
Mitigating Coherent Noise

by

Qingzhong Liang

Department of Mathematics
Duke University

Date:
Approved:

Robert Calderbank, Advisor

Kenneth Brown

Iman Marvian

Jianfeng Lu

Dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in the Department of Mathematics
in the Graduate School of

Duke University

2023

ABSTRACT

Mitigating Coherent Noise

by

Qingzhong Liang

Department of Mathematics
Duke University

Date:
Approved:

Robert Calderbank, Advisor

Kenneth Brown

Iman Marvian

Jianfeng Lu

An abstract of a dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in the Department of Mathematics
in the Graduate School of

Duke University

2023

Copyright © 2023 by Qingzhong Liang

All rights reserved

Abstract

Stochastic errors in quantum systems occur randomly but coherent errors may be

more damaging since they can accumulate in a particular direction. We develop a

framework for designing decoherence free subspaces (DFS), that are unperturbed by

coherent noise. We consider a particular form of coherent Z-errors and construct

stabilizer codes that form DFS for such noise (“Z-DFS”). More precisely, we develop

conditions for transversal exp(ıθσZ) to preserve a stabilizer code subspace for all θ.

If the code is error-detecting, then this implies a trivial action on the logical qubits.

These conditions require the existence of a large number of weight-2 Z-stabilizers, and

together, these weight-2 Z-stabilizers generate a direct product of single-parity-check

codes.

By adjusting the size of these components, we are able to construct a constant rate

family of CSS Z-DFS codes. Invariance under transversal exp(ıπ
2l
σZ) translates to a

trigonometric equation satisfied by tan 2π
2l
, and for every non-zero X-component of a

stabilizer, there is a trigonometric equation that must be satisfied. The Z-stabilizers

supported on this non-zero X-component form a classical binary code C, and the

trigonometric constraint connects signs of Z-stabilizers to divisibility of weights in

C⊥. This construction may be of independent interest to classical coding theorists

iv

who have long been interested in codes C with the property that all weights are

divisible by some integer d. If we require that transversal exp(ıπ
2l
σZ) preserves the code

space only up to some finite level l in the Clifford hierarchy, then we can construct

higher level gates necessary for universal quantum computation. The aforesaid code

C contains a self-dual code and the classical Gleason’s theorem constrains its weight

enumerator.

The trigonometric conditions corresponding to higher values of l lead to general-

izations of Gleason’s theorem that may be of independent interest to classical coding

theorists. The [[16, 4, 2]] Reed-Muller code and the family of [[4L2, 1, 2L]] Shor codes

are included in our general framework.

v

Acknowledgements

First of all, I would like to express my deepest gratitude to my advisor Professor

Robert Calderbank for the continuous support for my PhD research. He always

encouraged me to explore new topics, and use mathematical tools to solve practi-

cal problems. Under his guide, I built my understanding and tool-set in the field

of quantum error correction from the ground as well as developed my writing and

presenting skills.

I would like to extend my sincere thanks to my thesis committee: Professor Ken-

neth Brown, Professor Iman Marvian, and Professor Jianfeng Lu. I enjoyed discussing

problems with them during the weekly QEC seminar. I apprciate all the insightful

suggestions provided by them.

I am also thankful to Professor Richard Durrett and Professor Chadmark Schoen

for their advice during my early PhD journey. They served as my oral qualifying

committee and helped me to adapt the PhD study.

To my wife and my parents, I could not have undertaken this journey without

the love and the support from you. Thank you for always being there and making

me strong.

vi

Contents

Abstract iv

Acknowledgements vi

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Classical Error Correcting Codes . 1

1.2 Quantum Error Correcting Codes . 4

1.3 Noise and Error Model . 7

1.4 Contributions of this Dissertation . 9

2 Preliminaries and Notation 14

2.1 Classical Codes . 14

2.2 The MacWilliams Identities . 15

2.3 The Pauli Group . 17

2.4 The Clifford Hierarchy . 18

2.5 Stabilizer Codes . 19

2.6 CSS Codes . 20

vii

2.7 Encoding Map for CSS Codes . 22

2.8 Trigonometric Conditions . 24

3 Divisibility of Weights in Binary Codes 25

3.1 Application of the MacWilliams Identities 25

4 Coherent Noise and Z-Stabilizers 28

4.1 Conditions on Z-Stabilizers . 28

4.2 Logical Identity induced by infinite transversal Z-rotations 33

5 Conditions for Quantum Codes to be Oblivious to Coherent Noise 36

5.1 Weight Two Z-Stabilizers . 36

5.2 Product Structure . 37

5.3 Proof of Conditions . 43

5.4 Constant Excitation Code . 46

6 Construction of Quantum Codes Oblivious to Coherent Noise 48

6.1 CSS Code Construction . 48

6.2 Generalizing to Stabilizer Codes . 50

7 Coherent Noise in the Form of Generator Coefficients 54

7.1 Review of Generator Coefficients . 54

viii

7.2 Generalizing the Error Model . 58

8 Constraints Associated with Climbing the Clifford Hierarchy 60

8.1 Applications of Algebraic Number Theory 63

8.2 Minimal Polynomial and Gleason’s Theorem 69

9 Conclusion 81

Bibliography 83

Biography 91

ix

List of Tables

5.1 Sign patterns: the entries of each row specify how the set corresponding

to the subsets A can be written as a union of subsets in different columns. 41

7.1 The weight distribution of C1 for the [[15, 1, 3]] code 57

x

List of Figures

1.1 The [[16, 1, 4]] Shor code constructed by concatenating the [[4, 1]] bit-

flip code and the [[4, 1]] phase-flip code. 11

xi

Chapter 1

Introduction

1.1 Classical Error Correcting Codes

In 1948, Shannon published his landmark paper A Mathematical Theory of Com-

munication [Sha48], in which he introduced the idea of encoding various types of

information into binary numbers (bits), transmitting them through a noisy channel,

and decoding them at the other end of the channel. His idea changed how people

view information. Different types of information, such as images and voice, can now

be represented as strings of binary digits. The process of digitization is the key to

data processing, storage, and transmission of information. For example, when a per-

son takes a photo with a smart phone, the image is stored as numbers, which contain

the information about the red, green, and blue scales of each pixel of the photo. If

the photo is sent to friends, the cellphone sends the binary numbers instead of the

picture itself through a digital communication channel. After other phones receive

the string of digits, they use the string to reproduce the same picture. This process

sounds natural today, but it was based on the idea in Shannon’s paper, which is the

cornerstone of information theory.

In reality, the channel used for transmitting information is noisy. That is, for each

bit that goes through the channel, there is a probability p that the bit does not carry

the original number when it arrives at the receiver’s end. Motivated by reducing

the damage caused by noise, scientists studied and designed error correcting codes

to carry the message through the channel. For example, if a noisy channel has a

1

probability p = 0.01 that flips a bit (i.e changed from 0 to 1, or from 1 to 0), then the

receiver gets on average one wrong bit of information for every 100 bits transmitted

through the channel, which is considered high since a simple text message may contain

thousands of bits. This error model is an example of the binary symmetric channel

(BSC).

One strategy that can reduce the error rate is to use the simple code C =

{000, 111}. If we would like to send a bit x, where x ∈ {0, 1}, we first encode it

to xxx ∈ C. In other words, we send 3 bits of repeated information. By using the

maximum likelihood decoder, the receiver would decode the message to 0 if one of

000, 001, 010, and 100 was obtained, and to 1 otherwise. As a result, the decoder

makes a wrong guess only when two or more bits are flipped and the error rate is

reduced from p = 0.01 to 3p2(1−p)+p3 ≈ 0.0003. We say the code C has distance 3,

which is the distance between the only two codewords 000 and 111. In this example,

the cost of reducing the error rate from 0.01 to 0.0003 is to use 3 bits to encode 1 bit

of information, and we say the rate of the code C is 1
3
. This code is called a repetition

code because we repeat the message bit.

In general, if we use a classical code C ⊂ {0, 1}n with n bits to encode information

of k bits, the distance is defined as the minimum distance d between any two distinct

codewords in C. We call such a code an [n, k, d] classical code. Each codeword in C

can be viewed as a point in the n-dimensional binary space {0, 1}n. To visualize the

codespace, we consider a n-dimensional ball with a fixed radius R centered at each

codeword in C. However, the |C| balls should satisfy the constraint that no two balls

have non-trivial intersection. Under this constraint, we would like the balls to cover

as much space as possible (thereby maximizing R). By the definition of code distance

d, we have Rmax = ⌊d−1
2
⌋. Now, the decoding rule works as follows: if the codeword

received is covered by the ball centered at some c ∈ C, then the receiver will decode

2

it to c. As a result, if the noise in the channel causes less than Rmax bit-flips, we

can recover the correct codework as it does not escape from the ball centered at the

correct codeword. In other words, the number of errors it can correct is R = ⌊d−1
2
⌋.

Moreover, if there are more than R but less then d mistakes, we can still detect that

the received codeword is different from the original one, but we cannot guarantee that

the decoding rule can recover the correct information, since the received codeword

may not be in the ball centered at the original codeword.

Shannon showed that there is a upper bound on the code rate for error correcting

codes [Sha48]. Many families of error correcting codes with well designed structures

were subsequently constructed. The binary Hamming code [2m, 2m−m−1, 3] [Ham50]

and the binary Golay code [23, 12, 7] are examples of perfect codes [Gol49]. Every

point in the binary space is covered by some ball centered at a codeword of a perfect

code, so no space is wasted. Later in 1950 - 1960, many highly symmetric codes,

such as Reed-Muller codes [Mul54], were discovered. The Reed-Muller codes provide

a family of linear block codes with highly symmetric algebraic structure. An efficient

decoding algorithm of Reed-Muller code was then proposed [Ree54] and the code

were incorporated in billions of consumer devices. In the 1990s, as computers became

more powerful, more and more attention shifted to decoding algorithms, which led to

the discovery of polar codes and LDPC (low density parity check codes), and they

now dominate coding practice. We will provide more detailed examples about these

classical codes in Chapter 2.

In addition to the parameters n, k, and d, the weight distribution also contains

important structural information, such as divisibility, of a code. Given a binary linear

code C, its dual code is defined as C⊥ =
{
c|cT c′ = 0 (mod 2) for all c′ ∈ C

}
(i.e the

set of codewords that are perpendicular to the original code). The dual code plays

an important role in constructing quantum error correcting codes by using classical

3

codes. It is interesting to note that the weight distribution of the dual code C⊥ of

C is completely determined by the weight distribution of C. This connection was

described by the famous MacWilliams identities [Mac63], which open the door to

many algebraic methods in classical and quantum information theory. In Chapter

2, we will introduce the MacWilliams identities and dual codes in detail. In later

Chapters, we will apply the MacWilliams identities to prove divisibility properties in

Quantum error correcting codes.

1.2 Quantum Error Correcting Codes

Just like the bit, which is a fundamental unit of classical information theory, quantum

information theory is built on the unit called qubit (quantum bit). While a qubit is

a physical object, its definition and properties are easier to be described in mathe-

matics. Like a bit which can be in either state 0 or state 1, two possible states for a

qubit are |0⟩ and |1⟩, which are the computational bases denoted in Dirac notation.

However, the key difference that distinguishes a qubit from a bit is that a qubit can

be in states other than the two base states. More precisely, a qubit can be in any

linear combination of the two computational bases:

|ψ⟩ = α|0⟩+ β|1⟩, (1.1)

where α, β ∈ C and |α|2 + |β|2 = 1. In physics, it is called a superposition of |0⟩

and |1⟩. One can measure a qubit in the computational base and the measuring

result is either |0⟩, with probability |α|2, or |1⟩ with probability |β|2. However, once

a qubit is measured, it collapses to the measurement result and no longer contains

the probabilistic information.

4

Similar to the classical error correcting codes, quantum error correction is essential

to developing scalable and fault-tolerant quantum computers by constructing error

resilient quantum codes. However, there are constraints in the quantum computing.

As a result, many methods, such as the repetition codes introduced in the previous

section, cannot be directly applied to construct quantum error correcting codes. The

three main constraints and challenges are the no-cloning theorem, continuous errors,

and collapsing after measurement.

The no-cloning theorem states that we cannot make a copy of an unknown quan-

tum state. The proof is straight forward [NC11]. Assume some unitary matrix U

can copy any unknown quantum state |ψ⟩. That is, given the initial state |ψ⟩ ⊗ |s⟩,

where |s⟩ is some standard pure state, we have U(|ψ⟩ ⊗ |s⟩) = |ψ⟩ ⊗ |ψ⟩ for any

|ψ⟩. Therefore, for any two states |ψ⟩ and |φ⟩, we have U(|ψ⟩ ⊗ |s⟩) = |ψ⟩ ⊗ |ψ⟩ and

U(|φ⟩⊗|s⟩) = |φ⟩⊗|φ⟩. Note that a unitary matrix preserves inner products. By tak-

ing the inner product of both sides, we have ⟨ψ|φ⟩ = ⟨ψ|φ⟩2. Note that however, the

equation x = x2 has only 0 and 1 as solutions in R. The no-cloning theorem means

that we cannot simply create redundant quantum messages and therefore quantum

error correcting codes have to be more complicated than repeating quantum bits.

In addition, as a quantum state is a linear combination of the base states, the

quantum errors are continuous. The continuity requires infinite precision to determine

which error occurred, and methods like parity checking in classical coding cannot be

simply reproduced.

Moreover, in classical coding theory, the received classical bits can be observed

and then recovered. However, measuring a qubit can destroy the quantum state and

therefore make it impossible to recover it to the original state. Therefore, it requires

us to develop techniques to detect the syndrome and make the correction without

knowing the exact state.

5

Fortunately, many quantum error correcting codes that overcome these challenges

have been developed. Two basic errors in quantum computing are the bit flip error

and the phase flip error, which are described by the Pauli matrices

X =

 0 1

1 0

 and Z =

 1 0

0 −1

 , (1.2)

respectively. More details about the errors and Pauli matrices will be introduced

in Chapter 2. The bit flip quantum code is designed to adjust the bit flip error

X|0⟩ = |1⟩ and X|1⟩ = |0⟩. Suppose we have a noisy channel with probability p that

a state |ψ⟩ will be affected by the bit flip error and become X|ψ⟩. The bit flip code

encodes any state |ψ⟩ = a|0⟩+ b|1⟩ to |ψL⟩ = a|0L⟩+ b|1L⟩ = a|000⟩+ b|111⟩.

The bit flip code can detect and correct up to one error. Once the receiver

has obtained a state |ϕ⟩, the following projection operators will be used to perform

measurement:

P0 ≡ |000⟩⟨000|+ |111⟩⟨111|

P1 ≡ |100⟩⟨100|+ |011⟩⟨011|

P2 ≡ |010⟩⟨010|+ |101⟩⟨101|

P3 ≡ |001⟩⟨001|+ |110⟩⟨110|.

With the assumption that |ϕL⟩ has no more than two bit flip errors, we measure

symmetry of code state and infer the error. We then have the following syndrome

6

diagnosis:

⟨ϕ|P0|ϕ⟩ = 1 ⇔ no error

⟨ϕ|P1|ϕ⟩ = 1 ⇔ bit flip on qubit one

⟨ϕ|P2|ϕ⟩ = 1 ⇔ bit flip on qubit two

⟨ϕ|P3|ϕ⟩ = 1 ⇔ bit flip on qubit three.

It is important to note that measuring the syndrome does not leak any information

about the state |ϕ⟩ and therefore the state |ϕ⟩ is protected from being collapsed. The

correction is made according to the syndrome we obtained. For example, if we have

the syndrome ⟨ϕ|P1|ϕ⟩ = 1, then we will flip the first qubit by applying X ⊗ I ⊗ I

to the received state |ϕ⟩. The error rate is reduced from p to (1 − p)3 + 3p(1 − p)2,

which is the probability that at least two qubits are flipped.

By a similar idea, we can also construct the phase flip code to correct up to one

phase flip error Z. The [[9, 1, 3]] Shor code combines the bit flip code and the phase

flip code to correct up to one non-trivial Pauli error X, Z, or Y = ıXZ [CS96].

1.3 Noise and Error Model

In quantum systems, noise can broadly be classified into two types – stochastic and

coherent errors. Stochastic errors occur randomly and do not accumulate over time

along a particular direction. Coherent errors may be viewed as rotations about a

particular axis, and can be more damaging, since they can accumulate coherently

over time [IP20]. As quantum computers move out of the lab and become gener-

ally programmable, the research community is paying more attention to coherent

errors, and especially to the decay in coherence of the effective induced logical chan-

7

nel [BWG+18,HDF19]. It is natural to consider coherent noise acting transversally,

where the effect of the noise is to implement a separate unitary on each qubit. Con-

sider, for example, an n-qubit physical system with a uniform background magnetic

field acting on the system according to the Hamiltonian H = Z1+Z2+. . .+Zn, where

Zi denotes the Pauli Z operator on the ith qubit. Then the effective error is a (uni-

tary) Z-rotation on each qubit by some (small) angle θ, i.e., exp(ıθH) = exp(ıθZ)⊗n,

where ı =
√
−1.

While it is possible to address coherent noise through active error correction,

it can be more economical to passively mitigate such noise through decoherence

free subspaces (DFSs) [KBLW01]. In such schemes, one designs a computational

subspace of the full n-qubit Hilbert space which is unperturbed by the noise. In the

language of stabilizer codes, we require the noise to preserve the code space, and to

act trivially (as the logical identity operator) on the protected information. Inspired

by the aforementioned Hamiltonian, which is physically motivated by technologies

such as trapped-ion systems, we develop conditions for all transversal Z-rotations

to preserve the code space of a stabilizer code, i.e., exp(iθH)ρ exp(iθH)† = ρ for all

code states ρ in the stabilizer code. When all angles preserve the code space, the

logical action must be trivial for any error-detecting stabilizer code (see Section 4.2).

Trigonometric identities for a given transversal Z-rotation in the Clifford hierarchy

to preserve the code space of a stabilizer code [RCNP20] were presented in [GC99,

CGK17,RCP19]. In our work, by exploiting the celebrated MacWilliams Identities in

classical coding theory [Mac63], we develop necessary and sufficient conditions that

contain structural information and serve as instructions to construct quantum codes

that are oblivious to coherent noise.

8

1.4 Contributions of this Dissertation

The introduction of magic state distillation by Bravyi and Kitaev [BK05] led to

the construction of a sequence of quantum codes, where the code space is preserved

by a transversal Z-rotation of the underlying physical space [BK05, Rei05, ACB12,

CAB12,BH12,LC13,CH17,HH18,Haa18,KT19,VB19]. The approach in each paper

is to examine the action of a transversal Z-rotation on the basis states of a CSS

code [CS96, Ste96]. This approach results in sufficient conditions for a transversal

Z-rotation to realize a logical operation on the code space.

In contrast, we derive necessary and sufficient conditions by examining the action

of the transversal Z-rotation on the stabilizer group that determines the code. Thus

we study the code space by studying the symmetries of the code space. We start from

Rengaswamy et al. [RCNP20] which derived trigonometrical conditions for a stabilizer

code to be preserved by a transversal π/2l rotation. Note that the condition l ≥ 2

corresponds to a non-Clifford physical operator.

Our first main contribution (Theorem 3) is a structure theorem that depends

on technical arguments which might be of independent interest to classical coding

theorists. The structure theorem forces a product structure on a stabilizer code that

is oblivious to coherent noise. To state the conditions, we need to introduce some

notation in Chapter 2.

A Hermitian Pauli matrix ±E(a, b) is determined by binary vectors a and b.

The X-component of ±E(a, b) is a and the Z-component is b. A stabilizer group S

is generated by r independent commuting Hermitian Pauli matrices, subject to the

requirement that if E(a, b) ∈ S, then −E(a, b) /∈ S. The fixed space V(S) of S is an

[[n, n− r]] stabilizer code. Recall that the Hamming weight wH(v) of a binary vector

v is the number of non-zero entries, and that the support supp(v) is the index set of

9

the non-zero entries. Let 0 (1) be the binary vector with every entry 0 (1). Given

ϵE(a, b) ∈ S for some ϵ ∈ {±1} and a ̸= 0, define

B(a) := {z ∈ FwH(a)
2 : supp(z) ⊆ supp(a), ϵzE(0, z) ∈ S} (1.3)

and O(a) := FwH(a)
2 \ B(a), (1.4)

Remark 1. To simplify notation, we shall sometimes view z as a subset of supp(a),

sometimes as a subset of the n qubits, and sometimes as a binary vector either of

length wH(a) or of length n (where entries outside supp(a) are set equal to zero).

The meaning will be clear from the context.

Remark 2. Here, ϵv ∈ {±1} is the sign of E(0,v) in the stabilizer group S. Note

that the sign ϵv of the pure Z-stabilizer ϵvE(0, v) takes the form ϵv = (−1)yv
T
for

y ∈ Fn
2 . Also note that vectors from the same coset of C1 (the group of logical X

operators) determine the same signs (since C1 is perpendicular to C⊥
1 , the group of Z

stabilizers). It is useful to think of y ∈ Fn
2 as a fixed vector when we extend signs to

Pauli matrices outside the stabilizer group.

A stabilizer code is oblivious to coherent noise if and only if transversal π/2l Z-

rotation preserves the code space V(S) for all l ≥ 2 (see Section 4.2). We define the

support

Γ =
⋃

ϵE(a,b)∈S

supp(a) (1.5)

and a graph with vertex set Γ, where two vertices are joined by an edge if there

exists a weight 2 Z-stabilizer in S involving these two qubits. Let Γ1, . . . ,Γt be the

connected components of this graph and let |Γk| = Nk. The weight 2 Z-stabilizers

10

supported on Γk take the form

(−1)ykv
T

E(0,v) where yk = y
∣∣
Γk
. (1.6)

Here y
∣∣
Γk

represents the restriction of y to Γk. (In ykv
T , we add zeros to yk appro-

priately.) Our main result is

Theorem 3. Transversal π/2l Z-rotation preserves the stabilizer code for all l ≥ 2

if and only if for every ϵE(a, b) ∈ S with a ̸= 0,

(1) supp(a) is the disjoint union of components Γk ⊆ supp(a)

(2) Nk is even and wH(yk) = Nk/2 for all k such that Γk ⊆ supp(a).

Note that for every ϵE(a, b) ∈ S we have a
∣∣
Γk

= 0 or 1 for k = 1, . . . , t. Hence

Theorem 3 forces a product structure on a stabilizer code that is oblivious to coherent

noise. It also provides constraints on the signs of weight 2 Z-stabilizers.

Figure 1.1: The [[16, 1, 4]] Shor code constructed by concatenating the [[4, 1]] bit-flip
code and the [[4, 1]] phase-flip code.

Example 1. A set of generators of the [[16, 1, 4]] Shor code is shown in Fig. 1.1,

and it follows from Theorem 3 that this code is oblivious to coherent noise. In

11

Fig. 1.1, the filled circles represent physical qubits, the white (resp. gray filled)

squares represent weight-2 Z-stabilizers with negative (resp. positive) sign, and the

three large filled rectangles represent weight-8 X-stabilizers. The graph on Γ has

four connected components, and the component Γk is simply the k-th row of the

4 × 4 array. Condition (1) is satisfied since every X stabilizer is the sum of an

even number of rows. Condition (2) is satisfied since the choice yk = [0, 1, 1, 0] for

k = 1, 2, 3, 4 properly accounts for the signs of Z-stabilizers. Observe that [[16, 1, 4]]

is also a constant excitation code (defined in Section 2.7). The quotient space C1/C2 =

{0,w = (1000)⊗(1111)}, where C2 defines the X-stabilizers and C1 defines the logical

X operators. Under the general encoding map, the codewords are

|0⟩ = 1

2
√
2

∑
x∈C2

|x⊕ y⟩ and |1⟩ = 1

2
√
2

∑
x∈C2

|w ⊕ x⊕ y⟩. (1.7)

The restriction of w and x ∈ C2 to the k-th row is either 0 and 1. Since wH(yk) =

2 = 4
2
, we have wH(x⊕ y) = wH(w ⊕ x⊕ y) = 8 for all x ∈ C2.

We show that a CSS code is oblivious to coherent noise if and only if it is a con-

stant excitation code (Corollary 15). Sufficiency is straightforward since a transversal

Z-rotation acts as a global phase. Ouyang [Ouy20,Ouy21] observed that one can con-

struct constant excitation codes by concatenating a stabilizer code with the dual rail

code [KLM01]. His original paper was independent of and contemporaneous with

our original paper [HLRC21a]. After we shared our results he realized that he could

connect his dual rail construction to stabilizer code [Ouy].

Beyond developing conditions, we also construct a linear rate CSS code family

with growing distance that possesses this property, thereby acting as a decoherence

free subspace for this noise, which is the second main contribution. The conditions

we derive lead to a systematic construction of new quantum error correcting codes,

12

which are oblivious to coherent noise and have increasing distance. Given any even

M , and any stabilizer code on t qubits, we construct a product code on Mt qubits

that is oblivious to coherent noise. The Mt qubits are partitioned into t blocks of M

qubits, with each block supporting a DFS. The product code inherits the distance

properties of the initial stabilizer code. In the construction, a product structure with

DFS components provides resilience to coherent noise. The cost of forming DFS

components for QECC is just scaling the total qubits by an even number. Thus, the

minimal cost of becoming oblivious to coherent noise is scaling the number of qubits

by 2. The result is remarkable since if we have a familiy of QECC with finite rate

and growing distance, then the output QECC family with resilience to coherent noise

keeps these good properties.

The necessary and sufficient conditions for a stabilizer code to be oblivious to

coherent noise require the product code structure, resulting in a code rate less than

1/2. To relax the restrictions, we can consider stabilizer codes that are preserved by

all the transversal Z-rotations through angle π/2l up to some finite integer l, inducing

the logical identities. This leads to the third main contribution. More precisely, by

relaxing the condition in 3 from all l ≥ 2 to all l ≤ lmax <∞ for some lmax, we allow

transversal Z-rotations to induce non-identity logical operations on a stabilizer code.

Let Zj denote the classical binary codes formed by the Z-stabilizers supported on a

given X-stabilizer. We showed that the weight enumerator of such a code Zj must

satisfy a sequence of constraints, which relate to Gleason’s Theorem [Gle71] and field

extensions.

13

Chapter 2

Preliminaries and Notation

2.1 Classical Codes

Let F2 = {0, 1} denote the binary field. A n-bit binary classical code C is a subset

of the n-dimensional binary space Fn
2 . If the subset is a linear subspace, then C is

called a binary linear code. The dimension of C, denoted by k, defines the number

of bits it can encode. The Hamming weight of a codeword c is simply the number of

nonzero entries. In general, we denote the Hamming weight of a binary vector v by

wH(v). The distance of C is defined as d = min {wH (c| c ∈ C \ {0}}, the minimum

Hamming weight among nonzero codewords. The Hamming distance between two

codewords x,y ∈ C is the minimal number of changes needed to transform x to y,

which can be represented by the Hamming weight wH(x⊕y). Here, ⊕ represents the

binary addition. One more concept needs to be introduced before we can consider

an example and that is the dual code. The dual code C⊥ of a code C is defined as

C⊥ :=
{
c|cTc′ = 0 (mod 2) for all c′ ∈ C

}
.

Example 2 (Reed-Muller Codes, [MS77]). Consider a binary linear code C generated

by 11111111, 00001111, 00110011, and 01010101. It is a 4-dimensional subspace of

{0, 1}8. The minimum Hamming weight in C is 4. So C is a [8, 4, 4] code. Note that if

we let 1 = 11111111, x1 = 00001111, x2 = 00110011, and x3 = 01010101, then the

codewords in C can be represented as f(x1,x2,x3), where f is a Boolean function

which is a polynomial of degree at most 1. This is an example of the more general

Reed-Muller structure defined as

14

Definition 4. The r-th order binary Reed-Muller code, denoted as RM(r,m) of

length n = 2m, for 0 ≤ r ≤ m, is the set of all vectors f(x1,x2, . . . ,xm), where

f is a Boolean function which is a polynomial of degree at most r.

Following Definition 4, the code C is actually RM(1, 3). The distance of a r-th

order Reed-Muller code of length m (RM(r,m)) is 2m−r. It is also important to note

that the dual code of a Reed-Muller code is still a Reed-Muller code. In particular,

RM(r,m)⊥ = RM(m− r − 1,m) for 0 ≤ r ≤ m− 1 .

2.2 The MacWilliams Identities

Recall that the Hamming weight of a binary codeword c is denoted by wH(c). The

weight distribution of code is a frequently used term in coding theory. It is an

aggregate item but contains information such as divisibility of a code. The weight

distribution of a binary linear code C ⊂ Fm
2 is summarized by the weight enumerator,

which is the polynomial defined as

PC(x, y) =
∑
v∈C

xm−wH(v)ywH(v). (2.1)

There may exist different codes C and C ′ with the same weight distribution. However,

it turns out that if C and C ′ have identical weight distributions, so do C⊥ and C ′⊥. In

other words, the weight distribution of the dual code C⊥ is completely determined by

the weight distribution of C. This relation is precisely described by the MacWilliams

Identities [Mac63], which relates the weight enumerator of a code C to that of the

dual code C⊥. It is given by

PC(x, y) =
1

|C⊥|
PC⊥(x+ y, x− y). (2.2)

15

Example 3. Let R2n+1 be the repetition code of length 2n + 1. So R2n+1 =

{02n+1,12n+1}, where 02n+1 represents the vector of all zeros and 12n+1 represents

the vector of all ones. The weight enumerator of R2n+1 is

PR2n+1(x, y) = x2n+1 + y2n+1. (2.3)

The dual code of R2n+1 is the subspace of all even-weight vectors (i.e. R⊥
2n+1 =

{c ∈ F2n+1
2 |wH(c) is even }, which is also referred as the single parity check code

of length 2n + 1. By directly counting, we have the weight distribution follows

|{c ∈ R⊥
2n+1|wH(c) = 2j}| =

(
2n+1
2j

)
for 0 ≤ j ≤ n. We can verify that

PR⊥
2n+1

(x, y) =
n∑

j=0

(
2n+ 1

2j

)
xn−2jy2j (2.4)

=
1

2

(
(x+ y)2n+1 + (x− y)2n+1

)
(2.5)

=
1

|R2n+1|
PR2n+1(x+ y, x− y). (2.6)

In this thesis, we frequently make the substitution x = cos 2π
2l

and y = −ı sin 2π
2l
,

and we define

P [C] := PC

(
cos

2π

2l
,−ı sin 2π

2l

)
=
∑
v∈C

(
cos

2π

2l

)m−wH(v)(
−ı sin 2π

2l

)wH(v)

. (2.7)

16

2.3 The Pauli Group

Let N = 2n. Any 2× 2 Hermitian matrix can be uniquely expressed as a real linear

combination of the four single qubit Pauli matrices/operators

I2 :=

1 0

0 1

 , X :=

0 1

1 0

 , Z :=

1 0

0 −1

 , Y = ıXZ, (2.8)

where ı =
√
−1 is the imaginary unit. The operators satisfy X2 = Y 2 = Z2 =

I2, XY = −Y X, XZ = −ZX, and Y Z = −ZY.

Let A⊗B denote the Kronecker product (tensor product) of two matrices A and

B. Given vectors a = [a1, a2, . . . , an] and b = [b1, b2, . . . , bn] with ai, bj = 0 or 1, we

define the operators

D(a, b) := Xa1Zb1 ⊗Xa2Zb2 ⊗ · · · ⊗XanZbn , (2.9)

E(a, b) := ıab
T (mod 4)D(a, b). (2.10)

We often abuse notation and write a, b ∈ Fn
2 , though entries of vectors are

sometimes interpreted in Z4 = {0, 1, 2, 3}. Note that D(a, b) can have order 1, 2

or 4 (order means the smallest positive integer h such that D(a, b)h = IN), but

E(a, b)2 = ı2ab
T
D(a, b)2 = ı2ab

T
(ı2ab

T
IN) = IN . The n-qubit Pauli group is defined

as

Pn := {ıκD(a, b) : a, b ∈ Fn
2 , κ = 0, 1, 2, 3}. (2.11)

The n-qubit Pauli matrices form an orthonormal basis for the vector space of N ×

N complex matrices CN×N under the normalized Hilbert-Schmidt inner product

⟨A,B⟩ := Tr(A†B)/N .

We will use the Dirac notation, |·⟩ to represent the basis states of a single qubit

17

in C2. For any v = [v1, v2, · · · , vn] ∈ Fn
2 , we define |v⟩ = |v1⟩ ⊗ |v2⟩ ⊗ · · · ⊗ |vn⟩, the

standard basis vector in CN with 1 in the position indexed by v and 0 elsewhere. We

write the Hermitian transpose of |v⟩ as ⟨v| = |v⟩†. We may write an arbitrary n-qubit

quantum state as |ψ⟩ =
∑

v∈Fn
2
αv|v⟩ ∈ CN , where αv ∈ C and

∑
v∈Fn

2
|αv|2 = 1. The

Pauli matrices act on a single qubit as

X|0⟩ = |1⟩, X|1⟩ = |0⟩, Z|0⟩ = |0⟩, and Z|1⟩ = −|1⟩. (2.12)

The symplectic inner product is ⟨[a, b], [c,d]⟩S = adT + bcT (mod 2). Since

XZ = −ZX, we have

E(a, b)E(c,d) = (−1)⟨[a,b],[c,d]⟩SE(c,d)E(a, b). (2.13)

2.4 The Clifford Hierarchy

The Clifford hierarchy of unitary operators was introduced in [GC99]. The first level

of the hierarchy is defined to be the Pauli group C(1) = Pn. For l ≥ 2, the levels l are

defined recursively as

C(l) := {U ∈ UN : UE(a, b)U † ∈ C(l−1), for all E(a, b) ∈ Pn}, (2.14)

where UN is the group of N × N unitary matrices. The second level is the Clifford

Group [Got98a], C(2), which can be generated using the unitaries Hadamard, Phase,

and either of Controlled-NOT (CX) or Controlled-Z (CZ) defined respectively as

H :=

 1 1

1 −1

 , P :=

 1 0

0 ı

 , (2.15)

18

CXa→b := |0⟩⟨0|a ⊗ (I2)b + |1⟩⟨1|a ⊗Xb, CZa→b := |0⟩⟨0|a ⊗ (I2)b + |1⟩⟨1|a ⊗ Zb.

(2.16)

It is well-known that Clifford unitaries in combination with any unitary from a

higher level can be used to approximate any unitary operator arbitrarily well [BMP+99].

Hence, they form a universal set of gates for quantum computation. A widely used

choice for the non-Clifford unitary is the T gate defined by

T :=

 1 0

0 e
iπ
4

 =
√
P = Z

1
4 ≡

 e−
ıπ
8 0

0 e
ıπ
8

 = e−
ıπ
8
Z . (2.17)

2.5 Stabilizer Codes

We define a stabilizer group S to be a commutative subgroup of the Pauli group Pn,

where every group element is Hermitian and no group element is −IN . We say S has

dimension r if it can be generated by r independent elements as S = ⟨νiE(ci,di) :

i = 1, 2, . . . , r⟩, where νi ∈ {±1} and ci,di ∈ Fn
2 . Since S is commutative, we must

have ⟨[ci,di], [cj ,dj]⟩S = cid
T
j + dic

T
j = 0 (mod 2).

Given a stabilizer group S, the corresponding stabilizer code is the fixed subspace

V(S) := {|ψ⟩ ∈ CN : g|ψ⟩ = |ψ⟩ for all g ∈ S}. We refer to the subspace V(S) as an

[[n, k, d]] stabilizer code because it encodes k := n − r logical qubits into n physical

qubits. The minimum distance d is defined to be the minimum weight of any operator

in NPn (S)\S. Here, the weight of a Pauli operator is the number of qubits on which

it acts non-trivially (i.e., as X, Y or Z), and NPn (S) denotes the normalizer of S in

19

Pn defined by

NPn (S) :={ıκE (a, b) ∈ Pn : E (a, b)E (c,d)E (a, b) =

E (c′,d′) ∈ S for all νE (c,d) ∈ S, κ ∈ Z4}

={ıκE (a, b) ∈ Pn : E (a, b)E (c,d)E (a, b) =

E (c,d) for all νE (c,d) ∈ S, κ ∈ Z4}. (2.18)

Note that the second equality defines the centralizer of S in Pn, and it follows

from the first since Pauli matrices commute or anti-commute and −IN /∈ S.

For any Hermitian Pauli matrix E (c,d) and ν ∈ {±1}, the projector IN+νE(c,d)
2

projects on to the ν-eigenspace of E (c,d). Thus, the projector on to the codespace

V(S) of the stabilizer code defined by S = ⟨νiE (ci,di) : i = 1, 2, . . . , r⟩ is

ΠS =
r∏

i=1

(IN + νiE (ci,di))

2
=

1

2r

2r∑
j=1

ϵjE (aj , bj) , (2.19)

where ϵj ∈ {±1} is a character of the group S, and is determined by the signs of

the generators that produce E(aj , bj): ϵjE (aj , bj) =
∏

t∈J⊂{1,2,...,r} νtE (ct,dt) for a

unique J .

2.6 CSS Codes

A CSS (Calderbank-Shor-Steane) code is a type of stabilizer code with generators that

can be separated into strictly X-type and Z-type operators [CS96,Ste96]. Consider

two classical binary codes C1, C2 such that C2 ⊂ C1, and let C⊥
1 , C⊥

2 denote the dual

codes. Note that C⊥
1 ⊂ C⊥

2 . Suppose that C2 = ⟨c1, c2, . . . , ck2⟩ is an [n, k2] code and

C⊥
1 = ⟨d1,d2 . . . ,dn−k1⟩ is an [n, n − k1] code. Then, the corresponding CSS code

20

has the stabilizer group

S = ⟨ν(ci,0)E (ci,0) , ν(0,dj)E (0,dj) : i = 1, . . . , k2 and j = 1, . . . , n− k1⟩ (2.20)

= {ϵ(a,0)ϵ(0,b)E (a,0)E (0, b) : a ∈ C2, b ∈ C⊥
1 }, (2.21)

where ν(ci,0), ν(dj ,0), ϵ(a,0), ϵ(0,b) ∈ {±1}. The CSS code projector can be written as

the product:

ΠS = ΠSX
ΠSZ

, (2.22)

where

ΠSX
=:

k2∏
i=1

(IN + ν(ci,0)E(ci,0))

2
=

∑
a∈C2 ϵ(a,0)E(a,0)

|C2|
, (2.23)

and

ΠSZ
=:

n−k1∏
j=1

(IN + ν(0,dj)E(0,dj))

2
=

∑
b∈C⊥

1
ϵ(0,b)E(0, b)

|C⊥
1 |

. (2.24)

Each projector defines a resolution of the identity. Since our work focuses on Z

errors, we state the one for Z type below and the other two types can be defined in

similar ways. The Z type errors commute with
∏

Sz
so we only consider

∏
Sx
. For

µ ∈ Fn
2/C⊥

2 , we define

SX(µ) :=
{
(−1)aµ

T

ϵ(a,0)E(a,0) : a ∈ C2
}

and ΠSX(µ) =
1

|C2|
∑
a∈C2

(−1)aµ
T

ϵ(a,0)E(a,0).

(2.25)

Then, we have

ΠSX(µ)ΠSX(µ′) =


ΠSX(µ) if µ = µ′,

0 if µ ̸= µ′,

and
∑

µ∈Fn
2 /C⊥

2

ΠSX(µ) = I2n . (2.26)

The detectable Z errors map the original projector
∏

SX
to
∏

SX(µ)
for some µ ̸= 0,

21

whereas the undetectable Z errors fix
∏

SX
.

If C1 and C⊥
2 can correct up to t errors, then S defines an [[n, k, d]] CSS code,

k = k1 − k2, with d ≥ 2t+1, which we will represent as CSS(X, C2;Z, C⊥
1). If G2 and

G⊥
1 are the generator matrices for C2 and C⊥

1 respectively, then the (n−k1+k2)×(2n)

matrix

GS =

 G2

G⊥
1

 (2.27)

generates S. The codespace defined by the stabilizer group S is V(S) := {|ψ⟩ ∈ CN :

g|ψ⟩ = |ψ⟩ for all g ∈ S}.

2.7 Encoding Map for CSS Codes

Given an [[n, k, d]] CSS(X, C2;Z, C⊥
1) code with all positive signs, let GC1/C2 ∈ Fk×n

2

be a matrix that generates all coset representatives for C2 in C1 (note that the choice

of coset representatives is not unique). The canonical encoding map f : Fk
2 →

V(S) is given by |v⟩ := f(|v⟩L) := 1√
|C2|

∑
x∈C2 |vGC1/C2 ⊕ x⟩. Changing the signs of

stabilizers changes the fixed subspace. Hence we need to modify the encoding map

to account for nontrivial signs. Define subspaces B and D as below.

B = {z ∈ C⊥
1 |ϵz = 1}

C⊥
1

C1

B⊥

D = {x ∈ C2|ϵx = 1}

C2

C⊥
2

D⊥

We capture sign information through character vectors y, u ∈ Fn
2 (note that the

choice of y,u is unique only up to elements in C1, C⊥
2 respectively) satisfying

B = C⊥
1 ∩ y⊥, or equivalently, B⊥ = ⟨C1,y⟩, (2.28)

22

and

D = C2 ∩ u⊥, or equivalently, D⊥ = ⟨C⊥
2 ,u⟩. (2.29)

Then, for ϵ(a,0)ϵ(0,b)E (a,0)E (0, b) ∈ S, we have ϵ(a,0) = (−1)au
T

and ϵ(0,b) =

(−1)by
T
.

The canonical bijective map f : Fk
2 → V(S) becomes [HLC22b]

|v⟩ = f(|v⟩L) :=
1√
|C2|

∑
x∈C2

(−1)xu
T |vGC1/C2 ⊕ x⊕ y⟩. (2.30)

To verify that the image of the encoding map f is in V(S), we show that for

ϵ(a,0)ϵ(0,b)E (a,0)E (0, b) ∈ S (that is a ∈ C2, ϵ(a,0) = (−1)au
T
, b ∈ C⊥

1 , and ϵ(0,b) =

(−1)by
T
),

ϵ(a,0)ϵ(0,b)E (a,0)E (0, b) |v⟩

=ϵ(a,0)ϵ(0,b)E (a,0)E (0, b)
1√
|C2|

∑
x∈C2

(−1)xu
T |vGC1/C2 ⊕ x⊕ y⟩

=
1√
|C2|

∑
x∈C2

ϵ(a,0)(−1)xu
T

ϵ(0,b)(−1)b(vGC1/C2⊕x⊕y)T |vGC1/C2 ⊕ a⊕ x⊕ y⟩

=
1√
|C2|

∑
x∈C2

(−1)(a⊕x)uT |vGC1/C2 ⊕ a⊕ x⊕ y⟩

=|v⟩.

The CSS code is said to be a constant excitation code [ZR97] if, for each fixed

v ∈ Fk
2, the weight wH(vGC1/C2 ⊕ x ⊕ y) is constant for all x ∈ C2. Recall that a

common kind of coherent noise is modeled by U = exp(ıθZ)⊗n for arbitrary θ. When

U acts on a |0⟩&|1⟩ computational basis state in a constant excitation code, each

term in (2.30) generates the same phase term exp(ıθwH(vGC1/C2 ⊕ x ⊕ y)), leading

to a global phase, which leaves the state invariant. Hence, a constant excitation code

23

is oblivious to coherent noise.

2.8 Trigonometric Conditions

The conditions for a code to be preserved by transversal Z gate at a given level

of the Clifford Hierarchy (derived in [RCNP20]) are expressed as two trigonometric

constraints on weights of pure Z-stabilizers in S.

Theorem 5 (Rengaswamy et al. [RCNP20]). Transversal π/2l Z-rotation (l ≥ 2)

preserves V(S) if and only if for ϵE(a, b) ∈ S with a ̸= 0,

∑
v∈B(a)

ϵv

(
ı tan

2π

2l

)wH(v)

=

(
sec

2π

2l

)wH(a)

, (2.31)

∑
v∈B(a)

ϵv

(
ı tan

2π

2l

)wH(v⊕ω)

= 0 for all ω ∈ O(a). (2.32)

Here, ϵv ∈ {±1} is the sign of E(0,v) in the stabilizer group S, and ⊕ denotes the

binary (modulo 2) sum of vectors.

These identities provide a mathematical framework that enables us to check

whether a quantum code is preserved by transversal Z-rotations. However, it is

hard for us to gain structural information of the code from the expression. In the

later Chapters, as two main contributions of this thesis, we will build sufficient and

necessary conditions that explicitly show the structure of the quantum codes that are

oblivious to coherent noise, which results in a systematical construction of coherent-

error-free codes starting from any stabilizer code.

24

Chapter 3

Divisibility of Weights in Binary Codes

3.1 Application of the MacWilliams Identities

The defining property of a divisible linear code [War01] is that codeword weights share

a common divisor larger than one. Codes obtained by repeating each coordinate in

a shorter code the same number of times are automatically divisible, and they are

essentially the only ones for divisors prime to the field size. Examples that are more

interesting occur when the divisor is a power of the characteristic. For example,

the theorem of Ax [Ax64] governing the existence of zeros of polynomials in several

variables characterizes divisibility of weights in Reed-Muller codes [Ax64, McE72,

MS77,Bor13].

Divisible codes (in particular Reed-Muller codes) appear in protocols designed

for magic state distillation [BK05, ACB12, CAB12, BH12] which achieves universal

quantum computation through transversal implementation of Clifford gates and an-

cillary magic states. Divisibility tests [LC13, VB19] are introduced to ensure that

a quantum error correcting code is preserved by a transversal π/2l Z-rotation. We

argue in the reverse direction, showing that divisibility of weights is forced by the

requirement that the quantum error correcting code is fixed by a transversal gate.

We will make repeated use of the following trigonometric identity that is equivalent

to code divisibility and may be of independent interest to classical coding theorists.

Lemma 6. Let C be a binary linear code with block length m, where all weights are

25

even. Let l ≥ 2. Then,

∑
v∈C

(
ı tan

2π

2l

)wH(v)

=

(
sec

2π

2l

)m

(3.1)

if and only if (m− 2wH(w)) is divisible by 2l for all w ∈ C⊥.

Proof. We rewrite (3.1) as

P [C] =
∑
v∈C

(
cos

2π

2l

)m−wH(v)(
ı sin

2π

2l

)wH(v)

= 1. (3.2)

Let t+ := cos 2π
2l
+ ı sin 2π

2l
and t− := cos 2π

2l
− ı sin 2π

2l
. After applying the MacWilliams

identities, (3.2) becomes

1

|C⊥|
PC⊥ (t+, t−) = 1. (3.3)

Since (cos θ + ı sin θ) (cos θ − ı sin θ) = 1 for all θ, we may rewrite (3.3) as

1

|C⊥|
∑
w∈C⊥

t
m−wH(w)
+ t

wH(w)
− = 1, (3.4)

which may be further simplified to

1

|C⊥|
∑
w∈C⊥

t
m−2wH(w)
+ = 1. (3.5)

Since 1 ∈ C⊥, the complement of a codeword in C⊥ is again a codeword in C⊥, so we

may rewrite (3.5) as

1

|C⊥|

[∑
w∈C⊥

t
m−2wH(w)
+ +

∑
w∈C⊥

t
−(m−2wH(w))
+

]
= 2. (3.6)

26

Since (cos θ + ı sin θ)n = eınθ, for all θ, equation (3.6) reduces to,

1

|C⊥|
∑
w∈C⊥

cos

(
2 (m− 2wH (w))π

2l

)
= 1. (3.7)

We observe that equation (3.7) is satisfied if and only if each term contributes 1 to

the sum, and this is equivalent to 2l dividing m − 2wH(w) for all codewords w in

C⊥.

Setting C = B(a) in the above lemma provides insights into the conditions of

Theorem 5.

27

Chapter 4

Coherent Noise and Z-Stabilizers

4.1 Conditions on Z-Stabilizers

Given two binary vectors x,y, we write x ⪯ y to mean that the support of x is

contained in the support of y. We define y|supp(x) ∈ FwH(x)
2 to be the restriction of y

to supp(x). Consider the [[n, n−r]] stabilizer code V(S) determined by the stabilizer

group S = ⟨νiE(ci,di) : νi ∈ {±1}, i = 1, · · · , r⟩. Recall that given a stabilizer

ϵE(a, b) with a ̸= 0, we define

B(a) = {z
∣∣
supp(a)

∈ FwH(a)
2 : ϵzE (0, z) ∈ S and z ⪯ a} (4.1)

and

O(a) = FwH(a)
2 \ B(a) = {ω ∈ FwH(a)

2 : ω /∈ B(a)}. (4.2)

Since S is commutative, a
∣∣
supp(a)

= 1 ∈ B(a)⊥, and it follows that all weights in

B(a) are even.

Example 4. Consider the [[16, 1, 4]] Shor code shown in Figure 1.1. SettingE(a,0) =

⊗8
i=1Xi, where Xi means Pauli X on the i-th qubit, we have

B(a) = F2
2 ⊗ ⟨[1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1]⟩.

28

We now consider Theorem 5 in the special case l = 2 (Transversal T). Let

s =
∑

v∈B(a)

ϵvı
wH(v). (4.3)

Since tan π
4
= 1 and sec π

4
=

√
2, we may rewrite (2.31) as

s2 = 2wH(a) =
∑

v,w∈B(a)

ϵvϵwı
wH(v)+wH(w) (4.4)

=
∑

v,w∈B(a)

ϵv⊕wı
wH(v⊕w)+2vwT

. (4.5)

Changing variables to z = v ⊕w and v, we obtain

2wH(a) =
∑

z,v∈B(a)

ϵzı
wH(z) (−1)(z⊕v)vT

(4.6)

=
∑

z∈B(a)

ϵzı
wH(z)

∑
v∈B(a)

(−1)zv
T

(4.7)

= |B(a)|
∑

z∈B(a)∩B(a)⊥
ϵzı

wH(z), (4.8)

where the second step follows from vvT is even. Since 2wH(a) = |B(a)| · |B(a)⊥|

and |B(a) ∩ B(a)⊥| ≤ |B(a)⊥|, B(a)⊥ is contained in B(a) and so 1 ∈ B(a). Since

B(a)⊥ ⊆ B(a), it now follows that B(a) contains a self-dual code. Since

|B(a)⊥| =
∑

z∈B(a)⊥
ϵzı

wH(z), (4.9)

we must have ϵz = ıwH(z) for all z ∈ B(a)⊥.

Remark 7. The above derivation provides the three necessary conditions given in

[RCNP20, Theorem 2] that are necessary for a stabilizer code to be preserved by the

29

transversal T gate.

1. For each ϵE(a, b) ∈ S with a ̸= 0, the Hamming weight wH(a) is even.

2. For each ϵE(a, b) ∈ S with a ̸= 0, the binary code B(a) contains an[
n = wH(a), k = wH(a)

2

]
self-dual code.

3. For each z ∈ B(a)⊥, the sign of the corresponding stabilizer E(0, z) ∈ S is

given by ıwH(z).

Example 5. Consider the [[16, 4, 2]] code that is a member of the [[2m,
(
m
1

)
, 2]] quan-

tum Reed-Muller (QRM) family constructed in [RCNP20]. It is the CSS(X, C2;Z, C⊥
1)

code, where C2 = ⟨1⟩ = RM(0,4) ⊂ C1 = RM(1,4) and C⊥
1 = RM(2,4) ⊂ C⊥

2 =

RM(3,4) (see [MS77] for more details of classical Reed-Muller codes). The signs of

all stabilizers are positive. We know from [RCNP20, Theorem 19] that the code

space is fixed by transversal
√
T (π

24
Z-rotation), and direct calculation shows that

the corresponding logical operator is CCCZ up to some local Pauli corrections. We

first verify invariance under transversal T by checking the sufficient conditions given

in Remark 7.

The [[16, 4, 2]] code has a single non-zero X-stabilizer a = 1, with even weight,

and a single subcode B(a) = C⊥
1 = RM(2,4). This subcode contains a self-dual code,

denoted RM(1.5, 4), which is generated by 1, all the degree one monomials, and half

of the degree two monomials, i.e., x1x2, x1x3, x1x4. Since the weights in RM(1.5, 4)

are 0, 4, 8, 12, and 16, we have ıwH(v) = 1 for all v ∈ RM(1.5, 4). This matches

the signs specified in the definition of the code above. Hence, the [[16, 4, 2]] code

satisfies the sufficient conditions for invariance under transversal T . We note that

the logical operator induced by transversal T is the identity (obtained by applying

CCCZ twice).

30

Finally, we verify invariance under transversal
√
T by checking the first of the

trigonometric conditions given in Theorem 5. The weight distribution of RM(2, 4) is

given by

P (x) = 1 + 140x4 + 448x6 + 870x8 + 448x10 + 140x12 + x16. (4.10)

Let α4 = tan 2π
24

= tan π
8
. Since (sec θ)2 = 1 + (tan θ)2 and ϵv = 1, for all v ∈ B(a),

we have

∑
v∈RM(2,4)

ϵv (ıα4)
wH(v) −

(
1 + α2

4

)8
= (ıα4)

0 + 140 (ıα4)
4 + 448 (ıα4)

6 + 870 (ıα4)
8

+ 448 (ıα4)
10 + 140 (ıα4)

12 + (ıα4)
16 −

(
1 + α2

4

)8
= −8α2

4(1− α4)
2(1 + α4)

2(α2
4 + 2α4 − 1)2(α2

4 − 2α4 − 1)2. (4.11)

The first trigonometric condition is satisfied since α4 =
√
2−1 is a root of x2+2x−1 =

0. We verified the second condition directly using MATLAB for each nonzero coset

representative in F16
2 /B(a) and it is also implicit in [RCNP20, Theorem 19].

Remark 7 motivates the following extension to Lemma 6.

Corollary 8. Let C be a binary linear code with block length m where all codewords

have even weight. Suppose that

∑
v∈C

ϵv

(
ı tan

2π

2l

)wH(v)

=

(
sec

2π

2l

)m

, (4.12)

where ϵ : C → {±1} is a character of the additive group C.

1. If ϵv = 1 for all v ∈ C, then 2l divides (m− 2wH(w)) for all w ∈ C⊥.

31

2. If ϵv ̸= 1 for all v ∈ C, and if B = {v ∈ C : ϵv = 1}, then 2l divides

(m− 2wH(w)) for all w ∈ B⊥ \ C⊥.

Proof. Part (1) follows from Lemma 6.

To prove part (2), rewrite (4.12) as

P [B]− P [C \ B] =
∑
v∈B

(
cos

2π

2l

)m−wH(v)(
ı sin

2π

2l

)wH(v)

−
∑

v∈C\B

(
cos

2π

2l

)m−wH(v)(
ı sin

2π

2l

)wH(v)

=1 (4.13)

Recall the notations we used in the proof of Lemma 6 that t+ = cos 2π
2l
+ ı sin 2π

2l
and

t− = cos 2π
2l

− ı sin 2π
2l
. Since 1 ∈ C⊥ ⊂ B⊥, we may apply the MacWilliams Identities

to obtain

P [B] + P [C \ B] =
∑
v∈C

(
cos

2π

2l

)m−wH(v)(
ı sin

2π

2l

)wH(v)

(4.14)

=
1

|C⊥|
PC⊥ (t+, t−) (4.15)

=
1

|C⊥|
∑
w∈C⊥

cos

(
2 (m− 2wH (w))π

2l

)
. (4.16)

Note that B ⊂ C is a subspace of index 2. Since |B⊥| = 2|C⊥|, we may apply the

MacWilliams Identities to PB
(
cos 2π

2l
, i sin 2π

2l

)
and obtain

P [B] = 1

|B⊥|
PB⊥ (t+, t−)

=
1

2|C⊥|
∑
w∈B⊥

cos

(
2 (m− 2wH (w))π

2l

)
. (4.17)

32

Combining equations (4.16) and (4.17) gives

1 = P [B]− P [C \ B] = 2P [B]− (P [B] + P [C \ B])

=
1

|C⊥|
∑

w∈B⊥\C⊥

cos

(
2 (m− 2wH (w))π

2l

)
. (4.18)

We complete the proof by observing that each term in (4.18) must contribute 1 to

the sum.

Remark 9. If m ̸= 0 (mod 2l), then since 0 ∈ C⊥, it must be case 2 of Corollary

8 that applies. This is always the case when 2l > m. We must have wH(v) = m/2

for all v ∈ B⊥ \ C⊥, and we remark that if we expand the MacWilliams Identities

using Krawtchouk polynomials [MS77], then we can show that there exist at least

m/2 codewords in C with Hamming weight 2.

By setting C = B(a) in Theorem 5, we see that the scenario 2l > wH(a) applies

whenever we require that Theorem 5 holds for all l ≥ 2. Thus, the observation using

Krawtchouk polynomials implies the existence of a large set of weight 2 Z-stabilizers

in the code. This motivates the study of stabilizers groups with such structure, which

we embark upon next (Section 5), noting that existence is proved in Theorem 3.

4.2 Logical Identity induced by infinite transver-

sal Z-rotations

The goal of constructing quantum codes that are oblivious to coherent noise moti-

vates us to study the conditions for transversal Z rotations to preserve a code space.

In this section, we provide a proof of the following result:

33

Theorem 10. A stabilizer code is oblivious to coherent noise if and only if transversal

π/2lZ-rotation preserves the code space V(S) for all l ≥ 2.

Assume S defines an error-detecting code [[n, n − r, d]], i.e., d ≥ 2, which is

invariant under all the transversal π
2l
Z-rotations. Set θl =

π
2l
. Then, we can write

the Taylor expansion

n⊗
i=1

eıθlZi =
n⊗

i=1

∞∑
k=0

(ıθlZi)
k

k!
=

n⊗
i=1

(I2 + ıθlZi +O(θ2l)I2) (4.19)

= I2n + ıθl(Z1 ⊗ I2 ⊗ · · · I2 + I2 ⊗ Z2 ⊗ I2 ⊗ · · · ⊗ I2

+ · · ·+ I2 ⊗ I2 ⊗ · · · ⊗ Zn) +O(θ2l)I2n . (4.20)

We can choose l large enough (say l ≥ L for some positive integer L) in order to

ignore the last term,

n⊗
i=1

eıθlZi

≈ I2n + ıθl(Z1 ⊗ I2 ⊗ · · · I2 + I2 ⊗ Z2 ⊗ I2 ⊗ · · · ⊗ I2

+ · · ·+ I2 ⊗ I2 ⊗ · · · ⊗ Zn). (4.21)

On one hand, since the code can detect any single-qubit error, it can detect any

linear combination of them (Theorem 10.2 in [NC11]). Therefore,
⊗n

i=1 e
ıθlZi is de-

tectable (i.e., it maps all the codewords outside the codespace or acts trivially on the

codespace). On the other hand,
⊗n

i=1 e
ıθlZi preserves the code space by assumption.

Therefore,
⊗n

i=1 e
ıθlZi acts trivally on the codespace, which implies that the logical

operator induced by
⊗n

i=1 e
ıθlZi is the identity for all l ≥ L. Note that if the logi-

cal operator induced by
⊗n

i=1 e
ıθlZi is the identity for larger l, the logical operator

induced by
⊗n

i=1 e
ıθlZi is also the identity for smaller l via repeated applications.

34

Therefore, the logical operator induced by
⊗n

i=1 e
ıθlZi is the identity for all l.

35

Chapter 5

Conditions for Quantum Codes to be
Oblivious to Coherent Noise

5.1 Weight Two Z-Stabilizers

We begin this section by examining the structure of a stabilizer group S that contains

weight 2 Z-stabilizers. Later in this section we show (in the proof of necessity in

Theorem 3) that if a stabilizer code V(S) is preserved by the transversal π/2l Z-

rotation for all l ≥ 2, then S contains a large number of weight 2 Z-stabilizers.

Let ei, i = 1, 2, . . . , n be the standard basis of Fn
2 . Recall the graph with vertex

set

Γ =
⋃

ϵE(a,b)∈S

supp(a), (5.1)

where vertices i and j are joined if ϵE(0, ei⊕ej) ∈ S for some ϵ ∈ {±1}. Recall that

we denote the connected components of the graph by Γ1, · · · ,Γt, and set Nk = |Γk|

for k = 1, 2, · · · , t.

Lemma 11. Each component Γk, k = 1, 2, · · · , t is a complete graph.

Proof. If a path r0, r1, · · · , rj connects vertices r0 and rj, then r0 is joined to rj since

±E
(
0, er0 ⊕ erj

)
=

j−1∏
i=0

[
±E

(
0, eri ⊕ eri+1

)]
.

This implies that the Z-stabilizers corresponding to Γk are given by all length Nk

vectors of even weight, i.e., the [Nk, Nk − 1, 2] single parity check code. Henceforth,

36

we denote the [m,m−1, 2] single parity check code of any lengthm by W . Theorem 5

forces us to consider all Z-stabilizers B(a) supported on the X-component a of some

stabilizer ϵE(a, b). The next observation shows that a either has full support or no

support on a given Γk. Together with the above result, this means that each Γk either

contributes (Nk−1) dimensions worth of Z-stabilizers or nothing at all to B(a). This

suggests that we split the sum that appears in Theorem 5 in terms of smaller sums

over the Γk’s lying within the support of a. Indeed, we are building up towards such

an argument in Theorem 3.

Given v ∈ Fn
2 , let vk = v

∣∣
Γk

∈ FNk
2 be the restriction of v to Γk for k = 1, · · · , t.

Lemma 12. If ±E(a, b) is a stabilizer in S, then ak = 0 or 1.

Proof. If zk is an even weight vector supported on Γk, then ±E(0, z̃k) is a Z-stabilizer

in S. Since S is commutative, ak is orthogonal to every even weight vector zk, and

so ak = 0 or 1.

5.2 Product Structure

The Z-stabilizers supported on Γk take the form (−1)ykv
T
E(0,v), where v is a vector

of even weight supported on Γk. Here yk is a fixed binary vector supported on Γk. We

now investigate trigonometric identities satisfied by the weights in these component

codes W representing Z-stabilizers from Γk.

Lemma 13. Let W be the [m,m− 1] code consisting of all vectors with even weight,

and let ϵv = (−1)vy
T
be a character on W. Then

∑
v∈W

ϵv

(
ı tan

2π

2l

)wH(v)

= cos γ ·
(
sec

2π

2l

)m

, (5.2)

37

where γ = 2π(M−2wH(y))
2l

and l ≥ 3.

Proof. If ϵ is the trivial character, then y = 0, and we have

∑
v∈W

(
ı tan 2π

2l

)wH(v)(
sec 2π

2l

)m = P [W] . (5.3)

Note that W⊥ = {0,1}. We apply the MacWilliams Identities to obtain

P [W] =
1

|W⊥|
PW⊥

(
cos

2π

2l
+ ı sin

2π

2l
, cos

2π

2l
− ı sin

2π

2l

)
=

1

|W⊥|
PW⊥

(
eı

2π

2l , e−ı 2π
2l

)
=

1

2

[(
eı

2π

2l

)m (
e−ı 2π

2l

)0
+
(
eı

2π

2l

)0 (
e−ı 2π

2l

)m]
= cos

2πm

2l
, (5.4)

which means ∑
v∈W

(
ı tan

2π

2l

)wH(v)

= cos
2πM

2l

(
sec

2π

2l

)m

. (5.5)

If ϵ is a non-trivial character, then there exists y ∈ Fm
2 with y ̸= 0 or 1 such that

B = {v ∈ W : ϵv = 1} = ⟨1,y⟩⊥, (5.6)

and

B⊥ = ⟨1,y⟩ = {0,1,y,1⊕ y}. (5.7)

38

Note that |B| = |W|
2

and |B⊥| = 2|W⊥|. We rewrite

∑
v∈W

ϵv

(
ı tan

2π

2l

)wH(v)

=
∑
v∈B

(
ı tan

2π

2l

)wH(v)

−
∑

v∈W\B

(
ı tan

2π

2l

)wH(v)

(5.8)

= 2
∑
v∈B

(
ı tan

2π

2l

)wH(v)

−
∑
v∈W

(
ı tan

2π

2l

)wH(v)

, (5.9)

so that ∑
v∈W ϵv

(
ı tan 2π

2l

)wH(v)(
sec 2π

2l

)m = 2P [B]− P [W] . (5.10)

We apply the MacWilliams Identities to obtain

P [B] = 1

|B⊥|
PB⊥

(
eı

2π

2l , e−ı 2π
2l

)
=

1

2

[
cos

2πm

2l
+ cos

2π(m− 2wH(y))

2l

]
. (5.11)

We combine with (5.5) to obtain

2P [B]− P [W] = cos
2π (m− 2wH (y))

2l
(5.12)

as required.

When B(a) = W , the second trigonometric identity in Theorem 5 becomes a sum

over all odd weight vectors (Fm
2 \W). The character ϵ is given by ϵv = (−1)vy

T
for

some y ∈ Fm
2 and we extend the domain of ϵ from W to Fm

2 . If ϵ is trivial, then

∑
v∈Fm

2 \W ϵv
(
ı tan 2π

2l

)wH(v)(
sec 2π

2l

)m = P [Fm
2 \W] = P [Fm

2]− P [W] . (5.13)

39

Note that (Fm
2)

⊥ = ⟨0⟩. We apply the MacWilliams Identities to obtain

P [Fm
2] = P⟨0⟩

(
eı

2π

2l , e−ı 2π
2l

)
(5.14)

=
(
eı

2π

2l

)m−0 (
eı

2π

2l

)0
(5.15)

= cos
2πm

2l
+ ı sin

2πm

2l
. (5.16)

It now follows from equation (5.5) that

P [Fm
2]− P [W] = ı sin

2πm

2l
= ı sin

2π (m− 2wH (0))

2l
. (5.17)

If ϵ is non-trivial, let B′ = {x ∈ Fm
2 |ϵx = 1}. If B′ = W , then

∑
v∈Fm

2 \W ϵv
(
ı tan 2π

2l

)wH(v)(
sec 2π

2l

)m = −ı sin 2πm

2l
= ı sin

2π(m− 2wH(1))

2l
. (5.18)

Note that since ⟨y⟩ ⊆ ⟨1,y⟩ = B⊥, we have B ⊆ y⊥. It remains to consider the case

where ϵ is non-trivial and B′ ̸= W . Here B′ = y⊥ where y ̸= 1.

Lemma 14. Let W be the [m,m− 1] code consisting of all vectors with even weight.

Let ϵv = (−1)vy
T
, let B = {v ∈ W|ϵv = 1} = ⟨1,y⟩⊥, and let B′ = {x ∈ Fm

2 |ϵx =

1}.Then ∑
v∈Fm

2 \W

ϵv

(
ı tan

2π

2l

)wH(v)

= ı sin γ ·
(
sec

2π

2l

)m

, (5.19)

where γ = 2π(m−2wH(y))
2l

.

Proof. We may assume that y ̸= 0,1, and that the subspaces W ,y⊥ and their duals

⟨1⟩, ⟨y⟩ intersect as shown below. The edge label is the index of the smaller subspace

in the group larger subspace.

40

Table 5.1: Sign patterns: the entries of each row specify how the set corresponding
to the subsets A can be written as a union of subsets in different columns.

A
T

(Fm
2 \W) ∩ (Fm

2 \ y⊥) (Fm
2 \W) ∩ y⊥ W ∩ (Fm

2 \ y⊥)

Fm
2 \W + + 0

Fm
2 \ y⊥ + 0 +

W \ (W ∩ y⊥) 0 0 +

Fm
2

W y⊥

W ∩ y⊥

2

2

2

2

⟨1,y⟩

⟨1⟩ ⟨y⟩

⟨0⟩

2

2

2

2

We have

∑
v∈Fm

2 \W ϵv
(
ı tan 2π

2l

)wH(v)(
sec 2π

2l

)m
= P

[
(Fm

2 \W) ∩ y⊥]− P
[
(Fm

2 \W) ∩
(
Fm
2 \ y⊥)] . (5.20)

Table 5.1 specifies how subsets T appearing (5.20) can be expressed as disjoint unions

of subsets A that appear in the MacWilliams Identities.

It follows from Table 5.1 that we may rewrite the right hand side of (5.20) as

∑
v∈Fm

2 \W ϵv
(
ı tan 2π

2l

)wH(v)(
sec 2π

2l

)m
= P [Fm

2 \W]− 2P
[
Fm
2 \ y⊥]+ 2P

[
W \ (W ∩ y⊥)

]
. (5.21)

41

It follows from (5.17) that

P [Fm
2 \W] = ı sin

2πm

2l
. (5.22)

We rewrite (5.16) as

P
[
Fm
2 \ y⊥] = eı

2πm

2l − P [y⊥]. (5.23)

Recall that we define t+ = cos 2π
2l

+ ı sin 2π
2l

and t− = cos 2π
2l

− ı sin 2π
2l
. We apply the

MacWilliams Identities to obtain

P
[
y⊥
]
=

1

|⟨y⟩|
P|⟨y⟩| (t+, t−)

=
1

2

(
eı

2πm

2l + eı
2π(m−2wH (y))

2l

)
, (5.24)

so that

P
[
Fm
2 \ y⊥] = 1

2

(
eı

2πm

2l − eı
2π(m−2wH (y))

2l

)
. (5.25)

It follows from (5.5) that

P
[
W \ (W ∩ y⊥)

]
= cos

2πm

2l
− P [W ∩ y⊥]. (5.26)

We apply the MacWilliams Identities to obtain

P
[
W ∩ y⊥]

=
1

|⟨1,y⟩|
P|⟨1,y⟩| (t+, t−)

=
1

4

[
eı

2πm

2l + e−ı 2πm

2l + eı
2π(m−2wH (y))

2l + eı
2π(2wH (y)−m)

2l

]
(5.27)

42

so that

P
[
W \ (W ∩ y⊥)

]
=

1

2

[
cos

2πm

2l
− cos

2π(m− 2wH(y))

2l

]
. (5.28)

We now use (5.22), (5.25), (5.28) to rewrite the right hand side of (5.21) as

ı sin
2πm

2l
− eı

2πm

2l + eı
2π(m−2wH (y))

2l + cos
2πm

2l
− cos

2π(m− 2wH(y))

2l
, (5.29)

which reduces to (5.19).

5.3 Proof of Conditions

We now consider a stabilizer code V(S) that is preserved by π/2l Z-rotation for all

l ≥ 2. The sign ϵv of the Z-stabilizer ϵvE(0,v) is given by ϵv = (−1)yv
T
, and we

let yk = y
∣∣
Γk

be the restriction of the binary vector y to Γk. Given ϵE(a, b) ∈ S

with a ̸= 0, we now investigate the trigonometric conditions satisfied by Z-stabilizers

supported on supp(a). We first show that supp(a) is the disjoint union of components

Γk ⊆ supp(a). We then glue together the trigonometric conditions satisfied by the

Z-stabilizers supported on these components Γk.

Theorem 3. Transversal π/2l Z-rotation preserves the stabilizer code for all l ≥ 2

if and only if for every ϵE(a, b) ∈ S with a ̸= 0,

(1) supp(a) is the disjoint union of components Γk ⊆ supp(a)

(2) Nk is even and wH(yk) = Nk/2 for all k such that Γk ⊆ supp(a).

Proof of Necessity. First, we need to show that the hypothesis implies the presence of

many weight 2 Z-stabilizers, and hence that the discussion of Γk is material. Though

we remarked on their presence in Remark 9, we will see in this proof that such a

43

structure is revealed by the trigonometric conditions in Theorem 5 itself. For now,

we begin by assuming their presence and introducing related quantities.

We divide the weight 2 Z-stabilizers in Γk into two classes of sizes Pk and Qk

where Pk = |{v ∈ F|Γk|
2 : wH(v) = 2 and ϵv = 1}| and Qk = |{v ∈ F|Γk|

2 : wH(v) =

2 and ϵv = −1}|. Setting wH(yk) = s, we have

Qk − Pk =

(
s

1

)(
Nk − s

1

)
−
((

s

2

)
+

(
Nk − s

2

))
(5.30)

= −2

(
s− Nk

2

)2

+
Nk

2
. (5.31)

Thus, Qk − Pk ≤ Nk

2
, and equality holds if and only if wH(yk) = Nk

2
. Theorem 5

implies all wH(a) are even and

∑
v∈B(a)

ϵv (ı tan θ)
wH(v) = (sec θ)wH(a) = (1 + (tan θ)2)

wH (a)

2 (5.32)

for all θ = π
2l

with l ≥ 2. Let B2j(a) = {z ∈ B(a)|wH(z) = 2j}. We have

wH (a)

2∑
j=0

∑
v∈B2j(a)

ϵv(−1)j (tan θ)2j =
(
1 + (tan θ)2

)wH (a)

2 . (5.33)

for all θ = π
2l

with l ≥ 2. Since a finite degree polynomial (in (tan θ)2) cannot have

infinitely many roots
(
tan π

2l

)2
, it must be identically zero and we may equate the

coefficients of (tan θ)2 to obtain

wH(a)

2
=

∑
v∈B2(a)

ϵv · (−1) =
∑

k:Γk⊆supp(a)

(Qk − Pk). (5.34)

Note that this observation has established the presence of weight 2 vectors in B(a),

44

as we intended. It follows from (5.31) that

wH(a)

2
≤

∑
k:Γk⊆supp(a)

Nk

2
≤ wH(a)

2
. (5.35)

Therefore equality holds in (5.35) and Qk−Pk =
Nk

2
for all k such that Γk ⊆ supp(a),

which completes the proof of necessity.

Proof of Sufficiency. Let W0
k be the [Nk, Nk − 1] single-parity-check code and let

W1
k = FNk

2 \W0
k . Let W(r) =

⊕
k:Γk⊆supp(a) W

rk
k , where r ∈ F|{k:Γk⊆supp(a)}|

2 and rk is

the entry of r corresponding to Γk. Then, for all r,

∑
v∈W(r)

ϵv

(
ı tan

2π

2l

)wH(v)

=
∏
k

Γk⊆supp(a)

fk(rk), (5.36)

where

fk(δ) =
∑
η∈Wδ

k

(−1)ykη
T

(
ı tan

2π

2l

)wH(η)

, for δ ∈ {0, 1}. (5.37)

Here, yk = y
∣∣
Γk

be the restriction of the character vector y to Γk. Let γ =

2π(Nk−2wH(yk))
2l

. We apply (5.5) and (5.19) to simplify (5.37) as

fk(δ) =

 cos γ ·
(
sec 2π

2l

)Nk if δ = 0,

ı sin γ ·
(
sec 2π

2l

)Nk if δ = 1,

=


(
sec 2π

2l

)Nk if δ = 0,

0 if δ = 1.
(5.38)

Therefore, the summation (5.36) is nonzero if only if r = 0 (i.e. summing overW(0)).

To show the first trigonometric identity in Theorem 5, we note that B(a) ⊃ W(0).

45

Then, for all l ≥ 3

∑
v∈B(a)

ϵv

(
ı tan

2π

2l

)wH(v)

=
∑
v∈W

ϵv

(
ı tan

2π

2l

)wH(v)

=
∏
k

Γk⊆supp(a)

(
sec

2π

2l

)Nk

=

(
sec

2π

2l

)wH(a)

. (5.39)

To verify the second condition, let ω ∈ O(a) = FwH(a)
2 \B(a) and we change variables

to β = v⊕ω and ω on the right hand side (note that we have extended the ϵv to all

binary vectors). Since W(0) is not contained in any nontrival coset of B(a), we have

∑
v∈B(a)

ϵv

(
ı tan

2π

2l

)wH(v⊕ω)

= ϵω
∑

β∈ω⊕B(a)

ϵβ

(
ı tan

2π

2l

)wH(β)

= 0, (5.40)

for all l ≥ 3 and ω ̸= 0.

5.4 Constant Excitation Code

We now use the two conditions in Theorem 3 to show that if a CSS code is oblivious

to coherent noise, then it is a constant excitation code.

Corollary 15. A CSS code is oblivious to coherent noise if and only if it is a constant

excitation code.

If the CSS code is error-detecting (d > 1) then the weights in different cosets of

the X-stabilizers are identical.

Proof. Consider an [[n, k, d]] CSS(X, C2;Z, C⊥
1) code with a fixed character vector

y for Z-stabilizers. If w is a coset representative for C2 in C1, then w ⊥ C⊥
1 so

46

w
∣∣
Γk

= 0 or 1. If x ∈ C2, then by Lemma 12, we have x
∣∣
Γk

= 0 or 1 for all k.

Theorem 3 implies wH(yk) =
|Γk|
2

for all k, where yk = y
∣∣
Γk
. Since (w⊕x) = 0 or 1

on any Γk, adding yk to the sum either leaves yk unchanged or just flips all entries

of yk. In both cases, the Hamming weight of the sum (w ⊕ x⊕ y) is exactly |Γk|
2

on

any Γk. If Γ =
⋃t

k=1 Γk, then

wH(w ⊕ x⊕ y
∣∣
Γ
) =

∑t
k=1 |Γk|
2

. (5.41)

If V = {1, 2, . . . , n}\Γ, then the first condition in Theorem 3 implies that wH(x
∣∣
V
) =

0, so that for fixed w

wH(w ⊕ x⊕ y) = wH(w ⊕ x⊕ y
∣∣
Γ
) + wH(w ⊕ x⊕ y

∣∣
V
) (5.42)

is constant for all x ∈ C2, and the CSS code is a constant excitation code. The

sufficiency follows from the observation that a transversal θ Z-rotation acts as a

global phase on a constant excitation code. If the CSS code is error detecting, then

for all i ∈ V there exists ϵi ∈ {±1} such that ϵiE(0, ei) is a Z-stabilizer. Hence

w
∣∣
v
= 0 for all coset representatives w = vGC1/C2 of C2 in C1. It now follows from

(5.42) that wH(w ⊕ x⊕ y) = |Γ|
2
+ wH(y

∣∣
v
) is constant.

47

Chapter 6

Construction of Quantum Codes
Oblivious to Coherent Noise

6.1 CSS Code Construction

Let A2 ⊂ A1 be two classical codes with length t, and let R2, R1 respectively be the

rates of A2,A1. We may construct a [[t, (R1 − R2)t, d = min{dmin(A1), dmin(A⊥
2)}]]

CSS code by choosing X-stabilizers from A2 and Z-stabilizers from A⊥
1 . Let M ≥ 2

be even, and let W be the [M,M−1] single parity check code consisting of all vectors

with even weight of length M . Consider the CSS(X, C2;Z, C⊥
1) code where

C2 = A2 ⊗ 1M , (6.1)

C⊥
1 =

{
(b⊗ e1)⊕w : b ∈ A⊥

1 and w ∈
t⊕

k=1

W

}
, (6.2)

and 1M is the all-ones vector of length M . Note that the code C⊥
1 includes the

direct sum of t single-parity-check codes W . We determine signs of elements in C⊥
1

(Z stabilizers) by choosing a character vector y ∈ FtM
2 , and we satisfy condition (2)

of Theorem 3 by choosing wH(yk) = M/2, where yk = y
∣∣
Γk
. The sign ϵz of the

Z-stabilizer ϵzE(0, z) is given by ϵz = (−1)ykz
T
. The number of logical qubits is

tM − dim(C⊥
1)− dim(C2)

= tM − t(M − 1)− (1−R1)t−R2t = (R1 −R2)t. (6.3)

48

If z is a vector of minimum weight that is orthogonal to all X-stabilizers, then ei-

ther z is a Z-stabilizer or z is a vector from A⊥
2 interspersed with zeros. Hence

the minimum distance d of the CSS code is at least min(dmin(A1)M,dmin(A⊥
2)).

Thus, we have constructed a CSS code family with parameters [[tM, (R2 − R1)t,≥

min(dmin(A1)M,dmin(A⊥
2))]], that is oblivious to coherent noise.

For fixed M , if we choose a family CSS codes with finite rate, then the new CSS

family also have finite rate but with possible higher distances. If we allow bothM and

t to grow without bound, then the new CSS family may achieve increased distance

but will have vanishing rate.

Example 6. We may choose A1 = F2L
2 , A2, and M = 2L to be the [2L, 2L − 1]

single-parity-check code to obtain the family of [[4L2, 1, 2L]] Shor codes.

The dual-rail inner code [KLM01] is the CSS code determined by the specific

stabilizer group S = ⟨−Z1Z2⟩. Ouyang [Ouy20] observed that it was possible to

construct a constant excitation code by concatenating an outer stabilizer code with

an inner dual-rail code. This is simply because concatenation maps |0⟩ to |01⟩ and

|1⟩ to |10⟩. In this case the number of physical qubits doubles. When M = 2, the

construction described above coincides with the dual-rail construction. However, our

approach has shown that any CSS code can be made oblivious to coherent noise,

without requiring a special stabilizer group as in the original dual-rail construction.

In fact, our approach can be extended to any stabilizer code as shown in the following

section.

49

6.2 Generalizing to Stabilizer Codes

Consider an [[n, k, d]] stabilizer code with generator matrix

GS =

n n
A B r − l

C l

. (6.4)

Here, r = n − k, and the matrix C is the generator matrix of the space {z ∈

Fn
2 |ϵzE(0, z) ∈ S} (thus the matrix A has full row rank). The stabilizer code derived

from our construction has generator matrix

GS′ =

nM nM


A⊗ 1M B ⊗ e1 r − l

C ⊗ e1 l

In ⊗W n(M − 1)

, (6.5)

where the (M − 1)×M matrix W generates the single-parity-check code. We choose

signs of the n(M − 1) stabilizers generated by In⊗W so that the new stabilizer code

is oblivious to coherent noise.

Theorem 16. The minimum distance d′ of the stabilizer code generated by GS′ sat-

isfies d ≤ d′ ≤Md.

Proof. Suppose that (x,y) is not in the row space of GS′ and GS′(y,x)T = 0. Note

50

that M | wH(x). We may write

x = f ⊗ 1M where f ∈ Fn
2 , (6.6)

and y = (1M ⊗ (w1, . . . ,wn))⊕ (g ⊗ e1) where wi ∈ W and g ∈ Fn
2 . Then

GS′(y,x)T =

 A B

C

 (g,f)T = 0. (6.7)

The weight of (x,y) is at least the weight of (f , g) which is at least d, and so d′ ≥ d.

Furthermore, there exists a weight d vector (u,v) not in the row space of GS and

GS(v,u)
T = 0. Then, we have (u ⊗ 1M ,v ⊗ e1) is not in the row space of GS′ and

GS′(v ⊗ e1,u⊗ 1M)T = 0. Hence,

d′ ≤ wH(u⊗ 1M ,v ⊗ e1) ≤M · wH(u,v) =Md.

The next example also demonstrates that the dual-rail construction may some-

times increase minimum distance, and this may be a reason to investigate M > 2 in

the above construction, where the distance d′ satisfies d ≤ d′ ≤Md (Theorem 16).

Example 7. Consider the [[5, 1, 3]] stabilizer code with generator matrix GS = [A|B]

where

A =



1 0 0 1 0

0 1 0 0 1

1 0 1 0 0

0 1 0 1 0


and B =



0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

1 0 0 0 1


. (6.8)

51

The code is not a CSS code. The stabilizer code derived from our construction has

generator matrix

GS′ =

signs A⊗ [1, 1] B ⊗ [1, 0] +

I5 ⊗ [1, 1] −

. (6.9)

Consider (y,x) such that (x,y) is not in the row space of GS′ and GS′(y,x)T =

0. We observe that 2 | wH(x). If x = 0, then y = w ⊗ [1, 1] ⊕ 15 ⊗ [1, 0] for

some w ∈ F5
2, then after possibly applying the cyclic symmetry, we may assume

x = e1 ⊕ e2 and (A⊗ [1, 1])yT = [0, 0, 0, 1]T . We observe that neither [0, 0, 0, 1] nor

[1, 0, 1, 0]⊕ [0, 0, 0, 1] = [1, 0, 1, 1] is a column of A. It follows that the distance d′ ≥ 4.

In fact, we see d′ = 4 by taking

(x′,y′) = [1, 1, 0, 0, 0, 0, 0, 0, 0, 0|0, 0, 1, 0, 0, 0, 0, 0, 1, 0]. (6.10)

Hence, the stabilizer code derived from the above construction has parameters [[10, 1, 4]].

By choosing y to be either [0, 1] or [1, 0] for each of the five connected components

with size M = 2, we ensure V(S ′) to satisfy Theorem 3, and thus it is oblivious to

coherent noise.

We now consider the cases that when some qubits are not involved in any X-

stabilizer.

Example 8. Consider the [[5, 1, 2]] CSS code with the character vector y = [1, 0, 1, 0, 1]

52

defined by the following generator matrix

GS =



1 1 1 1 0

1 1 0 0 0

0 0 1 1 0

0 0 0 0 1


. (6.11)

Here, we have two connected components Γ1 = {1, 2} and Γ2 = {3, 4}. Since

supp([1, 1, 1, 1, 0]) = Γ1 ∪ Γ2, and wH(yk) = |Γk|
2

= 1 for k = 1, 2, the two con-

ditions in Theorem 3 are satisfied. Hence, the [[5, 1, 2]] CSS code is oblivious to

coherent noise, and we use (2.30) to compute computational states to verify it is a

constant excitation code:

|0̄⟩ = 1√
2
(|01011⟩+ |10101⟩), (6.12)

|1̄⟩ = 1√
2
(|10011⟩+ |10101⟩). (6.13)

Here, the constant excitation is 3 ̸= 5
2
(half of the number of physical qubits). After

the concatenation, we may introduce extra physical qubits by adding zeros to the

current X-stabilizers and including all weight 1 Z-stabilizers on the extra qubits.

This construction reduces rate, but provides a large class of codes that may be useful

in implementing logical gates.

Given any [[n, k, d]] stabilizer code, the theoretical construction in (6.5) and the

observation in Example 8 provide a [[Mn + s, k, d′]] stabilizer code that is oblivious

to coherent noise, where d ≤ d′ ≤Md, M ≥ 2 is even, and s ≥ 0.

53

Chapter 7

Coherent Noise in the Form of Generator
Coefficients

7.1 Review of Generator Coefficients

In the previous Chapters, we focused on transversal Z-rotations, which are a special

form of diagonal gates. In this Chapter, more general conditions for a quantum

codes to be preserved by diagonal gates are derived. We first review the Generator

Coefficient Framework which describes the evolution of stabilizer code states under

a physical diagonal gate UZ =
∑

u∈Fn
2
du|u⟩⟨u| (See [HLC22b] for more details).

Note that |u⟩⟨u| = 1
2n

∑
v∈Fn

2
(−1)uv

T
E(0,v). Alternatively, we may expand UZ

in the Pauli basis

UZ =
∑
v∈Fn

2

f(v)E(0,v), (7.1)

where

f(v) =
1

2n

∑
u∈Fn

2

(−1)uv
T

du. (7.2)

The Hadamard gate H2n connects the coefficients in the standard basis with those in

the Pauli basis as follows

[f(v)]v∈Fn
2
= [du]u∈Fn

2
H2n , (7.3)

where H = 1√
2
(|0⟩⟨0|+ |0⟩⟨1|+ |1⟩⟨0| − |1⟩⟨1|) and H2n = H ⊗H2n−1 = H⊗n is the

54

Hadamard gate.

We consider the average logical channel induced by UZ on an [[n, k, d]] CSS(X, C2;

Z, C⊥
1 ,y) code that results from the four steps : (1) preparing any code state ρ1;

(2) applying a diagonal physical gate UZ to obtain ρ2; (3) using X-stabilizers to

measure ρ2 (we only consider Z-errors as the same reasons in [BK05, BH12]), to

obtain the syndrome µ with probability pµ, and the post-measurement state ρ3; (4)

applying a Pauli correction to ρ3, to obtain ρ4. The correction might induce some

undetectable Z-logical ϵ(0,γµ)E(0,γµ) with γ0 = 0. Let Bµ be the effective physical

operator corresponding to the syndrome µ. Then the evolution of code states can be

described as

ρ4 =
∑

µ∈Fn
2 /C⊥

2

Bµρ1B
†
µ. (7.4)

The generator coefficients Aµ,γ are obtained by expanding the logical operator Bµ in

terms of Z-logical Pauli operators ϵ(0,γ)E(0,γ),

Bµ = ϵ(0,γµ)E(0,γµ)
∑

γ∈C⊥
2 /C⊥

1

Aµ,γ ϵ(0,γ)E(0,γ), (7.5)

where ϵ(0,γµ)E(0,γµ) models the Z-logical Pauli correction introduced by a decoder.

For each pair of anX-syndrome µ ∈ Fn
2/C⊥

2 and a Z-logical γ ∈ C⊥
2 /C⊥

1 , the generator

coefficient Aµ,γ corresponding to UZ is

Aµ,γ :=
∑

z∈C⊥
1 +µ+γ

ϵ(0,z)f(z), (7.6)

where ϵ(0,z) = (−1)zy
T
is the sign of the Z-stabilizer E(0, z). The chosen Z-logicals

and X-syndromes are not unique, but different choices only differ by a global phase.

55

Generator coefficients use the CSS code to organize the Pauli coefficients of UZ into

groups and to balance them by tuning the signs of Z-stabilizers. We use (7.2) to

simplify (7.6) as

Aµ,γ =
1

2n

∑
u∈Fn

2

∑
z∈C⊥

1 +µ+γ

(−1)zy
T

(−1)zu
T

du

=
1

|C1|
∑
u∈C1

(−1)(µ⊕γ)uT

du⊕y, (7.7)

where |C1| = 2k1 is the size of C1. We organize the generator coefficients in a matrix

M(Fn
2 /C⊥

2 ,C⊥
2 /C⊥

1) with rows indexed by X-syndromes and columns by Z-logicals,

M(Fn
2 /C⊥

2 ,C⊥
2 /C⊥

1) =



[Aµ=0,γ]γ∈C⊥
2 /C⊥

1

[Aµ=µ1,γ]γ∈C⊥
2 /C⊥

1

...

[Aµ=µ
2k2−1

,γ]γ∈C⊥
2 /C⊥

1


µ∈Fn

2 /C⊥
2

. (7.8)

For fixed µ ∈ Fn
2/C⊥

2 ,

[Aµ,γ]γ∈C⊥
2 /C⊥

1
=

1

|C1|
[du⊕y]u∈C1H

µ

(C1,C⊥
2 /C⊥

1)
, (7.9)

where Hµ

(C1,C⊥
2 /C⊥

1)
= [(−1)(µ⊕γ)uT

]u∈C1,γ∈C⊥
2 /C⊥

1
.

Theorem 17 (Theorem 7 in [HLC22b]). The physical gate UZ =
∑

u∈Fn
2
du|u⟩⟨u|

preserves a CSS(X, C2;Z, C⊥
1 ,y) codespace if and only if

∑
γ∈C⊥

2 /C⊥
1

|A0,γ |2 =
∑

γ∈C⊥
2 /C⊥

1

A0,γA0,γ = 1. (7.10)

Here, | · | denotes the complex norm.

56

Proof. Invariance of the codespace is equivalent to requiring the effective physical

operator corresponding to the trivial syndrome Bµ=0 to be unitary.

Note that (7.10) is also equivalent to [Aµ ̸=0,γ]γ∈C⊥
2 /C⊥

1
= 0 [HLC22b, Theorem 6].

The induced logical operator is

UL
Z =

∑
α∈Fk

2

A0,g(α)E(0,α)

=
1

|C1|
∑
α∈Fk

2

∑
u∈C1

(−1)g(α)uT

du⊕yE(0,α), (7.11)

where g : Fk
2 → C⊥

2 /C⊥
1 is a bijective map defined by g(α) = αGC⊥

2 /C⊥
1
. Here, GC⊥

2 /C⊥
1

is one choice of the generator matrix of Z-logicals (coset representatives of C⊥
2 /C⊥

1).

Example 9. The [[15, 1, 3]] punctured quantum Reed-Muller code [BK05] is a CSS(X,

C2; Z, C⊥
1 , y = 0) code, where C2 is generated by the degree one monomials, x1, x2, x3, x4,

and C⊥
1 = ⟨x1, x2, x3, x4, x1x2, x1x3, x1x4, x2x3, x2x4, x3x4⟩, with the first coordinate

removed in both C2 and C⊥
1 . It’s also a triorthogonal code [BH12] for which a physical

transversal T gate, UZ =
∑

u∈Fn
2

(
eıπ/4

)wH(u) |u⟩⟨u|, induces a logical transversal T

gate up to some Clifford gates. Here, wH(u) = uuT denotes the Hamming weight of

the binary vector u. Note that C1 is the classical punctured RM(1, 4) code with weight

distribution given in Table 7.1 below.

Table 7.1: The weight distribution of C1 for the [[15, 1, 3]] code

weight 0 7 8 15

multiplicity 1 15 15 1

Then, du = 1 for u ∈ C1 satisfying wH(u) = 0 or 8, and du = e−ıπ/4 for u ∈ C1

satisfying wH(u) = 7 or 15. Since the Z-logical γ = 1, the all-one vector, it only

changes the signs of du with odd weight. It follows from (7.11) that the induced logical

57

operator is

UL
Z =

16

32
(1 + e−ıπ/4)E(0, 0) +

16

32
(1− e−ıπ/4)E(0, 1) = T †. (7.12)

Remark 18. It follows from (7.11) that the induced logical operator is completely

specified by |C1| diagonal entries in the physical gate UZ. If we choose a CSS code

and target a particular logical gate, then the constraints on the corresponding physical

gates only apply to the diagonal elements corresponding to the coset C1 + y.

7.2 Generalizing the Error Model

Given a CSS code, the generator coefficient framework not only represents when

a physical diagonal gate preserves the codespace, but it also characterizes all the

possible physical gates that realize a target diagonal logical gate. We start from the

simplest case, when the logical operator is the identity.

Lemma 19. The physical gate UZ =
∑

u∈Fn
2
du|u⟩⟨u| acts as the logical identity on

the CSS(X, C2;Z, C⊥
1 ,y) codespace if and only if du⊕y are the same for all u ∈ C1.

Proof. It follows from (7.11) that UL
Z = I2k if and only if

|Aµ=0,γ=0| =

∣∣∣∣∣ 1

|C1|
∑
u∈C1

du⊕y

∣∣∣∣∣ = 1, (7.13)

which is equivalent to requiring that 2k1 diagonal entries of the physical gate UZ

indexed by the set C1 + y are identical.

The mapping from a physical gate that preserves a given CSS code to the induced

logical operator is a group homomorphism. The kernel of this homomorphism is the

group of phsyical gates that induce the logical identity.

58

Remark 20. Given a CSS code, Lemma 19 characterizes all the diagonal physical

gates that induce the identity on the codespace. This enables code design within a

decoherence-free subspace (DFS) for a particular noise system. For homogeneous

coherent noise (same angle on each physical qubit), we consider

UZ =

1 0

0 eıθ


⊗n

≡
∑
u∈Fn

2

(
eıθ
)wH(u) |u⟩⟨u|, (7.14)

with θ ∈ (0, 2π). We design CSS codes that are oblivious to all such gates by making

sure all the Hamming weights in the coset C1 + y are the same (a new perspective on

the results in [HLC22a,Ouy21]). For coherent noise with inhomogeneous angles, this

perspective enables code design to mitigate these correlated errors. For example, we

consider UZ =

1 0

0 eıθ1

⊗

1 0

0 eıθ2

⊗

1 0

0 eıθ

⊗

1 0

0 eıθ

⊗

1 0

0 eıθ
′
1

⊗

1 0

0 eıθ
′
2

,
with θ ∈ (0, 2π) and θ1 + θ2 = θ

′
1 + θ

′
2 = θ. By selecting the diagonal elements

of UZ with the same value, we design a [[6, 1, 2]] CSS code within a DFS for the

inhomogeneous noise system, where

GC2 =

[
1 1 1 1 1 1

]
⊂ GC1 =

1 1 1 1 1 1

0 0 1 1 0 0

 and y = [1, 1, 1, 0, 0, 0].

(7.15)

59

Chapter 8

Constraints Associated with Climbing the
Clifford Hierarchy

When transversal Z-rotations are used to induce non-identity logical operations on

a stabilizer code, the classical binary codes Zj formed by the Z-stabilizers supported

on a given X-stabilizer must satisfy Theorem 5 for all l ≤ lmax <∞. In this section,

we show that as l increases, the weight enumerator of such a code Zj must satisfy a

sequence of constraints.

When the code Zj is self-dual, the first of the constraints connects to Gleason’s

Theorem [Gle71] that the weight enumerator is a sum of products of certain given

polynomials. We note that there are many connections between self dual codes,

lattices, quadratic forms, and quantum error correcting codes (see [NRS06] for more

information).

We derive constraints that apply to a polynomial Rj(x) determined by the char-

acter ϵv and the weight enumerator of Zj; when Zj is self-dual, the polynomial Rj(x)

depends only on the weight enumerator. Invariance under transversal π
2l
Z-rotations

implies that Rj(x) is divisible by the minimal polynomial of tan 2π
2l

for l = 3, ..., lmax.

Since lmax ≥ 3, it follows from the second condition of Remark 7 that every code

Zj contains a [wH(aj),
wH(aj)

2
] self-dual code Aj. Here we assume Zj = Aj, then add

a Z-stabilizer E(0, z) to the stabilizer group S, and verify that the identities (2.31)

and (2.32) still hold. If z ⪯̸ aj, then Zj is unchanged. If z ⪯ aj, then Z
′
j = ⟨Zj, z⟩

and we have

60

∑
v∈Z′

j

ϵv

(
ı tan

2π

2l

)wH(v)

=
∑
v∈Zj

ϵv

(
ı tan

2π

2l

)wH(v)

+
∑
v∈Zj

ϵvϵz

(
ı tan

2π

2l

)wH(v⊕z)

(8.1)

= sec

(
2π

2l

)wH(aj)

+ ϵz
∑
v∈Zj

ϵv

(
ı tan

2π

2l

)wH(v⊕z)

(8.2)

= sec

(
2π

2l

)wH(aj)

. (8.3)

Note that if ω ∈ O′
j, then z ⊕ ω ∈ Oj, and we have

∑
v∈Z′

j

ϵv

(
ı tan

2π

2l

)wH(v⊕w)

=
∑
v∈Zj

ϵv

(
ı tan

2π

2l

)wH(v⊕w)

+
∑
v∈Zj

ϵvϵz

(
ı tan

2π

2l

)wH(v⊕z⊕w)

(8.4)

= 0 + 0 = 0. (8.5)

Once conditions (2.31) and (2.32) are satisfied by a subcode of Zj (for example Aj),

they remain satisfied as Z-stabilizers are added to the stabilizer group. Conversely,

it is natural to ask whether the conditions of Theorem 5 for θ = π
4
(preserved by T

gate) imply there exists a self-dual code satisfying (2.31) and (2.32). We have the

following result:

Theorem 21. For ϵE(a, b) ∈ S with a ̸= 0, if the condition (2.31) is satisfied

for θ = π
4
(preserved by T gate), then we have dimB(a) ≥ wH(a)

2
. Furthermore, if

dimB(a) = wH(a)
2

, then B(a) is a self-dual code.

61

Proof. By assumption, we have

∑
v∈B(a)

ϵv

(
ı tan

π

4

)wH(v)

=
(
sec

π

4

)wH(a)

(8.6)

∑
v∈B(a)

ϵv(−1)
wH (v)

2 = 2
wH (a)

2 (8.7)

Note that each term of the left hand side contributes either 1 or −1. So there are

least 2wH(a) terms, which implies that dimB(a) ≥ wH(a)
2

.

Now, we assume dimB(a) = wH(a)
2

. There are exactly 2wH(a) terms on the left

hand side, and all of them are 1. Hence,

1 = ϵv(−1)
wH (v)

2 = (−1)vy
T+

wH (v)

2 , (8.8)

where y is the characteristic vector. Therefore, we have

vyT +
wH(v)

2
is even for all v ∈ B(a). (8.9)

For any u,v ∈ B(a), we have

uvT = wH(u ∗ v) = wH(u) + wH(v)− wH(u⊕ v)

2
(8.10)

= uyT +
wH(u)

2
+ vyT +

wH(v)

2
−
(
(u⊕ v)yT +

wH(u⊕ v)

2

)
(8.11)

= even + even− even = even. (8.12)

Therefore, B(a) is a self-dual code.

We now make the connection to Gleason’s Theorem.

Theorem 22 (Gleason [Gle71]). Let C a binary self-dual code with all Hamming

62

weights divisible by c, and let PC(x, y) be the weight enumerator of C.

1. If c = 2, then PC(x, y) is a sum of products of the polynomials f(x, y) = x2+y2

and g(x, y) = x2y2(x2 − y2)2.

2. If c = 4, then PC(x, y) is a sum of products of the polynomials f(x, y) =

x8 + 14x4y4 + y8 and g(x, y) = x4y4(x4 − y4)4.

8.1 Applications of Algebraic Number Theory

Given a stabilizer code fixed by a transversal π
2l
Z-rotation, we set mj = wH(aj) and

rewrite (2.31) of Theorem 5 as

∑
v∈Zj

ϵv

(
ı tan

2π

2l

)wH(v)

=

(
sec

2π

2l

)mj

. (8.13)

Since sec θ =
√

1 + (tan θ)2, we can rewrite the right hand side as

(
sec

2π

2l

)mj

=

(
1 +

(
tan

2π

2l

)2
)mj

2

=

mj
2∑

t=0

(mj

2

t

)(
tan

2π

2l

)2t

. (8.14)

Let Zj(2t) be the set of vectors in Zj with Hamming weight 2t. It follows from (8.13)

that the polynomial

Rj(x) :=

mj
2∑

t=0

 ∑
v∈Zj(2t)

ϵv (−1)t −
(mj

2

t

)x2t (8.15)

vanishes at αl = tan 2π
2l
. When a stabilizer code V (S) is preserved by all transver-

sal Z-rotations, we must have Rj(x) = 0 for all Zj. When V (S) is preserved by

the transversal π
2l
Z-rotation for l ≤ lmax < ∞, then since the polynomial Rj(x)

63

only involves even powers of x, it is divisible by the minimal polynomials of tan 2π
2l

and − tan 2π
2l

for l ≤ lmax. We derive these minimal polynomials in Theorem 26 be-

low, starting with two technical lemmas. Note that both minimal polynomials are

irreducible in Q[x].

Lemma 23. Let f(x) = 2x
1−x2 . Then

fk(x) =

∑2k−1−1
i=0 (−1)i

(
2k

2i+1

)
x2i+1∑2k−1

j=0 (−1)j
(
2k

2j

)
x2j

, (8.16)

where fk(x) = f(f(· · · f(x)))︸ ︷︷ ︸
k

.

Proof. We use induction. When k = 1, we have

f 1 (x) =
2x

1− x2
=

(
2
1

)
x(

2
0

)
−
(
2
2

)
x2
. (8.17)

When k = 2, we have

f 2 (x) =
2 2x
1−x2

1−
(

2x
1−x2

)2 =
4x− 4x3

1− 6x2 + x4
=

(
4
1

)
x−

(
4
3

)
x3(

4
0

)
−
(
4
2

)
x2 +

(
4
4

)
x4
. (8.18)

Assume the Equation 8.16 holds for some k ≥ 2. By induction, we have

fk+1 (x) = f
(
fk (x)

)
=

2fk (x)

1− (fk (x))2
=

2
∑2k−1−1

i=0 (−1)i(2k

2i+1)x2i+1∑2k−1

j=0 (−1)j(2
k

2j)x2j

1−
(∑2k−1−1

i=0 (−1)i(2k

2i+1)x2i+1∑2k−1

j=0 (−1)j(2
k

2j)x2j

)2 (8.19)

64

⇒ fk+1 (x) =
2
(∑2k−1−1

i=0 (−1)i
(

2k

2i+1

)
x2i+1

)(∑2k−1

j=0 (−1)j
(
2k

2j

)
x2j
)

(∑2k−1

j=0 (−1)j
(
2k

2j

)
x2j
)2

−
(∑2k−1−1

i=0 (−1)i
(

2k

2i+1

)
x2i+1

)2 (8.20)

=
2
∑2k−1

r=0

∑
i+j=r (−1)r

(
2k

2i+1

)(
2k

2j

)
x2r+1(∑2k

i=0 (−1)⌈
i
2
⌉ (2k

i

)
xi
)(∑2k

j=0 (−1)⌊
i
2
⌋ (2k

j

)
xj
) . (8.21)

We first look at the numerator of fk+1(x)

Numerator = 2
2k−1∑
r=0

∑
i+j=r

(−1)r
(

2k

2i+ 1

)(
2k

2j

)
x2r+1 (8.22)

=
2k−1∑
r=0

[
2
∑
i+j=r

(
2k

2i+ 1

)(
2k

2j

)]
(−1)r x2r+1 (8.23)

=
2k−1∑
r=0

[∑
i+j=r

(
2k

2i+ 1

)(
2k

2j

)
+
∑
i+j=r

(
2k

2j

)(
2k

2i+ 1

)]
(−1)r x2r+1 (8.24)

=
2k−1∑
r=0

[
r∑

s=0

(
2k

s

)(
2k

2r + 1− s

)]
(−1)r x2r+1 (8.25)

=
2k−1∑
r=0

(−1)r
(

2k+1

2r + 1

)
x2r+1. (8.26)

Then, we simplify the denominator of fk+1(x)

Denominator =

 2k∑
i=0

(−1)⌈
i
2
⌉
(
2k

i

)
xi

 2k∑
j=0

(−1)⌊
i
2
⌋
(
2k

j

)
xj

 (8.27)

=
2k+1∑
r=0

[∑
i+j=r

(−1)⌈
i
2
⌉+⌊ j

2
⌋
(
2k

i

)(
2k

j

)]
xr. (8.28)

65

If r = 2p for some 0 ≤ p ≤ 2k, we have

[∑
i+j=2p

(−1)⌈
i
2
⌉+⌊ j

2
⌋
(
2k

i

)(
2k

j

)]
x2p =

2p∑
i=0

(−1)⌈
i
2
⌉+⌊ 2p−i

2
⌋
(
2k

i

)(
2k

2p− i

)
x2p (8.29)

=

2p∑
i=0

(−1)⌈
i
2
⌉+p−⌈ i

2
⌉
(
2k

i

)(
2k

2p− i

)
x2p (8.30)

=

2p∑
i=0

(−1)p
(
2k

i

)(
2k

2p− i

)
x2p (8.31)

=

[
2p∑
i=0

(
2k

i

)(
2k

2p− i

)]
(−1)p x2p (8.32)

= (−1)p
(
2k+1

2p

)
x2p. (8.33)

If r = 2p+ 1 for some 0 ≤ p ≤ 2k − 1, we have

[∑
i+j=2p+1

(−1)⌈
i
2
⌉+⌊ j

2
⌋
(
2k

i

)(
2k

j

)]
x2p+1 (8.34)

=

2p+1∑
i=0

(−1)⌈
i
2
⌉+⌊ 2p+1−i

2
⌋
(
2k

i

)(
2k

2p+ 1− i

)
x2p+1 (8.35)

=

p∑
i=0

[
(−1)⌈

i
2
⌉+⌊ 2p+1−i

2
⌋
(
2k

i

)(
2k

2p+ 1− i

)
x2p+1

]
(8.36)

+

p∑
i=0

[
(−1)⌈

2p+1−i
2

⌉+⌊ i
2
⌋
(

2k

2p+ 1− i

)(
2k

i

)
x2p+1

]
(8.37)

=

p∑
i=0

[
(−1)⌈

i
2
⌉+p+⌊− i−1

2
⌋
(
2k

i

)(
2k

2p+ 1− i

)
x2p+1

]
(8.38)

+

p∑
i=0

[
(−1)p+⌈− i−1

2
⌉+⌊ i

2
⌋
(

2k

2p+ 1− i

)(
2k

i

)
x2p+1

]
(8.39)

=

p∑
i=0

[
(−1)⌈

i
2
⌉+p−⌈ i−1

2
⌉
(
2k

i

)(
2k

2p+ 1− i

)
x2p+1

]
(8.40)

+

p∑
i=0

[
(−1)p−⌊ i−1

2
⌋+⌊ i

2
⌋
(

2k

2p+ 1− i

)(
2k

i

)
x2p+1

]
. (8.41)

66

Since exactly one of i−1
2

and i
2
is integer, we observe that

(⌈
i

2

⌉
+ p−

⌈
i− 1

2

⌉)
+

(
p−

⌊
i− 1

2

⌋
+

⌊
i

2

⌋)
(8.42)

=2p+

(⌈
i

2

⌉
+

⌊
i

2

⌋)
−
(⌈

i− 1

2

⌉
+

⌊
i− 1

2

⌋)
(8.43)

is odd. Hence,

(−1)⌈
i
2
⌉+p−⌈ i−1

2
⌉
(
2k

i

)(
2k

2p+ 1− i

)
x2p+1 + (−1)p−⌊ i−1

2
⌋+⌊ i

2
⌋
(

2k

2p+ 1− i

)(
2k

i

)
x2p+1

(8.44)

=0 (8.45)

for all 1 ≤ i ≤ p, which means that

[∑
i+j=2p+1

(−1)⌈
i
2
⌉+⌊ j

2
⌋
(
2k

i

)(
2k

j

)]
x2p+1 = 0. (8.46)

Hence,

Denominator =
2k∑
p=0

(−1)p
(
2k+1

2p

)
x2p. (8.47)

By equations (8.26) and (8.47), we have

fk+1 (x) =

∑2k−1
i=0 (−1)i

(
2k+1

2i+1

)
x2i+1∑2k

j=0 (−1)j
(
2k+1

2j

)
x2j

. (8.48)

Lemma 24. [Q(tan 2π
2l
) : Q] = 2l−3 for l ≥ 3.

Proof. We use induction. When l = 3, we have
[
Q(tan π

4
) : Q

]
= 1 = 23−3.

67

Now, we assume that
[
Q(tan 2π

2l
) : Q

]
= 2l−3 and consider

[
Q
(
tan

2π

2l+1

)
: Q
]
=

[
Q
(
tan

2π

2l+1

)
: Q
(
tan

2π

2l

)]
·
[
Q
(
tan

2π

2l

)
: Q
]

(8.49)

=

[
Q
(
tan

2π

2l+1

)
: Q
(
tan

2π

2l

)]
· 2l−3. (8.50)

The double angle formula gives us

tan
2π

2l
=

2 tan 2π
2l+1

1−
(
tan 2π

2l+1

)2 ⇒
(
tan

2π

2l+1

)2

+
2

tan 2π
2l

tan
2π

2l+1
− 1 = 0. (8.51)

By the quadratic formula, we have

tan
2π

2l+1
=

− 2
tan 2π

2l

+
√

4

(tan 2π

2l
)
2 + 4

2
=

−1 +
√

1 +
(
tan 2π

2l

)2
tan 2π

2l

=
−1 + sec 2π

2l

tan 2π
2l

(8.52)

We want to show that tan 2π
2l+1 /∈ Q(tan 2π

2l
) by contradiction. Assume tan 2π

2l+1 ∈

Q(tan 2π
2l
). Then

sec
2π

2l
= tan

2π

2l+1
· tan 2π

2l
+ 1 ∈ Q

(
tan

2π

2l

)
⇒ cos

2π

2l
∈ Q

(
tan

2π

2l

)
, (8.53)

which implies that

[
Q
(
cos

2π

2l

)
: Q
]
≤
[
Q
(
tan

2π

2l

)
: Q
]
= 2l−3. (8.54)

However, by Lemma 25 (showed below), we have the
[
Q(cos 2π

2l
) : Q

]
= 2l−2 > 2l−3,

which is a contradiction. Thus,
[
Q(tan 2π

2l+1) : Q
]
= 2 · 2l−3 = 2(l+1)−3.

Lemma 25. [Q(cos 2π
2l
) : Q] = 2l−2 for l ≥ 2.

68

Proof. For l ≥ 2, set

ξl = eı
2π

2l = cos
2π

2l
+ i sin

2π

2l
, (8.55)

and note that [Q(ξl) : Q] = 2l−1. Then,

ξl + ξ−1
l

2
= cos

2π

2l
∈ Q(ξl). (8.56)

Hence, Q ⊂ Q(cos 2π
2l
) ⊂ Q(ξl) and ξl is a root of

x2 − 2 cos
2π

2l
x+ 1 = 0 ∈ Q

(
cos

2π

2l

)
[x] . (8.57)

Now, we have

2l−1 = [Q(ξl) : Q)] =

[
Q(ξl) : Q

(
cos

2π

2l

)]
·
[
Q
(
cos

2π

2l

)
: Q
]
. (8.58)

Note that i ∈ Q(ξl) and i /∈ Q(cos 2π
2l
), [Q(ξl) : Q(cos 2π

2l
)] > 1. Then, the equation

(8.57) is the minimal polynomial in Q(cos 2π
2l
) of ξl, we have [Q(ξl) : Q(cos 2π

2l
)] = 2.

Thus, [
Q
(
cos

2π

2l

)
: Q
]
=

[Q (ξl) : Q)][
Q(ξl) : Q

(
cos 2π

2l

)] = 2l−1

2
= 2l−2, (8.59)

which completes the proof.

8.2 Minimal Polynomial and Gleason’s Theorem

Theorem 26. Let αl = tan 2π
2l

for some l ≥ 3. The minimal polynomial of αl over

Q is

pl(x) =
2l−3∑
t=0

(−1)⌈
t
2
⌉
(
2l−3

t

)
xt ∈ Q[x]. (8.60)

Proof. Consider the double angle formula tan 2α = 2 tanα
1−tan2 α

. Let f(x) = 2x
1−x2 . Then

69

we have f l−3(αl) = tan(2l−3αl) = tan(2π
23
) = 1. After applying Lemma 23 we have

1 = f l−3(αl) = fk(x) =

∑2k−1−1
i=0 (−1)i

(
2k

2i+1

)
(αl)

2i+1∑2k−1

j=0 (−1)j
(
2k

2j

)
(αl)2j

. (8.61)

After rearranging terms we have

0 =
2k−1∑
j=0

(−1)j
(
2k

2j

)
(αl)

2j −
2k−1−1∑
i=0

(−1)i
(

2k

2i+ 1

)
(αl)

2i+1 (8.62)

=
2l−3∑
t=0

(−1)⌈
t
2
⌉
(
2l−3

t

)
(αl)

t = pl(αl). (8.63)

Therefore, αl is a root of pl. Moreover, by Lemma 24, we have deg pl = 2l−3 =

[Q(αl) : Q]. Hence, pl is the minimal polynomial of αl over Q for l ≥ 3.

Remark 27. If pl(x) is the minimal polynomial of αl, then pl(−x) is the minimal

polynomial of −αl since [Q(αl) : Q] = [Q(−αl) : Q] = deg pl(x). Theorem 26 shows

that pl(x) has a root of αl = tan 2π
2l
. We can use the same iterative method of field

extensions to show that pl(x) has roots Sl = {tan k·2π
2l

: k = 1 (mod 4) and 1 ≤ k ≤

2l−1 − 3}. Similarly, we can check that pl(−x) has roots S ′
l = {tan k·2π

2l
: k = 3

(mod 4) and 3 ≤ k ≤ 2l−1 − 1}.

We now show that the polynomial Rj(x) is divisible by the square of the minimal

polynomials of α3 and −α3. The first step is to show that the coefficients of Rj(x)

are symmetric.

Lemma 28. For each Zj, the coefficients of Rj(x) are symmetric, that is

∑
v∈Zj(2t)

ϵv (−1)t −
(mj

2

t

)
=

∑
w∈Zj(mj−2t)

ϵw (−1)
mj
2

−t −
(mj

2
mj

2
− t

)
. (8.64)

Proof. Let v ∈ Zj(2t) and we can write v = w ⊕ 1mj
, for some w ∈ Zj (mj − 2t).

70

After making the substitution for v in terms of w, we have

∑
v∈Zj(2t)

ϵv (−1)t −
(mj

2

t

)
=

∑
w∈Zj(mj−2t)

ϵw⊕1mj
(−1)t −

(mj

2

t

)
(8.65)

=
∑

w∈Zj(mj−2t)

ϵwϵ1mj
(−1)t −

(mj

2

t

)
, (8.66)

where the last step follows by the facts that the ϵ is multiplicative. Note that 1mj
∈

Z⊥
j since all vectors in Zj have even Hamming weight. By the third necessary condi-

tion in Remark 7, we have ϵ1mj
= (−1)

mj
2 . Thus, ϵ1mj

(−1)t = (−1)
mj
2

+t = (−1)
mj
2

−t

and it follows from the symmetry of binomial coefficients that

∑
w∈Zj(mj−2t)

ϵwϵ1mj
(−1)t −

(mj

2

t

)
=

∑
w∈Zj(mj−2t)

ϵw (−1)
mj
2

−t −
(mj

2
mj

2
− t

)
. (8.67)

Combining (8.65) and (8.67), we obtain (8.64) as required.

Lemma 29. If α3 = tan π
4
= 1 is a root of Rj(x). Then α3 has multiplicity of at

least 2. The same holds for −α3.

Proof. Let D = degRj(x). Lemma 28 implies Rj

(
1
x

)
xD = Rj(x), and taking deriva-

tives of both sides we obtain

−R′
j

(
1

x

)
· 1

x2
· xD +Rj

(
1

x

)
·D · xD−1 = R′

j(x). (8.68)

By assumption, we have Rj(1) = 0. After substituting x = 1, we have −R′
j(1) =

R′
j(1), which implies that R′

j(1) = 0. Similarly, we can show R′
j(−1) = 0. Thus, if

α3 and −α3 are roots of Rj(x), then they have multiplicity at least 2.

Remark 30. Note that x2 always divides Rj(x) since all powers of x in (8.15) are

even. Given a stabilizer code V (S) preserved by transversal π
2l
Z-rotation for l ≤

71

lmax < ∞, it follows from Theorems 5 and 26, and from Lemma 29 that Rj(x)

is divisible by x2(x − 1)2(x + 1)2
∏lmax

l=4 pl(x)pl(−x). Note that (x − 1)2(x + 1)2 =

(p3(x)p3(−x))2.

Corollary 31 (Connecting to Gleason’s Theorem). Let S define a stabilizer code

V (S) that is preserved by (finitely many) transversal applications of exp(ıπ
2l
σZ), with

l ≤ lmax < ∞. If there exists a stabilizer ϵjE(aj, bj) with aj ̸= 0 such that Zj =

{z̃
∣∣
supp(aj)

: ϵz̃E (0, z̃) ∈ S and z̃ ⪯ aj} is self-dual, then the weight enumerator of Zj

is

PZj
(x, y) = (x2 + y2)

mj
2 + x2y2(x2 − y2)2h(x, y), (8.69)

where h(x, y) ∈ Q[x, y].

Proof. Based on Remark 30, we know that the corresponding R(x) is divisible by the

factor x2(x− 1)2(x+ 1)2, i.e.,

Rj(x) =

mj
2∑

t=0

 ∑
v∈Zj(2t)

ϵv (−1)t −
(mj

2

t

)x2t = x2(x− 1)2(x+ 1)2h(x) (8.70)

for some h(x) ∈ Q[x]. Note that Zj is self-dual, i.e., Zj = Z⊥
j . It follows from the

third condition in Remark 7 that ϵv = ıwH(v) = (−1)t for all v ∈ Zj. Thus, we can

rewrite (8.70) as

Rj(x) =

mj
2∑

t=0

[
|Zj(2t)| −

(mj

2

t

)]
x2t = x2(x− 1)2(x+ 1)2h(x). (8.71)

Let D = degRj(x). Then, we have
mj

2
+ 2 ≤ D ≤ mj − 2 and deg h(x) = D − 6.

72

Then,

Rj(x) =

D
2∑

t=m−D
2

[
|Zj(2t)| −

(mj

2

t

)]
x2t = x2(x− 1)2(x+ 1)2h(x). (8.72)

Note that xmj−D|Rj(x) = x2(x − 1)2(x + 1)2h(x) but xmj−D ∤ Rj(x), which implies

that xmj−D−2 is the factor of h(x) with the highest degree in x. Assume h(x) =

xmj−d−2l(x), where deg l(x) = d − 6 − (mj − d − 2) = 2d − mj − 4 and x ∤ l(x).

Replacing x by y
x
and multiplying both side by xmj in (8.71), we have

D
2∑

t=m−D
2

[
|Zj(2t)| −

(mj

2

t

)]
xmj−2ty2t = xmj−8x2y2(y − x)2(y + x)2

(y
x

)mj−d−2

l
(y
x

)
,

(8.73)

which implies that

mj
2∑

t=0

[
|Zj(2t)| −

(mj

2

t

)]
xmj−2ty2t = x2y2(y−x)2(y+x)2xmj−d−2ymj−d−2x2d−mj−4l

(y
x

)
.

(8.74)

Note that PZj
(x, y) =

∑mj
2

t=0 |Zj(2t)| · xmj−2ty2t, we have

PZj
(x, y) = (x2 + y2)

mj
2 + x2y2(x2 − y2)2h(x, y), (8.75)

where h(x, y) = xmj−d−2ymj−d−2x2d−mj−4l(y
x
). Note that deg l(x) = 2d−mj − 4 and

x ∤ l(x), we have h(x, y) ∈ Q[x, y].

Remark 32. Since Zj is self-dual, it follows from Theorem 22 that PZj
(x, y) is a

sum of products of Gleason’s polynomials f(x, y) and g(x, y) according to divisibility

of weights. As divisible by 4 is a special case of divisible by 2, we choose the general

73

case that f(x, y) = x2 + y2 and g(x, y) = x2y2(x2 − y2)2. Then, we rewrite (8.69) as

PZj
(x, y)− (f(x, y))

mj
2 = g(x, y)h(x, y), (8.76)

which implies that g(x, y)h(x, y) is a sum of products of f(x, y) and g(x, y), i.e.

g(x, y)h(x, y) =
∑T

i=1 ci (f(x, y))
σi (g(x, y))ξi , with ci ̸= 0. Note that S = {(x, y) ⊂

R2 : x = 0} is a set of roots for g(x, y) but not for f(x, y). Thus, g(x, y) cannot

divide a nonzero polynomial that is purely in terms of f(x, y), which implies that

ξi > 0 for all i. Thus, h(x, y) is a sum of products of f(x, y) and g(x, y), which

implies that h(x, y) = h(y, x). Equivalently, h(x) is a sum of products of (1+x2) and

x2(x− 1)2(x+ 1)2.

Remark 33. By Remark 30, we know that if lmax ≥ 4, we can determine more factors

of Rj(x). By following the same procedures, we can obtain a generalized version of

(8.69) as

PZj
(x, y) = (x2 + y2)

mj
2 + x2y2(x2 − y2)2h′(x, y)

lmax∏
l=4

pl(x, y)pl(−x, y), (8.77)

for some h′(x, y) ∈ Q[x, y], where pl(x, y) = x2
l−3
pl(

y
x
).

Through the computation of (8.71) for each Zj, Examples 10 and 11 illustrate

how Corollary 31 and the property in Remark 32 work for self-dual Zj’s of different

stabilizer codes invariant under transversal T . The term h(x) in (8.71) provides the

freedom in Rj(x), and it can be either trivial (Example 10) or non-trivial (Example

11). Examples 5(Continued) and 12 indicate that the divisibility of Rj(x) still hold

even if Zj is not self-dual.

Example 10. Consider the [[8, 3, 2]] color code [Cam16, RCNP20], CSS(X, ⟨ 18⟩;

Z,RM(1, 3)), and the [[15, 1, 3]] punctured quantum Reed-Muller code [BK05,RCNP20],

74

CSS(X,C2;Z,C
⊥
1), where C2 is generated by the degree one monomials, x1, x2, x3, x4,

and

C⊥
1 = ⟨x1, x2, x3, x4, x1x2, x1x3, x1x4, x2x3, x2x4, x3x4⟩,

with the first coordinate removed in both C2 and C
⊥
1 . Since the signs of all stabilizers

are positive, Theorem 5 and Remark 7 imply that both are invariant under transversal

T but not transversal
√
T ([RCNP20]). There are 15 non-zero X-stabilizers in the

[[15, 1, 3]] code, and in each case the corresponding Zj is RM(1, 3). There is a single

X-stabilizer a1 = 18 in the [[8, 3, 2]] code, and again the corresponding Z1 is RM(1, 3),

with weight enumerator

ARM(1,3)(x) = 1 + 14x4 + x8. (8.78)

The character ϵv = 1 for all v ∈ RM(1, 3) so R1(x) is given by

R1(x) = −4(x2 − 2x4 + x6) = x2(x− 1)2(x+ 1)2h(x), (8.79)

where h(x) = −4. Note that h(x) must be constant for any length 8 code Zj arising

from a stabilizer code invariant under transversal T.

Example 11. We construct a [[16, 7, 2]] code by removing half of the degree two

monomials in Z-stabilizers from the [[16, 4, 2]] code presented in Example 5. This

yields the CSS(X, 116;Z,RM(1.5, 4)) code with the signs of all stabilizers being pos-

itive, where RM(1.5, 4) is the self-dual code generated by 116, all the degree 1 mono-

mials, and the degree 2 monomials x1x2, x1x3, x1x4. It is invariant under transversal

T but not under transversal
√
T , i.e., lmax = 3. The weight enumerator of the only

75

Z1 = RM(1.5, 4) of [[16, 7, 2]] is

AZ1(x) = 1 + 28x4 + 198x8 + 28x12 + x16. (8.80)

Note that ϵv = 1 for all v ∈ Z1, we simplify R1(x) as

R1(x) = −8(x2 + 7x6 − 16x8 + 7x10 + x14) = x2(x− 1)2(x+ 1)2h(x), (8.81)

where h(x) = −8(x8 + 2x6 + 10x4 + 2x2 + 1) = −8 [(x2 + 1)4 − 2x2(x− 1)2(x+ 1)2],

which is non-trivial.

Example 12. The [[16, 3, 2]] code is a CSS(X,C2;Z,C
⊥
1) code constructed in [RCNP20],

where C2 = ⟨116, x1, x2⟩ and C⊥
1 = ⟨116, x1, x2, x3, x4 , x1x2, x1x3, x1x4, x2x3, x2x4⟩.

By verifying the three conditions in Remark 7, we know that the codespace is pre-

served by transversal T . Note that tan 2π
24

does not satisfy (2.31), so the codespace is

not preserved by transversal
√
T . There are two types of Zj among the 7 non-zero

X-stabilizers aj. The first Z1 = C⊥
1 is corresponding to a1 = 116 is not self-dual as

C1 = ⟨116, x1, x2, x3, x4, x1x2⟩. By symmetry of monomials with the same order, the

remaining Z2, · · · , Z7 are all RM(1, 3), which was already discussed in Example 10.

The weight distribution of Z1 is

AZ1(x) = 1 + 76x4 + 192x6 + 486x8 + 192x10 + 76x12 + x16. (8.82)

With the trivial signs, (8.15) becomes

R1(x) = −8(x2 − 6x4 + 31x6 − 52x8 + 31x10 − 6x12 + x16) = x2(x− 1)2(x+ 1)2h(x),

(8.83)

76

where h(x) = −8(x8 − 4x6 + 22x4 − 4x2 + 1) = −8[(x2 + 1)4 − 8x2(x− 1)2(x+ 1)2].

Example 1 (revisited). Recall the [[16, 4, 2]] CSS code with X-stabilizer ⟨116⟩ and

Z-stabilizer RM(2, 4). The dual of RM(2, 4) is RM(1, 4), which means that the only

Z1 = RM(2, 4) corresponding to the a1 = 116 is not self-dual. As verified in Section

3, we know that the code is invariant under the application of transversal π
2l

with

l ≤ 4. Note that for all v ∈ Z1, ϵv = 1. It follows from the weight enumerator in

(4.10) that

R1(x) = −8(x2 − 14x4 + 63x6 − 100x8 + 63x10 − 14x12 + x14) (8.84)

= −8x2(p3(x))
2(p3(−x))2(p4(x))2(p4(−x))2, (8.85)

where p3(x) = x−1, p3(−x) = −x−1, p4(x) = x2+2x−1, and p4(−x) = x2−2x−1

are the minimal polynomials of tan 2π
23
, tan−2π

23
, tan 2π

24
, and tan−2π

24
respectively.

Here, we have h(x) = (p4(x)p4(−x))2 = (x2 + 1)4 − 16x2(x− 1)2(x+ 1)2.

It is interesting to see in Example 5 that the square of the product of mini-

mal polynomials of tan 2π
24

and − tan 2π
24
, i.e., (p4(x)p4(−x))2, divides R1(x). In this

vein, we also computed Rj(x) corresponding to the only Zj = RM(3, 5) associated

with the [[32, 5, 2]] CSS(X, ⟨132⟩;Z,RM(3, 5)) code in the QRM [[2m,
(
m
1

)
, 2]] fam-

ily constructed in [RCNP20]. We know from [RCNP20, Theorem 19] that the code

space is fixed under transversal T
1
4 (π

25
Z-rotation), i.e., lmax = 5. The polynomial

Rj(x) = −16x2
∏5

l=3(pl(x)pl(−x))2 continues to be divisible by squares.

We may get some intuition about the appearance of the squares in the mini-

mal polynomials from a physical perspective. If a stabilizer code is invariant un-

der transversal π/2lmax Z-rotation, then it is also preserved by transversal iπ/2lmax

Z-rotation for i = 0, ..., 2l − 1. It follows from Theorem 5 that Rj(x) has roots

tan(2kπ/2lmax) for k = {0, 1, ..., 2lmax − 1} \ {2lmax−2, 3 · 2lmax−2}. Note that tanx

77

has period of π, which implies that tan(2kπ/2lmax) = tan(2(k + 2lmax−1)π/2lmax).

The physical iπ/2lmax and (i + 2lmax−1)π/2lmax Z-rotations are different, which indi-

cates that each of the roots tan(2kπ/2lmax) with k = {0, 1, ..., 2lmax−1 − 1} \ {2lmax−2}

in R(x) appears twice. Mathematically, if tan(2kπ/2lmax) is a root of R(x), then

tan(2(k+2lmax−1)π/2lmax) is automatically a root, which means that we need to come

up with a new way to show the existence of squares.

If we could show that the multiplicity of roots corresponding to each of the min-

imal polynomials pl(x), pl(−x), with l = 3, ..., lmax, are at least 2, then

x2
lmax∏
i=3

(pi(x)pi(−x))2 (8.86)

dividesRj(x). We also know that deg(x2
∏lmax

i=3 (pi(x)pi(−x))2) = 2lmax−2 ≤ degRj(x) ≤

mj − 2. Thus, when mj = 2lmax , we conjecture that Rj(x) = x2
∏lmax

i=3 (pi(x)pi(−x))2

up to some constant and the weight enumerator of Zj is restricted, as follows.

Conjecture 1. Assume S defines a stabilizer code V (S) which is preserved by finitely

many transversal applications of exp(ıπ
2l
σZ), with l ≤ lmax. If there is a Zj with

mj = 2lmax, then the signs of Z-stabilizers in Zj are trivially one and the weight

distribution of Zj is fixed once the dimension of Zj is fixed.

Here, we show that the special case lmax = 3 of Conjecture 1 holds true.

Proof of Conjecture 1 when lmax = 3. Let V (S) be a stabilizer code which is invari-

ant under the application of transversal T but is not invariant under application of

transversal exp(π
2l
σZ) with l ≥ 4. Let Zj be the space of Z-stabilizers supported on a

nonzero X stabilizer with weight 8, i.e., mj = 23. Note that degRj(x) ≤ mj − 2 = 6.

78

It follows from Theorem 5, Theorem 26, and Lemma 29 that

Rj(x) =
4∑

t=0

 ∑
v∈Zj(2t)

ϵv (−1)t −
(
4

t

)x2t = cx2(x− 1)2(x+ 1)2 = c(x2 − 2x4 + x6),

(8.87)

for some constant c ∈ Q, where Zj(2t) is the set of vectors in Zj with Hamming

weight 2t. Let γ = dimZj. If ϵv are half 1 and half -1 for v ∈ Zj, then we have the

following system of equations


−

∑
v∈Zj(2)

ϵv−(41)∑
v∈Zj(4)

ϵv−(42)
= −(p2−n2)−4

(p4−n4)−6
= −1

2

2p2 + p4 = 2γ−1 − 2

2n2 + n4 = 2γ−1

, (8.88)

where pk (resp., nk) are the number of vectors with Hamming weight k in Zj asso-

ciating with positive signs (resp., negative signs). After solving for (8.88), we have

p2−n2 = −4 and p4−n4 = 6, which leads to R(x) = 0, contradicting to the fact that

S is invariant under finitely many applications of transversal small angle Z-rotations.

Thus, the only valid case is that ϵv = 1 for all v ∈ Zj, then we have

−
∑

v∈Zj(2)
ϵv −

(
4
1

)∑
v∈Zj(4)

ϵv −
(
4
2

) =
−Zj(2)− 4

Zj(4)− 6
= −1

2
, (8.89)

and

2Zj(2) + Zj(4) = 2γ − 2, (8.90)

which implies that Zj(2) = 2γ−2 − 4, and Zj(4) = 2γ−1 + 6. Thus, for a given

dimension of Zj, the weight enumerator of Zj is fixed as AZj
(x) = 1+ (2γ−2 − 4)x2 +

(2γ−1 + 6)x4 + (2γ−2 − 4)x8 with the all-one signs of Z-stabilizer in Zj.

Remark 34. To generalize the proof for lmax ≥ 4, first we need an argument for

79

the squaring of the minimal polynomials for l ≥ 4, and then we need to understand

their signs. This we leave to future work. If the above conjecture is true, then it

provides an explicit formula for the weight enumerators of Reed-Muller codes in the

QRM [[2m,
(
m
1

)
, 2]] family [RCNP20] satisfying mj = 2lmax (i.e., weight of the all 1s

X-stabilizer).

80

Chapter 9

Conclusion

In this thesis, we derived sufficient conditions on the Hamming weights and signs of

Z-stabilizers for a stabilizer code to be invariant under the transversal application

of exp(ıθσZ) for all θ. Using the sufficient conditions we are able to construct a

family of CSS codes with a good rate-distance tradeoff that provides a DFS towards

coherent Z-errors. In future work, we will explore the realization of a universal set

of fault-tolerant logical operations on these codes. Besides the specific family of CSS

codes, the sufficient conditions could also help us check whether a general stabilizer

code forms a Z-DFS. It remains open to find whether the necessary direction implies

that every qubit is covered by some weight-2 Z-stabilizer, and whether the necessary

conditions match our sufficient conditions. It also connects to generator coefficient

framework [HLC22b], which may lead to the general diagonal error model.

To realize non-identity logical operators in third level or higher in the Clifford

hierarchy, we also studied the stabilizer codes which are preserved by finitely many

π/2l Z-rotations, for l ≤ lmax <∞.

In this case, the identity (2.31) is reduced to a polynomial with factors including

the minimal polynomials of tan 2π
2l
, l ≤ lmax. The polynomial provides information

about the weight distribution and sign of the binary code formed by the Z-stabilizers

supported on each non-zero X-component of stabilizers. When the binary code is

self-dual, we made a tight connection to Gleason’s theorem (Corollary 31).

Through the weight divisibility conditions in Sections 3 and 4, and the minimal

polynomials derived in Theorem 26, we made new connections between quantum

81

information theory and classical coding theory. Along this direction, one of our main

interests for future work is to generalize Corollary 31 by proving Conjecture 1 and/or

by removing the self-dual assumption. Besides that, the other future direction is

to find a general construction of stabilizer codes that are invariant under finitely

many transversal π
2l
Z-rotations. Since non-CSS constructions with such properties

are extremely sparse in the literature, we think that our work could help break

new ground in this regard. For the second direction, it is interesting to investigate

whether the identities (2.31) and (2.32) imply the existence of a self-dual code inside

Zj satisfying (2.31) and (2.32), since this may provide us information on how different

Zj’s interact with each other.

82

Bibliography

[ABC+01] G Alber, Th Beth, Ch Charnes, A Delgado, M Grassl, and

M Mussinger. Stabilizing distinguishable qubits against spontaneous

decay by detected-jump correcting quantum codes. Phys. Rev. Lett.,

86(19):4402, 2001.

[ABD+19] Ayomikun Adeniran, Steve Butler, Colin Defant, Yibo Gao, Pamela E

Harris, Cyrus Hettle, Qingzhong Liang, Hayan Nam, and Adam Volk.

On the genus of a quotient of a numerical semigroup. In Semigroup

Forum, volume 98, pages 690–700. Springer, 2019.

[ABDB+19] Ayomikun Adeniran, Steve Butler, Galen Dorpalen-Barry, Pamela E

Harris, Cyrus Hettle, Qingzhong Liang, Jeremy L Martin, and Hayan

Nam. Enumerating parking completions using join and split. arXiv

preprint arXiv:1912.01688, 2019.

[ACB12] Hussain Anwar, Earl T Campbell, and Dan E Browne. Qutrit magic

state distillation. New J. Phys., 14(6):063006, 2012.

[ADCP14] Jonas T Anderson, Guillaume Duclos-Cianci, and David Poulin. Fault-

tolerant conversion between the Steane and Reed-Muller quantum codes.

Phys. Rev. Lett., 113(8):080501, 2014.

[Ax64] J. Ax. Zeroes of polynomials over finite fields. Am. J. Math., 86:255–

261, 1964.

[BH12] Sergey Bravyi and Jeongwan Haah. Magic-state distillation with low

overhead. Phys. Rev. A, 86(5):052329, 2012.

83

[BK05] Sergey Bravyi and Alexei Kitaev. Universal quantum computation with

ideal clifford gates and noisy ancillas. Phys. Rev. A, 71(2):022316, 2005.

[BMP+99] P Oscar Boykin, Tal Mor, Matthew Pulver, Vwani Roychowdhury, and

Farrokh Vatan. On universal and fault-tolerant quantum computing: a

novel basis and a new constructive proof of universality for shor’s basis.

In 40th Annu. Symp. Found. Comput. Sci. (Cat. No.99CB37039), pages

486–494. IEEE, 1999.

[Bor13] Yuri L Borissov. On Mceliece’s result about divisibility of the weights

in the binary Reed-Muller codes. In Seventh International Workshop,

Optimal Codes and related topics, pages 47–52, 2013.

[BWG+18] Stefanie J. Beale, Joel J. Wallman, Mauricio Gutiérrez, Kenneth R.

Brown, and Raymond Laflamme. Quantum Error Correction Decoheres

Noise. Phys. Rev. Lett., 121(19):190501, 2018.

[CAB12] Earl T Campbell, Hussain Anwar, and Dan E Browne. Magic-state

distillation in all prime dimensions using quantum Reed-Muller codes.

Phys. Rev. X, 2(4):041021, 2012.

[Cam16] Earl T Campbell. The smallest interesting colour code. Blog post, 2016.

[CGK17] Shawn X. Cui, Daniel Gottesman, and Anirudh Krishna. Diagonal gates

in the Clifford hierarchy. Phys. Rev. A, 95(1):012329, 2017.

[CH17] Earl T Campbell and Mark Howard. Unified framework for magic state

distillation and multiqubit gate synthesis with reduced resource cost.

Phys. Rev. A, 95(2):022316, 2017.

84

[CS96] A. R. Calderbank and Peter W. Shor. Good quantum error-correcting

codes exist. Phys. Rev. A, 54:1098–1105, Aug 1996.

[DHL+22] Elena Dimitrova, Jingzhen Hu, Qingzhong Liang, Brandilyn Stigler, and

Anyu Zhang. Algebraic model selection and experimental design in bi-

ological data science. Advances in Applied Mathematics, 133:102282,

2022.

[DM76] P. Delsarte and R. J. McEliece. Zeros of functions in finite abelian group

algebras. Am. J. Math., 98:197–224, 1976.

[GC99] Daniel Gottesman and Isaac L Chuang. Demonstrating the viability

of universal quantum computation using teleportation and single-qubit

operations. Nature, 402(6760):390–393, 1999.

[GG05] Solomon W Golomb and Guang Gong. Signal design for good correla-

tion: for wireless communication, cryptography, and radar. Cambridge

University Press, 2005.

[Gle71] Andrew M Gleason. Weight polynomials of self-dual codes and the

macwilliams identities. In Actes Congres Int. de Mathematique, 1970.

Gauthier-Villars, 1971.

[Gol49] M.J.E Golay. Notes on Digital Coding. Proceedings of the IEEE, page

657, 1949.

[Got98a] Daniel Gottesman. The Heisenberg representation of quantum comput-

ers. In Intl. Conf. on Group Theor. Meth. Phys., pages 32–43. Interna-

tional Press, Cambridge, MA, 1998.

85

[Got98b] Daniel Gottesman. Theory of fault-tolerant quantum computation.

Phys. Rev. A, 57(1):127, 1998.

[Got09] Daniel Gottesman. An Introduction to Quantum Error Correction and

Fault-Tolerant Quantum Computation. arXiv preprint arXiv:0904.2557,

2009.

[Haa18] Jeongwan Haah. Towers of generalized divisible quantum codes. Phys.

Rev. A, 97(4):042327, 2018.

[Ham50] Richard Hamming. Error detecting and error correcting codes. The Bell

System Technical Journal, 1950.

[HDF19] Eric Huang, Andrew C. Doherty, and Steven Flammia. Performance

of quantum error correction with coherent errors. Phys. Rev. A,

99(2):022313, 2019.

[HH18] Jeongwan Haah and Matthew B Hastings. Codes and protocols for

distilling t, controlled-s, and toffoli gates. Quantum, 2:71, 2018.

[HLC21] Jingzhen Hu, Qingzhong Liang, and Robert Calderbank. Climbing the

diagonal clifford hierarchy. arXiv preprint arXiv:2110.11923, 2021.

[HLC22a] Jingzhen Hu, Qingzhong Liang, and Robert Calderbank. Co-design of

css codes and diagonal gates. In 2022 IEEE International Symposium

on Information Theory (ISIT), pages 1229–1234. IEEE, 2022.

[HLC22b] Jingzhen Hu, Qingzhong Liang, and Robert Calderbank. Designing the

quantum channels induced by diagonal gates. Quantum, 6:802, 2022.

[HLC22c] Jingzhen Hu, Qingzhong Liang, and Robert Calderbank. Divisible codes

for quantum computation. arXiv preprint arXiv:2204.13176, 2022.

86

[HLRC21a] Jingzhen Hu, Qingzhong Liang, Narayanan Rengaswamy, and Robert

Calderbank. Mitigating coherent noise by balancing weight-2 z-

stabilizers. IEEE Transactions on Information Theory, 68(3):1795–

1808, 2021.

[HLRC21b] Jingzhen Hu, Qingzhong Liang, Narayanan Rengaswamy, and Robert

Calderbank. Css codes that are oblivious to coherent noise. In Proc.

IEEE Int. Symp. Inf. Theory (ISIT), pages 1481–1486, July 2021.

[IP20] Joseph K Iverson and John Preskill. Coherence in logical quantum chan-

nels. New J. Phys., 22(7):073066, 2020.

[Kat08] Daniel J Katz. Sharp p-divisibility of weights in abelian codes over

z/pdz. IEEE Trans. Inf. Theory, 54(12):5354–5380, 2008.

[KBLW01] J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley. Theory of

decoherence-free fault-tolerant universal quantum computation. Phys.

Rev. A, 63(4):042307, 2001.

[KLM01] Emanuel Knill, Raymond Laflamme, and Gerald J Milburn. A

scheme for efficient quantum computation with linear optics. nature,

409(6816):46–52, 2001.

[KT19] Anirudh Krishna and Jean-Pierre Tillich. Towards low overhead magic

state distillation. Phys. Rev. Lett., 123(7):070507, 2019.

[LB17] Qingzhong Liang and Grant Bowling. Cyclic sieving of matchings. arXiv

preprint arXiv:1712.07812, 2017.

[LC13] Andrew J Landahl and Chris Cesare. Complex instruction set comput-

ing architecture for performing accurate quantum z rotations with less

87

magic. arXiv preprint arXiv:1302.3240, 2013.

[Mac63] F.J. MacWilliams. A theorem on the distribution of weights in a sys-

tematic code. Bell Syst. Tech. J., 42(1):79–94, January 1963.

[McE72] R. J. McEliece. Weight congruences for p-ary cyclic codes. Discrete

Math., 3:177–192, 1972.

[MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane. The

theory of error correcting codes, volume 16. Elsevier, 1977.

[Mul54] Bodegas De Muller. Application of Boolean algebra to switching circuit

design and to error detection. Transactions of the IRE professional

group on electronic computers, 1954.

[NC11] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and

Quantum Information: 10th Anniversary Edition. Cambridge Univer-

sity Press, 2011.

[NH21] Sepehr Nezami and Jeongwan Haah. Classification of small triorthogo-

nal codes. arXiv preprint arXiv:2107.09684, 2021.

[NRS06] Gabriele Nebe, Eric M Rains, and Neil James Alexander Sloane. Self-

dual codes and invariant theory, volume 17. Springer, 2006.

[Ouy] Yingkai Ouyang. personal communication.

[Ouy20] Yingkai Ouyang. Avoiding coherent errors with rotated concatenated

stabilizer codes. arXiv preprint arXiv:2010.00538, 2020.

[Ouy21] Yingkai Ouyang. Avoiding coherent errors with rotated concatenated

stabilizer codes. Npj Quantum Inf., 7(1):1–7, 2021.

88

[PDH+20] Kaitlyn Phillipson, Elena S Dimitrova, Molly Honecker, Jingzhen Hu,

and Qingzhong Liang. Gröbner bases of convex neural code ideals. In

Advances in Mathematical Sciences: AWM Research Symposium, Hous-

ton, TX, April 2019, pages 127–138. Springer, 2020.

[RCNP20] Narayanan Rengaswamy, Robert Calderbank, Michael Newman, and

Henry D. Pfister. On optimality of CSS codes for transversal T . IEEE

J. Sel. Areas in Inf. Theory, 1(2):499–514, 2020.

[RCP19] Narayanan Rengaswamy, Robert Calderbank, and Henry D. Pfister.

Unifying the Clifford hierarchy via symmetric matrices over rings. Phys.

Rev. A, 100(2):022304, 2019.

[RCPK18] N. Rengaswamy, R. Calderbank, H. D. Pfister, and S. Kadhe. Synthesis

of logical Clifford operators via symplectic geometry. In Proc. IEEE Int.

Symp. Inf. Theory (ISIT), pages 791–795, June 2018.

[Ree54] I. Reed. A class of multiple-error-correcting codes and the decoding

scheme. Transactions of the IRE Professional Group on Information

Theory, 4(4):38–49, 1954.

[Rei05] Ben W Reichardt. Quantum universality from magic states distillation

applied to CSS codes. Quantum Inf. Process, 4(3):251–264, 2005.

[Sha48] Claude Shannon. A Mathematical Theory of Communication. The Bell

System Technical Journal, 1948.

[Sho96] Peter W Shor. Fault-tolerant quantum computation. In Proc. - Annu.

IEEE Symp. Found. Comput. Sci. FOCS, pages 56–65. IEEE, 1996.

89

[Slo77] Neil JA Sloane. Error-correcting codes and invariant theory: new appli-

cations of a nineteenth-century technique. Am. Math. Mon., 84(2):82–

107, 1977.

[Ste96] A. M. Steane. Simple quantum error-correcting codes. Phys. Rev. A,

54(6):4741–4751, 1996.

[VB19] Christophe Vuillot and Nikolas P. Breuckmann. Quantum Pin Codes.

arXiv preprint arXiv:1906.11394, 2019.

[War01] H. N. Ward. Divisible codes – a survey. Serdica Math. J., 27 (4):263–

278, 2001.

[ZR97] Paolo Zanardi and Mario Rasetti. Noiseless quantum codes. Phys. Rev.

Lett., 79(17):3306, 1997.

90

Biography

Qingzhong Liang received the B.S. degree (Hons.) in mathematics from the Univer-

sity of Michigan, Ann Arbor, USA, in 2017. During the undergraduate study, he

worked with Professor Thomas Lam on cyclic sieving phenomenon in algebraic com-

binatorics. His work led to the publication [LB17]. He also participated in mathemat-

ical competitions and achieved high rankings. He ranked 15th in the nation and first

in the department at the 37th Virginia Tech Regional Mathematics Contest. He also

ranked 260.5th in the nation and third in the department at the 75th William Lowell

Putnam Mathematical Competition. In 2018, he moved to Duke University to pursue

the Ph.D. degree in mathematics with focus on quantum error correction, and quan-

tum computing. His advisor is Professor Robert Calderbank. His research in quan-

tum error correcting codes led to the publications [HLRC21a], [HLRC21b], [HLC22b],

[HLC21], [HLC22c], and [HLC22a]. He also collaborated with researchers in the fields

of parking functions, numerical semigroup, and applied algebraic geometry, and ac-

complished the publications [ABDB+19], [ABD+19], [DHL+22], and [PDH+20]. In

addition, he served as an Officer in the Duke Student Chapter of SIAM (Society for

Industrial and Applied Mathematics) and organized the 2021 Triangle Area Gradu-

ate Mathematics Conference (TAGMaC). He received certificate of recognition from

SIAM for his outstanding efforts and accomplishments to the SIAM chapter at Duke

University.

91

