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Zusammenfassung

In dieser Arbeit wird zu Beginn der Vergleich spezieller Regularisierungsmethoden in der
Quantenfeldtheorie mit dem Verfahren zur stérungstheoretischen Konstruktion der S-Matrix
nach Epstein und Glaser hergestellt.

Da dieses Verfahren fiir ein jedes S-Matrixelement einen endlichen Ausdruck liefert, kann
es selbst als Regularisierungsmethode fiir divergente Feynmandiagramme herangezogen werden.
Es basiert {iberdies ausschliefilich auf physikalisch motivierten Postulaten an die S-Matrix, so
daB die Aquivalenz von Ergebnissen anderer Regularisierungsverfahren mit den Resultaten der
Epstein-Glaser-Konstruktion notwendig ist, um deren physikalische Zul&ssigkeit zu iiberpriifen.
Die Untersuchung dieser Aquivalenz muf dabei im Rahmen der im Epstein-Glaser-Verfahren
verwandten Freiheiten erfolgen, welche bei einem zuléissigen Regularisierungsverfahren die Frei-
heiten bei der speziellen Renormierung représentieren.

Zusitzlich zur Herausstellung dieser Aquivalenz fiir das BPHZ-Renormierungsverfahren und
die Methode der Dimensionalen Regularisierung liefert der Vergleich mit der Epstein-Glaser-
Konstruktion ein weiteres wesentliches Resultat: Anhand von Beispielen fiir Ein- und Mehr-
Schleifen-Diagramme wird demonstriert, wie im Zuge eines neuen praktikablen Verfahrens, des
modifizierten BPHZ-Verfahrens, eine teils erhebliche Vereinfachung der konkreten Durchfiithrung
von Regularisierungen erreicht werden kann.

Dieses Verfahren wird zunéchst an den grundlegenden Divergenzen der QED - Elektron-
selbstenergie, Vakuumpolarisation und Vertexkorrektur - exemplarisch dargestellt. Es ist aber
insbesondere auch unverédndert bei Diagrammen einer chiralen Theorie anwendbar, wo die Be-
rechnung mittels der vielverwandten Dimensionalen Regularisierung auf das sog. ys-Problem
fithrt. Die aufwendige und problematische Fortsetzung der fiir vier Raumzeitdimensionen spezi-
fischen ~5-Matrix in d Dimensionen ist im modifizierten BPHZ-Verfahren nicht notwendig. Als
Beispiel dient die im Rahmen einer axialen Erweiterung der QED-Lagrangedichte auftretende
sog. U(1)-Anomalie: Hier wird die erhebliche Vereinfachung bei der Regularisierung des von drei
Fermionen gebildeten divergenten Dreiecksgraphen, an zwei Vertices an ein vektorielles und am
dritten an ein axiales Eichboson gekoppelt, demonstriert. Die Berechnung der Wardidentit édten
und der Anomalie schliefit sich auf direkte Weise an.

Auf der Stufe von Mehr-Schleifen-Diagrammen erfolgt der Vergleich des Epstein-Glaser-Ver-
fahrens mit der BPHZ-Regularisierung, da diese mit der Zimmermannschen Waldformel eine
allgemeine Regularisierungsvorschrift fiir Diagramme mit mehreren Schleifen enthélt. Nun ist es
insbesondere die unterschiedliche Kombinatorik hinsichtlich der Beriicksichtigung von Unterdia-
grammen, die beim Vergleich von Epstein-Glaser- und BPHZ-Regularisierung zu beachten ist: In
der Zimmermannschen Waldformel wird eine grofiere Klasse von Unterdiagrammen beriicksich-
tigt als bei der Epstein-Glaser-Konstruktion. Mehrere Beispiele aus der ¢*-Theorie, darunter das
sog. Sunrise-Diagramm, zeigen, dafl zu deren Berechnung die in der Waldformel auftretenden
Unterdiagramme auf solche im Sinne von Epstein-Glaser eingeschriankt werden kénnen. Auch
dieses Resultat ist fiir die Praxis der Regularisierung von Feynmandiagrammen bedeutsam, da
es bereits auf der Stufe der zu beriicksichtigenden Unterdiagramme zu einer Vereinfachung der
konkreten Berechnungen fiihrt.
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Kapitel 1

Einleitung

Physikalische Wechselwirkungen von Elementarteilchen erfahren ihre Beschreibung im Rahmen
der Quantenfeldtheorie. Ein zentrales Element dieser Theorie bildet dabei die sog. Streu- oder
S-Matriz, welche die bei einem Streuprozef erfolgenden Uberginge zwischen physikalischen
Anfangs- und Endzustéinden vermittelt.

Eine anschauliche Darstellung solcher Streuprozesse liefern die Feynmandiagramme, welche
die Wechselwirkung der einfallenden Teilchen untereinander durch die Propagation virtueller
Teilchen symbolisieren. Diese bildliche Interpretation der zu beschreibenden Wechselwirkung
spiegelt bereits einen zentralen Punkt in der formalen Konstruktion der zugrundeliegenden S-
Matrix wider: Die Propagation von Teilchen beinhaltet eine bestimmte Zeitordnung von Raum-
zeitpunkten. In der formalen stérungstheoretischen Entwicklung der S-Matrix ist es gerade diese
Zeitordnung, welche - naiv angewendet - auf charakteristische Divergenzen, sog. UV-Divergenzen,
in der Quantenfeldtheorie fiihrt: Integrale, welche Wahrscheinlichkeitsamplituden bestimmter
Streuprozesse darstellen, also bestimmte S-Matrixelemente, erweisen sich als divergent.

In der Quantenfeldtheorie existieren zwei konzeptionell unterschiedliche Methoden, diesem
Problem Rechnung zu tragen:

1. Uberfithrung der divergenten in endliche Integrale nach bestimmten Regularisierungsver-
fahren,

2. Ersetzung der naiven Zeitordnung durch eine wohldefinierte Zeitordnungsvorschrift und
Konstruktion einer von vornherein divergenzfreien S-Matrix mittels des Verfahrens von
Epstein und Glaser.

Obwohl mit letzterer Methode ein konstruktives Verfahren zur Entwicklung der S-Matrix
zur Verfiigung steht, welches auf einigen wenigen physikalischen Postulaten basiert, verlieren die
unterschiedlichen Regularisierungsverfahren nicht an Bedeutung: In ihrer urspriinglichen For-
mulierung erscheint die Epstein-Glaser-Konstruktion durch ihr wesentliches Element, d.h. die
modifizierte Zeitordnungsvorschrift, im Gegensatz zu den verschiedenen Regularisierungsmetho-
den zur expliziten Berechnung wenig praktikabel; der wesentliche Vorteil des Epstein-Glaser-
Verfahrens liegt indessen in der vollstéandigen Divergenzfreiheit der konstruierten S-Matrix.
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2 KAPITEL 1. EINLEITUNG

In der Tat bilden die Ergebnisse der Epstein-Glaser-Konstruktion eine Referenz, die es er-
laubt, die Operationen der unterschiedlichen Regularisierungsmethoden auf ihre Zuléssigkeit
zu iiberpriifen: Allein die Forderung der Kausalitdt der S-Matrix, welche im Epstein-Glaser-
Verfahren die Zeitordnung der Propagatoren impliziert, liefert - zusammen mit der Lorentzin-
varianz - fiir jedes Feynmandiagramm einen endlichen Wert, welcher allerdings aus einer be-
stimmten, der Konstruktion innewohnenden Freiheit heraus speziell gewihlt werden muf; erst
die an die Regularisierung anschlieende sog. Renormierung verfiigt schliellich im Sinne einer
physikalischen Interpretation iiber diese Freiheit. Fiir ein sinnvolles Regularisierungsverfahren
ist nun zunichst die Ubereinstimmung seiner Resultate mit denen des Epstein-Glaser-Verfahrens
innerhalb dieser Freiheit zu fordern. Wéhrend die Endlichkeit der regularisierten Integrale Teil
der Aussage der unterschiedlichen Regularisierungsverfahren ist, fehlt aber gerade eine Unter-
suchung ihrer physikalischen Zuléssigkeit in o.a. Sinne.

Das Ziel dieser Arbeit ist, die Vorteile bestimmter, hinsichtlich konkreter Berechnungen prak-
tikabler Regularisierungsverfahren mit der Wohldefiniertheit und der physikalischen Motivation
der Epstein-Glaser-Konstruktion zu verbinden. Die zu untersuchende Aquivalenz von Regulari-
sierungsmethoden zum Epstein-Glaser-Verfahren ermoglicht es wiederum, die Regularisierung-
verfahren bei einer Vielzahl von Anwendungen erheblich zu vereinfachen. Insbesondere auch
die Berechnung von Mehr-Schleifen-Diagrammen folgt im Epstein-Glaser-Formalismus einer be-
stimmten Kombinatorik, welche mit der entsprechenden des betrachteten Regularisierungsver-
fahrens verglichen werden muB; auch in diesem Fall ist die Ubereinstimmung der Ergebnisse
im Rahmen der bei der Epstein-Glaser-Konstruktion verbleibenden Freiheiten zu fordern, und
dieser Vergleich resultiert in der Anwendung gleichfalls in starken Vereinfachungen.

Als ein zentrales Element dieser Arbeit fait das hier vorgestellte modifizierte BPHZ-Ver-
fahren diese Ergebnisse zu einer neuen konsistenten und praktikablen Regularisierungsmethode
zusammen.

Der Aufbau der Arbeit ist wie folgt vorgenommen:

In Kapitel 2 wird die Beschreibung von Streuprozessen durch die S-Matrix innerhalb des
Formalismus der Zweiten Quantisierung wiederholt. Der Versuch einer Darstellung der rela-
tivistischen Prozesse in Analogie zum Wechselwirkungsbild der klassischen Quantenmechanik
und die im Zuge dessen resultierende naive Zeitordnungsvorschrift in der stérungstheoretischen
Entwicklung der S-Matrix fithren auf die bekannten UV-Divergenzen der Matrixelemente und
werden hier lediglich als Motivation fiir die Postulate des in Kapitel 3 vorgestellten Epstein-Gla-
ser-Verfahrens angefiihrt.

Im ersten Teil dieses dritten Kapitels wird der mit diesen Postulaten folgende Konstruk-
tionsprozefl nach Epstein und Glaser erldutert, wobei der Schwerpunkt auf der Definition der
S-Matrix als operatorwertige Distribution gelegt ist. Erst die Auswertung auf sog. Testfunktio-
nen und die Bildung des Matrixelementes bzgl. physikalischer Anfangs- und Endzustinde liefert
den direkten Vergleich zu den Ausgangspunkten der Regularisierungsverfahren, d.h. den kon-
kreten divergenten Integralen. Die Zeitordnung wird in jeder Ordnung der Entwicklung nach der
Anzahl der Vertices durch die Forderung nach der Kausalitit der S-Matrix impliziert; die kon-
krete Realisierung erfolgt mittels des Prozesses des Distributionensplittens, welcher im Anschlufl
erldutert wird. Uber das urspriingliche Epstein-Glaser-Verfahren hinaus gehen die beiden letzten



Unterkapitel dieses Kapitels 3: Hinsichtlich des Vorhabens, die Aquivalenz bestimmter Regu-
larisierungsverfahren zur Epstein-Glaser-Methode zu iiberpriifen, ist es insbesondere niitzlich,
letztere selbst als Regularisierungsmethode aufzufassen; diese Interpretation ist u.a. in [PRA]
und [PIN] ausgefiihrt und wird spéter im Impulsraum als Aquivalenzkriterium verwendet. Zum
Vergleich weiterhin unabdingbar ist die Kenntnis der bei der Epstein-Glaser-Regularisierung
verbleibenden Freiheiten; sie werden zunéchst vollstdndig angegeben, um dann im modifizierten
Epstein-Glaser-Verfahren von [GRB] auf eine Einschriankbarkeit hin iiberpriift zu werden, welche
sich allerdings fiir die endgiiltige physikalische Renormierung i.a. als zu restriktiv erweist.

Hierbei - sowie auch im weiteren Verlauf der Arbeit - wurden die Ergebnisse der im Rahmen
dieser Betrachtungen durchgefiihrten expliziten Berechnungen mittels des Mathematikprogram-
mes Maple V iiberpriift.

Kapitel 4 stellt mit dem BPHZ- Verfahren das in Hinblick auf die Zielstellung der Arbeit wich-
tigste Renormierungsverfahren vor. Wie bereits z. B. in [GRB] erwé#hnt, erweist sich die in diesem
Verfahren enthaltene Regularisierungsvorschrift auf der Stufe von Ein-Schleifen-Diagrammen -
einschliefllich der zur Verfiigung stehenden Freiheiten - als dem in den Impulsraum iibertrage-
nen Epstein-Glaser-Verfahren dquivalent. Dariiberhinaus enthélt das BPHZ-Verfahren mit der
sog. Waldformel eine allgemeine Vorschrift zur Regularisierung von Mehr-Schleifen-Diagrammen,
deren Kombinatorik spéter gleichfalls mit der des Epstein-Glaser-Verfahrens verglichen werden
soll. Obwohl es strukturell iibersichtlich ist, hat das BPHZ-Verfahren den Nachteil, auf hinsicht-
lich der expliziten Berechnung aufwendige Integrale zu fithren. Praktikabler in der konkreten
Anwendung ist dagegen die Methode der Dimensionalen Regularisierung, welche im folgenden
Kapitel 5 erldutert wird.

Die Dimensionale Regularisierung ist ein Verfahren, welches die auftretenden Divergenzen
zunéichst durch eine (infinitesimale) Abweichung von der urspriinglichen Theorie beseitigt und
anschliefend die parametrisierten Terme derart modifiziert, dafl deren Wohldefiniertheit auch
nach der Riickkehr zur eigentlichen Theorie erhalten bleibt. Die Aquivalenz zum Epstein-Glaser-
Verfahren wird anhand eines Beispiels demonstriert; dieser Vergleich wiederum weist auf die
Moglichkeit hin, die praktischen Vorziige der Dimensionalen Regularisierung zu nutzen, ohne die
zugrundeliegende Theorie formal auf unphysikalische Dimensionen erweitern zu miissen. Dazu
sei als eigentliche regularisierende Operation diejenige des BPHZ-Verfahrens angewandt: In Ka-
pitel 6 wird als eine neue Vorgehensweise das modifizierte BPHZ-Verfahren vorgestellt, welches
die Praktikabilitéit der Dimensionalen Regularisierung mit der strukturellen Ubersichtlichkeit
des BPHZ-Verfahrens hinsichtlich dessen Aquivalenz zum Epstein-Glaser-Verfahren vereint.

Drei bekannte Beispiele aus der Quantenelektrodynamik demonstrieren das modifizierte
BPHZ-Verfahren im zweiten Teil des sechsten Kapitels :

e Elektronselbstenergie,
e Vakuumpolarisation und

e Vertexkorrektur.

Die Einfithrung eines Massenparameters als abschlielender Schritt des Verfahrens ermoglicht
den direkten Vergleich mit dem entsprechenden Ergebnis der Dimensionalen Regularisierung.



4 KAPITEL 1. EINLEITUNG

Dieser neue Parameter erscheint hier allerdings als eine im Rahmen der Freiheiten des Regulari-
sierungsverfahrens mogliche Verallgemeinerung des Ergebnisses, und es bedarf seiner Einfiihrung
nicht, um die physikalische Dimension beim Ubergang zu Integrationen in abweichender Dimen-
sion zu bewahren, wie es bei der Dimensionalen Regularisierung der Fall ist.

FEin wesentlicher Vorzug des modifizierten BPHZ-Verfahrens gegeniiber der Dimensionalen
Regularisierung wird insbesondere dort deutlich, wo die formale Erweiterung der Theorie auf
unphysikalische Dimensionen auf konzeptionelle Probleme fiihrt, insbesondere also bei einer chi-
ralen Theorie, wo neben der Algebra der Diracschen Gammamatrizen in der QED auch die fiir
den vierdimensionalen Minkowskiraum spezifische Matrix «v5 einer aufwendigen Neudefinition

bedarf.

Die unveranderte Anwendbarkeit des modifizierten BPHZ-Verfahrens in diesem Fall wird in
Kapitel 7 demonstriert:

e Berechnung der U(1)-Anomalie.

Als Beispiel dient eine axiale Erweiterung der QED-Lagrangedichte; hier tritt fiir den sog. Drei-
ecksgraphen, welcher drei innere Fermionen, an zwei vektorielle und ein axiales Eichboson kop-
pelnd, beschreibt, eine sog. U(1)-Anomalie auf. Diese kann, ebenso wie die beiden die Erhaltung
der Vektorstrome bei der vektoriellen Kopplung beschreibenden Ward-Identitéten, auf natiirli-
che Weise nach der Regularisierung des divergenten Dreiecksgraphen mittels des modifizierten
BPHZ-Verfahrens berechnet werden.

Mit Kapitel 8 beginnt die Betrachtung von Mehr-Schleifen-Diagrammen. Da mit der Zim-
mermannschen Waldformel eine allgemeine Regularisierungsvorschrift im Rahmen der BPHZ-
Regularisierung gegeben ist, bildet die in diesem Verfahren enthaltene Kombinatorik den Gegen-
stand der folgenden vergleichenden Betrachtungen. Auch fiir Mehr-Schleifen-Diagramme liefert
das konstruktive Epstein-Glaser-Verfahren innerhalb der verbleibenden Freiheiten endliche Er-
gebnisse; die dortige Entwicklung der S-Matrix nach der Anzahl von Vertices impliziert insbe-
sondere eine anschauliche Definition von Unterdiagrammen: Ein Epstein-Glaser- Unterdiagramm
entstammt der Konstruktion einer im Vergleich zu der des Gesamtdiagrammes niedrigeren Ver-
texordnung. Im Gegensatz hierzu ist ein BPHZ-Unterdiagramm als ein Anteil des Gesamtdia-
grammes mit einer niedrigeren Anzahl von Schleifen definiert: Die physikalische Interpretation
des BPHZ-Verfahrens besteht in der Modifikation der zugrundeliegenden Lagrangedichte durch
sukzessive Addition von Korrekturtermen, sog. Countertermen, steigender Ordnung in einer for-
malen Entwicklung nach %, und auf der Stufe der Feynmandiagramme ist die Schleifenordnung
mit der A-Ordnung identisch. In diesem achten Kapitel wird nun ein erstes Beispiel fiir die
Unterschiedlichkeit dieser beiden Arten der Beriicksichtigung von Unterdiagrammen vorgestellt:

e Berechnung des Sunrise-Diagrammes.

Als ein Diagramm mit nur zwei Vertices enthilt es kein divergentes Epstein-Glaser-Unterdia-
gramm, wohl aber, da je zwei der drei inneren Linien eine Schleife bilden, drei BPHZ-Unter-
diagramme. Der Vergleich mit dem Ergebnis des modifizierten BPHZ-Verfahrens zeigt, dafl die
Beriicksichtigung dieser sog. reinen BPHZ-Unterdiagramme - zumindest bei der hier verwandten
Wahl des Standardimpulsflusses - nicht notwendig ist.



Tatsdchlich unterstiitzen auch weitere Beispiele hoherer Vertexordnung die Annahme, daf
die in der Zimmermannschen Waldformel zu beriicksichtigenden Unterdiagramme auf solche im
Sinne von Epstein-Glaser einschréinkbar sind. In Kapitel 9 wird hierzu zunéchst die Epstein-
Glaser-Regularisierung bis zur dritten Ordnung abgeleitet. Darin enthalten sind insbesondere
drei Beispieldiagramme aus der skalaren ¢*-Theorie in d = 4 bzw. d = 6 Dimensionen, an-
hand derer im zweiten Teil dieses Kapitels der Vergleich mit den Ergebnissen der Waldformel
hergestellt wird:

o Zwei-Schleifen-Beitrag zur Vierpunktfunktion in vier Dimensionen,
o Zwei-Schleifen-Beitrag zur Vierpunktfunktion in sechs Dimensionen,

e Drei-Schleifen-Beitrag zum Propagator in sechs Dimensionen.

Waéhrend die Berticksichtigung der Unterdiagramme beim ersten Beispiel, welches ausschlief3-
lich solche im Sinne von Epstein-Glaser enthilt, in beiden Regularisierungsverfahren auf gleiche
Weise erfolgt, zeigt sich bei den beiden anderen Beispielen wiederum, dafl die Beitrdge der
reinen BPHZ-Unterdiagramme nicht zum Resultat beitragen. Auch diese Vergleiche erfolgen
naturgeméif fiir eine bestimmte und geeignete Wahl des Standardimpulsflusses in der Zimmer-
mannschen Waldformel.

Der Vergleich mit den Ergebnissen der Epstein-Glaser-Regularisierung liefert somit bei Bei-
spielen von Mehr-Schleifen-Diagrammen den zusétzlichen Vorteil, die Beitrdge von Unterdia-
grammen auf diejenigen einschrénken zu koénnen, welche in der Epstein-Glaser-Konstruktion
auftreten, woraus i. a. eine erhebliche Vereinfachung des Integranden resultiert. Dieser Vergleich
erfolgt am Beispiel zwar fiir einen speziellen, dazu am besten geeigneten Standardimpulsfluf3;
es besteht allerdings die Vermutung, dafl die o. a. Einschrankung generell moglich ist: Auch im
Formalismus der Counterterme kénnen in den Feldern normalgeordnete Korrekturterme einer
modifizierten Wechselwirkungslagrangedichte nur Propagatoren zu denjenigen Vertices gene-
rieren, welche bei der storungstheoretischen Entwicklung neu hinzukommen, und sind daher
Counterterme zu Epstein-Glaser- Unterdiagrammen des Gesamtdiagrammes.

Zusammenfassend 1d8t sich feststellen, dafl in der Literatur die beiden zu Beginn dieses
Kapitels charakterisierten Richtungen weitgehend unabhéngig voneinender existieren: Wahrend
unterschiedliche Regularisierungsmethoden zunéchst als teils willkiirlich anmutende Operatio-
nen an divergenten Integralen angewandt werden, erscheint das Epstein-Glaser-Verfahren als
eine rein theoretische Konstruktion ohne Nutzen fiir explizite Berechnungen. Diese Arbeit ist
dagegen denjenigen zuzuordnen, welche die beiden Richtungen zu verbinden suchen. Sie greift die
z.B. in [PRA] und [GRB] dargestellten Uberlegungen hinsichtlich eines Vergleiches von Epstein-
Glaser-Regularisierung und insbesondere BPHZ-Regularisierung auf, um daraus zweierlei Nutzen
zu ziehen: Zusétzlich zum theoretischen Verstédndnis einer speziellen Regularisierungmethode,
das der Vergleich mit der Epstein-Glaser-Konstruktion sowohl hinsichtlich der regularisierenden
Manipulationen als auch der Kombinatorik bei Mehr-Schleifen-Diagrammen schafft, liefert diese
Herausstellung der Aquivalenz insbesondere Vereinfachungen in den expliziten Berechnungen:;
diese fassen das modifizierte BPHZ-Verfahren und die vereinfachte Anwendung der Waldformel
zusammen.






Kapitel 2

Zweite Quantisierung und die
Berechnung von Streuprozessen

2.1 Zweite Quantisierung am Beispiel des reellen freien Klein-
Gordon-Felds

Im Gegensatz zur klassischen Quantenmechanik kénnen die Losungen der relativistischen Klein-
Gordon- bzw. Dirac-Gleichung nicht ohne weiteres als Wahrscheinlichkeitsamplituden einzelner
Bosonen bzw. Fermionen interpretiert werden. Mit der sog. Zweiten Quantisierung, der Erset-
zung von klassischen Feldern durch Feldoperatoren, wird der Ubergang zu einer Vielteilchen-
Theorie bewerkstelligt, die dieser Interpretation nicht bedarf: In der Quantenfeldtheorie wird ein
erst neu zu definierender Fockraum als Hilbertraum der freien Teilchen interpretiert.

Im folgenden sei kurz die Vorgehensweise bei der Quantisierung des reellen freien Klein-
Gordon-Felds skizziert (fur Einfithrungen in die Quantenfeldtheorie sei z. B. auf [BJD],[SWL]
verwiesen):

Ausgehend von der Lagrangedichte

1 (09 0¢ 2 2
L= = _ 2.1
2 <8x“ oz, meen ) (2.1)
welche auf die Klein-Gordon-Gleichung
(O+m?) ¢(z) =0 (2.2)
fiihrt, werden zwischen der kanonischen Variablen ¢(z) und ihrem kanonisch konjugierten Impuls
™= g—i = ¢ folgende gleichzeitige Vertauschungsrelationen postuliert:
[6(x.1),6(x",1)] = 0,
[71 x,t ,ﬂ(x',t)] = 0,
[7(x,t),p(x/,1)] = —id®(x —x). (2.3)
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Zur Definition eines diese Kommutatorrelationen erfiillenden Feldoperators ¢(x) erfolgt nun iiber
dessen Fourierzerlegung nach Ebene-Wellen-Losungen ein Ubergang in den Impulsraum:

{e7™a(k) + eMal (k) } = 67 (x, 1) + 67 (x, 1),
k0 = By = VK2 + m?2. (2.4)

Auf der Stufe der hierdurch eingefithrten Operatoren a(k) und af(k) wird dann die Operator-
wirkung definiert; die zwischen diesen resultierenden Kommutatorrelationen

_/ a3k
) /(2m)32E,

la(k),a(k’)] = O,
[a’(k),a" (k)] = o0,
[a(k),a’(K)] = 2B (k—K) (2.5)

legen es nahe, in Analogie zur Besetzungszahldarstellung des quantenmechanischen harmoni-
schen Oszillators einen Hilbertraum F,,, wie folgt zu konstruieren: Ein Zustand ¢ wird mittels
Anwendung der Erzeugungsoperatoren af(k) auf einen Vakuumzustand |0), definiert durch die
Wirkung der Vernichtungsoperatoren geméf a(k)|0) = 0, aufgebaut:

3
_ {cﬁzf/gE’z ...2 5 (kl,...,kn)af(kl)...af(kn)}yo>,
k) = /K2 + m2. (2.6)

Die Elemente dieses Fockraumes werden als Linearkombinationen von n-Teilchen-Zustanden

interpretiert; fiir quadratintegrable Impulsverteilungen ¢, (kq, ..., k) sind sie normierbar:

Bk 3k
(W) = rco|2+§j / o Sp (b ) (2.7)

Die Betrachtung von Zustinden mit diskreten Impulsen pq, ..., p,, erfordert die EinschlieBung des
Grenzfalls ¢, (K1, ..., kn) = 2By, - - - 2Fx, 0" (k1 — p1, ..., Kn — Pn)-

Auf dem derartig konstruierten Fockraum werden nun die Operatoren
@) = [ deot @t
3k
p— 2-
[ 55 VERatg(h) 28)

und
6 (g) = / "t (2)g(a)
= [ CE et )5k (2.9
= Sy ma'(k)g(— .
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fiir jedes Element
d*k .
o) = [ Gz ath (210)

des Schwarzschen Funktionenraums S(R*) von im Unendlichen schnell fallenden Funktionen
als Abbildungen von F,, nach F,,+1 definiert. Als ein linear-stetiges Funktional iiber S erfah-
ren die Objekte ¢(z) = ¢ T (x) + ¢~ (x) folglich ihre Definition als temperierte operatorwertige
Distributionen: ¢ € S'(R*).

Eigentlicher Gegenstand des Interesses sind nun allerdings nicht die freien, sondern die phy-
sikalischen, miteinander wechselwirkenden Felder; insbesondere die experimentell bedeutsame

Klasse der Streuexperimente sollte im Formalismus der Zweiten Quantisierung eine sinnvolle
Beschreibung erfahren.

Im folgenden sei daher demonstriert, wie die Erweiterung des Formalismus der freien Felder
auf die Beschreibung von Streuprozessen vorgenommen wird. Dabei sollen zuerst einige in der
Literatur hdufig zitierte Analogieschliisse zur klassischen Quantenmechanik als Motivation der
Voraussetzungen im exakten Verfahren von Epstein und Glaser interpretiert werden.

2.2 Konstruktion der S-Matrix mittels naiver Zeitordnung

In der nichtrelativistischen Quantenmechanik liefert das sog. Wechselwirkungs- oder Diracbild
einen sinnvollen Rahmen zur Beschreibung von Ubergangswahrscheinlichkeiten, wenn der ge-
samte Hamiltonoperator aus der Summe eines das freie System beschreibenden Anteils Hg und
eines Storterms Hj(t) besteht:

H:Ho—l—Hl(t). (211)

Den Zusammenhang zwischen Dirac- und Schrédingerbild vermittelt eine unitére Transformati-
on, welche die aus dem freien Anteil des Hamiltonoperators resultierende Zeitabhéngigkeit der
Zusténde im Schrodingerbild auf die in diesem konstanten Operatoren A iibertrigt, wihrend
der Wechselwirkungsanteil die zeitliche Entwicklung der Diraczusténde ¢p(t) bestimmt, so daf
gilt:

m%AD(t) _ [AD(t),H0]+ih%AD(t), (2.12)
e on(t) = Hyp(®lon(t). (2.13)

Der Zeitentwicklungsoperator Up(t,ty), welcher gemé8 |¢p(t)) = Up(t,to)|¢p(to)) den Zustand
|op(to)) in den Zustand |¢pp(t)) iiberfiihrt, ist gegeben durch:

Up(t,tg) = T exp (—% /t dt’HLD(t’)> : (2.14)

to
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Die Wahrscheinlichkeitsamplitude fiir den Ubergang eines zur Zeit ¢ vorliegenden Zustands |1 (%))
in einen Zustand |¢(t)) wird folglich im Diracbild durch den Wechselwirkungsanteil des Hamil-
tonoperators bestimmt:

(@@N¥(1) = (dp B (1)) = (ep(B)Up(t, 1)¢p(1)). (2.15)

Unter der Voraussetzung, dafl der Storterm Hy (¢) fiir ¢ — +oo hinreichend schnell verschwindet,
konnen in diesen Grenzwerten geméf (2.12) und (2.13) die Diracoperatoren sowie insbesondere
die Diraczustdnde mit denen des Heisenbergbilds im freien System identifiziert werden: Die
Operatoren erfiillen dann die Heisenberggleichungen, wihrend die Zustédnde zeitunabhéngig sind.

Es sind somit die Basiselemente der freien Zusténde, zwischen denen die S-Matrix Ubergénge
vom Anfangszustand [i) in den Endzustand |f) beschreibt; ihre Definition erfolgt iiber ihre
Elemente geméf

(fIUp(o0, —00)li) = (f[S]i) = Sy (2.16)

Aus den vorangegangenen Uberlegungen kann zwar prinzipiell keine SchluBfolgerung fiir eine
erst zu definierende quantenfeldtheoretische Beschreibung von Streuprozessen gezogen werden.
Verhindert nun aber ein zusétzlicher Wechselwirkungsterm in der Lagrangedichte die direkte
Losbarkeit der resultierenden Feldgleichungen, so ist der Versuch naheliegend, diesen als einen
Storterm fiir das - 16sbare - freie System zu behandeln. Im folgenden sei anhand der sog. ¢*-
Theorie, eines Modells fiir ein skalares neutrales Feld mit einem Selbstwechselwirkungsterm,
skizziert, wie die Definition von Streumatrixelementen beziiglich einer Basis von freien Feldern
analog zum oben beschriebenen nichtrelativistischen Fall motiviert wird:

Ausgehend von der Lagrangedichte

_1(0090 | a9 _ 9

werden fiir das wechselwirkende Feld ¢ und dessen konjugierten Impuls ¢ versuchsweise die
gleichen kanonischen Vertauschungsrelationen (2.3) postuliert wie im freien Fall. Es resultiert
insbesondere die Relation

%¢($) = —i[d)(x),HO], H=Hy+ H,=Hy— Ly, (218)

welche als Bewegungsgleichung im Wechselwirkungsbild interpretiert werden soll; auch die Ha-
miltonoperatoren Hy und H; sind damit, als Funktionen des Feldes ¢, diejenigen im Diracbild.
Die noch zu definierenden Zusténde werden entsprechend als Diraczustéinde gewahlt, deren zeit-
liche Entwicklung somit der Wechselwirkungsterm H; bestimmt. Es ist nun jedoch nicht der
Zeitentwicklungsoperator (2.14), dessen Wirkung auf wechselwirkende Basiszustéinde definiert
wird; eine weitere Annahme flieft an dieser Stelle in die heuristischen Uberlegungen ein: Fiir die
Definition der S-Matrix werden die freien mit den wechselwirkenden Feldern identifiziert.

Im nichtrelativistischen Streuprozefl gehen unter der Voraussetzung eines hinreichend schnell
abfallenden Storterms in der Definition (2.16) die Basiszusténde |i) und | f) im Grenzfall t — fo00
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in die des freien Systems iiber. Hier aber wird nun die zusétzliche Annahme gemacht, daf}
auch die wechselwirkenden Feldoperatoren durch die auf freie Basiszustidnde wirkenden freien
Feldoperatoren ersetzt werden.

Erst an dieser Stelle erfahrt die S-Matrix - versuchsweise - ihre Definition: Unter Verwendung
der Entwicklung (2.4) fiir die freien Feldoperatoren wirkt der Operator

T <exp (—i / d4xH1(w)g(w)>>

= i ()" /d4x1...d4an('H1($1) - Ha(2)) g(21)-9(20), g € S(RY), (2.19)

|
n:
n=0

S(9)

auf Elemente des in Kapitel 2.1 definierten freien Fockraums. Fiir dessen Basiselemente |i) und
|f) liefert schlieflich im Grenzwert g(z) — 1 der Ausdruck

(fI5i) = Sy (2.20)

die vorlaufige Definition der Streumatrixelemente.

Sie beinhaltet eine naive Form der Zeitordnung von Operatoren und fiihrt im Falle der ¢*-
Theorie bei der Berechnung von Matrixelementen auf UV-Divergenzen, d.h. auf Integrale im
Impulsraum, die fiir grole Impulse divergieren. Es ist das Konstruktionsverfahren von Epstein
und Glaser, das die Ursache dieser speziellen Divergenzen, die auch in anderen Quantenfeldtheo-
rien, z. B. der Quantenelektrodynamik, auftreten, erklirt und gleichzeitig aus einigen wenigen
Grundannahmen heraus eine S-Matrix liefert, welche in allen Ordnungen einer formalen Ent-
wicklung nach der Kopplungskonstanten frei von UV-Divergenzen ist.






Kapitel 3

Das Verfahren von Epstein und
Glaser

3.1 Die Konstruktion der S-Matrix

Die Methode von Epstein und Glaser, von den Autoren in [EPG] ausgefiihrt, wird in [SRF]
ausfithrlich behandelt. Sie basiert auf einem stérungstheoretischen Ansatz, bei dem die Streu-
matrix per Definition auf dem Raum der freien Zusténde operiert. Einige Eigenschaften, die
bereits in die heuristischen Uberlegungen von Kapitel 2.2 eingegangen sind, werden als Postu-
late an die zu definierende S-Matrix iibernommen:

1. Der Operator S(g) ist als eine formale Potenzreihe definiert:

o
1
S(g) =1+ Z E /d41’1---d41’nTn(x17 ...,xn)g(x1) e g(xn) (3'1)
n=1 """
Dabei beschreibt die Ortsintegration die Wirkung der operatorwertigen Distributionen
T,(z1, ..., z,) auf die Funktion g(z1) - - - g(x,) € S(R™).

2. S(g) ist Poincaré-kovariant: Sei U(a,A) eine unitire Darstellung der Poincarégruppe auf
dem Fockraum der freien Zusténde,

(U(a, N)e)n(p1, .oy pn) = €92=1Pic, (A py, ..., A py). (3.2)

Fiir eine Poincarétransformation ' = Az+a folgt dann mit dem Transformationsverhalten
der Testfunktion,

g(z') = g(A™ (2" — a)), (3:3)

die Kovarianzbedingung

Ula,N)S(g)U " (a, A) = S(3). (3.4)

13
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3. Kausalitdt: Es gelte fiir zwei Testfunktionen g;(x) und go(x)

Supp g1 < supp go, (3.5)

d. h. die beiden Trager werden durch eine raumartige Fliche derart voneinander getrennt,
daf} insbesondere ein Bezugssystem existiert, in dem alle Punkte des Trégers von g; kleinere
Zeitkomponenten haben als die des Trigers von gs. Die Kausalitdtsbedingung lautet dann:

S(g1 + g2) = S(92)5(g1)- (3.6)
4. Unitaritat:

S(9)S"(g) = ST(9)S(g) = 1. (3.7)

Das Epstein-Glaser-Verfahren liefert nun eine rekursive Konstruktionsvorschrift fiir die ope-
ratorwertigen Distributionen T),(z1, ..., x,) in der Entwicklung (3.1), welche allein aus der Kau-
salitétsbedingung 3 und unter Verwendung der Lorentzkovarianz abgeleitet wird. Dieses exak-
te Verfahren, das in jeder Ordnung n wohldefinierte Distributionen liefert und im Grenzwert
g(z) — 1 auf S-Matrixelemente fiihrt, die frei von UV-Divergenzen sind, sei im folgenden kurz
skizziert:

Auf der Stufe der Distributionen T),(z1, ..., zy) folgt aus der Forderung der Kausalitiat die
Bedingung

To(1y ey xpn) = Ti(@1, ooy @) Tnei (i1, ooy ) fir {zq, ooy} > {xip1, oy Tn by (3.8)

d.h. die Ty (z1,...,x,) sind zeitgeordnete Produkte in dem Sinne, dafl (3.8) gilt. Eine naive
Zeitordnung geméf

To(w1,eyzn) = T(Ti(z1) - Ti(zn))

= Z 0(372_1 - 1’2_2) T e(l'grn_l - x?rn)Tl(xﬂ'l) e Tl(xﬂn) (39)
w(1,...,n)

ist jedoch i. a. nicht definiert, der Versuch ihrer Definition im Rahmen der heuristischen Uberle-
gungen, resultierend in (2.19), fiihrt gerade auf die dortigen UV-Divergenzen. Im Epstein-Glaser-
Formalismus hingegen erfolgt eine exakte Definition der T}, (x1, ..., z,), welche (3.8) erfiillen.

Wesentlich fiir das gesamte Verfahren sind die Eigenschaften der T}, (21, ..., z,,) als temperierte
operatorwertige Distributionen (als Einfithrungen in die Theorie von Distributionen seien hier
insbesondere [GES] und [GRO] angefiihrt). Insbesondere besitzt die Schreibweise Ty, (x1, ..., Zy)
nur einen formalen Sinn als der Ausdruck, welcher mit einer Testfunktion h(zy,...,z,) = g(z1) -
- g(zn) € S(R*™) gewichtet und n-fach iiber den Minkowskiraum integriert den Wert T}, (h)
des Funktionals liefert. Geméf8 (3.1) sind die T),(z1, ..., ¥, ) in diesem Sinne symmetrisch in den
Argumenten, weshalb diese im folgenden durch die ungeordnete Menge X = {z;,i = 1,...,n}
ersetzt werden sollen.

Fin weiteres wesentliches Element der Epstein-Glaser-Konstruktion ist die Produktbildung
von operatorwertigen Distributionen. Zur Erlduterung sei diese Problemstellung zunéchst fiir
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einfache skalare Distributionen erldutert: Es seien zwei linear-stetige Funktionale A(g) und B(g)
iiber dem Raum der Schwarzfunktionen g(z) € S(R) gemés

Alg) = [ deA@yg(o). Blo) = [ deBog(o) (3.10)

definiert. Ein Produkt (AB)(g) kann nur dann iiber

(4B)(g) = [ A@)B@)g(x) (3.11)

definiert werden, wenn wenigstens eine der beiden Distributionen A und B reguldr ist, d. h. der
Ausdruck A(z) bzw. B(z) nicht nur formale Bedeutung hat, sondern tatséchlich eine stetige
Funktion iiber R darstellt. Auch fiir nicht-regulére, sog. singuldre Distributionen definiert ist
hingegen die Bildung des direkten Produkts

(4% B)(0) = AB(0) = [ deae) ( [ ayBwoten)) (3.12)

auf dem Raum der Schwarzfunktionen S(R?). Fiir Produkte zweier Testfunktionen g,h € S(R)
gilt iiberdies die einfache Beziehung

(4% B)ah) = AlgB 1) = A B0 = ( [ dra@ate)) ( [asmenw). 6y

Sdmtliche von nun an auftretenden Distributionenprodukte sind stets als direkte Produkte auf-
zufassen; sie sind insbesondere auch fiir auf verschiedendimensionalen Schwarzrdumen definierte
Funktionale erklart. Auf der Stufe der formalen Ortsabhéngigkeit ist das direkte Produkt durch
unterschiedliche Ortsargumente in den einzelnen Faktoren gekennzeichnet, wie es der Vergleich
von (3.11), formal A(x)B(x), mit der symbolischen Schreibweise A(z)B(y) in (3.12) demon-
striert.

Im Verfahren von Epstein und Glaser ist es nun zunichst das inverse Funktional S(g)~!, in
dessen formaler Potenzreihe

=1+ Z — /d4x1 T, e ) g(z1) - - g(20) (3.14)

die Distributionen T, (z1, ..., x,) = T,,(X) iiber direkte Produkte erkliirt sind; die Auswertung
der S(g)~! definierenden Relation

S(9)S(g)™ = S(9)"'S(9) =1 (3.15)
fiir die Potenzreihenentwicklungen liefert:
Ti(z1) = —Ti(x),
To(z1,20) = —To(x1,29) + T (1)1 (w2) + Ti(22)Th (21),
Ts3(z1, 20, 23) = —Ts(x1, 0, 23) + T1(x1)Ta(xo, 23) + T1(x0)Ta(x1, 23) + T1(23)Ta(x1, o)
+To(x1, 22)Th (23) + To(x1, x3)T1(x2) + To(xe, 23)T1 (21)
=T (1)1 (w2)T1 (x3) — Ti(w2) Ty (w3)T1(21) — Ti(ws) T (1) T (w2)
=T (x3)T1 (x2) Ty (21) — Th(22) Ty (21) T (23) — T (1) Ty (23)Th (22), (3.16)
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allgemein ausgedriickt durch die Beziehung
To (@1, ooy n) = Tn(X) =D (1) Ty (X1) - - - Ty (X3). (3.17)
i=1 P;

Hierbei wird die ungeordnete Menge X = {z;,7 = 1,...,n} in disjunkte, nichtleere und gleichfalls
ungeordnete Untermengen X bis X; zerlegt,

X=XU..UX;, (3.18)

und dann iiber alle moéglichen Zerlegungen P; summiert; die Indizierungen der Distributionen
T,, entsprechen dabei stets der Ordnung n der ungeordneten Menge im Argument.

Uberdies setzt die Bildung direkter Produkte von operatorwertigen Distributionen, wie es
die Bestimmung der T}, (1, ..., z,) gemiB (3.17) erfordert, voraus, daB auch die Produkte der
nach Anwendung auf die Testfunktionen g(x1) - - - g(x,) resultierenden Operatoren wohldefiniert
sind. Dies ist der Fall, wenn fiir alle n die auf einen Fockraum F,, wirkenden Operatoren
T.(h), h(z1,...,xn) = g(x1) - - - g(xy), diesen auch wiederum auf einen bestimmten Fockraum
Fn,(n) abbilden.

Die rekursive Konstruktion der T},(z1, ..., z,,) findet nun folgendermaflen statt: Es seien be-
reits alle T, (X) : Fpy — Fpi(m) mit Index 1 < m < n —1, n > 2 bekannt und erfiillen die
Bedingungen, welche die Postulate 1 bis 4 an die S-Matrix auf der Stufe dieser Funktionale er-
geben. Dann lassen sich durch direkte Produktbildung folgende operatorwertige Distributionen
angeben:

A (@1, wn) = D Te(X) T i(Y,20), (3.19)
Py

Ry(21,.mn) = Y Tn(Y,2n)Ti(X). (3.20)
P

Die Partitionen P, sind hierbei Zerlegungen der ungeordneten Menge {z1,...,2,—1} in zwei
disjunkte ungeordnete Untermengen X und Y, bei denen die leere Menge fiir X ausgeschlossen
wird:

P {fL‘l, ...,l‘nfl} =XUY, X 75 @ (321)
Im einzelnen bedeutet dies fiir die Distributionen A/, und R);:
Ay(er,22) = Ti(e1)Ti(x2) = ~Ti(21)Ti(x2),

Ay(z1,22,23) = Ti(v1)To(w2,23) + Ti(22)To(z1, 3) + Ta(z1, 22) T4 (23)
= —T(x1)Ta(z2,23) — Ti(x2)To (21, 23) — To(21, 22)T1(23)

+T17 (xl)Tl (.%'Q)Tl (1‘3) + 1] (1‘2)T1 (1‘1)T1 (.%'3), (3.22)
Ry(z1,a2) = Ti(w2)T1(21) = =Ti(22)Ti (21),
Ré(.%’l, T9, 1‘3) = TQ(I‘Q, l'g)Tl (1‘1) + Tg(l'l, wg)Tl(.%'Q) + Tl(mg)Tg(xl, .%'2)

= —Ty(wo,z3)T1(21) — To(x1, 23)T1 (x2) — T1(w3)To(x1, 22)
+Ti (.%'3)T1 (.%'1)T1 (1‘2) + 1] (1‘3)T1 (I'Q)Tl (.%'1) (323)
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Im Unterschied hierzu nicht bekannt sind die Distributionen A,, und R,,, bei denen die Summa-
tion in (3.19) und (3.20) auf die Partitionen PY, welche auch die leere Menge fiir X einschlieen,
erweitert wird: In den Ausdriicken

Ap(@1, oy n) = Y Te(X)Tp (Y, n) = A + Tu(21, o0y ), (3.24)
P4

Ry(@1, oy n) = > Tnik(YV,20)Th(X) = Ry, + Tu(1, o0 2n) (3.25)
Py

sind die erst noch zu konstruierenden 7T;,(X) unbekannt. Dennoch sind es gerade diese Glei-
chungen, welche den entscheidenden Hinweis zur Bestimmung der gesuchten Funktionale liefern:
Die Betrachtung der bekannten niedrigeren Ordnungen m < n zeigt, dafl die Distributionen
A (21, .oy @) und Ry (21, ..., 2y) bestimmte Tragereigenschaften besitzen: A,, besitzt avan-
cierten, R,, retardierten Triger gemifl

T (2m), (3.26)

supp A (21, s Tim) m
F;;(xm), (3.27)

supp Ry (21, ooy Tin)

N 1N

d.h. alle Argumente x1,...,7;, befinden sich im abgeschlossenen Vorwirts- (W) bzw. Riick-
wértslichtkegel (V' ~) des Elements z,,

TE (@) = {(@1, oy T), i € VE(2y,), Vi = 1,...,m}. (3.28)
Als Vereinigung der Triger von A, und R, ist dann derjenige der Distribution
D (@1, oy Tin) = R (@1, ey Tn) — A (21, oy @) = Rb (21, ooy T) — AL (@1, ooy ) (3.29)

kausal, d.h. supp D, (21, ..., Tm) C T (2) U T (2,,). Diese Kausalitét, resultierend aus den
kausalen Eigenschaften (3.8) der bereits bekannten Tp,, mufl nun auch fiir die interessierende
Ordnung n gefordert werden; allerdings ist die Distribution D, (z1,...,2,) nach (3.29) bereits
iiber die auch in dieser Ordnung bekannten gestrichenen Funktionale A/, und R] festgelegt.
Tatséchlich zeigt sich unter zusétzlicher Verwendung von deren Lorentzkovarianz, dafl die an
den Triager von D, zu stellende Kausalitdtsbedingung fiir n > 3 generell erfiillt ist und folglich
nur in der Ordnung n = 2 explizit iiberpriift werden muf.

Gelingt nun schlieflich eine Zerlegung der kausalen Distribution D,, in einen avancierten
und einen retardierten Anteil A, bzw. R, so 1afit sich zeigen, dafl das mit diesen resultierende
Funktional

To(x1, oy ) = Rp(x1, oy @) — R (21, oy ) = Ap(21, 00y 20) — AL (21, oy T (3.30)

die geforderten Kausalititseigenschaften (3.8) besitzt. Wenn dieses sog. Splitten dariiberhinaus
stets durch die Multiplikation mit entsprechenden Stufenfunktionen moglich wére, ergibe sich
hieraus wieder die naive Zeitordnung (3.9). Es ist somit das Splitten von kausalen Distributionen,
das der genaueren Betrachtung bedarf; insbesondere die Freiheit, welche die Forderung der
Kausalitéit fiir zusammenfallende Argumente noch enthilt, bekommt dabei eine grundlegende
Bedeutung.
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3.2 Das Splitten kausaler Distributionen

Zur Anwendung des beschriebenen rekursiven Verfahrens ist nun zunéchst die Festlegung des
Funktionals 77 (x) erforderlich. In Anlehnung an den aus heuristischen Uberlegungen folgenden
Ausdruck (2.19) fiir S(g) scheint hier der Ansatz T(z) = —iHi(z) = iL1(z) einen sinnvol-
len Eingang der zu beschreibenden Wechselwirkung in die Konstruktion darzustellen. Es ist
ferner fiir die Anwendbarkeit des Epstein-Glaser-Verfahrens wesentlich, dafi dieser Wechselwir-
kungsanteil der Lagrangedichte aus einem normalgeordneten Polynom in den operatorwertigen
Felddistributionen besteht; unter dieser Voraussetzung 1afit sich iiberdies das Problem des Dis-
tributionensplittens erheblich vereinfachen. Dies soll im folgenden wiederum am Beispiel der
¢*-Theorie demonstriert werden:

Das Wicktheorem fiir Produkte von aus einem Erzeugungs- und einem Vernichtungsanteil
bestehender Feldoperatoren erlaubt deren Umordnung in eine Summe normalgeordneter Ope-
ratoren, d.h. Operatoren, deren Vernichtungsanteile den Erzeugungsanteilen in ihrer Wirkung
auf die Zusténde des Fockraums vorangehen. Dieses Theorem ist zunéchst fiir Feldoperatoren
A; = ¢(g;), d.h. fiir auf Testfunktionen g¢; ausgewertete Distributionen ¢, formuliert, deren
Produkte wie folgt normalgeordnet werden kénnen:

A1A2 Ce An
1<j
+ Z <0|Ai1Aj1|0><O’Ai2Aj2|O> PAp - Ail e Ajl T Aiz e Ajz o Ap
11<J1,52<J2
Hoot Y TI(0]Ai, A5, |0) : Ay -+ Ay - Ay, - A (3.31)

1a<Ja

wobei A; die Auslassung des Operators A; bedeutet. Es kann direkt auf den Fall verallgemeinert
werden, dafl die Operatoren A; selbst bereits normalgeordnete Produkte von Feldoperatoren
sind; dann erfolgen die Summationen in (3.31) ausschliefllich tiber Kontraktionen zwischen Feld-
operatoren werschiedener Normalordnungen. Formal liefert das Wicktheorem damit auch eine
Vorschrift zur Normalordnung von Produkten operatorwertiger Felddistributionen ¢(x;) an ver-
schiedenen Orten x;; an die Stelle der Vakuumserwartungswerte (0|A;A;|0) bzw. (0]A;A;|0)
treten dann die Ausdriicke

3 .

(0l¢(:)d(;)[0) = ﬁ / %elk(mimi):iA+(mi—x]~), (3.32)
3 .

Ol6(@)0(e)l0) = sy [ 5ae ) = —id (@i =), (333

K = By = VK2 + m?2.

Auch wohldefinierte direkte Produkte von normalgeordneten Polynomen in den Felddistribu-
tionen, wie sie bei der Epstein-Glaser-Konstruktion auftreten, werden entsprechend dieser Vor-
schrift normalgeordnet; nur Kontraktionen zwischen Feldern aus verschiedenen Normalordnun-
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gen tragen bei.! Die spezielle Konstruktion der Funktionale A/, und R/, gemi8 (3.19) und (3.20),
bei der in deren einzelnen Summanden stets die Reihenfolge der Distributionen 7Tj(X) und
T -k (Y, x,) relativ zueinander vertauscht ist, erlaubt es nun, auch das zu splittende Funktional
D, = R, — Al in eine Summe normalgeordneter Operatoren zusammenzufassen: Die Feld-
operatoren innerhalb der Normalordnung kommutieren, wihrend das Trégerverhalten von den
skalaren Vorfaktoren bestimmt wird.

Letztere sind nun bereits fiir sich betrachtet als temperierte skalare Distributionen iiber
dem Testfunktionenraum S(R*") definiert, da das Produkt der urspriinglichen Testfunktion mit
dem Erwartungswert der normalgeordneten Feldoperatoren beziiglich Zustédnden des Fockraums
wieder eine zulissige Testfunktion ergibt. Uberdies sind diese skalaren Distributionen, wie es
(3.32) und (3.33) demonstrieren, translationsinvariant in ihrer - formalen - Ortsabhéngigkeit.
Im Hinblick auf die gesuchte Zerlegung in einen bez. z,, avancierten bzw. retardierten Anteil ist
an dieser Stelle eine weitere Vereinfachung moglich: Fiir festes x,, d.h. fiir Testfunktionen aus
S (R4”*4)7 und nach dem Einfiihren neuer Variablen z} = x; — x,, entspricht diese Zerlegung
einem Splitten an der Stelle ) = 0.

Es ist nun das Verhalten der skalaren Distribution, formal abhéngig von den neuen Orts-
argumenten z, an dieser Stelle 2, = 0, welches entscheidet, ob das Splitten entsprechend der
beiden Tragerbereiche moglich ist; weil diese Punkte sowohl dem avancierten als auch dem retar-
dierten abgeschlossenen Trigerbereich zugehoren, ist zu vermuten, dafl die gesuchte Zerlegung
nur dann méglich ist, wenn die zu splittende Distribution in der Umgebung der Stelle z/ = 0,
d. h. fiir Testfunktionen, deren Trager auf diese Umgebung konzentriert sind, hinreichend schnell
verschwindet.

Tatséichlich liefert die Definition der sog. singuldren Ordnung einer temperierten Distribution
d(z1, ...z, 1) = d(z) € S'(RF), k = 4n—4, ein einfaches Kriterium fiir die Zerlegbarkeit, indem
sie das Verhalten von d(x) in der Umgebung von x = 0 charakterisiert: Existiert der Grenzwert

lim p(8)0%d(6x) = do(x) # 0 (3.34)

gleichfalls als temperierte Distribution in S’(RF), und gilt fiir die positive stetige sog. Power-
counting-Funktion p(9)

5
im 29 _ e s, (3.35)
0—0 p((S)

so wird hierdurch die singuldre Ordnung w definiert.
Es ist der Wert von w, welcher fiir eine gegebene temperierte Distribution in bezug auf das

Zerlegungsproblem zwei Félle unterscheidet:

1. w < 0: In diesem Fall ist das Splitten moglich; die Trennung des Trédgers durch eine
raumartige Hyperfliche v - x = 0 definiert gemaf3

/dkx dyet(2)g(z) = /dkx d(x)f(v - x)g(x), (3.36)

!Die Anwendbarkeit des Wicktheorems fiir diesen Fall, in dem anstelle direkter Produkte von Felddistributionen
solche von Polynomen von Felddistributionen - insbesondere am gleichen Ort - normalgeordnet werden, wird in
Kapitel 9.1 explizit demonstriert.
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/dkx doy()g(x) = — /dk:v d(x)(1 —=0)(v-z)g(x) (3.37)

fiir alle Testfunktionen g € S(RF) eindeutig den retardierten bzw. avancierten Teil der
Distribution d(x) = dyet () — day (2); diese Zerlegung ist zudem unabhéingig vom zeitartigen
Vektor v = (v1, ..., Up_1),v; € VT,

2. w > 0: Hier ist ein Splitten in die beiden Trégerbereiche auf dem gesamten Definiti-
onsbereich S(R¥) nicht moglich. Lediglich fiir diejenigen Funktionen ¢(x) € S(RF) mit
D%¢p(0) = 0 fiir |a| < w, wobei

8‘11+---+‘1k
D* =

= g g Al =t ta, (3.38)
1 k

ist auch in diesem Fall die gesuchte Zerlegung geméfl (3.36) und (3.37) definiert.

An dieser Stelle mufl nun die bereits erwdhnte Freiheit, welche die Forderung von Kausa-
litdt fiir zusammenfallende Argumente noch enthéilt, hinzugezogen werden, um die rekursive
Konstruktionsmethode auch im Fall 2 zu erméglichen. Nach Ausnutzung der Translationsinva-
rianz wie geschehen besteht diese Freiheit gerade fiir die Argumente (z1,...,x,-1) = = 0: Die
Trigereigenschaften der zu splittenden Distribution manifestieren sich notwendigerweise nur auf
Testfunktionen, die fiir z = 0 einschliefflich aller ihrer Ableitungen verschwinden; nur fiir diese
ist zunéchst die Zerlegbarkeit zu fordern, und fiir diese ist sie auch im Falle w > 0 gewéhrleistet.

Dennoch ist es - im Hinblick auf den adiabatischen Limes g(z) — 1 - nétig, auch fiir w > 0
eine Definition der avancierten bzw. retardierten Distributionen zu formulieren, welche fiir alle
Testfunktionen g erklért ist. Eine solche liefert nun:

/
/

mit dem Operator W : S(R¥) — S(R*) gemiB

0 duaeg(@)g(e) = [ d d@)(0 - 2)(Wg) (o) (3.39)

&2 doy reg(@)g(x) = — / 'z d@)(1 - 0)(v - 2)(Wa)(a), (3.40)

a

| 8

! (D%)(0) e S(RY), (3.41)

S

(Wg)(x) := g(z) —w(x) Y
|a|=0

wobei die Schwarzfunktion w(z) € S(R*) den Bedingungen
w(0) =1, D%w(x)=0 V 1<]a<w (3.42)

geniigen soll. Auf die Testfunktionen ¢, fiir die gemafi Punkt 2 das Splitten auch fiir w > 0
moglich ist, wirkt der Operator W als Identitét, i. a. aber sind die in (3.39) und (3.40) definierten
Distributionen abhéngig von der speziellen Wahl der Funktion w(x), welche somit in bestimmter
Weise iiber die ausgenutzte Freiheit verfiigt.
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Mit der Losung des Zerlegungsproblems ist nun das rekursive Verfahren zur Bestimmung
der Distributionen 7}, in der Entwicklung (3.1) der formalen Potenzreihe von S(g) vollsténdig
erkldrt; insbesondere erfiillen diese per Konstruktion die Kausalitdtsbedingung (3.8). Noch zu
iiberpriifen verbleiben somit die Forderungen, welche Poincaré-Kovarianz und Unitaritéit des
Funktionals S(g) in jeder Ordnung n der Entwicklung an die Distributionen 7}, stellen:

Liefert ein Poincaré-kovarianter Wechselwirkungsterm i£4(x) = Ty (z) : Fpny — Fn, den Aus-
gangspunkt des Konstruktionsverfahrens, so wird dieses Transformationsverhalten direkt auf
die Funktionale 7, der hoheren Ordnungen iibertragen, denn sowohl die Bildung der direkten
Produkte als auch das Splitten der kausalen translationsinvarianten Distributionen erhélt die
Poincaré-Kovarianz. In bezug auf letzteres verdient der Fall w > 0 eine spezielle Betrachtung:
Wie es die Ausdriicke (3.32) und (3.33) demonstrieren, handelt es sich bei den zu splittenden
skalaren Distributionen insbesondere auch um Lorentz-invariante Funktionale. Nur die Wahl
einer gleichfalls Lorentz-invarianten Funktion w(z) im Operator W (g) von (3.41) garantiert den
Erhalt dieser Eigenschaft beim Zerlegungsprozefl; anderenfalls bedingt das Transformationsver-
halten von w eine - allerdings wohlkontrollierte - Abhéngigkeit der speziellen Zerlegung vom
Bezugssystem.

Die Forderung der Unitaritdt schliefSlich liefert auf der Stufe der Distributionen T,, die Be-
dingung

TH(@1,s oy 2n) = Ty, ooy ), (3.43)

welche in jeder Ordnung n zu iiberpriifen bleibt - insbesondere unter erneuter Hinzunahme von
beim Zerlegungsverfahren ausgenutzten Freiheiten, iiber die bei dessen spezieller Durchfithrung
zunichst auf bestimmte Art und Weise verfiigt wurde.

Der wesentliche Unterschied zwischen dem Versuch der Definition einer S-Matrix mittels
naiver Zeitordnung gemif (2.19) und dem konsistenten Konstruktionsverfahren von Epstein
und Glaser manifestiert sich in Streuprozessen, zu deren Berechnung skalare Distributionen
mit singuldrer Ordnung w > 0 zu zerlegen sind, fiir die ein naives Splitten mit Stufenfunktionen
nicht definiert ist. Wahrend der heuristische Ansatz, auf dieser naiven Definition der Zeitordnung
basierend, fiir die entsprechenden S-Matrixelemente auf UV-Divergenzen fiihrt, treten solche im
Epstein-Glaser-Verfahren nicht auf:

Es ist somit der Vergleich mit den Ergebnissen dieser Konstruktionsmethode, dem ein
jedes Regularisierungsverfahren, welches den formalen, divergenten Resultaten des
heuristischen Ansatzes einen endlichen Term zuordnet, im Rahmen der verbleibenden
Freiheiten standhalten muf3.

Fine leichte Modifikation der Epstein-Glaser-Methode erlaubt schliefllich den direkten Ver-
gleich von nur formalen, divergenten Bestandteilen der naiv bestimmten Funktionale 7 (H(x1)-
-+ H1(xy,)) mit den entsprechenden im wohldefinierten Konstruktionsverfahren und liefert somit
eine Vorschrift zur Regularisierung.
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3.3 Das Epstein-Glaser-Verfahren als Regularisierungsmethode

Die Interpretation der Epstein-Glaser-Konstruktion als Regularisierungsmethode ist u. a. in [PIN]
und [PRA] ausgefiihrt. Sie soll im folgenden am Beispiel eines Prozesses aus der ¢*-Theorie
erliutert werden, dessen Berechnung dazu kurz skizziert sei: Zur sog. Vierpunktfunktion, die
Wechselwirkung vierer Teilchen beschreibend, trigt in zweiter Ordnung, d.h. als Bestandteil
des Funktionals T(z1,x2), der Term mit dem Wickmonom : ¢?(x1)¢?(x2) : bei; dieser wird
mittels des rekursiven Verfahrens, ausgehend von der Distribution T4 (z) = i (z) = —i% : ¢* :,
in folgenden Schritten bestimmt:

1. Konstruktion des relevanten Beitrags zur kausalen Distribution Do (1, 22) durch Anwen-
dung des Wicktheorems:

Ayfaran) = = Tale) 5 Tie) s = s+ 6M @) 0 04 (a)

= ..+T72 %(OW(@W(@)\O)Q C ()PP (m2) 1 .., (3.44)
Byfonas) = =) s Do) s = s 64am) 52 64

= .. +T2 %(0|¢(m2)¢(:ﬁ)|0)2 D% (1) (x2) « ... (3.45)

und somit
Dy(x1,20) = Ry, 20) — Ap(x1, x2)

2
= ..+ 72 (fﬁ ((0lp(w2)d(21)]0)* = (0|(21)p(2)[0)?) : &7 (21)? (w2) = +...

=..+72. % (Ai(ml —x9) — A% (21 — T2)) : % (1) % (22) : +... (3.46)

2. Zerlegung der skalaren Distribution in avancierten und retardierten Anteil:

Die Tréigereigenschaft der zu splittenden Distribution A% (z) — A% (z) € §'(R?) leitet sich
aus derjenigen einer Zusammensetzung ihrer Bestandteile A, und A_ ab: Gemifl den
kanonischen Vertauschungsrelationen besitzt die Kommutatordistribution A(x) mit

iA(x1 —x2) = [p(z1), d(z2)] = (0|9(71)P(72) — d(2)P(21)|0)
= iA+(1‘1 — .%'2) + iA_(l'l — .%'2)
=: iAaV(.%'l — 1‘2) — iAret (1‘1 — .%'2) (3.47)

kausalen Triger?, supp A(z1,72) C I'y (22) UT; (22); iiberdies erlaubt die singulire Ord-
nung w = —2 der Distribution A die einfache Konstruktion von A,, und A,, durch

2Im folgenden wird fiir die Indizierung konkreter, die Distributionen A, bzw. A,e; enthaltender Ausdriicke
stets die hier getroffene Vorzeichenkonvention verwandt.
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Multiplikation mit der entsprechenden Stufenfunktion. Die Relation
A2 A = (AL +A )AL A ) =AAL —AL) (3.48)

zeigt schliefllich, daf3 das zu splittende Funktional tatséchlich kausalen Trager besitzt;
als eine Distribution mit singulérer Ordnung w = 0 kann es allerdings nur geméif (3.39)
und (3.40) auf subtrahierten, d.h. der W-Operation unterzogenen Testfunktionen in einen
avancierten und einen retardierten Anteil zerlegt werden.

3. Bestimmung des resultierenden Anteils an der Distribution T (1, z2):

Fiir das Funktional T5(z1,x2) folgt schlieflich:

Ty(x1,m2) = As(x1,m2) — Ab(x1,72)
2

= ..=-T72 (jﬁ <(Ai(m1 —x9) — A% (2 — acg))avmeg — A% (21 — m2)>

(1) (x2) t e (3.49)

Zur Interpretation des Epstein-Glaser-Verfahrens als Regularisierungsverfahren sei an dieser
Stelle der Vergleich mit dem formalen Ergebnis der Konstruktion iiber die naive Zeitordnung
hergestellt: Fiir zeitgeordnete Produkte von Feldoperatoren tritt im Wicktheorem (3.31) an die
Stelle der Distributionen A4 und A_ das symmetrische Funktional

OIT (p(x:)p(2;)0) = (016(x) — 2))p(xi) () + O(a) — ) p(x;)(:)]0)

= ZA+($Z — xj) — Z.Aav(xi — xj) = —Z'A,($Z' — :ITj) — iAret(xi — xj)
1 4, —ip(T;—Tj i
= Ap(x; —z5) = (271_)4/d pe Pl ])m, (3.50)

der Feynmanpropagator der ¢*-Theorie. Dieses Wicktheorem fiir zeitgeordnete Operatoren ist in
seiner Wirkung auf nicht naiv definierte zeitgeordnete Operatorprodukte allerdings nur formal
zu interpretieren: Ks ermoglicht gerade, auf der Ebene einzelner konkreter Streuprozesse, den
gesuchten Vergleich der auf divergente Integrale fithrenden heuristisch motivierten Konstruktion
mit der wohldefinierten von Epstein und Glaser. Im Falle des Beitrags zur Vierpunktfunktion in
zweiter Ordnung liefert es - formal - den Ausdruck

2
AT (Hae)i(e)) = T (66" @2)
- ...—72-9—22A%(x1—m2);¢2(x1)¢2(x2):+... (3.51)

(41)

Im Gegensatz zu der skalaren Distribution (A?F —A?%) av,reg — Ai im entsprechenden Term (3.49)
ist das Quadrat des Funktionals A g auf allgemeinen Testfunktionen g € S(R?) nicht definiert.

Als leichte Modifikation der Epstein-Glaser-Methode sei nun, analog zur dortigen Konstruk-
tion der avancierten Distribution (A?F — A%)av’reg, auch das Funktional Ai auf entsprechend
der singuldren Ordnung w = 0 subtrahierte Testfunktionen eingeschrinkt,

/ FrA (2)g(x) = / 2402 (1) (g(x) — w(x)g(0)), (3.52)
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so daf} insgesamt als Modifikation der skalaren Distribution im betrachteten Prozef3 folgendes
Funktional resultiert:

(Ai - A27)av,reg - AQ

+,reg — ((Ai - A%)av - Ai)reg - (Aa"(A+ B Af) o Ai)reg

— (A (284 — Doy + Apet) = A2) = (=A2 428, A, — A2)

reg

— A (3.53)

reg

Indem hier lediglich zur Einschrinkung der prinzipiell auf beliebigen Testfunktionen g € S(R*)
definierten Distribution A2 gemé#8 (3.52) nochmals dieselbe Freiheit in der Definition der Funk-
tionale T, herangezogen wird, wie sie bereits fiir den Zerlegungsprozef3 ausgenutzt wurde, ist
nun ein direkter Vergleich mit dem formalen Ausdruck A% moglich, welcher zugleich eine Regu-
larisierungsvorschrift liefert:

Die Einschrénkung des Funktionals A% auf geméf der W-Operation (3.41) subtrahierte Test-
funktionen ergibt eine auf dem gesamten Raum der Schwarzfunktionen definierte Regularisierung
A reg dieser Distribution,

[ etk @lgo) = [ atesd@) o) - w@©) g e SR, (3.5

Generell soll nun, diesem Beispiel entsprechend, als Regularisierungsverfahren nach Epstein-
Glaser diejenige Methode bezeichnet werden, bei der eine bestimmte, durch naive Zeitordnung
konstruierte und auf allgemeinen Testfunktionen nicht definierte skalare Distribution mit der
nach dem Epstein-Glaser-Verfahren konstruierten verglichen und durch Einschrédnkung auf bis
zur entsprechenden singuldren Ordnung w subtrahierte Testfunktionen regularisiert wird.

Die Freiheit, welche die Kausalitidtsbedingung (3.8) fiir zusammenfallende Argumente ge-
wahrt, diente bereits im Konstruktionsverfahren zur Erkldrung des Zerlegungsprozesses und
wurde schliellich im Regularisierungsverfahren nochmals herangezogen; eine spezielle Wahl der
Funktion w(z) in der W-Operation aber verfiigt letzlich auf bestimmte Weise iiber sie. Wenn
sich daher Epstein-Glaser-Regularisierungen mit unterschiedlichen W-Operatoren auf gewisse
Art und Weise unterscheiden, so ist dies eine Manifestation eben dieser Freiheit, und auch nur
innerhalb derer muB ein jedes anderes Regularisierungsverfahren dem Vergleich mit dem nach
Epstein und Glaser standhalten.

Bei der Epstein-Glaser-Regularisierung einer Distribution d € S’(R*) mit singulirer Ord-
nung w ergibt sich die Differenz zweier mittels unterschiedlicher W-Operatoren, entsprechend
zweier verschiedener Schwarzfunktionen w und v, erhaltener Resultate wie folgt:

a

[ )o@ - ) 3 2090
la|=0

/ %2 (drog e (%) — dreg.(2))9(2))

- / da | S caDd(x) | gla), (3.55)

la|=0

wobei die Konstanten ¢, durch
Co = / d"z d(z)(~1)l1 - (v(2) — w(z)) (3.56)

al
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bestimmt sind; aufgrund der Eigenschaften (3.42) der Funktionen v und w sind sie als Werte
der Distribution d(z) zulédssig. Bei diesem Vergleich manifestiert sich die ausgenutzte Freiheit
somit darin, dafl sich zwei verschiedene Regularisierungen durch Diracsche §-Distributionen und
deren Ableitungen bis zur Ordnung w unterscheiden.

Erst die beliebige Wahl der Koeffizienten ¢, in (3.55) reprisentiert dann schliefllich die ge-
samte Freiheit, welche - prinzipiell beim Konstruktions- bzw. Regularisierungsverfahren von
Epstein-Glaser ausgenutzt - die Forderung der Kausalitéit gewédhrt: Zwei verschiedene Distribu-
tionen bilden genau dann jeweils eine Regularisierung der Distribution d, wenn sie sich sowohl
untereinander als auch von einer beliebigen Epstein-Glaser-Regularisierung nur um Funktionale

w

dreg,l(x) - reg7 Z CaDa(S (357)

mit bestimmten Konstanten ¢, unterscheiden.

Unter diesen zunéchst dquivalenten Regularisierungen eine bestimmte auszuwéihlen, ist der
Gegenstand der Renormierung; die Auswahl unterliegt insbesondere den Bedingungen, welche die
Forderung der Poincaré-Kovarianz und Unitaritédt der S-Matrix an sie stellen. Ein vollsténdiges
Renormierungsverfahren basiert somit auf einer zur Methode nach Epstein-Glaser dquivalen-
ten Regularisierung und nutzt zur Renormierung - zunéchst - die gesamte Freiheit (3.57) aus.
Insbesondere die Aquivalenz zur Epstein-Glaser-Regularisierung bleibt dabei fiir jedes andere
Regularisierungsverfahren als Voraussetzung fiir dessen Zuldssigkeit zu priifen.

3.4 Das modifizierte Epstein-Glaser-Verfahren

Als eine Modifikation der im Zuge der Epstein-Glaser-Regularisierung anzuwendenden, mit der
Schwarzfunktion w(x) gewichteten Taylorsubtraktion W geméf (3.41) wird in [GRB] der Sub-
traktionsoperator T, eingefiihrt:

(Tog)(w) = 9(x) = 3 S(D%)(0) ~w(e) 3 S (D90), wO) =1  (359)

|a|=0 |a|=w

Die Anwendung dieses Subtraktionsoperators bei der Epstein-Glaser-Regularisierung einer be-
stimmten Distribution setzt dabei von vornherein deren Definiertheit auf der Funktion (T, g)(z)
voraus, welche fiir eine singuldre Ordnung w > 1 aufgrund des isoliert stehenden Polynomes
der Ordnung w — 1 kein Element des Schwarzschen Funktionenraumes ist; auch die Funktion
w(x), welche die hochste auftretende Ordnung des subtrahierten Polynomes gewichtet, ist im
modifizierten Verfahren - abhéngig vom Definitionsbereich der betrachteten Distribution - nicht
notwendigerweise als Schwarzfunktion zu wéhlen.

Generell zeigt eine zu (3.55) analoge Betrachtung des Unterschiedes zweier durch die An-
wendung von unterschiedlichen Subtraktionsoperatoren Ty, und T}, erhaltener Regularisierungen
rogw () und dyeg v (2), daB dieser auf die hochsten auftretenden Ableitungen der Diracschen
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Deltadistribution eingeschréankt wird:

Greg,w(T) — dregv(z) = > caD"3(x); (3.59)

|a|=w

die beliebige Wahl dieser verbleibenden Koeffizienten ¢,, |a| = w, repriisentiert dabei die gesamte
im modifizierten Epstein-Glaser-Verfahren zur Verfiigung stehende Freiheit.

Tatséchlich ist nun z. B. bei der Regularisierung - formaler - Produkte von skalaren Propaga-
toren der massiven ¢"-Theorie am gleichen Ort die Epstein-Glaser-Regularisierung mit der Wahl
w(z) = 1 im Subtraktionsoperator moglich. Wihrend die konkrete Ausfithrung entsprechender
Regularisierungen Gegenstand der folgenden Kapitel sein soll, sei an dieser Stelle das Gewicht
auf die in deren Anschlufl herangezogenen Freiheiten gelegt.

Als Beipiel diene das Modell der skalaren massiven ¢3-Theorie auf einem formal auf fiinf
Ortskomponenten erweiterten Minkowskiraum. Die formale Transformation der Epstein-Glaser-
Regularisierung der Distribution AQF(.T) mit der singulédren Ordnung w = 2 in den Impulsraum
liefert - bei Unterdriickung allgemeiner Normierungsfaktoren - mit der Wahl w(z) = 1 im Sub-
traktionsoperator als Ein-Schleifen-Korrektur zum Propagator das folgende Ergebnis:?

1 2 .
Ay (p) =g /0 dz(p“z(1 —z) —m~)In e + g P (3.60)
Die Fouriertransformationen der die verbleibenden Freiheiten im Ortsraum darstellenden Ablei-
tungen von Deltadistributionen resultieren ferner im Impulsraum in Potenzen der Impulsvaria-
blen p,

— —3)lal
Q a
(D*6)(p) = ((%))k b (3.61)
so daB ein allgemeines lorentzinvariantes Ergebnis durch
A®(p) = AP (p) + co + c2p? (3.62)

gegeben ist. Hierbei treten gemaf (3.55) im klassischen Epstein-Glaser-Verfahren beide Kon-
stanten ¢y und cy auf, wihrend im modifizierten Verfahren die Konstante ¢y verschwindet.

Im Zuge der Renormierung erfihrt nun der urspriingliche Propagator folgende Korrektur:

6
PZ—m?  pP-m? p?— mzA( )(p)p2 — 2
) Mehr-Schleifen-
- p2 —m?2 — iA©) (p) < Beitrige ) ’ (3.63)

Die Interpretation der rechten Seite von (3.63) als bis zur Ein-Schleifen-Ordnung modifizierter
Propagator impliziert dann die folgenden physikalischen Renormierungsbedingungen:

AO(p=m) = o, (3.64)

4 _A©) )

d(p?)

= 0. (3.65)

pb=m

3vgl. die analoge Herleitung der Ein-Schleifen-Korrektur in der vierdim. ¢*-Theorie in (6.4)
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Angewandt auf das Ergebnis A(©) (p) = Aé6) (p) 4 co + c2p? resultieren hieraus Bedingungen
fiir die Konstanten ¢y und cs:

1
AO(p=m) = m%f<@@w—§>+%+@m?éu (3.66)
d 17 1 |
A©® = ig? (= —=V3 0 3.67
G Ow| = i (- ae) re o (3.7

welche mit einer nichtverschwindenden Konstanten ¢y folgende Losung besitzen:
cozifﬁ<g——d, (3.68)
1 17
o = ig? <—\/§7T - —) . (3.69)

Tatséchlich ist somit die Konstante ¢y notwendig, um die Erfiillbarkeit der physikalisch moti-
vierten Renormierungsbedingungen zu gewéhrleisten. Das modifizierte Epstein-Glaser-Verfahren
liefert zwar gleichfalls eine Regularisierung der betrachteten Distribution, zur Realisierung der
speziellen Renormierung jedoch erweist sich die Einschriankung (3.59) als zu restriktiv. Gerade
die an die Regularisierung anschlieBende Renormierung ist jedoch fiir eine physikalische Interpre-
tation der betrachteten Theorie unabdingbar, so dafl die Einschréinkung der Freiheiten innerhalb
des modifizierten Verfahrens i.a. nicht aufrechtzuerhalten ist.






Kapitel 4

Das BPHZ-Renormierungsverfahren

4.1 Regularisierung von Ein-Schleifen-Diagrammen

Im Gegensatz zur Epstein-Glaser-Methode folgen Regularisierung und Renormierung innerhalb
des BPHZ-Verfahrens (Boguliubov, Parasiuk, Hepp, Zimmermann) einer formalen Entwicklung
nach Potenzen der Konstanten £ (fiir eine ausfiithrliche Darstellung der Grundlagen dieser Renor-
mierungsmethode sei z. B. auf [HAE] sowie [ITZ] und [COL] verwiesen). Das Verfahren ist im Im-
pulsraum definiert und ordnet zur Regularisierung, die nun insbesondere Gegenstand der folgen-
den Betrachtungen sein soll, jedem auf divergente Integrale fithrenden ein-Teilchen-irreduziblen
Feynmandiagramm einen endlichen Ausdruck zu. In der Sprache der Feynmandiagramme ge-
schieht dies sukzessive entsprechend der Anzahl von Schleifen, die ein solches Diagramm enthilt;
tatsdchlich entspricht die Schleifenanzahl der A-Ordnung des betrachteten Prozesses.

Bevor nun aber mit der sog. Waldformel die allgemeine Regularisierungsvorschrift innerhalb
dieses Verfahrens angegeben wird, sei zuerst die darin enthaltene Behandlung von Diagrammen
betrachtet, zu deren Regularisierung geméfl der Epstein-Glaser-Methode keine Unterdiagram-
me beriicksichtigt werden miissen - z. B. Ein-Schleifen-Diagramme - und auf dieser Stufe die
Aquivalenz zur Epstein-Glaser-Regularisierung untersucht:

Das Divergenzverhalten eines Diagrammes v wird - allgemein im BPHZ-Verfahren - cha-
rakterisiert durch den sog. Divergenzgrad d(vy), definiert iiber die grundlegende Struktur eines
jeden irreduziblen Feynmandiagrammes: Als Fouriertransformation von mittels naiver Zeitord-
nung gebildeten Produkten von Propagatoren im Ortsraum resultieren im Impulsraum spezielle
Faltungen der transformierten Propagatoren; in der UV-Divergenz der in diesen enthaltenen
Integrationen iiber sog. innere Impulse k manifestiert sich dann im speziellen Fall das Scheitern
dieses Ansatzes. Diese Divergenz nun kennzeichnet sowohl das Verhalten des Integranden im
Falle k — oo als auch die Dimension 4m der Integration tiber m Schleifen: Unter Beachtung des
UV-Verhaltens fiir verschiedene Propagatoren im Impulsraum,

—2
Sy
k2 _ m2 ’
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gMVﬁ - k_Q,
F+m -1
2 _m2 k™,

wird der Divergenzgrad d(v) wie folgt bestimmt:

d('y):4m—2IB—[F+Zdeng. (4.1)
\%4

Ip und I bezeichnen dabei die Anzahl der inneren bosonischen bzw. fermionischen Linien, m ist
die Anzahl der unabhéngigen Schleifen; die Summation erfolgt iiber alle Vertices des Diagrammes
und erfafit einen moglichen Beitrag des Vertexfaktors zum Divergenzverhalten, indem degr V'
die Potenzen der inneren Impulse am Vertex V' zihlt.

Im Hinblick auf den Vergleich zur Epstein-Glaser-Regularisierung zeigt sich in einer solchen
Klassifikation der Divergenzen bereits ein Hinweis auf die zu fordernde Aquivalenz:

Die Definition der Regularisierung erfolgt dort entsprechend der singuldren Ordnung w
der im Zuge des urspriinglichen Konstruktionsprozesses zu splittenden kausalen Distribution
ds = 1" —a'. Das - i.a. nur formal - durch einfache Zerlegung mittels Stufenfunktionen resultie-
rende Funktional d = ds et — 7’ = ds ay — @ besitzt schliefllich ebenso wie dessen Epstein-Glaser-
Regularisierung dyeg dieselbe singulidre Ordnung w wie ds: Diese stimmt bei den Funktionalen 7/,
a’ und d, per Konstruktion iiberein und wird auf die einfache Zusammensetzung d iibertragen;
auch die zur Definition der Regularisierung d,e; verwandte Einschrénkung der Testfunktionen
verdndert die singuldre Ordnung nicht. Deren Bestimmung kann folglich gem&8 (3.34) anstatt
mittels der kausalen Distribution dg insbesondere direkt - fiir w > 0 formal - anhand des Funk-
tionals d erfolgen.

Nun besitzt jede temperierte skalare Distribution d € S'(R¥) eine Fouriertransformierte d,
definiert iiber die inverse Fouriertransformierte ¢ durch

d(g) =d(g), deS'(R). (4.2)

Im Impulsraum wird nun die singulédre Ordnung unter Verwendung der Power-counting-Funktion
p(0) = ¢ durch folgende Bedingung bestimmt:

tim 55* [ d' dsoyg(o) = lim s [ ¢pd () atw) = [ dpdoia) 0. (43)
Es ist die spezielle Gestalt der Distributionen ci(p), welche im Falle degr V' = 0 einen direkten
Bezug zum entsprechenden k-Integral im BPHZ-Formalismus herstellt: Zwar handelt es sich hier
bislang lediglich um eine skalare Distribution, welche von dem ihr zugehorigen Wickmonom ge-
trennt betrachtet wird und folglich noch keine Aussage beziiglich eines tatsichlichen Impulsflus-
ses, entsprechend einem bestimmten S-Matrixelement, enthalten kann - erst dessen Berechnung
stellt den Zusammenhang zwischen den Impulsen p;, 1 < ¢ < k, und den Impulsverteilungen
der Anfangs- und Endzustdnde her; dennoch wird bei den in der Fouriertransformierten (i(p)
auftretenden Faltungen von Propagatoren das Skalierungsverhalten w in den Variablen p gerade
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durch das entsprechende in den inneren Impulsen £ bestimmt, welches im Grenzfall £ — co den
Divergenzgrad d(v) liefert.

Als Beispiel sei hier wieder das zu regularisierende Funktional A% (x) € &'(R?) herangezogen:
Bestehend aus zwei inneren bosonischen Linien, die sich zu einer Schleife schlielen, und als
ein Diagramm der ¢*-Theorie mit degr V = 0 folgt fiir dieses gem#8 (4.1) der Divergenzgrad
d(v) = 4—2-2 = 0. Im Vergleich dazu wird die singulidre Ordnung bei der Epstein-Glaser-
Regularisierung im Impulsraum bestimmt: Formal resultiert hier die Fouriertransformierte

— = 1

BD0) = Gz [ a'kArl = AR (14)

als Faltung der transformierten Propagatoren. Unter Verwendung der expliziten Gestalt des
Funktionals Ap(p),

~ 1 i
A = 4.
F(p) (271')2 p2 —m2 + ic’ ( 5)
folgt schliellich fiir das Skalierungsverhalten in der Variablen p:
o 1 1 1
Az) () = - / &'k
(A%) <5> (2m)6 (5 —k)2—m?k2—m?2
k' =5k 1 d*E 1 1
Crf ) B R e
1
_ /d4kz 1 1
(2m)6 (p— k)2 — 6°m? k? — 62m?
5*>0 o m=
= (AR (p)=0. (4.6)

Tatséchlich stimmt somit, wie es die Erfiillbarkeit der Bedingung (4.3) mit der Wahl w = 0

und dem Funktional czo(p) = (AZF)(p)(mzo) zeigt, die singuldre Ordnung mit dem Divergenzgrad
iiberein.

Nach dieser Betrachtung sei nun in Folge anhand desselben Beispiels die konkrete Vorge-
hensweise bei der BPHZ-Regularisierung demonstriert. Im Spezialfall eines solchen irreduziblen
divergenten Ein-Schleifen-Diagrammes nimmt die durch die Waldformel gegebene allgemeine Re-
gularisierungsvorschrift eine kompakte Gestalt an, welche iiberdies einen direkten Vergleich mit
dem hierzu in den Impulsraum iibertragenen Epstein-Glaser-Verfahren erméoglicht; dieser Uber-
gang und die hierdurch im Impulsraum induzierte Regularisierungsvorschrift seien im Anschlufl
wiederum am Beispiel erldutert.

Ausgangspunkt des BPHZ-Verfahrens sind die Feynmanregeln im Impulsraum. Formal liefern
diese fiir ein bestimmtes, auf divergente Integrale iiber innere Impulse k fithrendes Diagramm ~
folgende allgemeine Gestalt des Integranden I:

Lip, k) =[] Aclp.k) [] Pvip. k). (4.7)

lel Vey
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Die Faktoren A, sind hierbei proportional zu den Feynmanpropagatoren Apim Impulsraum, die
jeder Linie [ aus der Gesamtheit £ der inneren Linien zugeordnet sind, ausgewertet auf inneren
Impulsen k und dufleren Impulsen p, wie sie ein gegebener Impulsflul der entsprechenden Linie
zuteilt. Ferner trégt nach den Feynmanregeln jeder Vertex V aus der Menge V von Vertices
des betrachteten Diagrammes einen Faktor Py bei - in der ¢*-Theorie liefert das resultierende
Produkt die Potenz in der Kopplungskonstanten g.

Die Regularisierung eines irreduziblen Ein-Schleifen-Diagrammes erfolgt durch Modifikation
des Integranden I.: Entsprechend dem Divergenzgrad d(v) wird dieser durch einen neuen Inte-
granden R, ersetzt, welcher wie folgt definiert ist:

d(v)
1, dn
Ryp k) = Lo k) = D2 oo oo L) = (1-67) L. k) (4.8)
In|=0 p=0

Der Tayloroperator tg(ﬁ/) symbolisiert hierbei die Taylorentwicklung in der Gesamtheit p der
unabhéingigen dufleren Impulse des entsprechenden Diagrammes. Von Bedeutung fiir den Re-
normierungsanteil des Verfahrens ist dann die Angabe des allgemeinen Resultats fiir das so
regularisierte Integral: Geméafl der Art der Modifikation des Integranden, bei welcher mit dessen
Taylorentwicklung nach den dufleren Impulsen p auch die des Integrals bis zum Divergenzgrad
d(v) subtrahiert wird, soll ein allgemeines Polynom P (p) der Ordnung d(v) die Freiheit, iiber
welche zunéchst verfiigt wurde, reprisentieren:

([ _ (g a)
1.() : ( / d k:L,(p,k))reg’BPHZ / dkR, (p. k) + PYO (p). (4.9)

Unter Beriicksichtigung der Tatsache, dafl der Impuls p in obigem Beispiel (4.4) aus der ¢*-
Theorie - nach Hinzunahme der zugehorigen Wickmonome zur separat betrachteten skalaren
Distribution und in Folge der Berechnung des entsprechend im BPHZ-Formalismus betrachte-
ten speziellen Streumatrixelementes - mit dem an einem der beiden Vertices einfallenden &ufle-
ren Gesamtimpuls identifiziert wird, ist die BPHZ-Regularisierung bereits auf der Stufe dieser
skalaren Distribution anwendbar. Fiir das einem Diagramm mit dem Divergenzgrad d(y) = 0
entsprechende Integral folgt somit zunéchst als spezielle Losung

<®(p ))reg,BPHZ T (thr)6 / T { (p— k:)12 —m?2 k2 —1m2 k2 —1m2]2} - (410)

Zum Vergleich dieses Resultats mit der Epstein-Glaser-Regularisierung sei letztere nun in den
Impulsraum iibertragen: Ausgangspunkt ist dabei die per Definition des Verfahrens im Ortsraum
gegebene Regularisierungsvorschrift fiir eine skalare Distribution d(z) mit singulédrer Ordnung
w, dem Divergenzgrad des zugehérigen Feynmandiagrammes entsprechend. Den Ubergang zur
Regularisierung im Impulsraum bewerkstelligen dann folgende Umformungen:

dreg(9) = /dkxdreg(m)g(x)

= /dkx d(z) < g(z) —w(x) Z x—(Dag)(O)
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k A w
_ /dkx d(m)/@i% i 2_: al iD,)*b(p)(D%)(0)

drz
-/ e )

] , w i \a k
[dverso — [ er s 2 g | e (i)"a(0)

|a|=0

. dk / -, w 1 la| o )
- / / 271' k/2 e’ _/ (QW)ZZC/? e’ Z ( a!) (Dp/)aw(p " ¢ 9(p)

— / 0" dreg (1)3(P) = dreg(9). (4.11)

Nun handelt es sich bei den nach dem Epstein-Glaser-Verfahren zu regularisierenden Distributio-
nen d(x) um formale Produkte von Feynmanpropagatoren im Ortsraum. Ein dieses erkldrendes,
aus der Fouriertransformation resultierendes Faltungsprodukt cZ(p) von Propagatoren im Im-
pulsraum ist aber im Falle einer nicht-negativen singuléren Ordnung nicht definiert; an dessen
Stelle tritt die Regularisierung czreg(p) geméf (4.11), wie sie das Epstein-Glaser-Verfahren im
Impulsraum induziert. Die Aquivalenz des BPHZ-Verfahrens zu letzterem sei nun anhand des
betrachteten Beispiels d(z) = A%(x) iiberpriift. Fiir dieses resultiert:

—

(A%) g (D)
N /(34) Arle ){ px_/(gjrp); eip’:vw(p/)}
(;lj:; / (;1:;2 / g:f);e_i(k+k’)mAF(k)AF(k/){ez‘px _/ (C;Z;; ez’p'xw(p/)}

d4/<:’AF(k)AF(k:/){5(p—k—k’)— / (d4‘;' 5 k—k’)w(p/)}

= o [0 {Beto -0~ [ S 80! - a0}

1 1 1 d4p’ 1 o
= — (27[-)6 /d4kk2 —m2 {(p _ k)Z — m?2 - / (27_[_)2 (p, — k)2 _ m2w(p )} . (412)

Die Angabe einer speziellen Losung innerhalb der Epstein-Glaser-Regularisierungen erfordert
an dieser Stelle die Auswahl einer Testfunktion w(z), welche die im Rahmen des Verfahrens
festgelegten Bedingungen (3.42) erfiillt; hier im speziellen w(0) = 1. Nun wird per Definition
zur Bestimmung der Streumatrix S = limg_,; S(g) im betrachteten Grenzwert der Raum der
Schwarzfunktionen als Argumente des Funktionals S(g) verlassen; tatséchlich erlaubt in der
¢*-Theorie die spezielle Gestalt der zu regularisierenden skalaren Distributionen als Produkte
von Propagatoren massiver Teilchen die Auswertung der Funktionale sogar auf Polynomen in
der Variablen x: Das entsprechende IR-Verhalten sowohl der im Impulsraum resultierenden

Il
»—\\"

d*k
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Faltungen von Propagatoren als auch dasjenige von deren Ableitungen nach der Variablen p ist
wohldefiniert.

Fiir die in der Definition der Regularisierung enthaltene Funktion w(z) ist folglich im betrach-
teten Beispiel die Wahl w(z) = 1 - welche weiterhin die Bedingungen w(0) = 1, (D%w)(0) = 0
erfiillt - zuldssig. Mit der Einsetzung der Fouriertransformierten o (p) geméas

o(p) = (2;)2 / & e = (21)25(p) (4.13)

in das Ergebnis von (4.12) resultiert schliefllich gerade die BPHZ-Regularisierung (4.10); letz-
tere ist somit zum - um die Einschliefung der konstanten Funktion w(x) = 1 innerhalb des
Regularisierungsprozesses erweiterten - Epstein-Glaser-Verfahren dquivalent.

Auch die zur Renormierung vom BPHZ-Verfahren zugelassene Freiheit (4.9) in der Wahl
einer speziellen Regularisierung muf} gerade die allgemeine Unbestimmtheit im Epstein-Glaser-
Formalismus repréasentieren. Wiahrend diese Freiheit im BPHZ-Verfahren auf der Stufe der bei
Epstein-Glaser behandelten skalaren Distributionen (freg(p) - d. h. ohne Bezug auf einen spezi-
ellen ImpulsfluB - einem Polynom P4 (p) in den Variablen p des Impulsraums entspricht, gilt
nun aber gemif (3.57) fiir die Epstein-Glaser-Regularisierung

[ 50 (g @) = droga@)g(@) = 3 e [ 5 D52)g(x)
|a|=0

w

—i)lale
-2 W / Ppp'g(r) = / d°p (dreg,1(p) — dreg2(p))3(p), (4.14)

|a[=0

so dal auf der Stufe der fouriertransformierten Regularisierungen die entsprechende Freiheit

tatséchlich in der beliebigen Wahl der Koeffizienten ¢, = % des Polynoms P*(p) = P (p)
besteht. Fiir das oben betrachtete Beispiel mit dem Divergenzgrad bzw. der singulédren Ordnung
d(v) = w = 0 gewéhren folglich beide Regularisierungsverfahren eine Freiheit in Form einer

additiven Konstanten im Impulsraum.

Wihrend nun in der hier am Beispiel erliuterten Weise die Aquivalenz von BPHZ- und
Epstein-Glaser-Regularisierung fiir ein jedes Ein-Schleifen-Diagramm iiberpriift werden kann,
erschwert die grundlegende Verschiedenheit in der Konstruktion beider Verfahren diesen Ver-
gleich fiir Diagramme mit mehr als einer Schleife. Auf diese prinzipielle Unterschiedlichkeit
sei bereits an dieser Stelle, bevor im Anschlufl die BPHZ-Regularisierungsvorschrift fiir Mehr-
Schleifen-Diagramme vorgestellt wird, hingewiesen: Wihrend bei Epstein-Glaser die Distributio-
nen T, (x1, ..., ) in der Entwicklung (3.1) von S(g) entsprechend der Anzahl n von Vertices der
jeweiligen Ordnung sukzessive konstruiert werden, folgt der Aufbau des BPHZ-Verfahrens mit
der formalen Entwicklung nach Potenzen der Konstanten & einer Schleifenentwicklung. Im Zuge
dessen enthilt die BPHZ-Regularisierungsvorschrift fiir Mehr-Schleifen-Diagramme eine Definiti-
on von Unterdiagrammen, z. B. in [ZIM], welche sich von der entsprechenden bei Epstein-Glaser,
wo die Betrachtung niedriger Ordnungen n; < n auf der Stufe der Feynmandiagramme das Weg-
lassen von Vertices impliziert, unterscheidet: Jede in einem Diagramm enthaltene Schleife ist ein
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BPHZ-Unterdiagramm. Das sog. Sunrise-Diagramm in Kapitel 8 sowie die in den Kapiteln 9.2.2
und 9.2.3 betrachteten Prozesse liefern Beispiele fiir die Verschiedenheit dieser beiden Definitio-
nen. Die explizite BPHZ-Regularisierungsvorschrift fiir ein beliebiges Feynmandiagramm basiert
auf der von BPHZ-Unterdiagrammen und ist durch die sog. Waldformel gegeben.

4.2 Allgemeine Regularisierungsvorschrift

Neben dem Element der Regularisierung, deren Aquivalenz zum Epstein-Glaser-Verfahren spiter
auch anhand von Beispielen fiir Mehr-Schleifen-Diagramme {iberpriift werden soll, enthélt das
BPHZ-Verfahren einen Renormierungsanteil, innerhalb dessen {iber die - bereits im Regula-
risierungsprozess verwandten - Freiheiten auf physikalische Art und Weise verfiigt wird. Zur
Wechselwirkungslagrangedichte £1 = —H1, dem Ausgangspunkt der mittels naiver Zeitordnung
konstruierten S-Matrix (2.19), werden sukzessive in aufsteigenden Potenzen der Konstanten
Korrekturterme, sog. Counterterme, addiert, welche die bei der naiven Konstruktion von Feyn-
mandiagrammen auftretenden Divergenzen gerade kompensieren. Diese unendlichen Counter-
terme, d.h. Polynome von Feldern und deren Ableitungen, welche auf der Stufe der Feynman-
diagramme die erforderlichen Kompensationsterme implizieren, beinhalten sowohl eine spezielle
Regularisierungsvorschrift als auch - in Form eines freien, endlichen Anteils der Counterterme
- die allgemeine Freiheit beim Regularisierungsprozel. In jeder Ordnung von A wird die derart
modifizierte Wechselwirkungslagrangedichte mit der physikalischen identifiziert, welches insbe-
sondere die Festlegung der endlichen Counterterme durch gewisse Renormierungsbedingungen
beinhaltet.

Bei der Regularisierung eines Diagrammes mit | Schleifen sind somit, ausgehend von der
bereits bis zur Ordnung 4/~ modifizierten Lagrangedichte, alle Counterterme zu den Unterdia-
grammen zu berticksichtigen, welche auf einen Beitrag in der Ordnung /! zum Gesamtdiagramm
fithren, bevor letzteres - falls es selbst divergent ist - mit einer abschlieSenden Impulssubtraktion
regularisiert wird.

Es ist die Waldformel, die fiir jedes Diagramm diese Beitrige von Countertermen niedrige-
rer Ordnungen in der Konstanten A zusammenfafit; insbesondere wird innerhalb dieser jede im
Gesamtdiagramm enthaltene Schleife als Unterdiagramm interpretiert - obgleich im Sinne einer
Entwicklung nach Vertices nur solche beitragen kénnen, die eine geringere Vertexanzahl aufwei-
sen. Dennoch bleibt auch auf der Stufe solcher Mehr-Schleifen-Diagramme die Forderung nach
Aquivalenz zum Epstein-Glaser-Verfahren bestehen und mit dieser die Bedingung, daf sich - die
erfolgte physikalische Renormierung der niedrigeren A-Ordnungen vorausgesetzt - die Ergebnisse
beider Regularisierungsverfahren nur um Polynome bis zur Ordnung des Divergenzgrades des
Gesamtdiagrammes in dessen dufleren Impulsen unterscheiden.

Die im BPHZ-Verfahren resultierende geschlossene Form der Waldformel setzt nun gewis-
se Bedingungen an die Wahl des Impulsflusses im betrachteten Diagramm voraus; so verlangt
etwa die Rekursivitéit des Regularisierungsprozesses, dafy die inneren Impulse der Unterdiagram-
me nicht von den dufleren Impulsen eines divergenten Gesamtdiagrammes abhéngig sind, da
sonst die entsprechenden zu letzterem beitragenden Counterterme abschliefend einer erneuten
Impulssubtraktion unterworfen wéren. In diesem Sinne zuléssig ist die Wahl des sog. Standard-
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impulsflusses, welcher im folgenden erklért wird.

Definition des Standardimpulsflusses:

e Es seien mit {p1,...,p,} und {k1, ..., k,, } die Mengen der unabhéngigen dufleren bzw. in-
neren Impulse des Gesamtdiagrammes « bezeichnet; jeder innere Impuls k; sei dabei einer
Schleife zugeordnet. Die von Vertex a zu Vertex b flielenden Impulse [, setzen sich jeweils
aus dem durch die entsprechende Linie L, flieBenden Anteil qup, der dufleren und dem
Beitrag kg, der inneren Impulse zusammen:

labv = Qabv(p) + kabv(k)- (415)

Dabeil numeriert der Index v die Linien zwischen den Vertices a und b.

e Jeder Linie Ly, werden sog. Widerstinde rqp, zugeordnet, iiber die - analog zu den Kirch-
hoffschen Regeln in der Elektrodynamik - der Stromfluf§ der dufleren Impulse festgelegt
wird: Zur Impulserhaltung an jedem Vertex V, mit einflieBendem &ufleren Impuls g,

Z Qabw = qa YV Va €V(Y), (Knotenregel) (4.16)
bv

wird fiir jede Schleife C' des Diagrammes zusétzlich die Bedingung

Z TabvGaby = 0 (Maschenregel) (4.17)
Labveo

gestellt. Die Wahl der Widersténde ist bis auf eine Anforderung beliebig, welche die Exi-
stenz geschlossener Schleifen mit Widerstand null oder unendlich ausschlief3t.

e Mit einem Unterdiagramm A, zunéchst als eigenstdndiges Diagramm betrachtet, wird ana-
log verfahren; die einmal fiir das Gesamtdiagramm v getroffene Wahl der Widersténde ist
hierfiir jedoch beizubehalten. Innere und duflere Impulse des Unterdiagrammes A erhalten
schliellich ihre Abhéngigkeit von denjenigen des Gesamtdiagrammes v durch die Finbet-
tung von A in +; diese liefert als Bedingungen:

Gabo (D) + kabo (k) = @y (0 (0, ) + Ky (), (4.18)

fiir alle Linien Lg‘bv des Unterdiagrammes, sowie

Pap k) =aa— D law(p k) VVa€V(Y) (4.19)
boderv &\

fiir dessen am Vertex a einfallende &duflere Impulse pé.

Den Ausgangspunkt zur Regularisierung eines beliebigen Mehr-Schleifen-Diagrammes bilden
nun die Integranden der aus den Feynmanregeln im Impulsraum resultierenden Integrale (4.7)
unter Verwendung des Standardimpulsflusses. Die Regularisierungsvorschrift schliefflich ist durch
die Zimmermannsche Waldformel gegeben, deren Aussage an dieser Stelle zitiert sei:
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Counterterme niedrigerer A-Ordnung werden prinzipiell beriticksichtigt, indem - symbolisiert
durch den Substitutionsoperator S - der Anteil des betrachteten Unterdiagrammes A am Inte-
granden gemiB dem Standardimpulsflufl als Funktion von dessen Impulsen p* und k* parametri-
siert und der entsprechende Counterterm bestimmt wird; sdmtliche beitragenden Counterterme
werden in der Waldformel zusammengefaf3t und definieren die Modifikation R, des Integranden
I, wie folgt:

Rk =5, > ]I (—tzg”sg L(U) (Waldformel). (4.20)
UEF, AeU

Die Summation erfolgt hierbei iiber alle sog. Wilder U des Gesamtdiagrammes 7, d. h. alle mogli-
chen Mengen von nicht diberlappenden divergenten ein-Teilchen-irreduziblen Unterdiagrammen
einschlieflich der leeren Menge und, falls dieses selbst divergent ist, des gesamten Diagrammes;
nicht iiberlappende divergente Diagramme A\; und )\ sind entweder disjunkt, A1 N Ao = (3, oder
verschachtelt, \j C Ay oder Ay C .t

Als ein selbsténdiges Regularisierungsverfahren beinhaltet die BPHZ-Regularisierung den
Beweis der Konvergenz des k-Integrals iiber den Integranden R, (p, k). Dennoch ist es die auf
Ein-Schleifen-Niveau bereits demonstrierte Aquivalenz zum Epstein-Glaser-Verfahren, welche
erst die Zuldssigkeit der BPHZ-Methode gewiéhrleistet; beim durch die Unterschiedlichkeit des
jeweiligen rekursiven Vorgehens erschwerten Vergleich der beiden Verfahren auf der Stufe von
Mehr-Schleifen-Diagrammen soll diese spéiter am Beispiel demonstriert werden, wobei insbeson-
dere die Verschiedenheit der Definition von Unterdiagrammen zu untersuchen ist.

Wenngleich nun das BPHZ-Renormierungsverfahren auf kompakte Art und Weise jedem
divergenten Diagramm mittels der Waldformel eine Regularisierung zuweist und in Form von
endlichen Countertermen die jeweils verwandten Freiheiten offenlegt, so ist doch die explizite
Durchfithrung der Integrationen iiber die modifizierten Integranden in der Regel recht aufwen-
dig im Vergleich zu anderen Regularisierungsmethoden. Diese wiederum offenbaren nicht in
- zumindest auf Ein-Schleifen-Niveau - gleichsam iibersichtlicher Weise ihre Aquivalenz zum
Epstein-Glaser-Verfahren , insbesondere im Hinblick auf die verbleibenden Freiheiten, welche
zur Erfillung physikalischer Renormierungsbedingungen teils ad hoc in Form von endlichen
Countertermen zum Regularisierungverfahren hinzugenommen werden miissen.

Gerade die haufig verwandte Dimensionale Regularisierung, bei welcher im Zuge des Regu-
larisierungsprozesses die physikalische Dimension verlassen wird, fithrt zudem auf das Problem
einer sinnvollen Fortsetzung der betrachteten Theorie in beliebige Dimensionen. Diese Regula-
risierungsmethode ist ein Beispiel fiir ein Verfahren, bei dem bei der Berechnung von Feynman-
diagrammen auftretende Divergenzen zunichst durch die Einfithrung (mindestens) eines neuen
Parameters in die entsprechende Theorie beseitigt werden; dieser parametrisiert gerade eine auf
endliche Diagramme fithrende Abweichung von der urspriinglichen Theorie. Durch entsprechende
Grenzwertbildung im eingefiihrten Parameter wird schliefllich die Ausgangstheorie wiederherge-
stellt; zuvor aber erfihrt ein in diesem Grenzwert zunéchst divergenter Ausdruck eine Modifika-
tion, durch welche seine Wohldefiniertheit auch in diesem Falle erhalten bleibt. Insbesondere mufl

1Ein einfaches Beispiel fiir die Anwendung der Waldformel liefert Kapitel 8.3 mit der entsprechenden Berech-
nung des Sunrise-Diagrammes.
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hierbei die erfolgte Modifikation im Grenzfall eine im Sinne der Epstein-Glaser-Regularisierung
zuldssige sein. Im folgenden sei demonstriert, wie die Methode der Dimensionalen Regularisie-
rung als Parameter die Abweichung € von der physikalischen Dimension nutzt, um fiir bestimmte
divergente Feynmandiagramme die im Grenzwert ¢ — 0 auftretenden konvergenten von den di-
vergenten Anteilen zu separieren; ein Teil der dort verwandten Techniken wird spéter vor dem
theoretischen Hintergrund der Epstein-Glaser- bzw. BPHZ-Regularisierung die Basis des modi-
fizierten BPHZ-Verfahrens bilden.



Kapitel 5

Dimensionale Regularisierung

5.1 Berechnung von Feynmandiagrammen in d Dimensionen

Prinzipiell basiert die Methode der Dimensionalen Regularisierung von Ein-Schleifen-Diagram-
men auf der Berechnung d-dimensionaler Faltungsprodukte von Feynmanpropagatoren im Im-
pulsraum. Die Auswertung der darin enthaltenen Integrationen iiber innere Impulse k geschieht
in Termen der Fulerschen Gammafunktion I', welche im Grenzwert physikalischer Dimension d .
divergieren; diese Divergenzen sind nun aber Polstellen von I'; in deren Umgebung diese me-
romorphe Funktion eine wohldefinierte Laurentreihenentwicklung besitzt, welche die Grundlage
der anschlieBenden Regularisierung bildet (Einfithrungen in die Dimensionale Regularisierung
enthalten u.a. [MAS],[RYD]). Fiir Dimensionen d < 2n gilt z. B. die Beziehung;:

d
T QL ——L T
n—0) (k% —s+in)"

'h—9%) 1
['(n) sn=d/2°

(5.1)

Mittels der sog. Feynmanparametrisierung ist es nun moglich, das zu regularisierende Faltungs-
produkt eines logarithmisch divergenten Diagrammes (dpn. = 2n) auf die Form der linken Seite
von (5.1) zu bringen, nachdem es zuvor durch den Ubergang zu Dimensionen d < 2n naiv re-
gularisiert wurde - dieser die Divergenz des zu berechnenden Integrals beseitigende Ubergang
geht der tatséichlichen Regularisierung voraus und wird im Anschlufl an diese wieder riickgéngig
gemacht. Auf die Nenner a; der Produkte von auf dem entsprechenden Impulsflufl ausgewerteten
Feynmanpropagatoren im Integranden wird die folgende Parametrisierung angewandt:

1 ) 1 21 Zn—1 dz,
7:Fn+1/d21/ d22---/ ,
apay - - - Gn ( 0 0 o lao+ (a1 —ag)z1 + ... + (an — an—1)z,|" 1!

(5.2)

im einzelnen:

1 ! 1
ab /Odz a1 —2) + b2]?’ (5:3)
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1 L @ 1
abe 2/ d””/ P e P (54)
1—x 1
B /dx/ a(l —xz—y) +bx+cy)® (5:5)

Die Bewahrung der physikalischen Dimension der zu berechnenden S-Matrixelemente erfordert
iiberdies die Einfiihrung eines Massenparameters i in die Theorie, wie es am Beispiel der ¢?-
Theorie demonstriert sei: Es ist die Wirkung S = f d?x L, welche es hierzu - in quantenfeld-
theoretischen Einheiten (h = ¢ = 1,A = [p] = 1/[z] = 1/L) - dimensionslos zu erhalten gilt;
fiir die Dimension der Lagrangedichte £ folgt somit notwendigerweise [£] = A?. Letzteres al-
lerdings kann nur dann unter Beibehaltung der physikalischen Einheiten sédmtlicher Parameter
der urspriinglichen Theorie erfiillt werden, wenn im Wechselwirkungsanteil Liy ein zusétzlicher
Faktor p4~? eingefiigt wird:

1/ 0¢ 0¢ 49
@@ _ L (9 09 2.2\ _ 4-d9 .4
£ 2 (330“ oz, me ) H 4!¢ ' (56)
Die beiden ersten Summanden in (5.6) legen die Impulsdimension des Feldes ¢ auf £ — 1 fest,

welches dann die angegebene Modifikation des Wechselwirkungsanteils bedingt.

Fiir das bereits mit Epstein-Glaser- und BPHZ-Regularisierung behandelte Beispiel des
logarithmisch divergenten Beitrags zur Vierpunktfunktion in der Ordnung g2, nun fiir einen
konkreten Impulsflu nach den Feynmanregeln bestimmt, existiert fiir d < 4 das folgende d-
dimensionale Impulsintegral:

1 ddk 1 1
d _ 2, 2\4—d
M) = 29 (1) / d(p—k)?2—m?2+ink?—m?+in
_ 1 s d/ / ddkz 1
TR ) (1= ) + (% — ) + i
_ 2y d/ / ddk: 1
—2kp(1 — z) + p?(1 — 2) — m? + in)?
_ 21 d/ / ddk 1
dk2 +p2(1 — 2)z — m? +in)?

1 in?/2 T (2 ) ! 1
= o) S / dz—5— 2-d/2

2 @em? T@) Jo  [m?—p2(-2)

. 1 9 2—d/2

_ L9 9\2-d/2 B é / A

32729 () : <2 2> 0 dz [mQ —p?z(1—2) ' (5:7)

Insbesondere ist die nach der dritten Zeile von (5.7) vorgenommene Translation k — k+p(1—2)
der Integrationsvariablen dieses wohldefinierten Integrals zulédssig. Die anschlieBende Regula-
risierung des resultierenden Ausdrucks, welcher mit der in diesem enthaltenen Gammafunk-
tion fiir d = 4 eine Polstelle besitzt, erfolgt im Rahmen der Dimensionalen Regularisierung
durch die Laurententwicklung um diese Singularitit und die darauffolgende Subtraktion der
hierdurch separierten divergenten Anteile. Inwiefern diese Methode mit der - fiir Ein-Schleifen-
Diagramme mittels Fouriertransformation direkt mit dem BPHZ-Verfahren identifizierbaren -
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Epstein-Glaser-Regularisierung vertréglich ist, soll im folgenden iiberpriift werden. Ferner wird
auch fiir Diagramme, welche stérker als logarithmisch divergent sind (dpn. > 2n), die Dimensio-
nale Regularisierung verwandt, wenngleich hier (5.1) nicht giiltig ist; in diesem Falle liefert die
Fortsetzbarkeit der Gammafunktion I'(z) fiir alle x # 0, —1, —2, ... die Grundlage der folgenden
Regularisierung. Auch fiir dieses Vorgehen soll schliellich die Zuléssigkeit {iberpriift werden.

5.2 Regularisierung in Termen der Eulerschen Gammafunktion

Das fiir reelle positive Argumente x konvergente Integral

oo
[(x) = / dt et 1 (5.8)
0
bildet eine Verallgemeinerung der n-Fakultit n! = I'(n + 1), indem es die Eulersche I'-Funktion
als Losung der Funktionalgleichung
L(z+1)=2I'(2), z=1,2,.. (5.9)

definiert. Uberdies existiert eine eindeutige analytische Fortsetzung von T'(z) zu einer meromor-
phen komplexen Funktion I'(z) mit Polstellen an den Punkten z = —n = 0, -1, -2, ...; fiir die
Laurententwicklung in deren jeweiligen Umgebungen gilt:

1
I'le) = s O(e), (5.10)
- (1 1 1
(—n+e¢ = u -+ (1l+=4+-+=—=7|+0(€) ¢, n=12., (511)
n! € 2 n
wobei v die Eulersche Konstante ist,
. 1 1
v = lim <1+—+---+——lnn>%0,5772. (5.12)
n—00 2 n

In einem urspriinglich logarithmisch divergenten Ein-Schleifen-Diagramm, welches durch den
Ubergang zu d < 4 Dimensionen zunichst naiv regularisiert wurde, erfolgt nun als nichster
Schritt der Dimensionalen Regularisierung die Separation desjenigen Anteils, welcher im Grenz-
wert d — 4 divergiert; demonstriert sei dies weiterhin am Beispiel (5.7):

Eine positive reelle Variable ¢ = 4 — d parametrisiert zunéchst die Abweichung von der
physikalischen Dimension. Zur anschlieBenden Berechnung der Laurententwicklung von (5.7)
um die Polstelle € = 0 werden nun sowohl die Entwicklung (5.10) der I'-Funktion als auch die
Taylorentwicklung der {ibrigen e-abhingigen Anteile dieses Ausdrucks herangezogen; fiir das
betrachtete Beispiel resultiert:

r (2 - g) =T <5> - % v+ O(e), (5.13)

A7 2-d/2 1 A7y
m? —p?(1 —2)z N

e+ O(é?), (5.14)
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und fiir den gesamten Ausdruck (5.7):

' 2 L Ar
AD(p) = ! G us (E —7> (1—{—/0 dz§ln i e> + O(e)

3272 m? —p2z(1 — 2)

¢ 2, € ¢ 2, € 471—/"‘
= - — — dz1 O(e). 5.15
16m2¢7 1 7 o290 M <7 /0 e —p?z(1— z)> +0(). (5:15)
Es ist die Subtraktion des im Grenzfall € — 0 divergenten ersten Termes von (5.15), welche nun
die Regularisierung bewerkstelligt; iiberdies hat in das verbleibende, bei der Grenzwertbildung
endliche Ergebnis auch der aus Dimensionsgriinden eingefiigte Massenparameter u Eingang ge-
funden.

Tatséchlich zeigt die Betrachtung der funktionalen Abhéngigkeit des fiir ¢ — 0 zu regulari-
sierenden Ausdrucks von den dufleren Impulsen p, dal die hier vorgenommene Subtraktion des
zu 1/e proportionalen Termes eine im Sinne von Epstein-Glaser zuléssige ist: Das fiir ein solches
Ein-Schleifen-Diagramm bereits als dquivalent zu letzterem befundene BPHZ-Verfahren schreibt
zu dessen Regularisierung eine Taylorsubtraktion des Integranden in den &ufleren Impulsen bis
zur Ordnung d(v) = 0 vor, nach welcher eine additive Konstante bzgl. p die hierzu ausgenutzte
Freiheit wiederherstellt. Bei der Dimensionalen Regularisierung dieses logarithmisch divergenten
Diagrammes wird nun das Integral {iber den urspriinglichen Integranden zun#chst - auf wohl-
definierte Art und Weise - in d < 4 Dimensionen berechnet; danach erst erfolgt die zuléssige
Subtraktion des im Grenzwert ¢ — 0 divergenten Anteils der Taylorentwicklung in p bis zur
Ordnung Null, indem der bzgl. p konstante 1/e-Term abgezogen wird.

Auch der im Resultat der Dimensionalen Regularisierung verbleibende Massenparameter g
kann vor dem Hintergrund der BPHZ-Regularisierungsmethode interpretiert werden, wozu im
folgenden mittels der Ersetzung pu = ﬁm, 0 < A < 00, das Skalierungsverhalten des Ergebnisses
bzgl. dieser Variablen betrachtet sei; es resultiert:

: 1 2
b _ 4y
Alp)pr. = 39,29 <7 /0 dzIn w2~ p2a(l = z)>
~ 1 2
i m
= — —2In )\ — dz1 . 1
32729 <7 . /0 = p?z(1 — z)> (5.16)

Durchlauft somit der Parameter A die positiven reellen Zahlen und generiert demgem &8 simtliche
moglichen Werte einer nichtverschwindenden Masse pi, so schopft der zu In A proportionale Anteil
von (5.16) die gesamte Freiheit der Addition eines bzgl. p konstanten Termes aus. Eine jede Wahl
von A liefert eine zuliissige Regularisierung; darunter ausgezeichnet diejenige von A = Ao = €7/2:

Der Ausdruck

\ i, [ m2
Ap)R, = dz1 5.17
(PR 39729 /0 FT2 —p?z(1 —2) (5-17)
verschwindet an der Stelle p = 0 und liefert somit - auf dem Umwege der Dimensionalen Regu-
larisierung - das Ergebnis der durch diese verschwindende Taylorentwicklung bis zur Ordnung
Null charakterisierten BPHZ-Regularisierung.
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Nachdem nun anhand dieses Beispiels die Zuléssigkeit der im Rahmen der Dimensionalen
Regularisierung erfolgenden Berechnungen und Subtraktionen fiir logarithmisch divergente Ein-
Schleifen-Diagramme iiberpriift worden ist, sei im folgenden das Vorgehen fiir solche Diagramme
mit hoherem Divergenzgrad untersucht. Fiir diese Fille, charakterisiert durch dp, > 2n in
(5.1), ist gerade diese grundlegende Beziehung zwischen Impulsintegralen und Termen der T'-
Funktion auch nach einer naiven Regularisierung durch den Ubergang in dph. — € Dimensionen
nicht giiltig. Deren rechte Seite allerdings besitzt als Funktion von d auflerhalb ihrer Polstellen
d = 2n+2m, m = 0,1, ..., und somit insbesondere auch fiir d = d},, —e€ eine eindeutige analytische
Fortsetzung, welche nun den Ausgangspunkt der Dimensionalen Regularisierung bildet:

Analog zum behandelten Beispiel des logarithmisch divergenten Diagrammes erfolgt an dieser
Stelle die Laurententwicklung der Fortsetzung um die - fiir geradzahliges dpp,. vorliegende -
Polstelle fiir e = 0 sowie die abschlieBende Subtraktion der zu 1/e proportionalen Anteile.

In bezug auf die Zuléssigkeit eines solchen Vorgehens sei zum Vergleich mit dem entsprechen-
den innerhalb der BPHZ-Regularisierung die folgende Uberlegung angestellt: Das d-dimensionale
Impulsintegral iiber den geméfl der BPHZ-Regularisierungsvorschrift subtrahierten Integranden
ist fiir alle d < dp,. definiert. Ferner 148t sich dieses Integral fiir d < 2n in Einzelintegrale {iber
jeweils den urspriinglichen Integranden und die Koeffizienten der von diesem zu subtrahieren-
den Taylorentwicklung in den &ufleren Impulsen zerlegen; fiir jedes dieser einzelnen Integrale gilt
(5.1). SchlieBlich liefern sowohl die analytische Fortsetzung dieser Einzelintegrale in Termen der
I'-Funktion als auch das BPHZ-subtrahierte d-dimensionale Impulsintegral selbst eine Fortset-
zung in die Dimensionen 2n < d < dpy,.. Aus der Analytizitidt des letzteren als Funktion der
Variablen d und der Eindeutigkeit der analytischen Fortsetzung folgt im Grenzwert d — dp.
die Aquivalenz von Dimensionaler und BPHZ-Regularisierung, falls die p-Abhéngigkeit des bei
jener zu subtrahierenden 1/e-Termes nur in einem Polynom bis zur Ordnung d(vy) besteht.

Das BPHZ-Verfahren, fiir welches selbst wenngleich nicht die Endlichkeit seiner Resultate
- dies ist Teil des Verfahrens - so doch seine Zuléssigkeit in bezug auf die verwandten Freihei-
ten durch Vergleich mit der Epstein-Glaser-Regularisierung iiberpriift werden muf}, dient hier
im ganzen als eine Art theoretischer Rahmen, mithilfe dessen die zunéchst willkiirlich anmu-
tende Subtraktion der 1/e-Terme bei der Dimensionalen Regularisierung erklirt werden kann.
Insbesondere fiir Ein-Schleifen-Diagramme, wo die Aquivalenz von BPHZ- und Epstein-Glaser-
Regularisierung, wie in Kapitel 4.1 beschrieben, unmittelbar herausgestellt werden kann, erlaubt
nun aber dieser Vergleich eine Modifikation des klassischen BPHZ-Verfahrens, welche zum einen
auf bei der Dimensionalen Regularisierung bewéhrte Techniken zuriickgreift, zum anderen aber
ausschliefllich innerhalb der physikalischen Dimension verbleibt und somit sémtliche mit einer
Verallgemeinerung der Dimensionalitit verbundenen Schwierigkeiten vermeidet; dieses modifi-
zierte BPHZ-Verfahren sei der Gegenstand des folgenden Kapitels.






Kapitel 6

Das modifizierte BPHZ-Verfahren

6.1 Motivation und allgemeine Vorgehensweise

Im klassischen BPHZ-Verfahren erfahrt zwar jedes ein Feynmandiagramm darstellende divergen-
te Impulsintegral seine Regularisierung in iibersichtlicher Art und Weise durch entsprechende
Subtraktion des Integranden; die konkrete Ausfiihrung des solchermafien modifizierten Integrals
ist aber gegeniiber anderen Regularisierungsverfahren zunéchst stark erschwert.

Das Ziel dieses Kapitels ist es, zunéichst auf Ein-Schleifen-Ebene ein modifiziertes BPHZ-
Verfahren zu konstruieren, welches den wohldefinierten theoretischen Rahmen des klassischen
BPHZ-Formalismus mit den technischen Vorziigen der vielverwandten Dimensionalen Regulari-
sierung vereint und iiberdies den Vergleich mit letzterer vereinfacht.

Die Idee hierzu besteht darin, bereits am noch nicht subtrahierten Integranden in Anlehnung
an die Vorgehensweise bei der Dimensionalen Regularisierung Feynmanparameter einzufiihren
und den entstehenden Ausdruck durch weitere Modifikationen auf eine Form zu bringen, in der
die abschlieBende Regularisierung in Form einer Taylorsubtraktion im dufleren Impuls erheblich
leichter durchgefiihrt werden kann. Wesentlich hierbei ist, dal die der regularisierenden Sub-
traktion vorangestellten Manipulationen am Integranden vor einem wohldefinierten Hintergrund
erfolgen; inwiefern dieser durch Vergleich mit dem klassischen BPHZ-Verfahren zur Verfiigung
gestellt wird, sei zunéichst wieder am bereits bekannten Beispiel aus der ¢*-Theorie demonstriert:

Gemif dem klassischen BPHZ-Verfahren wird das aus den Feynmanregeln folgende logarith-
misch divergente und zur Vierpunktfunktion in der Ordnung ¢g? beitragende Integral durch die
Taylorsubtraktion des Integranden bis zur Ordnung Null regularisiert:

4
M) = 58 [ Gl = ) (6.1)

Dieser endliche Ausdruck bildet den Ausgangspunkt des modifizierten Verfahrens: Der nach der
klassischen BPHZ-Regularisierung zu subtrahierende Integrand wird in einem ersten Schritt,
analog zum Vorgehen bei der Dimensionalen Regularisierung, mittels der Einfiihrung eines Feyn-
manparameters z umgeformt. Es ist die spezielle Beschaffenheit des resultierenden z-abhéngigen
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Integranden, welche es anschliefend ermdoglicht, vor der reqularisierenden Taylorsubtraktion die
Integration iiber den Feynmanparameter mit der Impulsintegration zu vertauschen: Auch der
modifizierte Integrand wird durch Taylorsubtraktion im &uferen Impuls bis zur Ordnung des
Divergenzgrades von den bzgl. der k-Integration divergenten Anteilen befreit. Als letzte Modifi-
kation kann dann, gleichfalls vor der abschliefenden Subtraktion, eine Translation der Integra-
tionsvariablen um den Term p(z — 1) vorgenommen werden, welche die - das spétere Ausfiihren
der Impulsintegration wesentlich erleichternde - Trennung von innerem und #uflerem Impuls im
Nenner des Integranden bewirkt. Im einzelnen sind es somit die folgenden Umformungen, welche
dem expliziten Ausfithren der Taylorsubtraktion vorausgehen:

1, d% [t I 1
A0 = 3 [ Gy [ 0~ G e
1 1 d*k 1
= 592/ dz/(27r) (1= tg)[kQ—ka(l—z)—i—pQ(l—z)—m2]2

4l<:’ 1
= 30 @ [ Gt~ D= = (02

Wesentlich im Hinblick auf die abschheﬁende Translation der Integrationsvariablen um einen
zum &ufleren Impuls p proportionalen Term ist wiederum die Tatsache, dafl das Skalierungsver-
halten! des urspriinglichen Integranden fiir grofie innere Impulse & durch die Einfithrung der
Feynmanparameter nicht verdndert wird: Wie bereits das Impulsintegral iiber den parametri-
sierten Integranden denselben Divergenzgrad aufweist wie dasjenige iiber den urspriinglichen, so
verringert auch weiterhin eine jede Ableitung nach dem &ufleren Impuls p den Skalierungsgrad
bzgl. k; die Koeffizienten der Taylorentwicklung nach p fithren folglich fiir Ordnungen grofer
als der Divergenzgrad auf konvergente k-Integrale. Dieselbe Uberlegung, welche im klassischen
BPHZ-Verfahren eine Translation der Integrationsvariablen um einen p-proportionalen Term -
realisiert durch die verénderte Wahl des Standardimpulsflusses - rechtfertigt, ist somit weiterhin
anwendbar:

Ausgehend vom subtrahierten urspriinglichen - im Falle des klassischen BPHZ-Verfahrens -
bzw. parametrisierten Integranden F'(k,p) sei zunéichst am gesamten konvergenten Integral I(p)
die Translation k' = k+ Ap in der Integrationsvariablen, gefolgt von einer erneuten, redundanten
Taylorsubtraktion, betrachtet:

I(p) :/d4k (F(k,p) —teF(k,p)) = /d4/<: (F(kz,p) — F(k,0) — ... — %p g—wa(k: 0)>

L,
[ (F ) = Fll+2p,0) — - PO
e k=k+Xp
d4k< F(k+Ap,p) — (1 —t;) (t;;F(];’p))‘/}:kJrAp)

/ k(1 — £2)F(k + Ap.p) — Tolp). (6.3)

! Aufgrund der speziellen Gestalt der betrachteten Integranden liefert dieses Skalierungsverhalten tatsichlich
eine Aussage iiber die Konvergenz des entsprechenden Integrals: Nach der Durchfiihrung einer Wickrotation wird
dessen Nenner von einer Potenz des Euklidischen Betrages von k& dominiert.
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Neben jeder p-Ableitung erniedrigt nun aber auch eine jede Differentiation nach k den Skalie-
rungsgrad von F'(k,p) bzgl. des inneren Impulses; die nach Translation und erneuter Taylorsub-
traktion verbleibenden Anteile des anfinglichen Subtaktionsterms fithren somit weiterhin auf
ein konvergentes Integral. Aus der Tatsache, dafl {iberdies jeder dieser Anteile mindestens eine
k-Differentiation enthilt, folgt schliefllich das Verschwinden des resultierenden Integrals Io(p):
Der Gaufische Satz ermoglicht eine Umwandlung desselben in Integrale von Vektorfeldern mit
einem Skalierungsverhalten von k=%, a > 4, fiir grofle innere Impulse {iber eine dreidimensionale
Hyperfliche und im Grenzwert & — oco.

Zur Auswertung des k’-Integrals in (6.2) wird nun eine sog. Wickrotation durchgefiihrt,
welche unter Beachtung der bislang in abkiirzender Schreibweise unterdriickten Integrationsvor-
schrift +4n in den Nennern der Propagatoren im Impulsraum die Einfithrung vierdimensionaler
Euklidischer Polarkoordinaten (ko,k) mit Betrag k ermoglicht (Anhang A). Aufgrund der im
vorangegangenen erfolgten und gerade den Mischterm —2pk(1 — z) authebenden Translation in
der Integrationsvariablen resultiert iiberdies ein ausschlieSlich vom Betrage k abhingiger Inte-
grand, dessen Winkelintegration somit direkt durch die Multiplikation mit der Oberflache €4
der vierdimensionalen Einheitskugel ausgefiihrt werden kann:

Ap) = 0 1 12/1d /oodE k3 B k3
b= wagpagd |, 2 —p22(1—2) +m22  [k2 + m?2
. 2
m

1
v 2
= dz1 . 4
32%29/0 anQ—pQZ(l—z) (64)

Im Gegensatz zum iiber den Umweg der Dimensionalen Regularisierung erhaltenen Resultat
(5.17) erfolgt dessen Herleitung im hier beschriebenen Vorgehen vollsténdig innerhalb der physi-
kalischen Dimension. Ferner legt die verbleibende Freiheit in der Addition einer Konstanten bzg].
des dufleren Impulses p eine direkte Verallgemeinerung des Ergebnisses in Form der Ersetzung
m — p im Zéhler des Logarithmus nahe. Im Unterschied zur Dimensionalen Regularisierung ist
es im modifizierten BPHZ-Verfahren jedoch nicht das spezielle Vorgehen, das die Einfiihrung
einer Massenskala erfordert; vielmehr verallgemeinert der eingefiihrte Massenparameter das spe-
zielle Resultat, indem er die grundlegende Freiheit bei der Regularisierung verwendet:

., iy ! 2
M) = 32727 0 dZIHmQ—sz(l—z)' (6:5)

Das Ergebnis (5.16) der Dimensionalen Regularisierung ist in dieser Verallgemeinerung enthal-
ten; die Wahl p? = 47ru%. e 7 vermittelt dabei den Ubergang zwischen den beiden Parametri-
sierungen:

i 1 A7
(p)DR 3271'29 { Y + /0 < 1n m2 — sz(l — Z) ( )

Die vorangegangenen Betrachtungen legen nun eine allgemeine Vorgehensweise bei der Re-
gularisierung divergenter Ein-Schleifen-Diagramme -~ nahe. Ausgehend vom Impulsintegral iiber
den inneren Impuls k£ des aus der klassischen BPHZ-Regularisierung resultierenden subtrahierten
Integranden (1 —t;)I,(k,p) seien die wesentlichen Schritte des modifizierten BPHZ-Verfahrens
wie folgt vorgegeben:
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1. Einfiihrung der Feynmanparametrisierung am Term I, (k,p) und Vertauschung der dies-
bzgl. Integrationen mit dem Operator (1 — ) und der k-Integration,

2. Translation der Integrationsvariablen um Ap zur Separation von #duflerem und innerem
Impuls im Nenner des Integranden (\ ist eine Funktion der Feynmanparameter),

3. Ausfithrung der Taylorsubtraktion um p = 0 bis zur singuldren Ordnung w,
4. Durchfiithrung der Wickrotation und Einfiihrung Euklidischer Polarkoordinaten,

5. Ausfithrung der Impulsintegration und Ersetzung der Masse m durch einen Massenpara-
meter p im p-konstanten Teil des resultierenden Logarithmus.

6.2 Demonstration an Beispielen aus der QED

In den folgenden Abschnitten sei das modifizierte BPHZ-Verfahren zunichst an den drei bei-
tragenden divergenten Ein-Schleifen-Diagrammen der Quantenelektrodynamik - Elektronselbst-
energie, photonische Selbstenergie und Vertexkorrektur - demonstriert. Neben der deutlichen
Herausstellung der regularisierenden Manipulation in Form der Taylorsubtraktion, welche auch
die Zuldssigkeit des angewandten Verfahrens im Sinne von Epstein-Glaser sicherstellt, wird be-
reits an diesen Beispielen als weiterer wesentlicher Vorteil gegeniiber der Dimensionalen Regula-
risierung deutlich, daf} keine im Zuge der Erweiterung auf d Dimensionen anfallende Definition
d-dimensionaler Diracscher Gammamatrizen erforderlich ist. Die Verallgemeinerung der einzel-
nen Ergebnisse durch die Einfiihrung eines Massenparameters p stellt abschliefend den Vergleich
zwischen den beiden Verfahren her.

6.2.1 Elektronselbstenergie

p p—k p

Abbildung 6.1: Elektronselbstenergie

Fiir diesen nach den Feynmanregeln konstruierten, linear divergenten Beitrag niedrigster
Schleifenordnung zum Elektronpropagator liefert das klassische BPHZ-Verfahren:
d*k 1 gt
b = —ie? 11—ty ———~, 2=
0 = =it [ G e
d'k Yu(p =k +m)y”
. 2 1\ 'H
= — 1—t . 6.7
@ [ G =T e o7
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Nach der Einfiihrung des Feynmanparameters z bewerkstelligt die Substitution k = k' + pz der
Integrationsvariablen die Trennung von &uflerem und innerem Impuls:

= —je? 1 2 dk o Vu(p = K+ m)y"
Ep) = /0 d / et T D T —mt R )P
L 44K Vu(p = pz = K +m)y"
= _162/0 dz/ @) (1-t,) [k,;‘_ S s A (6.8)

Aufgrund der Symmetrie des Integrationsvolumens tragen ferner die in k ungeraden Terme des
Integranden nicht bei; Wickrotation und Einfithrung vierdimensionaler Euklidischer Polarkoor-
dinaten gehen schliefilich dem expliziten Ausfiihren der Subtraktion voraus:

1 41,/
=) = —ie? |l =)+ [ G D

1
= —i62/0 dzy(p(1 — z) + m)y*

1 o k3 k3
Qpi—— / dk { — L
(@m)* Jy 2 +m22 —p2(1 - 2)P [+ m?2

e? m?

1
= 152 /0 dz(2p(z — 1) +4m)In T g

(6.9)
unter Verwendung der Beziehungen ~,7* = 4, v,7,7* = —2v,. Als Ergebnis des modifizierten
BPHZ-Verfahrens folgt somit:

2

= 1672

2

1
M

¥ (p)

Mit der speziellen Wahl p? = 4rp? . exp{3 —~} resultiert der endliche Anteil des geméf [RYD]
aus der Dimensionalen Regularisierung erhaltenen Ergebnisses:

2 [l L
YX(p)p.r. = 1672 /0 dz(2]/’5(z —1) 4+ 4m) ln(ze; 7)
62 1 47['#2
— [ dz(2p(z — 1) +4m)l D.R.
+ 1672 /0 2(2p(z = 1) +4m) In m2z — p?z(1 — 2)

e

- o (5) Cpram s (- am)

62 1 47.[.Iu2
—— [ dz(2p(z — 1) +4m)]1 D.1.
o /0 2(2p(z = 1) +4m) In m2z — p?z(1 — 2)

62

= (p(L+~) —2m(1 4 27))

1672
e2 1 47.[.'“2
dz(2p(z — 1) + 4m)1 D.R. . 11
+167r2 {/0 22z = 1) +4m)In m?z — p?z(1 — 2) } (6.11)
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6.2.2 Vakuumpolarisation

Als zweites Beispiel soll nun der quadratisch divergente Beitrag zur photonischen Selbstenergie
in Ein-Schleifen-Ordnung berechnet werden.

k—p

Abbildung 6.2: Vakuumpolarisation

Fiir dieses Diagramm liefert das klassische BPHZ-Verfahren die folgende Regularisierung des
aus den Feynmanregeln folgenden Integrals:

(k) = i 2/ TP 1 2y ! ! (6.12)
= ie — T . .
oz (47_[_)2 k ryﬂp_mryup_k_m

Auf die Erweiterung des Integranden mit p + m und p — ¥ + m und die Einfiihrung des Feyn-
manparameters z folgt zunéchst nach dem allgemeinen Schema des modifizierten Verfahrens die
Translation der Integrationsvariablen p geméfl p = p’ + k(1 — 2),p’ — p, so daf resultiert:

s [ [ g TR0 KL ity )

[p? + k221 — z) — m?]?

(6.13)

Bei der expliziten Berechnung der Spur verschwinden nun aber zunéchst die zu m proportionalen
Terme, da sie eine ungerade Anzahl von y-Matrizen enthalten; ferner tragen auch die in p linearen
Anteile aufgrund der symmetrischen Integrationsgrenzen nicht zum Integral bei:

Tr[’m(? + %(1 —z)+ m)’Yu(? — k2 + m)]
= Tr[yu(p+ K1 — 2))n(p — k2) + m*yu7]
= Trlyuprp — vknwkz(1 — 2) + m*y,] + O(p)
= —4gup* — k*2(1 — 2) — m?] + 8pupy — 8kukyz(1 — 2) + O(p), (6.14)

mit den Spuren

Trlvuw] = 49w, Tyl = Hgungvr — Guwger + Gurgev)- (6.15)
Die Verwendung von (6.14) in (6.13) fithrt somit auf:

d*p 8p py — 8k ky2(1 — 2) — 4g,,[p* — k22(1 — 2) — m?]
v(k) = d (1 —tj)—F—F= = 6.16
R =ie / z/ [p? + k22(1 — 2) — m?)? /(6.16)
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woraus durch partielle Integration des ersten Teils und abschlieendes explizites Ausfiihren der
Taylorsubtraktion resultiert:

1 d4p 49
(k) = ie* [ dz | —5(1 -8 2
oty = i [Las [0 { o
 8kukuz(l—2) + 49 [p? — k?*2(1 — 2) — m?] }

[p? + k22(1 — 2) — m?)?

d4 g k22(1 — 2) — kukyz(1 — 2)
— 8 d v ph
/ / PR — P

= 7T2 dz/ dp gw,k — kuky) 2(1 — 2)

. ]53 B ﬁ3
[P? = k22(1 —2) + m?]*  [p> + m??
2 1 2

e m
= —— [ dz(guwk® — kuk) 2(1 — 2)1 : 1
272 J, % (9u ki) 2( 2k s (6.17)
Als Ergebnis des modifizierten BPHZ-Verfahrens folgt schliellich:
i 62 1 ) IaQ
I, (k) = 97, dz (guwk® — kuky) 2(1 — 2z)In k(=) (6.18)

Zum Vergleich mit dem in [RYD] aus der Dimensionalen Regularisierung erhaltenen endlichen
Resultat wird wiederum der Massenparameter [i variiert; jenes spezielle Ergebnis folgt fiir die

Wahl i? = 4mu? p exp{—7}:

2

1 2
€ - AmTpp g,
Wup.5.(k) = o2 (ngQ kuky) {F + /0 dzz(1 = 2)In m? — k:Qf(f— z) } . (619)

6.2.3 Vertexkorrektur

Als letzte Ein-Schleifen-Korrektur in der QED sei nun der Beitrag zur Kopplung berechnet (Abb.
6.3). Das entsprechende logarithmisch divergente Integral besitzt die folgende BPHZ-Regulari-
sierung:

, , d*k i i —ig"P
—ZeAu(p,p,) = Ze3/ (2m)4 (1- tg,p')%/p, . m’VMp —F - 'Vp k2

[t o — -+ ) —
/ 21 ]

m)y”
2%)4( ~ o) (" = k)> —=m?][(p — k)2 —m?k?

(6.20)

Nach der Einfithrung der Feynmanparameter z und y und der darauffolgenden Substitution
k' =k + pz + p'y tragen wiederum die im Zéhler zu §' proportionalen Terme nicht zum Integral
bei. Dariiberhinaus fiihrt derjenige Teil, welcher im Zahler keine k-Potenz enthilt, bereits ohne
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Abbildung 6.3: Vertexkorrektur

Taylorsubtraktion auf ein konvergentes Integral; dem klassischen BPHZ-Verfahren folgend, wird
diese dennoch - als eine endliche Modifikation - durchgefiihrt:

—ieMA,(p,p

_ 1o d*k 'YV(p/ —k+ m)Vu(p —k+ m)y”
= / dx/ dy/ 71— thy) P7k2 —m2(z +y) — 2k(px + p'y) + p2x + py)?
11—z
= —263/ dm/ dy
0

/ d'K - )%(p’u —y) —pr — ¥ +m)y,(p(1 —x) — p'y — ' +m)y”
27" [k —m?(2 +y) +p?e(l — ) + p2y(1 —y) = 2pp'y]?

= _ze/dx/lmdy/ o O’){%

+%(zﬁ (1—y) —pz Tk?)j}é\%]é — ) —py+mh” } (6.21)
mit der Abkiirzung
M? :=m?(x +y) —p’z(1 —x) — p?y(1 —y) + 2ppzy. (6.22)
Nach der Ausfithrung der Summation {iber y-Matrizen im ersten Teil von (6.21),
vk = —4kuf 4 2Ky, (6.23)

wird der aus dem ersten Summanden von (6.23) folgende Term zunichst mittels partieller Inte-
gration umgeformt;:
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—ieA,(p,p

11—z d4 0 1 9 1

%(7’ (1 —y) — gz +m)y(p(l — ) — Py + m)y” }
[k2 — M2]3

= w/d“””/l xdy/ d’“{ ”“(k?fMQ] [k2+m§?w+y>12>

285 ([k2 + M2 R m2<m + )P )
B </<r3%(p’(1 —y) —pr+m)y(pl —x) —py+m”  EBmlyn” ) }

0
+(1— tp,p,)

(k2 + M3 (k2 4+ m?(z + y)]3

11—z - 3
B —ied ( +y) ie’y,
= 5o / dx / dyy, In 2 + 32

l-z P ( —pr+m —xz) —ply+m)y”
+W/o dw/o dy” —y) Pt )]\7;2(7)(1 )Pyt )7. (6.24)

Mit der Ersetzung m — ji folgt schliefllich das Ergebnis des modifizierten BPHZ-Verfahrens:

) B —’L'€3 1 11—z ﬂ2($+y) Z'€3
_ZeAﬁ(p,p/) = —87-(2 A dx /O dy")/u In T + W’)’M
3 1 1—x / / v
W' A —y) —pr+m)y(p — ) — ply +m)y
162 / dw/ dy e ,  (6.25)

M? aus (6.22). Wiederum ist das Ergebnis der Dimensionalen Regularisierung in diesem Resultat
enthalten; letzteres liefert die - mit der bereits zu diesem Zwecke im Falle der Elektronselbst-
energie getroffenen identische - Wahl 1% = 4mu?,  exp{3 — 7} in (6.25):

iy 1-z e3
—ieA,(p, P )p.R. = 16,2 ey, — /dac/ dyy, In }‘\‘41721% —8
1=z P ( T +m -z
Vi f ) SR P 020

Tatséchlich folgt aus dem Zusammenhang von modifiziertem BPHZ-Verfahren und Dimen-
sionaler Regularisierung im Falle von X(p) und A,(p,p’) durch dieselbe Umparametrisierung
(i < pp.r.) die Giiltigkeit der - bei letzterer Regularisierungsmethode erfiillten - Wardidentitét

0%(p)
Opt

= —Au(p;p) (6.27)

auch fiir das modifizierte BPHZ-Verfahren.
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Wiéhrend somit bereits anhand der in diesem Kapitel vorgestellten Beispiele aus der QED
die Vereinfachung gezeigt wurde, welche die Vermeidung der Definition von Diracschen Gam-
mamatrizen in d Dimensionen durch ein ausschliellich in physikalischer Dimension formuliertes
Regularisierungsverfahren ermdoglicht, sind es die chiralen Theorien, bei denen diesem zunéchst
praktischen Vorteil eine wesentliche Bedeutung zukommt: Die in diesen auftretende Matrix 5
enthélt den fiir den vierdimensionalen Minkowskiraum spezifischen Levi-Civita-Tensor e#*?? und
bedarf beim Ubergang in d Dimensionen einer - im Vergleich zur Fortsetzung der einzelnen Gam-
mamatrizen aufwendigen - neuen Definition. Im folgenden Kapitel sei anhand eines bekannten
Beispiels die dahingegen unproblematische Anwendung des modifizierten BPHZ-Verfahrens fiir
ein Diagramm mit axialer Kopplung demonstriert.



Kapitel 7

Die chirale Anomalie

Zur Konstruktion eines Beispiels fiir die unverdnderte Anwendbarkeit des modifizierten BPHZ-
Verfahrens bei den Feynmandiagrammen einer chiralen Theorie sei vom Modell einer axialen
Erweiterung der QED-Lagrangedichte ausgegangen, wie z.B. in [CMS| angefiihrt, in welcher
das massive Fermion zusétzlich an ein axiales Eichboson A% koppelt:

_ 1 1
L=V —m)V — e, A" — ¢ J5, AL — 7w F" = Z1«1—,W1~j,¢”. (7.1)

Aus der Invarianz dieser - zuniichst klassischen - Lagrangedichte unter globalen U (1)-Transfor-
mationen des Spinorfeldes W,

U =, U = Ue @, (7.2)

folgt nach dem Theorem von E. Noether die Erhaltung des Vektorstromes .J,, wihrend die
Invarianz unter entsprechenden axialen U (1)-Transformationen,

U =g, W = Wl (7.3)
durch den Massenanteil gebrochen ist; insgesamt gilt fiir vektoriellen und axialen Strom:
oM I, =0, "5, =2imPysV, (7.4)

mit J, = ¥, ¥ und J5, = Uy,75 7.

Fiir den in Abb. 7.1 dargestellten Beitrag zum sog. Dreiecksgraphen Ty, , drei innere Fer-
mionen beschreibend, welche an zwei vektorielle, mit den Impulsen p und ¢ an den Vertices u
und v einfallende, und ein axiales Eichboson koppeln, tritt - als Folge des Ubergangs zur quan-
tentheoretischen Betrachtung - eine Anomalie auf: Wéhrend die klassische Erhaltung von .J,, in
den Wardidentitéten

pMT)\W/ = 0, (75)
qVT)\/uz (76)

95
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resultiert, folgt auch im Grenzfall m = 0 keine analoge, die in diesem Falle vorliegende Erhaltung
auch des axialen Stromes .J5, ausdriickende Gleichung; stattdessen gilt unter Beiseitelassung der
Kopplungskonstanten :

1
(pA + q)\)T)\;w = QmTMV + z—ﬂeuupaqppa7 (77)
mit
T / A (1 : ! + ) (78)
= r — — V). .
uv (271')4 k_mWM%_p_mry5k+g_mryu b q, 1

Als Anomalie wird hierbei der massenunabhéngige zweite Teil von (7.7) bezeichnet, welcher
die klassisch fiir masselose Fermionen vorliegende axiale U(1)-Symmetrie auf Quantenniveau
bricht. Wesentlich zur dessen Herleitung ist die Tatsache, dafl die entsprechende, naiv nach
den Feynmanregeln berechnete Amplitude fiir diesen Prozef} linear divergent ist. Die natiirliche
Vorgehensweise zur Berechnung der Gleichungen (7.5) bis (7.7) besteht somit darin, zunéchst
eine Regularisierung T}, anzugeben, um jene dann auf der Stufe des resultierenden endlichen
Ausdrucks zu iiberpriifen. Auf diese Weise kénnen konsequent Manipulationen mit divergen-
ten Termen, die fiir die z. B. in [RYD] zur Bestimmung der Anomalie herangezogenen Symme-
trieiiberlegungen vonnoten sind, vermieden werden.

Eine Berechnung der Anomalie im Rahmen der Dimensionalen Regularisierung ist in [NOV]
ausgefiihrt, wobei insbesondere das sog. 7y5-Problem behandelt wird.

Abbildung 7.1: Beitrag zum Dreiecksgraphen Ty, (p, q)

7.1 Berechnung des Dreiecksgraphen

Das betrachtete linear divergente Diagramm besitzt - bei entsprechender Unterdriickung der
Vorfaktoren - nach dem klassischen BPHZ-Verfahren die folgende Regularisierung:
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1
=T (p:q)

2: /d4k (1 )Tr<;é+m F—p+m F+g+m >

(2m)* k2 —m2 (k —p)2 —m? AT (k+q)2 —m? R

1—2
= —2/ dw/
/ G-t ) Tr (K +m)yu(k = p +m)nrs(k+d +m)w)
2m)* Pk =m?) (1 =2 —y) + ((k = p)* —m?)z + ((k + q)* — m?)y]?

[ g,

Tr (K +m)yu(k — p+m)yavs(k+ ¢ +m)v)
[(k+ (qy — px))? = (qy — px)? = m?(1 —2 — y) + (¢* = m?)y + (p> — m?)z]3

(7.9)

Ein zweiter, gleichfalls zur Kopplung beitragender Term ergibt sich durch die Vertauschungen
(p < q) und (u < v) aus dem ersten; aus Symmetriegriinden liefert dessen Anteil jedoch nur
einen Faktor 2.

Die nun anschlieende Substitution ¥’ = k — (qy — px), ¥ — k, separiert im Nenner -
dem Schema des modifizierten Verfahrens folgend - den inneren von den dufleren Impulsen und
erlaubt die Unterscheidung von in k geraden und ungeraden Anteilen anhand der entsprechenden
Potenzen im Argument der Spur:

1—x d4
TAW:—4/dm/ dy/ 1)

T (K — (dy — p) + m)yu(k — (gy pr) — P+ m) sk — (dy — pr) + ¢ +m))
[k* = (qy — px)? —m? + ¢*y + p*a]®
aufgrund der Symmetrie des k-Integrationsintervalls tragen in der Spur nur Terme proportional
zu geraden Potenzen von k zum Integral bei. Da iiberdies die Spur iiber eine ungerade Anzahl von
~v-Matrizen verschwindet, reduzieren sich die zu berechnenden Terme auf einen zum urspriinglich
logarithmisch divergenten Teil des Integrals gehorenden Anteil

Tr(vs kv ba(pe — gy + d)vw) + Tr(vskvu(pe — dy — pliakn)
+Te((pz — dy)vukarskyw)
= Siexrpkku(p" e — q"y +q7) + Bie rapk ky(pTx — ¢y — p")
+8i€yrupk’kx(p"x — q"y) — 12@'6,,w,\/<:2(p7x —q"y) — 4ie>\T,,uk2(qT —-p7), (7.11)

: (7.10)

sowie den auf den endlichen Teil fiihrenden Term

m*Tr((dy — p) v a5 ve + Yu(dy — pr + Py + s (dy — pe — d)w)
+Tr((dy — p)vu(dy — px + pPlays(dy — pr — d)n)

= diexu{(q"(y — 1) —p"(x = 1))[(qy — px)* —m?] — ¢’p"y + p°¢"x}
+8iyeurrpd”p" (v (y — 1) — pux) — 8izerr,,p’q" (Pp(x — 1) — quy). (7.12)
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Die Berechnung des k-Integrals im zu den Spuren (7.11) gehorigen Anteil fithrt schlielich auf

m2

2+ (qy — px)? — ?y — px

T = / da / Ay 3y 7 (32— 1) — " (3y ~ 1)} In (713

wihrend die k-Integration des aus den Spuren (7.12) resultierenden Teils folgenden Ausdruck
ergibt:

Tend _ d 6)\/11/7- q (y B 1) _pT(x B 1))[<qy - px)Q B m2] - q2pTy +P2q790]
Apy T T _ 2 2 _ 424 2
(qy —px)? + m? — g%y — px
+2y€ur>\pq p [qy(y - ]-) B puﬁﬂ] - 2$€ATVppqu [p,u(m - ]-) - Q,uy]
(qy — px)? +m? — ¢y — p*x

Fonurld™ (= 1) =172~ 1)) (7.14)

Zu den Berechnungen der Spuren sowie zur expliziten Ausfiihrung der k-Integrationen sei auf
Anhang B verwiesen.

Tatséchlich ist das Ergebnis

Touw = Tyos, + T (7.15)

bereits mit dem allgemeineren des modifizierten BPHZ-Verfahrens, resultierend aus der Erset-
zung m — p im Zahler des Logarithmus, identisch: Die diesbeziigliche Anderung

mZ
~{p"(Br—1)—¢"(3y — 1)} In oz

verschwindet bei der Integration iiber die Feynmanparameter z und y. Bemerkenswerterwei-
se scheint hier die Unmoglichkeit, nach dem eng mit dem entsprechenden Verfahren bei der
Dimensionalen Regularisierung korrelierten Vorgehen einen Massenparameter in das Ergebnis
einzufiihren, die ausgezeichnete Rolle des physikalischen Minkowskiraums beziiglich der Defini-
tion von chiralen Zustdnden widerzuspiegeln.

Die Kenntnis der konkreten Regularisierung (7.15) erlaubt nun anschlieBend die Uberpriifung
der Wardidentitéten (7.5) und (7.6) sowie die Bestimmung der Anomalie in (7.7) auf der Stufe
wohldefinierter endlicher Ausdriicke.

7.2 Wardidentititen

Als Beispiel soll hier die Wardidentitdt (7.5) dienen; fiir diese gilt:

m2

1 1 1—x
P = 556 Tqu“/ dw/ dy<1—3y In
T g2 A o Jo ( T ey~ po) — Py —
y(qy —px)* —m?*(y — 1) — ¢®y* + p*x(z — 1)
D) B 3 5 +y-1)). (7.16)
(qy — px)? +m? — ¢?y — px

+
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Durch partielle Integration des logarithmischen Anteils bzgl. der Feynmanparameters 146t sich
dieser wie folgt umformen:

1 1—x m2
dm/ dy(1 —3y)In
/0 0 ( ) m? + (qy — px)? — ¢*y — p*x

1—x m2
= dw/ dy(l1 -2y —x)In
/0 0 ( ) 3 + (qy — px)? — ¢y — p*x

1 1—x m2
B / dw/ dyly = @) In o5 (qy — pr)? — ¢%y — p*x
_ / dm/1 Tyl -y —2)(2(qy — pr)a — ¢°)

(qy — px)? + m? — ¢?y — px
/1dm 1—%)21n(qx— p(1 —))* +m? — ¢’z — p*(1 — z)
((1—33) pz)?+m? —¢?(1 — z) — px
= ”d y2( qy—px)q—(f)—xz(—2(qy—px)p—p2) <17
DY _ 2 2 _ 2., _ 2 : ( )
(qy — px)? +m? — ¢>y — px

Hier verschwindet der Logarithmus im zweiten Term dieses letzen Ausdrucks, so daf schliefflich
mit der Addition des verbleibenden Anteils von (7.16) resultiert:

1 1 11—z
pMT)\uV = F ExpvT qp* / dx / dy
™ 0 0

(—yz + 2ya® + 2° — 322)p” + (ya® — y*x)gp + (= — 2%z + 3° + ya)¢?
(qy — pz)* + m?> — ¢*y — p°x - (718)

Es ist die spezielle Gestalt dieser Gleichung, welche nun zur Verifizierung der Wardidentitét an
die Stelle einer aufwendigen expliziten Ausfiihrung der Integrationen iiber die Feynmanparame-
ter eine einfache Symmetrieiiberlegung setzt:

Im betrachteten Diagramm sind die an den Vertices p und v einfallenden Teilchen mit den
Impulsen p und q identische vektorielle Eichbosonen. Die Verwendung der Identitit p? = ¢? fiir
identische Teilchen in (7.18) offenbart aber, insbesondere im hier vorliegenden Falle p? = ¢% = 0,
die Antisymmetrie des Integranden bzgl. der Vertauschung von x und y, welche wegen der
Symmetrie des Integrationsgebietes zum Verschwinden des Integrals fiithrt; die Wardidentitét
(7.5), p"Tu = 0, ist folglich fiir den betrachteten Prozef erfiillt.

Aus diesem Ergebnis folgt wegen der Symmetrie von T, bzgl. der Vertauschung (p < q)
und (p < v) direkt auch die Giiltigkeit der zweiten Wardidentitét (7.6):

P (p,q) = " Toawu(q, p) =0
pP—q,p—v v
= q T)\uu(p, Q) =0. (719)
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7.3 Berechnung der Anomalie

Zur Bestétigung der Gleichung (7.7) sei zuerst auch im dort enthaltenen Term 2mT),, die Feyn-
manparametrisierung eingefithrt und das parametrisierte Impulsintegral berechnet. Unter Ver-
wendung der Beziehung

Te((F 4+ m)vu(k — p+m)vs(F+ ¢ + m)v) = —4imeunpeq”p” (7.20)
resultiert:
2mT,, (m)
(ST aqppo
— 16 HYp
" / 2m)t (B2 — m2)((k — p)? — m2)((k + q)2 — m?)
1—x d4 1
:—327,mey(,qp/dx/ dy/
e m? — (qy — pz)? + ¢*y + p*a]?
11—z 1
2
= Voo d 7.21
Wzme“pqp/ m/ Nay—pe)2+m? — @y —px’ (7.21)

Aus der expliziten Berechnung der entsprechenden Impulskontraktion folgt andererseits:

(pA + C_I)\)TAW

= 5 2ww/ dﬂc/1 "y <{p Bz —1)—¢pP* By — 1)} In

m2

(qy — px)? +m? — ¢*y — p*x

)\ 2 ZT)\
q PN p ¢ (r — 1)||(qy — pr)” — *p My + p’q -
+[ —1) - ( I 2) . ]2 +p q>‘(2—x—y))
(qy — px)? +m? — ¢?y — px
1 N 1 -z | m2
= ——e\w dz d 3x+3y —2}1n
2—x— — m? 2
+( z —y)l(gy pﬂ;) 2 | - ¢*y — pPx + 2m? +2_m_y)>
(qy — pz)? + m? — >y — p’x

! Tk/ld /Md 2m® (7.22)
——— et T ) .
o2 Ml o Yay—p2)2+m?—qy—pa

In Analogie zum bereits bei der Berechnung der Wardidentitéit verwandten Vorgehen wird erneut
der logarithmische Anteil durch partielle Integration bzgl. der Feynmanparameter umgeformt,

1 1—x m
dm/ dy{3z + 3y — 2} In

/0 0 t ) (qy —pr)* +m? — ¢*y — p°x
(T w1 —y — 2)(2qy — pr)g — ¢2) +a(1 — @ — y)(=2(qy — pr)p — p?)

— [ dz dy 2 2 _ 2 2

(qy — px)® +m? — ¢*y — p°x
so dafl schliellich nach der Addition der iibrigen Terme die zu bestétigende Identitét (7.7)
resultiert:

\ . 1 \ 1 -z —om?
P+ ) D = —EAVqu/dw/ dy<2+ >
( o 2m? (qy —px)® +m* — ¢y — p°x

= 2mT,,(m)+

2

, (7.23)

1
o 26)\uu7'p C] (724)
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Die natiirliche Vorgehensweise, alle betrachteten Identitédten auf der Stufe einer wohldefi-
nierten konkreten Regularisierung T, zu iiberpriifen, erlaubt es ferner, die Abhéngigkeit jener
Gleichungen von der speziellen Wahl der Regularisierung zu untersuchen: Tats#chlich existiert
kein endlicher Counterterm, entsprechend der linearen Divergenz des betrachteten Diagrammes
aus einem Polynom ersten Grades in den Impulsen p und ¢ bestehend, welcher die Anomalie
#e \uwrPT @ kompensiert, zugleich aber die Wardidentitéten (7.5) und (7.6) aufrechterhélt. Die

Anderung der Feynmanamplitude um?

1
AT)\/M/ = _HEA,LU/T(Z)T - qT) (725)

beseitigt zwar die Anomalie in (7.24), verletzt jedoch gem&fl

1

pﬂAT)\uu = HE)\MVTQTPH (726)
1

qUAT)\uV = _me)\uquTqy (727)

beide vektoriellen Wardidentitéten.

Obgleich der hier an einem Beispiel aus einer chiralen Theorie besonders deutlich werdende
Vorteil des modifizierten BPHZ-Verfahrens in einer Vereinfachung der expliziten Durchfithrung
der Impulsintegration - sowohl gegeniiber dem klassischen BPHZ-Verfahren als auch gegeniiber
der Dimensionalen Regularisierung - liegt, so ist es doch die Aquivalenz zur Epstein-Glaser-
Regularisierung, welche die regularisierende Operation bei Ein-Schleifen-Diagrammen, d. h. die
Taylorsubtraktion in den unabhéngigen dufleren Impulsen, erst rechtfertigt.

Auch bei der nun folgenden Behandlung von Diagrammen hoherer Schleifenordnung gilt es
somit vor allem, diese Aquivalenz herauszustellen. Im Hinblick auf eine Erweiterung des modifi-
zierten BPHZ-Verfahrens fiir Mehr-Schleifen-Diagramme ist es die auf einer Entwicklung in der
Schleifenordnung basierende Zimmermannsche Waldformel, deren Aussage bzgl. der Regularisie-
rung eines Feynmandiagramms dazu mit der entsprechenden, einer Entwicklung nach Vertices
folgenden Konstruktionsvorschrift nach dem Epstein-Glaser-Verfahren zu vergleichen ist.

Am sog. Sunrise-Diagramm der ¢*-Theorie sei als an einem ersten Beispiel dieser Vergleich
demonstriert und insbesondere die Unterschiedlichkeit von Unterdiagrammen im Sinne der Wald-
formel und solchen, deren Definition die Epstein-Glaser-Konstruktion nahelegt, herausgestellt.

'Die Bedingung (p* 4 ¢*) AT\ = f#e,wprqA legt den bzgl. der Vertauschung (u < v) antisymmetrischen
Anteil von ATy, geméfB (7.25) fest; ein diesbzgl. symmetrischer Teil kann aber die Verletzung der vektoriellen
Wardidentitdten nicht kompensieren.






Kapitel 8

Das Sunrise-Diagramm

Die Interpretation des klassischen Epstein-Glaser-Verfahrens als Regularisierungsverfahren ist
prinzipiell auch fiir Mehr-Schleifen-Diagramme anwendbar; fiir den Konstruktionsprozefl rele-
vant ist einzig die Anzahl n der Vertices beim betrachteten Prozef}: Die Epstein-Glaser-Methode
liefert, ausgehend von der aus dem normalgeordneten Produkt von Feldoperatoren bestehen-
den temperierten Distribution 77 = iL£1, ein bzgl. der Anzahl der Vertices rekursives Verfahren
zur Ermittlung der Funktionale T, in der Potenzreihenentwicklung (3.1). Die im Zuge des Ver-
fahrens notwendigen Einschréankungen der Testfunktionen fiir die in der Wickzerlegung von T;,
enthaltenen divergenten skalaren Distributionen liefern die jeweilige Vorschrift zu deren Regu-
larisierung. Es ist die Abhéngigkeit von den bereits in den Ordnungen m < n regularisierten
Funktionalen, welche den Einflul von Unterdiagrammen auf das Gesamtdiagramm festlegt; sol-
che Unterdiagramme bestehen folglich stets aus irreduziblen divergenten Teildiagrammen mit
einer gegeniiber dem Gesamtdiagramm niedrigeren Anzahl von Vertices und sollen im folgenden
als Epstein-Glaser-Unterdiagramme bezeichnet werden.

Die sukzessive Modifikation der Wechselwirkungslagrangedichte £, durch die Addition von
Countertermen steigender Ordnung in A, auf welcher das klassische BPHZ-Verfahren basiert,
verlangt hingegen zunéchst eine andere Klassifikation von Unterdiagrammen: Als ein BPHZ-
Unterdiagramm sei ein solcher irreduzibler divergenter Teil des Gesamtdiagrammes bezeichnet,
welcher eine niedrigere Anzahl von Schleifen enthélt. Tatsdchlich besteht der Unterschied zu
den Epstein-Glaser-Unterdiagrammen gerade in solchen, welche zwar eine niedrigere Schleifen-
ordnung, aber keine geringere Vertexanzahl aufweisen, im folgenden als reine BPHZ-Unterdia-
gramme bezeichnet.

In der zu fordernden Ubereinstimmung mit der Epstein-Glaser-Konstruktion, bei welcher die
grundlegende Distribution 77 aus einem normalgeordneten Produkt von Feldoperatoren besteht
und auch die Distributionen T, als normalgeordnete Wickzerlegungen konstruiert werden, tra-
gen nur die Epstein-Glaser-Unterdiagramme zu einem Gesamtdiagramm bei: In den im Rahmen
des Verfahrens zu bildenden direkten Produkten von Funktionalen T; stehen Feldoperatoren,
welche die dufleren Beine eines Unterdiagrammes bilden, an jedem einzelnen Vertex dieses Teil-
diagrammes bereits in Normalordnung; eine neu entstehende innere Linie des zu konstruierenden
Diagrammes kann folglich nur zu einem neu hinzugenommenen Vertex fiithren. Mit der geforder-
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ten Aquivalenz zum Epstein-Glaser-Verfahren folgt, daf8 die zusétzlichen im BPHZ-Formalismus
enthaltenen Unterdiagramme keinen Beitrag zur Regularisierung des Gesamtdiagrammes bilden;
lediglich eine endliche Differenz der jeweiligen Resultate beider Regularisierungsverfahren, beste-
hend aus einem Polynom in den &ufleren Impulsen des Gesamtdiagrammes und von der Ordnung
dessen Divergenzgrades, ist als Auswirkung eines solchen BPHZ-Teildiagrammes zul dssig.

Ein Beispiel fiir diese unterschiedliche Klassifikation von Unterdiagrammen liefert das sog.
Sunrise-Diagramm der ¢*-Theorie (Abb. 8.1). Als ein Diagramm mit zwei Vertices besitzt es
im Sinne von Epstein-Glaser kein divergentes Teildiagramm und kann folglich in einem Schritt
durch Taylorsubtraktion im dufleren Impuls regularisiert werden, wihrend die Berechnung des
Prozesses nach der Waldformel zunéchst die Bestimmung des Einflusses der Counterterme von
drei logarithmisch divergenten Unterdiagrammen erfordert. Im folgenden sei nun das Sunrise-
Diagramm mittels des modifizierten BPHZ-Verfahrens berechnet; die Modifikation gegeniiber
dem klassischen BPHZ-Formalismus besteht nun und im weiteren zusétzlich - im Sinne der
Herausstellung der Aquivalenz zur Epstein-Glaser-Konstruktion - in einer Reduktion der zu be-
trachtenden Unterdiagramme auf solche im Sinne von Epstein-Glaser. Das explizite Ergebnis
fiir das betrachtete Beispiel sei dann zunédchst mit dem aus der Dimensionalen Regularisie-
rung erhaltenen verglichen, bevor schliefilich die Redundanz der Beriicksichtigung der BPHZ-
Unterdiagramme demonstriert wird.

Abbildung 8.1: Sunrise-Diagramm

8.1 Berechnung mit dem modifizierten BPHZ-Verfahren

Die Regularisierung des quadratisch divergenten Sunrise-Diagrammes erfolgt durch direkte Tay-
lorsubtraktion des aus den Feynmanregeln erhaltenen Ausdrucks:

- 2 d* d*k 1 1 1
20=% [ gt | G - Vs m (8:1)

Zur Ausfithrung der Impulssubtraktionen seien die Feynmanparameter in Hinblick auf deren
sukzessive Abfolge - beginnend mit der k-Integration - eingefiihrt; die Translation k — k + (p —
q)(1 — z) isoliert anschlieend diesen ersten inneren Impuls. Mit einer redundanten Anwendung
des Operators (1 — tJ) folgt fiir die entsprechende Integration:
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G

! d*k 0 1 1

/odz/@ >4(1 W = <1—z> 21— 2) T 202 —m)E  — 2
q

_ 9_2 2 1 1

= 5 a0 [ Gt - s

_ g2 d4q i3 1

- 3<2w>4/ i dz/ O ) G P =) TP =
gl d*q 2 o m? — ¢?z2(1 — 2) 1

- 96772/(%)4(1 tp)/o del m? — (p — q)?z(1 — z) ¢* = m?* (8.2)

Die partielle Integration bzgl. des Feynmanparameters z sorgt an dieser Stelle fiir die Moglich-
keit, weitere Feynmanparameter x und y zur anschlieSfenden Auswertung der ¢-Integration ein-
zufiihren. Mit der Abkiirzung m? := m?2(z(1 — 2))~! resultiert:

50 = g [ 1= [ i S
- 9967: / (;lj:)] (1_t2)/ a (TZ—ZZ) ?[¢? —mé]l[(p%)qg]j—_ﬁ%ﬁ?—mQ]
- 487r i i [ xdy 22(7;1%2)2
i —ml](l—x—zj)f;[)(;p ;)m) T gl — (8:3)

Durch die Translation ¢ — ¢ + zp wird nun die Integrationsvariable ¢ vom &dufleren Impuls p
separiert; die im Zéahler verbleibenden ungeraden Potenzen von ¢ stellen ferner die in dieser
Variablen ungeraden Anteile des Integranden dar, welche bei der Integration verschwinden:

11—z

» = d
(p) 487r z

/ - (1 = 22)(p* — 2pq — 2p°x)
(2m)* (1 2)2 [¢* — p?a? — mi(1 — y) — ym? + p*a]3
1—

g% —i 1 —
= _@SW/ dz ; dx ;
./Oodq_qs p*m? (1— 1) (1 —22)(1 —27)
(1- )2 PRI + p2a? + mi(1 —y) + ym? — p?x]3

1—x
1536ﬂ

. 1 —22)(1 = 2z)2p?*(x — 1)
(1 - Z) [PPx(z — 1) +mi(l —y) + ym?|[mi(1 — y) + ym?|

dm
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2 1 1 11—z 4.2 —1)(1 =2 1—2
_ 9 / dz/ dm/ ay pm7za(z —1)(1 —2z)(1 — 2x)
15367 Jo 0 0 pPe(z —1)z(1 —2) + m?2(1 —y) + ym2z(1 — z)

. 8.4
m2(1 —y) +ym?z(1 — z) (84)
Die Integration iiber den Feynmanparameter y ist direkt ausfiihrbar:
2 1 1 4,02
~ - 1)1 —-22)(1 -2
S L
153674 J, 0 (A —=—z—z+zz)zp?em?(1 —z+ 2?)
i —z—(1—-2)z+ (1 — )22
pPrz(l—z—z4+xz) —m?+m2(1 —2)(1 — 2+ 22)
—1
—1In
p xz 1—x—z+a:z) m2>
B / / I p?(1—22)(1 — 2z)
B 15367r (z—1)(1 — 2z + 22)
o — (1 =2)2(1 = 2)][p?xz(1 — 2)(1 — 2) — m?] (8.5)

—p :Uz(l —z2)(1—2)+m?2—m?2(1 —2)(1 — 2+ 22)’

SchlieBlich folgt unter der Verwendung der Tatsache, dafl der folgende Ausdruck aufgrund der
Antisymmetrie bzgl. der Ersetzung x — 1 — x und der Symmetrie des Integrationsgebietes
verschwindet:

/ ” / 121 - 20) ) peel =) =2 —mE_ (56)

2—1 (1 —2z+22) —m?2

das Ergebnis:

= B p?(1 —22)(1 — 2z)
) = 15367r/dz/d -1 -2+ 22)

m?(1 —2)(1 — 2)z + m’x
o —p $2(1—$)<1—z)+m2(1_x)(1_Z)Z+m2x' (8.7)

Dieses Resultat wird durch die dem Schema des modifizierten BPHZ-Verfahrens folgende Ein-
fithrung eines allgemeinen Massenparameters p mittels der Ersetzung m — p im Zéhler des
Logarithmus nicht verindert, so wie auch bereits im vorigen die regularisierte Amplitude des
Dreiecksgraphen T),,, in Kapitel 7.1: Aufgrund des bzgl. der Vertauschung x — 1 — z antisym-
metrischen Vorfaktors (1 —2z) im Integranden verschwindet die hierdurch induzierte Anderung
des Integrals; es ist X#(p) = X(p).

Im Vergleich dazu sei nun das entsprechende Resultat der Dimensionalen Regularisierung,
sowohl bzgl. dessen expliziter Gestalt als auch im Hinblick auf die Abh#ngigkeit vom Massen-
parameter up. g., betrachtet.
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8.2 Vergleich mit dem Ergebnis der Dimensionalen Regularisie-
rung

Eine Berechnung des Sunrise-Diagrammes im Rahmen der Dimensionalen Regularisierung ist in
[VHE] ausgefiihrt; dort wird der zu berechnende Ausdruck zunéchst wie folgt zerlegt:

~ 2 ~ ~
Xp.r(P) = ‘% 3m°Sp) (p) +p“2g_)R,,“(p)] : (88)

Zum Vergleich mit dem Ergebnis des modifizierten BPHZ-Verfahrens seien nun die folgenden
regularisierten Ergebnisse fiir E( ) r (p) und ig_)R. M(p), welche den Regularisierungsparameter e
enthalten, entsprechend der grundlegenden, auch zuvor bereits zur Dimensionalen Regularisie-
rung verwandten Freiheit als Ausgangspunkt fiir eine zusétzliche Taylorsubtraktion im dufleren
Impuls p verwandt:

P#Ee ) = (4) [ + +/ dm/ dz(1 — z)

A7 (1-2)
1 LA 8.9
n—p xz(l—x)(l—z)+m2(1—x)(1—z)z—i—m?x] ’ (89)
~ (1 1 1 1/1 o 3 2
o) = {2e2+2<2 v+ %)wﬂ LT
z(1—-2) Ampid, g, Ampid, g,
/ dm/ dzH27—i—ln —In M2 In M2
(1—x) z(1—2) Ay 9
! T [27+ln raaRE L 8$M2} } (8.10)
—p?xz(l —x)(1 — 21 —2)(1 - 2
mit M2 — prz(l —x)(1—2) —1(—1m () z)(1—2z)z+m z (8.11)
z —Z

Fiir ein erstes Zwischenergebnis kénnen insbesondere diejenigen Teile der jeweiligen Taylor-
entwicklungen in p bis zur Ordnung p? subtrahiert werden, welche bereits als Polynome isoliert
stehen; hierbei fallen sowohl die im Limes € — 0 endlichen Polynome als auch die den Regulari-
sierungsparameter e enthaltenden Terme weg!:

puig-)R-,u( dm dz 1—1x) WHD iz

(8.12)

sowie mit anschlieSender partieller Integration bzgl. des Feynmanparameters x:

1Zur Vereinfachung der Notation erhalten die folgenden modifizierten Regularisierungen keine separaten Be-
zeichnungen.
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dac

4 42
dz{[27+ln z(1 = 2) In TWDR] I 2THD.R.

M; M;
w0 {M @wm%)}

+(1—$)21n M2 QMQ}
dmp?, p O
2
= /dx/ dz< | 2y+In —= 21-2) -lnm
471' m2

1—=x m? m
— In —(In —s— . 8.13
x ]\/-[22 ( ! 47TH2D.R.> } (8:.13)

Tatséichlich beeinflufit der Massenparameter pp r. in (8.13) ausschlielich die bzgl. p konstan-
ten Teile des Integranden, nicht jedoch das Argument des p-abhéngigen Logarithmus. Mit der
speziellen Wahl p2 o, = (47) 'm? resultiert als weiteres Zwischenergebnis ein modifiziertes
Gesamtdiagramm entsprechend (8.8):

2 1 1 2
~ g 1—=x m
Yp.r(p) = TE36 /0 dx/o dz [—3m27 +p*(1 — x)] In ﬁg (8.14)

Vor dem abschlieflenden Vergleich mit dem Ergebnis (8.7) aus dem modifizierten BPHZ-Verfah-
ren mufl von diesem letzten Ausdruck noch die verbleibende Taylorentwicklung bis zur Ordnung
p? subtrahiert werden, woraus sich schlielich ergibt:

Son) = e [ o [ d{[ i)

1—x)(1—z)z+m x
—p2xz(1 — x)(l —2)+m?(1 —2)(1 — 2)z + m?z

-In

- %pQ} . (8.15)

Obgleich sich die Vorfaktoren der Logarithmen in den Integranden der zu vergleichenden Re-
gularisierungen (8.7) und (8.15) erheblich in ihrer Abhéngigkeit von den Feynmanparametern
unterscheiden und das Verschwinden der Ableitung nach p? im Ergebnis der Dimensionalen Re-
gularisierung erst mit dem zusétzlichen Term %pQ in (8.15) erreicht wird, stellen beide Ausdriicke
doch Regularisierungen derselben skalaren Distribution dar. Weil iiberdies beider Taylorent-
wicklungen bis zur Ordnung p? verschwinden, ist zudem iiber simtliche Freiheit gleichermaflen
verfiigt: Die beiden Resultate sind folglich identisch.

Eine analytische Herausstellung dieser Gleichheit erscheint aufgrund der involvierten Para-
meterabhéngigkeit beider Ausdriicke nicht praktikabel; tatsdchlich 148t sich aber das Verschwin-
den der Taylorentwicklung der Differenz im dufleren Impuls p Ordnung fiir Ordnung verifizieren.

Im Anschlul an diesen Vergleich der expliziten Ergebnisse soll nun abschlieBend - im Hin-
blick auf ein allgemeines modifiziertes BPHZ-Verfahren - die Aquivalenz zum Vorgehen bei der
klassischen BPHZ-Regularisierung anhand dieses Beispiels herausgestellt werden.
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8.3 BPHZ-Regularisierung nach der Waldformel

Der Einflul der Counterterme der drei logarithmisch divergenten BPHZ-Unterdiagramme - bis
3, welche jeweils nur zwei innere Linien enthalten, auf das Sunrise-Diagramm ~ (Abb. 8.2) wird
innerhalb des klassischen BPHZ-Verfahrens durch die Waldformel (4.20) beschrieben. Da es sich
um iiberlappende Divergenzen handelt, tragen keine Vereinigungen von Unterdiagrammen zur
Menge F () der Wélder bei, und mit

Fy) = {0, {7} At ek sk dnnt {veh s} (8.16)

liefert die Waldformel fiir den Integranden R, des Gesamtdiagramms:

3
Ry(p,k,q) =(1— t?,)Sy <1 — Ztg% S%.> L(p, k,q). (8.17)
i=1

Abbildung 8.2: Gesamtdiagramm -y

Die Substitutionsoperatoren S. ;) symbolisieren fiir das mit ihrem Index bezeichnete Diagramm
diejenige Parametrisierung durch eine Basis dessen innerer und &uflerer Impulse, welche die
Wahl des Standardimpulsflusses geméifl dessen Definition in Kapitel 4.2 vorschreibt. Letzterer
wird insbesondere durch die Festlegung der den einzelnen Linien des Feynmandiagrammes zu-
geordneten Widerstdnde bestimmt; allgemein liefern die jeweiligen Parametrisierungen folgende
Impulsfliisse {7 durch die einzelnen Linien des entsprechenden Diagrammes:

o Gesamtdiagramm ~:

- 71227123 k
121 = b—k—4q,
r1217122 + 71217123 + 1227123
r1217123
Yo
ligy = p+k,
r1217122 + 71217123 + 1227123
71217122
Y
liass = p+aq, (8.18)

r1217122 + 71217123 + 1227123

e Unterdiagramm ~;:

m, = —2 _m_gm
121 + 7122 ’
7121
oL — pt 4 kN
122 121 + 7122
r
o= ke —2L g (8.19)

)
121 + 7122
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e Unterdiagramm ~s:

12 — 123 V2 2
121 r121 + 7123
7121
2 — p’YQ + ]{;’72’
123 r121 + 7123
T
2 o= g+ —2 (8.20)
r121 + 7123
e Unterdiagramm ~s:
7123
13, — V3 3
122 7122 + r123
7122
[ - PP 4 k3,
122 r122 + 7123
r r
kK73 = 128 - 22 | = A\q— pk. (8.21)

7122 + 7123 7122 + 7123

Die derjenigen in (8.1) entsprechende Wahl der Parametrisierung des Gesamtdiagrammes legt
den Wert des Widerstands 7121 auf Null fest, so dafl der Integrand R, der Waldformel - unter
Beiseitelassung allgemeiner Vorfaktoren - folgende Gestalt annimmt:

1 1 1 1 1
Ry(p.kq) = (11—t —
'ﬂp77Q) ( p)((p__k_%DQ_7n2k2_”n2q2_4n2 WZ—wnﬂ2q2—4n2
1 1 1 1 ) (8.22)
(2 —m22k2 —m2  (p—k—q)2 —m2[(\q— puk)2 —m2>/)" '

Nun erfordert die postulierte Aquivalenz zur Epstein-Glaser-Konstruktion das Verschwinden
der Integration iiber die Gesamtheit der drei um ihre jeweilige Taylorentwicklung nach p ver-
ringerten Subtraktionsterme. Tatséchlich verschwinden die aus den Unterdiagrammen ~; und
o resultierenden Terme aufgrund ihrer Unabhéngigkeit vom #ufleren Impuls bereits bei der
Taylorsubtraktion. Die Relation A + p = 1 ermdglicht es dann, durch die separat am letzten
Subtraktionsterm von (8.22) durchgefiihrten Translationen

q—q+up, k—k+Ap (8.23)

auch dessen p-Abhéngigkeit zu beseitigen, so dafl auch dieser bei der Taylorsubtraktion her-
ausféllt; wie gefordert tragen die Counterterme der drei Unterdiagramme im Sinne des BPHZ-
Formalismus, welche keine Epstein-Glaser-Unterdiagramme sind, nicht zur Regularisierung des
Sunrise-Diagrammes bei.

Anhand einiger Beispiele sei nun im folgenden Kapitel die Epstein-Glaser-Regularisierung
fiir Mehr-Schleifen-Diagramme demonstriert, welche auch Unterdiagramme im Sinne dieses Kon-
struktionsverfahrens enthalten; insbesondere soll auch fiir diese der Vergleich mit der entspre-
chenden Regularisierung nach der Waldformel hinsichtlich der dort zu beriicksichtigenden BPHZ-
Unterdiagramme erfolgen. Im Hinblick auf ein allgemeines modifiziertes BPHZ-Verfahren liege
der Schwerpunkt bzgl. der Modifikation nun auf der Herausstellung der Aquivalenz des klas-
sischen BPHZ-Verfahrens zur Epstein-Glaser-Konstruktion und der in deren Zuge erfolgenden
Einschriankung der in der Waldformel zu beriicksichtigenden Unterdiagramme auf solche im
Sinne von Epstein-Glaser.



Kapitel 9

Epstein-Glaser-Regularisierung in
hoherer Ordnung

Zur Anwendung der Epstein-Glaser-Konstruktion als Regularisierungsverfahren fiir konkrete
Feynmandiagramme ist insbesondere die rekursive Bestimmbarkeit der operatorwertigen Dis-
tributionen T, als Zerlegung nach Wickmonomen notwendig: Die Regularisierung einer Dis-
tribution, welche einen Skalar bzgl. der Wirkung auf den Fockraum darstellt, kann dann als
diejenige, welche in Kombination mit dem entsprechenden, die dufleren Beine des Diagrammes
reprisentierenden Wickmonom auftritt, aus den Komponenten der Zerlegung isoliert werden.
Diese natiirlich erscheinende Identifizierbarkeit der einzelnen Komponenten der Wickzerlegung
mit den entsprechenden Feynmandiagrammen bedarf, insbesondere hinsichtlich von Prozessen
mit einer hoheren Anzahl von Vertices, einer genaueren Betrachtung, wenn etwa der Teilchenin-
halt von Anfangs- und Endzustand nicht zur Unterscheidung verschiedener innerer Strukturen
des betrachteten Diagrammes ausreicht. Ausgangspunkt der Untersuchung der das rekursive
Verfahren betreffenden erforderlichen Struktur ist die zugrundeliegende Distribution 77, welche
in der Anwendung der Konstruktionsmethode auf eine bestimmte Theorie als die entsprechen-
de normalgeordnete Wechselwirkungslagrangedichte gewahlt wird; hierzu sei im folgenden als
einfachstes Modellbeispiel die skalare ¢2-Theorie zur Demonstration herangezogen.

9.1 Zerlegung der Distributionen 7, nach Wickmonomen

Grundlegend fiir die Epstein-Glaser-Konstruktion ist die Wohldefiniertheit der auf einer Test-
funktion g des Schwarzschen Funktionenraums ausgewerteten Distribution 7% als Operator auf
dem Fockraum der Zustédnde ¢ gemiB (2.6). Fiir ein - im Gegensatz zum direkten Produkt
- zunéchst nur formales Produkt von Felddistributionen am gleichen Ort mufl diese zuné&chst
iiberpriift werden; tatséchlich wird sie erst durch die abschlieBende Normalordnungsvorschrift
gewithrleistet: Im betrachteten Beipiel T} (7) =: ¢?(z) : bildet jeder der Summanden in

¢ (x) = (¢F () + ¢~ (2)) = (1) (2) + 26 (2)¢ T (2) + (¢7)*(2) (9.1)

71
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eine wohldefinierte operatorwertige Distribution:

3 3 1./

00 = [dest@ot @) = o [ 5 [ 5paa)glh+ 1),
3 3 1./

ot = | d4x¢*<m>¢+<m>g<x>=— o5 [ S (Qak)gk ~ b,

3 3.
020 = [des @o @gle) =5 [ 55 [ 5p-at 090t gk - K). (92

Definiert ist folglich auch jeder Summand des direkten Distributionenproduktes

@7 (x) 1 9P (y) :
= ¢T ()t (x)pT ()T (y) +20T (2)ot(x)p” (W) (y)  +oT ()T (2)o™ (y)e™ (y)
+2¢~ (x)¢T (2)9 T (y)oT (y) +4o™ (2)oH (2)d™ (¥)o T (y) +20 (x)dT ()¢~ (y)d™ (y)
+o~ (2)p™ (2)¢T (¥)dT (y) +207 (2)¢ (2)¢™ (¥)¢T ()  +o™ (2)d™ (2)d™ (y)o™ (y)

FEin jeder Summand, der noch nicht in normalgeordneter Form vorliegt, kann nun durch die aus
dem Wicktheorem formal fiir die Distributionen folgende Vorschrift

p(x)dly) = :o(x)o(y) : +idAi(z —y)
= [¢7 (), ¢ (¥)] = iA(z—y) (9.3)

in diese gebracht werden; aufgrund der unterschiedlichen Anzahl von Erzeugungs- und Vernich-
tungsanteilen ¢~ und ¢ ist jede Komponente dieser Zerlegung nach Wickmonomen separat
definiert. Auf analoge Art und Weise konnen sémtliche bei der Epstein-Glaser-Konstruktion
auftretenden Distributionenprodukte in Summanden mit einer normalgeordneten Abfolge von
Produkten aus den Operatoren ¢+ und ¢~ zerlegt werden; insbesondere die skalaren Vorfaktoren
sind dabei vor jedem Wickmonom wohldefiniert und somit mit einem bestimmten Feynmandia-
gramm identifizierbar: Die formale Ortsabhéngigkeit der betrachteten Distribution liefert die
Struktur des entsprechenden Feynmandiagrammes.

Zur Regularisierung eines bestimmten Diagramms ist es folglich auch fiir ein solches, wel-
ches Epstein-Glaser-Unterdiagramme enthélt, ausreichend, allein diejenige skalare Distribution
aus dem gesamten Funktional T, der entsprechenden Ordnung zu betrachten, welche anhand
ihrer ortsabhéngigen Wickmonome mit dem jeweiligen Prozefl zu identifizieren ist. Wahrend -
dem rekursiven Konstruktionsverfahren folgend - die bei naiver Herleitung divergenten skalaren
Distributionen in den Wickzerlegungen der Funktionale T,,, m < n, bereits regularisiert sind,
verbleibt bei der Konstruktion der n-ten Ordnung das Problem des Distributionensplittens bzgl.
der Differenzvariablen zu x,,: Fiir ein divergentes Gesamtdiagramm liefert die erforderliche und
als Regularisierungsmethode verwendbare Subtraktion der Testfunktionen nach der Ubersetzung
in den Impulsraum die abschliefende Taylorsubtraktion in den #ufleren Impulsen.

Im folgenden seien anhand von Beispielen aus der ¢*-Theorie einige Epstein-Glaser-Regulari-
sierungen von Diagrammen dritter Ordnung konstruiert. Der Schwerpunkt dieser Betrachtungen
liege dabei weiterhin im Vergleich mit dem entsprechenden Vorgehen bei der BPHZ-Regulari-
sierung und, hinsichtlich der Herausstellung deren Aquivalenz zum Epstein-Glaser-Verfahren, in
der Demonstration der Einschrinkbarkeit der Waldformel auf die Beriticksichtigung von Epstein-
Glaser-Unterdiagrammen.
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9.2 Beispiele fiir Diagramme dritter Ordnung

Beginnend mit der Wechselwirkungslagrangedichte der ¢*-Theorie als Wahl fiir die grundlegen-
de Distribution 77 geht der Konstruktion eines Diagrammes dritter Ordnung die Bestimmung
des Funktionals T5 voraus; ohne Beriicksichtigung sowohl allgemeiner Vorfaktoren als auch kom-
binatorischer Faktoren vor den einzelnen Summanden seien somit die Wickzerlegungen dieser
operatorwertigen Distributionen bekannt:

Ti(z1) = :¢*(a1):,
Ty(w1,02) = :¢"(@1)¢" (32) : +AR(T1 — 22) : ¢°(21)¢° (2)
F A eg(T1 — 2) : 07 (21)97 (m2) 1 + AT op(21 — 22) = P21)P(2) :
+ AT peg (21 — 22). (9.4)

Aus den hieraus zu konstruierenden Funktionalen Af5(x1,x2,23) und Rj(zq,x2,x3) gemil
(3.22) und (3.23) seien nun mittels der erneuten Anwendung des Wicktheorems fiir verschiedene
Beispiele die den jeweiligen Feynmandiagrammen zugehorigen skalaren Distributionen isoliert.
Die Epstein-Glaser-Konstruktion liefert anschliefend die entsprechende Feynmanamplitude im
Ortsraum; nach der Transformation in den Impulsraum sowie der Auswertung fiir einen speziel-
len Impulsflufl, ausgefithrt in Anhang C, sei dieses Ergebnis der Epstein-Glaser-Regularisierung
schliefllich mit dem des BPHZ-Verfahrens verglichen.

9.2.1 Zwei-Schleifen-Beitrag zur Vierpunktfunktion in vier Dimensionen

Abbildung 9.1: Beitrag zur Vierpunktfunktion, d =4

Diesem logarithmisch divergenten Diagramm mit einem Vertex V3 ohne duflere Linien ent-
sprechen die folgenden skalaren Distributionen a und 7%, welche zusammen mit den zugehorigen
Wickmonomen Bestandteile der Funktionale A% bzw. Rf darstellen:

A1) (21 — 23) AR g (12 — 23) — AR o1 — 23) (1A 1) (22 — 3)

as(z1,r9,23) = —(
(IA1)* (21 — 23) (iAL)P (22 — m3) + (1A4)* (21 — 23) (iA4)* (22 — 23)
(
2

iAL)? (21 — 23) (i) (22 — 3)
= A+(.T1 - m3)A%',1reg(‘r2 - $3) + A%’,reg(ml - x3)Ai(‘T2 - l‘3)

+A3_(1‘1 — xg)Aa_(.%'Q — 1‘3),

+



74 KAPITEL 9. EPSTEIN-GLASER-REGULARISIERUNG IN HOHERER ORDNUNG

ri(w1, 22,23) = A_)P (w1 — 23) A peg (T2 — 23) — A eg (@1 — 23) (—1A-)? (2 — 3)

—(—i )

—(—iA ) (21 — 3)(—iA )P (w2 — w3) + (—iA) (1 — 23)(—iA ) (x2 — w3)
(—i )(—

2 (

+(—iA )2 (z1 — x3)(—iA_)? (2 — x3)
= A2 (21— 23) AR g (02 — 3) + Afpeg (w1 — 23) A (22 — 3)
+A2 (1‘1 — xg)A ( To — .%'3) (9.5)

Die Differenz c3 = r4 — af besitzt bzgl. der Variablen 2} = z1 — 23 und 2z, = x9 — x3 einen
kausalen Triger; dessen Aufteilung in avancierten und retardierten Anteil kann der folgenden
Darstellung entnommen werden:
c(rr,m0,23) = (AZ(21 —w3) + AF g (1 — 23)) (A (29 — 23) + Afy e (22 — 23))

—(A% (21 — w3) + Afeg(w1 — 23)) (AL (w2 — 23) + Ay eg (22 — 23)).(9:6)

Da fiir die bereits regularisierten Distributionen A g ep gilt:
A%,reg = (lAﬂL - 'AaV)?eg = (_A?k + 2A+A3V - sz)reg,
= (—IA- —iA)i, = (A% —2A Ay — A2 ) regs (9.7)

reg

folgt fiir die gesuchte, auf subtrahierten Testfunktionen definierte Aufteilung cs = r3 — as:

s(w1,22,23) = (A%(z1 —23) + A%reg( — a3)) (A% (29 — x3) + Af g (22 — 3))
= (2A1Au - Az Vreg(T1 — 3)(2A 1 Agy — Aav)reg(xQ —x3)
s(z1,200,23) = (A (21 —a3) + AFreg(xl 23)) (A (23 — 23) + AFee(2 — 73))
= (—2A_Aet — Aret)l"Gg(xl 23)(—2A_ Aret — A?et)reg(x2 —x3).  (9.8)

Es resultiert somit als Epstein-Glaser-Regularisierung t3 = ag — a4 = r3 — r4 des betrachte-
ten Zwei-Schleifen-Diagrammes die abschlieBend durch Einschrénkung der Testfunktionen zu
regularisierende Distribution:

t3(x17 L2, .%'3) - A%’,reg(xl - x3)A%,reg(x2 - 1‘3). (9'9)

Tatséchlich ist die abschlieende Regularisierung des zu einem Produkt zweier regularisierter
Distributionen faktorisierenden Ergebnisses redundant; die einzelnen Funktionale erfahren ihre
Definition gerade durch die Subtraktion der Testfunktionen bis zur Ordnung des Divergenzgrades
d = 0 in den Differenzvariablen zj und z, bzgl. derer auch die abschlieBende Subtraktion des
gleichfalls logarithmisch divergenten Gesamtdiagrammes durchzufiihren ist.

Ausgewertet fiir einen einfallenden Gesamtimpuls p besitzt das entsprechende Diagramm im
Impulsraum die Struktur

ts(p) = (/ ik, {(p = k1§2 7 _1m2 - _1m2]2 })
' (/ T { (p— k;? —m? k2 _1m2 TR _1m2]2 }> - (9.10)
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Da das betrachtete Diagramm ausschlief$lich zwei - an einem Vertex iiberlappende - Epstein-
Glaser-Unterdiagramme besitzt, liefert die Berechnung gem#fl der Waldformel zunéchst einen
durch den Einflufl von deren beiden Countertermen modifizierten Integranden des Gesamtdia-
grammes. Die Wahl ri31 = r32; = 0,7r132 = r3se = 1 fiir die den einzelnen Linien in Abb. 9.2
zugeordneten Widerstinde legt die folgenden Bestandteile des Standardimpulsflusses fest:

l131 l321

Abbildung 9.2: Gesamtdiagramm -y

o Gesamtdiagramm ~:

s = p— ki,
l1{32 = ki,
3 = p—ke,
oy = ko, (9.11)
e Unterdiagramm ~;:
l?él = p"—k",
l??la = kM,
K o= Ky, (9.12)
e Unterdiagramm ~s:
31 = p”—k™,
lgSQ = k%,
K2 = k. (9.13)
Die Waldformel liefert somit fiir das betrachtete Beispiel folgenden Integranden:
Ry (p, k1, k2)
_ (19 1 1 1 1
N PP\ (p—k1)2 —=m? k2 —m?2 (p— k)2 — m? k2 —m2

1 1 1 1 1 1 9.14

=GR R P e )

Nach dem expliziten Ausfithren der abschlieBenden Subtraktion faktorisiert auch das hieraus

folgende Ergebnis zum Produkt (9.10) zweier regularisierter Distributionen: Erwartungsgemifi

sind die beiden Regularisierungsmethoden bereits hinsichtlich der jeweils zu betrachtenden Un-
terdiagramme identisch.
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9.2.2 Zwei-Schleifen-Beitrag zur Vierpunktfunktion in sechs Dimensionen

Zur Konstruktion eines Beispiels, in welchem neben divergenten Epstein-Glaser-Unterdiagram-
men auch entsprechende reine BPHZ-Unterdiagramme in der Waldformel zu beriicksichtigen
sind, ist es in der ¢*-Theorie notwendig, den Minkowskiraum formal auf d — 1 > 3 Ortskompo-
nenten zu erweitern, um ein solches unter den irreduziblen Diagrammen mit drei Vertices aufzu-
finden; diese formale Anderung dient lediglich der Modifikation der Divergenzgrade siamtlicher
Diagramme, wie sie auch in verschiedenen Theorien durch eine unterschiedliche Impulsabhéngig-
keit der Propagatoren bewirkt wird, und soll es somit ermdoglichen, die allgemeine Vorschrift der
Waldformel und deren Aquivalenz mit dem Epstein-Glaser-Verfahren an weiteren Beispielen zu
untersuchen, ohne auf die rechnerischen Vereinfachungen der skalaren Modelltheorie zu verzich-
ten.

In d = 6 Dimensionen besitzt ein weiterer Zwei-Schleifen-Beitrag zur Vierpunktfunktion den
Divergenzgrad d(v) = 4: Das Diagramm in Abb. 9.3 enthilt ferner ein quadratisch divergen-
tes Epstein-Glaser-Unterdiagramm, resultierend aus der Wegnahme des Vertex V3, sowie zwei
logarithmisch divergente reine BPHZ-Unterdiagramme.

p1 — k1 p1+p2 +p3
—k1

p1+p2 +p3

Abbildung 9.3: Beitrag zur Vierpunktfunktion, d = 6

Die diesem Diagramm entsprechenden Bestandteile der Distributionen A% und Rj in der
Epstein-Glaser-Konstruktion sind wie folgt gegeben:

ay(z1,T0,13) = —(iAL)* (@1 — 22)iAL (21 — 23)Ap (29 — 23)
—(—iA_)Q(xl — x9)Ap(x1 — x3)iA L (T2 — x3)
—AF g (T1 — 22)iA L (1 — 23)iA | (29 — x3)
+(IA ) (z1 — 22)iAL (21 — 23)iA4 (29 — 23)
(—iA_) (21 — z2)iA (21 — 23)iA | (20 — 23), (9.15)
—iA_) (21 — 20)(—iA_) (21 — 23)Ap(zo — 23)
iAL ) (21 — 29)Ap (2 — 23)(—iA_) (20 — 23)

_l’_

ry(w1, 22, 73) =

—(
—(
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— A g (w1 — 22)(—IA ) (21 — 23)(—iA_)(x9 — 23)
(A ) (21 — w2)(—iA ) (21 — 23)(—iA ) (2g — 3)
—|—(—Z'A,)2($1 — .TQ)(—iA,)(l'l - $3)(—Z'A,)(l'2 - .Tg), (916)

so daB als bzgl. der Variablen | = z1 — 23 und z, = x93 — x3 an der Stelle z} = 2}, = 0 zu
splittende Distribution ¢z = r§ — aj resultiert:

c3(z1, 2, 23)
= —iA% (21 — 22)A_ (71 — 23)Ap(ze — 23) — iA% (1 — 22)Ap(21 — 23)A_ (72 — 73)
+A%ﬂ7reg(ac1 —x9)A_(x1 — x3)A_ (29 — x3) + Ai(ml —x9)A_(x1 — x3)A_ (292 — 3)
—i—Az_(xl —29)A_(x1 — x3)A_ (22 — 23) — iAi(ml —x9) A4 (z1 — x3)Ap(z9 — 23)
—iA% (21 — 22) Ap(r1 — 23) Ay (22 — 23) — AR eg(01 — 22) Ay (21 — 23) Ay (22 — 23)
—A% (71 — 22) Ay (21 — 33) A g (22 — 3) — A% (21 — 22) Ay (71 — 3) A (29 — 3). (9.17)

Tatsédchlich besitzt diese Distribution c3 den erforderlichen kausalen Tréger: Fiir die auf den
entsprechend dem Divergenzgrad d(y) = 4 des Gesamtdiagrammes einzuschrinkenden Test-
funktionen gelingt das Splitten in avancierten und retardierten Anteil gem&f3:

az(zy,v2,23) = aé($1,$2,$3) +t3(x1, 2, x3)
= (Afeg + A2) (21 — 22) (IAp + Ay ) (21 — 23) (IAF + Ay) (22 — 23)
_(A%,reg + A?l—)(xl - 1’2)iAF(.%'1 - x3)Aav(x2 - 1’3)

_A%,reg(xl - xZ)Aav(xl - x3)Aav(1'2 - .%'3)

+(A%,reg + AQ_)(l'l — $2)Aav(-r1 — $3)A+($2 — .Tg), (918)
r3(z1,20,23) = ry(21,22,73) + t3(21, 22, 73)
= (Afpeg + A2 (w1 — 22) (1A — A) (21 — 23)(iAp — A_)(22 — 73)
_(A%,reg + AQ—)(xl - 1’2)iAF(.%'1 - x3)Aret(x2 - .%'3)
_A%',reg(xl - ‘TQ)ATEt(‘Tl - $3)Aret($2 - -TB)
_(A%,reg + A?f—)(xl - xQ)Aret(xl - 1’3)A—($’2 — 1’3), (919)
mit
tg(xl, xTo, $3) = A%,reg(xl - $2)AF($1 - .Tg)AF(.TQ - 2133). (920)

Ausgewertet fiir den speziellen Impulsflul in Abb. 9.3 resultiert somit ohne Beriicksichtigung
allgemeiner Vorfaktoren das folgende Ergebnis im Impulsraum:

. 1 1
t3(p17p27p3) = /d6k1/d6k2(1_tgl,pQ,pS){(

p1 —k1)?2 —m? (p1 +p2+ps — k1)2 —m

2

1 1
<(1 _ t?ﬂl) o > 5 7p1 9 2) (921)
(Fm = k)2 =m? (5 + k)2 =m? | e

2
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Waéhrend bei der Epstein-Glaser-Konstruktion ausschliellich die Counterterme des divergenten
Epstein-Glaser-Unterdiagrammes -y, beitragen, erfordert die Berechnung desselben Diagrammes
nach der Waldformel die Beriicksichtigung zweier weiterer reiner BPHZ-Diagramme 75 und ~s.
Mit der Wahl ri9; = 7129 = 1,7131 = r321 = 0 fiir die den Linien in Abb. 9.4 zugeordneten
Widerstéande folgt fiir die Impulsfliisse der einzelnen Diagramme:

p1+p2 +p3

Abbildung 9.4: Gesamtdiagramm -y

o Gesamtdiagramm ~:

l121
l122
l131

l321

e Unterdiagramm ~;:

Y1
1121

Y1
1122

k'Yl

e Unterdiagramm ~s:

Y2
1121

Y2
l131
Y2
l321

;2

—ko + k1,
k25
pP1— kla
p1+p2+p3— ki, (9.22)
p"
_ P
2 )
p’YI
= —_— k:'Yl
2 + ’
k
= hy— 71 (9.23)
ke,
pYQ - k;'Y2’

P +p3° — k7,
—ko + k1, (9.24)
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e Unterdiagramm ~s:

ZYEQ = k7,

W = —k°+p,

g = —K°+pP +py

KB = k. (9.25)

Fiir den abschlieflend subtrahierten Integranden folgt somit nach der Waldformel:

R, (p1,p2,p3)
1 1 1 1

= (1-t
( pl’m’m){(/ﬁ —k9)2 —m2 k2 —m?2 (p1 — k1) —m? (p1 + p2 + p3 — k1)?2 —m?

P < 1 1
T | 2 2 (P 2 2
(B = k)2 =m2 (5 + k)2 =m? ] ke

1 1
‘(Pl —k1)2 —m? (p1 +p2 + p3 — k1)? —m?
1 1 1 1 (9 26)
ki —m? [(ky — k2)? = m?P3 (k1 —k2)? —m? [k5 —m?]3 | '

Tatséchlich verschwinden auch in diesem Beispiel die Beitrége der reinen BPHZ-Unterdiagramme
v2 und 3 bei der abschlieBenden Taylorsubtraktion in den dufleren Impulsen des Gesamtdia-
grammes; die Regularisierung nach der Waldformel ist mit der entsprechenden Epstein-Glaser-
Regularisierung identisch.

9.2.3 Drei-Schleifen-Beitrag zum skalaren Propagator

Ein weiteres Diagramm mit drei Vertices, welches nach dem formalen Ubergang in d = 6 Di-
mensionen sowohl divergente Epstein-Glaser-Unterdiagramme als auch ebensolche reinen BPHZ-
Unterdiagramme enthélt, zeigt Abb. 9.5:

P 1 k1 2 ko 3 p

Abbildung 9.5: Drei-Schleifen-Beitrag zur Zweipunktfunktion, d = 6

Obwohl dieses Feynmandiagramm bereits drei Schleifen enthélt, ist die Regularisierung nach
der Epstein-Glaser-Methode auf die den vorangegangenen Beispielen mit drei Vertices analoge
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Weise durchfiihrbar; lediglich die beiden durch das Weglassen der Vertices Vi bzw. V3 entstehen-
den Epstein-Glaser-Unterdiagramme tragen zur Regularisierung des Gesamtdiagrammes bei.

Im Gegensatz dazu erfolgt die Summation in der Waldformel {iber eine Vielzahl von Wildern,
welche - zusétzlich zu denjenigen, welche die Epstein-Glaser-Unterdiagramme enthalten - sowohl
von sdamtlichen moglichen reinen Ein- und Zwei-Schleifen-BPHZ-Unterdiagrammen als auch von
deren nicht-iiberlappenden Verschachtelungen erzeugt werden.

Aufgrund ebendieser Involviertheit der Berechnung durch die Waldformel sei die Betrach-
tung dieses Beispiels auf die Epstein-Glaser-Regularisierung beschrénkt; erwartungsgemaf liefert
die anschliefende Anwendung der auf die Beriicksichtigung ausschliellich der Epstein-Glaser-
Unterdiagramme eingeschrinkten Waldformel die geforderte Ubereinstimmung.

Die im Zuge der Epstein-Glaser-Methode zu isolierenden Beitréige der Distributionen R% und
A% lauten fiir das betrachtete Diagramm wie folgt:

ag(wr,wa,23) = —(iA4)% (21 — 22) A g (w2 — 73)iA} (1 — 73)

—(—iA )P (21 — 22) (IA 4 )} (w2 — w3)Ap (21 — 23)

A% g (T1 — 22) (1A L) (w2 — w3)iAy (21 — 23)

H(IAL) (21 — w2) (1A 1) (w2 — 23)iA 4 (21 — 23)

+(—iA ) (@1 — 22) (1A ) (w2 — 23)iA L (21 — 23), (9.27)
ry(xn,xa,x3) = —(—iAL)H (21 — 22) AF e (w2 — 23) (A ) (21 — @3)

—(iA ) (21 — o) (—iA_ ) (22 — w3) Ap (21 — x3)

AR reg (@1 — 22)(—iA)? (29 — x3)(—iA ) (21 — 3)

H(IA L) (21 — 2)(—IA ) (w2 — w3)(—iA ) (21 — 23)

+(—iA_ ) (21 — 22)(—1A_)* (2 — x3)(—iA_)(z1 — x3). (9.28)

Auch die aus diesen Funktionalen gebildete Distribution ¢3 = r§ — af besitzt einen kausalen
Trager, und die Zerlegung in avancierten bzw. retardierten Anteil gelingt mit:

az(z1,79,23) = as(x1, 2, 73) + t3(21, T2, 73)
= (A + Afeg) (21 — 22) (AT + Af o) (22 — 23) A (21 — 23)
HIAZ (21 — 22) (A + AR o) (22 — 23) Mgy (21 — 23)
Fi(2AAvey + Al reg (71 — 22) A% 1o (22 — 23) Aay (21 — 23),  (9.29)
r3(w1,22,73) = 7r5(21,79,73) + t3(21, 22, 73)
= —i(AZ + A% o) (@1 — 22) (A2 + AR o) (22 — 23) A (21 — 23)
HiAZ (21 — 22) (A% + AL L) (12 — 3) Are (21 — 23)
(=284 Aay + A% reg (1 — 22) AF e (42 — 3) Arer (21 — 23), (9.30)

mit

tg(l'l, 9, .%'3) = A%reg(l'l — .%'Q)A%reg(l'g — xg)AF(.%'l — 1‘3). (9.31)
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Ausgewertet fiir den speziellen Impulsflufl geméafl Abb. 9.5 ergibt sich aus diesem Resultat fiir
das Funktional t3 folgender Ausdruck im Impulsraum:

. 1 1

{ = d®k, | Sk /dﬁk 1—t){a -+

3(]7) / 1 / 2 3( p) ( p'Vl) (p’yl _ kl)z —m2 k% — m?2
1

1
(p72 — k2)?2 —m? k3 —m2

p'Yl :p+k3

! (9.32)
P2 —pths k3 —m?2

Im Vergleich hierzu sei nun die Berechnung desselben Diagrammes mittels der auf die Beriick-
sichtigung ausschliellich der beiden Epstein-Glaser-Unterdiagramme eingeschrénkten Waldfor-
mel durchgefiihrt. Mit der Wahl der den Linien in Abb. 9.6 zugeordneten Widersténde ri9; =
ro31 = 0, 71990 = 7r939 = 1131 = 1 resultieren die folgenden Impulsfliisse:

'(1 - tIQ)'VQ)

l131

p1 l122 2 l232 3 P

Abbildung 9.6: Gesamtdiagramm -y

o Gesamtdiagramm ~:

lhior = p—ki+ ks,
lioo = ki,
lasi = p—ko+ks,
laga = ko,
hat = —ks, (9.33)
e Unterdiagramm ~;:
l’lgl — p“/l _ k’Yl7
l¥é2 = kM,
p" = p+ks,
KV =k, (9.34)

e Unterdiagramm ~s:

72 —
l231 — pw _kw’
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135 = k7,
p”? = p+hks,
2 = k. (9.35)

Die Auswertung der Waldformel fiir diese Wahl des Standardimpulsflusses liefert schliellich:

R’Y(pv k17 k27 k3)

- 1 1 1 1 1
B PPl — k1 + k3)2 —m? kI —m?2 (p — ko + k3)2 — m? k3 — m? k3 — m?

1 1
i )
pI1 (p’yl — ]{;71)2 —m2 (k'yl)2 —m?2 D ks T =y
1 1 1
(p — ko + k3)? — m? k2 — m? k3 — m?

1 1
o )
P2 (p'yz — ]{;72)2 —m2 (k'yz)2 —m?2 292 —p ks k92—

1 1 1 (9.36)
(p—k1+k3)2—m2k%—m2k§—m2 ' '

Der vorangestellte Operator (1 — tf,) erlaubt es, dessen Argument zu dem den Integranden
des Ergebnisses (9.32) bildenden Produkt zu ergénzen: Epstein-Glaser-Regularisierung und -
auf Epstein-Glaser-Unterdiagramme eingeschrinkte - Berechnung nach der Waldformel liefern
dasselbe Ergebnis.



Kapitel 10

Zusammenfassung und Ausblick

Abschlieflend seien an dieser Stelle die Ergebnisse der Arbeit hinsichtlich der anfangs ausgefiihr-
ten Zielstellung restimiert: Das Verfahren von Epstein und Glaser wird als ein stérungstheoreti-
sches Konstruktionsverfahren vorgestellt, welches auf vier physikalisch sinnvollen Postulaten an
die S-Matrix basiert; insbesondere die Forderung der Kausalitdt, auf welcher das konstruktive
Verfahren fufit, wird dabei durch die heuristische Konstruktion mittels naiver Zeitordnung im
einleitenden Kapitel 2 motiviert.

Es wird die Interpretation des Verfahrens als Regularisierungsverfahren dargelegt und damit
ein Kriterium fiir die physikalische Zuléssigkeit einer jeden anderen Regularisierungsmethode
herausgestellt: Zu fordern ist gerade die Aquivalenz zur Epstein-Glaser-Regularisierung im Rah-
men der dort verbleibenden Freiheit.

Die folgenden Kapitel 4 und 5 stellen zwei wichtige weitere Regularisierungsverfahren vor und
demonstrieren zugleich an Beispielen als Folge der Aquivalenz zum Epstein-Glaser-Verfahren de-
ren Zuldssigkeit. Die Auswahl der BPHZ-Regularisierung und der Dimensionalen Regularisierung
aus einer Reihe weiterer Verfahren erfolgt dabei aus bestimmtem Grund: Wéahrend das BPHZ-
Verfahren hinsichtlich seiner Aquivalenz zur Epstein-Glaser-Methode sehr transparent erscheint
und ferner ein Vorgehen darstellt, welches mit der Zimmermannschen Waldformel auch die Be-
handlung von Mehr-Schleifen-Diagrammen einschliefit, ist die Dimensionale Regularisierung ein
vor allem fiir explizite Berechnungen gut praktikables Verfahren.

Als eine neue Vorgehensweise wird im folgenden Kapitel 6 das modifizierte BPHZ- Verfahren
erklart, das die Vorziige beider genannten Regularisierungsmethoden vereint. Die Dimensionslo-
sigkeit der impulsabhéingigen Argumente der Logarithmen, welche die Resultate der betrachteten
Anwendungsbeispiele stets enthalten, erfordert ferner den Bezug auf eine Referenzmasse; im Zu-
ge des Verfahrens iibernimmt in den betrachteten Beispielen die Masse des Elektrons in der
QED bzw. der skalaren Teilchen in der ¢*-Theorie diese Referenz. Eine Umskalierung ist jedoch
innerhalb der Freiheit des Regularisierungsprozesses moglich und erlaubt die Einfiihrung eines
neuen Massenparameters, der o. B.d. A. mit dem der Dimensionalen Regularisierung identifiziert
werden kann. Drei Beispiele aus der QED demonstrieren, wie das modifizierte BPHZ-Verfahren
den Charakter dieses zusétzlichen Parameters offenlegt: Im Gegensatz zur Dimensionalen Re-
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gularisierung, wo seine Einfiihrung aus Dimensionsgriinden notwendig ist, erscheint er hier als
Représentation der prinzipiellen Freiheit innerhalb des Regularisierungsprozesses; dies rechtfer-
tigt insbesondere sein Auftreten in den Ergebnissen des dimensionalen Verfahrens.

Die Vorteile des modifizierten BPHZ-Verfahrens werden ferner insbesondere bei der Betrach-
tung von chiralen Theorien deutlich: Kapitel 7 zeigt die im Gegensatz zur Dimensionalen Re-
gularisierung uneingeschrénkte Anwendbarkeit am Beispiel der Berechnung der U(1)-Anomalie;
Verallgemeinerungen von Diracschen Gammamatrizen und insbesondere der fiir vier Dimensio-
nen spezifischen vys-Matrix auf d Dimensionen sind nicht notwendig.

Auch fiir eine Vielzahl von Mehr-Schleifen-Diagrammen liefert der Vergleich der BPHZ-
Regularisierung mit der nach Epstein-Glaser - neben dem Beweis der Zuléssigkeit jener - insbe-
sondere teils erhebliche Vereinfachungen in den expliziten Berechnungen. Die Auswertung des
Sunrise-Diagrammes in Kapitel 8 stellt das einfachste Beispiel eines Diagrammes von hoherer
Schleifenordnung dar, an welchem die unterschiedliche Charakterisierung von Unterdiagram-
men einerseits bei der BPHZ-Regularisierung nach der Waldformel und andererseits bei der
Epstein-Glaser-Konstruktion deutlich wird: Wihrend dieses Diagramm der ¢*-Theorie frei von
Epstein-Glaser-Unterdiagrammen ist, besitzt es zwei unabhéngige BPHZ-Unterdiagramme. Hier
entsteht zum erstenmal die Vermutung, dafl die in der Zimmermannschen Waldformel enthaltene
Summation iiber Unterdiagramme - zumindest bei der hier getroffenen Wahl des Standardim-
pulsflusses - auf die iiber solche im Sinne von Epstein-Glaser eingeschriankt werden kann.

Tatséchlich erhértet sich dieser Verdacht bei der Betrachtung weiterer Beispiele in Kapi-
tel 9. Diese Beispiele entstammen bereits der dritten Vertexordnung in der Epstein-Glaser-
Konstruktion und erhalten auch entsprechende Epstein-Glaser-Unterdiagramme; die jeweiligen
Resultate stimmen stets mit denjenigen iiberein, welche die auf letztere eingeschriankte Wald-
formel liefert.

Abschlieflend ist somit festzuhalten, dafl der Vergleich des - zunéchst eher formal erscheinen-
den - Epstein-Glaser-Konstruktionsverfahrens sowohl mit der BPHZ-Regularisierung als auch
mit dem dimensionalen Regularisierungsverfahren fiir eine Vielzahl von Anwendungen sowohl
ein grundlegenderes Verstdndnis der regularisierenden Operation als auch eine z. T. erhebliche
Vereinfachung in den expliziten Berechnungen geliefert hat.

Es verbleiben im iibrigen noch eine Reihe von Fragestellungen und Zielen, die den in die-
ser Arbeit eingeschlagenen Weg weiterverfolgen: Wihrend die Behandlung von Ein-Schleifen-
Diagrammen im Rahmen des modifizierten BPHZ-Verfahrens bereits praktikabel erscheint, ist
die Epstein-Glaser-Konstruktion von Diagrammen mit entsprechenden Epstein-Glaser-Unter-
diagrammen verhéltnismafig aufwendig, da das betrachtete Gesamtdiagramm i. a. einer hohen
(n > 3) Vertexordnung entstammt und die Schwierigkeit der Konstruktion mit ansteigender Ver-
texanzahl rasch zunimmt. Eine Formalisierung dieses Konstruktionsprozesses kénnte die hier
noch unbewiesene Vermutung bestétigen, dafl die zugrundeliegende Kombinatorik durch die
eingeschriankte Zimmermannsche Waldformel beschrieben wird, wobei die Einschrénkung in der
ausschliefllichen Beriicksichtigung von Epstein-Glaser-Unterdiagrammen liegt.

Ferner liegt den in dieser Arbeit berechneten Beispielen stets die Wahl eines bestimmten
Standardimpulsflusses zur Anwendung der Waldformel zugrunde. Fiir eine Einschréinkung der
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Waldformel aufgrund eines allgemeinen Vergleiches zur Epstein-Glaser-Konstruktion wire es
schliellich sinnvoll, jene auf die Unabhéngigkeit vom gewihlten Standardimpulsflufl zu {iber-
priifen.

Prinzipiell wire es letztlich erstrebenswert, eine jede regularisierende Operation, die der
Beseitigung von UV-Divergenzen dient, stets vor dem Hintergrund der Epstein-Glaser-Regu-
larisierung bzw. deren Manifestation im Impulsraum betrachten zu kénnen, um Ursache und
Beschaffenheit der Divergenzen, Kombinatorik von Unterdiagrammen und Freiheiten der Re-
normierung klar herauszustellen.






Anhang A

Wickrotation

Um die erforderlichen Integrationen iiber den inneren Impuls k& durchzufiihren, bietet sich eine
Wickrotation im Impulsraum an. Hierzu ist insbesondere die Kenntnis der richtigen Integrati-
onsvorschrift der Propagatoren im Impulsraum wichtig, welche dort durch eine infinitesimale
Verschiebung +in beschrieben wird; fiir den Fermionpropagator Sg gilt:

kF+m
Sp(k) ~ ————— Al
P~ g (A1)
fiir den Photonpropagator:
1
D (k) ~ —gM A2
(k) ~ " (A2)
sowie fiir den massiven Propagator der skalaren ¢*-Theorie:
1
Ap(k) ~ ——5——. A3
(k) k2 —m?2 +in (A-3)

Unter Beriicksichtigung dieser Integrationsvorschriften bei der Berechnung der in den Feyn-
mandiagrammen enthaltenen Produkte von Propagatoren resultiert nach der Einfithrung der
Feynmanparameter bei einem Ein-Schleifen-Diagramm mit innerem Impuls £ ein Nenner der
Form

1
-_ > 2. .
) n> 2 (A.4)

Hierbei ist s eine Funktion der Feynmanparameter sowie der Massen und der dufleren Impulse
des entsprechenden Diagramms. Der Zahler wird nun gegebenenfalls zunéchst durch partiel-
le Integrationen auf die Lorentz-invariante Form f(k?) gebracht. An dieser Stelle kann dann

leicht eine Wickrotation durchgefiihrt werden. Hierzu seien zuerst die Polstellen der Funktion
f(K?)

[(CEr=wmn beziiglich der kg-Integration bestimmt, welche an folgenden Stellen liegen:

1. Fiir k2 +s2 > 0:

wi> = VkZ+s2—in, (A.5)
wes> = —VkZ+s2+in, (A.6)
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2. fiir k? 4+ 5% < 0:
wi<« = iv—(k2+s2)—1", (A7)
W< = —iy/=2+ %)+, (A-8)

3. fiir k% + s? = 0:
wio = V-in", (A.9)
wag = —V—in". (A.10)

In einem Koordinatensystem mit den Achsen $(kg) und (ko) liegen die Polstellen folglich in
keinem Fall im ersten oder dritten Quadranten. Nach dem Residuensatz ist daher das Integral

S(ko) 4

Abbildung A.1: Integrationsweg C

entlang der geschlossenen Kurve C' gleich Null; ferner 148t sich das Integrationsgebiet wie folgt

zerlegen:
> f(k?) 7{ f(k?)
dk = dk
/_OO 0 (k3 — k2 — s2 +in)" P (k% — k2 — 52 +in)"

100 f(k2)
dk A1l
| )

wobei berticksichtigt wurde, dafl die Integrationen entlang der Viertelkreise fiir die betrachteten,
aus den Faltungen von Propagatoren resultierenden Integranden aufgrund deren Verhalten fiir
ko — oo verschwinden. Es resultiert somit:

S T 1)
e e B - e (8.12)
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SchlieBlich fithrt dann die Substitution kg := iky das Integrationsgebiet auf die reelle Achse
zuriick, so daf8 die Definition eines Euklidischen Vierervektors k = (ko, k) mit dem Betrag k die
Einfiihrung vierdimensionaler Polarkoordinaten ermoglicht:

/ioo dko G = z'/oo dko G (A.13)

Cico (KR —Kk%Z—s241n oo (—kyo — K2 — 82 4+ in)n

3 Oodk? d*k f(R) =i(=1)"Q OOdEM. A.
/oo 0/ (_]502_1(2—824-1.77)” ( 1) 4/0 (k2+82—i77)n ( 14)

Hierbei ist £24 die Oberfliche der vierdimensionalen Einheitskugel gemé&fi der Gleichung fiir die
Oberflichen n-dimensionaler Einheitskugeln,

I'(3)

I ist die Eulersche Gammafunktion, I'(2) = 1.

= Q4 = 271'2; (A-15)






Anhang B

Berechnung des Dreiecksgraphen
T)\,uu (p,q)

B.1 Spurbildung

Zur Berechnung der Spuren iiber v-Matrizen werden folgende Gleichungen verwandt:

Tr(/75'7p’7)\707n77'7u) = 4i€n7ua(5§g)w - 5():‘\{9/)0 + 6?9;))\)
_4i€pAoa (@%gm - 570—[.9/@;1 + 53957’)7 (B~1)
Tr(’VE)%'Y)\k'YRk'Yu) = 4i€f@>\uakak2, (B'2)
Tr(v v Ye) = —di€upno- (B.3)

Wiéhrend das Ergebnis (7.11) direkt durch die separate Anwendung der aus (B.1) folgenden
Relation

kpkoTr(’Vl")erry)\’Va’Vﬁ’Vﬂ'ryu) = 8i€ﬁ7upk3>\kp - 4i€m¢uAk32 (B-4)

auf die einzelnen Spuren erhalten wird und der zu m? proportionale Anteil von (7.12) ent-
sprechend mittels der Verwendung von (B.3), bedarf der verbleibende Teil von (7.12) einer
detaillierteren Betrachtung; der zu berechnende Ausdruck sei dazu zunichst wie folgt zerlegt:

Tr[(dy — po)vu(dy — pr + P)avs(dy — pr — ¢)wl
= Tr[(dy — px)vu(dy — pr)vays(dy — pr)v]
+Tr[(dy — p)vuprays(dy — pr)vy]
=Tr[(gy — p)vu(dy — p)VAv5470]
=Tr[(dy — p)vupinvsd70)- (B.5)

Die Auswertung der einzelnen Summanden mittels (B.3) bzw. (B.4) liefert folgende Identitéten:
Tr((dy — po)ru(dy — pr)ns(dy = prim] = dieywa(d®y —p2)(gy — po),
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Te[(dy — po)vupiays(dy — pr)n] = Sieurao(@’y — pP2)(qvy — pux)p”
— A€ (qy — px)?p,
Tr[(dy — px)vu(dy — pr)vavsgr] = Siexrvp(@’y — p°2)(quy — puz)q”
—diexryu(qy — pr)*q,
Tr[(dy — p2)vupravsdre] = 8iyeurrpd’ap’ — 8ixenr,,p puq”
—die rn (pTy — P°q ), (B.6)

womit schliellich der zu berechnenden Anteil von (7.12) folgt:

Tr[(dy — px)vu(dy — px + pP)avs(gy — pr — ¢)v)
= diexwalq®y — p‘“w)(qy — pz)? + 8i€urrp (0°y — P°7)(quy — Pua)p”
+ier i (qy — px)?p” — Biexrp(a”y — P ) (quy — Pu)q”
—di€rnuu(qy — pT)2q" — 8iY€urrp@” QP + 8iTerrupD Puq”
—die ) (°p"y — PPq )
= dieawa(¢®(y — 1) — p*(z — 1) (qy — pr)* — diexr (°p"y — pq )
+8i€urapd” Gy’ D" — 8i€urrpd" PurYP” + Sienr oD’ " TYq" — Sienrypp" Pur’q
—8iyeurap @’ @b + 8ixer o0’ Ppq”
= diexwr {("(y—1) —p"(x —1))(qy —pr)* — ¢*p"y + p°q"z}
+81y€urapd’p" (4w (y — 1) — pu] = 8ixerr,,p’q" [pp(z — 1) — quyl. (B.7)

B.2 Durchfiihrung der k-Integration

Als Beispiel fiir die explizite Auswertung der Impulsintegrationen sei diese am urspriinglich
divergenten Anteil T )I\Zgy demonstriert. Durch partielle Integration derjenigen Terme, welche ein-
zelne Komponenten von k enthalten, 148t sich zunéchst erreichen, dafl der gesamte Ausdruck
ausschlieflich von k? abhiingig ist; an dieser Stelle transformiert dann die Wickrotation das
k-Integral in das schliellich auszufiihrende vierdimensionale Euklidische Integral:

1
T)\(/.)Lgl/ (p ) q)

1 11—z 4 T T T
, d*k 2ok k(P — "y + ")
= —16 d dy | ——(1 —¢L p-
Z/o x/o y/ (27r)4( pa) (W — (qy — px)? —m? + ¢*y + p*a’

2¢urpk Ky (" — q"y — pT7) 2€,rupkPkx(p"T — q"y)
(k2 — (qy — px)?> = m? + @y +p?x>  [k? — (qy — px)? —m? + ¢?y + p*a]3
Bevrink* (P — q7y) Exrvpk?(q" —p7)
- (qy —p2)> —m? + @2y +p2a]®  [k2— (qy — p2)> —m? + 2y +p2w]3>
/ dr /1 mdy/ d*k nl ) ( EAruu(pTx —q'y+ qT)
PAT\ [k = (qy — px)?* — m? + ¢?y + p?x]?
€urz (P’ —q"y —p7) €run(07T — q"Yy)

+
(k2 — (qy — px)? —m? + ¢®y + p*x]?  [k? — (qy — px)? — m? + ¢?y + px]?
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2emxk2(3p% 3qu +q"—p") >
(k2 — (qy — px)? — m? + ¢y + p*z]?

11—z
= 8y—— /dx/ dy/ dk(1 -t )
27r

( emu(3p r—3¢"y+q —p") _26WA/52(3PT96 —3¢"y+q" —p") >
[k‘2 (qy — px) +m2—q%y—p2a2 [k + (qy — px)2 +m2 — %y — p2a]3

m2

m? + (qy — px)? — ¢*y — p*x

= dm/ dyexu{p"(3r —1) —q¢"(3y — 1)} In .(B.8)






Anhang C

Epstein-Glaser-Resultate im
Impulsraum

Wihrend die einfache Ubersetzung einer formal von n — 1 Ortsdifferenzen z; — x, abhingi-
gen skalaren Distribution in den Impulsraum in einer Abhéngigkeit von n — 1 unabhéngigen
Impulsvariablen g; resultiert, bewirkt eine Berticksichtigung der zugehoérigen Wickmonome im
Ortsraum und eine Anwendung der S-Matrix auf duflere Teilchen die Ersetzung einer jeden Im-
pulsvariablen ¢; durch den am Vertex V; einfallenden dufleren Impuls p; geméfl ¢; = —p;; die
regularisierende Taylorsubtraktion bzgl. der Impulsraumvariablen wird durch diejenige hinsicht-
lich einer Auswahl von unabhéngigen dufleren Impulsen ersetzt.

Im folgenden sei dieser Ubergang fiir die in Kapitel 9.2 betrachteten Mehr-Schleifen-Dia-
gramme demonstriert:

C.1 Erster Zwei-Schleifen-Beitrag, d =4

Beginnend mit der im Ortsraum abschliefend auf subtrahierte Testfunktionen einzuschranken-
den Distribution

d/(.%'ll,.%'é) - AQF,reg(xll)A%',reg(x,Q) (Cl)

gemdf (9.9) sei zunéchst formal die Fouriertransformierte gebildet:

d(a1,02) = (A, (1) (AD) o, (a2): (€2)
In der regularisierten Distribution
dreg(q1,02) = (1 = 19, 1,)(A3), o, (01)(A%), ., (¢2) (C.3)

ist nun die Taylorsubtraktion bzgl. der Impulsraumvariablen ¢; und ¢o aufgrund des Verschwin-

dens der einzelnen Regularisierungen (AQF)reg(qi) an der Stelle ¢; = 0 redundant, so daf} bereits
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die Riicktransformation von (C.2) in den Ortsraum die Regularisierung des Gesamtdiagrammes
im Ortsraum darstellt:

d4q d4q i 1 i Do —_— —
dyeg (1, 22, 73) = / (%)12 / (%)226 alrimm) i@ (AT) (@1)(A%),,(a2).  (C4)

Zum Vergleich mit dem BPHZ-Verfahren, welches auf der Stufe von bzgl. ein- und ausfallender

duflerer Teilchen gebildeten Matrixelementen definiert ist, sei an dieser Stelle die entsprechende
Feynmanamplitude gebildet:

Die Hinzunahme des Wickmonoms : ¢?(z1)$?(x2) : mit den Feldoperatoren geméif (2.4) lie-
fert nach der Anwendung auf zwei am Vertex V7 mit dem Gesamtimpuls p einfallende und zwei
bei V5 entsprechend mit ¢ auslaufende Teilchen den Faktor (2711')6 e~ Pr1elaT2 g0 dafl als Auswer-
tung der regularisierten Distribution dyes auf der im physikalischen Grenzwert zu betrachteten
Funktion g(x1,x2,x3) = 1 folgender Ausdruck resultiert:

R 4 4
d(p,q) = /d4x1/d4x2/d4x3/ d q1 d q2 o1 (21 —23) p—ig2(z2—x3)

—1pT1 ,1qT2 2

T <AF>reg<q1><A%>reg<q2>

= (2m) /d4q1 /d 12(A%) o ( (¢1)(A2) )reg(@2)0(—aq1 = p)o(—q2 + @)d(q1 + ¢2)

= (2r (AF)reg( p)(A%)reg(q)5(p q); (C.5)

—

woraus unter Verwendung der speziellen Gestalt der Regularisierungen (A%)reg die in (9.10) mit
t3(p) bezeichnete Struktur folgt.

C.2 Zweiter Zwei-Schleifen-Beitrag, d = 6

Auf analoge Art und Weise erfolgt die Behandlung der abschliefend zu regularisierenden Distri-
bution

d/(xllaxIQ) AFreg( xIQ)AF,reg(xll)AF,reg(xIQ) (06)

gemif (9.20). Die im Impulsraum bzgl. der Impulsvariablen ¢; und g2 taylorsubtrahierte Fou-
riertransformierte,

—

dreg (1, q2) = # /d6 (1- t;ll qQ)(A%)reg(ﬁ)AF((h — D)Ap(g2 + ), (C.7)

fithrt nach Riicktransformation in den Ortsraum, Multiplikation mit dem die vier dufleren Teil-
chen berticksichtigenden Phasenfaktor We*“mmle*i(pl*m)“eip‘“’““2 und Auswertung auf der

Funktion g = 1 auf folgendes Resultat:
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d(p1, 2,3, p1)

6 6
— /d6$1/d6$2/d6 d (J1 / d q2 e—iq1($1—$3)e—iq2(m2—x3)
65(1 —

(27
ta, qQ)(A2 )reg D) AF ( —P)Ar(q2 +p)

(27T)
. 1 e~ P171 o —i(P1+P2)T3 HipaT2
(27].)10
1 —~ A A -
- &g / o [ 51 th, <A%)reg<p>AF<q1 — P)Ar(g+5)
'5( p1)6(—g2 + pa)d(q1 + g2 — p2 — p3)
1 5 — » . »
= o fpu t;@ﬂBNA%L%@»AFGﬂn—4ﬂAF@1+p2+p3+p)
0(=p1 — p2 — p3 + pa). (C.8)
Die Substitution p = —k; fiihrt schliefflich zusammen mit der Verwendung einer speziellen Wahl

der Regularisierung (A%)reg(;ﬁ) auf 3(p1, p2, p3) gemaB (9.21).

C.3 Drei-Schleifen-Beitrag zum Propagator

Die regularisierte Fouriertransformierte des Beitrags (9.31),

d/(‘r/l’xé) AFreg( $2)AFreg($/2)AF,reg(-T/1), (09)
zur Propagatorfunktion besitzt folgende Gestalt:

dreg (q1,q2) = (271r)3 /d6]5( t§1 q2)®reg(Q1 —ﬁ)AF(ﬁ)®reg(Q1 +q@—p). (C.10)

In diesem Beispiel liefern zwei duflere Teilchen den Phasenfaktor

(2;)5 e~ P11 50 daf - nach
der Substitution p — k3 - die Struktur des folgenden Ergebnisses gemifl (9.32) mit dem ent-
sprechenden Resultat des BPHZ-Verfahrens zu vergleichen ist:

A~ 6 . .
d(p,q) = /d6x1/d6x2/d6ﬂ:3/ - / i e_lql(xl_“)e—lfn(@—m)

—

s [ @i qlq2><A2>reg<ql p)AF@)(A%xeg(qqu—ﬁ)

(27r)
1 e—szlequg
— (2m) /fm/f@/f (1= t8, (A, (@1 — DAPE)AL), (@1 + a2 — P)
0(=q1 —p)o(—q2)0(q1 + g2 + q)

—

— @n) / 51— 3)(BD), oy (-p — PAFBBD), (~p—p)Op—q).  (C.1)
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