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D77, Mainzer Dissertation



Zusammenfassung

In dieser Arbeit wird zu Beginn der Vergleich spezieller Regularisierungsmethoden in der
Quantenfeldtheorie mit dem Verfahren zur störungstheoretischen Konstruktion der S-Matrix
nach Epstein und Glaser hergestellt.

Da dieses Verfahren für ein jedes S-Matrixelement einen endlichen Ausdruck liefert, kann
es selbst als Regularisierungsmethode für divergente Feynmandiagramme herangezogen werden.
Es basiert überdies ausschließlich auf physikalisch motivierten Postulaten an die S-Matrix, so
daß die Äquivalenz von Ergebnissen anderer Regularisierungsverfahren mit den Resultaten der
Epstein-Glaser-Konstruktion notwendig ist, um deren physikalische Zulässigkeit zu überprüfen.
Die Untersuchung dieser Äquivalenz muß dabei im Rahmen der im Epstein-Glaser-Verfahren
verwandten Freiheiten erfolgen, welche bei einem zulässigen Regularisierungsverfahren die Frei-
heiten bei der speziellen Renormierung repräsentieren.

Zusätzlich zur Herausstellung dieser Äquivalenz für das BPHZ-Renormierungsverfahren und
die Methode der Dimensionalen Regularisierung liefert der Vergleich mit der Epstein-Glaser-
Konstruktion ein weiteres wesentliches Resultat: Anhand von Beispielen für Ein- und Mehr-
Schleifen-Diagramme wird demonstriert, wie im Zuge eines neuen praktikablen Verfahrens, des
modifizierten BPHZ-Verfahrens, eine teils erhebliche Vereinfachung der konkreten Durchführung
von Regularisierungen erreicht werden kann.

Dieses Verfahren wird zunächst an den grundlegenden Divergenzen der QED - Elektron-
selbstenergie, Vakuumpolarisation und Vertexkorrektur - exemplarisch dargestellt. Es ist aber
insbesondere auch unverändert bei Diagrammen einer chiralen Theorie anwendbar, wo die Be-
rechnung mittels der vielverwandten Dimensionalen Regularisierung auf das sog. γ5-Problem
führt. Die aufwendige und problematische Fortsetzung der für vier Raumzeitdimensionen spezi-
fischen γ5-Matrix in d Dimensionen ist im modifizierten BPHZ-Verfahren nicht notwendig. Als
Beispiel dient die im Rahmen einer axialen Erweiterung der QED-Lagrangedichte auftretende
sog. U(1)-Anomalie: Hier wird die erhebliche Vereinfachung bei der Regularisierung des von drei
Fermionen gebildeten divergenten Dreiecksgraphen, an zwei Vertices an ein vektorielles und am
dritten an ein axiales Eichboson gekoppelt, demonstriert. Die Berechnung der Wardidentitäten
und der Anomalie schließt sich auf direkte Weise an.

Auf der Stufe von Mehr-Schleifen-Diagrammen erfolgt der Vergleich des Epstein-Glaser-Ver-
fahrens mit der BPHZ-Regularisierung, da diese mit der Zimmermannschen Waldformel eine
allgemeine Regularisierungsvorschrift für Diagramme mit mehreren Schleifen enthält. Nun ist es
insbesondere die unterschiedliche Kombinatorik hinsichtlich der Berücksichtigung von Unterdia-
grammen, die beim Vergleich von Epstein-Glaser- und BPHZ-Regularisierung zu beachten ist: In
der Zimmermannschen Waldformel wird eine größere Klasse von Unterdiagrammen berücksich-
tigt als bei der Epstein-Glaser-Konstruktion. Mehrere Beispiele aus der φ4-Theorie, darunter das
sog. Sunrise-Diagramm, zeigen, daß zu deren Berechnung die in der Waldformel auftretenden
Unterdiagramme auf solche im Sinne von Epstein-Glaser eingeschränkt werden können. Auch
dieses Resultat ist für die Praxis der Regularisierung von Feynmandiagrammen bedeutsam, da
es bereits auf der Stufe der zu berücksichtigenden Unterdiagramme zu einer Vereinfachung der
konkreten Berechnungen führt.
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Kapitel 1

Einleitung

Physikalische Wechselwirkungen von Elementarteilchen erfahren ihre Beschreibung im Rahmen
der Quantenfeldtheorie. Ein zentrales Element dieser Theorie bildet dabei die sog. Streu- oder
S-Matrix, welche die bei einem Streuprozeß erfolgenden Übergänge zwischen physikalischen
Anfangs- und Endzuständen vermittelt.

Eine anschauliche Darstellung solcher Streuprozesse liefern die Feynmandiagramme, welche
die Wechselwirkung der einfallenden Teilchen untereinander durch die Propagation virtueller
Teilchen symbolisieren. Diese bildliche Interpretation der zu beschreibenden Wechselwirkung
spiegelt bereits einen zentralen Punkt in der formalen Konstruktion der zugrundeliegenden S-
Matrix wider: Die Propagation von Teilchen beinhaltet eine bestimmte Zeitordnung von Raum-
zeitpunkten. In der formalen störungstheoretischen Entwicklung der S-Matrix ist es gerade diese
Zeitordnung, welche - naiv angewendet - auf charakteristische Divergenzen, sog. UV-Divergenzen,
in der Quantenfeldtheorie führt: Integrale, welche Wahrscheinlichkeitsamplituden bestimmter
Streuprozesse darstellen, also bestimmte S-Matrixelemente, erweisen sich als divergent.

In der Quantenfeldtheorie existieren zwei konzeptionell unterschiedliche Methoden, diesem
Problem Rechnung zu tragen:

1. Überführung der divergenten in endliche Integrale nach bestimmten Regularisierungsver-
fahren,

2. Ersetzung der naiven Zeitordnung durch eine wohldefinierte Zeitordnungsvorschrift und
Konstruktion einer von vornherein divergenzfreien S-Matrix mittels des Verfahrens von
Epstein und Glaser.

Obwohl mit letzterer Methode ein konstruktives Verfahren zur Entwicklung der S-Matrix
zur Verfügung steht, welches auf einigen wenigen physikalischen Postulaten basiert, verlieren die
unterschiedlichen Regularisierungsverfahren nicht an Bedeutung: In ihrer ursprünglichen For-
mulierung erscheint die Epstein-Glaser-Konstruktion durch ihr wesentliches Element, d. h. die
modifizierte Zeitordnungsvorschrift, im Gegensatz zu den verschiedenen Regularisierungsmetho-
den zur expliziten Berechnung wenig praktikabel; der wesentliche Vorteil des Epstein-Glaser-
Verfahrens liegt indessen in der vollständigen Divergenzfreiheit der konstruierten S-Matrix.
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2 KAPITEL 1. EINLEITUNG

In der Tat bilden die Ergebnisse der Epstein-Glaser-Konstruktion eine Referenz, die es er-
laubt, die Operationen der unterschiedlichen Regularisierungsmethoden auf ihre Zulässigkeit
zu überprüfen: Allein die Forderung der Kausalität der S-Matrix, welche im Epstein-Glaser-
Verfahren die Zeitordnung der Propagatoren impliziert, liefert - zusammen mit der Lorentzin-
varianz - für jedes Feynmandiagramm einen endlichen Wert, welcher allerdings aus einer be-
stimmten, der Konstruktion innewohnenden Freiheit heraus speziell gewählt werden muß; erst
die an die Regularisierung anschließende sog. Renormierung verfügt schließlich im Sinne einer
physikalischen Interpretation über diese Freiheit. Für ein sinnvolles Regularisierungsverfahren
ist nun zunächst die Übereinstimmung seiner Resultate mit denen des Epstein-Glaser-Verfahrens
innerhalb dieser Freiheit zu fordern. Während die Endlichkeit der regularisierten Integrale Teil
der Aussage der unterschiedlichen Regularisierungsverfahren ist, fehlt aber gerade eine Unter-
suchung ihrer physikalischen Zulässigkeit in o. a. Sinne.

Das Ziel dieser Arbeit ist, die Vorteile bestimmter, hinsichtlich konkreter Berechnungen prak-
tikabler Regularisierungsverfahren mit der Wohldefiniertheit und der physikalischen Motivation
der Epstein-Glaser-Konstruktion zu verbinden. Die zu untersuchende Äquivalenz von Regulari-
sierungsmethoden zum Epstein-Glaser-Verfahren ermöglicht es wiederum, die Regularisierung-
verfahren bei einer Vielzahl von Anwendungen erheblich zu vereinfachen. Insbesondere auch
die Berechnung von Mehr-Schleifen-Diagrammen folgt im Epstein-Glaser-Formalismus einer be-
stimmten Kombinatorik, welche mit der entsprechenden des betrachteten Regularisierungsver-
fahrens verglichen werden muß; auch in diesem Fall ist die Übereinstimmung der Ergebnisse
im Rahmen der bei der Epstein-Glaser-Konstruktion verbleibenden Freiheiten zu fordern, und
dieser Vergleich resultiert in der Anwendung gleichfalls in starken Vereinfachungen.

Als ein zentrales Element dieser Arbeit faßt das hier vorgestellte modifizierte BPHZ-Ver-
fahren diese Ergebnisse zu einer neuen konsistenten und praktikablen Regularisierungsmethode
zusammen.

Der Aufbau der Arbeit ist wie folgt vorgenommen:

In Kapitel 2 wird die Beschreibung von Streuprozessen durch die S-Matrix innerhalb des
Formalismus der Zweiten Quantisierung wiederholt. Der Versuch einer Darstellung der rela-
tivistischen Prozesse in Analogie zum Wechselwirkungsbild der klassischen Quantenmechanik
und die im Zuge dessen resultierende naive Zeitordnungsvorschrift in der störungstheoretischen
Entwicklung der S-Matrix führen auf die bekannten UV-Divergenzen der Matrixelemente und
werden hier lediglich als Motivation für die Postulate des in Kapitel 3 vorgestellten Epstein-Gla-
ser-Verfahrens angeführt.

Im ersten Teil dieses dritten Kapitels wird der mit diesen Postulaten folgende Konstruk-
tionsprozeß nach Epstein und Glaser erläutert, wobei der Schwerpunkt auf der Definition der
S-Matrix als operatorwertige Distribution gelegt ist. Erst die Auswertung auf sog. Testfunktio-
nen und die Bildung des Matrixelementes bzgl. physikalischer Anfangs- und Endzustände liefert
den direkten Vergleich zu den Ausgangspunkten der Regularisierungsverfahren, d. h. den kon-
kreten divergenten Integralen. Die Zeitordnung wird in jeder Ordnung der Entwicklung nach der
Anzahl der Vertices durch die Forderung nach der Kausalität der S-Matrix impliziert; die kon-
krete Realisierung erfolgt mittels des Prozesses des Distributionensplittens, welcher im Anschluß
erläutert wird. Über das ursprüngliche Epstein-Glaser-Verfahren hinaus gehen die beiden letzten
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Unterkapitel dieses Kapitels 3: Hinsichtlich des Vorhabens, die Äquivalenz bestimmter Regu-
larisierungsverfahren zur Epstein-Glaser-Methode zu überprüfen, ist es insbesondere nützlich,
letztere selbst als Regularisierungsmethode aufzufassen; diese Interpretation ist u.a. in [PRA]
und [PIN] ausgeführt und wird später im Impulsraum als Äquivalenzkriterium verwendet. Zum
Vergleich weiterhin unabdingbar ist die Kenntnis der bei der Epstein-Glaser-Regularisierung
verbleibenden Freiheiten; sie werden zunächst vollständig angegeben, um dann im modifizierten
Epstein-Glaser-Verfahren von [GRB] auf eine Einschränkbarkeit hin überprüft zu werden, welche
sich allerdings für die endgültige physikalische Renormierung i. a. als zu restriktiv erweist.

Hierbei - sowie auch im weiteren Verlauf der Arbeit - wurden die Ergebnisse der im Rahmen
dieser Betrachtungen durchgeführten expliziten Berechnungen mittels des Mathematikprogram-
mes Maple V überprüft.

Kapitel 4 stellt mit dem BPHZ-Verfahren das in Hinblick auf die Zielstellung der Arbeit wich-
tigste Renormierungsverfahren vor. Wie bereits z. B. in [GRB] erwähnt, erweist sich die in diesem
Verfahren enthaltene Regularisierungsvorschrift auf der Stufe von Ein-Schleifen-Diagrammen -
einschließlich der zur Verfügung stehenden Freiheiten - als dem in den Impulsraum übertrage-
nen Epstein-Glaser-Verfahren äquivalent. Darüberhinaus enthält das BPHZ-Verfahren mit der
sog. Waldformel eine allgemeine Vorschrift zur Regularisierung von Mehr-Schleifen-Diagrammen,
deren Kombinatorik später gleichfalls mit der des Epstein-Glaser-Verfahrens verglichen werden
soll. Obwohl es strukturell übersichtlich ist, hat das BPHZ-Verfahren den Nachteil, auf hinsicht-
lich der expliziten Berechnung aufwendige Integrale zu führen. Praktikabler in der konkreten
Anwendung ist dagegen die Methode der Dimensionalen Regularisierung, welche im folgenden
Kapitel 5 erläutert wird.

Die Dimensionale Regularisierung ist ein Verfahren, welches die auftretenden Divergenzen
zunächst durch eine (infinitesimale) Abweichung von der ursprünglichen Theorie beseitigt und
anschließend die parametrisierten Terme derart modifiziert, daß deren Wohldefiniertheit auch
nach der Rückkehr zur eigentlichen Theorie erhalten bleibt. Die Äquivalenz zum Epstein-Glaser-
Verfahren wird anhand eines Beispiels demonstriert; dieser Vergleich wiederum weist auf die
Möglichkeit hin, die praktischen Vorzüge der Dimensionalen Regularisierung zu nutzen, ohne die
zugrundeliegende Theorie formal auf unphysikalische Dimensionen erweitern zu müssen. Dazu
sei als eigentliche regularisierende Operation diejenige des BPHZ-Verfahrens angewandt: In Ka-
pitel 6 wird als eine neue Vorgehensweise das modifizierte BPHZ-Verfahren vorgestellt, welches
die Praktikabilität der Dimensionalen Regularisierung mit der strukturellen Übersichtlichkeit
des BPHZ-Verfahrens hinsichtlich dessen Äquivalenz zum Epstein-Glaser-Verfahren vereint.

Drei bekannte Beispiele aus der Quantenelektrodynamik demonstrieren das modifizierte
BPHZ-Verfahren im zweiten Teil des sechsten Kapitels :

• Elektronselbstenergie,

• Vakuumpolarisation und

• Vertexkorrektur.

Die Einführung eines Massenparameters als abschließender Schritt des Verfahrens ermöglicht
den direkten Vergleich mit dem entsprechenden Ergebnis der Dimensionalen Regularisierung.
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Dieser neue Parameter erscheint hier allerdings als eine im Rahmen der Freiheiten des Regulari-
sierungsverfahrens mögliche Verallgemeinerung des Ergebnisses, und es bedarf seiner Einführung
nicht, um die physikalische Dimension beim Übergang zu Integrationen in abweichender Dimen-
sion zu bewahren, wie es bei der Dimensionalen Regularisierung der Fall ist.

Ein wesentlicher Vorzug des modifizierten BPHZ-Verfahrens gegenüber der Dimensionalen
Regularisierung wird insbesondere dort deutlich, wo die formale Erweiterung der Theorie auf
unphysikalische Dimensionen auf konzeptionelle Probleme führt, insbesondere also bei einer chi-
ralen Theorie, wo neben der Algebra der Diracschen Gammamatrizen in der QED auch die für
den vierdimensionalen Minkowskiraum spezifische Matrix γ5 einer aufwendigen Neudefinition
bedarf.

Die unveränderte Anwendbarkeit des modifizierten BPHZ-Verfahrens in diesem Fall wird in
Kapitel 7 demonstriert:

• Berechnung der U(1)-Anomalie.

Als Beispiel dient eine axiale Erweiterung der QED-Lagrangedichte; hier tritt für den sog. Drei-
ecksgraphen, welcher drei innere Fermionen, an zwei vektorielle und ein axiales Eichboson kop-
pelnd, beschreibt, eine sog. U(1)-Anomalie auf. Diese kann, ebenso wie die beiden die Erhaltung
der Vektorströme bei der vektoriellen Kopplung beschreibenden Ward-Identitäten, auf natürli-
che Weise nach der Regularisierung des divergenten Dreiecksgraphen mittels des modifizierten
BPHZ-Verfahrens berechnet werden.

Mit Kapitel 8 beginnt die Betrachtung von Mehr-Schleifen-Diagrammen. Da mit der Zim-
mermannschen Waldformel eine allgemeine Regularisierungsvorschrift im Rahmen der BPHZ-
Regularisierung gegeben ist, bildet die in diesem Verfahren enthaltene Kombinatorik den Gegen-
stand der folgenden vergleichenden Betrachtungen. Auch für Mehr-Schleifen-Diagramme liefert
das konstruktive Epstein-Glaser-Verfahren innerhalb der verbleibenden Freiheiten endliche Er-
gebnisse; die dortige Entwicklung der S-Matrix nach der Anzahl von Vertices impliziert insbe-
sondere eine anschauliche Definition von Unterdiagrammen: Ein Epstein-Glaser-Unterdiagramm
entstammt der Konstruktion einer im Vergleich zu der des Gesamtdiagrammes niedrigeren Ver-
texordnung. Im Gegensatz hierzu ist ein BPHZ-Unterdiagramm als ein Anteil des Gesamtdia-
grammes mit einer niedrigeren Anzahl von Schleifen definiert: Die physikalische Interpretation
des BPHZ-Verfahrens besteht in der Modifikation der zugrundeliegenden Lagrangedichte durch
sukzessive Addition von Korrekturtermen, sog. Countertermen, steigender Ordnung in einer for-
malen Entwicklung nach ~, und auf der Stufe der Feynmandiagramme ist die Schleifenordnung
mit der ~-Ordnung identisch. In diesem achten Kapitel wird nun ein erstes Beispiel für die
Unterschiedlichkeit dieser beiden Arten der Berücksichtigung von Unterdiagrammen vorgestellt:

• Berechnung des Sunrise-Diagrammes.

Als ein Diagramm mit nur zwei Vertices enthält es kein divergentes Epstein-Glaser-Unterdia-
gramm, wohl aber, da je zwei der drei inneren Linien eine Schleife bilden, drei BPHZ-Unter-
diagramme. Der Vergleich mit dem Ergebnis des modifizierten BPHZ-Verfahrens zeigt, daß die
Berücksichtigung dieser sog. reinen BPHZ-Unterdiagramme - zumindest bei der hier verwandten
Wahl des Standardimpulsflusses - nicht notwendig ist.
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Tatsächlich unterstützen auch weitere Beispiele höherer Vertexordnung die Annahme, daß
die in der Zimmermannschen Waldformel zu berücksichtigenden Unterdiagramme auf solche im
Sinne von Epstein-Glaser einschränkbar sind. In Kapitel 9 wird hierzu zunächst die Epstein-
Glaser-Regularisierung bis zur dritten Ordnung abgeleitet. Darin enthalten sind insbesondere
drei Beispieldiagramme aus der skalaren φ4-Theorie in d = 4 bzw. d = 6 Dimensionen, an-
hand derer im zweiten Teil dieses Kapitels der Vergleich mit den Ergebnissen der Waldformel
hergestellt wird:

• Zwei-Schleifen-Beitrag zur Vierpunktfunktion in vier Dimensionen,

• Zwei-Schleifen-Beitrag zur Vierpunktfunktion in sechs Dimensionen,

• Drei-Schleifen-Beitrag zum Propagator in sechs Dimensionen.

Während die Berücksichtigung der Unterdiagramme beim ersten Beispiel, welches ausschließ-
lich solche im Sinne von Epstein-Glaser enthält, in beiden Regularisierungsverfahren auf gleiche
Weise erfolgt, zeigt sich bei den beiden anderen Beispielen wiederum, daß die Beiträge der
reinen BPHZ-Unterdiagramme nicht zum Resultat beitragen. Auch diese Vergleiche erfolgen
naturgemäß für eine bestimmte und geeignete Wahl des Standardimpulsflusses in der Zimmer-
mannschen Waldformel.

Der Vergleich mit den Ergebnissen der Epstein-Glaser-Regularisierung liefert somit bei Bei-
spielen von Mehr-Schleifen-Diagrammen den zusätzlichen Vorteil, die Beiträge von Unterdia-
grammen auf diejenigen einschränken zu können, welche in der Epstein-Glaser-Konstruktion
auftreten, woraus i. a. eine erhebliche Vereinfachung des Integranden resultiert. Dieser Vergleich
erfolgt am Beispiel zwar für einen speziellen, dazu am besten geeigneten Standardimpulsfluß;
es besteht allerdings die Vermutung, daß die o. a. Einschränkung generell möglich ist: Auch im
Formalismus der Counterterme können in den Feldern normalgeordnete Korrekturterme einer
modifizierten Wechselwirkungslagrangedichte nur Propagatoren zu denjenigen Vertices gene-
rieren, welche bei der störungstheoretischen Entwicklung neu hinzukommen, und sind daher
Counterterme zu Epstein-Glaser-Unterdiagrammen des Gesamtdiagrammes.

Zusammenfassend läßt sich feststellen, daß in der Literatur die beiden zu Beginn dieses
Kapitels charakterisierten Richtungen weitgehend unabhängig voneinender existieren: Während
unterschiedliche Regularisierungsmethoden zunächst als teils willkürlich anmutende Operatio-
nen an divergenten Integralen angewandt werden, erscheint das Epstein-Glaser-Verfahren als
eine rein theoretische Konstruktion ohne Nutzen für explizite Berechnungen. Diese Arbeit ist
dagegen denjenigen zuzuordnen, welche die beiden Richtungen zu verbinden suchen. Sie greift die
z. B. in [PRA] und [GRB] dargestellten Überlegungen hinsichtlich eines Vergleiches von Epstein-
Glaser-Regularisierung und insbesondere BPHZ-Regularisierung auf, um daraus zweierlei Nutzen
zu ziehen: Zusätzlich zum theoretischen Verständnis einer speziellen Regularisierungmethode,
das der Vergleich mit der Epstein-Glaser-Konstruktion sowohl hinsichtlich der regularisierenden
Manipulationen als auch der Kombinatorik bei Mehr-Schleifen-Diagrammen schafft, liefert diese
Herausstellung der Äquivalenz insbesondere Vereinfachungen in den expliziten Berechnungen;
diese fassen das modifizierte BPHZ-Verfahren und die vereinfachte Anwendung der Waldformel
zusammen.





Kapitel 2

Zweite Quantisierung und die

Berechnung von Streuprozessen

2.1 Zweite Quantisierung am Beispiel des reellen freien Klein-

Gordon-Felds

Im Gegensatz zur klassischen Quantenmechanik können die Lösungen der relativistischen Klein-
Gordon- bzw. Dirac-Gleichung nicht ohne weiteres als Wahrscheinlichkeitsamplituden einzelner
Bosonen bzw. Fermionen interpretiert werden. Mit der sog. Zweiten Quantisierung, der Erset-
zung von klassischen Feldern durch Feldoperatoren, wird der Übergang zu einer Vielteilchen-
Theorie bewerkstelligt, die dieser Interpretation nicht bedarf: In der Quantenfeldtheorie wird ein
erst neu zu definierender Fockraum als Hilbertraum der freien Teilchen interpretiert.

Im folgenden sei kurz die Vorgehensweise bei der Quantisierung des reellen freien Klein-
Gordon-Felds skizziert (für Einführungen in die Quantenfeldtheorie sei z. B. auf [BJD],[SWL]
verwiesen):

Ausgehend von der Lagrangedichte

L =
1

2

(

∂φ

∂xµ

∂φ

∂xµ
−m2φ2

)

, (2.1)

welche auf die Klein-Gordon-Gleichung

(

� +m2
)

φ(x) = 0 (2.2)

führt, werden zwischen der kanonischen Variablen φ(x) und ihrem kanonisch konjugierten Impuls
π = ∂L

∂φ̇
= φ̇ folgende gleichzeitige Vertauschungsrelationen postuliert:

[

φ(x, t), φ(x′, t)
]

= 0,
[

π(x, t), π(x′, t)
]

= 0,
[

π(x, t), φ(x′, t)
]

= −iδ3(x − x′). (2.3)

7
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Zur Definition eines diese Kommutatorrelationen erfüllenden Feldoperators φ(x) erfolgt nun über
dessen Fourierzerlegung nach Ebene-Wellen-Lösungen ein Übergang in den Impulsraum:

φ(x, t) =

∫

d3k
√

(2π)32Ek

{

e−ikxa(k) + eikxa†(k)
}

= φ+(x, t) + φ−(x, t),

k0 = Ek =
√

k2 +m2. (2.4)

Auf der Stufe der hierdurch eingeführten Operatoren a(k) und a†(k) wird dann die Operator-
wirkung definiert; die zwischen diesen resultierenden Kommutatorrelationen

[a(k), a(k′)] = 0,

[a†(k), a†(k′)] = 0,

[a(k), a†(k′)] = 2Ekδ
3(k− k′) (2.5)

legen es nahe, in Analogie zur Besetzungszahldarstellung des quantenmechanischen harmoni-
schen Oszillators einen Hilbertraum Fn0 wie folgt zu konstruieren: Ein Zustand ψ wird mittels
Anwendung der Erzeugungsoperatoren a†(k) auf einen Vakuumzustand |0〉, definiert durch die
Wirkung der Vernichtungsoperatoren gemäß a(k)|0〉 = 0, aufgebaut:

ψ =

{

c0 +

n0
∑

n=1

1√
n!

∫

d3k1

2Ek1

· · · d
3kn

2Ekn

cn(k1, ..., kn)a†(k1) · · · a†(kn)

}

|0〉,

k0
n =

√

k2
n +m2. (2.6)

Die Elemente dieses Fockraumes werden als Linearkombinationen von n-Teilchen-Zuständen
interpretiert; für quadratintegrable Impulsverteilungen cn(k1, ..., kn) sind sie normierbar:

〈ψ|ψ〉 = |c0|2 +

n0
∑

n=1

∫

d3k1

2Ek1

· · · d
3kn

2Ekn

|cn(k1, ..., kn)|2. (2.7)

Die Betrachtung von Zuständen mit diskreten Impulsen p1, ..., pn erfordert die Einschließung des
Grenzfalls cn(k1, ..., kn) = 2Ek1 · · · 2Eknδ

3n(k1 − p1, ...,kn − pn).

Auf dem derartig konstruierten Fockraum werden nun die Operatoren

φ+(g) =

∫ ∞

−∞
d4xφ+(x)g(x)

=

∫

d3k

2Ek

√
2πa(k)ǧ(k) (2.8)

und

φ−(g) =

∫ ∞

−∞
d4xφ−(x)g(x)

=

∫

d3k

2Ek

√
2πa†(k)ǧ(−k) (2.9)
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für jedes Element

g(x) =

∫

d4k

(2π)2
eikxǧ(k) (2.10)

des Schwarzschen Funktionenraums S(R4) von im Unendlichen schnell fallenden Funktionen
als Abbildungen von Fn0 nach Fn0∓1 definiert. Als ein linear-stetiges Funktional über S erfah-
ren die Objekte φ(x) = φ+(x) + φ−(x) folglich ihre Definition als temperierte operatorwertige
Distributionen: φ ∈ S ′(R4).

Eigentlicher Gegenstand des Interesses sind nun allerdings nicht die freien, sondern die phy-
sikalischen, miteinander wechselwirkenden Felder; insbesondere die experimentell bedeutsame
Klasse der Streuexperimente sollte im Formalismus der Zweiten Quantisierung eine sinnvolle
Beschreibung erfahren.

Im folgenden sei daher demonstriert, wie die Erweiterung des Formalismus der freien Felder
auf die Beschreibung von Streuprozessen vorgenommen wird. Dabei sollen zuerst einige in der
Literatur häufig zitierte Analogieschlüsse zur klassischen Quantenmechanik als Motivation der
Voraussetzungen im exakten Verfahren von Epstein und Glaser interpretiert werden.

2.2 Konstruktion der S-Matrix mittels naiver Zeitordnung

In der nichtrelativistischen Quantenmechanik liefert das sog. Wechselwirkungs- oder Diracbild
einen sinnvollen Rahmen zur Beschreibung von Übergangswahrscheinlichkeiten, wenn der ge-
samte Hamiltonoperator aus der Summe eines das freie System beschreibenden Anteils H0 und
eines Störterms H1(t) besteht:

H = H0 +H1(t). (2.11)

Den Zusammenhang zwischen Dirac- und Schrödingerbild vermittelt eine unitäre Transformati-
on, welche die aus dem freien Anteil des Hamiltonoperators resultierende Zeitabhängigkeit der
Zustände im Schrödingerbild auf die in diesem konstanten Operatoren A überträgt, während
der Wechselwirkungsanteil die zeitliche Entwicklung der Diraczustände φD(t) bestimmt, so daß
gilt:

i~
d

dt
AD(t) = [AD(t),H0] + i~

∂

∂t
AD(t), (2.12)

i~
d

dt
|φD(t)〉 = H1,D(t)|φD(t)〉. (2.13)

Der Zeitentwicklungsoperator UD(t, t0), welcher gemäß |φD(t)〉 = UD(t, t0)|φD(t0)〉 den Zustand
|φD(t0)〉 in den Zustand |φD(t)〉 überführt, ist gegeben durch:

UD(t, t0) = T exp

(

− i

~

∫ t

t0

dt′H1,D(t′)

)

. (2.14)
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Die Wahrscheinlichkeitsamplitude für den Übergang eines zur Zeit t̃ vorliegenden Zustands |ψ(t̃)〉
in einen Zustand |φ(t)〉 wird folglich im Diracbild durch den Wechselwirkungsanteil des Hamil-
tonoperators bestimmt:

〈φ(t)|ψ(t)〉 ≡ 〈φD(t)|ψD(t)〉 = 〈φD(t)|UD(t, t̃)ψD(t̃)〉. (2.15)

Unter der Voraussetzung, daß der Störterm H1(t) für t→ ±∞ hinreichend schnell verschwindet,
können in diesen Grenzwerten gemäß (2.12) und (2.13) die Diracoperatoren sowie insbesondere
die Diraczustände mit denen des Heisenbergbilds im freien System identifiziert werden: Die
Operatoren erfüllen dann die Heisenberggleichungen, während die Zustände zeitunabhängig sind.

Es sind somit die Basiselemente der freien Zustände, zwischen denen die S-Matrix Übergänge
vom Anfangszustand |i〉 in den Endzustand |f〉 beschreibt; ihre Definition erfolgt über ihre
Elemente gemäß

〈f |UD(∞,−∞)|i〉 = 〈f |S|i〉 = Sfi. (2.16)

Aus den vorangegangenen Überlegungen kann zwar prinzipiell keine Schlußfolgerung für eine
erst zu definierende quantenfeldtheoretische Beschreibung von Streuprozessen gezogen werden.
Verhindert nun aber ein zusätzlicher Wechselwirkungsterm in der Lagrangedichte die direkte
Lösbarkeit der resultierenden Feldgleichungen, so ist der Versuch naheliegend, diesen als einen
Störterm für das - lösbare - freie System zu behandeln. Im folgenden sei anhand der sog. φ4-
Theorie, eines Modells für ein skalares neutrales Feld mit einem Selbstwechselwirkungsterm,
skizziert, wie die Definition von Streumatrixelementen bezüglich einer Basis von freien Feldern
analog zum oben beschriebenen nichtrelativistischen Fall motiviert wird:

Ausgehend von der Lagrangedichte

L =
1

2

(

∂φ

∂xµ

∂φ

∂xµ
−m2φ2

)

− g

4!
φ4 = L0 + L1, L1 = − g

4!
φ4, (2.17)

werden für das wechselwirkende Feld φ und dessen konjugierten Impuls φ̇ versuchsweise die
gleichen kanonischen Vertauschungsrelationen (2.3) postuliert wie im freien Fall. Es resultiert
insbesondere die Relation

d

dt
φ(x) = −i[φ(x),H0], H = H0 +H1 = H0 − L1, (2.18)

welche als Bewegungsgleichung im Wechselwirkungsbild interpretiert werden soll; auch die Ha-
miltonoperatoren H0 und H1 sind damit, als Funktionen des Feldes φ, diejenigen im Diracbild.
Die noch zu definierenden Zustände werden entsprechend als Diraczustände gewählt, deren zeit-
liche Entwicklung somit der Wechselwirkungsterm H1 bestimmt. Es ist nun jedoch nicht der
Zeitentwicklungsoperator (2.14), dessen Wirkung auf wechselwirkende Basiszustände definiert
wird; eine weitere Annahme fließt an dieser Stelle in die heuristischen Überlegungen ein: Für die
Definition der S-Matrix werden die freien mit den wechselwirkenden Feldern identifiziert.

Im nichtrelativistischen Streuprozeß gehen unter der Voraussetzung eines hinreichend schnell
abfallenden Störterms in der Definition (2.16) die Basiszustände |i〉 und |f〉 im Grenzfall t→ ±∞
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in die des freien Systems über. Hier aber wird nun die zusätzliche Annahme gemacht, daß
auch die wechselwirkenden Feldoperatoren durch die auf freie Basiszustände wirkenden freien
Feldoperatoren ersetzt werden.

Erst an dieser Stelle erfährt die S-Matrix - versuchsweise - ihre Definition: Unter Verwendung
der Entwicklung (2.4) für die freien Feldoperatoren wirkt der Operator

S(g) = T

(

exp

(

−i
∫

d4xH1(x)g(x)

))

=
∞
∑

n=0

(−i)n

n!

∫

d4x1...d
4xnT (H1(x1) · · · H1(xn)) g(x1)...g(xn), g ∈ S(R4), (2.19)

auf Elemente des in Kapitel 2.1 definierten freien Fockraums. Für dessen Basiselemente |i〉 und
|f〉 liefert schließlich im Grenzwert g(x) → 1 der Ausdruck

〈f |S|i〉 = Sfi (2.20)

die vorläufige Definition der Streumatrixelemente.

Sie beinhaltet eine naive Form der Zeitordnung von Operatoren und führt im Falle der φ4-
Theorie bei der Berechnung von Matrixelementen auf UV-Divergenzen, d. h. auf Integrale im
Impulsraum, die für große Impulse divergieren. Es ist das Konstruktionsverfahren von Epstein
und Glaser, das die Ursache dieser speziellen Divergenzen, die auch in anderen Quantenfeldtheo-
rien, z. B. der Quantenelektrodynamik, auftreten, erklärt und gleichzeitig aus einigen wenigen
Grundannahmen heraus eine S-Matrix liefert, welche in allen Ordnungen einer formalen Ent-
wicklung nach der Kopplungskonstanten frei von UV-Divergenzen ist.





Kapitel 3

Das Verfahren von Epstein und

Glaser

3.1 Die Konstruktion der S-Matrix

Die Methode von Epstein und Glaser, von den Autoren in [EPG] ausgeführt, wird in [SRF]
ausführlich behandelt. Sie basiert auf einem störungstheoretischen Ansatz, bei dem die Streu-
matrix per Definition auf dem Raum der freien Zustände operiert. Einige Eigenschaften, die
bereits in die heuristischen Überlegungen von Kapitel 2.2 eingegangen sind, werden als Postu-
late an die zu definierende S-Matrix übernommen:

1. Der Operator S(g) ist als eine formale Potenzreihe definiert:

S(g) = 1 +

∞
∑

n=1

1

n!

∫

d4x1...d
4xnTn(x1, ..., xn)g(x1) · · · g(xn). (3.1)

Dabei beschreibt die Ortsintegration die Wirkung der operatorwertigen Distributionen
Tn(x1, ..., xn) auf die Funktion g(x1) · · · g(xn) ∈ S(R4n).

2. S(g) ist Poincaré-kovariant: Sei U(a,Λ) eine unitäre Darstellung der Poincarégruppe auf
dem Fockraum der freien Zustände,

(U(a,Λ)c)n(p1, ..., pn) = eia
Pn

i=1 picn(Λ−1p1, ...,Λ
−1pn). (3.2)

Für eine Poincarétransformation x′ = Λx+a folgt dann mit dem Transformationsverhalten
der Testfunktion,

g̃(x′) = g(Λ−1(x′ − a)), (3.3)

die Kovarianzbedingung

U(a,Λ)S(g)U−1(a,Λ) = S(g̃). (3.4)

13
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3. Kausalität: Es gelte für zwei Testfunktionen g1(x) und g2(x)

supp g1 < supp g2, (3.5)

d. h. die beiden Träger werden durch eine raumartige Fläche derart voneinander getrennt,
daß insbesondere ein Bezugssystem existiert, in dem alle Punkte des Trägers von g1 kleinere
Zeitkomponenten haben als die des Trägers von g2. Die Kausalitätsbedingung lautet dann:

S(g1 + g2) = S(g2)S(g1). (3.6)

4. Unitarität:

S(g)S†(g) = S†(g)S(g) = 1. (3.7)

Das Epstein-Glaser-Verfahren liefert nun eine rekursive Konstruktionsvorschrift für die ope-
ratorwertigen Distributionen Tn(x1, ..., xn) in der Entwicklung (3.1), welche allein aus der Kau-
salitätsbedingung 3 und unter Verwendung der Lorentzkovarianz abgeleitet wird. Dieses exak-
te Verfahren, das in jeder Ordnung n wohldefinierte Distributionen liefert und im Grenzwert
g(x) → 1 auf S-Matrixelemente führt, die frei von UV-Divergenzen sind, sei im folgenden kurz
skizziert:

Auf der Stufe der Distributionen Tn(x1, ..., xn) folgt aus der Forderung der Kausalität die
Bedingung

Tn(x1, ..., xn) = Ti(x1, ..., xi)Tn−i(xi+1, ..., xn) für {x1, ..., xi} > {xi+1, ..., xn}, (3.8)

d. h. die Tn(x1, ..., xn) sind zeitgeordnete Produkte in dem Sinne, daß (3.8) gilt. Eine naive
Zeitordnung gemäß

Tn(x1, ..., xn) = T (T1(x1) · · · T1(xn))

=
∑

π(1,...,n)

θ(x0
π1

− x0
π2

) · · · θ(x0
πn−1

− x0
πn

)T1(xπ1) · · · T1(xπn) (3.9)

ist jedoch i. a. nicht definiert, der Versuch ihrer Definition im Rahmen der heuristischen Überle-
gungen, resultierend in (2.19), führt gerade auf die dortigen UV-Divergenzen. Im Epstein-Glaser-
Formalismus hingegen erfolgt eine exakte Definition der Tn(x1, ..., xn), welche (3.8) erfüllen.

Wesentlich für das gesamte Verfahren sind die Eigenschaften der Tn(x1, ..., xn) als temperierte
operatorwertige Distributionen (als Einführungen in die Theorie von Distributionen seien hier
insbesondere [GES] und [GRO] angeführt). Insbesondere besitzt die Schreibweise Tn(x1, ..., xn)
nur einen formalen Sinn als der Ausdruck, welcher mit einer Testfunktion h(x1, ..., xn) = g(x1) ·
· · g(xn) ∈ S(R4n) gewichtet und n-fach über den Minkowskiraum integriert den Wert Tn(h)
des Funktionals liefert. Gemäß (3.1) sind die Tn(x1, ..., xn) in diesem Sinne symmetrisch in den
Argumenten, weshalb diese im folgenden durch die ungeordnete Menge X = {xi, i = 1, ..., n}
ersetzt werden sollen.

Ein weiteres wesentliches Element der Epstein-Glaser-Konstruktion ist die Produktbildung
von operatorwertigen Distributionen. Zur Erläuterung sei diese Problemstellung zunächst für
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einfache skalare Distributionen erläutert: Es seien zwei linear-stetige Funktionale A(g) und B(g)
über dem Raum der Schwarzfunktionen g(x) ∈ S(R) gemäß

A(g) =

∫

dxA(x)g(x), B(g) =

∫

dxB(x)g(x) (3.10)

definiert. Ein Produkt (AB)(g) kann nur dann über

(AB)(g) =

∫

A(x)B(x)g(x) (3.11)

definiert werden, wenn wenigstens eine der beiden Distributionen A und B regulär ist, d. h. der
Ausdruck A(x) bzw. B(x) nicht nur formale Bedeutung hat, sondern tatsächlich eine stetige
Funktion über R darstellt. Auch für nicht-reguläre, sog. singuläre Distributionen definiert ist
hingegen die Bildung des direkten Produkts

(A×B)(φ) = A(B(φ)) =

∫

dxA(x)

(∫

dyB(y)φ(x, y)

)

(3.12)

auf dem Raum der Schwarzfunktionen S(R2). Für Produkte zweier Testfunktionen g, h ∈ S(R)
gilt überdies die einfache Beziehung

(A×B)(gh) = A(gB(h)) = A(g)B(h) =

(∫

dxA(x)g(x)

)(∫

dyB(y)h(y)

)

. (3.13)

Sämtliche von nun an auftretenden Distributionenprodukte sind stets als direkte Produkte auf-
zufassen; sie sind insbesondere auch für auf verschiedendimensionalen Schwarzräumen definierte
Funktionale erklärt. Auf der Stufe der formalen Ortsabhängigkeit ist das direkte Produkt durch
unterschiedliche Ortsargumente in den einzelnen Faktoren gekennzeichnet, wie es der Vergleich
von (3.11), formal A(x)B(x), mit der symbolischen Schreibweise A(x)B(y) in (3.12) demon-
striert.

Im Verfahren von Epstein und Glaser ist es nun zunächst das inverse Funktional S(g)−1, in
dessen formaler Potenzreihe

S(g)−1 = 1 +
∞
∑

n=1

1

n!

∫

d4x1 · · · d4xnT̃n(x1, ..., xn)g(x1) · · · g(xn) (3.14)

die Distributionen T̃n(x1, ..., xn) = T̃n(X) über direkte Produkte erklärt sind; die Auswertung
der S(g)−1 definierenden Relation

S(g)S(g)−1 = S(g)−1S(g) = 1 (3.15)

für die Potenzreihenentwicklungen liefert:

T̃1(x1) = −T1(x1),

T̃2(x1, x2) = −T2(x1, x2) + T1(x1)T1(x2) + T1(x2)T1(x1),

T̃3(x1, x2, x3) = −T3(x1, x2, x3) + T1(x1)T2(x2, x3) + T1(x2)T2(x1, x3) + T1(x3)T2(x1, x2)

+T2(x1, x2)T1(x3) + T2(x1, x3)T1(x2) + T2(x2, x3)T1(x1)

−T1(x1)T1(x2)T1(x3) − T1(x2)T1(x3)T1(x1) − T1(x3)T1(x1)T1(x2)

−T1(x3)T1(x2)T1(x1) − T1(x2)T1(x1)T1(x3) − T1(x1)T1(x3)T1(x2), (3.16)
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allgemein ausgedrückt durch die Beziehung

T̃n(x1, ..., xn) = T̃n(X) =

n
∑

i=1

(−1)i
∑

Pi

Tn1(X1) · · · Tni(Xi). (3.17)

Hierbei wird die ungeordnete Menge X = {xi, i = 1, ..., n} in disjunkte, nichtleere und gleichfalls
ungeordnete Untermengen X1 bis Xi zerlegt,

X = X1 ∪ ... ∪Xi, (3.18)

und dann über alle möglichen Zerlegungen Pi summiert; die Indizierungen der Distributionen
Tn entsprechen dabei stets der Ordnung n der ungeordneten Menge im Argument.

Überdies setzt die Bildung direkter Produkte von operatorwertigen Distributionen, wie es
die Bestimmung der T̃n(x1, ..., xn) gemäß (3.17) erfordert, voraus, daß auch die Produkte der
nach Anwendung auf die Testfunktionen g(x1) · · · g(xn) resultierenden Operatoren wohldefiniert
sind. Dies ist der Fall, wenn für alle n die auf einen Fockraum Fn0 wirkenden Operatoren
Tn(h), h(x1, ..., xn) = g(x1) · · · g(xn), diesen auch wiederum auf einen bestimmten Fockraum
Fn1(n) abbilden.

Die rekursive Konstruktion der Tn(x1, ..., xn) findet nun folgendermaßen statt: Es seien be-
reits alle Tm(X) : Fn0 → Fn1(m) mit Index 1 ≤ m ≤ n − 1, n ≥ 2 bekannt und erfüllen die
Bedingungen, welche die Postulate 1 bis 4 an die S-Matrix auf der Stufe dieser Funktionale er-
geben. Dann lassen sich durch direkte Produktbildung folgende operatorwertige Distributionen
angeben:

A′
n(x1, ..., xn) =

∑

P2

T̃k(X)Tn−k(Y, xn), (3.19)

R′
n(x1, ..., xn) =

∑

P2

Tn−k(Y, xn)T̃k(X). (3.20)

Die Partitionen P2 sind hierbei Zerlegungen der ungeordneten Menge {x1, ..., xn−1} in zwei
disjunkte ungeordnete Untermengen X und Y , bei denen die leere Menge für X ausgeschlossen
wird:

P2 : {x1, ..., xn−1} = X ∪ Y, X 6= /0. (3.21)

Im einzelnen bedeutet dies für die Distributionen A′
n und R′

n:

A′
2(x1, x2) = T̃1(x1)T1(x2) = −T1(x1)T1(x2),

A′
3(x1, x2, x3) = T̃1(x1)T2(x2, x3) + T̃1(x2)T2(x1, x3) + T̃2(x1, x2)T1(x3)

= −T1(x1)T2(x2, x3) − T1(x2)T2(x1, x3) − T2(x1, x2)T1(x3)

+T1(x1)T1(x2)T1(x3) + T1(x2)T1(x1)T1(x3), (3.22)

R′
2(x1, x2) = T1(x2)T̃1(x1) = −T1(x2)T1(x1),

R′
3(x1, x2, x3) = T2(x2, x3)T̃1(x1) + T2(x1, x3)T̃1(x2) + T1(x3)T̃2(x1, x2)

= −T2(x2, x3)T1(x1) − T2(x1, x3)T1(x2) − T1(x3)T2(x1, x2)

+T1(x3)T1(x1)T1(x2) + T1(x3)T1(x2)T1(x1). (3.23)
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Im Unterschied hierzu nicht bekannt sind die Distributionen An und Rn, bei denen die Summa-
tion in (3.19) und (3.20) auf die Partitionen P 0

2 , welche auch die leere Menge für X einschließen,
erweitert wird: In den Ausdrücken

An(x1, ..., xn) =
∑

P 0
2

T̃k(X)Tn−k(Y, xn) = A′
n + Tn(x1, ..., xn), (3.24)

Rn(x1, ..., xn) =
∑

P 0
2

Tn−k(Y, xn)T̃k(X) = R′
n + Tn(x1, ..., xn) (3.25)

sind die erst noch zu konstruierenden Tn(X) unbekannt. Dennoch sind es gerade diese Glei-
chungen, welche den entscheidenden Hinweis zur Bestimmung der gesuchten Funktionale liefern:
Die Betrachtung der bekannten niedrigeren Ordnungen m < n zeigt, daß die Distributionen
Am(x1, ..., xm) und Rm(x1, ..., xm) bestimmte Trägereigenschaften besitzen: Am besitzt avan-
cierten, Rm retardierten Träger gemäß

supp Am(x1, ..., xm) ⊆ Γ−
m(xm), (3.26)

supp Rm(x1, ..., xm) ⊆ Γ+
m(xm), (3.27)

d. h. alle Argumente x1, ..., xm befinden sich im abgeschlossenen Vorwärts- (V +) bzw. Rück-
wärtslichtkegel (V −) des Elements xm,

Γ±
m(xm) = {(x1, ..., xm), xi ∈ V ±(xm),∀i = 1, ...,m}. (3.28)

Als Vereinigung der Träger von An und Rn ist dann derjenige der Distribution

Dm(x1, ..., xm) = Rm(x1, ..., xm) −Am(x1, ..., xm) = R′
m(x1, ..., xm) −A′

m(x1, ..., xm) (3.29)

kausal, d. h. suppDm(x1, ..., xm) ⊆ Γ−
m(xm) ∪ Γ+

m(xm). Diese Kausalität, resultierend aus den
kausalen Eigenschaften (3.8) der bereits bekannten Tm, muß nun auch für die interessierende
Ordnung n gefordert werden; allerdings ist die Distribution Dn(x1, ..., xn) nach (3.29) bereits
über die auch in dieser Ordnung bekannten gestrichenen Funktionale A′

n und R′
n festgelegt.

Tatsächlich zeigt sich unter zusätzlicher Verwendung von deren Lorentzkovarianz, daß die an
den Träger von Dn zu stellende Kausalitätsbedingung für n ≥ 3 generell erfüllt ist und folglich
nur in der Ordnung n = 2 explizit überprüft werden muß.

Gelingt nun schließlich eine Zerlegung der kausalen Distribution Dn in einen avancierten
und einen retardierten Anteil An bzw. Rn, so läßt sich zeigen, daß das mit diesen resultierende
Funktional

Tn(x1, ..., xn) = Rn(x1, ..., xn) −R′
n(x1, ..., xn) = An(x1, ..., xn) −A′

n(x1, ..., xn) (3.30)

die geforderten Kausalitätseigenschaften (3.8) besitzt. Wenn dieses sog. Splitten darüberhinaus
stets durch die Multiplikation mit entsprechenden Stufenfunktionen möglich wäre, ergäbe sich
hieraus wieder die naive Zeitordnung (3.9). Es ist somit das Splitten von kausalen Distributionen,
das der genaueren Betrachtung bedarf; insbesondere die Freiheit, welche die Forderung der
Kausalität für zusammenfallende Argumente noch enthält, bekommt dabei eine grundlegende
Bedeutung.
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3.2 Das Splitten kausaler Distributionen

Zur Anwendung des beschriebenen rekursiven Verfahrens ist nun zunächst die Festlegung des
Funktionals T1(x) erforderlich. In Anlehnung an den aus heuristischen Überlegungen folgenden
Ausdruck (2.19) für S(g) scheint hier der Ansatz T1(x) = −iH1(x) = iL1(x) einen sinnvol-
len Eingang der zu beschreibenden Wechselwirkung in die Konstruktion darzustellen. Es ist
ferner für die Anwendbarkeit des Epstein-Glaser-Verfahrens wesentlich, daß dieser Wechselwir-
kungsanteil der Lagrangedichte aus einem normalgeordneten Polynom in den operatorwertigen
Felddistributionen besteht; unter dieser Voraussetzung läßt sich überdies das Problem des Dis-
tributionensplittens erheblich vereinfachen. Dies soll im folgenden wiederum am Beispiel der
φ4-Theorie demonstriert werden:

Das Wicktheorem für Produkte von aus einem Erzeugungs- und einem Vernichtungsanteil
bestehender Feldoperatoren erlaubt deren Umordnung in eine Summe normalgeordneter Ope-
ratoren, d. h. Operatoren, deren Vernichtungsanteile den Erzeugungsanteilen in ihrer Wirkung
auf die Zustände des Fockraums vorangehen. Dieses Theorem ist zunächst für Feldoperatoren
Ai = φ(gi), d. h. für auf Testfunktionen gi ausgewertete Distributionen φ, formuliert, deren
Produkte wie folgt normalgeordnet werden können:

A1A2 · · ·An

= : A1A2 · · · An : +
∑

i<j

〈0|AiAj |0〉 : A1 · · · Ǎi · · · Ǎj · · ·An :

+
∑

i1<j1,i2<j2

〈0|Ai1Aj1 |0〉〈0|Ai2Aj2 |0〉 : A1 · · · Ǎi1 · · · Ǎj1 · · · Ǎi2 · · · Ǎj2 · · ·An :

+...+
∑

ia<ja

Πa〈0|AiaAja |0〉 : A1 · · · Ǎia · · · Ǎja · · · An : , (3.31)

wobei Ǎi die Auslassung des Operators Ai bedeutet. Es kann direkt auf den Fall verallgemeinert
werden, daß die Operatoren Ai selbst bereits normalgeordnete Produkte von Feldoperatoren
sind; dann erfolgen die Summationen in (3.31) ausschließlich über Kontraktionen zwischen Feld-
operatoren verschiedener Normalordnungen. Formal liefert das Wicktheorem damit auch eine
Vorschrift zur Normalordnung von Produkten operatorwertiger Felddistributionen φ(xi) an ver-
schiedenen Orten xi; an die Stelle der Vakuumserwartungswerte 〈0|AiAj|0〉 bzw. 〈0|AjAi|0〉
treten dann die Ausdrücke

〈0|φ(xi)φ(xj)|0〉 =
1

(2π)3

∫

d3k

2Ek

e−ik(xi−xj) = i∆+(xi − xj), (3.32)

〈0|φ(xj)φ(xi)|0〉 =
1

(2π)3

∫

d3k

2Ek

eik(xi−xj) = −i∆−(xi − xj), (3.33)

k0 = Ek =
√

k2 +m2.

Auch wohldefinierte direkte Produkte von normalgeordneten Polynomen in den Felddistribu-
tionen, wie sie bei der Epstein-Glaser-Konstruktion auftreten, werden entsprechend dieser Vor-
schrift normalgeordnet; nur Kontraktionen zwischen Feldern aus verschiedenen Normalordnun-
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gen tragen bei.1 Die spezielle Konstruktion der Funktionale A′
n und R′

n gemäß (3.19) und (3.20),
bei der in deren einzelnen Summanden stets die Reihenfolge der Distributionen T̃k(X) und
Tn−k(Y, xn) relativ zueinander vertauscht ist, erlaubt es nun, auch das zu splittende Funktional
Dn = R′

n − A′
n in eine Summe normalgeordneter Operatoren zusammenzufassen: Die Feld-

operatoren innerhalb der Normalordnung kommutieren, während das Trägerverhalten von den
skalaren Vorfaktoren bestimmt wird.

Letztere sind nun bereits für sich betrachtet als temperierte skalare Distributionen über
dem Testfunktionenraum S(R4n) definiert, da das Produkt der ursprünglichen Testfunktion mit
dem Erwartungswert der normalgeordneten Feldoperatoren bezüglich Zuständen des Fockraums
wieder eine zulässige Testfunktion ergibt. Überdies sind diese skalaren Distributionen, wie es
(3.32) und (3.33) demonstrieren, translationsinvariant in ihrer - formalen - Ortsabhängigkeit.
Im Hinblick auf die gesuchte Zerlegung in einen bez. xn avancierten bzw. retardierten Anteil ist
an dieser Stelle eine weitere Vereinfachung möglich: Für festes xn, d. h. für Testfunktionen aus
S(R4n−4), und nach dem Einführen neuer Variablen x′i = xi − xn entspricht diese Zerlegung
einem Splitten an der Stelle x′i = 0.

Es ist nun das Verhalten der skalaren Distribution, formal abhängig von den neuen Orts-
argumenten x′i, an dieser Stelle x′i = 0, welches entscheidet, ob das Splitten entsprechend der
beiden Trägerbereiche möglich ist; weil diese Punkte sowohl dem avancierten als auch dem retar-
dierten abgeschlossenen Trägerbereich zugehören, ist zu vermuten, daß die gesuchte Zerlegung
nur dann möglich ist, wenn die zu splittende Distribution in der Umgebung der Stelle x ′

i = 0,
d. h. für Testfunktionen, deren Träger auf diese Umgebung konzentriert sind, hinreichend schnell
verschwindet.

Tatsächlich liefert die Definition der sog. singulären Ordnung einer temperierten Distribution
d(x1, ..., xn−1) ≡ d(x) ∈ S ′(Rk), k = 4n−4, ein einfaches Kriterium für die Zerlegbarkeit, indem
sie das Verhalten von d(x) in der Umgebung von x = 0 charakterisiert: Existiert der Grenzwert

lim
δ→0

ρ(δ)δkd(δx) = d0(x) 6≡ 0 (3.34)

gleichfalls als temperierte Distribution in S ′(Rk), und gilt für die positive stetige sog. Power-
counting-Funktion ρ(δ)

lim
δ→0

ρ(aδ)

ρ(δ)
= aω, a > 0, (3.35)

so wird hierdurch die singuläre Ordnung ω definiert.

Es ist der Wert von ω, welcher für eine gegebene temperierte Distribution in bezug auf das
Zerlegungsproblem zwei Fälle unterscheidet:

1. ω < 0: In diesem Fall ist das Splitten möglich; die Trennung des Trägers durch eine
raumartige Hyperfläche v · x = 0 definiert gemäß

∫

dkx dret(x)g(x) :=

∫

dkx d(x)θ(v · x)g(x), (3.36)

1Die Anwendbarkeit des Wicktheorems für diesen Fall, in dem anstelle direkter Produkte von Felddistributionen
solche von Polynomen von Felddistributionen - insbesondere am gleichen Ort - normalgeordnet werden, wird in
Kapitel 9.1 explizit demonstriert.
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∫

dkx dav(x)g(x) := −
∫

dkx d(x)(1 − θ)(v · x)g(x) (3.37)

für alle Testfunktionen g ∈ S(Rk) eindeutig den retardierten bzw. avancierten Teil der
Distribution d(x) = dret(x)−dav(x); diese Zerlegung ist zudem unabhängig vom zeitartigen
Vektor v = (v1, ..., vn−1), vi ∈ V +.

2. ω ≥ 0: Hier ist ein Splitten in die beiden Trägerbereiche auf dem gesamten Definiti-
onsbereich S(Rk) nicht möglich. Lediglich für diejenigen Funktionen φ(x) ∈ S(Rk) mit
Daφ(0) = 0 für |a| ≤ ω, wobei

Da =
∂a1+...+ak

∂xa1
1 · · · ∂xak

k

, |a| = a1 + ...+ ak, (3.38)

ist auch in diesem Fall die gesuchte Zerlegung gemäß (3.36) und (3.37) definiert.

An dieser Stelle muß nun die bereits erwähnte Freiheit, welche die Forderung von Kausa-
lität für zusammenfallende Argumente noch enthält, hinzugezogen werden, um die rekursive
Konstruktionsmethode auch im Fall 2 zu ermöglichen. Nach Ausnutzung der Translationsinva-
rianz wie geschehen besteht diese Freiheit gerade für die Argumente (x1, ..., xn−1) = x = 0: Die
Trägereigenschaften der zu splittenden Distribution manifestieren sich notwendigerweise nur auf
Testfunktionen, die für x = 0 einschließlich aller ihrer Ableitungen verschwinden; nur für diese
ist zunächst die Zerlegbarkeit zu fordern, und für diese ist sie auch im Falle ω ≥ 0 gewährleistet.

Dennoch ist es - im Hinblick auf den adiabatischen Limes g(x) → 1 - nötig, auch für ω ≥ 0
eine Definition der avancierten bzw. retardierten Distributionen zu formulieren, welche für alle
Testfunktionen g erklärt ist. Eine solche liefert nun:

∫

dkx dret,reg(x)g(x) :=

∫

dkx d(x)θ(v · x)(Wg)(x), (3.39)
∫

dkx dav,reg(x)g(x) := −
∫

dkx d(x)(1 − θ)(v · x)(Wg)(x), (3.40)

mit dem Operator W : S(Rk) → S(Rk) gemäß

(Wg)(x) := g(x) − w(x)

ω
∑

|a|=0

xa

a!
(Dag)(0) ∈ S(Rk), (3.41)

wobei die Schwarzfunktion w(x) ∈ S(Rk) den Bedingungen

w(0) = 1, Daw(x) = 0 ∀ 1 ≤ |a| ≤ ω (3.42)

genügen soll. Auf die Testfunktionen φ, für die gemäß Punkt 2 das Splitten auch für ω ≥ 0
möglich ist, wirkt der OperatorW als Identität, i. a. aber sind die in (3.39) und (3.40) definierten
Distributionen abhängig von der speziellen Wahl der Funktion w(x), welche somit in bestimmter
Weise über die ausgenutzte Freiheit verfügt.
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Mit der Lösung des Zerlegungsproblems ist nun das rekursive Verfahren zur Bestimmung
der Distributionen Tn in der Entwicklung (3.1) der formalen Potenzreihe von S(g) vollständig
erklärt; insbesondere erfüllen diese per Konstruktion die Kausalitätsbedingung (3.8). Noch zu
überprüfen verbleiben somit die Forderungen, welche Poincaré-Kovarianz und Unitarität des
Funktionals S(g) in jeder Ordnung n der Entwicklung an die Distributionen Tn stellen:

Liefert ein Poincaré-kovarianter Wechselwirkungsterm iL1(x) = T1(x) : Fn0 → Fn1 den Aus-
gangspunkt des Konstruktionsverfahrens, so wird dieses Transformationsverhalten direkt auf
die Funktionale Tn der höheren Ordnungen übertragen, denn sowohl die Bildung der direkten
Produkte als auch das Splitten der kausalen translationsinvarianten Distributionen erhält die
Poincaré-Kovarianz. In bezug auf letzteres verdient der Fall ω ≥ 0 eine spezielle Betrachtung:
Wie es die Ausdrücke (3.32) und (3.33) demonstrieren, handelt es sich bei den zu splittenden
skalaren Distributionen insbesondere auch um Lorentz-invariante Funktionale. Nur die Wahl
einer gleichfalls Lorentz-invarianten Funktion w(x) im Operator W (g) von (3.41) garantiert den
Erhalt dieser Eigenschaft beim Zerlegungsprozeß; anderenfalls bedingt das Transformationsver-
halten von w eine - allerdings wohlkontrollierte - Abhängigkeit der speziellen Zerlegung vom
Bezugssystem.

Die Forderung der Unitarität schließlich liefert auf der Stufe der Distributionen Tn die Be-
dingung

T †
n(x1, ..., xn) = T̃n(x1, ..., xn), (3.43)

welche in jeder Ordnung n zu überprüfen bleibt - insbesondere unter erneuter Hinzunahme von
beim Zerlegungsverfahren ausgenutzten Freiheiten, über die bei dessen spezieller Durchführung
zunächst auf bestimmte Art und Weise verfügt wurde.

Der wesentliche Unterschied zwischen dem Versuch der Definition einer S-Matrix mittels
naiver Zeitordnung gemäß (2.19) und dem konsistenten Konstruktionsverfahren von Epstein
und Glaser manifestiert sich in Streuprozessen, zu deren Berechnung skalare Distributionen
mit singulärer Ordnung ω ≥ 0 zu zerlegen sind, für die ein naives Splitten mit Stufenfunktionen
nicht definiert ist. Während der heuristische Ansatz, auf dieser naiven Definition der Zeitordnung
basierend, für die entsprechenden S-Matrixelemente auf UV-Divergenzen führt, treten solche im
Epstein-Glaser-Verfahren nicht auf:

Es ist somit der Vergleich mit den Ergebnissen dieser Konstruktionsmethode, dem ein
jedes Regularisierungsverfahren, welches den formalen, divergenten Resultaten des
heuristischen Ansatzes einen endlichen Term zuordnet, im Rahmen der verbleibenden
Freiheiten standhalten muß.

Eine leichte Modifikation der Epstein-Glaser-Methode erlaubt schließlich den direkten Ver-
gleich von nur formalen, divergenten Bestandteilen der naiv bestimmten Funktionale T (H1(x1) ·
· · H1(xn)) mit den entsprechenden im wohldefinierten Konstruktionsverfahren und liefert somit
eine Vorschrift zur Regularisierung.
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3.3 Das Epstein-Glaser-Verfahren als Regularisierungsmethode

Die Interpretation der Epstein-Glaser-Konstruktion als Regularisierungsmethode ist u. a. in [PIN]
und [PRA] ausgeführt. Sie soll im folgenden am Beispiel eines Prozesses aus der φ4-Theorie
erläutert werden, dessen Berechnung dazu kurz skizziert sei: Zur sog. Vierpunktfunktion, die
Wechselwirkung vierer Teilchen beschreibend, trägt in zweiter Ordnung, d. h. als Bestandteil
des Funktionals T2(x1, x2), der Term mit dem Wickmonom : φ2(x1)φ

2(x2) : bei; dieser wird
mittels des rekursiven Verfahrens, ausgehend von der Distribution T1(x) = iL1(x) = −i g

4! : φ4 : ,
in folgenden Schritten bestimmt:

1. Konstruktion des relevanten Beitrags zur kausalen Distribution D2(x1, x2) durch Anwen-
dung des Wicktheorems:

A′
2(x1, x2) = − : T1(x1) : : T1(x2) : =

g2

(4!)2
: φ4(x1) : : φ4(x2) :

= ...+ 72 · g2

(4!)2
〈0|φ(x1)φ(x2)|0〉2 : φ2(x1)φ

2(x2) : +... , (3.44)

R′
2(x1, x2) = − : T1(x2) : : T1(x1) : =

g2

(4!)2
: φ4(x2) : : φ4(x1) :

= ...+ 72 · g2

(4!)2
〈0|φ(x2)φ(x1)|0〉2 : φ2(x1)φ

2(x2) : +... (3.45)

und somit

D2(x1, x2) = R′
2(x1, x2) −A′

2(x1, x2)

= ...+ 72 · g2

(4!)2
(

〈0|φ(x2)φ(x1)|0〉2 − 〈0|φ(x1)φ(x2)|0〉2
)

: φ2(x1)φ
2(x2) : +...

= ...+ 72 · g2

(4!)2
(

∆2
+(x1 − x2) − ∆2

−(x1 − x2)
)

: φ2(x1)φ
2(x2) : +... (3.46)

2. Zerlegung der skalaren Distribution in avancierten und retardierten Anteil:

Die Trägereigenschaft der zu splittenden Distribution ∆2
+(x)−∆2

−(x) ∈ S ′(R4) leitet sich
aus derjenigen einer Zusammensetzung ihrer Bestandteile ∆+ und ∆− ab: Gemäß den
kanonischen Vertauschungsrelationen besitzt die Kommutatordistribution ∆(x) mit

i∆(x1 − x2) = [φ(x1), φ(x2)] = 〈0|φ(x1)φ(x2) − φ(x2)φ(x1)|0〉
= i∆+(x1 − x2) + i∆−(x1 − x2)

=: i∆av(x1 − x2) − i∆ret(x1 − x2) (3.47)

kausalen Träger2, supp ∆(x1, x2) ⊆ Γ+
2 (x2) ∪ Γ−

2 (x2); überdies erlaubt die singuläre Ord-
nung ω = −2 der Distribution ∆ die einfache Konstruktion von ∆av und ∆ret durch

2Im folgenden wird für die Indizierung konkreter, die Distributionen ∆av bzw. ∆ret enthaltender Ausdrücke
stets die hier getroffene Vorzeichenkonvention verwandt.



3.3. DAS EPSTEIN-GLASER-VERFAHREN ALS REGULARISIERUNGSMETHODE 23

Multiplikation mit der entsprechenden Stufenfunktion. Die Relation

∆2
+ − ∆2

− = (∆+ + ∆−)(∆+ − ∆−) = ∆(∆+ − ∆−) (3.48)

zeigt schließlich, daß das zu splittende Funktional tatsächlich kausalen Träger besitzt;
als eine Distribution mit singulärer Ordnung ω = 0 kann es allerdings nur gemäß (3.39)
und (3.40) auf subtrahierten, d. h. der W -Operation unterzogenen Testfunktionen in einen
avancierten und einen retardierten Anteil zerlegt werden.

3. Bestimmung des resultierenden Anteils an der Distribution T2(x1, x2):

Für das Funktional T2(x1, x2) folgt schließlich:

T2(x1, x2) = A2(x1, x2) −A′
2(x1, x2)

= ...− 72 · g2

(4!)2

(

(

∆2
+(x1 − x2) − ∆2

−(x1 − x2)
)

av,reg
− ∆2

+(x1 − x2)
)

· : φ2(x1)φ
2(x2) : +... (3.49)

Zur Interpretation des Epstein-Glaser-Verfahrens als Regularisierungsverfahren sei an dieser
Stelle der Vergleich mit dem formalen Ergebnis der Konstruktion über die naive Zeitordnung
hergestellt: Für zeitgeordnete Produkte von Feldoperatoren tritt im Wicktheorem (3.31) an die
Stelle der Distributionen ∆+ und ∆− das symmetrische Funktional

〈0|T (φ(xi)φ(xj)|0〉 = 〈0|θ(x0
i − x0

j)φ(xi)φ(xj) + θ(x0
j − x0

i )φ(xj)φ(xi)|0〉
= i∆+(xi − xj) − i∆av(xi − xj) = −i∆−(xi − xj) − i∆ret(xi − xj)

=: ∆F (xi − xj) =
1

(2π)4

∫

d4p e−ip(xi−xj)
i

p2 −m2 + iε
, (3.50)

der Feynmanpropagator der φ4-Theorie. Dieses Wicktheorem für zeitgeordnete Operatoren ist in
seiner Wirkung auf nicht naiv definierte zeitgeordnete Operatorprodukte allerdings nur formal
zu interpretieren: Es ermöglicht gerade, auf der Ebene einzelner konkreter Streuprozesse, den
gesuchten Vergleich der auf divergente Integrale führenden heuristisch motivierten Konstruktion
mit der wohldefinierten von Epstein und Glaser. Im Falle des Beitrags zur Vierpunktfunktion in
zweiter Ordnung liefert es - formal - den Ausdruck

i2T (H1(x1)H1(x2)) = − g2

(4!)2
T
(

φ4(x1)φ
4(x2)

)

= ...− 72 · g2

(4!)2
∆2

F (x1 − x2) : φ2(x1)φ
2(x2) : +... (3.51)

Im Gegensatz zu der skalaren Distribution (∆2
+−∆2

−)av,reg−∆2
+ im entsprechenden Term (3.49)

ist das Quadrat des Funktionals ∆F auf allgemeinen Testfunktionen g ∈ S(R4) nicht definiert.

Als leichte Modifikation der Epstein-Glaser-Methode sei nun, analog zur dortigen Konstruk-
tion der avancierten Distribution (∆2

+ − ∆2
−)av,reg, auch das Funktional ∆2

+ auf entsprechend
der singulären Ordnung ω = 0 subtrahierte Testfunktionen eingeschränkt,

∫

d4x∆2
+,reg(x)g(x) =

∫

d4x∆2
+(x)(g(x) − w(x)g(0)), (3.52)
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so daß insgesamt als Modifikation der skalaren Distribution im betrachteten Prozeß folgendes
Funktional resultiert:

(∆2
+ − ∆2

−)av,reg − ∆2
+,reg =

(

(∆2
+ − ∆2

−)av − ∆2
+

)

reg
=
(

∆av(∆+ − ∆−) − ∆2
+

)

reg

=
(

∆av(2∆+ − ∆av + ∆ret) − ∆2
+

)

reg
=
(

−∆2
av + 2∆+∆av − ∆2

+

)

reg

= ∆2
F,reg. (3.53)

Indem hier lediglich zur Einschränkung der prinzipiell auf beliebigen Testfunktionen g ∈ S(R4)
definierten Distribution ∆2

+ gemäß (3.52) nochmals dieselbe Freiheit in der Definition der Funk-
tionale Tn herangezogen wird, wie sie bereits für den Zerlegungsprozeß ausgenutzt wurde, ist
nun ein direkter Vergleich mit dem formalen Ausdruck ∆2

F möglich, welcher zugleich eine Regu-
larisierungsvorschrift liefert:

Die Einschränkung des Funktionals ∆2
F auf gemäß derW -Operation (3.41) subtrahierte Test-

funktionen ergibt eine auf dem gesamten Raum der Schwarzfunktionen definierte Regularisierung
∆F,reg dieser Distribution,

∫

d4x∆2
F,reg(x)g(x) =

∫

d4x∆2
F (x)(g(x) − w(x)g(0)) ∀g ∈ S(R4). (3.54)

Generell soll nun, diesem Beispiel entsprechend, als Regularisierungsverfahren nach Epstein-
Glaser diejenige Methode bezeichnet werden, bei der eine bestimmte, durch naive Zeitordnung
konstruierte und auf allgemeinen Testfunktionen nicht definierte skalare Distribution mit der
nach dem Epstein-Glaser-Verfahren konstruierten verglichen und durch Einschränkung auf bis
zur entsprechenden singulären Ordnung ω subtrahierte Testfunktionen regularisiert wird.

Die Freiheit, welche die Kausalitätsbedingung (3.8) für zusammenfallende Argumente ge-
währt, diente bereits im Konstruktionsverfahren zur Erklärung des Zerlegungsprozesses und
wurde schließlich im Regularisierungsverfahren nochmals herangezogen; eine spezielle Wahl der
Funktion w(x) in der W -Operation aber verfügt letzlich auf bestimmte Weise über sie. Wenn
sich daher Epstein-Glaser-Regularisierungen mit unterschiedlichen W -Operatoren auf gewisse
Art und Weise unterscheiden, so ist dies eine Manifestation eben dieser Freiheit, und auch nur
innerhalb derer muß ein jedes anderes Regularisierungsverfahren dem Vergleich mit dem nach
Epstein und Glaser standhalten.

Bei der Epstein-Glaser-Regularisierung einer Distribution d ∈ S ′(Rk) mit singulärer Ord-
nung ω ergibt sich die Differenz zweier mittels unterschiedlicher W -Operatoren, entsprechend
zweier verschiedener Schwarzfunktionen w und v, erhaltener Resultate wie folgt:

∫

dkx(dreg,w(x) − dreg,v(x))g(x)) =

∫

dkx d(x)(v(x) − w(x))

ω
∑

|a|=0

xa

a!
(Dag)(0)

=

∫

dkx





ω
∑

|a|=0

caD
aδ(x)



 g(x), (3.55)

wobei die Konstanten ca durch

ca =

∫

dkx d(x)(−1)|a|
xa

a!
(v(x) − w(x)) (3.56)
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bestimmt sind; aufgrund der Eigenschaften (3.42) der Funktionen v und w sind sie als Werte
der Distribution d(x) zulässig. Bei diesem Vergleich manifestiert sich die ausgenutzte Freiheit
somit darin, daß sich zwei verschiedene Regularisierungen durch Diracsche δ-Distributionen und
deren Ableitungen bis zur Ordnung ω unterscheiden.

Erst die beliebige Wahl der Koeffizienten ca in (3.55) repräsentiert dann schließlich die ge-
samte Freiheit, welche - prinzipiell beim Konstruktions- bzw. Regularisierungsverfahren von
Epstein-Glaser ausgenutzt - die Forderung der Kausalität gewährt: Zwei verschiedene Distribu-
tionen bilden genau dann jeweils eine Regularisierung der Distribution d, wenn sie sich sowohl
untereinander als auch von einer beliebigen Epstein-Glaser-Regularisierung nur um Funktionale

dreg,1(x) − dreg,2(x) =

ω
∑

|a|=0

caD
aδ(x) (3.57)

mit bestimmten Konstanten ca unterscheiden.

Unter diesen zunächst äquivalenten Regularisierungen eine bestimmte auszuwählen, ist der
Gegenstand der Renormierung; die Auswahl unterliegt insbesondere den Bedingungen, welche die
Forderung der Poincaré-Kovarianz und Unitarität der S-Matrix an sie stellen. Ein vollständiges
Renormierungsverfahren basiert somit auf einer zur Methode nach Epstein-Glaser äquivalen-
ten Regularisierung und nutzt zur Renormierung - zunächst - die gesamte Freiheit (3.57) aus.
Insbesondere die Äquivalenz zur Epstein-Glaser-Regularisierung bleibt dabei für jedes andere
Regularisierungsverfahren als Voraussetzung für dessen Zulässigkeit zu prüfen.

3.4 Das modifizierte Epstein-Glaser-Verfahren

Als eine Modifikation der im Zuge der Epstein-Glaser-Regularisierung anzuwendenden, mit der
Schwarzfunktion w(x) gewichteten Taylorsubtraktion W gemäß (3.41) wird in [GRB] der Sub-
traktionsoperator Tw eingeführt:

(Twg)(x) := g(x) −
ω−1
∑

|a|=0

xa

a!
(Dag)(0) − w(x)

∑

|a|=ω

xa

a!
(Dag)(0), w(0) = 1. (3.58)

Die Anwendung dieses Subtraktionsoperators bei der Epstein-Glaser-Regularisierung einer be-
stimmten Distribution setzt dabei von vornherein deren Definiertheit auf der Funktion (Twg)(x)
voraus, welche für eine singuläre Ordnung ω ≥ 1 aufgrund des isoliert stehenden Polynomes
der Ordnung ω − 1 kein Element des Schwarzschen Funktionenraumes ist; auch die Funktion
w(x), welche die höchste auftretende Ordnung des subtrahierten Polynomes gewichtet, ist im
modifizierten Verfahren - abhängig vom Definitionsbereich der betrachteten Distribution - nicht
notwendigerweise als Schwarzfunktion zu wählen.

Generell zeigt eine zu (3.55) analoge Betrachtung des Unterschiedes zweier durch die An-
wendung von unterschiedlichen Subtraktionsoperatoren Tw und Tv erhaltener Regularisierungen
d̃reg,w(x) und d̃reg,v(x), daß dieser auf die höchsten auftretenden Ableitungen der Diracschen



26 KAPITEL 3. DAS VERFAHREN VON EPSTEIN UND GLASER

Deltadistribution eingeschränkt wird:

d̃reg,w(x) − d̃reg,v(x) =
∑

|a|=ω

caD
aδ(x); (3.59)

die beliebige Wahl dieser verbleibenden Koeffizienten ca, |a| = ω, repräsentiert dabei die gesamte
im modifizierten Epstein-Glaser-Verfahren zur Verfügung stehende Freiheit.

Tatsächlich ist nun z. B. bei der Regularisierung - formaler - Produkte von skalaren Propaga-
toren der massiven φn-Theorie am gleichen Ort die Epstein-Glaser-Regularisierung mit der Wahl
w(x) = 1 im Subtraktionsoperator möglich. Während die konkrete Ausführung entsprechender
Regularisierungen Gegenstand der folgenden Kapitel sein soll, sei an dieser Stelle das Gewicht
auf die in deren Anschluß herangezogenen Freiheiten gelegt.

Als Beipiel diene das Modell der skalaren massiven φ3-Theorie auf einem formal auf fünf
Ortskomponenten erweiterten Minkowskiraum. Die formale Transformation der Epstein-Glaser-
Regularisierung der Distribution ∆2

F (x) mit der singulären Ordnung ω = 2 in den Impulsraum
liefert - bei Unterdrückung allgemeiner Normierungsfaktoren - mit der Wahl w(x) = 1 im Sub-
traktionsoperator als Ein-Schleifen-Korrektur zum Propagator das folgende Ergebnis:3

Λ
(6)
0 (p) = ig2

∫ 1

0
dz(p2z(1 − z) −m2) ln

m2

m2 − p2z(1 − z)
+
i

6
g2p2. (3.60)

Die Fouriertransformationen der die verbleibenden Freiheiten im Ortsraum darstellenden Ablei-
tungen von Deltadistributionen resultieren ferner im Impulsraum in Potenzen der Impulsvaria-
blen p,

(̂Daδ)(p) =
(−i)|a|
(2π)k/2

pa, (3.61)

so daß ein allgemeines lorentzinvariantes Ergebnis durch

Λ(6)(p) = Λ
(6)
0 (p) + c0 + c2p

2 (3.62)

gegeben ist. Hierbei treten gemäß (3.55) im klassischen Epstein-Glaser-Verfahren beide Kon-
stanten c0 und c2 auf, während im modifizierten Verfahren die Konstante c0 verschwindet.

Im Zuge der Renormierung erfährt nun der ursprüngliche Propagator folgende Korrektur:

i

p2 −m2
→ i

p2 −m2
+

i

p2 −m2
Λ(6)(p)

i

p2 −m2

=
i

p2 −m2 − iΛ(6)(p)

(

+
Mehr-Schleifen-

Beiträge

)

. (3.63)

Die Interpretation der rechten Seite von (3.63) als bis zur Ein-Schleifen-Ordnung modifizierter
Propagator impliziert dann die folgenden physikalischen Renormierungsbedingungen:

Λ(6)(p = m) = 0, (3.64)

d

d(p2)
Λ(6)(p)

∣

∣

∣

∣

p=m

= 0. (3.65)

3vgl. die analoge Herleitung der Ein-Schleifen-Korrektur in der vierdim. φ4-Theorie in (6.4)
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Angewandt auf das Ergebnis Λ(6)(p) = Λ
(6)
0 (p) + c0 + c2p

2 resultieren hieraus Bedingungen
für die Konstanten c0 und c2:

Λ(6)(p = m) = ig2m2

(

1

6

√
3π − 8

9

)

+ c0 + c2m
2 !

= 0, (3.66)

d

d(p2)
Λ(6)(p)

∣

∣

∣

∣

p=m

= ig2

(

17

18
− 1

6

√
3π

)

+ c2
!
= 0, (3.67)

welche mit einer nichtverschwindenden Konstanten c0 folgende Lösung besitzen:

c0 = ig2m2

(

11

6
− π√

3

)

, (3.68)

c2 = ig2

(

1

6

√
3π − 17

18

)

. (3.69)

Tatsächlich ist somit die Konstante c0 notwendig, um die Erfüllbarkeit der physikalisch moti-
vierten Renormierungsbedingungen zu gewährleisten. Das modifizierte Epstein-Glaser-Verfahren
liefert zwar gleichfalls eine Regularisierung der betrachteten Distribution, zur Realisierung der
speziellen Renormierung jedoch erweist sich die Einschränkung (3.59) als zu restriktiv. Gerade
die an die Regularisierung anschließende Renormierung ist jedoch für eine physikalische Interpre-
tation der betrachteten Theorie unabdingbar, so daß die Einschränkung der Freiheiten innerhalb
des modifizierten Verfahrens i. a. nicht aufrechtzuerhalten ist.





Kapitel 4

Das BPHZ-Renormierungsverfahren

4.1 Regularisierung von Ein-Schleifen-Diagrammen

Im Gegensatz zur Epstein-Glaser-Methode folgen Regularisierung und Renormierung innerhalb
des BPHZ-Verfahrens (Boguliubov, Parasiuk, Hepp, Zimmermann) einer formalen Entwicklung
nach Potenzen der Konstanten ~ (für eine ausführliche Darstellung der Grundlagen dieser Renor-
mierungsmethode sei z. B. auf [HAE] sowie [ITZ] und [COL] verwiesen). Das Verfahren ist im Im-
pulsraum definiert und ordnet zur Regularisierung, die nun insbesondere Gegenstand der folgen-
den Betrachtungen sein soll, jedem auf divergente Integrale führenden ein-Teilchen-irreduziblen
Feynmandiagramm einen endlichen Ausdruck zu. In der Sprache der Feynmandiagramme ge-
schieht dies sukzessive entsprechend der Anzahl von Schleifen, die ein solches Diagramm enthält;
tatsächlich entspricht die Schleifenanzahl der ~-Ordnung des betrachteten Prozesses.

Bevor nun aber mit der sog. Waldformel die allgemeine Regularisierungsvorschrift innerhalb
dieses Verfahrens angegeben wird, sei zuerst die darin enthaltene Behandlung von Diagrammen
betrachtet, zu deren Regularisierung gemäß der Epstein-Glaser-Methode keine Unterdiagram-
me berücksichtigt werden müssen - z. B. Ein-Schleifen-Diagramme - und auf dieser Stufe die
Äquivalenz zur Epstein-Glaser-Regularisierung untersucht:

Das Divergenzverhalten eines Diagrammes γ wird - allgemein im BPHZ-Verfahren - cha-
rakterisiert durch den sog. Divergenzgrad d(γ), definiert über die grundlegende Struktur eines
jeden irreduziblen Feynmandiagrammes: Als Fouriertransformation von mittels naiver Zeitord-
nung gebildeten Produkten von Propagatoren im Ortsraum resultieren im Impulsraum spezielle
Faltungen der transformierten Propagatoren; in der UV-Divergenz der in diesen enthaltenen
Integrationen über sog. innere Impulse k manifestiert sich dann im speziellen Fall das Scheitern
dieses Ansatzes. Diese Divergenz nun kennzeichnet sowohl das Verhalten des Integranden im
Falle k → ∞ als auch die Dimension 4m der Integration über m Schleifen: Unter Beachtung des
UV-Verhaltens für verschiedene Propagatoren im Impulsraum,

1

k2 −m2
→ k−2,

29
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gµν 1

k2
→ k−2,

/k +m

k2 −m2
→ k−1,

wird der Divergenzgrad d(γ) wie folgt bestimmt:

d(γ) = 4m− 2IB − IF +
∑

V

degr V. (4.1)

IB und IF bezeichnen dabei die Anzahl der inneren bosonischen bzw. fermionischen Linien, m ist
die Anzahl der unabhängigen Schleifen; die Summation erfolgt über alle Vertices des Diagrammes
und erfaßt einen möglichen Beitrag des Vertexfaktors zum Divergenzverhalten, indem degr V
die Potenzen der inneren Impulse am Vertex V zählt.

Im Hinblick auf den Vergleich zur Epstein-Glaser-Regularisierung zeigt sich in einer solchen
Klassifikation der Divergenzen bereits ein Hinweis auf die zu fordernde Äquivalenz:

Die Definition der Regularisierung erfolgt dort entsprechend der singulären Ordnung ω
der im Zuge des ursprünglichen Konstruktionsprozesses zu splittenden kausalen Distribution
ds = r′ − a′. Das - i. a. nur formal - durch einfache Zerlegung mittels Stufenfunktionen resultie-
rende Funktional d = ds,ret − r′ = ds,av −a′ besitzt schließlich ebenso wie dessen Epstein-Glaser-
Regularisierung dreg dieselbe singuläre Ordnung ω wie ds: Diese stimmt bei den Funktionalen r ′,
a′ und ds per Konstruktion überein und wird auf die einfache Zusammensetzung d übertragen;
auch die zur Definition der Regularisierung dreg verwandte Einschränkung der Testfunktionen
verändert die singuläre Ordnung nicht. Deren Bestimmung kann folglich gemäß (3.34) anstatt
mittels der kausalen Distribution ds insbesondere direkt - für ω ≥ 0 formal - anhand des Funk-
tionals d erfolgen.

Nun besitzt jede temperierte skalare Distribution d ∈ S ′(Rk) eine Fouriertransformierte d̂,
definiert über die inverse Fouriertransformierte ǧ durch

d̂(g) = d(ǧ), d̂ ∈ S ′(Rk). (4.2)

Im Impulsraum wird nun die singuläre Ordnung unter Verwendung der Power-counting-Funktion
ρ(δ) = δω durch folgende Bedingung bestimmt:

lim
δ→0

δωδk

∫

dkx d(δx)g(x) = lim
δ→0

δω

∫

dkp d̂
(p

δ

)

ǧ(p) =

∫

dkp d̂0(p)ǧ(p) 6≡ 0. (4.3)

Es ist die spezielle Gestalt der Distributionen d̂(p), welche im Falle degr V = 0 einen direkten
Bezug zum entsprechenden k-Integral im BPHZ-Formalismus herstellt: Zwar handelt es sich hier
bislang lediglich um eine skalare Distribution, welche von dem ihr zugehörigen Wickmonom ge-
trennt betrachtet wird und folglich noch keine Aussage bezüglich eines tatsächlichen Impulsflus-
ses, entsprechend einem bestimmten S-Matrixelement, enthalten kann - erst dessen Berechnung
stellt den Zusammenhang zwischen den Impulsen pi, 1 ≤ i ≤ k, und den Impulsverteilungen
der Anfangs- und Endzustände her; dennoch wird bei den in der Fouriertransformierten d̂(p)
auftretenden Faltungen von Propagatoren das Skalierungsverhalten ω in den Variablen p gerade
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durch das entsprechende in den inneren Impulsen k bestimmt, welches im Grenzfall k → ∞ den
Divergenzgrad d(γ) liefert.

Als Beispiel sei hier wieder das zu regularisierende Funktional ∆2
F (x) ∈ S ′(R4) herangezogen:

Bestehend aus zwei inneren bosonischen Linien, die sich zu einer Schleife schließen, und als
ein Diagramm der φ4-Theorie mit degr V = 0 folgt für dieses gemäß (4.1) der Divergenzgrad
d(γ) = 4 − 2 · 2 = 0. Im Vergleich dazu wird die singuläre Ordnung bei der Epstein-Glaser-
Regularisierung im Impulsraum bestimmt: Formal resultiert hier die Fouriertransformierte

(̂∆2
F )(p) =

1

(2π)2

∫

d4k∆̂F (p− k)∆̂F (k) (4.4)

als Faltung der transformierten Propagatoren. Unter Verwendung der expliziten Gestalt des
Funktionals ∆̂F (p),

∆̂F (p) =
1

(2π)2
i

p2 −m2 + iε
, (4.5)

folgt schließlich für das Skalierungsverhalten in der Variablen p:

(̂∆2
F )
(p

δ

)

= − 1

(2π)6

∫

d4k
1

(p
δ − k)2 −m2

1

k2 −m2

k′=δk
= − 1

(2π)6

∫

d4k′

δ4
1

(p
δ − k′

δ )2 −m2

1
k′2

δ2 −m2

= − 1

(2π)6

∫

d4k
1

(p− k)2 − δ2m2

1

k2 − δ2m2

δ→0→ (̂∆2
F )(p)(m=0). (4.6)

Tatsächlich stimmt somit, wie es die Erfüllbarkeit der Bedingung (4.3) mit der Wahl ω = 0

und dem Funktional d̂0(p) = (̂∆2
F )(p)(m=0) zeigt, die singuläre Ordnung mit dem Divergenzgrad

überein.

Nach dieser Betrachtung sei nun in Folge anhand desselben Beispiels die konkrete Vorge-
hensweise bei der BPHZ-Regularisierung demonstriert. Im Spezialfall eines solchen irreduziblen
divergenten Ein-Schleifen-Diagrammes nimmt die durch die Waldformel gegebene allgemeine Re-
gularisierungsvorschrift eine kompakte Gestalt an, welche überdies einen direkten Vergleich mit
dem hierzu in den Impulsraum übertragenen Epstein-Glaser-Verfahren ermöglicht; dieser Über-
gang und die hierdurch im Impulsraum induzierte Regularisierungsvorschrift seien im Anschluß
wiederum am Beispiel erläutert.

Ausgangspunkt des BPHZ-Verfahrens sind die Feynmanregeln im Impulsraum. Formal liefern
diese für ein bestimmtes, auf divergente Integrale über innere Impulse k führendes Diagramm γ
folgende allgemeine Gestalt des Integranden Iγ :

Iγ(p, k) =
∏

l∈L
∆c(p, k)

∏

V ∈V
PV (p, k). (4.7)
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Die Faktoren ∆c sind hierbei proportional zu den Feynmanpropagatoren ∆̂F im Impulsraum, die
jeder Linie l aus der Gesamtheit L der inneren Linien zugeordnet sind, ausgewertet auf inneren
Impulsen k und äußeren Impulsen p, wie sie ein gegebener Impulsfluß der entsprechenden Linie
zuteilt. Ferner trägt nach den Feynmanregeln jeder Vertex V aus der Menge V von Vertices
des betrachteten Diagrammes einen Faktor PV bei - in der φ4-Theorie liefert das resultierende
Produkt die Potenz in der Kopplungskonstanten g.

Die Regularisierung eines irreduziblen Ein-Schleifen-Diagrammes erfolgt durch Modifikation
des Integranden Iγ : Entsprechend dem Divergenzgrad d(γ) wird dieser durch einen neuen Inte-
granden Rγ ersetzt, welcher wie folgt definiert ist:

Rγ(p, k) := Iγ(p, k) −
d(γ)
∑

|n|=0

1

n!
pn dn

dpn

∣

∣

∣

∣

p=0

Iγ(p, k) =
(

1 − td(γ)
p

)

Iγ(p, k). (4.8)

Der Tayloroperator t
d(γ)
p symbolisiert hierbei die Taylorentwicklung in der Gesamtheit p der

unabhängigen äußeren Impulse des entsprechenden Diagrammes. Von Bedeutung für den Re-
normierungsanteil des Verfahrens ist dann die Angabe des allgemeinen Resultats für das so
regularisierte Integral: Gemäß der Art der Modifikation des Integranden, bei welcher mit dessen
Taylorentwicklung nach den äußeren Impulsen p auch die des Integrals bis zum Divergenzgrad
d(γ) subtrahiert wird, soll ein allgemeines Polynom P d(γ)(p) der Ordnung d(γ) die Freiheit, über
welche zunächst verfügt wurde, repräsentieren:

Jγ(p) :=

(
∫

d4kIγ(p, k)

)

reg,BPHZ

=

∫

d4kRγ(p, k) + P d(γ)(p). (4.9)

Unter Berücksichtigung der Tatsache, daß der Impuls p in obigem Beispiel (4.4) aus der φ4-
Theorie - nach Hinzunahme der zugehörigen Wickmonome zur separat betrachteten skalaren
Distribution und in Folge der Berechnung des entsprechend im BPHZ-Formalismus betrachte-
ten speziellen Streumatrixelementes - mit dem an einem der beiden Vertices einfallenden äuße-
ren Gesamtimpuls identifiziert wird, ist die BPHZ-Regularisierung bereits auf der Stufe dieser
skalaren Distribution anwendbar. Für das einem Diagramm mit dem Divergenzgrad d(γ) = 0
entsprechende Integral folgt somit zunächst als spezielle Lösung

(

(̂∆2
F )(p)

)

reg,BPHZ
= − 1

(2π)6

∫

d4k

{

1

(p− k)2 −m2

1

k2 −m2
− 1

[k2 −m2]2

}

. (4.10)

Zum Vergleich dieses Resultats mit der Epstein-Glaser-Regularisierung sei letztere nun in den
Impulsraum übertragen: Ausgangspunkt ist dabei die per Definition des Verfahrens im Ortsraum
gegebene Regularisierungsvorschrift für eine skalare Distribution d(x) mit singulärer Ordnung
ω, dem Divergenzgrad des zugehörigen Feynmandiagrammes entsprechend. Den Übergang zur
Regularisierung im Impulsraum bewerkstelligen dann folgende Umformungen:

dreg(g) =

∫

dkx dreg(x)g(x)

=

∫

dkx d(x)







g(x) − w(x)
ω
∑

|a|=0

xa

a!
(Dag)(0)






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=

∫

dkx d(x)

∫

dkp

(2π)k/2
eipx







ǧ(p) −
ω
∑

|a|=0

1

a!
(iDp)

aw̌(p)(Dag)(0)







=

∫

dkx

(2π)k/2
d(x)

·







∫

dkp eipxǧ(p) −
∫

dkp′ eip
′x

ω
∑

|a|=0

(iDp′)
a

a!
w̌(p′)

∫

dkp

(2π)k/2
(ip)aǧ(p)







=

∫

dkp

∫

dkx

(2π)k/2
d(x)







eipx −
∫

dkp′

(2π)k/2
eip

′x
ω
∑

|a|=0

(−1)|a|

a!
(Dp′)

aw̌(p′)pa







ǧ(p)

=

∫

dkp d̂reg(p)ǧ(p) = d̂reg(ǧ). (4.11)

Nun handelt es sich bei den nach dem Epstein-Glaser-Verfahren zu regularisierenden Distributio-
nen d(x) um formale Produkte von Feynmanpropagatoren im Ortsraum. Ein dieses erklärendes,
aus der Fouriertransformation resultierendes Faltungsprodukt d̂(p) von Propagatoren im Im-
pulsraum ist aber im Falle einer nicht-negativen singulären Ordnung nicht definiert; an dessen
Stelle tritt die Regularisierung d̂reg(p) gemäß (4.11), wie sie das Epstein-Glaser-Verfahren im
Impulsraum induziert. Die Äquivalenz des BPHZ-Verfahrens zu letzterem sei nun anhand des
betrachteten Beispiels d(x) = ∆2

F (x) überprüft. Für dieses resultiert:

(̂∆2
F )reg(p)

=

∫

d4x

(2π)2
∆2

F (x)

{

eipx −
∫

d4p′

(2π)2
eip

′xw̌(p′)

}

=

∫

d4x

(2π)2

∫

d4k

(2π)2

∫

d4k′

(2π)2
e−i(k+k′)x∆̂F (k)∆̂F (k′)

{

eipx −
∫

d4p′

(2π)2
eip

′xw̌(p′)

}

=
1

(2π)2

∫

d4k

∫

d4k′∆̂F (k)∆̂F (k′)

{

δ(p − k − k′) −
∫

d4p′

(2π)2
δ(p′ − k − k′)w̌(p′)

}

=
1

(2π)2

∫

d4k∆̂F (k)

{

∆̂F (p− k) −
∫

d4p′

(2π)2
∆̂F (p′ − k)w̌(p′)

}

= − 1

(2π)6

∫

d4k
1

k2 −m2

{

1

(p− k)2 −m2
−
∫

d4p′

(2π)2
1

(p′ − k)2 −m2
w̌(p′)

}

. (4.12)

Die Angabe einer speziellen Lösung innerhalb der Epstein-Glaser-Regularisierungen erfordert
an dieser Stelle die Auswahl einer Testfunktion w(x), welche die im Rahmen des Verfahrens
festgelegten Bedingungen (3.42) erfüllt; hier im speziellen w(0) = 1. Nun wird per Definition
zur Bestimmung der Streumatrix S = limg→1 S(g) im betrachteten Grenzwert der Raum der
Schwarzfunktionen als Argumente des Funktionals S(g) verlassen; tatsächlich erlaubt in der
φ4-Theorie die spezielle Gestalt der zu regularisierenden skalaren Distributionen als Produkte
von Propagatoren massiver Teilchen die Auswertung der Funktionale sogar auf Polynomen in
der Variablen x: Das entsprechende IR-Verhalten sowohl der im Impulsraum resultierenden
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Faltungen von Propagatoren als auch dasjenige von deren Ableitungen nach der Variablen p ist
wohldefiniert.

Für die in der Definition der Regularisierung enthaltene Funktion w(x) ist folglich im betrach-
teten Beispiel die Wahl w(x) = 1 - welche weiterhin die Bedingungen w(0) = 1, (Daw)(0) = 0
erfüllt - zulässig. Mit der Einsetzung der Fouriertransformierten ω̌(p) gemäß

ω̌(p) =
1

(2π)2

∫

d4x e−ipx = (2π)2δ(p) (4.13)

in das Ergebnis von (4.12) resultiert schließlich gerade die BPHZ-Regularisierung (4.10); letz-
tere ist somit zum - um die Einschließung der konstanten Funktion w(x) = 1 innerhalb des
Regularisierungsprozesses erweiterten - Epstein-Glaser-Verfahren äquivalent.

Auch die zur Renormierung vom BPHZ-Verfahren zugelassene Freiheit (4.9) in der Wahl
einer speziellen Regularisierung muß gerade die allgemeine Unbestimmtheit im Epstein-Glaser-
Formalismus repräsentieren. Während diese Freiheit im BPHZ-Verfahren auf der Stufe der bei
Epstein-Glaser behandelten skalaren Distributionen d̂reg(p) - d. h. ohne Bezug auf einen spezi-
ellen Impulsfluß - einem Polynom P d(γ)(p) in den Variablen p des Impulsraums entspricht, gilt
nun aber gemäß (3.57) für die Epstein-Glaser-Regularisierung

∫

dkx (dreg,1(x) − dreg,2(x))g(x) =

ω
∑

|a|=0

ca

∫

dkx Daδ(x)g(x)

=

ω
∑

|a|=0

(−i)|a|ca
(2π)k/2

∫

dkp paǧ(p) =

∫

dkp (d̂reg,1(p) − d̂reg,2(p))ǧ(p), (4.14)

so daß auf der Stufe der fouriertransformierten Regularisierungen die entsprechende Freiheit

tatsächlich in der beliebigen Wahl der Koeffizienten c̃a = (−i)|a|ca

(2π)k/2 des Polynoms P ω(p) = P d(γ)(p)

besteht. Für das oben betrachtete Beispiel mit dem Divergenzgrad bzw. der singulären Ordnung
d(γ) = ω = 0 gewähren folglich beide Regularisierungsverfahren eine Freiheit in Form einer
additiven Konstanten im Impulsraum.

Während nun in der hier am Beispiel erläuterten Weise die Äquivalenz von BPHZ- und
Epstein-Glaser-Regularisierung für ein jedes Ein-Schleifen-Diagramm überprüft werden kann,
erschwert die grundlegende Verschiedenheit in der Konstruktion beider Verfahren diesen Ver-
gleich für Diagramme mit mehr als einer Schleife. Auf diese prinzipielle Unterschiedlichkeit
sei bereits an dieser Stelle, bevor im Anschluß die BPHZ-Regularisierungsvorschrift für Mehr-
Schleifen-Diagramme vorgestellt wird, hingewiesen: Während bei Epstein-Glaser die Distributio-
nen Tn(x1, ..., xn) in der Entwicklung (3.1) von S(g) entsprechend der Anzahl n von Vertices der
jeweiligen Ordnung sukzessive konstruiert werden, folgt der Aufbau des BPHZ-Verfahrens mit
der formalen Entwicklung nach Potenzen der Konstanten ~ einer Schleifenentwicklung. Im Zuge
dessen enthält die BPHZ-Regularisierungsvorschrift für Mehr-Schleifen-Diagramme eine Definiti-
on von Unterdiagrammen, z. B. in [ZIM], welche sich von der entsprechenden bei Epstein-Glaser,
wo die Betrachtung niedriger Ordnungen ni ≤ n auf der Stufe der Feynmandiagramme das Weg-
lassen von Vertices impliziert, unterscheidet: Jede in einem Diagramm enthaltene Schleife ist ein
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BPHZ-Unterdiagramm. Das sog. Sunrise-Diagramm in Kapitel 8 sowie die in den Kapiteln 9.2.2
und 9.2.3 betrachteten Prozesse liefern Beispiele für die Verschiedenheit dieser beiden Definitio-
nen. Die explizite BPHZ-Regularisierungsvorschrift für ein beliebiges Feynmandiagramm basiert
auf der von BPHZ-Unterdiagrammen und ist durch die sog. Waldformel gegeben.

4.2 Allgemeine Regularisierungsvorschrift

Neben dem Element der Regularisierung, deren Äquivalenz zum Epstein-Glaser-Verfahren später
auch anhand von Beispielen für Mehr-Schleifen-Diagramme überprüft werden soll, enthält das
BPHZ-Verfahren einen Renormierungsanteil, innerhalb dessen über die - bereits im Regula-
risierungsprozess verwandten - Freiheiten auf physikalische Art und Weise verfügt wird. Zur
Wechselwirkungslagrangedichte L1 = −H1, dem Ausgangspunkt der mittels naiver Zeitordnung
konstruierten S-Matrix (2.19), werden sukzessive in aufsteigenden Potenzen der Konstanten ~

Korrekturterme, sog. Counterterme, addiert, welche die bei der naiven Konstruktion von Feyn-
mandiagrammen auftretenden Divergenzen gerade kompensieren. Diese unendlichen Counter-
terme, d. h. Polynome von Feldern und deren Ableitungen, welche auf der Stufe der Feynman-
diagramme die erforderlichen Kompensationsterme implizieren, beinhalten sowohl eine spezielle
Regularisierungsvorschrift als auch - in Form eines freien, endlichen Anteils der Counterterme
- die allgemeine Freiheit beim Regularisierungsprozeß. In jeder Ordnung von ~ wird die derart
modifizierte Wechselwirkungslagrangedichte mit der physikalischen identifiziert, welches insbe-
sondere die Festlegung der endlichen Counterterme durch gewisse Renormierungsbedingungen
beinhaltet.

Bei der Regularisierung eines Diagrammes mit l Schleifen sind somit, ausgehend von der
bereits bis zur Ordnung ~l−1 modifizierten Lagrangedichte, alle Counterterme zu den Unterdia-
grammen zu berücksichtigen, welche auf einen Beitrag in der Ordnung ~l zum Gesamtdiagramm
führen, bevor letzteres - falls es selbst divergent ist - mit einer abschließenden Impulssubtraktion
regularisiert wird.

Es ist die Waldformel, die für jedes Diagramm diese Beiträge von Countertermen niedrige-
rer Ordnungen in der Konstanten ~ zusammenfaßt; insbesondere wird innerhalb dieser jede im
Gesamtdiagramm enthaltene Schleife als Unterdiagramm interpretiert - obgleich im Sinne einer
Entwicklung nach Vertices nur solche beitragen können, die eine geringere Vertexanzahl aufwei-
sen. Dennoch bleibt auch auf der Stufe solcher Mehr-Schleifen-Diagramme die Forderung nach
Äquivalenz zum Epstein-Glaser-Verfahren bestehen und mit dieser die Bedingung, daß sich - die
erfolgte physikalische Renormierung der niedrigeren ~-Ordnungen vorausgesetzt - die Ergebnisse
beider Regularisierungsverfahren nur um Polynome bis zur Ordnung des Divergenzgrades des
Gesamtdiagrammes in dessen äußeren Impulsen unterscheiden.

Die im BPHZ-Verfahren resultierende geschlossene Form der Waldformel setzt nun gewis-
se Bedingungen an die Wahl des Impulsflusses im betrachteten Diagramm voraus; so verlangt
etwa die Rekursivität des Regularisierungsprozesses, daß die inneren Impulse der Unterdiagram-
me nicht von den äußeren Impulsen eines divergenten Gesamtdiagrammes abhängig sind, da
sonst die entsprechenden zu letzterem beitragenden Counterterme abschließend einer erneuten
Impulssubtraktion unterworfen wären. In diesem Sinne zulässig ist die Wahl des sog. Standard-
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impulsflusses, welcher im folgenden erklärt wird.

Definition des Standardimpulsflusses:

• Es seien mit {p1, ..., pn} und {k1, ..., km} die Mengen der unabhängigen äußeren bzw. in-
neren Impulse des Gesamtdiagrammes γ bezeichnet; jeder innere Impuls ki sei dabei einer
Schleife zugeordnet. Die von Vertex a zu Vertex b fließenden Impulse labv setzen sich jeweils
aus dem durch die entsprechende Linie Labv fließenden Anteil qabv der äußeren und dem
Beitrag kabv der inneren Impulse zusammen:

labv = qabv(p) + kabv(k). (4.15)

Dabei numeriert der Index v die Linien zwischen den Vertices a und b.

• Jeder Linie Labv werden sog. Widerstände rabv zugeordnet, über die - analog zu den Kirch-
hoffschen Regeln in der Elektrodynamik - der Stromfluß der äußeren Impulse festgelegt
wird: Zur Impulserhaltung an jedem Vertex Va mit einfließendem äußeren Impuls qa,

∑

b,v

qabv = qa ∀ VA ∈ V(γ), (Knotenregel) (4.16)

wird für jede Schleife C des Diagrammes zusätzlich die Bedingung

∑

Labv∈C

rabvqabv = 0 (Maschenregel) (4.17)

gestellt. Die Wahl der Widerstände ist bis auf eine Anforderung beliebig, welche die Exi-
stenz geschlossener Schleifen mit Widerstand null oder unendlich ausschließt.

• Mit einem Unterdiagramm λ, zunächst als eigenständiges Diagramm betrachtet, wird ana-
log verfahren; die einmal für das Gesamtdiagramm γ getroffene Wahl der Widerstände ist
hierfür jedoch beizubehalten. Innere und äußere Impulse des Unterdiagrammes λ erhalten
schließlich ihre Abhängigkeit von denjenigen des Gesamtdiagrammes γ durch die Einbet-
tung von λ in γ; diese liefert als Bedingungen:

qabv(p) + kabv(k) = qλ
abv(p

λ(p, k)) + kλ
abv(k), (4.18)

für alle Linien Lλ
abv des Unterdiagrammes, sowie

pλ
a(p, k) = qa −

∑

b oder v 6∈λ

labv(p, k) ∀ Va ∈ V(λ) (4.19)

für dessen am Vertex a einfallende äußere Impulse pλ
a .

Den Ausgangspunkt zur Regularisierung eines beliebigen Mehr-Schleifen-Diagrammes bilden
nun die Integranden der aus den Feynmanregeln im Impulsraum resultierenden Integrale (4.7)
unter Verwendung des Standardimpulsflusses. Die Regularisierungsvorschrift schließlich ist durch
die Zimmermannsche Waldformel gegeben, deren Aussage an dieser Stelle zitiert sei:
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Counterterme niedrigerer ~-Ordnung werden prinzipiell berücksichtigt, indem - symbolisiert
durch den Substitutionsoperator Sλ - der Anteil des betrachteten Unterdiagrammes λ am Inte-
granden gemäß dem Standardimpulsfluß als Funktion von dessen Impulsen pλ und kλ parametri-
siert und der entsprechende Counterterm bestimmt wird; sämtliche beitragenden Counterterme
werden in der Waldformel zusammengefaßt und definieren die Modifikation Rγ des Integranden
Iγ wie folgt:

Rγ(p, k) = Sγ

∑

U∈Fγ

∏

λ∈U

(

−td(λ)

pλ Sλ

)

Iγ(U) (Waldformel). (4.20)

Die Summation erfolgt hierbei über alle sog. Wälder U des Gesamtdiagrammes γ, d. h. alle mögli-
chen Mengen von nicht überlappenden divergenten ein-Teilchen-irreduziblen Unterdiagrammen
einschließlich der leeren Menge und, falls dieses selbst divergent ist, des gesamten Diagrammes;
nicht überlappende divergente Diagramme λ1 und λ2 sind entweder disjunkt, λ1 ∩ λ2 = /0, oder
verschachtelt, λ1 ⊂ λ2 oder λ2 ⊂ λ1.

1

Als ein selbständiges Regularisierungsverfahren beinhaltet die BPHZ-Regularisierung den
Beweis der Konvergenz des k-Integrals über den Integranden Rγ(p, k). Dennoch ist es die auf
Ein-Schleifen-Niveau bereits demonstrierte Äquivalenz zum Epstein-Glaser-Verfahren, welche
erst die Zulässigkeit der BPHZ-Methode gewährleistet; beim durch die Unterschiedlichkeit des
jeweiligen rekursiven Vorgehens erschwerten Vergleich der beiden Verfahren auf der Stufe von
Mehr-Schleifen-Diagrammen soll diese später am Beispiel demonstriert werden, wobei insbeson-
dere die Verschiedenheit der Definition von Unterdiagrammen zu untersuchen ist.

Wenngleich nun das BPHZ-Renormierungsverfahren auf kompakte Art und Weise jedem
divergenten Diagramm mittels der Waldformel eine Regularisierung zuweist und in Form von
endlichen Countertermen die jeweils verwandten Freiheiten offenlegt, so ist doch die explizite
Durchführung der Integrationen über die modifizierten Integranden in der Regel recht aufwen-
dig im Vergleich zu anderen Regularisierungsmethoden. Diese wiederum offenbaren nicht in
- zumindest auf Ein-Schleifen-Niveau - gleichsam übersichtlicher Weise ihre Äquivalenz zum
Epstein-Glaser-Verfahren , insbesondere im Hinblick auf die verbleibenden Freiheiten, welche
zur Erfüllung physikalischer Renormierungsbedingungen teils ad hoc in Form von endlichen
Countertermen zum Regularisierungverfahren hinzugenommen werden müssen.

Gerade die häufig verwandte Dimensionale Regularisierung, bei welcher im Zuge des Regu-
larisierungsprozesses die physikalische Dimension verlassen wird, führt zudem auf das Problem
einer sinnvollen Fortsetzung der betrachteten Theorie in beliebige Dimensionen. Diese Regula-
risierungsmethode ist ein Beispiel für ein Verfahren, bei dem bei der Berechnung von Feynman-
diagrammen auftretende Divergenzen zunächst durch die Einführung (mindestens) eines neuen
Parameters in die entsprechende Theorie beseitigt werden; dieser parametrisiert gerade eine auf
endliche Diagramme führende Abweichung von der ursprünglichen Theorie. Durch entsprechende
Grenzwertbildung im eingeführten Parameter wird schließlich die Ausgangstheorie wiederherge-
stellt; zuvor aber erfährt ein in diesem Grenzwert zunächst divergenter Ausdruck eine Modifika-
tion, durch welche seine Wohldefiniertheit auch in diesem Falle erhalten bleibt. Insbesondere muß

1Ein einfaches Beispiel für die Anwendung der Waldformel liefert Kapitel 8.3 mit der entsprechenden Berech-
nung des Sunrise-Diagrammes.
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hierbei die erfolgte Modifikation im Grenzfall eine im Sinne der Epstein-Glaser-Regularisierung
zulässige sein. Im folgenden sei demonstriert, wie die Methode der Dimensionalen Regularisie-
rung als Parameter die Abweichung ε von der physikalischen Dimension nutzt, um für bestimmte
divergente Feynmandiagramme die im Grenzwert ε→ 0 auftretenden konvergenten von den di-
vergenten Anteilen zu separieren; ein Teil der dort verwandten Techniken wird später vor dem
theoretischen Hintergrund der Epstein-Glaser- bzw. BPHZ-Regularisierung die Basis des modi-
fizierten BPHZ-Verfahrens bilden.



Kapitel 5

Dimensionale Regularisierung

5.1 Berechnung von Feynmandiagrammen in d Dimensionen

Prinzipiell basiert die Methode der Dimensionalen Regularisierung von Ein-Schleifen-Diagram-
men auf der Berechnung d-dimensionaler Faltungsprodukte von Feynmanpropagatoren im Im-
pulsraum. Die Auswertung der darin enthaltenen Integrationen über innere Impulse k geschieht
in Termen der Eulerschen Gammafunktion Γ, welche im Grenzwert physikalischer Dimension dph.

divergieren; diese Divergenzen sind nun aber Polstellen von Γ, in deren Umgebung diese me-
romorphe Funktion eine wohldefinierte Laurentreihenentwicklung besitzt, welche die Grundlage
der anschließenden Regularisierung bildet (Einführungen in die Dimensionale Regularisierung
enthalten u.a. [MAS],[RYD]). Für Dimensionen d < 2n gilt z. B. die Beziehung:

lim
η→0

∫

ddk

(k2 − s+ iη)n
= iπd/2(−1)n Γ(n− d

2)

Γ(n)

1

sn−d/2
. (5.1)

Mittels der sog. Feynmanparametrisierung ist es nun möglich, das zu regularisierende Faltungs-
produkt eines logarithmisch divergenten Diagrammes (dph. = 2n) auf die Form der linken Seite
von (5.1) zu bringen, nachdem es zuvor durch den Übergang zu Dimensionen d < 2n naiv re-
gularisiert wurde - dieser die Divergenz des zu berechnenden Integrals beseitigende Übergang
geht der tatsächlichen Regularisierung voraus und wird im Anschluß an diese wieder rückgängig
gemacht. Auf die Nenner ai der Produkte von auf dem entsprechenden Impulsfluß ausgewerteten
Feynmanpropagatoren im Integranden wird die folgende Parametrisierung angewandt:

1

a0a1 · · · an
= Γ(n+ 1)

∫ 1

0
dz1

∫ z1

0
dz2 · · ·

∫ zn−1

0

dzn
[a0 + (a1 − a0)z1 + ...+ (an − an−1)zn]n+1

,

(5.2)

im einzelnen:

1

ab
=

∫ 1

0
dz

1

[a(1 − z) + bz]2
, (5.3)

39
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1

abc
= 2

∫ 1

0
dx

∫ x

0
dy

1

[a+ (b− a)x+ (c− b)y]3
(5.4)

= 2

∫ 1

0
dx

∫ 1−x

0
dy

1

[a(1 − x− y) + bx+ cy]3
. (5.5)

Die Bewahrung der physikalischen Dimension der zu berechnenden S-Matrixelemente erfordert
überdies die Einführung eines Massenparameters µ in die Theorie, wie es am Beispiel der φ4-
Theorie demonstriert sei: Es ist die Wirkung S =

∫

ddxL, welche es hierzu - in quantenfeld-
theoretischen Einheiten (~ = c = 1,Λ = [p] = 1/[x] = 1/L) - dimensionslos zu erhalten gilt;
für die Dimension der Lagrangedichte L folgt somit notwendigerweise [L] = Λd. Letzteres al-
lerdings kann nur dann unter Beibehaltung der physikalischen Einheiten sämtlicher Parameter
der ursprünglichen Theorie erfüllt werden, wenn im Wechselwirkungsanteil Lint ein zusätzlicher
Faktor µ4−d eingefügt wird:

L(d) =
1

2

(

∂φ

∂xµ

∂φ

∂xµ
−m2φ2

)

− µ4−d g

4!
φ4. (5.6)

Die beiden ersten Summanden in (5.6) legen die Impulsdimension des Feldes φ auf d
2 − 1 fest,

welches dann die angegebene Modifikation des Wechselwirkungsanteils bedingt.

Für das bereits mit Epstein-Glaser- und BPHZ-Regularisierung behandelte Beispiel des
logarithmisch divergenten Beitrags zur Vierpunktfunktion in der Ordnung g2, nun für einen
konkreten Impulsfluß nach den Feynmanregeln bestimmt, existiert für d < 4 das folgende d-
dimensionale Impulsintegral:

Λ(d)(p) =
1

2
g2(µ2)4−d

∫

ddk

(2π)d

1

(p− k)2 −m2 + iη

1

k2 −m2 + iη

=
1

2
g2(µ2)4−d

∫ 1

0
dz

∫

ddk

(2π)d

1

[((p− k)2 −m2)(1 − z) + z(k2 −m2) + iη]2

=
1

2
g2(µ2)4−d

∫ 1

0
dz

∫

ddk

(2π)d

1

[k2 − 2kp(1 − z) + p2(1 − z) −m2 + iη]2

=
1

2
g2(µ2)4−d

∫ 1

0
dz

∫

ddk

(2π)d

1

[k2 + p2(1 − z)z −m2 + iη]2

=
1

2
g2(µ2)4−d iπ

d/2

(2π)d

Γ(2 − d
2)

Γ(2)

∫ 1

0
dz

1

[m2 − p2z(1 − z)]2−d/2

=
i

32π2
g2(µ2)2−d/2 Γ

(

2 − d

2

)∫ 1

0
dz

[

4πµ2

m2 − p2z(1 − z)

]2−d/2

. (5.7)

Insbesondere ist die nach der dritten Zeile von (5.7) vorgenommene Translation k → k+p(1−z)
der Integrationsvariablen dieses wohldefinierten Integrals zulässig. Die anschließende Regula-
risierung des resultierenden Ausdrucks, welcher mit der in diesem enthaltenen Gammafunk-
tion für d = 4 eine Polstelle besitzt, erfolgt im Rahmen der Dimensionalen Regularisierung
durch die Laurententwicklung um diese Singularität und die darauffolgende Subtraktion der
hierdurch separierten divergenten Anteile. Inwiefern diese Methode mit der - für Ein-Schleifen-
Diagramme mittels Fouriertransformation direkt mit dem BPHZ-Verfahren identifizierbaren -
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Epstein-Glaser-Regularisierung verträglich ist, soll im folgenden überprüft werden. Ferner wird
auch für Diagramme, welche stärker als logarithmisch divergent sind (dph. > 2n), die Dimensio-
nale Regularisierung verwandt, wenngleich hier (5.1) nicht gültig ist; in diesem Falle liefert die
Fortsetzbarkeit der Gammafunktion Γ(x) für alle x 6= 0,−1,−2, ... die Grundlage der folgenden
Regularisierung. Auch für dieses Vorgehen soll schließlich die Zulässigkeit überprüft werden.

5.2 Regularisierung in Termen der Eulerschen Gammafunktion

Das für reelle positive Argumente x konvergente Integral

Γ(x) :=

∫ ∞

0
dt e−ttx−1 (5.8)

bildet eine Verallgemeinerung der n-Fakultät n! = Γ(n+ 1), indem es die Eulersche Γ-Funktion
als Lösung der Funktionalgleichung

Γ(z + 1) = zΓ(z), z = 1, 2, ... (5.9)

definiert. Überdies existiert eine eindeutige analytische Fortsetzung von Γ(x) zu einer meromor-
phen komplexen Funktion Γ(z) mit Polstellen an den Punkten z = −n = 0,−1,−2, ...; für die
Laurententwicklung in deren jeweiligen Umgebungen gilt:

Γ(ε) =
1

ε
− γ + O(ε), (5.10)

Γ(−n+ ε) =
(−1)n

n!

{

1

ε
+

(

1 +
1

2
+ · · · + 1

n
− γ

)

+ O(ε)

}

, n = 1, 2, ..., (5.11)

wobei γ die Eulersche Konstante ist,

γ = lim
n→∞

(

1 +
1

2
+ · · · + 1

n
− lnn

)

≈ 0, 5772. (5.12)

In einem ursprünglich logarithmisch divergenten Ein-Schleifen-Diagramm, welches durch den
Übergang zu d < 4 Dimensionen zunächst naiv regularisiert wurde, erfolgt nun als nächster
Schritt der Dimensionalen Regularisierung die Separation desjenigen Anteils, welcher im Grenz-
wert d→ 4 divergiert; demonstriert sei dies weiterhin am Beispiel (5.7):

Eine positive reelle Variable ε = 4 − d parametrisiert zunächst die Abweichung von der
physikalischen Dimension. Zur anschließenden Berechnung der Laurententwicklung von (5.7)
um die Polstelle ε = 0 werden nun sowohl die Entwicklung (5.10) der Γ-Funktion als auch die
Taylorentwicklung der übrigen ε-abhängigen Anteile dieses Ausdrucks herangezogen; für das
betrachtete Beispiel resultiert:

Γ

(

2 − d

2

)

= Γ
( ε

2

)

=
2

ε
− γ + O(ε), (5.13)

[

4πµ2

m2 − p2(1 − z)z

]2−d/2

= 1 +
1

2
ln

4πµ2

m2 − p2z(1 − z)
ε+ O(ε2), (5.14)
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und für den gesamten Ausdruck (5.7):

Λ(d)(p) =
i

32π2
g2µε

(

2

ε
− γ

)(

1 +

∫ 1

0
dz

1

2
ln

4πµ2

m2 − p2z(1 − z)
ε

)

+ O(ε)

=
i

16π2ε
g2µε − i

32π2
g2µε

(

γ −
∫ 1

0
dz ln

4πµ2

m2 − p2z(1 − z)

)

+ O(ε). (5.15)

Es ist die Subtraktion des im Grenzfall ε→ 0 divergenten ersten Termes von (5.15), welche nun
die Regularisierung bewerkstelligt; überdies hat in das verbleibende, bei der Grenzwertbildung
endliche Ergebnis auch der aus Dimensionsgründen eingefügte Massenparameter µ Eingang ge-
funden.

Tatsächlich zeigt die Betrachtung der funktionalen Abhängigkeit des für ε → 0 zu regulari-
sierenden Ausdrucks von den äußeren Impulsen p, daß die hier vorgenommene Subtraktion des
zu 1/ε proportionalen Termes eine im Sinne von Epstein-Glaser zulässige ist: Das für ein solches
Ein-Schleifen-Diagramm bereits als äquivalent zu letzterem befundene BPHZ-Verfahren schreibt
zu dessen Regularisierung eine Taylorsubtraktion des Integranden in den äußeren Impulsen bis
zur Ordnung d(γ) = 0 vor, nach welcher eine additive Konstante bzgl. p die hierzu ausgenutzte
Freiheit wiederherstellt. Bei der Dimensionalen Regularisierung dieses logarithmisch divergenten
Diagrammes wird nun das Integral über den ursprünglichen Integranden zunächst - auf wohl-
definierte Art und Weise - in d < 4 Dimensionen berechnet; danach erst erfolgt die zulässige
Subtraktion des im Grenzwert ε → 0 divergenten Anteils der Taylorentwicklung in p bis zur
Ordnung Null, indem der bzgl. p konstante 1/ε-Term abgezogen wird.

Auch der im Resultat der Dimensionalen Regularisierung verbleibende Massenparameter µ
kann vor dem Hintergrund der BPHZ-Regularisierungsmethode interpretiert werden, wozu im
folgenden mittels der Ersetzung µ = λ

2
√

π
m, 0 < λ <∞, das Skalierungsverhalten des Ergebnisses

bzgl. dieser Variablen betrachtet sei; es resultiert:

Λ(p)D.R. = − i

32π2
g2

(

γ −
∫ 1

0
dz ln

4πµ2

m2 − p2z(1 − z)

)

= − i

32π2
g2

(

γ − 2 lnλ−
∫ 1

0
dz ln

m2

m2 − p2z(1 − z)

)

. (5.16)

Durchläuft somit der Parameter λ die positiven reellen Zahlen und generiert demgemäß sämtliche
möglichen Werte einer nichtverschwindenden Masse µ, so schöpft der zu lnλ proportionale Anteil
von (5.16) die gesamte Freiheit der Addition eines bzgl. p konstanten Termes aus. Eine jede Wahl
von λ liefert eine zulässige Regularisierung; darunter ausgezeichnet diejenige von λ = λ0 = eγ/2:

Der Ausdruck

Λ(p)λ0
D.R. =

i

32π2
g2

∫ 1

0
dz ln

m2

m2 − p2z(1 − z)
(5.17)

verschwindet an der Stelle p = 0 und liefert somit - auf dem Umwege der Dimensionalen Regu-
larisierung - das Ergebnis der durch diese verschwindende Taylorentwicklung bis zur Ordnung
Null charakterisierten BPHZ-Regularisierung.
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Nachdem nun anhand dieses Beispiels die Zulässigkeit der im Rahmen der Dimensionalen
Regularisierung erfolgenden Berechnungen und Subtraktionen für logarithmisch divergente Ein-
Schleifen-Diagramme überprüft worden ist, sei im folgenden das Vorgehen für solche Diagramme
mit höherem Divergenzgrad untersucht. Für diese Fälle, charakterisiert durch dph. > 2n in
(5.1), ist gerade diese grundlegende Beziehung zwischen Impulsintegralen und Termen der Γ-
Funktion auch nach einer naiven Regularisierung durch den Übergang in dph. − ε Dimensionen
nicht gültig. Deren rechte Seite allerdings besitzt als Funktion von d außerhalb ihrer Polstellen
d = 2n+2m,m = 0, 1, ..., und somit insbesondere auch für d = dph.−ε eine eindeutige analytische
Fortsetzung, welche nun den Ausgangspunkt der Dimensionalen Regularisierung bildet:

Analog zum behandelten Beispiel des logarithmisch divergenten Diagrammes erfolgt an dieser
Stelle die Laurententwicklung der Fortsetzung um die - für geradzahliges dph. vorliegende -
Polstelle für ε = 0 sowie die abschließende Subtraktion der zu 1/ε proportionalen Anteile.

In bezug auf die Zulässigkeit eines solchen Vorgehens sei zum Vergleich mit dem entsprechen-
den innerhalb der BPHZ-Regularisierung die folgende Überlegung angestellt: Das d-dimensionale
Impulsintegral über den gemäß der BPHZ-Regularisierungsvorschrift subtrahierten Integranden
ist für alle d ≤ dph. definiert. Ferner läßt sich dieses Integral für d < 2n in Einzelintegrale über
jeweils den ursprünglichen Integranden und die Koeffizienten der von diesem zu subtrahieren-
den Taylorentwicklung in den äußeren Impulsen zerlegen; für jedes dieser einzelnen Integrale gilt
(5.1). Schließlich liefern sowohl die analytische Fortsetzung dieser Einzelintegrale in Termen der
Γ-Funktion als auch das BPHZ-subtrahierte d-dimensionale Impulsintegral selbst eine Fortset-
zung in die Dimensionen 2n ≤ d ≤ dph.. Aus der Analytizität des letzteren als Funktion der
Variablen d und der Eindeutigkeit der analytischen Fortsetzung folgt im Grenzwert d → dph.

die Äquivalenz von Dimensionaler und BPHZ-Regularisierung, falls die p-Abhängigkeit des bei
jener zu subtrahierenden 1/ε-Termes nur in einem Polynom bis zur Ordnung d(γ) besteht.

Das BPHZ-Verfahren, für welches selbst wenngleich nicht die Endlichkeit seiner Resultate
- dies ist Teil des Verfahrens - so doch seine Zulässigkeit in bezug auf die verwandten Freihei-
ten durch Vergleich mit der Epstein-Glaser-Regularisierung überprüft werden muß, dient hier
im ganzen als eine Art theoretischer Rahmen, mithilfe dessen die zunächst willkürlich anmu-
tende Subtraktion der 1/ε-Terme bei der Dimensionalen Regularisierung erklärt werden kann.
Insbesondere für Ein-Schleifen-Diagramme, wo die Äquivalenz von BPHZ- und Epstein-Glaser-
Regularisierung, wie in Kapitel 4.1 beschrieben, unmittelbar herausgestellt werden kann, erlaubt
nun aber dieser Vergleich eine Modifikation des klassischen BPHZ-Verfahrens, welche zum einen
auf bei der Dimensionalen Regularisierung bewährte Techniken zurückgreift, zum anderen aber
ausschließlich innerhalb der physikalischen Dimension verbleibt und somit sämtliche mit einer
Verallgemeinerung der Dimensionalität verbundenen Schwierigkeiten vermeidet; dieses modifi-
zierte BPHZ-Verfahren sei der Gegenstand des folgenden Kapitels.





Kapitel 6

Das modifizierte BPHZ-Verfahren

6.1 Motivation und allgemeine Vorgehensweise

Im klassischen BPHZ-Verfahren erfährt zwar jedes ein Feynmandiagramm darstellende divergen-
te Impulsintegral seine Regularisierung in übersichtlicher Art und Weise durch entsprechende
Subtraktion des Integranden; die konkrete Ausführung des solchermaßen modifizierten Integrals
ist aber gegenüber anderen Regularisierungsverfahren zunächst stark erschwert.

Das Ziel dieses Kapitels ist es, zunächst auf Ein-Schleifen-Ebene ein modifiziertes BPHZ-
Verfahren zu konstruieren, welches den wohldefinierten theoretischen Rahmen des klassischen
BPHZ-Formalismus mit den technischen Vorzügen der vielverwandten Dimensionalen Regulari-
sierung vereint und überdies den Vergleich mit letzterer vereinfacht.

Die Idee hierzu besteht darin, bereits am noch nicht subtrahierten Integranden in Anlehnung
an die Vorgehensweise bei der Dimensionalen Regularisierung Feynmanparameter einzuführen
und den entstehenden Ausdruck durch weitere Modifikationen auf eine Form zu bringen, in der
die abschließende Regularisierung in Form einer Taylorsubtraktion im äußeren Impuls erheblich
leichter durchgeführt werden kann. Wesentlich hierbei ist, daß die der regularisierenden Sub-
traktion vorangestellten Manipulationen am Integranden vor einem wohldefinierten Hintergrund
erfolgen; inwiefern dieser durch Vergleich mit dem klassischen BPHZ-Verfahren zur Verfügung
gestellt wird, sei zunächst wieder am bereits bekannten Beispiel aus der φ4-Theorie demonstriert:

Gemäß dem klassischen BPHZ-Verfahren wird das aus den Feynmanregeln folgende logarith-
misch divergente und zur Vierpunktfunktion in der Ordnung g2 beitragende Integral durch die
Taylorsubtraktion des Integranden bis zur Ordnung Null regularisiert:

Λ(p) =
1

2
g2

∫

d4k

(2π)4
(1 − t0p)

1

k2 −m2

1

(p− k)2 −m2
. (6.1)

Dieser endliche Ausdruck bildet den Ausgangspunkt des modifizierten Verfahrens: Der nach der
klassischen BPHZ-Regularisierung zu subtrahierende Integrand wird in einem ersten Schritt,
analog zum Vorgehen bei der Dimensionalen Regularisierung, mittels der Einführung eines Feyn-
manparameters z umgeformt. Es ist die spezielle Beschaffenheit des resultierenden z-abhängigen
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Integranden, welche es anschließend ermöglicht, vor der regularisierenden Taylorsubtraktion die
Integration über den Feynmanparameter mit der Impulsintegration zu vertauschen: Auch der
modifizierte Integrand wird durch Taylorsubtraktion im äußeren Impuls bis zur Ordnung des
Divergenzgrades von den bzgl. der k-Integration divergenten Anteilen befreit. Als letzte Modifi-
kation kann dann, gleichfalls vor der abschließenden Subtraktion, eine Translation der Integra-
tionsvariablen um den Term p(z − 1) vorgenommen werden, welche die - das spätere Ausführen
der Impulsintegration wesentlich erleichternde - Trennung von innerem und äußerem Impuls im
Nenner des Integranden bewirkt. Im einzelnen sind es somit die folgenden Umformungen, welche
dem expliziten Ausführen der Taylorsubtraktion vorausgehen:

Λ(p) =
1

2
g2

∫

d4k

(2π)4

∫ 1

0
dz(1 − t0p)

1

[((p− k)2 −m2)(1 − z) + z(k2 −m2)]2

=
1

2
g2

∫ 1

0
dz

∫

d4k

(2π)4
(1 − t0p)

1

[k2 − 2pk(1 − z) + p2(1 − z) −m2]2

=
1

2
g2

∫ 1

0
dz

∫

d4k′

(2π)4
(1 − t0p)

1

[k′2 + p2z(1 − z) −m2]2
. (6.2)

Wesentlich im Hinblick auf die abschließende Translation der Integrationsvariablen um einen
zum äußeren Impuls p proportionalen Term ist wiederum die Tatsache, daß das Skalierungsver-
halten1 des ursprünglichen Integranden für große innere Impulse k durch die Einführung der
Feynmanparameter nicht verändert wird: Wie bereits das Impulsintegral über den parametri-
sierten Integranden denselben Divergenzgrad aufweist wie dasjenige über den ursprünglichen, so
verringert auch weiterhin eine jede Ableitung nach dem äußeren Impuls p den Skalierungsgrad
bzgl. k; die Koeffizienten der Taylorentwicklung nach p führen folglich für Ordnungen größer
als der Divergenzgrad auf konvergente k-Integrale. Dieselbe Überlegung, welche im klassischen
BPHZ-Verfahren eine Translation der Integrationsvariablen um einen p-proportionalen Term -
realisiert durch die veränderte Wahl des Standardimpulsflusses - rechtfertigt, ist somit weiterhin
anwendbar:

Ausgehend vom subtrahierten ursprünglichen - im Falle des klassischen BPHZ-Verfahrens -
bzw. parametrisierten Integranden F (k, p) sei zunächst am gesamten konvergenten Integral I(p)
die Translation k′ = k+λp in der Integrationsvariablen, gefolgt von einer erneuten, redundanten
Taylorsubtraktion, betrachtet:

I(p) =

∫

d4k
(

F (k, p) − tωpF (k, p)
)

=

∫

d4k

(

F (k, p) − F (k, 0) − ...− 1

ω!
pω ∂ω

∂pω
F (k, 0)

)

=

∫

d4k

(

F (k + λp, p) − F (k + λp, 0) − ...− 1

ω!
pω ∂ω

∂pω
F (k̃, 0)

∣

∣

∣

∣

k̃=k+λp

)

=

∫

d4k

(

(1 − tωp )F (k + λp, p) − (1 − tωp )
(

tωpF (k̃, p)
)∣

∣

∣

k̃=k+λp

)

=

∫

d4k(1 − tωp )F (k + λp, p) − I0(p). (6.3)

1Aufgrund der speziellen Gestalt der betrachteten Integranden liefert dieses Skalierungsverhalten tatsächlich
eine Aussage über die Konvergenz des entsprechenden Integrals: Nach der Durchführung einer Wickrotation wird
dessen Nenner von einer Potenz des Euklidischen Betrages von k dominiert.
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Neben jeder p-Ableitung erniedrigt nun aber auch eine jede Differentiation nach k den Skalie-
rungsgrad von F (k, p) bzgl. des inneren Impulses; die nach Translation und erneuter Taylorsub-
traktion verbleibenden Anteile des anfänglichen Subtaktionsterms führen somit weiterhin auf
ein konvergentes Integral. Aus der Tatsache, daß überdies jeder dieser Anteile mindestens eine
k-Differentiation enthält, folgt schließlich das Verschwinden des resultierenden Integrals I0(p):
Der Gaußsche Satz ermöglicht eine Umwandlung desselben in Integrale von Vektorfeldern mit
einem Skalierungsverhalten von k−a, a ≥ 4, für große innere Impulse über eine dreidimensionale
Hyperfläche und im Grenzwert k → ∞.

Zur Auswertung des k′-Integrals in (6.2) wird nun eine sog. Wickrotation durchgeführt,
welche unter Beachtung der bislang in abkürzender Schreibweise unterdrückten Integrationsvor-
schrift +iη in den Nennern der Propagatoren im Impulsraum die Einführung vierdimensionaler
Euklidischer Polarkoordinaten (k0,k) mit Betrag k̄ ermöglicht (Anhang A). Aufgrund der im
vorangegangenen erfolgten und gerade den Mischterm −2pk(1 − z) aufhebenden Translation in
der Integrationsvariablen resultiert überdies ein ausschließlich vom Betrage k̄ abhängiger Inte-
grand, dessen Winkelintegration somit direkt durch die Multiplikation mit der Oberfläche Ω4

der vierdimensionalen Einheitskugel ausgeführt werden kann:

Λ(p) = iΩ4
1

(2π)4
1

2
g2

∫ 1

0
dz

∫ ∞

0
dk̄

{

k̄3

[k̄2 − p2z(1 − z) +m2]2
− k̄3

[k̄2 +m2]2

}

=
i

32π2
g2

∫ 1

0
dz ln

m2

m2 − p2z(1 − z)
. (6.4)

Im Gegensatz zum über den Umweg der Dimensionalen Regularisierung erhaltenen Resultat
(5.17) erfolgt dessen Herleitung im hier beschriebenen Vorgehen vollständig innerhalb der physi-
kalischen Dimension. Ferner legt die verbleibende Freiheit in der Addition einer Konstanten bzgl.
des äußeren Impulses p eine direkte Verallgemeinerung des Ergebnisses in Form der Ersetzung
m→ µ im Zähler des Logarithmus nahe. Im Unterschied zur Dimensionalen Regularisierung ist
es im modifizierten BPHZ-Verfahren jedoch nicht das spezielle Vorgehen, das die Einführung
einer Massenskala erfordert; vielmehr verallgemeinert der eingeführte Massenparameter das spe-
zielle Resultat, indem er die grundlegende Freiheit bei der Regularisierung verwendet:

Λµ(p) =
i

32π2
g2

∫ 1

0
dz ln

µ2

m2 − p2z(1 − z)
. (6.5)

Das Ergebnis (5.16) der Dimensionalen Regularisierung ist in dieser Verallgemeinerung enthal-
ten; die Wahl µ2 = 4πµ2

D.R.e
−γ vermittelt dabei den Übergang zwischen den beiden Parametri-

sierungen:

Λ(p)D.R. =
i

32π2
g2

{

−γ +

∫ 1

0
dz ln

4πµ2
D.R.

m2 − p2z(1 − z)

}

. (6.6)

Die vorangegangenen Betrachtungen legen nun eine allgemeine Vorgehensweise bei der Re-
gularisierung divergenter Ein-Schleifen-Diagramme γ nahe. Ausgehend vom Impulsintegral über
den inneren Impuls k des aus der klassischen BPHZ-Regularisierung resultierenden subtrahierten
Integranden (1 − tωp )Iγ(k, p) seien die wesentlichen Schritte des modifizierten BPHZ-Verfahrens
wie folgt vorgegeben:
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1. Einführung der Feynmanparametrisierung am Term Iγ(k, p) und Vertauschung der dies-
bzgl. Integrationen mit dem Operator (1 − tωp ) und der k-Integration,

2. Translation der Integrationsvariablen um λp zur Separation von äußerem und innerem
Impuls im Nenner des Integranden (λ ist eine Funktion der Feynmanparameter),

3. Ausführung der Taylorsubtraktion um p = 0 bis zur singulären Ordnung ω,

4. Durchführung der Wickrotation und Einführung Euklidischer Polarkoordinaten,

5. Ausführung der Impulsintegration und Ersetzung der Masse m durch einen Massenpara-
meter µ im p-konstanten Teil des resultierenden Logarithmus.

6.2 Demonstration an Beispielen aus der QED

In den folgenden Abschnitten sei das modifizierte BPHZ-Verfahren zunächst an den drei bei-
tragenden divergenten Ein-Schleifen-Diagrammen der Quantenelektrodynamik - Elektronselbst-
energie, photonische Selbstenergie und Vertexkorrektur - demonstriert. Neben der deutlichen
Herausstellung der regularisierenden Manipulation in Form der Taylorsubtraktion, welche auch
die Zulässigkeit des angewandten Verfahrens im Sinne von Epstein-Glaser sicherstellt, wird be-
reits an diesen Beispielen als weiterer wesentlicher Vorteil gegenüber der Dimensionalen Regula-
risierung deutlich, daß keine im Zuge der Erweiterung auf d Dimensionen anfallende Definition
d-dimensionaler Diracscher Gammamatrizen erforderlich ist. Die Verallgemeinerung der einzel-
nen Ergebnisse durch die Einführung eines Massenparameters µ stellt abschließend den Vergleich
zwischen den beiden Verfahren her.

6.2.1 Elektronselbstenergie

p pp − k

k

Abbildung 6.1: Elektronselbstenergie

Für diesen nach den Feynmanregeln konstruierten, linear divergenten Beitrag niedrigster
Schleifenordnung zum Elektronpropagator liefert das klassische BPHZ-Verfahren:

Σ(p) = −ie2
∫

d4k

(2π)4
(1 − t1p)γµ

1

/p− /k −m
γν
gµν

k2

= −ie2
∫

d4k

(2π)4
(1 − t1p)

γµ(/p− /k +m)γµ

[(p− k)2 −m2]k2
. (6.7)
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Nach der Einführung des Feynmanparameters z bewerkstelligt die Substitution k = k ′ + pz der
Integrationsvariablen die Trennung von äußerem und innerem Impuls:

Σ(p) = −ie2
∫ 1

0
dz

∫

d4k

(2π)4
(1 − t1p)

γµ(/p− /k +m)γµ

[(p− k)2z −m2z + k2(1 − z)]2

= −ie2
∫ 1

0
dz

∫

d4k′

(2π)4
(1 − t1p)

γµ(/p− /pz − /k′ +m)γµ

[k′2 −m2z + p2z(1 − z)]2
. (6.8)

Aufgrund der Symmetrie des Integrationsvolumens tragen ferner die in k ungeraden Terme des
Integranden nicht bei; Wickrotation und Einführung vierdimensionaler Euklidischer Polarkoor-
dinaten gehen schließlich dem expliziten Ausführen der Subtraktion voraus:

Σ(p) = −ie2
∫ 1

0
dzγµ(/p(1 − z) +m)γµ

∫

d4k′

(2π)4
(1 − t0p)

1

[k′2 −m2z + p2z(1 − z)]2

= −ie2
∫ 1

0
dzγµ(/p(1 − z) +m)γµ

Ω4i
1

(2π)4

∫ ∞

0
dk̄

{

k̄3

[k̄2 +m2z − p2z(1 − z)]2
− k̄3

[k̄2 +m2z]2

}

=
e2

16π2

∫ 1

0
dz(2/p(z − 1) + 4m) ln

m2

m2 − p2(1 − z)
, (6.9)

unter Verwendung der Beziehungen γµγ
µ = 4, γµγνγ

µ = −2γν . Als Ergebnis des modifizierten
BPHZ-Verfahrens folgt somit:

Σµ(p) =
e2

16π2

∫ 1

0
dz(2/p(z − 1) + 4m) ln

µ2

m2 − p2(1 − z)
. (6.10)

Mit der speziellen Wahl µ2 = 4πµ2
D.R. exp{1

2 −γ} resultiert der endliche Anteil des gemäß [RYD]
aus der Dimensionalen Regularisierung erhaltenen Ergebnisses:

Σ(p)D.R. =
e2

16π2

∫ 1

0
dz(2/p(z − 1) + 4m) ln(ze

1
2
−γ)

+
e2

16π2

∫ 1

0
dz(2/p(z − 1) + 4m) ln

4πµ2
D.R.

m2z − p2z(1 − z)

=
e2

16π2

(

1

2
− γ

)

(

−/p+ 4m
)

+
e2

16π2

(

3

2
/p− 4m

)

+
e2

16π2

∫ 1

0
dz(2/p(z − 1) + 4m) ln

4πµ2
D.R.

m2z − p2z(1 − z)

=
e2

16π2

(

/p(1 + γ) − 2m(1 + 2γ)
)

+
e2

16π2

{
∫ 1

0
dz(2/p(z − 1) + 4m) ln

4πµ2
D.R.

m2z − p2z(1 − z)

}

. (6.11)
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6.2.2 Vakuumpolarisation

Als zweites Beispiel soll nun der quadratisch divergente Beitrag zur photonischen Selbstenergie
in Ein-Schleifen-Ordnung berechnet werden.

k k

p

k − p

Abbildung 6.2: Vakuumpolarisation

Für dieses Diagramm liefert das klassische BPHZ-Verfahren die folgende Regularisierung des
aus den Feynmanregeln folgenden Integrals:

Πµν(k) = ie2
∫

d4p

(4π)2
(1 − t2k)Tr

[

γµ
1

/p−m
γν

1

/p− /k −m

]

. (6.12)

Auf die Erweiterung des Integranden mit /p +m und /p− /k +m und die Einführung des Feyn-
manparameters z folgt zunächst nach dem allgemeinen Schema des modifizierten Verfahrens die
Translation der Integrationsvariablen p gemäß p = p′ + k(1 − z), p′ → p, so daß resultiert:

Πµν(k) = ie2
∫ 1

0
dz

∫

d4p

(4π)2
(1 − t2k)

Tr[γµ(/p+ /k(1 − z) +m)γν(/p− /kz +m)]

[p2 + k2z(1 − z) −m2]2
. (6.13)

Bei der expliziten Berechnung der Spur verschwinden nun aber zunächst die zu m proportionalen
Terme, da sie eine ungerade Anzahl von γ-Matrizen enthalten; ferner tragen auch die in p linearen
Anteile aufgrund der symmetrischen Integrationsgrenzen nicht zum Integral bei:

Tr[γµ(/p+ /k(1 − z) +m)γν(/p− /kz +m)]

= Tr[γµ(/p+ /k(1 − z))γν(/p− /kz) +m2γµγν ]

= Tr[γµ/pγν/p− γµ/kγν/kz(1 − z) +m2γµγν ] + O(p)

= −4gµν [p2 − k2z(1 − z) −m2] + 8pµpν − 8kµkνz(1 − z) + O(p), (6.14)

mit den Spuren

Tr[γµγν ] = 4gµν , Tr[γµγκγνγλ] = 4(gµκgνλ − gµνgκλ + gµλgκν). (6.15)

Die Verwendung von (6.14) in (6.13) führt somit auf:

Πµν(k) = ie2
∫ 1

0
dz

∫

d4p

(4π)2
(1 − t2k)

8pµpν − 8kµkνz(1 − z) − 4gµν [p2 − k2z(1 − z) −m2]

[p2 + k2z(1 − z) −m2]2
,(6.16)
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woraus durch partielle Integration des ersten Teils und abschließendes explizites Ausführen der
Taylorsubtraktion resultiert:

Πµν(k) = ie2
∫ 1

0
dz

∫

d4p

(4π)2
(1 − t2k)

{

4gµν

p2 + k2z(1 − z) −m2

−8kµkνz(1 − z) + 4gµν [p2 − k2z(1 − z) −m2]

[p2 + k2z(1 − z) −m2]2

}

= 8ie2
∫ 1

0
dz

∫

d4p

(4π)2
(1 − t2k)

gµνk
2z(1 − z) − kµkνz(1 − z)

[p2 + k2z(1 − z) −m2]2

= − e2

π2

∫ 1

0
dz

∫ ∞

0
dp̄
(

gµνk
2 − kµkν

)

z(1 − z)

·
{

p̄3

[p̄2 − k2z(1 − z) +m2]2
− p̄3

[p̄2 +m2]2

}

= − e2

2π2

∫ 1

0
dz
(

gµνk
2 − kµkν

)

z(1 − z) ln
m2

m2 − k2z(1 − z)
. (6.17)

Als Ergebnis des modifizierten BPHZ-Verfahrens folgt schließlich:

Πµ̃
µν(k) = − e2

2π2

∫ 1

0
dz
(

gµνk
2 − kµkν

)

z(1 − z) ln
µ̃2

m2 − k2z(1 − z)
. (6.18)

Zum Vergleich mit dem in [RYD] aus der Dimensionalen Regularisierung erhaltenen endlichen
Resultat wird wiederum der Massenparameter µ̃ variiert; jenes spezielle Ergebnis folgt für die
Wahl µ̃2 = 4πµ2

D.R.exp{−γ}:

ΠµνD.R.(k) = − e2

2π2

(

gµνk
2 − kµkν

)

{−γ
6

+

∫ 1

0
dzz(1 − z) ln

4πµ2
D.R.

m2 − k2z(1 − z)

}

. (6.19)

6.2.3 Vertexkorrektur

Als letzte Ein-Schleifen-Korrektur in der QED sei nun der Beitrag zur Kopplung berechnet (Abb.
6.3). Das entsprechende logarithmisch divergente Integral besitzt die folgende BPHZ-Regulari-
sierung:

−ieΛµ(p, p′) = ie3
∫

d4k

(2π)4
(1 − t0p,p′)γν

i

/p′ − /k −m
γµ

i

/p− /k −m
γρ

−igνρ

k2

= −e3
∫

d4k

(2π)4
(1 − t0p,p′)

γν(/p
′ − /k +m)γµ(/p− /k +m)γν

[(p′ − k)2 −m2][(p− k)2 −m2]k2
. (6.20)

Nach der Einführung der Feynmanparameter x und y und der darauffolgenden Substitution
k′ = k+ px+ p′y tragen wiederum die im Zähler zu /k

′
proportionalen Terme nicht zum Integral

bei. Darüberhinaus führt derjenige Teil, welcher im Zähler keine k-Potenz enthält, bereits ohne
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p p′
k

p − k

p − p′

p′ − k

Abbildung 6.3: Vertexkorrektur

Taylorsubtraktion auf ein konvergentes Integral; dem klassischen BPHZ-Verfahren folgend, wird
diese dennoch - als eine endliche Modifikation - durchgeführt:

−ieΛµ(p, p′)

= −2e3
∫ 1

0
dx

∫ 1−x

0
dy

∫

d4k

(2π)4
(1 − t0p,p′)

γν(/p
′ − /k +m)γµ(/p− /k +m)γν

[k2 −m2(x+ y) − 2k(px+ p′y) + p2x+ p′2y]3

= −2e3
∫ 1

0
dx

∫ 1−x

0
dy

·
∫

d4k′

(2π)4
(1 − t0p,p′)

γν(/p
′(1 − y) − /px− /k′ +m)γµ(/p(1 − x) − /p′y − /k

′
+m)γν

[k′2 −m2(x+ y) + p2x(1 − x) + p′2y(1 − y) − 2pp′xy]3

= −2e3
∫ 1

0
dx

∫ 1−x

0
dy

∫

d4k

(2π)4
(1 − t0p,p′)

{

γν/kγµ/kγ
ν

[k2 −M2]3

+
γν(/p

′(1 − y) − /px+m)γµ(/p(1 − x) − /p′y +m)γν

[k2 −M2]3

}

, (6.21)

mit der Abkürzung

M2 := m2(x+ y) − p2x(1 − x) − p′2y(1 − y) + 2pp′xy. (6.22)

Nach der Ausführung der Summation über γ-Matrizen im ersten Teil von (6.21),

γν/kγµ/kγ
ν = −4kµ/k + 2k2γµ, (6.23)

wird der aus dem ersten Summanden von (6.23) folgende Term zunächst mittels partieller Inte-
gration umgeformt:
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−ieΛµ(p, p′)

= −2e3
∫ 1

0
dx

∫ 1−x

0
dy

∫

d4k

(2π)4

{

(1 − t0p,p′)

(

−γµ
1

[k2 −M2]2
+ 2k2γµ

1

[k2 −M2]3

)

+(1 − t0p,p′)
γν(/p

′(1 − y) − /px+m)γµ(/p(1 − x) − /p′y +m)γν

[k2 −M2]3

}

=
−ie3
4π2

∫ 1

0
dx

∫ 1−x

0
dy

∫ ∞

0
dk̄

{

−γµ

(

k̄3

[k̄2 +M2]2
− k̄3

[k̄2 +m2(x+ y)]2

)

+2k̄2γµ

(

k̄3

[k̄2 +M2]3
− k̄3

[k̄2 +m2(x+ y)]3

)

−
(

k̄3γν(/p
′(1 − y) − /px+m)γµ(/p(1 − x) − /p′y +m)γν

[k̄2 +M2]3
− k̄3m2γνγµγ

ν

[k̄2 +m2(x+ y)]3

)}

=
−ie3
8π2

∫ 1

0
dx

∫ 1−x

0
dyγµ ln

m2(x+ y)

M2
+
ie3γµ

8π2

+
ie3

16π2

∫ 1

0
dx

∫ 1−x

0
dy
γν(/p

′(1 − y) − /px+m)γµ(/p(1 − x) − /p′y +m)γν

M2
. (6.24)

Mit der Ersetzung m→ µ̃ folgt schließlich das Ergebnis des modifizierten BPHZ-Verfahrens:

−ieΛµ̃
µ(p, p′) =

−ie3
8π2

∫ 1

0
dx

∫ 1−x

0
dyγµ ln

µ̃2(x+ y)

M2
+
ie3

8π2
γµ

+
ie3

16π2

∫ 1

0
dx

∫ 1−x

0
dy
γν(/p

′(1 − y) − /px+m)γµ(/p(1 − x) − /p′y +m)γν

M2
, (6.25)

M2 aus (6.22). Wiederum ist das Ergebnis der Dimensionalen Regularisierung in diesem Resultat
enthalten; letzteres liefert die - mit der bereits zu diesem Zwecke im Falle der Elektronselbst-
energie getroffenen identische - Wahl µ̃2 = 4πµ2

D.R. exp{1
2 − γ} in (6.25):

−ieΛµ(p, p′)D.R. =
iγ

16π2
e3γµ − ie3

8π2

∫ 1

0
dx

∫ 1−x

0
dyγµ ln

4πµ2
D.R.

M2
+
ie3

8π2
γµ

+
ie3

16π2

∫ 1

0
dx

∫ 1−x

0
dy
γν(/p′(1 − y) − /px+m)γµ(/p(1 − x) − /p′y +m)γν

M2
. (6.26)

Tatsächlich folgt aus dem Zusammenhang von modifiziertem BPHZ-Verfahren und Dimen-
sionaler Regularisierung im Falle von Σ(p) und Λµ(p, p′) durch dieselbe Umparametrisierung
(µ̃↔ µD.R.) die Gültigkeit der - bei letzterer Regularisierungsmethode erfüllten - Wardidentität

∂Σ(p)

∂pµ
= −Λµ(p, p) (6.27)

auch für das modifizierte BPHZ-Verfahren.
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Während somit bereits anhand der in diesem Kapitel vorgestellten Beispiele aus der QED
die Vereinfachung gezeigt wurde, welche die Vermeidung der Definition von Diracschen Gam-
mamatrizen in d Dimensionen durch ein ausschließlich in physikalischer Dimension formuliertes
Regularisierungsverfahren ermöglicht, sind es die chiralen Theorien, bei denen diesem zunächst
praktischen Vorteil eine wesentliche Bedeutung zukommt: Die in diesen auftretende Matrix γ5

enthält den für den vierdimensionalen Minkowskiraum spezifischen Levi-Civita-Tensor εµνρσ und
bedarf beim Übergang in d Dimensionen einer - im Vergleich zur Fortsetzung der einzelnen Gam-
mamatrizen aufwendigen - neuen Definition. Im folgenden Kapitel sei anhand eines bekannten
Beispiels die dahingegen unproblematische Anwendung des modifizierten BPHZ-Verfahrens für
ein Diagramm mit axialer Kopplung demonstriert.



Kapitel 7

Die chirale Anomalie

Zur Konstruktion eines Beispiels für die unveränderte Anwendbarkeit des modifizierten BPHZ-
Verfahrens bei den Feynmandiagrammen einer chiralen Theorie sei vom Modell einer axialen
Erweiterung der QED-Lagrangedichte ausgegangen, wie z. B. in [CMS] angeführt, in welcher
das massive Fermion zusätzlich an ein axiales Eichboson Aµ

5 koppelt:

L = Ψ̄(i/∂ −m)Ψ − eJµA
µ − e′J5µA

µ
5 − 1

4
FµνF

µν − 1

4
F5µνF

µν
5 . (7.1)

Aus der Invarianz dieser - zunächst klassischen - Lagrangedichte unter globalen U(1)-Transfor-
mationen des Spinorfeldes Ψ,

Ψ′ = eiαΨ, Ψ̄′ = Ψ̄e−iα, (7.2)

folgt nach dem Theorem von E. Noether die Erhaltung des Vektorstromes Jµ, während die
Invarianz unter entsprechenden axialen U(1)-Transformationen,

Ψ′ = eiβγ5Ψ, Ψ̄′ = Ψ̄eiβγ5 , (7.3)

durch den Massenanteil gebrochen ist; insgesamt gilt für vektoriellen und axialen Strom:

∂µJµ = 0, ∂µJ5µ = 2imΨ̄γ5Ψ, (7.4)

mit Jµ = Ψ̄γµΨ und J5µ = Ψ̄γµγ5Ψ.

Für den in Abb. 7.1 dargestellten Beitrag zum sog. Dreiecksgraphen Tλµν , drei innere Fer-
mionen beschreibend, welche an zwei vektorielle, mit den Impulsen p und q an den Vertices µ
und ν einfallende, und ein axiales Eichboson koppeln, tritt - als Folge des Übergangs zur quan-
tentheoretischen Betrachtung - eine Anomalie auf: Während die klassische Erhaltung von Jµ in
den Wardidentitäten

pµTλµν = 0, (7.5)

qνTλµν = 0 (7.6)

55
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resultiert, folgt auch im Grenzfall m = 0 keine analoge, die in diesem Falle vorliegende Erhaltung
auch des axialen Stromes J5µ ausdrückende Gleichung; stattdessen gilt unter Beiseitelassung der
Kopplungskonstanten :

(pλ + qλ)Tλµν = 2mTµν +
1

2π2
εµνρσq

ρpσ, (7.7)

mit

Tµν =

∫

d4k

(2π)4
Tr

(

1

/k −m
γµ

1

/k − /p−m
γ5

1

/k + /q −m
γν

)

+ (p↔ q, µ↔ ν). (7.8)

Als Anomalie wird hierbei der massenunabhängige zweite Teil von (7.7) bezeichnet, welcher
die klassisch für masselose Fermionen vorliegende axiale U(1)-Symmetrie auf Quantenniveau
bricht. Wesentlich zur dessen Herleitung ist die Tatsache, daß die entsprechende, naiv nach
den Feynmanregeln berechnete Amplitude für diesen Prozeß linear divergent ist. Die natürliche
Vorgehensweise zur Berechnung der Gleichungen (7.5) bis (7.7) besteht somit darin, zunächst
eine Regularisierung Tλµν anzugeben, um jene dann auf der Stufe des resultierenden endlichen
Ausdrucks zu überprüfen. Auf diese Weise können konsequent Manipulationen mit divergen-
ten Termen, die für die z. B. in [RYD] zur Bestimmung der Anomalie herangezogenen Symme-
trieüberlegungen vonnöten sind, vermieden werden.

Eine Berechnung der Anomalie im Rahmen der Dimensionalen Regularisierung ist in [NOV]
ausgeführt, wobei insbesondere das sog. γ5-Problem behandelt wird.

p q

p + q

k

k − p k + q

γµ γν

γλγ5

Abbildung 7.1: Beitrag zum Dreiecksgraphen Tλµν(p, q)

7.1 Berechnung des Dreiecksgraphen

Das betrachtete linear divergente Diagramm besitzt - bei entsprechender Unterdrückung der
Vorfaktoren - nach dem klassischen BPHZ-Verfahren die folgende Regularisierung:
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1

2
Tλµν(p, q)

= −
∫

d4k

(2π)4
(1 − t1p,q)Tr

(

/k +m

k2 −m2
γµ

/k − /p+m

(k − p)2 −m2
γλγ5

/k + /q +m

(k + q)2 −m2
γν

)

= −2

∫ 1

0
dx

∫ 1−x

0
dy

∫

d4k

(2π)4
(1 − t1p,q)

Tr
(

(/k +m)γµ(/k − /p+m)γλγ5(/k + /q +m)γν

)

[(k2 −m2)(1 − x− y) + ((k − p)2 −m2)x+ ((k + q)2 −m2)y]3

= −2

∫ 1

0
dx

∫ 1−x

0
dy

∫

d4k

(2π)4
(1 − t1p,q)

Tr
(

(/k +m)γµ(/k − /p+m)γλγ5(/k + /q +m)γν

)

[(k + (qy − px))2 − (qy − px)2 −m2(1 − x− y) + (q2 −m2)y + (p2 −m2)x]3
. (7.9)

Ein zweiter, gleichfalls zur Kopplung beitragender Term ergibt sich durch die Vertauschungen
(p ↔ q) und (µ ↔ ν) aus dem ersten; aus Symmetriegründen liefert dessen Anteil jedoch nur
einen Faktor 2.

Die nun anschließende Substitution k ′ = k − (qy − px), k′ → k, separiert im Nenner -
dem Schema des modifizierten Verfahrens folgend - den inneren von den äußeren Impulsen und
erlaubt die Unterscheidung von in k geraden und ungeraden Anteilen anhand der entsprechenden
Potenzen im Argument der Spur:

Tλµν = −4

∫ 1

0
dx

∫ 1−x

0
dy

∫

d4k

(2π)4
(1 − t1p,q)

Tr
(

(/k − (/qy − /px) +m)γµ(/k − (/qy − /px) − /p+m)γλγ5(/k − (/qy − /px) + /q +m)γν

)

[k2 − (qy − px)2 −m2 + q2y + p2x]3
; (7.10)

aufgrund der Symmetrie des k-Integrationsintervalls tragen in der Spur nur Terme proportional
zu geraden Potenzen von k zum Integral bei. Da überdies die Spur über eine ungerade Anzahl von
γ-Matrizen verschwindet, reduzieren sich die zu berechnenden Terme auf einen zum ursprünglich
logarithmisch divergenten Teil des Integrals gehörenden Anteil

Tr(γ5/kγµ/kγλ(/px− /qy + /q)γν) + Tr(γ5/kγµ(/px− /qy − /p)γλ/kγν)

+Tr((/px− /qy)γµ/kγλγ5/kγν)

= 8iελτνρk
ρkµ(pτx− qτy + qτ ) + 8iεµτλρk

ρkν(pτx− qτy − pτ )

+8iεντµρk
ρkλ(pτx− qτy) − 12iεντµλk

2(pτx− qτy) − 4iελτνµk
2(qτ − pτ ), (7.11)

sowie den auf den endlichen Teil führenden Term

m2Tr((/qy − /px)γµγλγ5γν + γµ(/qy − /px+ /p)γλγ5γν + γµγλγ5(/qy − /px− /q)γν)

+Tr((/qy − /px)γµ(/qy − /px+ /p)γλγ5(/qy − /px− /q)γν)

= 4iελµντ{(qτ (y − 1) − pτ (x− 1))[(qy − px)2 −m2] − q2pτy + p2qτx}
+8iyεµτλρq

ρpτ (qν(y − 1) − pνx) − 8ixελτνρp
ρqτ (pµ(x− 1) − qµy). (7.12)
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Die Berechnung des k-Integrals im zu den Spuren (7.11) gehörigen Anteil führt schließlich auf

T log
λµν =

1

2π2

∫ 1

0
dx

∫ 1−x

0
dy ελµντ{pτ (3x− 1) − qτ (3y − 1)} ln

m2

m2 + (qy − px)2 − q2y − p2x
, (7.13)

während die k-Integration des aus den Spuren (7.12) resultierenden Teils folgenden Ausdruck
ergibt:

T end
λµν =

1

2π2

∫ 1

0
dx

∫ 1−x

0
dy

(

ελµντ ((qτ (y − 1) − pτ (x− 1))[(qy − px)2 −m2] − q2pτy + p2qτx]

(qy − px)2 +m2 − q2y − p2x

+
2yεµτλρq

ρpτ [qν(y − 1) − pνx] − 2xελτνρp
ρqτ [pµ(x− 1) − qµy]

(qy − px)2 +m2 − q2y − p2x

+ελµντ (q
τ (y − 1) − pτ (x− 1))

)

. (7.14)

Zu den Berechnungen der Spuren sowie zur expliziten Ausführung der k-Integrationen sei auf
Anhang B verwiesen.

Tatsächlich ist das Ergebnis

Tλµν = T log
λµν + T end

λµν (7.15)

bereits mit dem allgemeineren des modifizierten BPHZ-Verfahrens, resultierend aus der Erset-
zung m→ µ im Zähler des Logarithmus, identisch: Die diesbezügliche Änderung

∼ {pτ (3x− 1) − qτ (3y − 1)} ln
m2

µ2

verschwindet bei der Integration über die Feynmanparameter x und y. Bemerkenswerterwei-
se scheint hier die Unmöglichkeit, nach dem eng mit dem entsprechenden Verfahren bei der
Dimensionalen Regularisierung korrelierten Vorgehen einen Massenparameter in das Ergebnis
einzuführen, die ausgezeichnete Rolle des physikalischen Minkowskiraums bezüglich der Defini-
tion von chiralen Zuständen widerzuspiegeln.

Die Kenntnis der konkreten Regularisierung (7.15) erlaubt nun anschließend die Überprüfung
der Wardidentitäten (7.5) und (7.6) sowie die Bestimmung der Anomalie in (7.7) auf der Stufe
wohldefinierter endlicher Ausdrücke.

7.2 Wardidentitäten

Als Beispiel soll hier die Wardidentität (7.5) dienen; für diese gilt:

pµTλµν =
1

2π2
ελµντ q

τpµ

∫ 1

0
dx

∫ 1−x

0
dy

(

(1 − 3y) ln
m2

m2 + (qy − px)2 − q2y − p2x

+
y(qy − px)2 −m2(y − 1) − q2y2 + p2x(x− 1)

(qy − px)2 +m2 − q2y − p2x
+ (y − 1)

)

. (7.16)
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Durch partielle Integration des logarithmischen Anteils bzgl. der Feynmanparameters läßt sich
dieser wie folgt umformen:

∫ 1

0
dx

∫ 1−x

0
dy(1 − 3y) ln

m2

m2 + (qy − px)2 − q2y − p2x

=

∫ 1

0
dx

∫ 1−x

0
dy(1 − 2y − x) ln

m2

m2 + (qy − px)2 − q2y − p2x

−
∫ 1

0
dx

∫ 1−x

0
dy(y − x) ln

m2

m2 + (qy − px)2 − q2y − p2x

=

∫ 1

0
dx

∫ 1−x

0
dy
y(1 − y − x)(2(qy − px)q − q2)

(qy − px)2 +m2 − q2y − p2x

−
∫ 1

0
dx

(1 − x)2

2
ln

(qx− p(1 − x))2 +m2 − q2x− p2(1 − x)

(q(1 − x) − px)2 +m2 − q2(1 − x) − p2x

−1

2

∫ 1

0
dx

∫ 1−x

0
dy
y2(2(qy − px)q − q2) − x2(−2(qy − px)p− p2)

(qy − px)2 +m2 − q2y − p2x
. (7.17)

Hier verschwindet der Logarithmus im zweiten Term dieses letzen Ausdrucks, so daß schließlich
mit der Addition des verbleibenden Anteils von (7.16) resultiert:

pµTλµν =
1

2π2
ελµντ q

τpµ

∫ 1

0
dx

∫ 1−x

0
dy

(

(−yx+ 2yx2 + x3 − 1
2x

2)p2 + (yx2 − y2x)qp+ (−y3 − 2y2x+ 1
2y

2 + yx)q2

(qy − px)2 +m2 − q2y − p2x

)

. (7.18)

Es ist die spezielle Gestalt dieser Gleichung, welche nun zur Verifizierung der Wardidentität an
die Stelle einer aufwendigen expliziten Ausführung der Integrationen über die Feynmanparame-
ter eine einfache Symmetrieüberlegung setzt:

Im betrachteten Diagramm sind die an den Vertices µ und ν einfallenden Teilchen mit den
Impulsen p und q identische vektorielle Eichbosonen. Die Verwendung der Identität p2 = q2 für
identische Teilchen in (7.18) offenbart aber, insbesondere im hier vorliegenden Falle p2 = q2 = 0,
die Antisymmetrie des Integranden bzgl. der Vertauschung von x und y, welche wegen der
Symmetrie des Integrationsgebietes zum Verschwinden des Integrals führt; die Wardidentität
(7.5), pµTλµν = 0, ist folglich für den betrachteten Prozeß erfüllt.

Aus diesem Ergebnis folgt wegen der Symmetrie von Tλµν bzgl. der Vertauschung (p ↔ q)
und (µ↔ ν) direkt auch die Gültigkeit der zweiten Wardidentität (7.6):

pµTλµν(p, q) = pµTλνµ(q, p) = 0
p→q,µ→ν

⇒ qνTλµν(p, q) = 0. (7.19)
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7.3 Berechnung der Anomalie

Zur Bestätigung der Gleichung (7.7) sei zuerst auch im dort enthaltenen Term 2mTµν die Feyn-
manparametrisierung eingeführt und das parametrisierte Impulsintegral berechnet. Unter Ver-
wendung der Beziehung

Tr((/k +m)γµ(/k − /p+m)γ5(/k + /q +m)γν) = −4imεµνρσq
ρpσ (7.20)

resultiert:

2mTµν(m)

= −16im2

∫

d4k

(2π)4
εµνρσq

ρpσ

(k2 −m2)((k − p)2 −m2)((k + q)2 −m2)

= −32im2εµνρσq
ρpσ

∫ 1

0
dx

∫ 1−x

0
dy

∫

d4k

(2π)4
1

[k2 −m2 − (qy − px)2 + q2y + p2x]3

= − 1

π2
m2εµνρσq

ρpσ

∫ 1

0
dx

∫ 1−x

0
dy

1

(qy − px)2 +m2 − q2y − p2x
. (7.21)

Aus der expliziten Berechnung der entsprechenden Impulskontraktion folgt andererseits:

(pλ + qλ)Tλµν

=
1

2π2
ελµντ

∫ 1

0
dx

∫ 1−x

0
dy

(

{pτ qλ(3x− 1) − qτpλ(3y − 1)} ln
m2

(qy − px)2 +m2 − q2y − p2x

+
[qτpλ(y − 1) − pτqλ(x− 1)][(qy − px)2 −m2] − q2pτqλy + p2qτpλx

(qy − px)2 +m2 − q2y − p2x
+ pτqλ(2 − x− y)

)

=
1

2π2
ελµντp

τqλ

∫ 1

0
dx

∫ 1−x

0
dy

(

{3x+ 3y − 2} ln
m2

(qy − px)2 +m2 − q2y − p2x

+
(2 − x− y)[(qy − px)2 −m2] − q2y − p2x+ 2m2

(qy − px)2 +m2 − q2y − p2x
+ 2 − x− y)

)

− 1

2π2
ελµντp

τqλ

∫ 1

0
dx

∫ 1−x

0
dy

2m2

(qy − px)2 +m2 − q2y − p2x
. (7.22)

In Analogie zum bereits bei der Berechnung der Wardidentität verwandten Vorgehen wird erneut
der logarithmische Anteil durch partielle Integration bzgl. der Feynmanparameter umgeformt,

∫ 1

0
dx

∫ 1−x

0
dy{3x+ 3y − 2} ln

m2

(qy − px)2 +m2 − q2y − p2x

= −
∫ 1

0
dx

∫ 1−x

0
dy
y(1 − y − x)(2(qy − px)q − q2) + x(1 − x− y)(−2(qy − px)p− p2)

(qy − px)2 +m2 − q2y − p2x
, (7.23)

so daß schließlich nach der Addition der übrigen Terme die zu bestätigende Identität (7.7)
resultiert:

(pλ + qλ)Tλµν =
1

2π2
ελµντp

τqλ

∫ 1

0
dx

∫ 1−x

0
dy

(

2 +
−2m2

(qy − px)2 +m2 − q2y − p2x

)

= 2mTµν(m) +
1

2π2
ελµντp

τqλ. (7.24)
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Die natürliche Vorgehensweise, alle betrachteten Identitäten auf der Stufe einer wohldefi-
nierten konkreten Regularisierung Tλµν zu überprüfen, erlaubt es ferner, die Abhängigkeit jener
Gleichungen von der speziellen Wahl der Regularisierung zu untersuchen: Tatsächlich existiert
kein endlicher Counterterm, entsprechend der linearen Divergenz des betrachteten Diagrammes
aus einem Polynom ersten Grades in den Impulsen p und q bestehend, welcher die Anomalie

1
2π2 ελµντp

τqλ kompensiert, zugleich aber die Wardidentitäten (7.5) und (7.6) aufrechterhält. Die

Änderung der Feynmanamplitude um1

∆Tλµν = − 1

4π2
ελµντ (pτ − qτ ) (7.25)

beseitigt zwar die Anomalie in (7.24), verletzt jedoch gemäß

pµ∆Tλµν =
1

4π2
ελµντ q

τpµ (7.26)

qν∆Tλµν = − 1

4π2
ελµντp

τqν (7.27)

beide vektoriellen Wardidentitäten.

Obgleich der hier an einem Beispiel aus einer chiralen Theorie besonders deutlich werdende
Vorteil des modifizierten BPHZ-Verfahrens in einer Vereinfachung der expliziten Durchführung
der Impulsintegration - sowohl gegenüber dem klassischen BPHZ-Verfahren als auch gegenüber
der Dimensionalen Regularisierung - liegt, so ist es doch die Äquivalenz zur Epstein-Glaser-
Regularisierung, welche die regularisierende Operation bei Ein-Schleifen-Diagrammen, d. h. die
Taylorsubtraktion in den unabhängigen äußeren Impulsen, erst rechtfertigt.

Auch bei der nun folgenden Behandlung von Diagrammen höherer Schleifenordnung gilt es
somit vor allem, diese Äquivalenz herauszustellen. Im Hinblick auf eine Erweiterung des modifi-
zierten BPHZ-Verfahrens für Mehr-Schleifen-Diagramme ist es die auf einer Entwicklung in der
Schleifenordnung basierende Zimmermannsche Waldformel, deren Aussage bzgl. der Regularisie-
rung eines Feynmandiagramms dazu mit der entsprechenden, einer Entwicklung nach Vertices
folgenden Konstruktionsvorschrift nach dem Epstein-Glaser-Verfahren zu vergleichen ist.

Am sog. Sunrise-Diagramm der φ4-Theorie sei als an einem ersten Beispiel dieser Vergleich
demonstriert und insbesondere die Unterschiedlichkeit von Unterdiagrammen im Sinne der Wald-
formel und solchen, deren Definition die Epstein-Glaser-Konstruktion nahelegt, herausgestellt.

1Die Bedingung (pλ+qλ)∆Tλµν = −
1

2π2 ελµντpτqλ legt den bzgl. der Vertauschung (µ ↔ ν) antisymmetrischen
Anteil von ∆Tλµν gemäß (7.25) fest; ein diesbzgl. symmetrischer Teil kann aber die Verletzung der vektoriellen
Wardidentitäten nicht kompensieren.





Kapitel 8

Das Sunrise-Diagramm

Die Interpretation des klassischen Epstein-Glaser-Verfahrens als Regularisierungsverfahren ist
prinzipiell auch für Mehr-Schleifen-Diagramme anwendbar; für den Konstruktionsprozeß rele-
vant ist einzig die Anzahl n der Vertices beim betrachteten Prozeß: Die Epstein-Glaser-Methode
liefert, ausgehend von der aus dem normalgeordneten Produkt von Feldoperatoren bestehen-
den temperierten Distribution T1 = iL1, ein bzgl. der Anzahl der Vertices rekursives Verfahren
zur Ermittlung der Funktionale Tn in der Potenzreihenentwicklung (3.1). Die im Zuge des Ver-
fahrens notwendigen Einschränkungen der Testfunktionen für die in der Wickzerlegung von Tn

enthaltenen divergenten skalaren Distributionen liefern die jeweilige Vorschrift zu deren Regu-
larisierung. Es ist die Abhängigkeit von den bereits in den Ordnungen m < n regularisierten
Funktionalen, welche den Einfluß von Unterdiagrammen auf das Gesamtdiagramm festlegt; sol-
che Unterdiagramme bestehen folglich stets aus irreduziblen divergenten Teildiagrammen mit
einer gegenüber dem Gesamtdiagramm niedrigeren Anzahl von Vertices und sollen im folgenden
als Epstein-Glaser-Unterdiagramme bezeichnet werden.

Die sukzessive Modifikation der Wechselwirkungslagrangedichte L1 durch die Addition von
Countertermen steigender Ordnung in ~, auf welcher das klassische BPHZ-Verfahren basiert,
verlangt hingegen zunächst eine andere Klassifikation von Unterdiagrammen: Als ein BPHZ-
Unterdiagramm sei ein solcher irreduzibler divergenter Teil des Gesamtdiagrammes bezeichnet,
welcher eine niedrigere Anzahl von Schleifen enthält. Tatsächlich besteht der Unterschied zu
den Epstein-Glaser-Unterdiagrammen gerade in solchen, welche zwar eine niedrigere Schleifen-
ordnung, aber keine geringere Vertexanzahl aufweisen, im folgenden als reine BPHZ-Unterdia-
gramme bezeichnet.

In der zu fordernden Übereinstimmung mit der Epstein-Glaser-Konstruktion, bei welcher die
grundlegende Distribution T1 aus einem normalgeordneten Produkt von Feldoperatoren besteht
und auch die Distributionen Tn als normalgeordnete Wickzerlegungen konstruiert werden, tra-
gen nur die Epstein-Glaser-Unterdiagramme zu einem Gesamtdiagramm bei: In den im Rahmen
des Verfahrens zu bildenden direkten Produkten von Funktionalen Ti stehen Feldoperatoren,
welche die äußeren Beine eines Unterdiagrammes bilden, an jedem einzelnen Vertex dieses Teil-
diagrammes bereits in Normalordnung; eine neu entstehende innere Linie des zu konstruierenden
Diagrammes kann folglich nur zu einem neu hinzugenommenen Vertex führen. Mit der geforder-
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ten Äquivalenz zum Epstein-Glaser-Verfahren folgt, daß die zusätzlichen im BPHZ-Formalismus
enthaltenen Unterdiagramme keinen Beitrag zur Regularisierung des Gesamtdiagrammes bilden;
lediglich eine endliche Differenz der jeweiligen Resultate beider Regularisierungsverfahren, beste-
hend aus einem Polynom in den äußeren Impulsen des Gesamtdiagrammes und von der Ordnung
dessen Divergenzgrades, ist als Auswirkung eines solchen BPHZ-Teildiagrammes zulässig.

Ein Beispiel für diese unterschiedliche Klassifikation von Unterdiagrammen liefert das sog.
Sunrise-Diagramm der φ4-Theorie (Abb. 8.1). Als ein Diagramm mit zwei Vertices besitzt es
im Sinne von Epstein-Glaser kein divergentes Teildiagramm und kann folglich in einem Schritt
durch Taylorsubtraktion im äußeren Impuls regularisiert werden, während die Berechnung des
Prozesses nach der Waldformel zunächst die Bestimmung des Einflusses der Counterterme von
drei logarithmisch divergenten Unterdiagrammen erfordert. Im folgenden sei nun das Sunrise-
Diagramm mittels des modifizierten BPHZ-Verfahrens berechnet; die Modifikation gegenüber
dem klassischen BPHZ-Formalismus besteht nun und im weiteren zusätzlich - im Sinne der
Herausstellung der Äquivalenz zur Epstein-Glaser-Konstruktion - in einer Reduktion der zu be-
trachtenden Unterdiagramme auf solche im Sinne von Epstein-Glaser. Das explizite Ergebnis
für das betrachtete Beispiel sei dann zunächst mit dem aus der Dimensionalen Regularisie-
rung erhaltenen verglichen, bevor schließlich die Redundanz der Berücksichtigung der BPHZ-
Unterdiagramme demonstriert wird.

p ⇒

p-k-q

k

q

Abbildung 8.1: Sunrise-Diagramm

8.1 Berechnung mit dem modifizierten BPHZ-Verfahren

Die Regularisierung des quadratisch divergenten Sunrise-Diagrammes erfolgt durch direkte Tay-
lorsubtraktion des aus den Feynmanregeln erhaltenen Ausdrucks:

Σ̃(p) =
g2

6

∫

d4q

(2π)4

∫

d4k

(2π)4
(1 − t2p)

1

(p− k − q)2 −m2

1

k2 −m2

1

q2 −m2
. (8.1)

Zur Ausführung der Impulssubtraktionen seien die Feynmanparameter in Hinblick auf deren
sukzessive Abfolge - beginnend mit der k-Integration - eingeführt; die Translation k → k+ (p−
q)(1 − z) isoliert anschließend diesen ersten inneren Impuls. Mit einer redundanten Anwendung
des Operators (1 − t0p) folgt für die entsprechende Integration:
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Σ̃(p) =
g2

6

∫

d4q

(2π)4
(1 − t2p)

∫ 1

0
dz

∫

d4k

(2π)4
(1 − t0p)

1

[(p− k − q)2(1 − z) −m2(1 − z) + z(k2 −m2)]2
1

q2 −m2

=
g2

6

∫

d4q

(2π)4
(1 − t2p)

∫ 1

0
dz

∫

d4k

(2π)4
(1 − t0p)

1

[k2 + (p− q)2z(1 − z) −m2]2
1

q2 −m2

=
g2π2i

3(2π)4

∫

d4q

(2π)4
(1 − t2p)

∫ 1

0
dz

∫ ∞

0
dk̄(1 − t0p)

k̄3

[k̄2 − (p− q)2z(1 − z) +m2]2
1

q2 −m2

=
g2i

96π2

∫

d4q

(2π)4
(1 − t2p)

∫ 1

0
dz ln

m2 − q2z(1 − z)

m2 − (p− q)2z(1 − z)

1

q2 −m2
. (8.2)

Die partielle Integration bzgl. des Feynmanparameters z sorgt an dieser Stelle für die Möglich-
keit, weitere Feynmanparameter x und y zur anschließenden Auswertung der q-Integration ein-
zuführen. Mit der Abkürzung m2

1 := m2(z(1 − z))−1 resultiert:

Σ̃(p) = − g2i

96π2

∫

d4q

(2π)4
(1 − t2p)

∫ 1

0
dz

m2z(1 − 2z)(p2 − 2pq)

[m2 − q2z(1 − z)][m2 − (p− q)2z(1 − z)]

1

q2 −m2

= − g2i

96π2

∫

d4q

(2π)4
(1 − t2p)

∫ 1

0
dz

m2z

z2(1 − z)2
(1 − 2z)(p2 − 2pq)

[q2 −m2
1][(p− q)2 −m2

1][q
2 −m2]

= − g2i

48π2

∫ 1

0
dz

∫ 1

0
dx

∫ 1−x

0
dy

∫

d4q

(2π)4
(1 − t2p)

m2z

z2(1 − z)2

· (1 − 2z)(p2 − 2pq)

[[q2 −m2
1](1 − x− y) + x[(p− q)2 −m2

1] + y[q2 −m2]]3
. (8.3)

Durch die Translation q → q + xp wird nun die Integrationsvariable q vom äußeren Impuls p
separiert; die im Zähler verbleibenden ungeraden Potenzen von q stellen ferner die in dieser
Variablen ungeraden Anteile des Integranden dar, welche bei der Integration verschwinden:

Σ̃(p) = − g2i

48π2

∫ 1

0
dz

∫ 1

0
dx

∫ 1−x

0
dy

·
∫

d4q

(2π)4
(1 − t2p)

m2

z(1 − z)2
(1 − 2z)(p2 − 2pq − 2p2x)

[q2 − p2x2 −m2
1(1 − y) − ym2 + p2x]3

= − g2i

48π2

−i
8π2

∫ 1

0
dz

∫ 1

0
dx

∫ 1−x

0
dy

·
∫ ∞

0
dq̄q̄3 p2m2

z(1 − z)2
(1 − t0p)

(1 − 2z)(1 − 2x)

[q̄2 + p2x2 +m2
1(1 − y) + ym2 − p2x]3

=
g2

1536π4

∫ 1

0
dz

∫ 1

0
dx

∫ 1−x

0
dy

· p2m2

z(1 − z)2
(1 − 2z)(1 − 2x)xp2(x− 1)

[p2x(x− 1) +m2
1(1 − y) + ym2][m2

1(1 − y) + ym2]
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=
g2

1536π4

∫ 1

0
dz

∫ 1

0
dx

∫ 1−x

0
dy

p4m2zx(x− 1)(1 − 2z)(1 − 2x)

p2x(x− 1)z(1 − z) +m2(1 − y) + ym2z(1 − z)

· 1

m2(1 − y) + ym2z(1 − z)
. (8.4)

Die Integration über den Feynmanparameter y ist direkt ausführbar:

Σ̃(p) =
g2

1536π4

∫ 1

0
dz

∫ 1

0
dx

p4m2zx(x− 1)(1 − 2z)(1 − 2x)

(1 − z − x+ xz)zp2xm2(1 − z + z2)

·
(

ln
−x− (1 − x)z + (1 − x)z2

p2xz(1 − x− z + xz) −m2 +m2(1 − x)(1 − z + z2)

− ln
−1

p2xz(1 − x− z + xz) −m2

)

=
g2

1536π4

∫ 1

0
dz

∫ 1

0
dx
p2(1 − 2z)(1 − 2x)

(z − 1)(1 − z + z2)

· ln [−x− (1 − x)z(1 − z)][p2xz(1 − x)(1 − z) −m2]

−p2xz(1 − x)(1 − z) +m2 −m2(1 − x)(1 − z + z2)
. (8.5)

Schließlich folgt unter der Verwendung der Tatsache, daß der folgende Ausdruck aufgrund der
Antisymmetrie bzgl. der Ersetzung x → 1 − x und der Symmetrie des Integrationsgebietes
verschwindet:

∫ 1

0
dz

∫ 1

0
dx
p2(1 − 2z)(1 − 2x)

(z − 1)(1 − z + z2)
ln
p2xz(1 − x)(1 − z) −m2

−m2
= 0, (8.6)

das Ergebnis:

Σ̃(p) =
g2

1536π4

∫ 1

0
dz

∫ 1

0
dx
p2(1 − 2z)(1 − 2x)

(z − 1)(1 − z + z2)

· ln m2(1 − x)(1 − z)z +m2x

−p2xz(1 − x)(1 − z) +m2(1 − x)(1 − z)z +m2x
. (8.7)

Dieses Resultat wird durch die dem Schema des modifizierten BPHZ-Verfahrens folgende Ein-
führung eines allgemeinen Massenparameters µ mittels der Ersetzung m → µ im Zähler des
Logarithmus nicht verändert, so wie auch bereits im vorigen die regularisierte Amplitude des
Dreiecksgraphen Tλµν in Kapitel 7.1: Aufgrund des bzgl. der Vertauschung x→ 1 − x antisym-
metrischen Vorfaktors (1− 2x) im Integranden verschwindet die hierdurch induzierte Änderung
des Integrals; es ist Σ̃µ(p) = Σ̃(p).

Im Vergleich dazu sei nun das entsprechende Resultat der Dimensionalen Regularisierung,
sowohl bzgl. dessen expliziter Gestalt als auch im Hinblick auf die Abhängigkeit vom Massen-
parameter µD.R., betrachtet.
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8.2 Vergleich mit dem Ergebnis der Dimensionalen Regularisie-

rung

Eine Berechnung des Sunrise-Diagrammes im Rahmen der Dimensionalen Regularisierung ist in
[VHE] ausgeführt; dort wird der zu berechnende Ausdruck zunächst wie folgt zerlegt:

Σ̃D.R.(p) =
g2

6

[

3m2Σ̃
(1)
D.R.(p) + pµΣ̃

(2)
D.R.,µ(p)

]

. (8.8)

Zum Vergleich mit dem Ergebnis des modifizierten BPHZ-Verfahrens seien nun die folgenden

regularisierten Ergebnisse für Σ̃
(1)
D.R.(p) und Σ̃

(2)
D.R.,µ(p), welche den Regularisierungsparameter ε

enthalten, entsprechend der grundlegenden, auch zuvor bereits zur Dimensionalen Regularisie-
rung verwandten Freiheit als Ausgangspunkt für eine zusätzliche Taylorsubtraktion im äußeren
Impuls p verwandt:

pµΣ̃
(2)
D.R.,µ(p) =

p2

(4π)4

[

1

4ε
− γ

2
+

1

8
+

∫ 1

0
dx

∫ 1

0
dz(1 − x)

· ln 4πµ2
D.R.z(1 − z)

−p2xz(1 − x)(1 − z) +m2(1 − x)(1 − z)z +m2x

]

, (8.9)

Σ̃
(1)
D.R.(p) = − 1

(4π)4

{

1

2ε2
+

1

ε

(

1

2
− γ + ln

4πµ2
D.R.

m2

)

+
3

2
+ γ − γ2 − π2

12
−

−
∫ 1

0
dx

∫ 1

0
dz

[[

2γ + ln
z(1 − z)

x
− ln

4πµ2
D.R.

M2
2

]

ln
4πµ2

D.R.

M2
2

+
(1 − x)

M2
2

[

2γ + ln
z(1 − z)

x
− 2 ln

4πµ2
D.R.

M2
2

]

∂xM
2
2

] }

, (8.10)

mit M2
2 =

−p2xz(1 − x)(1 − z) +m2(1 − x)(1 − z)z +m2x

z(1 − z)
. (8.11)

Für ein erstes Zwischenergebnis können insbesondere diejenigen Teile der jeweiligen Taylor-
entwicklungen in p bis zur Ordnung p2 subtrahiert werden, welche bereits als Polynome isoliert
stehen; hierbei fallen sowohl die im Limes ε→ 0 endlichen Polynome als auch die den Regulari-
sierungsparameter ε enthaltenden Terme weg1:

pµΣ̃
(2)
D.R.,µ(p) =

p2

(4π)2

∫ 1

0
dx

∫ 1

0
dz(1 − x) ln

4πµ2
D.R.

M2
2

,

(8.12)

sowie mit anschließender partieller Integration bzgl. des Feynmanparameters x:

1Zur Vereinfachung der Notation erhalten die folgenden modifizierten Regularisierungen keine separaten Be-
zeichnungen.
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Σ̃
(1)
D.R.(p) =

1

(4π)4

∫ 1

0
dx

∫ 1

0
dz

{[

2γ + ln
z(1 − z)

x
− ln

4πµ2
D.R.

M2
2

]

· ln 4πµ2
D.R.

M2
2

− ln
M2

2

m2

∂

∂x

[

(1 − x)

(

2γ + ln
z(1 − z)

x

)]

+
(1 − x)

M2
2

2 ln
M2

2

4πµ2
D.R.

∂

∂x
M2

2

}

=
1

(4π)4

∫ 1

0
dx

∫ 1

0
dz

{[

2γ + ln
z(1 − z)

x

]

· ln 4πµ2
D.R.

m2

−1 − x

x
ln
m2

M2
2

−
(

ln
m2

4πµ2
D.R.

)2
}

. (8.13)

Tatsächlich beeinflußt der Massenparameter µD.R. in (8.13) ausschließlich die bzgl. p konstan-
ten Teile des Integranden, nicht jedoch das Argument des p-abhängigen Logarithmus. Mit der
speziellen Wahl µ2

D.R. = (4π)−1m2 resultiert als weiteres Zwischenergebnis ein modifiziertes
Gesamtdiagramm entsprechend (8.8):

Σ̃D.R.(p) =
g2

1536π4

∫ 1

0
dx

∫ 1

0
dz

[

−3m2 1 − x

x
+ p2(1 − x)

]

ln
m2

M2
2

. (8.14)

Vor dem abschließenden Vergleich mit dem Ergebnis (8.7) aus dem modifizierten BPHZ-Verfah-
ren muß von diesem letzten Ausdruck noch die verbleibende Taylorentwicklung bis zur Ordnung
p2 subtrahiert werden, woraus sich schließlich ergibt:

Σ̃D.R.(p) =
g2

1536π4

∫ 1

0
dx

∫ 1

0
dz

{[

−3m2 1 − x

x
+ p2(1 − x)

]

· ln
m2(1 − x)(1 − z)z +m2x

−p2xz(1 − x)(1 − z) +m2(1 − x)(1 − z)z +m2x
+

1

2
p2

}

. (8.15)

Obgleich sich die Vorfaktoren der Logarithmen in den Integranden der zu vergleichenden Re-
gularisierungen (8.7) und (8.15) erheblich in ihrer Abhängigkeit von den Feynmanparametern
unterscheiden und das Verschwinden der Ableitung nach p2 im Ergebnis der Dimensionalen Re-
gularisierung erst mit dem zusätzlichen Term 1

2p
2 in (8.15) erreicht wird, stellen beide Ausdrücke

doch Regularisierungen derselben skalaren Distribution dar. Weil überdies beider Taylorent-
wicklungen bis zur Ordnung p2 verschwinden, ist zudem über sämtliche Freiheit gleichermaßen
verfügt: Die beiden Resultate sind folglich identisch.

Eine analytische Herausstellung dieser Gleichheit erscheint aufgrund der involvierten Para-
meterabhängigkeit beider Ausdrücke nicht praktikabel; tatsächlich läßt sich aber das Verschwin-
den der Taylorentwicklung der Differenz im äußeren Impuls p Ordnung für Ordnung verifizieren.

Im Anschluß an diesen Vergleich der expliziten Ergebnisse soll nun abschließend - im Hin-
blick auf ein allgemeines modifiziertes BPHZ-Verfahren - die Äquivalenz zum Vorgehen bei der
klassischen BPHZ-Regularisierung anhand dieses Beispiels herausgestellt werden.
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8.3 BPHZ-Regularisierung nach der Waldformel

Der Einfluß der Counterterme der drei logarithmisch divergenten BPHZ-Unterdiagramme γ1 bis
γ3, welche jeweils nur zwei innere Linien enthalten, auf das Sunrise-Diagramm γ (Abb. 8.2) wird
innerhalb des klassischen BPHZ-Verfahrens durch die Waldformel (4.20) beschrieben. Da es sich
um überlappende Divergenzen handelt, tragen keine Vereinigungen von Unterdiagrammen zur
Menge F(γ) der Wälder bei, und mit

F(γ) =
{

/0, {γ}, {γ1}, {γ2}, {γ3}, {γ, γ1}, {γ, γ2}, {γ, γ3}
}

(8.16)

liefert die Waldformel für den Integranden Rγ des Gesamtdiagramms:

Rγ(p, k, q) = (1 − t2p)Sγ

(

1 −
3
∑

i=1

t0pγiSγi

)

Iγ(p, k, q). (8.17)

q

k

l121

l122

l123

1 2
p ⇒

Abbildung 8.2: Gesamtdiagramm γ

Die Substitutionsoperatoren Sγ(i) symbolisieren für das mit ihrem Index bezeichnete Diagramm
diejenige Parametrisierung durch eine Basis dessen innerer und äußerer Impulse, welche die
Wahl des Standardimpulsflusses gemäß dessen Definition in Kapitel 4.2 vorschreibt. Letzterer
wird insbesondere durch die Festlegung der den einzelnen Linien des Feynmandiagrammes zu-
geordneten Widerstände bestimmt; allgemein liefern die jeweiligen Parametrisierungen folgende
Impulsflüsse lγ durch die einzelnen Linien des entsprechenden Diagrammes:

• Gesamtdiagramm γ:

lγ121 =
r122r123

r121r122 + r121r123 + r122r123
p− k − q,

lγ122 =
r121r123

r121r122 + r121r123 + r122r123
p+ k,

lγ123 =
r121r122

r121r122 + r121r123 + r122r123
p+ q, (8.18)

• Unterdiagramm γ1:

lγ1
121 =

r122
r121 + r122

pγ1 − kγ1 ,

lγ1
122 =

r121
r121 + r122

pγ1 + kγ1 ,

kγ1 = k +
r121

r121 + r122
q, (8.19)
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• Unterdiagramm γ2:

lγ2
121 =

r123
r121 + r123

pγ2 − kγ2 ,

lγ2
123 =

r121
r121 + r123

pγ2 + kγ2 ,

kγ2 = q +
r121

r121 + r123
k, (8.20)

• Unterdiagramm γ3:

lγ3
122 =

r123
r122 + r123

pγ3 − kγ3 ,

lγ3
122 =

r122
r122 + r123

pγ3 + kγ3 ,

kγ3 =
r123

r122 + r123
q − r122

r122 + r123
k =: λq − µk. (8.21)

Die derjenigen in (8.1) entsprechende Wahl der Parametrisierung des Gesamtdiagrammes legt
den Wert des Widerstands r121 auf Null fest, so daß der Integrand Rγ der Waldformel - unter
Beiseitelassung allgemeiner Vorfaktoren - folgende Gestalt annimmt:

Rγ(p, k, q) = (1 − t2p)

(

1

(p− k − q)2 −m2

1

k2 −m2

1

q2 −m2
− 1

[k2 −m2]2
1

q2 −m2

− 1

[q2 −m2]2
1

k2 −m2
− 1

(p− k − q)2 −m2

1

[(λq − µk)2 −m2]2

)

. (8.22)

Nun erfordert die postulierte Äquivalenz zur Epstein-Glaser-Konstruktion das Verschwinden
der Integration über die Gesamtheit der drei um ihre jeweilige Taylorentwicklung nach p ver-
ringerten Subtraktionsterme. Tatsächlich verschwinden die aus den Unterdiagrammen γ1 und
γ2 resultierenden Terme aufgrund ihrer Unabhängigkeit vom äußeren Impuls bereits bei der
Taylorsubtraktion. Die Relation λ + µ = 1 ermöglicht es dann, durch die separat am letzten
Subtraktionsterm von (8.22) durchgeführten Translationen

q → q + µp, k → k + λp (8.23)

auch dessen p-Abhängigkeit zu beseitigen, so daß auch dieser bei der Taylorsubtraktion her-
ausfällt; wie gefordert tragen die Counterterme der drei Unterdiagramme im Sinne des BPHZ-
Formalismus, welche keine Epstein-Glaser-Unterdiagramme sind, nicht zur Regularisierung des
Sunrise-Diagrammes bei.

Anhand einiger Beispiele sei nun im folgenden Kapitel die Epstein-Glaser-Regularisierung
für Mehr-Schleifen-Diagramme demonstriert, welche auch Unterdiagramme im Sinne dieses Kon-
struktionsverfahrens enthalten; insbesondere soll auch für diese der Vergleich mit der entspre-
chenden Regularisierung nach der Waldformel hinsichtlich der dort zu berücksichtigenden BPHZ-
Unterdiagramme erfolgen. Im Hinblick auf ein allgemeines modifiziertes BPHZ-Verfahren liege
der Schwerpunkt bzgl. der Modifikation nun auf der Herausstellung der Äquivalenz des klas-
sischen BPHZ-Verfahrens zur Epstein-Glaser-Konstruktion und der in deren Zuge erfolgenden
Einschränkung der in der Waldformel zu berücksichtigenden Unterdiagramme auf solche im
Sinne von Epstein-Glaser.



Kapitel 9

Epstein-Glaser-Regularisierung in

höherer Ordnung

Zur Anwendung der Epstein-Glaser-Konstruktion als Regularisierungsverfahren für konkrete
Feynmandiagramme ist insbesondere die rekursive Bestimmbarkeit der operatorwertigen Dis-
tributionen Tn als Zerlegung nach Wickmonomen notwendig: Die Regularisierung einer Dis-
tribution, welche einen Skalar bzgl. der Wirkung auf den Fockraum darstellt, kann dann als
diejenige, welche in Kombination mit dem entsprechenden, die äußeren Beine des Diagrammes
repräsentierenden Wickmonom auftritt, aus den Komponenten der Zerlegung isoliert werden.
Diese natürlich erscheinende Identifizierbarkeit der einzelnen Komponenten der Wickzerlegung
mit den entsprechenden Feynmandiagrammen bedarf, insbesondere hinsichtlich von Prozessen
mit einer höheren Anzahl von Vertices, einer genaueren Betrachtung, wenn etwa der Teilchenin-
halt von Anfangs- und Endzustand nicht zur Unterscheidung verschiedener innerer Strukturen
des betrachteten Diagrammes ausreicht. Ausgangspunkt der Untersuchung der das rekursive
Verfahren betreffenden erforderlichen Struktur ist die zugrundeliegende Distribution T1, welche
in der Anwendung der Konstruktionsmethode auf eine bestimmte Theorie als die entsprechen-
de normalgeordnete Wechselwirkungslagrangedichte gewählt wird; hierzu sei im folgenden als
einfachstes Modellbeispiel die skalare φ2-Theorie zur Demonstration herangezogen.

9.1 Zerlegung der Distributionen Tn nach Wickmonomen

Grundlegend für die Epstein-Glaser-Konstruktion ist die Wohldefiniertheit der auf einer Test-
funktion g des Schwarzschen Funktionenraums ausgewerteten Distribution T1 als Operator auf
dem Fockraum der Zustände ψ gemäß (2.6). Für ein - im Gegensatz zum direkten Produkt
- zunächst nur formales Produkt von Felddistributionen am gleichen Ort muß diese zunächst
überprüft werden; tatsächlich wird sie erst durch die abschließende Normalordnungsvorschrift
gewährleistet: Im betrachteten Beipiel T1(x) =: φ2(x) : bildet jeder der Summanden in

: φ2(x) :=: (φ+(x) + φ−(x))2 := (φ+)2(x) + 2φ−(x)φ+(x) + (φ−)2(x) (9.1)

71
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eine wohldefinierte operatorwertige Distribution:

(φ+)2(g) =

∫

d4xφ+(x)φ+(x)g(x) =
1

2π

∫

d3k

2Ek

∫

d3k′

2Ek′
a(k)a(k′)ǧ(k + k′),

φ−φ+(g) =

∫

d4xφ−(x)φ+(x)g(x) =
1

2π

∫

d3k

2Ek

∫

d3k′

2Ek′
a+(k)a(k′)ǧ(k′ − k),

(φ−)2(g) =

∫

d4xφ−(x)φ−(x)g(x) =
1

2π

∫

d3k

2Ek

∫

d3k′

2Ek′
a+(k)a+(k′)ǧ(−k − k′). (9.2)

Definiert ist folglich auch jeder Summand des direkten Distributionenproduktes

: φ2(x) : : φ2(y) :

= φ+(x)φ+(x)φ+(y)φ+(y) +2φ+(x)φ+(x)φ−(y)φ+(y) +φ+(x)φ+(x)φ−(y)φ−(y)
+2φ−(x)φ+(x)φ+(y)φ+(y) +4φ−(x)φ+(x)φ−(y)φ+(y) +2φ−(x)φ+(x)φ−(y)φ−(y)
+φ−(x)φ−(x)φ+(y)φ+(y) +2φ−(x)φ−(x)φ−(y)φ+(y) +φ−(x)φ−(x)φ−(y)φ−(y) .

Ein jeder Summand, der noch nicht in normalgeordneter Form vorliegt, kann nun durch die aus
dem Wicktheorem formal für die Distributionen folgende Vorschrift

φ(x)φ(y) = : φ(x)φ(y) : +i∆+(x− y)

⇒ [φ+(x), φ−(y)] = i∆+(x− y) (9.3)

in diese gebracht werden; aufgrund der unterschiedlichen Anzahl von Erzeugungs- und Vernich-
tungsanteilen φ− und φ+ ist jede Komponente dieser Zerlegung nach Wickmonomen separat
definiert. Auf analoge Art und Weise können sämtliche bei der Epstein-Glaser-Konstruktion
auftretenden Distributionenprodukte in Summanden mit einer normalgeordneten Abfolge von
Produkten aus den Operatoren φ+ und φ− zerlegt werden; insbesondere die skalaren Vorfaktoren
sind dabei vor jedem Wickmonom wohldefiniert und somit mit einem bestimmten Feynmandia-
gramm identifizierbar: Die formale Ortsabhängigkeit der betrachteten Distribution liefert die
Struktur des entsprechenden Feynmandiagrammes.

Zur Regularisierung eines bestimmten Diagramms ist es folglich auch für ein solches, wel-
ches Epstein-Glaser-Unterdiagramme enthält, ausreichend, allein diejenige skalare Distribution
aus dem gesamten Funktional Tn der entsprechenden Ordnung zu betrachten, welche anhand
ihrer ortsabhängigen Wickmonome mit dem jeweiligen Prozeß zu identifizieren ist. Während -
dem rekursiven Konstruktionsverfahren folgend - die bei naiver Herleitung divergenten skalaren
Distributionen in den Wickzerlegungen der Funktionale Tm,m < n, bereits regularisiert sind,
verbleibt bei der Konstruktion der n-ten Ordnung das Problem des Distributionensplittens bzgl.
der Differenzvariablen zu xn: Für ein divergentes Gesamtdiagramm liefert die erforderliche und
als Regularisierungsmethode verwendbare Subtraktion der Testfunktionen nach der Übersetzung
in den Impulsraum die abschließende Taylorsubtraktion in den äußeren Impulsen.

Im folgenden seien anhand von Beispielen aus der φ4-Theorie einige Epstein-Glaser-Regulari-
sierungen von Diagrammen dritter Ordnung konstruiert. Der Schwerpunkt dieser Betrachtungen
liege dabei weiterhin im Vergleich mit dem entsprechenden Vorgehen bei der BPHZ-Regulari-
sierung und, hinsichtlich der Herausstellung deren Äquivalenz zum Epstein-Glaser-Verfahren, in
der Demonstration der Einschränkbarkeit der Waldformel auf die Berücksichtigung von Epstein-
Glaser-Unterdiagrammen.
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9.2 Beispiele für Diagramme dritter Ordnung

Beginnend mit der Wechselwirkungslagrangedichte der φ4-Theorie als Wahl für die grundlegen-
de Distribution T1 geht der Konstruktion eines Diagrammes dritter Ordnung die Bestimmung
des Funktionals T2 voraus; ohne Berücksichtigung sowohl allgemeiner Vorfaktoren als auch kom-
binatorischer Faktoren vor den einzelnen Summanden seien somit die Wickzerlegungen dieser
operatorwertigen Distributionen bekannt:

T1(x1) = : φ4(x1) : ,

T2(x1, x2) = : φ4(x1)φ
4(x2) : +∆F (x1 − x2) : φ3(x1)φ

3(x2)

+∆2
F,reg(x1 − x2) : φ2(x1)φ

2(x2) : +∆3
F,reg(x1 − x2) : φ(x1)φ(x2) :

+∆4
F,reg(x1 − x2). (9.4)

Aus den hieraus zu konstruierenden Funktionalen A′
3(x1, x2, x3) und R′

3(x1, x2, x3) gemäß
(3.22) und (3.23) seien nun mittels der erneuten Anwendung des Wicktheorems für verschiedene
Beispiele die den jeweiligen Feynmandiagrammen zugehörigen skalaren Distributionen isoliert.
Die Epstein-Glaser-Konstruktion liefert anschließend die entsprechende Feynmanamplitude im
Ortsraum; nach der Transformation in den Impulsraum sowie der Auswertung für einen speziel-
len Impulsfluß, ausgeführt in Anhang C, sei dieses Ergebnis der Epstein-Glaser-Regularisierung
schließlich mit dem des BPHZ-Verfahrens verglichen.

9.2.1 Zwei-Schleifen-Beitrag zur Vierpunktfunktion in vier Dimensionen

1 3 2

⇒ p

p − k1 p − k2

k1 k2

Abbildung 9.1: Beitrag zur Vierpunktfunktion, d = 4

Diesem logarithmisch divergenten Diagramm mit einem Vertex V3 ohne äußere Linien ent-
sprechen die folgenden skalaren Distributionen a′3 und r′3, welche zusammen mit den zugehörigen
Wickmonomen Bestandteile der Funktionale A′

3 bzw. R′
3 darstellen:

a′3(x1, x2, x3) = −(i∆+)2(x1 − x3)∆
2
F,reg(x2 − x3) − ∆2

F,reg(x1 − x3)(i∆+)2(x2 − x3)

−(i∆+)2(x1 − x3)(i∆+)2(x2 − x3) + (i∆+)2(x1 − x3)(i∆+)2(x2 − x3)

+(i∆+)2(x1 − x3)(i∆+)2(x2 − x3)

= ∆2
+(x1 − x3)∆

2
F,reg(x2 − x3) + ∆2

F,reg(x1 − x3)∆
2
+(x2 − x3)

+∆2
+(x1 − x3)∆

2
+(x2 − x3),
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r′3(x1, x2, x3) = −(−i∆−)2(x1 − x3)∆
2
F,reg(x2 − x3) − ∆2

F,reg(x1 − x3)(−i∆−)2(x2 − x3)

−(−i∆−)2(x1 − x3)(−i∆−)2(x2 − x3) + (−i∆−)2(x1 − x3)(−i∆−)2(x2 − x3)

+(−i∆−)2(x1 − x3)(−i∆−)2(x2 − x3)

= ∆2
−(x1 − x3)∆

2
F,reg(x2 − x3) + ∆2

F,reg(x1 − x3)∆
2
−(x2 − x3)

+∆2
−(x1 − x3)∆

2
−(x2 − x3). (9.5)

Die Differenz c3 = r′3 − a′3 besitzt bzgl. der Variablen x′1 = x1 − x3 und x′2 = x2 − x3 einen
kausalen Träger; dessen Aufteilung in avancierten und retardierten Anteil kann der folgenden
Darstellung entnommen werden:

c3(x1, x2, x3) = (∆2
−(x1 − x3) + ∆2

F,reg(x1 − x3))(∆
2
−(x2 − x3) + ∆2

F,reg(x2 − x3))

−(∆2
+(x1 − x3) + ∆2

F,reg(x1 − x3))(∆
2
+(x2 − x3) + ∆2

F,reg(x2 − x3)).(9.6)

Da für die bereits regularisierten Distributionen ∆F,reg gilt:

∆2
F,reg = (i∆+ − i∆av)

2
reg = (−∆2

+ + 2∆+∆av − ∆2
av)reg,

= (−i∆− − i∆ret)
2
reg = (−∆2

− − 2∆−∆ret − ∆2
ret)reg, (9.7)

folgt für die gesuchte, auf subtrahierten Testfunktionen definierte Aufteilung c3 = r3 − a3:

a3(x1, x2, x3) = (∆2
+(x1 − x3) + ∆2

F,reg(x1 − x3))(∆
2
+(x2 − x3) + ∆2

F,reg(x2 − x3))

= (2∆+∆av − ∆2
av)reg(x1 − x3)(2∆+∆av − ∆2

av)reg(x2 − x3)

r3(x1, x2, x3) = (∆2
−(x1 − x3) + ∆2

F,reg(x1 − x3))(∆
2
−(x2 − x3) + ∆2

F,reg(x2 − x3))

= (−2∆−∆ret − ∆2
ret)reg(x1 − x3)(−2∆−∆ret − ∆2

ret)reg(x2 − x3). (9.8)

Es resultiert somit als Epstein-Glaser-Regularisierung t3 = a3 − a′3 = r3 − r′3 des betrachte-
ten Zwei-Schleifen-Diagrammes die abschließend durch Einschränkung der Testfunktionen zu
regularisierende Distribution:

t3(x1, x2, x3) = ∆2
F,reg(x1 − x3)∆

2
F,reg(x2 − x3). (9.9)

Tatsächlich ist die abschließende Regularisierung des zu einem Produkt zweier regularisierter
Distributionen faktorisierenden Ergebnisses redundant; die einzelnen Funktionale erfahren ihre
Definition gerade durch die Subtraktion der Testfunktionen bis zur Ordnung des Divergenzgrades
d = 0 in den Differenzvariablen x′1 und x′2, bzgl. derer auch die abschließende Subtraktion des
gleichfalls logarithmisch divergenten Gesamtdiagrammes durchzuführen ist.

Ausgewertet für einen einfallenden Gesamtimpuls p besitzt das entsprechende Diagramm im
Impulsraum die Struktur

t̂3(p) =

(∫

d4k1

{

1

(p− k1)2 −m2

1

k2
1 −m2

− 1

[k2
1 −m2]2

})

·
(∫

d4k2

{

1

(p− k2)2 −m2

1

k2
2 −m2

− 1

[k2
2 −m2]2

})

. (9.10)
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Da das betrachtete Diagramm ausschließlich zwei - an einem Vertex überlappende - Epstein-
Glaser-Unterdiagramme besitzt, liefert die Berechnung gemäß der Waldformel zunächst einen
durch den Einfluß von deren beiden Countertermen modifizierten Integranden des Gesamtdia-
grammes. Die Wahl r131 = r321 = 0, r132 = r322 = 1 für die den einzelnen Linien in Abb. 9.2
zugeordneten Widerstände legt die folgenden Bestandteile des Standardimpulsflusses fest:

1 3 2

⇒ p

l131 l321

l132 l322

k2k1

Abbildung 9.2: Gesamtdiagramm γ

• Gesamtdiagramm γ:

lγ131 = p− k1,

lγ132 = k1,

lγ321 = p− k2,

lγ322 = k2, (9.11)

• Unterdiagramm γ1:

lγ1
131 = pγ1 − kγ1 ,

lγ1
132 = kγ1 ,

kγ1 = k1, (9.12)

• Unterdiagramm γ2:

lγ2
321 = pγ2 − kγ2 ,

lγ2
322 = kγ2 ,

kγ2 = k2. (9.13)

Die Waldformel liefert somit für das betrachtete Beispiel folgenden Integranden:

Rγ(p, k1, k2)

= (1 − t0p)

(

1

(p− k1)2 −m2

1

k2
1 −m2

1

(p− k2)2 −m2

1

k2
2 −m2

− 1

[k2
1 −m2]2

1

(p− k2)2 −m2

1

k2
2 −m2

− 1

(p− k1)2 −m2

1

k2
1 −m2

1

[k2
2 −m2]2

)

. (9.14)

Nach dem expliziten Ausführen der abschließenden Subtraktion faktorisiert auch das hieraus
folgende Ergebnis zum Produkt (9.10) zweier regularisierter Distributionen: Erwartungsgemäß
sind die beiden Regularisierungsmethoden bereits hinsichtlich der jeweils zu betrachtenden Un-
terdiagramme identisch.
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9.2.2 Zwei-Schleifen-Beitrag zur Vierpunktfunktion in sechs Dimensionen

Zur Konstruktion eines Beispiels, in welchem neben divergenten Epstein-Glaser-Unterdiagram-
men auch entsprechende reine BPHZ-Unterdiagramme in der Waldformel zu berücksichtigen
sind, ist es in der φ4-Theorie notwendig, den Minkowskiraum formal auf d− 1 > 3 Ortskompo-
nenten zu erweitern, um ein solches unter den irreduziblen Diagrammen mit drei Vertices aufzu-
finden; diese formale Änderung dient lediglich der Modifikation der Divergenzgrade sämtlicher
Diagramme, wie sie auch in verschiedenen Theorien durch eine unterschiedliche Impulsabhängig-
keit der Propagatoren bewirkt wird, und soll es somit ermöglichen, die allgemeine Vorschrift der
Waldformel und deren Äquivalenz mit dem Epstein-Glaser-Verfahren an weiteren Beispielen zu
untersuchen, ohne auf die rechnerischen Vereinfachungen der skalaren Modelltheorie zu verzich-
ten.

In d = 6 Dimensionen besitzt ein weiterer Zwei-Schleifen-Beitrag zur Vierpunktfunktion den
Divergenzgrad d(γ) = 4: Das Diagramm in Abb. 9.3 enthält ferner ein quadratisch divergen-
tes Epstein-Glaser-Unterdiagramm, resultierend aus der Wegnahme des Vertex V3, sowie zwei
logarithmisch divergente reine BPHZ-Unterdiagramme.

p1 p1 + p2 + p3

p2 p3

p1 − k1 p1 + p2 + p3

−k1

k1 − k2

k2

1 2

3

Abbildung 9.3: Beitrag zur Vierpunktfunktion, d = 6

Die diesem Diagramm entsprechenden Bestandteile der Distributionen A′
3 und R′

3 in der
Epstein-Glaser-Konstruktion sind wie folgt gegeben:

a′3(x1, x2, x3) = −(i∆+)2(x1 − x2)i∆+(x1 − x3)∆F (x2 − x3)

−(−i∆−)2(x1 − x2)∆F (x1 − x3)i∆+(x2 − x3)

−∆2
F,reg(x1 − x2)i∆+(x1 − x3)i∆+(x2 − x3)

+(i∆+)2(x1 − x2)i∆+(x1 − x3)i∆+(x2 − x3)

+(−i∆−)2(x1 − x2)i∆+(x1 − x3)i∆+(x2 − x3), (9.15)

r′3(x1, x2, x3) = −(−i∆−)2(x1 − x2)(−i∆−)(x1 − x3)∆F (x2 − x3)

−(i∆+)2(x1 − x2)∆F (x1 − x3)(−i∆−)(x2 − x3)
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−∆2
F,reg(x1 − x2)(−i∆−)(x1 − x3)(−i∆−)(x2 − x3)

+(i∆+)2(x1 − x2)(−i∆−)(x1 − x3)(−i∆−)(x2 − x3)

+(−i∆−)2(x1 − x2)(−i∆−)(x1 − x3)(−i∆−)(x2 − x3), (9.16)

so daß als bzgl. der Variablen x′1 = x1 − x3 und x′2 = x2 − x3 an der Stelle x′1 = x′2 = 0 zu
splittende Distribution c3 = r′3 − a′3 resultiert:

c3(x1, x2, x3)

= −i∆2
−(x1 − x2)∆−(x1 − x3)∆F (x2 − x3) − i∆2

+(x1 − x2)∆F (x1 − x3)∆−(x2 − x3)

+∆2
F,reg(x1 − x2)∆−(x1 − x3)∆−(x2 − x3) + ∆2

+(x1 − x2)∆−(x1 − x3)∆−(x2 − x3)

+∆2
−(x1 − x2)∆−(x1 − x3)∆−(x2 − x3) − i∆2

+(x1 − x2)∆+(x1 − x3)∆F (x2 − x3)

−i∆2
−(x1 − x2)∆F (x1 − x3)∆+(x2 − x3) − ∆2

F,reg(x1 − x2)∆+(x1 − x3)∆+(x2 − x3)

−∆2
+(x1 − x2)∆+(x1 − x3)∆+(x2 − x3) − ∆2

−(x1 − x2)∆+(x1 − x3)∆+(x2 − x3). (9.17)

Tatsächlich besitzt diese Distribution c3 den erforderlichen kausalen Träger: Für die auf den
entsprechend dem Divergenzgrad d(γ) = 4 des Gesamtdiagrammes einzuschränkenden Test-
funktionen gelingt das Splitten in avancierten und retardierten Anteil gemäß:

a3(x1, x2, x3) = a′3(x1, x2, x3) + t3(x1, x2, x3)

= (∆2
F,reg + ∆2

+)(x1 − x2)(i∆F + ∆+)(x1 − x3)(i∆F + ∆+)(x2 − x3)

−(∆2
F,reg + ∆2

+)(x1 − x2)i∆F (x1 − x3)∆av(x2 − x3)

−∆2
F,reg(x1 − x2)∆av(x1 − x3)∆av(x2 − x3)

+(∆2
F,reg + ∆2

−)(x1 − x2)∆av(x1 − x3)∆+(x2 − x3), (9.18)

r3(x1, x2, x3) = r′3(x1, x2, x3) + t3(x1, x2, x3)

= (∆2
F,reg + ∆2

−)(x1 − x2)(i∆F − ∆−)(x1 − x3)(i∆F − ∆−)(x2 − x3)

−(∆2
F,reg + ∆2

−)(x1 − x2)i∆F (x1 − x3)∆ret(x2 − x3)

−∆2
F,reg(x1 − x2)∆ret(x1 − x3)∆ret(x2 − x3)

−(∆2
F,reg + ∆2

+)(x1 − x2)∆ret(x1 − x3)∆−(x2 − x3), (9.19)

mit

t3(x1, x2, x3) = ∆2
F,reg(x1 − x2)∆F (x1 − x3)∆F (x2 − x3). (9.20)

Ausgewertet für den speziellen Impulsfluß in Abb. 9.3 resultiert somit ohne Berücksichtigung
allgemeiner Vorfaktoren das folgende Ergebnis im Impulsraum:

t̂3(p1, p2, p3) =

∫

d6k1

∫

d6k2(1 − t4p1,p2,p3
)

{

1

(p1 − k1)2 −m2

1

(p1 + p2 + p3 − k1)2 −m2

(

(1 − t2pγ1 )
1

(pγ1

2 − kγ1)2 −m2

1

(pγ1

2 + kγ1)2 −m2

)

pγ1=k1,kγ1=k2− pγ1
2







.(9.21)
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Während bei der Epstein-Glaser-Konstruktion ausschließlich die Counterterme des divergenten
Epstein-Glaser-Unterdiagrammes γ1 beitragen, erfordert die Berechnung desselben Diagrammes
nach der Waldformel die Berücksichtigung zweier weiterer reiner BPHZ-Diagramme γ2 und γ3.
Mit der Wahl r121 = r122 = 1, r131 = r321 = 0 für die den Linien in Abb. 9.4 zugeordneten
Widerstände folgt für die Impulsflüsse der einzelnen Diagramme:

k1

k2p1 p1 + p2 + p3

p2 p3

l131 l321

l121

l122

1 2

3

Abbildung 9.4: Gesamtdiagramm γ

• Gesamtdiagramm γ:

l121 = −k2 + k1,

l122 = k2,

l131 = p1 − k1,

l321 = p1 + p2 + p3 − k1, (9.22)

• Unterdiagramm γ1:

lγ1
121 =

pγ1

2
− kγ1 ,

lγ1
122 =

pγ1

2
+ kγ1 ,

pγ1 = k1

kγ1 = k2 −
k1

2
, (9.23)

• Unterdiagramm γ2:

lγ2
121 = kγ2 ,

lγ2
131 = pγ2

1 − kγ2 ,

lγ2
321 = pγ2

1 + pγ2
2 − kγ2 ,

kγ2 = −k2 + k1, (9.24)
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• Unterdiagramm γ3:

lγ3
122 = kγ3 ,

lγ3
131 = −kγ3 + pγ3

1 ,

lγ3
321 = −kγ3 + pγ3

1 + pγ3
2 ,

kγ3 = k2. (9.25)

Für den abschließend subtrahierten Integranden folgt somit nach der Waldformel:

Rγ(p1, p2, p3)

= (1 − t4p1,p2,p3
)

{

1

(k1 − k2)2 −m2

1

k2
2 −m2

1

(p1 − k1)2 −m2

1

(p1 + p2 + p3 − k1)2 −m2

−t2pγ1

(

1

(pγ1

2 − kγ1)2 −m2

1

(pγ1

2 + kγ1)2 −m2

)

pγ1=k1,kγ1=k2− k1
2

· 1

(p1 − k1)2 −m2

1

(p1 + p2 + p3 − k1)2 −m2

− 1

k2
2 −m2

1

[(k1 − k2)2 −m2]3
− 1

(k1 − k2)2 −m2

1

[k2
2 −m2]3

}

. (9.26)

Tatsächlich verschwinden auch in diesem Beispiel die Beiträge der reinen BPHZ-Unterdiagramme
γ2 und γ3 bei der abschließenden Taylorsubtraktion in den äußeren Impulsen des Gesamtdia-
grammes; die Regularisierung nach der Waldformel ist mit der entsprechenden Epstein-Glaser-
Regularisierung identisch.

9.2.3 Drei-Schleifen-Beitrag zum skalaren Propagator

Ein weiteres Diagramm mit drei Vertices, welches nach dem formalen Übergang in d = 6 Di-
mensionen sowohl divergente Epstein-Glaser-Unterdiagramme als auch ebensolche reinen BPHZ-
Unterdiagramme enthält, zeigt Abb. 9.5:

1 2 3

k3

p − k1
+k3

p − k2
+k3

k1 k2p p

Abbildung 9.5: Drei-Schleifen-Beitrag zur Zweipunktfunktion, d = 6

Obwohl dieses Feynmandiagramm bereits drei Schleifen enthält, ist die Regularisierung nach
der Epstein-Glaser-Methode auf die den vorangegangenen Beispielen mit drei Vertices analoge
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Weise durchführbar; lediglich die beiden durch das Weglassen der Vertices V1 bzw. V3 entstehen-
den Epstein-Glaser-Unterdiagramme tragen zur Regularisierung des Gesamtdiagrammes bei.

Im Gegensatz dazu erfolgt die Summation in der Waldformel über eine Vielzahl von Wäldern,
welche - zusätzlich zu denjenigen, welche die Epstein-Glaser-Unterdiagramme enthalten - sowohl
von sämtlichen möglichen reinen Ein- und Zwei-Schleifen-BPHZ-Unterdiagrammen als auch von
deren nicht-überlappenden Verschachtelungen erzeugt werden.

Aufgrund ebendieser Involviertheit der Berechnung durch die Waldformel sei die Betrach-
tung dieses Beispiels auf die Epstein-Glaser-Regularisierung beschränkt; erwartungsgemäß liefert
die anschließende Anwendung der auf die Berücksichtigung ausschließlich der Epstein-Glaser-
Unterdiagramme eingeschränkten Waldformel die geforderte Übereinstimmung.

Die im Zuge der Epstein-Glaser-Methode zu isolierenden Beiträge der Distributionen R′
3 und

A′
3 lauten für das betrachtete Diagramm wie folgt:

a′3(x1, x2, x3) = −(i∆+)2(x1 − x2)∆
2
F,reg(x2 − x3)i∆+(x1 − x3)

−(−i∆−)2(x1 − x2)(i∆+)2(x2 − x3)∆F (x1 − x3)

−∆2
F,reg(x1 − x2)(i∆+)2(x2 − x3)i∆+(x1 − x3)

+(i∆+)2(x1 − x2)(i∆+)2(x2 − x3)i∆+(x1 − x3)

+(−i∆−)2(x1 − x2)(i∆+)2(x2 − x3)i∆+(x1 − x3), (9.27)

r′3(x1, x2, x3) = −(−i∆−)2(x1 − x2)∆
2
F,reg(x2 − x3)(−i∆−)(x1 − x3)

−(i∆+)2(x1 − x2)(−i∆−)2(x2 − x3)∆F (x1 − x3)

−∆2
F,reg(x1 − x2)(−i∆−)2(x2 − x3)(−i∆−)(x1 − x3)

+(i∆+)2(x1 − x2)(−i∆−)2(x2 − x3)(−i∆−)(x1 − x3)

+(−i∆−)2(x1 − x2)(−i∆−)2(x2 − x3)(−i∆−)(x1 − x3). (9.28)

Auch die aus diesen Funktionalen gebildete Distribution c3 = r′3 − a′3 besitzt einen kausalen
Träger, und die Zerlegung in avancierten bzw. retardierten Anteil gelingt mit:

a3(x1, x2, x3) = a′3(x1, x2, x3) + t3(x1, x2, x3)

= i(∆2
+ + ∆2

F,reg)(x1 − x2)(∆
2
+ + ∆2

F,reg)(x2 − x3)∆+(x1 − x3)

+i∆2
−(x1 − x2)(∆

2
+ + ∆2

F,reg)(x2 − x3)∆av(x1 − x3)

+i(2∆−∆ret + ∆2
ret)reg(x1 − x2)∆

2
F,reg(x2 − x3)∆av(x1 − x3), (9.29)

r3(x1, x2, x3) = r′3(x1, x2, x3) + t3(x1, x2, x3)

= −i(∆2
− + ∆2

F,reg)(x1 − x2)(∆
2
− + ∆2

F,reg)(x2 − x3)∆−(x1 − x3)

+i∆2
+(x1 − x2)(∆

2
− + ∆2

F,reg)(x2 − x3)∆ret(x1 − x3)

+i(−2∆+∆av + ∆2
av)reg(x1 − x2)∆

2
F,reg(x2 − x3)∆ret(x1 − x3), (9.30)

mit

t3(x1, x2, x3) = ∆2
F,reg(x1 − x2)∆

2
F,reg(x2 − x3)∆F (x1 − x3). (9.31)
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Ausgewertet für den speziellen Impulsfluß gemäß Abb. 9.5 ergibt sich aus diesem Resultat für
das Funktional t3 folgender Ausdruck im Impulsraum:

t̂3(p) =

∫

d6k1

∫

d6k2

∫

d6k3(1 − t8p)

{

(1 − t2pγ1 )
1

(pγ1 − k1)2 −m2

1

k2
1 −m2

∣

∣

∣

∣

pγ1=p+k3

·(1 − t2pγ2 )
1

(pγ2 − k2)2 −m2

1

k2
2 −m2

∣

∣

∣

∣

pγ2=p+k3

}

1

k2
3 −m2

. (9.32)

Im Vergleich hierzu sei nun die Berechnung desselben Diagrammes mittels der auf die Berück-
sichtigung ausschließlich der beiden Epstein-Glaser-Unterdiagramme eingeschränkten Waldfor-
mel durchgeführt. Mit der Wahl der den Linien in Abb. 9.6 zugeordneten Widerstände r121 =
r231 = 0, r122 = r232 = r131 = 1 resultieren die folgenden Impulsflüsse:

k3

k1 k2

1 2 3

l131

l121 l231

l122 l232p p

Abbildung 9.6: Gesamtdiagramm γ

• Gesamtdiagramm γ:

l121 = p− k1 + k3,

l122 = k1,

l231 = p− k2 + k3,

l232 = k2,

l131 = −k3, (9.33)

• Unterdiagramm γ1:

lγ1
121 = pγ1 − kγ1 ,

lγ1
122 = kγ1 ,

pγ1 = p+ k3,

kγ1 = k1, (9.34)

• Unterdiagramm γ2:

lγ2
231 = pγ2 − kγ2 ,
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lγ2
232 = kγ2 ,

pγ2 = p+ k3,

kγ2 = k2. (9.35)

Die Auswertung der Waldformel für diese Wahl des Standardimpulsflusses liefert schließlich:

Rγ(p, k1, k2, k3)

= (1 − t8p)

{

1

(p− k1 + k3)2 −m2

1

k2
1 −m2

1

(p− k2 + k3)2 −m2

1

k2
2 −m2

1

k2
3 −m2

−t2pγ1

(

1

(pγ1 − kγ1)2 −m2

1

(kγ1)2 −m2

)

pγ1=p+k3,kγ1=k1

· 1

(p− k2 + k3)2 −m2

1

k2
2 −m2

1

k2
3 −m2

−t2pγ2

(

1

(pγ2 − kγ2)2 −m2

1

(kγ2)2 −m2

)

pγ2=p+k3,kγ2=k2

· 1

(p− k1 + k3)2 −m2

1

k2
1 −m2

1

k2
3 −m2

}

. (9.36)

Der vorangestellte Operator (1 − t8p) erlaubt es, dessen Argument zu dem den Integranden
des Ergebnisses (9.32) bildenden Produkt zu ergänzen: Epstein-Glaser-Regularisierung und -
auf Epstein-Glaser-Unterdiagramme eingeschränkte - Berechnung nach der Waldformel liefern
dasselbe Ergebnis.



Kapitel 10

Zusammenfassung und Ausblick

Abschließend seien an dieser Stelle die Ergebnisse der Arbeit hinsichtlich der anfangs ausgeführ-
ten Zielstellung resümiert: Das Verfahren von Epstein und Glaser wird als ein störungstheoreti-
sches Konstruktionsverfahren vorgestellt, welches auf vier physikalisch sinnvollen Postulaten an
die S-Matrix basiert; insbesondere die Forderung der Kausalität, auf welcher das konstruktive
Verfahren fußt, wird dabei durch die heuristische Konstruktion mittels naiver Zeitordnung im
einleitenden Kapitel 2 motiviert.

Es wird die Interpretation des Verfahrens als Regularisierungsverfahren dargelegt und damit
ein Kriterium für die physikalische Zulässigkeit einer jeden anderen Regularisierungsmethode
herausgestellt: Zu fordern ist gerade die Äquivalenz zur Epstein-Glaser-Regularisierung im Rah-
men der dort verbleibenden Freiheit.

Die folgenden Kapitel 4 und 5 stellen zwei wichtige weitere Regularisierungsverfahren vor und
demonstrieren zugleich an Beispielen als Folge der Äquivalenz zum Epstein-Glaser-Verfahren de-
ren Zulässigkeit. Die Auswahl der BPHZ-Regularisierung und der Dimensionalen Regularisierung
aus einer Reihe weiterer Verfahren erfolgt dabei aus bestimmtem Grund: Während das BPHZ-
Verfahren hinsichtlich seiner Äquivalenz zur Epstein-Glaser-Methode sehr transparent erscheint
und ferner ein Vorgehen darstellt, welches mit der Zimmermannschen Waldformel auch die Be-
handlung von Mehr-Schleifen-Diagrammen einschließt, ist die Dimensionale Regularisierung ein
vor allem für explizite Berechnungen gut praktikables Verfahren.

Als eine neue Vorgehensweise wird im folgenden Kapitel 6 das modifizierte BPHZ-Verfahren
erklärt, das die Vorzüge beider genannten Regularisierungsmethoden vereint. Die Dimensionslo-
sigkeit der impulsabhängigen Argumente der Logarithmen, welche die Resultate der betrachteten
Anwendungsbeispiele stets enthalten, erfordert ferner den Bezug auf eine Referenzmasse; im Zu-
ge des Verfahrens übernimmt in den betrachteten Beispielen die Masse des Elektrons in der
QED bzw. der skalaren Teilchen in der φ4-Theorie diese Referenz. Eine Umskalierung ist jedoch
innerhalb der Freiheit des Regularisierungsprozesses möglich und erlaubt die Einführung eines
neuen Massenparameters, der o. B. d.A. mit dem der Dimensionalen Regularisierung identifiziert
werden kann. Drei Beispiele aus der QED demonstrieren, wie das modifizierte BPHZ-Verfahren
den Charakter dieses zusätzlichen Parameters offenlegt: Im Gegensatz zur Dimensionalen Re-
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gularisierung, wo seine Einführung aus Dimensionsgründen notwendig ist, erscheint er hier als
Repräsentation der prinzipiellen Freiheit innerhalb des Regularisierungsprozesses; dies rechtfer-
tigt insbesondere sein Auftreten in den Ergebnissen des dimensionalen Verfahrens.

Die Vorteile des modifizierten BPHZ-Verfahrens werden ferner insbesondere bei der Betrach-
tung von chiralen Theorien deutlich: Kapitel 7 zeigt die im Gegensatz zur Dimensionalen Re-
gularisierung uneingeschränkte Anwendbarkeit am Beispiel der Berechnung der U(1)-Anomalie;
Verallgemeinerungen von Diracschen Gammamatrizen und insbesondere der für vier Dimensio-
nen spezifischen γ5-Matrix auf d Dimensionen sind nicht notwendig.

Auch für eine Vielzahl von Mehr-Schleifen-Diagrammen liefert der Vergleich der BPHZ-
Regularisierung mit der nach Epstein-Glaser - neben dem Beweis der Zulässigkeit jener - insbe-
sondere teils erhebliche Vereinfachungen in den expliziten Berechnungen. Die Auswertung des
Sunrise-Diagrammes in Kapitel 8 stellt das einfachste Beispiel eines Diagrammes von höherer
Schleifenordnung dar, an welchem die unterschiedliche Charakterisierung von Unterdiagram-
men einerseits bei der BPHZ-Regularisierung nach der Waldformel und andererseits bei der
Epstein-Glaser-Konstruktion deutlich wird: Während dieses Diagramm der φ4-Theorie frei von
Epstein-Glaser-Unterdiagrammen ist, besitzt es zwei unabhängige BPHZ-Unterdiagramme. Hier
entsteht zum erstenmal die Vermutung, daß die in der Zimmermannschen Waldformel enthaltene
Summation über Unterdiagramme - zumindest bei der hier getroffenen Wahl des Standardim-
pulsflusses - auf die über solche im Sinne von Epstein-Glaser eingeschränkt werden kann.

Tatsächlich erhärtet sich dieser Verdacht bei der Betrachtung weiterer Beispiele in Kapi-
tel 9. Diese Beispiele entstammen bereits der dritten Vertexordnung in der Epstein-Glaser-
Konstruktion und erhalten auch entsprechende Epstein-Glaser-Unterdiagramme; die jeweiligen
Resultate stimmen stets mit denjenigen überein, welche die auf letztere eingeschränkte Wald-
formel liefert.

Abschließend ist somit festzuhalten, daß der Vergleich des - zunächst eher formal erscheinen-
den - Epstein-Glaser-Konstruktionsverfahrens sowohl mit der BPHZ-Regularisierung als auch
mit dem dimensionalen Regularisierungsverfahren für eine Vielzahl von Anwendungen sowohl
ein grundlegenderes Verständnis der regularisierenden Operation als auch eine z. T. erhebliche
Vereinfachung in den expliziten Berechnungen geliefert hat.

Es verbleiben im übrigen noch eine Reihe von Fragestellungen und Zielen, die den in die-
ser Arbeit eingeschlagenen Weg weiterverfolgen: Während die Behandlung von Ein-Schleifen-
Diagrammen im Rahmen des modifizierten BPHZ-Verfahrens bereits praktikabel erscheint, ist
die Epstein-Glaser-Konstruktion von Diagrammen mit entsprechenden Epstein-Glaser-Unter-
diagrammen verhältnismäßig aufwendig, da das betrachtete Gesamtdiagramm i. a. einer hohen
(n ≥ 3) Vertexordnung entstammt und die Schwierigkeit der Konstruktion mit ansteigender Ver-
texanzahl rasch zunimmt. Eine Formalisierung dieses Konstruktionsprozesses könnte die hier
noch unbewiesene Vermutung bestätigen, daß die zugrundeliegende Kombinatorik durch die
eingeschränkte Zimmermannsche Waldformel beschrieben wird, wobei die Einschränkung in der
ausschließlichen Berücksichtigung von Epstein-Glaser-Unterdiagrammen liegt.

Ferner liegt den in dieser Arbeit berechneten Beispielen stets die Wahl eines bestimmten
Standardimpulsflusses zur Anwendung der Waldformel zugrunde. Für eine Einschränkung der
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Waldformel aufgrund eines allgemeinen Vergleiches zur Epstein-Glaser-Konstruktion wäre es
schließlich sinnvoll, jene auf die Unabhängigkeit vom gewählten Standardimpulsfluß zu über-
prüfen.

Prinzipiell wäre es letztlich erstrebenswert, eine jede regularisierende Operation, die der
Beseitigung von UV-Divergenzen dient, stets vor dem Hintergrund der Epstein-Glaser-Regu-
larisierung bzw. deren Manifestation im Impulsraum betrachten zu können, um Ursache und
Beschaffenheit der Divergenzen, Kombinatorik von Unterdiagrammen und Freiheiten der Re-
normierung klar herauszustellen.





Anhang A

Wickrotation

Um die erforderlichen Integrationen über den inneren Impuls k durchzuführen, bietet sich eine
Wickrotation im Impulsraum an. Hierzu ist insbesondere die Kenntnis der richtigen Integrati-
onsvorschrift der Propagatoren im Impulsraum wichtig, welche dort durch eine infinitesimale
Verschiebung +iη beschrieben wird; für den Fermionpropagator SF gilt:

SF (k) ∼ /k +m

k2 −m2 + iη
, (A.1)

für den Photonpropagator:

Dµν
F (k) ∼ −gµν 1

k2 + iη
, (A.2)

sowie für den massiven Propagator der skalaren φ4-Theorie:

∆F (k) ∼ 1

k2 −m2 + iη
. (A.3)

Unter Berücksichtigung dieser Integrationsvorschriften bei der Berechnung der in den Feyn-
mandiagrammen enthaltenen Produkte von Propagatoren resultiert nach der Einführung der
Feynmanparameter bei einem Ein-Schleifen-Diagramm mit innerem Impuls k ein Nenner der
Form

1

(k2 − s2 + iη)n
, n ≥ 2. (A.4)

Hierbei ist s eine Funktion der Feynmanparameter sowie der Massen und der äußeren Impulse
des entsprechenden Diagramms. Der Zähler wird nun gegebenenfalls zunächst durch partiel-
le Integrationen auf die Lorentz-invariante Form f(k2) gebracht. An dieser Stelle kann dann
leicht eine Wickrotation durchgeführt werden. Hierzu seien zuerst die Polstellen der Funktion

f(k2)
(k2−s2+iη)n bezüglich der k0-Integration bestimmt, welche an folgenden Stellen liegen:

1. Für k2 + s2 > 0:

ω1,> =
√

k2 + s2 − iη′, (A.5)

ω2,> = −
√

k2 + s2 + iη′, (A.6)
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2. für k2 + s2 < 0:

ω1,< = i
√

−(k2 + s2) − η′′, (A.7)

ω2,< = −i
√

−(k2 + s2) + η′′, (A.8)

3. für k2 + s2 = 0:

ω1,0 =
√
−iη′′′, (A.9)

ω2,0 = −
√
−iη′′′. (A.10)

In einem Koordinatensystem mit den Achsen <(k0) und =(k0) liegen die Polstellen folglich in
keinem Fall im ersten oder dritten Quadranten. Nach dem Residuensatz ist daher das Integral

<(k0)

=(k0)

C

Abbildung A.1: Integrationsweg C

entlang der geschlossenen Kurve C gleich Null; ferner läßt sich das Integrationsgebiet wie folgt
zerlegen:

∫ ∞

−∞
dk0

f(k2)

(k2
0 − k2 − s2 + iη)n

=

∮

C
dk0

f(k2)

(k2
0 − k2 − s2 + iη)n

+

∫ i∞

−i∞
dk0

f(k2)

(k2
0 − k2 − s2 + iη)n

, (A.11)

wobei berücksichtigt wurde, daß die Integrationen entlang der Viertelkreise für die betrachteten,
aus den Faltungen von Propagatoren resultierenden Integranden aufgrund deren Verhalten für
k0 → ∞ verschwinden. Es resultiert somit:

∫ ∞

−∞
dk0

f(k2)

(k2
0 − k2 − s2 + iη)n

=

∫ i∞

−i∞
dk0

f(k2)

(k2
0 − k2 − s2 + iη)n

. (A.12)
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Schließlich führt dann die Substitution k̃0 := ik0 das Integrationsgebiet auf die reelle Achse
zurück, so daß die Definition eines Euklidischen Vierervektors k̃ = (k̃0,k) mit dem Betrag k̄ die
Einführung vierdimensionaler Polarkoordinaten ermöglicht:

∫ i∞

−i∞
dk0

f(k2)

(k2
0 − k2 − s2 + iη)n

= i

∫ ∞

−∞
dk̃0

f̃(k̃2)

(−k̃0
2 − k2 − s2 + iη)n

(A.13)

→ i

∫ ∞

−∞
dk̃0

∫

d3k
f̃(k̃2)

(−k̃0
2 − k2 − s2 + iη)n

= i(−1)nΩ4

∫ ∞

0
dk̄

k̄3f(−k̄2)

(k̄2 + s2 − iη)n
. (A.14)

Hierbei ist Ω4 die Oberfläche der vierdimensionalen Einheitskugel gemäß der Gleichung für die
Oberflächen n-dimensionaler Einheitskugeln,

Ωn =
2πn/2

Γ(n
2 )

⇒ Ω4 = 2π2; (A.15)

Γ ist die Eulersche Gammafunktion, Γ(2) = 1.





Anhang B

Berechnung des Dreiecksgraphen

Tλµν(p, q)

B.1 Spurbildung

Zur Berechnung der Spuren über γ-Matrizen werden folgende Gleichungen verwandt:

Tr(γ5γργλγσγκγτγµ) = 4iεκτµα(δα
ρ gλσ − δα

λ gρσ + δα
σ gρλ)

−4iερλσα(δα
κ gτµ − δα

τ gκµ + δα
µgκτ ), (B.1)

Tr(γ5/kγλ/kγκ/kγµ) = 4iεκλµαk
αk2, (B.2)

Tr(γ5γµγργλγσ) = −4iεµρλσ . (B.3)

Während das Ergebnis (7.11) direkt durch die separate Anwendung der aus (B.1) folgenden
Relation

kρkσTr(γ5γργλγσγκγτγµ) = 8iεκτµρkλk
ρ − 4iεκτµλk

2 (B.4)

auf die einzelnen Spuren erhalten wird und der zu m2 proportionale Anteil von (7.12) ent-
sprechend mittels der Verwendung von (B.3), bedarf der verbleibende Teil von (7.12) einer
detaillierteren Betrachtung; der zu berechnende Ausdruck sei dazu zunächst wie folgt zerlegt:

Tr[(/qy − /px)γµ(/qy − /px+ /p)γλγ5(/qy − /px− /q)γν ]

= Tr[(/qy − /px)γµ(/qy − /px)γλγ5(/qy − /px)γν ]

+Tr[(/qy − /px)γµ/pγλγ5(/qy − /px)γν ]

−Tr[(/qy − /px)γµ(/qy − /px)γλγ5/qγν ]

−Tr[(/qy − /px)γµ/pγλγ5/qγν ]. (B.5)

Die Auswertung der einzelnen Summanden mittels (B.3) bzw. (B.4) liefert folgende Identitäten:

Tr[(/qy − /px)γµ(/qy − /px)γλγ5(/qy − /px)γν ] = 4iελµνα(qαy − pαx)(qy − px)2,
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Tr[(/qy − /px)γµ/pγλγ5(/qy − /px)γν ] = 8iεµτλρ(q
ρy − pρx)(qνy − pνx)p

τ

−4iεµτλν(qy − px)2pτ ,

Tr[(/qy − /px)γµ(/qy − /px)γλγ5/qγν ] = 8iελτνρ(q
ρy − pρx)(qµy − pµx)q

τ

−4iελτνµ(qy − px)2qτ ,

Tr[(/qy − /px)γµ/pγλγ5/qγν ] = 8iyεµτλρq
ρqνp

τ − 8ixελτνρp
ρpµq

τ

−4iεµτλν(q2pτy − p2qτx), (B.6)

womit schließlich der zu berechnenden Anteil von (7.12) folgt:

Tr[(/qy − /px)γµ(/qy − /px+ /p)γλγ5(/qy − /px− /q)γν ]

= 4iελµνα(qαy − pαx)(qy − px)2 + 8iεµτλρ(q
ρy − pρx)(qνy − pνx)p

τ

+4iετµλν(qy − px)2pτ − 8iελτνρ(q
ρy − pρx)(qµy − pµx)q

τ

−4iετλνµ(qy − px)2qτ − 8iyεµτλρq
ρqνp

τ + 8ixελτνρp
ρpµq

τ

−4iεµτνλ(q2pτy − p2qτx)

= 4iελµνα(qα(y − 1) − pα(x− 1))(qy − px)2 − 4iελτµν(q2pτy − p2qτx)

+8iεµτλρq
ρqνy

2pτ − 8iεµτλρq
ρpνxyp

τ + 8iελτνρp
ρqµxyqτ − 8iελτνρp

ρpµx
2qτ

−8iyεµτλρq
ρqνp

τ + 8ixελτνρp
ρpµq

τ

= 4iελµντ

{

(qτ (y − 1) − pτ (x− 1))(qy − px)2 − q2pτy + p2qτx
}

+8iyεµτλρq
ρpτ [qν(y − 1) − pνx] − 8ixελτνρp

ρqτ [pµ(x− 1) − qµy]. (B.7)

B.2 Durchführung der k-Integration

Als Beispiel für die explizite Auswertung der Impulsintegrationen sei diese am ursprünglich
divergenten Anteil T log

λµν demonstriert. Durch partielle Integration derjenigen Terme, welche ein-
zelne Komponenten von k enthalten, läßt sich zunächst erreichen, daß der gesamte Ausdruck
ausschließlich von k2 abhängig ist; an dieser Stelle transformiert dann die Wickrotation das
k-Integral in das schließlich auszuführende vierdimensionale Euklidische Integral:

T log
λµν(p, q)

= −16i

∫ 1

0
dx

∫ 1−x

0
dy

∫

d4k

(2π)4
(1 − t1p,q)

(

2ελτνρk
ρkµ(pτx− qτy + qτ )

[k2 − (qy − px)2 −m2 + q2y + p2x]3

+
2εµτλρk

ρkν(pτx− qτy − pτ )

[k2 − (qy − px)2 −m2 + q2y + p2x]3
+

2εντµρk
ρkλ(pτx− qτy)

[k2 − (qy − px)2 −m2 + q2y + p2x]3

− 3εντµλk
2(pτx− qτy)

[k2 − (qy − px)2 −m2 + q2y + p2x]3
− ελτνµk

2(qτ − pτ )

[k2 − (qy − px)2 −m2 + q2y + p2x]3

)

= −8i

∫ 1

0
dx

∫ 1−x

0
dy

∫

d4k

(2π)4
(1 − t1p,q)

(

ελτνµ(pτx− qτy + qτ )

[k2 − (qy − px)2 −m2 + q2y + p2x]2

+
εµτλν(pτx− qτy − pτ )

[k2 − (qy − px)2 −m2 + q2y + p2x]2
+

εντµλ(pτx− qτy)

[k2 − (qy − px)2 −m2 + q2y + p2x]2
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− 2εντµλk
2(3pτx− 3qτy + qτ − pτ )

[k2 − (qy − px)2 −m2 + q2y + p2x]3

)

= 8Ω4
1

(2π)4

∫ 1

0
dx

∫ 1−x

0
dy

∫ ∞

0
dk̄(1 − t1p,q)k̄

3

(

ελτνµ(3pτx− 3qτy + qτ − pτ )

[k̄2 + (qy − px)2 +m2 − q2y − p2x]2
− 2εντµλk̄

2(3pτx− 3qτy + qτ − pτ )

[k̄2 + (qy − px)2 +m2 − q2y − p2x]3

)

=
1

2π2

∫ 1

0
dx

∫ 1−x

0
dyελµντ{pτ (3x− 1) − qτ (3y − 1)} ln

m2

m2 + (qy − px)2 − q2y − p2x
. (B.8)





Anhang C

Epstein-Glaser-Resultate im

Impulsraum

Während die einfache Übersetzung einer formal von n − 1 Ortsdifferenzen xi − xn abhängi-
gen skalaren Distribution in den Impulsraum in einer Abhängigkeit von n − 1 unabhängigen
Impulsvariablen qi resultiert, bewirkt eine Berücksichtigung der zugehörigen Wickmonome im
Ortsraum und eine Anwendung der S-Matrix auf äußere Teilchen die Ersetzung einer jeden Im-
pulsvariablen qi durch den am Vertex Vi einfallenden äußeren Impuls pi gemäß qi = −pi; die
regularisierende Taylorsubtraktion bzgl. der Impulsraumvariablen wird durch diejenige hinsicht-
lich einer Auswahl von unabhängigen äußeren Impulsen ersetzt.

Im folgenden sei dieser Übergang für die in Kapitel 9.2 betrachteten Mehr-Schleifen-Dia-
gramme demonstriert:

C.1 Erster Zwei-Schleifen-Beitrag, d = 4

Beginnend mit der im Ortsraum abschließend auf subtrahierte Testfunktionen einzuschränken-
den Distribution

d′(x′1, x
′
2) = ∆2

F,reg(x
′
1)∆

2
F,reg(x

′
2) (C.1)

gemäß (9.9) sei zunächst formal die Fouriertransformierte gebildet:

d̂(q1, q2) = (̂∆2
F )reg(q1)(̂∆

2
F )reg(q2). (C.2)

In der regularisierten Distribution

d̂reg(q1, q2) = (1 − t0q1,q2
)(̂∆2

F )reg(q1)(̂∆
2
F )reg(q2) (C.3)

ist nun die Taylorsubtraktion bzgl. der Impulsraumvariablen q1 und q2 aufgrund des Verschwin-

dens der einzelnen Regularisierungen (̂∆2
F )reg(qi) an der Stelle qi = 0 redundant, so daß bereits
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die Rücktransformation von (C.2) in den Ortsraum die Regularisierung des Gesamtdiagrammes
im Ortsraum darstellt:

dreg(x1, x2, x3) =

∫

d4q1
(2π)2

∫

d4q2
(2π)2

e−iq1(x1−x3)e−iq2(x2−x3)(̂∆2
F )reg(q1)(̂∆

2
F )reg(q2). (C.4)

Zum Vergleich mit dem BPHZ-Verfahren, welches auf der Stufe von bzgl. ein- und ausfallender
äußerer Teilchen gebildeten Matrixelementen definiert ist, sei an dieser Stelle die entsprechende
Feynmanamplitude gebildet:

Die Hinzunahme des Wickmonoms : φ2(x1)φ
2(x2) : mit den Feldoperatoren gemäß (2.4) lie-

fert nach der Anwendung auf zwei am Vertex V1 mit dem Gesamtimpuls p einfallende und zwei
bei V2 entsprechend mit q auslaufende Teilchen den Faktor 1

(2π)6
e−ipx1eiqx2 , so daß als Auswer-

tung der regularisierten Distribution dreg auf der im physikalischen Grenzwert zu betrachteten
Funktion g(x1, x2, x3) = 1 folgender Ausdruck resultiert:

d̂(p, q) =

∫

d4x1

∫

d4x2

∫

d4x3

∫

d4q1
(2π)2

∫

d4q2
(2π)2

e−iq1(x1−x3)e−iq2(x2−x3)

· 1

(2π)6
e−ipx1eiqx2 (̂∆2

F )reg(q1)(̂∆
2
F )reg(q2)

= (2π)2
∫

d4q1

∫

d4q2(̂∆2
F )reg(q1)(̂∆

2
F )reg(q2)δ(−q1 − p)δ(−q2 + q)δ(q1 + q2)

= (2π)2 (̂∆2
F )reg(−p)(̂∆2

F )reg(q)δ(p − q), (C.5)

woraus unter Verwendung der speziellen Gestalt der Regularisierungen (̂∆2
F )reg die in (9.10) mit

t̂3(p) bezeichnete Struktur folgt.

C.2 Zweiter Zwei-Schleifen-Beitrag, d = 6

Auf analoge Art und Weise erfolgt die Behandlung der abschließend zu regularisierenden Distri-
bution

d′(x′1, x
′
2) = ∆2

F,reg(x
′
1 − x′2)∆F,reg(x

′
1)∆F,reg(x

′
2) (C.6)

gemäß (9.20). Die im Impulsraum bzgl. der Impulsvariablen q1 und q2 taylorsubtrahierte Fou-
riertransformierte,

d̂reg(q1, q2) =
1

(2π)3

∫

d6p̃(1 − t4q1,q2
)(̂∆2

F )reg(p̃)∆̂F (q1 − p̃)∆̂F (q2 + p̃), (C.7)

führt nach Rücktransformation in den Ortsraum, Multiplikation mit dem die vier äußeren Teil-
chen berücksichtigenden Phasenfaktor 1

(2π)10
e−ip1x1e−i(p1+p2)x3eip4x2 und Auswertung auf der

Funktion g = 1 auf folgendes Resultat:
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d̂(p1, p2, p3, p4)

=

∫

d6x1

∫

d6x2

∫

d6x3

∫

d6q1
(2π)3

∫

d6q2
(2π)3

e−iq1(x1−x3)e−iq2(x2−x3)

· 1

(2π)3

∫

d6p̃(1 − t4q1,q2
)(̂∆2

F )reg(p̃)∆̂F (q1 − p̃)∆̂F (q2 + p̃)

· 1

(2π)10
e−ip1x1e−i(p1+p2)x3eip4x2

=
1

2π

∫

d6q1

∫

d6q2

∫

d4p̃(1 − t4q1,q2
)(̂∆2

F )reg(p̃)∆̂F (q1 − p̃)∆̂F (q2 + p̃)

·δ(−q1 − p1)δ(−q2 + p4)δ(q1 + q2 − p2 − p3)

=
1

2π

∫

d6p̃(1 − t4p1,p2,p3
)(̂∆2

F )reg(p̃)∆̂F (−p1 − p̃)∆̂F (p1 + p2 + p3 + p̃)

·δ(−p1 − p2 − p3 + p4). (C.8)

Die Substitution p̃ = −k1 führt schließlich zusammen mit der Verwendung einer speziellen Wahl

der Regularisierung (̂∆2
F )reg(p̃) auf t̂3(p1, p2, p3) gemäß (9.21).

C.3 Drei-Schleifen-Beitrag zum Propagator

Die regularisierte Fouriertransformierte des Beitrags (9.31),

d′(x′1, x
′
2) = ∆2

F,reg(x
′
1 − x′2)∆

2
F,reg(x

′
2)∆F,reg(x

′
1), (C.9)

zur Propagatorfunktion besitzt folgende Gestalt:

d̂reg(q1, q2) =
1

(2π)3

∫

d6p̃(1 − t8q1,q2
)(̂∆2

F )reg(q1 − p̃)∆̂F (p̃)(̂∆2
F )reg(q1 + q2 − p̃). (C.10)

In diesem Beispiel liefern zwei äußere Teilchen den Phasenfaktor 1
(2π)5

e−ipx1eiqx3 , so daß - nach

der Substitution p̃ → k3 - die Struktur des folgenden Ergebnisses gemäß (9.32) mit dem ent-
sprechenden Resultat des BPHZ-Verfahrens zu vergleichen ist:

d̂(p, q) =

∫

d6x1

∫

d6x2

∫

d6x3

∫

d6q1
(2π)3

∫

d6q2
(2π)3

e−iq1(x1−x3)e−iq2(x2−x3)

· 1

(2π)3

∫

d6p̃(1 − t8q1,q2
)(̂∆2

F )reg(q1 − p̃)∆̂F (p̃)(̂∆2
F )reg(q1 + q2 − p̃)

· 1

(2π)5
e−ipx1eiqx3

= (2π)4
∫

d6q1

∫

d6q2

∫

d6p̃(1 − t8q1,q2
)(̂∆2

F )reg(q1 − p̃)∆̂F (p̃)(̂∆2
F )reg(q1 + q2 − p̃)

·δ(−q1 − p)δ(−q2)δ(q1 + q2 + q)

= (2π)4
∫

d6p̃(1 − t8p)(̂∆
2
F )reg(−p− p̃)∆̂F (p̃)(̂∆2

F )reg(−p− p̃)δ(p − q). (C.11)
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