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Abstract

The study of neutrino physics is a very fundamental and interesting research area. From

different neutrino experiments worldwide, we have gathered enough data that reveals some

of its fundamental properties, but not enough to know all. Neutrino, at the very core, may

hold the seeds to the observed matter-antimatter asymmetry of the universe. This possibility

is strengthened by the recent experimental confirmation of the non-zero value of θ13. It

is also a proposed candidate for the Dark matter. It appears that neutrino is related to the

basic working mechanism of the universe and understanding it may reveal some of the

deepest secrets of the nature. It is in these regards that the study of neutrino has become a

very important and fascinating research area in physics. All the properties of neutrinos are

encoded in its nine parameters (three mixing angles, three masses, and three CP phases).

The main target of all the neutrino researchers (theorist and experimentalist) is to un-

derstand those nine parameters, and the question on how and why neutrinos are related to

other areas of physics, like cosmology, as well. So far, we have succeeded in measuring

the three mixing angles and two mass squared differences only. We are still unable to

measure the three absolute masses, the three CP phases, and other related properties like

the octant, seesaw scale etc. There is not a single definitive answer as to why the neutrinos

behave/appear the way they are. An attempt to answer such challenging question demands

one to go beyond the comfort zone of Standard Model (SM) of particle physics. In doing so,

we use the concept of the MSSM (the minimal supersymmetric extension of the Standard

Model). The idea of supersymmetry is very powerful and is assumed to be broken at some
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specific energy scale, in order to account for the observed low energy physical world. At what

scale the supersymmetry breaking occurs is an important yet unknown parameter. Moreover,

the seesaw mechanism which provides the most satisfactory explanation for the observed

smallness of neutrino mass, has no definite scale and are model dependent too.

Since, the research area of neutrino physics is huge and complicated as well, it is not at

all possible to touch all the different areas of neutrinos in this thesis work. Instead, we make

an attempt to study the radiative properties of the nine neutrino parameters using the concept

of Renormalization Group method (only for the normal mass ordering). At the same time,

the absence of a theoretical model demanding for a specific scale for both the supersymmetry

breaking scale and the seesaw scale, inspire us to study the effects of their variations on the

radiative properties of neutrinos.

Radiative study of the neutrino parameters requires a good knowledge of the RGEs for the

three gauge couplings, third generation three Yukawa couplings both in the Standard Model

(non-supersymmetric) and in the Minimal Supersymmetric Standard Model (supersymmetric

regime). We also need to know the RGE of the quartic Higgs coupling in the SM. In this

thesis, using the bottom-up approach, we first study the radiative properties of the gauge

couplings and the Yukawa couplings as well as their unification scenarios by varying the

supersymmetry (SUSY) breaking scale (ms). We also study the inconsistencies between

the predictions made by BM and TBM neutrino mixing patterns with the present neutrino

oscillation data (independent of any RG methods). We then study the radiative properties

of the nine neutrino parameters, using the top-down approach (from the seesaw scale down

to the low energy scale), under varying ms and seesaw scales (SS). We extend our analysis

by incorporating a self-complementarity relation among the three neutrino mixing angles,

at the seesaw scale. We also try to predict a possible range of ms and seesaw scale scale by

observing the stability of weak scale neutrino parameter values. We also study the stability

of the mixing angles self-complementarity relation and the neutrino masses ratio under the
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same conditions. In the last chapter we present the summary and discussion. We conclude

this thesis by adding a brief discussions on some of the well known neutrino experiments.
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“If I have seen further than others, it is by standing upon the shoulders of

giants”.
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Chapter 1

Introduction and Scope of the thesis

Among the discovery-based science, particle physics is one which probes to unravel the deep

secrets of nature. Our understanding from the studies of the physical phenomena surrounding

us, has made us aware of the fact that the universe we live in, is governed by universal

principles which apply at time and distance scales far beyond our normal experience and

perception. Particle physics is one such endeavor of scientific inquiry into these principles. It

plays an essential role in the broader enterprise of the physical sciences. It inspires students,

attracts young talented minds from around the world, and drives critical intellectual and

technological advances in various fields.

The field of elementary particle physics is entering an era of unprecedented potential.

The last run of LHC reached a ground breaking energy scale of 13 TeV with an integrated

luminosity of over 20 f b−1 [4]. New experimental facilities, including accelerators, space-

based experiments, underground laboratories, and critical precision measurements of various

kinds, offer a wide varieties to explore the hidden nature of matter, energy, space, and time.

The availability of technologies that can explore directly into the TeV scale, is especially

exciting. Moreover, at TeV scale energies, formerly separated questions in cosmology and

particle physics become connected, bridging the sciences of the very large and the very small.

S
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One of the great scientific achievements of the 20th century was the development of

the Standard Model (SM) of particle physics, which describes the relationships among the

basic building blocks of nature and the characteristics of three of the four forces acting on

those particles. The Standard Model is very much successful in explaining and predicting

physics at the weak energy scale. However, in the high energy regime that physicists are

able to access experimentally, the incompleteness of the Standard Model becomes apparent

and the necessity for its extension or for a new theory becomes mandatory. The study of

neutrino physics falls into this category. The phenomenon of neutrino oscillation leading to

the non-zero neutrino masses, provides one of the solid evidences for the physics beyond

Standard Model (BSM).

1.1 A brief sketch of Standard Model

After the great discovery of the long predicted Higgs boson at the LHC CERN in 2012 [5, 6],

the SM of particle physics has now achieved the title of a full fledged theory of elementary

particle at the electroweak scale (EW). It is a mathematical theory describing the three types

of forces/interactions operating in nature viz; the strong, electromagnetic, and the weak

interaction. These three forces describe the interaction between quarks and leptons, the

fundamental SM particles. SM has no room for the fourth interaction, the gravitational

interaction. It is in this sense SM is not a complete theory of nature. The four types of

interaction operating in nature are shown in Table 1.1.

Interaction type Carrier particle mass (in GeV) Spin

Strong force Gluons 0 1

Electromagnetic force Photons 0 1

Weak force W±, Z0 ∼ 80, 91 1

Gravitational force graviton (hypothesized) 0 2

Table 1.1 Force carrier particles of Standard Model with their masses and spins.
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Families
Generations sensitive to spin Charge

First Second Third

Quarks
u c t

Strong, Electromagnetic, weak
1
2

2
3

d s b 1
2

−1
3

Leptons
e µ τ Electromagnetic, Weak 1

2
−1

νe νµ ντ Weak 1
2

0

Table 1.2 Matter particles of Standard Model with their interaction types, spins and charges.

There are two types of elementary fermions in Standard Model: leptons and quarks (see

Table 1.2 for their complete family/generations). Any theory of elementary particles must

be consistent with the two pillars of physics: special relativity and Quantum theory. The

combination of quantum mechanics, electromagnetism and special relativity led Dirac to

his famous equation now known as the Dirac equation. Quantization of these fields gives

quantum field theory (QFT).

Like QED, the SM is also a theory of interacting fields. The construction of the Standard

Model has been guided by the principles of symmetry. The mathematics of symmetry is

provided by group theory. The connection between symmetries and physics is deep. For

example, Noether’s theorem states that for every continuous symmetry of nature, there is a

corresponding conservation law. It follows from the presumed homogeneity of space and

time that the Lagrangian of a closed system is invariant under uniform translations of the

system in space and in time. Such transformations are therefore symmetry operations on the

system.

SM is a gauge theory of microscopic interaction with the gauge group

GSM = SU(3)c×SU(2)L×U(1)Y , (1.1)

which describes three out of the four fundamental interactions.
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The particle spectrum of the SM and their transformation properties under the gauge

groups eq. (1.1) are

Qi ≡







uLi

dLi






∼

(

3,2, 1
6

)

Ui ≡ uRi ∼
(

3̄,1, 2
3

)

Di ≡ dRi ∼
(

3̄,1,−1
3

)

Ei ≡ eRi ∼
(

1,1,−1

)

, Li ≡







νLi

eLi






∼

(

1,2,−1
2

)























































, (1.2)

The complete SM Lagrangian can be written as

LSM = L f +Lk +Ly +LS, (1.3)

where, L f is the kinetic term for all the fermions including their interactions with gauge

bosons and is written as

L f = iΨγµ
DµΨ , (1.4)

where,

Ψ = (Qi, Ui, Di, Li, Ei) for all the fermion fields, (1.5)

Dµ = ∂µ − igsG
A
µλ A− i

g

2
W I

µτ I− ig
′
BµY, (1.6)

where A = 1,2,3, ...,8 with GA
µ representing the SU(3)c gauge bosons, W I

µ is the SU(2)L

gauge bosons, Bµ is the U(1)Y gauge field, I = 1,2,3, and gs, g, g′ are the gauge couplings.

Lk represent the kinetic terms for the gauge fields and self-interactions and is given by

Lk =−
1

4
GµνAGA

µν −
1

4
W µνIW I

µν −
1

4
BµνBµν , (1.7)
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where

GA
µν = ∂µGA

ν −∂νGA
µ +gs fABCGB

µGC
ν

F I
µν = ∂µW I

ν −∂νW I
µ +gs fIJKW J

µW K
ν

Bµν = ∂µBν −∂νBµ























, (1.8)

where fABC and fIJK represents the structure constants of the SU(3) and SU(2) groups,

respectively.

Ly represent the Yukawa interaction between the fermions and the Higgs boson, and is

given by

Ly = hu
i jQiU jH̃ +hd

i jQiD jH +he
i jLiE jH +h.c, (1.9)

where, H̃ = iσ2H∗. This interaction is responsible for the generation of particle masses after

the gauge symmetry breaking from GSM → SU(3)c×U(1)em.

The scalar part of the Lagrangian is

LS =
(

DµH
)†

DµH−V (H), (1.10)

where

V (H) = µ2H†H +λ (H†H)2. (1.11)

The Higgs field attains a vacuum expectation value (vev) at the minimum of the potential

when µ2 < 0. After that the fermions also attain their masses through their Yukawa couplings.

At this point only neutrinos remain massless due to the absence of right handed neutrinos.

Finally, the Standard Model is renormalizable and anomaly free. This feature is still to be

maintained even in the case of Minimal Supersymmetric Standard Model (MSSM).
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1.1.1 Limitations of Standard Model

The limitations of the Standard Model are evident. When physicists attempt to include gravity

into the Standard Model, they run into severe mathematical inconsistencies. In addition to

this, astronomical discoveries also pose another severe challenge to the SM as listed below:

• SM can account for only 4% of the total composition of the universe. There is no room

for the remaining 96% (nearly 25% Dark matter and about 70% dark energy).

• The predominance of matter over antimatter in the universe also pose a serious problem

for the Standard Model.

• Standard Model doesn’t provide any idea on the possible cause for the inflation.

• Standard Model cannot account for the non-zero value of neutrino masses.

etc.

Thus, at the very outset of the 21st century, particle physics experiments, astronomical

observations, and theoretical developments in both high energy physics and cosmology

are pointing towards exciting new phenomena that are just on the verge of being observed.

Fusing quantum theory with general relativity, understanding dark matter and dark energy

etc. will require new ideas and new experiments. The technologies needed to conduct these

experiments are now becoming accessible. As a result, particle physics is on the brink of

a scientific revolution as profound as the one Einstein and others ushered in the early 20th

century. There is every possibility that the “Terascale” discoveries will have an equally

important impact across the fields of science. Thus, despite the extraordinary success of the

SM, it is evident that, a much deeper understanding of the nature will be achieved only when

we continue to study the fundamental constituents of the universe at higher and higher energy

scales with new ideas.
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1.2 A brief introduction to Minimal Supersymmetric Stan-

dard Model

Minimal Supersymmetric Standard Model (MSSM) is the Supersymmetric extension of the

Standard Model, meaning that the Lagrangian of the SM eq.(1.3) is not only gauge invariant

but also supersymmetric invariant. The term ‘Minimal’ in MSSM refers to the minimum

choice of the particle spectrum necessary for the model to work. Just like the SM, MSSM

should be renormalizable and anomaly free.

While going from SM to MSSM, the ordinary quantum fields are upgraded to superfields

or supermultiplets. Every SM matter field is replaced by a chiral superfield and every vector

field by a vector superfield so the existing particle spectrum of MSSM is just the double

of the SM particles content. A chiral superfield contains a Weyl fermion, a scalar and an

auxillary scalar field, and are generally denoted by F. A vector superfield contains a spin 1

boson, a spin 1
2

fermion, and an auxillary scalar field called D. Further, at least two Higgs

superfields are required to complete the spectrum: one giving masses to the up-type quarks

and the other to the down-type quarks and charged leptons. These are the minimal number of

Higgs particles required for the model to be consistent with QFT point of view. The particle

contents of MSSM are given below:

Qi ≡







uLi ũLi

dLi d̃Li






∼

(

3,2, 1
6

)

Uc
i ≡ (uc

i ũc
i )∼

(

3̄,1,−2
3

)

Di ≡
(

dc
i d̃c

i

)

∼
(

3̄,1, 1
3

)

Ei ≡ (ec
i ẽc

i )∼
(

1,1,1

)

Li ≡







νLi ν̃Li

eLi ẽLi






∼

(

1,2,−1
2

)























































, (1.12)

where ‘i’ stands for the three generation index. Qi represents the left handed quark doublets

containing both the up and down quarks for each generation. Similarly, Li represents left
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handed lepton doublet, Ui, Di, Ei represent right handed up-quark, down-quark, and charged

lepton singlets respectively. The numbers in the parenthesis represent the transformation

properties of the particles under GSM ( eq.(1.3)).

The MSSM Lagrangian is under the strict constraint of R-parity which is defined as,

R = (−1)3L+B+2s

or equivalently

R = (−1)3(L−B)+2s























(1.13)

where, B is the baryon number, L is the lepton number, and s is the spin. Further,

R =











1 for all SM particles

−1 for all sparticles

(1.14)

Imposing R-parity has an advantage of providing a natural candidate for dark matter1. It

also protects proton from decaying too fast, though there are other options to R-parity which

can also make proton stable.

The complete MSSM Lagrangain w.r.t. the particle content of eq.(1.12) can be written as

LMSSM = L
0

MSSM +Lso f t . (1.15)

The first term on the left side of eq.(1.15) represents the MSSM Lagrangian without any

SUSY breaking and is of the form

L
0

MSSM = Lvector +Lchiral +Lext int +LW +L
†

W , (1.16)

where

1It is because R-parity distinguishes a particle from its superpartner. R-parity constrains baryon and lepton

number violating couplings of dimension four or rather only at the renormalizable level.
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• Lvector represents the vector supermultiplet
(

Aa
µ , λ a, Da

)

Lvector = Lgauge =−
1

4
Fa

µνFµνa + iλ †aσ µDµλ a +
1

2
DaDa. (1.17)

• Lchiral represents the chiral supermultiplets

Lchiral = Dµψ∗Dµψ + iψ†σDµψ +F∗F, (1.18)

and

Lext int =−
√

2g
(

φ∗λ aT tacψ−ψ†cλ a∗taψ
)

+gDaφ∗taφ . (1.19)

• LW represents the Lagrangian of the superpotential and is expressed as

LW = F
∂W

∂φ
− 1

2
ψT cψ

∂ 2W

∂φ 2
. (1.20)

The constraint equation for F is

F∗ = −∂W
∂φ

VF =
∣

∣

∣

∂W
∂φ

∣

∣

∣

2

.











(1.21)

Similarly, the constraint equation for Da is

Da = −gφ∗taφ

VD = 1
2
g2 (φ∗taφ)2 .











(1.22)

The superpotential term can be divided into two parts as shown below:

W =WY +Wµ . (1.23)



1.2 A brief introduction to Minimal Supersymmetric Standard Model 10

The superpotential term is the source of nonlinear fermion-scalar interactions. It is required

to generate the Higgs Yukawa couplings so that it can give mass to the quarks and the leptons.

The appropriate choice is

WY = y
i j
d d

i
Hdαεαβ Q

j

β
+ yi j

e eiHdαεαβ Li
β − yi j

u uiHuαεαβ Q
j

β
. (1.24)

Among several possible contributions to W , the pure Higgs term is one and is given by

Wµ =−µHdαεαβ Hµβ . (1.25)

The last term on the RHS of eq.(1.15) represents the SUSY breaking part. This term

is necessary because in nature we do not observe any SUSY or Sparticles, implying the

possibility of SUSY breaking in the MSSM. In a general Lagrangian, SUSY can be broken

spontaneously if the auxiliary fields, F or D terms, appearing in the definitions of the chiral

and vector superfields attain a vacuum expectation value (vev). If the F fields get a vev, it is

called F-breaking and if the D fields get a vev, it is called D-breaking.

However, there is a cop out way to this problem. If the SUSY is broken in the hidden

sector, a sector consisting of superfield not charged under the SM gauge group, and that

information is communicated to the visible sector or MSSM through a messenger sector

(it can be made up of gravitational interaction or an ordinary gauge interactions). This

communication of the SUSY breaking leads to a SUSY breaking term in the MSSM. Thus,

SUSY is not broken spontaneously but explicitly by adding a SUSY breaking term in the

Lagrangian. However, not all the supersymmetric terms can be added. We need to add only

those terms which do not re-introduce quadratic divergences back into the theory. Such terms

are called “soft” supersymmetry breaking terms, represented by Lso f t (as in eq.(1.15)) and
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are defined as

Lso f t = −M2
f

∣

∣ f̃
∣

∣

2− 1

2
miλ

Ta
i cλ a

i −
(

Adyd d̃Hdαεαβ Q̃β+

AeyeẽHdαεαβ L̃β −AuyuũHuαεαβ Q̃β −BµHdαεαβ

)

−h.c. (1.26)

The Lso f t of eq.(1.26) consists of the following terms: (i) Gaugino mass terms, (ii) Scalar

mass terms,(iii) Trilinear scalar couplings, (iv) Bilinear scalar couplings.

The MSSM can be further classified as shown below:

• Constrained MSSM (CMSSM): It contains only five parameters viz. the universal

scalar (soft) mass m0, the universal gaugino (soft) mass m1/2, the universal trilinear

coupling A0 (all at GUT scale), the ratio of the vacuum expectation values of the two

Higgs doublets tanβ , and the sign of the Higgsino mass parameter. Here, the weak

scale parameters are obtained by Renormalization Group running.

• Phenomenological MSSM (pMSSM): It is the low-scale models, which are not di-

rectly derived from some high-scale (GUT) theory. In this bottom-up approach no

assumptions about the mechanism of SUSY breaking are made. The soft breaking

terms introduce plenty of new parameters. In total this version of MSSM involves 105

new parameters (masses, mixing angles and phases).

• Next-to-MSSM or (M+1)MSSM: This version is the simplest possible extension of

MSSM and is obtained by adding a new gauge-singlet chiral supermultiplet that is

even under matter parity. It is done in order to solve the µ-problem.

1.3 Introduction to neutrino physics

We repeatedly hear the terms like elusive, ghost, mysterious, puzzling etc. whenever we talk

about neutrinos. Neutrino is such an elementary particle that deserves such kind of peculiar
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distinction. It is the second most abundant elementary particle in the universe, next to photon

(other than Dark energy and Dark matter). It was first hypothesized by W. Pauli in 1930 in

order to account for the conservation of energy in nuclear beta decay process. Its existence

was experimentally confirmed by Clyde Cowan and Fred Reines in 1956 at Savannah River

in South Carolina, USA [7]2. However, what they discovered was an anti-neutrino, from a

nuclear reactor emitted through the process of inverse β decay.

Soon after its discovery, R. Davis detected the problem of solar neutrino (SNP), where the

expected solar neutrino flux was not observed. This finding led Bruno Pontecorvo, in 1957,

to introduce the concept of neutrino oscillation for the first time [9, 10]. Three scientists Ziro

Maki, Masami Nakagawa and Shoichi Sakata, in 1962, introduced the PMNS matrix [11] to

explain Bruno’s idea on neutrino oscillation. Russian researchers Stanislav Mikheyev and

Alexei Smirnov further refined this idea by suggesting that the solar neutrinos, which are none

other than electron neutrino (νe), are changing into other flavors like muon neutrino (νµ ) and

tau neutrino (ντ ) [12]. A brief timeline summarizing the various important developmental

stages and discoveries of neutrinos are listed in the Appendix A.1 .

One of the amazing discoveries of the 50’s is that all neutrinos have their spin anti-parallel

to their momentum, whereas for antineutrinos it is parallel. In other words, neutrinos are

left-handed whereas its corresponding antiparticles are right-handed. This is at the very

heart of the chiral nature of the weak interaction, and is also the source for the effects of

parity violation observed in nature. The existence of two different spin states for the particle

and antiparticle, makes neutrino the viable candidate for “Majorana particle" also (since

they are their own antiparticle). While all other fermions are “Dirac particle” having four

2The extremely small interaction cross-section is what makes neutrino very hard to detect. The neutrino-

neutron scattering cross-section as calculated by H. Bethe and R. Peierls, using Fermi’s theory, turned out to

be σ(n+ν → e−+ p)∼ Eν (meV )×10−44 cm2 implying that a steel column of ∼ 10 light year in thickness

would be required for stopping a neutrino of 1 MeV [8]. For example, solar neutrinos from the sun’s core

come directly with little or no interaction at all telling us that the fusion reaction is the source of sun’s energy.

Whereas, light takes millions of years to reach the surface due to continuous scattering, and it also exhibit a

black body spectrum.
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states (particle-antiparticle each having two different spin states). Neutrino is also a possible

candidate for Dirac particle.

There are varieties of neutrinos sources viz. (i) Earth’s core and other nuclear decay

processes, (ii) nuclear reactors and particle accelerators, (iii) sun, stars and, other galactic or

extra-galactic activities like supernova explosion, gamma ray burst etc.

Parameters best-fit best-fit ±1σ 2σ range 3σ Range

∆m2
21[10−5eV 2] 7.56 7.56±0.19 7.20-7.95 7.05−8.14

∆m2
31[10−3eV 2] [NO] 2.55 2.55±0.04 2.47-2.63 2.43−2.67

θ12/
◦ 34.5 34.5+1.1

−1.0 32.5-36.8 31.5- 38.0

θ23/
◦ [NO] 41.0 41.0±1.1 39.1-43.7 38.3 - 52.80

θ13/
◦ [NO] 8.44 8.44+0.18

−0.15 8.1-8.7 7.90 - 8.90

δ/◦ [NO] 252 252+56
−36 153-351 0-360

θ23/
◦ [IO] 50.5 50.5±1.0 39.5-42.5 38.5 - 53.0

θ13/
◦ [IO] 8.41 8.41+0.16

−−0.17 8.0-8.7 7.90 - 8.90

∆m2
31[10−3eV 2] [IO] 2.49 2.49±0.04 2.41-2.57 2.37−2.61

δ/◦ [IO] 259 259+47
−41 182-347 0-31 & 142-360

Table 1.3 The recent global fit of neutrino oscillation parameters for both the normal ordering (NO) and

inverted ordering (IO) cases [1].

1.3.1 Number of light and heavy neutrino species or flavors

Light neutrino species

From theoretical as well as experimental sides, it is now widely accepted that neutrino comes

in three different flavors3 viz. electron neutrino (νe), muon neutrino (νµ), and tau neutrino

(ντ). They are sensitive only to weak interaction which can further be subdivided into two

viz:

(i) One that couples with Z0 boson where its momentum changes, keeping its identity

fixed, also called as neutral current interaction, NC in short.

3The possible number of light neutrino species, that have the usual EW interaction, can be obtained from

the process: Z0 → να +να such that the no. of light neutrino species is Nν = Γinvisible
Γνν

= 2.994±0.012 where,

Γνν = 166.9 MeV is the partial decay width and Γinvisible = 498±4.2 MeV is the branching ratio into invisible

final states that is directly proportional to the number of light neutrino species.
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(ii) One that couples with W± bosons, transforming into one of the charged leptons

(e±, µ±, τ±), also called as charged current interaction or CC in short.

It is because of the CC interaction that we can define the concept of neutrino flavors.

Heavy neutrino species

At present, there is not a single experimental data which hints for the possibility for any kind

of heavy neutrino. However, there are theoretical models which demand for the existence of

heavy neutrino, also called as right-handed neutrino (RH) and sterile neutrino. The see-saw

mechanism (SSM), well known for explaining the infinitesimally small mass of left-handed

neutrinos, demands for three RH neutrinos with mass scale of the order of seesaw scale

(1010−1015) GeV. For the time being, we have no definitive idea about the seesaw scale (SS)

and in addition there are three different types of SSM. Like the light left-handed neutrinos,

the possible mass spectrum of right-handed neutrinos is still an unknown. In addition to these

three RH neutrinos, there are also theoretical prediction for another type of neutrino, called

the sterile neutrino. Again depending upon the model, sterile neutrino and RH neutrinos

are sometime considered as same [13] and different as well. Both RH neutrinos and sterile

neutrino are singlet particles w.r.t. the SM gauge group (eq.(1.1)).

1.3.2 Neutrino mass in Standard Model

In SM neutrinos are massless. Due to the absence of right-handed neutrinos in SM, no

Yukawa interaction can be written that would give a tree level mass to the neutrinos, and as

a consequence neutrinos remain massless. Any possible neutrino mass term which could

be built with the particle content of the SM would violate the U(1)L subgroup of GSM (eq.

(1.1)) and therefore, cannot be induced by loop corrections. Also, it cannot be induced by

non-perturbative corrections because U(1)L subgroup of GSM is non-anomalous. This is the

reason why neutrinos are strictly massless in the SM.
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If they are massless then there can neither be any mixing nor any CP-violation in the

leptonic sector. But, these theoretical predictions are in stark contradiction with the current

experimental data (see Table 1.3). The present experimental data has already confirmed that

neutrino oscillates, have a small non-vanishing masses, and mixing do occurs. Also, the

mixing angle θ13 is now confirmed to be non-zero, thereby implying the possibility of CP

violation.

In order to accommodate the experimental data, either an alternative approach to SM or

a modification/extension of the SM becomes mandatory. This is the reason why neutrino

physics is termed as physics beyond Standard Model (BSM). Two most accepted minimal

extensions of SM to explain the experimental results are

(i) Introduce a right handed neutrino νR and then impose the total lepton number (L)

conservation so that, after EW spontaneous symmetry breaking the Lagrangian is

LD = LSM−Mν ν̄LνR +h.c., (1.27)

In this case the neutrinos are called a Dirac neutrinos and νc 6= ν .

(ii) Construct a mass term only with the SM left-handed neutrinos by allowing L violation

such that

LM = LSM−
1

2
Mν ν̄Lνc

L +h.c. (1.28)

In this case the neutrinos are known as Majorana neutrinos and νc = ν

1.3.3 The phenomenon of neutrino oscillation

The phenomenon of neutrino oscillation stemmed from our attempt to understand the SNP.

It is a clear indication for the non-zero value of neutrino masses. Super-Kamiokande first

witnessed the existence of neutrino oscillation. It was further confirmed by the Sudbury
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Neutrino observatory (SNO) in Canada, by showing the conversion of solar neutrino flavor

into other flavor. This finding finally solved the SNP.

This phenomenon implies that neutrino flavor states are not mass eigenstates but superpo-

sitions of such states. More precisely, a neutrino with definite flavor, |να〉 can be described

in terms of the mass eigenstate |νi〉 as

|να〉=
3

∑
i=1

U∗
αi |νi〉 (1.29)

where U is a unitary matrix called lepton mixing matrix in analogy with the quark mixing

matrix. In general, U may be a complex matrix. The pictorial representation of neutrino

oscillation is shown in Fig. 1.1. Neutrino oscillation can be divided into two depending upon

the medium in which it is happening viz.

1. vacuum oscillation - where the oscillation happen solely in the vacuum,

2. matter oscillation - where oscillation happens inside a material medium (for example

Earth).

Amp

L

lα (e.g. µ) lβ (e.g. τ)

Source

W

να

ν

νβ

W

Target

=
∑

i

Amp

lα lβ

Source

W U
∗

αi
νi

e(im
2

i

L

2E )

Uβi W

Target

Fig. 1.1 The flavor changing process involving να → νβ from source to detector.
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1.3.3.1 Neutrino oscillation in vacuum

The phenomenon of neutrino oscillation can understood in more details by studying its

probability of oscillation. In vacuum, eq. (1.29) allows us to calculate the probability of

change in flavor and is given by

P(να → νβ ) =
∣

∣A (να → νβ )
∣

∣

2

= δαβ −4 ∑
i> j

Re
(

U∗
αi

Uβi
Uα j

U∗
β j

)

sin2

[

∆m2
i j

L

4E

]

+2 ∑
i> j

Im
(

U∗
αi

Uβi
Uα j

U∗
β j

)

sin2

[

∆m2
i j

L

2E

]

, (1.30)

where, ∆m2
i j = m2

i −m2
j , E is the neutrino energy and L is the distance from the source to the

detector/target. The above eq.(1.30) holds for any number of neutrino mass eigenstates. The

following important conclusions can be drawn,

1. Neutrino oscillation depends on the mass squared difference ∆m2
i j = m2

i −m2
j . Clearly,

if the neutrinos are massless or are strictly degenerate, then eq.(1.30) reduces to

P(να → νβ ) = δαβ , (1.31)

indicating no oscillation. In other words, for oscillation to happen neutrino must be

massive (at least one of the three) and non-degenerate.

2. P is a function of
L

E
.

3. Assuming the CPT invariance, we have

P(να → νβ ) = P(νβ → να). (1.32)
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Again, from eq.(1.30), we can produce

P(νβ → να : U) = P(να → νβ : U∗), (1.33)

leading to the relation,

P(να → νβ : U) = P(να → νβ : U∗). (1.34)

This implies the possibility of violation of CP symmetry during the oscillation process.

P(να → νβ )−P(να → νβ ) = 4 ∑
i> j

Im
(

U∗
αi

Uβi
Uα j

U∗
β j

)

sin2

[

∆m2
i j

L

4E

]

. (1.35)

Discovery of

P
(

να → νβ

)

6= P
(

να → νβ

)

(1.36)

would imply the violation of CP invariance.

Eq. (1.30) remains valid even if we assume equal momenta for all the neutrinos [14].

The negligibly small mass of neutrino allows us to approximate the momenta for all typical

energies by

pk ≃ E− m2
k

2E
. (1.37)

In order for the oscillation to be observable, the phase ∆m2 L

E
must be of the order of

1, implying that the characteristic oscillation length (Losc) must be similar to the distance

between the source and the detector (L). For L≪ Losc, no oscillation will be observed as

neutrinos have no enough time for oscillation to develop.

For three massive neutrinos, the matrix U can be parametrized in terms of three Euler

angles (called mixing angles) and six phase parameters. If the neutrinos are Dirac in nature

(meaning distinct particle and antiparticle), only one of the phases is physical and gives
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rise to CP violation. If, however, neutrinos are Majorana type (particle and antiparticle are

identical), additional CP violating phases are required.

1.3.3.2 Neutrino oscillation in Matter - MSW effect

The oscillation probability we discussed so far, concerns only the neutrinos propagating

through vacuum. However, this is not the only possible case. In case of neutrino traveling in

matter, like Earth or Sun, the P of eq. (1.30) gets modified. This variation in oscillation

probability is due to the so-called Mikheev-Smirnov-Wolfenstein (MSW) effect [31, 32]

and it arises solely due to the fact that the weak interactions of electron-neutrinos in matter

differ from those of muon-neutrinos and tau-neutrinos. This effect can be enhanced (called

resonant enhancement), depending upon the electron density and on the neutrino energy.

More precisely, the coherent forward scattering of an νe from electrons in matter, caused by W -

boson exchange, gives the νe an extra interaction potential energy given by V =+
√

2GFNe.

Similarly, for an νe the extra interaction potential energy is given by V =−
√

2GFNe. These

extra energies raise the effective mass of a νe in matter, and lower that of a νe. Now, let

us consider the simple case of two neutrinos flavor mixing. The corresponding oscillation

probability is given as

P(νe → νµ) = sin2 2θM sin2

[

∆m2
MX

4E

]

, (1.38)

where the effective mixing angle θM and effective mass squared difference ∆m2
M are

sin2 2θM → sin2 2θ

sin2 2θ +(cos2θ −X)2
, (1.39)

∆m2
M → ∆m2

√

√

√

√sin2 2θ +

(

cos2θ − 2
√

2GFNeE

∆m2

)2

. (1.40)
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Here, θ is the vacuum mixing angle and X = 2
√

2GF NeE

∆m2 is in terms of the electron density Ne,

neutrino energy E, and ∆m2 is the mass squared difference. GF is the Fermi constant. When

X = cos2θ , the amplitude of oscillation become unity and maximum resonant oscillation

occur and total transition between flavors happens.

1.3.4 Parametrization of U

Let’s consider the general case where U is an n×n matrix. Now, it can be represented as

U = eiH , where H is another n×n Hermitian matrix having n2 independent real parameters.

The number of parameters required to parametrize H is the same to that of the parameters

used to parametrize an n×n orthogonal matrix, say O. Similarly, O can also be represented

as O = eA. The orthogonality condition (OT O = 1) demands A to be antisymmetric. Hence,

A has got n(n−1)/2 real diagonal elements. This indicates that U has

Nθ =
n(n−1)

2
(1.41)

number of angles. So, the number of phases required to characterize U is

Nφ = n2−Nφ
n(n+1)

2
. (1.42)

Since n = 3, hence Nθ = 3 angles and Nφ = 6 phases are required to parametrize the

lepton mixing matrix U . We present U as

U =Ψ1 R23 R13 Ψ2 R12 Ψ3, (1.43)
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where, Ri j are the orthogonal matrices and Ψis are diagonal matrices containing the phases.

Ri j and Ψi have the following forms:

R23 =













1 0 0

0 c23 s23

0 −s23 c23













,R21 =













c13 0 s13

0 1 0

−s13 0 c13













,R12 =













c12 s12 0

s12 c12 0

0 0 1













, (1.44)

Ψ1 =













eiφ1 0 0

0 eiφ2 0

0 0 eiφ3













,Ψ2 =













1 0 0

0 eiφ4 0

0 0 1













,Ψ3 =













eiφ5 0 0

0 eiφ6 0

0 0 1













, (1.45)

where ci j = cosθi j and si j = sinθi j. These θi js are the Euler’s rotation angles.

After proper redefinition of the neutrino fields, the lepton mixing matrix U can be

expressed

1. in terms of the three mixing angles and one phase as shown below (for Dirac neutrinos)

U =U (θ12, θ13, θ23, φ4) . (1.46)

2. in terms of three mixing angles and three phases as shown below (for Majorna neutrinos)

U =U (θ12, θ13, θ23, φ4, φ5, φ6) . (1.47)

Thus, altogether, we have nine neutrino parameters to account for all the neutrino related

events. The determination of these parameters will ultimately decide whether neutrinos are

Dirac of Majorana particle. Hence, an appropriate parametrization of the matrix U is an

important part of neutrino physics.
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1.3.4.1 Standard parametrization scheme for U

The Particle Data Group (PDG) [3] adopted a parametrization scheme of U called as the

Standard parametrization. In this parametrization scheme U is defined as the product of three

consecutive rotation matrices multiplied by a diagonal matrix containing phases and can be

written as

U = R23(θ23 : 0) U13(θ13 : δ ) R12(θ12 : 0)P; (1.48)

where,

U13 =













c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13













, P =













eiα 0

0 eiβ 0

0 0 1













, (1.49)

where, δ is the phase for Dirac type neutrinos while α and β are the phases for the Majorana

type neutrinos. When neutrinos are Dirac type, then both α and β become zero. The lepton

mixing matrix of eq.(1.48) can be rewritten as

UPMNS =













c12c13 s12c13 s13e−iδ

−s12c23− c12s23s13eiδ c12c23− s12s23s13eiδ s23c13

s12s23− c12c23s13eiδ −c12s23− s12c23s13eiδ c23c13

























eiα 0

0 eiβ 0

0 0 1













(1.50)

The angles θ12, θ13 and, θ23 are known as the three mixing angles.

1.3.4.2 Symmetric Parametrization scheme for U

Other than the Standard Parametrization scheme, there is another parametrization scheme

known as Symmetric parametrization scheme. It describes the mixing matrix U as

U =U23(θ23 : ω23) U13(θ13 : ω13) R12(θ12 : ω12); (1.51)
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where,

U23 =













1 0 0

0 c23 s23e−iω23

0 −s23eiω23 c23













(1.52)

U13 =













c13 0 s13e−iω13

0 1 0

−s13e−iω13 0 c13













(1.53)

U12 =













c12 s12e−iω12 0

−s12eiω12 c12 0

0 0 1













(1.54)

All the phases appearing in the matrix U are physical. The phases in the two parametrization

schemes can be related as

δ = ω13−ω12−ω23,

α = ω12 +ω23,

β = ω23























(1.55)

Of the two parametrization scheme, the Standard parametrization scheme is more pre-

ferred. The neutrino mixing matrix contributes towards the final U only if, the charged lepton

mass matrix is diagonal. The three neutrino generations can be represented as













νeL

νµL

ντL













=













Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

























ν1

ν2

ν3













(1.56)
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The above eq.(1.56) shows that the left handed flavor eigenstates are just the linear

superposition of neutrino mass eigenstates (confirming the previous claim of eq. (1.29)). For

example,

|νµL〉=Uµ1|ν1〉+Uµ2|ν2〉+Uµ3|ν3〉 (1.57)

Neutrino observable parameters like, θ13, θ12, θ23, and δ can be extracted out of the

matrix U in the following ways:

sin2 θ13 = |Ue3|2

sin2 θ13 = |Ue2|2
1−|Ue3|2

sin2 θ23 =
|Uµ3|2

1−|Ue3|2

δ = −Arg [Ue3]







































, (1.58)

which are in accordance with the Standard parametrization.

There are different possibilities to measure the unknown parameters like the three mixing

angles, three mass eigenvalues and three phases. The neutrino oscillation experiment deals

with the neutrino mass squared differences, mixing angles and the Dirac CP phase. On the

other hand, experiment like neutrinoless double beta decay (ν0ββ ) deals with the mass

parameters and the Majorana phases.

1.3.5 Majorana CP phases α and β

We have already discussed the possibility of CP violation (see eq.(1.35)) in the oscillation

processes involving (να → νβ ) and (να → νβ ). This phenomenon can be expressed more

elegantly by using an invariant parameter called Jarlskog Invariant parameter (JCP) and is
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expressed as

JCP = Im
[

Uαi Uβ j U∗
α j U∗

β i

]

= c12s12c2
13s13c23s23 sinδ (1.59)

The asymmetry between P(να → νβ ) and P(να → νβ ) can only account for the Dirac

CP violating phases. The neutrinoless double beta decay, if observed, will be the proof of

neutrinos Majorana nature, yet it cannot envisage the phases.

The recent experimental confirmation on the non-zero value of θ13 has already ignited

the confidence of many to measure the Dirac phase in the upcoming experiments. Also, a

non-zero value of Dirac phase is emerging (see Table.1.3). A more challenging task will be,

to predict the Majorana phases α and β .

A systematic analysis encompassing the να → νβ and να → νβ processes can shed light

on the Majorana phases. Concerning the certain asymmetry that may arise between the

oscillation probabilities P(να → νβ ) and P(να → νβ ), certain Jarsklog like parameters

(V
i j

αβ
) are defined as follows,

V
i j

αβ
= Im

[

Uαi Uβ i U∗
α j U∗

β j

]

. (1.60)

These parameters satisfy the following relations,

V
i j

αβ
= V

i j

βα
=−V

ji

αβ
=−V

ji

βα
(1.61)
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Some examples of V
i j

αβ
are,

V 12
ee = c2

12s2
12c4

13 sin2(α−β ),

V 13
ee = c2

12s2
13c2

13 sin2(δ +α),

V 23
ee = s2

12c2
13s2

13 sin2(δ −β ),

...



































(1.62)

Details of the similar equations can be found in [15]. In the limit when δ = 0, then,

JCP = 0. In general, V
i j

αβ
are non-vanishing. In this limit there is no signature for CP violation

in ν−ν or ν−ν oscillation, however there may be in the ν−ν oscillation process. Only

when ν0ββ is confirmed, then we can plan for the determination of α and β in the future

experiments involving neutrino and antineutrino oscillations.

1.3.5.1 Massive neutrino and the hierarchy problem

The discussion so far clearly implies that neutrinos have a non-zero masses and they are

non-degenerate (at least one of them). This idea creates another problem well known as

neutrino mass hierarchy problem. The problem is, which among the three is the heaviest and

which one is the lightest, and based on this, there are three possible neutrino mass hierarchies

viz. (i) Normal hierarchy (m3 ≫ m2 ≥ m1), (ii) quasi-degenerate hierarchy (m3 ≈ m2 ≈ m1),

and (iii) Inverted hierarchy (m2 ≃ m1 ≫ m3).

1.3.6 Seesaw Mechanism

In addition to the mass hierarchy problem, there is no satisfactory explanation as to why

the neutrino masses are infinitesimally small. At present, the most simplest and satisfactory

explanation for the smallness of neutrino mass is provided by the seesaw mechanism. Our

current understanding on neutrino physics has no means to discriminate whether neutrinos

are Dirac or Majorana in nature.
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The seesaw mechanism is based on the Dirac and Majorana mass terms. It is apparently

the most natural and viable mechanism of neutrino mass generation. For simplicity, let us

consider the case of a single neutrino family. In this case, the Lagrangian for the Dirac and

the Majorana mass terms is defined as

L
D+M =−1

2
mLνL(νL)

c−mDνLνR−
1

2
mRνc

R +h.c., (1.63)

where mL, mD, and mR are the left-handed Majorana, Dirac and right-handed Majorana mass

terms respectively. The mass term of eq. (1.63) can be expressed in the matrix form as

L
D+M =

1

2
n̄LMD+M(nL)

c +h.c., (1.64)

where

MD+M =







mL mD

mD mR







nL =







νL

(νL)
c













































(1.65)

For convenience we make

MD+M =
1

2
TrMD+M +M, (1.66)

where TrM = 0. We have

M =







−1
2

mD

mD
1
2
(mR−mL)






. (1.67)
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The matrix M can be easily diagonalized by an orthogonal transformation

M = Om̄OT , (1.68)

where

O =







cosθ sinθ

−sinθ cosθ






(1.69)

is an orthogonal matrix and

m1,2 =±
1

2

√

(mr−mL)2 +4m2
D (1.70)

and the mixing angles are given by

tan2θ =
2mD

mR−mL

, cos2θ =
mR−ML

√

(mR−mL)2 +4m2
D

(1.71)

For the mass matrix MD+M we can write

MD+M = Om′OT , (1.72)

where

m′1,2 =
1

2
(mR +ML)±

1

2

√

(mR−mL)2 +4m2
D (1.73)

The main assumptions of the seesaw mechanism are (i) mL = 0, (ii) mD is generated by

the standard Higgs mechanism, (iii) mR violate L at energy much higher than the EW scale,

i.e.

mR ≡MR ≫ mD (1.74)

.
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The masses of the Majorana particles follow from eq. (1.73) and eq.( 1.74), and are given

as

m1 ≃
m2

D

MR

≪ mD, m2 ≃MR ≫ mD. (1.75)

Again from eq. (1.74) and eq. (1.71) we get,

θ ≃ mD

MR

≪ 1 (1.76)

As far as the seesaw mechanism is concerned, the smallness of left-handed neutrino

masses w.r.t. the masses of quarks and leptons, is connected with violation of the total

lepton number at very high energy scale given by MR. The suppression factor

(

mD

MR

)

is

characterized by the ratio of the EW scale and the scale of the violation of the lepton number.

Notice that when we put

mD ≃ mt ≃ 173.5 GeV, m1 ≃ 5×10−2 eV,

we get, MR ≃ m2
D

m1
≃ 1015 GeV











(1.77)

Now, for the general case of three neutrinos, the seesaw matrix takes the form

M =







0 mD

mT
D MR






, (1.78)

where mD and MR are 3×3 matrices and MR = MT
R . Now, let us introduce the matrix m as

UT MU = m, (1.79)
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where U is a unitary matrix. In analogy to our above discussion, we can choose the matrix U

as

U =







1 (mT
D)

†(M−1
R )

−M−1
R mT

D 1






(1.80)

From eq. (1.79) and eq. (1.80), it follows that up to the terms linear in

(

mD

MR

)

, the matrix

m takes the form of block diagonal

m≃







−mDM−1
R mT

D 0

0 MR






. (1.81)

Thus the Majorana mass matrix is given by

mν =−mDM−1
R mT

D (1.82)

MR is the mass matrix for the heavy Majorana particles. The exact form of the matrices mD

and MR helps in determining the values of neutrino masses and mixings as discussed in the

above section. The structure eq. (1.82) with large MR in denominator ensure the smallness of

neutrino masses w.r.t. the masses of leptons and quarks.4

1.3.6.1 Types of seesaw mechanism

The seesaw model we discussed so far is the well known Type I seesaw. However, there

are other different types of seesaw mechanism in order to explain the smallness of neutrino

masses viz.

(i) Type II seesaw mechanism: Type II also provides another mechanism, for explaining

the observed value of neutrino masses [16, 17]. In this mechanism, the vacuum

4another approach to explain the smallness of neutrino masses is based on the assumption that the total

Lagrangian of the theory is the sum of the SM Lagrangian with massless neutrinos and non-renormalizable

effective Lagrangian
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expectation value of the neutral components of scalar gauge-SU(2) triplets is suppressed

in such a way that the left-handed neutrinos (νL) acquires a vanishingly small Majorana

mass term, arising from the Yukawa couplings with the neutral components and is given

by

mII
ν ≃ Yνυ∆ , (1.83)

where Yν is the Yukawa coupling, ∆ is the SU(2)L Higgs triplet, and υ∆ is the VEV

of the neutral components of the Higgs triplet. υ∆ is defined as
µν2

M2
∆

, where M∆ is the

mass of the Higgs triplet and µ is the scale at which the SM Higgs and triplet mixes.

The similarity between the Type I and Type II is that both require a very high mass

scale, which is the mass scale of thee scalar triplet. This makes Type I and Type II

extremely difficult to test.

(ii) Type III seesaw mechanism Type III is implemented recently in the context of the

grand unified theories [18–20]. In this case one can generate the neutrino masses

by adding two extra matter field in the adjoint representation of SU(2)L with zero

hypercharge

mIII
ν ≃ Γ 2

ν υ2

Mρ
, (1.84)

where Mρ is the mass of fermion triplets and Γν is the Dirac Yukawa coupling. In the

context of SU(5) Type III can give rise to Type I, since the fields (for both) responsible

for the seesaw lives in the adjoint representation of SU(5).

(iii) Linear and Inverse seesaw mechanism: Unlike the standard seesaw models (Type -

I, II, III), which are assumed at an energy scale close to the GUT scale, the linear and

the inverse seesaw models try to realize the same at the electroweak scale by adding

new particles to the SM particle contents. The low scale seesaw scenarios have two

extra neutral lepton singlets per family, νR and St (right-handed and sterile neutrinos).



1.3 Introduction to neutrino physics 32

Under such assumption the mass matrix, in the basis (νL,νc
R,S

c
t ), takes the form

Lm =
1

2

(

νL,νc
R,S

c
t

)













0 mD 0

mT
D 0MR

0 MT
R 0

























νc
L

νR

St













+h.c. (1.85)

This mass texture does not violate the lepton number and the neutrinos remain massless.

However, in this model one can generate a small neutrino mass by adding a small mass

parameter that violate the lepton number. This technique is possible without requiring

an extremely large MR value. This is the reason why it is known as low scale seesaw.

The model is called a linear seesaw if, in the eq. (1.85), the block
[

M
(ν)

]

13
≡ ε . It

is because the light neutrino masses are linear in mD, such that mν ∼ ε
mD

MR

. However,

if the block
[

M
(ν)

]

33
≡ µ is the small mass parameter then the model is known as

inverse seesaw and the corresponding light neutrino masses mν ∼ µ
m2

D

M2
R

.

1.3.7 Current status of neutrino masses and mixings

Within the standard 3ν framework, the global fit of neutrino oscillation data provides the

most accurate information on the neutrino parameters. The five known oscillation parameters

(
∣

∣∆m2
21

∣

∣ , sin2 θ12,
∣

∣∆m2
31

∣

∣ ,sin2 θ13, sin2 θ23) have been determined with fractional accu-

racies as small as 2.4%, 5.8%, 1.8%, 4.7%, 9%, respectively. The most recent neutrino

oscillation data are given in Table 1.3.

The status of the three unknown oscillation parameters is as follows. The ambiguity of

the θ23 remains essentially unresolved. The best fit value of sin2 θ23 is somewhat fragile, and

by changing the data sets or by changing the hierarchy, it can flip the octant from the first to

the second. For the CP-violating phase δ , the previous trend favoring sinδ < 0 still remains
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(with a best fit at sinδ ∼−0.9), although all δ values are allowed at 3σ . Finally, there is no

statistically significant indication in favor of the mass hierarchy (either NH or IH).

On changing the NOνA appearance data set, some differences appears but there is still no

significant improvement on the octant ambiguity, while the indications on δ are strengthened,

and some ranges with sinδ > 0 can be excluded at 3σ level. Concerning the mass hierarchy,

the NH case appears to be slightly favored (at ∼ 90% C.L.).

A study on the parameter covariances and the impact of different data sets allow us to

appreciate the interplay among the various (known and unknown) parameters, as well as the

synergy between oscillation searches in different kinds of experiments. The non-oscillation

observables like the mβ , mββ , ∑mi can help to probe the absolute neutrino masses. In this

context, tight upper bounds on ∑mi from precision cosmology appear to favor the NH case.

1.3.8 Limits and constraints on neutrino masses

Currently, there is no experimental data which can predict the exact numerical values of

the neutrino masses. What we have is just the upper bound on the total neutrino mass

i.e., ∑mi.
5 The most stringent bound on the combined neutrino masses comes from the

cosmological observations. There are different ways to put constraint on ∑mi, some of

them are (i) Tritium beta decay (3H → 3He+ e−+ ν̄e): this reaction releases an energy of

Q = MH −Mhe
−me = 18.58KeV . Within the present and expected experimental accuracy,

one can limit the combination mβ = ∑mi|Uei|2. Currently, the bound on mβ is < 2.2eV at

95%CL which is expected to be further constrained by increasing the sensitivity down to

0.2% (KATRIN), (ii) Relic neutrinos: The energy density of the neutrino in our universe can

5At present, there is no lower bound on the total neutrino masses ∑mi. However, using the kinematical

methods for determining the momentum and energy of neutrinos it is, in principle, possible to do a direct

measurement of the neutrino masses. But, so far, we are successful only in determining an upper bound on the

sum of three neutrino masses ∑mi.
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be estimated using the relation,

ων =
ρν

ρc

=
1

h2

∑
i

mi

93eV
,

where ρc is the critical density of our universe and h is the Hubble constant ≃ 0.65 in units

of 100Km/s/Mpc and ωtoth
2 ≤ 0.4. A summary of the various experimental constraints on

∑
i

mi at 95% CL are given in [3].

1.4 Grand Unification

Nowadays, looking beyond the SM has become a trend for the modern theoretical physicist,

which is both exciting as well as frustrating. The idea of unification of the fundamental forces

was first demonstrated by James Clerk Maxwell in 19th Century by unifying the electric and

magnetic forces into electromagnetic force. This idea of unification was further extended

by Steven Weinberg, Abdus Salam and Sheldon Lee Glashow. They proved that, at higher

energies, the electromagnetic and weak force can be further unified into a single force called

electroweak force (EW). The idea of Grand Unification is a continuation of this trend where

the EW force and the strong nuclear force are hypothesized to be unified at an extremely

high energy scale (∼ 1016 GeV) called the GUT scale. GUT doesn’t include the force of

gravity. Unification of gravity with other three forces demands for more higher energy scale,

called the Planck energy (∼ 1019 GeV).

GUT can be of two types viz, non-SUSY GUT and SUSY GUTs. SUSY GUTs are an

extension of non-SUSY GUTs [21–23]. This extended version becomes more favorable as

it has a simpler and natural symmetry breaking pattern and not much rearrangements are

required to fit the low energy data. In a SUSY GUT, low energy effective field theory (EFT)

is assumed to satisfy N = 1 supersymmetry down to the EW scale in addition to the SM

gauge symmetry. Simple non-SUSY SU(5) model is ruled out mainly due to two reasons
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viz; high accuracy measurement of sin2 θW and by early bounds on the proton lifetime [24].

However, there are also papers which showed otherwise [25, 26]. When the SUSY breaking

scale is increased the effect from the SUSY SM must get decoupled. This is a must for any

theory beyond SM. However, we cannot increases the SUSY breaking scale randomly or

else it will reintroduce the hierarchy problem. At present, the unification of the three gauge

couplings within SUSY GUTs works extremely well, whereas the non-SUSY GUT misses

the unification by about 12σ . However, a precise unification can be achieved with more fine

tuning in the model.

SO(10) SUSY GUT models have the ability to accommodate the RH neutrinos auto-

matically thereby favoring the SSM of neutrino mass [27, 28]. In the SUSY GUT inspired

seesaw models neutrino masses are explained in the same way like other fermion masses.

The non-zero value of θ13 was already predicted by these models [29, 30]. These models

can also be very predictive since the idea of unified symmetry can precisely relate the Dirac

neutrino mass matrix with the quark mass matrix and the charged lepton mass matrix.

1.5 Scope of the thesis

So far, we have highlighted only a brief idea about the successes and limitations of the SM.

It is evident, that SM have no room for accommodating the non-zero neutrino masses and the

resulting phenomena. In order to successfully explain the experimental/observational data of

neutrinos, one has to go beyond the confines of SM. In the previous sections (Subsec. 1.3.2),

we briefly discussed how to give masses to neutrinos in the SM by extending the particle

content (of SM). In addition, we also discussed the Type I seesaw mechanism (Subsec.

1.3.6), which neatly explained the observed smallness of neutrino masses. However, this

mechanism took place at an extremely high energy scale (close to the GUT scale), making

it next to impossible for experimental verification. We also presented a brief ideas on the

supersymmetric extension of the SM model (MSSM) (Sec. 1.2), which is a very promising
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BSM physics. It is an attempt to understand the deeper working mechanism of our Universe.

As already discussed, it has a good predictive power.

Both seesaw mechanism and Supersymmetric theories are successful in explaining things,

which are otherwise very difficult. However, the lack of experimental evidences for both

are disheartening. The non-existence of supersymmetry or any SUSY related particles

(Sparticles), inspired one to consider that it got broken at some higher energy scale (SUSY

breaking scale). Moreover, there is no hard-and-fast theoretical constraints on the scale

where the phenomenon took place. It is this absence of a definitive scale, for both the seesaw

mechanism and SUSY breaking, which motivated us to study the possible effects of their

variations (over a certain range) on the couplings (gauge and Yukawa) and also on the various

neutrino parameters during their radiative evolutions (using RG method). While doing so,

we attempt to study some specific relations among certain neutrino parameters. We further,

extend our study to narrow down the possible range of both ms and SS scale in the light of

the certain EW scale parameter values.

Evidently, a complete description of the neutrino physics is still lacking. So far, we have

measured the three mixing angles and the two mass squared differences accurately. Other

than these, we have no idea about the absolute neutrino mass eigenvalues and we have lesser

idea about the phases etc. In this thesis, we make an attempt to explore the uncharted regime

of neutrinos by studying its radiative properties while incorporating a varying ms and SS

scale (only for the normal mass ordering). Such analyses are made possible by the help of

Renormalization Group (RG) method. Using this method, physics at a specific energy scale

can be extrapolated to a different energy scale. This thesis is organized in the following ways,

• In Chapter 2, we study the radiative properties of the three gauge couplings, third

generation three Yukawa couplings for both the Standard Model and the Minimal

Supersymmetric Standard Model. Here, we adopt the bottom-up running approach.
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We study how the gauge couplings unification point gets affected by the variation of

SUSY breaking scale. The same analysis is done for the Yukawa couplings as well.

• In Chapter 3, we make an attempt to account for the observed deviations of the weak

scale neutrino mixing angles from two well known flavor mixing patterns: Tri-Bi

Maximal (TBM) and Bi-Maximal (BM) mixing patterns through the charged lepton

correction. Here, we try to make a comparison between the two deviation matrices and

also with the CKM matrix of the quark sector.

• In Chapter 4, we make an attempt to study the radiative properties of nine neutrino

parameters using their respective RGEs in the top down approach (for the normal

ordering/hierarchy). Here, we analyze the stability of neutrino parameters at EW scale

values against the radiative evolution and under the combined effects of varying SUSY

breaking scale and the SS scale. Inspired by the recent global neutrino oscillation data,

we also study the possible existence of a self-complementarity relation among the

neutrino mixing angles at the seesaw scale and hence its radiative stability under the

same conditions as mentioned above. We further extend our analysis to include the

radiative stabilities of the neutrino mass ratios also.

• Finally, in Chapter 5, we summarize our observations and discuss the results and also

the shortcomings in our work. A short discussion on the possible extension of the

present investigations and our area of interest are presented.

• In Appendix A, we present a brief timeline showing the various important stages of

neutrino physics. We also highlight some of the well known neutrino experimental

facilities that have been shutdown, that are still operational, and the one that are planned

for the future. In the last section we discuss a brief note on some selected neutrino

experiments.



Chapter 2

Unification of Yukawa and gauge

couplings under varying SUSY breaking

scale

2.1 Introduction

The idea that the three gauge couplings unify at a very high scale, close to Planck scale, is

one of the main motivations of such theories. Besides, GUTs also provide answers and clues

to many fundamental problems that plague the SM. However, the basic requirements for a

model to be realistic are (i) gauge couplings unification, (ii) long enough proton lifetime, and

(iii) fermion mass phenomenology has to be correct.

The simplest group with the minimal particles content that can embed the SM gauge

group while preserving the L-R structure, is the SU(5) group, such that

SU(5)⊃ SU(3)c×SU(2)L×U(Y )Y . (2.1)
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It implies that the three gauge couplings unify above a particular energy scale, commonly

known as the unification scale.

However, SU(5) GUT [31] needed to be extended as it does not satisfy the above three

conditions. This can be remedied by multiple tweaking in the particle contents or by the

introduction of a new symmetry called supersymmetry (SUSY). The most natural extension

of the SU(5) GUT is the SUSY SU(5) GUT [32], which has wide predictive power [33, 34].

SUSY SU(5) model is very close to unifying the three gauge couplings and it can be made

exact by including threshold corrections. But it still fails to satisfy the remaining two

conditions which can be fulfilled by allowing non-renormlizable interactions. By introducing

a more complex group called SO(10), the above three conditions can be satisfied without the

requirement of any larger Higgs sectors or by the introduction of SUSY.

SUSY SU(5) GUT predicts the unification of the third generation Yukawa couplings at or

below the unification scale, and provides a natural solution for the hierarchy problem and

an alternative explanation of the EW symmetry breaking by the so called radiative breaking

scenario [35, 36]. This theory also provides the prediction of proton decay [34] which is

caused mainly by D = 5 operator [37–40]. The most stringent limit on proton lifetime is

provided by the Super Kamiokande experiment [41–43], with the current lower experimental

bound τp > 4×1033 years [44]. Such restrictive value may serve as a criteria to discriminate

certain GUT models. In order to suppress the fast D = 5 operator proton decay [45], we

require to rise both the scale of unification and the mass of the color triplet multiplets. In

such context, there is still enough scope for further investigations in this direction.

Here, our focus is on the unification of the gauge couplings as well as on the Yukawa

couplings in two loops RGEs within the framework of Minimal Supersymmetric SU(5) GUT,

using updated data consistent with the LHC result. We numerically solve the unification scale

for three gauge couplings (g1,g2,g3) as well as the third generation three Yukawa couplings

(ht ,hb,hτ ) with varying input values of SUSY breaking scale ms [45], assuming a single
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scale for all supersymmetric particles for simplicity of the calculation [46, 47]. There are

hints that SUSY particles have a wide spectrum and are not confined to a single energy scale.

This kind of assumption is valid as long as the mz or mt ≪ ms [45]. We assume the scale ms

to be somewhere in between 500 GeV to 7 TeV. In the present calculation we also ignore the

threshold effects of heavy particles which could be as large as a few percentage [45].

2.2 Evolution of gauge and Yukawa couplings with energy

scales

The present experimental data from LHC [2, 3] necessary for our work, are given in Table

2.1.

mass in GeV coupling constant

mz(mz) = 91.19±0.0021 α−1
e.m(mz) = 127.94±0.014

mt(mt) = 173.50±0.60 αs(mz) = 0.118±0.007

mb(mb) = 4.18±0.030

mτ(mτ) = 1.78±0.0016

Weinberg mixing angles = sin2θW (mz) = 0.23±0.00012

Table 2.1 Experimental input values for fermion masses, gauge couplings and Weinberg angle at electroweak

scale mz [2, 3].

In order to calculate the gauge coupling α1(mz) for U(1)Y and α2(mz) for SU(2)L for

the Standard Model SU(3)C× SU(2)L×U(1)Y , we start with the matching relation and

definition of Weinberg mixing angle. Thus,

1

αem(mz)
=

5

3

1

α1(mz)
+

1

α2(mz)
, (2.2)

sin2 θW (mz) =
αem(mz)

α2(mz)
(2.3)
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Substituting the observed values of coupling constants αem(mz), αs(mz) and sin2 θW from

Table 2.1 we obtain the numerical values of α1(mz) and α2(mz) with uncertainties arising

from input value of αs(mz), α1(mz) = 1.7100+0.00012
−0.00017×10−2 and α2(mz) = 3.3753−0.00215

+0.02150×

10−2 respectively. In term of the normalized coupling constant (gi), αi can be expressed as

gi =
√

4παi, where i = 1,2,3 and it represents electromagnetic, weak and strong couplings

respectively.

Here, we consider two possible scenarios for the unification of the couplings. In the first

case, we consider the top quark mass mt to be the starting energy scale for the evolution from

which the supersymmetric effect on the couplings has been included. Since the observational

data in Table 2.1 are given only at the z-pole mass scale, it is necessary to evolve them up to

the top quark mass scale. The evolution equation of the coupling constants at one loop level

[48] is given by,

dαi

dt
=

bi

2π
α2

i , (2.4)

which can be simplified as

1

αi(µ)
=

1

αi(mz)
−

bi

2π
ln

(

µ

mz

)

, (2.5)

where, µ is the energy scale in the range (mz ≤ µ ≤mt). For non-SUSY case, the co-efficient

for β function of the RGEs [49] [50] are,

bi=

(

5.30,−0.50,−4.00

)

.
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The evolution of the third generation fermion masses (top, bottom and tau) are obtained

by using the QED-QCD rescaling factor η as,

mb(mt) = mb(mb)
ηb

,

mτ(mt) = mτ (mτ )
ητ











(2.6)

where, ηb = 1.530 and ητ = 1.015 [51, 52].

All the above physical parameters are evaluated in the modified minimal subtraction

scheme (MS), without any radiative corrections. The inclusion of radiative correction is

achieved by using the method of dimensional regularization through dimensional reduction

[53].

Estimation of Yukawa couplings for t, b and τ requires a careful determination of mt , mb

and mτ in the DR scheme [49]. However, the effect of running of mτ on hτ is very small

and hence can be neglected. Furthermore, DR technique is used in order to reduce the large

uncertainty in the value of αs. Except mb and αs, all the other parameters are less affected

by the radiative correction. So, we consider only mb and αs terms neglecting all the others.

The equations relating the MS and DR scheme [53–56] for αS and mb ( f or mz ≤ µ ≤ mt)

are given as

1

ᾱs(µ)DR
=

1

αs(µ)MS
−

1

4
, (2.7)

mDR
b (µ) = mMS

b (µ)

(

1−
1

3π
αs(µ)−

29

72π
αs(µ)

2

)

, (2.8)

mMS
b (µ) = mMS

b (mb)
Fb(µ)

Fb(mb)
(2.9)

Fb(µ) =

(

23αs(µ)

6π

) 12
23

(

1+
3731

3174

αs(µ)

π
+1.5007

(

αs(µ)

π

)2
)

.
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The values of α1, α2 and α3 evaluated at top-quark mass scale using the above equations

in DR scheme, are shown in Table 2.2.

Lower limit Central value Upper limit

α1 1.71×10−2 1.71×10−2 1.71×10−2

α2 3.77×10−2 3.37×10−2 3.37×10−2

αDR
3 0.11 0.11 0.12

g1 0.46354 0.46356 0.46358

g2 0.65148 0.65127 0.65107

gDR
3 1.17 1.21 1.24

Table 2.2 Numerical values of gauge couplings at top quark mass scale mt .

The values of mb at various scales both in the MS and DR schemes are shown in Table

2.3.

at Lower limit Central value Upper limit

mb(mb) 4.15 4.18 4.21

MS mb(mz) 2.76 2.86 2.96

mb(mt) 2.69 2.78 2.87

mb(mb) 4.04 4.07 4.10

DR mb(mz) 2.73 2.82 2.92

mb(mt) 2.66 2.75 2.84

Table 2.3 mb in MS and DR schemes.

2.3 Effect on the unification with mt as the SUSY breaking

scale (ms = mt)

With the numerical values of mt , mDR
b and mτ at hand we can now determine the values

of Yukawa couplings at top-quark mass scale using the following equations [52–57] from
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Minimal Supersymmetric Standard Model (MSSM),

ht = mt(mt)
174sinβ

=
mt(mt)

√
1+tan2β

174tanβ
,

hb = mb(mb)
174ηbcosβ

=
mb(mt)

√
1+tan2β

174
,

hτ = mτ (mτ )
174ητ cosβ

=
mτ (mt)

√
1+tan2β

174























(2.10)

Here ht , hb and hτ are the third generation Yukawa couplings for top quark, bottom quark

and tau lepton respectively. The vacuum expectation value without SUSY is
υ√
2
= 174

GeV, tanβ =
υu

υd

is a free parameter in MSSM, where υu is the VEV for the up-type quarks

υu = υsinβ and υd for the down type quarks υd = υcosβ .

With the values of three gauge couplings in Table 2.2 as the input and Yukawa couplings

in eq.(2.10), we estimate the nature of variation of gauge and Yukawa couplings from top

quark mass scale mt up to the point of unification using 2-loops RGEs [50] [52, 58, 59]

defined as

dgi

dt
=

bi

16π2
g3

i +

(

1

16π2

)2
[

3

∑
j=1

bi j g3
i g2

j − ∑
j=t,b,τ

ai j g3
i h2

j

]

, (2.11)
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and for Yukawa couplings at 2-loop level, [20,21,22]

dht

dt
= ht

16π2

[

(

6h2
t +h2

b−∑
3
i=1 ci g2

i

)

+

1
16π2

(

∑i=1

(

cibi +
c2

i

2

)

g4
i +g2

1g2
2 +

136
45

g2
1g2

3 +8g2
2g2

3 +

(

6
5
g2

1 +6g2
2 +16g2

3

)

h2
t +

2
5
g2

1h2
b−22h4

t −5h4
b−5h2

t h2
b−h2

bh2
τ

)

]

dhb

dt
= hb

16π2

[

(

6h2
b +h2

τ +h2
t −∑

3
i=1 c

′
i g2

i

)

+

1
16π2

(

∑i=1

(

c′ibi +
c
′2
i

2

)

g4
i +g2

1g2
2 +

8
9
g2

1g2
3 +8g2

2g2
3 +

(

2
5
g2

1 +6g2
2

+16g2
3

)

h2
b +

4
5
g2

1h2
t +

6
5
g2

1h2
τ −22h4

b−3h4
τ −5h4

t −5h2
bh2

t −3h2
bh2

τ

)

]

dhτ
dt

= hτ

16π2

[

(

4h2
τ +3h2

b−∑
3
i=1 c

′′
i g2

i

)

+ 1
16π2

(

∑i=1

(

c′′i bi +
c
′′2
i

2

)

g4
i +

9
5
g2

1g2
2 +

(

6
5
g2

1 +6g2
2

)

h2
τ

+
(−2

5
g2

1 +16g2
3

)

h2
b +9h4

b−10h4
τ −3h2

bh2
t −9h2

bh2
τ

)

]



















































































































































(2.12)

where, t = lnµ and bi, bi j, ai j, ci, c
′
i, c

′′
i are β function coefficients in MSSM,

bi =

(

6.6,1.0,−3.0

)

bi j =













7.96 5.40 17.60

1.80 25.00 24.00

2.20 9.00 14.00













ai j =













5.2 2.8 3.6

6.0 6.0 2.0

4.0 4.0 0.0


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With the central value of gDR
3 , there is an approximate gauge couplings unification around

2.59×1016 GeV and a Yukawa couplings unification at 1.99×1012 GeV as shown in Table
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2.4. However, if we vary gDR
3 within the experimental bound 1.2084+0.0344

−0.0355, it is possible

for both Gauge couplings and Yukawa couplings to have a sharp unification scale at their

respective tanβ values as shown in Table 2.5. Figure 2.1a and Figure 2.2a represent the exact

unification point for the gauge and Yukawa couplings after RG evolution in the bottom-up

approach.

At tanβ g3 Unification points (in GeV)

Experimental Gauge Yukawa

Ug1,g2,g3
Uht ,hb,hτ

Central value 59.99 1.21 ∼ 2.59 ×1016 1.99 ×1012

Table 2.4 Approximate unification points for gauge couplings and Yukawa couplings for gDR
3 = 1.2084 and

ms = mt .

At tanβ gDR
3 Unification points (Energy in GeV)

experimental Gauge Yukawa

Ug1,g2,g3
Uht ,hb,hτ

Central Value 60.14 1.22 2.95×1016 3.88×1011

Table 2.5 Exact unification points for gauge couplings and Yukawa couplings for input values of gDR
3 in the

range 1.2084+0.0344
−0.0355 and ms = mt .

2.4 Unification based on varying SUSY breaking scale for

ms > mt

Following section 2, here we will consider the second case where SUSY breaking scale has

been pushed higher up to 7 TeV. To be precise we consider some viable points viz., 500 GeV,

1 TeV, 2 TeV, 3 TeV, 5 TeV, 7 TeV assuming the supersymmetric effect to start somewhere in

between.

The technique is almost similar with the previous section. The RGEs governing the

evolution of the gauge couplings and the Yukawa couplings are the same as those given in
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eq.(2.11) and eq.(2.12), with the only difference in the values of the energy scale and the

coefficients of the beta function i.e., bi and c
′
is.

Because of the difference in the intermediate energy level, one more step is needed. In

the previous section (section 2.3) we elevate the physical parameters from mz scale up to mt

scale and then to unification scale using eq.(2.11), eq.(2.12), and eq.(2.13). Here in this case

we will be doing the same but with one more step as shown below.

(i) Evolution from mz scale up to mt using eq.(2.10) and Table 2.2, for the energy range

mz ≤ µ ≤ mt

(ii) Evolution from mt to ms, where ms =500 GeV, 1 TeV, 3 TeV, 5 TeV, 7 TeV using

eq.(2.11), eq.(2.14), and eq.(2.15) with the beta function coefficients of eq.(2.16)
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where λ is the Higgs self-coupling (mh = Higgs mass) and υ=Vacuum expectation

value.

With the values of beta function coefficients for non-SUSY case [50] [51]

bi =

(

4.100,−3.167,−7.000

)

, gi j =













3.98 2.70 8.8

0.90 5.83 12.0

1.10 4.50 −26.0













,

ai j =













0.85 0.5 0.5

1.50 1.5 0.5

2.00 2.0 0.0













ci =

(

0.85,2.25,8.00

)

, c
′
i =

(

0.25,2.25,8.00

)

,

c
′′
i =

(

2.25,2.25,0.00

)































































































, (2.16)

for the energy range mt ≤ µ ≤ ms

(iii) Evolution from ms to mGUT where, ms =500 GeV, 1 TeV, 3 TeV, 5 TeV, 7 TeV, using

eq.(2.11), eq.(2.12), and eq.(2.13).

Here, we obtain a similar result with that of Section 2.3. At the central value of gDR
3 ,

there is an approximate gauge couplings unification but a sharp Yukawa couplings unification

(Table 2.6). However, if we vary gDR
3 within the experimental bounds, it is possible for
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both gauge couplings and Yukawa couplings to have a sharp single unification scale at their

respective energy scale and tanβ values as shown in Table 2.7, Fig.2.1b and Fig.2.2b.

SUSY breaking tanβ Unification points (Energy in GeV)

scale (ms) Gauge Yukawa

Ug1,g2,g3
Uht ,hb,hτ

500 GeV 60.91 3.74×1016 1.93×1011

1 TeV 61.46 4.11×1016 8.61×1010

3 TeV 62.42 4.84×1016 2.57×1010

5 TeV 62.81 5.18×1016 1.63×1010

7 TeV 63.05 5.40×1016 1.26×1010

Table 2.6 Approximate gauge unification points and Yukawa unification points for central value of gDR
3 =

1.2084

SUSY breaking tanβ gDR
3 Unification points (Energy in GeV)

scale (ms) Gauge Yukawa

Ug1,g2,g3
Uht ,hb,hτ

175 GeV 60.16 1.22 2.97×1016 1.71×1011

500 GeV 61.06 1.21 3.75×1016 1.14×1011

1 TeV 61.62 1.21 4.11×1016 8.21×1010

3 TeV 62.54 1.19 4.82×1016 4.60×1010

5 TeV 62.97 1.19 5.15×1016 3.65×1010

7 TeV 63.25 1.19 5.37×1016 3.18×1010

Table 2.7 Exact Unification points for gauge couplings and Yukawa couplings for input values of gDR
3 in the

range 1.2084+0.0344
−0.0355.

2.5 Results and Discussion

To summarize, we have studied the unification scenario in supersymmetric SU(5) grand

unified theory [60, 61] using the recent data and the two-loop renormalization group equa-

tions [33, 34]. From our study we have found that (in Section 2.3, where ms = mt) with

the central value of gDR
3 there is an approximate gauge couplings unification and a sharp

Yukawa couplings unification as given in Table 2.4. However, if we vary gDR
3 within the
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Fig. 2.1 Radiative evolution of gauge couplings and their unification when (a) ms = mt and (b) ms > mt TeV.

In (b) we take ms = 7 TeV.
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Fig. 2.2 Radiative evolution of third generation three Yukawa couplings and their unification when (a) ms = mt

and (b) ms > mt TeV. In (b) we take ms = 7 TeV.
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Fig. 2.3 Variation of the unification points for (a) the three gauge couplings and (b) the third generation three

Yukawa couplings with the variation of ms scale. Here, the value of ms are fixed at 500 GeV, 1 TeV, 3 TeV, 5

TeV, and 7 TeV.

experimental bounds (1.2084+0.0344
−0.0355), it is possible to obtain a sharp unification scale for

both the gauge couplings as well as for Yukawa couplings at their respective ms and tanβ

values as shown in Fig.2.1a and Fig.2.2a in Table 2.5 (gauge unification at 2.9518×1016

GeV and Yukawa unification at 3.8828×1011 GeV). A similar result is found in section 4

where there are approximate (Table 2.6) and sharp unification scale for gauge couplings and

Yukawa couplings at central value of gDR
3 (Table 2.7 ). But with the variation of gDR

3 within

the experimental range 1.2084+0.0344
−0.0355, we obtain a single unification scale for the gauge

couplings at 5.4175×1016 GeV and for Yukawa couplings at 5.0175×109 GeV (Fig.2.1b

and Fig.2.2b and Table 2.7). Here we have shown only the graph for ms = 7 TeV, case as

all the other graphs for different ms have the similar pattern with the only difference in their

unification scale. When we note down the unification points for both the gauge couplings

as well as the Yukawa couplings for different values of ms, a pattern emerged as shown

in (Fig.2.3). For gauge couplings, the unification point increases with the increase in the

SUSY breaking scale ms (Fig.2.3a). But for Yukawa couplings, the unification points vary in

the reverse order compared to the gauge couplings i.e., unification points decrease with the
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increase in ms Fig.2.3b. Finally, the present analysis addresses an important question on how

the gauge and Yukawa couplings unification scales vary with the varying SUSY breaking

scale.

The present analysis is based on an extremely simplifying assumption of a single scale

for all SUSY particles. There are strong hints that this is not the case and the SUSY spectrum

is more spread than being at a single scale [60]. Such simplifying assumption make the

present analysis possible at the cost of exact numerical accuracy. We also neglect the

threshold corrections [61] from various factors like (i) threshold correction from the two

loop contribution in the running of coupling constants (ii) light threshold correction from all

superpartners in the SUSY sector and (iii) threshold correction from particles of mass of the

unification scale. The first assumption is valid so long as ms ≫ mt or mz [29]. These two

assumptions when properly taken into account will affect the result by a few percent.

This chapters serves as the backbone for the radiative studies of all the Standard Model

particles e.g. neutrino parameters. A proper radiative analysis of neutrino parameters (which

is one of the main theme of this thesis), demands a clear understanding of the various

couplings (we consider only those couplings which give appreciable contributions). It will

become clear in the following chapter (Chapter 4), that radiative evolution of all of the

neutrino parameters depends upon the three gauge couplings as well as the third generation

three Yukawa couplings.



Chapter 3

Parametrization of lepton mixing matrix

in terms of deviations from bi-maximal

and tri-bimaximl mixing

3.1 Introduction

Over the last five years contributions from reactor [62–65], accelerator [66, 67] and solar

[68] neutrino experiments have provided precise values of three mixing angles and two mass

squared differences under a three-neutrino mixing scenario. Global analysis [69–71] of 3ν

oscillation data available from various experiments, provides us an overall view on mixing

parameters.

As neutrino experiments have been trying for more and more precision measurements

of neutrino mixing parameters, meanwhile theorists have been trying to realize the flavor

mixing pattern of leptons. Bimaximal mixing (BM) [72] and Tri-bimaximal mixing (TBM)

[73] have been playing an attractive role in the search of flavor mixing pattern over a decade.

Both these mixing schemes are µ− τ symmetric [74–76] and predict maximal atmospheric

mixing and zero reactor angle. They differ in their predictions of solar angle in such that
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BM mixing predicts maximal value of solar angle while TBM mixing leads to a value which

equals arcsin( 1√
3
). Out of these two mixing schemes, predictions of TBM mixing are more

closer to global data [69–71] compared to the other. With the confirmation of non zero θ13

the deviation of lepton mixing from exact BM or TBM pattern is clear. It is therefore useful

to study the deviations of lepton mixing from exact BM or TBM pattern. Deviations from

BM or TBM mixing is in fact a natural idea frequently discussed in the literature [77–87].

In this chapter, we introduce three parameters which account for deviations of the three

mixing angles, namely solar, atmospheric and reactor angle from their exact BM or TBM

values. We then parametrize the lepton mixing matrix in terms of these three deviation

parameters. Parametrization of lepton mixing matrix in terms of deviation parameters is also

discussed in Ref. [88]. Our parametrization set up is however different from that. We mainly

implicate the parametrization set up in predicting possible structure of charged lepton mixing

matrix which in turn can generate the lepton mixing matrix from BM or TBM neutrino mixing

via charged lepton correction. Charged lepton correction [89–98] is a very common tool

to deviate special mixing schemes like BM or TBM mixing. Corrections to special mixing

schemes can also be accounted in mass matrix formalism. We also analyse numerically

the charged lepton mixing matrices with an interest to compare them with the CKM matrix

[99, 100] of quark sector. In Grand Unified Theory (GUT) based models [101–104] CKM

like charged lepton corrections to special mixing schemes are naturally considered. Such

models also incorporates Quark-Lepton Complementarity (QLC) [105–108].

3.2 Parametrization of lepton mixing matrix

In general, lepton mixing matrix, known as PMNS matrix, is parametrized in terms of three

mixing angles, namely θ12, θ23 and θ13 which are commonly known as solar, atmospheric

and reactor angle; and three CP violating phases- one Dirac CP phase δ and two Majorana

phases α and β . In the standard Particle Data Group (PDG) parametrization [3] it looks like
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UPMNS =













c12c13 s12c13 s13e−iδ
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s12s23− c12c23s13eiδ −c12s23− s12c23s13eiδ c23c13













.P, (3.1)

where ci j = cosθi j, si j = sinθi j (i, j = 1,2) and P = diag(1,eiα ,eiβ ) contains the Majorana

CP phases. In the present work we however drop Majorana phase matrix P assuming that

neutrinos obey Dirac nature.

Both BM and TBM matrices predict θ
bm/tb

13 = 0 and θ
bm/tb

23 = 45◦ (suffices bm and tb

represent BM and TBM respectively). However, their predictions for solar angle are different

and are given by θ bm
12 = 45◦ and θ tb

12 = arcsin( 1√
3
). Putting these predictions in eq. (3.1), BM

and TBM matrices can be obtained as
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. (3.3)

We now introduce three parameters which account for the deviations of three mixing

angles from their corresponding BM or TBM values as follows :

θ12 = θ
bm/tb

12 +δθ
bm/tb

12 ,

θ23 = θ
bm/tb

23 +δθ
bm/tb

23 ,

θ13 = θ
bm/tb

13 +δθ
bm/tb

13 ,


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(3.4)
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where the deviation parameters δθ
bm/tb

12 and δθ
bm/tb

23 can take positive as well as negative

values whereas δθ
bm/tb

13 takes only positive values. We present the best fit and 3σ values of

mixing angles and Dirac CP phase in Table 1.3 [1]. Based on these global data we calculate

the values of deviation parameters and are presented in Table 3.1.

For BM mixing we have from eq. (3.4)

θ12 = 45◦+δθ bm
12 ,

θ23 = 45◦+δθ bm
23 ,

θ13 = δθ bm
13 .























(3.5)

Substituting these values in eq. (3.1) we have PMNS matrix as

UPMNS =













1√
2

pr̃ 1√
2

p̃r̃ re−iδ

−1
2

(

p̃q̃+ pqreiδ
)

1
2

(

pq̃− p̃qreiδ
)

1√
2
qr̃

1
2

(

p̃q− pq̃reiδ
)

−1
2

(

pq+ p̃q̃reiδ
)

1√
2
q̃r̃













, (3.6)

where,

p = cosδθ bm
12 − sinδθ bm

12 ,

p̃ = cosδθ bm
12 + sinδθ bm

12 ,

q = cosδθ bm
23 + sinδθ bm

23 ,

q̃ = cosδθ bm
23 − sinδθ bm

23 ,

r = sinδθ bm
13 ,

r̃ = cosδθ bm
13 .































































(3.7)

For TBM mixing we have from eq. (3.4)

θ12 = 35.26◦+δθ tb
12,

θ23 = 45◦+δθ tb
23,

θ13 = δθ tb
13.























(3.8)
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Mixing Scheme Model Parameter Best fit 3 σ

δθ12 −10.4◦ 13.2◦ - (−7.2◦)
NH δθ23 3.9◦ −6.2◦ - 8.3◦

δθ13 8.6◦ 7.9◦ - 9.3◦

BM

δθ12 −10.4◦ 13.2◦ - (−7.2◦)
IH δθ23 4.2◦ −5.6◦ - 8.1◦

δθ13 8.7◦ 8.0◦ - 9.4◦

δθ12 −0.66◦ −3.46◦ - 2.53◦

NH δθ23 3.9◦ −6.2◦ - 8.3◦

δθ13 8.6◦ 7.9◦ - 9.3◦

TBM

δθ12 −0.66◦ −3.46◦ - 2.53◦

IH δθ23 4.2◦ −5.6◦ - 8.1◦

δθ13 8.7◦ 8.0◦ - 9.4◦

Table 3.1 Calculated values of the various neutrinos deviation parameters from the present global data (as in

Table 1.3) [1].

Substituting these values in eq. (3.1) we have PMNS matrix as

UPMNS =













√
2√
3

p′r̃′ 1√
3

p̃′r̃′ r′e−iδ

− 1√
6

(

p̃′q̃′+
√

2p′q′r′eiδ
)

1√
3

(

p′q̃′− 1√
2

p̃′q′r′eiδ
)

1√
2
q′r̃′

1√
6

(

p̃′q′−
√

2p′q̃′r′eiδ
)

− 1√
3

(

p′q′+ 1√
2

p̃′q̃′r′eiδ
)

1√
2
q̃′r̃′













, (3.9)

where

p′ = cosδθ tb
12−

1√
2

sinδθ tb
12,

p̃′ = cosδθ tb
12 +

√
2sinδθ tb

12,

q′ = cosδθ tb
23 + sinδθ tb

23,

q̃′ = cosδθ tb
23− sinδθ tb

23,

r′ = sinδθ tb
13,

r̃′ = cosδθ tb
13.































































(3.10)

We want to emphasize that parametrization of lepton mixing matrix in terms of devia-

tion parameters has also been discussed by King [88]. There also exists some interest in
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parametrizing the lepton mixing matrix in terms of Wolfenstein parameter λ [109–111],

where λ accounts for the deviations of mixing angles from their values predicted by special

mixing schemes.

3.3 An implication of the model : charged lepton mixing

matrix

Deviations from BM or TBM mixing can be accounted in terms of charged lepton corrections

[89–98]. In the basis where both charged lepton mass matrix (ml) and left handed Majorana

mass matrix (mν ) are non diagonal, lepton mixing matrix is given by the product of two

mixing matrices as

UPMNS =U
†
lLUν , (3.11)

where, UlL diagonalizes the charged lepton mass matrix ml and Uν diagonalize the neutrino

mass mν . In the basis where charged lepton mass matrix is itself diagonal, PMNS matrix is

directly given by Uν , UlL being identity matrix. The general idea of charged lepton correction

is to work in the basis where both ml and mν are non diagonal and then considering Uν to

be a special mixing matrix like BM or TBM a small perturbation to it is accounted from

UlL leading to the desired PMNS matrix. Following this set up charged lepton corrections

to special mixing patterns like BM, TBM, Hexagonal mixing etc. are done. For example

charged lepton corrections to BM mixing are found in Refs. [112–114] and those to TBM

mixing are discussed in Refs. [113–115]. With the same idea, in our work, we first find out

UlL which can deviate BM neutrino mixing matrix and yield the lepton mixing matrix in eq.

(3.6). In that case Uν in eq. (3.11) is given by UBM and corresponding UlL is then given by
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Ubm
lL =













a − 1√
2
(b+ z1)

1√
2
(c− z2)

1√
2
(d + z3)

1
2
(e+ z4)

1
2
( f − z5)

− 1√
2
(d− z3)

1
2
(e− z4)

1
2
( f + z5)













, (3.12)

where,

a = cosδθ bm
12 r̃,

b = sinδθ bm
12 q̃,

c = sinδθ bm
12 q,

d = sinδθ bm
12 r̃,

e = qr̃,

f = q̃r̃,

z1 = cosδθ bm
12 qre−iδ ,

z2 = cosδθ bm
12 q̃re−iδ ,

z3 = reiδ ,

z4 = cosδθ bm
12 q̃− sinδθ bm

12 qre−iδ ,

z5 = cosδθ bm
12 q− sinδθ bm

12 q̃re−iδ .































































































































(3.13)

The parameters a- f and z1-z5 are used to express the matrix in eq. (3.11) in convenient way.

For TBM mixing case Uν in eq. (3.11) is given by UT BM and corresponding UlL is then

given by

U tb
lL =













a′ − 1√
2
(b′+ z′1)

1√
2
(c′− z′2)

1√
2
(d′+ z′3)

1
2
(e′+ z′4)

1
2
( f ′− z′5)

− 1√
2
(d′− z′3)

1
2
(e′− z′4)

1
2
( f ′+ z′5)













, (3.14)

where the parameters a′- f ′ and z′1-z′5 are given by eq. (3.13) with the substitutions of δθ bm
12 ,

q, q̃, r and r̃ by δθ tb
12, q′, q̃′, r′ and r̃′ respectively.

We note that both charged lepton mixing matrices Ubm
lL and U tb

lL have similar structure due

to µ− τ symmetry of BM and TBM mixing matrices. We estimate the numerical values (in
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modulus) of the elements of these mixing matrices for best fit values of deviation parameters

and are presented in eqs. (3.15) and (3.16).

Ubm
lL =













0.972512 0.183349 0.143535

0.185651 0.980189 0.062209

0.140544 0.074912 0.980319













. (3.15)

U tb
lL =













0.988657 0.114991 0.096260

0.108234 0.991394 0.072972

0.103806 0.062329 0.992184













. (3.16)

Naturally, there exists naive interest in searching connection between quark sector and lep-

ton sector. Grand unified theories (GUTs) generally provide the framework for quark-lepton

unification. Quark-lepton-complementarity (QLC), which signifies interesting phenomeno-

logical relations between the lepton and quark mixing angles supports the idea of grand

unification. Derivation of QLC relations assumes the deviation of lepton mixing from exact

BM pattern to be described by quark mixing matrix. In GUT based models [80, 115, 101–

104] charged lepton corrections to special neutrino mixing schemes are considered as CKM

like. From such points of view we make comparison of the charged lepton mixing matrices

in eqs. (3.15) and (3.16) with the CKM matrix. For convenience, we present the best fit

values (in modulus) of the elements of CKM matrix in eq. (3.17) [116].

VCKM =













0.97428 0.2253 0.00347

0.2252 0.97345 0.0410

0.00862 0.0403 0.999152













. (3.17)

Wee see that both the mixing matrices are close to CKM matrix. Like CKM matrix the

diagonal elements in these mixing matrices are close to unity and non diagonal elements

exhibit an approximate symmetric nature. One significant point, we note, is that the corner



3.4 Summary and discussion 62

elements, namely (UlL)13 and (UlL)31 in both the mixing matrices are relatively larger

compared to those of VCKM matrix.

3.4 Summary and discussion

BM and TBM are two special neutrino mixing schemes. To accommodate non zero θ13

and deviations of solar mixing and atmospheric mixing from maximality these special

mixing schemes should be modified. We have three parameters, viz. δθ
bm/tb

12 , δθ
bm/tb

23 and

δθ
bm/tb

13 , which account the deviations of lepton mixing angles from their BM or TBM values.

Numerical values of these deviation parameters can be obtained from global 3ν oscillation

data. We then parametrize PMNS matrix in terms of these parameters. Such parametrization

of lepton mixing matrix may help authors in phenomenological works which incorporate

deviation of special mixing schemes. We implicate our parametrization set up in predicting

possible structure of charged lepton mixing matrices which can generate the desired lepton

mixing matrix from BM or TBM mixing matrices. We have found that charged lepton mixing

matrices UlL’s in both cases (BM and TBM) exhibit similar structures. Numerical analysis

shows that these mixing matrices (Ubm
lL and U tbm

lL ), necessary to deviate BM mixing and TBM

mixing in obtaining mixing parameters consistent with global data, are close to the CKM

matrix of quark sector. This result is in agreement with the assumption, generally made in

GUT based model, that charged lepton correction to neutrino mixing can be considered as

CKM like.

In this Chapter, our primary focus is on how to deviate the BM and TBM mixing patterns,

using the contributions from the charged lepton sector, so that their predictions are consistent

with the present oscillation data. We do not use RG method here, as we confined ourselves

only at the EW scale. However, in the next chapter (Chapter 4) we will be working in a

model independent way and try to generate the same EW scale neutrino parameter values,

using the RG method in the top down approach, without considering any special mixing
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scheme or any possible contributions coming from the charged lepton sector (since there is

no experimental evidence/hint for mixing among the charged leptons).



Chapter 4

Radiative stability of neutrino

parameters and self-complementarity

relation with varying SUSY breaking

scale

4.1 Introduction

The physics of neutrino is going through a revolutionary period. From various recent

experiments, a small but nonzero value of the reactor angle, θ13 is confirmed[1, 117]. In

addition to this, the Dirac CP phase, δ is also observed [118, 119]. Recent experiments on

neutrino oscillation, 0νββ , and the cosmological observations have revealed precise and

important results on the observational parameters like the three mixing angles (θ13, θ12, θ23 ),

two mass-squared differences (∆m2
21,∆m2

31) and possible upper bound on the sum of neutrino

masses (Σmi) etc. [120–122]. But still we are unable to understand the absolute value of

neutrino masses, nature of neutrino mass hierarchy, or its type: Dirac/Majorana etc. The
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realization that neutrinos are massive in contrast to its old popular assumption that it is

massless (according to SM) is one of the strong signatures that the SM of particle physics

has to be extended beyond its present horizon.

Most of the current studies on physics beyond the SM (BSM) relies on the possible

existence of supersymmetry (SUSY). But there are other models of BSM physics which

does not incorporate the idea of SUSY [123, 124]. It is hypothesized that SUSY existed at

the early stage of big bang. But with the expansion of our Universe SUSY gets broken and

reduced to our present day SM. At what scale that breaking occurs is still an unknown but an

important parameter. The general idea is that there are two possible energy scales for the

SUSY breaking (ms): low and high. The low ms scale [125, 126] is expected to be about

a few TeV or so as suggested by the grand unified theory (GUT), whereas the high SUSY

breaking scale is expected to be somewhere around 1012 GeV [127].

One significant finding from the recent LHC experiment which sounds little disappointing

towards the possibility of SUSY is that the experiment which was operated at an energy

scale of 13 TeV, has not provided any evidence of the existence of SUSY particles so far

[128, 129]. In SUSY inspired neutrino physics it is predicted that SUSY plays an important

role over the neutrino masses and other observational parameters [130–132]. The gauge

coupling and Yukawa coupling constants suffer different radiative contributions from the

MSSM and SM sectors. Similar to this, we expect that the neutrino observational parameters

are also subjected to such kind of effects.

One of the reasons why the variation in ms is expected to bring changes to various

observational parameters is owing to the changes in the effective range of both MSSM and

SM. When we increase the ms scale, the effective range of SM increases, whereas that for

MSSM decreases and vice versa. It will change the amount of radiative correction that

each parameter receives from the SM and MSSM, respectively. In Chapter 2, we show the

variation of the unification point of the gauge couplings with varying ms scale. Such behavior



4.1 Introduction 66

is likely to be seen for the neutrino oscillation parameters too. In this regard, it is important

to study the possible effects of varying ms on the radiative evolution of the neutrinos and

hence, to determine (or narrow down) the possible range of ms scale.

The possible reason behind the suppression of SUSY motivated effects at the LHC

experiments may be due to the low luminosity of the beam. By the end of 2012, LHC’s

integrated luminosity, running at a centre-of-mass energy
√

s = 8 TeV, is already over 20 fb−1

[4]. The present integrated luminosity of the LHC for
√

s = 13 TeV is 35.9 fb−1 for CMS

[133] and 36.1 fb−1 for ATLAS [134]. Some predicted the required integrated luminosity

for observing SUSY related events to be 3000 fb−1 [135, 136], which is approximately 85

times greater than the present luminosity. Nevertheless, this still gives us a hope for the

possible existence of ms < 13 TeV. If a seesaw mechanism (SSM) is the only cause behind

the generation of small neutrino masses, then it appears that the right handed neutrino mass

scale must lie somewhere within the range of (1010−1016) GeV [137, 138]. In our analysis,

we shall vary the seesaw scale (SS) scale starting from 1010-1015 GeV.

One sees that the numerical range of three mixing angles within 1σ [1] appears as in the

following:

θ13 = 8.440+0.16

−0.17, θ12 = 34.50+1.1
1.0 and θ23 = 41.00+1.1

−1.1. (4.1)

We see that there may lie a self complementarity (SC) among these parameters in terms of

the following relation

θ23 = q× (θ13 +θ12), (4.2)

where the parameter, q, is either unity or O(1). The self-complementarity relation

(SC) is an important phenomenological relation [139, 140] similar to the quark-lepton

complementarity relations [106, 141, 142]. The possible existence of such relations among
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the parameters are expected to be the signatures of a certain flavor symmetry working in the

background. The present analysis attempts not to deal with the possible origin of such a kind

of a SC relation, rather it insists on the existence of such a relation even at higher energy

scale. Our work starts with an assumption that this SC relation holds good at the SS scale.

Through our analysis, we will show that this relation remains invariant against the radiative

evolution for varying the ms and SS scale. We emphasize that similar to the works in the

literature which focus only on the renormalization group invariant parameters [143–147], the

SC relation can also serve as an RGE invariant relation.

The present investigation is a continuation of Chapter 2, where we studied the radiative

evolution of the three gauge, third generation Yukawa and quartic Higgs couplings following

a bottom-up approach, with varying SUSY breaking scale ms. It was observed that the

unification scales for both the gauge couplings and Yukawa couplings vary but in the opposite

trend and tend to attain a fixed value with increasing ms. There, we vary ms starting from 500

GeV to 7 TeV. However, in the present work, we follow the top down approach starting from

the seesaw scale (SS) up to the electroweak scale. We fix, tanβ = 58.6, which is relevant in

the context of our previous work [148].

4.2 RGEs for neutrino parameters

Renormalization group approach is a tool for studying physics at a different energy scale,

which are otherwise impossible to reach with the current technology, and then to compare it

with the available low energy data. Radiative analysis of neutrino parameters requires the

RGEs of gauge couplings, Yukawa couplings, and the quartic Higgs couplings. The radiative

properties of these couplings have been studied extensively in different models, and these

three gauge couplings are expected to be unified at an energy scale approximately at 2×1016

GeV [149–154]. The RGEs for the gauge couplings, Yukawa couplings, and quartic Higgs

coupling are given in the Chapter 2. We use 2-loops RGEs for both the SM and MSSM.
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The RGE analysis of the neutrino parameters can be done in two possible ways viz:

i) by a run and diagonalize method: where, the whole neutrino mass matrix is allowed to

evolve using their appropriate RGEs, and then the corresponding neutrino parameters can be

achieved at the desirable energy scale (µ) by diagonalizing the neutrino mass matrix, ii) by

using the RGEs of the corresponding neutrino parameters separately as defined by the eqs.

(4.3) to (4.13). In both the cases, the RGEs of all the neutrino parameters and the RGEs of

various coupling parameters are required to be solved simultaneously. In this work, we adopt

the later stand.

The input parameters for the gauge, Yukawa, and quartic Higgs couplings at the SS, given

in Table 4.1, are taken form Chapter 2. In the present analysis, we choose our starting energy

scale to be the SS scale. We consider a different possible SS scale starting from 1010 GeV to

1015 GeV, and we run down all the observational neutrino parameters from SS scale up to

the electroweak scale (mZ = 91.18 GeV) via ms, which also varies in our analysis.

The radiative properties of neutrinos has been studied extensively in various models

[154–163]. The standard two loops RGEs for the neutrino masses, mixings, and CP phases

are shown below. For the three neutrino mixing angles [154] ,the RGEs are,

θ̇12 = − Cy2
τ

32π2
sin2θ12s2

23

|m1eiψ1 +m2eiψ2 |2
∆m2

21

, (4.3)

θ̇13 = − Cy2
τ

32π2
sin2θ23

m3

∆m2
31(1+ξ )

(4.4)

× [m1 cos(ψ1−δ )− (1+ξ )m2 cos(ψ2−δ )−ξ m3 cosδ ] , (4.5)

θ̇23 = − Cy2
τ

32π2
sin2θ23

1

∆m2
31

[

c2
12|m2eiψ2 +m3|2 + s2

12

|m1e1ψ2 +m3|2
(1+ξ )

]

,

where, ∆m2
21 = m2

2−m2
1 and ∆m2

31 = m2
3−m2

1, ξ =
∆m2

21

∆m2
31

.

The RGEs for the three phases are
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(for Dirac phase)

δ̇ =
Cy2

τ

32π2

δ (−1)

θ13
+

Cy2
τ

8π2
δ 0, (4.6)

where

δ (−1) = sin2θ12 sin2θ23
m3

∆m2
31(1+ξ )

× (4.7)

[m1 sin(ψ1−δ )− (1+ξ )m2 sin(ψ2−δ )+ξ m3 sinδ ] ,

δ (0) =
m1m2s2

23 sin(ψ1−ψ2)

∆m2
21

(4.8)

+m3s2
12

[

m1 cos2θ23 sinψ1

∆m2
31(1+ξ )

+
m2c2

23 sin(2δ −ψ2)

∆m2
31

]

+m3c2
12

[

m1c2
23 sin(2δ −ψ1)

∆m2
31(1+ξ )

+
m2 cos2θ 2

23 sin(ψ2)

∆m2
31

]

,

(for Majorana phases)

ψ̇1 =
Cy2

τ

4π2

{

m3 cos2θ23
m1s2

12 sinψ1 +(1+ξ )m2c2
12 sinψ2

∆m2
31(1+ξ )

(4.9)

+
m1m2c2

12s2
23 sin(ψ1−ψ2)

∆m2
21

}

,

ψ̇2 =
Cy2

τ

4π2

{

m3 cos2θ23
m1s2

12 sinψ1 +(1+ξ )m2c2
12 sinψ2

∆m2
31(1+ξ )

(4.10)

+
m1m2s2

12s2
23 sin(ψ1−ψ2)

∆m2
21

}

.

The RGEs for the neutrino mass eigenvalues are

ṁ1 =
1

16π2

[

α +Cy2
τ

(

2s2
12s2

23 +F1

)]

m1, (4.11)

ṁ2 =
1

16π2

[

α +Cy2
τ

(

2c2
12s2

23 +F2

)]

m2, (4.12)

ṁ3 =
1

16π2

[

α +2Cy2
τc2

13c2
23

]

m3, (4.13)
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Gauge couplings Yukawa couplings Quartic-Higgs couplings

g1 - 0.6032 yt - 0.76809 λ - 0.58

g2 - 0.6826 yb - 0.80488 -

g3 - 0.7557 yτ - 0.91448 -

Table 4.1 Input values for gauge, Yukawa and quartic Higgs couplings are extracted from Chapter 2.

where

F1 = −s13 sin2θ12 sin2θ23 cosδ +2s2
13c2

12c2
23,

F2 = s13 sin2θ12 sin2θ23 cosδ +2s2
13s2

12s2
23,











(4.14)

α =−6
5
g2

1−6g2
2 +6y2

t

C = 1











for MSSM (4.15)

α =−3g2
2 +2y2

τ +6y2
t +6y2

b

C = −3
2











for SM (4.16)

With all the necessary mathematical frameworks in hand, we can now study the radiative

nature of neutrino masses, mixings, and CP phases using the top-down running approach

together with the MSSM unification conditions.

In the first step, all the parameters are allowed to run down from the SS to the SUSY

breaking scale using their respective MSSM RGEs and from the SUSY breaking scale further

down to the EW scale using their SM RGEs. At the transition point from MSSM to SM, we

apply appropriate matching conditions as shown below,
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gi

(

M−
SUSY

)

= gi

(

M+
SUSY

)

, (4.17)

λt

(

M−
SUSY

)

= λt

(

M+
SUSY

)

sinβ , (4.18)

λb

(

M−
SUSY

)

= λb

(

M+
SUSY

)

cosβ , (4.19)

λτ

(

M−
SUSY

)

= λτ

(

M+
SUSY

)

cosβ , (4.20)

where tanβ = vu/vd such that vu = vsinβ , vd = vcosβ and v = 246 GeV is the vacuum

expectation value (VEV) of the Higgs field. In our analysis, we choose a single SUSY

spectrum for simplicity and study the radiative stability of the neutrino parameters at the

weak scale for varying ms.

4.3 Radiative effects on the neutrino oscillation parame-

ters and the CP phases

The radiative effects on the neutrino parameters for a strict normal or inverted hierarchy

is small. If the neutrinos masses have a quasidegenerate spectrum, then the RG evolution

between the lowest SS and the EW energy scale can have sizable effects [164–167] on the

neutrino oscillation parameters. The RG effects may even account for the difference between

the mixings in the quark and the lepton sectors [168].

In MSSM, both the atmospheric (θ23) and solar mixing angle (θ12) increase with the

decrease in energy as predicted by eq.(4.3) and eq.(4.4). Out of the three mixing angles, the

solar mixing angle is prone to the largest RG effects because of the presence of a small ∆m2
31

in the denominator, whereas θ13 is subjected to the smallest RG effect.

In the top-down approach, all the three mass eigenvalues behave in a similar fashion,

and they all decrease with the decrease in energy scale. Because of the comparatively larger
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value of α with respect to yt , yb, and yτ , the RG running effect on the mass eigenvalues is

less. But, due to the same factor α , there is appreciable running in the RGEs of the mass

eigenvalues in the SM case. The running of the mass eigenvalues in the MSSM is defined by

a common scaling factor, except for the case of a large tanβ where it deviates considerably.

For nearly degenerate neutrino masses and a large tanβ , the radiative influence of CP

phases over other parameters becomes important. All of the phases (both Majorana and

Dirac) undergo radiative corrections. For different sets of the input phases, the RG effects on

the neutrino oscillation parameters may differ. In the context, when the two Majorana phases

are equal[154], the evolutions of the parameters are highly suppressed since the leading terms

in the RGEs of the phases become zero [See eq.(4.10) and eq. (4.11)].

4.4 Numerical analysis and the Results

The RGEs are differential equations and demand the input values for the parameters to be

sought out, at the very outset. In our case, the starting point is the SS scale, and finally, we

end up at the EW scale. From the SS scale upto the ms scale, the RGEs follow a certain

pattern [eq. (4.15)] and reverts to another form in the region from ms upto the EW scale

[eq. (4.16)]. Both the SS scale and ms are unknown to us. Our present analysis although

tries to visualize the effect on the neutrino observational parameters for varying ms, yet gives

emphasis on the choice of the SS scale also. We fix the ms values in between 1 TeV to 13

TeV. In addition, the SS scale is also assigned certain fixed values between 1010 GeV to 1015

GeV.

The parameters, g1, g2, g3, yt , yb, yτ , and λ are specified as per Table 4.1. In the present

analysis, we have got nine free parameters: m1, m2, m3, θ13, θ23, θ12, δ , ψ1, and ψ2. As

stated earlier, the present study presumes the existence of the SC relation [see eq. (4.2)] at the

SS scale. By virtue of this relation, we assign initial input values only to θ13 and θ12. Further

simplifications are made regarding the initial choice of ψ1 and ψ2, which are constrained
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to be equal,(ψ1)0 = (ψ2)0, for all subsequent calculations [the notations (...)0 represent the

initial input value of the parameter within the bracket]. In that way, we assign input values

only to six neutrino observational parameters. To simplify, we summarize our strategy in the

following way,

(Step 1) We vary the initial values of the six neutrino parameters at a fixed ms scale. To ensure

that the initial choice of the parameters beget the numerical values at the EW scale

which are consistent within a 3σ range, we follow a simple mechanism. To illustrate,

let us fix ms at 5 TeV, SS scale at 1014 GeV, and assume, (m2)0 = 2.34×10−2 eV and

(δ )0 = 90◦. The remaining parameters, (θ13)0, (θ23)0, (m1)0, (m3)0, and (ψ1)0 are

assigned with certain numerical values, so that the final output at the EW scale lies

within 3σ . Next, we vary the parameter, (ψ1)0 and see how the remaining parameters,

like, (θi j)0, and (mi)0 are to be adjusted in order to keep the outcome within the 3σ

range. For details, see Table 4.2, Fig. 4.1a, and Fig. 4.1b. We see that, except (m3)0

which varies a little, the other input parameters are almost stable against changing

(ψ1)0. The motivation behind performing this step is to ensure that the final numerical

values in concern with the neutrino observational parameters, are not too sensitive to

the initial input of the Majorana phase. This observation helps us to choose an arbitrary

value for (ψ1)0. We take (ψ1)0 = 45◦ for all subsequent calculations.

4.4.1 For varying ms and SS scale

(Step 2) The SUSY breaking scale ms, is attributed to the following numerical values like,

1, 3, 5, ...13 TeV, and in accordance with that, we categorize seven sets of input values

as, A1, A3, A5...A13, respectively. For example, the set A5 corresponds to the set of

input (θi j)0, (mi)0, (δ )0 and (ψ1)0, at ms = 5 TeV. For all the above mentioned sets,

we fix (δ )0 = 90◦. Similarly, we assign sets, B1, B3, B5...B13 with (δ )0 = 270◦. This

is to be noted that both kinds of sets A j and B j are the input values of the neutrino
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Fig. 4.1 (a) The variation of the (θi j)0 against (ψi)0 is shown. (b)The stability of (mi)0 against (ψi)0 is studied.

In our calculations, we assume the Majorana parameters to be equal. The ms and SS scale are fixed at 5 TeV

and 1014 GeV respectively. The other initial input, (δ )0 = 90◦ and (m2)0 = 2.34×10−2 GeV. The purpose of

this study is to achieve the numerical values of the parameters at EW scale within 1σ .

parameters, at the SS scale of 1014 GeV. There is another O(1) parameter, q which

appears in eq. (4.2) is tuned between 0.95 to 0.97. For details, see Table 4.3.

(Step 3) In this step, keeping a certain input set, say A5 fixed, we vary the ms scale between 1

TeV to 13 TeV, and check the stability of the neutrino observational parameters at the

EW scale. The details are shown in the Tables 4.4- 4.11.

(Step 4) We repeat step 3, for different values of theee SS scale, such as 1010, 1011...1015 GeV.

We will now discuss the results of our analysis.

4.4.2 For varying ms at fixed SS scale

We keep track of the numerical values of the neutrino observational parameters at the EW

scale. From Tables 4.4-4.11, one sees that, except ∆m2
21, other parameters like θ13, θ12, θ23,

and ∆m2
31 show stability at the face of the changing ms. For all the three mixing angles, the

fluctuations are consistent within 3σ bound [1].But for ∆m2
31, the fluctuations sometimes

cross the 3σ bound. Although the input entries corresponding to different neutrino parameters
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are almost the same for all the sets A j and B j, yet the solar mass squared difference at the

EW scale is found quite sensitive towards both: the initial input as well as to the ms scale. To

illustrate, one can see that for the input data set, say A5, which results in ∆m2
21 = 7.57×10−5

eV2 and this is consistent within 1σ bound, for ms being set at 5 TeV. If ms is changed a

little, say to 3 TeV and 7 TeV, we see that for the same input data set A5, the ∆m2
21 becomes,

9.16×10−5 eV2 and 6.67×10−5 eV2 respectively. This output lies strictly outside the 3σ

region. However, if we achieve an acceptable ∆m2
21, against a higher ms scale, we can expect

a little stability. To exemplify, if for A11, we achieve, ∆m2
21 = 7.54× 10−5 eV2 (within

1σ bound), against ms = 11 TeV, then changing the ms to either 9 or 13 TeV, will not take

this parameter outside 3σ . In addition, both solar and atmospheric mass squared difference

decreases, with the increase in ms scale. The CP violating phases also vary a little, if ms

were changed. With the increase of the latter, δ decreases, whereas the two Majorana phases

increase [See Fig. 4.2].
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Fig. 4.2 The fluctuations of (a) the Dirac phase (δ ) and (b) the Majorana phase (ψi) after RG evolution, at the

EW scale, against changing ms, and the SS scale are studied. ms values are fixed at 1 Tev, 3 TeV, 5 Tev, 7 TeV,

9 Tev, 11 Tev, 13 TeV, and different SS scales are assumed at 1010 GeV, 1011 GeV, 1012 GeV, 1013 GeV, 1014

GeV, and 1015 GeV. Here, we consider only one input data set B13 as in Table 4.3.
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The discussion concerned so far is true only for the SS scale: 1014 GeV. We try to see

how a changing SS scale, along with ms, can affect the physical parameters at the EW scale

as per the step(4) mentioned above. We note down the following. To exemplify, let us choose

the input data set B5, which is capable of producing, observable parameters at the EW scale

consistent within 3σ , with ms being fixed at 5 TeV, and the SS scale at 1014 GeV. With the

SS scale fixed, first we vary ms, and we get a certain plot, which shows how the numerical

value of that observable parameter at the EW scale changes against ms. We redo the same to

get another plot, but at a different SS scale, for same input data set. We observe the ascent or

descent of the plots against the different SS scale.

(a) Among the three mixing angles, θ13 at EW scale decreases if the SS scale is increased,

whereas θ12 and θ23 increase. For a wide ranges of the ms and SS scale, the output

values stay within the 3σ bound. However, for different input data sets concerned, the

exclusion of certain ms values or SS scales are also possible, depending upon the 3σ

bound of the concerned mixing angles. For example, consider the case of θ12 at the

EW scale, against a fixed input data set B5. If we believe the SS scale to be 1010 GeV,

then, from the plots, it is evident that the SUSY breaking scale should not be more

than 7 TeV [See Fig. 4.3a]. For the other two mixing angles, (θ13) and (θ23), see Fig.

4.4 and Fig. 4.5 respectively.

(b) With all the conditions being the same as before, the δ increases if the SS scale is

increased, whereas the reverse is true for the Majorana phases. [See Fig. 4.2a and Fig.

4.2b].

(c) We observe certain interesting results in concern with ∆m2
21 and ∆m2

31. The mass

squared differences are found highly sensitive to the initial data set, ms, and the SS

scale. The ∆m2
31 remains more or less stable against ms, but crosses 3σ bound if the

SS scale is varied. On the contrary, the ∆m2
21 fluctuates more with ms but less with SS
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Fig. 4.3 The fluctuations of the numerical values of θ12, at the EW scale is studied, against changing ms , and

SS scale. The shaded region (horizontal) represents the experimental 3σ range [1] and the horizontal bold line

inside the shaded region indicates the best-fit value. The four figures (a), (b), (c), and (d) are for the different

input data sets B3, B9, B11, and B13 respectively (as given in Table 4.3). The SS scales are fixed at 1010 GeV,

1013 GeV, 1014 GeV, and 1015 GeV.

scale. It is interesting to note that against a fixed input data set (say, B5), with respect

to 3σ range of ∆m2
21, one can even find a bound over the ms scale. This bound shifts

to the right, i.e. towards a higher ms region as we take the input numerals as per the

initial data sets from B1 to B13 (see Fig. 4.6 and Fig. 4.7).
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Fig. 4.4 The fluctuations of the numerical values of θ13, at the EW scale is studied, against changing ms , and

SS scale. The shaded region (horizontal) represents the experimental 3σ range [1] and the horizontal bold line

inside the shaded region indicates the best-fit value. The four figures (a), (b), (c), and (d) are for the different

input data sets B3, B5, B7, B9, B11, and B13 respectively (as given in Table 4.3). The SS scales are fixed at

1012 GeV, 1013 GeV, 1014 GeV, and 1015 GeV.

4.4.3 The SC relation and the mass ratios

In addition to the physical observables, we try to see how the certain parameters/ relation

evolve against the varying energy scale. Although the neutrino oscillation experiments hints
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Fig. 4.5 The fluctuations of the numerical values of θ23, at the EW scale is studied, against changing ms , and

SS scale. The shaded region (horizontal) represents the experimental 3σ range [1] and the horizontal bold line

inside the shaded region indicates the best-fit value. The four figures (a), (b), (c), and (d) are for the different

input data sets B3, B5, B7, B9, B11, and B13 respectively (as given in Table 4.3). The SS scales are fixed at

1012 GeV, 1013 GeV, 1014 GeV, and 1015 GeV.

not for individual neutrino masses, yet the study of individual parameters and how they

evolve carry physical insight. This study is relevant from the model building point of view.

(a) As stated earlier, we have assumed that at the SS scale, the three mixing angles are

connected via a complementarity relation [See eq. (4.2)]. We see that for a fixed ms and

a chosen SS scale, with all the input parameters fixed to a certain data set (say, B5), the
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Fig. 4.6 The fluctuations of the numerical values of ∆m2
21, at the EW scale is studied, against changing ms,

and the SS scale. The shaded region (horizontal) represents the experimental 3σ range [1], and the horizontal

bold line inside the shaded region indicates the best-fit value. The vertical shaded region corresponds to the

allowed ms region, for which the plots for different SS scale lie within the 3σ bound. The four figures (a), (b),

(c), and (d) are for the different input data sets B3, B5, B7, B9, B11, and B13 respectively (as given in Table

4.3). The SS scales are fixed at 1012 GeV, 1013 GeV, 1014 GeV, and 1015 GeV.

angles evolve (except θ13 which is almost stable), but the SC relation connecting the

mixing angles, remains almost invariant against the radiative evolution. This stability is

achievable, even if we vary the SS scale or ms. We have shown the radiative evolution

of the angles along with the SC relation for both varying ms (with a fixed SS scale) and
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Fig. 4.7 The fluctuations of the numerical values of ∆m2
31, at the EW scale is studied, against changing ms,

and the SS scale. The shaded region (horizontal) represents the experimental 3σ range [1], and the horizontal

bold line inside the shaded region indicates the best-fit value. The vertical shaded region corresponds to the

allowed ms region, for which the plots for different SS scale lie within the 3σ bound. The four figures (a), (b),

(c), and (d) are for the different input data sets B3, B5, B7, B9, B11, and B13 respectively (as given in Table

4.3). The SS scales are fixed at 1012 GeV, 1013 GeV, 1014 GeV, and 1015 GeV.

varying SS scale (with a fixed ms). For details, see Fig. 4.8-Fig. 4.9. The SC relation

is a phenomenologically motivated relation like the QLC relation [169] that connects

the quark and lepton sectors. A relation of this kind bears the signature of a certain

hidden symmetry. As pointed out in our analysis, that which reflects the invariance
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of the former against radiative evolution may turn out as fruitful information for the

model builders.

(b) Like the mixing angles, we try to see how the mass parameters respond to radiative

evolution. Instead of concentrating on individual neutrino masses, we focus on the

three mass ratios as such: m2/m1, m3/m1, and m3/m2. This is inspired by the phe-

nomenology of the quark sector. Where, we see that the mass ratio between the down

and strange quarks is naturally related to the quark mixing angle (Cabibbo angle) which

plays an important role in describing the mixing among the quarks [170, 171]. To

exemplify, we fix the ms at 5 TeV and the input data set at B5. Following this, we see

how the three neutrino mass ratios vary against the changing SS scale. The details are

shown in Fig. 4.10. One sees that the ratio m3/m1 or m3/m2 though remains invariant

in the SUSY region, changes after crossing the ms scale. But, interestingly, the ratio

m2/m1 remains almost invariant and tries to maintain a constant numerical value as

such: m2/m1 ∼ 2. A summarized version of the different types of effect each neutrino

parameters receive due to the variation of ms and SS are given in Table 4.12.
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Fig. 4.8 Radiative evolution of the three neutrino mixing angles and its self-complementarity relation from the

seesaw scale to the EW scale for different choices of ms are studied. The four figures (a), (b), (c), and (d) are

for the different input data sets B3, B5, B7, B9, B11, and B13 respectively (as given in Table 4.3). Here we

consider only one SS scale (1014 GeV).
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Fig. 4.9 Radiative evolution of the three neutrino mixing angles and its self-complementarity relation from

the seesaw scale to the EW scale for a fixed data set B5, ms = 5 TeV (as given in Table 4.3) are studied for

different seesaw scales. The four figures (a), (b), (c), and (d) corresponds to the different choices of SS at 1012

GeV, 1013 GeV, 1014 GeV, and 1015 GeV respectively.
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Fig. 4.10 Radiative evolution of the three neutrino mass ratios from the seesaw scale to the EW scale for a

fix input data set B5, fix ms = 5 TeV (as given in Table 4.3) for different seesaw scales are studied. The four

figures (a), (b), (c), and (d) corresponds to the different choices of SS at 1012 GeV, 1013 GeV, 1014 GeV, and

1015 GeV respectively.
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ms ∆m2
21 (×10−5eV 2)

in at EW scale

TeV A1 A3 A5 A7 A9 A11 A13 B1 B3 B5 B7 B9 B11 B13

1.0 7.56 11.1 13.0 12.9 13.5 13.8 14.2 7.5 11.1 12.3 13.0 13.5 13.8 14.2

3.0 1.79 7.56 9.16 9.82 10.8 10.8 11.2 1.88 7.57 9.05 9.63 10.4 10.8 11.2

5.0 × 5.94 7.57 8.42 9.06 9.47 9.84 × 5.95 7.58 8.43 9.06 9.50 9.88

7.00 × 4.87 6.64 7.55 8.21 8.64 9.01 × 4.87 6.64 7.55 8.20 8.66 9.06

9.0 × 4.01 5.93 6.89 7.57 8.01 8.40 × 4.00 5.93 6.88 7.56 8.03 8.44

11.0 × 3.30 5.39 6.38 7.08 7.54 7.92 × 3.27 5.37 6.36 7.07 7.56 7.97

13.0 × 2.64 4.92 5.95 6.67 7.13 7.53 × 2.61 4.89 5.29 6.65 7.15 7.55

Table 4.4 The fluctuations of ∆m2
21 after RG evolution, at the EW scale have been studied, against changing

ms, at constant SS scale. The A j or B j correspond to the set of initial entries at constant ms as mentioned in

Table 4.3. The diagonal entries marked in Bold text reflect the output values of, ∆m2
21 within 3σ for which

the initial entries of A j or B j were tuned at constant ms. On keeping a input data set (say, A5) fixed, if the ms

scale is varied, one sees that, against the radiative correction, the value of ∆m2
21, at EW scale fluctuates. If ms is

lesser, the fluctuation is more. The output values which lies within 3σ are underlined. The irrelevant output are

omitted with ‘×’ sign.

ms ∆m2
31 (×10−3eV 2)

in at EW scale for different sets of inputs

TeV A1 A3 A5 A7 A9 A11 A13 B1 B3 B5 B7 B9 B11 B13

1.0 2.51 2.65 2.86 2.70 2.74 2.80 2.80 2.49 2.59 2.62 2.66 2.68 2.71 2.74

3.0 2.40 2.53 2.62 2.57 2.62 2.67 2.67 2.40 2.50 2.53 2.53 2.59 2.62 2.64

5.0 × 2.48 2.51 2.51 2.56 2.61 2.61 × 2.45 2.49 2.52 2.54 2.57 2.60

7.0 × 2.44 2.47 2.48 2.52 2.57 2.57 × 2.42 2.45 2.49 2.51 2.54 2.56

9.0 × 2.41 2.44 2.44 2.49 2.54 2.54 × 2.40 2.43 2.47 2.48 2.51 2.53

11.0 × 2.39 2.41 2.42 2.46 2.51 2.51 × 2.38 2.41 2.45 2.46 2.49 2.52

13.0 × 2.37 2.39 2.40 2.44 2.49 2.44 × 2.36 2.39 2.43 2.45 2.47 2.49

Table 4.5 The fluctuations of ∆m2
31 after RG evolution, at the EW scale have been studied, against changing

ms, at constant SS scale. The A j or B j correspond to the set of initial entries at constant ms as mentioned in

Table 4.3. The diagonal entries marked in Bold text reflect the output values of, ∆m2
31 within 3σ for which

the initial entries of A j or B j were tuned at constant ms. On keeping a input data set (say, A5) fixed, if the ms

scale is varied, one sees that, against the radiative correction, the value of ∆m2
31, at EW scale fluctuates. If ms is

lesser, the fluctuation is more. The output values which lies within 3σ are underlined. The irrelevant results in

view of 3σ bound are omitted with ‘×’ symbol.
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ms θ23/
◦

in at EW scale

TeV A1 A3 A5 A7 A9 A11 A13 B1 B3 B5 B7 B9 B11 B13

1.0 41.0 41.4 41.6 41.8 41.8 41.9 42.1 41.0 41.1 41.6 41.6 41.6 41.6 41.6

3.0 40.6 41.1 41.4 41.5 41.5 41.6 41.8 40.7 40.8 41.3 41.3 41.3 41.3 41.3

5.0 × 41.0 41.3 41.3 41.4 41.5 41.6 × 40.7 41.2 41.2 41.2 41.2 41.2

7.0 × 40.9 41.2 41.2 41.3 41.4 41.5 × 40.6 41.1 41.1 41.1 41.1 41.1

9.0 × 40.8 41.2 41.2 41.2 41.3 41.4 × 40.5 41.1 41.1 41.1 41.0 41.0

11.0 × 40.8 41.1 41.1 41.1 41.2 41.4 × 40.5 41.0 41.0 41.0 41.0 41.0

13.0 × 40.7 41.1 41.0 41.1 41.2 41.3 × 40.4 41.0 41.0 41.0 41.0 41.0

Table 4.6 The fluctuations of atmospheric angle after RG evolution, at the EW scale have been studied, against

changing ms, at constant SS scale. The A j or B j represent the set of initial entries at constant ms as mentioned

in Table 4.3. The diagonal entries marked in Bold text reflect the output values of, θ23 within 3σ for which the

initial entries of A j or B j are adjusted at constant ms. On keeping a input data set (say, A5) fixed, if the ms scale

is varied, one sees that, against the radiative correction, the value of θ23, at EW scale fluctuates, but a little and

output values lie within 3σ range. The irrelevant results in view of 3σ bound are omitted with ‘×’ symbol.

ms θ12/
◦

in at EW scale

TeV A1 A3 A5 A7 A9 A11 A13 B1 B3 B5 B7 B9 B11 B13

1.0 34.6 34.8 34.8 34.8 34.8 34.8 35.0 34.8 35.0 35.3 35.1 35.1 35.1 35.0

3.0 34.1 34.4 34.6 34.6 34.5 34.6 34.7 34.3 34.7 35.0 34.9 34.9 34.8 34.7

5.0 × 34.3 34.5 34.4 34.4 34.5 34.6 × 34.5 34.9 34.7 34.7 34.7 34.6

7.0 × 34.2 34.4 34.3 34.3 34.4 34.5 × 34.4 34.8 34.6 34.7 34.6 34.5

9.0 × 34.1 34.4 34.3 34.2 34.3 34.5 × 34.3 34.7 34.6 34.6 34.5 34.5

11.0 × 34.0 34.3 34.2 34.2 34.3 34.4 × 34.3 34.6 34.5 34.5 34.5 34.48

13.0 × 34.0 34.3 34.2 34.2 34.2 34.4 × 34.2 34.6 34.5 34.5 34.4 34.4

Table 4.7 The fluctuation of solar angle after RG evolution, at the EW scale is studied, against changing ms, at

constant SS scale. The A j or B j represent the set of initial entries at constant ms as mentioned in Table 4.3. The

diagonal entries marked in Bold texts reflect the output values of, θ12 within 3σ for which the initial entries of

A j or B j are adjusted at constant ms. On keeping a input data set (say, A5) fixed, if the ms scale is varied, one

sees that, against the radiative correction, the value of θ12, at EW scale fluctuates, but the variations are a little

and output values lie within 3σ range.



4.4 Numerical analysis and the Results 89

ms θ13/
◦

in at EW

TeV A1 A3 A5 A7 A9 A11 A13 B1 B3 B5 B7 B9 B11 B13

1.0 8.4 8.6 8.6 8.6 8.6 8.6 8.6 8.4 8.5 8.4 8.4 8.4 8.4 8.4

3.0 8.4 8.5 8.5 8.5 8.5 8.5 8.5 8.3 8.4 8.4 8.3 8.4 8.4 8.4

5.0 × 8.4 8.4 8.5 8.50 8.50 8.5 × 8.4 8.3 8.3 8.3 8.3 8.3

7.0 × 8.4 8.4 8.4 8.4 8.4 8.4 × 8.3 8.3 8.3 8.3 8.3 8.3

9.0 × 8.4 8.4 8.4 8.4 8.4 8.4 × 8.3 8.3 8.3 8.3 8.3 8.3

11.0 × 8.4 8.4 8.4 8.4 8.4 8.4 × 8.3 8.3 8.3 8.3 8.3 8.3

13.0 × 8.4 8.4 8.4 8.4 8.4 8.4 × 8.3 8.3 8.3 8.3 8.3 8.3

Table 4.8 The fluctuation of the reactor angle after RG evolution, at the EW scale is investigated , against

changing ms, at constant SS scale. The A j or B j represent the set of initial entries at constant ms as mentioned

in Table 4.3. The diagonal entries marked in Bold texts represent the output values of, θ23 within 3σ for which

the initial entries of A j or B j are adjusted at constant ms. On keeping an input data set (say, A5) fixed, if the

ms scale is varied, one sees that, against the radiative correction, the value of θ23, at EW scale fluctuates. The

fluctuation is very feeble against the varying ms. The irrelevant results in view of 3σ bound are omitted with

‘×’ symbol.

ms m1×10−3 eV

in at EW scale for different sets of inputs

TeV A1 A3 A5 A7 A9 A11 A13 B1 B3 B5 B7 B9 B11 B13

1.0 10.3 9.43 9.35 8.83 8.66 8.53 8.40 10.2 9.46 9.04 8.83 8.67 8.55 8.44

3.0 9.63 8.82 8.56 8.26 8.10 7.98 7.85 9.62 8.85 8.45 8.06 8.11 8.00 7.89

5.0 × 8.53 8.17 7.99 7.83 7.71 7.59 × 8.56 8.17 7.99 7.84 7.73 7.63

7.0 × 8.34 7.99 7.81 7.65 7.54 7.42 × 8.36 7.99 7.81 7.66 7.56 7.46

9.0 × 8.19 7.84 7.67 7.52 7.40 7.29 × 8.21 7.85 7.67 7.53 7.42 7.33

11.0 × 8.07 7.73 7.56 7.41 7.30 7.18 × 8.10 7.73 7.56 7.42 7.31 7.22

13.0 × 7.97 7.63 7.46 7.31 7.20 7.09 × 7.99 7.63 7.46 7.32 7.22 7.11

Table 4.9 The fluctuations of m1 after RG evolution, at the EW scale have been studied, against changing ms,

at constant SS scale. The A j or B j correspond to the set of initial entries at constant ms as mentioned in Table

4.3. On keeping an input data set (say, A5) fixed, if the ms scale is varied, one sees that, against the radiative

correction, the value of m1, at EW scale fluctuates. The irrelevant results in view of 3σ bound are omitted with

‘×’ symbol.
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ms m2×10−2 eV

in at EW scale for different sets of inputs

TeV A1 A3 A5 A7 A9 A11 A13 B1 B3 B5 B7 B9 B11 B13

1.0 1.34 1.41 1.47 1.44 1.44 1.45 1.45 13.4 1.42 1.43 1.44 1.45 1.46 1.46

3.0 1.05 1.23 1.28 1.29 1.30 1.31 1.31 10.5 1.24 1.27 1.27 1.30 1.31 1.32

5.0 × 1.15 1.19 1.21 1.23 1.24 1.24 × 1.15 1.19 1.22 1.23 1.24 1.25

7.0 × 1.08 1.14 1.16 1.18 1.19 1.20 × 1.09 1.14 1.17 1.19 1.20 1.21

9.0 × 1.03 1.09 1.13 1.15 1.16 1.17 × 1.04 1.09 1.13 1.15 1.16 1.18

11.0 × 0.99 1.06 1.10 1.12 1.13 1.14 × 0.99 1.07 1.10 1.12 1.14 1.15

13.0 × 0.95 1.03 1.07 1.09 1.11 1.12 × 0.95 1.04 1.07 1.10 1.11 1.12

Table 4.10 The fluctuations of m2 after RG evolution, at the EW scale is studied, against changing ms, at

constant SS scale. The A j or B j correspond to the set of initial entries at constant ms as mentioned in Table

4.3. On keeping an input data set (say, A5) fixed, if the ms scale is varied, one sees that, against the radiative

correction, the value of m2, at EW scale fluctuates. The irrelevant results in view of 3σ bound are omitted with

‘×’ symbol.

ms m3×10−2 eV

in at EW scale for different sets of inputs

TeV A1 A3 A5 A7 A9 A11 A13 B1 B3 B5 B7 B9 B11 B13

1.0 5.12 5.24 5.43 5.27 5.31 5.36 5.36 5.09 5.17 5.20 5.23 5.25 5.27 5.30

3.0 4.99 5.11 5.19 5.14 5.18 5.23 5.23 5.00 5.08 5.10 5.10 5.15 5.18 5.20

5.0 × 5.05 5.07 5.08 5.12 5.17 5.17 × 5.03 5.05 5.09 5.10 5.13 5.15

7.0 × 5.01 5.03 5.04 5.08 5.12 5.12 × 4.99 5.02 5.05 5.07 5.09 5.12

9.0 × 4.98 5.00 5.00 5.04 5.09 5.09 × 4.96 4.99 5.02 5.04 5.07 5.09

11.0 × 4.95 4.97 4.98 5.02 5.06 5.06 × 4.94 4.97 5.00 5.02 5.04 5.07

13.0 × 4.93 4.95 4.95 4.99 5.04 5.04 × 4.92 4.95 4.98 5.00 5.02 5.04

Table 4.11 The fluctuations of m3 after RG evolution, at the EW scale is studied, against changing ms, at

constant SS scale. The A j or B j correspond to the set of initial entries at constant ms as mentioned in Table

4.3. On keeping an input data set (say, A5) fixed, if the ms scale is varied, one sees that, against the radiative

correction, the value of m3, at EW scale fluctuates. The irrelevant results in view of 3σ bound are omitted with

‘×’ symbol.

Variation Effect

of of varying ms and SS

ms and SS on the neutrino parameters

scale θ12 θ13 θ23 ∆m2
21 ∆m2

31 δ ψ1

Increasing ms → − − − − − − +
Decreasing ms → + + + + + + −
Increasing SS→ + − + − − + −
Decreasing SS→ − + − + + − +

Table 4.12 Here we show the different effects each neutrino parameters receive due to the variation of ms

and SS. An increase in ms cause a negative effect on all the EW scale neutrino parameters values, except for

the Majorana phases (for decreasing ms the finding is reverse). Whereas, variation in SS has unequal effects

(positive effect on some parameters and negative effects on other parameters). The ‘−’ sign indicates the

negative effect whereas the ‘+’ sign indicate the positive contribution due to varying ms and SS.
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4.5 Summary and Discussion

In this chapter, we have studied the radiative evolution of neutrino observational parameters

for varying ms scale following a top-down approach. We presume the hierarchy of the

three neutrino masses to be of normal type. All the nine observational parameters related

to neutrino oscillations are allowed to run down from the SS up to the electroweak scale

using their respective RGEs (both MSSM and SM). We also use the RGEs of the three

gauge couplings, third generation Yukawa couplings, and quartic Higgs coupling. All the

neutrino parameters along with the other couplings undergo RG evolution and subsequently,

get different RG corrections. The ms, which appears to be a leading parameter is kept varying

between 1 TeV to 13 TeV, and the effect of such a variation on the observational parameters

at the EW scale is noted. Instead of adhering to a fixed SS scale, we allow the latter to change

between 1010 GeV to 1015 GeV and have checked how the observational parameters vary.

Besides, the work reveals that the self-complementarity relation among the mixing angles

remains stable against the radiative evolution. Also, we have studied how certain parameters

like neutrino mass ratios behave during this evolution.

The relevance of the SUSY is unavoidable in the context of particle physics, as it can

answer to certain important theoretical issues like the hierarchy problem, the unification

of gauge couplings, the existence of dark matter etc. But, unlike the Standard Model, the

SUSY is still lacking the experimental evidences. Although the LHC experiment is running

at 13 TeV, it has not yet witnessed any signature of SUSY. This may imply that the SUSY

breaks at a certain higher energy scale which is not yet achieved by the LHC experiment, or

even if it breaks at a low energy, the beam luminosity available in the LHC experiment is

not sufficient to detect the same. Hence, there is still a hope that SUSY exists. The SUSY

breaking scale, ms, is an important parameter and influences the neutrino observational

parameters. The origin of neutrino mass owes to the seesaw mechanism and the scale at

which the latter occurred is also unknown. But theoretically one may predict that scale to
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be lying within the range of 1010 to 1015 GeV. In our analysis, these two parameters, the

ms and the SS scale, partake a lot. Besides, the input data set (like, A j or B j) which are

although model independent, plays an important role. Initially, the input parameters in the

data sets are chosen such that against a fixed ms and a fixed SS scale (1014 GeV), the neutrino

observational parameters at the EW scale lie within the 3σ bound. It is mentioned that the

initial entries in terms of the three mixing angles follow a self-complementarity relation.

At the EW scale, the three mixing angles, CP violating phases, and ∆m2
31 try to maintain

more or less stability with respect to the 3σ bound if the ms scale is varied at a fixed SS scale.

But the parameter ∆m2
21, is less stable at lower ms, whereas the stability increases towards

higher ms. Similar stability is achievable for the three mixing angles, if the SS scale is varied.

But for ∆m2
31, the stability is lost. One sees that if the stability of ∆m2

21 is obtained towards

higher ms, ruling out of a certain SS scale is possible in the light of a 3σ bound of ∆m2
21.

It is worth mentioning that a strong conclusion in view of the optimization of the SUSY

breaking and SS scales can not be drawn by observing the plots [see Fig. 4.6- Fig. 4.7],

because the the ∆m2
21 at the EW scale is very much sensitive to the initial arbitrary model

independent entries available in the data sets (A j and B j). Justifying these initial entries

under certain model or framework goes beyond the scope of this thesis work. But through

our analysis, one can at least visualize the interplay between the ms and the SS scale and

how these affects the final physical observables. Though in the present analysis, we limit

ourselves not to invoke the model dependent ground of these data sets, yet we emphasize

the certain traits that these numerals may carry. We see that the data set are characterized

by the SC relation, θ13 + θ12 ≈ θ23 and a mass ratio: m2/m1 ∼ 2, which remains almost

invariant against radiative evolution. Besides, we have observed the other mass ratios like

m3/m1 or m3/m2, also tries to maintain a stability up to SUSY breaking scale, but after that

they change. This study is motivated in the context of the quark sector, where the quark

mass ratio mdown/mstrange plays an important role in describing the quark mixing. Relations
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among certain parameters and their stability during radiative evolution may bear the traits of

a certain hidden symmetry present in the lepton sector and may serve as a key to some new

models.

The present study is devoted to a simple visualization, concerning the interplay between

the ms and SS scale and its effect on the physical observables and certain phenomenological

relations. The two Majorana phases are not yet been measured experimentally, and to simplify

the analysis, we have considered both of them as equal. Again, we have restricted ourselves

only to the normal hierarchy of neutrino masses. The consideration of a degenerate spectrum

for all sparticles that we have adopted in our work is an idealized situation and is true if

ms ≫ mt ,mZ [47, 172]. In principle, a general study can be made by minimizing the number

of assumptions in order to get a more generalized result.



Chapter 5

Summary and Outlooks

5.1 Summary

In this thesis, we have studied some phenomenological aspects of neutrinos. More precisely,

we have discussed the radiative properties of the various neutrino parameters. In order to

do so, we first studied the radiative properties of the three gauge couplings, third generation

three Yukawa couplings and the quartic Higgs coupling. All of these radiative studies are

made possible through the Renormalization Group running technique. We use the bottom-up

approach while studying the radiative properties of the couplings, whereas we used the top-

down approach for the neutrino parameters. The RG method can relate physics at different

energy scales by extrapolating the available data (e.g. EW scale data) to a different energy

scale (e.g. the seesaw scale or the GUT scale), where our current technology cannot venture

into.

The relevance of the SUSY is unavoidable in the context of high energy physics, as it can

address various important theoretical issues like the hierarchy problem, the unification of

gauge couplings, the existence of dark matter, stability of proton etc. In spite of these huge

predictive power, SUSY is still lacking the experimental evidences. Moreover, the idea of

SUSY breaking scale (ms) is an important yet unknown parameter.
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While studying the radiative nature of the couplings or the neutrino parameters we,

instead of restricting ourselves to a fixed ms, explored the possible effects of varying ms on

the various parameters concerned. We observed that, the couplings as well as the nine neutrino

parameters are sensitive to a varying ms scale. Further, the absence of a definite seesaw scale

inspired us to vary the same (similar to ms) and to study the possible consequences on the

neutrino parameters values at the EW scale. By studying the numerical consistencies of

the various parameters involved w.r.t the present oscillation data (see Table 1.3), we tried

to narrow down the possible ms and seesaw (SS) range. It is in this regard, the predictions

presented in this thesis may have significant implications for future studies.

• In Chapter 2, we studied the radiative evolution of the three gauge couplings (elec-

tromagnetic, weak and strong) and the third generation three Yukawa couplings (top,

bottom and tau) using the bottom-up approach against the varying SUSY breaking scale

(ms). In this study, we observed that both the gauge couplings and the Yukawa cou-

plings received appreciable radiative corrections while running from the electrowewak

scale up to the GUT scale. Moreover, the grand unification scale, which is expected to

be ∼ 1016 GeV, varies with the variation of the ms. The same case is also observed in

the case of the Yukawa couplings unification scale but in the reverse trend. In short,

the GUT unification scale decreases with the increase in ms and tends to maintain a

constant value, whereas the Yukawa couplings unification points increases with the

increase in ms and then tend to remain invariant. Further, the value of gDR
3 seems to

place a bound on the upper limit of ms for a particular choice of tanβ .

• In Chapter 3, we emphasized on how to modify the Bi-maximal mixing (BM) and the

Tri-Bi-maximal mixing (TBM) patterns in order to account for the present neutrino

oscillation data. We found that the matrices which can modify these two mixing

schemes in consistent with the present oscillation data comes from the charged lepton

correction. We also found that charged lepton mixing matrices UlL’s in both cases
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exhibit similar structures due to the µ−τ symmetry. From numerical analysis it is also

observed that the deviation matrices, UBM
lL and UT BM

lL , are close to the CKM matrix of

the quark sector. This finding is in agreement with the general assumption in Grand

Unified theory, that the charged lepton correction to neutrino mixing can be considered

as CKM like.

• In Chapter 4, we studied the radiative properties of all the nine neutrino parameters in

the top-down approach. It is observed that some of them undergoes appreciable radia-

tive correction while some get mild quantum correction and other get very negligible

correction. Here, we also studied how the variation of ms affects the radiative evolution

of the various neutrino parameters which in turn affect the low energy parameter values.

In addition to varying ms scale, we also studied the same for different values of the

seesaw scale, starting from 1010 GeV - 1015 GeV. All the neutrino parameters are

found to be sensitive to the variation of both ms and seesaw scale. Inspired by the

present neutrino oscillation date, we also emphasized on the possible existence of

mixing angles self-complementarity relation among the three neutrino mixing angles at

the seesaw scale. It is observed that this relation remains invariant under the radiative

evolution with varying ms and seesaw scale. Moreover, under the same conditions,

we also studied the radiative stability of three neutrino mass ratios. It is observed that

the three mass ratios behave in a similar pattern, they remain very much stable in the

MSSM region and then changes slightly in the SM region. Of the three neutrino mass

ratios, m2 : m1 is more immune to the radiative evolution. In short, this Chapter is

devoted to a simple visualization, concerning the interplay between the ms and SS

scale and its effect on the physical observables and certain phenomenological relations.

While doing our works, we considered certain simplifying assumptions like the existence

of a single degenerate sparticles spectrum thereby ignoring the possible threshold corrections.

While using the top-down approach in the neutrino sector, we started the evolution process
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from the seesaw scale. It could have been more general, if we started from either GUT scale

or from Planck scale. By doing so, we may even include the possible effects from the gravity.

More importantly, we have considered only one mass spectrum - the normal hierarchy. In

these regards, our work can be further extended by the inclusion of a non-degenerate SUSY

spectrum and proper threshold corrections with the RG evolution process starting from the

GUT or Planck scale and for different neutrino mass spectrum.

5.2 Outlooks

Neutrino physics is becoming more and more exciting area of research due to its possible,

multiple, connections with different areas of fundamental physics like the matter-antimatter

asymmetry in our universe, dark matter, SUSY particle etc. The future development in

neutrino physics are expected to be driven by new experiments. At present, several neutrino

experimental facilities are running throughout the globe (see Table A.2) and several more

advanced future programs are planned worldwide.

Deviation of the θ23 from the maximal mixing angle, as confirmed by recent experiment,

may be a hint for the possibility of an underlying physics. Again, the recent experimental

confirmation of the non-zero value of reactor angle [173–175] has boosted the eagerness of

neutrino researchers to unravel the mysteries shrouding the phenomenon of CP-violation and

neutrino mass hierarchy. The 1-3 mixing is the door to determining both the mysteries. It is

very likely, that in the near future we will solve the neutrino mass hierarchy problem.

Even though CP symmetry is already violated in the SM, it is too small to account for the

observed matter-antimatter asymmetry in the universe. CP violation may be related to the

lepton asymmetry as well as baryon asymmetry [176]. The phenomenon seems to be deeply

related to the origin of many unknown mysteries of the nature. The possibility of neutrinos

having a relation with the dark matter will continue to be one of the exciting areas of research.

Amongst the many proposed candidates of dark matter, sterile neutrino is one [177, 178].
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Further studies on the possible connections may lead to the breakthrough both in particle

physics and Cosmology. It can be expected that the next-generation neutrino experiments

will provide us more detailed picture of this phenomena. Unless we are quite lucky, it will

not be an easy task to establish the CP-violation, satisfactorily.
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Appendix A

A.1 A short note on some selected neutrino experiments

Neutrinos interact only through the weak interaction in two different ways viz.

(i) Neutral-current interaction, involving Z-boson. Here, the neutrino leaves the interacting

medium/detector after transferring a fraction of its energy/momentum to a target particle.

If the target is a light charged particle, it can be accelerated to a relativistic speed

resulting to a Cherenkov radiation, which can be observed directly. In this interaction,

the incoming neutrino does not leave any flavor information behind. All three neutrino

flavors can participate in this interaction regardless of their energy.

(ii) Charged current interaction, involving W± bosons. Here, the incoming neutrino trans-

forms into its partner charged lepton (electron, muon, or tau). However, if the neutrino

does not have enough energy to create its heavier partner, the charged current interaction

is unavailable to it. Because the interaction involves the exchange of a charged boson,

the target particle also changes its character (e.g., neutron to proton). Solar and reactor

neutrinos have enough energy to create electrons. Most accelerator-based neutrino

beams can also create muons, and a few can create taus.

All the neutrino detectors are based on these two interactions. A single neutrino experi-

ment cannot explore all the neutrino parameters, since a particular neutrino experiment is
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sensitive only to some specific neutrino parameters. It is in this regard, we need a compre-

hensive analysis of all the available data from different experiments, finally leading to the

global data of neutrinos as given in Table 1.3.

A.2 Classification of neutrino experiments

The phenomenon of neutrino oscillation clearly demands a non-zero neutrino mass. But, a

clear-cut experiment for measuring the absolute neutrino masses is still missing. Determining

the absolute neutrino mass scale is of utmost importance in other branches of physics like

astrophysics and cosmology, as they are directly related to the evolution of the universe. In

spite of their vanishingly small masses, neutrinos may contribute significantly to the total

mass density of the universe (with 336 neutrinos per cm3). Neutrinos left after the big bang

are nearly a billion times more abundant than atoms.

Numbers of neutrino experimental facilities are operating worldwide (see Table A.2). A

simple classification of the different available neutrino experimental facilities are shown in

Fig. A.1.
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A.2.1 Absolute neutrino mass determination experiments

At present there are three possible ways to determine the absolute neutrino mass scale (see

Fig. A.1).

(i) Kinematic test: This method provides a model independent way of determining

the neutrino mass (νe), entirely based on the kinematics or energy and momentum

conservation of a single β decay process (without any further assumptions). The

electron and the anti-neutrino emitted in the beta decay share 18.6 keV of energy

between them. Here, the anti-neutrino is not observed directly but the charged decay

products are precisely measured. Using the energy and momentum conservation the

neutrino mass can be obtained. Usually the “average electron neutrino mass squared”

m2(νe) is determined or constrained (at present they are too closed to be resolved

experimentally):

m2(νe) = ∑
i

|U2
ei|m

2(νi) (A.1)

KATRIN (Karlsruhe Tritium Neutrino Experiment) is one such experiment which

uses the β decay of tritium to measure the mass of emitted neutrino. It is specially

designed to produce a very accurate spectrum of electrons with energies very close to

the total energy (mentioned above) thereby resulting to a very low energy neutrino. If

the neutrino is massless, there would be no lower bound to the energy the neutrino can

carry, so the electron energy spectrum should extend all the way to the 18.6 keV limit.

On the other hand, if the neutrino is massive, then it must always carry away at least

the amount of energy equivalent to its mass by E = mc2, and the electron spectrum

should drop off before the total energy limit and have a different shape. What KATRIN

is interested, is in the process where the electron takes almost all the energy (leaving

nearly zero for the neutrino). However, such events are very rare, occurring roughly

once in a trillion decays.
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A limit on mνe implies an upper limit on the minimum value of mνmin
of all mνi

independent of the mixing parameters Uei: mνmin
≤mνe

, i.e., the lightest neutrino cannot

be heavier than mνe
.

(ii) Neutrinoless double beta decay: This is another possible aspect for determining the

absolute value of neutrino mass. It was first considered by Wolfgang Furry in 1939,

(A,Z)→ (A,Z +2)+ e−1 + e−2 (A.2)

This decay process is forbidden in Standard Model electroweak theory as it violates

lepton number by two units. The process of (A.2) is mediated by the exchange of a

light neutrino, which must be a Majorana particle. The Q value of this decay is much

smaller than the nuclear masses and the nuclear recoil energy can be neglected. The

electron energy is simply a peak at Te1 +Te2 = Q. Thus, the experimental observables

are number or upper limits of signal counts or equivalent half live times T1/2. The decay

rate is proportional to the square of the effective Majorana mass mee :

T 0ν−1
1
2

= G0ν |M0ν |2 m2
ee, (A.3)

where G0ν denotes the exact calculable phase space factor and M0ν is the nuclear

matrix element (which must be theoretically calculated). If the nuclear matrix elements

are known, than the Majorana mass mee can be deduced by

mee = |∑
i

U2
eimi|

2, (A.4)

where the sum is over the light Majorana neutrinos (mνi
< 10MeV ) only. Due to the

presence of a complex Majorana phase (which can be either 0 or π if the neutrinos are

CP eigenstates), cancellation can occur such that mee can be smaller than any of the
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mνi
. The experimental observation of 0νββ as well as accurate determination of mee

would establish the Majorana nature of neutrinos and would contribute towards the

determination of absolute neutrino masses.

Many different isotopes and techniques are used to search of 0νββ . Nuclei that allow

the 2νββ are also a possible candidate for 0νββ . Some potential candidates are

100Mo, 82Se, 48K, 76Ge, 116Cd, 136Xe.

(iii) Cosmological or Astrophysical observations provide another, quite different, source

of information on the neutrino masses. This model dependent technique provides

the most stringent upper bound on the combined neutrino masses, using the idea of

cosmological structure formation. The neutrino density Ων is one important parameter

(out of 11 parameters) for the standard cosmological model and is related to the neutrino

mass and their number (massive neutrinos) by

Ων =
ρν

ρc

=
∑mν

93.2eV h2
, (A.5)

where h is the Hubble parameter (in unit of 100Km/s/Mpc), ρν is the neutrino energy

density and ρc is the critical density of the Universe. This direct relation between Ων

and the ∑mν follows from the fact that the present neutrino abundance is determined by

the cross section for weak interactions, that fixes the neutrino decoupling temperature

Td = 1 MeV.

Different cosmological observations that put constraint on the sum of the neutrino

masses are Planck Data, ΛCDM, Large Scale Structure formation (LSS), Baryon

Acoustic Oscillation data (BAO), Sloan Digital Sky Survey (SDSS) observation etc.
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A.2.2 Neutrino experiments using natural sources

The neutrino parameters that are sensitive to the phenomenon of neutrino oscillation are the

three mixing angles (θi j), two mass squared differences (∆mi j), and the Dirac CP phase (δ ).

Some selected neutrino oscillation experiments using natural neutrino sources are

(i) Homestake Chlorine detector: The Chlorine experiment of Ray Davis and John N.

Bahcall [1] is one of the pioneering experiments in the field of neutrino physics. It

lead to the successful determination of the solar neutrino for the first time leading to

the Solar Neutrino problem. The detector was based on a concept first proposed by

Bruno Pontecorvo in 1946, in which neutrinos interact with chlorine atoms leading to

an isotope of argon atom with a threshold energy of 0.814 MeV

νe +
37 Cl → e−+37 Ar. (A.6)

It is a very rare reaction and sensitive only to the highest energy neutrinos. In fact, one

atom of argon is produced each week in a tank containing 371 tons of the dry-cleaning

fluid (perchlorethylene). They exposed the tank, containing the chemical, for about a

month and then extracted the few resulting argon atoms using helium gas and cold trap

method, which were then transferred to a low background counter where any decays

were recorded over a period of several months. The argon atoms produced decayed

back to chlorine atoms after a half life of 35 days. The first results were announced in

1968.

(ii) Gallium experiment (Gallex, GNO, SAGE): Unlike the chlorine based experiments

which are sensitive only to the high energy neutrinos, gallium bases experiments target

to study the low energy neutrinos and to verify the hypothesis of neutrino oscillation.

The main motivation of the gallium experiments was to disentangle MSW neutrino

oscillation scenario causing the Solar Neutrino Problem. Like the 37Cl detector, the
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gallium detectors are sensitive only to electron type neutrino

νe +
71 Ga→ e−+71 Ge. (A.7)

The energy threshold of the reaction is 0.223 MeV thereby allowing the interactions of

pp, 7Be, 8B, and pep neutrinos. SAGE used a liquid metal target containing 50 tons

of gallium, whereas GALLEX/GNO used 30 tons of natural gallium in an aqueous acid

solution. The 71Ge decay with a half life of 16.5 days. Auger electrons and X-rays

are produced during the decay with a typical L-peak and K-peak energy distribution.

All the experiments found about half of the expected rate inconsistent with the SSM

predictions.

(iii) KamiokaNDE, Super Kamiokande (SK): The Kamiokande experiment, which be-

came operational in July 6, 1983, was specially designed for detecting the proton decay

signal. Unfortunately, no proton decay signal was observed, instead it first set a limit

on the lifetime of proton. Afterward, KamiokaNDE was upgraded to KamiokaNDE-II

which started taking data in 1987. KamiokaNDE-II provide the first hint that Sun is a

source of neutrinos. Later on, it observed the deficit in the solar neutrino flux which was

in conflict with both the Standard Solar Model and the Davis’ experiment resulting to

the solar neutrino problem. KamiokaNDE-II still fails to observe the proton decay sig-

nal and again sets a lower-bound on the half-life of the proton. Studies on atmospheric

neutrinos were also a part of the KamiokaNDE-II and it also announced the observation

of deficit in atmospheric neutrino. Both KamiokaNDE and KamiokaNDE-II are water

Cherenkov detectors.

Water Cerenkov detector gave the first experimental confirmation (1987) of the chlorine

based neutrino experiment regarding the deficit of solar neutrinos. The main advantage

of the KamiokaNDE detector is the real-time nature of the neutrino interactions viewed
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in the active water volume (2,140 tons of ultra-pure light water) by 948 photomultiplier

tubes (PMT). Light water detectors are mainly sensitive to νe , but also to νµ and

ντ (with a reduced cross section σ(νµ,τ + e− → νµ,τ + e−) ≃ 0.15×σ(νe + e− →

νe + e−)).

Super Kamiokande (SK) was designed to test the neutrino oscillation hypothesis for

both solar and atmospheric neutrinos. It allows one to do an in depth analysis of both

the solar and atmospheric neutrinos oscillations. SK is a huge cylinder of 41.4 m in

height and 39.3 m in diameter containing 50,000 tons of ultra-pure light water and

viewed by 11,146 PMT. It operates at an energy threshold of 5 MeV thereby permitting

the study of the 8B neutrinos. Similar to the Kamiokande, SK also uses the Cerenkov

radiation emitted by the resulting electrons. Both kamiokande and SK can determine

the direction of the incoming neutrinos, by using the Cerenkov photons collected by

the PMT, and by reconstructing the direction of flight of the incident neutrinos from

the scattering reaction νx + e−→ νx + e−. The particular advantage of the real time

nature of SK is that we can study in detail the time and shape variation of the ES energy

spectrum (zenith angle spectrum). In 1998, Super-K found the first strong evidence

of neutrino oscillation from the observation where νµ changed to ντ [40]. SK also set

limits on proton lifetime (5.9×1033 yr) and other rare decays and neutrino properties.

(iv) Sudbury Neutrino Observatory (SNO): Unlike the Kamiokande and SK, SNO uses

1,000 tons of heavy water as the detecting medium. An additional 7,000 tons of

ultra-pure light water is used for supporting and shielding. There are 9,456 PMT all

mounted on a geodesic structure 18 m in diameter waiting for the Cerenkov radiations.

SNO clearly demonstrated that solar electron neutrinos from 8B decay in the solar core

change into other active neutrino flavors in transit to Earth. This experiment provided

revolutionary insight into the properties of neutrinos and the core of the sun. The

advantage of using heavy water (instead of light water) is that it allows the flux of all



A.2 Classification of neutrino experiments 108

the three types of neutrinos to be measured and it also provides a very accurate measure

of the initial solar flux for comparison with solar models. Plans are currently underway

to upgrade the SNO detector for the new SNO+ experiment.

Using heavy water, SNO was able to calculate two different reactions on deuteron (d)

as shown below:

νe +d → p+ p+ e− (CC reaction sensitive only to νe) (A.8)

να +d → n+ p+να (NC reaction equally sensitive to all flavors), (A.9)

where α = e, µ, τ .

A significant deficit in the 8B neutrino flux measured by the CC reaction over that

measured by the NC reaction would directly prove that νe from Sun were changing

into one of the other two flavors (without reference to solar models). The NC reaction

provided a measurement of the total flux of 8B solar neutrinos independent of neutrino

flavor change. The CC reaction was detected by observing the Cherenkov light. The

NC reaction was detected in three different phases of the project. Moreover, the SNO

detector could observe neutrinos of all flavors via the elastic scattering (ES) of electrons

by neutrinos: να + e−→ να + e−.

(v) IceCube: Set up at the cold, dry, and stable atmosphere of Antarctica, South Pole,

the IceCube Neutrino Observatory was, specially, designed to detect ultra-high energy

cosmic neutrinos. It extends the range of energy at which neutrinos have been observed.

It has recorded the evidence of neutrino oscillation traveling through the Earth and its

atmosphere. It is also designed to measure the so called neutrino mass hierarchy.

It has more than 5000 optical sensors which are distributed in an of array over a cubic

kilometer of the ice. The last three years of IceCube data yielded a similar precision

to that of Super-Kamiokande data (taken over 15 Years). It uses the glacier ice as the
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target material and its large observational volume produces larger event statistics in

shorter times. Like the Super-Kamiokande, IceCube also uses the same atmospheric

neutrinos, but at different energies. Neutrinos are not directly detected in IceCube but

through the resulting Cherenkov radiation in the ice. The energetic muon produced

by the interaction of neutrinos with protons and neutrons travels a significant distance

before it decays.

At present, the scientists are planning an upgrade of the IceCube detector called PINGU

(Precision IceCube Next Generation Upgrade). The new upgraded version will have a

much higher density of optical modules in the whole central region.

(vi) INO: It is a proposed underground laboratory. Its main aim is to make precision mea-

surements of the neutrino parameters related to the phenomenon of neutrino oscillations

and also to determine the neutrino mass order. This is possible because INO detectors

will have the ability to differentiate the positive and negative muons. INO has many

long term plans. In its different phases of operation it may be using the natural neutrino

sources and also from the accelerators.

INO can also be used as a far-detector of a long-base-line (6000 to 11500 km) neutrino

experiment. It may be using the neutrino beam from various neutrino factories like

from Japan, Europe or USA. These are the propose future neutrino facilities that will

be directed towards different parts of Earth.

Recently, the government of India has given the environmental clearance for the

construction which was delaying the project for more than a decade.

A.2.3 Reactor neutrino experiments

Reactor based neutrino experiments have been playing an indispensable role for both discov-

ery and precision measurement in the history of neutrino physics. Since its first inception
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in the 1950s, the detector technology has advanced immensely. On the basis of earlier

experiments (like Palo Verde, CHOOZ, and Monte Carlo), modern neutrino experiments

Daya Bay, Double Chooz, and RENO were designed with unprecedented precision. They all

measured the smallest mixing angle θ13 by observing the oscillation at a baseline of ∼ 1 km.

These new generation reactor experiments have significantly reduced uncertainties associated

with the measurement of θ13 by using two identically performing detectors at near and far

locations from reactor(s). Earlier version of reactor experiments had a single detector located

at about 1 km or less from reactor(s).

The reactor neutrino experiments has the advantage that the measurements are not

disturbed by degeneracies, correlations between different oscillation parameters, and the

matter affect (prevented by short baseline). The reactor neutrino experiments are based on

the disappearance of electron anti-neutrinos produced in reactor cores. Nuclear reactors

provide an intense beam of νe (with an average energy of 2 MeV) from the β -decay of the

fuel elements like 235U, 238U, 239Pu, 241Pu etc

νe + p→ e++n. (A.10)

For measuring the vale of θ13, the detectors are placed at such a distance (∼1 km) which

maximize the disappearance probability at the scale of ∆m2
32.

The reactor neutrino experiments have a similar detector mechanism. They all consist

of concentric cylinder filled with different liquids. The innermost portion is filled with

gadolinium doped liquid scintillator (GLS) and γ-catchers. The e+ carry almost all of the νe

energy and get deposited in the scintillator which can then be correlated with the νe energy.

The neutrino signature is identified by the delayed coincidence of the prompt positron signal

and the Gd signal (from the neutron capture). The neutron capture signal delay by about 200

µs in liquid scintillator and is reduced to about 30 µs in gadolinium loaded liquid scintillator.
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(i) Kamioka Liquid scintillator AntiNeutrino Detector (KamLAND): It is a mono-

lithic long baseline liquid scintillator detector, proposed by A. Suzuki [179]. It is filled

with 1,000 ton of ultra-pure liquid scintillator. It is installed after dismantling the old

Kamiokande detector. The multiple numbers of commercial reactors distributed at 130-

220 km around Kamioka provide an effective baseline of 180 km from KamLAND and

gives a superior sensitivity toward determining the neutrino mass. KamLAND started

data taking in January 2002 and published its first result in January 2003 where they

reported the result on reactor neutrino disappearance with 99.95% C.L. significance

[180] consistent with the expectation from the solar neutrino result (assuming CPT).

The statistical significance of the disappearance experiment was further strengthened

in 2005 and 2008 and observed the clear pattern of oscillation. In case of the 2 flavor

neutrino oscillation, KamLAND successfully pinned down the solar neutrino problem

to large mixing angle solution. The KamLAND experiment also observed geo-neutrinos

for the first time in consistent with geo-scientific expectation within the experimental

accuracy.

(ii) Daya Bay: It is located at the southern coast of China, 55 km to the northeast of Hong

Kong and 45 km to the east of Shenzhen. It was first proposed in 2003 with the aim

of determining θ13. Its construction began on 2007 and started data taking (with the

full configuration) on 19 October 2012, which is still running reliably. It consists of

three underground experimental halls connected with horizontal tunnels and a total of

eight antineutrino detectors are installed in the three halls. Each of the antineutrino

detectors has three concentric cylinders. The innermost cylinder is filled with clear

gadolinium-doped liquid scintillator (20 tones). The middle cylinder is filled with

undoped liquid scintillator (20 tones) while the outermost cylinder contain mineral oil

(37 tones).



A.2 Classification of neutrino experiments 112

Daya Bay experiment has an excellent capability for high precision measurements

of reactor anti-neutrinos. Current precision on sin2 θ13 and |∆m2
ee| are 6% and 4.5%,

respectively. The Daya Bay experiment is expected to operate until 2020; by then, the

precision is expected to be ∼ 3% for both sin2 θ13 and |∆m2
ee|.

(iii) Chooz and Double Chooz: CHOOZ experiment is a long baseline reactor neutrino

experiment located in France. It used a 5 ton target located in an underground laboratory

and at a distance of about 1 km from the two pressurized water reactor. It had an

average value of
L

E
∼ 300 (L∼ 1 km, E ∼ 3 MeV). It was designed to detect reactor

antineutrino via. the inverse β -decay reaction as in (A.10). It showed no evidence for

neutrino oscillations in the νe disappearance mode for the mass region ∆m2
32 ,where

muon neutrinos oscillate intensively. The first best limit on θ13 was established by the

CHOOZ experiment [181].

Double Chooz is a short baseline reactor neutrino experiment. It is the upgraded version

of the earlier Chooz experiment. Among the reactor neutrino experiments, the Double

Chooz Collaboration was the first one to present an indication of non-zero value of θ13.

The no oscillation hypothesis was excluded at the 94.6% C.L. Like the other reactor

based neutrino experiment, the Double Chooz experiment measures the νe from the

a nearby nuclear reactor (Chooz power station). Double Chooz uses two detectors

with the identical structure, one near the oscillation maximum (1.05 km) and the other

closer to the reactors (400 m) where the oscillation is still small. By comparing the

data from the near and the far detectors, the systematic uncertainties of reactor neutrino

flux, neutrino detection efficiency and detector mass, can be largely suppressed. The

two detectors are located close to the iso-flux line, which enable the cancellation of

the neutrino flux uncertainty caused by possible property differences between the two

reactors..
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(iv) RENO: It was proposed in 2005, started construction in 2007, and data-taking with

both the near and far detectors began in August, 2011. Like all the other reactor

neutrino experiments, RENO measured the value of θ13 by the disappearance of electron

antineutrinos (as in A.10).

Using the extensive data taken in 1,500 live days RENO has successfully reduced the

uncertainties of both the sin2 2θ13 and |∆m2
ee|measurements to 9% and 7%, respectively.

By including the data from the next 2-3 years, RENO has a plan for further reducing

the uncertainties of sin2 2θ13 and |∆m2
ee| to 6% and 4−5%, respectively.

RENO provides a detailed picture of neutrino transformation among the three neutrino

flavors thereby shedding light on the possibility of search for CP violation in the

leptonic sector. The large value of θ13 will strongly promote the upcoming neutrino

experiments to emphasize on the CP violation effects and determine the neutrino mass

hierarchy.

A.2.4 Accelerator based neutrino experiments - Long baseline

Unlike the reactor based neutrino experiments, accelerator based neutrino experiments are

long baseline in nature. In the three flavored neutrino model there is a close relationship

among the disappearance and appearance modes of oscillation study, which trace back to their

origin in the PMNS matrix. Following reference [36], it is possible to write the disappearance

possibility for muon neutrinos in vacuum, as

The earth between the beam creation point and the detector location, forms an essential

part of any long-baseline experiment. This creates both problems and opportunities - problems

because of the introduction of degeneracies between matter effects and CP violation, and

opportunities because of the possibilities to exploit the differences between neutrino and

antineutrino interactions, and from the two mass hierarchies. Some selected accelerator

based neutrino experiments are
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(i) Main injector neutrino oscillation search (MINOS): MINOS was designed for the

precision measurements of the parameters governing the atmospheric oscillation regime,

in addition it has also contributed an important role in the measurement of θ13 and will,

in the future, make sensitive searches for the existence of sterile neutrinos. MINOS

specific design has the ability to identify both νµ and νµ interactions separately. Such

features have allowed MINOS to make the first direct precision tests that neutrinos and

antineutrinos obey the same oscillation parameters in the atmospheric regime [182, 66].

MINOS are interested in three types of interactions (i) CC interaction of νµ

νµ(νµ)+ x→ µ−(+)+ x′, (A.11)

where x′ is a cascade of hadrons producing a diffused shower. The resulting muon

trace a curve path in the magnetic field and depending on the direction of curvature the

incoming neutrino can be identified (either νµ or νµ ). (ii) All active neutrino flavors

undergo NC interactions through the process ν +x→ ν +x′. Only the hadronic cascade

is observed, producing a diffuse shower of energy deposits. (iii) Finally, νe undergo

CC interactions through the process νe + x → e−+ x. The electron gives rise to an

electromagnetic shower producing a denser energy.

MINOS uses the world’s most powerful neutrino beam, the NuMI beam (based at

Fermilab in Chicago), to achieve its goals. NuMI facility provides an intense muon

neutrino beam of few GeV in energy. Two steel-scintillator calorimeters detectors [183]

are installed in the MINOS experiment. The Near Detector (also smaller and having a

mass of 0.98 kton) is installed at the Fermilab, 1.04 km from the target. It measures

the energy spectra of the neutrinos before oscillation. The Far Detector is installed

at the Soudan Underground Laboratory in northern Minnesota, 705 m underground

and 735 km away from the target. It has a mass of 5.4 kton, it again measures the
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neutrino energy spectra, observing both the appearance and disappearance phenomena

of neutrinos due to oscillation. This two-detector are arranged in such a way that it

reduces the systematic uncertainties to an unprecedented level.

(ii) NOνA: The NOνA experiment is a long-baseline accelerator-based neutrino oscillation

experiment. It is optimized for exploring (mostly) the appearance of νe in the oscillation

of νµ → νe. Like the MINOS experiment, NOνA also uses the well defined NuMI

beam of νµ , which has been upgraded to 700 KW (from 300 KW). Using its two

detectors, NOνA measures the νe appearance and νµ disappearance between its onsite

near detector and the far detector. The near detector (1 km away) contains 0.3 kt liquid

scintillator to measure the unoscillated neutrino beam and to estimate background at

the far detector. The far detector contains 14 kt liquid scintillator and is located at

Ash River, Minnesota 810 km from target. These two detectors are located 14.6 mrad

off-axis and has the advantage that it can enhance the νµ → νe in the far detector while

reducing the background νe from high energy unoscillated neutrino beam and neutral

current.

The νe appearance analysis at NOνA aims to resolve the neutrino mass hierarchy

problem and to constrain the CP-violating phase. Such analyses are made possible at

NOνA due to it exceptional long baseline, which enhanced the matter effect up to 30%

thereby enhancing the sensitivity to neutrino mass hierarchy determination. The first

measurement of νe appearance in NOνA based on its first year’s data was announced

in 2015, providing solid evidence of νe oscillation and some hints on mass-hierarchy

and CP.

(iii) Tokai to Kamioka (T2K): It is a long-baseline accelerator neutrino oscillation exper-

iment located at Japan. The main goals of the T2K experiment are (a) discovery of

νµ → νe and to extend the search of sin2 2θ13≃ 2sin22θµe > 0.008, (b) investigation of

CP symmetry conservation/violation in the neutrino sector, (c) neutrino-nucleus cross-
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section measurements, and (d) searching for sterile neutrino from the νµ disappearance

by detecting the neutral current events.

The intense T2K neutrino beam is produced in the J-PARC accelerator complex at

Tokai, by impinging the accelerated protons (30 GeV) on a graphite target. This

produces mainly the pions (∼ 90%) and kaons (∼ 10%). These positive (negative)

pions then decay to produce µ (µ) and νµ (νµ ). T2K housed three detectors, two near

detectors (INGRID and ND280) and a far detector (Super-Kamiokande). The beam

after traveling a distance of 280 m goes through INGRID and ND280, where they

measured the beam parameters before oscillation and the neutrino cross-section too.

The far detector distance (250 km) corresponds to the first oscillation maximum. A

comparative studies of the beam characteristic between the near and far detectors makes

it possible to determine the oscillation parameters.

The leading measurement of the θ23 value is provided by T2K. It is also the first to

observe νe appearance, with a significance of 7.3σ . These findings made it possible to

determine the θ13 and to provide the first hint of a non-zero value of the δ CP phase.

At present, T2K is collecting data using νµ beam, for the δ CP and antineutrino cross-

section measurements. It has also yielded several neutrino cross-section measurements

at neutrino energies ∼1 GeV.

(iv) MiniBooNE: The booster neutrino experiment, at Fermilab, was designed to test the

evidence for neutrino oscillations (νµ → νe) in the (sin2 2θ , ∆m2) parameter space

region where the LSND experiment, at Los Alamos [184], reported a signal. The LSND

experiment observed more νe candidate events than expected from background. If

the excess is interpreted as being due to ντ → νe oscillations, then the most favored

oscillation region is a band in ∆m2 stretching from ∼ 0.2 eV2 to ∼2 eV2 . The

MiniBooNE experiment was designed to search for νµ → νe and ντ → νe oscillations

with approximately the same L
E
≃ 1 value as LSND, where L is the neutrino travel
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distance from the source to the detector in meters and E is the neutrino energy in MeV.

Whereas the LSND neutrino beam travelled a distance of 30 m with a typical energy

of 30 MeV, the MiniBooNE neutrino beam traveled 500 m and had a typical energy

of 500 MeV. With neutrino energies an order of magnitude higher, the MiniBooNE

backgrounds and systematic errors are completely different from those of LSND.

MiniBooNE, therefore, constitutes an independent check of the LSND evidence for

neutrino oscillations at the ∼ 1 eV2 mass scale.

For a deep analysis of the νµ → νe and ντ → νe reactions, MiniBooNE required a (i)

target mass of ∼ 1 kton in order to generate ∼1000 neutrino oscillation events for 1021

protons on target, (ii) detector with excellent discrimination between νµ and νe induced

events, (iii) completely active volume with no dead regions, (iv) detector having a 4π

veto to reject cosmic ray events, neutrino interactions that occur outside the detector,

and neutrino events with tracks that escape the fiducial volume. Liquid Cherenkov

detectors have all these requirements.
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Timeline Contributors and their contributions

1920-27 Charles D. Ellis (along with J. Chadwick and colleagues)

established the continuous nature of β decay spectrum.

1930 W. Pauli postulated the idea of ν to account for β decay and named it neutron.

1932 James chadwick discovered a heavy neutral particle and named it neutron

but couldn’t account for the Pauli’s neutron.

1934 Ernico Fermi coined the term neutrino resolving the naming problem

and wrote down the correct theory for beta decay, incorporating ν .

1956 First discovery of νe by Clyde Cowan, Frederick Reines,

F. B. Harrison, H. W. Kruse, and A. D. McGuire.

1957 ν found to be left handed by Goldhaber, Grodzins and Sunyar.

1957 B. Pontecorvo first suggested a practical method for investigating ν oscillations.

1960 Leon M. Lederman, Melvin Schwartz and Jack Steinberger showed the possibility

of more than one type of ν leading to the 1988 Nobel Prize.

1962 Z. Maki, M. Nakagawa and Sakata introduced ν flavor mixing and oscillations.

1962 νµ discovered by L. Lederman, M. Schwartz, J. Steinberger and

colleagues at BNL and confirmed the difference from νe.

1965 First natural neutrino independently observed by Reines and colleagues (SA),

and by G. Menon and colleagues in India, setting first astrophysical limits.

1968 R. Davis and colleagues get first radiochemical solar ν results in

the Homestake Mine in North Dakota, leading to solar ν problem.

1976 Discovery of tau lepton at the SLAC, implying the possibility of ντ .

1985 The "atmospheric ν anomaly" observed by IMB and Kamiokande.

1988 Lederman, Schwartz and Steinberger awarded the Physics Nobel Prize for

the discovery of the νµ .

1989 The LEP and the SLC at SLAC (Stanford) determine that there are only 3

light ν species (νe, νµ , ντ ).

1995 Nobel Prize to Clyde Cowan and Frederick Reines.

1998 Super-Kamiokande team reports oscillations in atmospheric ν and, thus, ν mass.

2000 The DONUT Collaboration announces the first direct observation of the ντ

collaboration at Fermilab .

2001-02 SNO observed neutral currents and charged currents showing

that ν oscillations are the cause of the solar ν problem.

2002 KamLAND observes ν oscillations consistent with the solar ν

puzzle using man-made ν .

2005 KamLAND published the best estimate of ∆m2
21.

2006 the MINOS experiment measured the ∆m2
32.

2009 Lensing data of a galaxy cluster predicted a ν mass of about 1.5 eV.

2010 May 31, OPERA observed the first ντ candidate event in a νµ beam,

providing further evidence for mass.

2010 July, the 3-D MegaZ DR7 galaxy measured a limit of the combined mass

of the three 3 ν varieties to be < 0.28eV.

2013 Daya Bay confirms that θ13 is non-zero.

2015 Nobel Prize in Physics for the discovery of neutrino oscillation in 1998 and 2001.

Table A.1 List of some important milestone in the history of neutrino physics.
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