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Energetic neutrinos provide a view into the underlying processes of astrophysical particle acceler-
ators, but their weakly interacting nature makes them challenging to detect. Current experiments
instrument large volumes of ice or water with 3D grids of photomultiplier tubes (PMTs) to capture
the Cherenkov light produced by interactions of high-energy neutrinos. Such detectors must be
located in remote locations deep underwater or in ice to reduce atmospheric background sig-
nals. These challenging conditions impose strict limits on the power and bandwidth available
for data transfer to the surface, and triggers are used to maintain manageable rates. We evaluate
the potential of fast, intelligent machine-learning triggers that can be implemented on low-power
field-programmable gate arrays (FPGAs). We aim to make the most of the given hardware with
improved discrimination of signal and background and therefore improved sensitivity to low-
energy events. In particular, we focus on the case of underwater neutrino detectors and the
efficient discrimination of track-like signals from the bioluminescence background. We develop a
machine-learning trigger by using the planned P-ONE experiment as a case study and implement a
software testbench to compare its performance to a less complex trigger design based on coincident
detections.

38th International Cosmic Ray Conference (ICRC2023)
26 July - 3 August, 2023 % !sER.uccmz 92«33
Nagoya, Japan

/

The Astroparticle Physics Conference

*Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/


mailto:capel@mpp.mpg.de
mailto:christian.spannfellner@tum.de
https://pos.sissa.it/

FPGA-based machine learning trigger systems Francesca Capel and Christian Spannfellner

1. On-FPGA trigger systems

FPGAs (field-programmable gate arrays) are integrated circuits consisting of programmable logic
blocks and interconnects. These building blocks can be configured to perform various func-
tions tailored to hardware designs or needs. Compared to other front-end processing units,
the advantage of FPGAs lies in their re-programmability, allowing to update the firmware as a
design evolves - ultimately avoiding the need

to replace hardware-specific chips or circuit data

boards. While attractive, the widespread use
of FPGAs in scientific experiments has been
prohibited by the required knowledge of spe-
cialized hardware description languages, like
VHDL and Verilog. Recent progress in high-
level synthesis (HLS) approaches helped o0  \ ] @ 1 @ 7.0

overcome this barrier. These HLS approaches
translate between more commonly used pro-
gramming languages, such as C++ and Python,
and hardware description languages. Specifi-

- 1 a
cally, the open-source hls4ml® software pack Figure 1: Artistic illustration of a neutrino detec-

age allows for the implementation of machine (o Neutrino telescopes instrument large volumes with
learning algorithms, e.g. classifiers based on photosensitive instruments, commonly referred to as
neural networks. Particle physics experiments optical modules. Maritime detectors are exposed to
atthe LHC [1] and the BELLE II [2] experiment higher background rates induced by bioluminescence
have implemented successfully such on-FPGA 2nd K decay.

machine learning algorithms as trigger systems.

More advanced trigger algorithms open up the possibility of increasing the detector sensitivity and
allow physics analyses at lower energy thresholds. Specifically, astrophysical neutrino detectors,
constructed at remote locations in the deep-sea or antarctic, often face power and bandwidth con-

straints, where novel trigger algorithms could allow more effective data acquisition.

2. Neutrino detector trigger schemes

Astrophysical neutrino detectors use Earth itself as a detector by instrumenting vast volumes of a
transparent medium, like ice or water, with photomultiplier tubes (PMTs). The PMTs are used to
detect the Cherenkov light, which emerges from particle interactions within or in the vicinity of
the detector volume. Depending on the initial energy of the neutrino and its flavour at the time of
interaction, a cascade, track-like, or double-bang event can be observed in the instrumented detector
volume. The spatial, time, and intensity information of the PMTs is used in turn to reconstruct the
initial energy and direction of the astrophysical neutrino. However, neutrino telescopes are exposed
to background events induced by atmospheric muons and neutrinos, as well as dark counts from the
PMTs, which overlay the signal. Underwater telescopes often have to face even more complex back-
ground patterns due to bioluminescence and more continuous background originating from radioac-

thttps://github.com/fastmachinelearning/hls4ml
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tive decay of potassium (see fig. 2). Current-generation neutrino detectors typically use time-over-
threshold (ToT) multiplicity triggers to separate background events from the regular data stream. The
trigger algorithms themselves are based on the varying spatial and temporal profile of the background
compared to an astroparticle interaction. Low-energy bioluminescence and potassium events are

expected to be observed only
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Figure 2: PMT rate measured at the Cascadia Basin, offshore of Van-
couver Island, Canada. The rate has been measured in 30 ms intervals.
Continuous background of the order of 10* Hz, originating from diffuse

Ex-
panding on these concepts,

of neutrino events [4].

similar approaches can be in-
vestigated for online trigger

bioluminescence and “°K decay. Higher rates are induced by biolumines-

_ systems, promising enhance-
cence bursts, lasting a few seconds [3].

ments in the signal to back-
ground discrimination and in-
creased detector sensitivity. In particular, low-energy neutrino events could be more effectively
detected without the need for a more densely-instrumented detector volume. The networks can also
be trained to differentiate the dynamic bioluminescence signals and the track or cascade morphol-
ogy of astrophysical signals by combining the data from several optical modules. The challenge is
to accelerate event classification from ~ ms timescales typical of current offline methods to ~ us
scales for real-time implementation (see also [5, 6]).

3. Software framework

To evaluate potential trigger designs, we develop a software framework that enables us to explore
different detector geometries, simulate realistic event signatures and generate suitable training
datasets. Our framework is based on the Ananke? and Olympus? Python packages that form part of
the P-ONE software development efforts. Ananke provides a fast, uniform and flexible data format
that we can use to specify the details of a detector layout, response and necessary simulation inputs.
This package can also be used to store simulated datasets and facilitate the merging or redistribution
of simulated events to build large datasets appropriate for the training and assessment of trigger
algorithms. The Olympus package simulates signal and background events and their detection
for a given detector configuration. Neutrino events are specified by an initial time, position and
energy, and events are propagated through the detector medium depending on their energy and

2https://github.com/pone-software/ananke
3https://github.com/pone-software/olympus
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Figure 3: Example detected events generated with Ananke and Olympus. The upper panels show noise from
a merged dataset of single-containing electrical and bioluminescence components. PMTs from a single-line
detector are spaced out for visibility. The lower panels show a 2.2 TeV cascade event in a single-line detector
in addition to the noise signal. The right panels show the event view with PMTs shown as coloured circles.
The colour of these circles represents the arrival time, and the size gives the normalised number of hits. Blue
points show the light sources, with lighter shading for earlier times and darker shading for later times. The
right panels show the number of hits in all PMTs as a function of time.

interaction type. A Cherenkov light source is defined at each point where secondary particles are
created, and the subsequent photons are propagated towards the detector. This detailed full Monte
Carlo approach is implemented using the Hyperion* package. However, it is too computationally
expensive to permit the simulation of many events as needed to develop effective training datasets. To
reduce the computational burden while maintaining per-PMT detector information, we developed
an alternative approximate approach that assumes that Cherenkov light travels directly from the
interaction source to the PMT without interacting [7]. We validated this approach against the more
detailed method and confirmed that the results were satisfactory for our simulation framework. We
also implemented two different types of background events: electrical noise and bioluminescence.
Electrical noise is stochastic, uncorrelated and based on the properties of the PMTs. We simulate
the number of PMT hits from electrical noise using a Poisson distribution with a given rate, and
the events are distributed evenly in time. The bioluminescence contribution is more complex to
model. We use observations from the STRAW and STRAW-b experiments [3, 8], as well as the

4https://github.com/pone-software/hyperion
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experience from the development of the KM3Net observatory [9] to motivate realistic simulations
using the Fourth Day open-source software package [10]. This software enables the simulation
of bioluminescence signals for 2D geometries, so we further assume rotational invariance of the
signal around the detector modules and precompute a large database of expected signals for a given
detector configuration. These events can then be randomly selected and merged with other events
as required. In addition to the two types of background that we consider here, we also expect a
further contribution from the radioactive decay of “°K that will essentially form a noise floor. As
we expect the bioluminescence signal to dominate the background events, we omit this contribution
for now and plan to explore its impact in future work.

We implement a simple single-string detector within our framework and apply the abovemen-
tioned methods to generate a large training dataset. Our detector is motivated by the planned P-ONE
prototype design and has 20 modules, each containing 16 PMTs and separated by a 50 m vertical
distance [11]. PMTs are assumed to have a dark noise rate of 1.6 x 10~* ns~!, an efficiency of 42%,
aradius of 0.21 m, and an opening area radius of 37.5 mm. Fig. 3 shows examples of the different
types of events generated. We combine generated events to create a training dataset containing
30 000 cascade events in the energy range from 100 GeV to 105> GeV and 100 000 intervals of
electrical and bioluminescence noise. A further cut is made to exclude the cascade events that result
in a large number of hits in the detector, to focus on the more challenging detection cases. This
results in a final number of 2 290 cascade events. One third of the total dataset is set aside for
validation purposes.

We use the publicly available GraphNet framework to set up a GNN model to be trained with
our prepared dataset [4]. In particular, we implement the ConvNet network architecture with three
convolutional layers, a dropout ratio of 0.3 and 8 nodes per intermediate layer. For the training,
we use 16 epochs with a batch size of 8. Our preliminary results show excellent discrimination of
cascade events from noise. We evaluate the receiver operating characteristic (ROC) curve for our
validation dataset and find an area under the curve, AUC =0.9995. We interpret this early result as an
encouraging proof of principle but also an indication that our simulated datasets likely underestimate
the background contributions. In future, we plan to build on the developed simulation capabilities to
generate more realistic training datasets with a focus on neutrino events at the threshold of detection
and improved noise modelling. We also intend to use this testbench to compare the performance of
the implemented GNN with more standard PMT-level and module-level coincidence triggers.

4. Hardware framework

The implementation of on-FPGA neural networks will be done by FPGA evaluation boards, i.e.
Zynq UltraScale+ evaluation kits. For the translation of the developed trigger algorithms, the
existing hls4ml synthesis tool for graph and convolutional neural networks can be explored. The
on-FPGA trigger systems, however, will require optimization efforts in order to run efficiently and
with low latency, as online buffering capacities are limited. Neural networks can be optimized
by compression, quantization, and parallelization [12]. Compression is an effort to reduce the
redundant number of synapses and neurons of a given neural net without impacting its overall
performance. Quantization aims to optimize the precision of the calculations, for e.g. weighting
factors, by effective use of data types with reduced sizes. Parallelization summarises the effort
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to find the balance between resource usage and algorithm throughput by varying the amount of
parallel and sequential multiplications for a given layer. These optimization principles will be
applied to the developed and translated trigger algorithms, where their performance can be tested
with the purchased evaluation kits. We plan to perform the first hardware implementations of trigger
algorithms in late summer this year.

5. Conclusion and outlook

The hardware and software testbenches currently in preparation will allow the development of
trigger systems tailored to the needs of underwater neutrino detectors. We will start with simple
trigger designs, gradually increasing their complexity and optimization to harness the available
FPGA resources. With larger complexity, i.e. the implementation of larger arrays of optical
modules, the neural network trigger performance might exceed that of regular multiplicity trigger
schemes. After the development of optimized trigger algorithms, performance tests with data from
maritime neutrino detectors, such as KM3NeT [13] or P-ONE [14], can be anticipated. Finally,
boundary constraints induced by the available power, bandwidth, and latency budgets need to be
considered to optimize for realistic implementations of on-FPGA trigger systems in the scope of
an astrophysical neutrino observatory. Ultimately, changes in the detector efficiency and geometry
induced by ocean dynamics, i.e. sedimentation, marine growth, and deep-sea currents, could be
included in the data stream and captured by the neural network. Such aspects could so far not
be included with time-over-threshold multiplicity trigger systems and promise improved online
classification and discrimination. This approach, however, requires an online data acquisition
structure that allows the combination of environmental data and physics data, i.e. Cherenkov hits
through particle interactions, in real-time.
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