTb

without any rotation operators on the left hand side, and compute M−1
rot ≈ Arot.

We still have a choice about where to apply the rotation:

Rotating the preconditioner Solve Ax = b preconditioned with RTMrotR,
calling rotate alm as part of the preconditioner for every iteration in the
CG search.

Rotating the system Solve Arotx = RTb directly, using the inverse-noise
map resampled to Gauss-Legendre grid

The two methods are numerically equivalent. Which approach performs better
will depend on the concrete resolution parameters and relative performance
of rotations vs. SHTs. For a low-resolution analysis the latter approach will
always win.

The performance and potential use-cases for this preconditioner were dis-
cussed at the end of section 3.3.

52

Chapter 4

Spherical harmonic
transforms

The solvers for the Constrained Realization system described in the previous
chapter are, computationally speaking, recipes for kicking off a large number
of spherical harmonic transforms (SHTs) in sequence. A good preconditioner
can help us reduce the number of SHTs required, but in the end a Commander
analysis is dominated by executing SHTs. A 2x speedup in the SHTs will be
close to a 2x speedup in a Commander analysis.

Of course, SHTs have many other uses in many fields of science. Studying
them and optimizing them is a worthy pursuit in its own right. Fourier trans-
forms are very well developed, with several heavily optimized high-performance
libraries available. SHTs are much less mature in this respect. The libraries in
production use have a computational scaling of O(L3) for a spherical harmonic
band-limit L; faster algorithms have however been devised, and is an active
field of research.

4.1 Wavemoth: Fast SHT by matrix compression
Paper III

My work on SHTs started out with Paper III, which is summarized below. The
spherical harmonic basis functions are given by

Y`m(θ, φ) ≡ P̃m` (cos θ)eimφ, (4.1)

where P̃m` denotes the associated Legendre functions. Note that it is neatly
seperated into one part that depends on the latitude θ and another that depends
on the longitude φ.

The associated Legendre functions we can treat mostly like a black box.
They can be written down in closed form, and are almost (but when m is odd,
not quite) polynomials of degree up to `, and since ` can be in the thousands
for our usecase, computing these polynomials directly would be both expensive

53

CHAPTER 4. SPHERICAL HARMONIC TRANSFORMS

|m|

` ↔

|m|

co
s(
θ)

↔

a`m qm(xi) f(θt,i, φt,i)

Figure 4.1: Separating the sums in an SHT. A Legendre transform is used on each
column m to go between a`m (left) and the ring-phases qm(xi) (center), while a Fourier
transform is used on each ring to go between qm(xi) and the spherical field f(θk(i), φi)
(right).

and numerically tricky. Instead we apply recurrence relations that have been
studied for their numerical stability; in essence relations on the form

P̃m` (z) = k1(`,m)P̃m`−1(z) + k2(`,m)P̃m`−2(z), (4.2)

where k1 and k2 are short closed-form expressions. So, we just need to evaluate
P̃m0 (z) and P̃m1 (z) as polynomials, and then we can compute the rest of the
values using a recurrence relation (there are other relations that makes a step
in m instead of `, or two steps in `, and so on).

Now, the spherical harmonic synthesis from equation (1.1) can be written

f(θi, φi) =
L∑

`=0

∑̀

m=−`
a`mP̃

m
` (cos θi)e

imφi , (4.3)

where we truncate at some L. On the surface of it it takes O(L2) arithmetic
operations to compute this sum. For a full transform, we compute the sum for
N pixels, and usually N = O(L2), so we say that the brute-force SHT scales as
O(L4). Now, the first trick to reduce this is to make sure that the O(L2) grid
points are organized in O(L) rings of constant latitude θ. Beyond this basic
scaling relationship, each ring doesn’t need to have the exact same number of
grid points (some grids do, others do not). Now we can split the computation
in two parts. First we do a set of associated Legendre transforms, where we
compute

qm(cos θk) ≡
L∑

|m|
a`mP̃

m
` (cos θk) (4.4)

for each ring k. Doing this for O(L) rings can be done in O(L3) by just summing
up brute-force, applying equation (4.2) as we go. Then, having computed
qm(cos θk) for each combination of (m, k), we can use Fourier transforms along
the m-direction to produce the final function values f(θk(i), φi). The Fast

54

CHAPTER 4. SPHERICAL HARMONIC TRANSFORMS

Fourier Transform (FFT) allows computing the Fourier transform in O(L logL)
operations, and we do O(L) such transforms. Thus the total SHT runs in
O(L3) instead of O(L4) when organizing grid points in rings. This trick has
been around for as long as SHTs have been computed.

This complexity of O(L3) represents the status quo in production quality
SHT libraries. For a 2D Fourier transform we would simply apply the FFT
along both axes of the grid to get lightning fast transforms; while for SHTs,
equation (4.4) is computed by brute force. Can we do better? The answer is
yes, but the field is not yet mature; there is not a single obvious algorithm with
several production-quality libraries. Instead of have a set of creative algorithms,
and whether to apply them depends on the circumstances.

Tygert (2010) presented a novel algorithm based on matrix compression.
The idea behind matrix compression in general is to run a compression algo-
rithm on the matrix in such a way that the result can be used in linear algebra
without decompression, and actually speeds up the algorithm. When they work,
they typically turn an O(n2) algorithm into a O(n log n) or even O(n) algo-
rithm. Such techniques bridges the gap between (much more widely used)
sparse linear algebra and dense linear algebra; they may work in cases where
no matrix elements are zero (unlike sparse matrices) but where (unlike dense
matrices) all O(n2) elements are generated from O(n) or fewer parameters.
A family of such algorithms have been developed relatively recently, starting
with H-matrices and H2-matrices in 1999 (for a review see Börm et al., 2003).
Hiererarchical Semi-Separable matrices is another well known example (Chan-
drasekaran et al., 2006).

When applying matrix compression to SHTs, the idea is to first precompute
all values of P̃m` (cos θi) once, compress them, and then only use the compressed
pre-computed data to compute the SHTs. The algorithm is recursive in nature:
After compressing the matrix once using the Interpolative Decomposition, the
resulting blocks are rearranged, using permutations that directly mimics the
so-called butterfly permutations used in the Fast Fourier Transforms. After
such permutation the result can be compressed further. As the computational
cost now depends on how well the compression algorithm works, Tygert (2010)
provide no hard proof of the scaling, but conjecture that the scaling of the
algorithm is O(L2 logL).

Such scaling for SHTs looked promising indeed, putting it in same ballpark
as the FFT. However, modern computers can do arithmetic operations on data
that is already in the CPU very quickly, while moving data from system memory
is much slower. Unlike hardware from the 80’s, it depends on the circumstances
whether it is better to load 8 bytes from memory, or better to carry out 50
arithmetic operations. The best way to figure out if using precomputed data
worked well for SHTs was to try it out.

Wavemoth represents a prototype optimized implemention of the algorithm
of Tygert (2010) in C, employing all the tricks in the book to make sure the
algorithm gets a fair chance:

� Carefully consider how memory is accessed to make sure the CPU is not
waiting too much for data to come from system memory, or to travel

55

CHAPTER 4. SPHERICAL HARMONIC TRANSFORMS

between the cache hierarchies in the CPU. The fundamentals of this craft
is proper blocking of the computation, which is described well in Goto and
Geijn (2008); a must-read for anyone interested in writing efficient code
on modern computers. The other aspect is to organize the precomputed
data so that data is stored in the order it is needed, without much jumping
around.

� Use of generated C code to be able to fine-tune the block sizes of the com-
putations, without the overhead of dynamic loops. This is important be-
cause modern CPUs pipeline arithmetic operations: On each CPU cycle
a new arithmetic operation can be kicked off, but each operation spends
several cycles to complete; much like a factory assembly line. Thus doing
several independent computations interleaved in the same loop is much
faster, as one can fill up the “assembly line” rather than leave it with holes
while waiting for results. While compilers try to optimize this, manual
control of this aspect is still faster.

� Use of vector instruction sets which enables further parallelism, specific
to Intel and AMD CPUs. Wavemoth is using SSE2, which was up to date
at the time, although out of date as of this writing.

� The compression of the matrices was tuned to the memory bus speed
vs. CPU speed of the benchmark hardware. On the Intel system best
results were achieved by assuming that a memory load was as expensive
as ρ = 7.5 arithmetic instructions, while on the AMD system ρ = 18 was
a better value.

The most important result of the effort may have been to show that the
scaling conjecture of Tygert (2010) was wrong. The algorithm seems to scale
as O(L2(logL)2).

For resolutions of interest to CMB analysis today, Wavemoth still achieved a
3x speedup compared to the most performant SHT library at the time, libpsht
by Reinecke (2011). The cost is the inconvenience of keeping 6 GB of pre-
computed data in memory. However, out of this 3x factor, a 2x speedup over
libpsht was achieved simply by re-organizing how the brute-force computa-
tions were done, in order to better utilize the pipelining features of the CPU.
Thus the matrix compression algorithm only gets the credit of a 1.5x speedup,
while the 2x came from doing better in terms of raw CPU optimization. Later,
libsharp was released which closes this gap.

The use of Wavemoth must however be carefully evaluated as the memory
consumption also scales with the resolution. For CMB analysis it seems that
the extra complexity and memory use is not worth the modest speed increase.
On higher resolutions than the ones in use for CMB analysis, Wavemoth (in
a more polished form) may well be the best choice. It could also be useful in
settings where only an approximate SHT is needed, since one can compress the
data harder in return for lower numerical accuracy in the resulting SHT. It is
probably well-suited for combination with the pseudo-inverse preconditioner in
Paper II, since preconditioners often only need to be accurate to the 10% or

56

CHAPTER 4. SPHERICAL HARMONIC TRANSFORMS

1% level, although we have not attempted this combination. Note that due
to the experimental nature, only synthesis is available in Wavemoth, although
implementing analysis too should be straightforward.

4.2 libsharp: The standard SHT library
Paper IV

The CMB community has for many years used the HEALPix package for all
SHT needs (Górski et al., 2005). It is in fact two libraries distributed as one,
a Fortran library and a C++ library, each originally with its own SHT imple-
mentation, even using different conventions for storing a`m in memory. The
HEALPix/Fortran SHTs also contained an MPI-distributed version written by
Hans Kristian Eriksen. The distribution scheme was suboptimal, as it required
all a`m to all be present on every node, as well as extra/redundant computa-
tion. The MPI problem was fixed by Stompor et al. (2006) in their S2HAT
code, which partitions the data evenly among nodes both in pixel domain and
spherical harmonic domain, and require no redundant computation.

What happened next is that Reinecke (2011) presented libpsht, and it be-
came arguably the best general purpose SHT library for non-distributed compu-
tation. Its focus was primarily on being extremely flexible with respect to how
input and output data was presented in memory. Arrays are stored in different
ways in different circumstances – if you transform many maps at the same time,
are the coefficients interleaved in memory or stored one after another? How is
the irregular a`m data stored? Libpsht does not insist on anything, but instead
takes a description of how the data is stored in whatever array you already
have in memory, and works with that, saving an extra copy of the data on
input and output in most circumstances. This directly led it to being suitable
as a common SHT backend for HEALPix/C++ and HEALPix/Fortran.

Martin Reinecke had already started on a rewrite of libpsht, named libsharp,
when I dropped Wavemoth and joined forces with him. Quoting our Paper IV:

Also, several new, highly efficient SHT implementations have been
published in the meantime; most notably Wavemoth (Seljebotn
2012) and shtns (Schaeffer 2013). These codes demonstrate that
libpsht’s computational core did not make the best possible use of
the available CPU resources.

Libsharp keeps the flexible programming interface of libpsht, while using the
computationally more efficient approach of the brute-force implementation within
Wavemoth. The exploratory faster algorithm from Wavemoth is not included.
Libsharp was primarily implemented by Martin Reinecke prior to us making
contact. My own contributions to the library has been in discussions, co-
authoring the paper, some bug fixes, the new data ordering format discussed
in the next section, as well as Python and Fortran wrapper interfaces.

Martin also added distributed MPI support to Libsharp using the optimal
algorithm from S2HAT (Stompor et al., 2006). Libsharp is the backend of
newest versions of HEALPix/C++, HEALPix/Fortran, and Healpy, so that
most CMB analysts end up using it, whether directly or indirectly.

57

CHAPTER 4. SPHERICAL HARMONIC TRANSFORMS

4.3 Data ordering in SHTs
Paper IV

One of the features I contributed to libsharp was a new SHT convention. Com-
mander has always been converting data to/from the HEALPix format, and
this extra step is now not needed when using libsharp directly.

The SHT libraries we have discussed including libsharp only supports real
fields on the sphere, as in f(n̂) ∈ R. Polarization is no exception; one then
works with a T, Q- and U-component in each grid point, but these are still
considered to be in R. The spherical harmonic transforms are however complex
in nature, working with f(n̂) ∈ C – it is just that the fields that arise in
practice during CMB analysis is constrained to R, and the SHT libraries use
this fact to optimize their implementation. Because spherical harmonics are
complex, the convention has been to work with complex coefficients a`m ∈ C.
Knowing that the coefficients corresponds to a real field f(n̂) ∈ R, we have the
relation a`,m = (−1)ma`,−m, and so we do not need to store a`,m for m < 0 in
memory. Therefore the HEALPix convention is to work with arrays where a`,m
is dropped for m < 0. Mathematically speaking the dropped a`,m are however
very much around, it is just that we can compute them on the fly when needed.

As discussed in chapter 2, our use of the SHT is in linear systems with
spherical harmonic synthesis appearing as the Y operator. If we set up

Ax = b.

where x and b are maps in spherical harmonic domain, using only x`,m and
b`,m for m ≥ 0, then the system is not constrained to producing solutions in
Rn even if the right-hand side is real. What is missing is to add the constraint
a`,m = (−1)ma`,−m to the system. This can be added by extending A and b,
but this is very wasteful in terms of memory use. A much simpler solution is
to “repackage” the spherical harmonic coefficients so that x`,m ∈ R, b`,m ∈ R,
and we get the correct degrees of freedom. A particularly convenient choice is
to let

aR`,0 = aC`,0,

where the superscript denotes real vs. complex, and then for each m ≥ 0 let

aR`,m =
√

2Re(aC`,m)

aR`,−m =
√

2Im(aC`,m).

The rescaling ensures that Y is still orthonormal. In this convention a random
Gaussian field can be constructed simply by drawing each coefficient indepen-
dently from a standard normal distribution; this is more complicated for the
complex spherical harmonic coefficients.

What is the computationally most efficient way to store these coefficients?
For SHTs the answer is to store them in m-major ordering, so that m = 0
comes first, then |m| = 1, and so on. This is simply because SHTs process
data in this order, see equation (4.4). In addition we interleave negative and
positive m, i.e.,

a0,0, a1,0, a2,0, a1,1, a1,−1, a2,1, a2,−1, a2,2, a2,−2 (4.5)

58

CHAPTER 4. SPHERICAL HARMONIC TRANSFORMS

This is because a) there is a relation between P̃m` and P̃−m` which makes it
efficient to treat them at the same time, and b) one can now convert the
data directly in-place to complex SHTs simply by scaling all coefficients where
m 6= 0, so that Im(a1,1) uses the same location as a1,−1 in memory1.

Having chosen an order, is it best to store them in a 2D array, so that
maps can be accessed like x(l, m) and matrices like A(l1, m1, l2, m2) (in
the case of Fortran)? The number of coefficients vary, with 2m+ 1 coefficients
for each m, so this requires padding with zeros in unused portions of the ar-
rays. My recommendation is to use the “packed” format indicated in equation
(4.5) directly, because all arrays can then be passed directly to standard linear
algebra routines which understands nothing about spherical harmonics. The
padding very much gets in the way if one wants to use LAPACK routines. The
difference is slight between x(l, m) and x(lm_to_idx(lmax, l, m)) anyway.

Libsharp directly supports packed, real spherical harmonics in the order of
equation (4.5), without any extra data shuffling.

4.4 SymPix: A grid for efficient sampling of rotationally
invariant linear operator
Paper V

In Paper I, we describe an algorithm for efficiently solving a particular linear
system. One of the disadvantages of the algorithm is that it requires a lot of
precomputed data; specifically it requires the evaluation of a computationally
expensive function A(n̂1, n̂2), where n̂1 and n̂2 are points on the HEALPix
spherical grid, for every n̂2 in a disc in the neighborhood of n̂1. Computing
this for the HEALPix grid takes a long time (12 CPU hours at L = 3000). Now,
there are certain symmetries in the HEALPix grid we could have exploited to
cut this with a factor of 24, however this would have require quite a lot of
coding specific to the HEALPix grid.

Instead, we decided to invent a new grid dubbed SymPix, which we present
in Paper V. The SHT algorithms leave us with a lot of freedom in what kind
of spherical grid we want to use, and each spherical grid comes with a set
of advantages and disadvantages. The unique advantage of SymPix is that it
allows a great number of symmetries for the computation mentioned above,
which cuts the precomputation time down to 5.4 minutes; a speedup of 130
times. The disadvantage of SymPix relative to HEALPix is that, if divided
into pixels, each pixel will have different area. In the context where we use
SymPix we do not use pixels as such, but rather consider the data as sample
points of in a given grid pattern of an infinite-resolution continuous function,
and so this restriction is not a real problem. However, big differences in sample
points distances can lead to different scales being present in different regions
on the sphere, which is a problem for the algorithm of Paper I. In this respect
SymPix does slightly worse than HEALPix, but a lot better than other grids

1A disadvantage of this ordering is that the formula for accessing a specific coefficient
becomes a bit complicated. With a certain `-major ordering the index is as simple as `2+`+m.
This is however something that can be abstracted away in code.

59

CHAPTER 4. SPHERICAL HARMONIC TRANSFORMS

such as the more popular Gauss-Legendre grid.

4.5 Legendre transforms on the GPU
Technical Report I

Technical Report I describes novel techniques used to implement the Legendre
transforms on the GPU. To my knowledge it is the world’s fastest code for
Legendre transforms, at 40% of the peak FLOP rate of the GPU. The Legendre
transforms is a very interesting thing to try to make work well on the GPU;
as demonstrated by the final implementation performing 45 times better than
the initial naive implementation.

This code was written in order to pass a course on multi-architecture pro-
gramming at the university. The result is published for the first time in this
thesis.

Implementing the Legendre transforms on the GPU is a challenge because
of the rather different programming model. The usual simple explanation of
how to program for GPUs is that they perform well for problems that are
embarrisingly parallel. In that case, the SHT would not be a good fit for
the GPU, since every number in the input affect every number in the output,
without much obvious parallelism to exploit on the high level. However, with
detailed knowledge of how the GPU operates it is indeed possible to make
different threads of computation cooperate on a fine-grained level.

The main features of GPU programming is (numbers are for Tesla M2050,
which was a recent GPU when Technical Report I was written):

� Each GPUs contains 28 processors, so-called Streaming Multi-processors
(SM)

� Each SM runs a large number of threads. The threads are grouped into
so-called “warps” of 32 threads which run at the same time. The threads
within a warp must execute the same instructions (in the case of taking
different branches in an if-test, essentially both branches will be executed
by all threads, but some threads will do nothing in each branch).

� Each SM runs several warps at the same time, so that when one warp is
waiting for an operation to finish, another warp can run in the meantime.
This is how GPUs deal with pipelining of instructions. How many warps
to run on the same SM at the same time is configurable, but there is
a single number of registers (thread-local variables) that is split evenly
between all threads that run on an SM at the same time. Thus the
more warps you schedule to run at the same time, the more efficient the
pipelining will be, but the less local variables you have room for.

� Each SM has 48 KB local cache which can be accessed by all threads
running on that SM at the same time, and used for inter-thread commu-
nication

Creating an efficient GPU program thus is mainly a matter of moving vari-
ables and data around in an efficient manner. It was crucial to use blocking

60

CHAPTER 4. SPHERICAL HARMONIC TRANSFORMS

Bk

Bi × nthreads

ak,j =
∑
i

Λi,kqi,j , with Λi,k+1 = (x2i + αk)βkΛi,k + γkΛi,k−1

Figure 4.2: Blocking of the Legendre transform. The goal is to compute the output ak,j
(red) using some auxiliary values (orange) associated with both columns and row. The
Legendre matrix values Λ (blue) must be generated on the fly as they are needed, from
the two matrix elements above in the same column. When we are done computing this
block, we persist the bottom two rows of Λ to memory and move to the block on the
right. We can then keep the 5 scalars associated with each row in memory, but need to
load the 3 scalars associated with the next set of columns (two inputs and one auxiliary
coefficient). For the Tesla M2050 the optimal parameters were Bk = 64, Bi = 4, and
nthreads = 64.

techniques, as explained in figure 4.2, so that loads/writes to global memory are
properly amortized. Furthermore the Legendre transforms requires summing
up variables across threads, and I implemented a non-trivial scheme for this
(see figure 4.3). Finally, both since there are many tunable parameters, and
since there was a complicated algorithm which could be unrolled into linear
code instead of using loops and if-tests, the implementation is generated by
meta-programming, so that the final CUDA/C code is generated by a Python
program.

The code was never cleaned up and properly published independent of the
experimental Wavemoth testbed, but the very interested reader may check out
the ‘cuda‘ branch of the wavemoth/wavemoth GitHub repository and have a
look at the benchmark script in examples/gpusht.py2.

2https://github.com/wavemoth/wavemoth/blob/cuda/examples/gpusht.py

61

https://github.com/wavemoth/wavemoth/blob/cuda/examples/gpusht.py

CHAPTER 4. SPHERICAL HARMONIC TRANSFORMS

a0,0, a0,1 =

(a) Step 1: We want to compute the red output cells ak,j of figure 4.2. For each of the
green input qi,j we multiply with Λi,k to produce a contribution to the output sum.
Each thread can trivially sum up the Bi columns it is responsible for; but summing
across threads is much harder. In this figure there are two arrays with contributions
to a0,0 and a0,1; each of 32 threads holds one scalar from each array.

a0,0, a0,1 =

(b) Step 2: The threads group in pairs and sends each other values. After this,
the 32 threads hold 1 scalar each; even-numbered threads holds the first vector and
odd-numbered threads the other vector.

a0,0, a0,1 =

a1,0, a1,1 =

(c) Step 3: Continuing to add together values at this point would leave some threads
stalling. To maintain high parallelism, we start to generate the next row of the output
before we are done with summing up the first one.

a0,0, a0,1 =
a1,0, a1,1 =

(d) Step 4: We first repeat step 1 and 2 for a1; leaving us with 4 arrays of length 16.
Then we can sum them to 4 arrays of length 8 with 32 threads cooperating in pairs,
with no thread idling.

a0,0, a0,1 =
a1,0, a1,1 =
a2,0, a2,1 =
a3,0, a3,1 =

a4,0, a4,1 =
a5,0, a5,1 =

a6,0, a6,1 =

a7,0, a7,1 =

(e) Step 13: Now the algorithm has progressed quite a bit. Once we had 8 arrays of
length 8 we could sum them to 8 arrays of length 4, producing the yellow block, and
so on. Continuing in this manner a few more times recursively produces the situation
above. In the final step we have 32 output arrays, each of length 2, which we sum to
the final 32 outputs.

Figure 4.3: Illustration of the algorithm used for efficient Legendre transforms on the
GPU, describing how we deal with summing across multiple threads when computing
ak,j from qi,j . The color indicate register slot used in each thread; in panel (e) each
thread is storing output data in 4 registers, one for each of the colors. Transforms in the
other direction are trivial, and does not need this reduction algorithm.

62

Chapter 5

Application to Planck

Since the first paper from the Oslo/JPL “Commander” group on the CMB
Gibbs sampler (Eriksen et al., 2004), the goal of the Oslo/JPL Commander
effort has been the analysis of data from Planck. For a successful analysis a
lot of questions must be answered. What priors S should be used? Which set
of input maps? What foreground components should be treated as seperate
components and which should be bundled together as an average component?
Does the maps from the TOD processing look OK, or are there systematic
effects which must be dealt with prior to an analysis with Commander? How
to quantify and subtract the cosmic dipole? How to calibrate the instrumental
gain? These questions are at least as important as the computational tech-
niques, but have been out of scope for my work. Still I provide a high-level
review here so as to put the algorithms presented in this thesis in context.

5.1 Planck 2013 results
Review

Recall from section 1.5 that in order to produce estimates of the cosmological
parameters one runs an MCMC sampler (typically CosmoMC). This method
requires as its input some CMB power spectrum likelihood, which quantifies
how well the data fits a given proposed power spectrum C`, and as its output
produces estimates such as the ones presented in figure 1.11.

The Gibbs sampling algorithm outlined in section 2.1 currently produce

samples from the posterior of the observed power spectrum, σ
(i)
` ∼ p(σ`|d).

To turn this into a likelihood that CosmoMC can work with, one can use the
Blackwell-Rao estimator (Chu et al., 2005). The idea is that the likelihood
CosmoMC requires, p(C`|d), can be written as an integral over σ`, which can
in turn be approximated using the samples from the Gibbs chain:

p(C`|d) =

∫
P (C`|σ`)P (σ`|d)dσ` ≈

1

N

N∑

i=1

P (C`|σ` = σ
(i)
`). (5.1)

Chu et al. (2005) further provides a simple analytical expression for evaluating

63

CHAPTER 5. APPLICATION TO PLANCK

Figure 5.1: Combination of multiple Commander single-resolution estimates to produce
a single high-resolution CMB estimate. First, three Commander estimates of the CMB
are found, then they are summed together in spherical harmonic domain, weighed by the
weight displayed in this figure. The low-resolution estimate at 40’ FWHM includes all the
Planck data and all components. The 7.5’ FWHM estimate excludes frequencies lower
than 143 GHz, and is therefore able to pick a finer common resolution. A consequence is
also that low-frequency components is not included, only CMB, CO and thermal dust.
Finally, the ∼5’ FWHM-solution only includes CMB and thermal dust. See Planck
Collaboration IX (2015) for further details.

P (C`|σ` = σ
(i)
`). Thus, the CMB samples from a standard Commander run

can be turned into a likelihood for cosmological parameter estimation. The
likelihood incorporates all the uncertainties that is present in the Commander
model (e.g., instrumental noise in each pixel) and faithfully propagates them
to the final parameter estimates. However, there is a problem: The higher `
becomes, the slower is the convergence of the approximation in equation (5.1)
and a higher number of samples N is required. Therefore, for the Planck
2013 release on the CMB power spectrum they split the likelihood in two: A
low-` likelihood for ` < 50, and a high-` likelihood for ` ≥ 50. The low-`
likelihood is exact (up to sample convergence) and is provided by Commander,
while for the high-` likeihood they present two different approximations (Planck
Collaboration XV, 2014). They also provide comparisons of some different ways
in which the likelihoods can be joined together (Paper VIII details another such
approach).

In addition to the highly important low-` likelihood, Commander con-
tributed component seperation results to the release, alongside similar results
from NILC, SEVEM, and SMICA (Planck Collaboration XII, 2014). As only Com-
mander 1 was available at the time, all the data had to be degraded by artifi-
cially low-pass filtering it with a Gaussian beam, to a common a HEALPix grid
of resolution Nside = 256. To produce full-resolution maps, these low-resolution
estimates were combined with the Ruler code to produce what is in the paper
referred to as the Commander-Ruler map. First, the low-resolution run of Com-
mander produces many samples of low-resolution mixing maps, Qν,k. Then,
the Ruler code generates amplitude maps for each sample of the mixing map

64

CHAPTER 5. APPLICATION TO PLANCK

samples. The starting point for the Ruler approach is the same as what we
describe in section 2.3: A least squares system is set up that includes a mixing
map Qν,k for each frequency band and component. Where the Ruler approach
differs is that it, as an approximation, neglects the instrumental beams and
different resolutions of the maps entirely. The system then becomes block di-
agonal in pixel domain, with an Ncomp-by-Ncomp block for each pixel which is
computationally trivial to invert. Together with these approximate amplitude
maps they generate an “effective beam” representing the resolution of resulting
maps. Neglecting the resolution differences in this way has its limits, and as a
result it was not possible to include the 545 GHz and 857 GHz maps, only 353
GHz and below.

The Commander-Ruler model included a single low-frequency component
(modelling the combined effect of synchrotron emission, free-free emissions and
spinning dust emissions), a simple thermal dust model, and a single CO compo-
nent, in addition to the CMB. The 2013 Planck release was temperature-only
and no polarization results were present in the release.

5.2 Planck 2015 results
Review

The 2015 release contains the most sophisticated Commander model yet. The
Planck data was complemented by the WMAP data as well as the 408 MHz
“Haslam” map. Also, some of the Planck data was included with individual
maps for each detector, instead of one average map for the frequency — this was
done because each detector has slightly different frequency bandpass functions,
which especially helps to constrain the CO components (with emission lines
right in the middle of some of the Planck frequency bands). This wealth of data
enables seperating the microwave emissions into a large number of individual
components: Synchrotron, free-free, spinning dust, thermal dust, and three
different CO components. For thermal dust, a physically modifified black-
body spectrum is used, with two parameters instead of one. The result of
this Commander analysis becomes the official Planck foreground maps (Planck
Collaboration X, 2015).

This joint analysis was performed on a common resolution of 1 degree, as
this is the resolution of the Haslam map. In addition, 7.5 arc minute resolution
results are provided by only including the high-frequency components and only
frequencies from 143 GHz and above. For the final Commander CMB map,
a hybrid map is produced by combining results from three different runs at
different resolutions, as shown in figure 5.1. Note the similarities between this
figure and and figure 4 in Paper II; the manual hybrid map approach has
some similarities to pseudo-inverse preconditioning. As usual, this estimate
was presented together with similar results from NILC, SEVEM and SMICA
(Planck Collaboration IX, 2015).

Finally, Commander again provided results for the low-` likelihood. In the
2015 release it was able to provide a Blackwell-Rao estimator all the way up
to ` = 250, although in the final analysis it was decided to use exact methods
only up to ` < 30, and the approximate likelihoods above.

65

CHAPTER 5. APPLICATION TO PLANCK

Figure 5.2: Use of Commander in LFI gain calibration. The solid lines (with 1σ confi-
dence bands) represents an estimate of the gain error. For each iteration, new full-sky
maps were produced from TOD data, component seperation done with Commander, and
results sent back as input to gain calibration. Figure from Paper VI.

5.3 Planck 2017 results
Paper VII, Paper VI

The 2017 release is still being prepared as of this writing, and the relevant pa-
pers for this thesis are included in draft form. This will be the first release that
uses Commander 2, with full-fledged multi-resolution component seperation as
described in section 2.4 and Paper II. Thus a single run of Commander can
include the lowest frequencies while still producing full-resolution thermal dust
maps. In the 2017 release the Commander results for the CMB sky will again
be presented alongside similar estimates from NILC, SEVEM and SMICA. New
in this release is a new GNILC method which extends NILC to also provide
foreground maps for thermal dust, free-free, and CO emission as well as the
Cosmic Infrared Background. Paper VII describes the results in further detail.

Additionally, in this release Commander had a role in the core time-ordered
data (TOD) processing of LFI. As part of the instrument calibration one needs
to find a non-linear gain function, which translates electrical readings to emis-
sion intensity in the sky. This gain function is calibrated against a large dipole
present in the microwave sky, which is induced by a Doppler effect caused by
the movement of the Planck satellite. This dipole is removed prior to further
processing, but is crucial for estimating the gain function. In the 2015 release,
the uncertainty in the gain estimate was on the order of 0.1%. While an error
on this level is acceptable for a temperature analysis, it represents a noticeable
source of systematic error for an analysis of the polarization data. To make
further improvements, it was necessary to take into account the true signal
that was being scanned on the sky when estimating the dipole. One then has
a circular dependency: To make such an estimate of the sky, one needs maps;
to get maps of the sky, one needs a gain function. Circular dependencies are
however not a problem (as discussed in section 2.1); one can simply iterate

66

CHAPTER 5. APPLICATION TO PLANCK

back and forth until convergence. In this case, we did not invest the effort
(or computational resources) of running a full Gibbs sampler; rather we sim-
ply iterated manually a few times, sending results back and forth between the
Commander group and the LFI TOD group. See Paper VI for further details.
This dependency of the gain calibration on the sky signal emphasises the need
for Commander to directly work with TOD data in the future (see chapter 6).

67

Chapter 6

Summary and outlook

Bayesian analysis of CMB data

This thesis revolves around computational techniques for optimizing the Com-
mander approach to CMB analysis: Design a Bayesian model motivated by the
underlying physics, and then use Gibbs sampling and other MCMC methods
to explore the posterior distribution. Most of the computation time during
such an analysis is spent solving the constrained realization linear problem (CR
system), and all of the research in this thesis is in some way related to solving
this linear system.

There were many attempts at developing a good solver for the CR system
that could handle the full resolution of the Planck data. Some failed, while
other were partial successes like the solvers in section 3.4 and Paper I. In the
end the solver presented in Paper II is a clear winner, being more efficient,
more robust to changes in the model, and easier to implement than any of
the alternatives we tested, and converging in less than 40 iterations for all the
models tested. The underlying principles are also transparent and robust, and
should be able to incorporate many future extensions.

What lies in the future for Commander and exact Bayesian analysis of the
CMB? So far a number of simplifying assumptions have been made about the
instrumental properties. The strongest such assumption is that it is possible to
have a waterfall process, where one first turns the Time Ordered Data (TOD)
into maps, and then carry out the Bayesian analysis on these maps. Given the
experience from the latest Planck release, where one had to iterate between
map-making and component seperation in order to successfully calibrate the
gain, it is clear that this workflow is not feasible for much longer.

Thus it seems clear that “Commander 3” will need to work with Time
Ordered Data (TOD) directly, instead of working with sky maps. This also
makes it easier to work around several of the approximations made today in
the model, such as assuming that the instrumental noise being uncorrelated be-
tween neighbouring pixels, and assuming a symmetric beam. Algebraically, the
constrained realization/component seperation system would still look the same
as equation (2.5), but each entry in the data vector of a band, dν , now repre-

69

CHAPTER 6. SUMMARY AND OUTLOOK

sents a detector sample at a given frequency instead of a pixel on a spherical
map.

Two points should be made about solving the CR system with TOD data.
First, all the methods in this thesis may still find a use. Because working with
TOD data is so expensive, one may prefer to solve the system using map input,
symmetric beams, uncorrelated noise etc. as a preconditioner for the full TOD
system, ideally just making a very few passes through TOD data. Second, as
we point out in Paper II, it is possible that the pseudo-inverse preconditioning
strategy is well suited also when working with TOD data directly.

Another area where the Commander framework should be developed in the
future is in the signal component priors. We have so far assumed an isotropic
prior for all components, which can be specified in the form of a power spectrum
C`, with a sharp band-limit L. This model has a tendency to excite ringing in
the resulting maps around sharp objects, unless much time is spent tuning the
priors, or one adopts a very high band-limit L for all components. Working with
pixel-domain vectors and, with the exception of the CMB, pixel-domain prior
specifications, one could easily define the models that are more robust against
this problem. Also, we know that the diffuse foregrounds has much variation
where their signal is strong, but should be more heavily stabilized where their
signal is weak. Such a non-isotropic prior is easier to model using a sparse
matrix in pixel domain. Of particular interest are the so-called Conditional
Auto-Regressive (CAR) models, as discussed in section 2.5.

Spherical harmonic transforms

The computational work-horse when solving the CR system is the SHT. Paper
III develops the experimental SHT code Wavemoth, efficiently implementing
an algorithm by Tygert (2010) based on matrix compression. At the time it
was the fastest SHT code available for very high resolutions, although at the
cost of impractically high memory use. It was also in some sense a negative
result, as it demonstrated that the algorithm had a computational scaling of
O(L2(logL)2), instead of O(L2 logL) as claimed by Tygert (2010).

Research in fast SHT algorithms is still ongoing, as can also be witnessed
by having a look at some of the papers citing Paper III, a recent example being
Slevinsky (2017)1, who proposes a fast transform turning the SHT problem into
a 2D FFT problem. Another algorithm of particular interest to me is the one by
Tygert (2008), which predates the one in Tygert (2010) and Paper III, but may
well turn out to be better in the end. It has a proven scaling of O(L2 logL),
and while its pre-factor is rather high at full precision, the pre-factor contains
a factor of O(d2), where d is the required precision (number of correct digits).
Thus by reducing the requirements to the precision one can drastically reduce
the pre-factor involved. For the requirements of our solver in Paper II, a pre-
cision of 10−5 should be sufficient for the linear solver, and the preconditioner
has been tested to perform well with a precision of only 10−1. At these levels
the algorithm in Tygert (2008) should be very competitive, perhaps speeding
up the SHTs by an order of magnitude. Note that the algorithm in Paper

1Pre-print, not peer-reviewed as of this writing

70

CHAPTER 6. SUMMARY AND OUTLOOK

III also has tunable accuracy; unfortunately the “low” accuracy experiment is
done at 10−8 in that paper. The largest disadvantage of the algorithm in Paper
III is the memory requirements. These are much more modest in the algorithm
of Tygert (2008), and I therefore feel the latter to have more potential in the
future.

As discussed earlier, the lasting legacy of the Wavemoth code is the low-
level optimization done on the brute-force core, in particular in exploiting the
pipelining capabilities of the CPU. This approach was integrated by Martin
Reinecke into a revised version of the libpsht code, resulting in the release
of the subsequent Libsharp (see Paper IV), which is in use by thousands of
researchers every day.

Technical Report I explores the implementation of the SHT on GPUs, by
providing an implementation of the most challenging part: The Legendre trans-
forms in the “inconvenient” direction. The implementation performs at 40% of
the peak floating-point capacity of the GPU; this is quite good for an algorithm
that requires interaction between threads of computation. To my knowledge
there has not been any research on SHTs on the GPU since that report was
written, and so the work should still be relevant. The first missing piece to
turn the code into a production quality code is a Legendre transform in the
opposite direction, but this is a trivial piece of code in comparison. The other
missing piece is a set of 1D FFTs; these one could perform on the CPU using
FFTW32 in a first iteration. Also the PyFFT3 project provides an open source
implementation of the FFT for the GPU which could perhaps be integrated.

2http://www.fftw.org/
3Despite the name, this is primarily a GPU code, using Python only to generate the code.

https://pythonhosted.org/pyfft/

71

http://www.fftw.org/
https://pythonhosted.org/pyfft/

Appendix A

Bibliography

Michele Benzi, Gene H. Golub, and Jörg Liesen. Numerical solution of saddle point
problems. ACTA NUMERICA, 14:1–137, 2005.

BICEP2/Keck Collaboration and Planck Collaboration. Joint Analysis of BI-
CEP2/Keck Array and Planck Data. Physical Review Letters, 114(10):101301, 2015.

Steffen Börm, Lars Grasedyck, and Wolfgang Hackbusch. Introduction to hierarchi-
cal matrices with applications. Engineering Analysis with Boundary Elements, 27
(5):405 – 422, 2003. ISSN 0955-7997.

S. Chandrasekaran, M. Gu, and T. Pals. A fast ulv decomposition solver for hi-
erarchically semiseparable representations. SIAM Journal on Matrix Analysis and
Applications, 28(3):603–622, 2006.

M. Chu, H. K. Eriksen, L. Knox, K. M. Górski, J. B. Jewell, D. L. Larson, I. J.
O’Dwyer, and B. D. Wandelt. Cosmological parameter constraints as derived
from the Wilkinson Microwave Anisotropy Probe data via Gibbs sampling and the
Blackwell-Rao estimator. Physical Review D, 71(10):103002, 2005.

Noel Cressie and Christopher Wikle. Statistics for Spatio-Temporal Data. Wiley,
2011.

Howard C. Elman. Preconditioning for the steady-state navier–stokes equations with
low viscosity. SIAM Journal on Scientific Computing, 20(4):1299–1316, 1999.

F. Elsner and B. D. Wandelt. Efficient Wiener filtering without preconditioning.
Astronomy & Astrophysics, 549:A111, January 2013.

H. K. Eriksen, I. J. O’Dwyer, J. B. Jewell, B. D. Wandelt, D. L. Larson, K. M.
Górski, S. Levin, A. J. Banday, and P. B. Lilje. Power Spectrum Estimation from
High-Resolution Maps by Gibbs Sampling. Astrophysical Journal, Supplement, 155:
227–241, 2004.

H. K. Eriksen, J. B. Jewell, C. Dickinson, A. J. Banday, K. M. Górski, and C. R.
Lawrence. Joint Bayesian Component Separation and CMB Power Spectrum Esti-
mation. Astrophysical Journal, 676:10-32, 2008.

K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke,
and M. Bartelmann. HEALPix: A Framework for High-Resolution Discretization
and Fast Analysis of Data Distributed on the Sphere. Astrophysical Journal, 622:
759–771, 2005. URL http://healpix.jpl.nasa.gov/.

73

http://healpix.jpl.nasa.gov/

APPENDIX A. BIBLIOGRAPHY

Kazushige Goto and Robert A. van de Geijn. Anatomy of high-performance matrix
multiplication. ACM Trans. Math. Softw., 34(3), 2008.

E. Hivon, K. M. Górski, C. B. Netterfield, B. P. Crill, S. Prunet, and F. Hansen.
MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A
Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Back-
ground Data Sets. Astrophysical Journal, 567:2–17, 2002.

J. Jewell, S. Levin, and C. H. Anderson. Application of Monte Carlo Algorithms to
the Bayesian Analysis of the Cosmic Microwave Background. Astrophysical Journal,
609:1–14, 2004.

Antony Lewis and Sarah Bridle. Cosmological parameters from CMB and other
data: a Monte- Carlo approach. Phys. Rev., D66:103511, 2002.

Antony Lewis, Anthony Challinor, and Anthony Lasenby. Efficient computation of
CMB anisotropies in closed FRW models. Astrophys. J., 538:473–476, 2000.

S. Mitra, G. Rocha, K. M. Górski, K. M. Huffenberger, H. K. Eriksen, M. A. J.
Ashdown, and C. R. Lawrence. Fast Pixel Space Convolution for Cosmic Microwave
Background Surveys with Asymmetric Beams and Complex Scan Strategies: FEBe-
CoP. Astrophysical Journal, Supplement, 193:5, 2011.

S. Næss et al. The Atacama Cosmology Telescope: CMB polarization at 200 ≤ ` ≤
9000. Journal of Cosmology and Astroparticle Physics, 10:007, 2014.

A. A. Penzias and R. W. Wilson. A Measurement of Excess Antenna Temperature
at 4080 Mc/s. Astrophysical Journal, 142:419–421, 1965.

Planck Collaboration IX. Planck 2015 results. IX. Diffuse component separation:
CMB maps. Astronomy & Astrophysics, 594:A9, 2015.

Planck Collaboration VI. Planck 2015 results. VI. LFI mapmaking. Astronomy &
Astrophysics, 594:A6, 2015.

Planck Collaboration VII. Planck 2015 results. VII. High Frequency Instrument
data processing: Time-ordered information and beams. Astronomy & Astrophysics,
594:A7, 2015.

Planck Collaboration VIII. Planck 2015 results. VIII. High Frequency Instrument
data processing: Calibration and maps. Astronomy & Astrophysics, 594:A8, 2015.

Planck Collaboration X. Planck 2013 results. X. HFI energetic particle effects:
characterization, removal, and simulation. Astronomy & Astrophysics, 571:A10,
2014.

Planck Collaboration X. Planck 2015 results. X. Diffuse component separation:
Foreground maps. Astronomy & Astrophysics, 594:A10, 2015.

Planck Collaboration XII. Planck 2013 results. XII. Diffuse component separation.
Astronomy & Astrophysics, 571:A12, 2014.

Planck Collaboration XIII. Planck 2015 results. XIII. Cosmological parameters.
Astronomy & Astrophysics, 594:A13, 2015.

Planck Collaboration XV. Planck 2013 results. XV. CMB power spectra and likeli-
hood. Astronomy & Astrophysics, 571:A15, 2014.

B. Racine, J. B. Jewell, H. K. Eriksen, and I. K. Wehus. Cosmological Parameters
from CMB Maps without Likelihood Approximation. Astrophysical Journal, 820:31,
2016.

M. Reinecke. Libpsht - algorithms for efficient spherical harmonic transforms. As-
tronomy & Astrophysics, 526:A108, 2011.

74

APPENDIX A. BIBLIOGRAPHY

Jonathan Richard Shewchuk. An introduction to the conjugate gradient method
without the agonizing pain. 1994. URL http://www.cs.cmu.edu/~jrs/jrspapers.

html.

M. R. Slevinsky. Fast and backward stable transforms between spherical harmonic
expansions and bivariate Fourier series. ArXiv e-prints, May 2017.

Radek Stompor, Mikolaj Szydlarski, and Laura Grigori. S2HAT code, 2006. URL
http://www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/MIDAS09/software/

s2hat/s2hat.html.

J. M. Tang, R. Nabben, C. Vuik, and Y. A. Erlangga. Comparison of two-level pre-
conditioners derived from deflation, domain decomposition and multigrid methods.
Journal of Scientific Computing, 39(3):340–370, 2009. ISSN 1573-7691.

M. Tygert. Fast algorithms for spherical harmonic expansions, II. Journal of Com-
putational Physics, 227:4260–4279, April 2008. doi: 10.1016/j.jcp.2007.12.019.

Mark Tygert. Fast algorithms for spherical harmonic expansions, III. Journal of
Computational Physics, 229(18), 2010.

B. D. Wandelt, D. L. Larson, and A. Lakshminarayanan. Global, exact cosmic
microwave background data analysis using Gibbs sampling. Physical Review D, 70
(8):083511, 2004.

Nils P. Wedi, Mats Hamrud, and George Mozdzynski. A fast spherical harmonics
transform for global nwp and climate models. Monthly Weather Review, 141(10):
3450–3461, 2013.

Norman Yarvin and Vladimir Rokhlin. An improved fast multipole algorithm for
potential fields on the line. SIAM Journal on Numerical Analysis, 36(2):629–666,
1999.

75

http://www.cs.cmu.edu/~jrs/jrspapers.html
http://www.cs.cmu.edu/~jrs/jrspapers.html
http://www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/MIDAS09/software/s2hat/s2hat.html
http://www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/MIDAS09/software/s2hat/s2hat.html

Part II

Papers

77

Paper I

A multi-level solver for Gaussian constrained CMB
realizations

I tried more preconditioner variants for solving the CMB constrained realization
problem at full resolution than I can remember. This paper presents the first
published attempt and an important stepping stone towards our final answer
to the problem in Paper II.

The contribution of this paper is in pointing out that pixel-domain multi-
grid methods are needed to solve for the Laplacian-like system under the mask.
However, the same methods are not able to carry out deconvolution of the
instrumental beam. This was not needed for the test model in this paper,
but, as we discovered when trying to generalize the solver to full-resolution
component seperation, it is needed to recover the thermal dust signal. This
problem is fixed in Paper II.

79

The Astrophysical Journal Supplement Series, 210:24 (13pp), 2014 February doi:10.1088/0067-0049/210/2/24
C© 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

A MULTI-LEVEL SOLVER FOR GAUSSIAN CONSTRAINED COSMIC
MICROWAVE BACKGROUND REALIZATIONS

D. S. Seljebotn1, K.-A. Mardal2,3, J. B. Jewell4, H. K. Eriksen1, and P. Bull1
1 Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo, Norway; d.s.seljebotn@astro.uio.no

2 Department of Informatics, University of Oslo, P.O. Box 1080 Blindern, NO-0316 Oslo, Norway
3 Centre for Biomedical Computing, Simula Research Laboratory, P.O. Box 134, NO-1325 Lysaker, Norway

4 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Received 2013 August 25; accepted 2013 November 29; published 2014 January 23

ABSTRACT

We present a multi-level solver for drawing constrained Gaussian realizations or finding the maximum likelihood
estimate of the cosmic microwave background sky, given noisy sky maps with partial sky coverage. The method
converges substantially faster than existing Conjugate Gradient (CG) methods for the same problem. For instance, for
the 143 GHz Planck frequency channel, only three multi-level W-cycles result in an absolute error smaller than 1 μK
in any pixel. Using 16 CPU cores, this translates to a computational expense of 6 minutes wall time per realization,
plus 8 minutes wall time for a power-spectrum-dependent precomputation. Each additional W-cycle reduces the
error by more than an order of magnitude, at an additional computational cost of 2 minutes. For comparison, we have
never been able to achieve similar absolute convergence with conventional CG methods for this high signal-to-noise
data set, even after thousands of CG iterations and employing expensive preconditioners. The solver is part of
the Commander 2 code, which is available with an open source license at http://commander.bitbucket.org/.

Key words: cosmic background radiation – methods: numerical – methods: statistical

Online-only material: color figures

1. INTRODUCTION

Apart from a substantial kinematical dipole, the cosmic mi-
crowave background (CMB) radiation is observed to be isotropic
to around one part in 104. Below this level, there are random
fluctuations over a wide range of angular scales. The prevailing
“concordance” cosmological model explains these anisotropies
as the imprints of Gaussian-distributed, statistically isotropic
perturbations of spacetime that were generated during an in-
flationary epoch in the early universe. Correlations between
the fluctuations provide a wealth of information about infla-
tion and the subsequent growth of structure, and so being able
to accurately measure and characterize them is of paramount
importance to modern cosmology.

As detector technology has improved, it has become possible
to probe smaller and smaller angular scales with ever-increasing
noise sensitivities. The resulting improvement in resolution
and signal-to-noise ratio presents a formidable computational
challenge, as one must now reliably reconstruct the CMB
sky to high accuracy over tens of millions of pixels, while
simultaneously taking into account complexities of the data
such as inhomogeneous noise, foreground contamination, and
regions of missing/masked data.

Consider an observed map of the CMB, for instance similar to
those provided by the Wilkinson Microwave Anisotropy Probe
(WMAP; Bennett et al. 2013) and Planck (Planck Collaboration
2013a) experiments. The ideal CMB map would consist of an
error-free value at every single position on the sky. In reality this
is of course not possible, because of instrumental imperfections
(such as noise and beam-smoothing) and strong foreground
contamination from astrophysical sources; there will always be
uncertainties in a real CMB map. Therefore, rather than aiming
to extract “a single true CMB sky map,” a more realistic solution
is to compute an ensemble of many possible CMB skies, each
of which is both noise-free, full-sky, and statistically consistent
with the observed data. This idea has already been implemented
for CMB analysis purposes in terms of a Gibbs sampling

framework, as described by Jewell et al. (2004), Wandelt et al.
(2004), and Eriksen et al. (2004, 2008b).

An underlying assumption in this line of work is that both
the CMB sky and instrumental noise are random Gaussian
fields with covariance matrices S and N, respectively. In most
applications—following the basic inflationary prediction—one
additionally assumes that the CMB field is isotropic, so that the
CMB covariance matrix can be specified in terms of a simple
angular power spectrum, C�. Of course, this power spectrum
is not known a priori, but must instead be estimated from the
data, and indeed, this is usually the main goal for most CMB
experiments.

The Gibbs sampling framework provides a well-structured
mathematical solution to this power spectrum estimation prob-
lem, by establishing the full joint Bayesian posterior distribu-
tion of the CMB sky and CMB power spectrum. This is found
by iteratively sampling from the (more tractable) conditional
distributions according to a simple algorithm: (1) make an ar-
bitrary initial “guess” for the CMB power spectrum, (2) draw a
CMB sky map compatible with the data and the assumed power
spectrum, (3) draw a power spectrum compatible with the sky
sample that was just drawn, and (4) iterate. The resulting set
of sky and power spectrum samples will (after some burn-in
period) converge to the true joint posterior distribution.

Although simple to write down, this algorithm is also com-
putationally rather expensive due to step (2), which essentially
amounts to solving a large linear system with one or more
random terms on the right-hand side, corresponding to different
realizations. We will refer to this system as the constrained real-
ization (CR) system. The same linear system can also be solved
for the maximum likelihood CMB sky map estimate, which is
sometimes referred to as the Wiener-filtered map. Since the de-
grees of freedom of the CR system scale with the number of
pixels, brute force solutions are out of bounds except for very
low-resolution data sets. However, it is computationally feasi-
ble to multiply an arbitrary vector with the system matrix by
repeatedly changing basis functions (i.e., spherical harmonic

1

The Astrophysical Journal Supplement Series, 210:24 (13pp), 2014 February Seljebotn et al.

transforms, SHTs), so that the system can be solved using iter-
ative linear equation solvers. The main problem is to optimize
the convergence rate of these solvers to produce a solution in a
timely manner.

Commander (Eriksen et al. 2004), the CMB Gibbs sampler
mentioned above, solves the CR system through the Conjugate
Gradient (CG) method, using a combination of a block precon-
ditioner on large angular scales and a diagonal preconditioner
on small angular scales. While this approach was successful for
analyzing WMAP observations (O’Dwyer et al. 2004; Eriksen
et al. 2007a, 2007b, 2008a), the higher signal-to-noise level of
data from more recent experiments like Planck effectively halts
convergence of the solver. Indeed, as we will see in Section 2.4,
the number of CG iterations intrinsically scales with the signal-
to-noise ratio of a given data set, limiting the utility of CG
for data sets such as these. To produce the low-� power spec-
trum likelihood for the Planck mission, for example, the data
had to be downgraded to low angular resolution and a substan-
tial amount of regularization noise added (Planck Collaboration
2013b). Even then, several thousands of CG iterations were re-
quired for convergence. To go to full angular resolution with
this scheme is simply not computationally feasible.

A somewhat better approach was described by Smith et al.
(2007), who applied the CG method recursively, such that a
CG solution on a coarse grid was used as the preconditioner
for CG on a finer grid. We are not aware of any head-to-head
comparisons of this method versus the one described by Eriksen
et al. (2004), but our understanding is that, although it is faster,
it still scales with the signal-to-noise ratio of the data set, and
therefore does not inherently fix the fundamental convergence
problems for high-sensitivity, high-resolution analysis.

More recently, Elsner & Wandelt (2012, 2013) introduced a
stationary iterative method for solving the CR equation. They
did not quote the usual statistics for convergence, such as
total reduction in residual and error, however. Not knowing
the accuracy of their solution, we are unable to compare the
efficiency of their method directly to ours. While they do quote
the change in the χ2 statistic of the posterior probability density
between successive iterations, iterative methods (and stationary
methods in particular) are vulnerable to breaking down in terms
of convergence rate well before reaching true convergence. Also,
the χ2 explicitly ignores large scales under the mask. While there
certainly are applications where this is acceptable, CMB Gibbs
sampling is not one of them, since it explicitly iterates between
considering the CMB signal a sample from the posterior, which
mostly ignores the masked area, and a sample from the prior,
which gives equal weight to the masked area.

In this paper we present a new solver for the CR system that
is radically different from the CG approach, and instead builds
on the multi-level (or multi-grid) framework. These algorithms
are best known in the astrophysics community as solvers for
elliptical partial differential equations (PDEs), although they
are in fact more generally applicable to solving many types of
linear systems (Brandt 2001). We apply multi-level theory to the
CR equation (although the algorithm is not entirely traditional),
and show that the resulting algorithm converges to the exact
solution with only a handful of iterations even for the most
sensitive Planck channel. Most importantly, and contrary to the
CG solver, the convergence rate is nearly independent of the
signal-to-noise ratio of the data set.

Multi-level methods have been explored before in the CMB
community for the purposes of map-making. Doré et al. (2001)
described a standard multi-grid method for map-making, al-

though it was eventually unable to compete with standard
CG and approximate map-makers. Grigori et al. (2012) also
presented a promising two-level CG preconditioner for map-
making based on the domain-decomposition method in Havé
et al. (2013). The map-making equation is different from CR
equation, however, in that one does not solve for the CMB sig-
nal under a mask. As we will see in Section 2.4, it is this feature
in particular that makes convergence difficult to achieve on the
CR system.

2. EXPLORING THE CR LINEAR SYSTEM

2.1. Matrix Notation for Spherical Harmonic Transforms

The details of changing between pixel domain and spherical
harmonic (SH) domain are usually glossed over in the literature.
Since we will be solving a large linear system that couples
signals on all scales—from individual pixels to the full-sky—it
is of the utmost importance to be precise about how these
conversions are performed. If implemented incorrectly, even
small pixel-scale errors can lead to overall divergence of the
entire method.

There is no perfect grid on the sphere, and in choosing
a particular one, a number of trade-offs must be considered.
In our current implementation we adopt both the HEALPix5

pixelization (Górski et al. 2005) and the Gauss–Legendre
spherical grid (Reinecke 2011, and references therein). The
HEALPix software package contains routines that are useful
for our pixel-domain computations, while the latter is required
for accurate evaluation of Equation (2) below.

Given such a grid on the sphere (by which we mean a set of
positions n̂i on the sky), we can use SH synthesis to transform
a field expressed in spherical harmonic basis, with coefficients
s�m, to a field sampled on the sphere,

ŝ(n̂i) =
�max∑
�=0

�∑
m=−�

s�mY�m(n̂i). (1)

We will write this operation in matrix form as ŝ = Ys, where Y
encodes the value of the SHs evaluated at each n̂i of the chosen
grid. Note that Y is not a square matrix, as spherical grids need
to over-sample the signal to faithfully represent it up to some
bandlimit �max. In typical applications there are between 30%
and 100% more pixels along the rows of Y than there are SH
coefficients along the columns. For the purposes of our method,
it will turn out that we need to under-pixelize the signal instead,
so there will be more columns than rows in Y.

The opposite action of converting from pixel basis to har-
monic basis is SH analysis, which generally takes the quadrature
form

s�m =
∫

4π

Y ∗
�m(n̂)ŝ(n̂)dΩ ≈

Npix∑
i=1

Y ∗
�m(n̂i)wiŝ(n̂i), (2)

where wi combines quadrature weights and pixel area. Similar
to the synthesis case, this operation can be written in matrix
form as s = YT Ŵs, where Wij = wiδij . A crucial feature
of our method is the ability to (for the most part) avoid SH
analysis, however. Instead, we will rely on adjoint SH synthesis,
YT , which simply appears algebraically as the transpose of Y.

5 http://healpix.sourceforge.net

2

The Astrophysical Journal Supplement Series, 210:24 (13pp), 2014 February Seljebotn et al.

Note that, unlike in the case of the more famous discrete
Fourier transform, Y is not a square orthogonal matrix, and
synthesis and analysis differ by more than transposition and a
scale factor. One may in some situations have that YT WY = I,
but this depends on both �max, Npix and the spherical grid.

The action of applying Y, YT , YT W or WY to a vector is in
general referred to as a SHT. Carefully optimized libraries are
available that perform SHTs in O(�maxNpix) time; we use the
libsharp library (Reinecke & Seljebotn 2013).

2.2. Data Model

We now define our data model, and assume from the be-
ginning that the CMB is Gaussian and isotropic (e.g., Planck
Collaboration 2013c). Following the notation of Eriksen et al.
(2004), it is convenient to define the CMB signal to be a vector
s of SH coefficients, in which case the associated covariance
matrix S is given by

S�m,�′m′ = δ��′δmm′C�,

where C� is the CMB power spectrum.
Using the notation of the previous section, the model for the

observed sky map pixel vector, d, is

d = YobsBs + n, (3)

where B denotes beam-smoothing and the pixel window func-
tion, n is Gaussian instrumental noise, and the subscript of Yobs
indicates projection to the pixelization of the map d.

We assume a symmetric instrumental beam, so that the
beam matrix B is a diagonal matrix given by B�m,�′m′ =
b�p�δ��′δmm′ , where b� is the instrumental beam and p� the pixel
window function of the observed grid. We also assume white
instrumental noise, such that the noise covariance matrix, N, is
diagonal. We discuss the likely impact of asymmetric beams
and correlated noise in Section 5.

Discretization of the model is done simply by picking some
�max for the s vector. The noise vector n is related to the map-
making process, averaging the noise of time-ordered data that
fall within the same pixel, and so is inherently discrete rather
than being a discretization of any underlying field. As already
mentioned above, no SH analysis of d (and therefore n) is
required when solving the CR system; rather, one solves for
the projected s, and so the noise treatment is always perfectly
consistent with the assumed model.

2.3. The CR Linear System

Given the data model above, we are interested in exploring
the Bayesian posterior distribution p(s|d, C�), the CMB signal
given the data and CMB power spectrum. Let us first define

A ≡ S−1 + BYT
obsN

−1YobsB, (4)

where in what follows we will refer to the first term as the prior
term, and the second as the inverse-noise term. It can be shown
that if we now solve the CR system

Ax = BYT
obsN

−1d, (5)

the solution x will be the maximum likelihood estimate of s.
Alternatively, if particular random fluctuation terms are added
to the right-hand side of Equation (5), the solution x will instead
be samples from the posterior (Jewell et al. 2004; Wandelt et al.

2004). Since b� → 0 as � increases, the diagonal prior term will
at some point dominate the dense inverse-noise term, so that
truncation at sufficiently high �max does not affect the solution
of the system.

As stressed in Section 2.1, YT
obs denotes SH adjoint synthesis,

and not SH analysis. Pixels that are masked out, typically
due to strong foreground contamination, are simply missing
from the data vector d, and so the corresponding rows are not
present in Yobs. This means Yobs is not an orthogonal matrix,
but that is not a concern since we never perform SH analysis
of pixels on the observation grid. The solution x is still well-
defined everywhere on the sky due to the prior term S−1. This is
typically implemented by introducing zeroes in N−1 rather than
removing rows of Yobs, which has the statistical interpretation
of giving those pixels infinite variance. The two interpretations
are algebraically equivalent.

2.4. Eigenspectrum and CG Performance

The CR system in Equation (4) is symmetric and positive
definite, which suggests the use of the CG algorithm. For the
behavior of CG and other Krylov methods, we are primarily in-
terested in the eigenspectrum after preconditioning (Shewchuk
1994, and references therein), i.e., the eigenspectrum of MA,
where M ≈ A−1. To illustrate the fundamental problem with
the CG algorithm for the application considered here, we show
in Figure 1 the eigenspectrum of a low-resolution setup, using a
diagonal preconditioner. This case corresponds to a simulation
of the 143 GHz Planck frequency map (Planck Collaboration
2013a), downgraded to an angular resolution of 5.◦4, bandwidth-
limited at �max = 95, and with a mask applied that removes
40% of the sky. The overall shape of the spectrum appears to
be mostly independent of the resolution, with a significant frac-
tion of degrees of freedom found in the tails. This behavior is
representative of that found in real-world cases.

The problematic feature is the exponential drop in the
eigenvalues seen to the left of the figure. Theoretical results
indicate that the CG search needs at least one iteration per
eigenvalue located in exponentially increasing parts of the
eigenspectrum (Axelsson & Lindskog 1986a, 1986b). This leads
to extreme degradation of CG performance, which is indeed
what has been observed with Commander on high-resolution,
high-sensitivity data.

The exponential spectral feature is due to large-scale modes
under the mask. For all but the smallest angular scales, the N−1

term dominates by many orders of magnitude, so that the S−1

term is hardly seen at all. However, vectors that only build-up
signal under the mask after beam-smoothing will only see the
S−1 term of the matrix, as the N−1 term vanishes in that case.
The eigenvectors corresponding to the smallest eigenvalues are
therefore characterized by having large scales localized within
the mask. Moreover, the solution under the mask is constrained
by the values at the mask edge, meaning the N−1 term takes
effect, and this constraint is harder closer to the edges. The result
is an exponentially falling eigenspectrum, rather than separated
clusters of eigenvalues that CG could more easily deal with.

Phrased differently, for data having a high signal-to-noise
ratio, the pixels near the edge of the mask carry a large predic-
tive power on the signal inside the mask—a signal that must
be reconstructed by the CG algorithm by navigating through
a nearly degenerate system. In total, the CG convergence rate
is determined by a combination of the overall signal-to-noise
ratio and the size and shape of the mask. We have been un-
able to achieve proper convergence with this method for the

3

The Astrophysical Journal Supplement Series, 210:24 (13pp), 2014 February Seljebotn et al.

Figure 1. Eigendecomposition of the CR system using a diagonal precon-
ditioner. Top panel: the eigenvalues of diag(A)−1A for the 143 GHz Planck
channel with a mask covering 40% of the sky, smoothed with a 5.◦6 FWHM
beam and truncated at �max = 95. Bottom panel: a selection of eigenvectors
corresponding to very low eigenvalues. The structure of the mask (bottom) is
clearly visible in the eigenvectors.

(A color version of this figure is available in the online journal.)

signal-to-noise ratio of a Planck-like experiment, for example,
independent of preconditioners or number of iterations; down-
grading and adding regularization noise is required to produce
robust results.

3. THE MULTI-LEVEL SOLVER

3.1. Motivation for a Multi-level Method

The matrix A of Equation (4) is defined in SH domain,
and describes the coupling strength between pairs of (�,m)
and (�′,m′). Except in unrealistic scenarios with very simple
instrumental noise and mask, we have found no pattern in the
magnitudes of the matrix coefficients A�m,�′m′ that is consistent
enough to be exploited in a solver.

By moving to pixel domain, however, we can create such an
exploitable pattern in the magnitudes of the matrix coefficients.
In Section 3.3 we will construct a corresponding pixel-domain
matrix Â that is localized, in the sense that Âij has small
magnitude (less than 1% of Âii) unless pixels i and j are very
close together on the sphere.

It is no surprise that the N−1 term of Equation (4) enjoys
this property, since we have assumed that instrumental noise is
uncorrelated between pixels. When it comes to the S−1 term,
we note that 1/C� is roughly proportional to �(� + 1), at least

Figure 2. Effect of the error smoother/approximate inverse M̂. Top: relative
error ‖x� − xtrue,�‖/‖xtrue,�‖. For each iteration, the error smoother developed
in Section 3.5 is applied on a HEALPix Nside = 512 grid. The error smoother is
only able to get closer to the solution for some part of the frequency spectrum,
and quickly stagnates since no improvement is made to the larger or smaller
scales. Bottom: the left patch shows the initial error when starting at x = 0,
while the right patch shows the error after the first iteration. The remaining
large-scale errors can be represented on a coarser grid. This observation leads
to the multi-level algorithm.

(A color version of this figure is available in the online journal.)

for � � 1000. These are the eigenvalues of the Laplacian on the
sphere, with Y being the corresponding eigenbasis. Therefore
we can hope that a projection of S−1 to pixel domain should be
close to a Laplacian. The Laplacian is often approximated with
a matrix where Âij = 0 unless pixel i and j are neighbors or
i = j . While our case will be less perfect, it still suggests that
multi-level methods can be very efficient, since those are highly
successful for PDEs involving the Laplacian.

In Section 3.5, we exploit the localization properties in pixel
domain to develop an approximate inverse M̂ ≈ Â−1. Figure 2
demonstrates the use of this approximate solver as part of a
simple stationary method

x ← x + M̂(b − Âx), (6)

where we initialize x ← 0 and then iteratively update the
solution. Note that if we replace M̂ with diag(A)−1, Equation (6)
represents what are known as Jacobi iterations.

The problem that is evident from Figure 2 is that M̂ will only
make improvements to one part of the frequency spectrum—
namely, the highest frequencies that can be represented on the
grid used. This is the typical case when multi-level methods are
applied; iterations of the form of Equation (6) are usually only
efficient at resolving the relations between pixels/elements that
are strongly coupled, which, when Â is localized, translates to
resolving the solution at highest frequencies. Little or no im-
provement is made between pixels that are weakly or indirectly

4

The Astrophysical Journal Supplement Series, 210:24 (13pp), 2014 February Seljebotn et al.

Figure 3. Effect of filters in harmonic domain for the top five levels. For each
level H, starting from the original system of Equation (4) at the top, we plot the
transfer filter f H

h,� (dotted blue), the filtered prior (f̃ H
�)2/C� (solid black), and an

approximation to the diagonal of the inverse-noise term (dashed red). Functions
are normalized to an arbitrary scale (see Figure 4 for the absolute scale). Note
how the prior term on the pixel levels looks superficially similar to wavelets/
needlets in harmonic domain (Scodeller et al. 2011, and references therein). The
real-space transform is also similar to wavelets/needlets (not plotted).

(A color version of this figure is available in the online journal.)

coupled in Â, so that no improvement is made to the coarser
scales. Put another way, the error, e ≡ x − xtrue, has its high-
frequency components reduced, while the low frequencies are
left relatively unaffected. The approximate inverse M̂ is there-
fore dubbed a smoother in multi-level terminology. We will use
the term error smoother to distinguish it from the act of apply-
ing a low-pass filter (which is instead called restriction in this
context).

The key is now to project the matrix A to pixel grids at
different resolutions, producing a set of matrices Âh, where h is
a level indicator. For each Âh we construct a corresponding error
smoother M̂h ≈ Â−1

h that resolves the errors in one region of the
frequency spectrum only. Using these levels together, we arrive
at a method that converges very well over the entire frequency
spectrum.

3.2. The Multi-level Algorithm

In this section we give a brief overview of multi-level theory,
together with the specification of our algorithm. For a more
detailed introduction to multi-grid methods, consult one of the
number of standard texts (e.g., Hackbush 1985). Ingredients of
multi-level algorithms are:

1. A set of bases to project the linear system into in order to
work on different parts of the solution. Usually these form
a hierarchy of levels from finest to coarsest, so that each

Figure 4. Same as Figure 3, but all levels plotted together with a logarithmic
scale and with absolute normalization. We plot the filtered prior (f̃ H

�)2/C�

(solid), and the diagonal of the inverse-noise term for 26 μK constant rms
and no mask (dashed). This noise level corresponds to the average of the rms
map of the 143 GHz Planck band. The levels are: the original system (black),
Nh

side = 1024 (red), Nh
side = 512 (blue), Nh

side = 256 (orange), and Nh
side = 128

(green). Note the effect of the filters on the signal-to-noise ratio; harmonic scales
go from being data-dominated to noise-dominated at the point where the solid
and dashed lines intersect.

(A color version of this figure is available in the online journal.)

level solves for different frequencies of the solution. It is
customary to label levels relatively, using h for the current
level and H for the coarser level.

2. A way to transfer vectors between the different levels. The
restriction operator, IH

h , takes a vector from a finer level to
a coarser level, while the interpolation operator Ih

H works
in the opposite direction. For symmetric systems, one often
takes Ih

H = (IH
h)T .

3. One linear operator (left-hand side matrix) for each level.
For the case where interpolation is chosen to be transposed
restriction, these are often defined recursively as

AH = Ih
H Ah

(
Ih
H

)T
(7)

for the projection of a fine matrix Ah to a coarser
matrix AH .

4. An error smoother Mh for each Ah that removes the higher
frequencies of the error on level h, as discussed in the
previous section.

Multi-level algorithms are often implemented on a grid or
a tessellation in real space, with a sparse linear operator, and
using averages of neighboring points as the restriction operator
IH
h . In our case, Âh on each level is not sparse, and, at least

without approximations, multiplying ÂH = Ih
H ÂhIH

h with a
vector would be computationally very expensive on the coarser
levels as it would require interpolating back to the highest-
resolution grid.

To avoid this cost, we instead define our levels in SH domain.
Let f̃ h

� be a SH low-pass filter that emphasizes one part of the
frequency spectrum, and define Fh to be a diagonal matrix with
elements f̃ h

� . We then define

Ah ≡ FhAFT
h ≡ Dh + BhYT

obsN
−1YobsBh, (8)

where the prior term Dh is diagonal with entries given by
(f̃ h

�)2/C� and the modified beam matrix Bh is diagonal with
elements given by f̃ h

� b�p�. In this case, the system is bandlimited
by some �h

max � �max, above which f̃ h
� = 0. Figures 3 and 4

show the filters used in our setup; we discuss the choice of filters
further in Section 3.3.

5

The Astrophysical Journal Supplement Series, 210:24 (13pp), 2014 February Seljebotn et al.

With this choice, we can clearly satisfy the multi-level
hierarchy of Equation (7) by choosing the restriction operator
IH
h as an (�H

max +1)2-by-(�h
max +1)2 block matrix, where the block

for � � �H
max is diagonal with entries

f H
h,� ≡ f̃ H

�

f̃ h
�

, (9)

and the block for �H
max < � � �h

max is zero.
As already mentioned in Section 3.1, the error smoother that

we have available, M̂h, is defined in pixel domain. For every SH
level we therefore tag on a corresponding sibling pixel level with
matching HEALPix resolution Nh

side. The result is the following
level structure:

SH at �h
max = 3000 ←→ Pixels at Nh

side = 1024

�
SH at �h

max = 2048 ←→ Pixels at Nh
side = 512

�
SH at �h

max = 1280 ←→ Pixels at Nh
side = 256

�
... .

The arrows indicate that transfers between different scales hap-
pen only through the SH levels. As emphasized in Section 2.1,
no SH analysis operations are performed in each conver-
sion (only synthesis and adjoint synthesis operations), and the
implied under-pixelization in the above scheme is therefore
numerically unproblematic.

The full details of how to properly move between the levels
to obtain a solution is given in pseudo-code in Figure 5. We
highlight some aspects in what follows.

Assume that we are currently on some SH level h (where the
original equation is simply the top level), with corresponding
system

Ahxtrue,h = bh. (10)

We start with some search vector xh (initialized to zero), and
want to improve it to get closer to the true value xtrue,h. In order
to make use of M̂, we must now move to the corresponding
pixel level. Our chosen restriction operator, denoted Yh, is SH
synthesis to a HEALPix grid6 of resolution Nh

side. The key to
efficient multi-level solvers is to transfer the residual vector rh,
and not the search vector xh;

rh ← bh − Ahxh (11)

r̂h ← Yrh, (12)

where r̂h is the pixel-domain projection of rh. Then, we
approximately solve the projected system for a correction
vector ĉh,

ĉh ← M̂ r̂h ≈ (
YhAhYT

h

)−1
r̂h, (13)

where the computation of M̂ r̂h is further described in
Section 3.5. The approximation is better for small scales than

6 The pixel level is actually coarser than the SH level, because �h
max must be

chosen so high that the grid cannot resolve all the scales of the projected field.
See Section 3.4.

CR-Cycle(h, x,b):
Inputs:

h – The current level
x – Starting vector
b – Right-hand side

H denotes the coarser level relative to h.
Output:

Improved solution vector x

if h is bottom level:
x ← A−1

h b By dense Cholesky
else:

x ← x + YT
h MhYh (b − Ah x) Pre-smoothing

rH ← IH
h (b − Ah x) Restricted residual

cH ← 0 Coarse correction
repeat nh

rec times:
cH ← CR-Cycle(H, cH , rH) Recurse

x ← x + (IH
h)T cH Apply correction

x ← x + YT
h MhYh (b − Ah x) Post-smoothing

return x

CR-Solve(b):
Inputs:

b – Right-hand side
– Requested improvement in residual

Output:
Approximate solution x

x ← 0
repeat:

x ← CR-Cycle(1st, x,b)
r ← b − Ax Reused in next CR-Cycle
if rT S−1 r bT S−1b: Improvement relative to C

return x

Figure 5. Multi-level CR solver. The matrices involved are defined in the
main text. In place of the simple iteration scheme of CR-Solve, one can use
CR-Cycle as a preconditioner within another solver, such as CG. By varying
the nh

rec parameter, a variety of solver cycles can be constructed, such as a
V-cycle (nh

rec = 1) or W-cycle (nh
rec = 2). Note that, for simplicity, the top-level

diagonal error correction is omitted; see the main text.

for large scales. Finally, we let the interpolation operator be the
transpose of restriction, YT , so that the correction is brought
over to the SH search vector by adjoint SH synthesis,

xh ← xh + YT ĉh. (14)

Together, these steps act as the error smoothing of a SH level,
labeled pre- and post-smoothing in Figure 5. Here we have
motivated the procedure as arising from moving between levels,
but the idea of solving for a correction in a projected system
arises in many settings (Tang et al. 2009), and other variations
on this theme may prove fruitful in the future.

The vertical movement between coarser and finer levels
follows the same pattern, but uses the restriction operator IH

h

defined in Equation (9) instead of pixel projection Y. First, a
fine residual is computed and restricted (i.e., low-pass filtered)
to the coarser level,

rh ← bh − Ahxh, (15)

rH ← IH
h rh. (16)

Then, a coarse correction cH is sought that approximates the
solution of the coarse system

IH
h Ah

(
IH
h

)T
cH = AH cH = rH . (17)

6

The Astrophysical Journal Supplement Series, 210:24 (13pp), 2014 February Seljebotn et al.

Except for at the bottom level, this happens by initializing a
search vector cH to zero and recursively applying the algorithm.
Finally, the correction is interpolated and applied to our current
search vector,

xh ← xh + Ih
H cH . (18)

Using this idea of transferring residuals and corrections between
levels with different bases, one can form a variety of multi-
level cycles, moving between the levels in different patterns.
Our choice in the end is a W-cycle on the coarser levels and a
V-cycle on the finer levels, as described in Section 4.1 and the
pseudo-code.

In addition to the pixel levels described above, the top and
bottom levels are special. The smallest scales (� � 2200 in our
experimental setup) are strongly noise-dominated, making the
SH domain matrix A nearly diagonal. As a result, we do not
project to a pixel grid, but simply use diag(A)−1 as the error
smoother. Note, however, that this process would destroy the
solution on scales that are not entirely noise-dominated, and so
we first apply a high-pass filter to the correction vector before
applying it to the solution search vector. For the largest scales
(� � 40), we do not project to pixel domain either, but simply
solve Ax = b restricted to � � 40 by explicitly computing the
matrix entries and using a simple Cholesky solver.

For the top solver level, we need to compute the diagonal of
YT

obsN
−1Yobs in SH domain, and for the bottom solver level we

similarly need all entries of YT
obsN

−1Yobs for � up to some �dense.
While such entries can be computed using Wigner 3j-symbols
(Hivon et al. 2002; Eriksen et al. 2004), the following procedure
has some significant advantages. First, while the computational
scaling is the same, it is much faster in practice, in particular
due to the optimized code for associated Legendre polynomials
P�m available in libpsht (Reinecke 2011). Second, it is
accurate to almost machine precision for any grid, whereas the
method relying on Wigner 3j-symbols relies on approximation
by evaluation of an integral, and is therefore inaccurate for
low-resolution HEALPix grids.

Let ξkj be the jth of Jk pixels on ring k in the masked
inverse-noise map. One can then evaluate(

YT
obsN

−1Yobs
)
�1m1,�2m2

=
∑

k

Jk∑
j=1

ξkjY�1m1 (θj , φkj)Y ∗
�2m2

(θj , φkj)

=
∑

k

P̃�1m1 (cos θk)P̃�2m2 (cos θk)
Jk∑

j=1

ξkj e
i(m1−m2)φkj ,

where the normalized associated Legendre function is

P̃�m(cos θ) =
√

2� + 1

4π

(� − m)!

(� + m)!
P�m(cos θ). (19)

The inner sum can be precomputed for each ring k and
every (m1 − m2) by discrete Fourier transforms, allowing the
evaluation of matrix elements in O(Nring) = O(�max) time.
In the case that we want a dense low-� block, the procedure
to downgrade the inverse-noise operator from Section 3.4
should be applied first, to reduce the computational cost from
O(�2

dense�max) to O(�3
dense).

3.3. Filter Selection and Pixel-domain Localization

So far we have not specified the exact form of the low-pass
filters f̃ h

� required for every level. It turns out that careful

selection of these filters is essential to ensure that the pixel
projection of Ah is localized, and hence that the construction of
an efficient error smoother is possible.

As indicated in Equation (13), the SH system Ah on each
level h is projected to pixel domain with

Âh ≡ YhAhYT
h = D̂h + B̂T

h N−1B̂h, (20)

where the prior and pixelized beam terms are this time given by
(respectively)

D̂h = YhFhS−1FhYT
h (21)

B̂h = YobsB FhYT
h . (22)

Note that the pixelization along the rows of B̂h is the observa-
tional grid, while the pixelization down the columns is that of
the current level.

The matrices D̂h and B̂h are both rotationally invariant. By
the addition theorem of SHs, the coupling strength between two
points on the sphere separated by angular distance θ is given by

g(θ) =
∑

�

2� + 1

4π
g�P�(cos θ), (23)

where we insert g� = (f̃ h
�)2/C� for D̂h and g� = f̃ h

� b�p� for B̂h.
The pixel-domain localization of such matrices depends entirely
on g�. In our experience, the g� that lead to localized matrices in
pixel domain tend to be flat or polynomially increasing before an
exponential drop. Since b� already describes a localized beam,
and 1/C� increases non-exponentially, crafting a localized
system Âh at each level is indeed possible.

Selecting the filters f H
h,�, whose products form f̃ h

� and Fh

for each level, is a non-trivial matter. The main characteristic
the filters must have is that each f̃ h

� falls off quickly enough
in real space to avoid strong couplings between the edge of
the mask and the interior. Figure 6 shows what happens if this
is not controlled correctly—the long-range couplings make the
construction of an error smoother M̂ impossible. In contrast,
Figure 7 shows the behavior of the operators in the well-tuned
case.

A filter that we found to work very well is given by squaring
the exponent of a Gaussian,

q� = exp(−�2(� + 1)2λ). (24)

The scale parameter λ is simply chosen from the scale behavior
that we want. In our test runs, we chose the constraints
q2570 = 0.1 at the Nh

side =1024 level and q1536 = 0.1 at the
Nh

side = 512 level.
This filter has the following advantages over a simple Gaus-

sian:

1. It decays much more quickly in �, while in real space it
decays almost as quickly in the tails as the Gaussian. This
allows us to avoid increasing the bandlimit of the original
system beyond �max = 3000.

2. The rapid decay with � is also beneficial to counter the
behavior of 1/C�. In the range 2000 < � < 3000, 1/C�

follows a rather steep trajectory (between ∼�7 and �8)
which, when only countered by a Gaussian, causes some
ringing and less locality.

7

The Astrophysical Journal Supplement Series, 210:24 (13pp), 2014 February Seljebotn et al.

Figure 6. Effect of a poor choice of filter f̃ h
� . Each panel shows the couplings

between a single pixel and its neighboring region, corresponding to a row/

column of Âh. In this case we used a low-pass filter based on modifying
a standard needlet (Scodeller et al. 2011, and references therein). While the
harmonic properties of this filter were very attractive, the tails do not decay
quickly enough in real space. The resulting strong, long-range couplings are
fatal to our algorithm.

(A color version of this figure is available in the online journal.)

3. Using Gaussian filters shapes the N−1 term so that couplings
around a given pixel are similar to a Gaussian with FWHM
of 4 pixels. That is, the couplings between neighboring
pixels are rather strong. The filter defined above produces
much weaker couplings between neighbors. This is not

currently an advantage, because we let every pixel “see”
a radius of k = 8 pixels around itself anyway in the error
smoother. However, it could become an advantage in the
future if k is chosen adaptively for each pixel.

Despite these features, the simple Gaussian filter behaved
better at the coarser levels with very high signal-to-noise, as can
be seen by comparing the second panel of Figure 7 with the first
panel of Figure 8. In our tests we chose a Gaussian filter f H

h,�

for levels Nh
side � 256, tuned so that the cumulative filter f̃ h

� on
each level roughly corresponds to a Gaussian with FWHM of
2 pixels.

3.4. Band-limitation and Coarsening YT N−1Y

Figure 9 shows the effect of choosing the bandlimit �h
max too

low. On the coarser levels, ringing from the inverse-noise term
causes strong non-local couplings unless the bandlimit is set as
high as 6Nh

side. This limit depends on the signal-to-noise ratio,
and �max = 4Nh

side is sufficient on the Nside = 512 level.
The HEALPix grid can only represent a field accurately

up to �h
max ∼ 2Nh

side, and will in fact see different scales on
different parts of the sphere, due to the necessary irregular-
ities in the pixelization. This is the primary reason for the
non-traditional level traversal structure chosen in Section 3.2.
The pixel projection operator Yh removes some parts of the
projected field that the grid cannot represent, but this is after all
how a multi-level restriction normally works, and so poses no
problems.

The filter f̃ h
� allows us to set �h

max much lower than the full
�max. The two SHTs involved in YT

obsN
−1Yobs still involve an

Nside = 2048 grid, however, so the coarsest levels are still
almost as computationally expensive as the finest levels.

To work around this, the key is to note that the operator
YT

obsN
−1Yobs does not “see” scales in the inverse-noise map

beyond 2�h
max. This follows from an expansion into Wigner 3j-

symbols (Hivon et al. 2002; Eriksen et al. 2004). Simply de-
grading the inverse-noise map to a coarser resolution HEALPix
grid was found to be far too inaccurate, so more care is needed.

Figure 7. Effect of the mask on Âh. Each panel shows the coupling strength in absolute value in the Âh operator, between a sample point at (θ, φ) (plotted at the
origin), and another sample point n pixels away at (θ, φ + nΔ), where Δ is the angular size of one pixel. The couplings of Âh (black) are a sum of the prior term D̂h

(dotted blue) and the inverse-noise term B̂T
h N−1B̂h (dashed red). For each panel, we vary the position of (θ, φ) relative to the mask (gray band), so that the origin is in

each case a value on the diagonal of Âh. Displayed here is our Nh
side = 32 level in the case of 1.9 μK constant rms noise (the minimum rms level of the Planck 143 GHz

band). The filter f̃� is a product of all the inter-level filters f h
H,� (as described in the text), but corresponds roughly to a Gaussian with FWHM of 2 pixels divided by

the pixel window p�. The “floor” at 10−1 is caused by the non-Gaussian features of the instrumental beam, b�. For comparison, a perfect Gaussian instrumental beam
is used in Figure 9.

(A color version of this figure is available in the online journal.)

8

The Astrophysical Journal Supplement Series, 210:24 (13pp), 2014 February Seljebotn et al.

Figure 8. Effect of resolution on Âh. See Figure 7 for legend and experimental setup. In this figure, we also show the effect of the filter q� of Equation (24), with λ

appropriately tuned for the resolution in each case. As the resolution is increased, the signal-to-noise ratio decreases, making the influence of the edge of the mask less
important.

(A color version of this figure is available in the online journal.)

Figure 9. Effect of the band-limit �h
max on Âh. See Figure 7 for legend and experimental setup. The settings for each panel are the same except for varying �h

max. Here,
the product f̃ h

� b�p� is a pure Gaussian with FWHM of 2 pixels. Since the instrumental beam is in this case taken to be a perfect Gaussian, there is also no “floor” at
10−1 (compare with Figure 7 for the effect of a non-Gaussian beam).

(A color version of this figure is available in the online journal.)

First, we rewrite the operator as

YT
obsN

−1Yobs = YT
obsWobs

(
W−1

obsN
−1)Yobs, (25)

where Wobs denotes the quadrature weights of the HEALPix
Nside = 2048 grid, so that YT

obsWobs corresponds to SH analysis,
as described in Section 2.1. Then, we write ξi for the pixels on
the diagonal of W−1N−1, and ξ�m for the same map expanded
into SHs. Since the operator of Equation (25) does not see
coefficients beyond 2�h

max, we can truncate ξ�m and project it
onto a Gauss–Legendre grid of the same order, which (unlike
HEALPix grids) allows SH analysis that is accurate to almost
machine precision. Using this re-weighted and downgraded
inverse-noise map as the diagonal of a new inverse-noise matrix
Ñ−1

h , we have that

YT
obsN

−1Yobs = ỸT
h W̃hÑ−1

h Ỹh, (26)

where Ỹh and ỸT
h W̃h indicate SH synthesis and analysis on the

Gauss–Legendre grid.

3.5. Error Smoother Construction for the CR System

A simple diagonal error smoother does not converge in our
setup, primarily because pixels on the edge of the mask can

have a very strong influence on the solution in the interior of the
mask, as seen in Figure 7. Also, when applying Gaussian filters,
the couplings between neighboring pixels are rather strong,
preventing the use of a diagonal error smoother even far from
the mask.

The basic strategy for our error smoother is to make sure that
every pixel “sees” neighboring pixels in some radius k around
it. In our case we let k = 8 on all levels, although improvements
on this may be possible, especially in cases with lower signal-
to-noise than ours.

We start by dividing the sphere into tiles of size k-by-k.
Then, we include the couplings between pixels in the same and
neighboring tiles while ignoring any couplings between pixels
further apart, so that couplings are included in a radius of at
least k pixels around every pixel. The result is a block sparse
matrix, as shown in Figure 10.

Next, we explicitly compute the parts of D̂h (Equation (21))
and B̂h (Equation (22)) that fall within the sparsity pat-
tern by evaluating the sum over Legendre polynomials from
Equation (23). After preparing the block sparse matrix approx-
imations, we use matrix multiplication without fill-in to com-
pute B̂T N−1B̂—that is, we neglect resulting blocks outside of the
same sparsity pattern. The approximant for D̂h can then be added
directly. Finally, we perform a zero-fill-in incomplete Cholesky

9

The Astrophysical Journal Supplement Series, 210:24 (13pp), 2014 February Seljebotn et al.

Figure 10. Structure of the block sparse matrices used in the error smoothers.
Top panel: the sparsity pattern when every tile is coupled to its eight neighboring
tiles. In this case, the pattern of tiles is an Nside = 2 HEALPix grid in
ring-ordering. Bottom panel: the blocks of B̂h = YobsBYT

h corresponding
to the red rectangle in the top panel. The blocks on the diagonal contain
within-tile couplings, while off-diagonal blocks are couplings between pixels
in neighboring tiles. Each block is rectangular because Yobs samples on a grid
with 4× more pixels than the grid sampled by Yh.

(A color version of this figure is available in the online journal.)

factorization (ICC), i.e., we perform in-place Cholesky factor-
ization of the block sparse approximant as usual, but ignore
any element updates outside of the sparsity pattern during the
factorization process.

Without modification, the factorization process usually fails,
either due to the sparse approximant of the full dense matrix
ending up non-positive-definite, or because of elements dropped
during the ICC. When this happens, we do a binary search for
the lowest ridge adjustment α that, when added to the diagonal,
makes the factorization procedure succeed, and scale this α by
a factor of 1.5 for the final factorization. Typical ridge values
α are in the range 10−2 to 10−4 times the maximum element
of Ah.

After factorization, applying the smoother is simply a matter
of doing the usual triangular solve. This is an inherently
sequential process, and the smoother therefore currently runs on
a single CPU core. Since an error smoother only needs to work
locally, we expect to be able to apply domain decomposition
techniques, partitioning the sphere into large domains that

overlap by k or 2k pixels, and applying one error smoother on
each domain. Proper parallelization of the error smoother is left
for future work, however. Also note that the process described
above is the very simplest incomplete factorization algorithm,
and more sophisticated incomplete factorization algorithms are
standard in the literature.

In Section 4.1, we quote numbers for the execution time and
memory usage of the smoother. One possibility for reducing
memory consumption in the future is to let k be adaptive, as
it can be made smaller away from the edges of the mask. All
error smoother computations are done in single precision. In
the current implementation, computing B̂ is very expensive,
as we sample it directly on the Nside = 2048 grid. This is
not a fundamental scaling problem, but rather an issue of
implementation, as the degraded inverse-noise map on the
Gauss–Legendre grid described in Section 3.4 could also be
used in this setting.

4. IMPLEMENTATION AND RESULTS

4.1. Numerical Results and Performance

The basic assumptions for our experimental setup have
already been laid out in Section 2.2. We choose for our example
the rms map and symmetric beam approximation of the 143 GHz
channel of Planck, as provided in the Planck 2013 data release
(Planck Collaboration 2013a).

We tried running both with the 40%-sky, 80%-sky, and 97%-
sky masks used in the Planck analysis, in all cases together with
the 143 GHz point source mask. The mask has some impact on
speed of convergence, but not enough to warrant attention, and
we therefore only present the results from the 80%-sky mask,
which was the slowest to converge.

For the power spectrum, C�, we use the standard best-fit
Planck+WP+high-� six-parameter ΛCDM spectrum (Planck
Collaboration 2013d), but set C0 and C1 to the value of C2
as a wide prior for any residual monopole or dipole component.
Statistically, the prior for the monopole and dipole is of little
relevance, since the data so strongly constrain these components.
Note that the present algorithm will not let us condition on a
given monopole and dipole (i.e., set C0 = C1 = 0), at least
without modifications.

To produce the right-hand side, b, corresponding to a random
test realization, we draw a simulated xtrue from the prior p(s|C�),
and multiply it with A of Equation (4). This synthetic setup
allows us to track the true error, e = xtrue − x. In a real setting
the right-hand side is of course generated from observed data,
and in this case one can only track the residual, r = b − Ax.

The error smoothers are least efficient on the largest scales.
At the same time, these are much cheaper to process than the
small-scale smoothers due to the O(�3

max) scaling of the SHTs.
We therefore choose a partial W-cycle, where the levels for
Nh

side � 1024 participate in a W-cycle (nh
rec = 2 in Figure 5),

but the very expensive error smoother of the Nh
side = 1024 level,

as well as SHTs at �max = 3000, are only run once on the way
down and once on the way up (a V-cycle).

In Figure 11 we plot the resulting convergence, in terms of
absolute error as a function of W-cycle iteration count. Here
we see that the error falls exponentially with cycle count, at the
rate of roughly one order of magnitude per iteration. The largest
error anywhere on the sky is smaller than 1 μK after only three
W-cycles, and approaches the numerical precision limit after
eight cycles.

10

The Astrophysical Journal Supplement Series, 210:24 (13pp), 2014 February Seljebotn et al.

Table 1
Structure and Computational Cost of a W-cycle

Level �max No. of Visits Time in Yh Time in Yobs Time in M̂h or A−1
h Total Time

(Wall s) (Wall s) (Wall s) (Wall s)

�max = 3000 3000 1 · · · 6 × 2.8 · · · 16.8
Nside = 1024 3000 1 4 × 1.2 4 × 2.8 2 × 11 38.0
Nside = 512 2048 2 8 × 0.3 10 × 1.3 4 × 2.3 24.6
Nside = 256 1280 4 16 × 0.07 20 × 0.40 8 × 0.57 13.7
Nside = 128 768 8 32 × 0.016 40 × 0.10 16 × 0.14 6.75
Nside = 64 384 16 64 × 0.004 80 × 0.03 32 × 0.035 3.78
Nside = 32 224 32 128 × 0.002 160 × 0.008 64 × 0.009 2.11
�max = 40 40 32 · · · · · · 32 × 0.028 0.90
Other work 8
Full W-cycle 114

Notes. All times are given in wall time seconds using 16 CPU cores. The total number of operations of each kind for
the W-cycle is indicated in each case; this number is not a multiple of the number of visits because the input vector x
is zero on the first visit (except on the first level). Ignoring this aspect, each pixel level requires: (1) two-level-transfer
spherical harmonic transforms (Yh), (2) three multiplications with Ah, each with two inverse-noise spherical harmonic
transforms (Yobs), and (3) two applications of the error smoother M̂. The top spherical harmonic level also requires two
applications of Ah, while the smoother application time is negligible. The bottom spherical harmonic level consists only
of dense triangular solves.

Figure 11. Absolute errors as a function of W-cycle count. For every iteration
we plot the maximum error over all C

−1/2
� x�m (black circles, left axis), as well

as the largest error across all pixels (red triangles, right axis).

(A color version of this figure is available in the online journal.)

As mentioned above, since we know what the true solution
is for the simulated data, we are also able to trace the absolute
error, e = xtrue − x, although only the residual, r = b − Ax,
is available in real-world applications. Figure 12 shows that
these have qualitatively very similar behavior as a function of
W-cycle count, which implies that the residual can be used as a
robust proxy for the actual error for the multi-level algorithm.
The same is not true for the CG method, for which the error can
flatten earlier than the residual due to the presence of the nearly
singular modes in A.

Finally, in Figure 13 we show the relative error as a function
of multipole moment and W-cycle count. This plot highlights
the problematic angular scales, and is therefore particularly
useful during the debugging and tuning phase of the analysis; for
example, the use of a V-cycle rather than a W-cycle would make
the large scales noticeably lag behind in convergence on this
plot. Another example is that, if the filters f̃h are poorly tuned

Figure 12. Comparison of absolute errors relative to C�, (x−xtrue)T S−1(x−xtrue)
(black circles), and similarly scaled residuals, (b − Ax)T S−1(b − Ax) (red
triangles). Both are normalized with respect to the initial error/residual. The
two quantities behave very similarly, implying that the residual is an excellent
proxy for the true error.

(A color version of this figure is available in the online journal.)

(potentially causing the method to diverge), the responsible level
can often be picked out on this plot.

The total run-time for this setup was 114 s wall time per
W-cycle on 16 CPU cores (AMD 6282 running at 2.6 GHz).
Table 1 breaks this cost down further to the individual levels and
actions. The bulk of the memory use is by the error smoothers,
which consume about 20 GiB of memory (see Table 2). The
total process footprint was around 30 GiB, although unnecessary
temporary arrays abound in the current implementation.

Table 2 presents the cost of the necessary precomputations.
For every new combination of instrumental beam, noise map
and mask, or for a new choice of multi-level filters f H

h,�, one
needs to precompute an approximation to B̂T

h N−1B̂h for every
solver level. These precomputations required a total of 44 CPU
hours in our tests, but are trivially parallel. We also expect that
one will usually load the results from disk. The approximation

11

The Astrophysical Journal Supplement Series, 210:24 (13pp), 2014 February Seljebotn et al.

Figure 13. Relative error as a function of angular scale. Starting from the top, each line shows the error for a given multi-level W-cycle. Specifically, we plot
‖xtrue,� − x�‖/‖xtrue,�‖, where x� denotes a vector with the coefficients for a given � only. This plot is especially useful during development and tuning of the code, as
one can immediately see which error smoothers do not perform well.

Table 2
Error Smoother Precomputation Cost/Memory Use per Solver Level

Nside Time Obs. Time C� Time ICC Mem. Use
(CPU minutes) (CPU minutes) (CPU minutes) (GiB)

1024 727 85 1.15 15
512 509 15 0.35 3.7
256 340 2.4 0.10 0.93
128 230 0.36 0.02 0.23
64 452 0.05 0.007 0.058
32 363 0.01 0.002 0.014

Total 2621 103 1.6 20

Notes. All times are given in CPU minutes (wall time times the number of
CPU cores used). Precomputations can be divided into the part that must be
performed whenever the observational setup (beam/mask/noise map) changes
and the part that must be performed whenever the prior (C�) changes. If any part
changes, the non-parallel incomplete Cholesky factorization (ICC) must also be
performed again.

for D̂h must be recomputed every time C� changes, which in the
case of Gibbs sampling means every time one wants to run the
solver. Fortunately, this computation is much cheaper and only
requires around 100 CPU minutes of trivially parallel work, plus
2 minutes of non-parallel work. We argue in Section 5 that it
should be possible to greatly decrease precomputation time in
future.

The main weakness in the current implementation is the lack
of parallelization in the error smoothers. Not only does the code
need to be run on a single node, but the 40 s spent on error
smoothing runs on a single CPU core, with the 15 other cores
idling. Parallelization of the smoother would bring the wall time
much closer to 80 s, as well as allowing the distribution of the
20 GiB of smoother data among several cluster nodes.

4.2. Notes on Implementation and Dependencies

The CR solver is part of Commander 2, which is made
available as open source software under the BSD license
(core code) and the GNU General Public License (GPL) (full
software when including dependencies). For more information,
see http://commander.bitbucket.org/.

Commander 2 is implemented in a mixture of Python (using
NumPy and SciPy), Cython (Behnel et al. 2011), Fortran 90, and
C. For SHTs we use libsharp (Reinecke & Seljebotn 2013).

For our benchmarks we have used OpenBLAS (Goto & van de
Geijn 2008; Xianyi et al. 2012) for linear algebra.

The main computation time is spent in libsharp or
OpenBLAS, and as such is already highly optimized. The com-
putation of Equation (23) benefited greatly from being structured
as described in the appendix of Seljebotn (2012). In addition to
what is mentioned there, we made use of the AVX and FMA4
instruction sets. Also, note that all the computations for the error
smoother could be performed in single precision.

5. DISCUSSION

We have presented a new algorithm for solving the Gaussian
CR system for high-resolution CMB data. This method is
based on ideas from multi-grid (or multi-level) theory, and is
fundamentally different from the CG methods traditionally used
for this problem. Being only weakly dependent on the signal-to-
noise ratio of the data set under consideration, our new method
converges exponentially to numerical precision when properly
tuned, and is capable of producing CRs for the full resolution of
a Planck-like data set within minutes. For comparison, we have
yet to achieve robust full-sky convergence with CG methods for
the same data set. Indeed, this particular issue was the single
most important obstacle preventing a full-resolution analysis of
the Planck 2013 data release with the Commander code.

The ultimate goal of this line of work is to perform an exact
global Bayesian analysis of the high-resolution, high-sensitivity
observations now being produced by CMB experiments, includ-
ing component separation as described by Eriksen et al. (2008b).
For this to be successful, multi-frequency and multi-component
analysis must be added to the algorithm. Other complications,
such as the possible asymmetry of the CMB on large scales
(e.g., Planck Collaboration 2013c), will also need to be taken
into account. As such, the present paper represents only the first
step toward a complete solution. We also emphasize that the
algorithm as presented here is only the first implementation of
a more general framework, and we expect that many improve-
ments with respect to computational speed, application to more
general cases, overall robustness and stability, and even user in-
terfaces, will be introduced in the near future. Before concluding
this paper, we will mention a few relevant ideas, but leave all
details for future publications.

Firstly, as is evident from Figure 7, our method is quite
sensitive to the behavior of the tails of the instrumental beams

12

The Astrophysical Journal Supplement Series, 210:24 (13pp), 2014 February Seljebotn et al.

extending as far out as the 10−5 level, as these formally constrain
the solution inside the mask. These tails are not realistically
known to such high accuracy, and so this issue is therefore a
modeling problem as well as a numerical problem. In practice, it
seems that in the absence of other options, one should just choose
a form for the tails that falls quickly enough to not have an effect
on the solution, and that allows a small computational bandlimit,
�max. In short, optimally tuning the tails of the beam profile
may render a more stable solution at a lower computational
cost.

For an exact analysis of data from current and forthcoming
CMB experiments, one would ideally like to account for the
effect of asymmetric beams. With the above in mind, we envision
two solutions for this. One option is to modify the algorithm so
that the beams are defined in pixel space, as is done in FEBECop
(Mitra et al. 2011) for instance, and then carry the FEBECop
beams through to the computation of the smoother. The main
challenge in this scenario is how to avoid very expensive
matrix–vector multiplications at the coarse levels. Alternatively,
and perhaps more simply, one could use the multi-level solver
for perfect symmetric beams described here as a preconditioner
for a CG search, which then accounts for the beam asymmetries
in its own internal matrix multiplications.

Correlated noise is another significant complication for cur-
rent CMB observations. While these correlations have a compli-
cated morphology in pixel space, being convolved with the scan-
ning strategy of the experiment, they are simple to describe in
the time-domain. With the vastly improved convergence rate of
the multi-level method presented here—requiring only a hand-
ful of iterations to reach sub-μK errors—it may for the first time
be realistic to define the CR system in time-domain, rather than
map-domain. As for asymmetric beams, this can either be done
by defining the multi-level scheme directly in time-domain, or,
if that does not succeed, by using the multi-level solver for
uncorrelated noise as a preconditioner for a time-domain CG
search. Going to time-domain also provides a direct route to
handling beam asymmetries and optical sidelobes by full-sky
convolution (Wandelt & Górski 2001).

The current computational bottleneck in our implementation
is the time needed to precompute the error smoothers. The time
is spent almost exclusively on sampling rotationally invariant
operators at every position on the sphere by brute force evalu-
ation of Equation (23). While the code for this computation is
already highly optimized, as mentioned above, we do not exploit
any symmetries from pixel to pixel. The grid used within the
multi-level process is arbitrary, and not necessarily related to
the grid of the inverse-noise map, N, or data vector, d. A future
implementation of the algorithm will therefore employ a differ-
ent grid with greater symmetry than the HEALPix grid, which
will only require evaluation of the smoother blocks 3–7 times
per pixel ring, thus reducing the computational scaling from
O(k2�maxNpix) to O(k2�max

√
Npix).

Finally, the error smoother evaluation is currently not paral-
lelized, and only executes on a single CPU core. As the error
smoothers only need to work well for the local couplings, we
expect to be able to partition the sphere into multiple partially

overlapping domains, and apply an error smoother on each do-
main in parallel, at the cost of some extra computation on the
domain borders. Assuming that this approach is successful, the
SHTs will once again become the bottleneck of the overall
algorithm.

We thank Mikolaj Szydlarski and Martin Reinecke for useful
discussions. D.S.S., H.K.E., and P.B. are supported by European
Research Council grant StG2010-257080. K.A.M. is supported
by the Research Council of Norway through a Centre of
Excellence grant to the Centre for Biomedical Computing at
Simula Research Laboratory.

REFERENCES

Axelsson, O., & Lindskog, G. 1986a, NuMat, 48, 479
Axelsson, O., & Lindskog, G. 1986b, NuMat, 48, 499
Behnel, S., Bradshaw, R., Citro, C., et al. 2011, CSE, 13, 2
Bennett, C. L., Larson, D., Weiland, J. L., et al. 2013, ApJS, 208, 20
Brandt, A. 2011, in Multiscale and Multiresolution Methods, ed. T. J. Barth

et al. (Berlin: Springer), 1
Doré, O., Teyssier, R., Bouchet, F. R., Vibert, D., & Prunet, S. 2001, A&A,

374, 358
Elsner, F., & Wandelt, B. D. 2012, in Proc. Big Bang, Big Data, Big Computers

(arXiv:1211.0585)
Elsner, F., & Wandelt, B. D. 2013, A&A, 549, A111
Eriksen, H. K., Dickinson, C., Jewell, J. B., et al. 2008a, ApJL, 672, L87
Eriksen, H. K., Huey, G., Banday, A. J., et al. 2007a, ApJL, 665, L1
Eriksen, H. K., Huey, G., Saha, R., et al. 2007b, ApJ, 656, 641
Eriksen, H. K., Jewell, J. B., Dickinson, C., et al. 2008b, ApJ, 676, 10
Eriksen, H. K., O’Dwyer, I. J., Jewell, J. B., et al. 2004, ApJS, 155, 227
Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759
Goto, K., & van de Geijn, R. 2008, ACM Trans. Math. Softw., 34, 3
Grigori, L., Stompor, R., & Szydlarski, M. 2012, in Proc. of the Int. Conf. on

High Performance Computing, Networking, Storage and Analysis, ed. J. K.
Hollingsworth (Los Alamitos, CA: IEEE Computer Society Press), 91

Hackbush, W. 1985, Multi-grid Methods and Applications (Berlin: Springer)
Havé, P., Masson, R., Nataf, F., et al. 2013, SIAM J. Sci. Comput., 35, 3
Hivon, E., Górski, K. M., Netterfield, C. B., et al. 2002, ApJ, 567, 2
Jewell, J., Levin, S., & Anderson, C. H. 2004, ApJ, 609, 1
Mitra, S., Rocha, G., Górski, K. M., et al. 2011, ApJS, 193, 5
O’Dwyer, I. J., Eriksen, H. K., Wandelt, B. D., et al. 2004, ApJL, 617, L99
Planck Collaboration , Ade, P. A. R., & Aghanim, N. 2013a, A&A, submitted

(arXiv:1303.5062)
Planck Collaboration , Ade, P. A. R., & Aghanim, N. 2013b, A&A, submitted

(arXiv:1303.5075)
Planck Collaboration , Ade, P. A. R., & Aghanim, N. 2013c, A&A, submitted

(arXiv:1303.5083)
Planck Collaboration , Ade, P. A. R., & Aghanim, N. 2013d, A&A, submitted

(arXiv:1303.5076)
Reinecke, M. 2011, A&A, 526, A108
Reinecke, M., & Seljebotn, D. S. 2013, A&A, 554, A112
Scodeller, S., Rudjord, Ø., Hansen, F. K., et al. 2011, ApJ, 733, 121
Seljebotn, D. S. 2012, ApJS, 199, 5
Shewchuk, J. R. 1994, http://www.cs.cmu.edu/∼quake-papers/painless-conjugate-

gradient.ps
Smith, K. M., Zahn, O., & Doré, O. 2007, PhRvD, 76, 043510
Tang, J. M., Nabben, R., Vuik, C., & Erlangga, Y. A. 2009, JSCom, 39, 3
Wandelt, B. D., & Górski, K. M. 2001, PhRvD, 63, 123002
Wandelt, B. D., Larson, D. L., & Lakshminarayanan, A. 2004, PhRvD, 70,

083511
Xianyi, Z., Qian, W., & Yunquan, Z. 2012, in IEEE 18th International

Conference on Parallel and Distributed Systems (ICPADS), Model-driven
Level 3 BLAS Performance Optimization on Loongson 3A Processor, ed.
W. Cai, R. Siow Mong Goh, & M. Snir (Los Alamitos, CA: IEEE Computer
Society Press), 684

13

Paper II (submitted)

Multi-resolution Bayesian CMB component separation
through Wiener-filtering with a pseudo-inverse pre-
conditioner

The algorithms developed in this paper allows for full-resolution, multi-resolution
Bayesian analysis of CMB data. It not only solves all of the problems we had
with generalizing the algorithm in Paper I to component seperation; it is also
more elegant and simpler to implement.

Note: This paper has been submitted to A&A, but, as of this writing, not been
peer-reviewed.

95

Paper III

Wavemoth – Faster spherical harmonic transforms by
butterfly matrix compression

This was the first paper in my PhD, and a lot of fun. Mark Tygert had
presented a novel algorithm for SHTs which he conjectured had a scaling of
O(L2 logL). He had only implemented it in MATLAB, and since it makes
use of precomputed data, and moving precomputed data around can be slow,
a production quality implementation was required to check the constant pre-
factor involved. I set out to make this implementation.

It seems strange that one can run a compression algorithm on a matrix
to produce new smaller matrices – then run the compression algorithm again
– and again – and compress the data more every time. It is even stranger
that one can then proceed to use the compressed data directly, without any
decompression. Yet, this is exactly what is going on here.

Tygert’s conjecture was wrong – the scaling was O(L2(logL)2), with small
gains in practice at the resolutions in use in CMB analysis. The lasting contri-
bution of this work is in fact how fast the code was for the brute-force trans-
forms, as it exploited the pipelining capabilities of modern CPUs. This heritage
lives on in libsharp (Paper IV), which is in use by thousands of researchers
every day.

111

The Astrophysical Journal Supplement Series, 199:5 (12pp), 2012 March doi:10.1088/0067-0049/199/1/5
C© 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

WAVEMOTH–FAST SPHERICAL HARMONIC TRANSFORMS BY BUTTERFLY MATRIX COMPRESSION

D. S. Seljebotn
Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo, Norway; d.s.seljebotn@astro.uio.no

Received 2011 October 24; accepted 2011 December 16; published 2012 February 15

ABSTRACT

We present Wavemoth, an experimental open source code for computing scalar spherical harmonic transforms
(SHTs). Such transforms are ubiquitous in astronomical data analysis. Our code performs substantially better than
existing publicly available codes owing to improvements on two fronts. First, the computational core is made more
efficient by using small amounts of pre-computed data, as well as paying attention to CPU instruction pipelining
and cache usage. Second, Wavemoth makes use of a fast and numerically stable algorithm based on compressing
a set of linear operators in a pre-computation step. The resulting SHT scales as O(L2 log2 L) for the resolution
range of practical interest, where L denotes the spherical harmonic truncation degree. For low- and medium-range
resolutions, Wavemoth tends to be twice as fast as libpsht, which is the current state-of-the-art implementation for
the HEALPix grid. At the resolution of the Planck experiment, L ∼ 4000, Wavemoth is between three and six times
faster than libpsht, depending on the computer architecture and the required precision. Because of the experimental
nature of the project, only spherical harmonic synthesis is currently supported, although adding support for spherical
harmonic analysis should be trivial.

Key word: methods: numerical

Online-only material: color figures

1. BACKGROUND

The spherical harmonic transform (SHT) is the spherical
analog of the Fourier transform and is an essential tool for data
analysis and simulation on the sphere. A scalar field f (θ, φ)
on the unit sphere can be expressed as a weighted sum of the
spherical harmonic basis functions Y�m(θ, φ),

f (θ, φ) =
∞∑

�=0

�∑
m=−�

a�mY�m(θ, φ). (1)

The coefficients a�m contain the spectral information of the
field, with higher � corresponding to higher frequencies. In
calculations the spherical harmonic expansion is truncated for
� > L, and the spherical field represented by O(L2) grid
samples. Computing the sum above is known as the backward
SHT or synthesis, while the inverse problem of finding the
spherical harmonic coefficients a�m given the field f is known as
the forward SHT or analysis.

In order to compute an SHT, the first step is nearly always to
employ a separation of sums, which we review in Section 2.3, to
decrease the cost from O(L4) to O(L3). We will refer to codes
that take no measures beyond this to reduce complexity as brute-
force codes. Of these, HEALPix (Górski et al. 2005) is one very
widely used package, in particular, among cosmic microwave
background (CMB) researchers. Recently, the libpsht package
(Reinecke 2011) halved the computation time with respect to
the original HEALPix implementation, simply through code
optimizations. As of version 2.20, HEALPix uses libpsht as
the back end for SHTs. Other packages using the brute-force
algorithm include S2HAT (Hupca et al. 2010; Szydlarski et al.
2011), focusing on cluster parallelization and implementations
on the GPU, as well as GLESP (Doroshkevich et al. 2005) and
ssht (McEwen & Wiaux 2011), focusing on spherical grids with
more accurate spherical harmonic analysis than what can be
achieved on the HEALPix grid.

The discovery of fast Fourier transforms (FFTs) has been
all important for signal analysis over the past half century, and
there is no lack of high-quality commercial and open source
libraries to perform FFTs with stunning speed. Unfortunately,
the straightforward divide-and-conquer FFT algorithms do not
generalize to SHTs, and research in fast SHT algorithms has yet
to reach maturity in the sense of widely adopted algorithms and
libraries.

The libftsh library (Mohlenkamp 1999) uses local trigono-
metric expansions to compress the spherical harmonic linear
operator, resulting in a computational scaling of O(L5/2 log L)
in finite precision arithmetic. SpharmonicKit (Healy et al.
2003) implements a divide-and-conquer scheme that scales as
O(L2 log2 L). We comment further on these in Section 4.4.
Other algorithms have also been presented but either suffer from
problems with numerical stability, are impractical for current
resolutions, or simply lack publicly available implementations
(e.g., Suda & Takami 2002; Kunis & Potts 2003; Rokhlin &
Tygert 2006; Tygert 2008, 2010).

We present Wavemoth,1 an experimental open source imple-
mentation of the algorithm of Tygert (2010). This algorithm
has several appealing features. First, it is simple to implement
and optimize. Second, it is inherently numerically stable. Third,
its constant pre-factor is reasonable, yielding substantial gains
already at L ∼ 2000. The accuracy of the algorithm is finite
but can be arbitrarily chosen. For any given accuracy, the com-
putational scaling is O(L2 log2 L), but lowering the requested
accuracy makes the constant pre-factor smaller.

We stress that our work consists solely in providing an
optimized implementation. While we review the basics of the
algorithm in Section 3, Tygert (2010) should be consulted
for details and proofs. We have focused in particular on the
HEALPix grid and use libpsht as our baseline for comparisons.

1 http://github.com/wavemoth; commit 59ec31b8 was used to produce the
results of this paper.

1

The Astrophysical Journal Supplement Series, 199:5 (12pp), 2012 March Seljebotn

However, all methods work equally well for any other grid with
isolatitude rings.

Section 2 reviews SHTs in more detail, as well as the
computational methods that are widely known and used across
all popular codes. Section 3 reviews the algorithm of Tygert
(2010) and how we have adapted it to our purposes. Section 4
focuses on the high-level aspects of software development and
provides benchmarks, while the Appendix provides the low-
level implementation details.

2. BASELINE ALGORITHMS

2.1. The Spherical Harmonic Basis Functions

We use the convention that points on the sphere are parame-
terized by a colatitude θ ∈ [0, π], where 0 corresponds to the
“north pole,” and a longitude φ ∈ [0, 2π). The spherical har-
monic basis functions Y�m(θ, φ) can then be expressed in terms
of the associated Legendre functions P m

� (z). Assuming m � 0,
we have

Y�m(θ, φ) =
√

2� + 1

4π

(� − m)!

(� + m)!
P m

� (cos θ)eimφ

≡ P̃ m
� (cos θ)eimφ, (2)

where we define the normalized associated Legendre func-
tion P̃ m

� . Our definition follows that of Press et al. (2007); the
normalization differs by a factor of

√
1/2 from the one in Tygert

(2010).
Note that while the spherical harmonics Y�m and the coeffi-

cients a�m are complex, P̃ m
� is real for the argument range of

interest. For negative m, the symmetry Y�,−m = (−1)mY ∗
�m can

be used, although this is only needed for complex fields. Wave-
moth only supports real fields, which have spherical harmonic
expansions obeying a�m = (−1)ma∗

�−m.

2.2. Discretization and the Forward Transform

For computational work one has to assume that one is working
with a band-limited signal, so that a�m = 0 when � > L. The
SHT synthesis is then given simply by evaluating Equation (1)
in a set of points on the sphere.

The opposite problem of computing a�m given f (θj , φj),
namely, spherical harmonic analysis, is less straightforward.
In the limit of infinite resolution, we have

a�m =
∫

f (θ, φ)Y ∗
�m(θ, φ)dΩ, (3)

where dΩ indicates integration over the sphere. This follows
easily from the orthogonality property,∫

Y�mY ∗
�′m′dΩ = δ��′δmm′ . (4)

There is no canonical way of choosing sample points on the
sphere. The simplest grid conceptually is the equiangular grid.
Doroshkevich et al. (2005) and McEwen & Wiaux (2011)
describe grids that carry the orthogonality property of the
continuous spherical harmonics over to the discretized operator.
In contrast, the HEALPix grid (Górski et al. 2005) trades
orthogonality for the property that each pixel has the same area,
which is convenient for many operations in the pixel basis.

Independent of what grid is chosen, a natural approach to
spherical harmonic analysis is to use a quadrature rule with
some weights wj , so that

a�m =
Npix∑
j=1

wjf (θj , φj)Y ∗
�m(θj , φj). (5)

On the HEALPix grid the numerical accuracy of this approach
is limited, but it is still the most common procedure.

Some real-world signal analysis problems do not need the
forward transform at all. In the presence of measurement noise
in the pixel basis, one can argue that the best approach is not to
pull the noise part of the signal into spherical harmonic basis at
all. For instance, consider the archetypical CMB data model,

d = Ys + n, (6)

where d represents a vector of pixels on the sky with observed
data (not necessarily the full sky), s represents our signal of in-
terest in spherical harmonic basis, and n represents instrumental
noise in each pixel. Spherical harmonic synthesis is denoted Y;
note that Equation (1) describes a linear operator and can be
written as f = Ya.

If we now assume that s and n are Gaussian random vectors
with vanishing mean and known covariance matrices S and N,
respectively, then the maximum likelihood estimate of the signal
is given by

ŝ = (S−1 + Y†N−1Y)−1Y†N−1d, (7)

with ŝ in spherical harmonic basis. This system can be solved
with reasonable efficiency by iterative methods. Note that we
are here only concerned with the effect of Y as a non-invertible
projection, and that no spherical harmonic analysis is ever
performed, only the adjoint synthesis. Thus, neither the non-
orthogonality caused by the HEALPix grid nor masking out
large parts of the sky is a concern. See Eriksen et al. (2008)
and references therein for more details on this technique in the
context of CMB analysis.

2.3. Applying the Fast Fourier Transform

The first step in speeding up the SHT beyond the O(L4)
brute-force sum is a simple separation of sums. For this to work
well, pixels must be arranged on a set of isolatitude rings, with
equidistant pixels within each ring. All grids in use for high-
resolution data have this property.

We show the case for the SHT synthesis; analysis can be
treated in the same way. Starting from Equation (1), we have,
for pixel j within ring k, and with zk ≡ cos θk ,

f (θk, φk,j) =
L∑

m=−L

⎡⎣ L∑
�=|m|

a�mP̃ m
� (zk)

⎤⎦ eimφk,j

≡
L∑

m=−L

qm(zk)eimφk,j , (8)

where we introduce qm(zk). Assuming that ring k contains Jk
pixels, their equidistant longitude is given by

φk,j = φk,0 +
2πj

Jk

. (9)

2

The Astrophysical Journal Supplement Series, 199:5 (12pp), 2012 March Seljebotn

Since eix has period 2π , and since qm(zk) = 0 whenever
|m| > L, we find that

L∑
m=−L

qk,meimφk,j =
Jk−1∑
j=0

τj (zk)e2πji/Jk (10)

with

τj (zk) =
∞∑

t=−∞
qJkt+j (zk)eiφk,0(Jkt+j). (11)

Thus, one can phase-shift the coefficients qm(zk) to match the
ring grid, wrap around or pad with zeros, and perform a regular
backward FFT. The symmetries of the spherical harmonic
coefficients of a real field carry over directly to the Hermitian
property of real Fourier transforms.

This separation of sums represents a first step in speeding up
the SHT and is implemented in all packages for high-resolution
SHTs.

2.4. Legendre Transforms and Even/Odd Symmetry

The function qm(z) introduced in Equation (8) is known as
the (Associated) Legendre transform of order m,

qm(zk) =
L∑

�=m

P̃ m
� (zk)a�m, (12)

assuming m � 0. The following symmetry cuts the arithmetic
operations required in an SHT in half, as long as the spherical
grid distributes the rings symmetrically around the equator. For
any non-negative integer n, the functions P̃ m

m+2n(z) are even
and P̃ m

m+2n+1(z) are odd. We define qeven
m and qodd

m so that qeven
m

contains the even-numbered and qodd
m the odd-numbered terms

of Equation (12), and so that

qm(z) = qeven
m (z) + qodd

m (z). (13)

Then, since qeven
m and qodd

m are weighted sums of even and odd
functions, respectively, they are themselves even and odd, so
that qm(−z) can be computed at the same time essentially for
free,

qm(−z) = qeven
m (z) − qodd

m (z). (14)

For spherical harmonic analysis, one uses the orthogonality
property. Assuming m � 0,∫

P̃ m
� (z)P̃ m

�′ (z)dz = δ��′, (15)

so that

a�m =
∫

P̃ m
� (z)qm(z)dz. (16)

As discussed in Section 2.2, the resulting quadrature used in
calculations can be exact or approximate, depending on the
placement of the pixel rings. One can also in this case cut
computation time in half by treating even and odd � − m
separately.

3. FAST LEGENDRE TRANSFORMS

As the Fourier transform part is essentially a solved problem,
efforts to accelerate SHTs revolve around speeding up the
Legendre transforms. Let us write Equation (12) as

q = �T a, (17)

where we leave m and the odd versus even case implicit. For
a full SHT, such a product must be computed for each of
2(L + 1) different � matrices. The backward Legendre transform
required for spherical harmonic analysis is similarly

a = �q, (18)

give or take a set of quadrature weights.
The idea of fast Legendre transform algorithms is to compute

Equations (17) and (18) faster than O(LNring). The approach of
Tygert (2010) is to factor � as a product of block-diagonal
matrices in a pre-computation step, which can significantly
reduce the number of elements in total. This technique is known
as butterfly compression and was introduced by Michielssen &
Boag (1996). The accuracy of the compression is tunable, but
even nearly loss-less compression with close to double-precision
accuracy is able to yield significant gains as the resolution
increases. We review the algorithm below but stress again that
the reader should consult Tygert (2010) for the full details.

3.1. The Interpolative Decomposition

The core building block of the compression algorithm is the
Interpolative Decomposition (ID), described in Cheng et al.
(2005). Assume that an m × n matrix A has rank k; then, the ID
is

A = A(k)Ã. (19)

The matrix A(k), known as the skeleton matrix, consists of k
columns of A, whereas Ã, the interpolation matrix, interpolates
the eliminated columns from the ones that are preserved. Of
course, k of the columns of Ã must form the identity matrix.

The ID is obviously not unique; the trick is to find a
decomposition that is numerically stable. The algorithm of
Cheng et al. (2005) finds an interpolation matrix Ã so that no
element has absolute value greater than 2, all singular values are
larger than or equal to 1, and the spectral norm is bounded by√

4k(n − k) + 1. The numerical precision of the decomposition
is tunable, as the decomposition found by the algorithm satisfies

‖A − A(k)Ã‖ �
√

4k(n − k) + 1σk+1, (20)

where σk+1 is the (k + 1) greatest singular value of A. Imple-
menting lossy compression is simply a matter of reducing the
accuracy required of the IDs we use.

3.2. Butterfly Matrix Compression

We now use the ID recursively to factor the matrix �. After
applying p levels of compression, we have

� = RSpPp−1Sp−1 · · · P2S2P1S1, (21)

where R is a block-diagonal residual matrix containing ele-
ments that were not compressed, the Si are block-diagonal ma-
trices containing compressed data, and the Pi are permutation
matrices. See Figure 1 for an illustration. The structures of the
permutations are very similar to the butterflies used in FFT al-
gorithms, hence the name of the compression scheme. In fact,
if one lets Si contain a specific set of 2 × 2 blocks on their
diagonals, one recovers the famous Cooley–Tukey FFT. In our
case the blocks will be significantly larger, typically around
150 × 150, although with much variation.

We start by partitioning � into 2p column blocks. The number
of levels p is mainly determined by the number of columns in

3

The Astrophysical Journal Supplement Series, 199:5 (12pp), 2012 March Seljebotn

Level 1 =

Λ R′
1 I S1

=

R1 P1 S1

Level 2 =

R1 R′
2 I S2

=

R2 P2 S2

Level 3 =

R2 R I S3

Figure 1. Illustration of the butterfly matrix compression scheme. On the first level, we use the Interpolative Decomposition to compress sub-blocks of the matrix
� and produce the factorization � = R′

1S1, where all blocks in R′
1 have full rank. We then proceed by permuting the columns of R′

1 so that � = R1P1S1, in
order to create new rank-deficient blocks. The contents of the S1 matrix are saved as pre-computed data, while we carry R1 along for further compression on the
next level. The algorithm continues in this fashion until the residual matrix R only consists of a single diagonal of full-rank blocks. The final factorization becomes
� = RS3P2S2P1S1. The permutations involved are known in the FFT literature as butterfly permutations; the “butterfly” can be seen twice in the pattern of P1.

(A color version of this figure is available in the online journal.)

4

The Astrophysical Journal Supplement Series, 199:5 (12pp), 2012 March Seljebotn

the matrix, so that the column blocks all are roughly of the same
predetermined width. In our case, 64 columns worked well.

We then split each block roughly in half horizontally and
compress each resulting block using the ID,

� =
[

T1,1 T1,2 . . .

B1,1 T1,2 . . .

]
=

[(
T(k)

1,1 · T̃1,1
) (

T(k)
1,2 · T̃1,2

)
. . .(

B(k)
1,1 · B̃1,1

) (
B(k)

1,2 · B̃1,2
)

. . .

]
,

where the first subscript of each matrix refers to this being the
first iteration of the algorithm. It is useful to write the above
matrix as

� =
[

T(k)
1,1 T(k)

1,2 · · ·
B(k)

1,1 B(k)
1,2 · · ·

]
⎡⎢⎢⎢⎢⎢⎢⎣

T̃1,1

B̃1,1

T̃1,2

B̃1,2

. . .

⎤⎥⎥⎥⎥⎥⎥⎦ .

We denote the right matrix S1. It cannot be further processed
and its blocks are simply saved as pre-computed data, making
use of the fact that each block embeds the identity matrix in a
subset of its columns.

The left matrix can be permuted and further compressed. For
some permutation matrix P1 we have

� =
[

T(k)
1,1 T(k)

1,2 · · ·
B(k)

1,1 B(k)
1,2 · · ·

]
S1

=
[

T(k)
1,1 T(k)

1,2 · · ·
B(k)

1,1 B(k)
1,2 · · ·

]
P1S1.

Then we join blocks horizontally, split them vertically, and
compress each resulting block. For the top-left corner we have

[
T(k)

1,1 T(k)
1,2

]
=

[
T2,1

B2,1

]
=

[(
T(k)

2,1 · T̃2,1
)(

B(k)
2,1 · B̃2,1

)]
. (22)

Applying this to all blocks in the matrix, we get

� =

⎡⎢⎢⎢⎢⎣
(
T(k)

2,1 · T̃2,1
) · · ·(

B(k)
2,1 · B̃2,1

) · · ·(
T(k)

2,2 · T̃2,2
) · · ·(

B(k)
2,2 · B̃2,2

) · · ·

⎤⎥⎥⎥⎥⎦ P1S1

=

⎡⎢⎢⎢⎢⎢⎣
T(k)

2,1 T(k)
2,3 · · ·

B(k)
2,1 B(k)

2,3 · · ·
T(k)

2,2

. . . · · ·
B(k)

2,2 · · ·

⎤⎥⎥⎥⎥⎥⎦

·

⎡⎢⎢⎢⎢⎢⎢⎢⎣

T̃2,1

B̃2,1

T̃2,2

B̃2,2

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
P1S1.

And so the scheme continues. For each iteration the number of
diagonals in the left matrix is halved, the number of blocks in

each diagonal is doubled, and the height of each block is roughly
halved. Eventually the left matrix consists only of a single
diagonal band of blocks, and further compression is impossible.
This becomes the residual matrix R of Equation (21).

The efficiency of the scheme relies on the non-trivial require-
ment that the T(k) and B(k) blocks are rank-deficient at every
level of the algorithm. To get a handle on which matrices ex-
hibit this behavior, we start with assuming the rank property,
namely, that any contiguous rectangular sub-block of �, up to
the numerical precision chosen, has rank proportional to the
number of elements in the sub-block. That is, the rank does not
depend on the location or shape of the block. Now, each time
the butterfly algorithm joins two skeletons, such as [T(k)

1,1 T(k)
1,2]

in Equation (22), the resulting matrix has roughly 2k columns
while spanning out a corresponding block of � of rank k. There-
fore, half of the columns can be eliminated by applying the ID.
Since the data volume is roughly halved at each compression
level, and since Si at each level has O(L) interpolative matrices
of size roughly k × 2k = O(1), the resulting compressed repre-
sentation of � has O(L log L) elements. See Tygert (2010) for
a more detailed argument.

O’Neil et al. (2010) prove the rank property in the case
of Fourier transforms and Fourier–Bessel transforms. It is,
however, not proven in the case of associated Legendre functions
P̃ m

� (z). Figure 2 shows our results for resolutions up to L ∼
130,000; we discuss these results further in Section 4.3.

3.3. Notes on Interpolation

Tygert (2008) describes an elegant and exact interpolation
scheme that, in the case of the HEALPix grid and L = 2Nside,
reduces the number of required evaluation points for qm(zk) by
2/3. Although our conclusion was not to include this step in
our code, we include a brief discussion in order to motivate our
decision.

We focus on the even Legendre functions; the odd case is
similar. Let n be an integer such that L < m + 2n. The function
P m

m+2n(x) has n roots in the interval (0, 1), which we denote
z1, . . . , zn. Now, assuming that we have evaluated qeven

m in these
roots, we can interpolate to any other point y ∈ (−1, 1) by using
the formula

qeven
m (y) = ω(y)

n∑
i=1

γ (zi)

y2 − z2
i

qeven
m (zi), (23)

for some pre-computed weights ω(y) and γ (zi). The proof
relies on the Christoffel–Darboux identity for the normalized
associated Legendre functions (Tygert 2008; Jakob-Chien &
Alpert 1997). The Fast Multipole Method (FMM) allows the
computation of Equation (23) for p points with operation
count of order O(p + n) rather than O(pn). The FMM was
originally developed for accelerating N-body simulations but is
here motivated algebraically. For more information about one-
dimensional FMM we refer to Yarvin & Rokhlin (1999) and
Dutt et al. (1996).

The reason we did not include this step in our code is that
much of the interpolation is already embedded in the butterfly
matrix compression. Consider for instance Nside = 2048,
L = 3Nside, and m = 2000. The full matrix � occupies 65 MiB
when evaluated in the HEALPix colatitude nodes and only
49 MiB when evaluated in the optimal nodes as described above.
However, after compression the difference is only 10.4 MiB
versus 9.4 MiB. Thus, the butterfly compression compensates,
at least partially, for the oversampling. Indeed, Martinsson

5

The Astrophysical Journal Supplement Series, 199:5 (12pp), 2012 March Seljebotn

Figure 2. Efficiency of the butterfly compression scheme. Left panel: estimated size of compressed data (solid) compared with uncompressed matrix size (dashed).
A line proportional to O(L2 log2 L) (dotted) is shown for comparison. In each case we use a HEALPix grid with Nside = L/2. Right panel: a closer look at the
computational scaling. The size of the compressed data is shown divided by O(L2 log3 L) (dashed), O(L2 log2 L) (solid), and O(L2 log L) (dotted), using an arbitrary
normalization.

& Rokhlin (2007) use a strongly related matrix compression
technique to implement the FMM itself.

Interpolation also causes the pre-computed data to become
independent of the chosen grid and resolution. However, we
found the constant pre-factor in the FMM to be quite high, and
including it only as a matter of convenience appears to be out
of the question for our target resolutions. Since the FMM has
a linear computational scaling, the question should be revisited
for higher resolutions.

3.4. CPU and Memory Trade-offs

So far we have focused on reducing the number of floating
point operations (FLOPs). However, during the past decade
the speed of the CPU has increased much more rapidly than
the system memory bandwidth, so that in current multi-core
computers it is easy to get in a situation where the CPUs are
starved for data to process. When processing only one or a few
transforms concurrently, the volume of the pre-computed data
is much larger than the volume of the maps being transformed,
so that the limitation is moving the pre-computed data over the
memory bus, not processing power. Note that in the case of very
many simultaneous transforms the problem is alleviated since
the movement of pre-computed data is amortized. Following
in the footsteps of libpsht, and our own requirements in CMB
analysis, we have restricted our attention to between 1 and 10
concurrent transforms. While the butterfly algorithm probably
performs well in the face of many concurrent transforms, it
would require additional blocking and optimization beyond
what we have implemented, so that movement of the working
set in memory is properly amortized. Note that as each m is
processed independently, the working set is only about 1/L of
the total input.

The considerations above motivate stopping compression
early, after a significant reduction in the FLOP count has
been achieved, but before the size of the pre-computed data
becomes too large (see Figure 3). Butterfly compression has
the convenient feature that the blocks in the residual matrix R
consist of contiguous slices from columns of �. By orienting �
so that rows are indexed by � and columns by z, the elements of
the residual blocks can be computed on the fly from three-term
recurrence formulas for the associated Legendre functions. We
return to this topic in Appendix A.2.

As an example, consider Nside = 2048 and m = 400. The
uncompressed matrix � takes 64 MB in double precision. This

Figure 3. Effect of each level of butterfly compression. The size of the
compressed data (solid) is the sum of elements in residual uncompressed
blocks in R (dashed) and the interpolation matrices Si (dotted). While R can be
generated on the fly during transforms, the Si needs to be stored as pre-computed
data, so that the choice of compression level is a trade-off between CPU use and
the size of the pre-computed data. Parameters for this figure are Nside = 2048,
L = 3Nside, m = 0, and the initial chunk size 32 columns.

can be compressed to 20% of the original size by using five levels
of compression, with the uncompressed residual R accounting
for about 13% of the compressed data. If one instead stops
after three levels of compression, then although the size of the
compressed data has now grown to 24% of the original, 57%
of this is made out of elements in R. Since one only needs to
store two elements for every column of 512 elements in R and
can generate the rest on the fly, stopping compression after three
levels reduces the memory bus traffic and size of pre-computed
data by about 40%, at the cost of some extra CPU instructions.
Note that the brute-force codes may simply be seen as the limit
of zero levels of compression.

4. IMPLEMENTATION AND RESULTS

4.1. Technology

The Wavemoth library is organized in a core part and
an auxiliary part. The core is primarily written in C and
contains the routines for performing SHTs. The auxiliary
shell around the core is written as a Python package and is

6

The Astrophysical Journal Supplement Series, 199:5 (12pp), 2012 March Seljebotn

responsible for generating the pre-computed data using the
butterfly compression algorithm, as well as the regression and
unit tests.

By writing the core in pure C, we remain close to the hardware
and make sure the library can be used without Python. C remains
the easiest language to call from other languages such as Fortran,
C++, Java, Python, MATLAB, and so on. By using Python in
the auxiliary support code, we accelerate development of the
parts that are not performance critical and make writing tests a
pleasant experience. Being able to quickly write up unit tests
is an indispensable tool, as it allows optimizing the C code
iteratively without introducing bugs. Since individual pieces of
the C core are tested, there is both a public API for end-users
and a private API that is used from Python to test individual C
routines in isolation. Much of the support code is implemented
in the Cython language (Behnel et al. 2011), which bridges the
worlds of Python and C.

The C core depends on files containing pre-computed data, a
Fourier transform library, and a BLAS library. For the latter two
we use FFTW3 (Frigo & Johnson 2005) and ATLAS (Whaley
et al. 2001), respectively. Parts of the Wavemoth core are written
using templates in order to generate many slight variations of
the same C routine. We use Tempita,2 a purely text-oriented
templating language, and find this to be much more convenient
for optimizing a computational core than the type-oriented
templates of C++. During the pre-computations, we use the
open source Fortran 77 library ID3 to compute the Interpolative
Decomposition and libpsht to generate the associated Legendre
functions.

Unlike libpsht, we have not focused on portability, and
Wavemoth is only tested on 64-bit Linux with the GCC compiler
on Intel-platform CPUs. Computational cores are written using
intrinsic SSE functions and 128-bit registers. More work is
needed for optimal performance on the latest Intel micro-
architecture, which supports 256-bit registers, or on non-Intel
platforms. Beyond that, we expect no hurdles in improving
portability.

4.2. Benchmarks

We include benchmarks for two different systems with
different memory bandwidth, as Wavemoth’s performance is
deeply influenced by this aspect of the hardware. Figure 4
presents benchmarks taken on a 64-core 2.27 GHz Intel Xeon
X7560 (Nehalem micro-architecture), which has a compute-to-
bandwidth ratio of about 45:1. Figure 5 presents benchmarks
taken on a 48-core 2.2 GHz AMD Opteron 6174. The compute-
to-bandwidth ratio is in this case about 64:1, significantly
worse than the Intel system.4 The consequence is that butterfly
compression gives less of an advantage, with only about four
times speedup over libpsht at L = 4096, compared with the
corresponding six times speedup achieved on the Intel system. In
the case of 10 simultaneous transforms, libpsht achieves a very
consistent 2× speedup that Wavemoth is not able to fully match,
as most of our tuning effort has been on the single transform
path.

2 http://pythonpaste.org/tempita/
3 http://cims.nyu.edu/∼tygert/software.html
4 The Intel system supports transfer of 13 billion numbers per second and has
theoretical peak compute power 580 GFLOPS, using all 64 cores. The AMD
system supports transfer of 6.5 billion numbers per second and has theoretical
peak compute power of 422 GFLOPS, using all 48 cores. All numbers refer to
double-precision floating point.

The highest tested accuracy of ε = 10−13 for the Legen-
dre transforms was chosen because current codes using the
HEALPix grid only agree to this accuracy on high resolutions
(Reinecke 2011).

An important aspect of the systems for our purposes is the
non-uniform memory access (NUMA). On each system, the
CPU cores are grouped into eight nodes, and the RAM chips
evenly divided between the nodes. Each CPU only has direct
access to RAM chips on the local node and must go through a
CPU interconnect bus to access other RAM chips. For consistent
performance we need to ensure that Wavemoth distributes the
pre-computed data in such a way that each CPU finds the data it
needs in its local RAM chips. In the benchmarks we always use a
whole number of nodes, so that computation power and memory
bandwidth scale together. The exception is benchmarks using a
single core, but in those cases, Wavemoth’s pre-computed data
fit in cache anyway.

Table 1 list the sizes of the pre-computed data. To balance
bandwidth and CPU requirements as described in Section 3.4,
the pre-computation code takes a parameter ρ, specifying the
cost of FLOPs in the bandwidth-intensive butterfly matrix
application stage relative to the cost of FLOPs in the CPU-
intensive brute-force Legendre transform stage. The parameter
was then tuned for the single-transform case for L = 4096,
resulting in optimal choices of ρ = 7.5 on the Intel system and
ρ = 18 on the AMD system. Performing the pre-computations
scales as O(L3). In the case of no compression, we still
store the pre-computed quantities necessary for the Legendre
recurrence relations in memory, as described in the Appendix.
Loading these data from memory is not necessarily faster than
computing them on the fly, but doing so saved some development
time.

All methods involved are numerically stable and well under-
stood, so we do not include a rigorous analysis of numerical
accuracy. Table 2 lists the relative error from transforming a
single set of standard Gaussian coefficients per configuration.
We use the relative error

ε =
√√√√Npix∑

i=1

(xi − yi)2/

Npix∑
i=1

x2
i , (24)

where xi denote the result of libpsht and yi the result of our
code. The discrepancies in the no-compression, high-L cases are
due to using a different recurrence for the associated Legendre
functions, as described in Appendix A.2. As we did not compare
with higher precision results, it is not clear whether it is our code,
libpsht, or both that lose precision with higher resolution. Note
that the input data to the butterfly compression are generated
using libpsht.

4.3. Higher Resolutions

Because of memory constraints we have not gone to higher
resolutions than L ∼ 8000. Instead, we provide estimates for
the number of required FLOPs. Tygert (2010) provides similar
estimates but focuses on the behavior for the Legendre transform
for single m rather than the full SHT.

At each resolution, we compress �odd
m for 20 different m and

fit the cost estimate

ĉm = α +
2∑

p=0

βpm log(1 + m)p (25)

7

The Astrophysical Journal Supplement Series, 199:5 (12pp), 2012 March Seljebotn

Figure 4. Benchmarks for full SHTs performed on the Intel system. The left panel shows timings for a single transform, the right for 10 simultaneous transforms. We
scale up the number of CPU cores together with the resolution. Each pane is divided into four partially overlapping segments corresponding to 1, 8, 16, 32, and 64 CPU
cores, respectively (indicated by white/gray backgrounds and changes in line colors). The libpsht code (red triangles) is compared with Wavemoth (blue/black) with
no compression (solid, circles), compression with precision 10−13 (dashed, diamonds), and compression with precision 10−8 (dotted, crosses). In each case we use a
HEALPix grid with resolution Nside = L/2. Note for instance how both codes suffer from parallelization overhead at the transition from one to eight cores, but that
libpsht suffers less and catches up with Wavemoth. For a single transform at high resolutions, the situation is the contrary, with Wavemoth parallelizing better at the
jump from 16 to 32 cores and from 32 to 64 cores. We repeated each benchmark multiple times both with and without HyperThreading and report the fastest wall
clock time achieved multiplied with the number of CPU cores used and divided by the number of simultaneous transforms. Some 32-core timings for 10 simultaneous
transforms at L = 8192 could not be obtained owing to memory limitations. The load time of the pre-computed data from the hard drive is not included.

(A color version of this figure is available in the online journal.)

8

The Astrophysical Journal Supplement Series, 199:5 (12pp), 2012 March Seljebotn

Figure 5. Benchmarks for full SHTs performed on the AMD system, using all 48 CPU cores. The libpsht code (red triangles) is compared with Wavemoth (blue)
with no compression (solid, circles), compression with precision 10−13 (dashed, diamonds), and compression with precision 10−8 (dotted, crosses). Left panel shows
a single transform and the right panel 10 simultaneous transforms. In each case we use a HEALPix grid with resolution Nside = L/2. The large speedup in the range
L = 256..1024 is in part due to Wavemoth scaling better to all 48 cores and is closer to a 2× speedup when using fewer cores. We repeated each benchmark multiple
times and report the fastest wall clock time achieved multiplied with the number of CPU cores used and divided by the number of simultaneous transforms.

(A color version of this figure is available in the online journal.)

Table 1
Size of Pre-computed Data

L No Comp. Intel (ρ = 7.5) AMD (ρ = 18) Pre-computation Time

Tol. 10−13 Tol. 10−8 Tol. 10−13 Tol. 10−8 (CPU Minutes)

32 130 KiB 0.02
64 496 KiB 0.03
128 2.0 MiB 2.0 MiB 2.0 MiB 1.9 MiB 1.9 MiB 0.22
256 8.0 MiB 8.0 MiB 8.0 MiB 7.1 MiB 7.1 MiB 2.6
512 27 MiB 174 MiB 187 MiB 27 MiB 27 MiB 7.4
1024 102 MiB 937 MiB 988 MiB 102 MiB 170 MiB 12
2048 389 MiB 6.0 GiB 5.8 GiB 4.4 GiB 4.3 GiB 90
4096 1.5 GiB 38 GiB 35 GiB 28 GiB 27 GiB 536
8192 5.8 GiB 212 GiB 208 GiB 4380

Notes. The pre-computation time quoted is the wall time taken to compute at tolerance 10−13 on the Intel system,
multiplied by the number of CPU cores used. We use 1 core for L = 32 and then scale up gradually to 64 cores at
L = 8192. The pre-computed data are saved to a network file system.

by least-squares minimization in the parameters α, β0, β1, and
β2. The final cost is then estimated by

ĉtotal = 2
L∑

m=0

ĉm, (26)

since �even
m and �odd

m have almost identical behavior. The results
can be seen in Figure 2. For L ∼ 130,000, the butterfly
algorithm requires only 1% of the arithmetic operations of a
brute-force transform. The size of the pre-computed data at this
resolution is around 45 TiB in double precision, although this
can be reduced by using the hybrid approach of Section 3.4.

At low resolutions, the algorithm is bound by the O(L3)
operations of the brute-force Legendre transform. At high

resolutions, the O(L2 log2 L) trajectory is clearly a better fit
than the O(L2 log L) scaling conjectured by Tygert (2010). Note
that the numerical evidence presented in Tygert (2010) shows
that the average k increases monotonically with m, so it may
indeed be the case that the rank property is not fully satisfied,
or only satisfied conditionally on m. The benchmark results of
Tygert (2010) seem to be in agreement with the O(L2 log2 L)
hypothesis as well.

4.4. Comparison with Other Fast SHT Algorithms

A widely known scheme for fast SHTs is the O(L2 log2 L)
transform of Healy et al. (2003), implemented in Spharmon-
icKit. It algebraically expresses a Legendre transform of degree
L as a function of two Legendre transforms of degree L/2,

9

The Astrophysical Journal Supplement Series, 199:5 (12pp), 2012 March Seljebotn

Table 2
Samples of Numerical Accuracy

L No Compression Tolerance 10−13 Tolerance 10−8

8 8.6e-16

16 1.4e-15

32 2.7e-15

64 5.8e-15

128 1.2e-14

512 5.1e-14 4.7e-14 1.9e-09
1024 1.3e-13 8.9e-14 2.4e-09
2048 2.7e-13 1.7e-13 3.1e-09
4096 6.4e-13 3.3e-13 3.7e-09
8192 2.2e-12 6.6e-13 4.2e-09

Notes. In each case, the transform of a single Gaussian sample is compared with
libpsht double-precision results.

resulting in a divide-and-conquer scheme similar to the FFT al-
gorithms. Unfortunately, the scheme is inherently numerically
unstable, and special stabilization steps must be incorporated.
Also, it is restricted to equiangular grids, so that it cannot be used
directly with the HEALPix or GLESP grids. Wiaux et al. (2006)
benchmark SpharmonicKit against the original HEALPix im-
plementation (pre 2.20) and find that it is almost three times
slower at L = 1024. Keep in mind that libpsht, used in present
releases of HEALPix, is about twice as fast as the original
HEALPix implementation. Considering the above, we stop short
of a direct comparison between Wavemoth and SpharmonicKit.
Note that while SpharmonicKit achieves much higher accuracy
of an SHT round-trip than HEALPix does, this is an effect of the
different sampling grids being used, not of the computational
method, and it is straightforward to extend the Wavemoth code
to use the same grid as SpharmonicKit.

Mohlenkamp (1999) uses a matrix compression technique
similar to the one employed in this paper, which is independent
of the pixel grid chosen. A matrix related to the � of the present
paper is locally approximated by truncated trigonometric series.
The resulting SHT algorithm scales as O(L5/2 log L). As shown
in Figure 6, the code behaves very similarly to our code at
medium resolution, as long as one does not require too much
numerical accuracy. The size of the pre-computed data is also
of the same order, sometimes half and sometimes double that of
Wavemoth’s data.

Note that libftsh appears to have potential for optimization
for modern platforms, and this should be taken into account
when comparing the algorithms. Owing to its age, libftsh makes
assumptions about 32-bit array sizes that prevent comparison at
higher resolutions without porting libftsh to 64-bit. The libftsh
code contains an implementation of the Legendre transforms
only, and not of the full SHTs. It should be straightforward to
modify Wavemoth to use libftsh for its Legendre transforms in
order to perform full SHTs using this algorithm.

The compression scheme of Mohlenkamp (1999) appears to
be very competitive for low-accuracy transforms, but less so if
higher precision is needed. It may be fruitful to hybridize the
algorithms of Tygert (2010) and Mohlenkamp (1999) and use
both together to compress a single matrix. Even if that does
not work, one can simply use whichever performs best for a
given m.

5. DISCUSSION

There is significant potential in speeding up SHTs beyond
the codes in popular use today. We achieved a 2× speedup at

Figure 6. Comparison of Wavemoth (black circles) with the algorithm of
Mohlenkamp (1999) as implemented in libftsh (red triangles), with accuracy
10−13 (solid) and 10−8 (dotted). Both codes are run on a single core. Only the
Legendre transform part is benchmarked, as libftsh does not implement the full
SHT. Wavemoth uses a HEALPix grid with 2L − 1 rings, while libftsh uses
a Gaussian grid with 2L rings. The placement of the rings should make little
difference to the performance of either code.

(A color version of this figure is available in the online journal.)

low and medium resolutions simply due to restructuring how
the brute-force computations are done, and we believe there is
potential for even more speedup if time is spent on profiling and
micro-optimization. In particular, our code is underoptimized
for multiple simultaneous transforms.

At the highest resolutions in practical use in cosmology today,
L ∼ 4000, use of the butterfly compression is borderline.
One the one hand, it does yield an additional 2× speedup,
potentially much more if one needs less accuracy. On the other
hand, it requires between 30 and 40 GiB of pre-computed
data in memory and the transportation of those data over
the memory bus for every set of transforms. The result is
a delicate balance between bandwidth and achieved speedup;
for every number stored in the pre-computed data, one might
save 40 arithmetic operations, but then again computation is
much cheaper than accessing system memory on present-day
computer architectures.

In Section 3.3, we note the existence of interpolation schemes
that cut the necessary sample points for brute-force codes by
two-thirds in the case of the HEALPix grid, although performing
the interpolation step does not come for free. It seems that the
speedup from such interpolation alone could be on the same
order as what the butterfly algorithm achieves for the current
needs of CMB research. The advantage is that it does not
require nearly as much pre-computed data and is so much less
architecture-dependent and easier to micro-optimize. In going
forward we therefore anticipate spending more effort on direct
interpolation schemes and less effort on matrix compression. For
resolutions higher than those needed in CMB analysis, matrix
compression schemes seem like the most mature option at the
moment.

10

The Astrophysical Journal Supplement Series, 199:5 (12pp), 2012 March Seljebotn

We have not discussed spin-weighted SHTs, which are crucial
to analyzing the polarization properties of the CMB. However,
Kostelec et al. (2000) and Wiaux et al. (2007) describe how the
transform of a polarized CMB map can be reduced to three scalar
transforms. This would additionally help amortize the memory
bus transfer of the pre-computed data. Alternatively, it may
be possible to compress the spin-weighted spherical harmonic
operators.

We consider Wavemoth an experimental code for the time
being, and spherical harmonic analysis has been left out. This
was done purely to save implementation time, and we know
of no obstacles to implementing this using the same methods.
The code also lacks support for MPI parallelization, although we
expect adding such support to be straightforward. The only inter-
node communication requirement is a global transpose of qm(zk)
between the Legendre transforms and the Fourier transforms.

The author thanks S. K. Næss, H. K. Eriksen, M. Tygert, M.
Reinecke, and M. Mohlenkamp for useful discussions, and M.
Omang and F. Hansen for lending the benchmark hardware. The
author is funded by European Research Council grant StG2010-
257080. The benchmark hardware is funded by the Norwegian
Defence Estates Agency and the Research Council of Norway.

APPENDIX

IMPLEMENTATION DETAILS

A.1. Applying the Compressed Matrix
Representation to a Vector

On modern computers, the primary bottleneck is often to
move data around. Fundamental design decisions were made
with this in mind. Looking at the compressed representations
of � in Section 3.2, the immediate algorithm that comes to
mind for computing �x or �T x is the breadth-first approach:
First compute S1x, then permute the result, then compute
S2(P1S1x), and so on. However, this leads to storing several
temporary results for longer than they need to, since the
rightmost permutations are very local permutations, and only
the leftmost permutation is fully global. Therefore, we instead
traverse the data dependency tree set up by the permutations in
a depth-first manner. The advantage of this approach is that it
is cache oblivious when transforming a few vectors at a time.
That is, it automatically minimizes data movement for any cache
hierarchy, whereas breadth-first traversal will always drop to the
memory layer that is big enough to hold the entire set of input
vectors. Note that for transforming many maps at the same
time, cache-size-dependent blocking should be implemented
in addition, but we have stopped short of this. Like Tygert
(2010), we also do the compression during pre-computation
depth-first, which ensures that, per m, memory requirements go
as O(L log L) even though computation time goes as O(L2).

The core computation during tree traversal is to apply the
interpolative matrices, e.g., T̃x or T̃T x. Keep in mind that the k-
by-n matrix T̃ contains the k-by-k identity matrix in a subset of
its columns; making use of this is important as it roughly halves
the storage size and FLOP count. Given an ID T = T(k)T̃,
we can freely permute the rows of T̃, simply by permuting
the columns of T(k) correspondingly. We do this during pre-
computation to avoid the unordered memory usage pattern of
arbitrary permutations. Instead, we can simply filter the input or
output vectors into the part that hits the identity sub-matrix and
the part that hits the dense sub-matrix.

A.2. Efficient Code for Legendre Transforms

As mentioned in Section 3.4, it is necessary to balance the
amount of pre-computed data to the memory bandwidth, so code
is required to apply the residual blocks in R to vectors without
actually storing R in memory. This means computing a cropped
version of the Legendre transform,

q ′(zj) =
kstop∑

k=kstart

P̃ m
m+2k+t (zj)a�m, (A1)

where t = 0 for the even transforms and t = 1 for the odd
transforms. To compute P̃ m

� , we use a relation that jumps two
steps in � for each iteration (Tygert 2010):

P̃ m
�+2(z) = z2 − dm

l

cm
�

P̃ m
� (z) − cm

�−2

cm
�

P̃ m
�−2(z)

≡ (z2 + αm
�)βm

� P̃ m
� (z) + γ m

� P̃ m
�−2(z), (A2)

with

cm
� =

√
(� − m + 1)(� − m + 2)(� + m + 1)(� + m + 2)

(2� + 1)(2� + 3)2(2� + 5)

and

dm
� = 2�(� + 1) − 2m2 − 1

(2� − 1)(2� + 3)
.

This recurrence relation requires five arithmetic operations per
iteration, as opposed to a more widely used relation that takes
one step in � and only needs four arithmetic operations per step
(see, e.g., Press et al. 2007). However, since �even and �odd may
have different columns in the residual blocks of their compressed
representations, relation (A2) is a better choice in our case.

For each block in R we pre-compute αm
� , βm

� and γ m
� , as well

as P̃ m
kstart

(z) and P̃ m
kstart+1(z) for each z for initial conditions. Note

that P̃ m
� (z) in parts of its domain take values so close to zero that

they cannot be represented in IEEE double precision. However,
in these cases P̃ m

� (z) is always increasing in the direction of
increasing �, so we can simply increase kstart correspondingly.
In fact, we follow libpsht and assume that the dynamic range
of the input data is small enough, within each m, that values of
P̃ m

� (z) smaller than 10−30 in magnitude can safely be neglected.
As far as possible we group together six and six columns with
the same kstart and kstop, for reasons that will soon become clear.

For an efficient implementation, the first important point is to
make sure the number of loads from cache into CPU registers is
balanced with the number of FLOPs. The second is to make sure
there are enough independent FLOPs in flight simultaneously,
so that operations can be pipelined. Thus,

1. for performing a single transform with one real and one
imaginary vector, the values of P̃ m

� should never need to
leave the CPU registers. Rather, we fuse Equations (A1) and
(A2) in the core loop. For multiple simultaneous transforms
we save P̃ m

� to cache but make sure to process in small
batches that easily fit in L1 cache.

2. We process for several zj simultaneously. This amortizes
the register loads of αm

� , βm
� , and γ m

� . It also ensures that
there are multiple independent chains of computation going
on so that pipelining works well.

In the single transform case with one real and one imaginary
vector, we do the full summation for six zj at a time (when

11

The Astrophysical Journal Supplement Series, 199:5 (12pp), 2012 March Seljebotn

possible). The allocation of the 16 available 128-bit registers,
each holding two double-precision numbers, then becomes three
registers for P̃ m

� , three for P̃ m
�−2, three for the auxiliary data αm

� ,
βm

� , and γ m
� , six accumulation registers for q ′(zj), and one work

register. The z2
j values are, perhaps counterintuitively, read again

from cache in each iteration, which conserves three registers
and thus enables processing six zj in each chunk instead of
only four without register spills. Finally, when the time comes
for multiplying P̃ m

� with a�m, the auxiliary data are no longer
needed, leaving room for loading a�m.

On the Intel Xeon system, the routine performs at
6.46 GFLOP/s per core (71% of the theoretical maximum)
when benchmarked on all the Legendre transforms necessary
for a full SHT at L = 4096 using 32 cores. The effect of in-
struction pipelining is evident; reducing the number of columns
processed in each iteration from six to four reduces perfor-
mance to 5.69 GFLOP/s (63%), and when only processing two
columns at a time, performance is only 4.28 GFLOP/s (47%).

We skip the details for the multiple transform case, but
in short, it involves the same sort of blocking performed for
matrix multiplication, including repacking the input data in
blocks. Goto & van de Geijn (2008) provide an excellent
introduction to blocking techniques. In this case the performance
is 5.60 GFLOP/s (62%) per core when performing the Legendre
transforms necessary for 10 simultaneous SHTs.

The considerations above guided the choice of loop structure,
which was then implemented in pure C using SSE intrinsic. We
did not spend much time on optimization, so there should be
room for further improvements, in particular, for the multiple-
transform path.

A.3. Data Layout

The butterfly compression algorithm naturally leads to the
following code organization for spherical harmonic synthesis:

1. Since each m is processed independently, we request
input in m-major ordering. Also, for multiple simultaneous
transforms, the coefficients of each map are interleaved,
which is optimal for both the butterfly algorithm and the
brute-force cropped Legendre transforms. In most places,
the real and complex parts of the input can be treated as
two independent vectors, since � is a real matrix.

2. Compute all qm(zj) into a two-dimensional array. Since
each m is processed independently, this ends up in m-major
ordering, like the input.

3. While transposing the qm(zj) array into ring-major order-
ing, phase-shift and wrap around the coefficients, and per-
form FFTs on each ring. Rings must be processed in small
batches in order to avoid loading cache lines multiple times.

A temporary work buffer with size of the same order as the
input and output is used for qm(zj). An in-place code should be
feasible with the use of an in-place transpose.

A drawback compared with brute-force codes is that qm(zj)
needs to first be written to and then read from main memory.
Here, libpsht is instead able to employ blocking, so that a few
rings at a time are completely processed before moving on. Our
benchmarks do, however, indicate that this is not a big problem
in practice. Also, for cluster parallelization using MPI, it would
be natural to follow S2HAT (Hupca et al. 2010; Szydlarski et al.
2011) in distributing the input data by m and the output data by
rings, which also leads to a global transpose operation.

Wavemoth stores the output maps in interleaved order, since
FFTW3 is able to deal well with such transforms. The libpsht
code is able to support any output ordering, although stacked,
non-interleaved maps are slightly faster, so that is the ordering
we use for libpsht in the benchmarks.

REFERENCES

Behnel, S., Bradshaw, R., Citro, C., et al. 2011, Comput. Sci. Eng., 13, 2
Cheng, H., Gimbutas, Z., Martinsson, P. G., & Rokhlin, V. 2005, SIAM J. Sci.

Comput., 26, 4
Doroshkevich, A. G., Naselsky, P. D., Verkhodanov, O. V., et al. 2005, Int. J.

Mod. Phys. D., 14, 275
Dutt, A., Gu, M., & Rokhlin, V. 1996, SIAM J. Numer. Anal., 33, 5
Eriksen, H. K., Jewell, J. B., Dickinson, C., et al. 2008, ApJ, 676, 1
Frigo, M., & Johnson, S. G. 2005, Proc. IEEE, 93, 2
Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 2
Goto, K., & van de Geijn, R. 2008, ACM Trans. Math. Softw., 34, 3
Healy, D. M., Rockmore, D. N., Kostelec, P. J., & Moore, S. 2003, J. Fourier

Anal. Appl., 9, 4
Hupca, I. O, Falcou, J., Grigori, L., & Stompor, R. 2010, INRIA Technical

Report, No. RR-7409, arXiv:1010.1260
Jakob-Chien, R., & Alpert, B. K. 1997, J. Comput. Phys., 136, 2
Kostelec, P. J., Maslen, D. K., Jr., Healy, D. M., & Rockmore, D. N. 2000, J.

Comput. Phys., 162, 2
Kunis, S., & Potts, D. 2003, J. Comput. Appl. Math., 161, 1
Martinsson, P. G., & Rokhlin, V. 2007, SIAM J. Sci. Comput., 29, 3
McEwen, J. D., & Wiaux, Y. 2011, IEEE Trans. Signal Process., 59, 12
Michielssen, E., & Boag, A. 1996, IEEE Trans. Antennas Propag., 44, 8
Mohlenkamp, M. J. 1999, J. Fourier Anal. Appl., 5, 2
O’Neil, M., Woolfe, F., & Rokhlin, V. 2010, Appl. Comput. Harmon. Anal., 28,

2
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 2007,

Numerical Recipes (3rd ed.; New York: Cambridge Univ. Press)
Reinecke, M. 2011, A&A, 526, A108
Rokhlin, V., & Tygert, M. 2006, SIAM J. Sci. Comput., 27, 6
Suda, R., & Takami, M. 2002, Math. Comput., 71, 238
Szydlarski, M., Esterie, P., Falcou, J., Grigori, L., & Stompor, R. 2011, INRIA

Technical Report, No. RR-7635, arXiv:1106.0159
Tygert, M. 2008, J. Comput. Phys., 227, 8
Tygert, M. 2010, J. Comput. Phys., 229, 18
Whaley, R. C., Petitet, A., & Dongarra, J. 2001, Parallel Comput., 27, 1
Wiaux, Y., Jacques, L., & Vandergheynst, P. 2007, J. Comput. Phys., 226, 2
Wiaux, Y., Jacques, L., Vielva, P., & Vandergheynst, P. 2006, ApJ, 652, 1
Yarvin, N., & Rokhlin, V. 1999, SIAM J. Numer. Anal., 36, 2

12

Paper IV

Libsharp – spherical harmonic transforms revisited

When libpsht performance was beaten by Wavemoth and shtns, Martin Rei-
necke decided to reimplement it using ideas from the Wavemoth paper, and
the result was libsharp: The de facto standard SHT code, used by thousands
of researchers every day. During the development me and Martin was in cor-
respondance about the strategies used to achieve high performance. I also
contributed code for adjoint and real SHTs as described in section 4.5. Since
the paper was published I have further contributed a couple of bugfixes, so
that I am now the 2nd contributor/maintainer of the library, although Martin
reigns supreme as the primary contributor.

125

A&A 554, A112 (2013)
DOI: 10.1051/0004-6361/201321494
c© ESO 2013

Astronomy
&

Astrophysics

Libsharp – spherical harmonic transforms revisited

M. Reinecke1 and D. S. Seljebotn2

1 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany
e-mail: martin@mpa-garching.mpg.de

2 Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, 0315 Oslo, Norway
e-mail: d.s.seljebotn@astro.uio.no

Received 18 March 2013 / Accepted 14 April 2013

ABSTRACT

We present libsharp, a code library for spherical harmonic transforms (SHTs), which evolved from the libpsht library and ad-
dresses several of its shortcomings, such as adding MPI support for distributed memory systems and SHTs of fields with arbitrary
spin, but also supporting new developments in CPU instruction sets like the Advanced Vector Extensions (AVX) or fused multiply-
accumulate (FMA) instructions. The library is implemented in portable C99 and provides an interface that can be easily accessed from
other programming languages such as C++, Fortran, Python, etc. Generally, libsharp’s performance is at least on par with that of its
predecessor; however, significant improvements were made to the algorithms for scalar SHTs, which are roughly twice as fast when
using the same CPU capabilities. The library is available at http://sourceforge.net/projects/libsharp/ under the terms of
the GNU General Public License.

Key words. methods: numerical – cosmic background radiation – large-scale structure of Universe

1. Motivation

While the original libpsht library presented by Reinecke
(2011) fulfilled most requirements on an implementation of
spherical harmonic transforms (SHTs) in the astrophysical con-
text at the time, it still left several points unaddressed. Some of
those were already mentioned in the original publication: sup-
port for SHTs of arbitrary spins and parallelisation on computers
with distributed memory.

Both of these features have been added to libpsht in the
meantime, but other, more technical, shortcomings of the library
have become obvious since its publication, which could not be
fixed within the libpsht framework.

One of these complications is that the library design did
not anticipate the rapid evolution of microprocessors during the
past few years. While the code supports both traditional scalar
arithmetic as well as SSE2 instructions, adding support for the
newly released Advanced Vector Extensions (AVX) and fused
multiply-accumulate instructions (FMA3/FMA4) would require
adding significant amounts of new code to the library, which is
inconvenient and very likely to become a maintenance burden in
the long run. Using proper abstraction techniques, adding a new
set of CPU instructions could be achieved by only very small
changes to the code, but the need for this was unfortunately not
anticipated when libpshtwas written.

Also, several new, highly efficient SHT implementations
have been published in the meantime; most notably Wavemoth
(Seljebotn 2012) and shtns (Schaeffer 2013). These codes
demonstrate that libpsht’s computational core did not make
the best possible use of the available CPU resources. Note that
Wavemoth is currently an experimental research code not meant
for general use.

To address both of these concerns, the library was redesigned
from scratch. The internal changes also led to a small loss

of functionality; the new code no longer supports multiple
simultaneous SHTs of different type (i.e. having different direc-
tions or different spins). Simultaneous transforms of identical
type are still available, however.

As a fortunate consequence of this slight reduction in func-
tionality, the user interface could be simplified dramatically,
which is especially helpful when interfacing the library with
other programming languages.

Since backward compatibility is lost, the new name
libsharp was chosen for the resulting code, as a shorthand for
“Spherical HARmonic Package”.

The decision to develop libsharp instead of simply using
shtns was taken for various reasons: shtns does not support
spin SHTs or allow MPI parallelisation, it requires more main
memory than libsharp, which can be problematic for high-
resolution runs, and it relies on the presence of the FFTW li-
brary. Also, shtns uses a syntax for expressing SIMD opera-
tions, which is currently only supported by the gcc and clang
compilers, thereby limiting its portability at least for the vec-
torised version. Finally, libsharp has support for partial spher-
ical coverage and a wide variety of spherical grids, including
Gauss-Legendre, ECP, and HEALPix.

2. Problem definition

This section contains a quick recapitulation of equations pre-
sented in Reinecke (2011), for easier reference.

We assume a spherical grid with Nϑ iso-latitude rings (in-
dexed by y). Each of these in turn consists of Nϕ,y pixels (indexed
by x), which are equally spaced in ϕ, the azimuth of the first ring
pixel being ϕ0,y.

A continuous spin-s function defined on the sphere with a
spectral band limit of lmax can be represented either as a set of
spherical harmonic coefficients salm, or a set of pixels pxy. These

Article published by EDP Sciences A112, page 1 of 9

A&A 554, A112 (2013)

two representations are connected by spherical harmonic synthe-
sis (or backward SHT):

pxy =

lmax∑

m=−lmax

lmax∑

l=|m|
salm sλlm(ϑy) exp

(
imϕ0,y +

2πimx

Nϕ,y

)
(1)

and spherical harmonic analysis (or forward SHT):

sâlm =

Nϑ−1∑

y=0

Nϕ,y−1∑

x=0

pxy wy sλlm(ϑy) exp

(
−imϕ0,y − 2πimx

Nϕ,y

)
, (2)

where sλlm(ϑ) := sYlm(ϑ, 0) and wy are quadrature weights.
Both transforms can be subdivided into two stages:

pxy =

lmax∑

m=−lmax

Fm,y exp

(
imϕ0,y +

2πimx

Nϕ,y

)
with (3)

Fm,y :=

lmax∑

l=|m|
salm sλlm(ϑy), and (4)

sâlm =

Nϑ−1∑

y=0

Gm,y sλlm(ϑy) with (5)

Gm,y := wy

Nϕ,y−1∑

x=0

pxy exp

(
−imϕ0,y − 2πimx

Nϕ,y

)
· (6)

Equations (3) and (6) can be computed using fast Fourier trans-
forms (FFTs), while Eqs. (4) and (5), which represent the bulk
of the computational load, are the main target for optimised im-
plementation in libsharp.

3. Technical improvements

3.1. General remarks

As the implementation language for the new library, ISO C99
was chosen. This version of the C language standard is more
flexible than the C89 one adopted for libpsht and has gained
ubiquitous compiler support by now. Most notably, C99 allows
definition of new variables anywhere in the code, which im-
proves readability and eliminates a common source of program-
ming mistakes. It also provides native data types for complex
numbers, which allows for a more concise notation in many
places. However, special care must be taken not to make use of
these data types in the library’s public interface, since this would
prevent interoperability with C++ codes (because C++ has a dif-
ferent approach to complex number support). Fortunately, this
drawback can be worked around fairly easily.

A new approach was required for dealing with the growing
variety of instruction sets for arithmetic operations, such as tradi-
tional scalar instructions, SSE2 and AVX. Rewriting the library
core for each of these alternatives would be cumbersome and
error-prone. Instead we introduced the concept of a generic “vec-
tor” type containing a number of double-precision IEEE val-
ues and defined a set of abstract operations (basic arithmetics,
negation, absolute value, multiply-accumulate, min/max, com-
parison, masking and blending) for this type. Depending on the
concrete instruction set used when compiling the code, these op-
erations are then expressed by means of the appropriate opera-
tors and intrinsic function calls. The only constraint on the num-
ber of values in the vector type is that it has to be a multiple of
the underlying instruction set’s native vector length (1 for scalar
arithmetic, 2 for SSE2, 4 for AVX).

Using this technique, adding support for new vector instruc-
tion sets is straightforward and carries little risk of breaking ex-
isting code. As a concrete example, support for the FMA4 in-
structions present in AMD’s Bulldozer CPUs was added and
successfully tested in less than an hour.

3.2. Improved loop structure

After publication of SHT implementations, which perform sig-
nificantly better than libpsht, especially for s = 0 transforms
(Seljebotn 2012; Schaeffer 2013), it became obvious that some
bottleneck must be present in libpsht’s implementation. This
was identified with libpsht’s approach of first computing a
whole l-vector of sλlm(ϑ) in one go, storing it to main mem-
ory, and afterwards re-reading it sequentially whenever needed.
While the l-vectors are small enough to fit into the CPU’s
Level-1 cache, the store and load operations nevertheless caused
some latency. For s = 0 transforms with their comparatively low
arithmetic operation count (compared to the amount of memory
accesses), this latency could not be hidden behind floating point
operations and so resulted in a slow-down. This is the most likely
explanation for the observation that libpsht’s s = 0 SHTs have
a much lower FLOP rate compared to those with s � 0.

It is possible to avoid the store/load overhead for the sλlm(ϑ)
by applying each value immediately after it has been computed,
and discarding it as soon as it is not needed any more. This ap-
proach is reflected in the loop structure shown in Figs. 1 and 2,
which differs from the one in Reinecke (2011) mainly by the
fusion of the central loops over l.

In this context another question must be addressed: the loops
marked as “SSE/AVX” in both figures are meant to be executed
in “blocks”, i.e. by processing several y indices simultaneously.
The block size is equivalent to the size of the generic vector
type described in Sect. 3.1. The best value for this parameter
depends on hardware characteristics of the underlying computer
and therefore cannot be determined a priori. Libsharp always
uses a multiple of the system’s natural vector length and esti-
mates the best value by running quick measurements whenever
a specific SHT is invoked for the first time. This auto-tuning step
approximately takes a tenth of a wall-clock second.

Due to the changed central loop of the SHT implementation,
it is no longer straightforward to support multiple simultaneous
transforms with differing spins and/or directions, as libpsht
did – this would lead to a combinatorial explosion of loop bodies
that have to be implemented. Consequently, libsharp, while
still supporting simultaneous SHTs, restricts them to have the
same spin and direction. Fortunately, this is a very common case
in many application scenarios.

3.3. Polar optimisation

As previously mentioned in Reinecke (2011), much CPU time
can be saved by simply not computing terms in Eqs. (4) and (5)
for which sλlm(ϑ) is so small that their contribution to the re-
sult lies well below the numerical accuracy. Since this situation
occurs for rings lying close to the poles and high values of m,
Schaeffer (2013) referred to it as “polar optimisation”.

To determine which terms can be omitted, libsharp uses
the approach described in Prézeau & Reinecke (2010). In short,
all terms for which

√
m2 + s2 − 2ms cosϑ − lmax sinϑ > T (7)

A112, page 2 of 9

M. Reinecke and D. S. Seljebotn: Libsharp – spherical harmonic transforms revisited

for b = <all submaps or "blocks">
for m = [0;mmax] // OpenMP
for l = [m;lmax]
precompute recursion coefficients

end l
for y = <all rings in submap b> // SSE/AVX
for l = [m;lmax]
compute s_lambda_lm(theta_y)
for j = <all jobs>
accumulate F(m,theta_y,j)

end j
end l

end y
end m

for y = <all rings in submap b> // OpenMP
for j = <all jobs>
compute map(x,y,j) using FFT

end j
end y

end b

Fig. 1. Schematic loop structure of libsharp’s shared-memory synthe-
sis code.

for b = <all submaps or "blocks">
for y = <all rings in submap b> // OpenMP
for j = <all jobs>
compute G(m,theta_y,j) using FFT

end j
end y

for m = [0;mmax] // OpenMP
for l = [m;lmax]
precompute recursion coefficients

end l
for y = <all rings in submap b> // SSE/AVX
for l = [m;lmax]
compute s_lambda_lm(theta_y)
for j = <all jobs>
compute contribution to a_lm(j)

end j
end l

end y
end m

end b

Fig. 2. Schematic loop structure of libsharp’s shared-memory analy-
sis code.

are skipped. The parameter T is tunable and determines the over-
all accuracy of the result. Libsharpmodels it as

T = max(100, 0.01lmax), (8)

which has been verified to produce results equivalent to those of
SHTs without polar optimisation.

4. Added functionality

4.1. SHTs with arbitrary spin

While the most widely used SHTs in cosmology are performed
on quantities of spins 0 and 2 (i.e. sky maps of Stokes I

and Q/U parameters), there is also a need for transforms at other
spins. Lensing computations require SHTs of spin-1 and spin-3
quantities (see, e.g., Lewis 2005). The most important motiva-
tion for high-spin SHTs, however, are all-sky convolution codes
(e.g. Wandelt & Górski 2001; Prézeau & Reinecke 2010) and de-
convolution map-makers (e.g. Keihänen & Reinecke 2012). The
computational cost of these algorithms is dominated by calculat-
ing expressions of the form

Rmk(ϑ) =

lmax∑

l=max(|m|,|k|)
almb∗lkdl

mk(ϑ), (9)

where a and b denote two sets of spherical harmonic coeffi-
cients (typically of the sky and a beam pattern) and d are the
Wigner d matrix elements. These expressions can be interpreted
and solved efficiently as a set of (slightly modified) SHTs with
spins ranging from 0 to kmax ≤ lmax, which in today’s applica-
tions can take on values much higher than 2.

As was discussed in Reinecke (2011), the algorithms used
by libpsht for spin-1 and spin-2 SHTs become inefficient
and inaccurate for higher spins. To support such transforms in
libsharp, another approach was therefore implemented, which
is based on the recursion for Wigner d matrix elements presented
in Prézeau & Reinecke (2010).

Generally, the spin-weighted spherical harmonics are related
to the Wigner d matrix elements via

sλlm(ϑ) = (−1)m

√
2l + 1

4π
dl
−ms(ϑ) (10)

(Goldberg et al. 1967). It is possible to compute the dl
mm′(ϑ)

using a three-term recursion in l very similar to that for the
scalar Ylm(ϑ):

[
cosϑ − mm′

l(l + 1)

]
dl

mm′(ϑ) =

√
(l2 − m2)(l2 − m′2)

l(2l + 1)
dl−1

mm′(ϑ)

+

√
[(l + 1)2 − m2][(l + 1)2 − m′2]

(l + 1)(2l + 1)
dl+1

mm′(ϑ) (11)

(Kostelec & Rockmore 2008). The terms depending only on
l, m, and m′ can be re-used for different colatitudes, so that
the real cost of a recursion step is two additions and three
multiplications.

In contrast to the statements made in McEwen & Wiaux
(2011), this recursion is numerically stable when performed in
the direction of increasing l; see, e.g., Sect. 5.1.2 for a practical
confirmation. It is necessary, however, to use a digital floating-
point representation with enhanced exponent range to avoid un-
derflow during the recursion, as is discussed in some detail in
Prézeau & Reinecke (2010).

4.2. Distributed memory parallelisation

When considering that, in current research, the required band
limit for SHTs practically never exceeds lmax = 104, it seems
at first glance unnecessary to provide an implementation sup-
porting multiple nodes. Such SHTs fit easily into the memory
of a single typical compute node and are carried out within a
few seconds of wall clock time. The need for additional paral-
lelisation becomes apparent, however, as soon as the SHT is no
longer considered in isolation, but as a (potentially small) part
of another algorithm, which is libsharp’s main usage scenario.
In such a situation, large amounts of memory may be occupied

A112, page 3 of 9

A&A 554, A112 (2013)

for m = <all local m> // OpenMP
for l = [m;lmax]
precompute recursion coefficients

end l
for y = <all rings in the map> // SSE/AVX
for l = [m;lmax]
compute s_lambda_lm(theta_y)
for j = <all jobs>
accumulate F(m,theta_y,j)

end j
end l

end y
end m

rearrange F(m,theta_y,j) among tasks // MPI

for y = <all local rings> // OpenMP
for j = <all jobs>
compute map(x,y,j) using FFT

end j
end y

Fig. 3. Schematic loop structure of libsharp’s distributed-memory
synthesis code.

by data sets unrelated to the SHT, therefore requiring distribu-
tion over multiple nodes. Moreover, there is sometimes the need
for very many SHTs in sequence, e.g. if they are part of a sam-
pling process or an iterative solver. Here, the parallelisation to
a very large number of CPUs may be the only way of reduc-
ing the time-to-solution to acceptable levels. Illustrative exam-
ples for this are the Commander code (Eriksen et al. 2008) and
the artDeco deconvolution mapmaker (Keihänen & Reinecke
2012); for the processing of high-resolution Planck data, the lat-
ter is expected to require over 100GB of memory and several
hundred CPU cores.
Libsharp provides an interface that allows collective execu-

tion of SHTs on multiple machines with distributed memory. It
makes use of the MPI1 interface to perform the necessary inter-
process communication.

In contrast to the standard, shared-memory algorithms, it
is the responsibility of the library user to distribute map data
and alm over the individual computers in a way that ensures
proper load balancing. A very straightforward and reliable way
to achieve this is a “round robin” strategy: assuming N com-
puting nodes, the map is distributed such that node i hosts the
map rings i, i + N, i + 2N, etc. (and their counterparts on the
other hemisphere). Similarly, for the spherical harmonic coeffi-
cients, node i would hold all alm for m = i, i + N, i + 2N, etc.
Other efficient distribution strategies do of course exist and may
be advantageous, depending on the circumstances under which
libsharp is called. The only requirement the library has is that
the alm are distributed by m and that the map is distributed by
rings, as described in Figs. 3 and 4.

The SHT algorithm for distributed memory architectures is
analogous to the one used in the S2HAT package2 and first pub-
lished in Szydlarski et al. (2013); its structure is sketched in
Figs. 3 and 4. In addition to the S2HAT implementation, the
SHT will be broken down into smaller chunks if the average

1 http://en.wikipedia.org/wiki/
Message_Passing_Interface
2 http://code.google.com/p/s2hat-library/

for y = <all local rings> // OpenMP
for j = <all jobs>
compute G(m,theta_y,j) using FFT

end j
end y

rearrange G(m,theta_y,j) among tasks // MPI

for m = <all local m> // OpenMP
for l = [m;lmax]
precompute recursion coefficients

end l
for y = <all rings in the map> // SSE/AVX
for l = [m;lmax]
compute s_lambda_lm(theta_y)
for j = <all jobs>
compute contribution to a_lm(j)

end j
end l

end y
end m

Fig. 4. Schematic loop structure of libsharp’s distributed-memory
analysis code.

number of map rings per MPI task exceeds a certain threshold.
This is analogous to the use of chunks in the scalar and OpenMP-
parallel implementations and reduces the memory overhead
caused by temporary variables.

It should be noted that libsharp supports hybrid MPI and
OpenMP parallelisation, which allows, e.g., running an SHT
on eight nodes with four CPU cores each, by specifying eight
MPI tasks, each of them consisting of four OpenMP threads.
In general, OpenMP should be preferred over MPI whenever
shared memory is available (i.e. at the computing node level),
since the OpenMP algorithms contain dynamic load balancing
and have a smaller communication overhead.

4.3. Map synthesis of first derivatives

Generating maps of first derivatives from a set of alm is closely
related to performing an SHT of spin 1. A specialised SHT mode
was added to libsharp for this purpose; it takes as input a
set of spin-0 alm and produces two maps containing ∂ f /∂ϑ and
∂ f /(∂ϕ sinϑ), respectively.

4.4. Support for additional spherical grids

Direct support for certain classes of spherical grids has been ex-
tended in comparison to libpsht; these additions are listed be-
low in detail. It must be stressed, however, that libsharp can –
very much as libpsht does – perform SHTs on any iso-latitude
grid with equidistant pixels on each ring. This very general class
of pixelisations includes, e.g., certain types of partial spherical
coverage. For these general grids, however, the user is responsi-
ble for providing correct quadrature weights when performing a
spherical harmonic analysis.

A112, page 4 of 9

M. Reinecke and D. S. Seljebotn: Libsharp – spherical harmonic transforms revisited

4.4.1. Extended support for ECP grids

Libpsht provides explicit support for HEALPix grids,
Gauss-Legendre grids, and a subset of equidistant cylindrical
projection (ECP) grids. The latter are limited to an even num-
ber of rings at the colatitudes

ϑn =
(n + 0.5)π

N
, n ∈ [0; N − 1]. (12)

The associated quadrature weights are given by Fejér’s first rule
(Fejér 1933; Gautschi 1967).
Libsharp extends ECP grid support to allow even and odd

numbers of rings, as well as the colatitude distributions

ϑn =
nπ

N
, n ∈ [1; N − 1] (13)

(corresponding to Fejér’s second rule), and

ϑn =
nπ

N
, n ∈ [0; N] (14)

(corresponding to Clenshaw-Curtis quadrature). This last pixeli-
sation is identical to the one adopted in Huffenberger & Wandelt
(2010).

Accurate computation of the quadrature weights for these
pixelisations is nontrivial; libsharp adopts the FFT-based ap-
proach described in Waldvogel (2006) for this purpose.

4.4.2. Reduced Gauss-Legendre grid

The polar optimisation described in Sect. 3.3 implies that it
is possible to reduce the number of pixels per ring below the
theoretically required value of 2lmax + 1 close to the poles.
Equation (7) can be solved for m (at a given s, lmax and ϑ), and
using 2m + 1 equidistant pixels in the corresponding map ring
results in a pixelisation that can represent a band-limited func-
tion up to the desired precision, although it is no longer exact
in a mathematical sense. If this number is further increased to
the next number composed entirely of small prime factors (2,
3, and 5 are used in libsharp’s case), this has the additional
advantage of allowing very efficient FFTs.
Libsharp supports this pixel reduction technique in the

form of a thinned-out Gauss-Legendre grid. At moderate to high
resolutions (lmax > 1000), more than 30% of pixels can be saved,
which can be significant in various applications.

It should be noted that working with reduced Gauss-
Legendre grids, while saving considerable amounts of mem-
ory, does not change SHT execution times significantly; all po-
tential savings are already taken into account, for all grids, by
libsharp’s implementation of polar optimisation.

4.5. Adjoint and real SHTs

Since Eq. (1) is a linear transform, we can introduce the notation

p = Ya (15)

for a vector a of spherical harmonic coefficients and correspond-
ing vector p of pixels. Similarly, one can write Eq. (2) as

a = Y†Wp, (16)

where W is a diagonal matrix of quadrature weights. When in-
cluding SHTs as operators in linear systems, one will often need
the adjoint spherical harmonic synthesis, Y†, and the adjoint

spherical harmonic analysis, WY. For instance, if a is a ran-
dom vector with covariance matrix C in the spherical harmonic
domain, then its pixel representation Ya has the covariance ma-
trix YCY†. Multiplication by this matrix requires the use of the
adjoint synthesis, which corresponds to analysis with a differ-
ent choice of weights. Libsharp includes routines for adjoint
SHTs, which is more user-friendly than having to compensate
for the wrong choice of weights in user code, and also avoids an
extra pass over the data.

For linear algebra computations, the vector a must also in-
clude alm with m < 0, even if libsharp will only compute
the coefficients for m ≥ 0. The use of the real spherical har-
monics convention is a convenient way to include negative m
without increasing the computational workload by duplicating
all coefficients. For the definition we refer to the appendix of
de Oliveira-Costa et al. (2004). The convention is supported di-
rectly in libsharp, although with a restriction in the storage
scheme: The coefficients for m < 0 must be stored in the same
locations as the corresponding imaginary parts of the complex
coefficients, so that the pattern in memory is [al,m, al,−m].

5. Evaluation

Most tests were performed on the SuperMUC Petascale System
located at the Leibniz-Rechenzentrum Garching. This system
consists of nodes containing 32GB of main memory and 16 Intel
Xeon E5-2680 cores running at 2.7GHz. The exception is the
comparison with Wavemoth, which was performed on the Abel
cluster at the University of Oslo on very similar hardware; Xeon
E5-2670 at 2.6 GHz.

The code was compiled with gcc version 4.7.2. The Intel
compiler (version 12.1.6) was also tested, but produced slightly
inferior code.

Except where noted otherwise, test calculations were per-
formed using the reduced Gauss-Legendre grid (see Sect. 4.4.2)
to represent spherical map data. This was done for the pragmatic
purpose of minimising the tests’ memory usage, which allowed
going to higher band limits in some cases, as well as to demon-
strate the viability of this pixelisation.

The band limits adopted for the tests all obey lmax = 2n − 1
with n ∈ N (except for those presented in Sect. 5.2.2). This is
done in analogy to most other papers on the subject, but leads to
some unfamiliar numbers especially at very high lmax.

The number of cores used for any particular run always is a
power of 2.

5.1. Accuracy tests

5.1.1. Comparison with other implementations

The numerical equivalence of libsharp’s SHTs to existing im-
plementations was verified by running spherical harmonic syn-
thesis transforms on a Gauss-Legendre grid at lmax = 50 and
spins 0, 1, and 2 with both libsharp and libpsht, and com-
paring the results. The differences of the results lay well within
the expected levels of numerical errors caused by the finite preci-
sion of IEEE numbers. Spherical harmonic analysis is implicitly
tested by the experiments in the following sections.

5.1.2. Evaluation of SHT pairs

To test the accuracy of libsharp’s transforms, sets of
spin = 0 alm coefficients were generated by setting their real
and imaginary parts to numbers drawn from a uniform random

A112, page 5 of 9

A&A 554, A112 (2013)

10
-16

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
0

10
1

10
2

10
3

10
4

10
5

S
H

T
 e

rr
o
r

lmax

lmaxl max
3/2

εrms
εmax

Fig. 5. Maximum and rms errors for inverse/forward spin = 0 SHT pairs
at different lmax.

distribution in the range [−1; 1[(with exception of the imaginary
parts for m = 0, which have to be zero for symmetry reasons).
This data set was transformed onto a reduced Gauss-Legendre
grid and back to spherical harmonic space again, resulting in âlm.

The rms and maximum errors of this inverse/forward trans-
form pair can be written as

εrms :=

√∑
lm |salm − sâlm|2∑

lm |salm|2 and (17)

εmax := max
lm
|salm − sâlm| . (18)

Figure 5 shows the measured errors for a wide range of band
limits. As expected, the numbers are close to the accuracy limit
of double precision IEEE numbers for low lmax; rms errors in-
crease roughly linearly with the band limit, while the maximum

error seems to exhibit an l
3/2
max scaling. Even at lmax = 262 143

(which is extremely high compared to values typically required
in cosmology), the errors are still negligible compared with the
uncertainties in the input data in today’s experiments.

Analogous experiments were performed for spins 2 and 37,
with very similar results (not shown).

5.2. Performance tests

Determining reliable execution times for SHTs is nontrivial at
low band limits, since intermittent operating system activity can
significantly distort the measurement of short time scales. All
libsharp timings shown in the following sections were ob-
tained using the following procedure: the SHT pair in question
is executed repeatedly until the accumulated wall-clock time ex-
ceeds 2 s. Then the shortest measured wall-clock time for syn-
thesis and analysis is selected from the available set.

5.2.1. Strong-scaling test

To assess strong-scaling behaviour (i.e. run time scaling for a
given problem with fixed total workload), a spin = 2 SHT with
lmax = 16 383 was carried out with differing degrees of paral-
lelisation. The accumulated wall-clock time of these transforms
(synthesis + analysis) is shown in Fig. 6. It is evident that the
scaling is nearly ideal up to 16 cores, which implies that paral-
lelisation overhead is negligible in this range. Beyond 16 cores,
MPI communication has to be used for inter-node communica-
tion, and this most likely accounts for the sudden jump in accu-
mulated time. At even higher core counts, linear scaling is again

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 10 100 1000

T
w

a
ll

N
c
o

re
 [
h
]

Ncore

Fig. 6. Strong-scaling scenario: accumulated wall-clock time for a
spin = 2 SHT pair with lmax = 16 383 run on various numbers of cores.

 0

 5

 10

 15

 20

 25

 30

 1 10 100 1000

T
w

a
ll

[s
]

Ncore

Fig. 7. Weak-scaling scenario: wall-clock time for a spin = 0 SHT pair
run on various numbers of cores, with constant amount of work per core
(lmax(N) = 4096N1/3 − 1).

reached, although with a poorer proportionality factor than in the
intra-node case. Finally, for 1024 and more cores, the communi-
cation time dominates the actual computation, and scalability is
lost.

5.2.2. Weak-scaling test

Weak-scaling behaviour of the algorithm is investigated by
choosing problem sizes that keep the total work per core con-
stant, in contrast to a fixed total workload. Assuming an SHT
complexity of O(l3max), the band limits were derived from the
employed number of cores N via lmax(N) = 4096N1/3 − 1. The
results are shown in Fig. 7. Ideal scaling corresponds to a hori-
zontal line. Again, the transition from one to several computing
nodes degrades performance, whereas scaling on a single node,
as well as in the multi-node range, is very good. By keeping the
amount of work per core constant, the breakdown of scalabil-
ity is shifted to 4096 cores, compared with 1024 in the strong-
scaling test.

It is interesting to note that the scaling within a single node
is actually slightly superlinear; this is most likely because in this
setup, the amount of memory per core decreases with increasing
problem size, which in turn can improve the amount of cache
re-use and reduce memory bandwidth per core.

5.2.3. General scaling and efficiency

The preceding two sections did not cover cases with small
SHTs. This scenario is interesting, however, since in the limit

A112, page 6 of 9

M. Reinecke and D. S. Seljebotn: Libsharp – spherical harmonic transforms revisited

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

10
0

10
1

10
2

10
3

10
4

10
5

T
w

a
ll

N
c
o
re

 [
s
]

lmax

l max
3

s=0
s=2

Ncore=1
Ncore=16
Ncore=64

Ncore=512
Ncore=4096

Fig. 8. Accumulated wall-clock time for spin = 0 and spin = 2 SHT
pairs at a wide range of different band limits. For every run the number
of cores was chosen sufficiently small to keep parallelisation overhead
low.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

10
0

10
1

10
2

10
3

10
4

10
5

fr
a
c
ti
o
n
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

lmax

s=0
s=2

Ncore=1
Ncore=16
Ncore=64

Ncore=512
Ncore=4096

Fig. 9. Fraction of theoretical peak-performance reached by various
SHT pairs. For every run the number of cores was chosen sufficiently
small to keep parallelisation overhead low.

of small lmax those components of the SHT implementation with
complexities lower than O(l3max) (like the FFT steps of Eqs. (3)
and (6)) may begin to dominate execution time. Figure 8 shows
the total wall-clock time for SHT pairs over a very wide range
of band limits; to minimise the impact of communication, the
degree of parallelisation was kept as low as possible for the runs
in question. As expected, the l3max scaling is a very good model
for the execution times at lmax ≥ 511. Below this limit, the FFTs,
precomputations for the spherical harmonic recursion, memory
copy operations and other parts of the code begin to dominate.

In analogy to one of the tests described in Reinecke (2011),
we computed a lower limit for the number of executed floating-
point operations per second in libsharp’s SHTs and compared
the result with the theoretical peak performance achievable on
the given hardware, which is eight operations per clock cycle
(four additions and four multiplications) or 21.6 GFlops/s per
core. Figue 9 shows the results. In contrast to libpsht, which
reached approximately 22% for s = 0 and 43% for s = 2, both
scalar and tensor harmonic transforms exhibit very similar per-
formance levels and almost reach 70% of theoretical peak in the
most favourable regime, thanks to the changed structure of the
inner loops. For the lmax range that is typically required in cos-
mological applications, performance exceeds 50% (even when
MPI is used), which is very high for a practically useful algo-
rithm on this kind of computer architecture.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1 2 3 4 5 6 7 8 9 10

s
p
e
e
d
u
p
 f
a
c
to

r

nsht

s=0
s=2

Fig. 10. Relative speed-up when performing several SHTs simultane-
ously, compared with sequential execution. The SHT had a band limit
of lmax = 8191.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

10
4

10
5

m
e
m

o
ry

 o
v
e
rh

e
a
d
 [
%

]

lmax

s=0
s=2

Fig. 11. Relative memory overhead, i.e. the fraction of total memory
that is not occupied by input and output data of the SHT. For low lmax

this is dominated by the program binary, for high lmax by temporary
arrays.

5.2.4. Multiple simultaneous SHTs

The computation of the sλlm(ϑ) coefficients accounts for roughly
half the arithmetic operations in an SHT. If several SHTs with
identical grid geometry and band limit are computed simultane-
ously, it is possible to re-use these coefficients, thereby reduc-
ing the overall operation count. Figure 10 shows the speed-ups
compared to sequential execution for various scenarios, which
increase with the number of transforms and reach saturation
around a factor of 1.6. This value is lower than the naïvely ex-
pected asymptotic factor of 2 (corresponding to avoiding half of
the arithmetic operations), since the changed algorithm requires
more memory transfers between Level-1 cache and CPU regis-
ters and therefore operates at a lower percentage of theoretical
peak performance. Nevertheless, running SHTs simultaneously
is evidently beneficial and should be used whenever possible.

5.2.5. Memory overhead

Especially at high band limits, it is important that the SHT li-
brary does not consume a large amount of main memory, to
avoid memory exhaustion and subsequent swapping or code
crashes. Libsharp is designed with the goal to keep the size of
its auxiliary data structures much lower than the combined size
of any SHT’s input and output arrays. A measurement is shown
in Fig. 11. Below the lowest shown band limit of 2047, memory

A112, page 7 of 9

A&A 554, A112 (2013)

Table 1. Performance comparison with other implementations at lmax = 2047, ncore = 1.

Code Version Grid Spin nSHT RAVX RSSE2 Rscalar

shtns 2.31 Gauss-Legendre 0 1 0.84 0.88 0.91
Wavemoth (brute-force) Nov. 2011 HEALPix (Nside = 1024) 0 1 1.63 0.98 –
′′ ′′ ′′ 0 5 1.59 1.09 –
Wavemoth (butterfly) Nov. 2011 HEALPix (Nside = 1024) 0 5 0.96 0.66 –
libpsht Jan. 2011 Gauss-Legendre 0 1 4.06 2.30 2.30
′′ ′′ ′′ 0 5 2.66 1.75 1.62
′′ ′′ ′′ 2 1 2.50 1.48 1.20
′′ ′′ ′′ 2 5 2.15 1.44 1.08
spinsfast r104 ECP (Clenshaw-Curtis) 0 1 57.04 32.12 15.31
′′ ′′ ′′ 0 5 28.39 18.72 9.38
′′ ′′ ′′ 2 1 16.99 10.20 4.73
′′ ′′ ′′ 2 5 8.60 5.66 2.56
SSHT 1.0b1 MW sampling theorem 0 1 20.91 15.60 9.46
′′ ′′ ′′ 2 1 13.40 9.29 4.99

S2HAT 2.55beta HEALPix (Nside = 1024) 0 1 12.33 7.33 3.60
Glesp 2 Gauss-Legendre 0 1 55.32 31.26 14.95

Notes. All tests had a band limit of lmax = 2047 and were carried out on a single core. The grids used by libsharp and the respective comparison
code were identical in each run. RAVX denotes the quotient of wall-clock times for the respective code and libsharp in the presence of the
AVX instruction set, RSSE2 is the quotient when SSE2 (but not AVX) is supported, and Rscalar was measured with both SSE2 and AVX disabled. The
libsharp support for the MW sampling theorem used for the SSHT comparisons is experimental. For Wavemoth, butterfly matrix compression
can optionally be enabled. In the benchmark given we requested an accuracy of 10−4, which led to an extra requirement of 4 GB of precomputed
data in memory. Note that when running on a single core, Wavemoth is at an advantage compared to the normal situation where the memory bus
is shared between multiple cores.

overhead quickly climbs to almost 100%, since in this regime
memory consumption is dominated by the executable and the
constant overhead of the communication libraries, which on the
testing machine amounts to approximately 50MB. In the impor-
tant range (lmax ≥ 2047), memory overhead lies below 45%.

5.2.6. Comparison with existing implementations

Table 1 shows a performance comparison of synthesis/analysis
SHT pairs between libsharp and various other SHT implemen-
tations. In addition to the already mentioned shtns, Wavemoth,
S2HAT and libpsht codes, we also included spinsfast
(Huffenberger & Wandelt 2010), SSHT (McEwen & Wiaux
2011) and Glesp (Doroshkevich et al. 2005) in the comparison.
All computations shared a common band limit of 2047 and were
executed on a single core, since the corresponding SHTs are sup-
ported by all libraries and are very likely carried out with a com-
paratively high efficiency by all of them. The large overall num-
ber of possible parameters (lmax, spin, number of simultaneous
transforms, degree and kind of parallelisation, choice of grid,
etc.) prevented a truly comprehensive study.

Overall, libsharp’s performance is very satisfactory and
exhibits speed-ups of more than an order of magnitude in sev-
eral cases. The table also demonstrates libsharp’s flexibility,
since it supports all of the other codes’ “native” grid geometries,
which is required for direct comparisons.

The three last columns list time ratios measured under dif-
ferent assumptions: RAVX reflects values that can be expected
on modern (2012 and later) AMD/Intel CPUs supporting AVX,
RSSE2 applies to older (2001 and later) CPUs with the SSE2 in-
struction set. Rscalar should be used for CPUs from other vendors
like IBM or ARM, since libsharp does not yet support vectori-
sation for these architectures.

Figure 12 shows the relative performance of identical
SHT pairs on a full Gauss-Legendre grid with s = 0 for
libsharp and shtns. For these measurements the bench-
marking code delivered with shtns was adjusted to measure

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10
1

10
2

10
3

10
4

ti
m

e
 r

a
ti
o
 s

h
tn

s
/l
ib

s
h
a
rp

lmax

scalar
Ncore=4
Ncore=8

Ncore=16

Fig. 12. Performance comparison between libsharp and shtns for
varying lmax and number of OpenMP threads. Note that reduced au-
totuning was used for shtns at lmax=16 383 (see text).

SHT times in a similar fashion as was described above. The
plotted quantity is shtns wall-clock time divided by libsharp
wall-clock time for varying lmax and number of OpenMP threads.
It is evident that shtns has a significant advantage for small
band limits (almost an order of magnitude) and maintains a slight
edge up to lmax = 8191. It must be noted, however, that the mea-
sured times do not include the overhead for auto-tuning and nec-
essary precalculations, which in the case of shtns are about an
order of magnitude more expensive than the SHTs themselves.
As a consequence, its performance advantage only pays off if
many identical SHT operations are performed within one run.
The origin of shtns’s performance advantage has not been stud-
ied in depth; however, a quick analysis shows that the measured
time differences scale roughly like l2max, so the following expla-
nations are likely candidates:

– libsharp performs all of its precomputations as part of the
time-measured SHT;

A112, page 8 of 9

M. Reinecke and D. S. Seljebotn: Libsharp – spherical harmonic transforms revisited

– libsharp’s flexibility with regard to pixelisation and stor-
age arrangement of input and output data requires some ad-
ditional copy operations;

– at low band limits the inferior performance of libsharp’s
FFT implementation has a noticeable impact on overall run
times.

The relative performance of both libraries is remarkably insen-
sitive to the number of OpenMP threads; this indicates that the
performance differences are located in parallel code regions as
opposed to sequential ones.

For lmax = 16 383, the time required by the default shtns
autotuner becomes very long (on the order of wall-clock hours),
so that we decided to invoke it with an option for reduced tuning.
It is likely a consequence of this missed optimisation that, at this
band limit, libsharp is the better-performing code.

6. Conclusions

Judging from the benchmarks presented in the preceding sec-
tion, the goals that were set for the libsharp library have been
reached: it exceeds libpsht in terms of performance, supports
recent developments in microprocessor technology, allows using
distributed memory systems for a wider range of applications,
and is slightly easier to use. On the developer side, the modular
design of the code makes it much more straightforward to add
support for new instruction sets and other functionality.

In some specific scenarios, especially for SHTs with com-
paratively low band limits, libsharp does not provide the best
performance of all available implementations, but given its ex-
treme flexibility concerning grid types and the memory layout
of its input/output data, as well as its compactness (≈8000 lines
of portable and easily maintainable source code without external
dependencies), this compromise certainly seems acceptable.

The library has been successfully integrated into version 3.1
of the HEALPix C++ and Fortran packages. There also exists
an experimental version of the SSHT3 package with libsharp
replacing the library’s original SHT engine. Libsharp is also
used as SHT engine in an upcoming version of the Python pack-
age NIFT4 for signal inference (Selig et al. 2013). Recently,
the total convolution code conviqt (Prézeau & Reinecke 2010),
which is a central component of the Planck simulation pipeline
(Reinecke et al. 2006), has been updated and is now based

3 http://www.mrao.cam.ac.uk/~jdm57/ssht/index.html
4 http://www.mpa-garching.mpg.de/ift/nifty/

on libsharp SHTs. There are plans for a similar update of
the artDeco deconvolution map maker (Keihänen & Reinecke
2012).

A potential future field of work is porting libsharp to
Intel’s “many integrated cores” architecture5, once sufficient
compiler support for this platform has been established. The
hardware appears to be very well suited for running SHTs, and
the porting by itself would provide a welcome test for the adapt-
ability of the library’s code design.

Acknowledgements. We thank our referee Nathanaël Schaeffer for his construc-
tive remarks and especially for pointing out a missed optimisation opportu-
nity in our shtns installation, which had a significant effect on some bench-
mark results. M.R. is supported by the German Aeronautics Center and Space
Agency (DLR), under program 50-OP-0901, funded by the Federal Ministry
of Economics and Technology. D.S.S. is supported by the European Research
Council, grant StG2010-257080. The presented benchmarks were performed as
project pr89yi at the Leibniz Computing Center Garching.

References

de Oliveira-Costa, A., Tegmark, M., Zaldarriaga, M., & Hamilton, A. 2004,
Phys. Rev. D, 69, 063516

Doroshkevich, A. G., Naselsky, P. D., Verkhodanov, O. V., et al. 2005, Int. J.
Mod. Phys. D, 14, 275

Eriksen, H. K., Jewell, J. B., Dickinson, C., et al. 2008, ApJ, 676, 10
Fejér, L. 1933, Mathematische Zeitschrift, 37, 287
Gautschi, W. 1967, SIAM J. Numerical Analysis, 4, 357
Goldberg, J. N., Macfarlane, A. J., Newman, E. T., Rohrlich, F., & Sudarshan,

E. C. G. 1967, J. Math. Phys., 8, 2155
Huffenberger, K. M., & Wandelt, B. D. 2010, ApJS, 189, 255
Keihänen, E., & Reinecke, M. 2012, A&A, 548, A110
Kostelec, P., & Rockmore, D. 2008, J. Fourier Analysis and Applications, 14,

145
Lewis, A. 2005, Phys. Rev. D, 71, 083008
McEwen, J. D., & Wiaux, Y. 2011, IEEE Trans. Signal Proc., 59, 5876
Prézeau, G., & Reinecke, M. 2010, ApJS, 190, 267
Reinecke, M. 2011, A&A, 526, A108
Reinecke, M., Dolag, K., Hell, R., Bartelmann, M., & Enßlin, T. A. 2006, A&A,

445, 373
Schaeffer, N. 2013, Geochem. Geophys. Geosyst., 14
Selig, M., Bell, M. R., Junklewitz, H., et al. 2013, IEEE Trans. Inf. Theory,

submitted [arXiv:1301.4499]
Seljebotn, D. S. 2012, ApJS, 199, 5
Szydlarski, M., Esterie, P., Falcou, J., Grigori, L., & Stompor, R. 2013,

Concurrency and Computation: Practice and Experience
Waldvogel, J. 2006, BIT Numerical Mathematics, 46, 195
Wandelt, B. D., & Górski, K. M. 2001, Phys. Rev. D, 63, 123002

5 http://en.wikipedia.org/wiki/Intel_MIC

A112, page 9 of 9

Paper V

SymPix: A spherical grid for efficient sampling of
rotationally invariant operators

The algorithm of Paper I took a very long time for me to tune correctly, not
least because every time I changed any parameters I had to wait until next day
for the precomputations to finish. After creating SymPix these debug cycles
were reduced to a small coffee break. The final component seperation algorithm
in Paper II does however not make use of the results of this paper.

137

SYMPIX: A SPHERICAL GRID FOR EFFICIENT SAMPLING OF ROTATIONALLY INVARIANT OPERATORS

D. S. Seljebotn and H. K. Eriksen
Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo, Norway; d.s.seljebotn@astro.uio.no

Received 2015 April 20; accepted 2015 December 1; published 2016 February 10

ABSTRACT

We present SymPix, a special-purpose spherical grid optimized for efficiently sampling rotationally invariant linear
operators. This grid is conceptually similar to the Gauss–Legendre (GL) grid, aligning sample points with iso-
latitude rings located on Legendre polynomial zeros. Unlike the GL grid, however, the number of grid points per
ring varies as a function of latitude, avoiding expensive oversampling near the poles and ensuring nearly equal sky
area per grid point. The ratio between the number of grid points in two neighboring rings is required to be a low-
order rational number (3, 2, 1, 4/3, 5/4, or 6/5) to maintain a high degree of symmetries. Our main motivation for
this grid is to solve linear systems using multi-grid methods, and to construct efficient preconditioners through
pixel-space sampling of the linear operator in question. As a benchmark and representative example, we compute a
preconditioner for a linear system that involves the operator D B N BT 1+ -  , where B and D may be described as
both local and rotationally invariant operators, and N is diagonal in the pixel domain. For a bandwidth limit of
ℓmax =3000, we find that our new SymPix implementation yields average speed-ups of 360 and 23 for B N BT 1- 
and D, respectively, compared with the previous state-of-the-art implementation.

Key words: cosmic background radiation – cosmology: miscellaneous – methods: data analysis – methods:
numerical – methods: statistical

1. INTRODUCTION

Unlike the plane, it is impossible to construct a regular
discretization of the sphere. Instead, every conceivable
spherical grid comes with its own set of trade-offs, emphasizing
one or more features at the cost of others. Thus, there is no such
thing as a perfect spherical grid, but the optimal grid instead
depends sensitively on the application under consideration.

In this paper, we will restrict our attention to high-resolution
grids designed for fast and accurate spherical harmonic
transforms (SHTs). In such cases, the primary consideration
is that the grid must allow for efficient ℓmax

3() SHTs, where
ℓmax denotes the upper harmonic space bandwidth limit of the
field in question, as opposed to the ℓmax

4() scaling resulting
from naive brute-force summation. This requires the use of
FastFourier Transforms (FFTs) in the longitudinal direction,
which in turn implies that (i) sample points must be placed on a
set of iso-latitude rings, and (ii) sample points within each ring
must be equidistant. However, there is still flexibility in
choosing the latitude of each ring (0,j []q pÎ), the number of
grid points along each ring (nj), and the initial offset of each
ring (j0,f).

Three popular spherical grids are the equiangular grid, the
Gauss–Legendre (GL) grid (e.g., Doroshkevich et al. 2005),
and HEALPix1 (Górski et al. 2005). Of these, the equiangular
grid is the most straightforward, simply defined by evenly
spaced grid points (θi, fi) in both directions. This grid is
typically used for geographical maps, and it is therefore also
called a geographical grid.

Similarly, the standard GL grid has a constant number of
grid points per ring. However, the ring latitudes θj are defined
such that P cos 0N jrings ()q = , where Pn is the Legendre
polynomial of degree n. This simple modification allows
efficient spherical harmonic analysis to machine precision, and
the grid is thus optimized for spherical harmonics transforms.

Both of these grids suffer from a massive oversampling of
the polar regions (θ close to 0 or π) compared to the equatorial
region (θ≈π/2), and this renders them sub-optimal, and
sometimes even useless, for certain practical applications. An
important example is the solution of discretized and bandwidth-
limited linear systems. If there is a large number of sample
points within the correlation length implied by ℓmax , the system
becomes degenerate and numerically unstable. Grids with
nearly constant pixel areas perform much better than grids with
strongly varying pixel areas for these types of applications.
One example of such grids is HEALPix, which is short for

“Hierarchical Equal Area and Latitude Pixelization.” By
construction, this grid has both constant area pixel area per
pixel and grid points located on iso-latitude, so it is a good
general-purpose grid. However, this generality comes at the
cost of spherical harmonics precision, as well as a low level of
internal pixel symmetries.
The latter point is particularly important for our applications.

Consider a function of two grid points, n1̂ and n2ˆ , that is both
localized and rotationally invariant,

f n n
f n n n n k

,
if arccos

0 otherwise,
11 2

1 2 1 2(ˆ ˆ) (ˆ · ˆ) (ˆ · ˆ) ()=
< D⎧⎨⎩

where Δ denotes the average distance between two neighbor-
ing grid points. Thus, f is assumed to be identically zero if the
two grid points are separated by more than k grid units. In our
applications, which employ multi-grid and/or preconditioning
methods, we need to evaluate f for all relevant pairs n n,1 2(ˆ ˆ).
Furthermore, because f typically is computationally expensive,
it is important to minimize the total number of function
evaluations, and large speed-ups can be gained by exploiting
symmetries and caching.
For HEALPix, f needs to be evaluated k N2

pix() times,
because the angular distances between neighboring grid points
are all different, up to a handful of overall symmetries. In
contrast, for the equiangular and GL grids only k N2

pix()

The Astrophysical Journal Supplement Series, 222:17 (10pp), 2016 February doi:10.3847/0067-0049/222/2/17
© 2016. The American Astronomical Society. All rights reserved.

1 http://healpix.sourceforge.net

1

evaluations are needed. Since the number of grid points is
constant for every ring, we only need to evaluate f for the first
grid point on every ring, accounting for all its neighbors, after
which all function evaluations along the same ring will be
given by symmetry.

In this paper, we construct a novel spherical grid called
SymPix that combines the spherical harmonics transform
precision of the GL grid with the nearly uniform sample point
distances of HEALPix, while at the same time maintaining a
high degree of symmetries within each ring, ensuring that fully
sampling f n n1 2(ˆ · ˆ) scales as k N2

pix() .

2. THE SYMPIX GRID

2.1. Ring Layout Basics

The main role of the SymPix grid is that of a supporting grid
in internal multi-grid and/or preconditioning calculations, so
maintaining high numerical precision is therefore essential. For
this reason, we adopt the GL latitudinal ring layout as the basis
of our grid. This provides support for both spherical harmonic
synthesis (i.e., transforming from harmonic coefficients to pixel
space) and analysis (transforming from pixel space to harmonic
coefficients) to machine precision, by virtue of having an exact
quadrature rule on the form

a Y n f n d Y n f n w , 2ℓm
i

i i i(ˆ) (ˆ) (ˆ) (ˆ) ()* *ò å= W =
W

where wi is a set of quadrature weights. By placing rings
exclusively on the zeros of the ℓmax ’th polynomial, one is
guaranteed that P cos 0ℓ i1max ()q =+ , and the discretized field is
algebraically bandwidth-limited to harmonic modes
with ℓ ℓmax.

Next, we need to include enough sample points along each
ring to fully resolve all spherical harmonic modes with
ℓ ℓmax. Formally speaking, this requires N2 rings grid points
per ring. However, this requirement is somewhat counter-
intuitive because it suggests massive oversampling of the polar
regions compared to the equatorial region. And indeed, our
intuition is correct: the spherical harmonic modes Y ,ℓm ()q f are
very close to zero in the polar regions for high ℓ and m, and
these are the only modes that can cause high-frequency
variation in the longitudinal direction. For this reason, the
libsharp SHT package (Reinecke & Seljebotn 2013;
Reinecke 2011) omits Y ,ℓm ()q f whenever

m m ℓ ℓ2 cos sin max 100, 0.01 , 32
max max() ()q q- - >

exploiting the fact that contributions from higher-ordered
harmonics are numerically irrelevant. An explicit bound on
the number of pixels required for machine precision was
derived by Prézeau & Reinecke (2010), and Reinecke &
Seljebotn (2013) used this to construct the reduced GL grid.
Explicitly, for a given ring located at some latitude θ,
Equation (3) defines the maximum m such that Y ,ℓm ()q f does
not vanish. The minimum number of pixels on that ring is then
given by m2 1+ , resulting in a longitudinal sample frequency
that exceeds the Nyquist frequency.

2.2. Tiling

As discussed in Section 1, our primary usecase is evaluating
a function f n n,1 2(ˆ ˆ) for all possible pairs n n,1 2(ˆ ˆ), but with the

restriction that f is zero unless n1̂ and n2ˆ are close together. To
avoid unnecessary searches over vanishing pairs, we therefore
partition our grid into a set of k×k-sized tiles, where k is
chosen such that f n n, 01 2(ˆ ˆ) = unless n1̂ and n2ˆ are either in
the same tile or in two neighboring tiles. Thus, finding all
relevant partner points for a given grid point simply amounts to
a closest neighbor tile look-up. However, this also requires that
the number of rings is divisible by k (letting N ℓ 1rings max> +
if necessary), and that a set of k consecutive rings must have the
same number of sample points. We will refer to each such set
of k rings as a band.

2.3. Enforcing Symmetries

The main remaining step is to define the number of tiles per
band. On the one hand, it must satisfy the minimum number of
pixels given by Equation (3). On the other hand, it may be
beneficial to increase it beyond this, in order to increase
symmetries within and across bands. For instance, if we sample
f from Equation (1) for all point pairs within a tile, the result
can obviously be reused for all tiles in that band, since all
between-point angular distances are conserved between tiles.
Similarly, we can reuse results between neighboring tiles
within the same band due to longitudinal symmetry.
In addition, we exploit the additional degrees of freedom in

choosing the number of tiles to ensure symmetries with respect
to latitudinally neighboring tiles. Specifically, we require that
the number of tiles can increase from one band to the next only
by a factor of exactly 3, 2, 1, 4/3, 5/4, or 6/5. Additionally, at
least two bands in a row must have the same number of tiles,
except for the polar bands. Finally, in order to avoid special
cases we allow no equatorial ring (i.e., we insist that Nrings is an
even number), and, purely conventionally, the location of the
first grid point in a given ring is chosen to be half the pixel
distance within that same ring. Together, these requirements
ensure that the pattern of neighboring tiles repeats itself with a
short period, and the total number of different cases evaluates
scales as Nring() rather than Npix() . We employ a dynamic
programming algorithm to find the optimal number of tiles per
band, subject to the constraints defined above, as detailed in
Section 2.5. An example grid corresponding to k=2 tiling is
illustrated in Figure 1.

2.4. Memory Layout and Pixel Ordering

While the above constraints fully define the geometric
properties of the SymPix grid, they do not imply a canonical
memory layout or “pixel ordering.” To fix this, we adopt two
additional rules, both designed to maximize memory access
efficiency and programming convenience.
First, the northern and southern hemispheres are band-wise

interleaved. That is, we first list the northernmost polar band,
followed by the southernmost polar band, followed by the
second northern band and so on. The main advantage of this
organization lies in convenient distributed programming across
multiple computing nodes; interleaving the two hemispheres
ensures that the same node can readily exploit north–south
symmetries.
Second, grid points are latitudinally major-ordered within a

given tile, i.e., the pixel ordering increases most rapidly along
the θ direction. While the order within each tile could have
been in any direction, this choice implies that pixel ordering is

2

The Astrophysical Journal Supplement Series, 222:17 (10pp), 2016 February Seljebotn & Eriksen

continuous across longitudinal tile borders, which is particu-
larly convenient for SHTs.

Figure 2 provides an example of the resulting pixel ordering.
Note that the resolution is lower than the corresponding
illustration in Figure 1.

2.5. Grid Optimization

We end this section by describing the algorithm used to
optimize the number of of tiles in each band, subject to the
constraints defined in Section 2.3. We will only discuss the
northern hemisphere, as the southern hemisphere is given
directly by symmetry.

Figure 1. Geometric layout of SymPix sample points, implementing a cylindrical projection of the sphere. Each rectangle indicates a tile of (in this case) 2×2 sample
points. For white tile-bands, the bands above and below have the same number of tiles, and angular distances between sample points in a given tile and sample points
in the neighboring tiles are therefore constant throughout the band. Function evaluations depending only on angular distances may therefore be cached and reused.
Colored tile-bands increment the number of tiles by a factor of 2 (red), 4/3 (blue), 5/4 (yellow), 6/5 (green), and 4/3 again (blue) toward the equator. For these bands,
the neighboring tile relationship repeats itself (as indicated by shading), and there are still only a few cases that need to be computed and cached for each band.

Figure 2. Memory ordering of SymPix sample points. Note that the resolution is lower than in Figure 1. Within each band the pixel order increases first latitudinally,
i.e., along the θ direction. This ensures that access within the same tile is local in memory, and there are no discontinuities along each ring, which is convenient for
SHTs. Additionally, to support efficient distributed programming, we interleave northern and southern bands, such that they naturally are assigned to the same node
without explicit additional bookkeeping.

3

The Astrophysical Journal Supplement Series, 222:17 (10pp), 2016 February Seljebotn & Eriksen

To initialize the algorithm, the user must provide a tile size k
and a total number of rings Nrings, where Nrings must be divisible
by both 2 and k. The grid will be able to accurately represent
fields that are band-limited at ℓ N 1max rings= - . Together,
these parameters specify the angular resolution of the grid,
and correspond in principle to the HEALPix Nside parameter.
We then number the bands by i N0 ,... 1bands= - º
N k2 1rings () - , such that each band consists of k rings. We
also define αi to be the minimum number of tiles in each band
subject to the constraint that the southmost ring within the band
fulfills Equation (3).

Deriving the optimal SymPix grid is now equivalent to
determining the number of tiles, Ti, for each band. For this
optimization process we adopt the following cost function,

c T T c T T,..., , 4N
i

i i
i

i i0 1
2

bands() () () ()å å aº º --

which must be minimized, subject to

T

T

6

5
,

5

4
,

4

3
, 1, 2, 3 . 5i

i

1 { } ()Î+

Additionally, we initialize the recursion by defining T0 as the
smallest number larger than α0 that is only a product of the
factors 2, 3, and 5, and for computational speed we add the
heuristic (or modification to the cost function) that Ti<3αi,
i.e., that no band should be over-pixelized by more than three
times the Nyquist frequency.

The actual calculation is then a simple exercise in dynamic
programming, as described in any standard text on algorithms
(e.g., Cormen et al. 1989). Our implementation is summarized
in Figure 3, which has a worst-case computational complexity
of n N Nn rings

2
pix() () ()  a = = , and the same worst-case

memory use. Due to the low computational complexity and the
fact that the optimization only needs to be performed once per
grid resolution, we do not present benchmarks for this
operation; its computational cost is negligibly small for our
purposes.

3. BENCHMARKS AND COMPARISONS

Before considering specific applications, we first character-
ize the basic performance of the SymPix grid in terms of
computational efficiency and numerical accuracy.

3.1. Geometric Efficiency

We start by quantifying the geometric efficiency of our grid,
as characterized by the overall number of grid points and the
pixel area uniformity. For these tests, we consider an example
grid with ℓmax =2000 and k=4, sufficient to discretize a
spherical field with an angular resolution of 15′ FWHM.
Running the algorithm summarized in Figure 3 with these input
parameters yields a SymPix grid with 5.6×106 grid points.

In Figure 4 we compare the number of SymPix grid points
per ring with the optimal number of points per ring used by the
reduced GL grid (Reinecke & Seljebotn 2013). The ratio
between the solid and dashed lines thus indicates the amount of
longitudinal oversampling implied by the SymPix grid. Except
for very close to the poles, where there are very few points in
terms of absolute numbers, this ratio is never larger than 1.35.

A similar illustration is provided in Figure 5, where we plot
the pixel area as a function of latitude, defining pixel borders
strictly along longitudes and latitudes. The pixel area is given

in units of the pixel area averaged over the full-sky, i.e.,
N4 pixp , such that a perfectly uniform pixelization, like

HEALPix, corresponds to a constant value of unity. Overall,
we see that the effective pixel areas vary at most by 20%
relative to the average, except near the poles, where the
normalized area may be as low as 0.1.
Figure 6 shows a histogram of normalized pixel areas, and

we see that the vast majority of grid points have a normalized

Figure 3. Dynamic programming algorithm for optimizing the SymPix grid
layout. In summary, the algorithm considers all possible solutions, and employs
look-up tables of partial solutions for bands 0 to i 1- when considering band i.
The condition P ti t1, prevprev =- ensures that at least two bands in a row have the
same number of tiles, except (possibly) for the first two rows, T T1 0¹ .

Figure 4. Number of SymPix grid points per ring as a function of latitude
(solid line). The dotted line shows αi, i.e., the same quantity for the reduced
Gauss–Legendre grid (Reinecke & Seljebotn 2013).

4

The Astrophysical Journal Supplement Series, 222:17 (10pp), 2016 February Seljebotn & Eriksen

area between 0.9 and 1.1. The tail below 0.8 corresponds to the
over-pixelized polar caps, and these contain only 0.4% of the
total number of grid points for this particular example. Overall,
the SymPix grid implies an oversampling of about 11%
compared to the reduced GL grid, which is acceptable for our
purposes.

3.2. Accuracy of Spherical Harmonic Quadrature

Next, we compare the numerical accuracy of spherical
harmonics transforms as implemented on the SymPix,
HEALPix, and reduced GL grids. This test is carried out
through the following experiment.

1. We draw a fiducial signal a aℓm{ }= in a spherical
harmonic domain, band-limited by some ℓmax. The
spherical harmonics coefficients are drawn such that they
correspond to an random isotropic and Gaussian field
with a power spectrum (coefficient variance)
C ℓ ℓ1 1ℓ (())º + for ℓ 0> and C 10 º , i.e., the same
overall properties as signals of interest for cosmic
microwave background (CMB) analysis.

2. We project this signal onto the respective grid sample
points by spherical harmonic synthesis.

3. We convert the real-space signal back to harmonic space
through spherical harmonic analysis, including multi-
poles up to ℓmax, to recover a.

4. We repeat this procedure Nsim times, and summarize the
results in terms of relative round-trip
errors, e a a Cℓm

i
ℓm
i

ℓm
i

ℓ()() () ()º - .

Before presenting the results, we note that no fundamental
band-limit and/or resolution parameter Nside exist for HEALPix
for a given angular resolution. For instance, changing the band-
limit ℓmax will add/reduce aliasing for all scales. A quantitative
head-to-head comparison at a given resolution is therefore
difficult, as additional parameter tuning can affect the results.
With this caveat in mind, in Table 1 we present results for three
different band-limits, ℓ N2.0, 2.5, 3.0max side{ }= , with
N 256side = , quoting both the maximum and mean errors as
evaluated over all error coefficients eℓm

i(). Each case includes
N 100sim = simulations, and the SymPix tile size is fixed
at k=8.
Starting with the highest-bandwidth case, ℓ N3max side= , we

first note that the regular GL grid is the only grid that achieves
overall machine precision, with a mean error of 10 14() - and a
maximum error of 10 12() - . For comparison, the correspond-
ing mean and maximum SymPix errors are 10 6() - and

10 2() - , respectively, while HEALPix achieves 10 1() - and
1() for this high-bandwidth case. Reducing the band-limit to

ℓ N2max side= improves the latter by about two orders of
magnitude. As already noted by Górski et al. (2005), the large
difference between the average and maximum error is largely
driven by the m=0 modes, which integrate poorly on iso-
latitude rings; both types of errors can, however, be reduced by
iterative quadrature.
The statistics listed in Table 1 provide only a very coarse

comparison point, because the round-trip errors are highly
scale-dependent. In Figure 7 we therefore plot the error as a
function of multipole, ℓ, choosing the SymPix and HEALPix
band-limits such that the corresponding grids roughly match a
HEALPix N 256side = grid in terms of the total number of
sample points. For SymPix, this corresponds to ℓ 735max = ,
and for the GL grid it is ℓ 628max = .
Starting with the GL grid (blue lines), we see that the error

reaches machine precision up to the bandwidth limit; at higher
multipoles no information is carried by the grid. In contrast, the
SymPix grid reaches machine precision up to ℓ ℓ0.5 max,»
while the error increases more smoothly at higher multipoles.
However, even though the high-ℓ error increase is smooth, it is
still exponential, and the mean and maximum statistics listed in
Table 1 are therefore strongly dominated by the small-scale
errors. Thus, by virtue of deriving its main geometric grid
layout from the GL grid, we see that the numerical performance
of the SymPix grid is excellent on large and intermediate
angular scales, and the cost of its superior symmetry properties
primarily comes in the form of sub-optimal small-scale
residuals. For comparison, the HEALPix errors are roughly
constant at 10 4() - – 10 2() - , and vary only weakly with
angular scale. Note that in all cases the errors can be reduced by
iteration techniques, essentially using least squares minimiza-
tion to find the spherical harmonic signal with the least power
that projects exactly to the map, and employing the result of
spherical harmonic analysis as a preconditioner.
The large errors seen for the GL grid above ℓmax are due to

undersampling, or equivalently, aliasing. In Figure 8 we study
this effect directly by varying the spherical harmonics

Figure 5. SymPix pixel area as a function of latitude in units of N4 pixp (solid
line). For the HEALPix grid, pixel areas are perfectly uniform (dotted line),
while significant oversampling occurs close to the poles for the SymPix grid.

Figure 6. Histogram of normalized SymPix pixel areas. The tail extending
below 0.8 corresponds to polar oversampling, and contains about 0.4% of the
total number of pixels for this particular grid setup.

5

The Astrophysical Journal Supplement Series, 222:17 (10pp), 2016 February Seljebotn & Eriksen

bandwidth limit between ℓ 512max
SH = , 735 and 900; note,

however, that the actual grid resolution parameters are kept
fixed at the above values, and the higher resolutions enforced
here therefore no longer match the respective grid properties.
Considering first the GL grid with a SHT band-limit of
ℓ 512max = , we see, as expected, that the errors reach machine
precision at all scales. However, for the higher band-limits,
ℓ 735max = and 900, both of which are higher than the grid
resolution of ℓ 628max

grid = , the errors saturate at a multipole
below the grid resolution. To be specific, the critical multipole
is ℓ ℓ2 max

grid
max
SH- , corresponding to the well-known aliasing

limit from standard Fourier theory. However, at lower multi-
poles no aliasing is observed for the GL grid, which implies

that it is fully robust with respect to undersampling, given a
known band-limit.
In comparison, the corresponding HEALPix errors are non-

local, in the sense that increasing the spherical harmonics band-
limit increases the errors at all angular scales: the dotted line
(ℓ 900max =) lies consistently higher than the dashed line
(ℓ 735max =), which in turn lies consistently higher than the
solid line (ℓ 512max =). The HEALPix grid is thus not robust
against undersampling, and it is very important to choose a grid
resolution appropriate for the bandwidth of the signal under
consideration, which in several applications may imply over-
sampling the signal.

Table 1
Comparison of Different Grids in Terms of the Number of Pixels and the Accuracy of Spherical Harmonic Analysis

ℓmax Grid Parameter Npix N Npix pix
HEALPix Max. Error Mean Error CPU Time for SHT (ms)

511 HEALPix Nside=256 786 432 1.00 2.1·10−2 2.9·10−5 160
SymPix ℓmax =511 390 656 0.50 7.8·10−3 8.1·10−7 67
Gauss–Legendre ℓmax =511 524 288 0.67 7.5·10−13 2.8·10−14 66

639 HEALPix Nside=256 786 432 1.00 2.2·10−1 1.3·10−3 219
SymPix ℓmax =639 591 232 0.75 7.2·10−3 1.1·10−6 118
Gauss–Legendre ℓmax =639 819 200 1.04 1.2·10−12 3.2·10−14 118

767 HEALPix Nside=256 786 432 1.00 1.6·100 6.8·10−2 287
SymPix ℓmax =767 838 656 1.07 4.0·10−2 4.8·10−6 188
Gauss–Legendre ℓmax =767 1 179 648 1.50 1.0·10−12 3.8·10−14 188

Note. The HEALPix resolution is kept constant at Nside=256, while the spherical harmonic band-limit varies over ℓ N2.0, 2.5, 3.0max side{ }= . The SymPix and
Gauss–Legendre band-limits are identical to the spherical harmonic band-limit.

Figure 7. Spherical harmonic round-trip error as a function of multipole, summarized in terms of maximum (dotted lines) and mean (solid lines) errors, averaged over
both harmonic quantum number m and N 100sim = simulations. Black lines show results for a SymPix grid with ℓ 735max = and tile size 8; red lines show results for a
HEALPix grid with N 256side = and ℓ 735;max = and blue lines show results for a regular Gauss–Legendre grid with ℓ 628max = . All grids have roughly the same
number of grid points, N 780, 000pix » .

Figure 8. Error induced by undersampling (aliasing) as a function of multipole in terms of average errors, averaged over both harmonic quantum number m and
Nsim=100 simulations. The experimental setup is the same as in Figure 7, but the spherical harmonic bandwidth limit varies between ℓ 512max = (solid), ℓ 735max =
(dashed), and ℓ 900max = (dotted).

6

The Astrophysical Journal Supplement Series, 222:17 (10pp), 2016 February Seljebotn & Eriksen

The SymPix grid performance lies, as expected, between
those of GL and HEALPix. On large angular scales, it achieves
numerical precision, while on small scales the aliasing
increases exponentially with multipole, and eventually reaches
similar levels as HEALPix.

3.3. Computational Speed of SHTs

Before ending this section, we compare the performance of
the SymPix, HEALPix, and GL grids in terms of computational
speed. The rightmost column in Table 1 lists the CPU time for
each of the cases considered above in units of wall-clock
milliseconds, while Figure 9 presents a head-to-head compar-
ison of the SymPix and HEALPix grid performance as a
function of Npix. All benchmarks were performed using
libsharp on a single Intel Core i7 Q840 at 1.87 GHz
(SSE2); for full details including CPU times in absolute
numbers, we refer the interested reader to Reinecke &
Seljebotn (2013).

Overall, SymPix perform similarly to the GL grid, and both
execute about 30% faster than HEALPix. This latter difference
may be explained by the fact that the HEALPix grid points
form a zig-zag pattern in which every other ring is long-
itudinally shifted by half a pixel width. This implies a grid
point organization that comprises about 30% more rings than
GL and SymPix grids, which exhibit more regular longitudinal
pixel organizations. This is relevant, because the computational
complexity of SHTs scales as

C N ℓ N
N

N

ℓ ℓ ℓ

log

log . 6

SHT ring max
2

pix
pix

ring

max
3

max
2

max

()

() () ()

 

 

= +

= +

⎛
⎝⎜

⎞
⎠⎟

The first term represents the cost of computing the associated
Legendre polynomials for each ring, and dominates the second
term, which accounts for evaluating FFTs along each ring.
Thus, the number of grid points per ring is not critical for the
overall speed of SHTs, while the total number of rings is.

In addition, by construction, SymPix grids have rings with
pixel numbers that are only products of 2, 3, and/or 5, which

ensures efficient FFTs. In contrast, many HEALPix rings have
pixel numbers that includes large primes, and therefore the
Bluestein algorithm must be employed for these. This effect is
more important for lower-resolution grids, for which the cost of
FFTs is relatively higher.

4. APPLICATIONS

We now turn our attention to practical applications, and in
particular to the construction of efficient preconditioners.
Before doing that, however, we consider a simpler application,
namely real-space convolution, in order to build up intuition
regarding the relevant operations. We emphasize that the
purpose of this preliminary discussion is not to provide a real-
world alternative to SHTs, or the methods presented by Elsner
& Wandelt (2011) and Sutter et al. (2012) for such
convolutions, but simply to quantify the computational
efficiency of the SymPix grid on a simple and intuitive
application.

4.1. Spherical Convolution

The convolution of a spherical image f with a kernel b is
given by the spherical surface integral

g n b n m f m d, . 7m
4

(ˆ) (ˆ ˆ) (ˆ) ()ˆò= W
p

In our case we assume an azimuthally symmetric kernel, and
b n m,(ˆ ˆ) therefore depends only on the distance between n̂ and
m̂, such that

g n b n m f m d . 8m
4

(ˆ) (ˆ · ˆ) (ˆ) ()ˆò= W
p

This integral is most commonly performed in a spherical
harmonic domain, turning full-sky convolution into coefficient-
wise multiplication with a corresponding transfer function, bℓ,
which is given by the Legendre transform of b n m(ˆ · ˆ). These
computations are dominated by the SHTs, and therefore have a
computational scaling of N ℓpix

3 2
max
3() () = .

If b is spatially narrow compared to the required pixelization,
as is usually the case, one could instead consider the pixel-
domain convolution by evaluating

g n b n n f n , 9i
j

N

i j j
1

pix

(ˆ) (ˆ · ˆ) (ˆ) ()å=
=

where the convolution kernel reads

b x
ℓ

b P x
2 1

4
. 10

ℓ

ℓ

ℓ ℓ
0

max

() () ()å p
=

+

=

One would then make the approximation that b n n 0i j(ˆ · ˆ) =
whenever sample points i and j are more than k sample point
distances apart, as discussed in Section 1.
For HEALPix, almost all sample point distances are

different, and b must therefore be evaluated N kpix
2()

times. The computational complexity of pixel-domain
convolution on the HEALPix grid therefore scales as

N k ℓ k ℓpix
2

max
2

max
3() () = , which is clearly inferior to the

harmonic approach both in terms of speed and accuracy.
With SymPix, however, the large number of symmetries
allows us to reduce the computational complexity to

k N N ℓ k N2
pix pix max

2
pix() () + = : one simply needs to

choose a tile size k such that only sample point pairs within a

Figure 9. Comparison between spherical harmonic transforms cost as
performed with SymPix and HEALPix as a function of Npix, plotted in terms
of their ratios (black solid line). The dashed line shows the ratio between the
number of grid point rings.

7

The Astrophysical Journal Supplement Series, 222:17 (10pp), 2016 February Seljebotn & Eriksen

tile and between neighboring tiles must be considered. Then
for, each band of k rings, b n m(ˆ · ˆ) only needs to be evaluated
for the first few tiles of the band, as other distances within the
same band will be identical within the remainder of the band.

The speed-ups for evaluating all necessary b n m(ˆ · ˆ), when
approximating b n m 0(ˆ · ˆ) = whenever n̂ and m̂ are not in
neighboring tiles, are given in Table 2. In addition to scaling
better than the Npix

3 2() SHTs, this approach should also be
easier to parallelize and implement efficiently on a GPU.

Note that yet another method for spherical convolution with a
symmetric kernel has been implemented in the ARKCoS code
(Elsner & Wandelt 2011; Sutter et al. 2012), with a computa-
tional scaling of k ℓ ℓ k N Nlog logmax

2
max pix pix() () = .

Whether a SymPix-based convolution would improve relative
to their work for relevant resolution parameters and accuracy
requirements remains to be explored.

4.2. Preconditioner Construction for Linear Systems

Finally, we are in the position to discuss the application of
the SymPix grid to our main usecase, namely for solving linear
systems involving rotationally invariant operators in a pixel
domain, either through multi-grid methods or constructing
efficient preconditioners. The simplest example of such a
system is

YBY x b, 11T ()=

where Y, as usual, is the matrix corresponding to spherical
harmonic synthesis and B is a diagonal matrix in a spherical
harmonic domain, B bℓm ℓ m ℓ ℓ ℓ mm, ,d d=¢ ¢ ¢ ¢. The productYBYT is a
pixel-domain operator with strong spatial couplings within the
correlation length implied by b. Of course, this particular
system could have been trivially solved by converting to a
spherical harmonic domain, which would diagonalize the
coefficient matrix. However, if there are more terms in the
operator, this is no longer possible, and iterative solvers like
Conjugate Gradients or multi-level algorithms are needed. In
these cases SymPix is useful to construct preconditioners or
smoothers.

Our own main interest lies in drawing constrained Gaussian
realizations of the CMB sky by using a multi-level solver
(Seljebotn et al. 2014). This maybe performed by solving the
following linear system (Eriksen et al. 2004; Jewell et al. 2004;

Wandelt et al. 2004),

Y D BY N Y B Y x r, 12T T
1 obs

1
obs 1() ()+ =-

where D and B are diagonal matrices in a spherical harmonic
domain, characterized by transfer functions dℓ and bℓ, N 1- is a
diagonal (inverse noise covariance) matrix in a pixel domain,
pixelized on some external grid iq , and r is a stochastic term
that depends on the data set in question.
Two different spherical grids are involved in a system. First,

the outermost spherical harmonics transform, Y1, denotes
synthesis to a grid of our own choosing. We will use a
SymPix grid of resolution ℓmax for this operator in the
following. The inner transform, Yobs, is determined by some
external experiment, and is thus not flexible. Here we will
assume that this operator is defined on a full-sky HEALPix grid
of N 2048side = , typical for the CMB maps published by the
Planck experiment (Planck Collaboration 2015).
Of course, from the viewpoint of the overall linear system,

the details of any individual operator are irrelevant, and the
only crucial point is that the combined operator remains the
same. In order to speed up the calculations through the use of
symmetries, we therefore substitute the innermost HEALPix-
based noise covariance matrix product with a corresponding
SymPix-based product,

Y N Y Y N Y , 13T T
obs

1
obs 2 2

1
2 ()=- -

where Y2 denotes an auxiliary SymPix grid; note that this does
not need to be the same as Y1, but its resolution can be adjusted
to trade numerical precision for computational speed. As
shown by Seljebotn et al. (2014), Equation (13) holds true if N2

is constructed from

W Y Y , 14T
2 2 2 obs ()q q=

in the same way as N is constructed from θ. In this latter
expression, W2 is a diagonal matrix containing the quadrature
weights used in the spherical harmonic analysis of the target
grid, while YT

obs lacks the ring weights one normally uses in
spherical harmonic analysis. Note that this operation is in fact
the opposite procedure compared to naive resampling, which
would be written as Y Y WT

2 obs obs in our notation. For full details,
we refer the interested reader to Seljebotn et al. (2014).
The precision of Equation (13) depends on the relative band-

limits of Y1, Y2, and Yobs. For instance, choosing ℓmax for Y2 and
Yobs to be twice that of Y1 yields a numerical precision of

10 10() - . Increasing these to four times that of Y1 results in an
accuracy of 10 14() - , whereas reducing it to only one, such
that Y Y1 2= , gives an accuracy of 10 2() - . Even the latter may
be acceptable for preconditioning purposes.
In order to derive an approximation to the full coefficient

matrix defined by Equation (12), we first rewrite the system as

D B N Bx r, 15
T

2
1 ()+ =- 

where

D Y DY B Y BYand . 16T T
1 1 2 1 ()= =

We now introduce the approximation that D 0ij = and B 0ij =
whenever two sample points i and j are not in the same or
neighboring tiles, as per the SymPix organization. The non-
zero elements (i.e., the “local” part) of D and B are evaluated
by Equation (10), at a cost of ℓmax() operations per matrix

Table 2
CPU Time and Theoretical Speed-up for Evaluating b n m(ˆ · ˆ)

CPU Time Speed-up

ℓmax (s) (factor)

3000 9.8 732
1500 3.6 335
750 1.4 149
375 0.74 70
188 0.50 26
100 0.31 14

Note. We have approximated b n m 0(ˆ · ˆ) = whenever n̂ and m̂ are not in
neighboring tiles. The third column shows the number of non-zero b n m(ˆ · ˆ),
which scales as O k N2

pix(), divided by the number of elements we had to
compute when making use of the SymPix symmetries, which scales as
O k N2

pix(). In this example we have chosen k=8.

8

The Astrophysical Journal Supplement Series, 222:17 (10pp), 2016 February Seljebotn & Eriksen

element. However, as discussed in Section 4.1, evaluating all
required elements for a SymPix grid scales as k N2

pix() , as

opposed to k N2
pix() for less symmetric grids.

These calculations constitute essential components of the
pre-computation step of the multi-grid solver presented by
Seljebotn et al. (2014). In that paper, all evaluations were
performed without employing any symmetries, with a compu-
tational scaling of ℓ k Nmax

2
pix() as discussed above. Their

Table 2 summarizes the resulting computational costs in units
of CPU minutes. Here we repeat those calculations, adopting
the exact same overall parameters, facilitating a one-to-one
comparison, but we employ SymPix for intermediate calcula-
tions. The results are summarized in Table 3, in which the
second column is copied directly from Seljebotn et al. (2014),
and the third column shows the new SymPix results. The fourth
column shows the ratio between the two.

Clearly, the net gains achieved by the SymPix grid vary with
resolution. For the high-resolution levels the speed-up is driven
by symmetries drastically reducing the time taken to evaluate
B. The theoretical speed-up of 732 times for evaluating B at
ℓ 3000max = , found in Table 2, is reduced to 130 and 26 for
B N BT 1-  and D, respectively. This is due to work that was
previously unimportant now dominating the computation.

As already noted, the HEALPix grid also exhibits a handful
of internal symmetries that could have been exploited in a
similar manner to reduce the overall computing time. The
benchmarks presented here therefore do not represent a head-
to-head comparison of grids, but rather a comparison of
specific implementations. To be explicit, the implementation
presented by Seljebotn et al. (2014) may in theory be sped up
by a factor of 24 if exploiting all HEALPix symmetries, and
this factor should be compared to the results presented in the

third column of Table 2. However, at lower resolutions the
speed-ups seen in in Table 3 are almost entirely due to being
able to use the operator resampling given in Equation (13). This
degradation procedure is not as straightforward when using the
HEALPix grid, as the approximation is significantly less
accurate. Our previous code therefore used a resolution of
N 2048side = along columns on all the levels, leading to very
long computation times.
To summarize, the SymPix grid reduces what used to be

overnight jobs with our previous implementation to essentially
interactive tasks.

5. CONCLUSION

We have presented SymPix, a novel spherical grid for
efficiently sampling rotationally invariant operators. This grid
derives many of its properties from the GL grid, ensuring
overall excellent spherical harmonics transform performance.
The main difference between the two grids is that SymPix
sacrifices proper Nyquist sampling in the longitudinal direction
in order to increase pixel symmetries, such that all grid pair
distances repeat perfectly along constant-latitude rings. This
decreases the computational scaling of evaluating rotationally
invariant operators from Npix() to Npix() .
The intended primary application of the SymPix grid is

efficient construction of preconditioners (or smoothers) for
iterative linear solvers. In this paper we considered the specific
example of drawing constrained Gaussian realizations using a
multi-grid solver, which is an important problem in current
CMB analysis. Comparing with previous state-of-the-art results
(Seljebotn et al. 2014), we achieve average speed-ups of 360
and 23 for the two most important pre-computation steps when
using SymPix for internal calculations.
However, we emphasize that SymPix is a special-purpose

grid designed for precisely such tasks; it is not intended to
provide a general-purpose spherical pixelization that is suitable
for, say, mapmaking. HEALPix is clearly preferred for such
purposes due to its uniform pixel areas, regular pixel window,
and hierarchical pixel structure. Likewise, if machine precision
spherical harmonics transforms are required, the GL grid is the
obvious choice. However, for those particular applications that
can benefit from efficient pixel-space sampling of linear
operators, such as ours, SymPix holds a clear edge over
existing alternatives.

D.S.S. and H.K.E. are supported by European Research
Council grant StG2010-257080.

APPENDIX
CODE

The SymPix code has been developed as part of the
Commmander project, and does not yet have its own library.
For the benefit of the reader, however, we have copied the
source files relevant to this paper to their own repository
athttp://github.com/dagss/sympix. Please consult the accom-
panying README file for further details. This repository will
be updated if the code does eventually develop into a stand-
alone package.
The SHTs are all done using libsharp (Reinecke &

Seljebotn 2013), which, at the time of writing, is available
athttp://sourceforge.net/projects/libsharp/. We then con-
struct the grid geometry in our Python code and feed it to

Table 3
CPU Time for Constructing Preconditioner

Naive SymPix

ℓmax (CPU min) (CPU min) Speed-up

Evalution of B N BT 1- 

3000 727 5.4 130
1500 509 1.4 360
750 340 0.37 920
375 230 0.11 2 100
188 452 0.035 13 000
100 363 0.027 13 000
Sum 2 621 7.3 360

Evalution of D

3000 85 3.3 26
1500 15 0.83 18
750 2.4 0.22 11
375 0.36 0.07 5
188 0.05 0.02 3
100 0.01 0.01 1
Sum 103 4.5 23

Note. The top section lists the CPU time for preconditioner calculations that
depend only on data geometry (mask, beam, noise characterization), while the
bottom section lists the corresponding CPU time for calculations that depend
on dℓ, which in CMB applications typically corresponds to an angular power
spectrum, Cℓ. The second column is copied directly from Seljebotn et al.
(2014), which does not employ any symmetries. The third row shows similar
results using SymPix, while the fourth column shows the ratio between the two.

9

The Astrophysical Journal Supplement Series, 222:17 (10pp), 2016 February Seljebotn & Eriksen

libsharp. In the future we may port our Python code to C
and make it available directly in libsharp.

REFERENCES

Cormen, T. H., Leiserson, C. E., & Rivest, R. L. 1989, Introduction to
Algorithms (Cambridge, MA: MIT Press)

Doroshkevich, A. G., Naselsky, P. D., Verkhodanov, O. V., et al. 2005,
IJMPD, 14, 275

Elsner, F., & Wandelt, B. D. 2011, A&A, 532, A35
Eriksen, H. K., O’Dwyer, I. J., Jewell, J., et al. 2004, ApJS, 155, 227

Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 2
Jewell, J., Levin, S., & Anderson, C. H. 2004, ApJ, 609, 1
Planck Collaboration 2015, A&A, submitted, (arXiv:1502.01582)
Prézeau, G., & Reinecke, M. 2010, ApJS, 190, 267
Reinecke, M. 2011, A&A, 526, A108
Reinecke, M., & Seljebotn, D. S. 2013, A&A, 554, A112
Seljebotn, D. S., Mardal, K.-A., Jewell, J. B., Eriksen, H. K., & Bull, P. 2014,

ApJS, 210, 24
Sutter, P., Wandelt, B. D., & Elsner, F. 2012, in Proc. Big Bang, Big Data, Big

Computers (Big3), 2012
Wandelt, B. D., Larson, D. L., & Lakshminarayanan, A. 2004, PhRvD, 70,

08351

10

The Astrophysical Journal Supplement Series, 222:17 (10pp), 2016 February Seljebotn & Eriksen

Paper VI (draft)

Planck 2017 results. II. Low Frequency Instrument data
processing

For each Planck release one reaches new levels of sensitivity in the data analysis.
In this release, Commander had a role in the core time-ordered data (TOD)
processing of LFI. It turned out that in order to increase the precision of the
estimate of the gain function, an estimate of the sky was needed. To make such
an estimate of the sky, one needs data maps; to get data maps of the sky, one
needs a gain function; and so this turned into an iterative scheme were results
were sent back and forth between the Commander group in Oslo and the LFI
TOD group, as sort of a poor mans iterative system solver. This underlines
the need for Commander to directly work with TOD data in the future.

DRAFT!
Note: This paper has not been peer-reviewed as of this writing. It will be sub-
mitted to A&A.

149

Paper VII (draft)

Planck 2017 results. IV. Diffuse component separation

This paper presents the third Planck component seperation effort. The release
contains results made with Commander 2 code, which employes the multi-
resolution modelling and preconditioner of Paper II. Thus Commander can
work directly with the native resolution of all of the Planck channels, and
produce exact, joint estimates of the low-frequency foregrounds, high-frequency
foregrounds, and the CMB.

DRAFT!
This paper has not been peer-reviewed as of this writing. It will be submitted to
A&A.

153

Paper VIII

CMB likelihood approximation for banded probability
distributions

I contributed some ideas in the early phases of this project. In particular I
contributed to an early attempt at using splines to regularize the Blackwell-
Rao estimator. This was a stepping stone to the simpler solution presented in
this paper.

157

The Astrophysical Journal, 777:150 (9pp), 2013 November 10 doi:10.1088/0004-637X/777/2/150
C© 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

COSMIC MICROWAVE BACKGROUND LIKELIHOOD APPROXIMATION
FOR BANDED PROBABILITY DISTRIBUTIONS

E. Gjerløw1, K. Mikkelsen1, H. K. Eriksen1, K. M. Górski2,3, G. Huey2,
J. B. Jewell2, S. K. Næss1,4, G. Rocha2,5, D. S. Seljebotn1, and I. K. Wehus2

1 Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo, Norway; eirik.gjerlow@astro.uio.no
2 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

3 Warsaw University Observatory, Aleje Ujazdowskie 4, 00-478 Warszawa, Poland
4 Department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH, UK

5 California Institute of Technology, Pasadena, CA, USA
Received 2013 March 30; accepted 2013 September 17; published 2013 October 23

ABSTRACT

We investigate sets of random variables that can be arranged sequentially such that a given variable only depends
conditionally on its immediate predecessor. For such sets, we show that the full joint probability distribution
may be expressed exclusively in terms of uni- and bivariate marginals. Under the assumption that the cosmic
microwave background (CMB) power spectrum likelihood only exhibits correlations within a banded multipole
range, Δ�C , we apply this expression to two outstanding problems in CMB likelihood analysis. First, we derive a
statistically well-defined hybrid likelihood estimator, merging two independent (e.g., low- and high-�) likelihoods
into a single expression that properly accounts for correlations between the two. Applying this expression to the
Wilkinson Microwave Anisotropy Probe (WMAP) likelihood, we verify that the effect of correlations on cosmological
parameters in the transition region is negligible in terms of cosmological parameters for WMAP; the largest relative
shift seen for any parameter is 0.06σ . However, because this may not hold for other experimental setups (e.g., for
different instrumental noise properties or analysis masks), but must rather be verified on a case-by-case basis, we
recommend our new hybridization scheme for future experiments for statistical self-consistency reasons. Second,
we use the same expression to improve the convergence rate of the Blackwell–Rao likelihood estimator, reducing
the required number of Monte Carlo samples by several orders of magnitude, and thereby extend it to high-�
applications.

Key words: cosmic background radiation – cosmology: observations – methods: data analysis – methods:
numerical – methods: statistical

Online-only material: color figures

1. INTRODUCTION

The cosmic microwave background (CMB) radiation is one of
the most pristine sources of information about the early universe
available to us. Since its discovery in 1964 (Penzias & Wilson
1965), the amount of information available to us about the CMB
has increased at a rapid pace through series of ground-based,
sub-orbital and satellite experiments. The recently released
Planck temperature sky maps (Planck I 2013) is just the latest
example of how the present challenge in the field of cosmology
is one of overabundance rather than shortage of data.

To extract cosmological parameters from these ever grow-
ing data sets requires increasingly sophisticated and efficient
algorithms, both due to larger data volumes and to more strin-
gent requirements to statistical precision. For example, the
COBE-DMR sky maps published 20 yr ago (Smoot et al. 1992)
comprised O(104) pixels, and could be analyzed using exact
brute-force likelihood techniques (e.g., Górski 1994), with a
computational scaling of O(N3

pix). The Wilkinson Microwave
Anisotropy Probe (WMAP) sky maps published 10 yr ago com-
prised O(107) pixels (Bennett et al. 2003a), at which point faster
and approximate methods had to be used for parameter estima-
tion (Hivon et al. 2002; Verde et al. 2003). However, for WMAP
the error budget was still dominated by cosmic variance on
large angular scales and instrumental noise on small angular
scales, and confusion with Galactic and extra-Galactic emission
was minimal, allowing for very simple component separation

methods (Bennett et al. 2003b; Hinshaw et al. 2003). For Planck,
the total number of data points in nine frequency bands is
O(3 × 108), and instrumental noise never dominates the un-
certainties at any angular scales, as small-scale astrophysical
confusion becomes important at multipoles � � 1500 (Planck
XII 2013). As a result, an unprecedented study of all important
sources of uncertainty, including instrumental, systematic and
astrophysical, was required for Planck to reach its ambitious
goals (Planck XV 2013).

With the advent of these massive mega-pixel data sets,
a number different analysis strategies have been developed
to robustly extract cosmological parameters with acceptable
computational cost. As of today, the preferred option for full-
sky high-resolution experiments such as Planck and WMAP is
to divide the analysis into two separate components according
to large and small angular scales, and merge the two at the
likelihood level. On large angular scales, they use a Gibbs
sampling based (Jewell et al. 2004; Wandelt et al. 2004; Eriksen
et al. 2004) Blackwell–Rao (BR) estimator (Chu et al. 2005)
that takes into account the full non-Gaussian structure of the true
CMB likelihood, while on small angular scales, they use faster
approaches (e.g., Hivon et al. 2002; Rocha et al. 2011; Planck
XV 2013) coupled to an analytic multivariate Gaussian (and/or
log-normal) likelihood approximation. The computational cost
of this hybrid approach is dominated by spherical harmonics
transforms, and therefore scales as O(N3/2

pix), which is acceptable
even for large data sets. However, there is an unsolved problem

1

The Astrophysical Journal, 777:150 (9pp), 2013 November 10 Gjerløw et al.

associated with this hybrid approach, and that is how to
merge the two likelihood components into a single all-scale
expression; correlations between the smallest scales in the
large-scale likelihood and the largest scales in the small-scale
likelihood should in principle be accounted for. As of today, no
fully satisfactory solution to this exists in the CMB literature,
though various approaches were explored during the Planck
analysis.

Having a computational scaling of O(N3/2
pix), the Gibbs sam-

pling approach could in principle be employed for all angular
scales, thus eliminating the need for any hybrid approximation.
Unfortunately, in practice this method is in its current imple-
mentation limited to low angular scales for two reasons: First,
joint CMB analysis and component separation is currently im-
plemented in terms of pixel-based fits of physical foreground
models, requiring all frequency bands to have the same angu-
lar resolution, dictated by the coarsest resolution in a given
data set. Second, although the computational scaling for the
Gibbs sampler is acceptable, the prefactor is high. The 2013
Planck likelihood employed 100,000 Gibbs samples in order
to achieve robust BR convergence, and each of those samples
required ∼2000 Conjugate Gradient iterations (and twice as
many spherical harmonic transforms) to converge, for a total
cost of 500,000 CPU hours. Naively scaling this to full Planck
resolution suggest a final cost of O(108) CPU hours (only tak-
ing into account the additional computational cost per sample
for high-resolution Gibbs sampling, not the additional number
of samples needed for the BR estimator to converge at higher
multipoles).

The main result of the present paper is a statistically well moti-
vated block factorization of the CMB power spectrum likelihood
that is applicable to several of these problems. Specifically, we
show that for sets of random variables that can be arranged se-
quentially in such a way that all correlations have a finite range
within the sequence, the full joint probability distribution may be
written in terms of lower-dimensional marginals. The archety-
pal example of such a distribution is a multivariate Gaussian
with a strictly banded covariance matrix, and we therefore call
the general (non-Gaussian but conditionally limited) case also
“banded.” With this statistical identity ready at hand, we first
suggest a statistically well-motivated likelihood hybridization
scheme that takes properly into account correlations between
the low- and high-� regimes, and, second, we show how the
convergence rate of the BR estimator can be improved by fac-
torizing the full high-dimensional multivariate posterior into a
set of lower-dimensional distributions, each of which converges
much faster than the full distribution. This approach differs from
the direct Gaussianization technique proposed by Rudjord et al.
(2009) in that the underlying probabilistic structure (e.g., shapes
of marginal and N-point correlations) is conserved; in principle,
the only modification to the full likelihood enforced by our new
approach is that assumed negligible correlations are explicitly
set to zero.

2. FACTORIZING THE CMB LIKELIHOOD

2.1. Factorization of Banded Probability Distributions

We begin with a general joint probability density P ({θ}) =
P (θ1, θ2, θ3, . . . , θn) for a set of random variables, θk , with
k = 1, 2, 3, . . . , n. We choose one specific sequential ordering
of these variables (out of all the possible orderings), and use
the definition of a conditional to write the joint distribution as a

product of univariate conditionals,

P ({θ}) = P (θ1, θ2, θ3, . . . , θn)

= P (θ1|θ2, θ3, . . . , θn)

· P (θ2|θ3, . . . θn) · · ·
· P (θn−1|θn) · P (θn).

We then assume that our variables only have a conditional
probability dependence on their immediate neighbors in the
sequence, i.e., that the probability distribution is tri-diagonally
banded,

P ({θ}) ≈ P (θ1|θ2) · P (θ2|θ3) · · · P (θn−1|θn) · P (θn)

= P (θ1, θ2)

P (θ2)
· P (θ2, θ3)

P (θ3)
· · · P (θn−1, θn)

P (θn)
· P (θn)

=
∏n−1

k=1 P (θk, θk+1)∏n−1
k=2 P (θk)

. (1)

Thus, this simple derivation shows that a strictly (tri-diagonally)
banded probability distribution may be factorized recursively
into a product of uni- and bivariate marginals.

Before applying this expression to CMB likelihood approx-
imation, we note that even if the joint probability distribution
do not have correlations exclusively between neighboring vari-
ables, it may still be possible to factorize it, provided at least
some correlations may be ignored. For instance, suppose we
can ignore all but the nearest two neighbors; in that case, the
joint distribution will factorize into a product of uni-, bi- and
trivariate marginals.

2.2. Block Factorization of the CMB Likelihood

In its most basic representation, a CMB data set, d, may be
modeled as

d = s + n, (2)

where s is the true sky signal and n represents instrumental noise.
Both the signal and noise are usually assumed to be zero-mean
Gaussian variables with covariances S and N, respectively.

The noise covariance matrix is typically given by external
knowledge about the instrumental noise characteristics and the
scanning strategy of a given experiment. The signal covariance
matrix, on the other hand, is generally unknown, and must
be estimated from the data. However, given the fact that we
only have one observable sky available, it is impossible to
estimate the N2

pix elements in S from the Npix elements in
d without imposing strong priors on its structure. The most
commonly accepted prior is simply that the CMB sky is isotropic
and homogeneous (e.g., Planck XXIII 2013). It is therefore
convenient to expand s in spherical harmonics, such that

s(n̂) =
∑
�,m

a�mY�m(n̂), (3)

where n̂ is a unit vector pointing to a given position on the sky,
Y�m are the spherical harmonics, and a�m are the corresponding
spherical harmonics coefficients. Then the signal covariance
matrix may be written as

S�m,�′m′ = 〈a�ma∗
�′m′ 〉 ≡ C�δ��′δmm′ , (4)

where C� is known as the angular power spectrum.

2

The Astrophysical Journal, 777:150 (9pp), 2013 November 10 Gjerløw et al.

Figure 1. Angular power spectrum correlation matrix, M��′ , for the official
Planck low-� CMB data set, estimated by Monte Carlo sampling. Note that any
two-point correlations are contained within a band of Δ�C ∼ 15, suggesting that
the CMB likelihood may be approximated as a banded probability distribution.
To factorize the CMB likelihood into lower-dimensional elements, we partition
the full multipole range into a set of disjoint blocks such that all non-
zero covariance elements are embedded within a tri-diagonal block structure,
indicated here by colored squares.

(A color version of this figure is available in the online journal.)

The main goal of most CMB experiments is precisely to
measure the CMB power spectrum, and the most straightforward
way to do so is by maximum-likelihood estimation. Since
we have assumed that both signal and noise are Gaussian
distributed, the CMB power spectrum likelihood simply reads

L(C�) ≡ P (d|C�) ∝ e− 1
2 dt (S(C�)+N)−1d

√|S(C�) + N| , (5)

where S = S(C�) is the covariance matrix given in Equation (4)
expressed in pixel domain. Note that C� denotes the set of all
power spectrum coefficients, and the likelihood therefore spans
an �max-dimensional space.

As already mentioned, brute-force evaluation of Equation (5)
scales computationally as O(N3

pix), and is therefore feasible
only for very low angular resolutions. Much of the CMB analysis
literature therefore revolves around finding computationally
tractable approximations to this expression.

In order to build up some intuition about the correlation
structure of L(C�), it is useful to plot the correlation matrix

M��′ ≡ 〈(C� − 〈C�〉)(C�′ − 〈C�′ 〉〉√
〈(C� − 〈C�〉)2〉〈(C�′ − 〈C�′ 〉)2〉

. (6)

Figure 1 shows this matrix for the official Planck low-� CMB
data, as evaluated from 200,000 Monte Carlo samples generated
with a CMB Gibbs sampler (Jewell et al. 2004; Wandelt et al.
2004; Eriksen et al. 2004). In this case, there are significant
correlations between all elements at � � 20, while at � � 50
any correlations are well contained inside a band of Δ�C = 15;
any correlations beyond Δ�C � 30 are well below 1%. Higher-

order correlations are significantly smaller than these two-point
correlations.

For typical sky cuts and instrumental noise characteristics,
the basic CMB likelihood can therefore be approximated as a
banded probability distribution with a bandwidth of � � 15, and
can therefore in principle be factorized by Equation (1). How-
ever, as currently written this expression only applies to a strictly
tri-diagonal covariance matrix. To circumvent this problem, we
therefore introduce an auxiliary block structure that embeds all
non-negligible elements within a larger tri-diagonal structure,
as illustrated by the colored blocks in Figure 1. That is, we de-
fine a set of multipole blocks such that θ1 = {C�min, . . . , C�1},
θ2 = {C�1+1, . . . , C�2},. . ., θn = {C�n−1+1, . . . , C�max}. Thus,
each univariate marginal in Equation (1) is replaced with a
multivariate distribution of dimension �i − �i−1, and each bi-
variate marginal is replaced with a multivariate distribution of
dimension �i − �i−2. This block-wise factorization constitutes
the main result of this paper, and in the following sections we
will apply this to two concrete problems in CMB likelihood
estimation.

3. ACCURATE HYBRID CMB LIKELIHOOD
ESTIMATION

As already mentioned, both Planck and WMAP have adopted
so-called “hybrid” likelihood approximations, combining a
Gibbs sampling based BR estimator at large angular scales
with a Gaussian (and/or log-normal) pseudo cross-spectrum ap-
proximation at small angular scales. These two components are
merged into a single expression at the log-likelihood level. The
Planck likelihood simply adds the two log-likelihoods (Planck
XV 2013), adopting a so-called “sharp transition” between the
low- and high-� regimes, schematically illustrated in the left
panel of Figure 2. This is the simplest possible approach, and
assumes that any correlations across the transition multipole are
negligible. The WMAP likelihood makes a different choice, by
including the off-diagonal terms between the low- and high-�
blocks in the (Gaussian plus log-normal) high-� likelihood, as
illustrated in the middle panel of Figure 2.

In this section, we introduce a new and statistically better
motivated approach than either of two employed by Planck and
WMAP, taking advantage of the block factorization derived in
Equation (1). The first step in our approach is to partition the
full multipole range between �min and �min into three disjoint
regions, L = {�min, . . . , �low}, T = {�low + 1, . . . , �high − 1}
and H = {�high, . . . , �max}, corresponding to a low-� region, a
transition region and a high-� region, respectively. The width
of the transition region is chosen to be at least as wide as the
effective bandwidth of the C� covariance matrix (see Figure 1).
With this partitioning, we now specialize Equation (1) to the
case with n = 3 regions:

log L(C�) = log L(L, T) + log L(T ,H) − log L(T). (7)

Note that this approximation is exact under the assumption of
vanishing correlations between the low- and high-� regions,
which can be ensured simply by letting the transition region be
sufficiently wide. This estimator is schematically illustrated in
the right panel of Figure 2.

Equation (7) has a simple intuitive interpretation: The log-
likelihood is simply the sum of a low- and a high-� contribution,
defined such that they overlap over a sufficiently wide mul-
tipole range that all non-negligible correlations are included.
However, because the diagonal block in the transition region

3

The Astrophysical Journal, 777:150 (9pp), 2013 November 10 Gjerløw et al.

Figure 2. Schematic overview of the three hybridization schemes discussed in the text. The left panel illustrates a sharp transition between the low- (Blackwell–Rao)
and high-� (MASTER) likelihood, as currently adopted by Planck. The middle panel illustrates the WMAP approach, which includes the off-diagonal elements between
the low- and high-� regions in the high-� likelihood estimator. The right panel illustrates the new estimator proposed in this paper, in which correlations are accounted
for through an transition region that is sufficiently wide to include all non-negligible correlations between the low- and high-� regions. To avoid double-counting of
the diagonal elements, the total log-likelihood is corrected by the log-likelihood including elements within the transition region only.

(A color version of this figure is available in the online journal.)

0.021 0.022 0.023 0.024
Ωbh

2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.10 0.11 0.12 0.13
ΩDMh2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.030 1.035 1.040 1.045
θ

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.04 0.08 0.12
τ

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.92 0.96 1.00
ns

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3.0 3.1 3.2
log[1010As]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3. Comparison of best-fit parameters derived by CosmoMC from WMAP using likelihood approximations based on the new hybrid estimator presented in this
paper (solid black line); the WMAP approach including off-diagonal elements in the inverse covariance matrix (dashed red line); and a sharp transition between the
low- and high-� regions (dotted blue line).

(A color version of this figure is available in the online journal.)

is included twice, both by the low- and the high-� likelihood,
one must subtract the corresponding marginal for the transition
region once to avoid double-counting (this is also an imme-
diate consequence of Equation (1), under the assumption that
p(L|T ,H) = p(L|T) = p(L, T)/P (T), i.e., the low-� region is
conditionally independent of the high-� region given the transi-
tion region). Note that any estimator for the transition likelihood
may be used for the correction term, typically by extracting the
relevant range from either the low- or the high-� likelihoods.

To assess the importance of the specific strategy adopted
for hybridization, we modify the (7 yr) WMAP likelihood to
include each of the three solutions, and derive constraints on the

standard ΛCDM model using WMAP data only. The transition
multipole is set to �trans = 32 for the sharp transition case,
whereas the transition region is defined as � = {21, . . . , 32} for
the new hybrid scheme. The WMAP BR estimator is used both
for the low-� and the transition regions in the latter case. We
adopt Ωbh

2, Ωmh2, θ, τ, ns, and log(1010As) as our primary
parameters, and adopt CosmoMC (Lewis & Bridle 2002) as
our MCMC engine. The resulting one-dimensional marginals
are shown in Figure 3 for all three cases, and posterior mean
summary statistics are given in Table 1.

With a largest relative difference between any two cases of
0.06σ , these results demonstrate that the standard six-parameter

4

The Astrophysical Journal, 777:150 (9pp), 2013 November 10 Gjerløw et al.

Table 1
Summary of Cosmological Parameters Derived with Three Different Hybridization Schemes

Default WMAP Sharp Transition Transition Region

Constraint Constraint Deviation (σ) Constraint Deviation (σ)

Ωbh
2 0.0225 ± 0.0006 0.0225 ± 0.0006 0.02 0.0225 ± 0.0006 0.02

Ωmh2 0.111 ± 0.005 0.111 ± 0.005 0.01 0.112 ± 0.006 0.05
θ 1.039 ± 0.003 1.039 ± 0.003 0.04 1.039 ± 0.003 0.05
τ 0.088 ± 0.015 0.088 ± 0.015 0.04 0.088 ± 0.015 0.05
ns 0.969 ± 0.013 0.969 ± 0.014 0.03 0.968 ± 0.014 0.06
log[1010As] 3.08 ± 0.04 3.08 ± 0.03 0.03 3.08 ± 0.04 0.05

Notes. The three hybridization schemes are as follows. The original WMAP approach including off-diagonal elements in the inverse covariance matrix (second
column), a sharp transformation at �trans = 32 (third column), and the new approach implementing a transition region between � = 21 and 32 (fifth column).
The confidence intervals are 1 σ , and the best-fit points are the marginalized means of the parameters. The fourth and sixth columns show the relative shifts
with respect to the WMAP approach measured in units of σ .

ΛCDM model is highly robust with respect to assumptions
about the correlations across the transition regime. Similar
conclusions were found when performing an identical analysis
for the recently released Planck likelihood (Planck XV 2013),
and this motivated the choice of a sharp transition for that
particular implementation. For future experiments and analyses
we nevertheless recommend the hybrid approach presented
here, for two main reasons. First, our expression provides a
statistically well motivated solution whose validity may be
monitored directly through the C� covariance matrix; without
the same level of statistical rigor, detailed simulations are
more critical for the other two approaches, and these should
in principle be repeated both when the data set or the parametric
model is changed. Second, this expression is implementationally
trivial once both low- and high-� likelihoods are available, and
there is therefore no practical reason for not including these
correlations, even if their impact may be small.

4. FASTER BLACKWELL–RAO CONVERGENCE

4.1. Review of the Blackwell–Rao Estimator

As mentioned in Section 1, both the Planck and WMAP low-�
likelihoods (Planck XV 2013; Hinshaw et al. 2013) employs a
specific BR estimator to produce an accurate likelihood ap-
proximation that accounts for all correlations and non-Gaussian
structures (Chu et al. 2005). The main advantages of this estima-
tor are (1) computational speed, (2) implementational simplicity,
and (3) support for seamless marginalization over systematic ef-
fects and component separation errors through Gibbs sampling
(Jewell et al. 2004; Wandelt et al. 2004; Eriksen et al. 2004).

This estimator may be explained intuitively as follows:
Suppose it is possible to construct an experiment that provides
a perfect full-sky noiseless image of the CMB sky, d = s. For
that experiment, the only source of uncertainty on C� is cosmic
variance, and the exact CMB likelihood in Equation (5) reduces
to an inverse Gamma distribution,

L0(C�) ∝ e− 1
2 st S(C�)−1s

√|S(C�)| ∝
∏

�

σ
− 2�−1

2
�

e
2�+1

2
σ�
C�

C
2�+1

2
�

. (8)

Here we have defined σ� ≡ (1/(2� + 1))
∑m

�=−m |a�m|2 to be the
realization specific power spectrum of s.

However, for any real experiment there are additional sources
of uncertainty beyond cosmic variance, for instance from
instrumental noise and foreground contamination, and P (s|d) is
no longer a delta function. In order to account for this additional

uncertainty, one must weight the ideal likelihood in Equation (8)
with respect to P (s|d),

LBR(C�) =
∫

ds L0(C�) P (s|d). (9)

At first glance, this integral appears difficult to evaluate, as
it involves millions of degrees of freedom. However, this is
precisely where the CMB Gibbs sampler enters the picture. As
explained in detail by Jewell et al. (2004), Wandelt et al. (2004),
and Eriksen et al. (2004), the output from this algorithm is a
set of samples drawn directly from P (s|d), accounting for both
instrumental noise and foreground errors. Thus, the integral can
be simply evaluated by Monte Carlo integration as a sum over
these samples,

LBR(C�) ≈
Nsamp∑
i=1

�max∏
�=�min

σ i
�

2�−1
2

e
2�+1

2

σ i
�

C�

C
2�+1

2
�

. (10)

This is the CMB power spectrum BR estimator, which is
guaranteed to converge to the true likelihood in the limit of
Nsamp → ∞.

4.2. Lifting the “Curse of Dimensionality” by Block
Factorization

While the BR estimator is guaranteed to converge to the
correct answer, it is not obvious how fast it does so, as measured
in terms of number of samples required for convergence, Nsamp.
Further, since the computational cost of a single Gibbs sample is
typically on the order of several CPU hours (Eriksen et al. 2004),
depending on the angular resolution and/or signal-to-noise ratio
of the data set under consideration, it is important to understand
this scaling before attempting a full-scale analysis. Indeed, Chu
et al. (2005) showed that Nsamp scales exponentially with �max,
effectively limiting its operational range to �max ≈ 50–70. The
main goal of the present section is to improve on this limit, and
extend the BR estimator to high �’s.

To understand the origin of the exponential scaling, we show
in Figure 4 a simple two-dimensional Gaussian distribution
mapped by a Monte Carlo sampler. The top and left panels show
the respective one-dimensional marginals. The BR estimator
establishes a smooth approximation to these distribution by
assigning a kernel of finite width to each individual Monte Carlo
sample (illustrated by blue contours/Gaussians) before taking
the average over all samples. Suppose now that the width of
the one-dimensional kernel is 10% of the width of the marginal

5

The Astrophysical Journal, 777:150 (9pp), 2013 November 10 Gjerløw et al.

Figure 4. Illustration of the “curse of dimensionality.” The Blackwell–Rao
estimator builds up a smooth histogram from a finite set of Monte Carlo samples
by assigning a distribution (or kernel) to each sample. The number of samples
required to reach convergence is proportional to the ratio between the volume
of the kernel (blue) and the volume of the full distribution (black). If this ratio
is r < 1 in one dimension (top and left panels), it is r2 in two dimensions
(central panel), and rn in n dimensions. This implies that the number of Monte
Carlo samples required to reach convergence for the CMB BR estimator scales
exponentially with �max. The evaluation of the two-dimensional likelihood at
a specific point in parameter space (red cross) will be much more sensitive
to the number of samples than the corresponding evaluations in the respective
marginalized parameter spaces (red lines).

(A color version of this figure is available in the online journal.)

distribution; in that case, one needs ∼10 samples in order to
cover the marginal once. In two dimensions, however, one
needs ∼102 samples to cover the full joint distribution once,
since the ratio now is only 10% in each of the two directions.
More generally, in n dimensions one would need ∼10n samples.
This is a variation of the well-known “curse of dimensionality,”
which says that the number of points required to cover an
n-dimensional space scales exponentially with n.

The BR estimator given in Equation (10) converges well up to
� ≈ 30 with only a few thousand samples for WMAP (Chu et al.
2005), while for Planck it is found to be robust up to � ≈ 70 with
100,000 samples (Planck XV 2013). To extend to even higher �’s
by brute force would soon require a prohibitively large number
of samples, as the computational cost for the Gibbs sampling
step of the latter case is already half a million CPU hours.

Fortunately, the block factorization presented in Section 2
may be used to define an alternative and computationally much
cheaper algorithm.

1. Partition the full �max-dimensional L(C�) into a sequence
of lower-dimensional blocks, rk. Here, we take the blocks
to be of the same width, which we call Δ�.

2. Use the standard BR estimator to estimate the marginal
likelihood for each block and each neighboring set of two
blocks.

3. Merge these block marginals into a single all-� estimator
through the block factorization in Equation (1).

Thus, our new likelihood approximation can be written
succinctly on the following form,

L(C�) ≈
∏n−1

k=1 LBR(rk, rk+1)∏n−2
k=2 LBR(rk)

. (11)

Note that all the likelihood evaluations on the right side of
this expression involve a maximum of 2Δ� − 1 dimensions,
as opposed to �max − �min + 1 for the full joint BR estimator,
effectively lifting the curse of dimensionality.

4.3. Accuracy and Convergence

4.3.1. Methodology

Before the block factorized BR estimator can be used for real
analysis, it is necessary to assess its accuracy and convergence
properties. To this aim, we analyze two different simulations
with the above machinery, adopting the convergence analysis
methodology of Chu et al. (2005). We use this to perform
various tests which will be reported in the “Results” section.
Monte Carlo samples are produced with Commander (Eriksen
et al. 2004, 2008).

The first simulation consists of a full-sky high-resolution
(Nside = 512, �max = 1024, 14′ Gaussian beam) data set with
uniform noise (65 μK rms per pixel). The main advantage of
this case is that the C� likelihood (Equation (5)) factorizes in �,
and can be evaluated analytically,

Lideal(C�) ∝
∏

�

e
− 2�+1

2
σ̂�

(C�+N�)

(C� + N�)
2�+1

2

, (12)

where σ̂� is the angular power spectrum of the noisy sky map,
and N� is the ensemble averaged noise power spectrum. The
second simulation consists of a low-resolution (Nside = 32,
�max = 95, 6◦ FWHM Gaussian beam) data set with various sky
masks imposed. White noise of 0.3 μK rms is added to each
pixel, resulting in a signal-to-noise of unity at � ≈ 70. The main
purpose of this simulation is to study the effect of correlations
between different multipoles arising from the sky cut through
comparison with brute-force pixel-space likelihood evaluation.
However, because of the brute-force evaluations, this case is
necessarily limited to low angular resolution.

The CMB signal is drawn from a Gaussian distribution with a
covariance given by the best-fit WMAP ΛCDM power spectrum,
Cref

� (Hinshaw et al. 2013). In each case, we fit a two-parameter
amplitude-tilt (A–n) model on the form

C�(A, n) = A

(
�

�0

)n

Cref
� , (13)

where �0 = �max/2, simply by mapping out L(A, n) over a two-
dimensional grid. For �min = 2, this choice of pivot multipole
ensures a low degree of correlation between A and n.

To assess both convergence and accuracy, we adopt the
following measure of difference between two likelihoods, L1
and L2 (Chu et al. 2005),

q =
∫

|L1(A, n) − L2(A, n)| dAdn. (14)

One can show that if L1 and L2 are two bivariate Gaussian
distributions with the same covariance matrix, �, but different
means, μ1 and μ2, then

q = Φ
(

1
2
√

2

√
(μ1 − μ2)�−1(μ1 − μ2)

)
, (15)

where Φ is the cumulative standard normal distribution function.
From this, one finds that a 0.1σ shift in a Gaussian distribution

6

The Astrophysical Journal, 777:150 (9pp), 2013 November 10 Gjerløw et al.

Figure 5. Comparison of four different methods of evaluating a simple amplitude-tilt likelihood for a full-sky simulation: The analytic case, the full Blackwell–Rao
case, and two versions of the hybrid likelihood described in this paper—with Δ� = 1 and 5, respectively.

corresponds to q ∼ 0.05. In the following, we therefore define
two distributions to agree if q < 0.05.

For the accuracy assessment, we simply compare the block
factorized BR likelihood with the exact case. Convergence
assessment, however, is done by drawing two disjoint sample
subsets from the full set of available Monte Carlo samples,
compute the BR estimator from each subset, and compare the
resulting likelihoods. We then increase the number of samples
in the two subsets, Nsamp, until q is consistently lower than 0.05
even when adding 100 additional samples; the latter criterion is
imposed in order to avoid chance agreement. Finally, we repeat
this calculation a certain number of times with different sample
subsets (but drawn from the same full sample set), and report
the median of the resulting values of Nsamp as the final estimate
of the number of samples required for convergence.

4.3.2. Results

Figure 5 shows L(A, n) evaluated from the high-resolution
full-sky simulation for nine different values of �max with four
different likelihood expressions; analytic, standard BR, and
two variations of the block-factorized BR estimator. A total of
Nsamp = 28,000 samples are included in the two latter, a choice
that is set to highlight the fundamental difference between
the various cases. In particular, since there are no correlations
between any multipoles in this case, all four approaches are in
principle exact, and the only difference among the four cases
are their relative convergence rates.

For �max � 300, we see that all four estimators agree to very
high accuracy. However, from �max � 400 the full-range BR
likelihood away starts to diverge from the others. At �max = 900,
it is separated from the analytic result by more than 15σ . In this
case, the sum in Equation (10) is strongly dominated by the one
sample that happens to have the lowest power spectrum scatter
about some best-fit mode, and the resulting distribution is simply

an imprint of the cosmic variance kernel (Equation (8)) for that
sample.

The block factorized BR estimators remain valid to higher
�max, demonstrating how the “curse of dimensionality” is lifted
by breaking the full parameter space into smaller regions that
are easier to handle. In particular, the case with Δ� = 1 agrees
with the analytic case even at �max = 900 to ∼0.3σ .

Next, in the top panel of Figure 6 we plot the number
of samples required for convergence according to the above
criterion for the high-resolution full-sky simulation described
above, and in the bottom panel we show the same, but after
applying the WMAP mask, covering 25% of the sky, in order to
introduce a realistic multipole correlation structure. The upper
vertical limit in these plots is set by the finite number of samples
included in the analysis.

In all cases we see the same qualitative behavior. Reducing the
dimensionality of the BR estimator through block factorization
greatly improves the convergence rate by reducing the required
number of samples by orders of magnitude at high �’s. For
instance, for the full-sky case and with a block size of Δ� = 6,
only 103 samples are required in order to reach convergence up
to �max = 500, whereas the full BR estimator would require
106. For the 25% WMAP mask, about 104 samples are required
for �max = 200, while it is difficult to establish any sensible
estimate for the full BR estimator in this case. (Note that the
high-� projection for the latter case, marked by a dashed line,
is based on linear extrapolation from a few low-� points, since
convergence was not reached at all within the current sample
set at higher multipoles. This projection is therefore associated
with a very large systematic uncertainty.)

Finally, in Figure 7 we illustrate how the robustness of the
split BR estimator depends on the block size chosen, for a
fixed number of samples. We use a symmetric mask, shown
in Figure 8, which covers a 20 deg strip of the galactic center.
It is close in extent to the COBE mask. We then apply the

7

The Astrophysical Journal, 777:150 (9pp), 2013 November 10 Gjerløw et al.

Figure 6. Convergence analysis for the split Blackwell–Rao estimator, with
convergence defined in Section 4.3. The samples come from running Comman-
der on a full-sky simulation. We show the median of the number of samples
needed for convergence for a given �max, along with the best-fit regression line
in log10-space. The median is computed from 10 (top) and 1024 (bottom) runs
where the samples are scrambled between each run. The regression lines are
dotted when they extend past the available data points. The high number of
runs per data point for the bottom plot is also the reason for the more sparse
sampling—each data point represented a very high computational cost, and so
the number of data points were reduced.

BR estimator, using 30,000 Gibbs samples based on the low-
resolution simulation. We also use the pixel-based estimator
and calculate the q convergence between the BR result and the
pixel-based result. Varying Δ�, we the get a sense of how this
block size affects the result. For this likelihood evaluation, we
used �max = 40. A Δ� = 0 on the plot means that the full BR
estimator was used.

Conceptually, there should be two effects going on in this
plot that both serve to reduce accuracy: When Δ� is too small,
the between-multipole correlations set up by the mask are
not modeled well enough, whereas when Δ� is too large, the
parameter space becomes so large as to reduce accuracy. We
can see this effect in play in the plot, although these data points
are only indicative, not conclusive or exhaustive in any way.
The specific block size dependence will typically depend on
both the actual CMB signal and the morphology of the mask,
and so prior testing like the methods outlined above should be
performed before deciding on the optimal block size.

Figure 7. q-statistic (defined in the text) calculated for various modes of the
Blackwell–Rao estimator compared with a pixel-based evaluation. The mask
used is shown in Figure 8. A Δ� = 0 means that the full BR estimator was used,
while for Δ� > 0 we have used the split BR estimator with a block size of Δ�.
The �max used in the likelihood evaluation is 40.

Figure 8. Mask used to test robustness in this section, covering a 20 deg strip
centered on the galactic center.

We also tried applying the above method to larger masks,
covering 30 deg and more, but the number of samples needed
for convergence then quickly rose beyond 30,000. This shows
that for masks that are significantly larger than those cur-
rently used in full-sky experiments, this likelihood estimator
should not be trusted without prior testing—especially with
regard to the number of Gibbs samples needed for a robust
evaluation.

5. CONCLUSIONS

The main result presented in this paper is a statistically well
motivated block factorization of the CMB power spectrum like-
lihood. Because the spherical harmonics are nearly orthogonal
over the large sky coverages achieved by current CMB satellite
experiments such as Planck and WMAP, any correlations be-
tween different C�s are localized in multipole space. Under the
assumption that these probabilistic dependencies have a strictly
finite range, the full CMB likelihood may be reduced into a
product of lower-dimensional marginals.

We have applied this result to two outstanding problems in
CMB analysis. First, we use this expression to derive a well-
motivated hybrid CMB likelihood estimator, merging an exact
low-� component with an approximate high-� component, that
accounts for correlations between the two regions. Although
a detailed analysis of the WMAP likelihood shows that these

8

The Astrophysical Journal, 777:150 (9pp), 2013 November 10 Gjerløw et al.

correlations are negligible for the WMAP sky cut and the
six-parameter ΛCDM model, we nevertheless recommend this
new estimator for future experiments and analyses, both because
its implementation is trivial, and because it provides additional
safety when analyzing non-standard models.

Second, we have shown how the same expression may be used
to accelerate the convergence rate of the BR CMB likelihood
estimator by orders of magnitude at high �s. This is achieved
by factorizing the full parameter space into subspaces that each
individually converge faster, and then merging these sub-blocks
into a full-range estimator at the likelihood level using the block
factorization formula.

It should be noted that these results rely directly on the
assumption of vanishing long-range correlations. While this
assumption holds to a very high accuracy for the basic CMB
signal plus noise data model, it is in general not valid when
including systematic effects in the analysis. Perhaps the two
most important examples are correlated beam uncertainties
and unresolved extra-Galactic point sources, each of which
extend through all �’s (e.g., Planck XV 2013). Fortunately,
these long-range degrees of freedom may be modeled in terms
of a small number of power spectrum templates, each with an
unknown amplitude. One can therefore marginalize over these
by sampling the unknown amplitudes as nuisance parameters,
similar to what was done for high-� astrophysical parameters in
the 2013 Planck likelihood (Planck XV 2013).

Finally, we note that the block factorization presented in
Section 2 is a completely general statistical result that holds
exactly for any banded probability distribution, and we therefore
expect it to also find applications outside the CMB field.

This project was supported by the ERC Starting Grant
StG2010-257080. Part of the research was carried out at the
Jet Propulsion Laboratory, California Institute of Technology,
under a contract with NASA. Some of the results in this paper
have been derived using the HEALPix (Górski et al. 2005)
software and analysis package.

REFERENCES

Bennett, C. L., Halpern, M., Hinshaw, G., et al. 2003a, ApJS, 148, 1
Bennett, C. L., Hill, R. S., Hinshaw, G., et al. 2003b, ApJS, 148, 97
Chu, M., Eriksen, H. K., Knox, L., et al. 2005, PhRvD, 71, 103002
Eriksen, H. K., Jewell, J. B., Dickinson, C., et al. 2008, ApJ, 676, 10
Eriksen, H. K., O’Dwyer, I. J., Jewell, J. B., et al. 2004, ApJS, 155, 227
Górski, K. M. 1994, ApJL, 430, L85
Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759
Hinshaw, G., Larson, D., Komatsu, E., et al. 2013, ApJS, 208, 19
Hinshaw, G., Spergel, D. N., Verde, L., et al. 2003, ApJS, 148, 135
Hivon, E., Górski, K. M., Netterfield, C. B., et al. 2002, ApJ, 567, 2
Jewell, J., Levin, S., & Anderson, C. H. 2004, ApJ, 609, 1
Lewis, A., & Bridle, S. 2002, PhRvD, 66, 103511
Penzias, A. A., & Wilson, R. W. 1965, ApJ, 142, 419
Planck Collaboration I 2013, arXiv:1303.5062
Planck Collaboration XII 2013, arXiv:1303.5072
Planck Collaboration XV 2013, 1303.5075
Planck Collaboration XXIII 2013, arXiv:1303.5083
Rocha, G., Contaldi, C. R., Bond, J. R., & Górski, K. M. 2011, MNRAS,

414, 823
Rudjord, Ø., Groeneboom, N. E., Eriksen, H. K., et al. 2009, ApJ,

692, 1669
Smoot, G. F., Bennett, C. L., Kogut, A., et al. 1992, ApJL, 396, L1
Verde, L., Peiris, H. V., Spergel, D. N., et al. 2003, ApJS, 148, 195
Wandelt, B. D., Larson, D. L., & Lakshminarayanan, A. 2004, PhRvD,

70, 083511

9

Technical Report I

Efficient spherical harmonic transform codes for CPU and
GPU

Chapter 3 describes novel techniques used to implement the Legendre trans-
forms on the GPU. To my knowledge it is the world’s fastest code for Legendre
transforms, at 40% of the peak FLOP rate of the GPU. Achieving this was
highly non-trivial. The Legendre transforms is a very interesting thing to try
to make work well on the GPU; as demonstrated by the final implementation
performing 45 times better than the initial naive implementation.

This code was written in order to pass a course on multi-architecture pro-
gramming at the university. The idea was to develop the code further and turn
it into a full paper, but that never happened, and so I simply attach the course
work report unedited.

Note: This report has not been peer-reviewed and is only published as part of
this thesis.

169

Draft version May 3, 2017
Preprint typeset using LATEX style emulateapj v. 5/2/11

EFFICIENT SPHERICAL HARMONIC TRANSFORM CODES FOR CPU AND GPU

D. S. Seljebotn1

Draft version May 3, 2017

ABSTRACT

(Update May 2017: This abstract was added to an otherwise unedited report.) This report was
submitted as part of doing the INF 9063 course at the University of Oslo in 2011. Chapter 2 covers the
CPU implementation present in Wavemoth (Seljebotn 2011) in further detail. Chapter 3 describes
a GPU implementation which to our knowledge was the fastest GPU implementation available of
Legendre transforms at the time of writing. The first iteration performed at 4.57 GFLOP/s, which is
incrementally increased through a series of optimizations described in this report, which git commits
given for each step of the way. The most important is an algorithm for doing small matrix-vector
products which is very specific to GPU hardware and minimizes communication between “warps”,
while still keeping all of the warps working on the same Legendre transform in order to make optimal
use of cache. The final performance is at 209 GFLOP/s, or 40% of the theoretical maximum of the
GPU. Conclusion: For the Legendre transform part of the SHTs, one GPU from 2011 could replace
32 CPUs from 2011. If one wishes to combined this with FFTs done on CPUs, one needs 8 CPUs to
keep up with the GPU; so that, roughly speaking, 8 CPUs and 1 GPU could replace 32 CPUs.

Subject headings: Methods: numerical

1. INTRODUCTION

1.1. The spherical harmonic transforms

The spherical harmonic transform (SHT) is the spher-
ical analog of the Fourier transform, and is an essential
tool for data analysis and simulation on the sphere. A
scalar field f(θ, φ) on the unit sphere can be expressed as
a weighted sum of the spherical harmonic basis functions
Y`m(θ, φ),

f(θ, φ) =
∞∑

`=0

∑̀

m=−`
a`mY`m(θ, φ). (1)

The coefficients a`m contain the spectral information of
the field, with higher ` corresponding to higher frequen-
cies. In calculations the the spherical harmonic expan-
sion is truncated for ` > L, and the spherical field rep-
resented by O(L2) grid samples (θi, φi). Computing the
sum above is known as the backward SHT or synthesis,
while the inverse computation,

a`m =

Npix∑

i=1

wif(θi, φi)Y
∗
`m(θi, φi). (2)

is known as the forward SHT or analysis. Here, the wi are
some predefined weights which depends on the spherical
grid used.

In order to compute an SHT, the first step is nearly
always a seperation of sums; similar to the seperation of
a 2D Fourier transform to several 1D transforms. One
makes use of the fact that

Y (θ, φ) = P̃m` (cos θ)e
√−1mφ, (3)

where P̃m` is known as the normalized associated Legen-
dre function of order m and degree `. Note that the right

Electronic address: d.s.seljebotn@astro.uio.no
1 Institute of Theoretical Astrophysics, University of Oslo, P.O.

Box 1029 Blindern, N-0315 Oslo, Norway

term is the same term that appears in Fourier transforms,
and that it does not depend on ` and θ, while the left
term does not depend on φ. Assume that the pixels are
organised in iso-latitude rings with ni equidistant pix-
els within each ring i, so that pixel t within ring i has
latitude θi and longitude

φt,i = φ0,i +
2πt

ni
. (4)

We let xi = cos θi. It turns out that one can compute
equation (1) by first computing a Legendre transform,

qm(xi) =

L∑

`=|m|
a`mP̃

m
` (xi), (5)

then wrap around or zero-pad the coefficients on each
ring,

τv(xi) =
∞∑

u=−∞
qniu+v(xi)e

√−1φ0,i(niu+v). (6)

and finally perform a Fourier transform,

f(θi, φt,i) =

ni−1∑

v=0

τv(xi)e
2πv
√−1/ni . (7)

See figure 1 for an illustration. To compute equation (2),
one can simply reverse the steps.

The complexity of all FFTs required is O(L2 logL) in
total, and very efficient open source computer codes are
available (e.g., FFTW3). In contrast, not much work
has been done on speeding up Legendre transforms. The
brute-force computation scales as O(L3). Some more ef-
ficient algorithms are available, but not in wide use due
to the constant prefactors involved. My primary project
since May 2011 has been to implement an O(L2 log2 L)
SHT algorithm (Seljebotn 2011). However, the speedup
achieved from a better algorithm was only 2–3x on the

2

resolutions of interest, which is in the same range as what
one can gain by code optimization, while having signifi-
cant disadvantages. The primary focus in this report will
therefore be on optimizing brute-force Legendre trans-
forms.

1.2. About the code

The code is available as part of the Wavemoth package.
The CPU parts have been submitted as a paper (Selje-
botn 2011), this version also contains the beginnings of
a GPU implementation.

The codebase can be found at

https : //github.com/wavemoth/wavemoth/tree/cuda

both for CPU and GPU; I refer to the commit 7393d75
unless another other commit hash is indicated2.

When working on features specifically for INF 9063
(GPU support), I have continued to work within this
code base. I will provide pointers to the relevant file
within the source code base and ask the reader to simply
ignore the rest of the code.

Both for the CPU and GPU implementations, I have
relied heavily on string-based templating to generate the
C or CUDA source code. The computional cores are
in files with the extension .c.in/.cu.in, which is pro-
cessed by the build system to pure C or CUDA code.
The templating language of choice is Tempita, which ba-
sically means that any code between {{ and }} is in a
Python-like language. I am not sure how I could have
completed the project at all if I had to write C directly.

Around the computational core in C or CUDA, I call
the code from Python and use Python for conveniently
writing and launching tests. For CUDA, this means that
there are seperate kernels whose sole purpose is testing.
The CPU C code can be used (but not tested) without
of Python, while the CUDA implementation only has a
Python frontend. Eventually, the CUDA implementa-
tion should also get a C frontend so that it can be called
directly from C or Fortran without the Python depen-
dency.

1.3. Legendre transforms

To make a long story short, one can cut computation in
half by computing the even and odd parts of equation (5)
seperately. We therefore change notation a bit, so that
the Legendre transform, needed for spherical harmonic
synthesis, becomes

qm,ω(xi) =

Km,ω∑

k=0

Λm,ωk,i a
′
m,ω,k (8)

where ω is 0 for the even transforms and 1 for the odd
transforms. Essentially, ` = ω+2k, and we use the nota-

tion Λm,ωk,i = P̃mω+2k(xi) and a′m,ω,k = aω+2k,m. Similarly,
the transpose Legendre transform, needed for spherical
harmonic analysis, becomes

a′m,ω,k =

ni∑

i=1

Λm,ωk,i qm,ω(xi). (9)

2 https://github.com/wavemoth/wavemoth/tarball/7393d75

Note that these equations are simply matrix-vector prod-
ucts, respectively,

qm,ω = Λm,ωa′m,ω (10)

and
a′m,ω = ΛT

m,ωqm,ω. (11)

Note that while a′m,ω and qm,ω are complex vectors, the
Λ-matrices are real, so the matrix-vector products can be
performed seperately on the real and imaginary parts. In
the code, we simply let nvec = 2 for a single transform,
nvec = 4 for two simultaneous transforms, and so on.

Examples of the Λ-matrices can be seen in figure 2. For
a full spherical harmonic transforms, one must perform
L+ 1 Legendre transforms for each of the even and odd
cases, for a total of 2(L+ 1) Legendre transforms. Note
that the sizes of the transforms become gradually smaller
as Km,ω = b(L − m − ω + 2)/2c, so that Λ0,0 has size
L/2× ni, while ΛL,1 has size 0× ni.

The elements in Λ can be computed by using the fol-
lowing recurrence relation in k,

Λm,ωk+1,i =(x2i + αm,ωk)βm,ωk Λm,ωk,i + γm,ωk Λm,ωk−1,i. (12)

Using this recurrence relation corresponds to starting at
the top of each column in the matrices in figure 2 and
working downwards to higher k. The Km,ω triplets of
auxiliary values α, β and γ can be computed explicitly
from m and ` = ω+2k using simple expressions contain-
ing division and square root (see Seljebotn (2011) for
details). The ni values of x2i = (cos θi)

2 are determined
by the spherical pixel grid in use, and although explicit
expressions exists for some grids, they are treated as pre-
computed and read from memory in my code.

For only one or a few simultaneous transforms, trans-
ferring the O(L3) data volume of the Λ-matrices over
the memory bus (or even store them in memory) is not
viable. Instead, one must use equation (12) at the same
time as doing the Legendre transforms of equations (8)
and (9). The FLOP-count is then 5T for the recur-
rence relation plus 2Tnvec for the matric-vector products,
where T is the number of elements in the Λ-matrices in
total.

There is a slight numerical problem: The upper-right
corners of the Λ-matrices can become extremely close to
zero, much lower than the ∼ 10−300 supported by IEEE
double precision floating point. This is solved by storing
the exponent in a seperate variable while doing the arith-
metic in this region, which involves a lot of checking and
branching. My approach has been to, for each column,
store the first two values larger in absolute value than
∼ 10−30 as precomputed data, and ignore the near-zero
region during transforms, so that the computation time
in the near-zero region does not matter. Still, this makes
writing the code a bit harder as the region of computa-
tion is not rectangular; instead one must “hug” the arc
on the right side of the non-zero regions. I only include
the non-zero elements of the Λ-matrices in FLOP count
T .

1.4. Parallelism in the SHT

As illustrated in figure 1, the SHT is a two-step pro-
cess. For the Legendre transforms, each Λm,ω can be pro-
cessed independently, with no sharing in input, output,

3

|m|

` ←→

|m|

co
s(
θ)

←→

a`m qm(xi) f(θt,i, φt,i)

Figure 1. Separating the sums in an SHT. A Legendre transform is used on each column m to go between a`m (left) and the ring-phases
qm(xi) (center), while a Fourier transform is used on each ring to go between qm(xi) and the spherical field f(θt,i, φt,i) (right), here plotted
in the Mollweide projection.

Λ0,0 Λ20,0 Λ60,0

Figure 2. Examples of Λ-matrices, here for L = 64. Througout this report and the code, k corresponds to the row index and i to the
column index of these matrices.

or auxiliary data. Similarly, the Fourier transforms can
be carried out independently on each iso-latitude ring.
However, the data transposition involved means that all
Legendre transforms must be finished before starting the
Fourier transforms (or vice versa, depending on whether
one is doing synthesis or analysis). At this point, the
FLOP count scale as O(L3), while the number of inde-
pendent tasks scale as O(L). For current resolutions,
this is plenty of parallelism for the CPU, but not quite
enough for the GPU.

Going deeper, there is room for parallelism within each
Legendre transform or Fourier transform as well. We will
not discuss the Fourier transforms, as we simply use ex-
isting libraries for those. For the Legendre transforms,
there is another O(L) factor of parallelism by processing
each column of Λ in seperate threads. This can either
be done independently (non-transposed transform) or
with some communication (transposed transform). This
brings the number of threads of execution up to O(L2).
The recurrence relation of equation (12) naturally pre-
vents splitting up Λ too much in the vertical direction,
although vertical blocking would of course be possible if
one uses some additional memory for storing starting val-
ues for the reccurence relations (there are also other ways
of computing the elements of Λ, although they tend to
be either numerically instable or much more expensive).
At any rate, for data resolutions that can be imagined
today, the O(L2) threads of execution in total given by
horizontal division of Λ alone is more than sufficient.

Finally, what about multiple simultaneous transforms?

For the purposes in astrophysics (such as analysis of the
Cosmic Microwave Background), one often wishes to use
the SHT to solve a linear system using an iterative solver.
This is an inherently sequential process, where one input
depend on the previous output, which precludes data
parallelism on a large scale.

There are however multiple frequency bands, and also
one may sometimes wish to solve a limited number of
linear systems simultaneously, so that a smaller num-
ber (between 5 and 20) simultaneous transforms is fea-
sible. Because the Legendre transfrom FLOP count is
5T + 2Tnvec, one does not wish to treat multiple inputs
independently, but keep them together in order to amor-
tize the 5T FLOPs used for the recurrence relation.

2. CPU IMPLEMENTATION

Only spherical harmonic synthesis was implemented
for the CPU, not analysis. Double precision floating
point is used throughout. A single transform is under-
stood to mean nvec = 2 within the Legendre transform,
that is, both the real and imaginary parts are present.

Important source code files:

• src/legendre_transform.c.in – The computa-
tional core

• src/wavemoth.c – Combines the Legendre trans-
forms with Fourier transforms (from FFTW3) to
do a full SHT, including NUMA-aware paralleliza-
tion/scheduling over many CPU cores

4

• bench/shbench.c – Benchmark application

The test system contains 64 hyperthreaded 2.27 GHz
Intel Xeon X7560 cores and 500 GB memory, supporting
a theoretical 9.2 GFLOP/s per core. For all benchmarks
below I

• use L = 4096, which is the highest resolution in use
in CMB analysis today.

• measure the performance of all Legen-
dre transforms necesarry for a full SHT
(m = {0, . . . , L}, ω ∈ {0, 1})

• repeat each benchmark multiple times and take the
minimum wall clock time (which is quite stable).
Note that the working set is hundreds of megabytes
and does not fit in cache.

• launch 64 threads on 32 of the cores (to utilize Hy-
perThreading), locked to four physical packages so
that the other half of the system is free for other
use (more results are present in Seljebotn (2011)).

2.1. Precomputation and edge cases

As mentioned above the Λ-matrices are not repre-
sentable everywhere. In the CPU case, I solved this by
blocking the matrices horizontally in a precomputation
step, so that each block is rectangular and can be repre-
sented in IEEE double precision (meaning I restrict the
top row to contain values between 10−200 and 10−30 in
absolute value).

All auxiliary data (αm,ωk , βm,ωk and γm,ωk , x2i , and start-
ing values for the recurrence relation) is saved to disk
during the precomputation phase.

All the techniques below relies on blocking, but the
input sizes does not divide the block sizes. This is where
the use of templates becomes indispensable, which allows
code such as

{{for xchunksize in [1, 2, 6]}}
static void transform_chunk{{xchunksize}}(...) {

...
}
{{endfor}}

Then, a wrapper routine first calls transform_chunk6
for as long as possible, then transform_chunk2 (if 6 does
not divide the input size) and finally transform_chunk1
(if the input size is odd).

2.2. Single Legendre transform

The first important point is to make sure the number of
loads from cache into CPU registers is balanced with the
number of floating-point operations. The second is to
make sure there are enough independent floating-point
operations in flight simultaneously, so that operations
can be pipelined. Thus,

• the values of Λm,ωk,i should never need to leave the

CPU registers. Rather, we fuse equations (8) and
equation (12) in the core loop. Also, the accumu-
lators for the output qm,ω(xi) should not leave reg-
isters, to avoid high-latency load–increment–store
cycles.

• we process for several xi simultaneously. This a)
amortizes the register loads of the auxiliary data
αm,ωk , βm,ωk and γm,ωk , and b) ensures that there are
multiple independent chains of computation going
on, so that we overcome the pipeline latency of the
floating point operations.

In the first iteration I allocated the 32 available double
precision slots in the 16 available SSE registers as follows:

• The auxiliary data αm,ωk , βm,ωk , γm,ωk must be
loaded for each row. The values must be dupli-
cated across the SSE registers, so that they use a
full register each.

• When processing four i (columns of Λ) in “parallel”
during the recurrence relation (two columns in each
SSE instructions, and switching between working
on each of the two columns for better pipelining),
one needs two registers for each of Λm,ωk,i , Λm,ωk−1,i,
and x2i , for a total of six registers.

• Four (2nvec) accumulation registers are needed for
qm,ω(xi).

• The input a′m,ω,i can be read after the auxiliary
data is discarded and does not conserve extra reg-
ister space.

So in total 13 registers are booked, leaving three for com-
putation. This allocation results in a performance of 5.69
GFLOP/s per core (62% of the theoretical maximum).

Increasing the number of i processed in each pass to
six books all 16 registers, leaving no work registers and
causing one register to spill to stack. This still increases
performance to 6.42 GLOP/s per core (70%).

Since x2i above is constant, and only needs to be loaded
and discarded. By loading x2i again from L1 cache each
time it is needed, the register spilling is avoided, resulting
in a minor improvement to 6.46 GFLOP/s per core.

2.3. Multiple simultaneous Legendre transforms

For multiple transforms (nvec in the range 4 . . . 20), I
wish to amortize the use of the recurrence relation, since
Λm,ωk,i does not depend on the input. This leads to the
following algorithm:

1. Repack the input 2D array a′ to blocks of size Bj×
Bk. The block size should be tuned, but the choice
of Bj = 4 and Bi = 6 achieved good performance.

2. Repeat until done:

(a) Use recurrence relation (12) to compute a
Bk × Bi block of Λ. We simply choose Bk
to be such that the data size is 4 KB, which is
large enough to amortize any branch overhead
(and avoids a TLB miss, although whether
that matters is unknown).

(b) Fully compute a Bj×Bi block of the output q,
by doing a matrix multiplication of the entire
a′ with the computed block of Λ. Because of
the repacking in step 1, a′ can be contiguously
accessed.

5

Goto & Geijn (2008) was an invaluable resource in learn-
ing about blocking techniques to properly amortize loads.

The resulting routine performed at 5.6 GFLOP/s per
core (60%) for ten simultaneous transforms (nvec = 20).

2.4. Results

Combining the Legendre transforms with FFTs per-
formed by FFTW3, the results are as follows: Using
32 cores on four physical CPUs on the hardware men-
tioned above, the Wavemoth code is able to do brute-
force spherical harmonic synthesis at resolution L = 4096
in 1.17 seconds for a single transform, or 0.7 seconds per
transform for 10 concurrent transforms. This is respec-
tively 2.2x and 1.6x faster than the current state-of-the-
art implementation, libpsht (Reinecke 2011). More de-
tailed results and plots are available in Seljebotn (2011).

3. GPU IMPLEMENTATION

For the GPU I choose to implement the transpose Leg-
endre transform, needed for spherical harmonic analy-
sis, which is more difficult and interesting than the non-
transpose Legendre transform of the previous section.
That is, I want to compute

a′m,ω,k =

ni∑

i=1

Λm,ωk,i qm,ω(xi). (13)

The fundamental problem to be solved is that the di-
rection of the sum is along i, the columns of Λ, while
the sequential recurrence relations used to obtain Λm,ωk,i

works along k, the rows of Λ.
Important files:

• wavemoth/cuda/legendre_transform.cu.in –
The (heavily templated) CUDA coda.

• wavemoth/cuda/*.py – Python code that is re-
sponsible for instantiating the CUDA code, com-
piling it, and calling it. This is mostly boilerplate
thanks to PyCUDA, which accepts string input,
compiles it, and dynamically loads it.

• wavemoth/cuda/test/test_cuda.py – Test case
for the sum-reduction framework (see below)

• examples/gpu.py – Benchmarks the code and val-
idates the result for a single (m,ω), repeating
the same computation on an arbitrary number of
thread blocks. This is where I put loops over differ-
ent compile-time parameters and benchmark them
against one another.

• examples/gpusht.py – Benchmarks the code and
validates the result for all the (m,ω) needed for a
full SHT, using one thread block per (m,ω) (for
a total of 8192 thread blocks for L = 4096). Also
implements pipelining in order to hide data transfer
times for multiple subsequent transforms.

I follow what appears to be common practice in CUDA
development: Hard-code as much as possible compile-
time. For instance, while the number of threads in a
thread-block is in principle a dynamic quantity in CUDA,
I also pass it in compile-time, so that it can be taken into

account both during template code generation and by the
compiler.

I feel it is hard to oversell the convenience of using
Python for CUDA development. For instance, I wrote a
Python context manager which parses the CUDA profile
logs, so that the following code is sufficient to profile a
kernel and display some statistics (including occupancy
etc.):

with cuda_profile() as prof:
for rep in range(3):

plan.execute_transpose_legendre(q, a)

print prof.format(’all_transpose_legendre_transforms’,
nflops=plan.get_flops(),
nwarps=2)

3.1. Hardware

As the purpose of the project is to have a working code
for scientific purposes, I have developed the code on an
NVIDIA Tesla M2050 card (the node was rented by the
hour from Amazon EC2). Important numbers:

• Theoretical compute performance of 515 GFLOP/s
for double precision

• Maximum number of 32-bit registers per thread is
64, which then allows for 16 warps (the register
file is 128 KB in total). Using less registers one
can fit a maximum of 48 warps on each streaming
multiprocessor (SM).

• 48 KB shared memory and 16 KB L1 cache on-chip
(can also be configured as 16+48, respectively, but
all the benchmarks below use 48KB shared mem-
ory)

• 2.6 GB memory with ECC turned on (performance-
wise, ECC did not matter much)

3.2. Transpose Legendre transform

As hinted above, it seems obvious to use one thread-
block per (m,ω), which creates 8192 blocks for our high-
est resolution of interest (L = 4096). Each block then
shares the auxiliary data αm,ωk , βm,ωk , γm,ωk , and must
handle sum-reduction along i while employing the recur-
rence along k.

Benchmarks are for nvec = 2. The auxiliary values for
the recurrence relations are computed directly as they
are needed. The FLOPs necesarry to compute these are
not included in the statistics below (but are negligible in
all but the first commit).

The following is stored as precomputed data: The x2i ,
the starting values for Λm,ωk,i (the first two values larger

than 10−30 in each column), as well as an array im,ωstop,k

of 16-bit integers which gives the length of each row in
the Λ-matrices, in order to describe which part is to be
treated as zero and where to start the recurrence rela-
tions. The total size of the precomputed is around 550
MB for L = 4096.

The full input to the necesarry set of transpose Legen-
dre transforms weighs in at 512 MB, while the output is
128 MB, per transform.

6

3.3. First attempts

Commit 9936fe (4.57 GFLOP/s): A simple base-
line code. The auxiliary values are computed in each
thread, and the row-wise sum-reduction is done only in
the thread with local ID 0. Not only is the performance
poor, but the approach limits the number of columns that
can be handled to low resolutions (because one thread is
used per column, and each row written to shared memory
for reduction).

Commit ec20cb1 (9.91 GFLOP/s): The auxiliaries
are first precomputed in parallel and stored to shared
memory for each k, and then reused in each thread. The
first blocking appears here, as the code iterates between
computing auxiliaries for Bk rows, and performing com-
putations for Bk rows.

Commit 30ff749 (27.18 GFLOP/s): A simple step
further is to make the sum-reduction multi-threaded.
First, each row is processed in full, each thread process-
ing Bi = dni/nthreade columns. The input is loaded again
from global memory for each row. Then, the nthread con-
tributions to each output a′m,ω,k is reduced to nwarp con-

tributions by doing a (log2 32)-step tree-reduction within
each warp. These contributions are saved to shared mem-
ory. At the end of Bk blocks, the values stored in shared
memory are then summed across warp index.

3.4. Proper blocking and an algorithm for parallel
tree-reduction

It is now clear that loading the memory from global
memory for each row will not work well; one must amor-
tize the load of the input q from global memory over
many rows. The solution to this problem is blocking,
where blocks of size Bk × Binthread are fully processed
before moving on. The Bk parameter affects how much
shared memory is used for auxiliary data, while Bi affects
register pressure in each thread. Good choices for these
parameters were Bk = 64 (even Bk = 48 was noticeably
worse) and Bi = 4.

While working on blocking, it also became clear that
the (log2 32)-step tree-reduction within each warp is a
serious bottle-neck, as it leaves some threads idle. An
alternative algorithm to tree-reduction is to first have all
32 threads in a warp compute 32 rows of values to add,
then have the same threads sum across each row. The
problem with this approach is that even for the minimal
block-size, 32 · 32 · 8 = 8192, which would only allow five
warps in total per SM ⇒ not viable.

These considerations leads to the following hybrid al-
gorithm for the sum-reduction. I have only implemented
it for nvec = 2, so that the current GPU code is some-
what less generic than the CPU code. (Apologies up
front for the poor exposition, I hope to come back to
this in a more visual form in the presentation. A sim-
ple prototype Python implementation can be found in
examples/parallel_tree_reduction.py).

• First, like before, each thread sums up its Bi values
per row while computing...

• ...which leaves us with 64 values per warp, nvec = 2
per thread, which we want to sum to only 2 values.
We start with the “leaf” portion of normal tree-
reduction, with each thread sending 32 values to its
neighbour thread for accumulation, resulting in 32

values. We see these as an array of shape (2, 1, 16):
First axis corresponds to output vector, second axis
to the row (k), and the third are 16 values which
remains to be summed.

• Store the (2, 1, 16) array to shared memory, and
proceed with the next row to produce another (2,
1, 16) array.

• Now we have 32 + 32 values, which can be added
together with full thread utilization to produce a
(2, 2, 8) result, spanning two rows (k).

• The scheme continues in this fashion. For each row,
a new (2, 1, 16) block is produced, which is com-
bined with any existing blocks of the same size and
reduced as far as possible without loosing paral-
lelism. In the end one is left with a single (2, 16, 1)
block – the fully reduced result (for the warp) for
16 rows.

• The final (2, 16, 1) buffers are finally added to-
gether across warps. It turned out that two warps
per thread block is optimal (less would use too
much memory and hurt occupancy, more would
mean more synchronization), so this reduction is
at this point simply done in the first warp. Note
that it is not until this step that __syncthreads()
must be called.

In theory, the algorithm requires 6 buffers of 32 double
precision numbers, or 1536 bytes, per warp. In practice,
it was simpler to implement when using 4 buffers of 64
numbers, or 2048 bytes.

Implementing this scheme was done simply by writing
the algorithm in the natural top-down recursive way in
the template generation stage. The resulting generated
code is similar to a loop having been manually unrolled
16 times, but has slightly different code for each row in
order to facilitate the reduction. There is a seperate ker-
nel whose purpose is to unit-test this template generation
(simply passing in a simpler block of code to be executed
for each row).

The result of implementing all of this can be found in
commit ea462c24, which yields 191 GFLOP/s over
the Legendre transforms needed for an SHT (L = 4096).
A compiler oddity: Before adding __forceinline__ to
the computational core routine, the performance was
only 115 GFLOP/s, even if the routine was only called
from a simple wrapper kernel. This is similar to the drop
in berformance that is experienced when adding a refer-
ence to printf in a kernel.

The occupancy at this point is 14 warps in 7 blocks,
which is limited by the amount of shared memory used –
16 warps in 8 blocks would use 53 KB at this point. Since
the recurrence auxiliaries are shared within a block, in-
creasing the number of warps per block to four increases
occupancy to 16 warps in 4 blocks. However, perfor-
mance decreases to 150 GFLOP/s, even if the inter-warp
sum-reduction is commented out – it is clearly very im-
portant to use many independent blocks. Fixing the
buffer allocation strategy in the sum-reduction scheme
would allow 16 warps in 8 blocks, which would then use
45 KB of shared memory.

Another failed experiment was trying to get rid of bank
conflicts in the parallel reduction code. In theory, there

7

should be a conflict, but getting rid of this conflict (in
theory, and unless I did something wrong) degraded per-
formance to 178 GFLOP/s.

Commit 7393d75 (209 GFLOP/s): It turned out
(despite my initial intuition) that it was rather simple to
decrease the scratch space for the parallel tree reduction
to 1526 bytes per warp, which allowed 16 warps at once
(using 45 KB).

I did not have time to do any micro-optimization and
have just focused on getting the basic algorithm right;
there may well be some potential for tweaking at the
instruction level.

3.5. Dealing with the near-zero regions

The process of avoiding the near-zero regions seen in
figure 2 is a lot easier to express in CUDA than using
SSE intrinsics. The approach taken is:

• Mark unstarted columns using a special NaN value

• For each warp-block (16 × 32Bi), check whether
any columns in the warp are unstarted, and if so,
take a slower code path which for each row checks
whether the recurrence relations for each columns
should be started, continued, or ignored.

As the blocks along the edge are few compared to all the
inner blocks, it does not matter if these are relatively
slow (on the order of 40–80 GFLOP/s).

3.6. Fourier transforms on GPU?

The next piece for a full SHT is the Fourier transforms,
which can be executed independently for each ring. For
the pixelization in use in CMB analysis (HEALPix), and
resolution L = 4096, there are 8191 independent 1D
FFTs to be performed, starting with 4 pixels in the ring
at the north pole, then 8 pixels, then 12, and so on un-
til one reaches 8192 pixels in a band around equator.
In summary, a) many of the FFTs involve large primes,
and as they are circular, require the use of the Bluestein
algorithm, b) most of the FFTs are of different length.

The NVIDIA cuFFT library does support prime sizes
using the Bluestein algorithm, however, it does not sup-
port plans with different n for each FFT. I experimented
with cuFFT (see src/wavemoth_cuda.c), but was un-
able to reach acceptable performance for even 2000 ker-
nel launches. Indeed, profiling reveals that each FFT

seems to use a single block, and, according to documen-
tation, the hardware only supports four concurrent ker-
nel launches, so it seems impossible to utilizate the GPU
with different-sized FFTs.

Another option is pyfft, which, despite the name, is a
CUDA FFT library (forked from code originally devel-
oped by Apple). As it is open source it should be possible
to construct a single kernel for doing all the FFTs. How-
ever, as it does not support the Bluestein algorithm but
only 2k transform sizes, this needs some work, and I leave
it for the time being.

3.7. Pipelining & double-buffering

I implemented basic pipelining in
examples/gpusht.py in order to hide data trans-
fer; see the log in the appendix for the relevant numbers.
As the number of transforms increases, the host-to-host
compute rate gets close to the on-device compute rate,
showing that hiding the data transfer is effective. At 20
transforms, the difference in time between host-to-host
transform and on-device transform is 0.008 seconds
per transform, or 0.8%. In the synchronous case, the
time for the data transfer is 0.13 seconds, or 13% of
the compute time. Thus the pipelining is clearly very
efficient in hiding data transfer time.

3.8. Estimates for a full SHT

The logical conclusion of section 3.6 is that, at least in
the first iteration, the FFTs should be performed on the
CPU using, e.g., FFTW3. Unfortunately I did not have
time to implement this yet, but I hope to do so in the
future.

On the 2.27 GHz Intel Xeon system used in section 2,
preparing the input for and performing the FFTs accord-
ing to equations (6) and (7) takes 360 ms using 8 cores,
or 189 ms using 16 cores. So it seems clear that 8 CPU
cores working together with the GPU card will be able
to do a full SHT in 1.15 seconds (assuming pipelining
multiple transforms).

The conclusion is that 8 CPU cores and a Tesla M2050
can perform as well as 32 CPU cores.

APPENDIX

LOG FROM GPUSHT.PY

== Multi-buffered run with 20 transforms at nside=2048
Wall-time taken to set up instruction streams ("Python overhead"): 9.173083e-02
Wall-time taken to end of execution: 21.057755 total, 1.052888 per transform
Host-to-host compute rate: 207.159003 GFLOP/s

== Profiled run at nside=2048
Transfer in: 8.901e-02 +/- 2e-05 sec = 6.03 GFLOP/s, occupancy 0.00 (0 warps)
Compute: 1.045e+00 +/- 9e-05 sec = 208.65 GFLOP/s, occupancy 0.33 (16 warps in 8 blocks)
Transfer out: 4.111e-02 +/- 5e-07 sec = 6.53 GFLOP/s, occupancy 0.00 (0 warps)

== Accuracy table (m, odd, relative error)
0 0 3.73785964985e-11
0 1 4.11059904524e-11
1 0 1.31435966764e-11
1 1 1.05841910886e-11
2048 0 2.22537218451e-13
2048 1 9.93556480046e-14

8

4096 0 1.56068615471e-15
4096 1 0

Note: The inaccuracies are due to a different numerical scheme being used, and is a fundamental numerical issue
with the recurrence relations (also, I have not checked yet which is more correct!). Using the less accuracte rsqrt
function during auxiliary computation does lower the accuracy slightly, but the effect on performance is very slight.
At any rate, they show that the code is “bug-free”, as the presence of bugs will tend to give much higher errors.

REFERENCES

Goto, K., & Geijn, R. 2008 ACM Trans. Math. Softw., 34, 3
Reinecke, M. 2011 Astronomy & Astrophysics, 526, A108 http://arxiv.org/abs/1010.2084
Seljebotn, D. S. 2011 The Astrophysical Journal Supplemental Series (submitted) http://arxiv.org/abs/1110.4874
Tygert, M. 2010 Journal of Computational Physics, 229, 18 http://arxiv.org/abs/0910.5435

	I Synopsis
	A primer on CMB analysis
	Cosmology and the CMB
	The microwave sky
	CMB extraction
	Spherical harmonic transforms
	Cosmological parameters
	Polarization

	Bayesian CMB analysis with Commander
	Basic Gibbs sampling
	Constrained realizations of the CMB
	Modelling foreground components
	Multi-resolution component separation
	Priors on component amplitudes

	Preconditioning the CR system
	Iterative linear solvers
	A closer look on A
	Preconditioning strategies for the CR system
	Preconditioning in spherical harmonic domain

	Spherical harmonic transforms
	Wavemoth: Fast SHT by matrix compression
	libsharp: The standard SHT library
	Data ordering in SHTs
	SymPix: A grid for efficient sampling of rotationally invariant linear operator
	Legendre transforms on the GPU

	Application to Planck
	Planck 2013 results
	Planck 2015 results
	Planck 2017 results

	Summary and outlook
	Bibliography

	II Papers
	Paper I: A multi-level solver for Gaussian constrained CMB realizations
	Paper II (submitted): Multi-resolution Bayesian CMB component separation through Wiener-filtering with a pseudo-inverse preconditioner
	Paper III: Wavemoth – Faster spherical harmonic transforms by butterfly matrix compression
	Paper IV: Libsharp – spherical harmonic transforms revisited
	Paper V: SymPix: A spherical grid for efficient sampling of rotationally invariant operators
	Paper VI (draft): Planck 2017 results. II. Low Frequency Instrument data processing
	Paper VII (draft): Planck 2017 results. IV. Diffuse component separation
	Paper VIII: CMB likelihood approximation for banded probability distributions
	Technical Report I: Efficient spherical harmonic transform codes for CPU and GPU

