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Abstract

Relativistic charged particle optics in the context of accelerator physics have been

treated using transfer matrix methods since the 1950s. The realization that a hy-

perellipsoidal charged particle distribution could likewise be transformed if its 6-

dimensional covariance matrix was used, with diagonal elements as the squared sizes,

allowed for a computationally efficient and generalizable means to perform beam op-

tics studies and analysis. Initially confined to elements with constant focal strengths,

representable as square functions along the reference orbit and limited to constant

energy beamline sections, such methods have not been applied to accelerated beam en-

velopes. Instead, the latter have to date been reserved for multiparticle simulations,

more computationally taxing. The envelope code TRANSOPTR, developed at Chalk

River Nuclear Laboratories in the late 1970s, added to the repertoire of envelope

simulation capabilities by using a quadraticized Hamiltonian about a Frenet-Serret

reference particle frame, for numerical integration of beam envelopes subject to scalar

and vector potentials, including time-dependency. In this work, the beam-envelope

simulation capabilities of TRANSOPTR are extended to include rf quadrupole acceler-

ators and applied to include drift tube linear accelerators, enabling a full envelope

model of the ISAC-I linac, leading to the identification of a long standing issue with

its design tune. A corrective tuning prescription is elaborated for the ISAC-DTL.

The novel tuning method significantly reduces accelerator operation complexity and

therefore overhead time, by coupling machine tuning to parallel, beam diagnostic fed

simulations. The generalizibility of the MCAT approach and speed of TRANSOPTR

produce a suitable candidate for site-wide roll-out as the standard feedback driven

accelerator tuning control software.
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Chapter 1

Introduction

Over the last 100 years there has been a revolution in our understanding of matter,

thanks in no small part to the advent of a quantum perspective of elementary particles

and interactions. As the methods of nuclear physics and chemistry have become

more refined, so too has grown the domain of scrutinized atomic nuclei. This has

resulted in a state of affairs where the properties of abundant and stable elements

have by now become very exhaustively studied and measured. The discovery of

radioactivity culminating in the advent of controlled nuclear fission resulted in an ever-

growing ability to synthesize radioactive isotopes. This benefited our understanding

of the elements, their genesis in stars, and ultimately the evolution of matter in the

universe and our place within it. However, despite the progress in mapping out the

known elements, as one strays from the stable entries on the nuclear chart, the state

of understanding and knowledge of nuclear properties tends to diminish. Studying

unstable matter is part of answering ancient and vast questions...
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1.1 Accelerators and Particles

The 20th century also saw the advent of a growing ability to exploit electromagnetism

to manipulate streams of ionized particles under vacuum. Emerging technologies such

as transistors, amplifiers and oscillators allowed for the gradual increase of complexity

and refinement of these devices. Several accelerator designs and geometries have

emerged over the years, using time-varying electric fields to achieve energy gain. The

unprecedented ability to control and accelerate beams in turn drove the growth of the

field of particle physics for which the accelerator remains one of the most valuable

experimental tools.

As the maximum achievable energy of accelerators increased over time, so too did the

opportunity to study increasingly energetic interactions between particles. During

the 1960’s, accelerator-based experiments were so prolifically identifying new particles

that the period and its discoveries are jokingly referred to as the particle zoo. The

discovery of the electroweak interaction and quarks[1], once again in accelerator-driven

experiments, resolved the disorder by revealing that the unruly list of particles are in

fact different bound states of quarks. This culminated in the Standard Model.

1.2 The Cyclotron at TRIUMF

Initially an acronym standing for Tri-University Meson Factory, TRIUMF’s earliest

mission was centered around the production and study of Mesons, namely Pions or

Kaons, and their interactions. At its heart is an 18m diameter, 520MeV proton

cyclotron which has been accelerating H− beams since 1974[2]. The machine consists

of six magnet sectors (Figure 1.1), which define a vertical magnetic field inside the

vacuum chamber that produces magnetic deflection per the Lorentz force law:

F⃗B = q(v⃗ × B⃗).

2
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If a particle of mass m is not at rest with respect to the field (v > 0), the resulting

motion is centripetal:

mv2

r
= qvB (1.1)

with magnetic resonance frequency[4]:

f =
v

2πr
=

qB

2πm
. (1.2)

Figure 1.1: The lower segments of the TRIUMF cyclotron main magnets during
installation circa 1972[3]. The 520MeV cyclotron’s 18m main magnet diameter is
the largest for a cyclotron. Image obtained from TRIUMF photo archives.

3
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Both equations assume the magnetic field B is normal to the velocity vector. This is

known as the cyclotron equation and results in circular trajectories of radius r under

vacuum at constant energy. Cyclotrons achieve energy gain using a gap electric field

synchronized to the frequency of their revolution in the machine. In TRIUMF’s case,

the gap spans the diameter of the machine. Acceleration proceeds using a 23.56MHz

oscillating longitudinal electric field, the fifth harmonic of the ion revolution frequency,

which provides a small kick in energy as the particles traverse it. As their energy

increases, so too does the radius of their trajectory via Eq. (1.1) such that their

orbit tends them toward the outer circumference of the machine. Acceleration within

the TRIUMF cyclotron of negatively charged hydrogen means that beams can be

extracted at any intermediate energy by insertion of a carbon stripping foil. As the

beam and foil interact, H− is stripped of both its electrons. The change in charge

state, from negative to positive, inverts the sign of the orbit curvature, allowing

extraction. This design choice means TRIUMF’s cyclotron enables use of up to five

separate beamlines simultaneously at different energies if desired.

Since its inception in the late 1960’s, TRIUMF’s site has grown considerably with

the addition of new facilities such as ISAC’s linear accelerators delivering radioactive

beams to experiment stations. Most recently, the ARIEL project has added a new

driver electron linear accelerator on campus & corresponding network of transport

beamlines. No longer dedicated to meson production, as of 2023 TRIUMF consists of

a diversity of accelerators and facilities producing and delivering a range of particle

beams. There are no longer three full member universities, but fourteen. Though the

laboratory has outgrown its acronym, the name lives on.

1.3 Isotope Separation On-Line (ISOL)

Another emergent use of accelerators over the past decades has been the generation

of radioactive isotopes by particle bombardment, using a driver accelerator to send

beam into a target material. Typically the nuclear reactions at play are spallation, and

fragmentation with induced fission to a lesser extent. These transmutations produce

unstable radioactive isotopes within the target material, heated to temperatures on

the order of thousands of degrees centigrade[5]. This facilitates the diffusive escape

of radionuclides from the target material. Ionization can be induced either with an

4
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ionizer tube possessing a low work function, or through through collisional excitation

with a plasma. In addition, resonant ionization using laser light is possible, enabling

the selective charging of individual species. The ionized radioisotopes are extracted

to a beam transport system for delivery to experiments. This method is known as

Isotope-Separation On-Line (ISOL). TRIUMF’s implementation of this concept, the

Isotope Separator and Accelerator (ISAC), is shown in Figure 1.2. The cutaway view

in the figure includes both the ISAC-I and ISAC-II experimental halls along with the

underground 2A proton beamline from the main cyclotron. An ISAC target device

is shown in Fig. 1.3. Proton bombardment of the target, made on-site from different

materials including UCx, Ta, Nb and SiC[6], drives the production of radioactive

isotopes with ISAC target yields shown in Figure 1.4[7]. Target-extracted radioisotope

Figure 1.2: Overview of the ISAC facility at TRIUMF, consisting of the ISAC-I
(middle) and ISAC-II (top right) experimental halls. The 2A beamline, delivering up
to 520MeV protons from the TRIUMF cyclotron, is located at the bottom right of
the figure. At the ISAC target stations (bottom, middle) RIB production proceeds by
a variety of nuclear interactions between target material and beam. Original image
obtained from the TRIUMF Design Office.

5
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Figure 1.3: Left: Diagram of an ISAC target ion source showing a side and front
views. Right: Picture of an ISAC target, showing connection points for target heat-
ing, allowing operation at 2000◦C[8]. Images produced by and used with permission
from Dr.C. Babcock, TRIUMF.

beams are mass filtered through two analyzing magnets which compose the 135◦ ISAC

high resolution separator (Fig. 1.2), with mass separation resolution ofm/∆m = 2000.

Mass-selected beams can also be charge-bred in a charge state booster decreasing the

beam’s mass-to-charge (A/q) ratio as may be necessary for delivery.

Figure 1.4: Aggregate yield of produced isotopes at ISAC from different specified
target materials, as of 2020. Color scale indicates yield in ions/second. Produced by
and used with permission from Dr. P.Kunz, TRIUMF.

6
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1.4 The ISAC-I Postaccelerator

Post-accelerators coupled with an ISOL facility enable the study of higher energy

radioactive beams. At ISAC, beam acceleration and delivery to experiment is achieved

with a series of linear accelerating (linac) structures delivering mass-separated RIBs

to detector stations at specified energies. The ISAC-I linac’s segments are shown

in Figure 1.5. The accelerator consists of two main components: a radiofrequency

quadrupole (RFQ) for initial acceleration, followed by a drift tube linac (DTL). Both

devices will be further discussed in subsequent chapters. The diversity of requested

beam properties for the accelerator (energy, mass-to-charge, intensity, beam spot size,

etc..), results in an operational need to frequently reconfigure the machine. This can

be time-consuming owing to the complexity of establishing correct beam optics within

the linac and beamlines.

Figure 1.5: Overview of the ISAC Accelerator and ISAC-I beamlines. The ISAC-II
superconducting rf component is not shown. Relevant sections of the beamlines and
accelerators are colored. Obtained from the TRIUMF Design Office. For scale, the
RFQ tank (red) is 8m long.

7
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1.5 Research Goals

Modern accelerator designs have increased in complexity[9], for example the separated

function[10] combined zero degree structure (KONUS)[11], which provides fully vari-

able output energy and flexibility in A/q. The ISAC-I linac (Fig. 1.5) features 17 total

rf cavities, which includes bunchers, an RFQ structure and interdigital H-mode (IH)

cavities. In order to compute the ”tune” or global configuration of the machine there-

fore has meant piecing together the outputs of a variety of specialized models which

use different codes (PARMTEQ, TraceWin, LANA, LORASR, PARMELA, etc..), despite each

often being based on different operating systems if not from different computing eras

altogether. The study of inter-cavity effects and other emergent phenomena such as

transmission variations[12] is correspondingly more difficult. It is thus advantageous

to study such machines in a unified end-to-end model.

This capability can also be used to compute tunes, provided starting beam condi-

tions, either using available documentation or measured on-line. For a separated

function accelerator such as the apparatus at ISAC, the need for an efficient par-

allel modelling is clear. A fast beam envelope simulation capability can further be

used to develop model coupled accelerator tuning applications, for use by operators

tasked with the configuration of such a machine for beam delivery. Further, as the

accelerator community turns toward machine learning (ML) based tuning techniques,

an efficient envelope modelling code is mandatory for the purposes of training an

ML-based agent. The goal of the present research project is thus the development

of an end-to-end beam envelope model of the ISAC-I linear accelerator in the code

TRANSOPTR (optr).

To this end, the source for the beam envelope code, in use at TRIUMF for almost

four decades[13], has been expanded to enable the simulation of one of the main com-

ponents of the machine previously lacking: the radiofrequency quadrupole (RFQ)

linac[14], using a quadraticized Hamiltonian featuring the two-term Kapchinsky-

Teplyakov potential. The ISAC-DTL was further implemented in TRANSOPTR[15].

In both cases, these are novel demonstrations of beam transfer matrix optics[16], ap-

plied for the simulation and optimization of beam envelopes undergoing acceleration

in RFQs and DTLs. This required the generation of static electric field maps in

the code Opera2D, where models of the radiofrequency (rf) cavities based on original

8
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engineering drawings of the linac have been used, in addition to a beam-based ver-

ification of TRANSOPTR’s predicted DTL E/A output. The medium and high energy

transport beamlines (MEBT/HEBT/SEBT) have been constructed in optr as part of

this project, with technical reports[17, 18, 19] detailing those implementations. Ad-

ditionally, a TRANSOPTR model of the two gap ISAC-II superconducting rf resonators

(SCRF) has been implemented[20]. The full TRANSOPTR model of the ISAC linac

which is elaborated in this dissertation is intended for use as part of TRIUMF’s high

level application (HLA) effort[21], which aims to provide operators with tuning ap-

plications based on this work[22]. Examples of HLA’s include real-time simulation of

the beam through the machine, based on live setpoints in the accelerator. For this, a

web-based infrastructure has been developed at TRIUMF which enables interfacing

with the machine’s control system, EPICS[23]. By polling the latter in real time, it

is possible to supply the model with these setpoints, perform an optimization and

return the values to the machine, coupling envelope modelling and machine tuning.

This dissertation is divided into six chapters, including the present introduction.

Chapter 2 consists of an overview of elementary concepts relevant to accelerator tun-

ing and beam dynamics. In Chapter 3, the envelope code TRANSOPTR is discussed along

with the underlying Hamiltonian framework allowing for the treatment of relativistic

charged particle beams undergoing acceleration and introduces python[24] software

developed with the envelope code enabling full linac tune computations. Chapter 4

showcases the main components of the ISAC linac, along with their TRANSOPTR im-

plementations: the ISAC-RFQ and DTL. Benchmark simulations with particle codes

are presented for both, in addition to a demonstration of the full end-to-end envelope

simulation capability that has now been developed. An analysis of the MEBT optics

is presented, using the model to understand the longstanding observation that DTL

quadrupoles, when set to model computed values did not produce good beam quality,

instead causing low transmission. Chapter 5 presents beam-based data obtained with

the coupled use of the model, including the low energy sections. A calibration be-

tween TRANSOPTR and on-line DTL cavity rf amplitude settings, based on 16O4+ beam

data, is presented. This notably allows for the use of TRANSOPTR to compute full linac

tunes including prediction of DTL tank energies, the culmination of this dissertation.

A conclusion is presented in Chapter 6, reviewing the work and discussing future

prospects for development and research with this new tool.

9
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Chapter 2

Survey of Beam Optics

This chapter presents a brief overview of the basic concepts in beam optics, intro-

ducing the sliding Frenet-Serret reference particle frame and important quantities

relevant to the computation of beam containment envelopes and phase space ellipses.

Transfer matrices for select optical elements are presented and discussed, along with

concepts such as mismatches, energy gain and transit time factors. Nonlinear accel-

erating cavity behaviour is introduced.

2.1 Frenet-Serret Coordinates

Tracking the evolution of charged particles along an accelerator requires computing

very fine and quite large quantities, for example the evolution of a millimetre wide

beam over several dozen meters of travelled beampath or more. It is thus chosen

to adopt a sliding reference frame and separately track the total length of its dis-

placement. This avoids mixing both small and large quantities, which can introduce

sensitivity to rounding errors. The Frenet-Serret coordinate system shown in Figure

2.1 is chosen for the tracking of particle distributions moving through electromagnetic

fields over large travelled distances. It consists of a moving, at times non-inertial set

of orthogonal coordinates which are attached to a reference particle, about which

is centered the remainder of the ion distribution. The position vector R⃗ and basis

vectors x̂, ŷ, ŝ are referenced to a fixed origin point O and relate to each other by:
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R⃗ = xx̂+ yŷ + R⃗0(s), (2.1)

x̂× ŷ = ŝ (2.2)

and (x, y) are the transverse coordinates with respect to the reference. The unit vector

ŝ points in the direction of beam propagation, while x̂ is in the osculating plane of the

curvature. Both x̂ and ŷ are always transverse to the propagation axis by Eq. (2.2).

The vector R⃗0(s) follows the reference particle through the system. Owing to its

frequent use in circular accelerators, the Frenet-Serret reference trajectory s is also

referred to as the reference orbit, even if not necessarily circular, as is the case for

linacs. A longitudinal small displacement vector z⃗ is also defined with respect to the

reference particle, collinear to ŝ:

z⃗ × ŝ = 0⃗. (2.3)

Figure 2.1: Representation of a Frenet-Serret coordinate system, centered at the
origin point O. The vector R⃗ tracks an arbitrary particle which follows the specified
trajectory, while the Frenet-Serret orbit, corresponding to the reference trajectory
through the system, is tracked with the vector R⃗0. A small displacement vector
z⃗ is also defined, collinear to the propagation direction ŝ. Image obtained from
R.Baartman, TRIUMF, adapted from[25].

11
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For curvature along an orbit of radius ρ(s) in the x-plane, the associated longitudinal

momentum vector becomes:

Ps = P⃗ · ŝ
(
1 +

x

ρ(s)

)
. (2.4)

The s-coordinate refers to the beam propagation distance defined by the reference

particle’s trajectory. In the case of linear accelerators ρ is infinite.

2.2 Envelope, rms and Emittance

When tracking the collective motion of a distribution of particles, it can become

impractical to consider individual trajectories. As an example, a beam current of one

nanoampere (10−9A) of singly charged ions corresponds to roughly 6×109 particles

per second. Instead, the beam envelope, which measures the extent of their collective

trajectories can be tracked, shown in Figure 2.2. It is much less burdensome to work

with a handful of envelope size parameters and it also allows for greater computational

efficiency. In the remainder of this work, the metric of choice to measure the spread

of a distribution is the root mean square or rms:

xrms =

√√√√ 1

N

N∑
i=1

x2i . (2.5)

If the underlying population is Gaussian and two-dimensional, the 2 rms envelope en-

capsulates 86% of the particles. Though position coordinates typically have units of

centimeters or millimeters, the transverse momenta (Px, Py) are typically normalized

to the total beam momentum P0, which is generally orders of magnitude greater.

Both are by definition at right angles to each other, producing a transverse momenta

definition expressed as a small divergence angle with respect to P0, typically in mil-

liradians. This paraxial approximation allows for the expression of the transverse

momentum as a divergence angle x′:

x′ ≡ dx

ds
=
Px
P0

. (2.6)

12
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The approximation is only valid if the momentum does not contain vector potential

terms. In this dissertation, unless otherwise specified, use of x′ to represent transverse

canonical momentum assumes this. For a given conjugate (x, x′) phase space particle

distribution, a common approach in beam optics is to parameterize its extent as that

of an ellipse, using the Twiss or Courant-Snyder parameters[27], which define a tilted

ellipse:

ϵrms = γx2 + 2αxx′ + βx′2. (2.7)

Gaussian phase space particle distributions possess contours of constant density which

are ellipses. Eq. (2.7) defines one of emittance ϵrms which contains 86% of the popula-

tion. An unfortunate reality in accelerator physics is the coexistence of two definitions

for the symbols (β, γ): the relativistic definitions and the Twiss parameters. For this

reason, it is always necessary to specify the context of its use. The Twiss parameters

(α, β, γ) are related to each other by:

βγ = 1 + α2. (2.8)

Figure 2.2: Representation of the envelope of a beam (blue), a containment surface
whose extent encapsulates the collective trajectories of the ions in the beam. A single
ion trajectory is shown in red. Image provided by Dr. S. Rädel, TRIUMF, adapted
from[25, 26].

13
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This ellipse has an area of A = πϵrms, where the size parameter ϵrms is related to the

extent (xrms, x
′
rms, (xx

′)rms) of the distribution via:

ϵrms =
√
x2rmsx

′2
rms − (xx′)2rms. (2.9)

This geometric emittance has units of microns: Divergence x′rms is typically on the

scale of mrad (10−3) and x in cm (10−2m), with typical values for ϵrms on the order of

10µm. Emittance plays an important role in beam optics since it relates to conserva-

tion laws, further discussed in Chapter 3. It is an observable beam parameter which

measures its temperature, or internal energy. Beams with higher emittances have a

higher tendency to diverge during propagation. Under changes of beam energy, while

the emittance itself is not conserved, the normalized emittance is:

ϵ∗ = βγϵrms (2.10)

where βγ here are the relativistic factors. The evolution of the beam envelope

through the accelerator along a trajectory s can be expressed in terms of the func-

tions (α(s), β(s), γ(s), ϵ(s)). The Twiss parameters β and γ relate to the extent of

the distribution in phase space along the position and momentum axes, respectively.

The rms envelope is obtained evaluating the projections of the ellipse of Eq. (2.7):

xrms =
√
βϵrms, (2.11)

x′rms =
√
γϵrms. (2.12)

For 86% containment envelopes, four times the rms emittance is used in Eqs. (2.11)

and (2.12), corresponding to an ellipse of area A = 4πϵrms. The ellipse’s vertical

orientation angle θ is related to the parameter α:

tan(2θ) =
2α

γ − β
. (2.13)

An example phase space beam distribution which is Gaussian in (x, x′) is shown in

Figure 2.3, with 86% containment bounds for both the position and momentum ex-

tent. The Twiss parameter ellipse from Eq. (2.7), of area A = 4πϵrms is superimposed

to the distribution in red in the figure.

14
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Figure 2.3: Simulated phase space transverse beam distribution showing 105 particles.
This can be parameterized using the Courant-Snyder ellipse from Eq. (2.7). The 86% x
and x′ containment lines, in addition to the relationship between ellipse tilt angle and
the Courant-Snyder parameters is shown. Normalized relative local particle density
shown as a colormap. The ellipse tilt angle θ is measured with respect to the vertical,
not horizontal axis.
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2.3 Hill Differential Equation

The charged particles that form the beam individually obey the Lorentz force law:

F⃗ = q(E⃗+ v⃗ × B⃗). (2.14)

For any particle, x and x′ evolve according to these ordinary differential equations:

dx

ds
= x′ (2.15)

dx′

ds
= |F⃗|. (2.16)

Not only do single particles evolve in this manner, but so do the particles in phase

space that lie directly on the line defined by the ellipse of Eq. (2.7), for a given emit-

tance. Thus, when discussing the evolution of the 86% containment ellipse ϵrms, this

is what is understood. If the forces are linear, individual particle trajectories within

the ellipse do not cross the rms envelope. During its transformation through the

various fields, the fraction of particles contained within the ellipse remains constant.

If the electromagnetic force terms acting on the particles can be expressed as linearly

dependent on the transverse position x:

|F⃗| = −K(s)x, (2.17)

where s is the Frenet-Serret trajectory along the beam axis of propagation, then

Eqs. (2.15) & (2.16) can be arranged as a Hill differential equation[28]:

d2x

ds2
+K(s)x = 0. (2.18)

Provided known initial conditions, the solution of Eq. (2.18) allows for the compu-

tation of the evolution of the beam envelope, as it transits through the fields of the

beamlines and accelerators. The study of a beam distribution parameterized by the

Twiss parameter ellipse of Eq. (2.7) using Eq. (2.18) with fields (2.17) forms the basis

of beam optics analysis for accelerators.

16



Chapter 2 Survey of Beam Optics

2.4 Matrix Optics and Common Devices

Though there are in principle a limitless number of possible designs for the devices

that generate the electromagnetic forces that define beam optics, a select few compose

the vast majority of what is presently used in accelerators and beamlines. The effects

of those devices on a beam distribution here represented by the initial extent of its

envelope in (xi,x
′
i) can be handled using the formalism of transfer matrix optics.

A beam optical device of nonzero length which produces a linear restoring force in

accordance to (2.17) will give a solution to the Hill equation (2.18) which takes the

form:

(
x

x′

)
=

(
m11 m12

m21 m22

)(
xi

x′i

)
. (2.19)

The elements mij define the transfer matrix M of the system, which transforms the

initial beam distribution into its final state, following transit through the field. The

coefficients of M are obtained by solving the Hill equation (2.18) for a given K(s).

The simplest case for M is a field free drift where K(s) vanishes:

d2x

ds2
= 0, (2.20)

in this case, the solution after a drift length d is trivial, obtained by twice integrating

(2.20):

MO =

(
1 d

0 1

)
. (2.21)

The subscript on M denotes absence of fields. In the case where the term K(s) is

linear and constant over a distance d, the Hill equation resembles:

d2x

ds2
+ kx = 0. (2.22)

17
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The general solution over this distance is a linear combination of sine- and cosine-like

functions S(l) and C(l), where l is the length of the field along s:

x(l) = S(l)xi + C(l)x′i. (2.23)

This produces two sets of solutions, which depend upon the sign of the parameter k.

If k > 0, the solutions are harmonic:

S(l) =
1√
k
sin(l

√
k), (2.24)

C(l) = cos(l
√
k), (2.25)

while they are hyperbolic if k < 0:

S(l) =
1√
|k|

sinh(l
√
|k|), (2.26)

C(l) = cosh(l
√

|k|). (2.27)

In matrix form, the solutions are respectively[28]:

MF =

(
cos(l

√
k) 1√

k
sin(l

√
k)

−
√
k sin(l

√
k) cos(l

√
k)

)
, (2.28)

MD =

 cosh(l
√
|k|) 1√

|k|
sinh(l

√
|k|)√

|k| sinh(l
√
|k|) cosh(l

√
|k|)

 . (2.29)

The transfer matrices (2.28) & (2.29) correspond to the case of a quadrupole field

which can either be magnetic or electric. Cases with k > 0 cause the field to focus,

meaning the beam converges towards the reference particle. The field defocuses if

k < 0, implying divergent motion away from the reference. The amplitude of the

quadrupole field arises from a potential whose amplitude has the form:

ϕQ =
k

2
(x2 − y2). (2.30)

18
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A fundamental feature of quadrupoles is that they focus in one dimension while

defocusing in the other. This is ultimately a consequence of Poisson’s equation for

free space:

∇2ϕ = 0 (2.31)

for which the potential (2.30) is a solution. For this reason, transport systems are

usually constructed with sequential quadrupoles of alternating polarity. This balances

the focusing and defocusing effects to the beam distribution, keeping the envelope

under control. In practice, use of electrostatic quadrupoles is typical in low energy

sections for nonrelativistic beams, while magnetic quadrupoles are used in medium

and high energy beamlines, where β (velocity) is non-negligible. As a result, low

energy sections typically operate electrostatic quadrupoles with electrodes at up to a

few kilovolts, while high energy beamlines employ magnetic quadrupoles with currents

typically in the range of dozens of amperes. In either case, the constant k in Eq. (2.30)

takes on different definitions:

ke ≈
VQ
a2V0

, (2.32)

km =
B′

Bρ
. (2.33)

The nonrelativistic limit is shown for ke, VQ is the quadrupole electrode voltage, V0 is

the beam extraction voltage and a is the quadrupole aperture[29]. For the magnetic

case, km, B
′ is the field gradient and the denominator corresponds to the beam rigidity

(Bρ). The focal length of quadrupoles with transfer matrices (2.28) or (2.29) can be

found by allowing l → 0 while holding the product kl constant, which produces a

thin lens approximation:

lim
l→0

MF =

(
1 0

−kl 1

)
, (2.34)

lim
l→0

MD =

(
1 0

kl 1

)
, (2.35)

where the product kl is held constant for both limits. The transfer matrices (2.34)
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and (2.35) are identical to that of a lens in ray optics:

M± =

(
1 0

∓ 1
f

1

)
(2.36)

implying the focal length of thin electromagnetic quadrupoles arising from the poten-

tial (2.30) is:

f =
1

kl
, (2.37)

where the strength parameter k is either from Eqs. (2.32) or (2.33) depending on the

nature of the field. An object, in this case a beam distribution at a position s0 will

be imaged by a quadrupole at a point s1 according to the thin lens equation:

1

s0
+

1

s1
=

1

f
. (2.38)

In addition, the net focal effect upon the beam of two adjacent quadrupoles with foci

f1 and f2 is:
1

f
=

1

f1
+

1

f2
(2.39)

which assumes the lenses are exactly adjacent. In the more realistic event that they

are separated by a drift, the resulting arrangement is referred to as a FODO cell,

since it consists of a focusing quad (F), a defocusing quad (D) separated by drifts

(O). Groups of FODO cells, also referred to as doublets can be used to achieve periodic

transport of a beam, as shown in Figure 2.4. The compound transfer matrix of a single

doublet is:

MFODO = MOMDMOMF (2.40)

and the condition for periodic transport can be expressed as:(
xi

x′i

)
= MFODO

(
xi

x′i

)
. (2.41)

The matrix (2.40) is obtained using the transfer matrices of the FODO components

in Eqs. (2.28), (2.29) and (2.21), meaning an analytic solution can be found for (2.41).

Such an analysis is at the heart of beam transport and tune design.
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Figure 2.4: 2 rms (x, y) containment envelopes for a beam of 14N+ at an energy of
21MeV (β = 5.6%). The beamline sequence consists of two successive FODO cells, or
quadrupole doublets, which have been tuned to produce a focus-to-focus condition,
imaging the starting beam distribution at the endpoint of the axis s. The horizontal
(x) relative focal strength of each device is shown in black, indicating the quadrupole
locations. The vertical (y) envelope is shown as negative for neatness of plotting.

2.5 Dispersion and Chromaticity

When a single charged particle transits through a static and uniform magnetic field

in a vacuum, the resulting trajectory is circular per the Lorentz Force law (2.14).

The same situation but with a population of ions distributed about a reference par-

ticle with an inherent energy spread will cause dispersion: Particles with above or

below average beam velocity will have trajectories with different radii of curvature

through the field. This is problematic for the use of downstream optics, for example

quadrupoles whose focal strengths per Eqs. (2.32) and (2.33) depend on the beam

velocity. In the electrostatic case this dependence is indirect through the beam ex-

traction voltage, while in the magnetic case, the rigidity of a beam is a measure of

its momentum via:

Bρ =
P0

q
, (2.42)
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where q is the charge. In both cases, the dispersion can be treated via Hill’s equation,

by adding a momentum dependent term[30]:

d2x(s)

ds2
+K(s)x(s) =

1

ρ(s)

∆P (s)

P0

. (2.43)

P0 and ∆P (s) are the reference particle momentum and the bunch momentum spreads,

respectively and ρ(s) is the reference radius of curvature through the field. This in-

homogeneous form of Hill’s equation generates an additional term which is linearly

added to the homogeneous solution x0:

x(s) = x0 +D(s)
∆P (s)

P0

. (2.44)

The function D(s) has the definition:

D(s) =
∆x(s)

(∆P (s)/P0)
(2.45)

and quantifies the dispersion of the beam. It is a ratio of the lateral deflection ∆x(s)

that an off-momentum particle with P (s) = P0 +∆P (s) experiences after a bending

field, whether electric or magnetic. The units of D(s) are that of size, typically meters

or centimeters. Once the dispersion is nonzero in a beam, it will evolve per:

d2

ds2
D(s) +K(s)D(s) =

1

ρ
, (2.46)

whose solution has the form:

D(s) = S(s)

∫ s

0

C(χ)

ρ(χ)
dχ− C(s)

∫ s

0

S(χ)

ρ(χ)
dχ. (2.47)

The improper integrals in Eq. (2.47) involve functions S(s) and C(s) which are sine

and cosine functions if K(s) > 0 and are hyperbolic otherwise. As an example, a

dipole bending magnet’s vertical magnetic field lines disperse the beam horizontally,

resulting in K(s) = 1/ρ2, where ρ is the radius of curvature of the reference particle.

The transfer matrix of such a dipole, per Eq. (2.28), the linear K(s) solution to Hill’s

equation, is[28]:

MDip =

(
cos l

ρ
1
ρ
sin l

ρ

−1
ρ
sin l

ρ
cos l

ρ

)
. (2.48)
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The corresponding value of the dispersion and its first derivative are, for a dipole:

D(s) = ρ
(
1− cos

l

ρ

)
(2.49)

D′(s) = sin
l

ρ
. (2.50)

A beam following a trajectory s, for which:

D(s) = 0, (2.51)

D′(s) = 0, (2.52)

is free of dispersion and will maintain this condition until it interacts with a dispersive

element, such as a dipole. Quadrupole lenses which are used to transversely focus or

defocus the beam will not initiate dispersion, though if it is nonzero prior to transiting

through the quadrupole, there will result a change in the focal effect upon the beam,

which in turn will change the dispersion. This takes place because the high and low

energy sides of the beam will possess separate foci.

The condition where the focal length of optical devices is spread across a region f±∆f

is known as chromaticity[30, 31], arising from the Greek chromos for color, denoting

energy dependent focal effects. In a charged particle beam, this is unwanted as it

degrades the ability to precisely control its envelope. The Twiss ellipse of Eq. (2.7)

assumes uncorrelated transverse and longitudinal distributions. If the dispersion is

nonzero but is not accounted for, the Twiss parameter fit for (α, β, γ, ϵ) will not

represent the true beam distribution, which will have underlying correlations between

(x, x′) and (z,∆P ). The evolution of the fitted, dispersion free ellipse will be found

not to agree with the measurable beam distribution downstream; control of the beam

has been lost. To counteract this, it is possible to pair quadrupoles with dispersive

elements to produce a net arrangement which will be fully achromatic with D(s) =

D′(s) = 0. Thus, to maintain control of the beam, it is desired to keep it doubly

achromatic, meaning tunes including bend segments are typically designed with this

condition in mind.
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2.6 Nonlinearities and Mismatches

The devices discussed thus far have been represented by idealized fields producing

linear forces. In reality, this would require electrodes of infinite length[32]. In practice,

devices have higher than first order dependency, though their design is aimed at

suppressing, as much as possible, higher order contributions near-axis. As an example,

a quadrupole with imperfect electrode shapes can be represented by a potential[33]:

ϕQ =
k

2
(x2 − y2)− k′′

24
(x4 − y4) +

k′′′′

720
(x6 − y6)− · · · (2.53)

Forces generated from the gradient of (2.53) inherit coordinate dependencies as illus-

trated in Figure 2.5. While the linear contribution is dominant for small transverse

displacements from the beam axis, as the distance increases higher order contribu-

tions may grow significantly. In this case, the forces acting upon the bunch become

nonlinear, which introduces distortions in the phase space distribution of the par-

ticles. In Figure 2.6, a simulated third order distortion has been introduced to an

initial distribution represented by the red ellipse. The net effect of the distortion is to

increase the emittance of the distribution by way of filamentation. As a consequence,
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Figure 2.5: Relative contribution of the linear, third order and fifth order coordinate
dependencies from the forces arising from the gradient of the potential (2.53). The
coordinate x/x0 measures the transverse displacement away from the Frenet-Serret
trajectory s. The point x0 here illustrates the transverse position where first, third and
fifth order are of equal strength. Good accelerator tunes aim to keep the transverse
envelope contained in the region where only first order terms dominate.
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when one recomputes the Twiss parameter fit, the purple ellipse is obtained. Particles

furthest away from the dense core of the beam will no longer follow the intended linear

evolution through phase space and can be expected to inherit further nonlinearities,

increasing the emittance still. The distribution shown in Fig. 2.6 is mismatched with

respect to the design assumption (red ellipse) and will likely suffer from transmission

Figure 2.6: An original phase space beam distribution represented by the red el-
lipse has suffered a third order aberration, resulting in the displayed particle density
distribution. The perturbed distribution is fit to an ellipse per Eqs. (2.7) and (2.9), re-
sulting in a mismatch condition in the tune. Normalized local particle density shown
as a colormap.
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losses downstream as extremal particles collide with apertures. Bovet[34] defines a

mismatch parameter1 D for two ellipses described by Twiss parameters according to

Eq. (2.7):

D =
1

2
(β2γ1 + γ2β1 − 2α1α2). (2.54)

Looking back at the Twiss parameter ellipse from Eq. (2.8), this produces a value of

exactly D = 1 for maximum overlap: (α1, β1, γ1) = (α2, β2, γ2). For the special case

of two ellipses of common area S, centered at the same point, whose orientations and

semi-axes may differ, the common overlap area SC is:

SC
S

=
4

π

√
arctan(D −

√
D2 − 1). (2.55)

which is unity if D = 1 and decreases asymptotically towards zero as the mismatch pa-

rameter increases. The formulas (2.54) and (2.55) allow for the quantification of a tune

mismatch, providing a minimizable parameter for optimization computations[13]. In

Figure 2.7, a general transformation error is shown. It is assumed that the quadrupole

from Eq. (2.28), possessing an unknown strength parameter error, should transform

(P1,P2) into (P1’, P2’), but the result is actually (E1, E2). These depend in turn

on the error upon the strength parameter k, but they both scale with the phase space

coordinates. The more eccentric distribution (Fig. 2.8, red), in presence of a field

error, overlaps less of the tune assumption than the rounder distribution (same fig.,

blue).

In practice, observation of a mismatch condition as in Figure 2.6 at a beam diagnostic

would require corrective tuning. This intervention would aim to restore the desired

beam profile (red ellipse). However, such aberrations cannot be undone without re-

sorting to specialized corrective optics such as sextupole magnets, which can reverse

the third order effect. Should such a device not be available, the only way to avoid

mismatches arising from nonlinearities is to ensure the beam envelope remains con-

fined to the region near-axis, where the dominant effects are linear and higher order

contributions are suppressed. The added criterion of keeping envelopes confined to

this region is an important consideration when computing and analyzing beams and

tunes through beamlines and accelerators.

1In this dissertation, Bovet’s parameter D is presented in cursive to differentiate it from the beam
dispersion D.
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Figure 2.7: Input ellipses whose points furthest from the origin are P1 and P2 have
been transformed by a quadrupole with a field error. The tune assumption is that
(P1,P2) are transformed to (P1’,P2’), but in reality they have been transformed
into (E1,E2).
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Figure 2.8: Ratio of area overlap between actual and expected (B = B0) ellipses
after transformation through a quadrupole with a field error B = B0 +∆B. The x-
axis shows the quadrupole field normalized to the tune expectation, while the y-axis
values are that of Eq. (2.55). For a given emittance, distributions with a larger value
of Twiss-α for a given β-function are more sensitive to such errors. Distributions
which are less eccentric and inclined (small x′) will suffer from lesser mismatches.
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2.7 Energy Gain and Transit Times

Assuming the electric field through which the beam travels has a longitudinal com-

ponent, this will change the particles’ kinetic energy. The magnetic field does not

contribute to energy gain, though magnetic fields will cause deflection per Eq. (2.14).

For this reason, accelerating structures are typically designed to minimize the influ-

ence of the magnetic field near to the beam axis. The energy of each particle after

transit through a field of length 2L, symmetric about s = 0 is:

E(s) = E0 + q

∫ L

−L
Ez(s, t(s))ds, (2.56)

where Ez(s, t(s)) is the time-dependent longitudinal component of the electric field

along the reference trajectory. As the beam has a nonzero extent in phase space,

each particle therefore experiences slightly different conditions during field transit.

From this results a time and energy spread in the positions and momenta of particles

exiting the field, which must be kept under control to avoid transmission losses. In

practice, the longitudinal bunch length is kept small compared to βλ, where λ is the

rf wavelength of the field and β is the velocity. This minimizes nonlinearities arising

from either the spatial or time-dependent components of the accelerating field. This

electric field Ez(s, t(s)) of length 2L is spatially symmetric about a central point and

has the boundary conditions Ez(±∞) = 0, such that it causes an energy gain:

∆E = q

∫ L

−L
Ez(s, t(s))ds (2.57)

= q

∫ L

−L
Ez(s) cos(ωt(s) + ϕ)ds (2.58)

= q

∫ L

−L
Ez(s)

(
cos(ωt(s)) cosϕ− sin(ωt(s)) sinϕ

)
ds. (2.59)

The Transit Time Factor (TTF), usually denoted T [27] is an efficiency ratio aris-

ing from the consequence that during transit through the field, the time variation

of Ez(s, t(s)) causes the energy gain to be less than if the field had been time-

independent:

∆E = qT cosϕ

∫ L

−L
Ez(s)ds, (2.60)
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where the transit time factor is defined as:

T =

∫ L
−LEz(s) cos(ωt(s))ds∫ L

−LEz(s)ds
− tanϕ

∫ L
−LEz(s) sin(ωt(s))ds∫ L

−LEz(s)ds
. (2.61)

If the field Ez(s) is even about a central point[27], the second term in Eq. (2.61)

vanishes due to the odd nature of the sine function. In this case, the TTF is:

T =

∫ L
−LEz(s) cos(ωt(s))ds∫ L

−LEz(s)ds
. (2.62)

Equation (2.62) renders explicit that T is an efficiency factor bounded in [-1,1]. For

maximum energy gain at a given field intensity Ez(s), it is necessary to maximize the

integral in the numerator, which means changing the field’s amplitude or phase. Use

of the TTF in turn allows to express the energy gained as:

∆E = qV0T cosϕ. (2.63)

The quantity V0 is the integral term in Eq. (2.60), which when multiplied by the transit

efficiency T is an effective voltage that the particle experiences transiting the gap.

This accounts for the diminished accelerating efficiency due to the rf time dependency

of the field. Computing ∆E using Eq. (2.63) avoids the need to constantly solve for

t(s), which increases the complexity of the problem. The advantage of using the TTF

is that it only requires a single evaluation of t(s) for the reference particle in a given

field, to find the value of T .

2.8 Multigap Accelerating Fields

An example of an electric field whose effect upon a beam is well represented by

the TTF approach is that of a two gap resonant rf cavity[35], shown in Figure 2.9,

including its on-axis electric field Ez(s). This cavity belongs to the ISAC SCRF

booster[36], whose output beam energy is operationally computed using Eq. (2.63).

Since the cavity is formed of two gaps of identical length L, the electric field can be

separated evenly about a middle point, meaning T will be expressible as Eq. (2.62).
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Figure 2.9: Left: Example cutaway of a two gap resonant rf cavity. The geometric
centerpoint is indicated with the dotted blue lines. Beam propagates along the blue
horizontal line. The central pillar of the cavity is electrically grounded, so are the
exterior walls. Right: Normalized values of Ez(s) denoted E(s) on-axis through the
cavity. Drawing obtained from TRIUMF Design Office. Field data obtained from
R. Laxdal, TRIUMF.

The energy gain ∆E across the both gaps will be:

∆E2gap = ∆E1 +∆E2, (2.64)

= qV0T1 cosϕ1 + qV0T2 cosϕ2. (2.65)

The effective voltage V0 across each gap is identical for the cavity in Fig. 2.9. Moreover,

the energy gain in each gap is small enough to apply a constant energy approximation,

in which the reference particle velocity is assumed to be constant[27, 37], meaning

T1 ≈ T2 = Tgap:

∆E2gap ≈ 2qV0Tgap cosϕ, (2.66)

with Tgap evaluated across a single cavity gap. Operators control the cavity field

amplitude, which scales V0, in addition to the rf phase ϕ. In this case, computing the

transit time factor is advantageous, since one can then obtain the cavity output beam

energy without evaluating differential equations, beyond finding Tgap once. About this

last point, Wangler writes[27]:

”The phase and the transit-time factor depend on the choice of the origin. It is

convenient to simplify the transit-time factor, and remove its dependence on the phase,

by choosing the origin at the electrical center. [the longitudinal electric field] is usually

at least approximately an even function about a geometric center of the gap.”
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If the total number of gaps in the cavity increases, the factors T across each gap

can start to appreciably differ. Multi-gap cavities may also feature variable gap

lengths, meaning the electric field Ez(s) across each gap will also differ in profile,

compromising the simplicity of the TTF’s behaviour. Such a field is shown in Figure

2.10, corresponding to a 9 gap accelerating cavity belonging to the ISAC-DTL[38].

For the aforementioned reasons, operational DTL energy change computations cannot

make use of Eq. (2.66). In this case, or more generally for an n-gap cavity:

∆Engap = q
n∑
i=1

ViTi cosϕi. (2.67)

The behaviour of the above energy gain can become quite complicated, since a change

of initial phase ϕ1 or of effective voltage amplitude V1 for the first gap may cause

a considerable change in the profile of t(s) downstream. Evaluation of Eq. (2.67)

requires solving the full TTF from Eq. (2.61), or referring to pre-computed single gap

factors and adding them. Despite this, the TTF approach produces a discontinuous

energy gain, which is unphysical! To obtain the continuous evolution of the beam

energy along a cavity such as Fig. 2.10, one must solve:

E(s) = E0 + q

∫
Ez(s) cos(ωt(s) + ϕ)ds, (2.68)

whose solution depends on the field amplitude, ϕ and t(s). Figure 2.11 shows reference

particle velocity profiles through the aforementioned field. The starting rf phase is

identical, but different field scaling parameters VS1 < VS2 < VS3 have been used,

demonstrating the cavity’s nonlinear output velocity response. Simulating continuous

beam envelopes undergoing energy gain within such cavities requires making use of a

method which is capable of efficiently solving the equations of motion for relativistic

charged particles, obtaining t(s) which in turn will enable evaluation of Eq. (2.68).
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Figure 2.10: Simulated normalized Ez(s) field denoted E(s) for the first multigap
accelerating cavity of the ISAC-DTL. The cavity consists of nine separate gaps with
an operational design input E/A of 0.153MeV/u and an output E/A of 0.238MeV/u.
Normalization of the field intensity to the maximum value in the set bounds the
function to [-1,1], allowing for the use of a scaling parameter to represent changes of
rf amplitude.
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Figure 2.11: Reference particle energy profiles through the first ISAC-DTL accelerat-
ing field (Fig. 2.10), at three on-axis field scaling factors Vs1 < Vs2 < Vs3 and identical
ϕ0. The cavity output energy is nonlinear to field scaling, with in this case the lowest
on-axis scaling factor producing the greatest output reference particle energy. Larger
initial acceleration causes progressive phase slippage along the structure, eventually
leading to considerable deceleration forces, which reduces the output energy.
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Chapter 3

Hamiltonian Envelope Dynamics

and TRANSOPTR

Originally developed at Chalk River Nuclear Laboratories by Hutcheon & Heighway

in the late 70’s[39] TRANSOPTR is a first order transport code based upon the sigma

matrix formalism developed by Brown[40] and Sacherer[41]. The Courant-Snyder

Hamiltonian[42] for a relativistic charged particle is used to track the evolution of the

rms envelopes through the fields of the accelerator. Since its initial development, it has

been extensively developed and adapted for usage at TRIUMF, by Baartman et al [13].

Over decades of development, the TRIUMF Beam Physics department has extended

TRANSOPTR to allow inclusion of various facilities including the 520MeV cyclotron

injection line and inflector[43]. The code has also been used to model and study the

newer TRIUMF electron linac and transport lines[44]. TRANSOPTR notably avoids use

of transit time factor approximations, instead directly integrating the energy gain

from the field. However, as a result of various historical and practical development

realities, the code was never fully extended to cover the ISAC linear accelerators.

This chapter presents the Hamiltonian formalism employed by TRANSOPTR and the

infinitesimal transfer matrices that are needed to compute beam envelopes in the

ISAC linear accelerator. As part of this work, TRANSOPTR was further extended with

an RFQ capability and published in Physical Review Accelerators and Beams[14],

which is presented in Section 3.7. Additionally, the envelope code’s DTL simulation,

a novel application, was implemented using the axial electric field capability shown

in Section 3.6.
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3.1 Courant-Snyder Hamiltonian

and Beam Matrix Formalism

A general, time dependant electromagnetic field is represented by the effect of both

a scalar and vector, ϕ and A⃗, both functions of space and time. In the Frenet-Serret

coordinate system, the equations of motion for relativistic massive particles transiting

such fields are obtained with the Courant-Snyder Hamiltonian[42], with independent

variable s[45]:

Hs = −qAs −
(
1 +

x

ρ

)√(
E − qϕ

c

)2

−m2c2 − (Px − qAx)2 − (Py − qAy)2, (3.1)

where the vector potential has been decomposed into its three constituent spatial

components, while the scalar potential is subtracted directly from the canonical en-

ergy E. The particle is assumed to have mass m and charge q, while c is the speed of

light in a vacuum. In the case of a linear accelerator, ρ = ∞. The Hamiltonian (3.1)

provides information for a single reference particle around which the Frenet-Serret

frame is built, however it is desired to understand the evolution of the beam distribu-

tion, composed of countless particles. First consider the six phase space coordinates

for a single particle in column vector form:

X =
(
x, Px, y, Py, z, Pz

)T
. (3.2)

The phase space coordinate of each particle in the ensemble is represented by a state-

vector of the form in Eq. (3.2). The first order moments produce the centroids of the

distribution with N particles:

⟨X⟩ = 1

N

N∑
n=1

X. (3.3)

Second moments are defined by the covariance matrix, which is commonly denoted

as σ. It is also referred to in accelerator physics as the beam matrix. Assuming the
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first moments are zero, the matrix σ is defined as:

σ ≡ 1

N

N∑
n=1

XXT , (3.4)

with the superscript T here denoting transposition. For example, if the phase space

distribution function is f , the σ-matrix element σ11 is defined as:

σ11 =

∫
· · ·
∫
V6

x2f(x, Px, y, Py, z, Pz)dx · · · dPz (3.5)

with the integration spanning the extent of the six canonical phase space coordinates.

Obtaining values for the σ-matrix at each step along the reference particle’s trajectory

will provide a description of the rms values of the beam envelopes. TRANSOPTR is a

linear envelope code, meaning it can evaluate Hamilton’s equations of motion:

x′ =
∂H

∂Px
, (3.6)

P ′
x = −∂H

∂x
, (3.7)

to first order in the canonical coordinates, only. Knowing that these equations them-

selves involve first order derivatives of a Hamiltonian, using one with up to second

order coordinate dependence will produce the linear component of the motion. For

this, the Hamiltonian (3.1) is expanded in a series up to second order:

Hs = H0 +
∑
i

∂H

∂xi

∣∣∣
0
xi +

1

2

∑
i,j

∂2H

∂xi∂xj

∣∣∣
0
xixj + ... (3.8)

where the summation indices i, j are over the 6 canonical coordinates. The constant

term H0 vanishes upon evaluation of first order derivatives. In the co-moving Frenet-

Serret frame, the first order term corresponds to the motion of the reference particle.

Setting these to zero means the reference particle is always on the optical axis of

symmetry. With this choice, the Hamiltonian describing the particle distribution is

35



Model Coupled Accelerator Tuning Olivier Shelbaya

only dependent upon the second order terms of xixj, which correspond to the second

moments in the beam matrix σ. The Hamiltonian now has the form:

Hs = Ax2 +BxPx + Cxy +DxPy + ...+KP 2
z . (3.9)

The linear coefficients contain the second order partial derivatives of the Hamiltonian

in Equation (3.8). After evaluating Hamilton’s equations on the above, the resulting

system of equations can concisely be expressed as:

dX

ds
= F(s)X, (3.10)

where X is the column vector from Equation (3.2) and the matrix F(s), also known

as the infinitesimal transfer matrix[45], contains the second derivative terms:

F(s) =



∂2H
∂Px∂x

∂2H
∂P 2

x
. . . ∂2H

∂Px∂Pz

−∂2H
∂x2

− ∂2H
∂x∂Px

. . . − ∂2H
∂x∂Pz

∂2H
∂Py∂x

∂2H
∂Py∂Px

. . . ∂2H
∂Py∂Pz

− ∂2H
∂y∂x

− ∂2H
∂y∂Px

. . . − ∂2H
∂y∂Pz

∂2H
∂Pz∂x

∂2H
∂Pz∂Px

. . . ∂2H
∂P 2

z

− ∂2H
∂z∂x

− ∂2H
∂z∂Px

. . . − ∂2H
∂z∂Pz


. (3.11)

In all, there are 36 equations, involving the set of all second order partial derivatives of

Hs with respect to the 6 canonical coordinates. Due to the symmetry of mixed partial

derivatives, there are 21 independent terms in F(s). Two supplemental equations

must be solved for energy and time:

dE0

ds
=
∂H

∂t
, (3.12)

dt0
ds

= −∂H
∂E

=
E0

P0

=
1

β0c
, (3.13)
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bringing the total to 23. It is also important to note that scalar potential ϕ directly

modify the canonical definition of the energy, to first order:

c2P∆P =
(
E − qϕ

)
∆E. (3.14)

This treatment enables the straightforward integration of the reference particle energy

from the longitudinal component of a longitudinal electric field over a distance [0, L]:

E(s) = E0 + q

∫ L

0

EZ(s) cos(ωt(s) + ϕ0)ds. (3.15)

Here, EZ(s) is the z-component of the electric field arising from ϕ. Importantly, this

means that the case of linear accelerators can be treated directly from the fields,

without resorting to a transit-time factor approximation. This is advantageous since

it allows for a simulation which accepts as input parameters both the field scaling

amplitude and the rf phase, the same tuning parameters of an rf cavity. The evolution

along the Frenet-Serret reference orbit of the σ-matrix is found by taking the s-

derivative of Eq. (3.4) and using Eq. (3.10), which produces the envelope equation[46]:

dσ

ds
= F(s)σ + σF(s)T . (3.16)

TRANSOPTR numerically integrates Eq. (3.16) provided given initial boundary condi-

tions on σ. The transfer matrix M of an infinitesimal length ds is also computed and

it relates to the F matrix as:

Mds = I− Fds. (3.17)

Where I is the identity. The matrix M, obtained by solving the equations of motion,

acts upon the initial σ-matrix of the beam, representing a point-to-point transforma-

tion:

σf = MσiM
T . (3.18)
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The contact transformation (3.18) is area preserving and can be inverted since the

matrix M is symplectic:

σi = M−1σf (M
−1)T . (3.19)

The transfer matrix M evolves as:

dM

ds
= F(s)M. (3.20)

Coordinates 5 and 6 in TRANSOPTR are defined as (z, Pz) = (−βc∆t, ∆E/(βc)). Both
are evaluated relative to the reference particle time and energy. The scaling factor

βc converts coordinate 5 to the rms bunch length relative to the reference particle.

Likewise, coordinate 6 is the rms longitudinal momentum spread[44]. But it must be

made clear that from the Hamiltonian standpoint, the canonical pair is time and en-

ergy, not longitudinal distance and momentum. Acceleration is dealt with by scaling

the initial momenta (Px, Py, Pz) by the initial total momentum P0, followed by inte-

gration through the accelerating fields. Once this is complete, the output momenta

are re-converted to angles by a scaling factor P0/Pf , in other words the ratio of initial

to final momentum[44, 47].

3.2 Liouville’s Theorem and Emittance

If the forces F⃗ which act upon the 6 dimensional beam density distribution func-

tion f(x, Px, y, Py, z, Pz) are such that the work done around a closed path through

configuration space is zero:

∮
F⃗ · d⃗l = 0, (3.21)

the system is said to be conservative along with F⃗[42]. Under the influence of such a

force, the total time derivative of the density function is:
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df

dt
= {f,H}+ ∂f

∂t
, (3.22)

where H is the Hamiltonian and the operator {, } denotes the Poisson bracket:

{f,H} =
3∑
i=1

(
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
. (3.23)

Here, the notation (qi, pi) for the canonically conjugate position momentum pairs has

been used, with the index i summing over the three spatial coordinates (x, y, z). The

presence of the Poisson bracket in Eq. (3.23) arises due to the implicit time dependence

of the canonical coordinates: (qi, pi) themselves change over time, moving through

the system’s phase space, while the density distribution f may also explicitly change

over time. However, if the forces are conservative, Eq. (3.21) applies to all particles

composing f and no particles can escape the system, meaning the total population N

is unchanged. In addition, the motion of particles inside such fields can be decomposed

into a series of point-to-point transfer matrices according to Eq. (3.17), also known as

contact transformations, which are volume preserving. Thus, together with the fact

that N is constant, it follows that[42]:

df

dt
= 0. (3.24)

Then, Eq. (3.22) reduces to:

∂f

∂t
= −{f,H}. (3.25)

The statement (3.25) is Liouville’s theorem: A function f(x, Px, y, Py, z, Pz), where

each coordinate has time-dependency, is incompressible when its Poisson bracket

with the Hamiltonian is zero, i.e. if it is a constant of the motion. Under those

circumstances the emittance is a conserved quantity, since it is by definition the

hypervolume of the distribution f :

ϵ6 =

∫
· · ·
∫
V6

f(x, Px, y, Py, z, Pz)dx · · · dPz. (3.26)
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If the Poisson bracket {f,H} = 0, f is unchanging with the Hamiltonian and the

integral (3.26) does not change either. For time-dependent potentials which do change

the Hamiltonian, then a change in emittance can be expected, as is the case in

accelerating rf cavities. This can also be appreciated by looking at the transverse

beam divergence, which was normalized to the total momentum with the paraxial

approximation:

x′ =
Px
P0

=
Px

βγmc
. (3.27)

Thus the divergence has (βγ)−1 dependency Additionally, m represents the reference

particle’s rest mass. This causes x′ to change along with the beam velocity. This

effect can be accounted for by defining the normalized emittance ϵ∗ of the beam,

which is conserved under acceleration:

ϵ∗ = βγϵ. (3.28)

The inclusion of the relativistic parameter compensates the paraxial approximation

discussed in Sec. 2.2, as P0 changes. In the laboratory frame, an accelerating beam

appears to shrink in transverse extent, though really this is a velocity dependent

effect, not an underlying change to the distribution f in the Frenet-Serret frame.

3.3 Drift and Quadrupole

Infinitesimal Transfer Matrices

Mirroring Section 2.4, the F-matrix for a field free drift space can be obtained by

first setting the curvature ρ = ∞ in the Hamiltonian (3.1), while also setting all

components of the scalar and vector potentials to zero:

Hs = −

√√√√(E
c

)2

−m2c2 − P 2
x − P 2

y . (3.29)

To minimize clutter, the parameter m is the rest mass of the reference particle every-

where in this work. By noting that in this case the reference particle momentum is:
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P0 =

√√√√(E
c

)2

−m2c2, (3.30)

one can re-express the Hamiltonian (3.29) in terms of P0, which greatly exceeds both

Px and Py in magnitude, expanding to second order in the coordinates:

Hs = −P0

√
1−

P 2
x + P 2

y

P 2
0

≈ −P0 +
P 2
x + P 2

y

2P0

. (3.31)

The above describes a beam drifting through space. In order to obtain the F-matrix,

the second mixed partial derivatives of Hs are evaluated per Eq. (3.11):

Drift

F(s) =



0 1
P0

0 0 0 0

0 0 0 0 0 0

0 0 0 1
P0

0 0

0 0 0 0 0 0

0 0 0 0 0 1
γ2P0

0 0 0 0 0 0


. (3.32)

In this case, the F-matrix for a drift is trivial owing to the simplicity of the Hamilto-

nian. Considering a quadrupole, recalling the potential from Eq. (2.30):

ϕQ =
k

2
(x2 − y2),

the Hamiltonian with this potential is, in the case of an electrostatic quadrupole

where the vector potential components are zero:

Hs = −

√√√√(E − qϕQ
c

)2

−m2c2 − P 2
x − P 2

y . (3.33)

The term ϕQ possesses second order coordinate dependency. Expanding the term in
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parenthesis in (3.33), we obtain:(
E − qϕQ

c

)2

=
E2

c2
− 2EqϕQ

c2
+O(x4, y4). (3.34)

The linear, near-axis forces are desired, meaning up to second order in the Hamilto-

nian is needed. The fourth order terms in Eq. (3.34) are truncated and Hs becomes:

Hs ≈ −
√
P 2
0 − 2EqϕQ

c2
− P 2

x − P 2
y . (3.35)

The reference particle momentum is given by Eq. (3.30) and is factored from the

square root, producing:

Hs ≈ −P0

√
1− 2EqϕQ

c2P 2
0

−
P 2
x + P 2

y

P 2
0

= −P0

√
1− ϵ, (3.36)

where the expansion parameter ϵ contains the last two terms in the square root of

Eq. (3.36) and is a small quantity. Expanding to second order:

Hs ≈ −P0 +
Eqk

2c2P0

(x2 − y2) +
P 2
x + P 2

y

2P0

. (3.37)

This expression is the quadraticized Hamiltonian for a quadrupole field and has the

form of Eq. (3.9). This will make evaluating second partial derivatives of the canonical

coordinates, needed for the F-matrix, trivial when compared to the full Hamiltonian

which introduces square root dependency. The quadrupole field F-matrix is:

Quadrupole (Electrostatic or Magnetic)

F(s) =



0 1
P0

0 0 0 0

− Eqk
c2P0

0 0 0 0 0

0 0 0 1
P0

0 0

0 0 Eqk
c2P0

0 0 0

0 0 0 0 0 1
γ2P0

0 0 0 0 0 0


. (3.38)
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Both (3.37) and (3.38) apply for either magnetic or electrostatic quadrupoles, de-

pending on the definition of the strength parameter k, from Eqs. (2.32) and (2.33).

3.4 Beam Eccentricity

If the inter-quadrupole drift distances exceed a certain distance, Liouville’s theorem

together with the conservation of momentum dictate that the phase space distribu-

tion will shear in position-momentum space, becoming more highly eccentric, shown

in Figure 3.1. This in turn will produce tunes more highly sensitive upon precise

quadrupole settings, as will be discussed in the next chapter. The correlation coeffi-

cient between canonical coordinate pairs, or rather their beam matrix elements, can

be expressed as:

r12 =
σ12√
σ11σ22

(3.39)

By definition, r12 is bound in [-1,1]. The correlation coefficient provides a measure of

the evolution of the (x, Px) eccentricity of the beam distribution along the reference

Figure 3.1: A hypothetical phase space ellipse (1) initially with α=0 and a half-
width xi, drifts a distance d causing it to double in size (2). A particle initially at the
peak of the ellipse (0,

√
γxϵx), will travel a transverse distance 2xi along the x-axis

as the beam doubles in size. If the drift distance is larger, more shearing will result,
broadening the extent of the distribution in phase space (3). The eccentricity is a
proxy for this process, represented by the (x, Px) correlation coefficient.
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orbit. Consider the evolution of σ11 along s:

σ11 = ⟨x2⟩ =
∫
x2f(x, Px, . . . , Pz)dxdPx . . . dPz (3.40)

dσ11

ds
= 2

∫
xx′f(x, Px, . . . , Pz)dxdPx . . . dPz. (3.41)

The envelope in a drift is, per Eqs. (3.16) and (3.32):

dσ

ds
=

1

P0

2σ12 σ22

σ22 0

 . (3.42)

Here, we assume that the (x, Px) distribution starts at a waist, with the initial value

for σ12 being 0. Additionally, σ22 remains unchanging during a drift in free space.

Integrating the terms of Eq. (3.42) over s, the correlation coefficient from Eq. (3.39)

can be re-expressed over a drift as:

r12(s) =
s√

s2 + C
, (3.43)

C =
P 2
0σ11i

σ22

, (3.44)

where σ11i = ⟨x2⟩|s=0. The second term in the denominator of (3.43) is a constant,

depending on the value of σ11i. As s grows, r12(s) asymptotically approaches unity.

From the waist, beam doubles in transverse size over a distance:

s2x = P0

√
σ11i

σ22

(3.45)

and the correlation coefficient at that position has a value:

r12(s2x) =

√
3

4
≈ 0.866. (3.46)

Before this point, the envelope’s shape can be qualitatively described as curved, while

downstream the shape increasingly resembles a straight line, corresponding to a single

particle trajectory with momentum Px=
√
σ22, shown in Figure 3.2.
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Figure 3.2: An A/q=6 beam starting from a round waist with a size of 0.1 cm
and divergence of 10mrad at E/A=0.153MeV/u doubles in size over a distance
s=17.3 cm per Eq. (3.45).

3.5 Dipole Magnets and Spherical Benders

Transit through a dispersive element with edge angles, shown in Figure 3.3 is broken

into three segments in TRANSOPTR: initial edge interaction, transit and exit edge in-

teraction. The one-way edge field interaction at an angle α with a dipole possessing

a reference radius of curvature ρ is described by the F-matrix[40]:

Bending Edge Angle Field Interaction

F(s) =



1 0 0 0 0 0

tanα
ρ

1 0 0 0 0

0 0 1 0 0 0

0 0 − tan(α−ψ)
ρ

1 0 0

0 0 0 0 0 0

0 0 0 0 0 0


. (3.47)

This matrix is not obtained from a Hamiltonian, but rather from an impulse approx-

imation, over a single step. The edge angle interaction produces a transverse focal

effect. Regarding the function ψ, Brown notes[48] ”The quantity ψ is the correction

to the transverse focal length when the finite extent of the fringing field is included.”
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Figure 3.3: Illustration of a reference trajectory (red), through a uniform dipole field
(contained within black lines) featuring edge angles α1 and α2 normal to the reference
particle trajectory (red). The reference orbit radius of curvature is ρ. TRANSOPTR

handles this sequence in three parts: edge angle interaction, dipole drift & exit edge
angle interaction.

The parameter ψ is defined as:

ψ = Khg secα(1 + sin2 α), (3.48)

with h = 1/ρ, the inverse reference radius of curvature and g being the distance

between magnet poles defining the gap. The parameter K is defined as:

K =

∫ ∞

−∞

By(z)[B0 −By(z)]

gB2
0

dz (3.49)

which itself must be calculated from the field. The parameter By(z) in the integral

is defined by Brown as[48] ”the magnitude of the fringing field on the magnetic mid
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plane at a position z. z is the perpendicular distance measured from the entrance face

of the magnet to the point in question. B0 is the asymptotic value of By(z) well inside

the magnet entrance. Typical values of K for actual magnets may range from 0.3 to

1.0 depending upon the detailed shape of the magnet profile and the location of the

energizing coils.” In particular, the edge angle field interaction F-matrix is similar to

that of a quadrupole, producing a transverse focal effect.

Dispersive transit through the bending field is now considered, first looking at the

case of an electrostatic bender with spherical electrodes. The bend radius is A in the

bending plane and Ay in the non bending plane[49], which in the spherical case are

equal. The reference orbit curvature is h=1/A=1/Ay. The scalar potential for the

bender is:

ϕB = 1− 1/
√

1 + 2hx+ h2x2 + h2y2, (3.50)

ϕB = hx− h2x2 +
h2y2

2
+ h3x3 − 3h3xy2

2
+ · · · (3.51)

Where the potential has been expanded in (3.51). The latter can be placed in the

Hamiltonian (3.1), which must be converted to curvilinear coordinates, shown in[49].

For the general case where A ̸= Ay, the quadraticized electrostatic bender Hamilto-

nian, to second order is:

HBE =
P 2
x

2
+
P 2
y

2
+
P 2
τ

2γ2
− 2− β2

A
xPτ +

ξ2

2A2
x2 +

η2

2A2
y2. (3.52)

The Hamiltonian (3.52) uses the longitudinal canonical coordinate pair τ = s − βct

and Pτ = ∆E/(βc). Further, the parameters ξ and η are defined:

ξ2 + η2 = 2− β2, (3.53)

η2 = A/Ay. (3.54)

The resulting F-matrix is:
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Spherical Electrostatic Bender

F(s) =



0 1
P0

0 0 0 0

− ξ2

A2P0
0 0 0 0 2−β

AP0

0 0 0 1
P0

0 0

0 0 η2

A2P0
0 0 0

−2−β
AP0

0 0 0 0 1
γ2P0

0 0 0 0 0 0


. (3.55)

For low energy cases with spherical electrodes of equal radii in both planes, η = 1.

The matrix (3.55) possesses nonzero terms which will introduce correlations between

(x, Px) in the dispersive plane and (z, Pz). Envelope equation solutions after this

element will inherit these correlations unless corrected for with downstream elements.

The case of a dipole bending magnet with mid-plane symmetry is treated in[50].

Unlike the electrostatic bender, for a magnetic dipole coordinate 5 is defined according

to the standard (z, Pz) = (−βc∆t,∆E/(βc)). After expansion to second order, the

Hamiltonian:

Hs =
P 2
x

2P0

+
P 2
y

2P0

+
P 2
z

2γ2P0

+
1− n

2ρ2P0

x2 +
n

2ρ2P0

y2 − xPz
ρP0

(3.56)

is obtained. The parameter ρ is the reference radius of curvature through the field

B0 felt by the reference particle, while n is the field index:

n =
ρ

B0

∂B

∂x

∣∣∣∣∣
x=0

, (3.57)

which is trajectory dependent and is computed for the reference particle. After eval-

uation of the second order partial derivatives of the Hamiltonian, the F-matrix is

obtained:
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Magnetic Dipole Bender

F(s) =



0 1
P0

0 0 0 0

− 1−n
ρ2P0

0 0 0 0 1
ρP0

0 0 0 1
P0

0 0

0 0 − n
ρ2P0

0 0 0

− 1
ρP0

0 0 0 0 1
γ2P0

0 0 0 0 0 0


. (3.58)

Note the similarities between the above F-matrix and that of the electrostatic spher-

ical bender (3.55). Just as the latter, the magnetic dipole with mid-plane symmetry

introduces dispersion and produces chromatic couplings which must be corrected. It

is noted that for magnetic dipoles, it is necessary to measure the field to extract

the requisite parameters for the F-matrix. Alternatively, these can also be obtained

through field simulations.

3.6 Axially Symmetric Accelerating Fields

For axially symmetric, time dependent electric fields, the F-matrix (3.11) can be

obtained by using a vector and scalar potential As and Φ, shown by Baartman[44]:

As(x, y, s, t) = E(s)

(
1− ω2

c2
x2 + y2

4

)
sin(ωt+ θ)

ω
(3.59)

and

Φ(x, y, s, t) =
dE(s)
ds

cos(ωt+ θ)
x2 + y2

4
. (3.60)

The function E(s) is the intensity of the longitudinal component of the electric field,

measured on-axis. The angular frequency is related to the rf frequency by ω = 2πf
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and the parameter θ here denotes an rf phase offset. This parametrization is particu-

larly useful since values for E(s) can either be obtained by rf cavity measurements or

computed with a field simulation code. The second order linearized Hamiltonian is:

Hs =
P 2
x

2P0

+
P 2
y

2P0

+
P 2
z

2γ2P0

+
q

2βc

(
E ′C−ESωβ

c

)
r2

2
+
2qEC
βc

zPz
2γ2P0

− qEωS
β2c2

z2

2
, (3.61)

where S = sin(ωt0 + θ) and C = cos(ωt0 + θ). The symmetries of the axial field

mean all the dynamics, including the effects of transverse rf focusing, are produced to

first order with the above Hamiltonian. Moreover, it provides the means to simulate

rf linear acceleration without resorting to TTF approximations. Instead, both the

field amplitude and phase are required as input parameters, exactly the same tuning

parameters available to operators in the control room. TRANSOPTR simply integrates

the equations of motion using those as initial conditions. The Hamiltonian (3.61)

produces the F-matrix:

Axially Symmetric Linac Field

F(s) =



0 1
P0

0 0 0 0

A(s) 0 0 0 0 0

0 0 0 1
P0

0 0

0 0 A(s) 0 0 0

0 0 0 0 β′

β
1

γ2P0

0 0 0 0 B(s) −β′

β


(3.62)

Given its vanishing contribution to the beam dynamics, the vector potential compo-

nent which represents the magnetic field has been neglected. Further, for the linear

component of the transverse beam envelope as used in TRANSOPTR, only the derivative

of the electric field E ′(s) is needed off axis, in the form of the function A(s), while the

field’s amplitude is required for the longitudinal computation, via the term B(s):
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A(s) = − q

2βc

(
E ′(s)C − E(s)Sωβ

c

)
, (3.63)

B(s) = qE(s)ωS
β2c2

. (3.64)

Implementation of the ISAC-DTL in TRANSOPTR therefore requires knowledge of E(s).
The energy of the reference particle is evaluated at each step:

E(s) = E0 + qVs

∫
Ẽ(s) cos(ωt(s) + ϕ)ds, (3.65)

where Vs is a scaling factor for the normalized on-axis electric field profile Ẽ(s), bound
in [-1,1]. It is noteworthy that Vs and ϕ are the parameters which operators control

when tuning the machine.

3.7 2-Term RFQ Linear Accelerator

TRANSOPTR lacked the ability to simulate a time-dependent modulated quadrupole

field, arising from electrodes as shown in Figure 3.4. Implementation first required

obtaining the infinitesimal transfer matrix describing its dynamics. The first two

terms of the Kapchinsky and Teplyakov infinite series potential for a modulated

quadrupole[51] are[27, 52]:

ϕ2RFQ =
V0
2

(
A01(x

2 − y2) + A10I0(k
√
x2 + y2) cos(ψ(s))

)
sin(ωt+ θ). (3.66)

which defines the transverse focusing and longitudinally accelerating electric fields.

The vane voltage is V0, RFQ design wavenumber k, aperture a and modulation factor1

m. Additionally:

A01 =
1

a2
I0(ka) + I0(mka)

m2I0(ka) + I0(mka)
, (3.67)

A10 =
m2 − 1

m2I0(ka) + I0(mka)
. (3.68)

1not to be confused with the reference particle rest mass
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Figure 3.4: Cutaway view of the 4-vanes of an RFQ accelerator[53], showing the
transverse and longitudinal modulations. A time-varying voltage induced on the vanes
produces an electric field which alternatingly accelerates beam longitudinally, then
focuses it transversely. Charged particles of correct injection properties and phase
(timing) will both gain energy and remain proximal to each other during acceleration.
By convention, half of a longitudinal modulation corresponds to one RFQ cell.

The quadrupole component of the potential (3.66) is represented by the term involving

A01, the transverse focusing efficiency, while the energy gain component is A10, the

longitudinal accelerating efficiency. RFQ codes like PARMTEQ perform a cell-by-cell

integration, where the longitudinal coordinate is defined on a [0,2π] interval. In

the TRANSOPTR case, since a continuous integration in being performed through the

accelerator, the function ψ(s), the spatial phase of the potential, is introduced and

defined as:

ψ(s) =

∫ s

0

k(ξ)dξ =

∫ s

0

ds

β(s)
, (3.69)

with:

k(s) =
2π

β(s)λ
. (3.70)
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The function k(s) is the continuous longitudinal vane modulation wavenumber. Sim-

ply coding the product of the variables ks in TRANSOPTR will fail, since it will render

accelerating synchronism impossible. Instead, the function ψ(s) from Eq. (3.69) sub-

stitutes the product ks and the cosine term from Eq. (3.66) becomes cosψ(s). The

two-term potential expansion produces an RFQ field which correctly describes near-

axis dynamics, for r ≪ a. The potential (3.66) is inserted in the Courant-Snyder

Hamiltonian (3.1) with ρ = ∞ and all vector potential components set to zero:

Hs(t,−E) = −

√√√√(E − qϕ2RFQ

c

)2

−m2c2 − P 2
x − P 2

y . (3.71)

From Eq. (3.71) a linearized Hamiltonian, with up to second order coordinate depen-

dence is extracted[14]:

Hs(z, Pz) =

(
E0

βc
−P0

)
+
P 2
x

2P0

+
P 2
y

2P0

+
P 2
z

2γ2P0

+
A+

2
x2+

A−

2
y2+B(s)zPz+

C
2
z2. (3.72)

The F-matrix for a two-term RFQ field is:

Radiofrequency Quadrupole (2-term potential)

F(s) =



0 1
P0

0 0 0 0

−A+ 0 0 0 0 0

0 0 0 1
P0

0 0

0 0 −A− 0 0 0

0 0 0 0 B 1
γ2P0

0 0 0 0 −C −B


, (3.73)
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with the functions:

A± =
qV0 sin (ωt0 + ϕ) (k2A10 cosψ ± 4A01)

4βc
(3.74)

B =
qV0A10 (k sinψ sin (ωt0 + ϕ) + (ω/(βc)) cosψ cos (ωt0 + ϕ))

2β2γ3mc2
(3.75)

C =
qV0(ω/(βc))

2A10 cosψ (qV0A10/(β
2γ3mc2) cosψ cos2 (ωt0 + ϕ)− 2 sin (ωt0 + ϕ))

4βc
.

(3.76)

The RFQ F-matrix superficially resembles that of a quadrupole from (3.38) in the

(x, Px, y, Py) components, which is sensible as the accelerator consists of modulated

quadrupole electrodes. In particular, the transverse focusing term A01 from the 2-term

potential (3.67) is present only in the terms A±, while the longitudinal acceleration

efficiency A10 of Eq. (3.68) is found in each of A, B and C, with the last two affecting

coordinates 5 and 6. The reference particle energy is computed from the longitudinal

component of the electric field:

E(s) = E0 +
qA10kV0

2
sinψ sin(ωt0 + ϕ). (3.77)

With this addition[14], TRANSOPTR possesses all of the necessary theoretical compo-

nents to implement a full simulation of the ISAC linear accelerator.

3.8 TRANSOPTR Sequence Structure and Capabilities

One of the great strengths of computing the evolution of the σ-matrix is the relative

computational efficiency of only tracking moments of the distribution, as opposed to

a statistically significant sample of individuals. TRANSOPTR is a beam transport and

design code[39], meaning it allows for the simultaneous optimization of both the trans-

port system parameters in addition to constraints upon the σ-matrix. It is written

in FORTRAN. A main, user-defined system file contains the transport and acceleration

lattice that the code uses for its computations, with each element represented as a

subroutine. An example system file (sy.f) is shown in Figure 3.5, representing an
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RFQ accelerator, surrounded by drift spaces. In the figure, constraints upon the final

sigma matrix are specified at the RFQ exit:

• M55 −→ 0,

• σ66 −→ 0,

• Ef/A = 0.153MeV/u,

• RFQ output Twiss parameter match (−αi, βi) for both (x, y) requested.

If TRANSOPTR is called upon to perform a parameter optimization, then an internal

optimizer will attempt to establish the user defined constraints. Both the list of

parameters to be optimized and their initial values are stored in an initial condi-

tion file, which also contains information on the starting σ-matrix[54]. Twiss pa-

rameter matching can also be performed, with TRANSOPTR using Bovet’s mismatch

parameter from Eq. (2.54)[13] as an optimization variable. TRANSOPTR currently pos-

sesses two main fit routines: downhill simplex, also known as amoeba and simulated

annealing[55, 56, 57]. The downhill simplex method is efficient when the number of

fit parameters does not exceed roughly four[13], after which successful obtention of

a global minimum can become sensitive to the initial values. Simulated annealing is

more efficient at searches for large parameter space optima, though it becomes more

time consuming as the number of parameters grows. For these reasons, TRANSOPTR

fits are typically carried out with a maximum of about 10 simultaneous parameters.

The integration step size h must typically be user-defined in many Runge-Kutta

methods. This is problematic since there may be time-dependent fields represented

in the envelope equation (3.16). In those cases, should the parameter h be required

as input, its optimum value would be constrained by time-dependent elements in the

system, though this would almost certainly result in an excessive overall number of

steps. Conversely, if h is too big, simulation of energy gain would break down due

to undersampling of Eq. (3.15). TRANSOPTR avoids this conundrum by making use

of the Runge-Kutta-Merson method. The algorithm takes 5 samples for a step size
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1 SUBROUTINE TSYSTEM

2 COMMON /BLOC1/vane,rfp

3 COMMON/SCPARM/QSC,ISC,CMPS

4 COMMON/MOM/P,BRHO,pMASS,energk,gsq,ENERGKi,charge,current

5 COMMON/PRINT/IPRINT,IQ(8)

6

7 iq(1)=6

8

9 CMPS=0.6

10 nscav=100

11 endDrift=15.825!cm

12 rmsDrift = 8.8814!cm: start of RMS in original PARMTEQ after drift

13

14 call dr(rmsDrift,".")

15 call rfq(75,692,vane,760.1206,35.435E+06,rfp,nscav)

16 call fit(2,5,5,0.,1.,1)

17 call fit(1,6,6,0.,1.,1)

18 call dr(endDrift,".")

19 energerr=0.153*(PMASS/931.595) - energk

20 call fitarb(0.0,energerr,1.,1)

21

22 return

23 end

Figure 3.5: TRANSOPTR system file sy.f, in which the elements of the transport or ac-
celeration lattice are coded. BLOC1, a common variable block, reads the user specified
device specific input parameters. This example shows a simulation including the RFQ
subroutine, based on the F-matrix (3.73). The parameters vane and rfp, represent-
ing the vane voltage and rf phase, are supplied by the user prior to execution. These
parameters can also be optimized as part of user defined constraint optimization prob-
lems in TRANSOPTR, for example finding the requisite phase and voltage to achieve a
certain output energy. An ascii formatted file containing pairs of (s, a,m, k) along
the structure is read-in by TRANSOPTR and spline interpolated to provide values for
the RFQ parameters along the length of the structure. The quantity PMASS is the
reference particle mass, in MeV/c2, which in the code is converted into amu.
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parameter h[58, 59]:

k1 = hf(x0, y0), y0 = y(x0),

k2 = hf
(
x0 +

1
3
h, y0 +

1
3
k1
)
,

k3 = hf
(
x0 +

1
3
h, y0 +

1
6
k1 +

1
6
k2
)
,

k4 = hf
(
x0 +

1
2
h, y0 +

1
8
k1 +

3
8
k3
)
,

k5 = hf
(
x0 + h, y0 +

1
2
k1 − 3

2
k3 + 2k4

)
,

(3.78)

along with the two error estimation functions:

y1(x0 + h) = y0 +
1
2
k1 − 3

2
k3 + 2k4,

y2(x0 + h) = y0 +
1
6
k1 +

2
3
k4 +

1
6
k5.

(3.79)

Instead of requiring h as input, the user must select an error tolerance ϵ. The initial

step size is an arbitrary value and an initial guess solution is evaluated. At each step,

the quantity:

R = 0.2|y1 − y2| (3.80)

is used as an error estimator for the solution and is compared to ϵ. If R exceeds the

tolerance, h is halved, whereas if R < ϵ/64, h is doubled. The step size is chosen

when ϵ/64 < h < ϵ, at each step of the integration. Use in TRANSOPTR of this adap-

tive method[13] allows for a solution of consistent accuracy across elements whose

sensitivity upon the step size will vary greatly. For instance, the RFQ simulation

from Figure 3.5 was run in order to produce the envelope shown in Fig. 3.6 where

a mismatch causes a synchro-betatron oscillation. The integrator has automatically

determined the optimum value for each h, having been given a tolerance of ϵ = 10−4.

The computation consisted of 28,260 integration steps, which are sufficiently small

to capture the transverse effect of individual cell modulations upon the transverse

envelopes. This can now be used to compute and optimize beam envelopes through

RFQ accelerators, as part of larger transport systems. On a conventional desktop PC,

this entire computation took 0.3 seconds. Addition of the RFQ linac to TRANSOPTR

presents a novel fast envelope simulation capability, in turn enabling efficient pa-

rameter scan investigations of rf quadrupoles[60]. The computational efficiency of

this approach means tunes can be computed in little time, making the TRANSOPTR

implementation of an accelerator a powerful asset for machine tuning.
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Figure 3.6: TRANSOPTR simulation of RFQ acceleration of an 14N+ beam at input E/A
of 2.04 keV/u (E=28.56 keV) up to an output E/A of 153 keV/u (E=2.15MeV) in
the ISAC-RFQ. The vertical envelope (y) is shown as negative while the horizontal
(x) and longitudinal (z) envelopes are positive. The reference particle energy along
the linac structure is shown on the top axis.
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3.9 TRANSOPTR Use via python

Nascent infrastructure at TRIUMF, part of the high-level applications project, en-

ables python based read/write interfacing with the EPICS control system[21]. The

TRIUMF Beam Physics department has further developed a python wrapped capa-

bility to execute TRANSOPTR, allowing for the running of envelope simulations as a

generic function call. User defined, automatic generation and computation of arbi-

trary sequences of the ISAC linac in TRANSOPTR is enabled thanks to a centralized

XML repertoire of beam optical device positions along the machine, from which the

TRANSOPTR files are created. This ensures all simulations are referenced to the same

source for element positions and definitions. The python framework, dubbed accpy,

renders straightforward the reading of beam diagnostic data and its use for on-line

tune computations. It also enables the loading of TRANSOPTR computed tune val-

ues into the control system, providing a significant reduction in operational tuning

complexity.

The original use case for TRANSOPTR, shown in Figure 3.7, assumes a user defines a sin-

gle system file and keeps using it. The standard initial value file (data.dat) is altered

as necessary by the user and the simulation is run. The outputs are then read and used

elsewhere. If the returned set of optimum setpoints are to be re-incorporated back

into the computation, they must be manually typed into data.dat. Computation of

a full tune for the ISAC linac would involve a sequence file containing well above 100

elements (quadrupoles, bends, rf cavities, etc..), which would be impractical for both

the user and the optimizer. Instead, to compute long tunes, it is advantageous to

break the problem into smaller, shorter groups of devices. This both diminishes the

burden on the Runge-Kutta engine and it also reduces the volume of the parameter

space for the optimizer to work with, both speeding up the optimization and increas-

ing its chances of converging. By calling TRANSOPTR through python, as shown in

Figure 3.8, it is much simpler to generate, run and read-in the simulation results,

which can then be re-used as part of a further optimization. This way, the sequence

define
data.dat

define
sy.f

run
TRANSOPTR

analyze
output
data

Figure 3.7: Classical use case of TRANSOPTR.
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can be broken into smaller groups of devices which can easily be handled by optr’s

optimizer. It also permits the automation of this process. As an example of the power

of this technique, TRANSOPTR can be used to optimize rf amplitude and phase param-

eters from the electric fields representing accelerating cavities in the DTL, producing

for example maximized energy gain.

(python)
import

accpy

(python)
define

simulation

parameters

(python)
call

run optr

standard
TRANSOPTR

execution

(python)
parse

output

data

Figure 3.8: python wrapped use case for TRANSOPTR, called via function get optr.
Output data is parsed and returned to program, enabling sequential optimization.

Thus, it is possible to write accelerator tune optimization software in python, as

well as to integrate this software within contemporary web application frameworks,

enabling the development of browser based tuning interfaces.

3.10 Tuning Accelerators with TRANSOPTR

Machines such as RIB postaccelerators require constant changes in beam A/q and

E/A, which means start-to-end machine re-tuning occurs frequently. At TRIUMF,

the tuning methodology for the linac, to date, has been based on the use of reference

tunes, which for the most part find their origin in multiparticle beam simulations dat-

ing to initial design investigations. Following commissioning, the tunes established

during initial accelerator runs have been passed along to operators. The field gradients

for the optics are translated into control system setpoints, either voltages or currents,

and the tunes can be scaled for A/q as needed. Both short and long term changes

of conditions require operators adjust these tunes manually over time. Examples of

short term changes include the moving of quadrupole lenses along the beamline[61, 62]

due to mechanical alterations necessary for maintenance, or changes in ion source ex-

tracted beam distribution from one source configuration to the next. Longer term

changes include the ISAC experimental hall’s foundation settling over time, found to

require increasing amounts of corrective steering in the MEBT section[63], which has
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consequences for the alignment and transmission through the machine. The reliance

upon design tunes more than two decades old leads to a status quo where many of the

original simulation files are no longer available, or difficult to obtain. The variety of

programs needed to simulate subsections of the accelerator also increases the complex-

ity of studying full machine tunes. Over time, this allows the decoupling of accelerator

tuning methodology from understanding of the physics at hand. In particular, this is

true when tuning is performed with the sole constraint of maximizing beam transmis-

sion through each section, by both steering but also detuning quadrupoles. In such

a tuning regime, mismatches in the accelerator are not regarded as deviations with

respect to expected behaviour, rather they are treated as an expected occurrence;

manual tuning palliates this. TRANSOPTR’s novel capabilities enable full ISAC-linac

envelope simulations and tune optimizations. It is thus feasible to use the envelope

code to perform live computations, using real-time machine setpoints and beam di-

agnostic readings as inputs to both compute the envelopes and perform constrained

optimizations. In turn, these model computed optics settings are loaded back to the

machine, closing a feedback loop and coupling the model and machine for operation

(Figure 3.9). Tune computation in TRANSOPTR is accomplished by placing constraints

in the system file, representing desired properties of the σ-matrix at a particular lo-

cation. As an example, one can request that the matrix element σ21 = 0 by adding

the following to sy.f:

call fit(1,2,1,0.,1.,1)

The first parameter in the fit call specified a constraint upon the beam matrix; if

2 is entered, the constraint is upon the transfer matrix. The next two inputs in fit

specify the matrix element, in this case σ21, with the fourth input parameter being its

fit value, in this case zero. The second to last input is the weight of the fit constraint,

while the final input parameter specifies the exponent of the square of the deviations.

These constraints upon the envelope define the tune and are generally unchanging

from one beam to the next. By coding these constraints directly into the XML reposi-

tory, placing them at the exact location along the beamline where they are invoked,

one can automatically generate the TRANSOPTR files with the σ-matrix constraints al-

ready in the files and at the correct positions. By defining a standard header structure

for these constraints, enabling parsing and interpretation of the TRANSOPTR system

file by a python script, one can also program a sequence of optimizations to be carried
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Figure 3.9: Conceptual representation of model coupled accelerator tuning (MCAT):
an envelope simulation and optimization is carried out in parallel to machine oper-
ation, using diagnostic inputs in real time. The model optima are loaded into the
control system, closing a feedback cycle between TRANSOPTR and the linac. DTL im-
age obtained by Dr.M. Marchetto, TRIUMF.

out[64]. The header structure is printed as a FORTRAN comment in the TRANSOPTR

source files when they are generated by python. Thus, groups of constraints upon

the σ-matrix can be added together at specific locations along the accelerator and

associated with an identity. An example XML formatted constraint for the ISAC-OLIS

beamline is shown in Figure 3.10. TRANSOPTR simulations of the OLIS section will con-

tain the constraint at the appropriate location within the file sy.f. Sequential tune

optimization[64] then proceeds by iteratively running TRANSOPTR, activating groups of

constraints at each optimization, by uncommenting them. After each execution, the

output data from TRANSOPTR is parsed by a python function, including the optimum

device setpoints. The completed constraint group in the system file is commented and

the next set is uncommented. This way, TRANSOPTR sequentially works from start to

end along the accelerator, optimizing blocks of elements and moving on to the next

group of constraints, until the process is finished.
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1 <element id="mcat-out-of-olis" type="fortline" s="3334.66*mm" l="0.0*mm">

2 <optr>ax=2.0 </optr>

3 <optr>bx=65.0</optr>

4 <optr>ay=-2.0</optr>

5 <optr>by=bx</optr>

6 <optr>brfq=1.0 !beta (x,y) for RFQ injection</optr>

7 <optr>! MCAT-verb: out-of-olis</optr>

8 <optr>!nlines: 3</optr>

9 <optr>!call twissmatch(1,ax,bx,1.,1)</optr>

10 <optr>!call twissmatch(3,ay,by,1.,1)</optr>

11 <optr>! return</optr>

12 <notes>Olivier: Oct 26 2020 - parametrizing ILT tune for MCAT on-line</notes>

13 </element>

Figure 3.10: Example XML repository constraint upon the σ-matrix: A specified Twiss
parameter match for (x, y) at the location of profile monitor IOS:RPM8. The FORTRAN
lines to be added to the TRANSOPTR files upon generation are located between the
<optr> tags. Note that all constraints are commented with the ! character, meaning
the functions are disabled by default and do not hinder normal code operation.

The example in Fig. 3.10 includes two calls to the TRANSOPTR subroutine twissmatch,

which attempts to match the σ-matrix via the parameter D from Eq. (2.54). In

this example, αx,y =± 2 and βx = βy = 65.0mm/mrad has been requested. Note

that a (commented) return statement is included, which will cause the FORTRAN

interpreter to skip the remainder of the file sy.f when the 3 lines of this constraint

are activated (uncommented). This saves time otherwise wasted solving the envelope

beyond the region of optimization. Using the constraint of Fig. 3.10, the optimum

tune is computed algorithmically:

1. From a specified initial σ-matrix and start/end coordinates along the beamline,

the TRANSOPTR files are created from the XML repository.

2. The python function MCATSequencer is called, provided with instructions as to

which sequence of optimizations to perform using those files.

3. The TRANSOPTR optimizations are run step by step by MCATSequencer.
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4. The optimized values are returned by MCATSequencer after each step in the

sequence and stored to a redis database for future reference.

5. (optional) When all steps are completed, the stored database list of optimized

parameters is loaded into the control system.

During Step 2, the instructions which define the sequence of optimizations take the

form of a python dictionary structured in a manner shown in Figure 3.11. The

dictionary MCATPV contains keys (hashes) which define the optimization sequence steps

and starts at 0. Each entry associated with the key is a list which starts with the

human-readable string associated with the constraint group that will be uncommented

at execution; the remainder of the list are the optimization variables. The sequence

in Fig. 3.11 enables the constraint shown in Fig. 3.10 in TRANSOPTR and its optimizer

finds values for the specified electrostatic quadrupoles. Finally, in Figure 3.12, a full

sequential tune optimization command is defined, listing six separate optimizations to

be performed from step ’0’ to ’5’. The MCATSequencer function is called, provided this

dictionary in addition to a uniform starting voltage (startvol), a specified integer

maximum number of steps for the optimization and a temperature parameter for the

simulated annealing routine. A temperature of zero disables simulated annealing and

uses downhill-simplex instead. After execution, the TRANSOPTR input parameter file is

updated with all optimized parameters. The execution sequence is graphically shown

in Fig. 3.13.

The method of model coupled accelerator tuning (MCAT) is thus an alternative to

reference tune scaling, capable thanks to TRANSOPTR of producing full accelerator

tunes from first principles, not requiring previously saved values, only requiring beam

initial conditions. As much of the present tuning time at TRIUMF-ISAC is dedicated

to manual adjustment of the linac optics, tuning with a fast envelope code should

in principle lead to a significant decline in tuning times. By computing the settings

necessary to establish desired matching conditions upon the σ-matrix throughout

the lattice using sequential optimization, MCAT potentially reduces the complexity

of linac tuning to that of steering the beam through the model optics. For this, model

control of the accelerator must first be established.
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1 MCATPV = ({

2 '0' : ['out-of-olis','IOS:Q4',

3 'IOS:Q5','IOS:Q6*0','IOS:Q7','IOS:Q8'],

4

5 '1' : ['out-of-olis','IOS:Q4',

6 'IOS:Q5*0','IOS:Q6','IOS:Q7','IOS:Q8'],

7 })

Figure 3.11: python dictionary used by MCATSequencer to define sequential optimiza-
tions, by uncommenting the appropriate lines in sy.f, along with lists of parameters
to optimize. Two back-to-back optimizations labeled ’0’ and ’1’ are shown, both
achieving the out-of-olis match from Fig. 3.10, with either quadrupoles Q6 or Q5
off, respectively. To each optimization step is associated a list whose first entry is the
MCAT-verb, a human readable string which corresponds to the TRANSOPTR constraints
in the XML repository. The remaining entries in the list denote quadrupoles slated for
TRANSOPTR optimization.

1 def mcat_procedure_ios_ira(startvol,steps,temp):

2

3 MCATPV={

4 '0' : ['out-of-olis','IOS:Q4','IOS:Q5','IOS:Q7','IOS:Q8'],

5 '1' : ['rfq-achromat1-rough','IOS:Q9','IOS:Q10','IOS:Q11'],

6 '2' : ['prebuncher-line','ILT:Q34','ILT:Q35','ILT:Q36','ILT:Q37','ILT:Q41'],

7 '3' : ['rfq-achromat2-rough','ILT:Q42','ILT:Q43','ILT:Q44'],

8 '4' : ['rfq-ilt-periodic','ILT:Q48'],

9 '5' : ['rfq-match','ILT:Q50','IRA:Q1','IRA:Q2','IRA:Q3','IRA:Q4'],

10 }

11

12 MCATSequencer(MCATPV,startvol,steps,temp)

13

14 return 1

Figure 3.12: A full sequential tune optimization definition in python, which defines
a series of six total steps, counting from zero. Each dictionary-key pair for MCATPV
contains groups of variables, in this case quadrupoles in the OLIS, ILT and IRA lines,
to be optimized. During optimization, MCATSequencer finds the relevant constraint
in sy.f by matching the first element in each array (e.g. ’out-of-olis’, Fig. 3.10). This
constraint is activated in TRANSOPTR (uncommented), and the variables associated
with each step are optimized (e.g. ’out-of-olis’, OLIS quadrupoles Q4,5,7 and 8).
The optimum values are fed back into the simulation, and the next group of variables
are then optimized, until the entire sequence is complete.
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Figure 3.13: Flowchart representing MCATSequencer execution steps for sequential
tune optimization with TRANSOPTR.
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Chapter 4

The ISAC Linac in TRANSOPTR

All models are wrong,

but some are useful.

G.E.P. Box

As TRIUMF tackled the issue of designing and commissioning linear accelerators in

the mid ’90s, the design effort turned to available accelerator simulation codes, in part-

nership with other institutions. The design history of the ISAC-RFQ has been docu-

mented by Koscielniak[65] and made use of a modified version of PARMTEQ-M, originally

from Los Alamos, whose simulations were then used for beam-based commissioning[66].

The MEBT and HEBT sections were collaboratively designed with the University of

Alberta[67, 68, 69, 70] and initial tunes were developed using Trace-3D. The ISAC

drift tube linac design was itself the product of a collaboration between TRIUMF

and the Institute for Nuclear Research of the Russian Academy of Sciences[10, 71]

(INR-RAS). This saw the use of the newly developed code LANA for investigations

of DTL beam dynamics[72]. The same code along with Trace3D were then used for

the development of a high energy booster addition, the superconducting rf (SCRF)

linac[36], made of a sequence of two-gap resonators[73]. The latter was designed in

collaboration with INFN-LNL, the Italian Institute of Nuclear Physics[74].
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TRANSOPTR’s envelope simulation and optimization capability is presented in this chap-

ter, applied to the ISAC-I linac’s low, medium and high energy sections: LEBT,

MEBT & HEBT, allowing evaluation of entire start-to-end linac tunes, one of the

main goals of this project. The ISAC-RFQ simulation was benchmarked[14] with the

multiparticle code PARMTEQ and is presented in Section 4.1. Section 4.2 consists of

an investigation of the MEBT design tune, which aims to understand why the ISAC-

DTL quadrupole optics require manual tuning. The DTL envelope simulation was

benchmarked with the multiparticle code LORASR and published in Physical Review

Accelerators and Beams[16], presented in Section 4.3.

4.1 TRANSOPTR ISAC-RFQ Implementation

The infinitesimal transfer matrix (3.73) for the 2-term RFQ requires knowledge of

the vane modulation, via the parameters (A01, A10), which depend upon (a,m, k), the

modulation indices. An ascii formatted file containing (s, a,m, k) is all TRANSOPTR

needs to compute the elements A±, B and C from Eqs. (3.74), (3.75) and (3.76).

For the ISAC-RFQ, this was stored in a 298 line text file, which is plotted in Figure

4.1, showing vane modulation parameters for the 760 cm long structure. Typical RFQ

multiparticle simulations proceed half-modulation by half-modulation, also referred to

as cells. For example, in codes like PARMTEQ, the longitudinal coordinate always spans

[−π, π], with k constant over a half modulation. However, this causes discontinuities

in k at the cell interfaces. This is a consequence of adiabatic approximation in an RFQ,

where the modulation wavenumber k is varied across the structure slowly enough to

be treated as a constant. This results in discontinuities in k at the cell interfaces. In

practice, it is a matter of designing a sufficiently progressive variation in k along the

structure, to minimize kicks due to discontinuities.

∇2ϕRFQ =

0, inside cell

̸= 0 cell interfaces

TRANSOPTR’s global integration makes it awkward to handle a stepwise discontinuous

value like k. Instead, the continuous spatial phase ψ(s) of Eq. (3.70) is used. A table

of the parameters (s, a,m, k) in the RFQ is interpolated in TRANSOPTR using a cubic

spline.
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Figure 4.1: ISAC-RFQ vane modulation parameters, showing both the aperture a and
the longitudinal wavenumber k to the left hand y-axis. The transverse modulation
depth index m is shown to the right hand y-axis. The ISAC-RFQ is designed with a
constant synchronous particle phase held at -25◦[14].

4.1.1 ISAC-RFQ TRANSOPTR-PARMTEQ Benchmark

Comparative envelope simulations between TRANSOPTR and PARMTEQ, for an identical

starting beam distribution from Table 4.1, are shown in Figure 4.2. Another im-

portant distinction inherent to the TRANSOPTR implementation is the linearity of the

RFQ forces, represented in the F-matrix (3.73). This means that nonlinear effects

Parameter Unit Value

V0 [MV] 3.520×10−2

Ei [MeV] 2.871×10−2

m0 [MeV/c2] 13041.020
αxy 4.000
βxy [mm/mrad] 80.000
ϵxy [mm mrad] 3.000
αz 0.026
βz [rad/MeV] 1.784
ϵz [rad MeV] 5.750×10−9

Table 4.1: TRANSOPTR RFQ simulation parameters as used in Figure 4.2, for 14N .
The parameters αxy,βxy and ϵxy are the input Twiss parameters for the x and y
dimensions, while subscripts z denote longitudinal[14].
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upon the phase space beam distribution are not represented in optr; the multiparticle

regimen includes them. When the beam envelope remains small and near axis where

the RFQ field is linear, both models agree better than for cases where the beam is

large compared to the aperture. Emittance growth due to nonlinear bunch distor-

tions, as discussed in Section 2.6, are not represented in TRANSOPTR. Figure 4.3, shows

the phase space beam distributions for both PARMTEQ and TRANSOPTR, with the latter

displaying a 2 rms containment ellipse of area A = 4πϵrms. The top row of the figure

shows the input beam distribution, the middle row shows the output.

As a further test, the TRANSOPTR ISAC-RFQ had its voltage decreased from the

optimum value of V0 for an A/q = 30 beam, shown in Figure 4.4. The reference

particle energy rapidly fell to zero starting at 93% of the optimum V0. Previous

investigations[75], both in PARMTEQ and on-line, found the ISAC-RFQ transmission

sharply falls to zero when the voltage is set to 92%. The RFQ envelope model agrees

remarkably well with this cutoff voltage. Though the effects of nonlinearities may be

seen in Fig. 4.3, middle’s (ϕ,E) plot, the core of the distributions remain in agreement,

in terms of orientation, evidencing the region of linear response in the multiparticle

simulation. The transverse dynamics of the displayed RFQ simulation are very well
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Figure 4.2: ISAC-RFQ comparative envelope simulation for a 14N+ beam acceler-
ated from 28.56 keV to an output energy of 2.15MeV. The PARMTEQ 2 rms beam size
through the RFQ are shown as black dots, while the TRANSOPTR simulation envelopes
of the same beam is shown as solid lines. Observe the disagreement between trans-
verse oscillations between both models, arising from the continuous treatment of k in
TRANSOPTR, while it is stepwise increasing in PARMTEQ. Input beam parameters, used
for both simulations, are shown in Table 4.1[14].
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Figure 4.3: Benchmark comparison between PARMTEQ, showing a normalized particle
density distribution overlaid with TRANSOPTR’s beam containment ellipse, which cor-
responds to to 86% containment assuming a Gaussian beam distribution. Injected
(x, Px), (y, Py) and (ϕ,E) phase space distributions shown in the top row and the
output in the middle row. The bottom row shows the effects of tripling the injected
longitudinal distribution’s emittance, causing filamentation, which is not represented
in TRANSOPTR. The simulations start and end at the edges of the RFQ’s vacuum
tank[14].
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described by first order optics, seen in each of the (x, Px) and (y, Py) plots in the figure.

As a demonstration of the differences between models, in the last row of Fig. 4.3,

the input longitudinal emittance has been tripled. The PARMTEQ simulation predicts

distortion and filamentation, while the TRANSOPTR model does not. Nevertheless, the

majority of the beam distribution is still contained in the 2 rms ellipse. Though the

modelling of nonlinearities is an essential part of RFQ design, for an already built

machine, in the context of accelerator tune computations, a first order treatment is

sufficient, since optimal tunes will seek to keep the distribution contained in the linear

zone.

For tune computation in an existing machine, the envelope method is particularly

powerful due to its speed. Figure 4.5 shows an A/q = 30 beam from OLIS, optimized

using MCATSequencer (Section 3.10) through the low energy section and into the RFQ.

For this example, the 3-harmonic pre-bunching has been simulated by first running a

continuous beam from OLIS up until the location of the pre-buncher device (arrows

on Fig. 4.5), then simulating a bunched beam from there until the simulation end at

linac injection. The longitudinal bunch length z is set to the βλ value for the 11MHz

fundamental of the pre-buncher, at E/A = 2.04 keV/u. The momentum spread is

set to the maximum deviation of the three-harmonic waveform to that of a perfect

sawtooth[16]. The initial value for Pz is made equal to the ratio of the device’s

voltage to the source bias, typically a few hundred volts compared to kilovolts. The

ability in TRANSOPTR to compute continuous low to medium energy tunes for the ISAC

accelerator in a single simulation is novel.
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4.2 The ISAC-MEBT Section in TRANSOPTR

On-line beam development carried out between 2020 and 2022 investigated the MEBT

optics using the TRANSOPTR model[77]. This included extracting RFQ output initial

conditions using a tomographic reconstruction method[78, 77]. While it was possible

to establish good agreement on the RFQ output leg of the section, the DTL injection

leg after the corner presented challenges. In particular, persistent need for strong

vertical steering is found necessary to transmit beam through the corner. This can

partially be explained by shifting and cracking floor slabs, under the stress action

of the ISAC-I experimental hall foundations settling in the two decades after its

construction. There are visible fissures in the concrete that have appeared over the

years[63], requiring sealing to prevent water infiltration.

However, these are expected to cause misalignments on the order of roughly 0.5 cm in

the beamline, consistent with the observed on-line steering corrections typically used

by operations[63]. What cannot be explained by alignment issues of this magnitude

are observed transmission drops between MB2, the second dipole in the corner, and

the Faraday cup at DTL Tank-1 injection, typically below 70%, with the horizontal

inter-dipole charge selection slits completely open. This transmission loss cannot

be explained by alignment issues alone. The observed transmission loss in MEBT

is indicative of a deviation between machine and model, in either beam or transfer

matrices. In this section, the TRANSOPTR model of the MEBT section[17] has been

used to perform an analysis of the design tune of the machine which is presented and

discussed. The MEBT corner (Fig. 4.6) is scrutinized. The aim of this investigation is

to understand the cause of these on-line difficulties, which in-turn bring about further

issues with the DTL.

4.2.1 Tune Eccentricity

Distances between the effective edges of the MEBT quadrupoles are shown in Figure

4.7. The inter-quadrupole drift distances are measured in units of the beam doubling

distance, equal to 17.3 cm in MEBT (Section 3.4, Figure 3.2). This is chosen since it is

the strongest constraint upon the envelopes in the MEBT section and so will be most

sensitive to errors. Since the slit has a 2mm opening in the local horizontal plane[79]
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Figure 4.6: The ISAC MEBT corner, which is shown here as a straight sequence
of elements. The dipoles MB1 and MB2 are separated by a vacuum box containing
beam diagnostics and horizontal charge selection slits. Quadrupoles Q6, Q7 are mirror
symmetric about the inter-dipole midpoint to Q8 and Q9. Beam propagates from left
to right. The dipole magnets themselves are rectangular, but are angled with respect
to the reference orbit to produce a 22.5◦ edge in the x-z plane. Obtained from
TRIUMF Design Office.

(tilted at 45◦ with respect to the lab frame), it presents a strong transmission con-

straint requiring operators detune some quadrupoles to restore transmission through

the aperture. The MEBT tune and quadrupole tip-fields are shown in Figure 4.8, for

an A/q=6 beam. Note the chopper-slit waist (arrows in the figure) is reproduced in

the x-plane at the midpoint between dipoles MB1 and MB2. Next, it is imaged at

the rebuncher using Q8 and Q9, while the last quadrupoles reproduce the spot mid

Tank-1. The optics must be able to precisely reproduce this image at three locations.

A stripping foil between quadrupoles 5 and 6, near the chopper slit, enables charge

state increase if needed, but the foil scattering will increase the emittance, particularly

by increasing the transverse bunch momentum, an effect which the round waist seeks

to minimize. The key issue with the MEBT design tune lies just downstream of

the foil: The large growth in x-envelope between the chopper-slit waist and the

entrance of quadrupole Q7, where x increases by nearly a factor of 10, as shown in

Figure 4.9. In turn, this induces severe eccentricity upon the (x, x′) distribution,

evidenced by the saturation of the parameter r12, which reaches near unity. The

beam distributions in (x, x′) and (y, y′) at Q7 are shown on the left of Figure 4.10.

A notably large drift exists between quadrupoles Q7 and Q8 (Fig. 4.7), which define

the MEBT corner. Strictly speaking, there are no quadrupoles between Q7 and Q8,

however the rectangular MEBT dipoles are positioned to create an edge angle of 22.5◦

in the x-plane, which produces a transverse focal effect[40] described by Eq. (3.47).

However, the operator has limited control over this, as it is trajectory dependent.
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Figure 4.10: Left: 4ϵ rms (x, y) beam containment ellipses computed in TRANSOPTR

at the start of quadrupole MEBT:Q7’s field. The correlation coefficients r12 and r34
are indicated. Right: The left distribution has been transformed through Q7, and
the effect of a ± 5mT quadrupole tip-field error is shown as dotted lines. The error
is too small in the vertical dimension to be seen.
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The horizontal distribution (Fig. 4.10, left) is particularly eccentric, with its semi-

major axis now dominating the semi-minor, in contrast to the vertical which itself

has undergone a doubling in size since the chopper-slit, but remains more round. Fig-

ure 4.11 shows the correlation coefficients in the corner and downstream. Horizontal

envelopes through the corner (Fig. 4.8) produce single particle trajectory-like straight

lines, discussed in Section 3.4, evidencing this long drift. Per Section 2.6, one ex-

pects the horizontal envelope downstream will be particularly sensitive to quadrupole

gradient errors, with the potential for the emergence of a mismatch. This is also sig-

nificant since the drift after Q7, per Fig. 4.7, is the largest inter-quadrupole distance

in the entire section, 5 doublings in size between either of Q7 or Q8 and the central

x-waist in the corner. Thus, we also expect that the precise location of this waist will

be quite sensitive to the exact setting of Q7.

The effects of a ± 5mT field error in Q7’s field upon the σ-matrix is shown at the

right of Figure 4.10, producing a transformation error mostly in x′, as a consequence

of the high value of r12 at the quad’s entrance together with the broad size in (x, x′)

(Fig. 4.11). The error in the vertical plane is much smaller, being imperceptible on the

comparable scale shown in the figure, highlighting the lesser sensitivity to field errors
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at lower distribution eccentricity and size. The horizontal momentum error out of

Q7 in such cases is significant. A Monte-Carlo simulation consisting of 250 iterations

applying a Gaussian random error of up to ± 5mT tip-field on each quadrupole is

shown to the left of Figure 4.12. The consequences of the momentum error in Fig. 4.10

cause the emergence of a mismatch downstream of the corner and into the DTL. The

parameters D from Eq. (2.54) for each of the 250 iterations are shown for x and y

to the right of Figure 4.12, evidencing a principally horizontal mismatch into the

DTL. The on-line observation of transmission loss between the MEBT corner and

Tank-1 is likely explained by the mismatch shown in Figure 4.12, in which the x-

envelope’s size can vary appreciably at Q12 (Fig. 4.12, left, s≈ 450 cm). For cases

where the x-envelope is broadened, either due to quadrupole field errors or even a

mismatch at the chopper-slit, this large horizontal envelope will be more sensitive

to vertical alignment through the 2” (5.08 cm) diameter MEBT vacuum beam pipe,

supporting the known requirement for strong vertical steering in the MEBT section

and corner[63] and supported by the observation that setting downstream DTL model

gradients results in poor transmission, when MEBT is strictly set to model computed

values.
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4.2.2 Chromaticity of the MEBT Corner

The MEBT 90◦ bend section is singly, not doubly achromatic[75] (Section 2.5), owing

to the absence of inter-dipole quadrupoles in its final design[80]. This means that

the dispersion[31] function will be nonzero downstream. Chromatic effects in the

σ-matrix cause the smearing of quadrupole foci[31], causing the emergence of tails

in the transverse distributions (halo), which in the presence of apertures can cause

further transmission losses. Additionally, the chromaticity of the corner causes the

emergence of correlations between dimensions 1,2 and 5,6, as shown in Figure 4.13.

Since the longitudinal distribution in the corner is defined by the bunch rotator cavity,

variation of its parameters or even those of the ISAC-RFQ may affect the transverse

envelopes in and beyond the corner. This translates to nonzero values for σ15, σ16, σ25

and σ26, coupling the horizontal and longitudinal phase spaces and deviating from

the ISAC-DTL design tune[71] assumption of an uncoupled injected beam. These

effects cannot be tuned away and are inherent to the design. While the eccentricity

and large x-envelope size in the tune cause a sensitivity upon the precise quadrupole

gradients, the chromaticity couples longitudinal energy spread out of the RFQ and

rotator rf settings to the horizontal size. Diurnal temperature correlations to the rf

phases observed at ISAC-I[81] can potentially couple to the transverse beam size out

of MEBT, inducing temperature-transmission correlations, observed at ISAC-I and

reported in[12].
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4.2.3 DTL Injection Mismatch

The presented observations suggest that the tune around the corner is quite sensitive

to small errors in quadrupole field gradients. There are no field readbacks in the

MEBT optics, rendering the value of each device’s gradient uncertain. Use of rela-

tively long quadrupoles given the local E/A and A/q≤ 6 limitation produces tunes

with low tip-field requirements when compared to the magnetization and hysteresis

errors. This leads to a mismatch condition into the ISAC-DTL, shown in Figure 4.14,

causing beam losses through the linac. Using shorter effective length devices would

in turn force higher tip-fields for equivalent focal strength, diminishing this sensi-

tivity. The section’s power supplies are also unipolar, rendering device degaussing

more difficult. The identified sensitivity has led to the initiation of an investigation

of the MEBT optics, with work underway to begin a re-surveying of the quadrupole

magnetic fields. Once completed, this will allow testing of MEBT section tuning

using better representations of the true quadrupole focal effects, which have up to

the present been described with the same B-I fit. This work is guided using the

TRANSOPTR model of the section, developed and presented herein. Finally, it was ob-

served during model tests on-line in 2020 and 2021 that the MEBT bunch rotator

systematically overfocuses at the stripping foil for A/q≤ 4.5[82], thereby broadening

Pz, likely exacerbating these issues at lower A/q, given the chromaticity of the cor-

ner. Solutions to the MEBT issue can be broken down into three categories: short,

medium and long term. Short term palliation of the mismatch caused by MEBT is

presented in the next chapter, matching MEBT manually into the TRANSOPTR model-

optimized DTL optics. This effectively reverses the present operational doctrine, in

which MEBT optics are set exactly to model values, then the entire DTL lattice is

manually tuned for transmission. In the intermediate term, precise knowledge of the

MEBT quadrupole tip fields would allow the tuning of the section without relying

upon B-I calibrations, which are susceptible to things like hysteresis errors or varia-

tions in quadrupole calibrations between devices. Finally, in the longer term, a full

redesign of the optics, using shorter quadrupoles which will require higher gradients,

minimizing the effects of hysteresis and residual magnetization errors. A redesigned

corner should also produce a doubly achromatic output, which will eliminate down-

stream transverse-longitudinal couplings, which in turn can help mitigate diurnal

transmission losses. This will allow model coupled tuning of the MEBT section, not

presently feasible.
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Figure 4.14: A Monte-Carlo simulation in TRANSOPTR in which a ± 5mT Gaussian
random error is applied to each quadrupole tip-field, for 250 iterations. The mean
(solid line) and variance (shaded area) of the envelopes are shown. Beam starts at
the round waist at the MEBT chopper slit and ends at the exit of the ISAC-DTL.
Slit apertures have been simulated inside the DTL structure using the TRANSOPTR

subroutine slit[83]. The mismatch leads to aperture collisions (arrows) principally
in x, the dispersive plane, causing transmission loss.

4.3 TRANSOPTR Drift Tube Linac Implementation

Unlike the RFQ, where the beam dynamics emerge from the vane modulations, the

DTL consists of several independently controlled multigap cavities, with differing

drift tube structures and therefore fields E(s). The addition of the ISAC-DTL to

TRANSOPTR[16] makes use of the axially symmetric field F-matrix (3.62) derived in[44].

Simulation of inter-cavity phasing effects nevertheless required the modification of

TRANSOPTR’s source to enable global time tracking[84], which was previously not done

outside of rf cavities. From machine blueprints, the global layout of the lattice were

measured, providing element center-point locations and dimensions for the model.

Original surveys of the DTL triplet quadrupoles were analyzed to obtain their ef-

fective lengths and B-I calibrations[63]. The on-axis fields E(s) were generated by

building a model in the Poisson solver Opera2D[15]. Finally, the DTL energy vs.

phase relationship was measured on-line with an 16O4+ beam over a 48 h beamtime,

providing a first full measurement of the characteristic E/A response of the ISAC-

DTL. This enabled the establishment of a calibration between the TRANSOPTR model

and the control system voltage parameters, presented in Section 5.3.
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4.3.1 ISAC-DTL TRANSOPTR-LORASR Benchmark

Verification of TRANSOPTR’s ISAC-DTL capability was carried out using the multipar-

ticle code LORASR[85], developed at IAP-Frankfurt and ubiquitously used[86] for IH-

DTL beam dynamics investigations. Figure 4.15 shows the comparison between 2 rms

containment envelopes for both codes, using an identical starting distribution[16]

listed in Tab. 4.2. In both cases, the linac has been set for full operational E/A out-

put at 1.53MeV/u. Each drift tube in LORASR has been individually tuned to match

the effective voltage computation predicted by TRANSOPTR. The (z, Pz) phase space

evolution of the LORASR distribution and TRANSOPTR ellipse are shown in Fig. 4.16.

TRANSOPTR’s optimizer was also used to define the transverse tune in Fig. 4.15 by way

of the magnetic quadrupoles. This was accomplished by requiringM11=M33=-1 and

M12=M34=0 across each triplet[16]. The optimized quadrupole settings returned

by the envelope code were fed into LORASR. On the other hand, the longitudinal tune

is chosen to cause appreciable second order aberrations in Tank-5, due to the choice

of establishing a small z-waist at the exit of the resonator. Given the diverging z-

envelope at that tank’s injection (Fig. 4.15, s ≈ 480 cm), this choice requires imparting

additional longitudinal restoring forces to the bunch, causing filamentation (Fig. 4.16,

bottom right). In the Tank-5 case, the price to pay for such a strong longitudinal
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Figure 4.16: Longitudinal phase space distributions about the reference particle:
LORASR normalized density for 5,000 particles (points) and TRANSOPTR 4 rms con-
tainment ellipses (purple) at injection and through the ISAC-DTL, for the envelopes
shown in Fig. 4.15, with injected beam parameters in Tab. 4.2. Normalized color den-
sity scale shown on the right of each plot. As the bunch progresses through the linac,
second order components of the accelerating fields cause rf filamentation, which is
represented in the multiparticle code. TRANSOPTR computes the linear component of
the forces, which agrees with the core of the multiparticle beam simulation[16].
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Parameter Units Value
Ei [MeV] 2.121
m0 [GeV/c2] 13.044
xi [cm] 0.100
Pxi/P [mrad] 5.900
r12 -0.850
yi [cm] 0.100
Pyi/P [mrad] 5.900
r34 -0.850
ϵx,y [cm mrad] 0.311
zi [cm] 0.170
Pzi/P [mrad] 6.133
r56 -0.848
ϵz [cm mrad] 0.554

Table 4.2: Input TRANSOPTR reference particle parameters and σ-matrix used for the
comparative simulation shown in Figs. 4.15 & 4.16, an 14N3+ beam. Emittances are
unnormalized[16].

focus is an increase in z-emittance by roughly 40%[16]. Nevertheless, TRANSOPTR

successfully tracks the core of the (z, Pz) distribution. Additionally, the optimizer

can be called to minimize these higher order effects, by constraining transfer matrix

element M65≈ 0. It is not exactly zero due to the necessity of a small amount of

longitudinal focusing, to prevent bunch divergence.

Each cavity’s phase response is compared to LORASR in Fig. 4.17, showing the good

overall agreement near optimum acceleration at different field scalings. Additionally,
16O4+ on-line measurements are shown superimposed to both models. Differences

between both codes are attributable to non-flatness of peak electric field values in

each gap used for the TRANSOPTR model, whereas the LORASR model was purposely

built with flat fields: This allows for an implicit comparison of the difference in E/A

response to phase scanning. Interestingly, the TRANSOPTR data (non-flat fields) agrees

better with on-line measurements than with the flat field assumption[16]. Addition-

ally, since LORASR defines the beam energy in terms of the bunch centre, in regions

of high particle losses this together with second order aberrations may act to shift

the average energy. The LORASR phases were iterated until transmission loss caused

the code to abort. This can be seen in the figure for phases negative of optimum

acceleration. Since TRANSOPTR tracks only a single reference particle which always

transmits, no such effect takes place.
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Figure 4.17: Comparison between TRANSOPTR (red), LORASR multiparticle simulation
(blue) and ISAC-DTL on-line (green) reference particle E/A output rf phase response
for listed DTL tanks. The operational maximum E/A for each cavity is shown as a
black cross on each plot. While TRANSOPTR tracks a single reference particle, LORASR
used a total population of N=2000 ions. Scans in the latter code were liable to particle
transmission loss, which at phases sufficiently far away from the optimum can cause
the code to abort. Particle losses in the strongly decelerating E/A regime (phases
negative of optimum) also shifted the bunch center definition, causing a slippage when
compared to TRANSOPTR’s reference particle[16].
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Figure 4.18 shows 2 rms envelopes from the OLIS multi-charge ion source of a 20Ne4+

beam with E/A=2.04 keV/u, transported and matched into the ISAC-RFQ. All

tunes computed with MCATSequencer (Section 3.10). There are two cases on dis-

play: Initially (Fig. 4.18, top), the ISAC-DTL is set for E/A=0.803MeV/u with

Tank-3. The DTL has been retuned to E/A=1.53MeV/u (Fig. 4.18, bottom), af-

ter also re-optimizing injection in the ISAC-RFQ, thereby minimizing the effects of

a synchro-betatron oscillation present in the initial state. Additionally, the MEBT

tune has been optimized and set from a time-focus on the stripping foil to debunching,

minimizing Pz. TRANSOPTR now enables fast computation of entire linac tunes from

first principles. The envelope method is equally powerful for the analysis of existing

machine tunes, as shown with the MEBT section in this chapter. Using the insights

gained from this analysis, a new tuning methodology was devised for the ISAC-DTL,

which is presented in the next chapter.

More broadly, the developments presented in this chapter are general and not limited

to the ISAC linac. The required input parameters for the RFQ and DTL envelope

simulation and optimization capabilities presented herein are the typical design pa-

rameters of these machines. For the rf quadrupole, a table of (s, a,m, k) values, or

alternatively (s, A01, A10, k) is required, while the on-axis longitudinal field intensity

E(s) must be supplied for the axially symmetric DTL case.
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Figure 4.18: Simulations of 2 rms beam containment envelopes through the ISAC-I
linac. The reference particle energy is shown in blue for a 20Ne4+ beam, extracted
from OLIS with E/A=2.04 keV/u and ending at the HEBT1 high energy diagnos-
tic station at maximum DTL operational output E/A=1.53MeV/u. A decelerating
Einzel lens[87] is located near s=0, causing a brief drop in E/A. TRANSOPTR is exe-
cuted in 6D bunched mode and the beam matrix initial conditions for the longitudinal
dimensions are chosen to mimic the acceptance of the pre-buncher, represented as a
single discrete 11MHz rf kick (arrows), though OLIS beams are continuous[16].
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Chapter 5

Model Coupled Accelerator Tuning

On-Line

Applying TRANSOPTR to compute tunes allows for its use to perform on-line measure-

ments or tuning intervention, this opens a new tuning paradigm, with basic examples

shown in this chapter. First, the low energy section and DTL transverse beam en-

velopes are computed and compared to on-line observations. Next, a beam based rf

calibration is established with the DTL, using 16O4+. Finally, using MCATSequencer

(Section 3.10) to perform TRANSOPTR optimizations through rf cavities, to find (Vs, ϕ)

producing a given desired E/A sidesteps the complexities of analyzing the response

of each tank to parameter variations, instead numerically optimizing the total energy

of the reference particle through the field.

5.1 OLIS Extraction and RFQ Injection

The low energy section of the accelerator (Fig. 1.5, OLIS) is comprised of electro-

statics: Quadrupoles, steerers, spherical benders, etc.. The section was designed by

Baartman[88], using TRANSOPTR. During a 2020 beam development period, a 7Li+

beam from the surface ion source at OLIS was injected into the ISAC-RFQ, with the

intent of testing the updated TRANSOPTR model of that section, in which drawings

of the as-built section were used to verify and correct original model dimensions[87].
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Using python software which interfaces with the EPICS control system, real-time op-

tics element setpoints were read and set in a parallel TRANSOPTR simulation, enabling

extraction of the σ-matrix at OLIS extraction and RFQ injection:

1. Rotary beam profile monitors (RPMs) throughout the low energy optics were

used to measure the transverse intensity distributions.

2. Using the package profiles[89], the 2 rms (x, y) sizes were measured from these

distributions, producing the sizes of the Li-beam.

3. These were then programatically set in the parallel TRANSOPTR simulation as fit

constraints upon the beam matrix, at the location of each RPM.

4. Finally, an initial condition optimization using transverse Twiss parameters

(α, β, ϵ) for both (x, y) at Frenet-Serret s=0 cm, which in the model corresponds

to the source extraction, was carried out. The envelopes corresponding to this

initial condition fit are shown in Figure 5.1, with measured beamsizes shown as

points.

The beam size measurements and the TRANSOPTR calculated envelopes correspond ex-

tremely well, given the uncertainty of misalignments, steering and OLIS beam quality.

Causes of disagreement between envelope and measured sizes are likely attributable

to differences in element positions or strength. Development of the OLIS model for

this work included a review of the section’s technical drawings to verify the optics.

As there have been many modifications made to the OLIS beamline over the last

20 years, as-built drawings could not be clearly identified[61]. It was found that the

electrostatic quadrupoles IOS:Q2 and IOS:Q5 were both moved by roughly 1” along

the optical axis[61, 62], though the remainder of the ILT and IRA line has not been

physically inspected. Since the agreement is nevertheless good, one expects these er-

rors to be minimal, though certainly improvable. Doing so would require performing

more accurate re-surveying of the as-installed optics to confirm their dimensions and

positioning. As a re-design and re-building of the low energy optics is scheduled to

occur in the near future, this should enable an updating of the TRANSOPTR model and

an improvement of its on-line agreement and predictive power.
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Figure 5.1: Using rotary position monitors (RPMs) in the low energy section, it is
possible to perform an initial condition optimization, finding the transverse starting
beam matrix elements which reproduce on-line measured beam profiles, given the
live setpoints of the optics, using TRANSOPTR. In this case, a 7Li+ beam at 30 keV was
used. On-line tune computed with MCATSequencer definition from Fig. 3.12.
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Beam containment ellipses for (x, x′) and (y, y′) are shown in Figure 5.2 at OLIS

extraction (Fig. 5.1, bottom) and RFQ injection (Fig. 5.1, top), reconstructed us-

ing on-line measured intensity profiles. This constrained beam optics optimization

method using the envelope code enables the measurement of containment ellipses gen-

erated by OLIS without a dedicated emittance meter. The measurements in Fig. 5.1

and 5.2 can easily be proceduralized for operators, only requiring the measuring of

beam profiles along the line. It is important to note that this method will only work

if the transmission is very high, as close to 100% as possible. In the case presented

herein, measured transmission was 95%. Small transmission losses along the line will

also contribute to reconstruction errors, since TRANSOPTR has a priori no information

as to where the beam is lost. The on-line tune simulation software used to produce

the above figures is presently in use for the development of on-line tuning software

for operators.
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Figure 5.2: Using the measured on-line beam sizes of a 7Li+ beam at 30 keV from OLIS
(Fig. 5.1), the starting beam parameters from the surface source were reconstructed
using the envelope model, showing 4ϵ rms containment ellipses (left) and the injected
ISAC-RFQ distribution (right). The reconstruction provides an initial emittance
estimation for both transverse dimensions.
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5.2 DTL Drifting Tune On-Line

The understanding that the MEBT design tune is expected to be quite sensitive to

small quadrupole tip-field errors (Section 4.2.3) resolves the longstanding observation

that the DTL quadrupoles, when set to model values, did not produce acceptable

transmission. Modelling and analysis with TRANSOPTR allows for the definition of the

root cause of this error, which is threefold:

• The operational tune used to scale original DTL quadrupole current setpoints

from LANA simulations accidentally inverted the B-I relationship for the inner

(Leff =8.7 cm) and outer (Leff =5.8 cm) triplet quadrupoles for the DTL[63].

• The above scaling also inverted the polarities of all DTL quadrupoles[90].

• Operational tuning methodology has, to date, set the MEBT section quadrupole

currents to model computed values and procedures prevent their manual tuning[91].

This causes a transverse injection mismatch at the DTL (Section 4.2.3).

These factors explain why it has been observed that setting model computed values

produced low transmission through the drift tube structure over the life of the ma-

chine. Understanding that the MEBT tunes causes a mismatch at Tank-1 injection,

it is possible to diagnose the longstanding necessity of manual DTL quadrupole tun-

ing at ISAC as the operationalization of a transverse mismatch correction through

manipulation of the DTL optics. By inverting the tuning approach of the MEBT-

DTL-HEBT segment, it is possible to achieve high transmission through the DTL

and produce beam profiles in the HEBT section consistent with the according model.

This was first achieved using a 4He+ beam, injected at 0.151MeV/u from the MEBT

section into the DTL, with its rf unpowered. The MEBT quadrupoles Q6 to Q13

were manually adjusted after having computed a transverse tune for the DTL and

HEBT quadrupoles using MCATSequencer[16, 90]. Results are presented in Figure

5.3, showing the computed tune as dotted lines, measured beam profile sizes along

the machine, and the best-fit envelopes through these recorded datapoints as solid

lines. Table 5.1 lists beam parameters associated with this tune. In order to extract

the sizes inside the DTL lattice itself, linear position monitors (LPMs) were used

(Fig. 5.3, s<500 cm), while a rotary position monitor (RPM) was used in HEBT,

downstream of the linac (same figure, s≈ 950 cm).
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Figure 5.3: Computed 2rms envelopes for a 4He+ beam at E/A=0.151MeV/u (dotted
lines). Measured beam sizes are shown as triangular dots along the plot. The LPM
traces (s< 500 cm) cannot be processed on-line and were post-processed, while the
HEBT:RPM5 sizes (s≈ 950 cm) were extracted using profiles[89]. Using measured
beamsizes, the actual on-line beam parameters were extracted (solid lines), with the
fit parameters listed in Table 5.1. Despite the mismatch into the tune, a transmission
of 98% was recorded through the DTL.

Parameter Unit Model-Tune Post-Processed
Ei/A [MeV/u] 0.151 0.151
m0 [GeV/c2] 3.726 3.726
xi [cm] 0.360 0.334
Pxi/P [mrad] 23.600 24.157
r12 -0.800 -0.959
ϵx [mm mrad] 38.784 22.780
yi [cm] 0.340 0.241
Pyi/P [mrad] 22.500 7.500
r34 -0.000 -0.889
ϵy [mm mrad] 26.563 8.293

Table 5.1: Parameters used for a 4He+ beam tuned through the ISAC-DTL at
E/A=0.151MeV/u, with all of the DTL rf unpowered. Post-processing intensity
traces from the linear position monitors, together with the measured HEBT:RPM5
sizes, it was possible to extract the injected parameters into Tank-1.

While the package profiles[89] was used for the RPM size extraction, as of yet there

exists no programmatic method of extracting the size online from the LPM readings.

Consequently, the LPM sizes had to be post-processed after the measurements were
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taken on-line. Since the LPMs consist of a movable slit which is scanned in front of a

Faraday cup, the measurement process is longer than for RPMs, rendering their use

more involved. An improvement for DTL tuning at ISAC would be:

• (Short-term) Writing of software to extract the centroids and rms beam sizes

from the LPM detectors automatically at ISAC, or

• (Long-term) Replacement of LPMs with newer, faster transverse diagnostics,

that can be used during rf operation.

The short-term solution would allow the processing of LPM traces, though the devices

cannot be used when DTL rf is enabled, limiting its applicability. Measurement during

rf operation would require new devices. Though the recorded transmission for the
4He+ tune shown in Figure 5.3 was 98%[92], the match into Tank-1 is not perfect.

Inspection of Table 5.1 shows the emittances for both transverse dimensions disagree

with the model tune parameters that were used. Unfortunately, extraction of these

parameters is difficult without use of the LPMs.

Performing quadrupole scans[76] at HEBT is error prone at this E/A, since the

quadrupoles, of similar effective lengths and apertures as the MEBT quadrupoles,

also operate at low gradient, whereas the shorter DTL quadrupoles require higher gra-

dients for a similar focal strength. While the injected distribution could be extracted

with a HEBT quadrupole scan using RPM5, in practice this was found to result in

tunes with low transmission. Manually de-tuning the MEBT optics to achieve a match

into a model-computed DTL tune has been repeatedly performed and results in high

transmission, at or above 90%. Future diagnostic improvements as discussed in this

section should allow for the on-line evaluation of the injected distribution’s emittance

and Twiss parameters, in turn enabling use of the MCATSequencer (Section 3.10) to

re-compute the DTL optics on-line once beam from the MEBT has been manually

matched, to re-establish the transverse tune (Fig. 5.3, dashed x, y envelopes) through

the DTL.
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5.3 Beam-Based Calibration of DTL Fields

The characteristic energy-phase response for IH tanks[15] was exploited to establish

calibrations between the control system field scaling parameter VE and the on-axis

field scaling factor Vs, for each DTL cavity. Due to the nature of the rf amplifiers,

some responses are quadratic, controlling power (P ∝ V 2) and others are linear,

controlling voltage:

VE = k1Vs + k0, (5.1)

VE = k2V
2
s + k1Vs + k0. (5.2)

Comparison of the TRANSOPTR/Opera2D energy-phase relation to on-line beam based

measurements allows for the computation of the fit parameters in Eqs. (5.1) and (5.2).

A 16O4+ beam was manually tuned through the machine, up to the HEBT1 diagnostic

station, consisting of an air cooled, 90◦ dipole magnet with a radius of curvature ρ

= 1.537m and can deflect a beam with rigidity up to (Bρ) = 1.1T·m[93] (Figure

5.4) is used for energy measurements. A position-energy diagnostic consisting of

vertically oriented parallel wires separated by 0.8mm is used to measure beam energy

and energy spread. Dispersion caused by the dipole turns a spread in bunch Pz into

a horizontal position spread ∆x. The energy resolution of adjacent harp wires is

∆E/E ∼ 0.1%[94]. This method has a recorded energy error of roughly 1%[95, 96].

Figure 5.4: The DTL and HEBT1 high energy station, featuring the 90◦ HEBT1
dipole, also known as the Prague magnet. The parallel wire detector is located at the
position labeled Diagnostic Station on the image.
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Each cavity was powered on at low amplitude, then several beam energy readings

were taken while keeping the control system voltage VE constant but varying the

cavity phase parameter. Once a phase sweep was completed, the cavity voltage was

incremented by a fixed amount and the data collection repeated. This produced for

each cavity a set of characteristic energy-phase curves at constant cavity voltage. The

calibration between the TRANSOPTR parameter Vs and the control system VE was then

achieved by iteratively running the code to find the lowest possible field scaling which

matches the maximum energy of each on-line phase scan[97]. The linear or quadratic

fit parameters with computed linear regression errors are listed in Tab. 5.2 and allow

the TRANSOPTR-DTL model to directly read-in the control system rf amplitude and

obtain the correct physical scaling of the on-axis field within the cavity. Graphs of

each fit are shown in Figures 5.5 and 5.6, including displaying the raw fit calibrations

obtained between VE and Vs.

IH-Tank a [V] m [V] b [V]
Tank-1 7±1 -(2±1)×103 (2.6±0.4)×106

Buncher-1 − (7.99±0.07)×103 (3.06±0.05)×106

Tank-2 − (6.83±0.08)×103 -(3.66±0.05)×106

Buncher-2 -1.6±0.1 (9.0±0.2)×103 -(7.2±0.1)×106

Tank-3 − (7.01±0.04)×103 -(4.69±0.03)×106

Buncher-3 − (6.50±0.08)×103 (1.51±0.08)×106

Tank-4 − (4.85±0.06)×103 -(1.70±0.05)×106

Tank-5 − (4.14±0.06)×103 -(1.33±0.05)×106

Table 5.2: TRANSOPTR calibration fits for each cavity in the ISAC-DTL, using either a
linear (y = mx+b) or quadratic (y = ax2+mx+b) fit function[97]. An 16O4+ beam at
E/A=0.153MeV/u was injected into the DTL from the RFQ for this measurement.
Fit residual errors are shown as uncertainties for each parameter.
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Figure 5.5: Beam-based calibration[97] of the TRANSOPTR-DTL cavity electric fields,
using 16O4+. The energy-phase response at constant field scaling is shown on the left,
while the rf amplitude calibration is shown on the right[15, 16].
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Figure 5.6: Beam-based calibration[97] of the TRANSOPTR-DTL cavity electric fields,
using 16O4+. The energy-phase response at constant field scaling is shown on the left,
while the rf amplitude calibration is shown on the right[15, 16].
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Until now, the lack of an on-line energy setting capability has caused the operational

energy change procedure to require manual ramping of Vs, while periodically opti-

mizing ϕ for maximum energy gain. This had to be performed while also periodically

re-tuning the quadrupoles to the new beam energy to maintain transmission and ob-

servable beam and also ramping the high energy dipole magnet downstream of the

linac, used to monitor the beam energy. This causes tuning to be inefficient and

does not guarantee proper optimization of all parameters. The presented calibration

allows TRANSOPTR’s optimizers to compute DTL IH cavity voltage settings for any de-

sired output energy, in control system field scaling units. The calibration from Table

5.2 additionally enables the on-line determination of the DTL energy, by running a

TRANSOPTR simulation using the real-time rf amplitude values, while calling the opti-

mizer to find the cavity phases which minimize bunch Pz, while also constraining the

bunchers be operated 45◦ off peak-acceleration. This is a new method to monitor the

configured reference energy profile through the accelerator.

5.3.1 ISAC-DTL Buncher Operation

A feature is visible on the Buncher-3 dataset (Fig. 5.6, second from top), in which

recorded E/A seem to disagree with TRANSOPTR’s predictions at phases higher than

-50◦. The recorded buncher data is attributable to a choice that was made during

measurements: The Buncher-3 E/A output spectrum was observed to produce two

separate peaks on the high energy diagnostic station[15], and it was chosen to record

the E/A of the high energy end of the distribution in such cases, recorded in the

figure. The emergence of high energy tails suggests the nonlinear evolution of the

(z, Pz) distribution in Buncher-3, implying it is being operated in a regime beyond

its expected linear response. To verify this, blueprints of the bunchers were used to

measure the distance from first to second gap center in each ISAC-DTL buncher.

This distance, also referred to as the cell length is defined as[27]:

L =
βsλ

2
, (5.3)

with λ the cavity rf wavelength and βs the synchronous particle velocity in the cell.

Using both the mid-gap to mid-gap distance and the DTL rf parameters, the design

βs in the first cells of each DTL Buncher are listed in Table 5.3. Observe the signifi-
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Buncher Operational Ei/A [MeV/u] Operational βs [%] Design βs [%]
1 0.238 2.26 2.31
2 0.439 3.07 2.72
3 0.781 4.09 3.33

Table 5.3: Comparison of operational injection Ei/A and reference synchronous veloc-
ity βs for each ISAC-DTL Buncher, compared with the design synchronous velocity
of the first cell (distance from first to second midgap) for each.

cant difference between βs for Bunchers 2 and 3, which are operated at synchronous

velocities 13% and 23% higher than their design assumption[10]. The observed dis-

crepancies between TRANSOPTR and on-line measurements for Buncher-3 illustrate the

breakdown of the first order reference particle treatment. Table 5.3 suggests the de-

viation from the synchronous profile is most significant in Buncher-3 and Figures 5.5

and 5.6 suggest these issues are unique to that device. The triple-gap cavity syn-

chronous velocity correspond to operation of the upstream IH tank at below design

output E/A[98]; they are intended to provide bunching for such a case. Per Figs. 5.5

and 5.6, Tanks-2 and 3 are easily capable of compensating the minor energy gain

caused by the triple-gap cavities. Thus, bunchers 2 & 3 can remain unpowered for

full acceleration, avoiding operation beyond their design synchronous velocity. This

is both supported by simulations (Figure 5.7), and previous operational experience:

There are in fact several cases where bunchers 2 and 3 have been left unpowered due

to rf issues, with no significant change in DTL transmission or final energy spread[92].

-2

-1

0

1

2

 0  200  400  600  800  1000  1200  1400  1600  1800
 0

 0.5

 1

 1.5

 2

DTL HEBT HEBT1

E
/A

 [
M

eV
/u

]

s [cm]

x-env./cm -y-env./cm E/A (MeV/u) z-env. (cm)

Figure 5.7: TRANSOPTR computed ISAC-DTL envelopes showing a tune for
E/A=1.53MeV/u with (dotted lines) and without (solid lines) operation of bunchers
2 and 3. Transverse settings computed with MCATSequencer.
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5.3.2 Model Based Energy Optimizations

An optimization is performed to find the (Vs, ϕ) values which correspond to the

real-time setting of the tank, to find the final E/A in the model, by constraining:

M21 +M43 +M65 ≈ 0[16], shown in Figure 5.8. This criterion minimizes the total

accumulated effects of the functions A(s) and B(s) (Eqs. (3.63) & (3.64), respec-

tively) in the transfer matrix for the accelerating structure. This both minimizes the

transverse rf focal effects of tank transit while also avoiding excessive bunch z-growth

by providing a small amount of longitudinal bunching and minimizing second order

aberrations on the distribution.

1 SUBROUTINE TSYSTEM

2 COMMON/SCPARM/QSC,ISC,CMPS

3 COMMON/MOM/P,BRHO,pMASS,ENERGK,GSQ,ENERGKi,charge,current

4 COMMON/PRINT/IPRINT

5 COMMON/SS/SX(13,6)

6 COMMON/BLOC1/RFA1,RFP1

7

8 CMPS=0.0765 ! Number of cm per step, for plotting only

9 wo=1.0 ! Weight aberration from optical elements

10

11 call marker('DTL:FC0')

12 ! RF cavity/linac: ISAC1:DTL1

13 call linacn(100,1001,6.79376e-06*RFA1**2.0 - 0.00219132*RFA1 +

14 &2.55377,32.746,1.0608e+08,1.0*RFP1,'ISAC1:DTL1')

15 call fit(2,6,5,0.0,1.,1)

16 call fit(2,2,1,0.0,1.,1)

17 call fit(2,4,3,0.0,1.,1)

18 call print_transfer_matrix

19 return

20 end

Figure 5.8: TRANSOPTR sy.f file spanning Tank-1, calling subroutine linac[13], with
fit constraints to find the real-time cavity output energy using the calibration from
Fig. 5.5. The control system amplitude RFA1 is converted to a physical scaling of
the on-axis field in MV/cm. Fit constraints are placed on the beam matrix element
M65=0[16], which minimizes longitudinal restoring forces through the cavity. Con-
straints are also specified for M21 = M43 = 0, minimizing rf defocusing. This allows
for the prediction of the real-time E/A in the machine.
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The optimization method shown in Figure 5.8 is presently being integrated into the

tuning procedure for operators at TRIUMF. Additionally, the model can perform

noninvasive energy measurements, with Figure 5.9 showing the predicted E/A values

for a 36Ar7+ beam[97], performed offline. Generic starting beam parameters were

used for the longitudinal σ-matrix, listed in Table 5.4. The measured E/A errors are

shown to the left of the figure, and are at or below the 1% uncertainty level for the

HEBT1 dipole magnet. Additionally, this DTL configuration does not make use of

Buncher-2 for this particular E/A=1.50MeV/u tune, as discussed in Section 5.3.1.

Future maximum acceleration DTL tunes can avoid operation of bunchers 2 and 3,

which will reduce power consumption and avoid unnecessary rf equipment operation.

Parameter Unit Value
Ei [MeV] 2.754
m0 [GeV/c2] 16.766
q [e] 7
zi [cm] 0.153
Pzi/P0 [mrad] 4.0
r56 0.139

Table 5.4: Input TRANSOPTR reference particle parameters and σ-matrix used for the
Tank-5 energy change computation on-line, shown in Figure 5.9.

Using an additional fit constraint, the reference particle kinetic energy variable energk

in Figure 5.8 can be optimized for a user specified output energy, allowing for the

definition of a predictive energy change optimization which can be carried out in

the envelope code. This enables the computation of the final required amplitude of

the IH structure, which thanks to the calibration in Section 5.3, enables the direct

setting of DTL rf amplitudes necessary for a given final output energy. This is shown

in Figure 5.10, where the same 36Ar7+ beam data has been used to demonstrate

the computation. The output Tank-4 beam E/A is used as the initial condition for

the optimization, and the model computed a final Tank-5 setting which produces

E/A=1.498MeV/u, a -0.1% error.
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Chapter 6

Summary & Conclusion

Deepening knowledge in nuclear physics is driven by increasingly high precision ex-

periments, requiring unprecedented beam parameters. This causes the need for more

sophisticated and complex accelerators to drive this science. Heavily subscribed de-

livery schedules at TRIUMF’s Isotope Separator and Accelerator (ISAC) means the

complex task of frequently tuning the apparatus while maintaining high beam qual-

ity, requiring a modern tuning approach based on detailed modelling using computer

simulations and machine learning techniques. The development of a full optimizable

end-to-end beam envelope simulation of the ISAC linac, capable of real-time output,

based on diagnostic feedback input, is a novel implementation of the envelope method.

Since the 1950s, beam matrix methods have been constrained to elements with time-

independent Hamiltonians such as drifts, dipoles and quadrupoles. Recent work at

TRIUMF has extended this to devices whose focal effects are not in closed form, for

instance time-varying accelerating fields[47]. This dissertation has shown the first

application of the infinitesimal transfer matrix method to RFQ[14] and DTL[16] type

accelerators. For the RFQ implementation, the two first terms of the Kapchinsky-

Teplyakov potential for the modulated quadrupole’s potential has been used to expand

the Hamiltonian for a relativistic charged particle to second order in the coordinates,

enabling the treatment of accelerated envelopes through such linacs in TRANSOPTR.



Chapter 6 Summary & Conclusion

These developments have been used to develop model coupled accelerator tuning soft-

ware, the stated goal of this dissertation and is based upon the works of Lapostolle,

Sacherer, Brown, Dahl[99], and many others. This ongoing research aims to exploit

such simulations to control accelerators. Previous computation of RFQ or DTL beam

envelopes required averaging over multiparticle simulation outputs, both more com-

putationally taxing and rendering manipulations to the beam or transfer matrix less

straightforward. Instead, the method discussed herein uses a quadraticized Hamilto-

nian about a Frenet-Serret reference particle frame, while also tracking energy and

time, producing the linear optics. This naturally returns the transfer matrix at each

integration step, rendering the computation of constrained optimization upon M or

σ straightforward. The computation of tunes using multiparticle simulations for such

structures has been a more involved and time consuming endeavour. The key ele-

ment of this development is that TRANSOPTR’s optimizers can be used to effectively

produce tunes for identically developed multiparticle models, yielding a tool to assist

the designer.

Analysis of the ISAC-MEBT optics revealed a transverse mismatch into the DTL.

Transformations of the beam matrix in the section, including a 45◦ transverse frame

rotation, a chromatic 90◦ bend, low quadrupole settings and the need for a precise

longitudinal tune produce a sensitive response of the x-envelope to small errors in the

quadrupole tip-fields. This has led to ongoing work to better survey and characterize

the devices in the high energy sections[100], improving the accuracy of their field set-

tings. A novel tuning technique for the MEBT-DTL sections has been shown, based

on the analysis in this research project. This presents the advantage of confining

manual quadrupole tuning to MEBT, which remains unchanging regardless of DTL

E/A configuration, enabling the use of model-computed optics for the separated func-

tion linac. A future redesign will render the 90◦ corner doubly achromatic, mitigating

observed diurnal transmission variations across the DTL. Planned improvements and

replacement of the rf amplifiers will also aid in mitigating these effects.

The simulation of energy gain through the DTL has been used to perform a calibration

between the model parameters and the control system rf amplitude variables. This

enables the simulation of the real-time state of the machine, since the control system

amplitude can be translated into a physical scaling of the normalized electric field

distribution E(s) used in software. This has led to a new method for predictive DTL

energy computations: Transfer matrix optimization through the IH structure allows
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for the optimization of the output beam energy, a novel capability. The envelope code

can be used to optimize rf phase and amplitude, aiming for the desired final E/A while

minimizing elements of the transfer matrix through the cavity. This has allowed for

the exploration of model coupled accelerator tuning techniques at the ISAC linac,

using TRANSOPTR to compute the machine optics, enabling the reduction of tuning

complexity and overhead time. The methodology presented is being developed into a

series of accelerator tuning applications at TRIUMF.

The code is now suited for the development of machine learning methods using the

end-to-end model elaborated herein[101]. Work has been initiated at TRIUMF in

collaboration with RWTH Aachen University and Forschungszentrum Jülich, which

has explored the use of the low energy section of the envelope model for reinforce-

ment learning software which aims to produce corrective steering based on diagnostic

inputs. This opens the road to the use of the MCAT approach, in which the model

optics can be computed from first principles, augmented with ML based techniques to

produce an automated tuning capability that operators may one day wield, reducing

the overall complexity of machine tuning.
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