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Pion Production and Absorption in 7N and 3N Systems

We study pion-induced two-pion production on the nucleon in the framework of a
relativistic meson-exchange model constrained by Chiral Perturbation Theory in the
low-energy limit. Unitarisation effects are included for the resonance pole diagrams.
This leads to a significant improvement over a simple tree-level model in the descrip-
tion of the angular distributions for the 7*p — 77 "n reaction. In the reaction

tr7n and 7 p — 7°7%n we find a contribution of the two-pion

channels 77p — =
decay of the Roper resonance. This contribution does however not manifest itself in

a qualitative change in the description of the differential distributions.

In the second part of this thesis we use the pion as a probe to study the short range part
of the three-nucleon wave function in 7 absorption on *He. We employ a parametri-
sation of the three-nucleon wave function based on modern NN models. The use of
this parametrisation leads to a significant improvement over previous calculations in
the description of cross section and polarisation data. However, the polarisation data
hint at the need of other mechanisms beyond a two-nucleon absorption mechanism
for the description of positive pion absorption on *He even in quasifree kinematics.

Pion Produktion und Absorption in 7N und 3N Systemen

Wir untersuchen die pioninduzierte Zwei-Pion-Produktion am Nukleon im Rah-
men eines relativistischen Mesonenaustauschmodells, das sich im Niederenergiebere-
ich auf die Chirale Storungstheorie zuriickfithren lafit. Fir die Poldiagramme der
Resonanzen werden Unitarisierungseffekte berticksichtigt. Dies fithrt zu einer sig-
nifikanten Verbesserung der Beschreibung der Winkelverteilungen fiir die Reaktion
7tp — wtatn im Vergleich mit einem Modell auf dem Niveau einfacher Baum-
graphen. In den Reaktionskanilen 7=p — 7t7n~n und 77 p — 7% %n finden wir
einen Beitrag des Zwei-Pion Zerfalls der Roper-Resonanz . Dieser Beitrag fiihrt je-
doch nicht zu einer qualitativen Veranderung in der Beschreibung der differentiellen
Wirkungsquerschnitte.

Im zweiten Teil dieser Arbeit nutzen wir das Pion als Sonde fiir die Untersuchung des
kurzreichweitigen Anteils der Drei-Nukleon-Wellenfunktion in der 7+ Absorption am
SHe. Wir verwenden eine Parametrisierung der Drei-Nukleon-Wellenfunktion, die auf
modernen N N-Modellen basiert. Die Verwendung dieser Parametrisierung fiihrt zu
signifikanten Verbesserungen in der Beschreibung der Wirkungsquerschnitte und der
Polarisationsdaten im Vergleich zu fritheren Berechnungen. Die Polarisationsdaten
deuten jedoch darauf hin, dass sogar in quasifreier Kinematik Mechanismen, die iiber
eine Zwei-Nukleon Absorption hinausgehen, zur Beschreibung der Absorption posi-
tiver Pionen am *He notwendig sind.
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Chapter 1

Introduction

Today we believe that the theory of the strong interactions is Quantum Chromo
Dynamics (QCD). This non-abelian theory describes the interactions of quarks and
gluons both carrying a quantum number called colour. One consequence of the non-
abelian structure of the theory is asymptotic freedom: the forces between quarks
and gluons become small at short distances (corresponding to large energies), and the
interaction can be treated perturbatively. With decreasing energy, the strong coupling
constant becomes larger, and the perturbative approach becomes useless. At energies
corresponding to the mass of the nucleon, no exact solution of QCD is known.

Furthermore, free quarks have never been observed. This led to the postulate of
confinement: all observable particles have to be colour singlet states. The relevant
degrees of freedom at low and intermediate energies are these colourless states, the
mesons and baryons. The spectroscopy of the baryons has in the past contributed
two main ideas to the development of QCD: the notion of “quark” as a building block
of hadrons and the hidden degree of freedom called colour.

At present, a detailed experimental investigation of the baryon spectrum is being
performed at both electron and hadron facilities. One hope is to find states that have
been predicted by quark models but have not yet been observed.

In the naive quark model, baryons can be described qualitatively as bound states of
three constituent quarks. The question comes up whether all baryon resonances can
be described as three-quark states. There has been much discussion on the nature
of the A(1405) [1-3] and the Roper resonance. The low-lying Roper resonance poses
a problem to constituent quark models based on one-gluon exchange [4]. In these
models, the Roper resonance as a positive parity excited state corresponds to a 2hAw
radial excitation in a harmonic oscillator potential and is always heavier than the first
excitation of negative parity. The consideration of other interaction mechanisms like
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flavour-dependent instanton forces [5] or Goldstone boson exchange [6] is needed to
change the level ordering of the low-lying positive and negative parity excited states.
Also on the lattice, it is controversial whether the low-lying Roper resonance can be
obtained as a qqq state. One group finds the lightest positive parity excited state

above the negative parity state [7], another group observes a level crossing between

positive and negative parity states which would reproduce the experimentally observed
spectra [8]. Another possibility is the interpretation of the Roper resonance as a
dynamical resonance [9-11]. In these cases it is difficult to make a clear and model-
independent claim that these states are not consistent with the gqq hypothesis. The
recent observation of a manifestly exotic resonance, the ©F [12-15] clearly cannot
be reconciled with the naive three-quark picture. This resonance has strangeness
S = 1, and the simplest quark content would consist of at least five quarks, uudds.
The evidence for the existence of the ©7 illustrates the importance to look for exotic
resonances. In the present work, we are however mainly interested in the Roper
resonance.

Experimentally, baryons and their decay properties have been most extensively stud-
ied in pion-nucleon scattering. However, to obtain a complete picture of the properties
of resonances, different excitation channels and different decay channels have to be
considered. Precise data on two-pion photoproduction have also become available
from the MAMI facility at Mainz [16-18]. The yN reactions are however largely
dominated by the excitation of the A isobar and the D;3(1520) [19]. Therefore these
reactions offer no ideal situation to search for an effect of the Roper resonance. This
may change when polarised photons [20] or electro-production reactions are used. So
the N* program at Jefferson Lab [21] is dedicated to the experimental study of reso-
nance excitation in electroproduction.

Detailed differential distributions have recently been measured for the 7= p — 7%7n
reaction over a wide energy range from threshold up to 1.53 GeV [22]. In the present
thesis we investigate these data for information on the two-pion decay of the Roper
resonance.

In the study of resonances one is faced with the problem of how to separate their
properties from the background contributions of non-resonant meson-baryon interac-
tions and from final state interactions. To describe such complicated processes over
a wide energy range one has to rely on models.

The Jilich 7N [9-11] model allows for a good qualitative description of the pion-
nucleon phase shifts and inelasticities in an energy range from threshold up to
1.9 GeV [11]. Tt takes into account the inelastic channels 7A, o N, pN (as effective
parameterisations of 77N intermediate states) and the n/N channel. The interaction
is iterated in a Lippmann-Schwinger equation. This unitarisation method allows for



the dynamical generation of resonances from the meson-baryon dynamics. Indeed,
one has found that the Roper resonance N*(1440) can be interpreted as such a dy-
namical state. In the Jiilich model, this resonance is generated from the coupling of
the 7N channel to the effective 7w N channel o /N. For the investigation of the decay
properties of this resonance a closer look at its two-pion decay suggests itself. But the
investigation of also the 7N — 7wV total cross sections within the Jiilich 7NV model
poses problems because of the complicated analytical structure of the model.

On the other hand, the reaction 7N — wmN has been successfully described in
the framework of Chiral Perturbation Theory already at next-to-leading order, with
contributions only from tree-level diagrams [23]. Chiral Perturbation Theory is the
effective theory of strong interactions at low energies, but resonances are not included
as dynamical degrees of freedom. Our long term aim is however the investigation of
the decay properties of resonances. So we develop a resonance exchange model that
is constrained by Chiral Perturbation Theory in the low-energy regime.

The ingredients of our model are similar to the isobar model of Oset and Vicente-Vacas
that was later extended by Fazel et al. [24,25]. Their model was designed to describe
pion interaction in nuclei and for this application was formulated in the nonrelativistic
approximation. It could describe the total cross sections of the 1N — 7w N reaction
quite successfully and was also used for an interpretation of the M, distributions in
+

[26]. It was found, that the M., distributions in the 77p — 77 nand 77p — 77 n

channels could not simultaneously be described.

We formulate a resonance exchange model in a relativistic framework, taking into
account contributions from o and p exchange and the excitation of the baryonic res-
onances A(1232), N*(1440), N*(1520) and N*(1535). In our model we go beyond a
“pure” tree-level ansatz by including some unitarisation effects for the pole contribu-
tions.

One aim of this investigation is to find out to what degree of accuracy the various
differential cross sections in the 7N — 7N reaction can be described by a simple
tree-level ansatz and where the inclusion of initial and final state interactions has an
effect on the description of the data.

A second motivation for our investigation lies in the study of the resonance contribu-
tions to the pion production reaction and whether the reaction allows to disentangle
the information on the two-pion decay of the resonances from the background.

This thesis is organised as follows. In Chapter 2 we introduce the effective Lagrangian
for the meson-baryon interactions and present our model for the pion induced pion
production. The parameters of this model, the coupling constants and the masses of
the resonances, are fitted to pion-pion and pion-nucleon scattering in Chapter 3. Our



4 Chapter 1: Introduction

results for the reaction 7N — 7w N are shown in Chapter 4. The investigation of
pion-induced pion production ends with a few concluding remarks in Chapter 5.

The work of the Jiilich group does not only concentrate on the investigation of the
pion-nucleon interaction. In fact, also the pion-pion and the nucleon-nucleon inter-
actions are investigated with the aim of finding a consistent description of strong
interaction processes at low and intermediate energies. Chapter 6 is dedicated to the
investigation of positive pion absorption on *He. In such a reaction, the nucleon-
nucleon interaction can be probed at short distances and medium effects can be stud-
ied in a theoretically tractable system.



Chapter 2

Introduction to the Model for
wN — N

In this chapter we introduce our model for pion-induced pion production on the
nucleon, the reaction 7N — w7 N. We work in the framework of a resonance-exchange
model considering processes with intermediate mesonic (o, p) and baryonic (A, N*)
resonances. The interactions of the pions, the nucleons and these resonances are
described by effective Lagrangians. The coupling constants in these Lagrangians are
parameters that have to be determined from the data. The interaction Lagrangians
are given in section 2.1. In section 2.2 we discuss the ingredients of our model for
N — 7w N.

2.1 Symmetries of QCD and Effective Lagrangian

To describe the interaction of mesons and baryons, we make use of phenomenologi-
cal Lagrangians that respect the symmetries of QCD. These symmetries are Lorentz
invariance, the invariance under time reversal, charge conjugation and parity transfor-
mations, and in particular the (approximate) invariance under chiral SU(2) x SU(2)
transformations.

Invariance under chiral transformations means that the QCD Lagrangian is invariant
under rotations which act independently on the lefthanded and righthanded quark
fields. The group of these rotations is SU(2), x SU(2)g. Alternatively, the rotation
group can be written as SU(2)y x SU(2) 4 with vector and axial-vector transformations
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acting on the quark fields,

_.f—;
qg — e '2%

) 7=
g — e 2%,

where the 7;, i = 1,2, 3, are the Pauli matrices in isospin space and

g= (;;) (23)

is an iso-spinor collecting the up and the down quark fields. The symmetry of the
QCD Lagrangian under the vector transformations eq. (2.1) is also called isospin
symmetry.

These symmetries are only approximate symmetries: isospin symmetry is explicitely
broken by the mass difference of the u- and d-quark. The invariance under axial-vector
transformations is explicitely broken by the non-vanishing quark mass. However,
the u- and d-quark masses (and their difference) are small compared to the typical
hadronic scale of 1 GeV, so the effect of this explicit symmetry breaking should be
small.

In nature, isospin symmetry is realised to a high level of accuracy. This is evident
from the existence of isospin multiplets in the hadronic mass spectrum. The mass
splitting in these multiplets is of the order of a few percent only.
So isospin symmetry is certainly a good symmetry to work with.

Chiral symmetry!, on the other hand, is not realised in nature in the same way (the
so-called Wigner-Weyl mode). This would lead to the observation of parity doublets
in the mass spectrum. For example, the p and the a; should then have the same
mass. But the mass difference is of the order of the p mass. Such a huge difference
cannot, be accounted for by the explicit breaking of chiral symmetry through the small
quark masses. So the Wigner-Weyl mode drops out as a possible realisation of chiral
symmetry.

Instead, chiral symmetry is spontaneously broken. This means that the vacuum does
not exhibit the symmetry of the Lagrangian. According to the Goldstone theorem,
there should be a massless excitation of the vacuum for each spontaneously broken
generator of a symmetry. In the case of broken SU(2)4 symmetry, we expect the
existence of three massless pseudoscalars in the spectrum. These can be identified
with the pions. Of course, the pions are not exactly massless, but they are (by far)
the lightest hadrons. Their non-vanishing mass is attributed to the explicit breaking
of chiral symmetry by the non-vanishing quark masses. The observation of the Gold-
stone bosons in the mass spectrum lends support to the theory of the spontaneous

'Here the expression ‘chiral symmetry’ is used for the axial-vector symmetry alone.
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breaking of chiral symmetry. So chiral symmetry is a good symmetry for the QCD
Lagrangian and thus it should also be respected in any effective Lagrangian for the
strong interaction.

The Goldstone bosons — being the lightest particles of the theory — dominate the
physics at low energies. Up to the mass of the lightest non-Goldstone particle, the
pions should thus be the appropriate degrees of freedom to work with. Furthermore,
the interaction of the Goldstone bosons becomes weak at low energies. This allows for
a perturbative treatment of the interaction in terms of small pion momenta. Guided
by the symmetry constraints, Chiral Perturbation Theory, the effective field theory for
QCD at low energies has been constructed for the interactions of pions [27]. Chiral
Perturbation Theory is a systematic expansion of the interaction in terms of pion
mass and energy over a scale A, below which the effective theory is applicable. This
scale is set by the mass of the p meson.

The leading order in the chiral expansion contains only known parameters, so that
the leading order is fixed. The coupling constants of the higher order interactions, the
so called low-energy constants, are free parameters. In principle they are calculable
from the underlying theory, but such a calculation is beyond the possibilities of lattice
QCD at present. So the low-energy constants have to be determined from experiment.

Also the interaction of pions with the nucleon can be described in Chiral Perturbation
Theory. This makes Chiral Perturbation Theory a powerful tool for the investigation
of hadronic interactions at low energies. But the further one goes away from the
threshold, the larger becomes the expansion parameter E//A, and one has to include
higher and higher orders in order to describe the interaction. The expansion will
finally break down at energies of the order of the masses of the lightest resonances. In
the pion sector, this happens at the mass of the p meson, in the pion-nucleon sector
the mass difference Ma — My limits the radius of convergence of the chiral expansion.

Our focus lies on the investigation of the resonance region. That is why we do not
work in the framework of Chiral Perturbation Theory. We have to take resonances
explicitely into account as dynamical degrees of freedom. In the threshold region,
however, our model should be constrained by Chiral Perturbation Theory. The con-
tributions of resonances should manifest themselves in the values of the low-energy
constants. It has been shown by Ecker et al. [28] for the mesonic sector that the
low-energy constants of the next-to-leading order can be saturated by resonance ex-
change. For the pion-nucleon sector, such a study has been performed by Bernard
et al. [29] who also find nice agreement between the phenomenological values of the
low-energy constants and their values from resonance saturation.

A chirally symmetric Lagrangian for the interaction of vector and axial-vector mesons
with pions and nucleons was formulated by Wess and Zumino [30]. This Lagrangian



8 Chapter 2: Introduction to the Model for 7N — an N

is based on the (chirally symmetric) nonlinear o-model that describes the interac-
tion of pions and nucleons. Vector and axial-vector mesons are then introduced as
gauge fields of a local chiral SU(2) x SU(2) symmetry. From this Lagrangian we take
the TNN, 37N and 47 interaction as well as the pNN and 7mp interaction. Note
that we use a different sign convention. We fixed the overall phase by the choice
Loy = —(fann/ma) V57,707V, which is the sign convention typically used in
photoproduction. Then also our 37N vertex gets this relative sign with respect to
the Wess-Zumino Lagrangian.

In addition we need Lagrangians for the coupling of the scalar ¢ meson, which
parametrises a correlated pion pair in the scalar-isoscalar partial wave, and for the
coupling of the A and the N* resonances. These terms of the interaction Lagrangian
are taken from [10] with the following exceptions:

e The onm coupling of [10] is supplemented by a scalar coupling proportional to
the square of the pion mass g;m277o.

e For the coupling of the Roper resonance to the 7N, o N and w/A channel we
use the same interaction Lagrangian as for the Nucleon. The Lagrangian of [10]
does not contain any coupling for the Roper resonance, because in that work,
the Roper resonance is not a genuine resonance but generated from the meson-
baryon dynamics.

e For the D3 we choose a coupling that is similar to the coupling of the A isobar
with an additional 5 matrix to account for the different parity of the A and the
Dy5. Of course, we use also the isospin-1/2 operator for the Dy3. As in [10] the
D-wave character of the m/N D3 interaction is put directly into the vertex by
using an additional derivative on the pion field iv,0" with respect to the TNA
Lagrangian.

e The Si; resonances are coupled to the 7N and n/N channel via gradient cou-
pling. In [10] a scalar coupling for these vertices is assumed, which leads to an
unreasonably high contribution of the S1;(1650) resonance already at the mN
threshold.

In our model, the contribution of the S;;(1650) at the 7N threshold is compen-
sated for by ¢ exchange with a scalar o coupling.

In an improved version of the Jiilich # N model [11] the high contribution of the
511(1650) at threshold has been removed by replacing the scalar coupling with
gradient coupling.

The Lagrangian for each vertex is given in Table 2.1.
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Table 2.1: The interaction Lagrangian of our model.
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2.2 Contributions to the Pion Production Reac-

tion tN — 7N

The contributions to the pion-induced pion production reaction are displayed in Figs.
2.1-2.3. The corresponding expressions for the invariant matrix elements are listed in
Appendix D.

The diagrams (A.1)—(C.1) contain only pion-nucleon and pion-pion interaction ver-
tices. They constitute the contributions of Chiral Perturbation Theory at leading
order together with a 77NN contact term with a third pion line attached to the
nucleon. This 77 NN contact term, the Weinberg-Tomazawa term, is in our model
saturated completely by the p-exchange in (D.1)—(D.6) and therefore must not appear
explicitely.

In addition to the leading order 47 interaction vertex, we use ¢ and p exchange in order
to parametrise the scalar-isoscalar and vector-isovector partial waves in w7 scattering.
The second 47 vertex in diagram (C.4) is needed to cancel the contribution of the
s-channel rho exchange to 77 scattering at leading order in the chiral expansion.

In diagrams (D.1)—(E.6) we take into account the exchange of a ¢ or a p meson. p
exchange in the ¢ channel is responsible for the isovector part of the pion-nucleon
s-wave scattering, while {-channel o exchange describes the isoscalar part.

The next group of diagrams involves the excitation of a A isobar in the intermediate
state. The mass of the A, M = 1232 MeV, lies only a few MeV above the ma N
threshold at /s, = 1215 MeV. Thus we expect a large contribution from A exci-
tation, in particular from diagrams (F.1) and (F.2) already at the pion production
threshold.

Finally, we consider the contributions from N* excitation and the subsequent decay
of the N* resonances into the 77N final state. We take into account contributions
from the N* resonances with a mass below 1600 MeV, which are the P;;(1440), the
so-called Roper resonance, the D;3(1520) and the Si;(1535).

From a look at the baryon summary tables of the Particle Data Group [31] we expect
only a small 77N decay of the S11(1535). However, one needs a 77N decay of the
S11(1535) in order to describe the 7N inelasticities and the 7N — nN cross sections
simultaneously. Assuming that the 7N inelasticities in the S;; partial wave at the
resonance energy are completely saturated by the coupling to the n/N channel leads to
an overestimation of the 71N — nN cross sections. This can be mended if one allows
for a 7w N decay of the resonance [11]. We have included the possibility of a 7a N
decay of the S;1(1535) via the decay to a mN intermediate state and the subsequent
decay of the nucleon to m/N.



2.2 Contributions to the Pion Production Reaction 7N — nmw N 11

~ 7’ ~ 7’ 7
\\ ,/ ,, S e ,/ \\\ ’ e
\ / ’ ~ , / SN e
\ /7 N s ~o 7’
\ / 7 /Y\ / // \"/
\\ II I/ // \\ l/ // // \\
(A.1/A.2) (A.3/A.4) (A.5/A.6)
S / e S~o prad
N / Ve SN P
N / s S~ -7
N R hraf
~ 1.7 :
Vi 1
(B.1) (C.1)
\\ // \\ /’
\\\,\/\_,\/\¢<::~~ \\\\ //// _
I o,p F---~--
1 1
1 1
(C.2/C.3) (C.4)
\\ /// \\\\ ////
N\ - S e -
\ o p ~ ~ - --==
N\
\ 0_7p \\\
N
(D.1/E.1) (D.2/E.2)
\\\\ "/" // \\\» ’f” ,,’/
/7 -
7 -
Oap; ’ a,p 2C
/ P
y -~

(D.3/D.4 / E3/E4)  (D.5/D.6 / E5/E.6)

Figure 2.1: Contributions to the 7N — w7 N reaction in our model. The labels
below the diagrams refer to the labelling of the expressions for the amplitudes listed
in Appendix D.
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Figure 2.2: Contributions to our model involving A excitation.
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According to [31], the D13(1520) should decay with a fraction of 40 —50% to the 7w N
channel. Of these 15 — 25% should go into the 7A channel and the same fraction to
the pN channel. We have only included the decay to the mA channel. We expect
the effect of the p/N channel to be small in the energy range up to 1.5 GeV, because
the 77 interaction in the p partial wave is still small for the corresponding maximal
energy of the wm system of ~ 0.6 GeV.

The important 7w N decay channels of the Roper resonance are the 7A and the o [V
decay. Although the o N decay is quoted with a fraction of 5 — 10% only, it should
still make important contributions to the two-pion decay of the Roper resonance. The
presence of a large contribution of the (77)s decay of the Roper resonance at the mn N
threshold has already been observed in the Oset—Vicente-Vacas model [24].

With the exception of diagram (B.1), the contributions to 7N — 7w N can be grouped
in the following way:

e diagrams describing 77 scattering with a nucleon attached to a pion leg ((C.1)-

(C4)),

e diagrams describing 7N scattering with an additional pion attached to the nu-
cleon line ((A.1)-(A.6), (D.3)~(D.6), (E.3)-(E.6), (F.1)~(F.4), (F.9)-(F.12) and

(I/L/N.1/2)),

e and diagrams contributing to the transition of the 7N channel to an inelastic
channel (C.2/3), (D/E.1/2), (F.3)~(F.6), (G.1)-(H.6), (J/M.1/2) and (K.1)-
(K.6).

Of course, our model should also be able to describe these sub-processes. We can
make use of these sub-processes to fix the parameters of our model, the masses of the
resonances and the coupling constants.

The fitting of the parameters to the 77 and 7N phase shifts and inelasticities is
described in the following chapter. The results obtained with our model for the
reaction 7N — N are presented in Chapter 4.



Chapter 3

Pion-Pion and Pion-Nucleon
Scattering

In this chapter we describe how the parameters for the 7N — 7n N model are de-
termined from pion-pion and pion-nucleon scattering. Detailed phase shift analyses
are available for both reactions. In order to compare with those analyses, it is nec-
essary to demand that the model employed fulfils unitarity. This can be achieved by
iterating the interaction in a scattering equation.

At the same time we intend to keep the scattering equation as simple as possible.
For this reason, we choose to work with the K-matrix approximation, which will be
described in the following section.

3.1 The K-Matrix Formalism

The relativistic scattering of two particles is described by the Bethe-Salpeter Equation
< k' A3y f |T| kAiAgi > = <k/)\3)\4 f |U| kXAt >
d* :
+ Z / ;q4 (E'X3Ma [ U] qk1kan)G(P,q){qrikan |T|kXAai). (3.1)
i 27)
In this equation, G(q) denotes the two-particle propagator, which is the product of
the Feynman propagators of the particles in the intermediate state,
i 7

GP’ _ _i - . b
( q) ( )<§+q)2_M12+Z€(g_q)Z—Mg‘f’ZE

(3.2)

for a two-particle intermediate state with M, and M, the masses of the two particles.
P is the sum of the two particles’ four-momenta. We work in the centre-of-momentum
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frame, where P = (/s 6) q is the relative momentum in the two-particle intermediate
state. k£ and &’ are the relative momenta in the initial and final state, respectively.

The \; and k; are the helicities of the particles, and f, ¢, n label the different two-
particle channels. For mm scattering we take only the w7 channel into account, for
wN scattering we include the coupled channels 7N, o N, wA and nN. The channel

indices will be suppressed in the following.

The integral kernel U consists of all connected two-particle irreducible interactions.
Irreducible are those two-to-two particle interactions that do not contain intermediate
states with only two particles.

An infinite number of reducible interactions is generated by the scattering equation.
In principle also the number of two-particle irreducible interactions is infinite, so for
any application, the kernel has to be approximated.

Another approximation is connected with the fact, that the Bethe-Salpeter Equation
(3.1) is a four-dimensional integral equation. The solution of an integral equation
in four dimensions is technically very involved. With the coupled channels, such a
calculation is hardly feasible. In practice, one works with a three-dimensional reduc-
tion of the Bethe-Salpeter Equation. A reduction can be achieved by writing the
Bethe-Salpeter Equation as a set of coupled equations,

T = V4+Vgrl
V = U+UG-g)V
with an arbitrary two-particle propagator g [32]. g is often chosen to contain a one-

dimensional d-distribution that puts a constraint on the zeroth component of the
relative momentum. A possible choice for g is [33]

0 5
o(Pra) = 27 (s, 3.5)

with s, = (E1(sq) + E2(s,))* and B; = /M2 + 2. f(s,s,) is any function that fulfils
f(s,s) = 1. This condition for f(s,s,) comes from the requirement that g(P,q) has

the same discontinuity along the real axis as the full two-particle propagator G(P, q).
So the imaginary part of ¢ is fixed. The real part of g(P,q) is completely arbitrary.
With g(P,q) as in Equation (3.5), one gets a three-dimensional equation for T,

(XM [Tk Mds ) = (/A [V] kA As )

a3 -
+Z/ (27;;3 (K'XsAa Vg r1k2)g(P,q){qrirz | Tk AiAa ), (3.6)

K1K2

with

§(P.q) = 5 — st + i€ 2E1($2(3q) J(5:54)- (8.7)
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The driving term of this scattering equation, the quantity V is in principle deter-
mined by equation (3.4). In view of (a) the difficulty of solving a four-dimensional
integral equation and (b) the fact that the integral kernel U is not precisely known
anyway, one chooses V' to be given by a subset of irreducible interactions. Usually,
one takes into account the interaction up to second order in the coupling constant.
This approximated V is often referred to as the pseudopotential.

The three-dimensional scattering equation (3.6) can be further simplified by working
in the K-matrix approximation.
The K-matrix is defined by the equation [34, 35]

(K" X3As [ K kA A ) = (B XAy [V]E M A

d3 — o 5 . N
+Z/ (2753 <k/)\3>\4 ’V’ q R1R2 )Re [g(P, Q)] <q1£1/'€2 ’K‘ k)q)\g > (38)

K1K2

The T-matrix can be expressed in terms of the K-matrix as
(K" XsAa [Tk A Y = (' D3ha | K| kAo )

Bq - B} L , -
+Z/#(k’A3A4|Kanm>ﬂm [9(P, @)] (Trik2 [Tk Az ). (3.9)

K1K2

Given an expression for the K-matrix, this equation for the T-matrix can be easily
solved, because the imaginary part of the two-particle propagator is proportional to
a O-function that puts both particles in the intermediate state on their mass shell,

tmn (3P, 0)) = = 7——=0(a = o) (3.10)

with the on-shell momentum
1
qu - 2\/5

As already mentioned, the imaginary part of the propagator is unambiguous.

Vs — (My + My)2\/s — (M, — M,)2. (3.11)

The K-matrix approximation consists of setting K = V| thus neglecting the principal
value integral in Equation (3.8). The unitarity cut is taken into account properly in
equation (3.9), so the resulting transition matrix 7 is unitary. Neglecting the principal
value integral leads to a reduction of strength for the multiple scattering contributions
as only on-shell intermediate states (coming from equation (3.9)) are allowed in the
K-matrix approximation. Taking into account only the on-shell intermediate states
means in particular that the different channels can only contribute above their pro-
duction threshold. So analyticity is violated in this approach. However, Pearce and
Jennings [36] compared the quality of the K-matrix approximation to other choices of
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the propagator for elastic 7N scattering. They found that the effect from the princi-
ple value integral is small in this particular reaction, so that the parameters extracted
for the different approximations do not differ much.

Our aim is not to formulate a unitary, analytic model for 7w and 7N scattering.
Instead, we aim at a fit of the coupling constants and resonance masses for the tree-
level 1N — ww N model. This model contains tree-level contributions corresponding
to mm and wN scattering. In order to fit the parameters of these contributions to
the results of the phase shift analyses for 77 and w/N scattering, we have to unitarise
these tree-level contributions, and we want to unitarise them in a most simple way.
For this purpose, the K-matrix appears to be most convenient.

Finally, we want to point out that as a consequence of neglecting the principal value
integral (3.8) the K-matrix approximation cannot generate poles in the T-matrix
dynamically. Such a dynamical pole is generated if the series

K=V+VPGV+VPGVPGV +... (3.12)

is divergent. For N scattering the Jiilich model [10] predicts the dynamical genera-
tion of the Roper resonance from the coupling of the 7N to the ¢ N channel. However,
in the framework of the K-matrix approximation, this pole can be introduced ‘by
hand’ by including it as a genuine pole in the potential.

Because of the rotational invariance of the strong interactions, the matrix elements
of the potential and the transition matrix can be decomposed into submatrices of
definite angular momentum. This partial wave decomposition is shown in detail in
appendix B. The three-dimensional integral equation (3.6) is reduced by the K-matrix
approximation together with the partial wave decomposition to a set of algebraic
equations of definite angular momentum .J,

IT Gon
(2m)3 4y/s
Y ANV | gon K2 ) (Gon K1k [T [k M A2 ) - (3.13)

K1K2

(k' XsAg | T kA ) = (k' Ashg [V kA Ay ) —

It is convenient to write the matrix elements in terms of the JLS basis for several
reasons. A state in JLS basis has definite parity. Thus, the parity of a resonance
can be determined directly from the partial wave to which it contributes in the JLS
representation. Some of the transition matrix elements (k’'L'S"|V7/|k LS) vanish
because of parity conservation and angular momentum conservation. And finally, the
results from partial wave analyses of experimental data are usually given in the JLS
basis for the abovementioned reasons. The transformation from helicity basis to JLS
basis is given in appendix B.
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Since the strong interactions approximately conserve isospin, the states are in addition
characterised by their total isospin I. The scattering equations for different isospin
decouple. The coupled-channels two-body scattering equation in JLS basis is given
by

T Gon
(2m)3 4y/s
Y (KL |V o LS ) (o L'S" [T K LS ) . (3.14)
s

(k'L'S"|\TY |k LS) = (K'L'S'|V|kLS) —

3.1.1 The oN and 7A Propagators

The o is a parameterisation of a correlated pion pair in the scalar-isoscalar channel.
So in the o N channel we effectively deal with a three particle channel of two pions and
a nucleon. In the K-matrix approximation we want to account for those three-particle
states with the nucleon and two pions on their mass shell.

In our parameterisation the o consists of a ‘bare’ o which is dressed by pion loops.

- -

N N [N
AR = ~AA + A ’rvv—f—'vd\ rV\J\ ~~ (3.15)
O dressed = -7 e

In order to get the contribution with two pions on-shell, we have to take the imaginary
part of the o propagator, since the expression (3.15) can only acquire an imaginary
part if the two pions in a loop are on their mass shell. The imaginary part of the
propagator is related to the imaginary part of the self-energy by

Im Pz m?fl— ZO(PZ)} =1Im [EO(PQ)} ‘PQ — mgl— 5 (P7) (3.16)
The self-energy can be calculated from 7m scattering. It is given by
5o (P?) = fiGfo (3.17)
with fo the bare vertex function of the onm vertex and G the pion-pion propagator,
fo = —Viar (2gim? + L(P* - 2m2))

1 1 P? )
pum— — — —————— —— — _m
2(2m)34/P2V 4 "

with the o scalar and gradient coupling constant g, and ¢» as defined in Table 2.1.

In a similar manner, the A(1232) acquires a self-energy by the dressing with 7N
loops. For the A self-energy, we take into account only the part of the width coming
from /N loops and neglect any non-pole 7N interaction. We get

Zals) = fiGanfo (3.18)
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with fy the vertex function of the 7/ NA vertex in the A pole potential in the Ps3
partial wave of m/N scattering. Expressing the vertex function explicitely with the
help of our 7 NA Lagrangian, we get

2

3
. 9on TNA
Sa(s) = —i TN (B + My)(vs + Ma) =25 (3.19)

fr=na denotes the TNA coupling constant, ¢, is the on-shell momentum of the 7/V

state in the loop and Eyx = /M3 + ¢2,.
This should actually be a very good description of the A self-energy, because the P33

partial wave in pion-nucleon scattering can already be nicely described by a A pole
diagram alone for energies up to ~ 1.3 GeV.

With the help of the relation (3.16) we can write down the propagator for the o /N
and mA intermediate state — more generally for an intermediate state with one
stable particle (we choose particle 1) and one unstable particle. For such a state, the
scattering equation (3.1) contains the expression with the two-particle propagator,

. d*q , 1 1
Z/WV(’“ ,q) P —MZ+ic (P—q2—mi— (P —q)?) T(q, k). (3.20)

We put particle 1 on its mass shell by exploiting the Cutkosky rules [37],

1 i
qz—]le—&-ie _%
imaginary part which is related to the two-particle cut. After a partial wave decom-

d(q¢° — Ey). Of the unstable particle’s propagator we keep only the

position we get

. Imax dq Jr1t q2 2 2
i / GV () g T (5a((V = B = )

1 2
"(\/——El)g—QQ—m%—Ez((\/——El)Q—QQ)

For the o N propagator, the maximal momentum ¢u., is reached for the minimal

T'(q, k). (3.21)

invariant mass of the two pions,
1
qmax - 2\/5

In the case of the A propagator, the maximal momentum is given by

V(s — (My +2m;)?) (s — (My — 2m,)?). (3.22)

(max = 2%/5 V(s — (My +2m;)?) (s — (My)?). (3.23)
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Figure 3.1: Contribution of the 7w T-matrix to nN — w7 N. (a) The pion exchange
diagram. (b) Pion-Pion rescattering. The ‘blob’ in (b) includes all tree-level diagrams
that lead to a m7N final state. Note, that the decomposition into (a) and (b) is
arbitrary and just for illustrative purpose.

3.2 Pion-Pion scattering

Pion-Pion scattering contributes to 7N — 7N as final state interaction (Fig. 3.1).
At pion momenta of tens of GeV, pion induced pion production on the nucleon is
dominated by the pion-exchange diagram Fig. 3.1(a) and a;- and ag-exchange. This
allows the extraction of information on the 77 interaction. So beside 7N — 7w A [38]
and K4 decays' [39], pion induced pion production is a source of information on
pion-pion scattering.

Then, there is also a contribution of nm scattering in the rescattering of the final
state pions (Fig. 3.1(b)). This rescattering contribution is partly accounted for in
our tree-level model through the inclusion of o and p exchange as a parameterisation
of a correlated pion pair. In this section we describe a model for 77 scattering, from
which we also determine the parameters for ¢ and p exchange.

In order to get a reasonable description of pion-induced two-pion production up to
Vs = 1.5 GeV we need a model that can describe 77 scattering up to ~ 0.6 GeV.
The lowest-lying two-particle channel that couples strongly to the wm-channel, the
K K-channel, opens only at 990 MeV. For our purpose it is hence entirely adequate
to deal with the mm-channel only.

We now write down the potential for w7 scattering. This potential is then iterated in
the scattering equation (3.14) to obtain the 7-matrix from which the observables are
calculated.
We start from the chiral Lagrangian at leading order,

F2

Ly = T(DNUTD“U +x'U +xUT). (3.24)

LK., decays are the semileptonic four-body decays K — wriy,.
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The pion fields are contained in the unitary matrix UU. The representation of U in
terms of the pion fields is not unique. Observables must, however, be invariant under
a redefinition of the pion fields. We work with the so-called o-model gauge,

| @ R
U=s\l-mrig (3.25)

D, is the covariant derivative, which in our case is just the derivative of the pion fields

3

as we are not concerned with external vector and axial-vector fields. The brackets
(...) denote the trace in flavour space. x contains the quark masses,

m
x = 2BM = 2B , (3.26)

and is related to the pion mass via the relation

) {1+0OM)}. (3.27)

DN | =

mz = B(my +my) {1 + O(M)} =

T

So at leading order, % (x) is just the square of pion mass.

F is the pion decay constant in the chiral limit, F, = F {1+ O(M)}. We use the
value F; = 92.4 MeV.

The first term in L, is invariant under a chiral transformation, the second term

describes the explicit breaking of chiral symmetry by the small quark masses.

Expanding the Lagrangian £, up to four pion fields, we get the interaction Lagrangian
of the nonlinear sigma model plus a mass term,

1

(0,27 — m27Y) . (3.28)

The Lagrangian L4, leads to a potential in the s and p waves of pion-pion scattering.

After a partial wave decomposition we get the following expressions?:

4
\\ // VOO - —F_ﬂQ- (23—m72r) )
f
S’ vio— 3—}77; (Z— 7%) . (3.29)
// \\ 4 T
s N V20 — _F_Z (_S+2m72r) .

2We use the notation V!7 with total isospin I and angular momentum .J.
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Iterating the leading order Chiral Perturbation Theory potential in the K-matrix
approximation is not enough to describe the 77 phases in the scalar-isoscalar and
vector-isovector partial wave up to /s ~ 600 MeV (see Fig 3.2).

In order to parametrise the strong mm correlation in the scalar-isoscalar partial wave,
we introduce the s-channel exchange of a scalar-isoscalar resonance, the . This is
coupled to the pions via gradient and scalar coupling,

™

Lowr = —gim277o + % 7OV (3.30)

The o s-channel exchange leads to a separable potential in the I = J = 0 partial

wave.
\\ ,/ ;
yo = Jolo (3.31)
P e vavd §— Mg
/ g \
fo = 20V3 [2g1m72r n %(s - 2m§)} (3.32)

In the I = J = 1 partial wave we include the s-channel exchange of the p meson
in addition to the leading order chiral perturbation theory (3.28). The interaction
Lagrangian reads

2
— — g vis — —
£p7r7r = —Yprr <7T X a,u’ﬁ) P“ + 25}12 (7T X au’iT)Q . (333)
p

The first term of (3.33) alone would lead to a contribution of the p-exchange in
n-scattering at leading order in the chiral expansion in addition to the contribution
from L4,. But Ly, already gives the complete interaction at O(p?), so that the leading
order contribution from p exchange has to vanish. For this purpose, the second term
in £,:», a mm contact interaction, is needed. The 7w contact interaction in £,
appears quite naturally if one introduces the p meson as a massive gauge boson [40].
Another possibility to avoid a contribution of the p-meson at leading order would
be to introduce the p-meson not as a vector field but as an antisymmetric tensor

field [27,28,41].

The potential from p-exchange in the s-channel is given by

’ P \ 321 /s
4 \ — R BN 2
’ \ fO gpmr\/ 3 <4 m7r> (335)

1.
\\ // 1 fOfO
v, 00 (3.34)
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From the 77 contact interaction in (3.33) we keep only the part that cancels the p
exchange in the s-channel at O(p?).

RNt 327 g2 s
T yu = 22T Jpr (——mQ) 3.36
/// \\\ pct 3 mg 4 T ( )

With this potential, a good description of the pion-pion phase shifts up to the K K
threshold and up to J = 1 is possible. We fit the coupling constants and masses of
the o and the p to the wm phase shifts dop and 411, respectively. The resulting fits are
shown in Fig. 3.2. The fitted parameters are given in Table 3.1.

3.2.1 Comparison with Chiral Perturbation Theory

Now let us check whether the low-energy limit of our meson exchange contributions
agrees with Chiral Perturbation Theory. As has been shown by Ecker et al., the next-
to-leading order Chiral Lagrangian can be expressed in terms of resonance exchange
and the low-energy constants can be saturated to good accuracy by this resonance
exchange [28].

The Chiral Lagrangian at O(p*) reads:

Ly L,
Ls
Ls

Lsg

D, U'D*U)? + Ly (D, U'D,U){D*UTDU)

D, U'D*UD,UTD"U) + Ly (D, UTD*U) (x'U + xU")
DUTD*U (XU + xUT)) + Lo (x'U + xU')*

XUXTU + xUxUTY + ... (3.37)

+ + +

The ellipsis stands for those terms in £4 that do not contribute to pion-pion scattering.

The low-energy constants L; contain finite and divergent pieces. The divergent pieces
are needed to cancel the divergences of the pion loops at O(p*). The renormalised
values of the finite pieces will thus depend on some renormalisation scale A. For
the purpose of resonance saturation this scale should not be too far away from the
resonance region, so is chosen to be equal to the mass of the p [28]. At present, it
is not possible to calculate their values from QCD directly. Instead, they have been
determined phenomenologically from experiment and by invoking large- No arguments
[46]. Their values are listed in Table 3.2.

The contribution of resonance excitation to the low-energy constants can be deter-
mined by replacing the resonance degrees of freedom with an effective interaction.
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Figure 3.2: The pion-pion phase shifts up to J = 1. The solid lines show the results
of our K-matrix model. For comparison we also show the results with the potential
from leading order Chiral Perturbation Theory alone (dot-dashed lines). The data
stem from the analyses of Protopopescu [38] (filled triangle-up), Hyams [42] (filled
circles), Froggatt [43] (open diamonds), Takamatsu [44] (open triangle-down) and
from a compilation by Martin [45] (filled diamonds).
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For momentum transfers much smaller than the resonance mass m,, the propagator
of the resonance can be expanded in a Taylor series,

1 1 q2 q4

For the p exchange, the mm contact interaction arising from the first term in the
expansion is cancelled by the contact interaction in the Lagrangian (3.33). The contact
term from the second term in the expansion of the propagator contributes as desired
at O(p?).

a @3¢
AN e V—4g;2m7r 2 9 55 _56
R AN = - 4 [(QI 'QZ) (QI : Q3) ] [ ablcd ac bd]
g P AN mp
q%b Q4-/d

By comparing this to the Lagrangian L4, one finds that the contribution of p
exchange comes in the combination i (D,UTDrU)? + (D, UTD,U)(DFUTD"U) —
3(D,U'DFUD,UTD"U). The low-energy constants L1, L, and L3 are given in terms
of the p mass and the prm coupling constant,

2 4
P = gp7r7rF7r

mp,
e = ar°
It = —6Lf.

o exchange contributes to the low-energy constants Lq, L4 and Lg,

L = % Iy
32m?2
F4
g = g1 92 £y
8m2
2F4
Lg _ gl T .
8m?2

These expressions agree with the expressions derived in [28]. To see this more clearly
for the p meson, one can reformulate the interaction Lagrangian for the p meson
represented by an asymmetric tensor field given in [28] in terms of an interaction
Lagrangian for the vector field representation [41]. Then the coupling constant Gy is
identified with the expression g,.-F2/m, and we retrieve the expressions for the L?
given by Ecker et al..
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LY LY L Li(my)

109 03] 12| 07+03
2/ 1.8 — || 1.8 || 13+07
31|-56 — | 56| 44=£25
4{ — 140 140 || -03£05
50 — — || — || t4=x05
6| — 163 163 || -02=£03
s — — || — || 09=x03

Table 3.2: The values of the low-energy constants determined from p and ¢ exchange
compared to the empirical values from [46]. The entries are given in units of 1073,

The numerical values of the resonance contributions to the low-energy constants are
compared to the empirical values in Table 3.2. The meson exchange contributions
for Ly, Ly and L3 are in rather good agreement with the phenomenologically deter-
mined values. Also the agreement with the values for resonance saturation obtained
by Ecker et al. is reasonable. For LY, for example, they get 0.6 - 1372 while we get
0.9-1073. The difference can be traced back completely to the use of different values
for the coupling constants. Also our Lg = 0.3 - 1072 agrees nicely with their large N¢
estimate of 0.2 - 1073,

The values we obtain for Ly and Lg are two orders of magnitude too large and of the
wrong sign. The reason for this is twofold. Firstly, we do not consider the exchange
of a scalar isotriplet. This would contribute to L1, L, and Lg with the opposite sign
as compared to the isosinglet. The scalar isotriplet would also contribute to L5 and
Lg. Secondly, the contribution of the scalar isoscalar within our model is by itself two
orders of magnitude above the estimate of Ecker et al. [28]. At this point one should
note that the structures in the Chiral Lagrangian £, to which we compare the reso-
nance exchange contributions also comprise {- and u-channel meson exchanges. We
assume that neglecting such contributions in our model does hardly have an effect on
the parameters of the p exchange, so that the low-energy constants from p-exchange
are in good agreement with the phenomenological ones. But the effect of the ¢- and
u-channel meson exchanges should be important in the scalar-isoscalar partial wave.
In the Jiilich model for m7 scattering it is actually the iteration of p exchange in the
t channel that causes the strong attraction in the I = J = 0 partial wave at low
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energies [47]. The strength that would come from such contributions is absorbed in
the scalar coupling g; of the ¢ in our simple parameterisation. The ¢ contribution to
the low-energy constants is thus overestimated because we parametrise other physical
effects into the ¢ exchange. The numbers given for the resonance saturation from o
exchange should thus not be taken too seriously.

We are thus convinced that we could improve the mapping of our model to Chiral
Perturbation Theory by considering the exchange of a scalar isotriplet and the inclu-
sion of ¢- and u-channel meson exchanges. However, this will most probably not lead
to an improvement in the quality of the parameterisation as compared to the data.
So at this point we refrain from including more contributions into our model.

3.2.2 The n7 Final State Interaction in 7N — 7 N

In this section we discuss how to include the pion-pion-T-matrix into a model for the
pion production reaction 7N — 7w N.

It is technically highly involved to include the full two-body 7-matrix in a three-body
final state such as 7w N. In order to perform partial wave decompositions, one would
have to boost between three two-body systems in the final state. One can also not
simply neglect the 7N versus the n7 final state interaction or vice versa, because
these two-body final state interactions are approximately of the same size. In the
simplest scenario one would neglect all of the two-body final state interactions. Such
a procedure would work at the threshold, but for higher energies the unitarity bounds
0 <7 <1 would be violated.

In order to take some of the final state interaction into account and at the same time
avoid the technical complications mentioned above, we cast a part of the two-body
T-matrix into a compact expression that we can use in the description of the final
state-interaction.

We have already noted that s-channel meson exchanges lead to separable potentials

;
of the form V = 200 Tn the presence of such separable potentials, also the T-matrix

s—m2 "
can be decomposed into a separable (pole) and a non-separable (non-pole) part,
ff! NP
T=—"ror—+T"". 3.39
s—m2—% - (3:39)

This decomposition is shown in detail in Appendix C. The pole part of the T-matrix
is just a meson exchange interaction with the propagator modified through the self-
energy ¥ = flGf of the meson and with ‘dressed’ vertex functions f = (1+TVFG) fo.
TF can be further approximated by neglecting the effect of the non-pole interaction,

TPN fOf(;r

N~ 3.40
s—m2 —3%, (840)



3.2 Pion-Pion scattering 29

05 T I T I T T T T I T l T
1000 |~

%
[e]
%
[e]
Q
P
ReT
<
|

L
G.) - -
S %’“‘a
o
W N\ 1000 [~
AN
05+ ‘*% — L
5 o
Ky = 0
%\ g
g% -1000 —
-1 1 | 1 | ] | 1 %‘z 4
0.2 04 0.6 0.8 1 0.2 0.4 0.6 0.8 1
E, [GeV] E, [GeV]

Figure 3.3: On the left side we show the self energy of the sigma. The real part of the
‘full’ self-energy (including the effect of TVT) is shown as circles, the imaginary part
as triangles. The solid lines show the self energy without an effect from TVF. The
figure on the right side shows the pole part of the T-matrix in the scalar isoscalar
partial wave. The real and imaginary parts of the ‘full’ 7F are shown as circles and
triangles, respectively. Upon neglecting the effect of 7™ completely, one arrives at
the solid lines. The dashed lines show an approximation for 77 that takes the effect
of TN into account only for the self-energy.

This leads to a simpler expression for the self-energy, which is then only given by the
pion loop and the bare vertex functions of the pole potential, ¥q = fJG fo.

The quality of this approximation is shown for the pole potential and the self-energy
in the scalar-isoscalar partial wave in Fig. 3.3.

In the K-matrix approximation, the real part of the self-energy ¥, has to vanish,
because the vertex functions are real and we take only the imaginary part of the pion
loop. The imaginary part of the self energy is however nicely approximated up to 500
MeV if the effect of the non-pole T-matrix is neglected. The situation for the pole
T-matrix looks a little different. The approximation gives reasonable results for the
real part of TF up to 400 MeV, but the imaginary part can not be reproduced as soon
as one goes away from the threshold.
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A different approximation would be to take into account the effect of TN? for the self
energy, but working with the bare vertex functions in the nominator of 77,

fold

—m2
5—m2 — X

TP ~ (3.41)
This leads to similar results in the energy region up to 500 MeV. For higher energies,
approximation (3.41) deviates more strongly from the ‘full’ 7% than approximation
(3.40). So the better (and also more consistent) approximation is to neglect the effect
of the non-pole T-matrix completely.

As already noted, T* and the abovementioned approximations have the form of a
meson exchange contribution. So the pole part of the nx final state interaction in
the 7w N final state is already described by taking into account the correlation of the
final state pions through a o and a p exchange as for example in diagrams (D.1/E.1)
in Fig. 2.1 on page 11. For the final state interaction, the non-pole T-matrix will be
neglected.

For the pion-exchange contribution, Fig. 3.1(a), we will approximate the pion-pion-

3

T-matrix with

fold

Tr~— 2
s—m2—3,
X

+ Ve, (3.42)
In Fig. 3.4 we show how the different approximations 7" = T + V¥ and equation
(3.42) influence the description of the elastic 777~ cross sections.

The unitary K-matrix model T = T¥ + TN? describes the cross sections reasonably
well even above the p peak. Above /s = 800 MeV, it starts to overestimate the data.
The reason for this is that our model gives a too high partial wave cross section for
the I = 2, J = 0 partial wave cross section, as can be seen from the overestimation
of the magnitude of the phase shifts in Fig. 3.2.

The approximation of the non-pole T-matrix with the non-pole potential, T =
TP + VNP also gives reasonable results in comparison to the data as well as to the
calculation with the full T-matrix.

Up to 600 MeV, the data hardly allow to decide between the approximation with the
full pole T" matrix and equation (3.42). However, the latter approximation deviates
more from the calculation with the full T-matrix. At higher energies one sees that
the usage of equation (3.42) leads to an overestimation of the data in the region of
the p peak and above.

For the 7N — mn N model we will work mainly with the approximation (3.42). The
approximation with the bare vertex functions is typical of a usual tree-level model.
However, we will also investigate the effect of taking into account the full pole T-
matrix for tN — nnN.
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Figure 3.4: The total cross section for m¥7n~ scattering. The solid line gives the
result of the K-matrix model, the dashed line was calculated for the approximation
T =TF + VNP and for the dotted line we in addition omit the effect of TNF in T'F.
The dot-dashed curve is the result obtained with the potential from leading order
Chiral Perturbation Theory alone. The data are from [42] and [38].
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Figure 3.5: The coupled channels with their threshold energies (in GeV) and the N
and A resonances below 1.6 GeV with their quantum numbers I(J). The shaded
boxes indicate the mass range of the resonances as given by the particle data group

[31].
3.3 Pion-Nucleon scattering

In order to describe wN scattering up to a centre-of-mass energy of 1.5 GeV, we take
into account, the coupled channels 7N, o N, 1A and nN. The ¢ N and mA channels

serve as effective parameterisations of 77 /N channels. They open at the 77N threshold
at 1.21 GeV.

Also the pN channel parametrises a 77N channel. But as can be seen from the n7
phase shifts in Fig. 3.2, the nr interaction is weak in the I = J = 1 channel below
the p resonance. Based on this observation we assume that the contribution of the
pN channel should be irrelevant in the energy region up to 1.5 GeV that we here
concentrate on.

The nN channel is taken into account because of its large coupling to the Si;(1535)
resonance. We need this coupling to the n/NV channel to get a reasonable description
of the Sy; partial wave around the Si;(1535) resonance. We only take into account
the S11(1535) pole contribution for the n/N interaction. This should dominate the n N
interaction in the energy regime considered.

The only direct coupling between two non-n N channels occurs for cN — wA in the
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Figure 3.6: Diagrams contributing to the 7N potential.

P1 partial wave via the Nucleon pole diagram and the pole diagram of the Roper
Resonance. Because these particles couple to both channels, it is mandatory that
these direct potentials are present. In all other cases, the inelastic channels are only
coupled directly to the 7N channel. The coupling between all channels contributing to
a particular partial wave is generated by the iteration of the potential in the scattering
equation.

The contributions to the potentials are shown diagrammatically in Figs. 3.6 — 3.12.

We take into account all the non-strange resonances below 1600 MeV. They are plotted
together with the thresholds of the coupled channels in Fig. 3.5. For the description of
the S; partial wave we in addition include a contribution from the S11(1650), which
gives some background below the S11(1535). On top of that background we can fit
the parameters of the S11(1535) to the phase shifts.

The resonance pole diagrams are supplemented by ¢-channel meson exchanges and
u-channel N and A exchange. We do not consider the u-channel exchange of heavier
resonances because the contribution of the A wu-channel exchange is already small,
and the contribution of heavier resonances should be even smaller.

In the 7A potential we do not take into account the nucleon and the A u-channel
exchange diagrams. In the nucleon exchange diagram, the 77N intermediate state
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Figure 3.7: The o N potential.

Figure 3.8: The 71N — 0N potential.
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Figure 3.10: The 7N — wA potential.
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Figure 3.12: The nN and the 7N — nN potential.

can go on-shell already at the 7w /N threshold, and the potential becomes singular.
To avoid a complicated renormalisation procedure, we neglect the contribution of the
nucleon exchange diagram in the mA potential. We are convinced that the nucleon
exchange diagram in the 7A potential would anyhow only make a small contribution.
We can make an estimate of the size of this contribution if we work with a stable
wA channel. If the invariant mass of the A is fixed to Ma, the singularities in the
potential occur only for energies between 1.48 GeV and 1.6 GeV. Outside this region,
the contribution from nucleon exchange on the w/N phase shifts and inelasticities is
indeed negligible.

For the A u-channel exchange in the A potential, such singularities can occur when
the heavier 7 A intermediate state can go on-shell, which can happen only at energies
above 1.5 GeV. We have checked that disregarding the A wu-channel has no effect on
the observables below 1.5 GeV.

The potentials are calculated from the Lagrangian given in Table 2.1. The expressions
for the amplitudes can be found in Appendix D.

For the nucleon and the pion we use the isospin-averaged masses My = 938.926 MeV
and m, = 138.03 MeV. The value of the n mass is given by the 2002 Particle Listing of
the Particle Data Group [31] to be m,, = 547.3 MeV. We take the value of the TN N
coupling constant, f2y/(4w) = 0.0778, from the Bonn potential [35]. This is the
value also used in the Jilich 7N model. Note, however, that the presently accepted
value is somewhat smaller (~ 0.074). The p and ¢ masses and their couplings to 7w
are determined from our fit to w7 scattering. The remainder of the coupling constants
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My 0.958926 GeV
My 0.153803 GeV
my 0.5478 GeV
m, 0.772 GeV
My 0.8346 GeV
Ma 1.232 GeV
Mp,, (1440) 1.491 GeV
Mp,,1520) 1.515 GeV
M, (1535) 1.535 GeV
Mg, (1650 1.701 GeV

Table 3.3: The masses of the particles. The values in italics are input quantities, the
remainder of the parameters are fitted to the 7N phase shifts and inelasticities.

and masses are fitted to the 7N phase shifts and inelasticities. We start by fitting
the parameters of the N potential without the N* pole diagrams to the scattering
lengths and volumes and to the phase shifts below 1.2 GeV. Then the 7AA, pNA and
the pAA coupling are fitted to the inelasticities in the I = 3/2 partial waves. The o [N
channel only makes significant contributions in the Py, partial wave. The o-exchange
diagram in the o /N potential has no impact on the results. We take the oo coupling
to be g2, /(47) = 0.625 as in the Jiilich 7N model [10]. Varying this parameter by
an order of magnitude has no effect on the phase shifts and inelasticities. Finally we
fix the parameters of the N* resonances.

The parameters resulting from the fit to the 7N phase shifts and inelasticities are
listed in Tables 3.3 and 3.4. For the tensor coupling at the pNN vertex we find
k = 1.94, while the value obtained from the analysis of the process NN — =7
and the dispersion theoretical analysis of the nucleon electromagnetic form factor is
Kk~ 6 [48,49]. A description of the 7N threshold data is not possible with the latter
value for k. It has already been noted by Pearce and Jennings in their investigation
of TN scattering [36] that x obviously has some t-dependence. The value of k ~ 6
is determined for ¢ = m,, while they find smaller values between 1.4 and 3.2 for x in
their fit to elastic 7N scattering, where  is needed for negative values of t.

A comment on the size of the pNN and prm coupling is in order. Hadron universality
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Table 3.4: Values of the coupling constants (as defined in Table 2.1) from the fit to
the mN scattering lenghts and the phase shifts and inelasticities. The values in italics
are input quantities, the remainder of the parameters are fitted to the w/N phase shifts
and inelasticities.
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our fit | Koch and Pietarinen [50] | SM95 [51]

S| 0.175 0.173 + 0.003 0.175

S31 | —0.096 —0.101 £+ 0.004 —0.087
P | —0.088 —0.081 + 0.002 —0.068
P3| —0.051 —0.045 4+ 0.002 —0.039
P3| —0.038 —0.030 £+ 0.002 —0.022
Py | 0216 0.214 + 0.002 0.209

ay | —0.006 —0.01 £0.01 —0.003

Table 3.5: The pion-nucleon scattering lengths and volumes. The numbers are given

. . —(2L+1
in units of mﬂi ),

demands that g,yn = gprr = g, With the Lagrangians £,.; = —gpr (7T x 0,7)p" and
Lonn = —1/29,n8V (W — K/ (2My)o#9,) TpW. Note that we have absorbed the
prefactor 1/2 into the coupling constant in our definition of the pN N Lagrangian in
Table 2.1 on page 9. So hadron universality of the p couplings is fulfilled approximately
in our model with 4¢”yy/(4m) = 3.2 > g2 _/(4m).

The scattering lengths obtained from our model are compared to the analysis of
Koch and Pietarinen [50] and the SM95 analysis [51] in Table 3.5. We find that the
scattering volumes in the Py, Pi3 and P35 are a bit too small compared to the values
of [50], and compared to the SM95 scattering volumes [51] the difference becomes
even more obvious. But in general there is reasonable agreement.

The phase shifts and inelasticities for the w N partial waves up to J = 3/2 are displayed
in Figs. 3.13 and 3.14.

We find reasonable agreement between our model and the results from the phase shift
analyses up to 1.5 GeV. In particular, the threshold behaviour in each partial wave is
nicely described already by the non-resonant background.

The Si; partial wave is described with the help of the two S;; resonances and the
coupling to the /N channel. If we switch off the contribution from the Sy, (1650), the
phase shifts start to deviate from the data above 1.2 GeV. The difference is not large
below 1.5 GeV but would make it difficult to fit the parameters of the S1;(1535) to
the phase shifts.

In the S3; partial wave, our model results start to deviate from the phase shifts already
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at 1.2 GeV. This is due to the missing contribution from the S3;(1620) resonance which
we have not included in our model. Also the inelasticities are not reproduced correctly
above 1.5 GeV because of the missing of this resonance.

Also the description of the P35, the P31 and the Ds3 can certainly be improved by
including additional resonances in our model. However, up to 1.5 GeV, the deviations
of our results from the data are only small in these partial waves.

In the D15 we miss some of the strength of the resonance above 1.5 GeV. Maybe this
is due to the missing of coupling to the p/N channel. Below 1.5 GeV this partial wave
is however well described by our model.

The Roper Resonance Py;(1440) is described reasonably well up to 1.6 GeV. Above
this energy, the calculated phase shifts start to go down while the data keep ris-
ing. For the inelasticities we find reasonable agreement, although the opening of the
inelasticities in our model takes place not quite as early as in the data.

3.3.1 Resonance Saturation of the Low-Energy Constants

In the low-energy limit we compare our model to Heavy Baryon Chiral Perturbation
Theory. The 7N Lagrangian at next-to-leading order is given by [53]

Eg{, = N (e1{x+) + c2(v - u)® + csu - u+ ¢Sy, SJuu” + ... ) N, (3.43)

where we have omitted terms coming from the 1/My expansion of the Heavy Baryon
Lagrangian and terms not contributing to w/N scattering in the limit of isospin sym-
metry. X and wu, are given in terms of x and the pion fields U = u? defined in
equations (3.25) and (3.26):

e = ulyu' +uxlu, (3.44)
u, = u'D,Uul. (3.45)

v, denotes the four-velocity of the nucleon and S, its spin operator. To reduce our
model to the non-relativistic limit of Heavy Baryon Chiral Perturbation Theory, we
make use of the following relations (see, for example, the review [53]):

N%N = UNNN
Nvsy N = —2NS,N (3.46)
No,N = QGMVngo‘NsﬁN = —2iN[S* SN .

The low-energy constants at next-to-leading order are finite, because loops appear
only at O(p?). The resonance saturation of the low-energy constants was investigated
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Figure 3.13: N phase shifts. The solid lines show the results of our model. The
dashed lines are calculated without the N* resonances. The dot-dashed line is without
the S11(1650). The data are from the phase shift analyses KA84 [52] (open diamonds),
SM95 [51] (open triangles) and SE-SM95 [51] (filled circles).
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Figure 3.14: ©N inelasticities. The solid lines show the results of our model. The
dashed lines are calculated without the N* resonances. The dot-dashed line is without
the S11(1650). The data are from the phase shift analyses KA84 [52] (open diamonds),
SM95 [51] (open triangles) and SE-SM95 [51] (filled circles).
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: o o A NM0)  N*(1520)  N*(1535) 3 s 120]

1]-0.78 — — — — — -0.78 || —0.93 £0.10
2| — — L.79 0.09 0.001 0.02 1.90 3.34+£0.20
31-021 — -3.07 -0.11 -0.001 0.01 -3.17 || —=5.29£0.25
41 — 057 1.54 0.22 0.001 -0.01 2.32 3.63 £ 0.10

Table 3.6: Values of the low-energy constants from resonance saturation and from the
phenomenological determination in [29]. The values are given in units of GeV 1.

by Bernard et al. [29]. Assuming that ¢; is saturated by scalar meson exchange, they
find good agreement between the phenomenological values of the low-energy constants
and the values from resonance exchange.

We compare our results for the resonance saturation of the low-energy constants with
the phenomenological values in Table 3.6. We notice that our results go in the right
direction but the absolute values are too small. Let us compare our results to those
of [29] in more detail.

The vector part of p exchange in the t-channel already contributes at leading order.
As already mentioned, it saturates the Weinberg-Tomazawa term, a 7n NN contact
interaction. Assuming hadron universality (¢,mr = 2¢,v8 = g,°), the p mass and its
coupling constant have to fulfil the KSFR-relation [54,55]

ms = 2g2F7 . (3.47)

The coupling constants of our model fulfil this relation to an accuracy of 5%.
The contribution of p exchange to the low-energy constants at next-to-leading order in

the pion-nucleon Lagrangian comes from the tensor coupling of the p to the nucleon,

2
p_ gNNpgmmrFﬂ— . Y 3.48
C4 mg MN : ( ‘ )

Using the KSFR relation, this expression simplifies to ¢ = k/(4My), which is the
expression given in [29]. They use x = 6.1 and obtain ¢] = 1.63 GeV !, while we only
get cf = 0.57 GeV~! with our lower value for k.

3The factor of 2 in front of gponn comes from our definition of the coupling constant. Usually,
the pNN Lagrangian is written £ = % gp\I! ... We have absorbed this factor of 2 into the coupling
constant.
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The t-channel o exchange contributes to ¢; and c3. In agreement with Bernard et
al. [29] we find

P gNNoglFf
o __ gNNUQQFE

where the ¢, of [29] has to be identified with ¢g; F?/2 and ¢4 with goF2/4. Bernard
et al. start from the assumption that ¢; is completely saturated by the exchange of
a scalar meson, so their value of ¢f = —0.9GeV ™! is an input quantity (from the
phenomenologically determined low-energy constant). We find reasonable agreement
between this value and our result, ¢f = —0.78 GeV ™.

The value we obtain for ¢f is approximately a factor of seven lower than the value
given by Bernard et al..

For the contribution of the A-isobar we obtain the expressions

2
. AF2 M2
A = Juna ™ N (3.51)
my ) 9(Mas — My) M3
2 2
A A f7rNA 4F7r
— 908 — _ i 3.52
e “ ( - ) O(Ma — My) (3:52)

We find agreement between these expressions and those in [29] if we drop the factor
M?% /M2 in our ¢4 and neglect the addend m?2 in the denominator of their formula.
If we use the expression given in [29] for the A contribution, we obtain the values

=3.95GeV . (3.53)

4F2 [ f. 2 My — M
62A=_C3A=204A= 77<fNA) ( A N

9 My Ma — My)? —m2

This would lead to a total of ¢y = 4.06 GeV™!, c3 = —4.26 GeV~! and ¢y = 2.76
GeV™!, which is much closer to the phenomenological values.

The Roper resonance contributes as follows:

6511(1440) = 2 2 2 <fp11(1440)ﬂN)2 FZ, (3.54)
MP11(144O) — My e
05“(1440) _ ! 0511(1440) _ 1 (fP11(1440)7rN)2F72. (3.55)
2 MP11(1440) — My my

These expressions agree with those given by Bernard et al., whereas the numerical
P11(1440)
i

the Roper resonance is small compared to the contributions from the A. Contributions

values we obtain for the ¢ are almost a factor of two larger. The contribution of
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from heavier resonances were not considered in [29] because their contributions should
be even smaller than those of the Roper resonance.

For the sake of completeness, we also give the contributions of the S11(1535) and of
the Dy3(1520) here:

oM -\
0511(1535) _ ~ N - (f511(1535) N) an (3.56)
M5, 1535 — Miv M
0511(1535) _ _l 05“(1535) _ 1 (fs11(1535)7rN)2 F2 (3 57)
¥ 24 Mg, (1535) + My My T
D52 _ 1 <fD13(1520)wN)2 2F; My (3.58)
Mp ., 1520) + My Lz 3 Ml%lg(ISQO)
2
(LDa520) o Dia(1520) _ 1 <fD13(1520)7rN) 2F?  (3.59)
5 4 Mp,520) + My My 3

The contributions from these two resonances are indeed very small. The contributions
from even heavier resonances should be completely negligible.

Let us summarise our findings for the resonance saturation of the low-energy constants
from our model. We find that the major contribution comes from A exchange and
agrees reasonably well with the A contribution given by Bernard et al. in [29]. ¢; is
saturated to a good accuracy by the exchange of the scalar ¢ meson. The contributions
of the o to ¢z and of the p to ¢4 are substantially smaller than the values given in [29]
because our values for the corresponding coupling constants from the fit to 7N data
are smaller. However, the sum of the resonance contributions should agree with the
phenomenological values for the low-energy constants. We find that our values for
the ¢; are of the same order of magnitude, but the difference to the phenomenological
values amounts to nearly a factor of 2 for ¢o. A part of this difference can be accounted
for if we do not neglect terms of m? in the denominator of the A propagator. Anyway,
we do not expect a 100% agreement because our model also accounts for higher orders
and the phenomenological low-energy constants were determined with a fit of terms
up to second order.

3.3.2 7N Initial and Final State Interaction in 7N — 77 [NV

mN scattering contributes to 7N — 7w /N as initial and final state interaction, see
Fig. 3.15.

As in the case of w7 scattering, we decompose the T-matrix into a pole and a non-pole
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Figure 3.15: Contribution of the # N T-matrix to 71N — 7w N. (a) Initial state
interaction. (b) Final state interaction. Note that this decomposition into ISI and
F'SI is somewhat arbitrary and is just for illustrative purpose.

part,

fI!

T3
s—M2—-X%

+TNF (3.60)

with the self-energy > = ngf.
Because we deal with a coupled channel system for 7N scattering, the dressed vertex
functions f are given in terms of the bare vertex functions f; as

f7rN 1 + T7£\1[\7PG7rN Té\[]\l;:;wNGoN e fOWN

fon - Tvi\IIVPHaNGﬂN 1+ Taj'\ZTVPGO'N T Joon : (3.61)

The ©N vertex for the nucleon or Roper pole diagram, for example, can be written
as

fﬂ'N = f07rN + Tfff—\fNPGﬂNfOWN + To]'\][\faﬂNGUNngN + T7{'VAP—>7rNG7TAfO7rA

TNP Go TNP G7r
forn <1 + Gan TN + ”N*”}YO NJoow “A”}% a/ OM) (3.62)
TN 7N

with TV? the non-pole T-matrix in the Pj; partial wave. The term in brackets is just
an energy-dependent complex number that can be regarded as a kind of ‘form factor’
that parametrises the inner structure of the vertex.

As an example, the form factor for the 7V vertex of the Roper resonance is shown in
Fig. 3.16. The real part of the form factor is 1 at the 7N threshold, and the imaginary
part vanishes. This behaviour is obvious from equation (3.62). The #N propagator
and the propagators of the inelastic channels are zero at the 7 N threshold, so that
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Figure 3.16: The form factor for the 7 N vertex of the Roper resonance. The dashed
line shows the real part of the form factor, the dot-dashed line its imaginary part.

fxn = fo.n- Above the threshold, the real part of the form factor decreases and the
form factor acquires an imaginary part.

On the insertion of the dressed vertices into our model for 7N — 77N we make a
few approximations:

e At a vertex where a resonance decays into an off-shell intermediate 7N state
(see, e.g., Fig. 3.17a) we approximate the form factor in equation (3.62) with
the value for the on-shell 7N state at the same energy. We are forced to make
an approximation at vertices with off-shell 7N states because the K-matrix
approximation, from which we calculate our form factors does not account for
off-shell 7N states.

e At a vertex with a resonance decaying into the 7A or o/N channel (see, e.g.,
Fig. 3.17b) we also make an approximation for the form factor. In principle, our
coupled channels calculation for w/N scattering allows us to extract values of the
form factor for the decay into the unstable channels for any allowed invariant
mass of the ¢ or the A. But for the present we work with just one form factor
for the o N and mA channel, respectively. That reduces the calculational effort,
but allows us to get an idea of the effect of the dressing of the vertices on the
reaction 7N — 7w N.

For both decay channels we use the form factors of the largest transition matrix;
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Figure 3.17: Examples for vertices at which we make approximations for the form
factors.

this is the one with the smallest invariant mass of the A for the 7A channel and
the one with the largest invariant mass of the ¢ for the ¢ /N channel , respectively.

e For a decay into the 7A state we take the form factor from the wA state with
minimal angular momentum contributing to the partial wave of the resonance.
In the J = 1/2 partial waves, there is only one possible angular momentum of
the A state, L = 2 for the 7N s-waves and L = 1 for the 7N p-waves. But in
the P3/Ps3, the mA state can have L = 1 and L = 3. Here we take the form
factor for the transition to the L = 1 state. The transition to the L = 3 state
is suppressed because of its higher angular momentum. Similarly, we take the
form factor for the Di3 decay from the L = 0 7A state.

e At a vertex with a decay into the p/N channel we do not account for the dressing,
because we have not taken into account the p/N channel in our coupled channels
calculation for mN scattering and so cannot extract any value for the form
factor from this calculation. The contribution of a resonance decay into the p/N
channel should in any case only be small — also in 7N — 7N — because the
77 interaction in the vector-isovector partial wave is still relatively small in the
energy range considered.

We will investigate the effect of the dressed vertex functions on the pion production
reaction TN — 7N by comparison to a tree-level model. In the tree-level model,
the pole diagrams of resonances are described by expressions of the form

fol}

P _
To s M2,

(3.63)

with the self-energy > = ngfO.

It is instructive to see how such an approximation works in the case of 7N scattering.
In Fig. 3.18 we compare expression (3.63) for the Roper resonance with the pole
matrix 77 for the Roper resonance. Both real and imaginary part of T* are well
approximated by the expression for T¥. Above 1.3 GeV the real part of T starts
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Figure 3.18: The pole T-matrix for the Roper resonance. The solid lines show the
full T7 as in equation (3.60), the dot-dashed lines show the approximation (3.63).

to overestimate the absolute value of TF. In this energy regime we can expect that
the contribution of the Roper resonance is overestimated by expression (3.63). The
imaginary part of 7' is nicely described by the approximation 77 up to 1.4 GeV.

At the tree-level, pion-nucleon scattering is described by an expression of the form

folg

TZT({D+VNP:S—M—2—20

+ VNP (3.64)

or, if we take into account the effect of TV? on the pole part of the T-matrix,

ST

T:TP NP:—
v s—M2-%

+ VIVE, (3.65)

As long as the non-pole potential is weak, these tree-level approximations should be
able to describe the data. If the non-pole potential becomes strong, higher order
effects will also be important for the non-pole part of the interaction. The neglect of
these higher order effects in the tree-level approximation will then lead to a violation
of the unitarity bounds 0 <n <1.

In Fig. 3.19 we show the inelasticity parameter for a tree-level calculation of 7N
scattering in comparison with the inelasticity parameter for the unitary K-matrix
model.
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Figure 3.19: 7N inelasticities. The solid lines show the results of the unitary K-matrix
model. The dashed lines are calculated with the approximation 7' = TF + V. The
dotted lines show the approximation 7' = T + VN*. The data are from KA84 [52]
(open diamonds), SM95 [51] (open triangles) and SE-SM95 [51] (filled circles).
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In the partial waves for which we have not included any resonances (S, P31, Pi3
and Ds3), the expressions (3.64) and (3.65) give of course the same results because
in these partial waves the interaction comes solely from the non-pole potential. For
the S71 and the D13 the results for both approaches are also similar. In the Py, the
inelasticity parameter 7 starts to increase above one already at the 7w /N threshold at
~ 1.2 GeV if one takes into account the effect of the non-pole T-matrix on TF. If one
works with expression (3.64), the inelasticity parameter first decreases before it also
starts to rise above one at 1.3 GeV. Both approaches will certainly overestimate the
Py1 partial wave cross section above 1.3 GeV.

In the right panel of Fig. 3.21 we show the total cross sections for 7w~ p scattering.
We indeed observe an overestimation of the data already above 1.3 GeV for both
approaches, equation (3.64) as well as equation (3.65). This overestimation can be
attributed to the failure of the tree-level approximations in the description of the Py
partial wave.

In the P33 partial wave the inelasticity parameter starts to deviate significantly from
one only above 1.4 GeV if we take into account the full pole potential. The approach
with the undressed vertex functions for the pole matrix, equation (3.64), first oscillates
around n = 1. Already at 1.2 GeV, the inelasticity parameter reaches a local maximum
of n = 1.4. So expression (3.64) should already overestimate the interaction around
the A peak. This can be seen clearly in the left panel of Fig. 3.21, where we show
the total cross sections for 7t p scattering.

Also in the S3; partial wave 7 starts to deviate from one as early as 1.2 GeV. So also
in this partial wave, the tree-level model for 7N scattering will break down at energies
slightly above the mm N threshold already. In the P3;, Pi3 and in the D-waves, the
inelasticity parameter 7 starts to leave the unitarity bounds only at relatively high
energies above ~ 1.4 GeV. In these partial waves, the tree-level approximations (3.64)
and (3.65) work quite well. This is not too surprising, because we found that the non-
pole interaction in these partial waves is small. The phase shifts in these partial waves
are of the size of a few degrees only, see the dashed line in Fig. 3.13.

It is remarkable that the description of the inelasticity parameter in the D3 partial
wave is so good for both of the tree-level approximations. The coupling to the inelastic
channels occurs only through the self-energy term in equation (3.64). This alone is
enough to describe the inelasticity in the D3 partial wave correctly. Of course, such
an approximation can only work so nicely because the non-pole potential in the D13
partial wave is so small.

In Fig. 3.20 we show the phase shifts obtained with the tree-level approximations,
equations (3.64) and (3.65). In the Sy; partial wave we have in all calculations omitted
the contribution from the S1;(1650). The tree-level approximations describe the phase
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shifts obtained with the unitary K-matrix model reasonably well.

In the S3; partial wave we observe a large effect of the neglection of the unitarisation.
The interaction in this partial wave is solely due to a non-pole potential in our model.
This potential is relatively strong (it causes a phase shift of -20° at 1.2 GeV already).
This explains the presence of large higher order effects in the scattering equation
T =VNP L VNPQUNE

With the exception of the P;; and the P33 partial waves, we find a good description
of the phase shifts in both tree-level approximations.

In the Pi; partial wave, approximation (3.64) already starts to differ from the data
and the results of the K-matrix model at 1.2 GeV. Approximation (3.65) can describe
the data up to 1.4 GeV, but above this point the phase shifts stay nearly constant at
a value of 30° — 40°. The resonant behaviour of the P;; is not reproduced by either
of the two approximations.

In the P33 partial wave, the phase shifts are clearly better reproduced by the approx-
imation using the full pole T-matrix. For the other approximation, equation (3.64),
the resonance cannot be correctly described. The phase shifts rise to 90° like the data,
but then the rise in the calculated phase shifts becomes smaller until the phase shifts
start to go down again.

In summary we find that a tree-level approximation cannot describe /N scattering
above 1.25 GeV (or 1.4 GeV for the isospin 3/2 channel). Based on this observation
we would not expect the tree-level model to account for the pion-production reaction
mN — N at higher energies.

Nevertheless, a good description of the total cross sections in all experimentally ac-
cessible reaction channels in 7N — 77N is possible in the (extended) Oset—Vicente-
Vacas model [24,25,56] up to nearly 1.4 GeV! Also a Chiral Perturbation Theory
calculation at O(p?) which consists only of tree-level contributions can give a good
account of the 71N — 7w N data [23] over the same energy range.

The reason that a tree-level approximation works so well in the pion production re-
action 7N — 7w N, but not in 7N scattering was given by Fettes et al. in [57]. They
performed a one-loop calculation of #N — 7w N in Chiral Perturbation Theory and
found the unitarity corrections to be small. They found that the attachment of the
additional pion line to the 7V scattering contributions leads to large cancellations in
the loop contributions that are present in 7N scattering.
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Figure 3.20: wN phase shifts. The solid lines show the results of the unitary K-matrix
model. The dashed lines are calculated with the approximation T = T* +V¥?  The
dotted lines show the approximation T = T + VNP, The data are from KA84 [52]
(open diamonds), SM95 [51] (open triangles) and SE-SM95 [51] (filled circles).
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Figure 3.21: 7N total cross sections. On the left hand side we show the total and elas-
tic cross sections for w1 p scattering, the calculations being for elastic 7+p scattering.
On the right hand side the total (upper panel) and elastic (lower panel) cross sec-
tions for m~p scattering. The calculations for the total cross section in 7~ p scattering
comprise the sum of the 7~ p and 7% final states. The solid lines show the results of
the unitary K-matrix model. The dashed lines are calculated with the approximation
T =TT + VNP, The dotted lines show the approximation T = T} + VNT. The data
are from the Particle Data Group [31].



Chapter 4

The Reaction 7N — w7 N

In this chapter we present the results of our model for the pion production reaction
nN — 7w N.

We use two variants of our model that differ in the description of the pole diagrams:

e Model A uses the bare vertex functions fy for the pole diagrams, and the self-
energy is calculated from the expression >y = ng fo which includes only loops
without any non-pole interaction.

e Model B uses the dressed vertex functions f = (1+TVFG) fo, and the expression
for the self-energy contains non-pole interactions, > = ng f, as discussed in
sections 3.2.2 and 3.3.2.

4.1 Total Cross Sections

Fig. 4.1 shows the total cross sections in the five reaction channels of pion-induced
pion production that are accessible to experiment,

mp — wontn,

™=p — 7 n'p,

and 77p — 77n.

The data are shown as a function of the kinetic energy of the initial state pion in the
laboratory frame T}, which is related to the invariant mass /s of the reaction via

S — (]\/[N+m7r)2

T =
2My

(4.1)
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AT[MeV]

7 p—an rn | 0.0039
7 p— m'7'n | —0.008
7 p— 1 p | —0.0037

7tp — atrTn | 0.0039

7tp — 7 Tp | —0.0037

Table 4.1: Threshold correction for each reaction channel.

As an orientation, the largest energy shown in Fig. 4.1, T, = 0.4 GeV corresponds to
Vs = 1.38 GeV, which is below the Roper resonance. The A isobar lies at T = 0.19
GeV.

The observables are calculated in the isospin-symmetric limit in our model. The cross
sections are however sensitive to isospin breaking through the masses in the final
states, as the cross sections rise proportionally to the square of the energy above the
reaction threshold. It is thus important to correct the threshold energy for each of
the reaction channels. This is done by shifting the isospin symmetric threshold

3m2
T MN

to its correct value for each reaction channel [23]. The difference AT for each reaction

T =m = 0.168 GeV (4.2)

channel is given in Table 4.1.

In all five reaction channels both of our model variants give a reasonable descrip-
tion of the data. There are hardly any differences between Model A and B. In the
77 p — ntn n and 77p — 7°7n reactions, Model A gives results that are on the
upper edge of the data, while model B gives even a little larger results for the cross

079 both models overestimate the data between 0.17 and 0.2

sections. In 7 p — 7
GeV by almost a factor of two.

For 77p — 7 7% the cross sections obtained with Model A also lie on the upper
edge of the data above ~ 0.25 GeV. In this case, Model B gives lower results, which
leads to a good description of the data.

The cross sections in the 77 p — 7 7% and 7tp — 77 "n channels are well repro-
duced by both models, though in the 77 p — 777" n reaction we start to overestimate

the data above T, ~ 0.3 GeV.

For comparison, we also show the results of a calculation in Chiral Perturbation
Theory up to O(p?) [57]. Chiral Perturbation Theory works well for 1N — 7w N
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Figure 4.1: Total cross sections for 1N — wwN. The solid lines show the results
of Model A (as described in the text), the dashed lines the results of Model B. For
comparison we also show the results of Chiral Perturbation Theory [57] (dot-dashed
lines). The data are taken from the compilation in [58] and from [26].



58 Chapter 4: The Reaction 1N — n7w N

despite the presence of the A isobar already at T, =0.19 GeV. The description of
the 77p — 77~ n and 7~ p — 77 data at low energies is certainly better than in
our model. Note however, that the 7N — 77N data up to 250 MeV have been used
to fix six of the dimension three low-energy constants, while we have fixed all of our
model parameters to 7N and 77 scattering. In the reaction channels 77p — 7’77 p
and 77p — w7 the cross sections are clearly overestimated above 0.3 GeV in the

Chiral Perturbation Theory approach.

It should be mentioned that our results for the total cross sections are also similar to
those obtained with the extended Oset—Vicente-Vacas model [56].

In Figure 4.2 we investigate the effect of different mechanisms on the total cross
sections for Model A. The results for Model B are very similar, so we refrain from
showing them also.

Let us first discuss the contribution of the A isobar. We observe a large contribution
of the A in 77p — 77 7%. This is not too surprising: because the initial 7*p state
has isospin 3/2 and the A isobar lies already at T, = 1.9 GeV, we expect a large
contribution from the A already in the threshold region of this reaction channel.
Following this reasoning, we do also expect a large contribution of the A in #tp —
7t n, but there the effect of switching off the A contribution is almost negligible.
We find that also in the 77p — 777" n channel the contribution of the diagrams with
intermediate A states by itself is large, but there is destructive interference between
the A contributions and the rest of the diagrams. So adding the A contribution to
the remaining contributions only has a small effect in this reaction channel.

The contributions from A intermediate states are sizeable in the reaction channels
with a 7~ p initial state.

We find that the impact of the N* resonances Si1(1535) and D;3(1520) on the total
cross sections is negligible in each of the five reaction channels in this energy regime
up to ~1.4 GeV. The contribution from the N* resonances comes almost exclusively
from the Roper resonance.

The contribution of the N* resonances in the isospin 3/2 channels is negligible, and
comes solely from the Roper resonance via the diagrams (K.3)—(K.6) (see Fig. 2.3
on pagel3). Also in 7~ p — 77~ p the contribution from N* resonances is small and
only has an effect above ~ 0.4 GeV.

In 7 p— nta nand 7 p — 797 we observe the largest effect of the N* contri-
butions. In these two reaction channels the final pions can be in the scalar-isoscalar
partial wave and so the decay of the Roper resonance into the o N state is possible.
This decay channel is favoured at lower energies versus the 7 N(— 7w N) or A decay

because it allows all final state particles to be in relative s-waves. For 77p — 777 p
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Figure 4.2: Total cross sections for 1N — 7w N. The solid lines show the results of
Model A. The dot-dashed line has been calculated without the A isobar, the dashed
line is without the N* resonances. The dotted line shows the contribution of diagrams

with a p decaying to the final state pions.
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the o N decay channel is not allowed, and so the Roper resonance contributes only at
larger energies.

Finally, we also show the contribution of diagrams (C.3)—(D.2) and (H.1/2), where the
final state pions are correlated via p exchange. We mentioned that we do not account
for the dressing of the decay vertices to the p/N channel in model B and argued
that the contribution of the p/N channel is only small because the pion interaction
in the p partial wave is small in the relevant energy regime. Here we see that these
contributions are indeed small for tN — wwN. For the 777 n and 7% n final states,
these contributions are zero, because the p cannot decay to 7771 or 7°7°. In the other
reaction channels, the contribution of the p/N channel is down by at least one order
of magnitude.

4.2 Differential Cross Sections

The investigation of differential cross sections allows to study the dynamics of the
reaction 7N — mwN in more detail. The final state is characterised by four inde-
pendent kinematical variables which can be chosen to be the invariant mass of the
two pions M, the momentum transfer ¢ between the nucleons, the angle 6 between
the initial state pion and one of the final state pions and the angle ¢ between a final
state pion and the reaction plane defined by the initial state pion and the nucleons,
see also Fig. E.1 in Appendix E. In this appendix, the formulae for the calculation
of the differential cross sections are also given.

Differential cross sections do/dt, do/dm?_ and do/dcos® have been measured at
TRIUMF for the reaction channels 7¥p — 7¥7n [26]. Their focus was on the
threshold region up to T ~ 300 MeV.

In Figs. 4.3 — 4.5 we compare Models A and B to the differential cross sections in the
7tp — w7t n channel.

The description of the cross sections in the isospin 3/2 reaction channels 7tp —
ataTn and 7Tp — w7 provides an important test of our model for the background
below the N* resonances, because the contributions of N* resonances in these reaction
channels are minimal. In our model only the Roper resonance can make a contribution
in the isospin 3/2 channels via the diagrams (K.3)—(K.6) (see Fig. 2.3 on page 13),
but this turns out to be negligible (see Fig. 4.2).

In the do/dM?2, distributions, the data show an enhancement over phase space at
intermediate values of M2_. Both of our models predict an enhancement at low M?2 .
Also the Chiral Perturbation Theory calculation [57] and the extended Oset—Vicente-
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Figure 4.4: do/dt for 7tp — 7tntn. The lines denote the same as in Fig. 4.3.
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Vacas model [26] predict a similar enhancement at low M2 . Tt is not clear how the
shape of the experimental distributions can be described.

The differential cross sections do/dt show a peak at low |¢|. This is also present in
our models. Model A can describe also the tail of the peak quite well, whereas Model
B produces a shoulder at large [].

In Fig. 4.5 we show the differential cross sections do/d cos @ as a function of the angle
between one final pion and the initial pion in the centre-of-momentum frame of the
final state pions. This angular cross section has to be symmetric about cos = 0 for
the 7T %n final state because of the symmetry of the reaction under the exchange
of the final state pions. The experimental cosf distributions show a maximum at
cos ) = 0. The distributions obtained with Model A are bent in the opposite direction
whereas Model B gives the correct curvature. For Model A it is possible to change
the curvature by increasing the onn gradient coupling go by a factor of seven and
simultaneously increasing the 7w A coupling by a factor of three. But increasing go
by such an amount leads to a shape similar to phase space for the do/dt distributions
which would completely spoil the description of these distributions. So we conclude
that there is no way to simultaneously describe the t-distributions and the cos6-
distributions in Model A.

No calculations have been published for the angular distributions from the Oset—
Vicente-Vacas model. The only calculation of these angular distributions that we are
aware of is the Chiral Perturbation Theory calculation by Fettes [59]. This calculation
finds the opposite curvature as compared to the data.

In the angular distributions we have found a quantity that is sensitive to higher
order loop effects as are contained in the dressed vertex functions of Model B.
The importance of final state interaction effects in the description of this quantity
questions the applicability of tree-level models for the analysis of these data.
However, there are a few points that need further investigation: we cannot fully
exclude the possibility that a refit of those parameters of our model that are
not too much constrained by 7w and 7N scattering, e.g. the 7wA and pNA
coupling constants to the nN — 7N differential cross sections could lead to at

Trtn reaction

least a qualitative agreement with the observables in the nfp — =
channel. Secondly, there is the possibility that other mechanisms, for example a con-

tribution of the S3;(1620), have an influence on the shape of the angular distributions.

Let us now proceed to the 7~ p — 777 n reaction. The differential distributions for
this reaction channel are displayed in Figs. 4.6 — 4.8.

The magnitude of the differential cross sections is overestimated by both of our models,
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Figure 4.6: Differential cross sections do/dM?2_ for m~p — w7 n. The solid lines
show the results of Model A, the dashed lines are for Model B. The dotted line shows
the phase space distribution. The data are from [26].
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Figure 4.7: do/dt for 77p — 77~ n. The lines denote the same as in Fig. 4.6.
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Figure 4.8: do/d cos6 for n~p — ntn~n. The lines denote the same as in Fig. 4.6.
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at the lowest energy T, = 223 MeV approximately by a factor of two. But the shape
of the differential cross sections is largely in agreement with the data for the M?2_and
t distributions.

For the angular distributions we find a large overestimation of the data at backward
angles. In this reaction channel, the dressing of the vertices in Model B has no effect
on the shape of the distributions.

In Fig. 4.9 we show the effect of the resonance contributions on the differential cross
sections do/dM?_for Model B. The neglect of the resonances in Model A leads to
similar results. Switching off the contribution of the A isobar leads to a reduction in
the size of the differential cross sections but the shape of the distributions remains
practically unchanged. The same goes for the contribution of the Roper resonance.

In order to obtain more information on the effect of the Roper resonance on the
distributions, we study its effect at larger energies, in the resonance region. Recently,
detailed differential distributions have been measured for the 7~ p — 7%7%n reaction
[22] at energies from threshold up to 1.53 GeV. Figs. 4.10 and 4.11 show our results
in comparison to the differential distributions in the energy range from 1.35 GeV to
1.5 GeV. Note that the data were given without normalisation; we scaled them to the

results of Model A.

We find that the shapes of the do/dM, o, distributions are very well reproduced by
Model A and Model B. Above 1.47 GeV one clearly sees an enhancement at the mass
of the A. Switching off the contribution of the Roper resonance (we show here the
results for Model B) only leads to a change in the size of the Mo, distributions, but
no qualitative change in the shape can be found. It is also interesting to observe, that
above 1.47 GeV the effect of the Roper resonance is nearly negligible. Physically, one
would expect a large contribution of the Roper resonance especially in this energy
region, because in this energy region the resonance is observed in pion-nucleon scat-
tering. In our model, the contribution of the Roper resonance however vanishes in
the background for the pion production reaction.

In the t-distributions one observes the evolution of a broad shoulder at low |¢| with
increasing energy. At even larger energies, this enhancement becomes a peak [22].
Such a peak structure can be explained with the pion-exchange diagrams (C.1)—(C.4)
(see Fig. 2.1 on page 11) becoming important. We do not see such a structure in
our Model A. Model B however displays a similar shape as the data. Maybe the
resonance contributions are overestimated in this energy regime in Model A and so
hide the effect of the pion-exchange.

Also in this reaction channel our models cannot correctly reproduce the angular dis-
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Figure 4.9: Effect of resonance contributions on do/dM?Z_ for n=p — nm n. The
solid line is for the full Model B, the dashed line is without Roper resonance contri-
butions and the dot-dashed line without A contributions. The data are from [26].
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tributions. Model A can roughly describe the ¢ distributions, see Fig. 4.11. The cos 6
distributions can only be described at the lowest energy, at larger energies, our model
results remain comparatively flat and have rather the opposite curvature compared
to the experimental distributions. Model B results in even more unacceptable distri-
butions. The contributions from the Roper resonance have no influence on the shape
of the angular distributions.
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Figure 4.10: Differential distributions for the 77p — 7% %n reaction for energies from

1.35 GeV up to 1.5 GeV. The solid lines show the results from Model A, the dashed
lines those of Model B. The dot-dashed lines show the results of Model B without
contribution of the Roper resonance. The data are from [22] and have been normalised
to the results of Model A.
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Figure 4.11: Angular distributions for the 77 p — 7% % reaction for energies from

1.35 GeV up to 1.5 GeV. The solid lines show the results from Model A, the dashed
lines those of Model B. The dot-dashed lines show the results of Model B without
contribution of the Roper resonance. The data are from [22] and have been normalised
to the results of Model A.
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Summary and Outlook

We have studied pion-induced two-pion production on the nucleon in the framework
of a meson-exchange model. In the limit of low energies, this model is constrained by
Chiral Perturbation Theory. The parameters of the model were fitted to pion-pion
and pion-nucleon scattering in a unitary K-matrix approximation.

The model gives reasonable results for the mass and ¢-distributions over a wide energy
range from threshold up to 1.5 GeV. Our model obviously contains the essential
mechanisms to describe the reaction. So our model forms a good starting point for
the analysis of the 7N — 77N reaction.

The success in the description of pion-induced pion production encourages a test
of this model also in other pion production reactions. One possibility would be to
replace the initial pion by a photon and investigate two-pion photoproduction. For
this reaction, detailed differential distributions were measured to a high accuracy at
the MAMI facility at Mainz [16-18]. The comparison of these data with the model
could help to further constrain the model parameters.

The description of the angular distributions in the 7 p — 7 7 n and 7 p — 7°7%n

channels turns out to be difficult for our model. Another problematic distribution is
the mass distribution do/dM?2_ for the 777" n final state. These distributions are also
not described by Chiral Perturbation Theory [57]. It needs to be checked whether a
refit of some of our model parameters, that are not too well constrained from 77 and
mN scattering, directly to the 7N — wn N differential cross sections leads to more
satisfactory results or whether the inclusion of other mechanisms is needed.

We observe a contribution of N* resonances in the reaction channels 77 p — ntn n
and 7~p — w°7%n. In the energy range considered, the contribution comes mainly

from the Roper resonance. The contribution of the Roper resonance does however
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not manifest itself in a qualitative change in any of the studied observables for the
7N — 7w N reaction.

One aim was to investigate the impact of unitarisation effects on the 1N — 7w N ob-
servables. For this we use two model variants: Model A is a “pure” tree-level model.
The bare vertices are used for the pole diagrams, and the self-energy is calculated
from loops without any non-pole interaction. Model B takes into account some uni-
tarisation effects by using dressed vertex functions for the pole diagrams and taking
into account a contribution from non-pole interactions to the self-energies. These
unitarisation effects have been determined from our K-matrix models for 77 and 7 /N
scattering.

We find qualitative differences between the models in the angular distributions for
the reaction channel 77p — w77 n. These data cannot be reproduced with Model
A without destroying the description of the ¢-distributions in this reaction channel.
The inclusion of higher order loop effects that are present in the dressed vertices
of Model B allows for a reasonable description of both distributions. This hints
at the need of initial and final state interaction effects to describe the data. One
should however investigate whether other contributions can change the shape of the
differential cross sections within Model A. A possible candidate may be a contribution
from the S51(1620) resonance that we have not included in our model at present.



Chapter 6

7+ absorption on “He in quasifree

kinematics!

Over the last decades much work has been devoted to the study of pion production
and absorption on nucleons. One aim was to gain information about the short-range
part of the nuclear wave functions and to probe many-body correlations inside the
nucleus [61]. But already the pion interaction with the two-nucleon system proved to
be a challenge to the theoretical understanding, and so most of the work concentrated
on the two-nucleon system.

Pion production and absorption processes in few-nucleon systems like 3He offer the
possibility to investigate to what extent the pionic inelasticities in a “many-body”
environment can be described by the elementary two-body amplitude in a system
that can be theoretically handled. Such investigations are a necessary step towards
understanding the pion interaction with heavier nuclei and maybe using the pions as
probes of nuclear wave functions.

For pion absorption on ®*He, the elementary two-body process should be most em-
phasised in pion absorption in the quasifree region. In this case, one of the protons
does not absorb momentum from the pion and thus leaves the reaction volume with
only its Fermi momentum. This proton is believed not to actively participate in the
reaction, so that pion absorption can be treated as a two-body absorption process on
a nucleon pair. The initial state wave function of the 3He is in principle known from
Faddeev calculations and the final state wave function is similar to the two-nucleon

case.

Differential cross sections for quasifree pion absorption on *He have been measured at
LAMPF [62], TRIUMF [63] and PSI [64]. Scarce data also exist for the polarisation

IThe results of this investigation were published in [60].
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of the fast protons in the final state [65,66].

Previous theoretical work on quasifree 7+ absorption on *He used the simple ansatz
of range-corrected deuteron wave functions and completely neglected exchange terms
with respect to the spectator proton [67,68]. That model could qualitatively reproduce
the differential cross sections but had problems with the polarisation data: for a
qualitative description of the data it was necessary to use different models for the
two energies T, = 120 MeV and T, = 250 MeV for which the polarisation has been
measured [66].

In the present approach, we employ a new parameterisation of the three-nucleon
bound state wave function [69]. This parameterisation is similar in philosophy to the
one presented in [70], but it differs in two important aspects. First of all, the new pa-
rameterisation fits directly the antisymmetrised wave function and not just the single
Faddeev amplitude. This is particularly convenient for the evaluation of any two-
body operator since contributions from all of the three NN pairs are automatically
included although the actual calculation has to be performed for only one pair. In
addition, the parameterisation of [69] goes beyond the separable ansatz in terms of
the pair and spectator momenta and allows for correlations between them. This leads
to an improvement in the fit of the wave functions obtained from Faddeev calculations
especially when both momenta are large. The parameterisation was used successfully
to describe low-momentum observables such as the 7 *He scattering length [69].

The aim of this study is twofold. Firstly, we want to test the reliability of the new
parameterisation of the three-nucleon wave function in a reaction involving high mo-
mentum transfer. And secondly we want to investigate whether a two-nucleon calcu-
lation can describe the data, in particular the polarisation data of [66], or whether
the data demand for additional mechanisms such as a more active participation of
the spectator even in quasifree kinematics.

6.1 Description of the Model

In this section we briefly introduce the parameterisation of the *He wavefunction of
Ref. [69] and the pion absorption mechanisms in the two-nucleon system.

6.1.1 The Parameterisation of the *He Wave Function

The fully antisymmetric three-nucleon wave function can be written as the sum over
three Faddeev components,

(¥) = [Taas) + [Peasn) + [Tene)- (6.1)
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Figure 6.1: Diagrammatic representation of the three-nucleon antisymmetric wave
function in terms of the three Faddeev components.

This equation is represented diagrammatically in Fig. 6.1. The Faddeev components
‘\I/(Z-j)k> correspond to different permutations of the nucleons. In coordinate space,
they can be expressed as

U (rij, pr) = (rigon? | P ) - (6.2)

with the pair coordinate 75; and spectator coordinate pj. The index v denotes the
angular momentum quantum numbers of the pair and spectator. The relevant partial
waves v in quasifree pion absorption on *He are the states where the spectator is in
a relative s-wave. States with larger spectator angular momentum are assumed to
be less important because the spectator remains essentially at rest in the quasifree
reaction. So the index v = 1,2, 3 denotes in this case the three possible states of the
pair wave function?, 1Sy, 3S; and 3D;.

The action of a two-body operator (e.g. that of pion absorption on a nucleon pair) on
the fully antisymmetric state does not depend on the choice of the active pair, so let
us choose the pair (12) as the active pair. Then the action of the two-body operator
on the first Faddeev component in equation (6.1) is simple but in the remaining two
terms the pair and spectator coordinates of the Faddeev component would have to be
reexpressed in terms of the pair coordinate of the active pair, e.g. 7o3 = —1/279 — f3
and likewise the angular momenta would have to be recoupled.

To avoid such complications, the full antisymmetric wave function was parametrised
directly in terms of 72 and p3 in Ref. [69]. The full antisymmetric wave function was
calculated from the CD Bonn [71] and Paris [72] potentials and then expressed as a
product of functions separable in the pair and spectator momenta p and ¢,
v aj y by
01(17):;W»w1@=2j:m‘ (6.3)

To improve the quality of the fit, a second product term was added. So finally the

2We use the notation 2°t1L; with S, L and J the total spin, the orbital angular momentum and
the total angular momentum of the pair.
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Figure 6.2: The differential absorption cross section and its “asymmetry” P, - do/dS.
The dashed line shows the result of a single-term separable fit to the CD-Bonn tri-
nucleon wave function, the solid line shows the result for a two-term fit, and the
dotted line the result for a three-term fit.

wave function was parametrised as

¥ (p,q) = vl (p)wi(q) + v3(P)ws(q), (6.4)

with the normalisation

Z/ dpdqp® ¢*[¥"(p,q)]” = 1. (6.5)
v 0

Here, the sum over v comprises the five most important Faddeev components, where
the NN pair is in a 'Sy, 5; or 2D, state.

The inclusion of the second term allows for correlations between the pair and spectator
momenta. At large momenta, relevant to meson production and absorption, the
quality of the parameterisation was significantly improved through the second term

[69).

It remains to investigate the effect of the non-separability on physical observables.
For this, we look at the cross sections and polarisation in 7% absorption on *He at
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the largest energy at which polarisation data are available, which is T, = 250 MeV.
We study the convergence of a systematic expansion of the wave function for up to
three product terms. The results of this study are displayed in Fig. 6.2. We notice a
visible effect of the non-separability when going from a single term separable form to
the two-term parameterisation. However, compared to the model uncertainties and
given the quality of the data this effect is not really significant. The inclusion of a
third term leads only to minor changes in the observables. The parameterisation is
already well converged for the two-term expression (6.4).

6.1.2 The Pion Absorption Potential

The potential for pion absorption on a nucleon pair is shown diagrammatically in Fig.
6.3. First of all we take into account the direct absorption on one nucleon. This is
described by a pseudo-vector TN N coupling in the Galilean invariant form

Hovy =220 526, () - gt ) = Gyl ) . (60)

T =12

Here, g; and 7; are the spin and isospin operators acting on the ith nucleon, p; is the
momentum of nucleon ¢. ¢ denotes the momentum of the pion and w, its energy. For
the coupling constant we use the value f2,/(47) = 0.076.

The direct absorption is generalised to include also resonant p-wave w/N rescattering
through the A(1232). The interaction Hamiltonian that describes direct absorption
involving the excitation of the A isobar in the final state is obtained by replacing the
coupling constant and the spin and isospin operators by the correspondmg coupling
constant frya and the transition spin and isospin operators S and T

The direct absorption involving a NA pair in the final state is treated on the same
footing as the direct absorption with a final NN pair. The wave function of the

@

/

4

4

direct absorption pion-nucleon s—wave rescattering short range correlations

Figure 6.3: The potential for pion absorption on a nucleon pair.
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final state pair contains an admixture of NA states as it is calculated for the coupled
channels system NN — NA. With the coupling constant f2,./(47) = 0.35 the peak
in the cross section of m+ absorption on the deuteron can be reproduced.

The interaction of the high-energy final state baryon pair is based on the Reid soft core
potential [73]. At such high energies, the sensitivity to the details of the potential are
expected to be small. Furthermore, the potential has to be modified to avoid a double
counting of the NA intermediate states, that in our approach are treated explicitely
through the coupled channels method.

Pion production (as well as absorption) in the two-nucleon system is at threshold dom-
inated by the contribution from pion-nucleon s-wave rescattering. For the description
of this contribution we use the phenomenological interaction

A A
Hy = dn 77 + An 27 7 x 0ot (6.7)
My m2
at the 7w NN vertex. The parameters A\; and Ay are energy-dependent and are fitted to
pion-nucleon scattering [74]. We include a monopole form factor for the pion exchange
which is fitted to describe the analysing power A, in pion production pp — drn™ at

515 MeV, see Fig. 6.4.

The abovementioned contributions are sufficient to describe positive pion absorption
and production in the two-nucleon system. But for neutral pion production pp —
ppr’ it is known that additional mechanisms are needed to describe the cross section
data [75]. One possibility is the inclusion of short-range contributions of the NN
interaction, such as the exchange of the heavy mesons o and w shown in Fig. 6.3
[76-78]. These heavy meson exchanges constitute also an important contribution in
7~ absorption on 'Sy pp pairs in 3He [74]. The short-range effects are also included
here for two reasons. Firstly, the pair wave function in *He is more condensed than
in the deuteron. This could enhance the effect of short-range correlations. Secondly,
7t absorption can not only happen on a quasideuteron pair inside *He, but also on a
neutron-proton pair in the 1.S; state.

First, let us show how this absorption potential describes the elementary two-nucleon
reaction. In Fig. 6.4 we show the transverse analysing power A, for pp — dnt. A, is
given by

 do+/dQ6) — do, /AQ(6)

) = o Ta) T do, a2 8)

(6.8)

where doy /dQ(0) and do | /dS2(6) are the cross section for the polarisation of the proton
perpendicular to the reaction plane. This quantity corresponds to the proton polari-
sation P, of one of the fast final protons in the absorption process 7+ *He — 5'p pspec-
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Figure 6.4: The analysing power in pp — dn™ at energies corresponding closely to the
7t 3He energies of [66]. We show the results for the different deuteron wave functions
from the CD-Bonn (solid lines), Paris (dotted lines) and Reid soft core (dashed lines)
potentials.

The analysing power is shown at energies that correspond closely to the energies of
the polarisation measurements for 7+ absorption on *He.

In the calculations for the different deuteron wave functions, the form factor for the
s-wave rescattering contribution has been adjusted to fit the dip in the analysing pow-
ers at 515 MeV. The fitting leads to three different values of the cutoff mass for the
three different wave functions: A = 3m, for the CD-Bonn wave function, A = 4m,
for the Paris wave function and A = 5m, for the Reid wave function. In spite of this
fitting at 515 MeV, there are differences between the analysing powers for different
wave functions at the higher energy of 800 MeV. The data seem to favour the newer
Bonn and Paris wave functions over the Reid wave function. Furthermore we notice
that A, is correlated to the D-state probability of the deuteron wave function: the
magnitude of A, increases with the D-state probability.

For the investigation of 7+ absorption on *He, the two-nucleon absorption operator
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has to be evaluated between the initial *He wave function and the final state wave
function,

<pspec\IJNN,f ‘ M 5spec ‘\IjSHe> . (69)

dspec indicates that the quantum numbers of the final state spectator proton pgpe. are
the same as for the third nucleon of the 3He wave function.

For the final state proton we use a plane wave, the wave function of the final NN pair
is the same as in the two-nucleon reaction: a NN wave function with explicit NA
admixture based on the Reid soft core potential [79]. For the final NN pair, partial
waves up to J = b are taken into account.

With the abovementioned parameterisation of the *He wave function

W(rp) = 3 k(o) (6.10)

A=1,2
we obtain, e.g. for the differential cross section the following expression

dU N ’

a0 =Tr Z (MZ)" MEWR 60 - (6.11)
AN vv!

The trace is over spin orientations. The effect of the spectator is contained in the

overlap integral

ﬂz/wwwww. (6.12)

Notice, that in this treatment the minor effect in kinematics from the variation of the
spectator kinetic energy is neglected. The effect of the spectator on the kinematics
is to absorb an average kinetic energy of 5 MeV (due to its Fermi motion). This
is accounted for by the “effective” binding energy of the pair in *He. This binding
energy is taken to be 10 MeV more than that of the free deuteron: 5 MeV for the
kinetic energy carried away by the spectator and 5 MeV for the actual difference in
binding energy.

6.2 Results

In Figs. 6.5 and 6.6 we show the differential cross sections and proton polarisations
for positive pion absorption on *He. Our aim is to study the dependence of the
observables on the wave function employed for the bound state.

Let us first discuss the results obtained with the new parameterisation of the *He
wave function. We show the results based on the Bonn and Paris potentials. Both



6.2 Results

83

10 T I T e 10 T T T T T T
T=120MeV | - i T =206 MeV' :
= L B !

.E. L

8 6 n

E

G

S 4r -

©

© I
2_ —
o 1 | 1 | 1 | ] | O | 1 | 1 | 1 |
0O 40 80 120 160 O 40 80 120 160

0 [deg] 0 [deg]

Figure 6.5: The differential cross sections for 7 absorption on *He. We show the de-
pendence on the *He wave function: CD Bonn (solid), Paris (dashed), single Faddeev
amplitude normalised to one for the CD Bonn wave function (dot-dashed) and result
using a wave function based on the correlation function as in [67,68](dotted). The
data are from [64].

can describe the shape of the differential cross sections as well as their magnitude at
T = 120 MeV. At the larger energy of T, = 206 MeV, both potentials lead to a similar
shape, but the difference in the magnitude of the cross sections amounts to ~ 10%.
Note, that the amplitudes for both potentials have been adjusted individually to fit
the analysing power in pp — dn™ at 515 MeV. Without this adjustment, the difference
would be of the order of 20 —30%. This is compatible with the spread obtained in [80]
for the use of different deuteron wave functions in the reaction pp — dm.

The shape of the polarisation can be roughly reproduced with the new bound state
wave functions for both energies.

In order to compare with the earlier results of [66], we also show the results obtained
with a wave function based on the correlation function of the proton pair in 3He given
in [81]. These results are very similar to the results of [66]. Note, however, that our
calculation includes in addition the heavy-meson exchange as well as the absorption
on a 'Sy pair, so that any difference between the dotted line and the other lines is
due to the effect of the different wave function.

The use of the new bound state wave functions clearly leads to an improvement in



84 Chapter 6: 77 absorption on *He in quasifree kinematics

06 - T.=120 MeV | 0.6 - Tn=250 MeV |
0.4 - 104 ¢ . 1
i FIN NN
> /i /I/ \ /, \\ \\
o = Sy "/ N o NN
O 2 L Vo \\\\I K - \\\\\ | O 2 | f/, \E/ \\-.““‘\ 4
/// . // &\ f// \\‘..‘
\\ 1::,'" 'y /;'/ ? \‘i.“‘;
0 ' 0
_02 L | . L s ! L I _02 ) L \ | . | . !
0 40 80 120 160 0 40 80 120 160
0 [deg] 0 [deq]

Figure 6.6: The proton polarisation P,. The lines are the same as in Fig. 6.5. The
data are from [66].

the description of the polarisation compared to the older calculation. At the lower
energy of T; = 120 MeV, the two data points do not allow to distinguish between the
different wave functions, but at the higher energy, the data favour the results obtained
with the new wave functions. The magnitude of the polarisation is much smaller, and
the slight dip of the earlier results at 90° becomes flatter for the new wave functions,
although it is still present.

The success of the new bound state wave functions may be partly attributed to the
lower D-state probability of the quasideuteron. It was shown in the earlier calculations
[66] that the polarisation data at 250 MeV could be reproduced by neglecting the D-
state of the deuteron. This, however, destroyed the agreement at the lower energy.

The use of the parameterisation of a single Faddeev amplitude from [69] leads to a
striking disagreement with the polarisation at the larger energy. The results for the
total cross sections are larger than the cross sections obtained with the parameteri-
sation of the fully antisymmetric wave function and qualitatively more similar to the
results obtained with the Gibson correlation wave function. Here reflects the shorter
range of the single Faddeev amplitude [69] and the Gibson correlation wave function
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Figure 6.7: The proton polarisation F,. The solid line shows our result for the CD-
Bonn potential as in Fig. 6.6. For the dotted line, the absorption on the 1Sy pair
is neglected, for the dashed line we neglect the contributions from heavy meson ex-
change. The dash-dotted line was calculated without the D state of the quasideuteron.
The data are from [66].

compared to the fully antisymmetric wave function. The longer ranged antisymmetric
wave functions put less weight on the short distances that are probed with the high
momentum transfer pion absorption, and so the cross sections obtained with these
wave functions are smaller.

In Fig. 6.7 we study the contributions to our model in more detail. We find that the
pion absorption on a 'Sy pair only plays a negligible role. So the absorption process
takes mainly place on the two components of the quasideuteron pair, 3S; and 3D;. We
find that the effect of heavy meson exchange is larger than in the two-body reaction
pp — dmt, but its effect does not change the results qualitatively.

Switching off the D-state component of the quasideuteron has a drastic effect on the
polarisation observables. As was also seen in [66], the polarisation data at 250 MeV
can be well reproduced without the D state, but then the data at the lower energy
cannot be described any more.
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6.3 Conclusion

We have studied positive pion absorption on *He using a parameterisation of the three-
nucleon wave function obtained from realistic NN potentials. We find that the non-
separability of the new wave functions in terms of the pair and spectator coordinates
has a minor effect on the observables, but the use of the fully antisymmetrised wave
functions was necessary to describe the differential cross sections quantitatively and
to obtain qualitative agreement with the polarisation data.

The success in the description of the polarisation data at 7, = 250 MeV can partly
be attributed to the lower D-state probability of the quasideuteron in the new wave
functions. As was already observed in [66], switching off the D-state component leads
to a good description of the polarisation at T, = 250 MeV but spoils the agreement at
the lower energy. The new wave functions form a compromise between the previously
used wave functions and the wavefunctions without the D-state.

For further improvements, a more active participation of the spectator even in
quasifree kinematics may be needed. This can be seen from a comparison of the two-
body and quasi two-body results. From a look at the analysing power for pp — dn™
in Fig. 6.4 and the polarisation for 7= absorption on 3He in Fig. 6.6 we find that
the shapes of the calculated distributions are in one-to-one correspondence for the
corresponding energies. The success in describing the polarisation observables in 7
absorption on *He may be attributed to the failure of the model in describing the
dip in the pp — dn™ data. If we take the dip in the pp — dnt data seriously and if
the assumption of quasifree mechanisms is correct, then it is hard to understand why
there should be a peak in the *He data. The indication of a peak in the 3He data thus
lends support to the need of other mechanisms, probably a more active participation
of the spectator.

However, the structural difference is at present only based on three data points. It
would be desirable to confirm the peak structure at 250 MeV and also to measure
the polarisation at intermediate pion energies to investigate the development of the
structural changes.



Appendix A

Definitions and Conventions

1. Minkowski Metric

1 0 0
, 0 -1 0
guu_gﬂ =
0o 0 -1
0 0 0
2. Dirac Matrices, Pauli Matrices
0 I 0 . 0 &
f)/ = ")/:
0 —1I —a 0
01 0 —1
ol = o? =
1 0 t 0
7
Ouy = 5['7;“ 'Yl/]

3. Dirac Spinors

0
0
0
—1
0
Vs = (A1)
I 0
1 0
o’ = (A.2)
0 —1

To describe a spin % particle of mass m and momentum k& we use the helicity

spinors

Er+m

IA). (A.4)
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Appendix A: Definitions and Conventions

These are normalised such that @(k, \)u(k, \) = 2m.

Gk
P 5
+1. For a particle with momentum k& in the direction (6, ¢) the eigenvectors

|A) is an eigenvector of the helicity operator and can have the eigenvalues

can be written as

A= +1> _ [ cos exp(—i2) ‘ (A5)
2 sin £ exp(i%)

. 9 ¢

1 —sin & exp(—1%)
A=—3) = R (A.6)
cos 5 exp(i5)

. Rarita-Schwinger spinor and Rarita-Schwinger propagator

The spinor of a particle of spin % can be described by the coupling of a spin %
spinor and a spin 1 polarisation vector:

e N -
u'(k, ) = Z(1A1§/\2|§A>e (k, M) u(k, Xg) (A7)

A1,A2

The Rarita-Schwinger propagator is given by

v q—"_m v
D" (q) qQ_mQPfé
gd+m u 1u 2 Iz ! L @
_ g Lo v_ v g A8
pramy g S e (@ = a7 | (A8)

The propagator can be reexpressed in terms of the spin-3/2 and spin-1/2 pro-

jectors
(P = —gm 4 %7“7” + 3%]2%7“(1” +¢"") (A9
<le2/ Q)W = —"’;ZV (A.10)
(sz/ st Q)W = - \/%qQ 4"y —+"d") | (A.11)

which leads to

g4+m s 20 +m) 1o\ 1 1/2 12\
D" (q) = 22— (pP% ——(P > —(P P. > A.12
(q) ¢ — m? ( ) 32 22 + /3m 12 t 1o ( )

The first term on the right hand side of this equation gives rise to the A pole in
the P33 partial wave of 7N scattering while the remaining two terms amount to
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a mw NN contact interaction in the J = 1/2 partial waves. Only the first term
acquires a finite self-energy through the dressing,

gd+m

v : v v
D*(q) = F—mi—% (P2 + DY)y . (A.13)
with D’f/yg given by
y 2(4 +m) 172\ M 1 1/2 1/2\*¥

. Polarisation vector of a spin 1 particle

A spin 1 particle of mass m at rest has the polarisation vector

0 0
A=) =— | T, e@a=0)= (A.15)
V2 —1 0
0 1
The sum over helicities gives (for arbitrary momentum)
3
B\ e (FA) = —gpu + Tl (A.16)
Z €,u, ) EV 9 - guy + m2 . .
A=1
The propagator of the p meson is then given by
Kk
N
Du(k) = —5—" (A.17)
p

As we only deal with on-shell pions, the second term in the numerator vanishes
when the p is coupled to a pair of pions. This is because the p momentum is
given by the sum of the pion momenta and the vertex contains the difference of
the pion momenta (or vice versa). For k = k; + ks, for example, the contraction
of the second term in the numerator with the pion vertex leads to (k; + ks) -
(k1 — ko) = k? — k2 which vanishes for two on-shell pions. So we will work with

D (k)= 2w (A.18)

k* —m?
P is defined via

Puv = Oupy — Oupy, - (A.19)






Appendix B

Partial Wave Decomposition and

Transformation from Helicity Basis
to JLS Basis

An adequate way of solving the 2 — 2 scattering equation is to make use of a partial
wave decomposition. Because of the rotational invariance of the strong interaction,
we can decompose the potential V' and the T-matrix into submatrices of definite
angular momentum J. As we shall see in the following, this reduces a coupled three-
dimensional scattering equation of the form

(E' XM [T) K MAs) = (B A3 [V K AAs)
© 3 [ Ea R VI )G G [T A (B)

K1K2

to a set of coupled one-dimensional integral equations.

Furthermore, in the K-matrix approximation, the momentum of the intermediate
state is set equal to the on-shell momentum. As a consequence, also the integration
over the modulus of the momentum ¢ vanishes, and we are left with an algebraic
equation.

Equation (B.1) is given in the helicity basis. Dealing with the scattering problem
in the JLS basis has the advantage that certain transitions ( L'S"| V' |LS) vanish
because of parity and angular momentum conservation. Furthermore, experimental
data are often subjected to a partial wave analysis and the results are given in JLS
basis. So the second part of this appendix deals with the transformation from helicity
basis to JLS basis.
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B.1 Partial Wave Decomposition

We start by expanding the two particle plane wave scattering states in eigenstates of
the angular momentum operator [82]

k0P A N) =) )ED]‘{M(QS,Q,O) |k JM MXs). (B.2)

JM

2J+1
4

A1 and Ay are the helicities of the two particles and X :== A\; — Xo. Di,,(a, B3,7) is
the matrix element of the operator of a finite rotation

DJ(Q, ﬁ; 7) — efianefiﬁJyefi"yJZ )

D’(a, B,7) describes a change of reference frame; «,3 and v are the three Euler
angles. The matrix elements can be written in the form

Dipapr(a. B,y) = (IM' | DY (@, B,7) | IM) = e M d 0 (B)e M (B.3)

where the d,,,,(3) are the reduced rotation matrices [83].) We only need the rotation
to map two vectors — the relative momenta of the final and initial state — onto each
other. Two angles are sufficient to describe this transformation, and we can set v = 0.

If we consider the scattering of two spin-0 particles, the matrix elements of the rotation
reduce to the familiar Legendre Functions

D@, 8,7) = Py(cos B) . (B.4)

With the expansion (B.2) the matrix elements of the potential V' and the transition
matrix 1" can be decomposed into submatrices of definite angular momentum.

<2J+1

(K0 XA |V [EOOAN) =)

J

- ) D33 (i, 0) (K Xs Ay | V7 1R A Ao) (B.5)

In this equation we assume that the relative momentum of the initial state is oriented
parallel to the z-axis of the reference frame. € is the solid angle of k£’ with respect
to k. Exploiting the orthogonality of the rotation matrices

gl 4

/ dQD35.(Q,0)D7(Q,0) = T 7007058 (B.6)
we arrive at the following expression for V7,
(K Xsha | V7 [k MA) = [ d%n DYy (ks 0) (' Asha [V E A ) (B.7)

!We use the conventions of Jacob and Wick. Note that the df;;,(8) in Edmonds’ convention
would correspond to di; . (—3) = di;,,(8) in our convention.
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Insertion of (B.5) into the scattering equation (B.1) leads to

27 +1\
Z( - )DA‘i,(Qk/k,O) (K XA | T7 Tk M da) — (K dsha | VI 1k AAg))
J

2J’+1 J” "
= Z ( /dqq /qukDﬂ)\l Qk’q,O)D}\i (qu,O)

rikaJ' T

<]{7/ A3A4 | V |q1€llig> G(q) <QR1R2 | TJH |]€)\1>\2> . (B8)

The angular integration amounts to

4m
2J' +1
with the help of (B.6) and the following relations [83]

/ dQq D5 (g, 0) D3L (Qgpe, 0) = 87130 D33 (Qur, 0) (B.9)

D:ij(gk’mo) = DS\]’I (qu’ 0), (B.10)
DL (e, 0) = DY (QpQ, 0 ZD (e, 0) D) (Qq, 0) . (B.11)

Comparing the coefficients of D5{,(Qx,0) in the resulting equation, one arrives at a
one-dimensional scattering equation for each value of the angular momentum J:

(K X3 Ay | T [k AA) = (B DA | VT [E A A)
+Z/dqq (K Mg | VY |qrike) G(q) (qrike | T [E X)) . (B.12)

K1K2

B.2 Transformation between Helicity Basis and
JLS Basis

In the helicity basis, a two particle state is characterised by its total angular mo-
mentum J and its projection M, the modulus of the relative momentum £, and the
two particles’ helicities A\ and X\y. In the JLS basis the helicities of the particles
are replaced by the orbital angular momentum L and the total spin S. From this it
should be clear that it makes no sense to distinguish between helicity and JLS basis
as long as only spin-0 particles are involved.

Helicity basis and JLS basis are related to each other via a linear transformation?:

[JM A Xo) =Y (JMLS|JMM)y) |JMLS). (B.13)
LS

2In the following the dependence of the state vectors on the modulus of the momentum & will be
suppressed.
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The matrix elements of the transformation matrix can be obtained from

|[JMLS) = Y (JM|LMp SMs){SMs|Simi Sams)Yiar, Xsimy Csymy (B.14)
mimo
27 +1\2 )
IJM>\1A2> = ( ppm ) /dQDM]A(Q,O)DJ(Q/O) X811 CSZ_)\Q <B15)

where Xg,m, and (s,m, are the spinors of the two particles. |JM LS) can then be
expanded in terms of |JM A Ag) [82]. We obtain the result

2L +1
2J+1

(JMLS | JMAAs ) — ( )5 (M| LOSAY(SA|Sihi S5 — Ao} . (B.16)

The transformation of the potential V' and the T-matrix, respectively, is given by

(LS| VILS)y = > (JMI'S'|JM Ashy)
A1A2,A3A4
(s ha [V IMA) (M M | JMLSY . (B.17)

The partial wave decomposed scattering equation in JLS basis then reads as follows:

(K LS |T7 |k LS) = (K L'S' |V |k LS) (B.18)
+ 3 [ dagt LS Vg L") Gla) (gL' 1 K LS) .
L/ISII

Because of the invariance of the strong interactions under parity transformations,
some of the matrix elements of the potential in the JLS basis vanish. The parity

1 =mi(-1)" (B.19)
with 7; the intrinsic parity of particle 7, has to be the same for the initial and the
final state. This means that for initial and final states with the same intrinsic parity

only transitions with even AL are allowed. For initial and final states with total spin
S = 1 the only allowed transition occurs for AL = 0. This follows from the condition

=3
J—S|<L<J+S. (B.20)

On the other hand, if initial and final state have different intrinsic parity, AL has to
be odd. Equation (B.20) reduces this further to AL = 1 for all reaction channels we
are interested in.

Parity conservation also reduces the number of independent matrix elements in the
helicity basis and thus simplifies the transformation from helicity to JLS basis. A
parity transformation connects helicity states of positive and negative helicity in the
following way:

(=X3 = M|V =M = Do) = (—1)S+5a=51-5 % s |V M) . (B.21)
1
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B.2.1 Explicit Expressions for the Transformation Matrices

In this section the matrix elements for the transformation between helicity basis and
JLS basis are given explicitely for the case of a spin—% and spin-0 product state and
a spin—% and spin-0 product state.

From equation (B.13) we obtain the following expression for the transformation matrix
of 1 x 0 states:

With the help of expression (B.21), the 7N, o N, nN and 7N — nN potentials in
JLS basis can then be expressed as a linear combination of two matrix elements in
helicity basis.

(L8 =3[ V|L,S=3)

=2V M=% - (N=—1|V/|\M=3) fL=L=J+3
<3 ‘ ‘1 2 <3 2‘ ‘1 2> 2(B.23)
(o=3V/ n =8+ (u=-3 v/ [n=d) tr=1=s-1

The nN — oN transition demands for AL = 1 because the ¢ has positive intrinsic
parity and the 7w has negative intrinsic parity.

(L', =% |V/|L,S=1)
(s =4IV A =4) = (= =4[V |n =
_<>‘3:2‘VJ’)‘ 2>+<)‘3 _%‘VJ’/\lz
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For % x 0 states the transformation reads as follows:

|JM;L=J+3, 5=%)

|JM;L=J—-14, 5=3)

|JM;L=J+% 5=%)

|JM;L=J-3 5=3)
a}i_ a,i_ aﬁ_ ai ‘JM,)\IZ%,A2:O>
at —at a® —a? JM: M\ == X=0

- | 1= =0) (B.25)
bl —bL bi b | JM; A =3, 0 =0)
N N |JM;A = =22 =0)
The elements of the transformation matrix are given by
matrix element -+ —
ol 1 2J+3 1 %L%

a? 2J-1 | _ 2J43
2J 2J+2
bl 2J43 2J-1
2J+2 2J
bQ 1 2J+3
2\/_ 2J+2 2v2

One should note that for J = % the states with L = J+% and L = J—% are forbidden
because of (B.20). Tensor transitions (AL = 2) in the 7A and 7N — wA potentials
thus only occur for J > 3.



Appendix C

Separation of the 7T-matrix into
Pole and Non-Pole Contributions

We start from a scattering equation of the Lippmann-Schwinger type,
T=V+VGT. (C.1)

If the potential can be split into a separable pole potential and a non-pole potential
containing the non-separable part of the interaction,

V=V 4+ VN = fogofd + VT, (C.2)
the T-matrix can also be separated into a pole and a non-pole part,
T=TF+TN" =1F + VNP 4 yNPGQTNP (C.3)

with the non-pole T-matrix obeying the usual scattering equation. Our task is now
to derive an expression for T7. In this we will closely follow [84,85].

From (C.1) and (C.2), we obtain
T=T"+VvF 4+ vPQT + VNPQT? . (C.4)
The last term in the above expression can be rewritten applying the scattering equa-
tion (C.1) to TN,
VNPGTP — (TNP o TNPGVNP) GTP

— TNPGT - TNPGTNP o TNPGVNPGTP

= TVPGV (1 +GT)—-TN*GVNY (1 4+ GT)

= TNPGVP(1+GT).
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Equation (C.4) then becomes
T=TN" +(1+TN’G)VP(1+GT). (C.5)
We define the dressed vertex function
f=0+TPO\WEP(1+GT), (C.6)
multiply (C.5) from the left with f/G and solve for fIGT:
lar = flGTN? foofl(1 + GT)
f t e (e i
e fiGT = (1= 1Glao) G (T + foof) - (c.7)

Reinserting this into (C.5) together with the definition of the dressed vertex (C.6)
one gets

T = T 4 fgofd (1+GT)
= T+ fgo {foT +(1-sictm) s (T + fgof3>}
= T 4 o (- fiGFe) A+ HGTT)
= Ty p (0 - fiGs)
So the T* can be written as
" = fgf (C-8)

with the dressed propagator

N go — X
(C.9)

and the self-energy

v =flGf. (C.10)



Appendix D

Amplitudes

The transition amplitudes are obtained from the interaction Lagrangians by applying
the usual Feynman rules.

The explicit expressions for the v-matrices, spinors and spin-3/2 projectors can be
found in Appendix A.

D.1 Amplitudes for 7N Scattering

Listed are the expressions for the potentials contributing to 7V scattering without
isospin factors. These will be given in subsection D.3.2.

N potential:

e Nucleon pole

pi+ ki + My

s M2 Vs Kiu(pi, 8i) (D.1)

ngN, —
) u(py, sp)vs Ky

™

e Nucleon u-exchange

ngN— - pl_}éf—i_MN
2 u(pf,sf)%kiW

™

Vs KyulDi, i) (D.2)

e 0 exchange

1
W [glmi — ggki . k’f] (D3)

Gox (5, s)u(Fi, 50)
g
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p exchange

—y = v — _g Q
GoNNYprrW(PF, 55) |7 —HQMNUH (ki — kp)o | u(Bi, s0) o 17;1%
e A pole
T @ff‘kz +MA)P V(pz +k’i,MA) v
=N (5, )8 T Koz, 5)
e A u-exchange
7rNA Wi— Ky + Ma) B (pi — by, Ma)
(pf7 )kM U—I;WQ k ( zasz)

7!'

e Roper pole

f 117r ﬁz—f— %l + MP -
Purl g (pf, Sf)% kan V5 %iu(pu Si)
7T e =

[ D13 pole

fD137rN > _ ,u

o | wlprse) s Keky

X @’L+ kl + MD13)P[L1/(pi + ki; MD13)
s — Mp .
e 51 pole
fgnﬂN — ﬁ’b—i_ }él + MSM

= vy, sy) kfw Fiu(pi, s:)

7N — oN potential:

e Nucleon pole

SN oo Pt ki + My S
_Zm—wgoNNU(p]% Sf)W Vs fiu(Di, si)

e Nucleon u-exchange

-f7rNN
—1

™

P pr—Ki+ My
gaNNU(pf; Sf)% kf fW U(pz', Si)
U — My

(ki + kp)* (D.4)

Vs kik’;ju(ﬁu Si)

(D.5)

(D.9)

(D.10)

(D.11)
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e 7 exchange

Jx L . 1
—t NN(_2MN)u<pfv5f)75u(pia5i)42

My t—m2

e Roper pole

fruxN L Ptk + Mp
—1 11 gpllo_Nu(pf Sf)M

. ; 5 _ M,!%n V5 kiu(piasi)

o N potential:
e Nucleon pole
ggNNﬂ<p7> Sf)IM——i_QJWN u(p;, s;)
s — My
e Nucleon u-exchange
pi— K+ My

2 —f —
Jonn TP Sf)W u(pi, si)

e o exchange

P S 1
goNNgaoamau(pfa Sf)u(pi7 Si) W
e Roper pole
o Bt ki+Mp,
9123’110Nu(pf75f) Z p :M]% = u(pi, si)
11
mN — wA potential:
e Nucleon pole
f7r f7r A ﬁ +k + M
_Muu( )ku# Y5 Kiu(pi, i)

2
mx

M2
e Nucleon u-exchange

f7r f7r A _ - 151 }é +M N
_%“M )kuﬁ 5 %fU(Pi;Sz‘)

[lei — gok; - kf}

(D.12)

(D.13)

(D.14)

(D.15)

(D.16)

(D.17)

(D.18)

(D.19)
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p exchange

prA

gpmruu(pfa 3f)'757a (D20)
(pr — o) (ks + k) (py —pi)* (ks + K)H]
t—m? a t—m? u(pi, i)
p p
e A pole
faanfzna (it i + Ma) P (p; + kiy MA)

2 WPy, 57)75 Ky ki,u(p;, si) (D.21)

™

2

e A y-exchange

(Bi— Ky + Ma) P (pi — ky, M)
u— M3

franfrna _
%Uu@f s£)vs K

kr u(pi,s:) (D.22)

e Roper pole

JPuanfPura _ L Ifﬁ—/éz
—— m72r - uu( )ku M]%H 75 }éz ( Di; z) (D23)
] D13 pole
JD1snA [ Disn
DyznAJ D13 Nu,u(pf,sf) kf (D.24)

3
mz

. @'L_F }é’b + MD13)PNV(pi + k’i? MD];;)
s — M%B

V5 kikiuu(ﬁi; Si)

7/ potential:

e Nucleon pole

INA - uDit K + My
U, (py, sp)ky——m%—
m2 " I — M3,

m

kY w, (pi, s;) (D.25)

e p exchange

(ki + kf)u

— — H AA v of =
—gpAAgmea(pf,Sf) VM‘HJTNU“ (ki_kf)u U (piasi) t—mg (D-26)
e A pole
WAA @it K + Ma) P (p; + ki, Ma)

(pf: Sf)’Y /éf 5 — Mg 5 kiul/(p;7 Si) (D27)

7T
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e Roper pole

JBran - pit ki + Mp,, .
Uu(py. sp)kly———=—= klu, (i, s1) (D.28)
m2 " I s— M,
e D3 pole
fj% 3TA (pﬁ_kz + MD13)PHV(pi + kz MD13)
B a4, (py, d s, (P, S D.2
m2 (7, 57) Ky s— M3, Fiuy(pi, s1)  (D.29)
oN — mA potential:
e Nucleon pole
. Jana _ pitKi+ My
_zggNNm—ﬂuu(pf,sf)kﬁfW u(pi,si) (DBO)
e Roper pole
. fP117TA_ — pl+kZ+MP11 —
_Z9P110Nm—7ruu<pf’ Sf)/f’fw u(pi, 5:) (D.31)

7N — nN potential:

e Si; pole
fsllﬂ'NfSll N _/ 5 ﬁi+}6i+M5“ .
p— n _U<pf7 Sf) kf P M—gu kﬂL(pi, Si) (D32)
e Si; pole
13 N _/ o pit Ki + Mg 5
rlr;% u<pf7 Sf) }éfs——]\/[gun }fiU(pZ-, Si) (D33)
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D.2 7N — nn N Amplitudes

This section contains the invariant matrix elements —i M for pion-induced two-pion
production

(ko) N (pp, sp) — 7(k1)mw (ko) N (ps, s3)

without isospin factors. The isospin factors are given in subsection D.3.2. We intro-
duce the following Lorentz-invariant quantities:

= (ka +p)*, t = (pp —pa)*,
s12 = (ki + ks)?, tr = (k1 — ka)?,
s13 = (k1 + ps)?, ty = (ky — ka)?,
sp3 = (kg + p3)?.

The labels in front of the expressions for the amplitudes refer to the Feynman
diagrams displayed in Figs. 2.1-2.3.

The contributions of diagrams (B.1) and (C.1) each contain three parts that have
different isospin factors.

3
(A‘l) (fNNﬂ) ﬂ<ﬁ3733)’)’5%2 p3+}é2+MN 5%1%4_}6@—’_ al 5/% (pb;Sb)

may $93 — M2 — M12\7 —
(A.2)  can be derived from expression (A.l ) by interchanging the pions
(k/’l — /CQ)
fane\’ Ps+ Ko + My
(A.3) ( - u(ps, $3)75 Ko P VS Fa
bo— K1+ My S
‘ (pp — k1)? — M]%]% Fru(ph, sp)

(Ad) (k< ky)
(A.5) (fNNﬂ> U(ﬁ?)ass)%ka(pg Ko 1 My Vs Ko

m, p3 — kq)? — M%
: pb_ Fo v My 5 klu(ﬁb Sb)
(pp — k1)? — M3, ’

(A.6) (k1 < ko)

(B.1) (a) %ﬂ(ﬁs, 53)7s (K1 + K2 )u(ps, sp)
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() L7 8B 59) (0= K )

(c) % w(ps, 53)v5(Fa— Ka)u(Dh, sp)

Diagrams involving 7 exchange:

€1 () = L2l )l ) 7 (50— )

T t i
™ 1 - 1

(b) — f;\;j: F2 —5 U3, 53) 75 (s — P3) (P, Sp) - f—m2 (tl - mfr)
™ ]- — n, 1

(c) — f;\;]: F—f u(ps, 83)7s(Po— B3)u(Ps, Sp) - t—m2 (tQ N mi)

[ —— ~ 1
(C.2) fj;;]: u(ps, 53)75(Bo— D3)u(Ds, sp) - t—m2
1

- [2g1m2 + go ko - ko] [2g1m2 + g2 ko - (py — p3)]

2
S19 —ma — Zo

™ _ - 1
©3) LY atg sl pould ) s

m 7r

—Yuw
. - — k) ———E (K — k)Y
((pb p3) ) 519 mg Ep( 1 2)

fNN7r gp7r7r = N 1
C.4 - .
(C.4) m, m2 (P, $3) 75 (Bo— P3)u( Db, Sb) t—m2

((ps = p3) = ka) - (k1 = k)

Diagrams involving p exchange:

T = Zli a
(D) I (s 5) (1 = = (e + )
2M N

™

Yo+ Ko + My e/
PotKat My /R W
AT Sy Vs Katt(Dy, Sp) - Slg_mg_zp(l 2)
fNN7r Py~ Ko + My
(D2) 7r —3JNNp gpﬂﬂu(p37 53)75 ka( Dy — ka)Q _ MIQV
o ra(fe + k 7 : I ki = k)"
<'y QMNU (k1 +ka)a | u(Ds, sp) S19 — mg _ Zp( 1 2)
(D.3) f INNp Gorr (D3, 53) 75 o LA 2 S
- S93 — MN - EN

_g v y
— (k1 + ko)

11— my

Sk

ik s
: <’7M - 2MNO-Ma(k1 - ka)a) U(pb,sb) )
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Do— Ko + My o Ko
Py — k?2)2 - MJQV

. W iR e o — . —Guv v
(= g™t = ke ) - =2 5 k)

™

(D5) fglegNNp gpﬂvrﬂ(ﬁf%as‘d)(

Diagrams involving ¢ exchange:

INNT _, - Dot Ko + My
E1l) - - 3,83) —————
(E.1) gNN - U(p3,83)s MY 2y Vs

}éaU(ﬁb, Sb)

: 51— M2 — 5 [291m3r + goky - k2}

INNT P3— Ko + My
(E.2)  —gnno - (P, 83) V5 Ka s —Fa)E = Mf{
2
I, eme k-l
fyne o Y3+ Ko+ My
(E3)  —gnno - (P, 3) Vs k2323 M —121\7
: 201m2 — goky - ke
t —m§ [ gimy — gary }
—gnNN S ﬁ(ﬁs 33) b Fo My 5 kw(ﬁb Sb)
7 My ’ (pb_kQ)z_Mj%rl ’
- 201m>2 — goky - kg
lf1 —mg [ gim, — ga2r1 }
Diagrams with A excitation:
Inne [ fnar 2 S Y3+ fo + My
F.1 kY
(F.1) . -~ u(ps, 83) s k2823 MY Sy 1

' D,uu(pb + kaa MA)kZu<ﬁb7 Sb)

fNN7r (fNAﬂ'

My My

Ps+ Ko + My o
93— M{ —¥n ¢

- Dy (po — k1, Ma) kY u(Ph, $b)

2
) u(ps, 53)75 Ko S

(F4) (k< ko)



107

2
(F.5) InNNT <fNA7r) ﬂ(ﬁ3753)75}éa Ps— Ko + My ol

Mg My <p3 - ka)Q - MIQV 2
: D,uu(pb — k1, MA)kTU(ﬁb; Sb)

2
o) L (L0 ) Db MK
.M—+MV,Y Fatt(By, $b)
S—M]%[—ZN 5 va by 2b

fNN7r fNAﬂ' ’ — > iz v
(F.9) u(pis, 53) k4 Duu(m + kg, Ma)ky,

my Mar
B— K1 + My .
| (Do — F1)? — M]%'VS Fru(py, sp)

2
() L <f N“) 0 53)KE Dy (ps — Kos Ma)RE

may may
Po—F1 + My .
. (pb — kl)Q — MIQV,YE) }élu(pf)? Sb)

(F12) (k1 < ko)

Diagrams with double A excitation:

_fAAﬂ (fNATr

My My

2
(@) ) (5 55k Do (5 + K, M)

- D" (py + ko, Ma) (ko) (P, $p)
(G2) (ko o)

2
(Gg) —faar (f“”) (s 55K Do (03 + s Ma )5 Ko

My My

- D"Mpy — ky, M) (1) xu(Fy, s5)
(GA4) (k1< ko)

fAAﬂ fNATr ? _ u
(G'5) - u(p'&a 83)ka D/w(p?) — ka, MA)'75 Ko

My My

- D"y — kv, M) (k1) au(py, sp)
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(G.6)  (ky — ko)

Diagrams with A and p excitation:

(1) DORINAorm g [y 4 o 0 o)) Dyl + Ko M)
plitg

v — _gaﬁ ﬁ
-k ki —k
aU(pb, Sb) 51— m/% — Ep( 1 2)

(H.2) Inapt NAT T (B 55)kE Dy (D3 — ks Ma)
mpmﬂ

v o va — —Ya8 B
e [— (ke + k + + ) ki —k
Vsl — (k1 + ko) v + " (F1+ F2)|u (Db, Sb>812 —mz - Ep< 1 2)

(H3) — Inapt NATIONT 5 (s 83 )k Dy (p3 + kg, M)
MMy

Vs (ka — K1)y + 6" (Ka— K1) Ju(Ds, 1) ; —Jof 3 (ko + kl)ﬁ
1—m,

(s)  oePonlon g () 4 g G FID s — o, Ma)
plity

1 - _ga
~k2u(pb,sb)t —TZQ(ka—'_kl)ﬁ
p

Diagrams with N*(1440) excitation:
2
(L.1) fovain (fP“NW) u(ps, 83)75 Ko

My My
fPHNﬂ'fPHAﬂ'fNA’ﬁ_ — I v
(J.1) U(Ps, 53)ky Dy (ps + kay Ma)ky

m3
. Ijb+ }éa + MPH
S — MI%U — Epu

Pat+ Ko+ My
So93 — M]% — EN

pb+ }éa + MPu

Vs K1
S — Ml%u — Zpu

Vs Kot (P, )

Vs }éau(ﬁbv Sb)

fP11N7r _ pb+ }éa + MP11
K1) —gp,0 ,
(K.1) 9gpPioN e U(p3,53)s — M}QDH S

s }éau(ﬁb', Sb)

S [2g1m7 + gak1 - ko]
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153_ ka + MP11

JP11N7T =
U\ps, s 4 a

™

(K"2) —gpPiioN

: 2g1m2 + gok1 - k
slg—mg—Zg[glm”+g21 2]

1634_ kQ + MP11

JPiN® _
u — M2 — E
5923 P11 P11

K.3 — oN———
( ) gPi1oN m

™

(ﬁs; 53) V5 kQ

: t —m? [291m3r — gok1 - ka]

(K4) (ko k)
<K5) —9pP110N fPHNﬂ 'a(_’ ) pb_ }éQ il MPH

pP3; S
My 5 (pp — k2)? — M3

Y5 Fou(Ph, Sp)

: t — m2 [291m3r — gok1 - ka]

Diagrams with N*(1520) excitation:
fane (foine )’
7r< = ﬂ) u(Ps, 83)75 Ko

Mo m2

P3+ K2+ My
S93 — M12\7 — EN’YS

: D,uy(pb + ka; MD13)75 }éakgu(ﬁba Sb)

(L.1) Fokl

(L2) (ki < ko)

(1) Josanl v Nang D M)

' DV)\(Pb + ka; MD13)75 }éa(ka))\u(ﬁb; Sb)

Diagrams with N*(1535) excitation:

2
(N.1) thiii <fSMNW> ﬁ(ﬁ&&s)%kzs

My My

ps+ Ko + My
93— M3 — Xy

pb‘f‘ %a + M511

1 }éau(ﬁb; Sb)
S — Mgll — ESU

K
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D.3 The Isospin Part of the Potential

In this section we deal with the isospin part of the interaction. We use the ‘baryon first’
convention. This means that in any Clebsch-Gordan coefficient the baryon stands in
the first position.

The isospin part of the wavefunction of an isospin—% particle is given by a two-
component spinor x 1 obeying

XinXm/ = 5m,m/ .

This relation also holds for an isospin—% particle described by a four-component
1sospinor Priss.

For the description of isospin-1 particles we use the spherical basis vectors ¢g 1.
These fulfil the relations [83]

ng:n = (_1)m¢—m 3
¢:q¢m’ = 6m,m/; (D34)
(Om X G) = > V2(ImIm' [1m") b .
m/=0,%£1

For a NN vertex we get from the interaction lagrangian an isospin part of

1 1
\ Xjn,Tqqum = \/§(§m1q|§ m'y. (D.35)
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The 7 NA and mAA vertices get the isospin factors

m/
\
N4
m \\
\
N
N
m/
\
N4
m \\
\
N
AN
m/
\\
q
m \\
\
N
N

. 1 3
o Toxm = (mlglzm') (D.36)
Tt 3 1 /
X T bgom = —V2(Smlglom)  (D.37)
5,3 3
o Thgom \/;<§m1q|§ m') (D.38)

Isospin Factors for 7N scattering

In Table D.2 the isospin factors for m/N scattering are given in the isospin basis. It is

convenient to work in the isospin basis because the scattering equations for different

isospin decouple.

The total cross sections for 7N scattering are given in the particle basis. The particle
basis is related to the isospin basis via the relation

[tetg, #0eh) = (TIs| o1, %45 ) |115),

(D.39)

1,13

where 194 (t%) is the isospin of particle a (b) and ¢ (¢3) its third component. So for
the 7N states that are accessible in m/N scattering experiments we get

|77 p)
|7 p)

[7°n)

(D.40)
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D.3 The Isospin Part of the Potential

Potential

Diagram

~
!

—~
~
|

(o] [N}

~—

TN

N, N* pole

N u-exchange

o exchange

p exchange

A pole

A u-exchange

7N — oN

N, N* pole

N wu-exchange

T exchange

oN

N, N* pole

N u-exchange

o exchange

N — A

N, N* pole

N wu-exchange

p exchange

A pole

%%%OOOOOOOMH.—HHRDO

A u-exchange

—
[

i

w
S|
ot

TA

N, N* pole

[\

]

p exchange

A pole

O |wla

wlot [ Wi

A u-exchange

—_
—

oN — 1A

N, N* pole

TN — nN

N* pole

nN

N* pole

o |o | © |9

Table D.2: Isospin Factors for Pion-Nucleon scattering.
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D.3.2 Isospin Factors for 7N — ma N

Pion-induced two-pion production on the nucleon is experimentally accessible in the
five reaction channels

(1) 7 (ka)p(ps) — 7 (k)7" (k2)n(ps)
(2) : 7 (ka)p(ps) — 7" (k1)m°(ka)n(ps)
(3) = 7 (ka)p(ps) — 7 (k1)7m™ (ka)p(ps)
(4) + 7' (ka)p(py) — 7 (k)7 (k2)n(ps)
(5) = 7 (ka)p(pe) — 7 (k1)a* (ka)p(ps)

The amplitudes from Section D.2 have to be multiplied with an isospin factor for each
of these reaction channels. The isospin factors for each amplitude are listed in Table
D.3.

T p— 7T+p —
atr n | 797% 7TO7T_p Tt 7T+7T0p
(A1) | —2v2 | V2 —2 0 0
(A.2) 0 V2 2 0 0
(A.3) 0 V2| 2 | —2v2| o0
(A.4) 0 -2 0 —2/2 2
(A.5) 0 V2 0 0 2
(A6) | —2v2 | V2 0 0 —2
(B.)(a) | —vV2 | V2 0 0 0
(B.1)(b) | —V2 0 0 —V?2 0
(B.1)(c) 0 0 1 —2 1
(CDGa) | —V2 | V2 0 0 0
(C.1)(b) | —V2 0 0 —/2 0
(C.1)(c) 0 0 1 -2 1

Table D.3: TIsospin Factors for Pion-induced two-Pion
Production.
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Ttp —

[a\ ] an]

[a\] [2p}

-

ﬁwqo

T p—

—™

aen

[a\ ] Eap]

e

— ™

V2

—V2

V2

V2
V2

ﬁ_s

R

Sl

2l

Zl

e

Sl

7t n | 797 | 77 p | #tatn | 770

2
2
V2
2

V2
V2

0

2

0

2

2

0

0

0

0

ﬁ_s

o

0

(C.2)

(C.3)

(C.4)

(D.1)

(D.2)

(D.3)

(D.4)

(D.5)

(D.6)

(E.1)

(E.2)

(E.3)

(E4)

(E.5)

(E.6)

(F.2)

(F.3)

(F.4)

(F.5)

(F.6)

(F.7)

(F.8)

(F.9)

Table D.3: Isospin Factors for Pion-induced two-Pion

Production.
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OM e s | e —lo s | — —len
4§ _ —lm| e — | | <o | o _ — _ N _ N o (aw) ja] jaw] o [e) ja) — )
Tk
+p g
a\l
& +ﬂ ﬁ_sﬁ ﬂ ﬁ_3ﬁ_3@9ﬂ_9ﬁ_3ﬂ_3 o| o ﬁ_3ﬁ_3ﬁ_3ﬁ_3 oclolo|lo|lol o ﬂ ﬁ f
+ﬂ _ _ _ _ | | _ _ _ | _ _
9
| —o NG —en | [T NI BN o
0_,f/. o — < _ | IO _ _ — _ —|en _ — _ _ [aN [a\l [} _ O ) O — (@]
k=
H e
a % | ﬁ_g ﬁ_g ﬁ_g ﬁ_g Yo Yo ﬁ_g ﬁ_g o | o |G| ﬁ_g ﬁ_g QLY ||| QL | o | = | o
k=
=
S e g ] o e S| Slolwrlelelelel e
<[ S] =| S|l <o - sl o || 2| = =
Ll _ L] Ll | . _
Slola|=lal =S el =aa < s olclgaal == TR
alela|e|ele|e|e|e|2lE|Z 2| g2 || 2| L8|

Table D.3: Isospin Factors for Pion-induced two-Pion

Production.
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TP — Ttp —
7t n | 797 | 77 p | #tatn | 770
(K.6) 0 0 1 —V2 1
L.1) | —2v2 | V2 -2 0 0
(L.2) 0 V2 2 0 0
(M.1) | -2 | £ : 0 0
(M2) | —v2 | & ~2 0 0
(N.1) | =2v2 | V2 —2 0 0
(N.2) 0 V2 2 0 0

Table D.3: TIsospin Factors for Pion-induced two-Pion
Production.



Appendix E

Observables

We are interested in the scattering of two particles into three particles:
A+B—1+2+3.

The transition probability from the initial to the final state is given by the matrix
element (1,2,3| M |A, B) = M(pa,ps;p1,p2,p3). The explicit expressions for the
matrix elements for two—Pion production can be found in Appendix D.

Measurable quantities are calculated by taking the absolute square of the matrix
element. The total cross section is defined as the integral of [M(pa, ps;p1,p2,p3)|?
over all possible values of the momenta p; of the outgoing particles - the three-body
phase space - normalised by the incoming flux |,;1n|

o = B / d3p1 / d3p2 / d3p3
Gl J (@7)32E, ] (27)32E, | (27)32E;

: (27T)4 5(4)(PA +p —DP1— P2 —103) : |M(pAapB;plap27p3)|2

_ B 1 /d3p1 /d3p2 / d*ps (E.1)
4|ﬁ;‘:m|\/§ (271')5 2E1 2E2 2E3 )

5D pa+ps —p1 — p2—p3) - [M(Da, P53 D1, D2, P3) %

Here, F,, Ey and E5 are the on-shell energies of the outgoing particles, g™ is the

momentum of particle A in the centre-of-momentum frame of the incoming particles
A and B, and +/s is the invariant mass, s = (p4 + ps)*.

B is a Bose symmetry factor, B = 1/n!, where n is the number of identical particles
in the final state. In the case of pion-induced two-pion production, we have B = 1/2
for the m°7% and n*7*n final states and B = 1 for 777~ n, 7%~ p and 7+70p.
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_)z I 3

PA
D3 _

Ple «y
61
o1
£z
PB
D2

Figure E.1: The scattering of two to three particles in the rest frame of two outgoing
particles (here 1 and 2). The scattering plane (zz plane) is defined by the momenta of
the incoming particles p4 and pp and the outgoing particle p3. This reference frame
is often referred to as the Gottfried-Jackson frame.

W is the spin averaged absolute square of the matrix element. If only spinless
particles take part in the reaction, then [M[2 = |M|?. But if particles carrying
spin like the nucleon or the photon participate in the reaction and we consider only
unpolarised cross sections, one has to average over the spin of particles in the initial
state and sum over the spins of the final state particles,

1
M2 = 5 Z Z |IM|? for pion-induced two-pion production

si:ﬂ:% Sf::l:%

1
M2 = 1 Z Z Z |IM|?  for two-pion photoproduction.

A==1 SiZi% SfZi%

Some of the integrations over the momentum conserving é-function can be performed.
In particular we only deal with unpolarised particles. This leads to a rotational
invariance with respect to the beam axis. So we are left with the integration over four
kinematical variables. Introducing the invariants s;9 = (p; +p2)? and t = (pg — p3)?,

we arrive at the following expression for the total cross section:

max pmax

B T $12 2 1 ’ﬁl’ :|
o= — ds dt d dcosf M2l . (E2
168|p1§1n|2 (277)5 /Smin 12 /tmin /0 d)l [1 ! |:4:\ / 812 | | cml?2 ( )

12
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¢1 and #, are the polar and azimuthal angles of particle 1 in the centre-of-momentum
frame of particles 1 and 2 (see Fig. E.1). The integrand also has to be taken in the
rest frame of particles 1 and 2.

The bounds of the phase space integration are given by

S = (m1+my)?,
811112ax — (\/g o m3)2 7
tmm — mQB 4 m?Q) 2Ecm cm o 2|p cmH —*cm’
gmax m% +m3 2Ecm cm +2|pcm||—»cm|

The bounds of the t-integration depend on si5 via the relation

o _2\/_\/3_ (ms ++/512)%) (s — (M3 — /s12)?) .

Differential cross sections are obtained by fixing one or more of the kinematical
variables.

Single Differential Cross Sections

tmax

do /%dgbl/ deosty |-PL TR L (B3
dsis 16|pcm|28 (27)5 Jymin 4./312 omlo

do _ 8?‘5";1512/ do, / d cos 0, a1 M2l . (E4)
dt 16’p CmPS 27T " -1 4 Vv S12 cml12
In the expression for do/dt the bounds of the sj9—integration depend on ¢:
~max/min 1
= o [(mly — md)(s — m) (s ) + (s +ml —m) b
B

£2V3 5V — (i + )Pt — (mp — m3)?)]

and (mq +my)? < s19 < (/5 — m3)?

max tmax

do s 2 |p1
d d
d cos 0y 168|p A7 (27)° S gmin o12 4mmin / o1 {

AT sy

$max

do |
d dcosf 20 . E.
ddn 163|p om 2 | 277 /mm S12 /tmm / cos 0, { |/\/l| :|cm12 (E.6)
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512

Figure E.2: Dalitz plot with the bounds of the physical region given. In the case of
identical particles 1 and 2 the line with ss3 = s13 is a symmetry axis of the Dalitz
plot.

Dalitz Plot
A standard representation of the three particle final state is the Dalitz plot. The
double differential cross section
dQO. B T 27 1 -
- | d dcosf [M 2} E.7
d812 dSlg 64‘ﬁ£m|$3/2 (27T)5 /O ¢1 /_1 oS ‘ ’ cml2 ( )

is plotted in a two dimensional plot as a function of s19 and s13. For a given value of

S12, S13 lies between

2
Srl‘r;’ax/mln — (Elcm12 + Egcle)Q . (\/(ElchQ)Q _ m% T \/(Egcm12>2 _ m%)

with Ef™2 = (s15+m} —m3)/2,/s12 and E{™2 = (s — s15 —m3)/2,/512 the energies
of particles 1 and 2 in the centre-of-momentum frame of particles 1 and 2.

Lines with constant sy; = ¢ obey the equation s15 = (s + 30, m? — ¢) — s15. In the
case that 1 and 2 are identical particles, the line with so3 = s13 is a symmetry axis of
the Dalitz plot. It obeys the equation s = s + Zle mf — 2813.

Angular Correlation Function
The angular correlation function W (60, ¢;) is defined as the ratio

dgg/dﬁldQQdTQ
W6 =4 E.8
( 1 ¢1) ™ dQO_/dQQdT2 ( )
The triple differential cross section is given by the expression
d3 B 1 ~Zcm|| 5 cm

Q0 dQydT, — 325 (27)° gem - pem 4 penlZ g gem

|ﬁlcm|



121

T; is the kinetic energy of particle 2 in the centre-of-momentum frame, 63" is the
angle between p;°™ and py™, and €4 5 specifies the solid angle of /.

Integrating over the solid angle of particle 1 leads to the double differential cross
section

o BT 1
dQydTy — 32|pm|\/s (27)5

—’cm|

2m 1
/ d¢1/ d cos 6, 7y Fa |IM]|2.
0 1 Eem + Egm - B cos g

™|
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