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Abstract

Stochastic errors in quantum systems occur randomly but coherent errors may be
more damaging since they can accumulate in a particular direction. We develop a
framework for designing decoherence free subspaces (DFS), that are unperturbed by
coherent noise. We consider a particular form of coherent Z-errors and construct
stabilizer codes that form DF'S for such noise (“Z-DFS”). More precisely, we develop
conditions for transversal exp(:0oy) to preserve a stabilizer code subspace for all 6.
If the code is error-detecting, then this implies a trivial action on the logical qubits.
These conditions require the existence of a large number of weight-2 Z-stabilizers, and
together, these weight-2 Z-stabilizers generate a direct product of single-parity-check

codes.

By adjusting the size of these components, we are able to construct a constant rate

family of CSS Z-DFS codes. Invariance under transversal exp(f;oz) translates to a

2
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trigonometric equation satisfied by tan <7, and for every non-zero X-component of a
stabilizer, there is a trigonometric equation that must be satisfied. The Z-stabilizers
supported on this non-zero X-component form a classical binary code C, and the

trigonometric constraint connects signs of Z-stabilizers to divisibility of weights in

C*. This construction may be of independent interest to classical coding theorists

v



who have long been interested in codes C' with the property that all weights are
divisible by some integer d. If we require that transversal exp(5;oz) preserves the code
space only up to some finite level [ in the Clifford hierarchy, then we can construct
higher level gates necessary for universal quantum computation. The aforesaid code
C contains a self-dual code and the classical Gleason’s theorem constrains its weight
enumerator.

The trigonometric conditions corresponding to higher values of [ lead to general-
izations of Gleason’s theorem that may be of independent interest to classical coding
theorists. The [[16, 4, 2]] Reed-Muller code and the family of [[4L?, 1,2L]] Shor codes

are included in our general framework.
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Chapter 1

Introduction

1.1 Classical Error Correcting Codes

In 1948, Shannon published his landmark paper A Mathematical Theory of Com-
munication [Shad8|, in which he introduced the idea of encoding various types of
information into binary numbers (bits), transmitting them through a noisy channel,
and decoding them at the other end of the channel. His idea changed how people
view information. Different types of information, such as images and voice, can now
be represented as strings of binary digits. The process of digitization is the key to
data processing, storage, and transmission of information. For example, when a per-
son takes a photo with a smart phone, the image is stored as numbers, which contain
the information about the red, green, and blue scales of each pixel of the photo. If
the photo is sent to friends, the cellphone sends the binary numbers instead of the
picture itself through a digital communication channel. After other phones receive
the string of digits, they use the string to reproduce the same picture. This process
sounds natural today, but it was based on the idea in Shannon’s paper, which is the
cornerstone of information theory.

In reality, the channel used for transmitting information is noisy. That is, for each
bit that goes through the channel, there is a probability p that the bit does not carry
the original number when it arrives at the receiver’'s end. Motivated by reducing
the damage caused by noise, scientists studied and designed error correcting codes

to carry the message through the channel. For example, if a noisy channel has a



probability p = 0.01 that flips a bit (i.e changed from 0 to 1, or from 1 to 0), then the
receiver gets on average one wrong bit of information for every 100 bits transmitted
through the channel, which is considered high since a simple text message may contain
thousands of bits. This error model is an example of the binary symmetric channel
(BSC).

One strategy that can reduce the error rate is to use the simple code C =
{000,111}. If we would like to send a bit z, where x € {0,1}, we first encode it
to xxx € C. In other words, we send 3 bits of repeated information. By using the
maximum likelihood decoder, the receiver would decode the message to 0 if one of
000, 001, 010, and 100 was obtained, and to 1 otherwise. As a result, the decoder
makes a wrong guess only when two or more bits are flipped and the error rate is
reduced from p = 0.01 to 3p*(1 —p) +p> ~ 0.0003. We say the code C has distance 3,
which is the distance between the only two codewords 000 and 111. In this example,
the cost of reducing the error rate from 0.01 to 0.0003 is to use 3 bits to encode 1 bit
of information, and we say the rate of the code C is % This code is called a repetition

code because we repeat the message bit.

In general, if we use a classical code C C {0, 1}"™ with n bits to encode information
of k bits, the distance is defined as the minimum distance d between any two distinct
codewords in C. We call such a code an [n, k, d] classical code. Each codeword in C'
can be viewed as a point in the n-dimensional binary space {0,1}". To visualize the
codespace, we consider a n-dimensional ball with a fixed radius R centered at each
codeword in C'. However, the |C| balls should satisfy the constraint that no two balls
have non-trivial intersection. Under this constraint, we would like the balls to cover
as much space as possible (thereby maximizing R). By the definition of code distance
d, we have Ry = L%J Now, the decoding rule works as follows: if the codeword

received is covered by the ball centered at some ¢ € C, then the receiver will decode
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it to c¢. As a result, if the noise in the channel causes less than R,., bit-flips, we
can recover the correct codework as it does not escape from the ball centered at the
correct codeword. In other words, the number of errors it can correct is R = L%J
Moreover, if there are more than R but less then d mistakes, we can still detect that
the received codeword is different from the original one, but we cannot guarantee that
the decoding rule can recover the correct information, since the received codeword

may not be in the ball centered at the original codeword.

Shannon showed that there is a upper bound on the code rate for error correcting
codes [Shad8]. Many families of error correcting codes with well designed structures
were subsequently constructed. The binary Hamming code [2, 2™ —m—1, 3] [Ham50)]
and the binary Golay code [23,12,7] are examples of perfect codes [Gol49]. Every
point in the binary space is covered by some ball centered at a codeword of a perfect
code, so no space is wasted. Later in 1950 - 1960, many highly symmetric codes,
such as Reed-Muller codes [Mul54], were discovered. The Reed-Muller codes provide
a family of linear block codes with highly symmetric algebraic structure. An efficient
decoding algorithm of Reed-Muller code was then proposed [Reeb4] and the code
were incorporated in billions of consumer devices. In the 1990s, as computers became
more powerful, more and more attention shifted to decoding algorithms, which led to
the discovery of polar codes and LDPC (low density parity check codes ), and they
now dominate coding practice. We will provide more detailed examples about these
classical codes in Chapter 2.

In addition to the parameters n, k, and d, the weight distribution also contains
important structural information, such as divisibility, of a code. Given a binary linear
code C, its dual code is defined as C*+ = {c|c"¢ =0 (mod 2) for all ¢ € C} (i.e the
set of codewords that are perpendicular to the original code). The dual code plays

an important role in constructing quantum error correcting codes by using classical
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codes. It is interesting to note that the weight distribution of the dual code C* of
C is completely determined by the weight distribution of C. This connection was
described by the famous MacWilliams identities [Mac63], which open the door to
many algebraic methods in classical and quantum information theory. In Chapter
2, we will introduce the MacWilliams identities and dual codes in detail. In later
Chapters, we will apply the MacWilliams identities to prove divisibility properties in

Quantum error correcting codes.

1.2 Quantum Error Correcting Codes

Just like the bit, which is a fundamental unit of classical information theory, quantum
information theory is built on the unit called qubit (quantum bit). While a qubit is
a physical object, its definition and properties are easier to be described in mathe-
matics. Like a bit which can be in either state 0 or state 1, two possible states for a
qubit are |0) and |1), which are the computational bases denoted in Dirac notation.
However, the key difference that distinguishes a qubit from a bit is that a qubit can
be in states other than the two base states. More precisely, a qubit can be in any

linear combination of the two computational bases:

[¢) = al0) + Bl1), (1.1)

where , 3 € C and |a|? + |]?> = 1. In physics, it is called a superposition of |0)
and |1). One can measure a qubit in the computational base and the measuring
result is either |0), with probability |«|?, or |1) with probability |3]?. However, once
a qubit is measured, it collapses to the measurement result and no longer contains

the probabilistic information.



Similar to the classical error correcting codes, quantum error correction is essential
to developing scalable and fault-tolerant quantum computers by constructing error
resilient quantum codes. However, there are constraints in the quantum computing.
As a result, many methods, such as the repetition codes introduced in the previous
section, cannot be directly applied to construct quantum error correcting codes. The
three main constraints and challenges are the no-cloning theorem, continuous errors,

and collapsing after measurement.

The no-cloning theorem states that we cannot make a copy of an unknown quan-
tum state. The proof is straight forward [NC11]. Assume some unitary matrix U
can copy any unknown quantum state |¢)). That is, given the initial state [¢)) ® |s),
where |s) is some standard pure state, we have U(|¢)) ® |s)) = |¢) ® |[¢) for any
|4). Therefore, for any two states |¢) and |p), we have U(|¢)) @ |s)) = ) @ [¢) and
U(lp)®]s)) = |¢)®|p). Note that a unitary matrix preserves inner products. By tak-
ing the inner product of both sides, we have (1)|p) = (1|¢)%. Note that however, the
equation x = 22 has only 0 and 1 as solutions in R. The no-cloning theorem means
that we cannot simply create redundant quantum messages and therefore quantum
error correcting codes have to be more complicated than repeating quantum bits.

In addition, as a quantum state is a linear combination of the base states, the
quantum errors are continuous. The continuity requires infinite precision to determine
which error occurred, and methods like parity checking in classical coding cannot be
simply reproduced.

Moreover, in classical coding theory, the received classical bits can be observed
and then recovered. However, measuring a qubit can destroy the quantum state and
therefore make it impossible to recover it to the original state. Therefore, it requires
us to develop techniques to detect the syndrome and make the correction without

knowing the exact state.



Fortunately, many quantum error correcting codes that overcome these challenges
have been developed. Two basic errors in quantum computing are the bit flip error

and the phase flip error, which are described by the Pauli matrices
1 0
X = and Z = , (1.2)

respectively. More details about the errors and Pauli matrices will be introduced
in Chapter 2. The bit flip quantum code is designed to adjust the bit flip error
X10) = |1) and X|1) = |0). Suppose we have a noisy channel with probability p that
a state |¢) will be affected by the bit flip error and become X |¢)). The bit flip code
encodes any state |¢)) = al0) + b|1) to |¢r) = a|0r) + b|1L) = a|000) + b|111).

The bit flip code can detect and correct up to one error. Once the receiver
has obtained a state |¢), the following projection operators will be used to perform

measurement:

Py = |000)(000] + [111)(111]
Py = [100)(100] + [011)(011]
P, = [010)(010] + |101) (101

Py = |001)(001] + [110)(110].

With the assumption that |¢) has no more than two bit flip errors, we measure

symmetry of code state and infer the error. We then have the following syndrome



diagnosis:

(9| Py|p) = 1 < no error
(¢|P1|¢p) =1 < bit flip on qubit one
(9| Py|¢) = 1 < bit flip on qubit two

(¢|Ps|¢) = 1 < bit flip on qubit three.

It is important to note that measuring the syndrome does not leak any information
about the state |¢) and therefore the state |¢) is protected from being collapsed. The
correction is made according to the syndrome we obtained. For example, if we have
the syndrome (¢|P;|¢) = 1, then we will flip the first qubit by applying X ® I ® [

2

to the received state |¢). The error rate is reduced from p to (1 — p)3 + 3p(1 — p)?,
which is the probability that at least two qubits are flipped.

By a similar idea, we can also construct the phase flip code to correct up to one
phase flip error Z. The [[9, 1, 3]] Shor code combines the bit flip code and the phase

flip code to correct up to one non-trivial Pauli error X, Z, or Y =1XZ [CS96].

1.3 Noise and Error Model

In quantum systems, noise can broadly be classified into two types — stochastic and
coherent errors. Stochastic errors occur randomly and do not accumulate over time
along a particular direction. Coherent errors may be viewed as rotations about a
particular axis, and can be more damaging, since they can accumulate coherently
over time [IP20]. As quantum computers move out of the lab and become gener-
ally programmable, the research community is paying more attention to coherent

errors, and especially to the decay in coherence of the effective induced logical chan-
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nel [BWGT18, HDF19]. It is natural to consider coherent noise acting transversally,
where the effect of the noise is to implement a separate unitary on each qubit. Con-
sider, for example, an n-qubit physical system with a uniform background magnetic
field acting on the system according to the Hamiltonian H = Z1+ Z5+. ..+ Z,,, where
Z; denotes the Pauli Z operator on the i*® qubit. Then the effective error is a (uni-
tary) Z-rotation on each qubit by some (small) angle 6, i.e., exp(10H) = exp(102)%",
where 1 = /—1.

While it is possible to address coherent noise through active error correction,
it can be more economical to passively mitigate such noise through decoherence
free subspaces (DFSs) [KBLWO1]. In such schemes, one designs a computational
subspace of the full n-qubit Hilbert space which is unperturbed by the noise. In the
language of stabilizer codes, we require the noise to preserve the code space, and to
act trivially (as the logical identity operator) on the protected information. Inspired
by the aforementioned Hamiltonian, which is physically motivated by technologies
such as trapped-ion systems, we develop conditions for all transversal Z-rotations
to preserve the code space of a stabilizer code, i.e., exp(i0H)pexp(i0H)" = p for all
code states p in the stabilizer code. When all angles preserve the code space, the
logical action must be trivial for any error-detecting stabilizer code (see Section 4.2).
Trigonometric identities for a given transversal Z-rotation in the Clifford hierarchy
to preserve the code space of a stabilizer code [RCNP20] were presented in [GC99,
CGK17,RCP19]. In our work, by exploiting the celebrated MacWilliams Identities in
classical coding theory [Mac63|, we develop necessary and sufficient conditions that
contain structural information and serve as instructions to construct quantum codes

that are oblivious to coherent noise.



1.4 Contributions of this Dissertation

The introduction of magic state distillation by Bravyi and Kitaev [BKO05] led to
the construction of a sequence of quantum codes, where the code space is preserved
by a transversal Z-rotation of the underlying physical space [BK05, Rei05, ACB12,
CAB12,BH12,LC13,CH17,HH18,Haal8,KT19,VB19]. The approach in each paper
is to examine the action of a transversal Z-rotation on the basis states of a CSS
code [CS96, Ste96]. This approach results in sufficient conditions for a transversal
Z-rotation to realize a logical operation on the code space.

In contrast, we derive necessary and sufficient conditions by examining the action
of the transversal Z-rotation on the stabilizer group that determines the code. Thus
we study the code space by studying the symmetries of the code space. We start from
Rengaswamy et al. [RCNP20] which derived trigonometrical conditions for a stabilizer
code to be preserved by a transversal 7/2! rotation. Note that the condition [ > 2
corresponds to a non-Clifford physical operator.

Our first main contribution (Theorem 3) is a structure theorem that depends
on technical arguments which might be of independent interest to classical coding
theorists. The structure theorem forces a product structure on a stabilizer code that
is oblivious to coherent noise. To state the conditions, we need to introduce some
notation in Chapter 2.

A Hermitian Pauli matrix £F(a,b) is determined by binary vectors a and b.
The X-component of £FE(a,b) is a and the Z-component is b. A stabilizer group S
is generated by r independent commuting Hermitian Pauli matrices, subject to the
requirement that if F(a,b) € S, then —E(a,b) ¢ S. The fixed space V(S) of S is an
[[n, n —r]] stabilizer code. Recall that the Hamming weight wy (v) of a binary vector

v is the number of non-zero entries, and that the support supp(v) is the index set of



the non-zero entries. Let 0 (1) be the binary vector with every entry 0 (1). Given

eE(a,b) € S for some € € {£1} and a # 0, define

B(a) = {z € F¥" : supp(z) C supp(a), e, E(0, z) € S} (1.3)

and O(a) = F" )\ B(a), (1.4)

Remark 1. To simplify notation, we shall sometimes view z as a subset of supp(a),
sometimes as a subset of the n qubits, and sometimes as a binary vector either of
length wy(a) or of length n (where entries outside supp(a) are set equal to zero).

The meaning will be clear from the context.

Remark 2. Here, ¢, € {£1} is the sign of £(0,v) in the stabilizer group S. Note
that the sign e, of the pure Z-stabilizer e, E(0,v) takes the form e, = (—1)¥*" for
y € F5. Also note that vectors from the same coset of C; (the group of logical X
operators) determine the same signs (since C; is perpendicular to Ci-, the group of Z
stabilizers). It is useful to think of y € F} as a fixed vector when we extend signs to

Pauli matrices outside the stabilizer group.

A stabilizer code is oblivious to coherent noise if and only if transversal /2! Z-
rotation preserves the code space V(S) for all [ > 2 (see Section 4.2). We define the

support

= U supp(a) (1.5)

eE(a,b)eS
and a graph with vertex set I', where two vertices are joined by an edge if there
exists a weight 2 Z-stabilizer in § involving these two qubits. Let I'y,... Ty be the

connected components of this graph and let [['y| = Ny. The weight 2 Z-stabilizers

10



supported on I'j, take the form
(—1)%" E(0,v) where yx = yl,. - (1.6)

Here y‘rk represents the restriction of y to I'y. (In yrv”, we add zeros to y appro-

priately.) Our main result is

Theorem 3. Transversal 7T/2l Z-rotation preserves the stabilizer code for all | > 2

if and only if for every eE(a,b) € S with a # 0,

(1) supp(a) is the disjoint union of components I'y, C supp(a)

(2) Ny is even and wy(yr) = Ni/2 for all k such that T, C supp(a).

Note that for every eE(a,b) € S we have a|Fk =0or1fork=1,...,t. Hence
Theorem 3 forces a product structure on a stabilizer code that is oblivious to coherent

noise. It also provides constraints on the signs of weight 2 Z-stabilizers.

= W
® Qubits ® .|12 [ .
l:] Z@Z ®i:5X’i
[ 1207 ¢gq—@omm@—@
CLLRE

13 @ @ 16

Figure 1.1: The [[16, 1, 4]] Shor code constructed by concatenating the [[4, 1]] bit-flip
code and the [[4, 1]] phase-flip code.

Example 1. A set of generators of the [[16,1,4]] Shor code is shown in Fig. 1.1,
and it follows from Theorem 3 that this code is oblivious to coherent noise. In

11



Fig. 1.1, the filled circles represent physical qubits, the white (resp. gray filled)
squares represent weight-2 Z-stabilizers with negative (resp. positive) sign, and the
three large filled rectangles represent weight-8 X-stabilizers. The graph on I' has
four connected components, and the component I'y is simply the k-th row of the
4 x 4 array. Condition (1) is satisfied since every X stabilizer is the sum of an
even number of rows. Condition (2) is satisfied since the choice y, = [0, 1,1, 0] for
k =1,2,3,4 properly accounts for the signs of Z-stabilizers. Observe that [[16, 1,4]]
is also a constant excitation code (defined in Section 2.7). The quotient space C;/Cy =
{0,w = (1000)®(1111) }, where Cy defines the X-stabilizers and C, defines the logical

X operators. Under the general encoding map, the codewords are

0)=—=> |z®y)and [T) = \/_Z]w@w@m (1.7)

1
2\/_ xeCo xeCo
The restriction of w and & € Cs to the k-th row is either 0 and 1. Since wy(yx) =

2 =2, we have wy(z ®y) = wy(wd®z D y) =8 for all © € Cy.

We show that a CSS code is oblivious to coherent noise if and only if it is a con-
stant excitation code (Corollary 15). Sufficiency is straightforward since a transversal
Z-rotation acts as a global phase. Ouyang [Ouy20,0uy21] observed that one can con-
struct constant excitation codes by concatenating a stabilizer code with the dual rail
code [KLMO1]. His original paper was independent of and contemporaneous with
our original paper [HLRC21a]. After we shared our results he realized that he could
connect his dual rail construction to stabilizer code [Ouy].

Beyond developing conditions, we also construct a linear rate CSS code family
with growing distance that possesses this property, thereby acting as a decoherence
free subspace for this noise, which is the second main contribution. The conditions
we derive lead to a systematic construction of new quantum error correcting codes,

12



which are oblivious to coherent noise and have increasing distance. Given any even
M, and any stabilizer code on ¢ qubits, we construct a product code on Mt qubits
that is oblivious to coherent noise. The Mt qubits are partitioned into ¢ blocks of M
qubits, with each block supporting a DFS. The product code inherits the distance
properties of the initial stabilizer code. In the construction, a product structure with
DFS components provides resilience to coherent noise. The cost of forming DFS
components for QECC is just scaling the total qubits by an even number. Thus, the
minimal cost of becoming oblivious to coherent noise is scaling the number of qubits
by 2. The result is remarkable since if we have a familiy of QECC with finite rate
and growing distance, then the output QECC family with resilience to coherent noise

keeps these good properties.

The necessary and sufficient conditions for a stabilizer code to be oblivious to
coherent noise require the product code structure, resulting in a code rate less than
1/2. To relax the restrictions, we can consider stabilizer codes that are preserved by
all the transversal Z-rotations through angle 7 /2! up to some finite integer /, inducing
the logical identities. This leads to the third main contribution. More precisely, by
relaxing the condition in 3 from all [ > 2 to all | < [, < 00 for some [., We allow
transversal Z-rotations to induce non-identity logical operations on a stabilizer code.
Let Z; denote the classical binary codes formed by the Z-stabilizers supported on a
given X-stabilizer. We showed that the weight enumerator of such a code Z; must
satisfy a sequence of constraints, which relate to Gleason’s Theorem [Gle71] and field

extensions.
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Chapter 2

Preliminaries and Notation

2.1 Classical Codes

Let Fy = {0, 1} denote the binary field. A n-bit binary classical code C is a subset
of the n-dimensional binary space Fy. If the subset is a linear subspace, then C is
called a binary linear code. The dimension of C', denoted by k, defines the number
of bits it can encode. The Hamming weight of a codeword c¢ is simply the number of
nonzero entries. In general, we denote the Hamming weight of a binary vector v by
wpy(v). The distance of C is defined as d = min {wy (c|c € C\ {0}}, the minimum
Hamming weight among nonzero codewords. The Hamming distance between two
codewords x,y € C is the minimal number of changes needed to transform x to y,
which can be represented by the Hamming weight wy(x @y). Here, @ represents the
binary addition. One more concept needs to be introduced before we can consider
an example and that is the dual code. The dual code C* of a code C is defined as

L= {c|c"¢’ =0 (mod 2) for all ¢ € C}.

Example 2 (Reed-Muller Codes, [MS77]). Consider a binary linear code C generated
by 11111111, 00001111, 00110011, and 01010101. It is a 4-dimensional subspace of
{0,1}®. The minimum Hamming weight in C is 4. So C is a [8,4, 4] code. Note that if
we let 1 = 11111111, &, = 00001111, x5 = 00110011, and x3 = 01010101, then the
codewords in C can be represented as f(xq,x2,x3), where f is a Boolean function
which is a polynomial of degree at most 1. This is an example of the more general

Reed-Muller structure defined as

14



Definition 4. The r-th order binary Reed-Muller code, denoted as RM(r,m) of
length n = 2™, for 0 < r < m, is the set of all vectors f(x1,®2,...,%m), where

f 1s a Boolean function which is a polynomial of degree at most r.

Following Definition 4, the code C is actually RM(1,3). The distance of a r-th
order Reed-Muller code of length m (RM (r,m)) is 2™ ". It is also important to note
that the dual code of a Reed-Muller code is still a Reed-Muller code. In particular,

RM(r,m)t =RM(m —r—1,m)for 0<r<m-—1.

2.2 The MacW:illiams Identities

Recall that the Hamming weight of a binary codeword ¢ is denoted by wg(e). The
weight distribution of code is a frequently used term in coding theory. It is an
aggregate item but contains information such as divisibility of a code. The weight
distribution of a binary linear code C C F7* is summarized by the weight enumerator,

which is the polynomial defined as

Pe(z,y) = 3 amvn®yen), (2.1)

vel

There may exist different codes C and C" with the same weight distribution. However,
it turns out that if C and C’ have identical weight distributions, so do C*+ and C'*. In
other words, the weight distribution of the dual code C* is completely determined by
the weight distribution of C. This relation is precisely described by the MacWilliams
Identities [Mac63], which relates the weight enumerator of a code C to that of the
dual code C*+. It is given by

Pe(o.y) = gy Pes @+ .2 =) (22)
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Example 3. Let Rg,;1 be the repetition code of length 2n + 1. So Ro,i1 =
{02141, Lo y1}, where 09,41 represents the vector of all zeros and 1,1 represents

the vector of all ones. The weight enumerator of Ro, 1 is
PR2n+1 (LE, y) = g?" ! + y2n+1- (23)

The dual code of Ron4q is the subspace of all even-weight vectors (Le. Ry, =
{c € F3""wy(e) is even }, which is also referred as the single parity check code
of length 2n + 1. By directly counting, we have the weight distribution follows

{c € Ry 1|wn(e) =25} = (QT;;rl) for 0 < j < n. We can verify that

"L 201N g o
Pag, o) = 3 (7 oy (2.4

=0
1
=2 (e + 9™ + (2 = ) 25
1
= —PR271+1 (x ty,T— y) (26)
Ron+1
In this thesis, we frequently make the substitution x = cos 22—7[ and y = —1sin 22—7[,

and we define

9 9 9 m—wg (v) 9 wgr (v)
P[C] = P (cos 2—7;, —18in 2—7;) = Z (cos 2—7;) <—z sin 2—7;) . (2.7)
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2.3 The Pauli Group

Let N = 2" Any 2 x 2 Hermitian matrix can be uniquely expressed as a real linear

combination of the four single qubit Pauli matrices/operators

Iy = , X = , Z = Y =1X 7, (2.8)
01 1 0 0 —1

where 1+ = \/—1 is the imaginary unit. The operators satisfy X? = Y? = 722 =
Iy, XY =-YX, XZ=—-7ZX, andYZ =-ZY.

Let A® B denote the Kronecker product (tensor product) of two matrices A and
B. Given vectors @ = [ay,as, ..., a,] and b = [by, b, ..., b,] with a;,b; =0 or 1, we

define the operators

D(a,b) = X"Z" @ X?Z"” @ - @ X 7", (2.9)

E(a,b) =" mdYp(qg p). (2.10)

We often abuse notation and write a,b € F7, though entries of vectors are
sometimes interpreted in Z, = {0,1,2,3}. Note that D(a,b) can have order 1,2
or 4 (order means the smallest positive integer h such that D(a,b)® = Iy), but
E(a,b)? = 29" D(a, b)? = 2" (,200" [ ) = Iy. The n-qubit Pauli group is defined
as

P, ={"D(a,b):a,beF; r=0,1,2,63}. (2.11)

The n-qubit Pauli matrices form an orthonormal basis for the vector space of N x
N complex matrices CV*¥ under the normalized Hilbert-Schmidt inner product
(A, B) = Tr(A'B)/N.

We will use the Dirac notation, |-) to represent the basis states of a single qubit
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in C%. For any v = [v1, v, - ,v,] € F3, we define |v) = |v;) ® |vg) @ -+ @ |v,), the
standard basis vector in CV with 1 in the position indexed by v and 0 elsewhere. We
write the Hermitian transpose of |v) as (v| = |v)T. We may write an arbitrary n-qubit
quantum state as [¢) = -, g 0w|v) € CV, where oy, € C and 3-, oy |aw|* = 1. The

Pauli matrices act on a single qubit as
X[0) = 1), X[1) = [0}, Z]0) = |0), and Z[1) = —[1). (2.12)

The symplectic inner product is ([a,b],[c,d])s = ad’ + be! (mod 2). Since
X7 =—-7X, we have

E(a,b)E(c,d) = (—1){@bleds (e d)E(a,b). (2.13)

2.4 The Clifford Hierarchy

The Clifford hierarchy of unitary operators was introduced in [GC99]. The first level
of the hierarchy is defined to be the Pauli group C") = P,,. For [ > 2, the levels [ are

defined recursively as
CY .= {U €Uy :UE(a,b)U" € 'Y, for all E(a,b) € P,}, (2.14)

where Uy is the group of N x N unitary matrices. The second level is the Clifford
Group [Got98a], C'?), which can be generated using the unitaries Hadamard, Phase,
and either of Controlled-NOT (CX) or Controlled-Z (CZ) defined respectively as

H = P = : (2.15)
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CXamsp = 10)(0]a @ (1) + [1)(1a @ Xy, CZop = |0){0la @ (L2)p + [1)(L]a @ Zp.
(2.16)

It is well-known that Clifford unitaries in combination with any unitary from a
higher level can be used to approximate any unitary operator arbitrarily well [BMP*99].
Hence, they form a universal set of gates for quantum computation. A widely used

choice for the non-Clifford unitary is the T" gate defined by

2.5 Stabilizer Codes

We define a stabilizer group S to be a commutative subgroup of the Pauli group P,
where every group element is Hermitian and no group element is —Iy. We say S has
dimension 7 if it can be generated by r independent elements as S = (v;E(c;, d;) :
i=1,2,...,r), where v; € {1} and ¢;,d; € F}. Since S is commutative, we must
have ([c;, di, (¢, d;]) s = cid} + dic; =0 (mod 2).

Given a stabilizer group S, the corresponding stabilizer code is the fixed subspace
V(S) = {|v) € CVN : g|) = |1) for all g € S}. We refer to the subspace V(S) as an
[[n, k, d]] stabilizer code because it encodes k := n — r logical qubits into n physical
qubits. The minimum distance d is defined to be the minimum weight of any operator
in Np, (§)\S. Here, the weight of a Pauli operator is the number of qubits on which

it acts non-trivially (i.e., as X, Y or Z), and Np, (S) denotes the normalizer of S in

19



P,, defined by

Np, (S) ={«"E (a,b) € P, : E(a,b) E(c,d) E(a,b) =
E(cd,d) € S forall vE (e,d) € S,k € Zy}
={"E (a,b) € P, : E(a,b) E(c,d) E (a,b) =

E(c,d) for all vE (e,d) € S,k € Z4}. (2.18)

Note that the second equality defines the centralizer of S in P,, and it follows

from the first since Pauli matrices commute or anti-commute and —Iy ¢ S.

IN+VvE(e,d)

For any Hermitian Pauli matrix E (¢,d) and v € {£1}, the projector 5

projects on to the v-eigenspace of F (¢,d). Thus, the projector on to the codespace
V(S) of the stabilizer code defined by § = (V;E (¢;,d;) i =1,2,...,7) is

r 27

ns =] (In + Vig (ci,di)) %ZGJ‘E (a;.b;), (2.19)

i=1 j=1

where €¢; € {£1} is a character of the group S, and is determined by the signs of
the generators that produce E(a;,b;): ¢;E (a;,b;) = [l,cjc10. o E (et dy) for a

unique J.

2.6 CSS Codes

A CSS (Calderbank-Shor-Steane) code is a type of stabilizer code with generators that
can be separated into strictly X-type and Z-type operators [CS96, Ste96]. Consider
two classical binary codes C;,Cy such that Co C Cy, and let Ci-, C5- denote the dual
codes. Note that Ci- C C5. Suppose that Co = (c1, €q, . . ., Cg,) is an [n, ky] code and

Ct = (dy,dy...,dy_g,) is an [n,n — k] code. Then, the corresponding CSS code
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has the stabilizer group

S = (Ve 0 E (€i,0) ,v04)FE (0,dj) :i=1,... ) kpand j=1,...,n—k;) (2.20)

= {€a0)c0p)E (a,0) E(0,b) : a € Cs,b € Ci}, (2.21)

where v(c; 0), V(d;.,0), €(a,0), €0,p) € {£1}. The CSS code projector can be written as

the product:

[Is = 1Is, IIs,, (2.22)
where
ko
(IN + v c;,0 E<ci7 0)) Ea C E(a’O)E<a’7 0)
s, = [[ ( 2> = et , (2.23)
i=1 =
and

s (IN + V(Ovdj)E(()? d])) Zbecf‘ E(O’b)E(O’ b)
HS = H —

= 2.24
Z 2 cF 22

j=1

Each projector defines a resolution of the identity. Since our work focuses on Z
errors, we state the one for Z type below and the other two types can be defined in
similar ways. The Z type errors commute with [] g, S0 we only consider IT s, For

€ F3/Cy, we define

1
Sx(p) := {(—1)‘“‘T6(a70)E(a,0) ‘ac c2} and Tlg, () = el > (1) €0 E(a,0).
2 a€cCo
(2.25)
Then, we have
Uy fp=p,
sy (ulsyu) = and Z sy () = Ion. (2.26)
0 if p# ', neFs /ct

The detectable Z errors map the original projector [ | Sy 1O 11 Sxm for some p # 0,
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whereas the undetectable Z errors fix [[. .

If C; and C3- can correct up to t errors, then S defines an [[n, k,d]] CSS code,
k = ki — ko, with d > 2t + 1, which we will represent as CSS(X, Co; Z,Cib). If G4 and
G{ are the generator matrices for Co and Ci- respectively, then the (n—k; +ky) X (2n)

matrix
G
Gs = (2.27)
Gy
generates S. The codespace defined by the stabilizer group S is V(8S) := {|¢)) € CV :

gl) = ) for all g € S}.

2.7 Encoding Map for CSS Codes

Given an [[n, k,d]] CSS(X,Cs; Z,Ci) code with all positive signs, let Ge, e, € F5*"
be a matrix that generates all coset representatives for Cy in C; (note that the choice
of coset representatives is not unique). The canonical encoding map f : Fs —
V(S) is given by |v) = f(|v)y) = ﬁ > wec, [VGey e, ® x). Changing the signs of
stabilizers changes the fixed subspace. Hence we need to modify the encoding map

to account for nontrivial signs. Define subspaces B and D as below.

Ci B+ Co Dt
| | | |
B={zcClle.=1)C1 D= {x€Csle, = 1E>

We capture sign information through character vectors y, u € Fy (note that the

choice of y,u is unique only up to elements in C;,Cy respectively) satisfying

B =Ci- ny*, or equivalently, B+ = (C,y), (2.28)
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and

D = Cy N, or equivalently, D= = (C5-, u). (2.29)
Then, for e 0)€06)F (a,0) E(0,b) € S, we have €q0) = (=1)%" and €0p) =
(-1
The canonical bijective map f : F§ — V(S) becomes [HLC22b)]

o) = flv)r) = \/‘—2 D ()™ wGe, e, @ T S Y). (2.30)

xeCa

To verify that the image of the encoding map f is in V(S), we show that for
€0 €0 (a,0)E£(0,b) € S (that is a € Cs, €q,0) = (=1)*", b € Cf, and €0b) =
(1)),

E(a,O)E(O,b)E (CL, 0) E (0 b) |5>

CI:UT
=€(a,0)€(0.5)F (a,0) \/|— > (- [vGe,jc, DT S Y)
2

xeCo

3" cao) ()™ o (—1)P G0 [yGo o, Ba® x @ y)

1
\% |CQ x€Ca

5.

a qu
b) vGe, e, Pa® T DY)

The CSS code is said to be a constant excitation code [ZR97] if, for each fixed
v € F%, the weight wy(vGe, e, ® © @ y) is constant for all € C,. Recall that a
common kind of coherent noise is modeled by U = exp(:02)®" for arbitrary §. When
U acts on a |0)&|1) computational basis state in a constant excitation code, each
term in (2.30) generates the same phase term exp(:0wy(vGe, /e, ® @ y)), leading

to a global phase, which leaves the state invariant. Hence, a constant excitation code
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is oblivious to coherent noise.

2.8 Trigonometric Conditions

The conditions for a code to be preserved by transversal Z gate at a given level
of the Clifford Hierarchy (derived in [RCNP20]) are expressed as two trigonometric

constraints on weights of pure Z-stabilizers in S.

Theorem 5 (Rengaswamy et al. [RCNP20]). Transversal w/2' Z-rotation (I > 2)

preserves V(S) if and only if for eE(a,b) € S with a # 0,

2 wH('v) 2 wH(a)
Z €v (ztan 2—7;) = (sec 2_7;) , (2.31)

veB(a)

o wi (VPw)
Z € (@tan ?) =0 foralwe O(a). (2.32)
veB(a)
Here, €, € {£1} is the sign of E(0,v) in the stabilizer group S, and & denotes the

binary (modulo 2) sum of vectors.

These identities provide a mathematical framework that enables us to check
whether a quantum code is preserved by transversal Z-rotations. However, it is
hard for us to gain structural information of the code from the expression. In the
later Chapters, as two main contributions of this thesis, we will build sufficient and
necessary conditions that explicitly show the structure of the quantum codes that are
oblivious to coherent noise, which results in a systematical construction of coherent-

error-free codes starting from any stabilizer code.
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Chapter 3

Divisibility of Weights in Binary Codes

3.1 Application of the MacW:illiams Identities

The defining property of a divisible linear code [War01] is that codeword weights share
a common divisor larger than one. Codes obtained by repeating each coordinate in
a shorter code the same number of times are automatically divisible, and they are
essentially the only ones for divisors prime to the field size. Examples that are more
interesting occur when the divisor is a power of the characteristic. For example,
the theorem of Ax [Ax64] governing the existence of zeros of polynomials in several
variables characterizes divisibility of weights in Reed-Muller codes [Ax64, McE72,
MS77,Bor13].

Divisible codes (in particular Reed-Muller codes) appear in protocols designed
for magic state distillation [BK05, ACB12, CAB12, BH12] which achieves universal
quantum computation through transversal implementation of Clifford gates and an-
cillary magic states. Divisibility tests [LC13,VB19] are introduced to ensure that
a quantum error correcting code is preserved by a transversal m/2! Z-rotation. We
argue in the reverse direction, showing that divisibility of weights is forced by the
requirement that the quantum error correcting code is fixed by a transversal gate.
We will make repeated use of the following trigonometric identity that is equivalent

to code divisibility and may be of independent interest to classical coding theorists.

Lemma 6. Let C be a binary linear code with block length m, where all weights are
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even. Let | > 2. Then,

2 wH(’U) 2 m
Z (z tan 2—7) = <sec 2—7;) (3.1)
vel

if and only if (m — 2wy (w)) is divisible by 2! for all w € C*.

Proof. We rewrite (3.1) as
oa\ ) ;g wa ()
P[C] = Z (cos ?) (Z sin ?) = 1. (3.2)
vel

pis
pY

and t_ := cos & —sin 22—7[ After applying the MacWilliams

Let t, := cos 22—’[ +1sin o1

identities, (3.2) becomes

1
WPCL (tJr, t,) - 1 (33)

Since (cos @ + 2sinf) (cos @ —1sinf) = 1 for all 6, we may rewrite (3.3) as

1 m—wpg(w) wg(w
@ Z t+ H( )tfH( ): ]_7 (34)

weCt

which may be further simplified to

]- m—2wg (w

weCt

Since 1 € C*, the complement of a codeword in C* is again a codeword in C*, so we

may rewrite (3.5) as

]' m—zsw —\m—sw
CL] Z ) Z e (3.6)

weCt weCt
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Since (cos® +1sin )" = e’ for all §, equation (3.6) reduces to,

ﬁwz cos (2(7”_2;’;}[ (w))ﬂ) =1 (3.7)

We observe that equation (3.7) is satisfied if and only if each term contributes 1 to

the sum, and this is equivalent to 2! dividing m — 2wpy(w) for all codewords w in

ct. O

Setting C = B(a) in the above lemma provides insights into the conditions of

Theorem 5.
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Chapter 4

Coherent Noise and Z-Stabilizers

4.1 Conditions on Z-Stabilizers

Given two binary vectors x,y, we write =< y to mean that the support of x is

®) 6 be the restriction of Yy

contained in the support of y. We define y|suppa) € Fy
to supp(x). Consider the [[n,n —r]] stabilizer code V(S) determined by the stabilizer
group S = (v;E(¢;,d;) @ v; € {£1},i = 1,--- ,r). Recall that given a stabilizer

eE(a,b) with a # 0, we define

B(a) = {z| eFY @ . ¢,F(0,2) €S and z < a} (4.1)

supp(a)

and
O(a) =F" '\ B(a) = {w € F¥"“ . w ¢ B(a)}. (4.2)

Since S is commutative, a‘supp(a =1 € B(a)*, and it follows that all weights in

)

B(a) are even.

Example 4. Consider the [[16, 1, 4]] Shor code shown in Figure 1.1. Setting E(a,0) =

®%_, X;, where X; means Pauli X on the i-th qubit, we have

B(a) =TF;® ([1,1,0,0],[0,1,1,0],1[0,0,1,1]).
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We now consider Theorem 5 in the special case [ = 2 (Transversal T'). Let

s = Z €p10H (V). (4.3)

veB(a)

Since tan 7 = 1 and sec T = v/2, we may rewrite (2.31) as

s§? = qur(@) — Z €€yt (V)W (W) (4.4)
v,weB(a)
= Z ev@wsz(”@w)H”wT. (4.5)
v,weB(a)

Changing variables to z = v & w and v, we obtain

2wH(a) _ Z EszH(z) (_1>(z@v)vT (46)
z,veB(a)
= Y @ 3 (- (4.7)
z€B(a) veB(a)
=|Bla)] ) e, (4.8)
z€B(a)NB(a)+
where the second step follows from wvv? is even. Since 2v#@) = |B(a)| - |B(a)*|

and |B(a) N B(a)*| < |B(a)*|, B(a)! is contained in B(a) and so 1 € B(a). Since

B(a)* C B(a), it now follows that B(a) contains a self-dual code. Since

Bla)'|= > e, (4.9)

z€B(a)t
we must have e, = 2*#®) for all z € B(a)*.

Remark 7. The above derivation provides the three necessary conditions given in

[RCNP20, Theorem 2| that are necessary for a stabilizer code to be preserved by the
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transversal T' gate.

1. For each eE(a,b) € S with a # 0, the Hamming weight wy(a) is even.

2. For each €F(a,b) € S with a # 0, the binary code B(a) contains an

n=uwy(a)k = “’HT@ self-dual code.

3. For each z € B(a)', the sign of the corresponding stabilizer E(0,z) € S is

given by 1w#(2),

Example 5. Consider the [[16,4, 2]] code that is a member of the [[2, ('), 2] quan-
tum Reed-Muller (QRM) family constructed in [RCNP20]. Tt is the CSS(X, Cy; Z, Ci")
code, where C; = (1) = RM(0,4) C C; = RM(1,4) and Ci* = RM(24) C Ci- =
RM(3,4) (see [MS77] for more details of classical Reed-Muller codes). The signs of
all stabilizers are positive. We know from [RCNP20, Theorem 19] that the code
space is fixed by transversal /T (31 Z-rotation), and direct calculation shows that
the corresponding logical operator is CCCZ up to some local Pauli corrections. We

first verify invariance under transversal T' by checking the sufficient conditions given
in Remark 7.

The [[16,4,2]] code has a single non-zero X-stabilizer @ = 1, with even weight,
and a single subcode B(a) = Ci- = RM(2,4). This subcode contains a self-dual code,
denoted RM(1.5,4), which is generated by 1, all the degree one monomials, and half
of the degree two monomials, i.e., 129, 123, £124. Since the weights in RM(1.5,4)
are 0, 4, 8, 12, and 16, we have :“#(®) = 1 for all v € RM(1.5,4). This matches
the signs specified in the definition of the code above. Hence, the [[16,4,2]] code
satisfies the sufficient conditions for invariance under transversal 7. We note that

the logical operator induced by transversal 7' is the identity (obtained by applying
CCCZ twice).
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Finally, we verify invariance under transversal v/T by checking the first of the
trigonometric conditions given in Theorem 5. The weight distribution of RM(2,4) is

given by
P(x) = 1+ 1402* + 4482° + 8702° + 448z" + 14022 + 2'°. (4.10)

Let ay = tan 2f = tan . Since (secf)® =1+ (tan®)* and €, = 1, for all v € B(a),

we have

Z €o (104)"7 ) — (1+ ai)g

veERM(2,4)
= (200)" + 140 (200)* + 448 (2014)°® + 870 (2014)°
+ 448 (104) " + 140 (200g) " + (2004) ™ — (1+ ai)B

= —8ai(1 — ay)*(1 + ag)*(af + 2ay — 1)*(af — 20y — 1)% (4.11)

The first trigonometric condition is satisfied since oy = v/2—1is a root of z2+2z—1 =
0. We verified the second condition directly using MATLAB for each nonzero coset

representative in F16/B(a) and it is also implicit in [RCNP20, Theorem 19].
Remark 7 motivates the following extension to Lemma 6.

Corollary 8. Let C be a binary linear code with block length m where all codewords

have even weight. Suppose that

2 wp (v) 2 m
Z €v (z tan 2—7;) = <sec 2—7) : (4.12)
velC

where € : C — {£1} is a character of the additive group C.

1. If e, =1 for allv € C, then 2! divides (m — 2wy (w)) for all w € C*.
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2. If e, # 1 for allv € C, and if B = {v € C : ¢ = 1}, then 2! divides

(m — 2wy (w)) for allw € B\ C*.

Proof. Part (1) follows from Lemma 6.

To prove part (2), rewrite (4.12) as

o m—wg (v) o wp (v)
P[B] — P[C\ B] = Z (cos y) (z sin §>

veEB

( 27_{_)m—wy(v) ( . 2ﬂ_>wH('v)
— E COS — 781N —
2 2

veC\B

=1 (4.13)

Recall the notations we used in the proof of Lemma 6 that ¢, = cos 22—7{ +2sin 22—? and
t_ = cos 22—’[ — 28in 22—7{ Since 1 € C* C B+, we may apply the MacWilliams Identities

to obtain

PIBl+PlC\B] =Y (cos 22—7;)%101{(”) (Z sin 22—7;)1%(”) (4.14)

vel
— ﬁpcl (to,t_) (4.15)
1 2(m — 2wy (w))w
= ] wgl cos ( 5 ) : (4.16)

Note that B C C is a subspace of index 2. Since |B*| = 2|C*|, we may apply the

MacWilliams Identities to Pg (Cos 2r jsin 22—’[) and obtain

PIB ’B—MPBL (bt )
1 2(m — 2wy (w))
R ] 0
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Combining equations (4.16) and (4.17) gives

:IC%I 3 cos<2<m_2;;H(w))7r). (4.18)

We complete the proof by observing that each term in (4.18) must contribute 1 to

the sum. O

Remark 9. If m # 0 (mod 2'), then since 0 € C*, it must be case 2 of Corollary
8 that applies. This is always the case when 2! > m. We must have wg(v) = m/2
for all v € B+ \ Ct, and we remark that if we expand the MacWilliams Identities
using Krawtchouk polynomials [MS77], then we can show that there exist at least

m/2 codewords in C with Hamming weight 2.

By setting C = B(a) in Theorem 5, we see that the scenario 2 > wg(a) applies
whenever we require that Theorem 5 holds for all [ > 2. Thus, the observation using
Krawtchouk polynomials implies the existence of a large set of weight 2 Z-stabilizers
in the code. This motivates the study of stabilizers groups with such structure, which

we embark upon next (Section 5), noting that existence is proved in Theorem 3.

4.2 Logical Identity induced by infinite transver-
sal Z-rotations

The goal of constructing quantum codes that are oblivious to coherent noise moti-
vates us to study the conditions for transversal Z rotations to preserve a code space.

In this section, we provide a proof of the following result:
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Theorem 10. A stabilizer code is oblivious to coherent noise if and only if transversal

7 /2! Z -rotation preserves the code space V(S) for all | > 2.

Assume S defines an error-detecting code [[n,n — r,d]], i.e., d > 2, which is

s

5r- Then, we can write

invariant under all the transversal J; Z-rotations. Set ¢; =

the Taylor expansion

®6191Zi _ ® Z <2911€Z'1)k — ®(IQ +10,7; + O(07) 1) (4.19)

=1 =1 k=0 =1

=D + (21O L® L+ L0 %RLE - ®L

+o o+ LRL®-®Z,) + O07) Ion. (4.20)

We can choose [ large enough (say | > L for some positive integer L) in order to

ignore the last term,

n

Qe

=1

I +10(Z1 LR L+ 1,072, L - ® Iy

+...+]2®]2®...®Zn)‘ (4.21)

On one hand, since the code can detect any single-qubit error, it can detect any
linear combination of them (Theorem 10.2 in [NC11]). Therefore, @, €% is de-
tectable (i.e., it maps all the codewords outside the codespace or acts trivially on the
codespace). On the other hand, @), e'%Zi preserves the code space by assumption.
Therefore, @;_, e'%% acts trivally on the codespace, which implies that the logical
operator induced by @, e is the identity for all [ > L. Note that if the logi-

10, Z;

cal operator induced by Q). e is the identity for larger [, the logical operator

induced by ., e%Zi is also the identity for smaller [ via repeated applications.
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Therefore, the logical operator induced by @), €% is the identity for all [.
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Chapter 5

Conditions for Quantum Codes to be
Oblivious to Coherent Noise

5.1 Weight Two Z-Stabilizers

We begin this section by examining the structure of a stabilizer group S that contains
weight 2 Z-stabilizers. Later in this section we show (in the proof of necessity in
Theorem 3) that if a stabilizer code V(S) is preserved by the transversal /2! Z-
rotation for all [ > 2, then S contains a large number of weight 2 Z-stabilizers.

Let e;, i =1,2,...,n be the standard basis of Fy. Recall the graph with vertex

set

I'= U supp(a), (5.1)

eE(a,b)eS
where vertices ¢ and j are joined if e£(0, e; @ e;) € S for some € € {£1}. Recall that
we denote the connected components of the graph by I'y,--- ,I';, and set N = ||
fork=1,2,--- .t

Lemma 11. Fach component I'y,, k= 1,2,--- .t is a complete graph.

Proof. 1f a path rg,7q,- -+ ,r; connects vertices ry and 7;, then ry is joined to r; since

7—1
+F (0 €r, D e,.J = H j:E O ,€p;, D en+1)} .
=0

O

This implies that the Z-stabilizers corresponding to I'y are given by all length N},
vectors of even weight, i.e., the [Ny, Ny — 1, 2] single parity check code. Henceforth,
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we denote the [m, m—1, 2] single parity check code of any length m by W. Theorem 5
forces us to consider all Z-stabilizers B(a) supported on the X-component a of some
stabilizer eE'(a,b). The next observation shows that a either has full support or no
support on a given ['y. Together with the above result, this means that each I'j, either
contributes (/N — 1) dimensions worth of Z-stabilizers or nothing at all to B(a). This
suggests that we split the sum that appears in Theorem 5 in terms of smaller sums
over the I'y’s lying within the support of a. Indeed, we are building up towards such

an argument in Theorem 3.

Given v € F7, let vy, = v‘rk € IFQV’“ be the restriction of v to I'y for k=1, | ¢.

Lemma 12. If £F(a,b) is a stabilizer in S, then a =0 or 1.

Proof. 1f z, is an even weight vector supported on I'y, then +F(0, 2}) is a Z-stabilizer
in §. Since § is commutative, ay is orthogonal to every even weight vector zj, and

soar=0or1. ]

5.2 Product Structure

The Z-stabilizers supported on ['y, take the form (—1)¥+*" E(0, v), where v is a vector
of even weight supported on I'y. Here yy, is a fixed binary vector supported on I'y,. We
now investigate trigonometric identities satisfied by the weights in these component

codes W representing Z-stabilizers from I'.

Lemma 13. Let W be the [m,m — 1] code consisting of all vectors with even weight,

and let e, = (—1)*¥" be a character on W. Then

2 wi (v) 2 m
Z €v (z tan 2_7lr> = cos 7y - (sec 2—7;) : (5.2)

veWw
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where v = w and l > 3.

Proof. 1If € is the trivial character, then y = 0, and we have

2 tan 1))
Zvew(iec Z_W)?m) = PW]. (5.3)
Pl

Note that W+ = {0,1}. We apply the MacWilliams Identities to obtain

1 2 27 27 2
PW| = WPWL (COS o + 1sin o7 008 o — 2 sin ?)

= gy P (75 F)

1{1%’”_1%0 ,20\0 7/ 2r\m
=5 |(#F) (F) + (F) ()

2
= cos i (5.4)

which means

27\ 1) 2r M 2\ "
Z ztang =cos—— secor | (5.5)

vew

If € is a non-trivial character, then there exists y € F5* with y # 0 or 1 such that
B={veW:e=1}=(1,y)", (5.6)

and

Bt={1,y)={0,1,y, 10y} (5.7)
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Note that |B] = 21 and |B*| = 2)W*|. We rewrite

9 wp (v) 2 wy (v) 9 wp (v)
Z €v (ztan 2—7;) = (z tan 2—7) - Z (ztan 2—?) (5.8)

veWw veB veW\B
wg (v) wg (v)
T H 27T
:22 (ztany) — Z (ztan?) , (5.9
veB veEW
so that )
v 2 tan Z5)H
D wew € ( . W%l) =2P[B] - P[W]. (5.10)
(sec )
We apply the MacWilliams Identities to obtain
PiB) 1 P ( .2z ﬂzilr) 1 2m N 21t(m — 2wy (y)) (5.11)
= — e22.e 2 = — [COS COS . .
B B\ 2 2 2l

We combine with (5.5) to obtain

21 (m — 2wy (y))
9l

2P [B] — P W] = cos (5.12)

as required. O

When B(a) = W, the second trigonometric identity in Theorem 5 becomes a sum
over all odd weight vectors (F§* \ W). The character € is given by e, = (—1)*¥" for

some y € 7' and we extend the domain of € from W to FJ'. If € is trivial, then

Zvngn\W € (2 tan %_?)wH(v)

(sec 22_7;.)m

—PFP\W|=P[F] - PW].  (513)
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Note that (FJ')" = (0). We apply the MacWilliams Identities to obtain

P[F3'] = Py (6T e”%) (5.14)
=\ m—0 ~\ 0
- (e%z) (e%) (5.15)
2 2
= cos 7;71 + ¢sin 72rzn (5.16)

It now follows from equation (5.5) that

2 2 — 2 0
P[Fy'] — P W] =1sin ;m = 1sin — (m 2le ( )) (5.17)
If € is non-trivial, let B’ = {z € F}'le, = 1}. If B’ =W, then
o € (2 tan 25)"7 @ 9 9 2w (1
ZUEFQ \W (2 _ 21) = —sin an = sin m(m le< )) (5.18)
o B) 2 2

Note that since (y) C (1,y) = B+, we have B C y*. It remains to consider the case

where ¢ is non-trivial and B’ # W. Here B’ = y* where y # 1.

Lemma 14. Let W be the [m,m — 1] code consisting of all vectors with even weight.

Let e, = (—=1)"", let B = {v € Wl|e, = 1} = (1,y)L, and let B = {x € FP|e, =

1}.Then
9 wgr (v) 9 m
Z €v (z tan 2—7;) =1sin7y - <S€C 2—7) : (5.19)
veFI\W
where v = —zﬂ(m_;w’{(y)).

Proof. We may assume that y # 0, 1, and that the subspaces W, y* and their duals
(1), (y) intersect as shown below. The edge label is the index of the smaller subspace

in the group larger subspace.
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Table 5.1: Sign patterns: the entries of each row specify how the set corresponding
to the subsets A can be written as a union of subsets in different columns.

) Dl Ep o) n @\ g | @AW Nyt | wo @\ g
Fo\ W + + 0
Fy \y~ + 0 +
W\ OV Nyl 0 0 T
Fy (1,y)
W yt (1) (y)
Wnyt (0)
We have
Zvng’\W € (¢tan 22_7{)%(”)
(e )"
= P[EF \W)ny'] — P[EF\W) N (B3 \ ")) (5.20)

Table 5.1 specifies how subsets T" appearing (5.20) can be expressed as disjoint unions

of subsets A that appear in the MacWilliams Identities.

It follows from Table 5.1 that we may rewrite the right hand side of (5.20) as

7\ Wi (v)
Zvngn\W € (vtan 5F) "

(SGC 22—7;) "

— P[Fy \ W] —2P [Fy \y'] + 2P W\ Wnyh)]. (5.21)
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It follows from (5.17) that

- 2mm
P [F3*\ W] = 1sin o (5.22)
We rewrite (5.16) as
PRy \y*] =5 — Plyt. (5.23)

2T

Recall that we define t, = cos 22—7[ +sin 57 and ¢ = cos 22—’[ — 28in 22—7[ We apply the

MacWilliams Identities to obtain

1
1
P [y ] = |<y>’P|<y>\ (t4,t-)
_ % ( A H“’”) , (5.24)
so that
1 ™m 27 (m—2wp (y))
P[Fy\y'] = 5 (eZZT —¢' o ) : (5.25)

It follows from (5.5) that

2mm
PW\(Wny")] = cos S PW Nyt (5.26)
We apply the MacWilliams Identities to obtain
PWnyt]
L P (bt

= — 1, +,0—

(1) Y

]_ J2mm _,2mm lQTr(m72wH(y)) 7{27r(2wH(y)7m)
=1 [e A fe A toe 2l +e 2l (5.27)
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so that

PW\(Wnyh)] = % cos 27;lm — cos 2m(m —2?wH(y)) : (5.28)

We now use (5.22), (5.25), (5.28) to rewrite the right hand side of (5.21) as

2 wm 2m(m—2wp (y)) 2 2 -2
18in ;m e e T+ cos ;m — cos m(m QZMH(y)) ; (5.29)
which reduces to (5.19). O

5.3 Proof of Conditions

We now consider a stabilizer code V(8S) that is preserved by /2! Z-rotation for all
| > 2. The sign €, of the Z-stabilizer €,E(0,v) is given by €, = (—1)¥*", and we
let yp = y‘rk be the restriction of the binary vector y to I'y. Given eE(a,b) € S
with a # 0, we now investigate the trigonometric conditions satisfied by Z-stabilizers
supported on supp(a). We first show that supp(a) is the disjoint union of components
I’y C supp(a). We then glue together the trigonometric conditions satisfied by the

Z-stabilizers supported on these components I'y.

Theorem 3. Transversal w/2! Z-rotation preserves the stabilizer code for all | > 2

if and only if for every eE(a,b) € S with a # 0,

(1) supp(a) is the disjoint union of components I', C supp(a)

(2) Ny is even and wy(yr) = Ni/2 for all k such that Ty C supp(a).

Proof of Necessity. First, we need to show that the hypothesis implies the presence of
many weight 2 Z-stabilizers, and hence that the discussion of I'y is material. Though

we remarked on their presence in Remark 9, we will see in this proof that such a
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structure is revealed by the trigonometric conditions in Theorem 5 itself. For now,

we begin by assuming their presence and introducing related quantities.

We divide the weight 2 Z-stabilizers in I'y into two classes of sizes P, and Qy
where P, = [{v € FI'* : wy(v) = 2 and €, = 1} and Qx = [{v € FI* : wy(v) =

2 and €, = —1}|. Setting wy(yx) = s, we have

wn-()T) (O () e

— 9 <s - %)2 + e (5.31)

Thus, Qr — P, < 7", and equality holds if and only if wg(yk) = Y&, Theorem 5

implies all wy(a) are even and

(@)

37 e (1tan )" = (sec )@ = (1+ (tan§)?)

veB(a)

(5.32)

for all & = 5 with [ > 2. Let Byj(a) = {z € B(a)|wn(z) = 2j}. We have

“’H(G)

Z Z (tan 0)> = (1 + (tan6)?) e . (5.33)

J=0 wveBy; (a)

for all = Z; with [ > 2. Since a finite degree polynomial (in (tan 0)*) cannot have
infinitely many roots (tan %)2, it must be identically zero and we may equate the

coefficients of (tan)? to obtain

wy(a) _ Z - (—1) = Z (Qr — Pp). (5.34)

2 veB2(a) k:T'x, Csupp(a)

Note that this observation has established the presence of weight 2 vectors in B(a),
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as we intended. It follows from (5.31) that

wH(a)
2

< ¥ N wila) (5.35)

2 2
k:I'y, Csupp(a)

Therefore equality holds in (5.35) and Q. — Py, = % for all k such that I'y C supp(a),

which completes the proof of necessity.

Proof of Sufficiency. Let W} be the [Ny, Ni, — 1] single-parity-check code and let
WE =TFYF\ WY, Let W(r) = D, coupp(a) Wi*» Where 7 € FiETRSsepl@ll gnd s

the entry of r corresponding to I'y. Then, for all r,

Y e (ztanQQ—?)wH(v)z T A, (5.36)

veEW(r)

where

wr (1)
fr(0) = Z (—1)ven" (z tan Q—W) , for 0 € {0,1}. (5.37)

9l
new

Here, yr, = y|rk be the restriction of the character vector y to I'y. Let v =

%}"H(“)). We apply (5.5) and (5.19) to simplify (5.37) as

)
cosy - (sec 22—7[)Nk if § =0,
Jr(6) = N
esiny - (sec37) 7" if 6 =1,
\
(
o\ Nk
sec =1 if 6§ =0,
_ ) () (5.38)
0 if 6 =1.

\

Therefore, the summation (5.36) is nonzero if only if » = 0 (i.e. summing over W(0)).

To show the first trigonometric identity in Theorem 5, we note that B(a) D W(0).
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Then, for all [ > 3

2 wH('u) 2 wH('v) 2 Nk
Z € (ztan 2—7;) = Z € (ztan 2—7;> = H <sec 2—7;)

veB(a) vew
I';,Csupp(a)

2 wH(a)
= (sec 2—7;) . (5.39)

To verify the second condition, let w € O(a) = Fy" (@) \B(a) and we change variables
to B = v @ w and w on the right hand side (note that we have extended the ¢, to all

binary vectors). Since WW(0) is not contained in any nontrival coset of B(a), we have

o\ wH (vdw) o\ wr )
Z €w (ztan 2—7;) = €, Z €8 (ztan 2—7;)

veB(a) BewdB(a)

=0, (5.40)

for all [ > 3 and w # 0. ]

5.4 Constant Excitation Code

We now use the two conditions in Theorem 3 to show that if a CSS code is oblivious

to coherent noise, then it is a constant excitation code.

Corollary 15. A CSS code is oblivious to coherent noise if and only if it is a constant

excitation code.

If the CSS code is error-detecting (d > 1) then the weights in different cosets of

the X -stabilizers are identical.

Proof. Consider an [[n, k,d]] CSS(X,Cs; Z,Ci) code with a fixed character vector

y for Z-stabilizers. If w is a coset representative for Cy in Cy, then w L Ci so
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w|, = Oor 1. If x € Cy, then by Lemma 12, we have a:‘rk = 0 or 1 for all k.

Theorem 3 implies wy (yg) = % for all k, where y, = y‘rk. Since (w®x) =0or 1

on any I'y, adding y, to the sum either leaves y, unchanged or just flips all entries

Tk |

of yr. In both cases, the Hamming weight of the sum (w @© x @ y) is exactly 5% on
any T'y. If I' = (J;_, Tk, then
t
r
wy(wd xS y|.) = % (5.41)

IfV ={1,2,...,n}\T, then the first condition in Theorem 3 implies that wy (z|,,) =

0, so that for fixed w
wH('w@a:@y):wH(w@wEBy’F)—f—wH(w@m@y!V) (5.42)

is constant for all @ € C,, and the CSS code is a constant excitation code. The

sufficiency follows from the observation that a transversal # Z-rotation acts as a

global phase on a constant excitation code. If the CSS code is error detecting, then

for all i € V there exists ¢; € {1} such that ¢, E(0,e;) is a Z-stabilizer. Hence

w|U = 0 for all coset representatives w = vGg, ¢, of Cy in C;. It now follows from
T

(5.42) that wy(w Dz D y) = 5 + wH(y|v) is constant. O
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Chapter 6

Construction of Quantum Codes
Oblivious to Coherent Noise

6.1 CSS Code Construction

Let A, C A; be two classical codes with length ¢, and let Ry, R; respectively be the
rates of Ay, A;. We may construct a [[t, (B — Ra)t,d = min{duin(A1), dmin(A3)}]]
CSS code by choosing X-stabilizers from A, and Z-stabilizers from A;. Let M > 2
be even, and let W be the [M, M — 1] single parity check code consisting of all vectors
with even weight of length M. Consider the CSS(X,Cy; Z,Ci") code where

Co = A @ 1y, (6.1)

t
Cf:{(b@el)@w:beAfandwe@W}, (6.2)

k=1
and 1, is the all-ones vector of length M. Note that the code Ci includes the
direct sum of ¢ single-parity-check codes WW. We determine signs of elements in Ci-
(Z stabilizers) by choosing a character vector y € F5M | and we satisfy condition (2)
of Theorem 3 by choosing wy(yx) = M/2, where y, = y‘Fk. The sign €, of the

Z-stabilizer e, E(0, z) is given by e, = (—1)¥**" . The number of logical qubits is

tM — dim(C;-) — dim(Cy)

—tM —t(M — 1) — (1 — R))t — Rot = (R, — Ro)t. (6.3)
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If z is a vector of minimum weight that is orthogonal to all X-stabilizers, then ei-
ther z is a Z-stabilizer or z is a vector from Ay interspersed with zeros. Hence
the minimum distance d of the CSS code is at least min(dp, (A1) M, dmin(A3)).
Thus, we have constructed a CSS code family with parameters [[tM, (Ry — Ry)t, >
min(dmin (A1) M, dmin (A3 ))]], that is oblivious to coherent noise.

For fixed M, if we choose a family CSS codes with finite rate, then the new CSS
family also have finite rate but with possible higher distances. If we allow both M and
t to grow without bound, then the new CSS family may achieve increased distance

but will have vanishing rate.

Example 6. We may choose A; = F3, Ay, and M = 2L to be the [2L,2L — 1]

single-parity-check code to obtain the family of [[4L?, 1,2L]] Shor codes.

The dual-rail inner code [KLMO1] is the CSS code determined by the specific
stabilizer group & = (—=Z1Z,). Ouyang [Ouy20] observed that it was possible to
construct a constant excitation code by concatenating an outer stabilizer code with
an inner dual-rail code. This is simply because concatenation maps |0) to |01) and
|1) to [10). In this case the number of physical qubits doubles. When M = 2, the
construction described above coincides with the dual-rail construction. However, our
approach has shown that any CSS code can be made oblivious to coherent noise,
without requiring a special stabilizer group as in the original dual-rail construction.
In fact, our approach can be extended to any stabilizer code as shown in the following

section.
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6.2 Generalizing to Stabilizer Codes

Consider an [[n, k, d]] stabilizer code with generator matrix

n n
o e e (6.4)
cl i

Here, » = n — k, and the matrix C is the generator matrix of the space {z €
F2le.E(0, z) € S} (thus the matrix A has full row rank). The stabilizer code derived

from our construction has generator matrix

nM nM

A®1M B®€1 r—1
Gs = 6.5
S C®€1 I ) ( )

I, W | n(M —1)

where the (M — 1) x M matrix W generates the single-parity-check code. We choose
signs of the n(M — 1) stabilizers generated by I,, ® W so that the new stabilizer code

is oblivious to coherent noise.

Theorem 16. The minimum distance d' of the stabilizer code generated by G/ sat-

isfies d < d' < Md.

Proof. Suppose that (x,y) is not in the row space of G and G (y,x)T = 0. Note
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that M | wy(x). We may write
x = f ® 1) where f € F7, (6.6)

and y = (1y ® (wy, ..., wy)) ® (g ® ey) where w; € W and g € F}. Then

Al B
Gs(y,z)" = (g. )" =o0. (6.7)
C

The weight of (x,y) is at least the weight of (f, g) which is at least d, and so d’ > d.
Furthermore, there exists a weight d vector (w,v) not in the row space of Gs and
Gs(v,u)” = 0. Then, we have (u ® 1)7,v ® e1) is not in the row space of G and

Gs(v®e,u®1y)T =0. Hence,
d <wgu®ly,v®e) < M- wy(u,v)= Md.

]

The next example also demonstrates that the dual-rail construction may some-
times increase minimum distance, and this may be a reason to investigate M > 2 in

the above construction, where the distance d’ satisfies d < d’ < Md (Theorem 16).

Example 7. Consider the [[5, 1, 3]] stabilizer code with generator matrix Gs = [A|B]

where
1 0010 01 100
01 001 00110
A= and B = (6.8)
1 01 00 00011
01 010 1 0 0 01

o1



The code is not a CSS code. The stabilizer code derived from our construction has

generator matrix

signs
Ge = [A®[L1] | Be[L0]| + (6.9)
I5 ® [17 1] o

Consider (y,x) such that (x,y) is not in the row space of Gs and Gg/(y, )" =
0. We observe that 2 | wy(z). If € = 0, then y = w® [1,1] & 15 ® [1,0] for
some w € F5, then after possibly applying the cyclic symmetry, we may assume
T =e; ®eyand (A®[1,1])y? =10,0,0,1]7. We observe that neither [0, 0,0, 1] nor
[1,0,1,0]10,0,0,1) = [1,0,1,1] is a column of A. It follows that the distance d’ > 4.

In fact, we see d’ = 4 by taking

(m,7 y,) - [17 ]" 07 07 07 O? 07 07 07 O|07 07 17 07 07 07 07 07 ]" 0]' (6'10>

Hence, the stabilizer code derived from the above construction has parameters [[10, 1,4]].

By choosing y to be either [0, 1] or [1, 0] for each of the five connected components
with size M = 2, we ensure V(S’) to satisfy Theorem 3, and thus it is oblivious to

coherent noise.

We now consider the cases that when some qubits are not involved in any X-

stabilizer.

Example 8. Consider the [[5, 1, 2]] CSS code with the character vector y = [1,0, 1,0, 1]
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defined by the following generator matrix

11110
11000
G = . (6.11)
00110
00 0O0T1
Here, we have two connected components I'y = {1,2} and I'y = {3,4}. Since

supp([1,1,1,1,0]) = ;1 U Ty, and wy(yx) = 2 = 1 for k = 1,2, the two con-

ditions in Theorem 3 are satisfied. Hence, the [[5,1,2]] CSS code is oblivious to

coherent noise, and we use (2.30) to compute computational states to verify it is a

constant excitation code:

1

0) = —(]01011) + |10101)), (6.12)

Sl

2

1
V2

Here, the constant excitation is 3 # g (half of the number of physical qubits). After

1) (]10011) + [10101)). (6.13)

the concatenation, we may introduce extra physical qubits by adding zeros to the
current X-stabilizers and including all weight 1 Z-stabilizers on the extra qubits.
This construction reduces rate, but provides a large class of codes that may be useful

in implementing logical gates.

Given any [[n, k, d]] stabilizer code, the theoretical construction in (6.5) and the
observation in Example 8 provide a [[Mn + s, k, d']] stabilizer code that is oblivious

to coherent noise, where d < d’ < Md, M > 2 is even, and s > 0.
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Chapter 7

Coherent Noise in the Form of Generator
Coefficients

7.1 Review of Generator Coefficients

In the previous Chapters, we focused on transversal Z-rotations, which are a special
form of diagonal gates. In this Chapter, more general conditions for a quantum
codes to be preserved by diagonal gates are derived. We first review the Generator
Coefficient Framework which describes the evolution of stabilizer code states under
a physical diagonal gate Uy = Zung dy|u)(u| (See [HLC22b] for more details).
Note that |u)(u| = 5= vng(_l)uvTE(Ov'U)- Alternatively, we may expand Uy

in the Pauli basis

UZ - Z f(’U)E(Ov’U)a (71)

vely

where

fo)= o S (-1 d,, (72)

u€clky

The Hadamard gate Hon connects the coefficients in the standard basis with those in

the Pauli basis as follows

[f(v)]ve]}?g = [du]ue]Fg HQ", (73)

where H = —= (|0)(0] 4 |0)(1] 4 |1){0] — |1)(1]) and Hon = H @ Hayn-1 = H®" is the

1
V2
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Hadamard gate.

We consider the average logical channel induced by Uz on an [n, k, d] CSS(X, Cy;
Z,Ci,y) code that results from the four steps : (1) preparing any code state pi;
(2) applying a diagonal physical gate Uy to obtain py; (3) using X-stabilizers to
measure ps (we only consider Z-errors as the same reasons in [BK05, BH12|), to
obtain the syndrome g with probability p,,, and the post-measurement state ps; (4)
applying a Pauli correction to ps3, to obtain ps. The correction might induce some
undetectable Z-logical €(g,,)£(0,7,) with 79 = 0. Let B, be the effective physical
operator corresponding to the syndrome p. Then the evolution of code states can be

described as

HEFS [Cy

The generator coefficients A,, , are obtained by expanding the logical operator B,, in

terms of Z-logical Pauli operators € ~)£(0,7),

By = €04, E(0,7y) Z Apq €07 E(0,7), (7.5)
YECy /CT-

where € ,)E(0,7,) models the Z-logical Pauli correction introduced by a decoder.
For each pair of an X-syndrome p € F3/Cy and a Z-logical v € Cy /Ci-, the generator

coefficient A,, , corresponding to Uy is

Auy = Y, €oxf(2), (7.6)

2€CH+p+y

where € ,) = (—1)zyT is the sign of the Z-stabilizer F(0, z). The chosen Z-logicals

and X-syndromes are not unique, but different choices only differ by a global phase.
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Generator coefficients use the CSS code to organize the Pauli coefficients of Uy into
groups and to balance them by tuning the signs of Z-stabilizers. We use (7.2) to

simplify (7.6) as

Apy = Qin Z Z (1) (—1)** d

u€Fy zeCi +puty

1 T
el S (-DEE e, (7.7)

u€eCy

where |C;| = 2" is the size of C;. We organize the generator coefficients in a matrix

M(Fg Jet ek ek with rows indexed by X-syndromes and columns by Z-logicals,

[ANZO,W]—yeCZi /CE

[Au:ul rv} ~YECs /C

Mgy ot et jet) = , - (7.8)
_[Au:ltzkz_l,’v]vecj/cf_ WeF? /C
For fixed p € Fy/Cs,
1 i
[14/»’47'7]‘)’€C2L/ClL = m[du®y]u€C1 H(Cl,CQL/ClL)’ (79)

where H*

T
(Crct jed) — [(_1)(l—¢®"/)u ]

u€eCy,veCy /Ci--

Theorem 17 (Theorem 7 in [HLC22b]). The physical gate Uy = Zung dy|u) (ul
preserves a CSS(X,Cy; Z,Cik,y) codespace if and only if

Y MAoslP= D> Aoqdes =1 (7.10)

~eCs /Ct- ~eCs /Ct
Here, | - | denotes the complex norm.
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Proof. Invariance of the codespace is equivalent to requiring the effective physical

operator corresponding to the trivial syndrome B,_¢ to be unitary. O

Note that (7.10) is also equivalent to [Ayz04]yect o = 0 [HLC22b, Theorem 6].

The induced logical operator is

Ug = Z Ao,g(a)E(O,a)

ocFk

1 aul
=Gl DY ()7 dyey B0, ), (7.11)
acFk uely
where g : F¥ — C3 /Ci is a bijective map defined by g(a) = Gyt er. Here, Gey el

is one choice of the generator matrix of Z-logicals (coset representatives of Cy /Ci).

Example 9. The [15, 1, 3] punctured quantum Reed-Muller code [BK05] is a CSS(X,
Cy; Z,Cit, y = 0) code, where Cy is generated by the degree one monomials, x1, Ty, T3, T4,
and Cf = (21, x9, T3, Tq, T1 T2, T1T3, T1Ty, ToXy, Loy, T3Xy), With the first coordinate
removed in both Co and Ci-. It’s also a triorthogonal code [BH12] for which a physical
transversal T gate, Uy = Zung (e”“)wH(u) |u)(u|, induces a logical transversal T
gate up to some Clifford gates. Here, wy(u) = uu® denotes the Hamming weight of
the binary vector w. Note that Cy is the classical punctured RM(1,4) code with weight

distribution giwen in Table 7.1 below.

Table 7.1: The weight distribution of C; for the [15,1, 3] code

weight 0| 7 1] 8|15
multiplicity | 1 | 15| 15| 1

Then, dy = 1 for u € Cy satisfying wy(uw) =0 or 8, and dy, = e~"™/* for u € C,
satisfying wy(uw) = 7 or 15. Since the Z-logical v = 1, the all-one vector, it only

changes the signs of d,, with odd weight. It follows from (7.11) that the induced logical
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operator s

16 16
Uz = 55 (1+ e ™HE0,0) + o5 (1 = e E(0,1) = T". (7.12)

Remark 18. [t follows from (7.11) that the induced logical operator is completely
specified by |Cy| diagonal entries in the physical gate Uz. If we choose a CSS code
and target a particular logical gate, then the constraints on the corresponding physical

gates only apply to the diagonal elements corresponding to the coset C; + y.

7.2 Generalizing the Error Model

Given a CSS code, the generator coefficient framework not only represents when
a physical diagonal gate preserves the codespace, but it also characterizes all the
possible physical gates that realize a target diagonal logical gate. We start from the

simplest case, when the logical operator is the identity.

Lemma 19. The physical gate Uz = > dy|u)(u| acts as the logical identity on

uclky

the CSS(X,Cq; Z,Ci-,y) codespace if and only if dyg, are the same for all u € C;.

Proof. Tt follows from (7.11) that UL = I, if and only if

=1, (7.13)

1
m Z duEBy

uely

|Au:0,~/:0| =

which is equivalent to requiring that 2% diagonal entries of the physical gate Uy

indexed by the set C; + y are identical. n

The mapping from a physical gate that preserves a given CSS code to the induced
logical operator is a group homomorphism. The kernel of this homomorphism is the
group of phsyical gates that induce the logical identity.
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Remark 20. Given a CSS code, Lemma 19 characterizes all the diagonal physical
gates that induce the identity on the codespace. This enables code design within a
decoherence-free subspace (DFS) for a particular noise system. For homogeneous

coherent noise (same angle on each physical qubit), we consider

Xn

Uy =5 ()™ u)(ul, (7.14)

with 6 € (0,2m). We design CSS codes that are oblivious to all such gates by making
sure all the Hamming weights in the coset Cy +y are the same (a new perspective on
the results in [HLC22a, Ouy21]). For coherent noise with inhomogeneous angles, this

perspective enables code design to mitigate these correlated errors. For example, we

1 0 1 0 1 0 1 0 10 1 0
consider Uy = ® ® ® ® L ® )

0 e 0 e 0 e¥ 0 e’ 0 e 0 e
with 0 € (0,27) and 6, + 0, = 0, + 0, = 0. By selecting the diagonal elements
of Uy with the same value, we design a [6,1,2] CSS code within a DFS for the

inhomogeneous noise system, where

111111
Gc2=[1 1111 1}CG61= and y = [1,1,1,0,0,0].
001100

(7.15)
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Chapter 8

Constraints Associated with Climbing the
Clifford Hierarchy

When transversal Z-rotations are used to induce non-identity logical operations on
a stabilizer code, the classical binary codes Z; formed by the Z-stabilizers supported
on a given X-stabilizer must satisfy Theorem 5 for all [ < [, < oo. In this section,
we show that as [ increases, the weight enumerator of such a code Z; must satisfy a

sequence of constraints.

When the code Z; is self-dual, the first of the constraints connects to Gleason’s
Theorem [Gle71] that the weight enumerator is a sum of products of certain given
polynomials. We note that there are many connections between self dual codes,
lattices, quadratic forms, and quantum error correcting codes (see [NRS06] for more

information).

We derive constraints that apply to a polynomial R;(z) determined by the char-
acter €, and the weight enumerator of Z;; when Z; is self-dual, the polynomial R;(z)

depends only on the weight enumerator. Invariance under transversal ; Z-rotations

implies that R;(z) is divisible by the minimal polynomial of tan 22—7[ for | =3, ..., lnax-

Since lyax > 3, it follows from the second condition of Remark 7 that every code

wr (a;)
2

Z; contains a [wy(a;), ] self-dual code A;. Here we assume Z; = A;, then add
a Z-stabilizer E(0, z) to the stabilizer group S, and verify that the identities (2.31)
and (2.32) still hold. If z £ a;, then Z; is unchanged. If z < aj, then Z} = (Z}, z)

and we have
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o wy (v o\ WH wi (vPz)
ZEU ztany —Zev @tang —l—Zevez ztan—

vEZ;

(8.1)

2 wr (a;) 2 wh (vH2)
= sec (2—7;) +e, Z €y (z tan 2—?) (8.2)

’UGZJ'

2 wr (aj)
= sec (2—7;> . (8.3)

Note that if w € O}, then 2 ® w € O;, and we have

o wpr (VW) w g (VW) o wg (vHzOW)
Z (z tan ?) = Z € (z tan —) + Z €v€s (z tan ?)

vEZ] vEZ; vEZ;

(8.4)

—0+0=0. (8.5)

Once conditions (2.31) and (2.32) are satisfied by a subcode of Z; (for example A;),
they remain satisfied as Z-stabilizers are added to the stabilizer group. Conversely,
it is natural to ask whether the conditions of Theorem 5 for 6 = 7 (preserved by T
gate) imply there exists a self-dual code satisfying (2.31) and (2.32). We have the

following result:
Theorem 21. For ¢E(a,b) € S with a # 0, if the condition (2.31) is satisfied
for 0 = T (preserved by T gate), then we have dim B(a) > wil@) - Fyrthermore, if

2

dim B(a) = wHTM)) then B(a) is a self-dual code.
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Proof. By assumption, we have

Note that each term of the left hand side contributes either 1 or —1. So there are

least 2#(®) terms, which implies that dim B(a) > wHTm)

Now, we assume dim B(a) = U’HT@ There are exactly 2¥#(@) terms on the left

hand side, and all of them are 1. Hence,
1= Ev(_l) 2= (_1)’UyT+ 2 (88)

where y is the characteristic vector. Therefore, we have

wH(’U)

vy’ + is even for all v € B(a). (8.9)

For any u,v € B(a), we have

wy(u) +wy(v) — wy(u @ v)

uv’ = wy(uxv) = 5 (8.10)
=uy' + —sz(u) +oy’ + wHQ(v) - ((u vy’ + wH(UQ@ v)) (8.11)

= even + even — even = even. (8.12)
Therefore, B(a) is a self-dual code. O

We now make the connection to Gleason’s Theorem.

Theorem 22 (Gleason [Gle71]). Let C' a binary self-dual code with all Hamming
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weights divisible by ¢, and let Po(x,y) be the weight enumerator of C'.

1. Ifc =2, then Po(x,y) is a sum of products of the polynomials f(z,y) = 2% +y>
and g(x,y) = 2*y*(z* — y*)*.
2. If ¢ = 4, then Po(z,y) is a sum of products of the polynomials f(z,y) =

28 + daty* +1® and g(z,y) = *y* (2t — y*)*.

8.1 Applications of Algebraic Number Theory

Given a stabilizer code fixed by a transversal ; Z-rotation, we set m; = wg(a;) and

rewrite (2.31) of Theorem 5 as

2 wr (v) 2 m;
Z €y (z tan 2—7;) = (sec 2_7;) . (8.13)

’UGZ]'

Since secf = 1/1 + (tan ), we can rewrite the right hand side as

mj
2

2m\ "™ om\ > = = o1\ %
(sec §> = (1 + (tan ?) ) = 2 ( i ) (tan ?) : (8.14)

Let Z;(2t) be the set of vectors in Z; with Hamming weight 2¢. It follows from (8.13)
that the polynomial

mj
2

B =3 | Y ey (7| (5.15)

t=0 |veZ;(2t)

vanishes at oy = tan 2f. When a stabilizer code V() is preserved by all transver-
sal Z-rotations, we must have R;(x) = 0 for all Z;. When V/(S5) is preserved by

the transversal 7; Z-rotation for [ < [y, < oo, then since the polynomial R;(z)
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only involves even powers of x, it is divisible by the minimal polynomials of tan 22—’[

and — tan 22—? for [ < lhax. We derive these minimal polynomials in Theorem 26 be-

low, starting with two technical lemmas. Note that both minimal polynomials are

irreducible in Q[z].

Lemma 23. Let f(z) = :2%;. Then

ok—1_1 ok .
Yo (1) (212+1)x2l+1
Qk—l

ijo (—1)/ @j)x%

Y

fHa) =

where f*(x) = f(f(--- f(2))).

Proof. We use induction. When k = 1, we have

oy 2 (?)x
(R e
When k£ = 2, we have
PO v R Y
1= ()" 1-6+at () = ()2 + ()

Assume the Equation 8.16 holds for some k£ > 2. By induction, we have

2Z?k01_1 L(21+1) s
2f%(z) 2 (17 (3)e

@) = f(ff (@) =

S (1) (32
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(8.16)

(8.17)

(8.18)

(8.19)



2k—1_1
2 (22,

(1) (722 ) (5

3=0

—1

(=1)

J

(

)a2)

= [ (2) =

(2,

ZQ -1

D)) - (2

ok

Zer] =r (_

2k—1_1
iz (

2k

-1y (2i+1
)’ (2i+1) @I;)m%ﬂ

(=%,

(=1 ()a) (23

We first look at the numerator of f**1(x)

2k
L2l
(22 + 1) <2j>

2k_1
Numerator = 2 Z

r=0

2k_1 T

2

r=0
k

N
—_

Il
s
|
Lo

(]

[\&)
=
)

r=0

Z r

i+j=r

2k
25 (4%

L itg=r

> (7

Litj=r

)

L s=0

()

)G 2

2k:

Then, we simplify the denominator of f**1(x)

Denominator = (

ok
=0

r=0

> (-
2. (-

i+j=r

i1+ (2°
Z
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2k
2j

e

)

2k
21+ 1

_17’ 2r+1
27’—1—1—3)]( J'e

2k+1 —
-1 LR
(=1) (27’+1>x

(_1)L%J (i")y) '

)

(_

1)

)x2i+1>2

8

2r+1

(8.20)

(8.21)

(8.22)

(8.23)

(8.24)

(8.25)

(8.26)

(8.27)

(8.28)



If r = 2p for some 0 < p < 2% we have

[ 5 (i (%) (2])] o ()2 Ve o

i+j=2p i=0
2p v . k k
1 1 2 2
_ 1 [51+p—[5] 2p 8.30
> () I P N CED
2P ok ok
= E —1)? 2p 8.31
i:O( ) (i)<2p—i>w (8:31)

_ lfg <2:) <2p2k_ Z)] (=1)° 2 (8.32)

= (-1)° (2;;1>x2p. (8.33)

If r = 2p+ 1 for some 0 < p < 2¥ — 1, we have

L szﬂ (-prr (2:) (ik)] o (8.34)

2pt1 . . k k
7 P —* 2 2
_ _1)[31+1EEE 2p+1 8.35
;( ) i J\opr1-4)" (8.35)
P : . k k
7 7 —1 2 2
_ 1)1+ 2p+1 8.36
> |- (501 ) (830
P 2p+1—i i 2k Qk
-1 [#F5—1+]5] 2p+1 8.37
+i:0[( ) w+1—i)\i)" (8:37)
4 . . k k
3 11— 2 2
— -1 [§W+P+|_—71J 2p+1 )
2 {( ) i)\2p+1-i)" (8.38)
- pH[=5 1+ 4] 2k 25\ it
-1 P 8.39
P . . k k
i i—1 2 2
_ a5 Zp+1 8.40
; {( ) i J\ep+1-4)° (8.40)

- L)y 2k 2"\ i
I P+l 8.41
e (5 ()] 41

1=
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Since exactly one of % and 3 is integer, we observe that

(o[- o
(@ E)- (12D e

is odd. Hence,

. . k k . . k k
(_1)(%“;04151 2. 2 )2 (_1)P*L%J+L%J 2 ‘ 2. L2t
1 2p+1—1 2p+1—1 1

(8.44)

0 (8.45)

for all 1 <14 < p, which means that

[ 5 (i (%) (2])] ey o

i+j=2p+1

Hence,
2+ 2k+1
Denominator = Z(—l)p( )xz”. (8.47)
p=0
By equations (8.26) and (8.47), we have

o (2) = T (- @beml . (8.48)

k > k+1 .
S (=1 (%) )2

Lemma 24. [Q(tan 37) : Q] = 2'"* for { > 3.

Proof. We use induction. When [ = 3, we have [Q(tanZ): Q] =1 =2%3,
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Now, we assume that [@(tan 22—7[) @] = 273 and consider

(%) 0] = @ (g ) o ()] Jo () @)
= [@ (tan %) : Q (tan 22—7;)} 2173, (8.50)

The double angle formula gives us

2 2 tan ;2% ( 2 )2 2 2
tan — = Z = | tan + — tan —1=0. (8.51)
o 1— (tan 2%%)2 9l+1 tan 2_1 2l+1
By the quadratic formula, we have
= +4
t = .
M o tan 27 tan 27 (8.52)

We want to show that tan -2& st ¢ Q(tan T) by contradiction. Assume tan - s €

Q(tan 7). Then

21 2T 27

2 2
sec oy = = tan o tan o +1€Q <tan 2—7;) = cos e Q (tan 2—7) (8.53)

which implies that

{Q (cos 22—7;) :Q] < {Q (tan 22—7;) :Q] =2I73, (8.54)

However, by Lemma 25 (showed below), we have the [Q(cos %) : Q] = 272 > 273,

which is a contradiction. Thus, [Q(tan 375 ) : Q] =2 - 273 = 20+D=3, O

Lemma 25. [Q(cos 2F) : Q] = 2!=2 for | > 2.

2l

68



Proof. For | > 2, set
27 27T 27T

& =e'2 = cos ot isin o (8.55)

and note that [Q(&) : Q] = 2!, Then,

1
Gt+& +2§l = cos 22—7; € Q(&). (8.56)

Hence, Q C Q(cos 3f) C Q(&) and & is a root of

r? — 2cos 22—7;:1: +1=0€Q <cos 22—7;> []. (8.57)
Now, we have
21 = Q&) Q)] = [@(&) 0 (22—”)] - [@ (22—”) : @] EENCED

Note that i € Q(&) and i ¢ Q(cos 37), [Q(&) : Q(cos 27)] > 1. Then, the equation

2r

(8.57) is the minimal polynomial in Q(cos %) of &, we have [Q(&) : Q(cos 27)] = 2.

e

which completes the proof. O

Thus,

8.2 Minimal Polynomial and Gleason’s Theorem

Theorem 26. Let o = tané—’{ for some | > 3. The minimal polynomial of oy over

Q s

ol—3

) = S0 (%, )at € Q] (8.60)

t=0

Proof. Consider the double angle formula tan 2o = 2222 Tet f(z) = {2%. Then
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we have f'73(oy) = tan(2"3y) = tan(35) = 1. After applying Lemma 23 we have

D S e (e

1= fl_3(al) = fk(x) k—1 ok ; (861>
Z?:o (—1)7 @j)(@l)zj
After rearranging terms we have
2](?71 . 2]€ y 2k71_1 ‘ 2k "
= —1) T — —1) o .62
B E o (VSR SR (A [ (8.62)
7=0 1=0
2!-3 2l73
=> (k! < " >(Oéz)t = pi(u). (8.63)
t=0
Therefore, oy is a root of p;. Moreover, by Lemma 24, we have degp, = 2173 =
[Q(ay) : Q. Hence, p; is the minimal polynomial of a; over Q for [ > 3. H

Remark 27. If p;(z) is the minimal polynomial of «;, then p;(—z) is the minimal
polynomial of —q; since [Q(«) : Q] = [Q(—«;) : Q] = degpi(z). Theorem 26 shows
that p;(x) has a root of a; = tan2F. We can use the same iterative method of field
extensions to show that p;(x) has roots S; = {tan% k=1 (mod4)and 1 <k <
2!~ — 3}. Similarly, we can check that p/(—z) has roots S = {tan®2% : k = 3

(mod 4) and 3 < k <271 —1}.

We now show that the polynomial R;(z) is divisible by the square of the minimal
polynomials of a3 and —aj. The first step is to show that the coefficients of R;(x)

are symmetric.
Lemma 28. For each Zj, the coefficients of R;(x) are symmetric, that is
t % ﬁ,t %
Y a1 - ( . ) = > (1T - <m_ _t). (8.64)
vEZ;(2t) wEZ;(m;—2t) 2

Proof. Let v € Z;(2t) and we can write v = w & 1,, , for some w € Z; (m; — 2t).
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After making the substitution for v in terms of w, we have

Soatcr-(7)- X am c0-(3) 6o

wGZ]- (m]-—Qt)

= D o, (—1)t—(?), (8.66)

wEZj (m]'72t)

where the last step follows by the facts that the € is multiplicative. Note that 1., €

Z ]L since all vectors in Z; have even Hamming weight. By the third necessary condi-

tion in Remark 7, we have ¢, = (—1)%. Thus, ¢ (—1)' = (—1)%“ = (—1)%_'f
=m; =my

and it follows from the symmetry of binomial coefficients that

> oaa, (—1)t—(?): S ew(—l)ﬂ;j_t—<mj7 t). (8.67)

wGZ]-(m]-—Qt) wEZj(mj—Qt)
Combining (8.65) and (8.67), we obtain (8.64) as required. O

Lemma 29. If ag = tan§ = 1 is a root of Rj(x). Then ag has multiplicity of at

least 2. The same holds for —as.

Proof. Let D = deg R;(z). Lemma 28 implies R; (%) xP = R;(r), and taking deriva-
tives of both sides we obtain
/ 1 1 D 1 D—-1 /
_Rj - ;x + R; - .D.-x :Rj(:p), (8.68)
By assumption, we have R;(1) = 0. After substituting z = 1, we have —R/(1) =
R}(1), which implies that R(1) = 0. Similarly, we can show R(—1) = 0. Thus, if

a3 and —ag are roots of R;(x), then they have multiplicity at least 2. ]

Remark 30. Note that 2% always divides R;(z) since all powers of x in (8.15) are

even. Given a stabilizer code V(S) preserved by transversal 7; Z-rotation for [ <
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lmax < 00, it follows from Theorems 5 and 26, and from Lemma 29 that R;(z)
is divisible by 22(z — 1)%(z + 1) [ py(a)pi(—x). Note that (z — 1)*(z + 1)? =
(ps(x)ps(—x))?.

Corollary 31 (Connecting to Gleason’s Theorem). Let S define a stabilizer code
V(S) that is preserved by (finitely many) transversal applications of exp(gioz), with
| < lmax < 00. If there exists a stabilizer €;E(a;,b;) with a; # 0 such that Z; =
{§|Supp(a]-) 1€:E(0,2) € S and Z < a;} is self-dual, then the weight enumerator of Z;
is

Py(r,y) = (2 + 4*) T + 2% (e® — y*)’h(x,y), (8.69)
where h(z,y) € Q[z,y].

Proof. Based on Remark 30, we know that the corresponding R(z) is divisible by the

factor z%(z — 1)%(z + 1)?, i.e.,

R;(z) = Y e(-1) - <7> 2 = 22(x — 1%z +1)%h(z)  (8.70)

for some h(z) € Q[z]. Note that Z; is self-dual, i.e., Z; = Zj-. It follows from the
third condition in Remark 7 that €, = 1*#®) = (=1) for all v € Z;. Thus, we can

rewrite (8.70) as

mj
2

R;(x) = [\Zj(zm . (%)] 2 = 22(z — 1)%(z + 1)%h(z). (8.71)

t=0

Let D = deg R;(x). Then, we have %2 +2 < D < m; — 2 and degh(z) = D — 6.
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Then,

R;(z) = mi:, [yzj<2t)| - (%)} 2 = 2%(z — 1)%(z + 1)%h(z). (8.72)

Note that 2™ P|R;(z) = 2*(xz — 1)*(z 4+ 1)®h(x) but 2™~ { R;(x), which implies
that 2™ ~P~2 is the factor of h(z) with the highest degree in z. Assume h(z) =
™ ~%2](z), where degl(z) =d—6— (m; —d—2) = 2d —m; — 4 and z { l(z).

Replacing = by £ and multiplying both side by 2™ in (8.71), we have

[

1220 - (%) | = eyt - opt 02 (2)" 1 (2).

T
t=m=D

2

(8.73)

which implies that

3

J

= m;
{|Zj(2t)\ _ ( i )] ZT2 2 22 2 (g g ) 22y —d =2 2d—my =4 (g) _

t=0 T
(8.74)

Note that Py (z,y) = thjo |Z;(2t)| - 2™ ~*'y? | we have
Py (x,y) = (2 +4") 7 + 2% (@® — y*)*h(z,y), (8.75)

where h(z,y) = a™i~ 4 2ymi=d=2g2=mi=41(4)  Note that degl(z) = 2d —m; — 4 and
x1l(x), we have h(z,y) € Q[z,y].

]

Remark 32. Since Z; is self-dual, it follows from Theorem 22 that Pz, (z,y) is a
sum of products of Gleason’s polynomials f(z,y) and g(z,y) according to divisibility

of weights. As divisible by 4 is a special case of divisible by 2, we choose the general
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case that f(z,y) = 22 + y? and g(z,y) = 22y?(2? — y*)%2. Then, we rewrite (8.69) as

Py, (w,9) — (f(z,9) 7 = gz, y)h(z,y), (8.76)

which implies that g(z,y)h(x,y) is a sum of products of f(x,y) and g(z,y), i.e.
9l h(,y) = S0 (£ 9)™ (9, 1), with ¢; £ 0. Note that S = {(r,9) C
R? : x = 0} is a set of roots for g(z,y) but not for f(x,y). Thus, g(x,y) cannot
divide a nonzero polynomial that is purely in terms of f(z,y), which implies that
& > 0 for all i. Thus, h(z,y) is a sum of products of f(z,y) and g(z,y), which
implies that h(z,y) = h(y, z). Equivalently, h(x) is a sum of products of (1+2?) and

2*(z —1)*(z +1)%

Remark 33. By Remark 30, we know that if [,,,,x > 4, we can determine more factors
of Rj(x). By following the same procedures, we can obtain a generalized version of

(8.69) as

lmax

Py(x,y) = (2* +4°) 7 + 2 (2" — )W (z,y) [ [ oo, )pi(—2,y),  (8.77)
=4

for some h'(z,y) € Qlz, y], where pi(z,y) = 22 py(L).

Through the computation of (8.71) for each Z;, Examples 10 and 11 illustrate
how Corollary 31 and the property in Remark 32 work for self-dual Z;’s of different
stabilizer codes invariant under transversal 7. The term h(x) in (8.71) provides the
freedom in R;(x), and it can be either trivial (Example 10) or non-trivial (Example
11). Examples 5(Continued) and 12 indicate that the divisibility of R;(z) still hold

even if Z; is not self-dual.

Example 10. Consider the [[8,3,2]] color code [Cam16, RCNP20], CSS(X, ( 1lg);
Z,RM(1, 3)), and the [[15, 1, 3]] punctured quantum Reed-Muller code [BK05,RCNP20],
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CSS(X, Cy; Z, C), where Cy is generated by the degree one monomials, 1, 9, 73, 4,
and

1L
Cr = <$1,$2,$3,$4,901$2,$1$3>$19€4,$2$3,$2$47$35E4>;

with the first coordinate removed in both Cy and Ci-. Since the signs of all stabilizers
are positive, Theorem 5 and Remark 7 imply that both are invariant under transversal
T but not transversal v/T ( [RCNP20]). There are 15 non-zero X-stabilizers in the
[[15, 1, 3]] code, and in each case the corresponding Z; is RM(1,3). There is a single
X-stabilizer a; = 1g in the [[8, 3, 2]] code, and again the corresponding Z; is RM(1, 3),

with weight enumerator
Arma ) (r) = 1+ 142’ + 2%, (8.78)
The character €, = 1 for all v € RM(1,3) so Ry(x) is given by
Ry(z) = —4(2® — 22" + 2%) = 2% (2 — 1)?(z + 1)?h(z), (8.79)
where h(z) = —4. Note that h(z) must be constant for any length 8 code Z; arising

from a stabilizer code invariant under transversal T.

Example 11. We construct a [[16,7,2]] code by removing half of the degree two
monomials in Z-stabilizers from the [[16,4,2]] code presented in Example 5. This
yields the CSS(X, 1,4; Z,RM(1.5,4)) code with the signs of all stabilizers being pos-
itive, where RM(1.5,4) is the self-dual code generated by 1,4, all the degree 1 mono-
mials, and the degree 2 monomials xyx9, T123, x124. It is invariant under transversal

T but not under transversal v/T' , 1.e., lnax = 3. The weight enumerator of the only
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Z, = RM(1.5,4) of [16,7, 2]] is

Az (z) =1+ 282" +1982° + 282"% + 2'°. (8.80)

Note that €, = 1 for all v € Z;, we simplify R;(z) as

Ri(z) = =8(2* + 72° — 162° + 72'° + 2') = 2%(x — 1)*(x + 1)?h(2), (8.81)

where h(z) = —8(x® + 22° + 102 + 222 + 1) = =8 [(2® + 1)* — 22%(z — 1)*(z + 1)?],

which is non-trivial.

Example 12. The [[16, 3,2]] code is a CSS(X, Cy; Z, Cf) code constructed in [RCNP20],
where Cy = (14,71, 22) and C{ = (14,71, T2, T3, Ty , T1To, T1T3, T1 Ty, ToT'3, ToTy).
By verifying the three conditions in Remark 7, we know that the codespace is pre-
served by transversal T'. Note that tan 3—2 does not satisfy (2.31), so the codespace is
not preserved by transversal v/7. There are two types of Z; among the 7 non-zero
X-stabilizers a;. The first Z; = C{ is corresponding to a; = 1,4 is not self-dual as
Cy = (Ly4, 71, 9, T3, T4, T1T2). By symmetry of monomials with the same order, the
remaining Zs, - -+ , Z; are all RM(1, 3), which was already discussed in Example 10.

The weight distribution of Z; is

Az, (z) =1+ 762" +1922° + 4862° + 19220 + 762'* + 2'°. (8.82)

With the trivial signs, (8.15) becomes

Ry(z) = —8(2® — 62" + 312° — 522° + 312'0 — 62'% + 2'%) = 2*(z — 1)*(z + 1)*h(z),

(8.83)
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where h(z) = —8(2® — 42° + 222* — 42?2 + 1) = —8[(2? + 1)* — 82%(x — 1)*(z + 1)?].

Example 1 (revisited). Recall the [[16,4,2]] CSS code with X-stabilizer (1,5) and
Z-stabilizer RM(2,4). The dual of RM(2,4) is RM(1,4), which means that the only
Zy = RM(2,4) corresponding to the a; = 1,4 is not self-dual. As verified in Section

T with

3, we know that the code is invariant under the application of transversal 3

[ < 4. Note that for all v € Z;, ¢, = 1. It follows from the weight enumerator in

(4.10) that

Ri(z) = —8(x? — 142* 4+ 632° — 1002° + 632'0 — 1422 + ') (8.84)

= —82%(p3(2))* (ps(—))* (pa(2))*(pa(—2))*, (8.85)

where p3(z) =2 —1, p3(—x) = —x—1, ps(z) = 2+ 2x — 1, and py(—x) = 2> — 22— 1
55 tan—2—3, tan 2T 51, and tan—§—4 respectively.

Here, we have h(z) = (ps(x)ps(—2))? = (2* + 1)* — 1622 (z — 1)*(z + 1)2

are the minimal polynomials of tan 2%

It is interesting to see in Example 5 that the square of the product of mini-
mal polynomials of tan 2f and — tan 27, i.e., (ps(z)ps(—2))?, divides Ry(z). In this
vein, we also computed R;(z) corresponding to the only Z; = RM(3,5) associated
with the [[32,5,2]] CSS(X, (15,); Z,RM(3,5)) code in the QRM [[2™, (7),2]] fam-
ily constructed in [RCNP20]. We know from [RCNP20, Theorem 19] that the code
space is fixed under transversal T'1 (35 Z-rotation), i.e., lnax = 5. The polynomial
R;(z) = =162 [[1_s(pi(2)pi(—2))? continues to be divisible by squares.

We may get some intuition about the appearance of the squares in the mini-
mal polynomials from a physical perspective. If a stabilizer code is invariant un-
der transversal 7/2m= Z_rotation, then it is also preserved by transversal im /2!mex
Z-rotation for i = 0,...,2" — 1. Tt follows from Theorem 5 that R;(z) has roots
tan(2km /2max) for k = {0,1, ..., 2max — 1} \ {2max=2 3 . 2lmax=21 " Note that tanz
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has period of m, which implies that tan(2km/2lmex) = tan(2(k + 2bmax—1)7 /2hmax),
The physical i7/2max and (i + 2imax=1)g /2lmex Z_rotations are different, which indi-
cates that each of the roots tan(2km/2mmex) with k = {0, 1, ..., 2max=1 — 1} \ {2lmax—2}
in R(r) appears twice. Mathematically, if tan(2k7/2'==) is a root of R(z), then
tan(2(k + 2lmax—1) 7 /2lmax) i5 automatically a root, which means that we need to come
up with a new way to show the existence of squares.

If we could show that the multiplicity of roots corresponding to each of the min-

imal polynomials p;(x), pi(—x), with [ = 3, ..., lax, are at least 2, then

lnlax

z? }l_[(z%(x)loz(—x))2 (8.86)

divides R;(z). We also know that deg(z? [ (pi(z)pi(—x))?) = 2max—2 < deg R;(z) <

m; — 2. Thus, when m; = 2/ we conjecture that R;(z) = 22 [[™ (pi(x)pi(—x))?

up to some constant and the weight enumerator of Z; is restricted, as follows.

Conjecture 1. Assume S defines a stabilizer code V' (S) which is preserved by finitely
many transversal applications of exp(§ioz), with | < lyax. If there is a Z; with
m; = 2lma=then the signs of Z-stabilizers in Z; are trivially one and the weight

distribution of Z; is fized once the dimension of Z; is fized.
Here, we show that the special case [,,x = 3 of Conjecture 1 holds true.

Proof of Conjecture 1 when Iy, = 3. Let V(S) be a stabilizer code which is invari-
ant under the application of transversal 7" but is not invariant under application of
transversal exp(5;07) with [ > 4. Let Z; be the space of Z-stabilizers supported on a

nonzero X stabilizer with weight 8, i.e., m; = 23. Note that deg R;(z) < m; —2 = 6.
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It follows from Theorem 5, Theorem 26, and Lemma 29 that

4
4
Ri(x)=) | > ev<—1>t—() 2% = ca®(x — 1)2(a + 1) = e(a® — 22 + 2°),
t=0 ’UEZ]'(Zt)

(8.87)
for some constant ¢ € Q, where Z;(2t) is the set of vectors in Z; with Hamming
weight 2¢. Let v = dim Z;. If ¢, are half 1 and half -1 for v € Z;, then we have the
following system of equations

4
_ZvEZj(Q) €v—(1) — 7(p27n2)74
Zver (4) €v— (3) (pa—na)—6

2p2 + 4= 27/—1 -9 s (888)

1
2

2n9 +ny = 271

where pj, (resp., ny) are the number of vectors with Hamming weight k£ in Z; asso-
ciating with positive signs (resp., negative signs). After solving for (8.88), we have
pe —ne = —4 and py —ny = 6, which leads to R(z) = 0, contradicting to the fact that
S is invariant under finitely many applications of transversal small angle Z-rotations.
Thus, the only valid case is that €, = 1 for all v € Z;, then we have

Yz — () —Z,2)—4 1

= =, (8.89)
Zuezj(z;) €v — (3) Z;(4) =6 2

and

27;(2) + Z;(4) =27 — 2, (8.90)

which implies that Z;(2) = 2772 — 4, and Z;(4) = 277! + 6. Thus, for a given
dimension of Z;, the weight enumerator of Z; is fixed as Az (z) = 1+ (272 —4)2® +
(2771 +6)z* + (2772 — 4)2® with the all-one signs of Z-stabilizer in Z;. O
Remark 34. To generalize the proof for ln.x > 4, first we need an argument for
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the squaring of the minimal polynomials for | > 4, and then we need to understand
their signs. This we leave to future work. If the above conjecture is true, then it
provides an explicit formula for the weight enumerators of Reed-Muller codes in the
QRM [[2™, ("), 2]] family [RCNP20] satisfying m; = 2" (i.e., weight of the all 1s

X -stabilizer).
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Chapter 9

Conclusion

In this thesis, we derived sufficient conditions on the Hamming weights and signs of
Z-stabilizers for a stabilizer code to be invariant under the transversal application
of exp(1foy) for all #. Using the sufficient conditions we are able to construct a
family of CSS codes with a good rate-distance tradeoff that provides a DFS towards
coherent Z-errors. In future work, we will explore the realization of a universal set
of fault-tolerant logical operations on these codes. Besides the specific family of CSS
codes, the sufficient conditions could also help us check whether a general stabilizer
code forms a Z-DFS. It remains open to find whether the necessary direction implies
that every qubit is covered by some weight-2 Z-stabilizer, and whether the necessary
conditions match our sufficient conditions. It also connects to generator coefficient

framework [HLC22b], which may lead to the general diagonal error model.

To realize non-identity logical operators in third level or higher in the Clifford
hierarchy, we also studied the stabilizer codes which are preserved by finitely many
7 /2! Z-rotations, for | < lyax < 0o.

In this case, the identity (2.31) is reduced to a polynomial with factors including

2

5151 < lpax- The polynomial provides information

the minimal polynomials of tan
about the weight distribution and sign of the binary code formed by the Z-stabilizers
supported on each non-zero X-component of stabilizers. When the binary code is
self-dual, we made a tight connection to Gleason’s theorem (Corollary 31).

Through the weight divisibility conditions in Sections 3 and 4, and the minimal

polynomials derived in Theorem 26, we made new connections between quantum
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information theory and classical coding theory. Along this direction, one of our main
interests for future work is to generalize Corollary 31 by proving Conjecture 1 and/or
by removing the self-dual assumption. Besides that, the other future direction is
to find a general construction of stabilizer codes that are invariant under finitely
many transversal 5; Z-rotations. Since non-CSS constructions with such properties
are extremely sparse in the literature, we think that our work could help break
new ground in this regard. For the second direction, it is interesting to investigate
whether the identities (2.31) and (2.32) imply the existence of a self-dual code inside
Z; satisfying (2.31) and (2.32), since this may provide us information on how different

Z;’s interact with each other.
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