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We present a quantum algorithm for the dynamical simulation of time-dependent Hamiltonians. Our
method involves expanding the interaction-picture Hamiltonian as a sum of generalized permutations,
which leads to an integral-free Dyson series of the time-evolution operator. Under this representation,
we perform a quantum simulation for the time-evolution operator by means of the linear combination of
unitaries technique. We optimize the time steps of the evolution based on the Hamiltonian’s dynamical
characteristics, leading to a gate count that scales with an L1-norm-like scaling with respect only to the
norm of the interaction Hamiltonian, rather than that of the total Hamiltonian. We demonstrate that the
cost of the algorithm is independent of the Hamiltonian’s frequencies, implying its advantage for systems
with highly oscillating components, and for time-decaying systems the cost does not scale with the total
evolution time asymptotically. In addition, our algorithm retains the near optimal log(1/ε)/ log log(1/ε)
scaling with simulation error ε.
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I. INTRODUCTION

The problem of simulating quantum systems, whether it
is to study their dynamics, or to infer their salient equilib-
rium properties, was the original motivation for quantum
computers [1] and remains one of their major potential
applications [2,3]. Classical algorithms for this problem
are known to be grossly inefficient. Nonetheless, a sig-
nificant fraction of the world’s computing power today is
spent on solving instances of this problem—a reflection on
their importance [4–6].

An important class of quantum simulations that is
known to be particularly challenging, and is the focus of
this work, is that of time-dependent quantum processes,
which are at the heart of many important quantum phenom-
ena. These include, for example, quantum control schemes
[7], transition states of chemical reactions [8], analog
quantum computers such as quantum annealers [9], and the
quantum approximate optimization algorithm [10]. Devis-
ing state-of-the-art resource efficient quantum algorithms
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to simulate these types of processes on quantum circuits is
therefore a very worthy cause: it will allow for the study-
ing of said phenomena in a controllable and vastly more
illuminating manner.

In the literature, a number of quantum algorithms
designed to simulate the dynamics of time-dependent
quantum many-body Hamiltonians already exist. How-
ever, most of them are variants of algorithms that suit
time-independent Hamiltonians but lack optimizations for
dynamical ones. For example, Hamiltonians based on the
Lie-Trotter-Suzuki decomposition were developed in Refs.
[11,12], where the complexity scales polynomially with
error. More recent advances [13,14] improve it to a loga-
rithmic error scaling, which directly lead to applications in
time-dependent Hamiltonian simulations [15,16]. A recent
study by Berry et al. [17] improves the Hamiltonian scal-
ing to L1-norm, by considering the dynamical properties
of the time-dependent Hamiltonian. However, these mostly
comprise of slicing the dynamics into a sequence of “quasi-
static” steps, each of which implementing a static quantum
simulation module. In addition, all the abovementioned
algorithms assume a time-dependent oracle—a straight-
forward but not necessarily practical assumption that can
obscure the true complexity of the simulation when physi-
cal models are considered.

The suboptimality that characterizes existing quantum
algorithms can be attributed mainly to the fact that the
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time-evolution operator for time-dependent Hamiltonians
is a more intricate entity than its time-independent counter-
part (this matter is discussed in more detail below). While
in the time-independent case the Schrödinger equation can
be formally integrated, the time-evolution unitary operator
for time-dependent systems is given in terms of a Dyson
series [18]—a perturbative expansion, wherein each sum-
mand is a multidimensional integral over a time-ordered
product of the (usually interaction-picture) Hamiltonian at
different points in time. These time-ordered integrals pose
multiple algorithmic and implementation challenges.

In this paper, we provide a quantum algorithm for
simulating a time-dependent Hamiltonian dynamics. This
algorithm invokes a separation of the Hamiltonian H(t)
into a sum of a static diagonal part H0 and a dynami-
cal part V(t), i.e., H(t) = H0 + V(t), and switches to the
interaction picture with respect to H0. The target evolu-
tion operator becomes a product of an interaction-picture
unitary UI (t) followed by a diagonal unitary e−iH0t that
can be simulated efficiently. The interaction Hamiltonian
V(t) is expanded as a sum of generalized permutations,
and the resulting Dyson series of the evolution operator
UI (t) becomes an integral-free representation [19] with the
notion of divided differences, which is a well-studied quan-
tity [20–25]. The divided differences have an intuition of
discretized derivatives and is closely related to polynomial
interpolations [20]. We refer the reader to Appendix A for
a short summary of the notion of the divided differences.
Under this representation, we use the linear combination
of unitaries (LCU) method [14] to simulate UI (t) with a
truncated Dyson series. We find a partitioning scheme that
determines the duration of the time steps along the sim-
ulation. Following this procedure, in general, each time
interval has a different duration that is determined from the
Hamiltonian’s dynamical characteristics and can lead to a
substantially fewer number of steps as compared to using
identical-length simulation segments, typically used in
quantum simulation algorithms. We analyze the implemen-
tation gate and qubit costs and discuss the circumstances
under which our simulation algorithm provides improve-
ments over the state of the art. Specifically, our algorithm
is independent of the oscillation frequencies of the Hamil-
tonian. This is in stark contrast to existing algorithms that
have dependence on ||dH(t)/dt||, which grows with oscil-
lation rates. Another class of Hamiltonians for which our
algorithm is preferred over others is those with exponential
decays in time. We show that, for these systems, our algo-
rithms require asymptotically a finite number of steps that
does not scale with the evolution time, leading in turn to an
exponential saving comparing to the linear scaling in exist-
ing approaches. Moreover, the cost with Hamiltonian norm
only mainly depends on the interaction Hamiltonian V(t)
and not the total Hamiltonian H(t) [17]. This also indicates
an advantage of the algorithm when the time-dependent
Hamiltonian is dominant by a static part.

The paper is organized as follows. In Sec. II, we review
the permutation expansion method that leads to an integral-
free representation for the Dyson series, as introduced in
Ref. [19]. In Sec. III, we present in detail the simula-
tion algorithm that combines the integral-free expression
of the evolution operator with the LCU method, and ana-
lyze the circuit costs. We highlight the main advantages
of our algorithm in Sec. III D 3. In Sec. III E, we address
the cases when the exponential-sum expansion of the time
dependence is not exact and estimate the error that stems
from a finite sum approximation. Finally, we give a brief
summary for our methods and results in Sec. V.

II. PERMUTATION EXPANSION METHOD FOR
TIME-DEPENDENT HAMILTONIANS

In this section, we briefly describe the integral-free
Dyson series expression of the evolution operator, derived
from a permutation expansion of the time-dependent
Hamiltonian [19]. Without loss of generality [26], we
expand a general time-dependent Hamiltonian in terms of
products of time-dependent diagonal matrices, Di(t), and
permutation operators, Pi, i.e.,

H(t) =
M∑

i=0

Di(t)Pi, (1)

where P0 ≡ 1. This decomposition can be done efficiently
as long as M scales polynomially with log d, where d is
the dimension of the Hamiltonian. We decompose each
diagonal matrix into a finite sum of exponential functions,
i.e.,

Di(t) =
Ki∑

k=1

exp(�(k)
i t)D(k)

i , (2)

where �(k)
i and D(k)

i are complex diagonal matrices with
diagonal elements being

λ
(k)
i,z ≡ 〈z|�(k)

i |z〉, (3)

d(k)i,z ≡ 〈z|D(k)
i |z〉, (4)

in some basis {|z〉} (the basis in which D0 is diagonal) and
Ki indicates the number of terms in the exponential decom-
position for Di(t). This can be done for many cases when
the time dependencies are simple combinations of expo-
nential terms. For simplicity, we assume here that the Ki
are finite, and address the most general time dependence in
detail in Sec. III E and refer to various algorithms [27–31]
for efficiently finding an exponential sum approximation
of a function.
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For a lighter notation, we set Ki = K for all i. We can
evaluate the time-evolution operator U(t) corresponding to
H(t) as

U(t) ≡ T exp
[
−i

∫ t

0
H(t′)dt′

]

=
∞∑

q=0

(−i)q
∫ t

0
dτq · · ·

∫ τ2

0
dτ1H(τq) · · · H(τ1)

=
∞∑

q=0

∑

iq

∑

kq

(−i)q
∫ t

0
dτq · · ·

×
∫ τ2

0
dτ1 exp(�(kq)

iq τq)D
(kq)
iq Piq · · ·

× exp(�(k1)
i1 τ1)D

(k1)
i1 Pi1 , (5)

where iq = {iq, . . . , i1} and kq = {kq, . . . , k1} are multi-
indices. The action of U(t) on a basis vector |z〉 is

U(t)|z〉 =
∞∑

q=0

∑

iq

∑

kq

(−i)q
∫ t

0
dτq · · ·

∫ τ2

0
dτ1

× exp(λ(kq)
iq,ziq

τq + · · · λ(k1)
i1,zi1

τ1)d
(kq)
iq,ziq

· · · d(k1)
i1,zi1

× Piq · · · Pi1 |z〉

=
∞∑

q=0

∑

iq

∑

kq

(−i)q
∫ t

0
dτq · · ·

∫ τ2

0
dτ1

× exp(λ(kq)
iq,ziq

τq + · · · + λ
(k1)
i1,zi1

τ1)d
(kq)
iq,z Piq |z〉, (6)

where |zij 〉 ≡ Pij · · · Pi1 |z〉 with j ranging from 1 to q, and

λ
(kj )
ij ,zij

(d
(kj )
ij ,zij

) is the zij th diagonal element of �
(kj )
ij (D

(kj )
ij ).

We use Piq as shorthand for Piq · · · Pi1 , and similarly

d(kq)
iq,z ≡ d(kq)

iq,ziq
· · · d(k1)

i1,zi1
. Figure 1 illustrates the accumula-

tive actions of D(k)
i Pi on a basis vector |z〉.

To proceed, we use the following identity to simplify
the expression in terms of divided differences. It is a vari-
ant of Hermite-Genocchi formula [20] applying to the
exponential function.

Identity 1. For λ1, . . . , λq ∈ C,

∫ 1

0
dsq · · ·

∫ s2

0
ds1e(λ1s1+···+λqsq) = e[x1,...,xq,0], (7)

where xj = ∑q
l=j λl and e[x1,...,xq,0] is the divided difference

of the exponential function with inputs x1, . . . , xq, 0. (The
case with q = 1 can be shown by explicit integration, and
the identity follows by induction. For more details, see Ref.
[19].)

With this property, the multidimensional integration in
the time-evolution operator can be simplified as

U(t)|z〉 =
∞∑

q=0

∑

iq

∑

kq

(−i)q
∫ t

0
dτq · · ·

∫ τ2

0
dτ1

× exp(λ(kq)
iq,ziq

τq + · · · + λ
(k1)
i1,zi1

τ1)d
(kq)
iq,z Piq |z〉

=
∞∑

q=0

∑

iq

∑

kq

(−it)q
∫ 1

0
dsq · · ·

∫ s2

0
ds1

× exp[t(λ(kq)
iq,ziq

sq + · · · + λ
(k1)
i1,zi1

s1)]d
(kq)
iq,z Piq |z〉

=
∞∑

q=0

∑

iq

∑

kq

(−i)qet[x1,x2,...,xq,0]d(kq)
iq,z Piq |z〉, (8)

where xj = ∑q
l=j λ

(kl)
il,zil

. The second equality uses the
change of variable dτ = tds, and the last equality follows
from Identity 1 and the identity of tqe[tx0,...,txq] = et[x0,...,xq].
By completing the basis, we get

U(t) =
∑

z

U(t)|z〉〈z|

=
∑

z

∞∑

q=0

∑

iq

∑

kq

(−i)qet[x1,x2,...,xq,0]d(kq)
iq,z Piq |z〉〈z|.

(9)

This is an integral-free expression for the unitary time-
evolution operator of the time-dependent Hamiltonian
H(t). We will later approximate the unitary by trun-
cating the series at some order q = Q that scales as
O[log(1/ε)/loglog(1/ε)] [14], where ε is the required
accuracy.

III. TIME-DEPENDENT HAMILTONIAN
SIMULATION ALGORITHM

A time-dependent Hamiltonian H(t) can be expressed as
a sum of two Hamiltonians—a time-independent H0 and a
dynamical V(t), i.e.,

H(t) = H0 + V(t). (10)

In many practical models, H0 represents a static and simple
Hamiltonian that is often diagonal in a known basis (which
we will identify with the computational basis). Hence,
hereafter, we assume that H0 is a diagonal operator with
real diagonal elements. The V(t) component represents the
nontrivial interactions between subsystems. Assume [32]
that H0 is diagonal in the computational basis {|z〉}. We
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FIG. 1. The actions of a sequence of generalized permutations. This figure gives a pictorial illustration on how the elements of the
diagonal matrices are picked up when interleaving with permutations. In this example, we have q = 2.

switch to the interaction picture, i.e.,

d
dt

|ψ(t)〉 = −iH(t)|ψ(t)〉 → d
dt

|ψI (t)〉 = −iHI (t)|ψI (t)〉,
(11)

where

|ψI (t)〉 = eiH0t|ψ(t)〉 and HI (t) = eiH0tV(t)e−iH0t.
(12)

The Schrödinger-picture unitary operator U(t), satisfy-
ing |ψ(t)〉 = U(t)|ψ(0)〉, is equivalent to a time-ordered
matrix exponential followed by a diagonal unitary, i.e.,

U(t) = e−iH0tT exp
[
−i

∫ t

0
HI (t′)dt′

]

= e−iH0tT exp
[
−i

∫ t

0
eiH0t′V(t′)e−iH0t′dt′

]
. (13)

Hence, the simulation of U(t) = e−iH0tUI (t) consists of
two parts—a complicated UI (t) and a simple diagonal uni-
tary e−iH0t. The simulation of e−iH0t can be achieved with
a gate cost that scales only linearly with the locality of
H0 (the highest weight of terms in H0). When we write
H0 = ∑L

γ=0 JγZγ , where each Zγ is some tensor product of
(single-qubit) Pauli-Z operators acting on at most d qubits
(locality d), it can be shown that the gate cost scales as
O(Ld) [33,34]. Therefore, the main focus of our simulation
is on UI .

We next provide an overview of the simulation
algorithm in Sec. III A. In Sec. III B, we incorporate the
LCU framework with the permutation expansion method.
Section III C 2 provides the state preparation operation
and Sec. III D evaluates the simulation cost for the whole
procedure.

A. An overview of the algorithm

Our proposed simulation algorithm consists of a permu-
tation expansion procedure for UI and the LCU method
for the quantum simulation. In Sec. III B, we explain
in detail the essential ingredients for merging these two
approaches. Before delving into technical details, we pro-
vide an overview of the algorithm in this section.

Given a time-dependent Hamiltonian H(t), we first
decompose H(t) into a sum of a static diagonal term H0
(if it exists) and a dynamical term V(t). We switch to an
interaction picture so that the target unitary evolution U(T)
over a period T becomes

U(T) = e−iH0TT exp
[
−i

∫ T

0
eiH0tV(t)e−iH0tdt

]

≡ e−iH0TUI (T). (14)

Therefore, the simulation of U(T) is equivalent to apply-
ing UI (T) followed by e−iH0T. Since the diagonal unitary
e−iH0T can be efficiently simulated, we focus on UI (T)
hereafter.

Let us expand V(t) as a sum of permutations as

V(t) =
M∑

i=0

Di(t)Pi, (15)

where the Pi are permutations (P0 ≡ 1) and the Di(t) are
some diagonal matrices that are expressed as exponential
sums, i.e.,

Di(t) =
K∑

k=1

exp(�(k)
i t)D(k)

i . (16)

Here �(k)
i and D(k)

i are some complex diagonal matrices.
Partition UI (T) into r segments UI (T, tr−1) · · · UI (t1, 0),
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whose respective durations �tw, w = 0, . . . , r − 1, are
determined by the partitioning scheme given in Sec. III B
and the time markers tw are defined as tw = ∑w−1

l=0 �tl.
The total number of steps is denoted as r. The evolution
operator from tw to tw +�tw is expressed as

UI (tw +�tw, tw) =
∞∑

q=0

∑

iq

∑

kq

∑

x=±
(−i)q

× [(e�twλ − 1)/λ]q

2q!
	
(kq)
iq (tw)Piq


(kq,w)
iq,x

(17)

with

	
(kq)
iq (tw) = ||D(kq)

iq ||maxetwλ(iq ,kq) · · · ||D(k1)
i1 ||maxetwλ(i1,k1) ,

(18)

where || · ||max is the max norm, λ(i,k) = maxz Re
(〈z|�(k)

i |z〉) is the maximum real part of �(k)
i , and λ =

maxi,k{λ(i,k)}. Here, 
(kq,w)
iq,± are some diagonal unitaries as

derived later in Eq. (38) and each Piq is a unique product of
permutations. Note that the above evolution operators are
given as a LCU. We provide a review for the LCU method
in Appendix C. We set the truncation order Q to be

Q = O
(

log(r/ε)
log log(r/ε)

)
, (19)

where ε is the overall simulation accuracy.
To implement the LCU routine for each UI (tw +

�tw, tw), we require preparing a state

|ψ0〉 = 1√
s

Q∑

q=0

∑

iq

∑

kq

∑

x=0,1

×

√√√√ [(e�twλ − 1)/λ]q	
(kq)
iq (tw)

2q!
|iq〉|kq〉|x〉, (20)

where |iq〉 represents Q quantum registers that each has
dimension M and |kq〉 represents Q quantum registers that
each has dimension K , and s is the normalization factor.
Following the same notation as used in Appendix C, let us
denote the state preparation unitary as B, i.e., B|0〉⊗2Q+1 =
|ψ0〉 (B is explicitly given in Sec. III C 2). Let us denote by
Vc the control unitary such that

Vc|iq〉|kq〉|x〉|ψ〉 = |iq〉|kq〉|x〉(−i)qPiq

(kq,w)
iq,x |ψ〉. (21)

The oblivious amplitude amplification (OAA) involves
interleaving the operator W = (B† ⊗ I)Vc(B ⊗ I) as

A = −WRW†RW, (22)

where R ≡ I − 2(|0〉〈0| ⊗ I). For each piece of the unitary,
we implement A on the extended system |0〉⊗(2Q+1)|ψ〉. By
construction, we have

||A|0〉⊗(2Q+1)|ψ〉 − |0〉⊗(2Q+1)UI (tw +�tw, tw)|ψ〉||

= O
(
ε

r

)
. (23)

This means that applying A effectively performs the uni-
tary UI (tw +�tw, tw) on the main system |ψ〉, with error
O(ε/r). Combining r pieces of the procedure, it effectively
simulates UI (T) with overall error O(ε), i.e.,

||Ar−1 · · · A1A0|0〉⊗(2Q+1)|ψ〉 − |0〉⊗(2Q+1)UI (T)|ψ〉||
= O(ε), (24)

where Aw are the OAA operators for the corresponding
piece of evolution. This implies that applying the sequence
of A’s followed by the circuit for e−iH0T can approach the
action of U(T) to an arbitrary accuracy.

B. Permutation expansion for UI (t)

In this section, we give a thorough introduction of the
permutation expansion in the Dyson series and the con-
ditions that arise from implementing the LCU method.
We focus on addressing the interaction-picture unitary
UI (t), i.e., the time-ordered operator in Eq. (13). Using the
expansions introduced in Eqs. (15) and (16), we get

UI (t) ≡ T exp
[
−i

∫ t

0
eiH0t′V(t′)e−iH0t′dt′

]

=
∞∑

q=0

(−i)q
∫ t

0
dτq · · ·

∫ τ2

0
dτ1eiH0τqV(τq)e−iH0τq · · ·

× eiH0τ1V(τ1)e−iH0τ1 . (25)

We denote the basis in which H0 is diagonal by {|z〉} and
its diagonal elements by Ez = 〈z|H0|z〉. The action of UI (t)
on a basis vector |z〉 becomes

UI (t)|z〉 =
∞∑

q=0

∑

iq

∑

kq

(−i)q
∫ t

0
dτq · · ·

×
∫ τ2

0
dτ1 exp[(iEziq

− iEziq−1
+ λ

(kq)
iq,ziq

)τq + · · ·

+ (iEzi1
− iEz + λ

(k1)
i1,zi1

)τ1]d(kq)
iq,z Piq |z〉, (26)

where Ezij
is the zij th diagonal element of H0, i.e., Ezij

=
〈zij |H0|zij 〉, and |zij 〉 = Pij |z〉 with Pij = Pij · · · Pi1 . By
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Identity 1, this can be further simplified as

UI (t)|z〉 =
∞∑

q=0

∑

iq

∑

kq

(−i)qet[x1,...,xq,0]d(kq)
iq,z Piq |z〉, (27)

where

xj = i(Eziq
− Ezij −1

)+
q∑

l=j

λ
(kl)
il,zil

. (28)

C. The LCU routine

To implement the LCU method for a quantum simula-
tion of UI (T), we first decompose the overall simulation
duration T into r pieces in sequence, i.e.,

UI (T) = UI (T, tr−1)UI (tr−1, tr−2) · · · UI (t1, 0)

=
r−1∏

w=0

UI (tw +�tw, tw), (29)

where the operators in the product of the last equation are
understood to be ordered, tw+1 = tw +�tw and t0 ≡ 0 and
tr ≡ T. The number of steps, r, and the step size, �tw, are
to be determined. When acting on a computational basis
state, each piece in the decomposition can be written as

UI (tw +�tw, tw)|z〉

= T exp
[
−i

∫ tw+�tw

tw
HI (t′)dt′

]
|z〉

=
∞∑

q=0

∑

iq

∑

kq

(−i)q
∫ tw+�tw

tw
dτq · · ·

×
∫ τ2

tw
dτ1 exp

[ q∑

l=1

(iEzil
− iEzil−1

+ λ
(kl)
il,zil
)τl

]

× d(kq)
iq,z Piq |z〉,

=
∞∑

q=0

∑

iq

∑

kq

(−i)q exp
[

tw
q∑

l=1

(iEzil
− iEzil−1

+ λ
(kl)
il,zil
)

]

×
∫ �tw

0
dτ ′

q · · ·

×
∫ τ ′

2

0
dτ ′

1 exp
[ q∑

l=1

(iEzil
− iEzil−1

+ λ
(kl)
il,zil
)τ ′

l

]

× d(kq)
iq,z Piq |z〉

=
∞∑

q=0

∑

iq

∑

kq

(−i)q exp
[

tw
q∑

l=1

(iEzil
− iEzil−1

+ λ
(kl)
il,zil
)

]

× e�tw[x1,x2,...,xq,0]d(kq)
iq,z Piq |z〉

=
∞∑

q=0

∑

iq

∑

kq

(−i)qe
−itw(Ezi0

−Eziq
)
e

tw
∑q

l=1 λ
(kl)
il ,zil

× e�tw[x1,x2,...,xq,0]d(kq)
iq,z Piq |z〉, (30)

which has the same form as Eq. (27) except that the
integration intervals are shifted (with Ezi0

≡ Ez). We can
set

d(kq)
iq,z (tw) = d(kq)

iq,z e
tw

∑q
l=1 λ

(kl)
il ,zil ,

which leads to

UI (tw +�tw, tw)|z〉 =
∞∑

q=0

∑

iq

∑

kq

(−i)qe
−itw(Ezi0

−Eziq
)

× e�tw[x1,x2,...,xq,0]d(kq)
iq,z (tw)Piq |z〉. (31)

To formulate the above expression in terms of a linear
combination of unitaries, we need to evaluate the norms
of e�tw[x1,x2,...,xq,0] and d(kq)

iq,z (tw). The norm of d(kq)
iq,z (tw) is

bounded by

|d(kq)
iq,z (tw)| ≤ ||D(kq)

iq ||maxetwλ(iq ,kq) · · · ||D(k1)
i1 ||max etwλ(i1,k1)

= 	
(kq)
iq (tw). (32)

The norm of the e�tw[x1,x2,...,xq,0] can be bounded by using
the following identity.

Identity 2. For any q + 1 complex values x0, . . . , xq ∈ C,

|e[x0,...,xq]| ≤ e[Re(x0),...,Re(xq)] = eξ

q!
, (33)

where Re(·) denotes the real part of an input and ξ ∈
[min{Re(x0), . . . , Re(xq)}, max{Re(x0), . . . , Re(xq)}].

The proof can be found in Appendix A. From Identity 2,
we show in Appendix B that

|e�tw[x1,x2,...,xq,0]| ≤ e�tw[qλ,(q−1)λ,...,λ,0]

= 1
q!

(
e�twλ − 1

λ

)q

≡ �̃tqw
q!

, (34)
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where we have defined the quantity

�̃tw ≡ e�twλ − 1
λ

. (35)

With these bounds, the factors in the expansion form in Eq.
(31) can be written as

e�tw[x1,x2,...,xq,0]d(kq)
iq,z (tw) (36)

= �̃tqw
q!
	
(kq)
iq (tw) cos[φ(kq)

iq,z ]e
iθ
(kq)
iq ,z

= �̃tqw
2q!

	
(kq)
iq (tw)(e

iφ
(kq)
iq ,z +iθ

(kq)
iq ,z + e

−iφ
(kq)
iq ,z +iθ

(kq)
iq ,z ), (37)

where

φ
(kq)
iq,z = cos−1

[∣∣∣∣
e�tw[x1,x2,...,xq,0]d(kq)

iq,z (tw)

(�̃tqw/q!)	(kq)
iq (tw)

∣∣∣∣

]

and

θ
(kq)
iq,z = arg

[e�tw[x1,x2,...,xq,0]d(kq)
iq,z (tw)

(�̃tqw/q!)	(kq)
iq (tw)

]
.

The evolution operator from tw to tw +�tw becomes

UI (tw +�tw, tw) =
∑

z

UI (tw +�tw, tw)|z〉〈z|

=
∑

z

∞∑

q=0

∑

iq

∑

kq

(−i)q
�̃tqw
2q!

	
(kq)
iq (tw)

× (e
iφ
(kq)
iq ,z +iθ

(kq)
iq ,z + e

−iφ
(kq)
iq ,z +iθ

(kq)
iq ,z )Piq |z〉〈z|

=
∞∑

q=0

∑

iq

∑

kq

∑

x=±
(−i)q

�̃tqw
2q!

	
(kq)
iq (tw)Piq


(kq,w)
iq,x , (38)

where 
(kq,w)
iq,± are diagonal unitaries with diagonal ele-

ments being e
i(±φ(kq)

iq ,z +θ(kq)
iq ,z ).

To implement the LCU method for simulating UI (tw +
�tw, tw), we require a preparation of the state

|ψ0〉 = 1√
s

Q∑

q=0

∑

iq

∑

kq

∑

x=0,1

√
�̃tqw
2q!

	
(kq)
iq (tw)|i1〉

· · · |iq〉 ⊗ |0〉⊗(Q−q)|k1〉 · · · |kq〉 ⊗ |0〉⊗(Q−q)|x〉

≡ 1√
s

Q∑

q=0

∑

iq

∑

kq

∑

x=0,1

√
�̃tqw
2q!

	
(kq)
iq (tw)|iq〉|kq〉|x〉,

(39)

where |iq〉 represents Q quantum registers that each has
dimension M and |kq〉 represents Q quantum registers that

each has dimension K . The normalization constant is

s =
Q∑

q=0

∑

iq

∑

kq

∑

x=0,1

�̃tqw
2q!

	
(kq)
iq (tw) ≡

Q∑

q=0

[	(tw)�̃tw]q

q!
,

(40)

where we have defined

	(tw) ≡
M∑

i=0

K∑

k=1

||D(k)
i ||maxetwλ(i,k) , (41)

and we note that 	(tw) is an upper bound on the max-
norm of the interaction Hamiltonian at time tw, 	(tw) ≥
‖V(tw)‖max. The quantity 	(tw) is related to the energy
strength in a typical LCU setup [14]. In Appendix D,
we provide an alternative way that uses a larger bound
	 = MK max∀k,i ||D(k)

i ||max, which leads to an exponential
saving for the state preparation. We proceed with 	(tw)
hereafter.

The OAA step in the LCU method requires s ≈ 2. This
leads to

	(tw)�̃tw = 	(tw)
e�twλ − 1

λ
= ln2, (42)

and Eq. (40) becomes a truncated Taylor expansion of 2
up to order Q, i.e., 2 ≈ ∑Q

q=0 (ln2)q/q!. If we require |s −
2| ≤ ε/r, where r is the total number of steps and ε is some
positive number, then the simulation error for each UI (tw +
�tw, tw) is also within ε/r. The required truncation order
with this accuracy scales as

Q = O
(

log(r/ε)
log log(r/ε)

)
. (43)

1. Time partitioning and the number of time steps

The condition in Eq. (42) imposes a constraint on the
next step size �tw given the current time tw,

�tw = 1
λ

ln
(

1 + λ

	(tw)
ln 2

)
. (44)

Remembering that 	(tw) is a function of tw = ∑w−1
l=0 �tl,

this condition determines the schedule, as every �tw is
determined by the preceding time steps.

Special care should be given when setting the last time
step, as �tw can become too large that it exceeds the total
desired evolution time T. Whenever tw+1 is found to be
greater than T [or if the argument inside the ln(·) is found
to be negative], one should replace the bound 	(tw) with
a larger bound 	̃(tw) = λ ln 2/(eλ�tw − 1) and set the final
step �tw = T − tw.

030342-7



YI-HSIANG CHEN et al. PRX QUANTUM 2, 030342 (2021)

Let us now examine the dependence of �tw on 	(tw)
in order to determine a bound on the number of time steps
(equivalently, number of repetitions) r required for the exe-
cution of the entire time evolution. We distinguish between
three cases. (i) When λ = 0, we have �tw	(tw) = ln 2,
similar to the time-independent case, though we note that
a vanishing maximal λ could imply time-dependent oscil-
lations as well. This can be seen by taking the λ → 0
limit of Eq. (44). (ii) In the case where λ < 0, i.e., a
system with a decaying 	(tw), we have �tw	(tw) ≥ ln 2,
i.e., the time steps are longer than ln 2/	(tw). Further-
more, the total number of steps r is finite even for an
arbitrarily large evolution time T. Note that, since 	(tw)
approaches zero asymptotically, for a large enough time
tw∗, we have 	(tw∗) < |λ| ln 2, i.e., the argument inside
the logarithm above becomes negative. This indicates it
reaches the final step, i.e., the bound should be modified as
	̃(tw∗) = λ ln 2/(eλ�tw∗ − 1) and �tw∗ = T − tw∗ becomes
the final step. (iii) In the case where λ > 0 [an amplified
	(tw)], we have 	(tw) � λ at large simulation times, tw.
From Eq. (44), we have �tw → ln 2/	(tw) in this limit.

We see that (for large enough simulation times) the
time step �tw is inversely proportional to 	(tw) that
upper bounds the max-norm of the interaction Hamiltonian
at time tw. Therefore, we have

∑r−1
w=0 	(tw)�tw � r ln 2,

which implies that r � ∑r−1
w=0 	(tw)�tw/ ln 2.

It would be instructive to compare the above scaling
with that of Ref. [17] in which the simulation algorithm
is said to have an L1-norm scaling, i.e., an algorithm
cost scaling linearly with

∫ t
0 dτHmax(τ ) up to logarith-

mic factors. Under a similar intuition, our algorithm has
a discretized L1-norm-like scaling with

∑r−1
w=0 	(tw)�tw.

However, in our case, 	(tw) is related to the norm of the
interaction Hamiltonian.

2. State preparation

In this subsection, we provide a procedure to prepare
the state |ψ0〉 given in Eq. (39). First, we initialize a
state |0〉⊗Q|0〉⊗Q|0〉, where each of the first Q registers has
dimension M (responsible for the |iq〉 part), each of the
later Q registers has dimension K (responsible for the |kq〉
part), and the last register is a qubit (for the cosine decom-
position). For simplicity, we can perform a Hadamard gate
on the last qubit and then omit its dependence for the fol-
lowing discussion. The next step is to create a state of the
form

1√
s

Q∑

q=0

√
sq|1〉⊗q|0〉⊗(Q−q)|1〉⊗q|0〉⊗(Q−q), (45)

where sq ≡ [	(tw)�̃tw]q/q!. For each |1〉 from the first Q
registers (the |iq〉 part) and the corresponding |1〉 in the

later Q registers (the |kq〉 part), we make

|1〉|1〉 →
M∑

i=0

K∑

k=1

√
||D(k)

i ||maxetwλ(i,k)

	(tw)
|i〉|k〉. (46)

Then Eq. (45) becomes

1√
s

Q∑

q=0

√
sq

∑

iq

∑

kq

√√√√	
(kq)
iq (tw)

[	(tw)]q |iq〉|kq〉

= 1√
s

Q∑

q=0

∑

iq

∑

kq

√
(�̃tw)q

q!
	
(kq)
iq (tw)|iq〉|kq〉, (47)

which is the required |ψ0〉 in Eq. (39), when combined with
|x〉.

Next, we provide a process that produces the state in Eq.
(45). First, we perform a rotation that takes the first register
in the |iq〉 part to

|0〉 → 1√
s

⎛

⎝|0〉 +
√√√√

Q∑

q=1

sq|1〉
⎞

⎠ , (48)

and perform a control gate from the first register to the
second (both in the |iq〉 part) such that

1√
s

⎛

⎝|0〉 +
√√√√

Q∑

q=1

sq|1〉
⎞

⎠ |0〉 → 1√
s

[
|00〉

+
√√√√

Q∑

q=1

sq|1〉 1√∑Q
q=1 sq

(√
s1|0〉 +

√√√√
Q∑

q=2

sq|1〉
)]

= 1√
s

⎛

⎝|00〉 + √
s1|10〉 +

√√√√
Q∑

q=2

sq|11〉
⎞

⎠. (49)

Continuing this procedure for the rest of the registers in the
|iq〉 part, the state becomes

|0〉⊗Q → 1√
s

Q∑

q=0

√
sq|1〉⊗q|0〉⊗(Q−q). (50)

At this step, we perform controlled-NOT (CNOT) operations
[35] from the first Q registers (|iq〉 part) to the last Q reg-
isters (|kq〉 part) correspondingly, e.g., perform a CNOT
operation from the first register in the |iq〉 part to the first
register in the |kq〉 part, and so on and so forth. Finally, we
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have

1√
s

Q∑

q=0

√
sq|1〉⊗q|0〉⊗(Q−q)|0〉⊗Q

→ 1√
s

Q∑

q=0

√
sq|1〉⊗q|0〉⊗(Q−q)|1〉⊗q|0〉⊗(Q−q), (51)

which gives Eq. (45), as required. The estimated gate
cost for the preparation of |ψ0〉 is O(QMK). More detail
regarding the cost is provided in Sec. III D 1.

3. Implementation of the controlled unitaries

The second ingredient of the LCU routine is the con-
struction of the controlled operation

Vc|iq〉|kq〉|x〉|ψ〉 = |iq〉|kq〉|x〉(−i)qPiq

(kq,w)
iq,x |ψ〉. (52)

Taking an approach similar to that taken in Ref. [34], we
first note that Eq. (52) indicates that Vc can be carried out
in two steps: a controlled-phase operation (Vc
) followed
by a controlled-permutation operation (VcP).

The controlled-phase operation Vc
 requires a some-
what intricate calculation of nontrivial phases. We there-
fore carry out the required algebra with the help of addi-
tional ancillary registers and then “push” the results into
phases. The latter step is done by employing the unitary

Uph|ϕ〉 = e−iϕ|ϕ〉, (53)

whose implementation cost depends only on the preci-
sion with which we specify ϕ and is independent of
Hamiltonian parameters [33] (see Ref. [34] for a com-
plete derivation). With the help of the (controlled) unitary
transformation

Vχφ|iq〉|kq〉|x〉|z〉|0〉 = |iq〉|kq〉|x〉|z〉|χ(z)iq + (−1)kφ(z)iq 〉,
(54)

we can write Vc
 = V†
χφ(1 ⊗ Uph)Vχφ , so that

Vc
|iq〉|kq〉|x〉|z〉 = |iq〉|kq〉|x〉
(k)
iq |z〉. (55)

Note that Vχφ sends computational basis states to com-
putational basis states. We provide an explicit construc-
tion of Vχφ in Ref. [34]. We find that its gate cost
is O[QM (kod + log M )+ QMK(CD + C�H0 + C�)] and
qubit cost is O[Q log(MK)]. Additional details are pro-
vided in Sec. III D 1.

The construction of VcP is carried out by a repeated
execution of the simpler unitary transformation Up |i〉|z〉 =
|i〉Pi|z〉. Recall that the Pi are the off-diagonal permuta-
tion operators that appear in the Hamiltonian. The gate cost
of Up is therefore O[M (kod + log M )]. Additional details
may be found in Ref. [34].

D. Algorithm cost

We next analyze the circuit costs for the permutation
expansion algorithm. Recall that the simulation of U(T)
consists of two operations—e−iH0T and UI (T). The diag-
onal unitary e−iH0T can be implemented efficiently with
a gate cost that scales linearly with the system size. To
observe this, note that H0 is a diagonal matrix with real
diagonal elements and can be written as H0 = ∑L

γ=0 JγZγ ,
where each Zγ is a tensor products of Pauli-Z operators
(Z ⊗ · · · ⊗ Z) acting on at most d qubits (weight-d oper-
ators). Hence, we can write e−iH0T = ∏L

γ=0 e−iJγ Zγ T. Each
e−iJγ Zγ T can be simulated using at most 2d CNOT gates with
a single ancillary qubit. For example, let Zγ be a weight-m
(m ≤ d) operator; then e−iJγ Zγ T can be implemented as

where |z1〉 · · · |zm〉 are the qubits Zγ acts on and |0〉 is an
ancillary qubit for extracting the phase. There are total L
such implementations for e−iH0T. Therefore, the total gate
cost is O(Ld) and the qubit cost is O(1). Since L usu-
ally grows linearly with the system size, the gate cost also
scales linearly.

1. The cost for the state preparation and the controlled
unitaries

The cost of implementing UI (T) resembles that in
Ref. [34]. The first ingredient is the preparation of
state |ψ0〉. Recall from Sec. III C 2 that the opera-
tion that takes |0〉⊗Q|0〉⊗Q|0〉 to (1/

√
s)

∑Q
q=0

√sq|1〉⊗q

|0〉⊗(Q−q)|1〉⊗q|0〉⊗(Q−q) has gate cost O(Q). The operation

for |1〉|1〉 → ∑M
i=0

∑K
k=1

√
[||D(k)

i ||maxetwλ(i,k)/	(tw)]|i〉|k〉
costs O(MK) [14,36]. The total gate cost for the prepara-
tion of |ψ0〉 (i.e., B) is O(QMK). In Appendix D, we pro-
vide an alternative procedure that leads to a O[Q log(MK)]
scaling for implementing B. The qubit cost in the state
preparation is O[Q log(MK)].

The next component is the implementation of the control
unitary Vc. As shown in Ref. [34], the gate cost of perform-
ing the control permutation Piq is O[QM (kod + log M )],
where kod is the “locality,” i.e., each permutation Pi is
a tensor product of at most kod Pauli-X operators. The
implementation of the control phase 
(kq,w)

iq,x involves the

calculation of d(kq)
iq,z (the product of diagonal elements in

the permutation expansion) and the divided differences
(with the xj being the inputs). The cost of the former
is O(QMKCD), where CD is the cost of obtaining an
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element of D(k)
i . The cost of the latter is O[QM (kod +

log M )+ QMK(C�H0 + C�)], where C�H0 (C�) is the
cost of obtaining energy differences of H0 (elements of
�
(k)
i ) [therefore, C�H0 + C� is the cost for obtaining the

inputs, xj , as defined in Eq. (28)]. The additional cost for
the reversibility of the process scales as O(Q2). A detailed
discussion of the costs of C�H0 and C� may be found in
Ref. [34]. Combining these, we estimate that the total cost
for Vc is

O[Q2 + QM (kod + log M )+ QMK(CD + C�H0 + C�)].
(56)

2. Overall cost of the algorithm

The full simulation for UI (T) is a product of seg-
ments UI (tw +�tw, tw), where each segment is simulated
by interleaving B and Vc. The total number of segments,
r, is determined by T = ∑r−1

w=0�tw, where each �tw is
determined by the partitioning scheme described in Sec.
III C 1.

As discussed above, the number of LCU applications
r can be upper bounded by r � ∑r−1

w=0 	(tw)�tw/ ln 2 (in
the long simulation time limit), which can be viewed as
a discretized L1-norm-like scaling with the norm of the
nonstatic component of the Hamiltonian V(t).

Combining with the cost for simulating e−iH0T with the
cost for each step (56), we conclude that at worst the total
gate cost scales as

O[rQ2 + rQM (kod + log M )

+ rQMK(CD + C�H0 + C�)+ Ld], (57)

and the qubit cost scales as

O[Q log(MK)], (58)

where Q scales as O[log(r/ε)/ log log(r/ε)]. A summary
of the gate and qubit costs of the simulation circuit and
the various subroutines used to construct it is given in
Table I. A comparison to the best existing algorithms is
also provided in Table II.

3. Example advantages of the algorithm

To illustrate how our simulation algorithm can provide
speedups over existing algorithms, we focus in this subsec-
tion on two types of Hamiltonian system: highly oscillating
systems and decaying systems.

The cost of our algorithm is independent of the oscil-
lation rates of the dynamics, whereas the cost of any
simulation algorithm (e.g., Refs. [12,15–17]) that depends
on ||dH(t)/dt|| would depend on oscillation rates of the
system. To illustrate this advantage, consider a two-level

system with a Hamiltonian

H(t) = hZ + 	(e−iαt|0〉〈1| + eiαt|1〉〈0|) = H0 + V(t),
(59)

where h,	,α ∈ R, H0 = hZ, and V(t) = 	(e−iαt|0〉〈1| +
eiαt|1〉〈0|). In this case, we have kod = M = K = 1 and
λ = 0. The gate cost of simulating U(T) scales as

O
[
	T

(
log	T/ε

log log	T/ε

)2]
, (60)

which is independent of α. This means that the simula-
tion cost remains the same even if α becomes arbitrarily
large. One can realize the absence of α owing to the fact
that phases are explicitly integrated out into an integral-
free expansion series, where the bound of each term does
not depend on the oscillations (see Identity 2). Therefore,
our simulation can be significantly more effective when the
time dependence of the Hamiltonian has very high frequen-
cies. Note that while the example above was given for a
simple qubit system with pure oscillation, the frequency
independence in cost holds for any system.

Another class of systems for which our algorithm
can provide speedup are Hamiltonians with exponen-
tial decays, i.e., λ < 0, which play an important role in
many-body physics [37]. For concreteness, consider the
Hamiltonian

H(t) = hZ + 	e−αtX = H0 + V(t), (61)

where h,	 ∈ R, α > 0, H0 = hZ, and V(t) = 	e−αtX . In
this case, λ = −α and ||V(t)||max = 	e−αt.

The L1-norm defined in Ref. [17] is
∫ T

0 ||H(t)||maxdt,
which has a linear scaling O(hT) with the simu-
lation duration T, whereas our discretized L1-norm∑r−1

w=0 ||V(tw)||max�tw tends to a constant in the long time
limit. This can be seen from the fact that the partition ter-
minates at a large enough time tw (≤ T), where �tw =
T − tw becomes the final simulation step, as described in
Sec. III C 1. The above results also hold for any combi-
nation of exponential decays (even when these are multi-
plied by oscillatory terms) with which different time decay
dependencies may be constructed.

E. Hamiltonians with arbitrary time dependence

The simulation algorithm invokes a switch to the inter-
action picture, by dividing the Hamiltonian into a static
diagonal part H0 and a time-dependent Hermitian operator
V(t). The V(t) is expanded using permutations and expo-
nential sums as presented in Eq. (16). There, we assume
that the time dependence can be expressed as exponen-
tial sums with a finite number of terms, K . Although
this assumption holds for many models (e.g., when the
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TABLE I. A summary of resources for the circuit.

Unitary Gate cost Qubit cost

e−iH0T O(Ld) O(1)
Vc O[Q2 + QM (kod + log M )+ QMK(CD + C�H0 + C�)] O(Q log MK)
UI (T) O{r[Q2 + QM (kod + log M )+ QMK(CD + C�H0 + C�)]} O(Q log MK)

time dependencies are some combinations of trigonometric
functions and exponential decays), the exponential series
generally requires an infinite sum (e.g., a Fourier series).
A straightforward procedure to obtain a finite sum approx-
imation is via a truncated Fourier series. As an example,
let us consider a polynomial function of time, i.e., f (t) =∑p

l=0 cltl. Using the proof of Theorem 8.14 in Ref. [38],
it can be shown that a truncated Fourier series of f (t) is
O(ε) close to f (t) when the truncation order is O(1/ε).
We also note that, other than the Fourier series, there
have been numerous studies [27–31] regarding finding an
exponential-sum approximation of a function. Some of
them, e.g., Ref. [27], provide efficient algorithms with log-
arithmically scaling terms (with respect to the inverse of
a required accuracy). These results suggest that efficient
methods for finding the exponential-sum decompositions
of the time dependencies of V(t) can exist in many cases.

Suppose that V(t) is approximated by a finite series
of an exponential sum. The resulting error of the unitary
evolution, due to the Hamiltonian approximation, scales
only at most linearly with the evolution duration. This
can be shown using the following property. Given two
time-dependent Hamiltonians H1(t) and H2(t) such that

||H1(t)− H2(t)|| ≤ ε for all t ∈ [0, T], (62)

then

||U1(T, 0)− U2(T, 0)|| ≡
∣∣∣∣

∣∣∣∣T exp
[
−i

∫ T

0
H1(t)dt

]

− T exp
[
−i

∫ T

0
H2(t)dt

]∣∣∣∣

∣∣∣∣

≤ εT. (63)

This holds for any norm || · ||. Before proving this, we
first note a property of the so-called subadditivity of error

in implementing unitaries [33]. It says that, for unitaries
U1, U2, V3, and V4, we have

||U2U1 − V2V1|| ≤ ||U2 − V2|| + ||U1 − V1||. (64)

This can be easily shown by

||U2U1 − V2V1|| = ||U2U1 − V2U1 + V2U1 − V2V1||
≤ ||(U2 − V2)U1|| + ||V2(U1 − V1)||
≤ ||U2 − V2|| + ||U1 − V1||, (65)

where the basic operator norm inequalities are used. Now
we prove the bound in Eq. (63). We divide T into n seg-
ments such that each segment has width T/n. We can
rewrite the time evolution operators as

U1(T, 0) = U1

(
T,

n − 1
n

T
)

· · · U1

(
T
n

, 0
)

,

U2(T, 0) = U2

(
T,

n − 1
n

T
)

· · · U2

(
T
n

, 0
)

.

Repeatedly using the subadditivity of error, we have

||U1(T, 0)− U2(T, 0)||

≤
n∑

m=1

∣∣∣∣

∣∣∣∣U1

(
mT
n

,
(m − 1)T

n

)
− U2

(
mT
n

,
(m − 1)T

n

)∣∣∣∣

∣∣∣∣

≤
n∑

m=1

∣∣∣∣

∣∣∣∣
∫ mT/n

(m−1)T/n
[H1(t)− H2(t)]dt

∣∣∣∣

∣∣∣∣ +
n∑

m=1

O
[(

T
n

)2]

≤
n∑

m=1

ε
T
n

+
n∑

m=1

O
[(

T
n

)2]

= εT + O
[

T2

n

]
. (66)

TABLE II. A comparison of gate costs with the best existing algorithms. Both approaches in Ref. [17] have H(t) = ∑L′
�=1 α�(t)H�,

where the H� are some unitary operators and α(t) some time-dependent coefficients. Here ||α||1,1 ≡ ∑L′
�=1

∫ T
0 dtα�(t)||H�||∞, ||α||∞,1 ≡∫ T

0 dt||α�(t)||∞, gc is the gate cost for implementing each controlled H�, and ge is the gate cost for each controlled e−iTH� .

Algorithms Gate complexity

Continuous qDRIFT in Ref. [17] O(||α||21,1ge/ε)

Rescaled Dyson series in Ref. [17] Õ(||α||∞,1L′2gc)

This paper O{r[Q2 + QM (kod + log M )+ QMK(CD + C�H0 + C�)] + Ld}
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Since this inequality holds for any n, we can take n → ∞
and it yields Eq. (63) as claimed.

Now we apply this property to the simulation of UI (T).
Suppose that we have a δ̃-accurate approximation of V(t),
i.e., ||Ṽ(t)− V(t)|| ≤ δ̃ for all t ∈ [0, T], where Ṽ(t) is the
finite exponential-sum approximation of V(t). The accu-
mulative error from this approximation is bounded by δ̃T
and the overall error is O(δ̃T + δ), where δ is the error
from the LCU implementation. Recall that δ̃ is closely
related to K (the number of terms). Although it is intu-
itive that a larger K can allow for a smaller δ̃, the explicit
relation between the two largely depends on the model and
the expansion method. Nonetheless, we can expect K to
scale at least linearly with 1/δ̃ for many cases, e.g., the
aforementioned truncated Fourier series for a polynomial.

The simulation cost also depends on M , the number of
terms in the permutation expansion. This quantity usually
scales linearly with the system size and can be easily deter-
mined. For example, a typical spin model usually involves
a sum of tensor products of Pauli-X (or Y) operators
and Pauli-Z. Each tensor product represents an interaction
between qubits on certain lattice sites. Because of the com-
mon locality constraint that prevents a qubit interacting
with those arbitrarily far apart, the number of interacting
terms, M , scales at most linearly with the number of qubits.
In addition, a tensor product of Pauli operators can be eas-
ily separated into a product of diagonal matrices and a
permutation, e.g., X ⊗ X ⊗ Y = (I ⊗ I ⊗ −iZ)(X ⊗ X ⊗
X ). We conclude that M will have modest linear scaling
for most practical models.

IV. ALTERNATIVE SCHEME AND REDUCTION
TO THE TIME-INDEPENDENT CASE

In this section, we provide an alternative yet equiva-
lent scheme for the dynamical simulation, one that will
allow us to establish an immediate connection to the time-
independent Hamiltonian simulation formalism (specifi-
cally to the scheme presented in Ref. [34]), in which H(t)
is assumed constant in time.

In previous sections, we have chosen to partition the
interaction-picture unitary UI (T) into short time segments
and then follow its execution by the application of a diag-
onal eiH0T, bringing it back to the Schrödinger picture.
Here, we show that the Schrödinger picture U(T) can be
partitioned similarly.

Recalling the expansion of UI (tw +�tw, tw) in Eq. (31),
we have

UI (tw +�tw, tw)|z〉

=
∞∑

q=0

∑

iq

∑

kq

(−i)qetwx1e�tw[x1,x2,...,xq,0]d(kq)
iq,z Piq |z〉

with

x1 = i(Eziq
− Ez)+

q∑

l=1

λ
(kl)
il,zil

.

Breaking the etwx1 phase, we get

UI (tw +�tw, tw)|z〉

=
∞∑

q=0

∑

iq

∑

kq

(−i)qe
tw

∑q
l=1 λ

(kl)
il ,zil e−itwEz e

i(tw+�tw)Eziq

× e
−i�twEziq e�tw[x1,x2,...,xq,0]d(kq)

iq,z Piq |z〉. (67)

We find that

e−iH0(tw+�tw)UI (tw +�tw, tw) = ŨI (tw +�tw, tw)e−iH0tw ,

where

ŨI (tw +�tw, tw)

=
∑

z

∞∑

q=0

∑

iq

∑

kq

(−i)qe
tw

∑q
l=1 λ

(kl)
il ,zil

× e
−i�twEziq e�tw[x1,x2,...,xq,0]d(kq)

iq,z Piq |z〉〈z|. (68)

Inspecting the full unitary evolution, we observe that

U(T) = e−iH0TUI (T)

= e−iH0TUI (T, tr−1)UI (tr−1, tr−2) · · · UI (t1, 0)

= ŨI (T, tr−1)D(tr−1)UI (tr−1, tr−2) · · · UI (t1, 0).
(69)

The evolution operator U(T) can be simplified as

U(T) = ŨI (T, tr−1)ŨI (tr−1, tr−2) · · · ŨI (t1, 0), (70)

eliminating the diagonal piece. Each ŨI (tw +�tw, tw) can
be rewritten as

ŨI (tw +�tw, tw)

=
∑

z

∞∑

q=0

∑

iq

∑

kq

(−i)qe
(tw+�tw)

∑q
l=1 λ

(kl)
il ,zil

× e
−�tw(iEziq

+∑q
l=1 λ

(kl)
il ,zil

)
e�tw[x1,x2,...,xq,0]d(kq)

iq,z Piq |z〉〈z|.
(71)
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The factor e
−�tw(iEziq

+∑q
l=1 λ

(kl)
il ,zil

)
can be absorbed into the

divided difference

ŨI (tw +�tw, tw) =
∑

z

∞∑

q=0

∑

iq

∑

kq

(−i)qe
(tw+�tw)

∑q
l=1 λ

(kl)
il ,zil

× e�tw[ỹ1,ỹ2,...,ỹq,ỹq+1]d(kq)
iq,z Piq |z〉〈z|

(72)

with

ỹj = xj −
(

iEziq
+

q∑

l=1

λ
(kl)
il,zil

)

= i(Eziq
− Ezij −1

)+
q∑

l=j

λ
(kl)
il,zil

−
(

iEziq
+

q∑

l=1

λ
(kl)
il,zil

)
,

which simplifies to

ỹj = −iEzij −1
−

j −1∑

l=1

λ
(kl)
il,zil

. (73)

By inserting additional i�twEz phases into the divided
differences, we can rewrite

ŨI (tw +�tw, tw)

=
( ∑

z

∞∑

q=0

∑

iq

∑

kq

(−i)qe
(tw+�tw)

∑q
l=1 λ

(kl)
il ,zil

× e�tw[y1,y2,...,yq,yq+1]d(kq)
iq,z Piq |z〉〈z|

)

× e−iH0�tw (74)

with

yj = ỹj + iEz = −i(Ezij −1
− Ez)−

j −1∑

l=1

λ
(kl)
il,zil

= −i�Ezij −1
−

j −1∑

l=1

λ
(kl)
il,zil

.

Now, we can write U(T) as alternating off-diagonal and
diagonal unitaries:

U(T) =
∏

w

ŨI (tw +�tw, tw)

≡
∏

w

Uod(tw +�tw, tw)e−iH0�tw . (75)

When H(t) becomes time independent, λ(kl)
il,zil

= 0 and
�tw = �t = ln 2/	. To synchronize the notation with
that of Ref. [34], we identify H0 = D0 and Uod(tw +
�tw, tw) = Uod. The evolution operator becomes U(T) =
Uode−iD0�t · · · Uode−iD0�t, which coincides with Ref. [34].

V. CONCLUSIONS

We have presented a quantum algorithm for simulating
the evolution operator generated from a time-dependent
Hamiltonian. The algorithm involves a permutation expan-
sion for the interaction Hamiltonian, a switch to the
interaction picture, and the incorporation of the LCU tech-
nique. Combining the permutation expansion with the
Dyson series leads to an integral-free representation for the
interaction-picture unitary with coefficients involving the
notion of divided differences with complex inputs.

We find that our expansion allows us to adjust the time
steps based on the dynamical characteristics of the Hamil-
tonian, providing a resource saving as compared to the
equal-size partition with the largest bound. This further
results in a gate resource that scales with an L1-norm-
like scaling with respect only to the “nonstatic” norm
of the Hamiltonian. Our expansion also improves on the
traditional product-formula algorithms, where the evolu-
tion operator is divided into equal-size pieces, where each
piece is approximated by a time-independent Hamiltonian
simulation, i.e., e−iHtdt.

Specifically, we have demonstrated that, for systems
with a decaying nonstatic component, the resources do
not scale with the total evolution time asymptotically.
Furthermore, the simulation cost is independent of the
frequencies, implying a significant advantage for systems
with highly oscillating components.
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APPENDIX A: PROPERTIES OF DIVIDED
DIFFERENCE

We begin with a formal definition of divided difference
for complex-valued functions and follow with some prop-
erties that will be of use to us when deriving the new
bound. The main results are derived for the exponential
functions.

Definition 1. Let U be an open subset of C, and f :
U → C is analytic in U. For any non-negative integer
q and x0, x1, . . . , xq ∈ U, the divided difference of f is
denoted as f [x0, x1, . . . , xq]. If q = 0, f [x0] ≡ f (x0). Sup-
pose that {x0, x1, . . . , xq} has r distinct elements. Let S =
{xσ(0), xσ(1), . . . , xσ(q)} be a sorted set of {x0, x1, . . . , xq},
i.e., there exists a permutation σ such that the first n1 ele-
ments of S are equal and the following n2 elements of S are
equal, and so on and so forth. There are r same-element
clusters and

∑r
i=1 ni = q + 1. The divided difference of f
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is defined as

f [x0, x1, . . . , xq]

=
⎧
⎨

⎩

f [xσ(1),...,xσ(q)]−f [xσ(0),...,xσ(q−1)]
xσ(q)−xσ(0)

if r > 1,
f (q)(x0)

q! if r = 1,
(A1)

where f (q) denotes the qth derivative of f .

Although the above sorting procedure is not unique, it
can be shown that any choice of the permutation gives the
same result, and hence the definition is well defined.

The divided difference involves a recursive relation that
connects a q + 1 input case to two q cases. For q = 1,

f [x0, x1] =
⎧
⎨

⎩

f (x1)− f (x0)

x1 − x0
if x0 �= x1,

f ′(x0) if x0 = x1.
(A2)

For q = 2, and suppose x0, x1 and x2 are all distinct,

f [x0, x1, x2] = 1
x2 − x0

(
f (x2)− f (x1)

x2 − x1
− f (x1)− f (x0)

x1 − x0

)

= f (x0)

(x0 − x1)(x0 − x2)
+ f (x1)

(x1 − x2)(x1 − x0)

+ f (x2)

(x2 − x0)(x2 − x1)
. (A3)

In fact, it can be shown that, for distinct x0, x1, . . . , xq,

f [x0, x1, . . . , xq] =
q∑

i=0

f (xi)∏
k �=i(xi − xk)

. (A4)

Remark. Since any analytic function admits a Taylor
expansion representation and the divided difference is a
linear functional, the divided difference of an analytic func-
tion f has a series expansion form, i.e., for x0, . . . , xq and
y in f ’s analytic domain,

f [x0, . . . , xq] =
∞∑

n=0

f (n)(y)
n!

pn|y[x0, . . . , xq], (A5)

where pn|y(x) ≡ (x − y)n. Because pn|y[x0, . . . , xq] = 0 for
all n < q, the nonvanishing term of the series starts from
the qth order.

For simplicity, we denote the divided difference for the
exponential function as e[x0,...,xq], i.e.,

e[x0,...,xq] ≡ f [x0, . . . , xq], where f (x) = ex. (A6)

Property 1. For any non-negative integer q and
x0, x1, . . . , xq ∈ C,

e[x0,x1,...,xq] = ex0e[0,x1−x0,...,xq−x0]. (A7)

This property and the fact that divided differences are
permutation symmetric among inputs imply that any input
can be factored out of the divided difference by subtracting
it from every entry.

Property 2. For any non-negative integer q and
x0, x1, . . . , xq ∈ C,

e[x0,x1,...,xq] =
∞∑

n=q

1
n!

∑
∑

kj =n−q

q∏

j =0

(xj )
kj . (A8)

An equivalent definition of the divided difference for an
analytic function is via its Taylor expansion. It amounts to
applying the divided difference on every order of the series.
Since any polynomial of order less than q is annihilated,
the series starts from the order q. Property 2 is derived from
the Taylor expansion of ex with respect to the origin.

Lemma 1. For any non-negative integer q and x0, x1, . . . ,
xq ∈ C,

∫ 1

0
aqe[ax0,ax1,...,axq]da = e[0,x0,x1,...,xq]. (A9)

Proof. This can be observed from the series expansion of
the divided difference for the exponential function, i.e.,
from Property 2,

aqe[ax0,ax1,...,axq] = aq
∞∑

n=q

1
n!

∑
∑

kj =n−q

q∏

j =0

(axj )
kj

= aq
∞∑

n=q

1
n!

∑
∑

kj =n−q

an−q
q∏

j =0

(xj )
kj

=
∞∑

n=q

an

n!

∑
∑

kj =n−q

q∏

j =0

(xj )
kj . (A10)

Performing term-by-term integration over a on both sides,
we have

∫ 1

0
aqe[ax0,ax1,...,axq]da

=
∞∑

n=q

( ∫ 1

0

an

n!
da

) ∑
∑

kj =n−q

q∏

j =0

(xj )
kj

=
∞∑

n=q

1
(n + 1)!

∑
∑

kj =n−q

q∏

j =0

(xj )
kj

= e[0,x0,x1,...,xq], (A11)

where the last equality follows from the series expan-
sion representation of e[0,x0,x1,...,xq]. This completes the
proof. �
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Corrollary 1. Let f (x) = etx, where t ∈ R and x ∈ C.
We let et[x0,...,xq] ≡ f [x0, . . . , xq], where x0, . . . , xq ∈ C. For
any τ ∈ R,

∫ τ

0
et[x0,...,xq]dt = eτ [0,x0,...,xq]. (A12)

This can be verified by evaluating the series expansion
form on both sides, by a similar manner as in the proof of
Lemma 1.

With these properties, we are ready to prove the bound
in Identity 2 in the main text.

Theorem 1. For any non-negative integer q and
x0, x1, . . . , xq ∈ C,

|e[x0,x1,...,xq]| ≤ e[Re(x0),Re(x1),...,Re(xq)], (A13)

where Re(·) gives the real part of the input.

Proof. We proceed by induction. Equation (A13) is triv-
ially satisfied with the equality when q = 0. For the case
q = 1, we have

|e[x0,x1]| = |ex0 ||e[0,x1−x0]|

= eRe(x0)

∣∣∣∣
∫ 1

0
aea(x1−x0)da

∣∣∣∣

≤ eRe(x0)

∫ 1

0
a|ea(x1−x0)|da

= eRe(x0)

∫ 1

0
aea Re(x1−x0)da

= e[Re(x0),Re(x1)], (A14)

where Lemma 1 has been used. Assume that we have

|e[x0,...,xq]| ≤ e[Re(x0),...,Re(xq)], (A15)

which is true for q = 0, 1. It follows that

|e[x0,...,xq,xq+1]| (A16)

= |exq+1 ||e[0,x0−xq+1,...,xq−xq+1]|

= eRe(xq+1)

∣∣∣∣
∫ 1

0
aqe[a(x0−xq+1),...,a(xq−xq+1)]da

∣∣∣∣

≤ eRe(xq+1)

∫ 1

0
aq|e[a(x0−xq+1),...,a(xq−xq+1)]|da

≤ eRe(xq+1)

∫ 1

0
aqe[Re(ax0−axq+1),...,Re(axq−axq+1)]da

= eRe(xq+1)e[0,Re(x0−xq+1),...,Re(xq−xq+1)]

= e[Re(x0),...,Re(xq),Re(xq+1)], (A17)

where the second and third equalities use Lemma 1 and
the second inequality uses Eq. (A15). This proves that the
inequality holds for any number of complex inputs. �

APPENDIX B: BOUNDING |e�tw[x1,x2,...,xq,0]|
For |e�tw[x1,x2,...,xq,0]|, we use the following theorem.

Theorem 2. For any q + 1 complex values x0, . . . , xq ∈ C,

|e[x0,...,xq]| ≤ e[Re(x0),...,Re(xq)], (B1)

where Re(·) gives the real part of the input.

This is proved in Appendix A. From this, we have

|e�tw[x1,...,xq,0]| = (�tw)q|e[�twx1,...,�twxq,0]|
≤ (�tw)qe[�tw Re(x1),...,�tw Re(xq),0]. (B2)

From the definition of xj , we have, for all j ∈ {1, . . . , q},

Re(xj ) =
q∑

l=j

Re(λ(kl)
il,zil
) ≤ (q − j + 1)λ. (B3)

Based on the property that increasing any input in e[·,...,·]
will only increase its value (which can be proved by taking
derivatives in the Hermite-Genocchi form), we have

|e�tw[x1,...,xq,0]| ≤ (�tw)qe[�tw Re(x1),...,�tw Re(xq),0]

≤ (�tw)qe[�twqλ,�tw(q−1)λ,...,�twλ,0]. (B4)

Using the permutation symmetric property and Property 1,
we have

(�tw)qe[�twqλ,�tw(q−1)λ,...,�twλ,0]

= �twq e[�twqλ,�tw(q−1)λ,...,�twλ] − e[�tw(q−1)λ,...,�twλ,0]

�twλq

= (�tw)q
e�twλ − 1
�twλq

e[�tw(q−1)λ,...,�twλ,0]

= · · ·

=
(

eλ�tw − 1
λ

)q 1
q!

. (B5)

Therefore, we have

|e�tw[x1,x2,...,xq,0]| ≤ 1
q!

(
eλ�tw − 1

λ

)q

. (B6)

030342-15



YI-HSIANG CHEN et al. PRX QUANTUM 2, 030342 (2021)

APPENDIX C: LCU METHOD REVIEW

We give a brief introduction to the LCU method in this
section, and we adapt the notation of the original paper [14]
for a more convenient reference to readers. Suppose that
we have a unitary U, which is an infinite sum of unitaries,
i.e.,

U =
∞∑

j =0

βj Vj , (C1)

where βj > 0 and the Vj are some unitaries. A truncated
series, up to order m − 1, yields an operator

Ũ =
m−1∑

j =0

βj Vj , (C2)

which approaches U as m increases. We perform the fol-
lowing procedure to effectively implement Ũ on a state |ψ〉
embedded in a larger system. Prepare an m-dimensional
ancilla |0〉 and implement a unitary B such that

B|0〉 = 1√
s

m−1∑

j =0

√
βj |j 〉, (C3)

where s = ∑m−1
j =0 βj . Suppose that we have access to a

control unitary Vc such that, for each j ,

Vc|j 〉|ψ〉 = |j 〉Vj |ψ〉. (C4)

Consider the following combination of the above opera-
tions:

W ≡ (B† ⊗ I)Vc(B ⊗ I). (C5)

We have

W|0〉|ψ〉 = 1
s
|0〉Ũ|ψ〉 +

√
1 − 1

s2 |
〉, (C6)

where |
〉’s ancillary part is orthogonal to |0〉〈0|. Let us
denote by P ≡ |0〉〈0| ⊗ I the orthogonal projection onto
that subspace and by R ≡ I − 2P the reflection opera-
tor with respect to P. It is shown that the sequence of
operations A ≡ −WRW†RW acting on the total system is
A|0〉|ψ〉 = |0〉Ũ|ψ〉 when Ũ is unitary and s = 2. This pro-
cedure is the so-called oblivious amplitude amplification.
However, Ũ is in general not unitary because it is a trun-
cated series of U. This nonunitarity can be accounted for
when Ũ ≈ U and s ≈ 2. More specifically, it is shown that
if ||U − Ũ|| = O(δ) and |s − 2| = O(δ) then

||PA|0〉|ψ〉 − |0〉U|ψ〉|| = O(δ). (C7)

This means that, when Ũ is δ close to U and s is δ close
to 2, the effect of the operator A on the whole system is δ
close to only U acting on |ψ〉.

Note that the condition ||U − Ũ|| = O(δ) can be satis-
fied when the truncation order m is high enough. However,
the condition |s − 2| = O(δ) is satisfied only when the βj
are specifically chosen. By construction, we require that
s = ∑m−1

j =0 βj . If we choose βj = (ln2)j /j ! then

s =
m−1∑

j =0

(ln2)j

j !
(C8)

becomes a truncated Taylor expansion of 2, i.e., 2 =
eln2. In fact, it can be shown that the required trun-
cation order m such that |s − 2| = O(δ) scales like
log(1/δ)/ log[log(1/δ)]. With this m, it also guarantees
that ||U − Ũ|| = O(δ), because

||U − Ũ|| =
∣∣∣∣

∣∣∣∣
∞∑

j =m

(ln2)j

j !
Vj

∣∣∣∣

∣∣∣∣ ≤
∞∑

j =m

(ln2)j

j !
= |2 − s|.

(C9)

In summary, performing A on an extended system |0〉|ψ〉,
with βj = (ln2)j /j ! and m = O[log(1/δ)/ log log(1/δ)],
effectively performs U on |ψ〉 with O(δ) accuracy.

APPENDIX D: AN ALTERNATIVE APPROACH
FOR THE LCU SETUP

We provide an alternative procedure for the LCU routine
that leads to an exponential saving for the state preparation.
Let us define

	 ≡ max
∀k,i

||D(k)
i ||max. (D1)

Reevaluating the coefficients in Eq. (31) using the 	 above,
we have

|etwx1e�tw[x1,x2,...,xq,0]d(kq)
iq,z |

= (	�̃twetwλ)q

q!
cos[φ(kq)

iq,z ]e
iθ
(kq)
iq ,z . (D2)

The evolution operator from tw to tw +�tw becomes

UI (tw +�tw, tw)

=
∑

z

UI (tw +�tw, tw)|z〉〈z|

=
∑

z

∞∑

q=0

∑

iq

∑

kq

(−i)q
(	�̃twetwλ)q

2q!

× (e
iφ
(kq)
iq ,z +iθ

(kq)
iq ,z + e

−iφ
(kq)
iq ,z +iθ

(kq)
iq ,z )Piq |z〉〈z|

=
∞∑

q=0

(	�̃twetwλ)q

2q!

∑

iq

∑

kq

∑

x=±
(−i)qPiq


(kq,w)
iq,x . (D3)
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The required state |ψ0〉 for LCU becomes

|ψ0〉 = 1√
s

Q∑

q=0

√
(	�̃twetwλ)q

2q!

∑

iq

∑

kq

∑

x=0,1

|iq〉|kq〉|x〉,

(D4)

where s is the normalization factor, i.e.,

s =
Q∑

q=0

(MK	�̃twetwλ)q

q!
. (D5)

To prepare state (D4), we first prepare a state of the
following form:

1√
s

Q∑

q=0

√
(MK	�̃twetwλ)q

q!
|1〉⊗q|0〉⊗(Q−q)|1〉⊗q|0〉⊗(Q−q).

(D6)

Subsequently, for each |1〉 in the first Q registers (iq
part), we transform it to (1/

√
M )

∑M
i=0 |i〉, and for each

|1〉 in the later Q registers (kq part), we transform it to
(1/

√
K)

∑K
k=1 |k〉. State (D6) becomes

1√
s

Q∑

q=0

√
(MK	�̃twetwλ)q

q!

∑

iq

1√
M q

|iq〉
∑

kq

1√
Kq

|kq〉

= 1√
s

Q∑

q=0

∑

iq

∑

kq

√
(	�̃twetwλ)q

q!
|iq〉|kq〉, (D7)

which is the required |ψ0〉 in Eq. (D4), when com-
bined with |x〉. Note that, since the transformations
|1〉 → (1/

√
M )

∑M
i=0 |i〉 and |1〉 → (1/

√
K)

∑K
k=1 |k〉 are

mappings to the equally distributed state, they can
be done with a column of parallel Hadamard gates,
which has a gate cost O[log(MK)]. This provides an
exponential saving compared to O(MK) given in the
main text. This saving can be apparent when MK
becomes large. However, this can create an over-
head in the required number of repetitions. Indeed, we
have 	etwλ = MK max∀k,i ||D(k)

i ||maxetwλ here compared to
	(tw) = ∑

i
∑

k ||D(k)
i ||maxetwλ(i,k) in the main text, and the

overall simulation cost monotonically increases with this
quantity. If only a few ||D(k)

i ||maxetwλ(i,k) are much larger
than the others such that MK max∀k,i ||D(k)

i ||maxetwλ �∑
i
∑

k ||D(k)
i ||maxetwλ(i,k) , then the method provided in the

main text is preferred. Depending on the models, one may
favor one over the other.
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