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Abstract

The Standard Model (SM) of particle physics provides the best description of the
fundamental constituents of the universe and their interactions. It is a robust theory,
tested by many experiments with a high level of precision. However, there are several
reasons to believe that the SM is not a fundamental theory, since, for example,
it does not explain the huge difference between the electroweak and Planck scale
(which is related to the so called "hierarchy problem" of the SM) and the values of
the measured fermion masses. This led to the conception of several theories Beyond
the Standard Model (BSM), which often foresee the existence of new resonances
that could be detected in experiments at particle colliders, such as the Large Hadron
Collider (LHC) at CERN.

This thesis reports the first LHC search for high-mass hadronic resonances that
decay to a parton and a second Lorentz-boosted resonance, which in turn decays
into a pair of partons. Such resonances are predicted, for example, by BSM theories
that foresee the existence of extra spatial dimensions, providing a solution to the
open questions mentioned above. The search is based on data collected with the
CMS detector in proton-proton collisions produced at the LHC at

√
s = 13TeV,

corresponding to an integrated luminosity of 138 fb−1. The boosted resonance is
reconstructed as a single wide jet with substructure consistent with a two-body
decay. The high-mass resonance is thus considered as a dijet system. The jet
substructure information and the kinematic properties of resonance decays are
exploited to disentangle the signal from the large quantum chromodynamics multijet
background. The dijet mass spectrum is analyzed for the presence of new high-mass
resonances, and is found to be consistent with the standard model background
predictions. Results are interpreted in a warped extra dimension model where the
high-mass resonance is a Kaluza–Klein gluon, the boosted resonance is a radion,
and the final state partons are all gluons. Limits on the production cross section are
set as a function of the Kaluza–Klein gluon and radion masses. These limits exclude
at 95% confidence level models with Kaluza–Klein gluon masses in the range from
2.0 to 4.3TeV and radion masses in the range from 0.20 to 0.74TeV. By exploring a
novel experimental signature, the observed limits on the Kaluza–Klein gluon mass
are extended by up to about 1TeV compared to previous searches.
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Introduction

The Standard Model (SM) of particle physics is a very solid and elegant theory,
verified by many independent experiments, that describes the fundamental particles
and their interactions with a high degree of accuracy. Despite its great success, there
are several reasons to believe that it is incomplete. For example, it does not explain
the huge difference between the electroweak and Planck scale (which is related to the
so called "hierarchy problem" of the SM), and the values of the measured fermion
masses.

Several theories Beyond the Standard Model (BSM) have been proposed in the
recent decades to answer these open questions. These BSM models foresee the
existence of new particles with a mass at the TeV scale, which could be produced at
the Large Hadron Collider (LHC) at CERN. Searches for new hadronic resonances
are particularly important at the LHC, as any hypothetical particle produced via
the strong interaction in pp collisions can decay into partons (quarks, antiquarks
or gluons). Partons are colored particles and cannot be directly observed by the
experiments. Instead, they generate streams of particles collimated with their original
direction, which are called jets.

In the last decades several searches for hadronic resonances were performed
assuming different production mechanisms: production of single resonances decaying
to a pair of jets (dijet), production of dijet resonances in association with an initial
state radiation jet, photon, or lepton, and pair production of resonances resulting in
final states with four or more jets. Despite the many analysis efforts, no evidence
for new physics has been found.

There is still the chance that signals from new hadronic resonances are hidden by
the large amount of background events originating from quantum chromodynamics
processes with jets in the final state (QCD multijet background), which typically
affects these searches. This consideration led to the development of searches for high
mass resonances that decay to pairs of heavy SM particles like top quark-antiquark
pairs, or pairs of SM electroweak bosons or Higgs bosons. If the mass of the new
resonance is much larger than that of the SM particles, the decay products of the
latter particles are collimated and the new resonance is reconstructed again as a
dijet system. Jets from the decay of top quarks, or electroweak/Higgs bosons can be
distinguished from light-quark jets based on their mass and their substructure (i.e.
the pattern of constituents forming the jet). The use of this additional informations
is used to reduce significantly the QCD multijet background for these analyses.

The analysis presented here goes further along this direction by studying a new
process, currently unexplored at the LHC. We consider the production of a new
resonance (R1) that decays into a parton (P3) and a second resonance (R2), which



x Introduction

in turns decays into two partons (P1 + P2) as in Fig. 0.1. The three partons in the
final state generate jets.

qq → R1 → R2 + P3 → (P1 + P2) + P3

Figure 0.1. Feynman diagram of leading order production of the process under study,
which involves the cascade decay of two new massive resonances R1 and R2 to partons
P1, P2, and P3 in the final state.

The main difference with respect to previous hadronic searches is the presence of
two resonances of unknown mass in the decay process. Different final state topologies
are then allowed, depending on the ratio between the masses of the two resonances
ρm = m(R2) /m(R1). In this thesis we focus on a signal hypotheses where R2 is
much lighter than R1 (ρm . 0.2). The resonance R2 is then produced with a large
Lorentz-boost, and its decay products are collimated and reconstructed as a single
jet. The substructure properties of the R2-jet are exploited to enhance the analysis
sensitivity to the process under study. Resonances decaying in cascade as described
above are foreseen by theoretical models that assume the existence of extra spatial
dimensions. We focus in particular on a model with a warped extra dimension
(WED), which we use as a benchmark model to interpret the results of this search.

The search uses data collected with the CMS experiment in proton-proton (pp)
collisions produced at the CERN LHC at the center-of-mass energy of 13TeV.

The Chapter 1 of this thesis presents a brief introduction of the strong sector of
the SM, recalling the elements of QCD and its implications for the experimental
measurements of hadronic interactions. Elements of the physics of pp interactions
at hadron colliders are also introduced. The last two Sections of this Chapter are
dedicated to describing two open questions within the SM: the hierarchy problem
and the flavor puzzle.

Chapter 2 describes new physics models that foresee the existence of extra spatial
dimensions, including the WED benchmark model.

Chapter 3 gives a summary of the past searches for hadronic resonances, focusing
on the most recent results from the LHC experiments, and it ends with a description
of the peculiar kinematic properties of the cascade decay studied in this thesis.

Chapter 4 is dedicated to the description of the experimental apparatus: the
LHC is introduced, and the CMS detector is described in its various subdetectors.

The CMS jet reconstruction is described in Chapter 5, together with the procedure
to calibrate the jet energy.
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Chapter 6 introduces the data and simulation samples, and the criteria adopted
for the event selection, which requires two high-pT jets with an invariant mass (mjj)
at the TeV scale, compatible with the decay of an high-mass resonance like R1. This
Chapter also shows the distributions of jets kinematic variables in data, compared
to the simulated ones.

Chapter 7 describes the analysis strategy. The signal sensitivity is optimized
by dividing pp collision events into categories defined based on the masses and
substructure observables of the jets. We reconstruct the spectrum of mjj of the two
jets with largest pT of each event. The mjj spectra are then analyzed to search for a
peak, in correspondence of the R1 mass, over the smoothly-decreasing QCD multijet
background.

The analysis results are reported and discussed in Chapter 8, where they are
interpreted as limits on the mass of the two resonances R1 and R2. This Chapter
also include a comparison between this analysis and a previous CMS search.

Finally, Chapter 9 gives a summary of the analysis results and it is concluded by
a paragraph about future analysis perspectives.
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Chapter 1

The Standard Model and
physics at colliders

1.1 The Standard Model of particle physics

The Standard Model (SM) of particle physics is the theory describing the physics
of elementary particles in terms of quantum fields. The first step towards the SM
was Sheldon Glashow’s unification of the electromagnetic and weak interactions [1].
Few years later Steven Weinberg [2] and Abdus Salam [3] incorporated the Higgs
mechanism into Glashow’s electroweak interaction, giving to the theory its modern
form. The SM describes in one coherent framework three of the four fundamental
interactions: electromagnetic, weak and strong forces, therefore not including the
gravity. The particles described by this theory can be divided into two groups:

• Fermions: Particles with half-integer spin obeying to the Fermi-Dirac statistics.

• Bosons: Particles with integer spin obeying to the Bose-Einstein statistics,
mediators of the fundamental forces.

The fermions can be further divided into two groups: leptons and quarks, which are
further organized into three generations of particles. A schematic view of the SM
particles and their properties (mass, electric charge and spin) is reported in Fig. 1.1.
Starting from the leptons, in the first generation we have the electron e and the
electronic neutrino νe, which can interact via the weak interaction. Moreover, the
electron can also interact through the electromagnetic interaction, since it has a
charge of −1.6× 10−19C, which is equivalent to -1 in natural units. The other two
families both have a lepton with charge -1, respectively the muon µ and the tau
τ , and a neutral lepton, respectively the muonic neutrino νµ and the tau neutrino
ντ . The three generations shows increasing masses for the charged lepton, with a
difference of four orders of magnitude between the electron and the tau.

Also the quarks are divided into three generations with different masses. Each
generation has a quark with charge +2/3, respectively named up u, charm c and
top t quarks, and a quark with charge −1/3, respectively named down d, strange
s and bottom b quarks. The quark masses span a range of 5 orders of magnitude
from the mass of the lightest up quark mu ≈ 2.3MeV to the mass of the top
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Figure 1.1. The Standard Model of elementary particles, with the three generations of
fermions, the gauge bosons in the fourth column, and the Higgs boson in the fifth.

quark mt ≈ 173.1GeV, which is the heaviest fundamental particle of the SM.
The large mass split between quarks and charged leptons belonging to the three
generations, and their ordering, are not explained within the SM, originating the
flavor puzzle described in Sec. 1.4. The quarks can interact, like the leptons, via
the electromagnetic and weak interactions, but also via the strong interaction. The
strong interaction is responsible for the formation of hadrons, which are bounded
states of quarks. For example the up and down quarks can bond to form a proton
or a neutron. Two features of the strong interactions are the confinement and the
asymptotic freedom, which will be described in Sec. 1.1.1.

The interactions between the SM particles are mediated by the four vector bosons
of spin 1 listed in the fourth column of Fig. 1.1. The gluon g is the carrier of the
strong interaction, the photon γ is responsible for the electromagnetic interactions
and the W and Z bosons are the carriers of the weak interaction.

The fields of the SM particles and their interactions are described in a quantum
field theory by a Lagrangian that is invariant under the non-Abelian gauge symmetry
group:

SU(3)C × SU(2)L × U(1)Y (1.1)

where SU(3)C indicates the color symmetry, preserved by strong interactions, while
the invariance under SU(2)L × U(1)Y describes the unification between the elec-
tromagnetic and weak forces. The Lagrangian can be written as the sum of two
contributes: one describing the strong interaction (quantum chromodynamics or
QCD), and one the electroweak interactions (EW):

LSM = LQCD + LEW (1.2)
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Because of the symmetries of the model, the Lagrangian cannot contain explicit mass
terms for the particles involved. This would lead to the conclusion, in contrast with
the observations, that all fundamental particles are massless. This issue has been
solved with the introduction of a scalar boson, as independently proposed by Brout
and Englert [4], and Higgs [5]. The two papers describe how, with a mechanism
called spontaneous symmetry breaking, the massive fermions and bosons acquire
their masses through the interaction with the new scalar, called Brout-Englert-Higgs
(or simply Higgs) boson. In Sec. 1.3, we will see how the introduction of a scalar
field open the way to the hierarchy problem of the SM.

In the next Section we will focus on the QCD sector of the SM, which is mostly
relevant for the search presented in this thesis.

1.1.1 Quantum Chromodynamics

The QCD is the theory which describes the strong interactions between quarks
in terms of exchange of gluons which are the force carriers of the theory, like the
photons are for the electromagnetic force in quantum electrodynamics. The gauge
invariant QCD Lagrangian can be written as:

LQCD =
∑
i

qi,a
(
iγµ∂µδab − gsγ

µtAabG
A
µ −miδab

)
qi,b −

1
4F

A
µνF

µν,A (1.3)

where qi,a represents the quark spinor of flavor i and color a = 1 → 3, GAµ is the
gluon field associated with the generator tAab (A = 1→ 8), gs is the gauge coupling
and FAµν is the gluon field tensor:

FAµν = ∂µG
A
ν − ∂µG

A
µ − gsfABCG

B
µG

C
ν (1.4)

fABC are the structure constants satisfying the relation:

[tA, tB] = ifABCt
C (1.5)

The QCD is characterized by two peculiar properties: the asymptotic freedom and
the confinement [6]. Because of the asymptotic freedom, the bonds between strongly
interacting particles become asymptotically weaker as the distance between them
decreases. Quarks interact weakly for high colliding energies, when two quarks are
closely pushed one against the other. These scenarios are referred as deep inelastic
processes, where the hard-scattering of quarks and gluons can be described in a
perturbative way. On the contrary, when the distance increase, the internal energy
in the gluon field increase proportionally to the distance between two quarks. Above
a certain distance, the internal energy is enough to create another quark pair. For
this reason, a quark or a gluon cannot exist as free particles. They are "confined" in
color-singlet states, which are the only that can be directly observed. An exhaustive
description of these QCD effects can be found, for example, in Ref. [7]
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1.2 Physics at colliders

In this Section we deal with the phenomenology of high-energy pp collisions, such
the ones produced at the LHC. The first noticeable aspect of an high-energy pp
collision is that the protons do not interact as elementary particles but as composite
ones. This is a direct consequence of the asymptotic freedom. At high energies the
hard scattering process takes place between the proton constituents, the partons.

A sketch illustrating what typically happens in a pp collision is shown in Fig. 1.2.
The three horizontal green lines on the left and on the right of the figure represent
the three quarks that make up each proton. Two of the initial quarks, one from each
proton, interact through hard scattering (red circle), i.e. with a large portion of
the momentum transferred between the two partons. The other partons interact at
very low energy (magenta blob), and generate soft radiation that constitutes the
"underlying event". The beam remnants go forward along the beam line (cyan blobs).
The partons can radiate gluons or split, in both the initial and the final state of
the interaction. Immediately after the interaction, any colored particles, because of
the confinement, starts to produce streams of hadrons (red and magenta lines) that
decay in stable particles (dark green blobs and lines) that can be detected in the
experiments at colliders. This latter process is called hadronization and it will be
the subject of Sec. 1.2.1.

Figure 1.2. Sketch of a pp collision.
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1.2.1 Hadronic jets

As a direct consequence of the confinement property of QCD, colored particles cannot
be directly observed in nature. Hence, whenever a quark or a gluon is produced in
an interaction, it radiates particles that mask its color charge to the observer. The
result of the process is then a stream of particles collimated with the direction of
the original parton, which is called jet.

The formation of a jet is composed by two stages. In the first stage, called parton
branching, each parton has a finite probability to split in other two partons. The
peculiarity of this process is that the two partons are emitted at small angles with
respect to the originating parton, therefore this first step causes the collimation of
the particles inside a jet. Another remarkable feature is that gluons have a larger
probability to split, therefore jets originating from a gluon (gluon jets) tend to shower
more than quark jets. After several parton splitting, the energy of the individual
partons is reduced, and low-momentum interactions became dominant. In this phase,
called hadronization, the partons originated in the parton branching recombine to
form hadrons, which are color neutral. The hadrons can be enough stable to be
directly detected or they can be unstable and decay into other hadrons, photons
or leptons, both charged or neutral. On average, about 65% of the jet energy is
carried by charged particles, detected by the tracker and the calorimeters, about
20% is composed by high-energy photons, detected by electromagnetic calorimeters,
and the remaining part is made of neutral hadrons, mainly detected by hadronic
calorimeters.

The formation of a jet is generally a non-perturbative process, which leads to the
production of a large amount of particles. Therefore, the jet reconstructed by the
detector is not a uniquely defined object, but the output of a clustering algorithm,
which groups the jet constituents originating from the parton according to their
kinematic properties. An overview of different clustering algorithms used to define a
jet is given in Sec. 5.2. Despite the fact that the jets are complex objects, they can be
used to infer the kinematical properties of the parton originating the shower, which
are related to that of the resulting jet. However, the complexity of the processes
involved in the jet formation introduce an intrinsic resolution of the hadronic jet
properties with respect to the parton properties.

1.2.2 Kinematics variables of parton scattering

In this Section we discuss the general kinematical properties of a two-to-two parton
scattering p1 + p2 → p3 + p4, which constitutes the most relevant background of the
search presented in this thesis. Most of the properties and of the variables that we
will describe are relevant also for the signal process studied in this thesis, where the
two initial partons produce two new particles in their interaction. A sketch of the
two-to-two parton scattering is shown in Fig. 1.3, where the z-axis is oriented along
the direction of the colliding partons.

In a two particle collision, the energy available for the interaction is given by
the invariant mass

√
s, also called center-of-mass energy. Calling P the sum of the
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Figure 1.3. Scheme of the two-to-two parton scattering.

four-momenta of the incoming particles, the invariant mass is:

√
s =
√
P ·P =

√√√√(∑
k

Ek

)2

− |
∑
k

−→pk|
2 (1.6)

where Ek and −→pk are respectively the energy and the momentum of the k-th incoming
particle. In the equation above we used the natural units system where c = 1. The
invariant mass is a relativistic invariant, therefore its value does not depend on
the reference system. At the LHC, two protons are accelerated at the same energy
E, which is much larger than their masses, and collide head-to-head. Under these
conditions the center-of-mass energy of the two proton system is approximately√
s ' 2E = 2 · 6.5TeV = 13TeV.
Because of the asymptotic freedom, at such high energies the interaction happens

between two partons inside each proton as if they were free particles. The partons
carry only a fraction of the momentum of the whole proton. Hence, the center-of-mass
energy available for the two-parton interaction is generally lower than 13TeV.

The momentum fraction carried by a parton inside a proton is called Bjorken-x,
simply indicated as x. Given the x of two partons (x1 and x2), the square of their
invariant mass (ŝ) is related to that of the proton-proton system by:

ŝ = x1x2s (1.7)

The probability of the parton to have a particular value of x is modeled by the
parton distribution functions (PDFs), which depends on the energy of the proton.
We will see later how the cross section of the process depends on the PDFs.

We introduce here two variables very useful when dealing with physics at colliders,
the rapidity (y) and the pseudorapidity (η):

y = 1
2 ln

(
E + pz
E − pz

)
(1.8)

η = 1
2 ln

( |p|+ pz
|p| − pz

)
(1.9)

For ultrarelativistic particles, |p| � m, therefore E ≈ |p| and the rapidity is
approximately equal to the pseudorapidity. The pseudorapidity can also be written
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as a function of θ, the angle of the particle with respect to the z-axis:

y ' η ≡ 1
2 ln

( |p|+ pz
|p| − pz

)
= arctan( pz

|p|
) = − log tan θ2 (1.10)

where η is the pseudorapidity that, being a function of θ, can be easily measured in
the laboratory frame.

The rapidity is useful because it is connected with the scattering angle in the
center-of-mass frame1, θ∗ in Fig. 1.3. In this frame the rapidities of the two decay
products are opposite, i.e. y∗3 = +y∗ and y∗4 = −y∗. Hence we have:

cos θ∗ = tanh y∗ (1.11)

Since the difference between two rapidities is a invariant with respect to Lorentz
boosts along the z–axis, the rapidities of the outgoing particles y3 and y4 in the
laboratory frame are related to y∗ by:

y∗ = y3 − y4
2 (1.12)

therefore:
cos θ∗ = tanh y3 − y4

2 ' tanh η3 − η4
2 = tanh ∆η

2 (1.13)

We then expressed cos θ∗, as a function of a quantity that can be easily measured
in the laboratory frame, ∆η, which is the difference between the pseudorapidities
of outgoing partons. We will see in Sec. 6.3 how this quantity can be used to
discriminate signal from background events.

1.2.3 Hadronic cross sections

The parton distribution functions (PDFs), introduced in the previous section and
indicated with fi(x, µ

2), allow the calculation of the probability of finding inside
a hadron a certain kind of parton i carrying a momentum fraction x at a squared
energy scale µ2. The (arbitrary) factorization scale µ can be thought as the scale
which separates the long and short-distance physics. The total cross section of the
hard scattering processes can be factorized into a normalization part, based on the
PDFs, and another part expressed by the parton-parton scattering cross section,
σ̂ij(x1pA, x2pB, µ

2), where pA and pB are the momenta of incoming hadrons. It can
be written then as:

σhad =
∑
ij

∫
dx1dx2fi(x1, µ

2)fj(x2, µ
2)σ̂ij(x1pA, x2pB, µ

2) (1.14)

Partons with transverse momentum larger than µ participate in the hard scattering
process with a short-distance partonic cross-section σ̂.

It is often helpful in hadron collisions to factorize the effect of the parton
distribution functions on the hadronic cross section by introducing the parton
luminosity factor. This is defined as:

1In the following equations we mark with ∗ the quantities evaluated in the center-of-mass frame,
while the other quantities are evaluated in the laboratory frame.
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dLij
dτ

=
∫ 1

0

∫ 1

0
dx1dx2fi(x1, µ

2)fj(x2, µ
2)δ(x1x2 − τ) (1.15)

where τ = x1x2 = ŝ
s (Eq. 1.7). The hadronic cross section of any process, can be

expressed generally as a function of two terms:

σhad(s) =
∑
ij

∫
dτ

τ

[1
s

dLij
dτ

]
[ŝσ̂ij ] (1.16)

The first term between brackets (the parton luminosity) depends on the PDFs and on
the design parameter of the collider s. The second term depends from the physical
parameters of the interaction: the square of the two-parton invariant mass (

√
ŝ) and

the parton-parton cross section σ̂ij .

1.2.4 Definition of luminosity

The luminosity is a key parameter of a particle accelerator because it is a measure of
the quantity of the pp interactions (or events) that the machine is able to produce.
The number of expected events, Nevt, is the product of the hadronic cross section of
interest, σhad, and the time integral over the instantaneous luminosity L:

Nevt = σhad

∫
L(t)dt (1.17)

The unit of L is therefore cm−2 s−1. The integrated luminosity that appears in
Eq. 1.17, then, has the same unit of measure of the inverse of a cross section, therefore
is measured in inverse barns b−1, where:

1 b = 10−24 cm2 (1.18)

More often submultiple of the inverse barn are used, like the inverse picobarn pb−1

or the inverse femtobarn fb−1.
The luminosity for colliding beams experiment can be evaluated from the prop-

erties of the colliding beams. In a typical collider experiments, two beams travel in
a circular path in opposite directions. The beams are formed by a certain number
of bunches of particles, Nb, interspersed by empty space. Each bunch contains N
particles (in the case of the LHC, protons) and circulates in the collider with a
frequency f . Another important parameter for the evaluation of the luminosity
is the density ρ of the N particles inside the volume occupied by the bunch. A
schematic picture is shown in Fig. 1.4.

At fixed points of the accelerator, called interaction points, the path of the two
beams are intersected, causing the bunches of the opposite beams to overlap, and
the proton inside them to collide. The luminosity is proportional to the overlap of
the bunches, which are moving through each other. The value of the overlap integral
depends on the longitudinal position of the bunches s and the time of the mutual
crossing t. In our integration we can use s0 = ct as "time" variable (see Fig. 1.4).
Assuming that particles collide head-on with frequency f and that the two bunches
meet at s0 = 0, the luminosity (proportional to the overlap integral) is then:

L = 2N1N2Nbf

∫ ∫ ∫ ∫ +∞

−∞
ρ1(x, y, s, s0)ρ2(x, y, s, s0)dxdydsds0 (1.19)
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Figure 1.4. Schematic view of colliding bunches.

where ρ1(x, y, s, s0) and ρ2(x, y, s, s0) are the time dependent beam density distribu-
tion function. Assuming them to be identical in the transverse part, Gaussian and
uncorrelated in x, y and z, the formula above can be rewritten as:

L = f
N1N2Nb
4πσxσy

(1.20)

where σx and σy characterize the RMS transverse beam sizes in the horizontal and
vertical directions. The revolution frequency in a collider is accurately known and the
number of particles or beam intensity is continuously measured with beam current
transformers which reach an accuracy of ∼1% for LHC nominal beam parameters.
The only unknown parameter that needs to be measured is the effective transverse
area which depends on the density distribution of the two beams. This measurement
is done with the Van Der Meer technique [8], that consists in scanning the LHC
beams through one another to determine the size of the beams at their point of
collision. For the experiments at the LHC these measurements, when combined with
information on the number of circulating protons, allows the determination of an
absolute luminosity scale, which in turn is used to calibrate the subdetectors of the
experiments dedicated to the online luminosity measurements. The latest precision
luminosity measurements at CMS [9, 10, 11] report a systematic uncertainty of 1.0,
1.5, and 2.1% on absolute calibration from the van der Meer scan respectively for
the last three years of data-taking (2016, 2017, and 1028).

1.3 The hierarchy problem

The hierarchy problem is a theoretical issue connected with the radiative corrections
to the Higgs boson (H) mass. The problem can be defined as follows: if there exists
new physics above an energy scale Λ, which foresees new particles interacting with
the Higgs boson, then the radiative corrections to the H mass (mH) are of the order
of Λ2.

This poses serious questions when Λ is larger than mH by even few order of
magnitudes. In this case, in fact, the radiative corrections to mH would be very large
compared to the value of mH itself. As a consequence, large parameters have to be
introduced and fine-tuned in order to cancel the contribution from the radiative
corrections, raising doubts on the naturalness of the model.
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A description of the hierarchy problem is provided in Ref. [12]. The SM Higgs
potential is of the form:

V (H) = −µ2|H|2 + λ|H|4. (1.21)

To evaluate the propagator of the Higgs boson in the vacuum, one should take into
account for all the possible diagrams that start and end with an Higgs boson. An
example of such diagrams with one order loops are shown in Fig. 1.5, involving, from
left to right, a scalar bosons (like H itself), gauge bosons and fermions.

= + +

1
Figure 1.5. One loop contributions to the radiative corrections of Higgs boson mass in

the SM. The three integrals associated to the diagrams are quadratically divergent for
Λ→∞, therefore the radiative corrections to mH are much larger than the value of mH
itself, leading to the hierarchy problem.

These diagrams will cause a contribution to the mass parameter µ, which can
be decomposed in a square sum of two terms, the bare mass and the radiative
corrections, −µ2 → −µ2

0 + δµ2, where

δµ2 = Λ2

32π2

[
−6y2

t + 1
4(9g2 + 3g′2) + 6λ

]
(1.22)

In the equation above, Λ is the cutoff of the theory, i.e. the energy scale where
the new physics take place, yt is the top Yukawa coupling, g, g′ are the SU(2) and
U(1) gauge couplings and λ is the Higgs boson self-coupling. Since the Yukawa
coupling of the Higgs to fermions is proportional to their mass, we can neglect the
contributions from loops with other fermions. The minimum of the Higgs potential
is at:

〈H〉 =
(

0
v√
2

)
, v2 = µ2

λ
(1.23)

from the measured values of the W, Z masses we know v ≈ 246GeV. The physical
Higgs mass, measured in the experiments is mH =

√
2λv ≈ 125GeV which implies

λ = 0.13 ∼ 1/8.
Since, from the equations above, mH ∼ v ∼ µ, if Λ � TeV the corrections to

the mass parameter µ, δµ, are several order of magnitude larger than the value of µ
itself. The bare mass parameter µ0, then, has to be fine-tuned in order to cancel the
large radiative corrections to obtain a value of µ of the order of the Higgs mass.

The hierarchy problem arises especially when trying to construct a theory that
includes both the SM and the gravity. In principle, the effect of the gravity at
particle level should became relevant for energy above the Planck energy scale, which
is proportional to the Planck mass MPl. The Planck mass is related to the Newton
constant by GN ∝ 1/MPl

2. Since GN ∼ 10−39 GeV−2, the value of the Planck mass
is MPl ∼ 1019 GeV. Under these assumptions we have:
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δµ ∼MPl
2 ∼ 1038 GeV2 (1.24)

As a consequence, also µ2
0 value should be ∼1038 GeV2, and fine-tuned up to 34

digits in order to cancel with δµ almost exactly to obtain:

µ2 = µ2
0 + δµ2 ∼ 104 GeV2 ⇒ mH ∼ µ ∼ 100GeV (1.25)

In addition to what we said on the hierarchy problem, it is important to note
that it arises only in the presence of a scalar field like the Higgs field. The masses
of the fermions and the SM gauge fields, in fact, are protected from quadratically
divergent radiative corrections by the chiral or the gauge symmetry.

The hierarchy problem does not stand if the new physics exists around the TeV
scale, therefore it has been one of the leading motivations for new physics within
the energy scale of the LHC collisions.

In Ch. 2 we will discuss new physics theories assuming the presence of extra
spatial dimensions. These theories solve the hierarchy problem caused by the large
gap between the Planck and the Higgs masses, and foresee new resonances at the
TeV scale. The new resonances can be observed by their cascade decays, which are
the experimental signature we are interested in.

1.4 The flavor puzzle

The flavor puzzle is an open question within the SM that arises from its inability to
predict the masses of the fundamental particles. In the SM the massive fermions
acquire their masses through the Higgs mechanism and their resulting couplings with
the Higgs boson, also called Yukawa couplings. The values of the Yukawa couplings
are free parameters of the SM. Their values are set by the experiments that measure
the fermion masses and couplings.

The SM does not predict the existence of a hierarchy between the particle masses.
However, as shown in Fig. 1.6, the masses of charged fermions belonging to different
generations appear to follow a hierarchical ordering. The heaviest charged particle
of one generation has a mass below that of the lightest one of the generation after.

A similar hierarchical pattern appear also in the interactions between positive
charged quarks (u-type) and negative charged quarks (d-type) mediated by the W
boson (Fig. 1.7). Such interactions have the property to change the flavor of the
quarks.

The flavor changing process depends on the parameters of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix, VCKM, that can be written as follows:

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 (1.26)

where Vij is proportional to the strength of the transition between quarks j → i. A
puzzling question arises from the values of the VCKM parameters, which are roughly:
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Figure 1.6. SM quarks and charged leptons, ordered by mass and generation.

di

uj

W−

ui

dj

W+

1
Figure 1.7. Transition between u-type and d-type quarks mediated by the W boson. The

indexes i, j refer to the quark generations, numbered from 1 to 3.

VCKM ∼

 1 0.2 10−3

0.2 1 10−2

10−3 10−2 1

 (1.27)

This means that W-mediated transitions between quarks within the same generation
happens more frequently than transitions between two consecutive generations
(1↔ 2, 2↔ 3), and even more frequently than 1↔ 3 transitions. This introduces
a hierarchy in the interactions between quarks that is not explained by the SM
principles.

The SM is able to accommodate the different masses of the fermions and the
different interaction rates between quarks of different flavors by setting the relative
parameters to match the experimental observations. However, the presence of
hierarchical patterns, not foreseen by the SM, has given way to the development of
new theories able to explain them. In Sec. 2.2 we will see an example of a theory
beyond the SM that provides a possible explanation to the flavor puzzle.
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Chapter 2

New resonances in models with
a warped extra dimension

In this Chapter we will describe the theoretical context of the extra dimension (ED)
model underlying our signal benchmark model.

In general, ED models have been introduced to solve the hierarchy problem that
arises from the large gap between the Planck mass and the Higgs boson mass.

The Chapter starts with a digression on the Arkani-Hamed, Dimopoulos, and
Dvali (ADD) model (Sec. 2.1). We will see how this model can solve the hierarchy
problem by introducing one or more large and flat extra dimensions.

In Sec. 2.2, instead, we will explore an alternative theory by Randall and Sundrum
(RS), where the single ED introduced is warped. The final part of this Chapter is
dedicated to the new resonances foreseen by this model, which decay into the final
state considered in this thesis.

2.1 Large extra dimensions

The first ED models proposed to solve the hierarchy problem assumed the extra
dimensions to be large and flat. The general scheme is represented in Fig. 2.1. Two
four-dimensional (4D) hypersurfaces, called branes, delimit the volume of space
between them, called bulk, along the extra dimension. Depending on the model it is
possible to have any number d of extra dimensions.

These models allows to create a framework where it is possible to avoid the
hierarchy problem introduced in Sec. 1.3. The argument for the solution of this
problem is described in the following. In a formulation of the general relativity in a
4 +d flat dimensional space, the Einstein field equations can be obtained by applying
the principle of least action to the Einstein-Hilbert action:

S(4+d) = −M2+d
(4+d)

∫
d(4+d)x

√
g(4+d)R(4+d)

= −M2+d
(4+d)V(d)

∫
d(4)x

√
g(4)R(4) + ...

(2.1)

where R(4+d) is the Ricci tensor and g(4+d) is the determinant of the metric tensor
matrix gµν , which in a 4+d space is a diagonal matrix with the elements on the
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Figure 2.1. Representation of a space with a flat extra dimension. The extra dimension
has a finite length L which is delimited by two 4 dimensional hypersurfaces called branes.
The volume between branes is called the bulk.

diagonal corresponding to {x0, x1, x2, x3, ..., x3+d} = {+1,−1,−1,−1, ...,−1}. The
prefactor M2+d

(4+d) is introduced to keep the action dimensionless and in 4D it is equal
to the square of the Planck mass MPl. In the last term of Eq. 2.1 we integrated over
the extra d dimensions using the relation R(4+d) = R(4), true at linear order for flat
extra dimensions. The result of the integration is V(d), i.e. the volume of the bulk.
Matching Eq. 2.1 with the 4 dimensional Einstein-Hilbert action [13]

S(4) = MPl
2
∫
d(4)x

√
g(4)R(4) (2.2)

we obtain the relation:
MPl

2 = M2+d
(4+d)V(d) (2.3)

This relation can be interpreted to solve the hierarchy problem. In fact, the
large value of MPl may arise from a relatively small value of the real scale of the
theory, M(4+d) ≡M∗, multiplied by a large volume from the extra dimensions. In
this interpretation the gravitational interaction is apparently weak because its effects
are diluted in the large volume of the bulk. By setting the value of M∗ to few TeV, it
is possible therefore to define a theory where the radiative correction to mH, which
are of the order of M∗, and not MPl, are not too large compared to the value of mH
itself.

However, a problem arises from this kind of models when considering that also
the SM gauge fields can propagate in the bulk. If we assume so, also the gauge
couplings of other fundamental forces are diluted. The 4D values of the couplings
are related to the couplings in the 4 + d dimensional space by:

g2
4 =

g2
(4+d)
V(d)

(2.4)

In order to g4 to be adimensional, g(4+d) should have dimension:[
g(4+d)

]
=
[
Ld/2

]
(2.5)
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In a natural theory the parameter of scale, M∗, should set the order of magnitude
of the couplings g(4+d). Since the dimensionality of M∗ is [M∗] =

[
L−1

]
, the relation

between g(4+d) and M∗ is:

g(4+d) ∼M
−d/2
∗ (2.6)

Combining 2.6 with 2.4 we obtain:

g2
4 ∼

M−d∗
V(d)

⇒ M∗ ∼ g
−2/d
4 V −1/d (2.7)

which, replaced in Eq. 2.3 and considering that V(d) ∼ L
d, gives the relation:

L ∼ 1
MPl

g
1+ 2

d
4 (2.8)

The size of each of the extra dimensions is forced to be roughly Planck-length
L ∼ 1

MPl
= LPl. Thus, M∗ is forced to be M∗ ∼ MPl because of Eq. 2.3. The

propagation of both the SM gauge bosons and gravity in the bulk prevents to solve
the hierarchy problem because it fixes both the scale M∗ and the length of the d
extra dimensions.

In 1998, the physicists Arkani-Hamed, Dimopoulos, and Dvali (ADD) proposed
a solution to this problem using branes [14]. They postulated that all the SM fields
are confined on one brane and only the gravity is allowed to propagate in the bulk.
In this framework, the gauge couplings are no more diluted in an higher-dimensional
volume, therefore they are not connected withM∗. Only the gravitational interaction
is diluted, explaining why it is much weaker than the other fundamental forces. In
fact its original couplings are not lower than that of other forces, but its effects
are weaker because they are diluted in a much larger volume. As a side effect, the
dilution of gravity should cause significant deviations of the gravitational force from
the 1/r2 dependence of Newtonian gravity for distances below L, where L is the
typical length of the extra dimensions.

If we assume M∗ ∼ 1TeV to solve the hierarchy problem, from Eq. 2.3 we obtain:

MPl
2 ∝M2+d

∗ Ld ⇒

⇒ L ∝ 1
M∗

(
MPl
M∗

) 2
d

∝ 1
1TeV10

32
d ∼ 10

32
d
−17cm

(2.9)

This allows to put some boundaries on L and d using results from experiments that
test Einstein/Newton gravity:

• if d = 1, then L ∼ 1015cm, which is about the size of the solar system. Since
we do not observe deviations at this scale the hypothesis of a single extra
dimension is ruled out;

• if d = 2, then L ∼ 10−1cm, this hypothesis is ruled out by Cavendish-like
experiments [15];

• if d > 3, then L < 10−6cm, which evades the tests from the aforementioned
experiments.
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Besides providing an elegant solution to the hierarchy problem, the ADD model
predicts also the existence of new particles, which could be a clear evidence of new
physics.

In fact, the propagation of the gravity field in the extra dimensions gives birth to
a tower of 4D massive fields that arise from the Kaluza–Klein (KK) decomposition
of the 4 + d dimensional fields (see Appendix A), which is basically a quantization
of the field along the extra dimensions. Each 4 + d dimensional field corresponds
to an infinite tower of 4D fields (KK modes), which in turn correspond to particles
with masses n/L, where n = 0, 1, 2, ... is a positive integer corresponding to
the n-th KK mode of the tower. If L is large with respect to the Planck length
LPl ∼ 1/MPl ∼ 10−35 m, like in the ADD model, the spectrum of KK graviton
modes is quasi-continuous. As the interaction scale increases, more graviton modes
are excited, leading the ADD model to predict, for example, a nonresonant excess
of photon or lepton pairs at high diphoton or dilepton masses originating from the
decay of virtual (KK) gravitons. These signatures are currently searched by the
ATLAS and CMS analyses [16, 17, 18].

Another signature of the model would be the presence of Quantum Black Holes
(QBH), i.e. black holes at microscopic level [19]. In this case the signature is
represented by a nonresonant excess in the right tail of the distribution of the total
sum of the transverse momentum (pT) of the particles produced in pp interactions,
or in the distribution of their invariant mass. The ATLAS and CMS experiments
respectively exclude the presence of QBH below a mass threshold of 7.8TeV for
d = 2, or 7.4TeV for d = 6 (ATLAS [20]); or 5.3, 5.5, and 5.6TeV for ADD models
with respectively d = 4, 5, 6 (CMS [21]).

In the next Section we will see an alternative ED model, where the typical
length of the extra dimension is L ∼ 1TeV−1, or 10−14 cm, much smaller than the
dimensions of the ADD model. In this case, as we will see the KK modes have well
separated mass values, originating resonant signatures.

2.2 Warped extra dimension model

In this section we provide a description of warped extra dimension (WED) models,
focusing on how they solve the hierarchy problem. The first WED model was
proposed by Randall and Sundrum (RS) in a seminal paper in 1999 [22, 23], where
they showed that a metric for a space with a warped extra dimension can arise from
a solution to the Einstein’s equations. The metric of such space is:

ds2 = α(z)2(ηµνdx
µdxν − dz2) (2.10)

where ηµνdx
µdxν is the flat metric in 4D (ηµν is a diagonal matrix with {1,−1,−1,−1}

on the diagonal) and z is the conformal coordinate along the extra dimension. α(z)
is the warp factor, which is of the form:

α(z) = R

z
(2.11)

where R−1 is the curvature of the space, which is usually set to 1/MPl. To show
how the RS model can solve the hierarchy problem, we consider a space truncated
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by two branes in the z direction, respectively at z = R = 1/MPl and z = R′ > R,
where and R′ = O( TeV−1). The two branes are respectively called ultraviolet (UV),
or Planck brane, and infrared (IR), or weak brane.

We consider then a simplified model including only the Higgs field confined on
the IR brane. The five-dimensional (5D) action for the Higgs field is then:

S5 =
∫
d5x

√
−ĝδ(z −R′)LH (2.12)

where ĝ is the determinant of the tensor of the induced metric on the 4D IR brane
(ĝµν), defined below, and LH is the Higgs Lagrangian:

LH = ĝµν∂µH∗∂νH + λ

(
|H|2 − v2

2

)2

(2.13)

The δ(z −R′) function in Eq. 2.12 is introduced to confine the Higgs boson on the
IR brane. For a field confined on the IR brane z = R′ and dz = 0. The induced
metric for such field can be obtained from Eq. 2.10:

ds2 =
(
R

z

)2
(ηµνdx

µdxν − dz) =
(
R

R′

)2
ηµνdx

µdxν (2.14)

We can then define the induced metric tensor ĝµν and its determinant ĝ:

ĝµν ≡
(
R

R′

)2
ηµν

ĝ = det(ĝµν) = −
(
R

R′

)8 (2.15)

Plugging the expression of ĝ in Eq. 2.12 we obtain:

S5 =
∫
d5x

(
R

R′

)4
δ(z −R′)LH (2.16)

Keeping in mind the property of tensors:

ĝµν =
(
R

R′

)2
ηµν ⇒ ĝµν =

(
R′

R

)2

ηµν (2.17)

We can replace ĝµν in the expression of LH in Eq. 2.13, and rewrite the 5D action
as:

S5 =
∫
d5x

(
R

R′

)4
δ(z −R′)

(R′
R

)2

ηµν∂µH∗∂νH + λ

(
|H|2 − v2

2

)2
 (2.18)

At energies below 1/R′ ∼ TeV, we are not sensitive to the extra dimension, so
the physics should be adequately described by a 4D effective field theory (EFT).
To get this EFT, all we have to do is integrate the action over the extra dimension.
The action after the integration along z is then:



18 2. New resonances in models with a warped extra dimension

S4 =
∫
d4xL4D

H

=
∫
d4x

(
R

R′

)2
∂µH∗∂µH +

(
R

R′

)4
λ

(
|H|2 − v2

2

)2 (2.19)

The Higgs kinetic term of the 4D effective Lagrangian is not canonically normalized.
We can then rescale the Higgs field:

H →
(
R

R′

)
H ⇒ L4D

H = ∂µH∗∂µH + λ

(
|H|2 − ṽ2

2

)2

(2.20)

where ṽ = v R
R
′ is the 4D Higgs vacuum expectation value (VEV). ṽ is "warped down"

by the factor R
R
′ with respect to v, the 5D Higgs VEV. The value of v, to which µ is

proportional (Eq. 1.23), can also be large, even ∼MPl, and the small value of the
Higgs mass would be a consequence of the warping.

To obtain the observed value of the Higgs mass, the value of R
R
′ should be

∼10−18. Such a large difference between R and R′ may sound unnatural, but the RS
framework provide also a mechanism to naturally stabilize the distance between the
two branes, known as the Goldberger and Wise mechanism [24]. This mechanism uses
a bulk scalar field with a z-dependent VEV that generates a potential that stabilize
the distance between R and R′. The potential causes the scalar field introduced
by the KK theory, the radion (φ), to have a mass. With reasonable values for the
scalar potential, the size of the extra dimension is large enough to solve the hierarchy
problem.

In the next Sections we will introduce a realistic construction of a WED model
which, besides solving the hierarchy problem, predicts the existence of new resonances
decaying in the cascade process we are interested in.

2.2.1 Complete 2-branes WED model

In the previous section we introduced the fundamental ideas at the base of a WED
model. We saw also, in a simplified model, how this approach can solve the hierarchy
problem by confining the Higgs field on the IR brane while the gravity can propagate
in the bulk. A realistic construction of a WED model, including all the SM fields and
consistent with the electroweak precision constraints has been provided by Agashe,
Delgado, May, and Sundrum in 2003 [25].

In this representation, each 4D SM field arises from a KK decomposition (see
Appendix A) of a 5D field, like for the ADD model. All the SM fields have a profile
in the extra dimension which indicates where the field is localized (Fig. 2.2): the
Higgs and the top fields are assumed to be localized on the IR brane, the light
fermions are localized on the UV brane and the SM gauge fields can propagate in
the whole space.

This configuration solves the hierarchy problem since, as shown in the previous
section, the Higgs field is confined on the IR brane, and its VEV is warped down
by the R

R
′ factor. The propagation of fermion fields in the bulk provides also an
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Figure 2.2. Schematic view of the propagation of particle fields in the bulk of a space with
a warped extra dimension (figure from Ref [26]). The Higgs and top fields are localized
on the IR brane, while the light fermion fields are localized on the UV brane, providing
an explanation for the flavor puzzle. All the SM gauge fields can propagate in the bulk.
The schematic shapes of extra-dimensional wavefunctions for a generic KK mode and
for the radion are also shown.

explanation for the flavor puzzle (see Sec. 1.4). The different masses of fermions
arise by the different overlap between the Higgs and the fermion fields in the extra
dimension. The top field, localized on the IR brane, has a large overlap with the
Higgs field, therefore the top quark mass is large (with respect to that of other
fermions). The light fermions fields, instead, are localized on the UV brane, therefore
their overlaps with the Higgs field are lower, and their masses are smaller.

From the KK decomposition of each of the 5D fields an infinite tower of particles
(KK modes) is generated. The mass separation between two KK mode is proportional
to 1/R′, where ∆R is the distance between the two branes ∆R = R′ −R. The SM
particles correspond to the lightest modes of this KK decomposition. Since ∆R ∼ R′

is such that 1/R′ = O(TeV), the mass of first KK mode above the SM field is at
the TeV scale. Because of their large masses, the 4D fields of the KK modes are
localized near the IR brane like the Higgs field.

Finally, we have the additional massive scalar from the KK theory, the radion,
which acquires a mass with the Goldberger and Wise mechanism. The radion is also
localized near the IR brane, thus its mass is generically of the order of the IR brane
scale. However, with mild tuning, the radion mass can be arranged to be a factor of
few below the mass of the first KK mode: O(0.1TeV)-O(1TeV).

The new KK particles can be, in principle, produced and detected in experiments
at pp colliders like the LHC. The most striking signature would be the production
of a KK gluon (GKK), the KK mode of the SM gluon field, and its decay in the
process qq → GKK → qq [26]. The production cross sections for the KK modes of
W and Z bosons (WKK, ZKK) are lower with respect to the GKK cross section by a
factor gZ/gQCD.

The GKK production cross section at the LHC, however, is still suppressed
due to the small coupling of the GKK to the proton constituents (up and down
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quarks). The GKK production cross section, from the assumptions made in Ref. [26],
is σ(qq → GKK) ∼ 0.1 pb for m(GKK) ∼ 3TeV, while it decrease to ∼ 10 fb for
m(GKK) ∼ 5TeV. Moreover, since the top is peaked on the IR brane, the KK gluons
decay almost exclusively to tt (ditop) with a Branching Ratio (B) above 90%.

The constraints for the KK gluon come from both ditop [27, 28]) and dijet
searches [29, 30] from ATLAS and CMS. In particular the ditop search provides the
strongest limits, excluding a KK gluon with m(GKK) < 4.5TeV, while the upper
limit on m(GKK) from the dijet search is at most ∼3.7TeV.

Another signature from this RS model is the decay of the graviton into two
partons, gg or qq. In Sec. 3.1 we will see that this process is currently studied by
dijet searches. However, the sensitivity to the graviton decay into two partons is
drastically lower with respect to the sensitivity of the ditop search on the KK gluon
decay.

2.2.2 Extended 3-branes WED model

The strong constraints on the masses of the GKK and new particles, set by experiments
at the LHC, could imply that the masses of the new particles are above the LHC
reach. Alternatively, the new particles could be lighter than the LHC bounds, but
they evade the searches in the dijet and ditop channels because they decay to other
final states to which the current searches are not sensitive or not optimized for.
Such a situation motivates dedicated searches for non-standard signals, like the one
proposed in this thesis.

In particular, in an extension of the 2-branes WED model, proposed by Agashe
et al. in 2017 [31], it is possible to get around with the bounds on KK gluon, and in
general on KK gauge bosons from standard searches. The extension consists in the
addition of an intermediate brane between the IR and the UV branes, as shown in
Fig. 2.3.

Figure 2.3. Warped extra-dimensional model with 3 branes along the extra dimension
from Ref. [26]. Schematic shapes of extra-dimensional wavefunctions for various particles
(zero mode SM fermions and gauge bosons, an IR radion, and gauge/gravity KK modes)
are shown. The arrows indicate that the associated gauge fields propagate within the
marked range in the extra dimension.

In this case the light fermions, the Higgs, and the top fields are allowed to
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propagate only in the portion of the bulk within the UV brane and the intermediate
brane, also called Higgs brane. The Higgs brane energy scale is set to Λ′ & O(10TeV),
close to that of the IR brane of the standard scenario (remember that the distance
in the extra dimension is connected with the energy scale by R ∼ 1/Λ). Only the
radion, the KK gauge fields, and the gravity are allowed to propagate in the extended
bulk between the Higgs and the IR brane.

This setup retains the solution to the hierarchy and the flavor problems, but
suppresses the overlap, and then the couplings, between the KK modes and the
top/Higgs. As a consequence, the decay of GKK to tt is suppressed, relaxing the
constraints on the KK gluon from ditop and dijet limits. Another direct consequence
of this extension is that a new class of processes becomes dominant, and offers new
handles for the search for KK resonances at colliders.

These new processes consist in the production of a KK gauge boson AKK which
decays to a radion φ and a SM gauge boson A. The radion itself then decays to
two SM gauge bosons. The process is then qq → AKK → φ+A→ AAA, and it is
shown in Fig. 2.4. For simplicity we refer to the AKK → φA decay channel as the
radion channel. The first SM boson from the AKK decay can also be different from
the pair of SM bosons from the radion decay.

Figure 2.4. Feynman diagram for the cascade decay process in a 3-brane WED model
(diagram from Ref [26]). The two new particles produced originates a final state with
two resonances, highlighted by a blue (radion) and a red (KK gauge boson) circles. In
the diagram A stands for any one among g, W, Z, γ .

As can be deduced from Fig. 2.4, three types of (new) couplings are relevant in
the signal processes: (1) the KK gauge bosons coupling to SM quarks, (2) the KK
gauge boson coupling to a radion and a SM gauge boson, and (3) the radion coupling
to a pair of SM gauge bosons. The KK gauge boson coupling to SM fermions has
the form:

δL(1) = Q2
A

g2
A

gAKK
AµKKψγµψ (2.21)

where gA and gAKK are respectively the SM and KK gauge couplings for gauge
bosons A and AKK, and QA denotes the charge of the SM fermion ψ for the SM
gauge field of A.
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Second, the KK gauge boson coupling to a radion and a SM gauge boson is of
the form:

δL(2) = εggrav
gA
gAKK

φ

mKK
AµνA

µν
KK (2.22)

where ggrav is the KK gravity coupling and mKK is the mass of KK gauge boson,
AµνKK is the field strength tensor for the KK gauge boson AKK. Finally, the radion
coupling to a pair of SM gauge bosons has the structure of:

δL(3) = −1
4

(
g2
A

gAKK

)2
ggrav
mKK

φAµνA
µν (2.23)

In the equations above, ggrav and gAKK couplings are free parameters of the theory.
Their values have the following constraints from the theoretical assumptions described
in [31]:

3 . gAKK . 6 1 . ggrav . 6. (2.24)

As mentioned above, AKK can be any of the KK gauge bosons: a KK photon (γKK),
a KK gluon (GKK), a KK W (WKK) or a KK Z (ZKK). Each of them can decay via
the radion channel, but also into two fermions or two SM bosons, depending on the
type of the KK boson. The latter decays are covered by standard searches at the
LHC, and sets limits on the masses of the new particles. The decay channels that
provide the strongest limits on the KK boson masses are summarized in Tab. 2.1.

Table 2.1. Limits on KK gauge boson masses from searches in decays into two SM particles.

KK
gauge
boson

decay channel current limit

γKK dilepton mγKK & 2TeV for gγKK ∼ 3

GKK ditop m(GKK) ∼ 2TeV for gGKK ∼ 3.5

WKK WKK → lν mWKK & 2.5TeV for gWKK ∼ 3

ZKK dilepton mZKK & 2.5TeV for gZKK ∼ 5
& mZKK & 3TeV for gZKK ∼ 3

In the 3-branes model the branching fraction of the radion channel is dominant,
with B ∼ 40 − 80% for ggrav > 3, depending on the KK particle considered. This
motivates dedicated searches for KK gauge bosons decays in this channel. The new
experimental signature, with two resonances produced, offers new opportunities to
develop dedicated strategies to disentangle the signal from the large background
that typically characterize standard searches.

Additional constraints to this 3-branes model come from the bounds on the
radion mass. The radion can be produced in pp collisions via gluon fusion and can
decay to a pair of SM gauge bosons. To leading order, the radion decay width to a
couple of vector bosons is given by:
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Γ(φ→ AA) = NAg
2
grav

(
gA

gAKK

)4 ( m(φ)
m(AKK)

)2 m(φ)
64π (2.25)

where m(φ) is the radion mass and NA is number of degrees of freedom of SM
gauge boson: 8 for gluon, 2 for W, and 1 for γ and Z. The radion decay branching
fractions are determined by the relative size of KK gauge couplings. Numerically, the
branching fractions to, γγ, ZZ, WW, and gg are roughly O(0.1)%, O(1)%, O(1)%,
and O(95)% assuming gγKK ∼ 2 and ggKK = gWKK = 6 (like in the SM, the value
of gZKK depends on the other KK couplings). Although the diphoton channel has
the smallest branching ratio in most of the parameter space of interest, the cleaner
nature of photonic final states with respect to that of diboson or dijet ones leads to
the most stringent bounds for the radion. The diphoton searches [32, 33] performed
by the ATLAS and CMS Collaborations sets upper limits on the production cross
section of a radion to 0.7 (0.4) fb for a radion mass of 1 (1.5)TeV. These limits
exclude radion masses below ∼1TeV.

Nevertheless, the hypothesis of a light radion, below 1TeV, cannot be fully
excluded. In the next Section we will see an alternative 3-brane model, for which
the results of the diphoton searches cannot be applied to the radion, allowing it to
be lighter than the aforementioned limit.

2.2.3 Extended 3-branes WED model: only QCD in extended bulk

In a later formulation of the 3-brane model, proposed by Agashe et al. in Ref. [34],
the limits on the radion mass from diphoton searches are bypassed by assuming
that only QCD (i.e. the SM gluon field) can propagate in the extended bulk, as
in Fig. 2.5. Since the radion is confined in the extended bulk, in this case it can
only couple with gluons. The decay of the radion in two photons is not allowed, and
B(φ→ gg) = 100%.

Figure 2.5. Alternative version of an RS model with 3 branes along the extra dimension.
Unlike the model shown in Fig. 2.3, only the SM gluon field can propagate in the
extended bulk. In this framework, the decay φ→ γγ is not allowed, and the constraints
on φ mass from diphoton searches does not hold anymore.

In the rest of the paper we will focus on this extension of the model, and in
particular on the KK gluon, which has only three decay channels, the radion, the
dijet and ditop channels, with the following decay widths:
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Γ(GKK → φg) ≈
(
εggrav

gg
gGKK

)2
[
1−

( m(φ)
m(GKK)

)2]3 m(GKK)
24π (2.26)

Γ(GKK → qq) ≈
(

g2
g

gGKK

)2
m(GKK)

24π (2.27)

where qq in Eq. 2.26 refers to either a pair of light quarks-antiquarks or to
a top-antitop pair, since in this extension of the model the GKK coupling is the
same for all the SM quarks. The values of the couplings ggrav and gGKK, which are
bounded as in Eq. 2.24, modify the the decay widths and the branching fractions
(B) of the various channels. An increase of ggrav enhances the B of the GKK decay
to φg, while an increase of gGKK reduces the decay width in both the equations
above, without altering the branching fractions. Since gGKK also appears in the
denominator of the GKK coupling to quarks (Eq. 2.21), the GKK production cross
section is inversely proportional to gGKK. The dependence of the cross section σ of
the process qq → GKK → φg from the gGKK and ggrav couplings is shown in Fig. 2.6,
for a specific choice of the other couplings of the model.

Figure 2.6. Cross section of the process qq → GKK → φg as a function of the couplings
ggrav and gGKK. The values are obtained for a specific choice of the other couplings of
the theory and of the GKK and φ masses.

For the benchmark model adopted for our search we use the following set of
couplings:

ggrav = 6.0 gGKK = 3.0 gWKK = 6.0 gγKK = 2.7 (2.28)

which is a configuration that maximize the production of GKK and the branching
fraction of its decay in the radion channel B(GKK → φg) assuming the constrains
mentioned above. For this choice of couplings B(GKK → φg) is between 50 and 60%
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for all the values of m(GKK) and m(φ) considered, while the rest of the decays are
GKK → qq.

In this particular extension of the model considered, since the radion can only
decay into two gluons, the final state is formed by three gluons. The peculiar decay
kinematics of this process can generate different final state topologies, depending
on the ratio (ρm) between the masses of the radion and the KK gluon: ρm =
m(φ) /m(GKK). The different topologies will be described in detail in Sec. 3.3. The
characteristics of the final state can be exploited to enhance the sensitivity of our
search to GKK signals, with respect to the dijet and ditop searches. Chapter 7 is
dedicated to the illustration of our analysis strategy, expressly designed for this
purpose.

The search proposed here covers only one of the possible signatures that can arise
from WED models. Currently, there are ongoing efforts within the CMS experiment
to search for other exotic signatures from WED models. In particular, here we
mention the recently published CMS results [35, 36], which consider a 3-branes
model, like the one shown here, but allowing only the electroweak (EW) gauge bosons
to propagate in the extended bulk. These analyses then set limits on the production
cross section of a KK W boson studying the decay WKK → φ+ W →WWW, and
explore an extension of the WED model that is complementary to the one considered
in this thesis.
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Chapter 3

Searches for hadronic
resonances at the LHC

In this Chapter we discuss the experimental context of searches for hadronic reso-
nances at the LHC.

The experimental signature of a resonance is generally represented by a peak
in the distribution of the reconstructed invariant mass of its decay products. The
position of the peak in the distribution corresponds approximately to the resonance
mass, while its width is given by the convolution between the "natural" resonance
width and the instrumental resolution.

Hadronic resonances interacts via the strong force, are directly coupled with
quarks and gluons, and decay into final states with jets. In Sec. 3.1 we will show
the latest results from CMS and ATLAS searches for resonances decaying into two
jets (dijet). As we will see, this is a "golden" channel for the search for hadronic
resonances.

In Sec. 3.2 we will report the latest results from searches for resonances decaying
to a tt pair. These searches, besides setting limits on the 2-branes WED model
presented in Sec. 2.2.1, are an example of how the characteristics of the jets allow
us to distinguish between signal and background events, reducing the large QCD
multijet background which typically affects dijet searches.

In the last Section, 3.3, we will describe the kinematic of the signal process
under study, which involves the production of two new hadronic resonances that
decay in cascade. We will also define the final-state topology of signals searched by
our analysis. Such new experimental signatures derive from models of new physics
addressing the hierarchy problem, like the WED model introduced in Sec. 2.2.3.
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3.1 Dijet searches

Dijet searches are strongly relevant for physics at the LHC, mainly because any new
particle that can be produced through the interaction of two partons can also decay
into two partons, which hadronize to form two jets detectable by the experiments.
It is possible to fully reconstruct the new particle mass from the invariant mass of
the two-jet system, the dijet mass (mjj). As mentioned above, the presence of a new
dijet resonance would produce a striking signature, represented by a bump on the
smoothly falling dijet mass spectrum that arises from SM QCD multijet processes
(Fig. 3.1). For these reason dijet resonances have been widely searched at the LHC,
in a mass range from ∼100GeV to several TeV.

Figure 3.1. Sketch of a typical signature from a dijet resonance.

Another advantage of dijet searches is that, by analyzing a relatively simple
signature with only two jets in the final state, it is possible to test a wide range of
theories Beyond the Standard Model (BSM). Examples of BSM dijet resonances
are: excited quarks [37], axigluons and colorons [38, 39], color-octet scalars [40], new
Z′ and W′ gauge bosons [41], scalar diquarks [42], string resonances [43], Randall–
Sundrum (RS) gravitons and Kaluza–Klein (KK) gauge bosons (from the WED
model introduced in Sec. 2.2), and Dark matter (DM) mediators [44, 45, 46].

The dijet mass spectrum has been extensively studied in recent decades, from
the UA1 and UA2 experiments in the ’80s, which used data from the pp collisions
at the CERN SppS collider (

√
s = 0.63TeV), to the searches in the 0.1–1TeV mass

range with the CDF and D0 experiments at the Fermilab Tevatron (
√
s = 1.8 and

1.96TeV), to the current searches at the TeV mass scale and above with the CMS
and ATLAS experiments at the CERN LHC (

√
s = 13TeV). The basic feature of

the analysis technique has remained very similar over the years, consisting in the
scan of the dijet mass spectrum looking for resonance peaks.

In Secs. 3.1.1 and 3.1.2, we will report the latest ATLAS and CMS dijet searches,
respectively for high (&1TeV) and low (.1TeV) mass resonances. We will discuss
some innovations introduced in the analysis techniques with respect to previous
analyses, and will summarize the analyses results.
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3.1.1 High-mass range

The latest ATLAS and CMS searches for high mass dijet resonances, respectively
reported in Refs. [29] and [30], use the full LHC Run 2 dataset corresponding to
an integrated luminosity of ∼140 fb−1 of pp collisions at a center-of-mass energy
of 13TeV. This is currently the largest dataset available with the highest collision
energy, therefore it is the most suitable to search for high-mass resonances.

The analysis technique is similar for the two analyses. The final state partons
are reconstructed as jets using the technique that we will describe in Sec. 5.2. The
events are selected, among all the events produced in an LHC bunch crossing, by
triggers requiring the presence of one or more jets with high transverse momentum,
pT, typically above several hundreds of GeV.

The two jets in the event with the largest pT are defined as the leading jets.
An offline selection is also applied to events, requiring the jets ~pT to be back-to-
back, as consistent with a two-body decay. In addition to this, the requirement
|∆ηjj| . 1.1-1.2 is applied to reduce the background from QCD multijet processes,
which is mostly concentrated at large values of |∆ηjj|. The dijet mass of the two jets
is also required to be above a certain threshold, which is mjj > 1.5TeV for the CMS
search and mjj > 1.1TeV for the ATLAS one. This selection is necessary because
the trigger requirements on the jets pT reduce the efficiency at low mjj, significantly
reducing the analysis sensitivity for mjj below ∼1TeV.

The mjj spectra of events from signal processes (the signal shapes) are usually
modeled with Monte Carlo (MC) simulations. The smoothly-falling spectrum in mjj
from the QCD multijet background, instead, is estimated with data-driven methods.
The data-driven approach for the background modelling is robust, insensitive to
the theoretical uncertainty that affects the simulation, and agnostic with respect
to the theoretical model underlying the mjj distribution of background events. The
most common method for the background estimation, which will be used also in the
search presented in this thesis, consists in parameterizing the mjj distribution of
QCD multijet background events with an empirical function describing a smoothly-
decreasing spectrum. For both the searches described here the function chosen
is:

dσ

dmjj
= p0(1− x)p1

xp2+p3 ln(x) (3.1)

where x = mjj/
√
s and p0, p1, p2, p3 are free parameters. A fit using this background

parameterization and the signal shape obtained from the simulation is performed
directly on data, where the four background parameters are treated as unconstrained
nuisance parameters and the empirical function is then adapted to data. The
compatibility of the data with the background-only description is shown by fits to
the mjj spectrum under only the background hypothesis, which are shown in Fig. 3.2
for the two analyses here considered.

The resonances foreseen in the theoretical model described above can decay into
three possible final states: quark-quark (qq), quark-gluon (qg) and gluon-gluon (gg).
The signals from the three decays are separately considered in the CMS analysis,
because the resonance peak has different shapes in the three cases. The signal shape
of a gg resonance is wider with respect to that of a qq one, because gluons have
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Figure 3.2. Dijet mass spectrum (points) compared to the background predictions from
fits (solid line) for the latest (a) CMS [30] and (b) ATLAS [29] high-mass dijet searches.
The lower panels show the difference between the data and the background predictions,
divided by the statistical uncertainty in the data. For the CMS search, the background
prediction from the ratio method is shown with green squares, together with examples of
predicted signals from narrow qq, qg, and gg resonances. For the ATLAS search, signals
from the decay of an excited quark (q∗) are shown for a cross section 10 times larger than
the expected one, σ, while vertical lines mark the interval with the most significative
local excess (not compatible in this case with a resonance hypothesis), evaluated with
the BumpHunter algorithm [47, 48].

larger probability to split during the parton branching phase with respect to quarks,
leading to a worse jet energy resolution. The qg resonance peak has an intermediate
width between the first two.

Moreover, the CMS analysis uses an additional data-driven method to fit the
background, called ratio method. A signal region (SR) and a control region (CR)
are defined applying an event selection based on |∆ηjj|. The prediction for the QCD
multijet background in the SR is then obtained by multiplying the data in the CR
by a transfer factor determined from the QCD multijet background simulation. The
ratio method yields similar results with respect to the fit method.

Besides performing the standard dijet search, the ATLAS analysis also define
event categories selecting jets originating from the decay of a hadron containing a b
quark (b-hadron), using a technique called b-tagging. We will discuss this kind of
searches in Sec. 3.1.3.

No significant excesses are observed in data and the analyses set 95% Confidence
Level (CL) upper limits on the cross sections times the branching fraction and the
acceptance for dijet signals. Figure 3.3a shows the CMS limits obtained for quark-
quark, quark-gluon and gluon-gluon resonances using the fit method formjj ≤ 2.4TeV
and the ratio method for mjj > 2.4TeV. The cross sections expected from several
new physics models are superimposed, in order to produce mass exclusion limits. The
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limits from the ATLAS search on a signal with a generic Gaussian shape, instead,
are reported in Fig. 3.3b with various relative widths of the Gaussian peak σX/mX.
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Figure 3.3. (a) Observed 95% CL upper limits on the product of the cross section σ,
branching fraction B, and acceptance A for qq, qg, and gg type dijet resonances,
from CMS analysis [30]. Limits are compared to predicted cross sections for the new
resonances models mentioned above. The vertical dashed line indicates the boundary
between the regions where the fit method and the ratio method are used to estimate
the background. (b) The 95% CL upper limit on the cross-section times kinematic
acceptance times branching ratio for resonances with a generic Gaussian shape, as a
function of the Gaussian mean from ATLAS search [29]. Different widths, from 0% up
to 15% of the signal mass, are considered. For a Gaussian-shaped signal with a relative
width of 15%, the limits are truncated at high mass when the broad signal starts to
overlap the upper end of the mjj spectrum.

3.1.2 Low-mass range

The standard dijet analysis at the LHC are limited by the trigger requirements on
the jets pT, which reduce the trigger efficiency below a certain value of mjj, which is
mjj . 1.5 and 1.1TeV respectively for the CMS and ATLAS analyses discussed in
the previous Section.

The trigger requirements are introduced because the limited bandwidth available
(i.e. the data transfer rate to disk) does not allow to record all the events produced
at the LHC. Moreover, the prompt reconstruction of an event, combining the
information from the CMS subdetectors, takes time. For these reasons the CMS
trigger (see Sec.4.2.7) selects only events with high-energetic jets, which are more
interesting for high-mass searches, paying the price of a reduced efficiency for events
with low mjj.

In order to study also the low mjj range, it is possible to get around this problem
by reducing the size of the data recorded for each event. The CMS collaboration
introduced in 2011 the "data scouting" technique [49, 50], where only the four-
momenta of jets and leptons in each event are stored, reducing the average event
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size from 500 kB to ∼5–10 kB. Later, also the ATLAS and LHCb collaborations
developed similar techniques. The technique implemented by ATLAS is called
trigger-object-level analysis (TLA). Only the four-momentum of each jet and a set of
calorimeter variables associated with it are saved. The event size of these events is
less than 0.5% of the size of full event. Due to the reduction of the event size, these
techniques allow to lower the thresholds on jets pT and increasing the efficiency at
low mjj.

The latest ATLAS and CMS dijet searches using these techniques can be found
in Refs. [51] and [52] respectively. In these analyses, similar event reconstruction
and fit methods of the corresponding high mass searches are used. The two datasets
analyzed correspond respectively to an integrated luminosity of 29.3 and 27 fb−1.
The background-only fit to the dijet mass spectra from the two searches are shown in
Fig. 3.4 in the mjj ranges: 0.45 < mjj < 1.8TeV (ATLAS) and 0.6 < mjj < 1.6TeV
(CMS).

ATLAS performs its search using two version of the event selection. In the
standard selection the two jets are required to have 0.7 < mjj < 1.8TeV and
|∆ηjj| < 1.2 (|y∗| < 0.6). In the alternative selection, applied to a small portion of
the data (3.6 fb−1), events with 0.45 < mjj < 1.8TeV and |∆η| < 0.6 (|y∗| < 0.3)
are selected. The more stringent choice of |y∗| < 0.3 selects higher-pT jets at a
given invariant mass and thus provides a mass distribution that is unbiased by the
leading-jet selection from mjj = 450GeV
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Figure 3.4. Dijet mass spectra (points) compared to a fitted parameterization of the
background (solid curve) for the low-mass search from (a) CMS [52] (b) and ATLAS [51].
The lower panels show the difference between the data and the fitted parameterization,
divided by the data statistical uncertainty. For the CMS search, examples of predicted
signals from narrow qq, qg, and gg with cross sections equal to the observed upper
limits at 95% CL are shown. For the ATLAS search the most relevant excess found from
the BumpHunter algorithm is delimited by the vertical lines.
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With the two special datasets analyzed, the dijet searches are extended in the
low-mass range. This is shown in Fig. 3.5, which compare limits from various dijet
analysis on the universal coupling g′q between a leptophobic Z′ boson and quarks.

Figure 3.5. Limits on the universal coupling g
′
q between a leptophobic Z′ boson and

quarks [53] from various dijet analyses from CMS, ATLAS, CDF, and UA2. The
expected limits are shown in dashed lines, and the corresponding observed limits are
shown in solid lines. The hashed areas show the direction of the excluded area from the
observed limits. The grey dashed lines show the g′q values at fixed values of ΓZ′/MZ′ ,
where ΓZ′ is the decay width of the Z’ and MZ′ is its mass. The red boxes mark the
dijet analyses reported in this Chapter.
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3.1.3 Dijet searches with b-jets

Jets originating from the hadronization of a b-quark (b-jets) have peculiar features
that distinguish them from jets originated by light quarks. The identification of
b-jets (b-tagging) can significantly enhance the sensitivity to new resonances with a
sizeable coupling to b-quarks, which decays into bg or bb pairs.

The b-hadrons contained in b-jets, in fact, have sufficient lifetime to travel some
distance from the primary interaction vertex before decaying, producing a secondary
vertex like in Fig. 3.6. It is possible, then, to identify b-jets by the displacement of
this secondary vertex from the primary vertex.

Figure 3.6. Diagram showing the common principle of identification of jets initiated by
b-hadron decays. The secondary vertex is displaced with respect to the primary vertex.

The events can then be divided in categories requiring the presence of one or
more b-tagged jets, reducing the background from SM QCD processes, which mostly
produce jets from light quarks. The already mentioned ATLAS dijet search [29]
also includes an event categorization based on the b-tagging, while the latest CMS
search that apply this technique can be found in Ref. [54]. The two searches analyze
the whole Run 2 dataset and adopt similar strategies for the event reconstruction
and selections as the corresponding high-mass dijet searches. In Fig. 3.7 and 3.8 we
report respectively the dijet mass spectra for the ATLAS and the CMS searches, for
event categories requiring at least 1 b-tagged jet (≥1 b-tag) or exactly 2 b-tagged
jets (2 b-tag). The background is estimated through the same fit method used in
high-mass dijet searches.

The CMS search separately analyzes events of the different years of data-taking,
performing the fits with different fit functions. In Fig. 3.8, we show just the spectra
for 2018 data.

The two analysis did not observe significant excesses with respect to the SM
predictions, therefore they set limits on the couplings and masses of several resonances
decaying to final states with one or more b-quarks.

To compare the b-tagged analysis with the inclusive dijet analysis, we show in
Fig. 3.9 the limits from the ATLAS search on the production cross section of a Z′

boson times its branching fraction into bb, times the acceptance. The comparison
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Figure 3.7. Dijet invariant mass distributions from multiple categories of the ATLAS
search of Ref. [29]: (a) dijet events with at least one b-tagged jet, (c) dijet events with
both jets b-tagged. The vertical lines indicate the most discrepant interval identified by
the BumpHunter test, for which the p-value is stated in the figure.
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Figure 3.8. Dijet mass distributions for 2018 data (points) for two categories: (a) dijet
events with at least one b-tagged jet, (c) dijet events with both jets b-tagged. The
background prediction from the fit with the 3-parameter function is also shown (red
solid line). Spectra for 2016 and 2017 data (together with the plot reported here) can
be found in Ref. [54].
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with the theory exclude Z′ masses below ∼3TeV, for a value of the Z′ coupling to
SM quarks of gq = 0.25. The ATLAS inclusive dijet search, reported in the same
paper, excludes Z′ up to ∼3.9–4.0TeV for gq = 0.25 (Fig. 3.9b).

The inclusive search puts a stronger constraint on the Z′ mass with respect to
the search with b-tagged jets. This effect arises from the drop of the b-tagging
performance with the increase of the resonance mass. At high mass, in fact, also
the pT of the jets increases, and the b-jet tend to look like a jet from a light quark.
For this reason, at high mass limits from b-tagged and inclusive searches are similar.
However, it should be considered that the inclusive analysis is sensitive to all the
possible decays of the Z′ into two quarks, while the other considers only Z′ → bb.
Therefore the latter shows a similar sensitivity to Z′ decays even if it analyzes a decay
channel with a lower branching fraction. For new states with a larger branching
ratio into b-quark final states, the b-tagged categories will have greater sensitivity.
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3.2 Ditop searches

In this Section we report the latest results from ATLAS and CMS searches for
resonances decaying in a tt pair (ditop) [27, 28]. These searches are a good example
of how the properties of the jets in the final state can be exploited to enhance the
analyses sensitivity to a specific class of new physics signals with respect to standard
dijet searches (in this case ditop resonances).

Such resonances, like dijet resonances, are foreseen by a large number of models.
Examples of tt resonances are: the KK gluon (GKK) from the 2-branes WED model
introduced in Sec. 2.2.1, TeV scale color singlet Z′ bosons [55, 56], pseudoscalar
Higgs bosons [57], and leptophobic topcolor Z′ bosons [58].

The decay to tt offers a wide range of possible final states. The top quark
predominately decays to a W boson and a b-quark. Each of the two W bosons in
the event can decay to either a lepton and its corresponding neutrino or to hadrons.
Therefore, three decay channels can be considered for the tt system, depending on
the decay modes of the W bosons:

• in the dilepton channel, both W bosons decay to an e or µ and a ν . The
reconstructed dilepton final state consists then of two leptons (µµ, ee, or µe)
collimated with two b-jets with high pT, and missing transverse momentum
(pmiss

T ) from the undetected neutrinos. The b-jets and the leptons are collimated
because of the large Lorentz boost of the top quarks;

• the single-lepton channel consists of one lepton (µ or e), at least two high-pT
jets, and pmiss

T . The decay products of the tt pairs are also collimated for this
channel;

• the fully hadronic channel contains events with a dijet topology, because the
decay products of both the t-quarks are collimated and reconstructed as two
large radius jets, with a distance parameter1 of R = 0.8.

The CMS search, in particular, includes three independent sub-analyses for the
three decay channels, while the ATLAS search reported above is focused only on
the fully hadronic channel.

The QCD multijet background is generally lower for the dilepton and single-
lepton channel, with respect to the fully hadronic channel, because the requirement
of one or two leptons in the final state drastically reduces this background. Moreover,
the remaining SM backgrounds can be modeled with appropriate precision with
Monte Carlo simulations.

For the fully hadronic channel, it is still possible to reduce the QCD multijet
background, which is irreducible for the standard dijet searches, by identifying jets
from t-quark decays (t-jets). The t-jets have a mass compatible with that of a
t-quark and a substructure formed by three sub-jets: two from the hadronic W
decay and one from the hadronization of the b-quark.

The trajectories of the constituents of the jets and their masses are used, by the
ATLAS and CMS searches, to design a t-tagging algorithm to identify t-jets in the

1see Sec. 5.2 for the definition of the distance parameter.
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final state. The data can then be further divided into categories requiring a certain
number of t-jets enhancing the searches sensitivity to ditop resonances.

The tt invariant mass (mtt) distributions of the categories are then scanned to
search for excesses with respect to the background prediction. In Figs. 3.10 and 3.11
we report the fit to the mtt spectra respectively from the ATLAS and the CMS
search in the fully hadronic channel, for the categories requiring 1 or 2 b-tagged jets.
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Figure 3.10. Observed mtt distributions in data (points) for the 1 b-tag (left) and the 2
b-tag (right) categories from the ATLAS tt search [27]. The background prediction (solid
line) is also shown, with signal shapes from 2 and 4TeV mass resonances superimposed.
The lower panel shows the significance of excesses in data with respect to the background
prediction. Two vertical lines delimit the most significant deviation interval.

Also in this case, no excesses above the SM predictions has been found and
the analyses set limits on the cross sections of various models. Here in particular
we report the limits on the production cross section of a KK gluon from the CMS
analysis, which exclude GKK masses below 4.5TeV.

The plot of Fig. 3.5 shows also the limits on the universal coupling g′q between a
leptophobic Z′ boson and quarks from the CMS tt analysis. The tt analysis shows
a similar sensitivity to Z′ boson with respect to the inclusive CMS and ATLAS
dijet searches. This is a good result since the branching fraction of the Z′ → tt
decay is lower than the sum of the branching fraction of the Z′ decay to the other
quark/antiquark pairs, which are the final states searched by the dijet search. For
new states with a larger branching ratio into t-quark final states, the t-tagged search
will have greater sensitivity. Moreover the CMS tt analysis is also sensitive to lower
masses of the Z′ boson than the CMS dijet search.
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Figure 3.11. tt mass distributions for 2016 data (points) for two categories from the CMS
search [28]: (left) tt events with at least one b-tagged jet, (right) tt events with both
jets b-tagged.
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3.3 Trijet: unexplored final state

The dijet and ditop searches shown in the previous Sections set strong limits on
new hadronic resonances, in both the low (500GeV–1TeV) and high (>1TeV) mass
ranges. However, signals from new hadronic resonances may be hidden by the
large amount of background events from QCD multijet processes. In this case, it is
possible to develop further searches for hypothetical new hadronic resonances by
exploring other production/decay channels besides the dijet and the ditop ones. The
exploration of these channels can then increase the sensitivity of the searches to
these new resonances, eventually leading to their discovery.

For this reason, both the ATLAS and CMS collaborations searched for new
hadronic resonances produced in association with an initial state radiation jet [59,
60, 61], photon [62, 63], or lepton [64], and pair production of resonances resulting
in final states with four or more jets [65, 66, 67, 68].

Furthermore, following the lead of the tt searches, the CMS and ATLAS collabo-
ration searched also for new resonances decaying into heavy SM objects, like a pair
of vector bosons WW, ZZ, WZ [69, 70], or a pair of Higgs bosons HH [71, 72], or
an Higgs and a SM vector bosons [73, 74, 75].

The search presented in this thesis aims to further extend this reasoning by
considering an unexplored process where a new resonance R1 decays into a second
new resonance R2 and a SM object, following the cascade decay (Fig. 0.1):

qq → R1 → R2 + P3 → (P1 + P2) + P3. (3.2)

The presence of two new resonances in the process is unusual with respect to
previous searches, which often assumes that only one new resonance, or pairs of the
same new resonance, could be produced at the LHC.

Such new resonances are foreseen, for example, by the warped extra dimension
(WED) model we introduced in Sec. 2.2.2. In our analysis we focus on this benchmark
model assuming R1 to be a KK gluon (GKK), R2 to be a radion (φ) and P1, P2 and
P3 to be all gluons.

The masses of the two resonances, m(R1) and m(R2), are unknown. The process
under study can then produce final states with different jet topologies depending on
the assumptions made on their values. The kinematics of the decay depends in fact
on the mass ratio:

ρm = m(R2)
m(R1) (3.3)

In the approximation of R1 produced at rest in the laboratory reference system,
and assuming P1, P2, and P3 to be massless, the minimum angle between P1 and
P2 (αmin) is related to ρm by:

αmin = 4ρm
1 + ρ2

m
(3.4)

Hence, the lower is ρm, the lower will be the angle between P1 and P2. This effect
is clearly visible in Fig. 3.13, which shows the distribution of the angular separation:
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∆R(P1P2) =
√

(φ(P1)− φ(P2))2 + (η(P1)− η(P2))2 (3.5)

from simulations of signal events corresponding to different hypotheses of ρm and
m(R1) values. In the Equation above φ and η are respectively the angular coordinate
and the pseudorapidity in the CMS coordinate system (Sec. 4.2.1). The ∆R is a
measure of angular separation between the trajectories of P1 and P2, which is
invariant with respect to Lorentz boosts along the beam axis (the z-axis of the CMS
coordinate system).

Figure 3.13. Simulated distribution of ∆R between P1 and P2 for m(R1) = 1TeV at
different values of ρm (left), and for ρm = 0.2 at different values of m(R1) (right).

The right plot of Fig. 3.13 shows that ∆R(P1P2) does not depend on the value
of m(R1), as expected from Eq. 3.4.

The signal process can then result in different final states depending on the
assumed value of ρm (Fig. 3.14):

• resolved dijet: for values of ρm close to unity (ρm & 0.9), the P3 parton has
low pT and may not pass the offline selection. The resulting final state has
two leading jets coming from the decay of R2.

• resolved trijet: for intermediate ρm values, the three partons from the
cascade decay chain are spatially well separated and they can be reconstructed
as three resolved;

• boosted dijet: if m(R2) is significantly lighter than m(R1) (ρm . 0.2–0.3),
R2 is produced with large Lorentz boost and its decay products P1 and P2 are
collimated. The partons P1 and P2 can be reconstructed within a single jet
with a cone size about ∆R = 1.5, which is of the same order of that of jets
used in CMS searches. The final state presents then only two reconstructed
jets: a regular jet coming from P3 and a second jet containing both P1 and P2
with a jet mass corresponding to m(R2);

Existing searches for dijet resonances at collider experiments, as those reported
in Sec. 3.1, are sensitive to the first scenario, but are not optimized for the other
two.



42 3. Searches for hadronic resonances at the LHC

Figure 3.14. Experimental signatures for trijet resonances in the plane ρm vs m(R1).

In the resolved trijet scenario, the expected signature would be a peak corre-
sponding to m(R1) in the distribution of the invariant mass of three jets. There are
currently no published searches considering this channel.

In the boosted dijet scenario, analyses like the last CMS dijet analysis [30], which
use wide jets, could fully reconstruct the R1 mass, but their results would be sub-
optimal because the information from the R2 decay would not be used. Therefore,
new analysis approaches can be developed to optimize the search for this processes.

The rest of the thesis will then be focused on this final state, corresponding to
ρm . 0.2, where the study of jet substructure has a central role. In Sec. 5.5, we will
introduce the jet structure variables, which will allow us to identify massive jets
from R2 decays by jets originating from the hadronization of single quarks/gluons.
Then, in Ch. 7, we will see how these variables can be used to design a strategy to
reduce the QCD multijet background and enhance the search sensitivity to trijet
resonances in the boosted dijet scenario. In this analysis the two resonances are
assumed to be narrow, i.e., with small peak widths compared to the experimental
resolution.
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Chapter 4

The CMS experiment at the
CERN LHC

4.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is the world’s largest and most powerful particle
accelerator. It measures 27 km of length and it is capable to generate pp collisions
at a center-of-mass energy

√
s = 13TeV. It has been installed in the underground

tunnel previously occupied by the Large Electron Positron collider (LEP), active
until the year 2000. The LHC first started up on 10 September 2008, and remains
the latest addition to CERN’s accelerator complex (Fig. 4.1). Each step of the chain
pre-accelerates the protons at increasing energies before the injection in the LHC.

The protons, after being extracted from an hydrogen source, are first accelerated
by a linear accelerator, the LINAC 4, to an energy of 160MeV. The Proton
Synchrotron Booster (PSB), then, increases the proton energy up to 2GeV before
injecting them in the Proton Synchrotron (PS), where they are further accelerated to
26GeV. The Super Proton Synchrotron (SPS), a circular accelerator with a radius
of 1 km, is the final stage of this preliminary acceleration where the protons reach
an energy of 450GeV. The protons are then ready to be injected in the LHC, where

Figure 4.1. Schematic view of CERN accelerator complex
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they reach the final energy of 6.5TeV per beam.
The protons circulate in the LHC ring into two separate pipes in opposite

directions. To maintain them in such circular path, the LHC employs 1232 super-
conducting, 14.2m long, Niobium-Titanium dipole magnets, cooled down to 1.9K
by means of super-fluid Helium. Each magnet creates a bending magnetic field of
about 8.3T, which is oriented in opposite direction in the two pipes, in order to
bend the protons circulating in the two beams.

The LHC beams are crossed in four interaction points, generating pp interactions
with a maximum instantaneous luminosity of 2× 1034 cm−2 s−1.

The interactions produced are analyzed by the four LHC experiments located
in correspondence of the interaction points. The ATLAS (A Toroidal LHC Appa-
ratuS) [76] and CMS (Compact Muon Solenoid) [77] detectors are designed for a
large program of physics analyses. They mainly analyze data from pp interactions
exploiting different technical solution for the detection of the interaction products.
ALICE (A Large Ion Collider Experiment)[78] addresses the physics of the quark-
gluon plasma at extreme values of energy density and temperature in nucleus-nucleus
collision, and LHCb (Large Hadron Collider beauty) [79] is optimized for studies
on matter-antimatter asymmetry and CP violation through analyses involving b
quarks.

The first LHC research run (Run 1) took place between March 2010 and February
2013 at an initial center-of-mass energy of 7TeV (with 3.5TeV colliding beams),
increased to 8TeV from 2012. With the data collected in the Run 1 the collaborations
of the ATLAS and CMS experiments discovered the Higgs boson in 2012 [80, 81].

After a shutdown of ∼3 years for planned upgrades, the LHC started its second
research run, Run 2. Between 2016 and 2018, the LHC delivered to the experiments
pp collisions for an integrated luminosity of ∼140 fb−1 recorded by ATLAS and
CMS. This dataset is still the largest dataset available of pp collisions at the highest
center-of-mass energy ever recorded.

The accelerator was then shut down again for 3 years, for the maintenance of
the components of both the accelerator and the detectors.

The LHC is now preparing for its Run 3, which will start on April 2022 and will
last ∼3 years. The experiments expect to collect data for an integrated luminosity
of ∼190 fb−1 at

√
s = 13.6TeV. On 19th October 2021, two pilot beams where

injected at the energy of 450GeV and the very same day the CMS and ATLAS
detector successfully recorded data and passed all the required tests. The new
dataset, although characterized by a modest increase of the center-of-mass energy,
in combination with the Run 2 dataset will improve the searches for very high-mass
resonances, the observation of rare SM physics processes (like the production of
multiple vector bosons), and the characterization of the Higgs boson properties by
differential analyses of its cross section.
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4.2 The Compact Muon Solenoid

The Compact Muon Solenoid (CMS) experiment [77] is designed for a wide range of
physics analyses: from the search for the Higgs boson, to the precision measurements
of SM phenomena, to searches for physics beyond the Standard Model (SM). The
overall layout of CMS is shown in Fig. 4.2. It has a cylindrical shape and it is formed
by many layers of different components. Starting from the interaction point, the
outgoing particles encounter the CMS components in the following order:

• the tracking system;

• the electromagnetic calorimeter;

• the hadronic calorimeter;

• the superconductive magnet;

• the muon system.

Each component of CMS, except for the magnet, is a subdetector designed for
the measurement of a specific particle property (the energy, the momentum, the
trajectory,...). The components are described in the following sections, after an
introduction of the CMS coordinate system convention (Sec. 4.2.1).

Figure 4.2. The CMS detector and its layers.
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4.2.1 Coordinate system

CMS adopts the right-handed Cartesian coordinate system shown in Fig. 4.3, with
the origin at the nominal interaction point (IP) at the center of the detector.

Figure 4.3. CMS coordinate system

The x-axis points to the center of the LHC, the y-axis points upwards, perpendic-
ular to the LHC plane, and the z-axis along the anticlockwise-beam direction. Given
the cylindrical system, it is also useful to define some variables in a angular reference
system. The polar angle, θ, is measured from the positive z-axis and the azimuthal
angle, φ, lies in the x-y plane. Transverse energy and momentum (pT and ET), i.e.
the particle’s energy (E) and momentum (p) in the transverse plane, are therefore
defined as pT = p sin(θ) and ET = E sin(θ). The polar angle is usually expressed
using the pseudorapidity η, which is related to θ by the relation of Eq. 1.10.

The main advantage of this convention is that, for ultrarelativistic particles
(|p| � E), η is approximately equal to the rapidity y (Sec. 1.2.2). Since the
difference of rapidities is invariant with respect to Lorentz-boosts along the z–axis,
it is possible to define a measure of angular separation between particles which also
is invariant:

∆R2 ≡ (∆η)2 + (∆φ)2. (4.1)

where we used the approximation ∆y ' ∆η.
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4.2.2 Magnet

The CMS experiment is primarily designed to be a high performance and compact
muon system. In order to obtain an high resolution on the measurement of muons
momenta, a strong bending power is needed, which is provided by the intense
magnetic field developed by the CMS magnet [82].

This is composed by a superconducting cylindrical Niobium-Titanium solenoid,
which provides a uniform magnetic field of 3.8T at its center, carrying a current
of 18 kA and a total stored magnetic energy of 2.4GJ. In order to ensure good
momentum resolution also in the forward region of the detector, a large enough
length/radius ratio is also demanded. The length of the solenoid is then 13m,
while its diameter is 5.9m, enough to contain the tracker and the calorimeters. In
the external part of the solenoid the magnet field is returned by a saturated iron
yoke, which also works as mechanical support of the detector. Figure 4.4 shows the
designed magnetic field intensity and direction on a longitudinal section of the CMS
detector [83].

Figure 4.4. Design values of the magnetic field |B| (left) and field lines (right) for a
longitudinal section of the CMS detector, for a central magnetic flux density of 3.8 T.
Each field line represents a magnetic flux increment of 6Wb.
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4.2.3 Tracker

The CMS tracker [84] reconstructs the trajectories of charged particles produced in
pp interactions (tracks), together with the interaction points (vertices). The vertices
are reconstructed by the intersection of track directions that overlaps in the same
point of the z–axis. The evaluation of the curvature of the tracks, bended by the
magnetic field, allows for the precision measurement of the particle momenta.

The CMS tracker is the innermost component of the CMS detector, the closest to
the beam pipe and the interaction point. It is composed by several layers of silicon
detectors, which register the position of a charged particle that passes through them
(hit). The tracks are then reconstructed by connecting the hits from the different
layers.

The layout of the CMS tracker is shown in Figure 4.5. It is divided into three
parts, each one that can be decomposed into a cylindrical part (the barrel) and
two disks (the endcaps). The use of silicon detectors has been chosen in order
to provide good radiation hardness, high granularity and large hit redundancy to
perform a good pattern recognition. The innermost part is formed by layers of
pixel detectors with a small size necessary for the resolution of close tracks and the
vertex reconstruction. The middle and the outer part of the tracker are composed
by microstripes with a coarser segmentation since the particle flux is lower in this
region.

The total area of the silicon detectors provide coverage up to |η| = 2.5. The
material budget of the tracker needs to be controlled in order to contain the degra-
dation of the measure of the particle energies by the calorimeters. The "thickness"
of the tracker increases from 0.4 radiation length (X0) at η = 0 to around 1X0 at
|η| = 1.6, before decreasing to 0.6X0 at |η| = 2.5.

The spacial resolution of the tracker is of the order of 15µm, resulting in
a momentum resolution below 2% (6%) in the barrel (endcap) for muons with
20GeV < pT < 100GeV,and better than 10% for pT up to 1TeV.

Figure 4.5. Layout of the tracker detector.
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4.2.4 Electromagnetic calorimeter

The CMS electromagnetic calorimeter (ECAL) [85] is an hermetic, homogeneous
detector composed by over 75.000 scintillating lead-tungstate (PbWO4) crystals. It
is designed to measure the energy of incoming electrons, positrons and photons with
an high resolution.

The ECAL is important for a large variety of analyses, and it played an essential
role in the Higgs boson discovery in the decay channel H → γγ. Consequently, the
construction of an high performance electromagnetic calorimeter has been one of
the principal CMS design objectives.

To match the requirements on the energy resolution, ECAL has been designed
as an homogeneous calorimeter with high granularity, i.e. entirely composed by
sensitive material. After an intensive initial R&D programme, the PbWO4 has been
chosen for the realization of the crystals because it met all the requirements for the
building of ECAL:

• its radiation length X0 is short, meaning that it is possible to realize a compact
calorimeter that allows the containment of almost all the energy of the incoming
particle;

• the small Molière radius (2.2 cm) ensures lateral shower containment and,
therefore, allow for the realization of a detector with high granularity, which is
needed for π0–γ separation and angular resolution;

• the PbWO4 is a fast scintillator: the scintillation decay time is of the same
order of magnitude as the LHC bunch crossing time (25 ns), enabling ECAL to
measure the particles energy with a little overlap between signals from different
bunch crossing;

• it has a fairly good resistance to radiation damage, which is essential for
its operation in the harsh environment of the LHC. However, as we will
see in Appendix B, the crystal transparency loss caused by the radiation
damage produces non-negligible effect which are corrected using many different
approaches.

The PbWO4 light output is relatively low: about 4.5 photoelectrons per MeV.
This low value limits the choice of photodetectors to those which provide an internal
amplification of the small signal from the collected scintillation light. The barrel
mounts a couple of avalanche photo-diodes (APDs) on each crystal while the endcaps
mounts vacuum photo-triodes (VPTs).

The ECAL detector is placed between the tracker and the hadronic calorimeter,
and it is divided in a central cylindrical region (barrel) closed by two end caps
(Fig. 4.6). The ECAL barrel (EB) covers the pseudorapidity range |η| < 1.479, while
the ECAL endcaps (EEs) extends the coverage to |η| < 3.0.

Each EB crystal has the form of a truncated pyramid 230mm long (25.8 X0)
with the smaller face of 22× 22mm2 facing the interaction point. The crystals are
mounted in a a semi-projective geometry forming a 3°angle with respect to the
nominal interaction point in order to avoid incoming photons to fall in the zone
between two crystals.
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Figure 4.6. Left: sketch of ECAL and its parts: barrel, endcaps, supermodules and
supercrystals. The identical supercrystals of the half of an endcap are marked in yellow,
while those with different shapes are marked in light blue. Right: longitudinal section of
a quarter of the ECAL detector showing the crystals orientation.

The EB is organized in a modular structure: it is divided into two halves in the
ηφ–plane, each one composed by 18 supermodules. Each supermodule subtends a
20◦ angle in φ, and contains 1700 crystals divided into four modules (500 in one
module and 400 in the remaining three). The total number of EB crystals is then
61.200.

The two EEs are made of crystals with front-face dimensions 28.6× 28.6mm2

and a length of 220mm (24.7 X0). They are grouped together into 268 identical
supercrystals with 25 crystals each, plus 64 supercrystals with different shapes placed
at the contours of the endcaps, for a total of 14648 crystals.

The EEs are also equipped with a preshower detector (ES), covering the region
1.7 < |η| < 2.6, which is a two-layer sampling calorimeter made of lead and silicon
strips. The preshower is used to obtain a better spatial resolution in the endcaps in
order to separate photons from boosted π0s.

The energy resolution of ECAL, as for any homogeneous calorimeter, is a function
of the energy (E) of the incoming electrons and photons. It can be parameterized
as a squared sum of three terms:(

σE
E

)2
=
(
S√
E

)2
+
(
N

E

)2
+ C2 (4.2)

The stochastic term (S) depends on the stochastic fluctuations of the number
of detected photons from the scintillation process, the noise term (N) is due to
the electronics noise, and the constant term (C) depends on lateral containment,
non uniformity of response and intercalibration. The values of these parameters
have been measured at a beam test at a single-crystal level and were found to be
S = 2.8%GeV1/2, N = 124MeV and C = 0.3% where E is expressed in GeV. The
energy resolution for photons with ET ' 60GeV varies between 1.1% and 2.6% over
the solid angle of the ECAL barrel, and from 2.2% to 5% in the endcaps. The ECAL
energy resolution for electrons with ET ' 45GeV from Z → ee decays is better than
2% for |η| < 0.8, and is between 2% and 5% elsewhere. For low-bremsstrahlung
electrons, where 94% or more of their energy is contained within a 3×3 array of
crystals, the energy resolution improves to 1.5% for |η| < 0.8.
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4.2.5 Hadronic calorimeter

The hadronic calorimeter (HCAL) [86] measures the energy of hadrons produced in
pp collisions and, in combination with ECAL, also the missing transverse energy
flow. The design of HCAL originates from the necessity of containing the hadronic
shower inside the volume of the detector, which occupies the limited space between
the ECAL and the solenoid.

Thus, as opposed to ECAL, the HCAL is a sampling calorimeter formed by
layers of absorbing material alternating to layers of active material. The energy
deposited by particles in the absorbing material is not measured by the detector.
For this reason a sampling calorimeter generally has lower energy resolution than
an homogeneous calorimeter, but it is also more compact in order to absorb the
radiation from hadronic showers.

The absorbing layers of HCAL are made of brass, while the active material is
composed by plastic scintillators that produce a rapid light pulse when a particle
passes through them. Brass has been chosen because it has a reasonably short
interaction length, good mechanical properties and is non-magnetic, so it does not
interfere with the CMS magnetic field. The light from the scintillators is collected
with wavelength-shifting fibers.

The HCAL is divided into six parts: the barrel (HB), two endcaps (HE), two
forward (HF) sections and an additional layer in the barrel region outside the
magnetic coil (HO). The longitudinal section of the HCAL components is shown in
Fig. 4.7.

Figure 4.7. Longitudinal section of a quarter of HCAL, showing HCAL parts in the
zη-plane.

The HB covers a region of |η| < 1.4 and is segmented in towers of ∆η ×∆φ =
0.087×0.087 to help the reconstruction of the crossing point of the incoming particle
and its direction from the analysis of the resulting shower. The two HEs cover a
region of 1.3 < |η| < 3.0 with a similar granularity in ∆η ×∆φ of the HB. The HO
layer has been inserted to correct for escaping hadron showers from particles with
transverse energies above 500GeV, which could interfere with the muon chambers
measurements. It is composed by plastic scintillators, with the same granularity
of HB, which adds one radiation length to the calorimeter. The forward region of
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3.0 < |η| < 5.0 is covered by the steel/quartz fiber HF calorimeter, which is made
by different materials since it is far from the center of the CMS magnetic field and
it receives a very high flux of particles from pp interactions at shallow angles.

The combined energy resolution of the HCAL for single pions is:

(
σ

E

)
=
(

52.9%√
E(GeV )

)2

+ (5.7%)2 (4.3)

where the noise term is negligible. The HCAL energy resolution is much larger than
the ECAL resolution (Eq. 4.2), therefore it dominates in the combination of HCAL
and ECAL measured energies.

4.2.6 Muon system

The muon system [87] detects muons, the only charged particles that pass through
the calorimeters without being absorbed. The paths of the muons are reconstructed
from the energy that they deposit in the four layers of measuring station of the
detector, placed outside the magnet coil. They are imbedded in the iron yoke, where
the return flux of the magnetic field is of about 1.5T. The return field bends muons
in the opposite direction with respect to the bending in the tracker. The muon track
is then reconstructed matching the information of the muon system and the tracker
in a trajectory with two curves in opposite directions in the transverse plane. This
peculiar trajectory is a clear sign that identifies the muon.

The muon system use different technologies for its measuring stations in different
regions of the detector (Fig. 4.8):

• drift tubes (DT) for |η| < 1.2;

• resistive plate chambers (RPC) for |η| < 1.6 (in both barrel and endcaps);

• cathode strip chambers (CSC) for 0.9 < |η| < 2.4.

The DT and the CSC provide an excellent spatial resolution (≈100µm) for the
measurement of the momentum, while the RPC are mainly used for trigger purposes,
thanks to their excellent time resolution (3 ns).

4.2.7 Trigger

The LHC produces bunch crossings with a rate of 40MHz, i.e. one every 25 ns. The
CMS is able to store the data from pp interactions with a maximum bandwidth of
∼2GB/s that, considering an average event size of ∼2MB, is equivalent to an event
rate of ∼1 kHz.

Thus, it would be impossible for CMS to record the data from all the collisions
produced. Moreover, the vast majority of them would be soft collisions, useless for
the physics program of CMS. Hence, a trigger system is needed to select only the
relatively rare interesting events from hard parton-parton interactions.

The CMS trigger system [88] reduces then the event rate from 40MHz to ∼1 kHz
using a two-level system:
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Figure 4.8. Longitudinal view of a quarter of the muon system in the zη-plane.

• the Level-1 (L1) trigger is made by hardware processors that perform fast
logical operations on the signals generated by the subdetectors;

• the high level trigger (HLT) is a software system implemented in a multipro-
cessor computer farm. It takes decisions analyzing the reconstructed quantities
for a given object.

The L1 trigger reduces the initial event rate to ∼100 kHz, operating selections
in a time interval (latency) of 3.2µs. It uses only coarsely segmented data from
the calorimeters and muon detectors, while holding all the high-resolution data in
pipeline memories in the front-end electronic. The L1 features several algorithms
(L1 bits, or seeds) to store a general description of the event content that, if the
event is accepted, are passed to the HLT for further event processing.

The HLT reduces the output rate to about 1 kHz. It is a software system
organized in a set of algorithms (known as HLT “paths”) which are designed to
select specific event topologies. Each path is composed by steps (modules) that
reconstruct high-level objects and operates decisions based on their properties. Each
path can be modified by changing its modules or defining new ones, giving to the
software the maximum flexibility.

The guiding principles for the construction of HLT paths are regional reconstruc-
tion and fast event veto. The reconstruction is regional because it focuses only on the
detector regions that the L1 seeds report as interesting, avoiding as much as possible
the the complete event reconstruction. Fast event veto means that uninteresting
events are discarded as soon as possible for time optimization.

At the end of this chain the selected events are stored in different Primary
Dataset (PD) to be used for offline data analysis. A PD collects events with similar
topology and it is generally fed by more than one HLT paths. For example, an event
is saved in the JetHT data if it contains a jet with a pT enough high to be selected
by any of the HLT paths requiring an high-pT jet, or if the scalar sum of the jets pT
of the event (HT) is above a certain threshold.
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Chapter 5

Jet reconstruction

The analysis presented in this thesis searches for resonances that decay into final
states with quarks and/or gluons. They, as described in Sec. 1.1.1, hadronize to
form jets, which can be detected by the experiments. This Chapter is dedicated to
the jet reconstruction in CMS, which is a complex operation due to the composite
nature of these objects.

The reconstruction of a jet starts from its constituents: the particles detected by
the CMS subdetectors. To reconstruct the individual particles, the CMS collaboration
employs the Particle Flow (PF) reconstruction algorithm, described in Sec. 5.1. It
combines all the information from the subdetectors to identify the particles and
produce objects, called PF Candidates, which contains all the relevant information
of the particles. The PF Candidates are then grouped into jets using a jet clustering
algorithm. Different algorithms can be used for the jets clustering, and some of
them are discussed in Sec. 5.2.

The four-momenta of the reconstructed jet would be ideally equal to that of
the originating parton. However, several effects alter the reconstructed energy and
momentum of jets, and have to be corrected. These effects are the inclusion in the jet
of particles not coming from the primary interaction (pileup) and the non-uniformity
of the jet energy response across the detector. The mitigation of pileup effects and
the jet energy calibration procedure used in CMS analyses are respectively discussed
in Secs. 5.3 and 5.4.

In the analysis presented here, the final state of signal processes (Sec. 3.3) is
formed by two jets: the first from the hadronization of a parton, and the second
(R2-jet) from the decay of the boosted R2 resonance into two partons. Variables that
quantify the substructure properties of a jet make it possible the identification of an
R2-jet from quark/gluon jets. In Sec. 5.5, we will then define the two substructure
variables used in this thesis: the soft drop mass and the N -subjettiness ratio.
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5.1 The Particle Flow algorithm

The CMS experiment reconstructs all the stable particles produced in a pp collision
using the Particle Flow (PF) [89] algorithm. With this algorithm, information from
all CMS subdetectors are exploited to their full granularity in order to optimize
particle reconstruction and identification.

A schematic view of the CMS apparatus and the various particles that it can
detects are shown in Fig. 5.1. At first, the tracks of charged particles are reconstructed
from the points of their trajectory recorded by the silicon tracker. The tracker also
combines the tracks information to reconstruct the points (vertices) where the pp
interactions took place. The vertex with most high-energetic tracks associated is
called primary (or leading) vertex. A 3.8T magnetic field generated by the CMS
solenoidal magnet bends the particle trajectories. The bending of the tracks allow
precise measurement of the pT of charged particles for values as low as 150MeV. The
energies of photons and electrons is measured by the electromagnetic calorimeter
(ECAL), with excellent resolution, while the energy of hadrons is measured by
the CMS hadronic calorimeter (HCAL), with a contribution of ECAL for charged
hadrons. Muons, besides the neutrinos, are the only particles that escape the
calorimeters and their track is reconstructed in the muon chambers.

Figure 5.1. Schematic view of a transversal slice of the CMS apparatus. A graphical
representation of the different particles and their interactions with the subdetectors is
also shown.

The PF algorithm analyzes the raw data independently from each of these
subdetectors and creates a list of basic reconstructed elements (blocks): charged
tracks in the tracker and muon chambers, and clusters of energy deposits in the
calorimeters. The blocks are then topologically matched to build PF particle
candidates (PF Candidates). The type of a PF Candidate depends on the type of
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blocks involved in its reconstruction:

• electron PF Candidates arise from the matching between a charged track and
one or more ECAL clusters, provided a specific set of criteria is satisfied;

• charged tracks matched to any number of calorimeter (ECAL or HCAL)
clusters, which do not pass electron selection criteria, are classified as charged
hadron candidates;

• ECAL energy deposits not compatible with charged tracks give way to photon
candidates;

• energy deposits in the hadronic forward (HF) calorimeters are reconstructed as
HF hadronic or electromagnetic particle candidates, depending on the depth
at which the energy is released;

• muon candidates are reconstructed and identified with very large efficiency
and purity from a combination of the tracker and muon chamber information.

The formation of the PF Candidate list represents the Particle Flow interpretation
of a given proton-proton collision in CMS, as it attempts to mirror the true particle
composition of the event to the best of our knowledge. All the information on the
momentum and the energy of the PF Candidates are saved and available for the
analyses.

The jets can be reconstructed by grouping the PF Candidates using different
clustering algorithms, as those discussed in Sec. 5.2. The reconstructed jets have
to be corrected to account for several effects that modify their energy and pT. We
will discuss these effects and the strategies adopted for their mitigation in Secs. 5.3
and 5.4.

For a precise measurement of the jet pT and energy, an adequate calibration of all
the CMS subdetectors is needed. Charged hadron and photons inside a jet constitute
∼85% of its energy. The charged hadrons are reconstructed mainly by their tracking
information, while the photon energy is measured by the ECAL detector. Therefore,
the measurement of jet kinematic properties is sensitive to the ECAL calibration.
The calibration of an high-granularity detector like ECAL is a complex task, mostly
because the detector ages with time due to the radiation damage. Hence, a constant
work of calibration is needed. A study on the calibration of the forward endcaps is
reported in Appendix B.
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5.2 Jet clustering algorithms

Jets observed by the detectors are not physical objects, but streams of particles.
Therefore, there is some arbitrariness in their definition, as different algorithms can
be used to cluster the reconstructed particles, the PF Candidates, to form a jet. The
jet properties, like the momentum, the energy or the size, depend to some extent on
the choice of the clustering algorithm.

In the ideal case, the four-momentum associated to the jet is exactly identical
to that of the parton generating the shower. Although this is only true to some
approximation, there are several theoretical and experimental criteria adopted for
the construction of a clustering algorithm that matches as close as possible the jet
properties with that of the generating parton.

Two fundamental requirements for a "good" clustering algorithm are the infrared
and collinear (IRC) safety. "Infrared safety" means that the presence of soft gluons
emitted in the hadronization process should not change the result of the jet clustering,
while an algorithm is "collinear safe" if, splitting one parton into two partons (e.g.
a gluon splitting into two quarks), the result of the jet clustering does not change.
Sketches showing the effects of non-infrared and non-collinear safe algorithm are
represented in Figs. 5.2 and 5.3.

Figure 5.2. Illustration of a non-infrared-safe algorithm: the emission of a soft gluon
changes the number of jets.

Figure 5.3. Illustration of a non-collinear-safe algorithm: the collinear splitting changes
the direction of the jet.

A whole family of IRC algorithms are the sequential recombination jet algorithms,
which includes kT [90], Cambridge/Aachen [91] and anti-kT [92] algorithms. In
general these algorithms combine two particles if an opportunely defined "distance",
which is a function of the transverse momentum (kT), is less than a given threshold.
Two kind of distances are introduces: the first between two input particles i and j
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(dij), and the second between the particle i and the beam1 (diB). They are defined
as:

dij = min(k2p
T i, k

2p
Tj)

∆R2
ij

R2

diB = k2p
Ti

(5.1)

where ∆Rij = (yi − yj)
2 + (φi − φj)

2 and kTi, yi and φi are respectively the
transverse momentum, rapidity and azimuth of particle i. R and p are two parameters
of the algorithm. In general, sequential recombination algorithms work as follows:

• for each particle and for each couple of particles, the distances diB and dij are
evaluated;

• the minimum among all the diB and dij is labeled dmin;

• if dmin is a dij , the particles are merged into a single entity called protojet by
summing their four-momenta;

• if dmin is a diB, the particle is isolated and non-mergeable, therefore it is
removed from the list and the process is repeated with the new list of particles;

• the algorithm is iterated using the protojets from the previous step as inputs,
until only non-mergeable entities are left.

The result of the algorithm is then a list of jets with their four-momenta obtained
by the merging process.

The parameter R in Eq. 5.1 is called distance parameter, and it is connected
with the size of the jet. A larger value of R reduce the distances dij with respect to
diB, therefore more objects, even with a larger ∆R separation, will be merged. The
radius of the resulting jet in the ηφ-plane is then similar to the distance parameter
R used for the jet clustering.

The value of the parameter p, instead, determines the type of the algorithm:
for p = 1 we obtain the standard kT algorithm; p = 0 corresponds to the Cam-
bridge/Aachen algorithm; and for p = −1 the distances depend on the inverse of the
kT, therefore the algorithm is called anti-kT.

In the kT algorithm the softer particles are clustered first, and then the others
are added in increasing energy, while in the anti-kT this scheme is reversed. The
Cambridge-Aachen algorithm, having p = 0, is a purely geometric clustering algo-
rithm. The behaviors of different jet algorithms are illustrated in Fig. 5.4, which
shows that the anti-kT jet algorithm gives the jets with the most definite shape. In
general, the behavior of algorithms with p > 0 is similar to the kT algorithm, while
for p < 0 the behavior is similar to the anti-kT algorithm.

Standard jets used in CMS analyses are reconstructed using the anti-kT algorithm
with R = 0.4 (AK4) or R = 0.8 (AK8). Since the PF algorithm saves all the

1the sequential recombination jet algorithms have been designed for jet reconstruction at collider
experiments, therefore they assume a reference system with one axis (the beam direction) and a
transverse plane for the evaluation of the transverse momentum of jets constituents
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(a) (b)

(c)

Figure 5.4. Illustration of different jet clustering algorithms. Figure from Ref. [92]

properties of jet constituents, the jets can also be reconstructed offline using a
different clustering algorithm or a different distance parameter. The software used
for the jet clustering with kT algorithms is the FastJet package [93].

In our analysis we will use the AK4 and AK8 jets only for the event trigger and
for the evaluation of the systematic uncertainty, as will be described respectively in
Secs. 6.1 and 8.2.1. For the rest of the analysis we will use anti-kT jets with R = 1.5,
because they improve the reconstruction of the resonances under study, as shown in
Sec. 6.3.

5.3 Jet pileup corrections

Jets reconstructed clustering PF Candidates also include particles produced in other
pp interactions occurring in the same bunch crossing of the primary interaction.
These particles alter the four-momenta of the resulting jet, causing an effect called
pileup (PU).

The pileup particles are associated to vertices of pileup interactions, therefore
we can use algorithms to identify them and correct for the pileup effect. Jets used
for the analysis presented here are corrected for the PU using a dedicated algorithm
called pileup per particle identification (PUPPI) [94]. The CMS implementation of
the PUPPI algorithm is schematically shown in Fig. 5.5, and it is composed by the
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following steps [95]:

• the tracks of the charged particles are used to associate them to the leading
vertex (LV) or to a pileup vertex (PUV). A weight is assigned to the particles,
which is respectively 1 or 0 in the two cases (i.e. they are removed from the
jet if associated to a PUV);

• a variable α is defined, which has a different distribution for particles originating
from PUV or particles originating from the LV;

• the distribution of α for particles originating from a PUV is evaluated for
charged particles only, because their reconstructed tracks allow to assign them
to the LV or to the PUV;

• the distribution of α for neutral particles, instead, is assumed to be similar to
that of charged particles, with small corrections to be applied if necessary;

• the median (αmed) and the RMS (σα) of the α distribution are evaluated;

• the α value for each neutral particle i of the event (αi) is evaluated, and a
weight (wi) is assigned by comparing αi to αmed.

• if αi is near to αmed in units of σα, the weight wi is small. The four-momentum
of particle i is then rescaled by wi, therefore pileup particles, having a small
weight, will have little contribution to the jet four-momentum.

Figure 5.5. General scheme of the CMS PUPPI algorithm.

The α variable used for the PUPPI algorithm is:

αi = log
∑

j∈event

pTj
∆Rij

×Θ(Rmin ≤ ∆Rij ≤ R0) (5.2)

where ∆Rij is the distance between particles i and j in ηφ-plane, and Θ(Rmin ≤
∆Rij ≤ R0) is a shorthand notation for Θ(∆Rij −Rmin)−Θ(R0 −∆Rij), with Θ
being the Heaviside step function. The function Θ(Rmin ≤ ∆Rij ≤ R0) is then
equal to 1 for Rmin ≤ ∆Rij ≤ R0, and 0 otherwise. Therefore, only particles with
∆Rij between Rmin and R0 are considered in the sum. In the equation above, pTj is
the transverse momentum of the j-th particle in the events, and R0 is the cone size
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around each particle i, so that only particles within the cone enter the calculation of
αi. Particles closer to i than Rmin are discarded from the sum, with Rmin effectively
serving as a regulator for collinear splittings of particle i.

The αi distributions for charged particles from the PUV or the LV are shown in
Fig. 5.6, from a simulated sample of pp → dijet events. For the simulated events it
is also possible to evaluate the αi distributions of neutral particles from the PUV or
the LV, and they are close to the corresponding ones of charged particles.

Figure 5.6. The distribution of αi, over many simulated events, for particles i from the
leading vertex (gray filled) and particles from pileup (blue) in a dijet sample (from
Ref. [94]). Dotted and solid lines refer to neutral and charged particles respectively.

The performances of the PUPPI algorithm have been evaluated for CMS data at√
s = 13TeV [95].
Another source of PU are pp collisions occurred in the bunch crossings preceding

and following that of the primary vertex. This effect arises because of the scintillation
decay time of the ECAL crystals and HCAL plastic scintillators+fibers (see Secs. 4.2.4
and 4.2.5), which is comparable with the time between two consecutive bunch
crossings. Hence, the calorimeters can associate a fraction of the energy deposited
during the previous or the following bunch crossing to the primary interaction
of the bunch crossing under study. This effect is called out-of-time pileup (OOT
PU). The amount of OOT PU is reduced at the detector level by shortening the
time integration window of the signal produced by the calorimeters and using the
information on the signal pulse shape to subtract a varying pedestal. Both ECAL
and HCAL use a fit to the pulse shape to remove OOT PU. For a detailed discussion
of the OOT PU we refer to Ref. [96].

Some false signals can pass the aforementioned filters and affect the PF recon-
struction. To further reject noise after detector signal processing and jet clustering,
a set of criteria on the PF candidates within a jet are applied, called Jet ID criteria.
The criteria are based on jet constituent energy fractions and multiplicities. A
detailed list of the most recent Jet ID criteria can be found in Ref. [95].
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5.4 Jet energy calibration

In this Section we introduce the jet energy corrections (JEC), which are a set of
tools to correct the jet energy for the many effects that modify it, first above all the
non-linearity of the response of CMS calorimeters.

The CMS collaboration adopted a factorized solution to the problem of JECs,
where each level of correction takes care of a different effect. Each level consists in a
scaling of the jet four-momentum with a scale factor (correction) which depends on
jets pT and η. The levels of correction are applied sequentially (the output of each
step is the input to the next) and with fixed order, following the scheme shown in
Fig. 5.7:

Figure 5.7. Consecutive stages of jet energy corrections, for data (upper row) and
simulation (lower row). All the corrections marked with MC are derived from Monte
Carlo simulation, and MJB (MultiJet Balance) refers to the analysis of multijet events
(Sec. 5.4.2).

• Level 1 (L1) corrections purpose is to estimate and subtract the energy not
associated with the hard scattering interaction. The energy in excess includes
contributions from pileup interactions. We already described in Sec. 5.3 the
PUPPI method, adopted for the mitigation of pileup effects in our analysis;

• Level 2 and Level 3 (L2L3) MC-truth corrections use simulated samples
of QCD multijet events to correct for the response of the detector;

• L2L3 residual corrections correct the residual difference between data and
simulation after the application of the other corrections;

The methods used to obtain the L2L3 MC-truth and residual JEC are described
in in Secs. 5.4.1 and 5.4.2. For further details on the JEC evaluation methods and
on the performances on 13TeV data the reader can refer to Refs. [97] and [98]. The
jet energy corrections are usually evaluated by a group of experts within the CMS
collaboration for jets reconstructed with a limited number of clustering algorithms.
As will be described in Sec. 6.3, we will use the anti-kT algorithm with R = 1.5
(AK15) for the jet reconstruction, for which energy corrections are not calculated.
However, as we will show later in Sec. 8.2.1, AK15 jets shows similar performances
as the AK8 jets, which are officially calibrated. We will apply the JEC for AK8 jets
also to AK15 jets used in this search.
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5.4.1 Level 2-Level 3 MC-truth corrections

After being corrected for the pileup, the jet four-momenta are also corrected for the
non linearity of the detector response versus the η and pT of jets. These corrections
are called Level L2L3 MC-truth corrections2, as their evaluation relies entirely on
Monte Carlo (MC) simulated samples of QCD dijet events.

The detector response to jet is evaluated by comparing the jet pT to that of the
particle-level jet. The latter is a jet obtained by applying the clustering algorithm
to all the stable particles generated in the simulation (except neutrinos), whereas
the first is a regular jet formed by the reconstructed PF Candidates of the simulated
particles. The response is then defined as:

Rptcl (〈pT〉, η) = 〈pT〉
〈pT,ptcl〉

[
pT,ptcl, η

]
, (5.3)

where 〈pT〉 and 〈pT,ptcl〉 are the average values of the transverse momenta of the
jet and of the particle-level jet respectively, and η is the pseudorapidity of the jet.
The L2L3 corrections make the response uniform over these two variables. As an
example, Fig. 5.8 shows the L2L3 MC-truth correction factors (the inverse of Rptcl)
for anti-kT PUPPI jets with R = 0.8, as a function of η for three pT values. As
mentioned above, we apply the L2L3 corrections for AK8 jets also to the AK15 jets
used for the analysis presented here. The L2L3 corrections in the barrel (|η| . 1.4)
are of the order of 10–20%, with a flat profile in η, while in the forward region the
correction factor may rise up to a factor 2. The discontinuity at |η| = 3 is due to
the limited ECAL and HCAL coverage, which extends only up to |η| = 3.

Figure 5.8. L2L3 MC-truth jet energy corrections for an anti-kT PUPPI jets with R = 0.8
as a function of η, for three values of pT = 30, 100, 300GeV

2The composite name depends on an old version of the JEC procedure, where the L2 and L3 jet
corrections were two distinct levels.
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5.4.2 L2L3 residual corrections

The L2 and L3 residual corrections are meant to correct for remaining small dif-
ferences (of the order of few %) between jet response for data and MC. These are
determined after correcting jets for pileup and having applied the L2L3 MC-truth
corrections. The procedure is composed by two steps:

• the L2 residual corrections are first determined with a high statistics sample
of dijet events, where the response of jets over a wide range of pT is corrected
relative to that of jets in the central part of the detector (|η| < 1.3). This gives
a relative scale factor (i.e. relative to jets) as a function of jet pseudorapidity;

• in the second step L3 absolute corrections (i.e. they do not depend on the jet
pseudorapidity) are then evaluated with a simultaneous fit to Z(→ µµ) + jet,
Z(→ ee) + jet, γ + jet, and multijet data, for jets with |η| < 1.3 and a pT
between 30GeV and 1TeV.

The basic idea, for both the two steps and for all the considered topologies, is to
exploit the pT balance, at hard-scattering level, between the jet to be calibrated and
a reference object: another jet, a photon, or an electron-positron (muon-antimuon)
pair from a Z decay. If the detector response to jet energy is still different from unity
after the application of the L2L3 MC corrections, the pT of the reconstructed objects
of the event is not balanced. The residual corrections are then derived by balancing
the jet pT with respect to that of the reference object. The L3 residual corrections, in
particular, are derived using both the pT balance and the MPF (missing transverse
momentum projection fraction) methods [99].

It is beyond the purpose of this thesis to give a detailed description of all these
methods, since each of these techniques is a stand-alone analysis. For a more
complete treatment of the jet energy corrections derivation in CMS the reader can
refer to Ref. [97].

The residual JECs are necessary because the data/MC ratio of responses is not
equal to unity and it is pT dependent. This is shown in Fig. 5.9, where the ratio
between the L3 responses evaluated on data/MC is shown for collision data. The
global fit to the points highlights the increasing trend of the ratio vs. the pT, which
is non-negligible with respect to the statistic and systematic uncertainties.

5.4.3 Jet energy scale uncertainties

The uncertainty on the L2L3 residual corrections is shown in Fig. 5.10 as a function
of η for jets with pT = 30GeV, and as a function of the pT for jets with |η| = 0.

The jets relevant for this analysis are restricted in the central region of CMS,
|η| < 2.5, and have a pT above several hundreds of GeV. Hence, it is safe to assume
an uncertainty on the jet energy scale of the 2%. In Sec. 8.2.1 we will see the effect
of this uncertainty on the analysis results.
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5.5 Jet substructure variables

Jets produced by interactions at the LHC can be originated by boosted objects
(t-quark, W, Z) that decay into quarks or gluons. Because of the Lorentz-boost, the
quarks or gluons produced in the decay are collimated with respect to the pT of the
originating particle. Their resulting jets can be then reconstructed as a single jet,
which shows a substructure formed by multiple subjets. Substructure variables are
defined to quantify the properties of such jets, like their mass or the pattern of their
constituents.

As introduced in Sec 3.3, the final state under study is formed by two jets, as
schematically shown in Fig. 5.11. One of the two jets is originated by a parton
(P3) while the second from the decay of a new resonance (R2) that decays into two
partons (P1 and P2). In the assumption of the model under study the R2 resonance
is produced with large Lorentz-boost, and the two jets from the hadronization of P1
and P2 are reconstructed as a single jet.

Figure 5.11. Jets topology of the final state of the process under study.

The aforementioned substructure variables can then be used to enhance the
analysis sensitivity to this final state by identifying the jet from the R2 decay among
the large background populated by light-quark jets. In this Section we introduce
two variables, the soft drop mass (mSD) and the N -subjettiness ratio (τ21), which
are used in the analysis for this purpose.

5.5.1 Soft drop mass

The jets from the decay of a boosted object are characterized by a mass distribution
which peaks at the value of the object mass. In our particular case, the boosted
object originating the jet is the R2 resonance in our signal model, which mass is
much larger than the mass of a light quark. Hence, a jet from R2 decay (R2-jet) can
be distinguished from a QCD jet using the jet mass.

If a jet is originated by a boosted object, the invariant mass of its constituents
corresponds to the mass of the originating object. The mass of a QCD jet, instead,
should be near to that of the originating parton. However, soft gluon radiation
produced in the hadronization process can modify the reconstructed mass of the
jet, giving it an average mass larger than that of the originating parton. The use of
methods that remove the softer radiation, called jet grooming methods, corrects the
jet mass of QCD jets, while maintaining the jet mass of other jets close to the mass
of the originating boosted object.
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In this thesis we apply the soft drop declustering algorithm [100] for the grooming
of the jets. Like any grooming method, soft drop declustering mitigates the effects
of jet contamination from initial state radiation, underlying event and pileup.

The soft drop criteria is based on the pT and angular separation (∆R) of the
jet constituents. Assuming one jet with distance parameter R0 formed by only two
constituents, the softer constituent is removed unless:

min(pT1, pT2)
pT1 + pT2

> zcut

(∆R12
R0

)β
(5.4)

where pTi are the transverse momenta of the constituents with respect to the
beam, and ∆R12 is their angular separation. zcut and β are two parameters of the
model, respectively called soft drop threshold and angular exponent, which are set to
the values zcut = 0.1 and β = 0 in our analysis. These values optimize the algorithm
results for standard searches at CMS.

The starting point for soft drop declustering is a jet with a characteristic radius
(or distance parameter) R0. In our analysis we will always consider jets defined
with the anti-kT (AK) algorithm, while the soft drop algorithm is based on jets
defined with the Cambridge/Aachen (CA) algorithm. Therefore, the first step of the
algorithm is the clustering of the original AK jet constituents with the CA algorithm.
The constituents of the resulting jet are then organized in subjets as a pairwise
clustering tree with an angular-ordered structure, as shown in Fig. 5.12 (left side).

Figure 5.12. Scheme of the soft drop grooming algorithm.

The soft drop declustering procedure (Fig. 5.12, right) is implemented as follows:

• the jet j is divided into two subjets by undoing the last stage of CA clustering;

• if the subjets pass the soft drop condition of Eq. 5.4, j is the final soft drop jet;

• otherwise, j is redefined to be equal to subjet with larger pT and the procedure
is iterated;

• if j is reduced to be a single object without substructure, then j is removed
from the list of jets.

The effect of the application of the soft drop algorithm to an MC simulated
sample of R2-jets and QCD jets is reported in Fig. 5.13. As can be seen, the
algorithm “shifts” the QCD peak towards lower values and improves the resolution
of the R2 peak with respect to the scenario where the algorithm is not applied. The
Fig. 5.13 (left) shows also an increase in the distribution of the R2-jet soft drop mass
at low mass values. This effect is caused by a small fraction of events where the soft
drop algorithm removes a large part of the constituents from one of the two gluons
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Figure 5.13. Distribution of the jet mass for R2 (left) and QCD jets (right) from simulations.
The blue and red distributions are respectively evaluated with and without the application
of the soft drop algorithm.

from the R2 decay. The resulting R2-jet mass is then similar to that of a QCD jet
for these events.
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5.5.2 N-subjettiness ratio

The jets from the decay of a boosted object are characterized by a substructure in
the patterns of particles inside the jet. For example, in the case of the R2 resonance
under study, particles produced by the hadronization of partons P1 and P2 have
trajectories that are clustered around two axis, forming a dipolar substructure inside
the jet, as shown in Fig. 5.14 (left).

Figure 5.14. Schematic of the pattern of the particles inside a jet from the decay of a
resonance R2 into two partons (left), compared to that of a jet from the hadronization
of a quark/gluon (right). In the first case a dipolar substructure, where the particle
trajectories are clustered around two axis of partons P1 and P2, is clearly shown.

The substructure of a jet can be identified using variables defined for this purpose.
In this analysis we use a variable which has a strong discrimination power and is,
at the same time, easy to understand. The N -subjettiness variable [101] aims to
quantify how it is likely that one jet has a substructure formed by N subjets by
exploiting the pT and trajectory information of particles inside the jet. At first,
N subjet candidates are identified within a jet, using the exclusive-kT clustering
algorithm [102, 103], forcing it to return exactly N jets. The N -subjettiness (τN ) is
then defined as:

τN = 1
d0

∑
k

pT,k min ∆R1,k,∆R2,k, ...,∆RN,k (5.5)

where k runs over the constituent particles in a given jet, pT,k are their transverse
momenta, and ∆RJ,k =

√
(∆η)2 + (∆φ)2 is the distance in the ηφ-plane between a

candidate subjet J and a constituent particle k. The normalization factor d0 is:

d0 =
∑
k

pT,kR0 (5.6)

where R0 is the jet distance parameter used in the original jet clustering algorithm.
It is straightforward to see, from the definition of τN , that jets formed by N

subjets correspond to τN ≈ 0, since they have all their radiation aligned with the
candidate subjet directions. Jets with τN � 0 have a large fraction of their energy
distributed away from the candidate subjet directions and therefore tend to have at
least N + 1 subjets. In our particular case, where we want to identify a jet from a
two-body decay from a QCD jet, the N -subjettines variable of interest are τ1 and τ2.
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They can be combined in a single variable that has a better discriminating power
with respect to the two variables taken individually, the N -subjettiness ratio:

τ21 = τ2
τ1

(5.7)

As a consequence of the τ2 and τ1 definitions, the τ21 values for jets with a dipolar
substructure tend to be lower than those of a QCD jet. The τ21 distributions for an
R2-jet and a QCD jet are reported in Fig. 5.15. The simulated R2 and the gluon
jets have a pT of ∼2.5TeV and the value of the R2 mass is m(R2) = 1TeV. The R2
is produced by the decay of a resonance R1 with a mass of m(R1) = 5TeV, therefore
ρm = m(R2) /m(R1) = 0.2. The difference between the two distributions shows the
discriminating power of the τ21 variable. The criterion for the jets identification
used in our analysis, based on τ21, is described in Sec. 7.1.

Figure 5.15. Distributions of τ21 for simulated jets from R2 decay (R2-jets) and from
the hadronization of a gluon (QCD-jets). The simulated R2 and the gluon jets have a
pT of ∼2.5TeV and the value of the R2 mass is m(R2) = 1TeV. Each distribution is
normalized to its integral. As expected, the τ21 distribution of R2-jets peaks at lower
values with respect to that of QCD jets.
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Chapter 6

Data samples and event
selection

6.1 Dataset and trigger selection

The analysis presented in this thesis uses pp collision data at a center-of-mass energy
of 13TeV collected with the CMS detector at the LHC in 2016, 2017, and 2018,
corresponding to an integrated luminosity of 138 fb−1.

We search signals in final states with a dijet-like signature, characterized by two
jets with pT above few hundreds of GeV which have a back-to-back topology in the
plane transverse to the beam axis. In addition to that, one of the two jet originates
from the decay of a boosted dijet resonance R2, from the cascade resonance decay
described in Sec. 3.3. Dijet-like events are mostly collected in the JetHT primary
dataset [104], which is defined by the OR of all the high-level trigger (HLT) paths
that require jets in the final state (Sec. 4.2.7).

The JetHT dataset is divided into three subdatasets corresponding to the three
yeas of data-taking, with integrated luminosity of 36.3, 41.5 and 59.7 fb−1, respec-
tively for the 2016, 2017 and 2018 datasets. The LHC conditions are different among
the three years. For example, the average instantaneous luminosity was smaller in
2016 than in the other years. Moreover, the calibration of the CMS subdetectors
is performed independently for each year, as they age with the radiation damage.
However, as we will see in Sec. 6.4, after the application of the jet energy corrections,
the distributions of the reconstructed jet variables are similar across the three years.
Hence, the data can be merged and analyzed as a single dataset.

Events are selected from the JetHT dataset applying a trigger strategy similar to
that of CMS inclusive dijet analyses at

√
s = 13TeV (Sec. 3.1). The selected triggers

are designed to collect most of the events at high dijet mass (mjj), interesting for
our analysis. They require an AK4 or AK8 jet with a pT above few hundreds of
GeV, or a value of HT above ∼1TeV, where HT is the scalar sum of the pT of all
jets in the event with pT > 30GeV and |η| < 3.0.

For our analysis, where one of the two jet is a massive jet from the decay of a
resonance, we also include triggers which, in addition to requirements on pT and
HT, also require the jet to have a mass above ∼50GeV. In this case the mass of a
jet, called trimmed mass (mtrim), is evaluated after the application of the trimming
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algorithm [105], which is a grooming algorithm similar to the soft drop algorithm
described in Sec. 5.5.1. The trimming algorithm is faster from a computational point
of view, so it is more suitable to be applied to the jets used at the HLT.

The trigger paths and their definitions are summarized in Tab. 6.1. The pT and
HT thresholds are different for the different years of data taking, mainly because the
instantaneous luminosity was higher during 2017 and 2018. Hence, higher thresholds
has been necessary to keep the trigger rate at an acceptable level, rejecting events
with softer interactions.

Table 6.1. Jet triggers and their definition.

Year Trigger path definition
HLT_PFJet500_v* one AK4 jet with pT > 500GeV
HLT_AK8PFJet500_v* one AK8 jet with pT > 500GeV

2016 HLT_PFHT900_v* HT > 900GeV
HLT_AK8PFJet360_TrimMass30_v* one AK8 jet with pT > 360GeV

and mtrim > 30GeV
HLT_AK8PFHT800TrimMass50_v* HT > 800GeV for AK8 jets with

mtrim > 50GeV
HLT_PFJet550_v* one AK4 jet with pT > 550GeV

2017 HLT_AK8PFJet550_v* one AK8 jet with pT > 550GeV
and HLT_PFHT1050_v* HT > 1050GeV
2018 HLT_AK8PFJet420_TrimMass30_v* one AK8 jet with pT > 420GeV

and mtrim > 30GeV
HLT_AK8PFHT900TrimMass50_v* HT > 900GeV for AK8 jets with

mtrim > 50GeV

The thresholds on the jets pT and HT, in fact, reduce the trigger efficiency for
events below a certain dijet mass threshold, causing a distortion of the dijet mass
spectrum. This effect is known as trigger "turn on". It is important then to study
the trigger efficiency curve versus mjj, in order to decide where we can start to fit
the mjj distribution in data without being affected by the turn on.

The trigger efficiency can be measured using a reference data sample and a
reference trigger uncorrelated with the JetHT dataset. For this study we use the
SingleMuon datasets with HLT_Mu50_v* as reference trigger. This dataset contains
all the events that pass triggers requiring one or more muons, while the HLT_Mu50_v*
trigger specifically requires at least one muon with pT > 50GeV. Muon datasets
and triggers provide a good reference for jet triggers because the request of a muon
is completely independent from the jets in the event.

We can then measure the efficiency of the jet triggers as:

ε = N(µ ∩ jets)
N(µ) (6.1)

where:

• N(µ) is the number of events in the SingleMuon dataset that satisfy both
the reference trigger HLT_Mu50_v* AND the selection criteria we apply in our
analysis (Sec. 6.3);
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• N(µ ∩ jets) is the number of events in the SingleMuon dataset that satisfy
the same requirements of the denominator AND of any of the dijet triggers
from Tab. 6.1.

We then obtain the curves of the ε as a function of mjj, for the different years of
data taking (Fig. 6.1). The curves show that the trigger reaches the full efficiency for
mjj > 1.6TeV for all the three years. In our analysis the we select only events with
mjj > 1.6TeV in order to avoid the turn on effect. The use of the same mjj threshold
for the three years allows us to analyze all the data together. We chose then to fit
only in mjj ranges where the trigger is fully efficient, because the modeling of the
turn on effect of the mjj spectra would be a delicate procedure that could easily
introduce biases in the fit. The calculation of upper limits on the cross sections
starts from R1 masses of 2TeV, because, for signals with lower R1 masses, a large
portion of the signal shape in mjj would be truncated by the fit range, introducing
biases in the fit procedure.
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Figure 6.1. Trigger efficiency as function of mjj, for the three years of data-taking: (a)
2016, (b) 2017, (c) 2018. The red dashed line marks the mjj minimum threshold where
the trigger is fully efficient for each of the three years: mjj = 1.6TeV
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6.2 Monte Carlo simulation

6.2.1 Signal samples

We consider, as benchmark model of our analysis, the cascade decay of a KK gluon
(GKK) in a SM gluon (g) and a radion (φ), which in turns decay into two gluons
(Sec. 2.2.2). The overall decay chain is: qq → GKK → φ+ g → ggg.

The Monte Carlo (MC) simulations of the signal samples have been produced
for different values of the KK gluon mass (m(GKK)) and of the mass ratio ρm =
m(φ) /m(GKK), where m(φ) is the radion mass. The specific choice of coupling
parameters used in the generation does not affect the decay kinematic distributions
but only modifies the signal cross section. For this reason, the signal selection
efficiencies and distributions of kinematic observables, estimated using the simulated
samples, are valid for all the possible choices of coupling parameters. A total of 24
MC samples has been generated, for 8 m(GKK) values:2, 3, 4, 5, 6, 7, 8, and 9TeV,
and for three values of ρm = 0.1, 0.2, 0.3. In order to perform the analysis on
intermediate m(GKK) and ρm values, the signal shapes obtained from the simulated
samples have been interpolated as described in Secs. 7.3.3.1 and 7.3.3.2. The
interpolation steps are 100GeV wide in m(GKK) and 0.01125 wide in ρm.

The signal MC simulated samples are generated with MadGraph5_amc@nlo v.
2.4.3 [106], using the next-to-next-to-leading order (NNLO) set of parton distribution
functions (PDF) NNPDF3.1 [107]. Parton branching and hadronization are simulated
with pythia 8.205 [108] with the CP5 [109] underlying event tune. All simulated
samples are processed with the full simulation of the CMS detector based on the
Geant4 [110] software, and they are reconstructed with the same suite of programs
used for collision data.

The samples used have been generated in the 2017 production campaign, using
the conditions of the 2017 data-taking. As we will see in Sec. 6.4.2, the differences
between 2016, 2017 and 2018 data are negligible with respect to the statistical and
systematic uncertainties. This justifies the use the 2017 signal MC samples for the
analysis of the full Run 2 dataset.

6.2.2 Background samples

The only relevant background for the search here presented arises from SM QCD
processes with multiple jets in the final state (QCD multijet background). Samples
of the QCD multijet background are simulated with pythia 8.205 with the same set
of PDFs, the same tune, and the same simulation of the CMS detector used for signal
samples. The MC simulated samples for the QCD multijet background are produced
for different bins of p̂T, the transverse momentum of the hard scattering process.
The list of simulated background datasets with the corresponding cross section,
number of events, and equivalent integrated luminosity is reported in Tab. 6.2.

As in standard CMS dijet searches, the simulation is not used to estimate the
QCD multijet background, which is derived directly from a fit to data, as described
in Sec. 7.3. Hence, QCD simulated samples are only used to perform checks on the
overall quality of the data (Sec. 6.4), and to test the fit strategy before its application
to data.
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The analysis procedure followed a blinding policy during its early stages. The
analysis strategy and the fit procedure, both described in Ch. 7, have been applied
first to the simulated sample of QCD multijet events and then to data, after several
tests of the fit performances and checks for the presence of bias or other issues.

The QCD multijet background samples, like the signal samples, are simulated
assuming the 2017 conditions. Since the differences between the three years in data
are relatively small, it is possible to compare the 2017 QCD simulated sample also
with data from other years.

Table 6.2. The MC simulated samples of QCD multijet events used in the analysis. The
linear order (LO) cross section, the number of generated events and the equivalent
integrated luminosity are also reported for each sample.

dataset pT bin (GeV) LO cross section [pb] number of events Equiv. Lint[ fb
−1 ]

QCD 300 < pT < 470 7475 53798780 7.2
QCD 470 < pT < 600 587 27881028 47.5
QCD 600 < pT < 800 167 66134964 396
QCD 800 < pT < 1000 28.25 39529008 1399
QCD 1000 < pT < 1400 8.195 19631814 2396
QCD 1400 < pT < 1800 0.7346 5685270 7739
QCD 1800 < pT < 2400 0.102 2923941 28.7 103

QCD 2400 < pT < 3200 0.00644 1910526 29.7 104

QCD pT > 3200 0.000163 757837 46.5 105

6.3 Selection criteria

Events in data and in simulated samples are reconstructed using jets defined with
the anti-kT clustering algorithm introduced in Sec. 5.2 with R = 1.5 (AK15 jets).
The value of R chosen is larger compared to those commonly used in CMS analyses
in order to better reconstruct the final state of the process under study (Sec. 3.3).
The jet width has been chosen to be large enough to collect the products of R2 decay
within the same jet, and also to collect more effectively the radiation emitted from
the parton P3 in its hadronization. This improves the resolution of the reconstructed
R1 resonance mass (m(R1)), as shown in Fig. 6.3 at the end of this Section.

An event selection is applied to all events of the JetHT dataset and of the
simulated samples that match the trigger requirements. This selection aims to
remove spurious events with poorly reconstructed jets and to filter background
events enhancing the signal-to-background ratio.

To pass the selection, the two AK15 jets with highest pT (leading jets) in the
event have to satisfy the following requirements:

• both jets have to satisfy jet quality criteria ("jet ID") that remove spurious
jets associated with calorimeter and/or readout electronics noise (see Ref. [95]
for the latest jet ID criteria);

• both jets should have pT > 100GeV and |η| < 2.5;
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• their dijet mass has to be mjj > 1.6TeV in order to avoid the distortion of the
mjj spectrum caused by the trigger turn on (Sec. 6.1);

• the pseudorapidity separation between the two jets ∆ηjj = |ηj1−ηj2| is required
to be ∆ηjj < 1.3.

The latter requirement suppresses the QCD multijet background, which mainly
populates the region at high ∆ηjj since it originates from t-channel processes, while
the distribution of signal events decreases with increasing ∆ηjj because it is formed
by s-channel processes (see Fig. 6.2). This requirement also makes the trigger
efficiency in Fig. 6.1 rise quickly, reaching a plateau at 100% for relatively low
values of dijet mass. This is because the jet pT threshold of the trigger at a fixed
dijet mass is more easily satisfied at low |∆η|, as seen by the approximate relation
mjj ≈ 2pT cosh |∆η|/2. This requirement on ∆ηjj has been found to maximize the
sensitivity of previous searches for dijet resonances in the presence of QCD multijet
background [52]. The analysis of simulated samples shows that the ∆ηjj requirement
reduces the background by the ∼80% with respect to the number of events passing
the other requirements.

The signal efficiency for all the kinematic requirements is between 40 and 50%
for all signal hypotheses considered.

Figure 6.2. Distribution of ∆ηjj for a simulated samples of background events (red line)
and two simulated samples of signal events (green and blue) with different m(R1) and
ρm values.

In Figure 6.3 we show the mjj distribution for a simulated signal sample with
m(R1) = 3TeV and m(R2) = 0.6TeV, obtained after the event selection described
above. The figure shows also the mjj distributions evaluated using anti-kT jets with
different values of the distance parameter. The AK15 jets show better performances
in terms of resolution of the R1 peak with respect to jets with a smaller distance
parameter. In the following, unless otherwise stated, we will refer to AK15 jets
simply as jets.
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Figure 6.3. Distributions of the dijet mass from a simulation of signal events with
m(R1) = 3TeV and m(R2) = 0.6TeV. The different distributions are obtained with
anti-kT jets with different values of the distance parameter: R = 0.4, 0.8, 1.1, 1.5. The
AK15 jets with R = 1.5 show the best resolution for the R1 peak.

6.4 Data control plots

We performed detailed data quality checks on events passing the selection. They
include the comparison between data from different years and the comparison
between the data and the simulation. The results of these checks are reported in
the following sections.

6.4.1 Comparison between data from different years

In this section we compare the distributions of the various kinematic variables for the
data collected over the different years. The selection of events described in Sec. 6.3
is applied to each dataset.

Figures from 6.4 to 6.6 show the comparisons for the distributions in data of
the dijet mass (mjj) of the two leading jets in pT (j1 and j2), their absolute η
separation ∆ηjj = |ηj1 − ηj2|, and their absolute φ separation ∆φjj = |φj1 − φj2|.
The distributions for 2016 and 2018 data are rescaled to the luminosity of the 2017
dataset (41.5 fb−1) and compared with it.

In Fig. 6.4 we observe, as expected, that the number of dijet events produced
decrease smoothly as a function of the dijet mass. Comparison plots show an
overall good agreement for all the distributions considered. Hence, we can merge
datasets from different years and analyze them all at once. The difference in the mjj
distributions of the 2017 with respect to the other two years are contained within
the uncertainty on the jet energy scale, which is of ∼2%.
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Figure 6.4. Distributions of mjj: comparison between 2016, 2017 and 2018 data (scaled to
2017 luminosity).

Figure 6.5. Distribution of ∆ηjj : comparison between 2016, 2017 and 2018 data (scaled
to 2017 luminosity).

Figure 6.6. Distribution of ∆φjj : comparison between 2016, 2017 and 2018 data (scaled
to 2017 luminosity).
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6.4.2 Comparison between data and simulation

In this Section we compare the distributions of the various kinematic variables for
the data with the simulated sample of QCD multijet background processes.

Figure 6.7 shows the distributions of several kinematic variables for the full Run 2
dataset. Each data distribution is compared to the corresponding one from the QCD
simulated sample. The distributions for two examples of simulated signal samples
are also shown. Each simulated sample is generated with the 2017 conditions and it
is scaled to match the Run 2 integrated luminosity because, as seen in Sec. 6.4.1,
data from different years shows similar distributions. The event distributions in
data show an acceptable level of agreement to those from simulated QCD samples
in most of the cases, ensuring that the data sample is not affected by pathologies.

The mjj distribution (Fig. 6.7a) shows in particular the expected smoothly
decreasing trend, which is in acceptable agreement with the background prediction.
The variable-sized binning of the mjj spectrum is chosen in order to have the bin
size is similar to the experimental resolution at the mass value of the bin center
(see Appendix D). The two signal samples shown correspond to a cross section of
1 pb, about 100–1000 times the expected limit. The ∆ηjj and ∆φjj distributions
also behave as expected (Figs. 6.7b and 6.7c). The discrepancy between data and
simulation for the ∆φjj distribution does not have impact on the analysis, since the
background is not modeled with simulated events when testing for a signal. This
distribution ensures that the vast majority of the events follows the dijet topology,
with two jets which are back-to-back in the x–y plane.

Figure 6.7d shows the overall distributions of the pT of the two leading jets
(labeled as j1 and j2). The distribution of pT shows some discrepancy with respect
to the simulation. However, also in this case it does not affect the analysis since
because the simulation is not used to model the background. The η distribution
(Fig. 6.7e) is the overall distributions of the η coordinate of the two leading jets. It
shows a deficit in the data with respect to the simulation for |η| > 2. This effect is
due to a slowly developing shift in the shape of the ECAL pulses, caused by radiation
damage, which reduced the L1 trigger efficiency in data for jets with |η| > 2. This
effect is known as ECAL prefiring, and we refer to Ref. [111] for further details. We
do not correct for this effect in our analysis, since the prefiring affects only a small
portion of events in a region of η with very low signal yield.
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Figure 6.7. Comparison between all years data and simulated samples for the distributions
of the dijet mass mjj, ∆ηjj, ∆φjj . The distributions of two simulated signal samples are
also shown. They correspond to signal hypotheses with m(R1) = 3TeV and ρm = 0.1
(M3000_R0p1), and m(R1) = 5TeV and ρm = 0.2 (M5000_R0p2). The simulated signal
cross section is of 1 pb, which is two–three orders of magnitude larger than the expected
cross section limit of this search.
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Chapter 7

Analysis strategy

The search strategy described in this Chapter is oriented to get the best sensitivity
for new resonances (R1) decaying into a jet and a second resonance (R2) in the
process described in Sec. 3.3.

The final state topology we are interested in is characterized by two high pT jets.
The invariant mass of the two jets (mjj), is compatible with m(R1), and one of the
two jets has a dipolar substructure and a mass compatible with m(R2). The peculiar
properties of this final state topology are exploited to discriminate the signal from
the background events.

The jet from R2 decay (R2-jet) is identified from its substructure properties. The
events are then divided into categories applying selections based on the masses of
the two reconstructed jets, according to the hypothesis that one of the two jets has
a mass compatible with m(R2). We then search for a peak corresponding to the R1
resonance in the mjj spectra of all the event categories, which are mostly populated
by events from the QCD multijet background.

The next Sections will describe then the categories definition and the method
used for the fit to the mjj spectra, reporting also the fit quality checks performed.

7.1 Jets identification

The N-subjettiness ratio (τ21), introduced in Sec. 5.5.2, is evaluated for each jet in
each selected event and the jet with the lower value of τ21, among the two jets with
highest pT, is labeled as the R2-jet candidate, while other is labeled as P3-jet.

In Fig. 7.1 , we report the distribution of the R2-jet and P3 jet masses for the
data, the simulated QCD multijet background, and two signal samples. The jet
masses are evaluated after the application of the soft drop grooming algorithm (mSD)
described in Sec. 5.5.1. As expected, the R2-jet mass distribution of signal events is
characterized by a peak at m(R2). However, a smaller peak corresponding to m(R2)
appears also the P3-jet mass distribution of signal events. The latter peak arises
from events where the two jets are wrongly identified by the criterion described
above.

The frequency of the errors in the identification method is estimated by analyzing
the Monte Carlo (MC) simulations of signal events (listed in Sec. 6.2). The fractions
of simulated events where the two jets are correctly matched with the method
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Figure 7.1. Comparison between all years data and simulated samples for the distributions
of the jet soft drop masses. The distributions of two simulated signal samples are
also shown. They correspond to signal hypotheses with m(R1) = 3TeV and ρm = 0.1
(M3000_R0p1), and m(R1) = 5TeV and ρm = 0.2 (M5000_R0p2). The simulated signal
cross section is of 1 pb, which is two–three orders of magnitude larger than the expected
cross section limit of this search. The Figure on the left shows a peak in the distribution
of signal events at m(R2) formed by events where the two jets are correctly matched.
The peak in the distribution of signal events in the right plot, instead, arises from events
where the two jets are wrongly identified by the τ21 based algorithm.

described above is reported in Fig. 7.2. The values range from 0.62 to 0.72 for the
different values of m(R1) and ρm. This means that the algorithm wrongly identifies
the jets about 30-40% of the times.

We also studied the performance of an alternative identification method where
the R2-jet is defined as the jet with the greatest mass among the two leading jets.
This method has similar performances as the previous one. The jets are correctly
matched in a fraction of events ranging from 0.58 to 0.75 for the various signal
hypotheses. We decided to use the τ21 based identification method since it does not
depend on the jet mass, which is the variable used to divide event into categories as
explained in Sec. 7.2.

It could be possible to use the jet substructure variables to design more sophis-
ticated algorithms for the jet identification. For this analysis, which is the first to
explore the decay process with two new hadronic resonances, we decided to use
the simple method described above. The effect of the identification errors is then
mitigated by the analysis strategy, as described in the following.

The effect of the identification errors is visible in Fig. 7.3, which shows the
distribution of the simulated signal events in the mRjet vs. mPjet plane, where mRjet
and mPjet are respectively the reconstructed masses of the R2-jet and the P3-jet, for
a particular signal hypothesis with m(R1) = 5TeV and ρm = 0.1. The blue and the
red dots represent respectively the events with correct and incorrect jet assignment.

As expected, the blue distribution is concentrated at mRjet ≈ m(R2) and mPjet ≈
0. This is consistent with an R2-jet from the decay of the R2 resonance and a P3-jet
from the hadronization of a parton. The red distribution, instead, arises from
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Figure 7.2. Fractions of events where
the two jets with highest pT are
correctly matched with R2 and P3,
from simulated signal samples with
m(R1) between 2 and 9TeV and ρm =
0.1; 0.2.
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Figure 7.3. Distribution of events with
correctly and wrongly identified jets in
the mRjet vs. mPjet plane, for a sim-
ulated signal sample with m(R1) =
5 TeV and ρm = 0.1.

events where the two jets are wrongly identified, therefore the P3-jet has a mass
mPjet ≈ m(R2).

The event categories, defined in Sec. 7.2, are designed following the signal cross
pattern of Fig. 7.3. This choice takes advantage of the particular distribution of signal
events in the mRjet vs. mPjet plane to distinguish the signal from the background,
as will be further explained in the next Section.

In Fig. 7.4 we show the τ21 distributions for the two jets. The identification
method, based on τ21, clearly produces different τ21 distributions for the two jets. The
discrepancies between the two distributions in the data and in the simulation suggest
that the patterns of the particles produced in jet showering are not described by the
simulation with the necessary precision. Based on the smearing necessary to remove
the discrepancy between τ21 distributions in data and simulation, we associated to
τ21 a relative systematic uncertainty of 10%. The effect of this uncertainty on the
analysis results will be described in Sec. 8.2.1.

7.2 Event division in categories

After the identification of the jets, the events are divided into categories which are
designed to enhance the analysis sensitivity to trijet resonances. The definition of the
categories is based on the different patterns that signal and background distributions
show in the mRjet vs. mPjet plane. For the reason described in Sec. 7.1, most of the
signal events are clustered around a cross-shaped pattern in the plane (simply called
"cross" in the following), as shown in Fig. 7.5. On the contrary, the background
event distribution, shown in Fig. 7.6, is smooth in the plane, with little correlation
between the two variables, and is concentrated at low values of the jet masses.

This observation leads to the conclusion that a large fraction of background
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Figure 7.4. Comparison between all years data and simulated samples for the distributions
of τ21 of the two jets. The distributions of two simulated signal samples are also shown.
They correspond to signal hypotheses with m(R1) = 3TeV and ρm = 0.1 (M3000_R0p1),
and m(R1) = 5TeV and ρm = 0.2 (M5000_R0p2). The simulated signal cross section is
of 1 pb, which is two–three orders of magnitude larger than the expected cross section
limit of this search.
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events can be rejected by requiring them to fall inside the cross delimited in Fig. 7.5
by black lines. Furthermore, the cross is divided into categories, enhancing the
analysis sensitivity by separating events belonging to regions of the cross with
different signal-to-background ratio.

The values of m(R1), m(R2), and therefore ρm are in principle unknown. In our
analysis we scan a wide range of m(R1) and ρm values, with m(R1) ranging from
2 to 9TeV with 100GeV wide steps, and ρm ranging from 0.1 to 0.2 with 0.0125
wide steps. As a consequence, the m(R2) values range from 0.2 to 1.8TeV with
steps with variable width. The position of the cross changes accordingly to the
value of m(R2) considered, therefore it is not fixed in the mRjet vs. mPjet plane.
For each signal hypothesis we then define a specific set of categories, centered at
m(R2). The event selection is then repeated every time, sorting the event in the
categories for the corresponding m(R2) value. In general, the width of each band
of the cross is designed in order to be about ∼9 times the resolution of the m(R2)
peak in mRjet. This value of the width is found to maximize the analysis sensitivity,
collecting a large fraction of signal events from the cross. As a consequence, the
width of the two bands is much larger than the distance between two consecutive
m(R2) tested, therefore the corresponding sets of categories overlap in the mRjet vs.
mPjet plane. The two signal hypotheses, then, share the same events in adjacent
categories. This causes a correlation between signal hypotheses corresponding to
similar m(R2) values that will affect the analysis results, as we will show in Ch. 8.

In our analysis we use three schemes to divide the cross, with different numbers
of categories, depending on m(R2):

• 22 categories for m(R2) 6 0.6TeV.

• 9 categories for 0.6TeV < m(R2) 6 1.2TeV.

• a single cross shaped category for m(R2) > 1.2TeV.

The choice of a variable number of categories is necessary because, when m(R2)
increases beyond a certain threshold, harder cuts are imposed on the jet masses
and a lower number of events in data passes the selection. As a consequence, the
number of categories has to be reduced in order to have enough events to ensure the
fit to be stable for each category while still providing an optimal sensitivity to trijet
signals. The three possible schemes for the sets of categories are described in detail
in Sections from 7.2.1 to 7.2.3 and are shown in Figs. from 7.7 to 7.9.

7.2.1 22 categories set

The 22 categories of this set (Fig. 7.7) are defined in the mRjet vs. mPjet plane
in order to enhance the fit sensitivity and exploit all information from jet mass
distributions:

• the horizontal and vertical arms of the cross contains mRjet and mPjet values
ranging from 65 to 110% of m(R2) for all mPjet and mRjet values, respectively.
The window is asymmetric with respect to m(R2) because the soft drop jet
mass algorithm reconstructs a peak mass that is about 10% lower than the
nominal R2 mass. The window chosen optimizes the search sensitivity to a
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narrow resonance. For the optimization we evaluated the analysis sensitivity
using different choices for the window width;

• the low mPjet region of the horizontal arm of the cross is the region with the
highest fraction of signal events and the largest background. We exploit the
differences in mRjet vs. mPjet correlations between signal and background
events to improve the analysis sensitivity by dividing this region into nine
horizontal slices based on mRjet, with a width approximately equal to the jet
mass resolution (about 5% of m(R2)). This approach allows us to exploit the
line shape of the signal jet-mass distribution;

• as a result of the analysis optimization, each of the aforementioned slices is
further divided in two sub-categories, separating events with values of mPjet
below or above 0.25 m(R2). This allows to further separate categories with a
high signal-over-background ratio (near the R2-jet mass peak) from the other
categories with lower sensitivity;

• the remaining region, corresponding to the vertical arm and the high mPjet
region of the horizontal arm of the cross, is divided in four categories. The
jet mass range of these latter categories is wider in order to retain a sufficient
number of events in data to perform the fit.

The detailed rules for the definition of the category boundaries according to the
value of m(R2) in the signal hypothesis considered are listed in Tab. 7.1.
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Figure 7.7. Event categories in mRjet vs mPjet plane for a set with 22 categories. The
two arms of the cross are centered around the value of mRjet = m(R2) (horizontal) and
mPjet = m(R2) (vertical). In this case m(R1) = 4TeV, ρm = 0.1 and m(R2) = 0.4TeV.
The z axis represents the number of signal events expected per bin, for a signal sample
with a cross section of 1 pb.
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Table 7.1. Selections on mPjet and mRjet for the set with 22 categories. The selections
depend on the value of m(R2) of the signal hypothesis. The categories are identified by
the progressive index icat.

icat mPjet and mRjet boundaries (multiples of m
(
R2

)
) icat mPjet and mRjet boundaries (multiples of m

(
R2

)
)

1 [0; 0.25] & [0.65; 0.7] 2 [0; 0.25] & [0.7; 0.75]

3 [0; 0.25] & [0.75; 0.8] 4 [0; 0.25] & [0.8; 0.85]

5 [0; 0.25] & [0.85; 0.9] 6 [0; 0.25] & [0.9; 0.95]

7 [0; 0.25] & [0.95; 1.0] 8 [0; 0.25] & [1.0; 1.05]

9 [0; 0.25] & [1.05; 1.1] 10 [0.25; 0.65] & [0.65; 0.7]

11 [0.25; 0.65] & [0.7; 0.75] 12 [0.25; 0.65] & [0.75; 0.8]

13 [0.25; 0.65] & [0.8; 0.85] 14 [0.25; 0.65] & [0.85; 0.9]

15 [0.25; 0.65] & [0.9; 0.95] 16 [0.25; 0.65] & [0.95; 1.0]

17 [0.25; 0.65] & [1.0; 1.05] 18 [0.25; 0.65] & [1.05; 1.1]

19 [0.65; 1.1] & [0; 0.65] 20 [0.65; 1.1] & [0.65; 1.1]

21 [0.65; 1.1] & [1.1; ∞) 22 [1.1; ∞) & [0.65; 1.1]
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7.2.2 9 categories set

When the value of m(R2) is over 0.6TeV, the categories defined inside the cross
falls in regions of the plane where the number of events in data is very low. In this
condition the simultaneous fit to the dijet mass spectra of the 22 categories is not
stable. For this reason, when m(R2) > 0.6TeV, the set with 9 categories, shown
in Fig. 7.8, is defined. The category boundaries in this case follows the definitions
listed in Tab. 7.2.

Table 7.2. Selections on mPjet and mRjet for the set with 9 categories. The selections
depend on the value of m(R2) of the signal hypothesis. The categories are identified by
the progressive index icat.

icat mPjet and mRjet boundaries (multiples of m
(
R2

)
) icat mPjet and mRjet boundaries (multiples of m

(
R2

)
)

1 [0; 0.25] & [0.65; 0.7] 2 [0; 0.25] & [0.7; 0.75]

3 [0; 0.25] & [0.75; 0.8] 4 [0; 0.25] & [0.8; 0.85]

5 [0; 0.25] & [0.85; 0.9] 6 [0; 0.25] & [0.9; 0.95]

7 [0; 0.25] & [0.95; 1.0] 8 [0; 0.25] & [1.0; 1.1]

9 [0.65; 1.1] OR [0.65; 1.1] (with additional request
mPjet > 0.25)

7.2.3 Single category.

When the value of m(R2) is above 1.2TeV, the number of events in data passing
the selection is further reduced, and the fit is unstable even using the set with
9 categories. Hence, for these signal hypotheses the cross is no more divided in
categories (Fig. 7.9) and the only selection applied to the masses of the two jets is
given by the cross boundaries (Eq. 7.1).

mPjet ∈ [0.65m(R2) ; 1.1m(R2)] OR mRjet ∈ [0.65m(R2) ; 1.1m(R2)] (7.1)

Table 7.3. Selections on mPjet and mRjet for the single category. The selections depend
on the value of m(R2) of the signal hypothesis. The categories are identified by the
progressive index icat.

icat mPjet and mRjet boundaries (multiples of m
(
R2

)
)

1 [0.65; 1.1] OR [0.65; 1.1]
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Figure 7.8. Set with 9 categories in mRjet
vs mPjet plane for m(R2) > 0.6TeV. In
this case m(R1) = 5TeV, ρm = 0.2 and
m(R2) = 1.0TeV.
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7.3 Fit method

The fit method used in this analysis analyzes simultaneously the dijet mass distribu-
tions of the event categories searching for a signal peak from a narrow R1 resonance
over the smoothly decreasing distribution originating from QCD multijet background
events.

The fit performed is a maximum likelihood fit to all the binned dijet mass spectra
from the different categories. We use a variable-sized binning for the dijet mass, with
the bin width corresponding approximately to the mass resolution (see Appendix D).
For each category c the fit uses a function of mjj that has two components:

• a smooth, monotonicly decreasing function for background modeling Bc(mjj);

• a double-tailed crystal-ball function, Sc(mjj), describing a narrow resonance.

The likelihood to maximize in the fit is:

L =
nc∏
c=1

nb∏
i=1

Poisson(xic|λic) =
nc∏
c=1

nb∏
i=1

λ
xic
ic e
−λic

xic!
(7.2)

where i is an index running on the bin number (nb) of the mjj spectrum and c is an
index running on the category number (nc), while xic and λic are respectively the
data yield and the expected number of events in the ith bin of the cth category. In
particular, λic it is made of two terms:

λic = µsic + bic (7.3)

where:

• bic = Nic(B) =
∫mic,high
mic,low

Bc(mjj)dmjj is the number of expected background
events, and it is obtained with an integral to the background function in the
dijet mass bin range;

• sic = Nic(S) = σbr ·
∫mic,high
mic,low

Sc(mjj)dmjj is the number of signal events,
obtained with an integral to the signal function in the dijet mass bin range,
multiplied by the product of the signal cross section for the branching fraction
of the channel under study, referred as σbr;

• µ is the signal strength modifier, which is a positive factor that modify the
signal cross section by multiplying it for µ.

In the fit, the value of σbr is set to 1 pb, while the fit parameter of interest
(POI) is the signal strength modifier, µ. With this choice, the post-fit value of µ
corresponds to signal cross section times the branching fraction equal to µ expressed
in pb. A µ value significantly above 0 would imply the observation of a signal in
data. We will quantify the significance of the obtained values of µ in Sec. 8.1

In Secs. 7.3.1 and 7.3.3 we will discuss in detail the background estimation and
the signal model, respectively. In Sec. 7.3.4, instead, we report the results of the
tests on fit quality and performances.
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7.3.1 Background estimation

In each category, the MC simulations of the dijet mass spectra from QCD processes
show a decreasing and smooth profile. Therefore the fit function used to model the
background in each category is the 3-parameters function defined in Eq. 7.4, which
is also smoothly decreasing:

Bc(mjj) = f1(mjj) =
p0
(
1− mjj√

s

)p1(
mjj√
s

)p2 (7.4)

This function is derived from the 4-parameters function (Eq. 7.5), which has been
used in many previous CMS dijet analyses at

√
s = 13TeV [30, 52], 8TeV [112] and

7TeV [113].

fdijet(mjj) =
p0
(
1− mjj√

s

)p1

(
mjj√
s

)p2+p3 log (mjj/
√
s) (7.5)

We chose a fit function with fewer parameters because the number of background
events that populates each category is lower than the background of the single mjj
spectrum analyzed by inclusive dijet searches by a few order of magnitudes. Hence,
fewer parameters are needed to model the background in each category.

We performed a Fisher F-test comparing the performances of the fits performed
with f1, fdijet and a 2-parameter function derived from f1. The results of the test,
reported in Appendix C, show that the 3-parameters function is suitable to fit the
mjj spectra per category.

The three parameters of function f1 are floating, independently in each category,
in the fit in a wide range with flat priors. The background shape in each category
is then fitted to the data together with the signal strength µ, which multiplies the
signal shape in the mjj spectra. This procedure, called signal+background fit, may
originate a bias on the signal extraction, eventually absorbing the excess from the
signal. The presence of bias has been checked by the test reported in Sec. 7.3.4.2.

The analysis followed a strict blinding policy, therefore the use of this fit function
has been preliminarily tested by performing background-only fits on MC simulations
(i.e. with µ set to 0) of the QCD multijet background. An example of such fits
is reported in Fig. 7.10 for a selection of categories from a signal hypothesis with
m(R1) = 5TeV and ρm = 0.1.

These plots show that the fitted background shape follows correctly the expected
background events distribution. The overall p-value of the fit is 0.13, and it is
evaluated using the goodness of fit test described in Sec. 7.3.4.1. In the final fit, the
background function is fitted to the data, providing a fully data-driven background
prediction. A full display of the fit for two different signal hypothesis is shown in
Sec. 8.1, while robust and detailed tests on the fit performances are reported in in
Sec. 7.3.4.
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7.3.2 Fit ranges

The categories defined in Sec. 7.2 divide the events applying cuts on the masses of
the two jets: mRjet and mPjet. This selection determines a side effect that originates
from the correlation between mRjet, mPjet and the dijet mass, mjj observed for
background events. Since the QCD jet mass is correlated with their pT, by requiring
the jet masses to be above a certain value, the distribution of mjj (which depends on
the jets pT) is sculpted and develops a rising trend at low mjj. This effect is clearly
shown in Fig. 7.11, where the inclusive mjj distribution from simulated background
events (left) is compared to the mjj distribution of the selection of events that falls
inside one category of a particular signal hypothesis (right).
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Figure 7.11. Left: inclusive mjj spectrum from the simulated QCD multijet background.
Right: the same spectrum for a category with m(R1) = 4TeV, ρm = 0.1, mPjet ∈
[440,∞] GeV, mRjet ∈ [260, 440]GeV. The turn on effect of the requirements on the jet
masses is visible at low mjj. The vertical dashed lines mark the begin and the end of
the fit window (defined in the text).

The rising part of the mjj spectrum cannot be modeled by the function we chose
for the fit, f1. Nevertheless, an alternative fit with a combination of functions, able
to model the local maximum of the background, could easily interpret a signal as
background in that region, introducing a strong bias. We then decided to use f1
for the background modeling, and start the fit at higher mjj values. To do this,
a jet-mass-dependent minimum mjj threshold (mthr

jj ) is applied, which is specific
to each category. The threshold is evaluated from simulated background samples
as follows. For each category, we compute the ratio between the mjj spectra of
the category (for example, Fig. 7.11, right) and the inclusive spectrum (Fig. 7.11,
left). This ratio can be thought of as an efficiency of the selection of background
events made for a category (εcat). An example of εcat for a category is shown in
Fig. 7.12, as a function of mjj. The plot shows an increasing trend and a maximum
before decreasing, and the same behavior is observed in both data and simulation.
The rising part of the efficiency is correlated to the developing of the rising trend
in the mjj spectrum in data. The presence of a decreasing trend of the efficiency,
instead, does not alter the mjj spectrum of the category with respect to the inclusive
distribution, which is still decreasing in that portion of the mjj range.

We set then mthr
jj to be 15% higher than the position of the maximum, in order

to be sure to perform the fit only in the undistorted portion of the mjj distribution.
The mthr

jj then is the lowest value of mjj where it is possible to start the fit with
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Figure 7.12. Ratio between the two mjj distribution in Fig. 7.11. The numerator is
the spectrum for the category with m(R1) = 4TeV, ρm = 0.1, mPjet ∈ [440,∞] GeV,
mRjet ∈ [260, 440]GeV (Fig. 7.11, right), while the denominator is the inclusive mjj
spectrum (Fig. 7.11, left). The plot obtained from the QCD MC shows a good agreement
with data.

the function f1. The actual fit range in mjj is centered around the signal peak. It is
defined as: mmin

jj < mjj < mmax
jj , where mmin

jj is the greater of mthr
jj and 0.65m(R1),

and mmax
jj = 1.25m(R1). With this choice the left fit range is always above mthr

jj , and
its distance from the peak is not larger than 0.35m(R1), which is about 7 times the
peak resolution (∼5% of m(R1)). The upper fit range, mmax

jj , is chosen in order to
avoid the presence of signal biases in the fit, which arise if the fit range is extended
far above the signal peak.

In some cases, mthr
jj (therefore mmin

jj ) can be very close to the peak, which
is truncated. When this happens a bias can arise in the fit. For this reason if
mthr

jj > 0.9m(R1) the corresponding category is removed from the analysis. The
Fig. 7.11 (right) shows an example of one category passing the mthr

jj requirement,
displaying the fit range position with respect to the peak. Figure 7.13, instead,
shows a category that is removed from the analysis. In the latter case the left fit
range is too close to the m(R1) peak position.

In Fig. 7.14, we show the fraction of categories that are used in the final fit versus
the ρm and m(R1) of the corresponding signal hypothesis. The fraction is evaluated
with respect to the total number of categories, which is respectively 22, 9 or 1 for the
signal hypotheses with m(R2) in the range [0; 0.6]TeV, [0.6; 1.2]TeV, [1.2TeV,∞).
In the top left region of the ρm vs. m(R1) plane, a lower fraction of categories
passes the aforementioned requirements on mthr

jj . The total signal efficiency is then
reduced in that region (shown below in Fig. 7.22), with a consequent reduction of
the analysis sensitivity to the corresponding signal hypotheses.
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Figure 7.13. mjj spectrum from a simulated sample of QCD multijet events for a category
with m(R1) = 2TeV, ρm = 0.2, mPjet ∈ [260, 440]GeV and mRjet ∈ [260, 440]GeV. This
category is excluded from the final fit because mthr

jj > 0.9m(R1).

Figure 7.14. Fraction of categories used in the final fit as a function of ρm and m(R1). The
fraction is evaluated with respect to the total number of categories of the corresponding
signal hypotheses. The two hyperboles mark in the plane the transition between 22
and 9 categories (m(R2) = 0.6TeV), and 9 and 1 category (m(R2) = 1.2TeV). The plot
shows signal hypotheses up to ρm = 0.2, which has been chosen as the maximum ρm
value for the analysis because of the observations reported in Sec. 7.3.3.2.
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7.3.3 Signal model

The signal shape of the R1 peak in the dijet mass spectra is derived from the
signal MC simulated samples listed in Sec. 6.2, for 8 values of GKK (R1) masses
(m(R1) = 2, 3, 4, 5, 6, 7, 8, 9TeV) and for 3 values of ρm (ρm = 0.1, 0.2, 0.3). Signal
events from each sample are divided into the event categories defined in Sec. 7.2.
The signal model parameters are then obtained by fitting the resulting mjj signal
event distributions with a double-sided Crystal Ball (fCB) [114, 115], a peak-shaped
function defined by Eq. 7.6:

fCB(x;µCB, σCB, α1, n1, α2, n2) = N ·


e
−α

2
1
n1
(
1− α1

n1

(
α1 + x−µ

σ

))−n1
x ≤ −α1

e−
(
x−µ
2σ

)
−α1 < x < α2

e
−α

2
2
n2
(
1− α2

n2

(
α2 − x−µ

σ

))−n2
x ≥ α2

(7.6)
.

Here x = mjj/
√
s, µCB and σCB are respectively the mean and the standard

deviation of the Gaussian core, α1 and α2 are the starting point for the exponential
tails in units of σCB, and n1 and n2 are parameters of the exponential functions.
Examples of fits to signal distributions for some categories for a signal hypothesis
with m(R1) = 3TeV and ρm = 0.1 are reported in Figs. 7.15.

The signal samples are simulated for a limited number of m(R1) and ρm values.
To search for signal hypotheses corresponding to intermediate values of m(R1) and
ρm with respect to those generated, the corresponding signal shapes can be obtained
from an interpolation of the shapes from MC simulated samples. For each signal
sample we have 22, 9 or 1 signal shapes according to the number of categories defined
for that signal hypothesis. The interpolation of a variable number of shapes is a
complex task, therefore, instead of using one shape for each category, we used an
average shape for the signal in each category. The average shape is then defined
as a double-sided Crystal Ball with parameters fixed to the average values of each
parameter across the categories. This simplified approach is possible because the
signal shape is quite stable across the categories, as it is shown in Fig. 7.16, where
the 22 shapes of a signal with m(R1) = 3TeV and ρm = 0.1 are normalized to unity
and compared.

The parameters µCB and σCB have a non-negligible variance across the categories,
which depends on the statistical error of the fit. This introduces a systematic
uncertainty on the value of the two parameters, which is taken into account in the
fit as discussed in detail in Sec. 8.2.1.
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(a) mPjet ∈ [0, 75] GeV
mRjet ∈ [225, 240] GeV

(b) mPjet ∈ [0, 75] GeV
mRjet ∈ [285, 300] GeV

(c) mPjet ∈ [195, 330] GeV
mRjet ∈ [195, 330] GeV

(d) mPjet ∈ [330,∞) GeV
mRjet ∈ [195, 330] GeV

Figure 7.15. Examples of the R1 peak in the mjj spectra of 4 categories for m(R1) = 3 TeV
and ρm = 0.1. The black dots represent the distribution of the simulated signal samples
for a cross section of 1 pb. The blue line is the shape obtained from the fit.

Figure 7.16. Comparison of the signal shapes (blue lines) for the 22 categories of a signal
sample with m(R1) = 3 TeV and ρm = 0.1. The integral of each shape is normalized to
unity. The average shape is represented by a red line.
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7.3.3.1 Signal shape interpolation

The average shapes for each simulated signal sample are interpolated to obtain
the signal shapes for the intermediate m(R1) and ρm values. The interpolation is
performed using the linear interpolation algorithm described in Ref. [116].

At first, the average shapes are interpolated between ρm = 0.1, 0.2 and 0.3 for
fixed values of m(R1) = 2, 3, 4, 5, 6, 7, 8, 9TeV, with 0.0125 wide steps in ρm. The
intermediate shapes obtained are reported in Fig. 7.17 for a selection of m(R1)
values. The shapes are very similar for different ρm values, therefore they overlap in
the plots. The shapes from this first step are then interpolated between the m(R1)
points, at fixed ρm, with 100 GeV steps. Figure 7.18 shows the shapes obtained
after this second step for five different ρm values.

Signal shapes for ρm > 0.2 were evaluated and examined in the preliminary steps
of the analysis to investigate the possibility to extend its range up to ρm = 0.3. This
possibility has been excluded after the observations reported in Sec. 7.3.3.2. The
corresponding shapes are not shown in this thesis.

(a) m(R1) = 2TeV. (b) m(R1) = 4TeV.

(c) m(R1) = 6TeV. (d) m(R1) = 8TeV.

Figure 7.17. Generated (blue) and interpolated (red) mean signal shapes, from the
interpolation between ρm = 0.1 and 0.2, at fixed m(R1), with steps of 0.0125 in ρm.
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(a) ρm = 0.1. (b) ρm = 0.125.

(c) ρm = 0.15. (d) ρm = 0.175.

(e) ρm = 0.2.

Figure 7.18. Generated and interpolated mean signal shapes, for the interpolation between
m(R1) = 2, 3, 4, 5, 6, 7, 8 and 9TeV, at fixed ρm, with steps of 100GeV in m(R1). The
interpolated shapes are shown in red. For ρm = 0.1 and 0.2 the generated signal shapes
are shown in blue, while for ρm = 0.125, 0.15, and 0.175 the blue shapes are obtained
after the first step of the interpolation along ρm.
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7.3.3.2 Signal efficiency interpolation

As for the signal shapes, also the signal efficiencies in each category have been
interpolated for the intermediate m(R1) and ρm points. We define the signal
efficiency in the i-th category as:

εi = Nicat

Ngen
(7.7)

where:

• Nicat is the number of signal events in the i-th category, defined as the integral
of the signal shape between the mjj fit ranges defined in Sec. 7.3.2.

• Ngen is the number of the generated signal events.

By the previous definition of Nicat, εi can be factorized as the product of two
efficiencies:

εi = εseli · ε
fit
i (7.8)

where:

• εseli is the efficiency of the basic event selection (described in section 6) and
the selection introduced by the category boundaries.

• εfiti is the efficiency of the cuts introduced by the fit ranges.

We studied the variation of εseli along m(R1) and ρm for the available signal samples.
An example of this study is shown in Figs. from 7.19 to 7.21.

We performed a linear interpolation of εseli between two consecutive points
in the ρm vs m(R1) plane, first along the ρm axis, then along the m(R1) axis.
The interpolation has been made independently for each category. The linear
approximation is fairly good for along the m(R1) direction. The plots at the top of
Figs. 7.19, 7.20, and 7.21, show that he efficiency is roughly constant for different
m(R1) values considering the systematic uncertainty on εseli . The value of the
uncertainty is represented by the vertical bars on the points of the plot, and it is
about 20% of εseli . This value arises from the uncertainty on the jet masses, that will
be described in more detail in Sec. 8.2.1. The linear approximation is fairly good
also along ρm (Figs. 7.19c, 7.20c, 7.21c).

The categories 21 and 22 of Fig. 7.19c, show large variations in εseli between
ρm = 0.1, 0.2, and 0.3. These variations are much larger than the uncertainty on
εseli . They are the most external categories of the cross and, when ρm increase, these
region of the plane are less populated than the others. However, as we will describe
below, in the final analysis we only consider signal hypotheses below ρm = 0.2,
therefore the large drop in efficiency above 0.2 is not a problem for our analysis. We
then used the linear interpolation to evaluate εseli for intermediate m(R1) and ρm
values also for these two categories.

After the linear interpolation, we evaluate the component εfiti for each category
evaluating the integral of the signal shape inside the category fit range.

With this method we are able to perform a better interpolation of the efficiencies,
because the linear interpolation is performed for the smoothly varying component
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(a) 22 categories efficiencies vs m(R1) at
ρm = 0.1

(b) 22 categories efficiencies vs m(R1) at
ρm = 0.2

(c) 22 categories efficiencies vs ρm at
m(R1) = 4TeV

Figure 7.19. Plots of signal efficiencies εsel
i for the 22 categories set. The vertical bars

represent the 20% uncertainty on the signal efficiency. The top plots shows that εsel
i is

approximately flat (within the uncertainty) as a function of m(R1). The bottom plot
shows that this is also valid for εsel

i as a function of ρm, except for categories 21 and 22
(details in the text).
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(a) 9 categories efficiencies vs m(R1) at
ρm = 0.1

(b) 9 categories efficiencies vs m(R1) at
ρm = 0.2

(c) 9 categories efficiencies vs ρm at
m(R1) = 4TeV

Figure 7.20. Plots of signal efficiencies εsel
i for the 9 categories set. The vertical bars

represent the 20% uncertainty on the signal efficiency. The top and bottom plots shows
that εsel

i is approximately flat (within the uncertainty) as a function of both m(R1) and
ρm.
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(a) 1 category efficiency vs m(R1) at ρm =
0.1

(b) 1 categories efficiencies vs m(R1) at
ρm = 0.2

(c) 1 category efficiency vs ρm at m(R1) =
4TeV

Figure 7.21. Plots of signal efficiencies εsel
i for the singe category. The vertical bars

represent the 20% uncertainty on the signal efficiency. The top and bottom plots shows
that εsel

i is approximately flat (within the uncertainty) as a function of both m(R1) and
ρm.
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εseli , while the efficiency of the cut introduced by the fit ranges is evaluated exactly
with the integral of the signal shape.

After the interpolation, the total signal efficiency has been evaluated for all the
signal hypotheses considered in this study. The total signal efficiency is defined as:

εtot =
∑
i

εi =
∑
iNicat

Ngen
= NAllCat

Ngen
(7.9)

The figure 7.22 shows that the total efficiency decreases for ρm > 0.2. This effect is
due to the fit ranges, which eventually cut-off the signal at high m(R1), and to the
removal of categories from final fit, which is described in section 7.3.2. This limits
the range of application of the analysis at ρm 6 0.2.

Figure 7.22. Total signal efficiency in the plane ρm vs m(R1). The total signal efficiency
is defined as the number of events falling in the cross-shaped categories region (NAllCat)
divided by the total number of generated events (Ngen). The total efficiency is evaluated
for the three different sets of categories. The white lines define the area of application in
the plane for each set of categories. Above ρm = 0.2, the efficiency drops significantly
because the lower fit range truncates the signal in a significant fraction of the categories
is removed because of the requirements of Sec. 7.3.2. The range of application of the
analysis is then limited to ρm 6 0.2 (red line).
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7.3.4 Fit quality tests

The fit procedure described in this chapter has been checked performing goodness of
fit and bias tests. The two tests verify respectively that the background fit function
is suitable to describe the QCD multijet background in data, and that it does not
introduce a significant bias in the signal extraction procedure. The Secs. 7.3.4.1
and 7.3.4.2 report the details and the results of these tests.

7.3.4.1 Goodness of fit test

For the goodness of fit test, the mjj spectra of the event categories are fitted with
the function f1, in the hypothesis that only background events are present in data
(background-only fit). Then, pseudodata distributions are generated from the f1
functions resulting from the fit, assuming Poissonian fluctuation in each bin.

The pseudodata distribution are then fitted again in the background-only hypoth-
esis. The procedure has been repeated 100 times for each signal hypothesis (with
different m(R1) and ρm values) and for each iteration the test statistic q (Eq. 7.10)
has been evaluated. q is a generalization of the χ2 test statistics, therefore it is
applicable also when bin fluctuations are not Gaussian (low bin content).

The test statistic is defined as the likelihood ratio between the fit to the data
and the saturated model [117], which is defined as the model where the expected
content in each bin of the histogram is equal to the data observed in that bin:

q = −2 log
∏nc
c=1

∏nb
i=1 Poisson(xic|λic)∏nc

c=1
∏nb
i=1 Poisson(xic|xic)

= 2
nc∑
c=1

nb∑
i=1

[
λic − xic + xic

λic

]
(7.10)

here the symbols have the same meaning as in Eq. 7.2.
The distribution of q obtained from the fit to the pseudodata distributions is

roughly Gaussian for each signal hypothesis. The value of q is then evaluated also
for the fit to the data (qdata), and it is compared with the mean value of q from the
pseudodata (toy experiments). For the comparison, we define a p-value that is the
number of toy experiments with q > qdata, divided by the number of toys (ntoys), as
in Eq. 7.11.

p-value =
nq>qdata
ntoys

(7.11)

Figure 7.23 shows the q distributions, the qdata and the resulting p-values
obtained for a selection of signal hypotheses.

A p-value close to 0 would be a sign of discrepancies between the data and the
model, suggesting that the chosen fit function fits data much worse than the toy,
therefore it is not suitable for the fit. On the other hand, a value close to 1 could be
a sign of overfitting, a situation that happens when the fit has too many degrees of
freedom that cannot be constrained by the data.

The goodness of fit test described above has been systematically applied to the
different signal hypotheses. The resulting p-value are shown in Fig. 7.24 (left). The
p-values are mostly well above 0.05, except for some sporadic signal hypotheses.

The hyperbolic patterns shown in the figure are expected because they correspond
to regions of the plane with similar values of m(R2). In fact, the category selections
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(a) m(R1) = 3TeV, ρm = 0.1 (b) m(R1) = 3TeV, ρm = 0.2

(c) m(R1) = 5TeV, ρm = 0.1 (d) m(R1) = 5TeV, ρm = 0.2

(e) m(R1) = 7TeV, ρm = 0.1 (f) m(R1) = 7TeV, ρm = 0.2

Figure 7.23. Distributions of the test statistic (q) obtained from 100 toy experiments for
signal hypotheses with different m(R1) and ρm values. The red curves represent the
Gaussian fits to the distributions. The red vertical lines mark the values of the test
statistic evaluated from data (qdata).
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(a) background-only fit with function f1 (b) background-only fit with function f2

Figure 7.24. Goodness of fit p-value for the different signal hypothesis considered in
the analysis. The two white hyperboles, corresponding to the values of m(R2) = 0.6
and 1.2TeV, mark the transitions from 22 to 9 categories and from 9 to 1 category
respectively. The hyperbolic patterns in the p-value distribution are expected, because
signal hypothesis with the same value of m(R2) share the same fraction of events.

defined in Sec. 7.2 depends on the value of m(R2), and signal hypotheses belonging
to the same hyperbole in the ρm vs. m(R1) plane share the same event selection,
therefore the fit results are similar in these cases. Because of this effect, the
p-value for the different signal hypotheses are correlated and the resulting p-value
distribution is not uniform contrary to what would be expected.

We can identify two regions of the plane where the p-value is below 0.05, respec-
tively around (m(R1) , ρm) ≈ (2.7TeV, 0.14) and ≈(8TeV, 0.14). We performed a
dedicated test for the signal hypotheses corresponding to these two regions. We
evaluated the single χ2 of the fits to the mjj spectra of each category, and removed
the category with the lowest value. The fit has been repeated and the q distribution,
the qdata value and the p-value have been re-evaluated. The new p-values are shown
to be similar or larger than 0.05. This test shows that the low p-values in the two
regions of the plane are due to statistical fluctuation in data and not to the specific
choice of the background fit function.

The right part of Fig. 7.24 shows the result of the same goodness of fit test
performed fitting the data with the alternative function f2:

f2(mjj) = p0e
−p1

(
mjj√
s

)
(
mjj√
s

)p2 (7.12)

This function, which also fits well the data, is used to test for the presence of
bias in the fit, following the procedure described in Sec. 7.3.4.2.
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7.3.4.2 Bias test

The background estimation is obtained with a fit to data, using the empirical function
f1 of Eq. 7.4. The true functional form of the mjj distribution of QCD multijet
background events is unknown, therefore f1 is not the only possible choice for the
fit. For example, we showed that the f2 function of Eq. 7.12 can fit the data with
the same performance as f1. Moreover, in presence of signal, the fit function could
absorb the bump, introducing a bias in the signal extraction. For these reasons we
tested for the presence of bias in the fit, comparing also the bias for the functions f1
and f2. We adopted the following procedure:

• A sample of 100 pseudodata distributions is generated for all signal hypothesis
considered, using one of the two background functions, with parameters fixed
to the values from the best fit to collision data. A signal is injected in the
pseudodata distributions, assuming a cross section equal to the expected upper
limit resulting from the analysis (described in Sec. 8.2).

• The distributions are fitted with the same generation function or with the other
one, following the same fit method used for the analysis of actual data. The
signal cross section resulting from the fit is obtained, along with its standard
deviation.

• The extracted value of the signal cross section is compared with the injected
one and the signal bias (defined below) is evaluated.

The procedure described above is repeated also without the injection of a signal.
To evaluate the bias for each signal hypothesis, we defined the pulls of the signal
cross section as the difference between the injected signal cross section (σinj) and
the fitted signal cross section (σfit) divided by the error on the standard deviation
(σerr) of the fit1

pull =
σfit − σinj
σerr

(7.13)

Figure 7.25 shows the pull distributions obtained for 6 different signal hypothesis, for
the test performed both generating and fitting with f1. The mean of the histograms
gives our estimation of the bias in units of σerr. In this case σinj is equal to the 95%
CL expected limit for each signal hypothesis.

The Figures reported in the next Paragraphs show the measured bias as a function
of ρm and m(R1) for the considered signal hypotheses. The results are reported for
all the tests performed with different configurations of functions (generation with
f1 and fit with f1, generation with f2 and fit with f1, etc.), with and without the
injection of a signal.

In general, an absolute value of the bias below 0.5 is considered negligible. In this
case, in fact, the total uncertainty on the signal cross section from the combination
of the bias and the fit uncertainty would be:

σtoterr =
√
σ2
err + (0.5σerr)

2 ∼ 1.1σerr (7.14)
1In the figures of this section we use a different notation: σfit = rfit, σinj = rinj, and σerr = rerr
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The increase due to the bias on the total uncertainty would be about 10% of the fit
uncertainty, therefore it can be neglected.
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Generation and fit with f1

The pulls reported in Figs. 7.26 and 7.27 are obtained using f1 for both the generation
and the fit, respectively with and without the injection of a signal. This test is
used as a "closure" test for the fit with f1. The right plot of each Figure shows the
histogram of the bias values obtained. The results shows that the average bias is
well below 0.5 and can then be neglected.

The top regions of Figs. 7.26a and 7.27a, show the largest bias. This increase in
the bias can be caused by the left fit range, which may cut a portion of the left tail
of the signal peak. However ,the effect is moderate. Figs. 7.26b and 7.27b show, in
fact, that also in this region the bias is about 0.6-0.7.

The region of Fig. 7.27a for m(R1) > 7TeV shows only positive values for the
bias. This is because σfit is forced to be positive in that region. At such high
values of m(R1), in fact, the mjj distribution is poorly populated, and a negative
fluctuation of σfit would cause the signal+background distribution to be negative,
which is unrealistic. As a consequence the bias in that region can only be positive.
This does not happen in Fig. 7.26 because the injection of a signal populates the
spectra at high mjj values, and the total distribution is always positive. In this case
negative value of the bias arise when σfit < σinj on average.

Generation with f2 and fit with f1

The bias test has been performed also generating pseudodata using f2 and fitting
with f1. Figures. 7.28 and 7.29, respectively produced with and without the injection
of a signal, show that also in this case the bias is negligible. This test ensures that
the function f1 is flexible enough to model the background, even if it originates from
a different functional form (that also fits well the data).

Also in this case the top region shows the largest bias, and the region correspond-
ing to m(R1) > 7TeV shows only positive bias (see previous paragraph).
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Generation with f1 and fit with f2

We also performed the test inverting the two functions, i.e. using f1 to generate
pseudodata and f2 for the fit. The results are reported in Figs. 7.30 and 7.31. The
fit with f2 shows in general larger (absolute) value of the bias and less uniformity in
the ρm vs. m(R1) plane with respect to the fit with f1.

We can conclude that f1 is the function that introduces the smaller bias between
the two, and for this reason we choose it for the fit.
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Generation and fit with f2

We performed on f2 a similar closure test as that performed for f1. Figures. 7.32
and 7.33 show the bias obtained by generating and fitting the pseudodata distribu-
tions with f2. Also in this case the bias distribution is less uniform across the ρm vs.
m(R1) plane with respect to that from the fit with f1.
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(a) m(R1) = 3TeV ρm = 0.1 (b) m(R1) = 3TeV ρm = 0.2

(c) m(R1) = 5TeV ρm = 0.1 (d) m(R1) = 5TeV ρm = 0.2

(e) m(R1) = 7TeV ρm = 0.1 (f) m(R1) = 7TeV ρm = 0.2

Figure 7.25. Pull distribution plots of fitted signal strength parameter (r) from 100 toys
both generated and fitted with function f1, for different signal hypothesis (different set
of categories). In these plots the injected signal cross section is equal to the expected
upper limit for each signal hypothesis. In the z-axes of the plots the signal cross section,
σ, is indicated with r
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(a) σinj = 95% CL expected upper limit. (b) bias histogram

Figure 7.26. Left: bias versus ρm and m(R1) from pseudodata both generated and fitted
with function f1. A signal is injected with a cross section equal to the expected limit.
Right: 1D histogram of the bias (Nsig = # of signal hypotheses). The position of the
peak of the distribution, around 0.2, shows the presence of a small bias which can be
considered negligible.

(a) No signal injection (b) bias histogram

Figure 7.27. Same as Fig. 7.26, but for test performed without the signal injection.

(a) σinj = 95% CL expected upper limit. (b) bias histogram

Figure 7.28. Left: bias versus ρm and m(R1) from pseudodata generated with f2 and
fitted with f1. A signal is injected with a cross section equal to the expected limit.
Right: 1D histogram of the bias (Nsig = # of signal hypotheses).
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(a) No signal injection (b) bias histogram

Figure 7.29. Same as Fig. 7.28, but for test performed without the signal injection.

(a) σinj = 95% CL expected upper limit. (b) bias histogram

Figure 7.30. Left: bias versus ρm and m(R1) from pseudodata both generated and fitted
with f2. A signal is injected with a cross section equal to the expected limit. Right: 1D
histogram of the bias (Nsig = # of signal hypotheses).

(a) No signal injection (b) bias histogram

Figure 7.31. Same as Fig. 7.30, but for test performed without the signal injection.
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(a) σinj = 95% CL expected upper limit. (b) bias histogram

Figure 7.32. Left: bias versus ρm and m(R1) from pseudodata both generated and fitted
with f2. A signal is injected with a cross section equal to the expected limit. Right: 1D
histogram of the bias (Nsig = # of signal hypotheses).

(a) No signal injection (b) bias histogram

Figure 7.33. Same as Fig. 7.32, but for test performed without the signal injection.
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Chapter 8

Results and interpretation

In this Chapter we report the results of the search for signal processes involving
the production of a new high-mass resonance (R1), which decays into a parton
and a second resonance (R2), which in turns decay into two partons. The search
uses the full dataset of pp collisions collected in the LHC Run 2, at

√
s = 13TeV,

corresponding to an integrated luminosity of 138 fb−1, and follows the strategy
described in Ch. 7.

We tested for signal hypotheses with R1 masses (m(R1)) between 2 and 9TeV, in
steps of 0.1TeV, and for ρm values between 0.1 and 0.2, in steps of 0.0125, where ρm
is the ratio between the masses of the two resonances (m(R2) /m(R1)). The analysis
is not sensitive to m(GKK) < 2TeV, because of the trigger and event selection
criteria discussed in Sec. 6.1, and larger values of ρm are not considered because of
the small signal efficiency (Sec. 7.3.3.2).

The fit to the dijet mass (mjj) spectra of the event categories defined in Sec. 7.2
has been performed following the method described in Sec. 7.3 for all the signal
hypotheses considered. The evaluation of the significance of the observed excesses
from the fit is reported in Sec. 8.1. No significant excess has been found above the
SM background predictions.

The analysis sets limits on the benchmark warped extra dimension (WED) model
introduced in Sec. 2.2.3. In this model R1 is a KK gluon (GKK), R2 is a radion (φ)
and the three partons produced in the decay are all gluons.

The analysis then set limits on the GKK production cross section following the
method described in Sec. 8.2. The resulting limits are reported in Sec. 8.2.2, as
a function of m(GKK) and ρm, and they are interpreted as limits on GKK and φ
masses. Our results are then compared to that provided by the latest CMS inclusive
search for dijet resonances [30], showing the gain in sensitivity obtained with the
analysis presented here.

8.1 Significance of observed excesses

8.1.1 Local significance

The local significance of the observed excesses is evaluated through an hypothesis
test that quantifies the probability for the background to fluctuate, and give an
excess of events as large, or larger, than the observed one.
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For a given signal hypothesis with fixed m(R1) and ρm, the test statistic used is
the log-likelihood ratio:

q0 = −2 ln L(x|µ = 0, θ̂0)
L(x|µ̂, θ̂)

and µ̂ ≥ 0. (8.1)

The likelihood L(x|µ,θ) is the same defined in Eq. 7.2. Here we made explicit
its dependence on the data x, the signal strength modifier µ and the background
parameters θ. θ̂0 refers to the set of θ values that maximizes the likelihood given
µ = 0. The parameter estimators µ̂ and θ̂ correspond, instead, to the global
maximum of the likelihood. The constraint µ̂ ≥ 0 limits the test statistic at zero for
likelihoods with negative fluctuations of µ, since we are not interested in interpreting
a deficit of events with respect to the expected background.

The distribution of the q0 can be determined using Wilks’ theorem [118] pro-
vided the number of analyzed events is large enough (i.e in the Asymptotic limit).
Under this assumption, q0 distribution asymptotically approaches a chi-squared
(χ2) distribution with 1 degree of freedom. We can then evaluate the p-value (p0)
corresponding to a given experimental observation of qobs0 as:

p0 = P (q0 ≥ q
obs
0 ) =

∫ ∞
q
obs
0

fk(q0)dq0 = 1
2

[
1− Erf

(√
qobs0 /2

)]
(8.2)

where fk(q0) is the distribution of a χ2 with k = 1 degrees of freedom and "Erf" is
the error function. To convert the p-value into a significance S expressed as number
of standard deviations σ, we adopt the convention of a “one-sided Gaussian tail”:

p0 =
∫ ∞
S

1√
2π

exp(−x2/2)dx (8.3)

In high energy physics experiments, the value of S = 5σ, corresponding to p0 =
2.8×10−7, is commonly considered the significance threshold to be passed by a signal
to claim its discovery. For our analysis the value of the observed local significances
is reported in Fig. 8.1, for all the signal hypotheses tested, as a function of m(R1)
(= m(GKK) in our benchmark model) and ρm.

No excess above S = 5σ was found, with the two largest excesses corresponding
to S = 3.6 and 2.8σ, respectively for m(R1) = 2.9 and 4.2TeV, and ρm ≈ 0.138. The
two excesses are surrounded by regions with similar observed significance. This is an
expected consequence of the event categories definition and the fit method described
in Sec. 7.2 and Sec. 7.3. The categories definition, in fact, is based on the value
of the second resonance mass, m(R2), in the signal hypothesis considered. Hence,
two nearby signal hypotheses, with similar value of m(R2), partially share the same
events. For this reason they are affected by the same statistical fluctuations with
respect to the expected background. Thus, the fit to data yields similar results for
signal hypotheses which are close in the ρm vs. m(R1) plane.

Figs. 8.2 and 8.3, show the background-only fit results, respectively for (m(R1) =
2.9, ρm = 0.138) and (m(R1) = 4.2, ρm = 0.138). The dijet mass spectra in data and
the background-only fits are shown for the 20 categories used for the fit (2 categories
are removed because of the mthr

jj requirements described in Sec. 7.3.2). The Figures
also show, in the plot at the bottom of each category spectrum, the plot of the pulls,
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Figure 8.1. Observed local signal significance as a function of ρm and m(R1). We identify
two distinct regions around the two most significant excesses, which corresponds to
m(R1) = 2.9 and 4.2TeV, for ρm ≈ 0.138. The local significance is respectively S = 3.6σ
and 2.8σ. The two most significant excesses are surrounded by regions because nearby
categories in the plane partially share the same events.

defined as the difference between the data and the background yields in each bin,
divided by the statistical uncertainty (assuming Poissonian fluctuation in each bin).
These plots (called for simplicity ratio plots) show the agreement between the data
and the background-only fit. The plots also shows the signal distributions for each
category, normalized to a cross section equal to the observed 95% CLs limit times
the branching fraction (for a definition of the limits see Sec. 8.2).

The signal+background fit results, for the same two signal hypotheses, are
reported in Figs. 8.4 and 8.5. In this case the signal is normalized to the fitted cross
section, which are σfit = 30±9 and 5±2 fb, respectively for m(R1) = 2.9 and 4.2TeV.
The two values of the cross section are roughly consistent with the corresponding local
significances of 3.6σ and 2.8σ, since σfit/σerr ≈ 3.3 and 2.5 respectively. The p-values
from the goodness-of-fit tests of these two signal+background fits (evaluated with
the method described in Sec. 7.3.4.1) are 0.21 and 0.23 respectively for m(R1) = 2.9
and 4.2TeV. These values are larger than that of the corresponding background-only
fits, which are 0.03 and 0.14, because the presence of a signal increase the agreement
between the fit and the data.

For illustrative purposes, the mjj spectra of the categories are combined in a
single spectrum, for all the fits shown in Figs. from 8.2 to 8.5. The combination,
shown in Fig. 8.6, is performed following the procedure of Ref. [119]. The spectra of
the categories are combined through a weighted sum. The weight for the category i
is equal to:

wi = Si
Si +Bi

(8.4)

where Si is the number of expected signal events in the category i and Bi the
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number of expected background events. Si is calculated as the integral of the signal
event distribution in an mjj interval of ±20% around the signal peak, assuming a
signal cross section equal to the observed 95% CL upper limit for the background-only
fits, and a signal cross section equal to the fitted one for the signal+background fits.
Bi is defined as the integral of the background component of the fit, in the same mjj
interval.

The fit is displayed in the portion of themjj fit range common to all the categories,
together with the signal peak normalized to the assumed cross section. Fig. 8.6
shows both the statistical uncertainty on data and the uncertainty on the fitted
background distribution. For the evaluation of the latter:

• we generated ∼1000 toy datasets from the mjj spectra from data (Poissonian
fluctuation);

• we performed the fit for each of the generated toy datasets;

• we evaluated the bin content for each bin using the fitted background distribu-
tion;

• the root mean squares (RMS) of each bin is then the fit uncertainty for that
bin.

This uncertainty is represented in Fig. 8.6 with a grey hatched band around the
fit, which is barely visible in most of the combined spectra.

The Fig. 8.6 highlights the observed excesses for the two signal hypotheses, and
allowing for a better comparison between the data and the fit. The blue distribution
of the ratio plots (below each combined spectra) shows the signal significance in
each bin (the number of signal events divided by the statistical uncertainty on the
fitted background). The local signal significances of the signal hypotheses reported
above (S = 3.6 and 2.8σ) is roughly consistent with the sum of the squares of the
signal significance.
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Figure 8.6. Dijet mass spectrum from the combination of th mjj spectra from the different
categories of the two signal hypotheses with the largest observed excesses. Both the
background-only (b-only) and signal+background (s+b) fits are shown. Each figure
shows the data (black points) with vertical bars representing the statistical uncertainty
(σstat), the background component of the fit (red line) and its uncertainty (barely visible
gray hatched area) together with the signal shape (dashed line) normalized to a cross
section equal to the 95% CLs upper limit (b-only fit) or to its post-fit value (s+b fit).
The mjj spectra of data, background and signal shapes of the different categories, are
combined through the weighted sum discussed in the text. The lower panel shows the
difference between the data and the background prediction (points), and the background
uncertainty (hatched gray area), divided by the statistical uncertainty.
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8.1.2 Global significance of largest excess

The significance of the largest excess has been also evaluated with toy experiments,
without the asymptotic limit approximation. To perform this test we generated
∼10.000 toy datasets from the mjj spectra of the categories of the corresponding
signal hypothesis. We then fitted the generated mjj spectra and evaluated the
significance (S) for each toy dataset.

The result of this process is the distribution of S shown in Fig. 8.7. From this
distribution, the p-value corresponding to S = 3.6σ is 6.5 × 10−41. This value is
higher than ∼ 2× 10−4, which would be the p-value corresponding to S = 3.6σ for a
normal distribution. Converting the p-value from the simulated distribution in a
number of standard deviations, the actual significance of the excess is S = 3.2σ. We
can conclude then that the asymptotic approximation provides a fair estimation of
the significance of the most significant observed excess.

)σSignificance (# of 
0 1 2 3 4 5 6

N
en

tr
ie

s

1

10

210

310

410

510
 = 6.5e-04)σp-val (S>3.6

13 TeVCMS Simulation

Figure 8.7. Distribution of the significance S obtained from ∼10.000 toy experiments. The
two vertical lines mark the observed significance of the largest excess: 3.6σ.

Since the values of the two resonance masses are unknown, we test a broad range
of m(R1) and ρm hypotheses. When testing such a large number of hypotheses, an
apparently statistically significant observation may have actually arisen by chance.
For example, if one is performing n multiple independent tests, a p-value of 1/n is
expected to occur once per n tests. We must then evaluate the probability that a
fluctuation, similar or larger than the most significant one, can be obtained at least
for one of the signal hypotheses tested. This significance "dilution" effect, associated
with the multiple testing, is also known as a trial factor or look-elsewhere effect [120].

The significance, corrected for this effect, is called global significance. Here we
report the evaluation of the global significance for the largest excess found, which
corresponds to a local significance of Sobs = 3.2σ. The global significance is usually
evaluated by generating a large number of toy experiments, calculating the local
significance for all of the signal hypotheses considered, and taking the maximum value

1The use of the S distribution for this study is equivalent to the use of the q0 distribution, since
the two variables are connected by a monotonic relation: the higher is S, the higher is q0. We chose
S for this study because it was easier to evaluate with respect to q0 with the program used for the
analysis.
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of S for each toy (Smax). The p-value evaluated integrating the Smax distribution for
Smax ≥ Sobs would correspond to the global significance of the excess.

This approach is very time consuming, since it would require the generation
of a large number of pseudodata samples. In fact, to take into account for the
observed correlations in the evaluation of the local significance, a large number of
pseudodatasets (O(10.000)) should be generated by varying the data distribution in
the 3 dimensional (3D) space formed by the variables: mjj, mRjet, and mPjet, where
the latter two are the masses of the two jets. Then, for each pseudodataset the full
analysis needs to be rerun.

However, an upper limit on the global significance can be evaluated using a
simplified approach. Since the largest excess has been found for m(R1) = 2.9TeV,
ρm = 0.138, we start by considering only signal hypotheses with m(R2) = m(R1)×
ρm ' 400GeV, which are located along an hyperbole in plane ρm vs m(R1) (Fig. 8.8).

Since the categories definition is based on the value of m(R2), the mjj spectra of
the event categories are the same for all the signals from this hyperbole. We can
then sort the data into the categories, fit the mjj spectra in the whole mass range
and generate toys directly from the resulting background function. This approach
avoids the complexity of a generation of a 3D distribution and produce a single set
of mjj spectra for all of the signal hypotheses with m(R2) = 400GeV.

For each toy, then, we perform the fit and evaluate the local significance (in
asymptotic approximation) for the 21 signal hypotheses belonging to this hyperbole,
which correspond to different values of m(R1), from 2 to 4TeV (100GeV step). The
plot in Fig. 8.8 shows an example of the local significance, evaluated for the signal
hypotheses corresponding to this hyperbole, for a single toy.

Figure 8.8. Local signal significance (asymptotic formulae) for one toy experiment,
generating mjj spectra for the categories corresponding to signal hypotheses with
m(R2) = 400GeV.

The maximum value of the asymptotic significance (Smax), among all the signals
with different m(R1) probed, is then evaluated for each toy. After the generation of
∼10.000 toy-datasets, we then built the Smax distribution shown in Fig. 8.9.

The global p-value pg evaluated for Smax ≥ Sobs = 3.2σ is then pg ≈ 1.1× 10−2.
This means that the probability to observe a local significance above 3.2σ, among
all the signal hypotheses with m(R2) = 400GeV, is about 3.0%, which correspond
to a significance of ∼1.9σ.
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Figure 8.9. Distribution of the maximum local significance among the tested signal
hypotheses with m(R2) = 400GeV. The red line marks the value of the significance
observed in data.

Figure 8.10. Schematic view of the three sets of categories in the mRjet vs. mPjet plane
for m(R2) = 0.4 (red), 0.84 (yellow) and 1.44TeV (black). The background event
distribution from the QCD MC sample is also shown.

We can extend this reasoning by considering also signal hypotheses with other
values of m(R2), corresponding to other hyperboles in the ρm vs. m(R1) plane. We
chose to consider only other two values of m(R2): 0.84 and 1.44TeV. These values
correspond to the event categories shown in Fig. 8.10, and are chosen in order to
minimize the overlap in the plane. This choice minimize the correlation in data
for the mjj spectra of signal hypotheses belonging to different categories, therefore
we are able generate the toy datasets independently for these other two values of
m(R2).

We then analyze the toy datasets to reproduce the Smax distributions as done
for m(R2) = 0.4TeV. The resulting distributions are shown in Fig. 8.11, together
with the relative p-values.

We can then evaluate the probability to observe one or more excesses with a
local significance of 3.2σ in any of the 3 hyperboles by the combined probabilities of
the p-values:
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Figure 8.11. Distribution of the maximum local significance among the tested signal
hypotheses with m(R2) = 0.84 (left) and 1.44TeV (right). The red line marks the value
of the significance observed in data.

P = 1−
3∏
i=1

(1− pi) ≈ 0.04 (8.5)

Where pi, with i = 1, 2, 3 are the p-values for the three hyperboles. The
probability to observe an excess with a significance equal or larger than the observed
one, in any of the three hyperboles, is then ≈4%, which corresponds to 1.6σ. This is
an upper limit of the actual global significance, because it is evaluated on a restricted
number of signal hypotheses. We can then conclude that the excess is not significant,
having a global significance of Sglobal ≤ 1.6σ.
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8.2 Limits evaluation

Since no significative excess of events was observed in the fit, exclusion limits on the
production cross section of an R1 resonance decaying to R2 and a parton are set.

The modified frequentist method (CLs method)[121, 122] is used to set upper
limits on the signal cross sections. The test statistic of the LHC CLs procedure [123]
is:

q̃µ = −2 ln
L(x|µ, θ̂µ)
L(x|µ̂, θ̂)

and 0 ≤ µ̂ ≤ µ. (8.6)

where, as for the significance test statistic (Eq. 8.1), µ̂ and θ̂ maximize the
likelihood L, and θ̂µ maximizes L for a fixed value of µ. The lower constraint 0 ≤ µ̂
is dictated by physics (the signal rate is positive), while the upper constraint µ̂ ≤ µ
is imposed by hand in order to guarantee a one-sided (not detached from zero)
confidence interval. Physics-wise, this means that upward fluctuations of the data
such that µ̂ > µ are not considered as evidence against the signal hypothesis, namely
a signal with strength µ.

In the evaluation of the CLs limit, the probability density functions (pdfs)
f(q̃µ|µ, θ̂

obs
µ ) and f(q̃µ|0, θ̂

obs
0 ) are used. The first is the pdf of q̃µ assuming a signal

with strength µ in the signal+background hypothesis, while the second is for the
background-only hypothesis (µ = 0). The two pdfs are not known a priori, but
the Asymptotic Formulae [124], valid in the limit of a large event sample, provide
a useful approximation that avoid the estimation of them through the use of toy
datasets.

Thus, two p-values are defined, associated with the actual observation for the
signal+background and background-only hypotheses, pµ and pb:

pµ = P (q̂µ ≥ q̂
obs
µ |signal+background) =

∫ ∞
q̃
obs
µ

f(q̃µ|µ, θ̂
obs
µ )dq̃µ,

1− pb = P (q̂µ ≥ q̂
obs
µ |background-only) =

∫ ∞
q̃
obs
0

f(q̂µ|0, θ̃
obs
0 )dq̃µ

(8.7)

and CLs(µ) is calculated from the ratio of these two p-values:

CLs(µ) =
pµ

1− pb
(8.8)

The value of µ for which CLs = 0.05 is the observed limit of our search, cor-
responding to an exclusion at 95% confidence level. Since CLs(µ) is generally a
increasing function of µ, lower values of µ are excluded with a even higher confidence
level.

The expected CLs limit on µ is evaluated by assuming 1 − pb = 0.5, i.e. the
cumulative of the pdf for the background-only fit f(q̃µ|0, θ̂

obs
0 ) crosses the quantile

of 50%, which corresponds to the median of f(q̃µ|0, θ̂
obs
0 ). The ±1σ (68%) band is

defined by the crossings of the 16% and 84% quantiles, while crossings at 2.5% and
97.5% define the ±2σ (95%) band.
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The expected and observed limits on the model under study are shown in
Sec. 8.2.2 and discussed in detail, while the next Section is dedicated to the systematic
uncertainties and their effects on the limits.

8.2.1 Systematic uncertainties

The systematic uncertainties are taken into account as nuisance parameters in the
limit setting procedure. The dominant sources of systematic uncertainty are:

• Jet Energy Scale (JES);

• Jet Energy Resolution (JER);

• Jet Mass Scale (JMS);

• Jet Mass Resolution (JMR);

• N -subjettiness ratio uncertainty (δτ21);

• Standard deviation of the position (δµ) and width (δσ) of the average shape;

• Luminosity.

Since the background shape is derived from data all of the uncertainties above
are only considered for the resonance signal.

The JES and JER uncertainties (σJES and σJER) translate, respectively, into
uncertainties in the position µ and the width σ of the average dijet mass shape
for the signal. The effect of these uncertainties is propagated to the limits by
shifting the dijet mass shape by ±2% and varying its reconstructed width by ±8%
of the corresponding values. The values of these uncertainties has been evaluated
by previous CMS analyses (for example Ref. [75]) for anti-kT jets with a distance
parameter R = 0.8 (AK8, see Sec. 5.2 for the definition of the different jet clustering
algorithms). We performed a study to show that AK8 have similar performances
on the reconstruction of the jet pT with respect to the anti-kT jets with R = 1.5
(AK15) used in this analysis. In this study, the pT of reconstructed jets from MC
simulation of signal events are compared with the pT of the corresponding generated
jets, for both AK15 and AK8 jets. An example of the resulting distributions for the
jets pT corresponding to two signal hypotheses with m(R1) = 3TeV, ρm = 0.1 and
m(R1) = 7TeV, ρm = 0.2 is shown in Fig. 8.12. The pT of the jets are respectively
∼1.5 and 3.5TeV in the two cases.

The two distribution for AK15 and AK8 jets are nearly identical. The same
study is repeated also for simulated signal samples with different m(R1) and ρm,
obtaining similar results. Hence, the JECs evaluated for the AK8 jets can be applied
to the AK15 jet, assuming the same JEC uncertainty for AK8 and AK15 jets.

For the evaluation of the JMS and JMR, we applied the soft drop declustering
algorithm (introduced in Sec. 5.5.1) to the AK15 jets and CA15 jets. We then
compared the jet masses obtained in the two cases. In the first step of the soft
drop mass algorithm the constituents of the AK15 jet are reclustered using CA15
algorithm. Therefore the soft drop mass algorithm should provide the same mass
value for AK15 and CA15 jets. Figure 8.13 show the ratios between the AK15 and the
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Figure 8.12. Distribution of the ratio between the reconstructed jet pT and the generated
jet pT for AK8 jets(blue) and AK15 jets (red) for two simulated signal samples with
m(R1) = 3TeV, ρm = 0.1 (left) and m(R1) = 7TeV, ρm = 0.2 (right).

Figure 8.13. Ratio between the AK15 and CA15 soft drop jet masses, for a jet from R2
decay (left) and a jet from the hadronization of a gluon (right). The comparison show
that the resulting jet masses are the same for the two clustering algorithms.

CA15 jet masses, for a simulated jet coming from the decay of R2 (m(R2) = 300GeV)
and a jet from the hadronization of a gluon.

The plots show indeed that the mass values obtained is the same in the two
cases, except for a small fraction of events, attributable to errors in the algorithm.
We performed this comparison also for other m(R2) values, obtaining similar results.
This comparison shows that we can apply, for the JMS and JMR, similar uncertainties
as those used in previous CMS analyses which uses CA15 jets. An example is the
analysis reported in Ref. [125], from which we derive a ±3% uncertainty on the JMS
and a ±10% uncertainty on the JMR.

The uncertainty on τ21 is evaluated from the comparison between the simulated
τ21 distribution and the same distribution in data, shown in Figs. 7.4a and 7.4b.
These distributions suggest a systematic uncertainty on τ21 of ∼10%, from the
smearing of the MC distribution to match the data.

Since the jet masses and τ21 are used in the selection of the events and their
subsequent division into categories, the uncertainty on the JMS, JMR and τ21 cause
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event migrations between categories. This effect results into uncertainties on the
signal normalizations in each category. These uncertainties are propagated to the
limits by varying the signal normalizations by a value that ranges between ±20%
and ±50% (±1%–±50% for the τ21 uncertainty) of the central values obtained from
the simulation, depending on the source of the uncertainty and on the category
considered. It is important to stress that the event migration does not cause a global
loss of signal efficiency, because signal events simply migrate between two categories.
Hence, even if the uncertainty on the signal normalization uncertainty may seem
large, it has small effect on the final limits.

The uncertainty on the integrated luminosity is 1.6% [9, 10, 11] and it is propa-
gated to the normalization of the signal, in addition to the other uncertainties on
the normalization.

The use of an average shape for all the event categories, as described in Sec. 7.3.3,
introduces additional uncertainty on the position and the width of the signal peak,
because of the differences between the average signal shape and the shapes of each
category. The effect of these uncertainty sources are estimated from the simulation,
evaluating the standard deviations of the shape parameters δµ and δσ, which are
respectively ±2% and ±30% in the position µ and width σ of the signal peak. These
uncertainties are combined with the JES and JER uncertainties as follows:

σµ =
√
σ2

JES + δµ2 ≈ 2.8%

σw =
√
σ2

JER + δσ2 ≈ 31%
(8.9)

where σµ and σw are the total uncertainties on the central value and width of the
signal peak, and are treated in the fit as uncorrelated uncertainties amongst different
categories. The systematic uncertainties are summarized in Tab. 8.1. The combined
effect of all the uncertainties above on the limit is estimated to be below ∼10%, for
all the signal hypotheses considered.

Table 8.1. Summary of the systematic uncertainties propagated to the limit setting
procedure

Systematic uncertainty
source

Effect

JES ±2% shift of mjj peak
JER ±8% of resolution
δµ ±2% shift of mjj peak
δσ ±30% of resolution
JMS event migration between cat. (20%–50% on

the normalization)
JMR event migration between cat. (20%–50% on

the normalization)
δτ21 event migration between cat. (up to 50% on

the normalization)
Luminosity ±1.6% on the normalization

We do not consider additional uncertainty on the background shape parameters
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because they are all considered as nuisance parameters distributed with a flat prior
around the best fit values in a sufficiently large range, for which the limit is found
to be stable.

A source of systematic uncertainty on the signal can arise from biases due to the
choice of a specific functional form for the background modeling. In Sec. 7.3.4.2 we
shown that the bias introduced by the chosen fit function is well below the 50% of the
statistic uncertainty, therefore it is considered negligible for the reasons described in
Sec. 7.3.4.2. Thus, we do not need to introduce systematic uncertainties to account
for the bias.
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8.2.2 Signal cross section limits

No significant excess is observed in data with respect to the background prediction.
As we saw in Sec. 8.1 the largest observed excess in data occurs for a signal hypothesis
with m(R1) = 2.9TeV and ρm = 0.138, and has a local significance of ∼3.2σ, which
is less than 1.6σ when accounting for the look-elsewhere effect.

In this section we report the final results and the exclusion limits that our analysis
can set on the signal model, introduced in Sec. 2.2.3, where the first resonance (R1)
is a KK gluon (GKK) , the second resonance (R2), is a radion (φ), and the three
partons in the final state are all SM gluon (g)

In Figs. 8.14 and 8.15, we show the obtained limits on the product of the GKK
production cross section (σ(GKK)) and the branching fraction (B). Each Figure
shows the observed limit, the expected limit and its uncertainty bands as a function
of the GKK mass, m(GKK) = m(R1), for the different ρm values tested.
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(c) ρm = 0.125
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Figure 8.14. Expected (dashed line) and observed (solid line) 95% CLs limits on σ(GKK)×
B ×A as a function of m(R1), for fixed ρm. Uncertainty bands (±1σ, ±2σ) on expected
limits are also shown. Discontinuities in expected limits are present in the transition
between sets with different number of categories (red lines).
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(b) ρm = 0.1625
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(c) ρm = 0.175
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Figure 8.15. Expected (dashed line) and observed (solid line) 95% CLs limits on σ(GKK)×
B ×A as a function of m(R1), for fixed ρm. Uncertainty bands (±1σ, ±2σ) on expected
limits are also shown. Discontinuities in expected limits are present in the transition
between sets with different number of categories (red lines). The additional discontinuity
for ρm = 0.2 at m(R1) ≈ 3.6TeV is caused by the removal of one category from the final
fit, following the procedure described in Sec. 7.3.2.
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The observed upper limits on σ(GKK)×B are also shown in Fig. 8.16 as a function
of ρm and m(GKK) = m(R1). The black curve shown in the figure marks the contour
of the region of the ρm-m(R1)-plane corresponding to the signal hypotheses excluded
by our search. The exclusion is obtained by the comparison of the observed limit with
the theoretical prediction of σ(GKK) times the branching fraction B(GKK → φg),
which are evaluated for a specific choice of the couplings of the model, reported in
Eq. 2.28. The signal hypotheses where the observed limits are below the theoretical
predictions are excluded. Translating these limits as exclusion on the masses of
the two new resonances, we can conclude that KK gluon masses up to 4.3TeV are
excluded at ρm ∼ 0.1, while at ρm ∼ 0.2 we can only exclude m(GKK) up to ∼3TeV
(not considering the isolated point at m(GKK) = 3.7TeV). The reduction of the
analysis sensitivity at ρm ∼ 0.2 is caused by the reduction of the signal efficiency in
that region, as shown in Sec. 7.3.3.2. The dip in the expected and observed limit
contours around m(R1) ≈ 3.4TeV and ρm ≈ 0.2 is due to variations in the signal
efficiency caused by the removal of categories in the fit, as described in Sec. 7.3.2.
The two isolated excluded regions, occurring in the m(R1) interval between 4 and
5TeV, are separated from the main excluded region at lower masses by a region
where the observed limits are higher than expected, consistently with an upward
statistical fluctuation within this intermediate region.

Also the expected upper limit has been compared with the theoretical predictions,
the result is the exclusion area delimited by the violet dashed lines in Fig. 8.16,
which is shown together with the ±1σ uncertainty band. The area excluded by
the observation is smaller than expected because of the aforementioned upward
fluctuation around m(R1) = 4.2TeV and ρm = 0.138. This effect is a direct
consequence of the excess with a local significance of ∼2.8σ found for that signal
hypothesis.

Figure 8.16 also shows, in red, the area excluded by the CMS dijet analysis [30],
which is sensitive to the GKK → qq decay. This area is obtained after a reinterpreta-
tion of the observed limits from the dijet search, compared with the GKK production
cross section of the model under study, after taking into account for the branching
fraction of GKK → qq, which is estimated to be ∼50% for all GKK masses. GKK
boson masses are excluded up to ∼3.2TeV, a result that is in agreement with the
interpretation of dijet limits reported in Ref. [34] (bottom plot of Fig. 5), which
assumes slightly different couplings. The red area contour is almost a vertical line in
the plane since the GKK → qq process is not sensitive to variation of φ mass, except
for small effects caused by the variation of the phase space with m(φ).

The comparison between the black and the red line clearly shows that the analysis
presented here is more sensitive to the model under study with respect to the CMS
inclusive dijet search, especially for low values of ρm. For ρm ' 0.2, the results of
the two analyses are similar, because of the limited signal efficiency of our analysis,
as described in Sec. 7.3.3.2.

In the WED model considered, only the gluon field among the SM gauge fields
is allowed to propagate in the entire bulk. As a consequence, several constraints
from existing searches do not apply since decays of the Kaluza-Klein gluon to a top
quark-antiquark pair and Higgs boson pairs are suppressed, while radion decays to
pairs of photons are forbidden.

We can conclude that the analysis here presented enhance the sensitivity to new
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Figure 8.16. Observed upper limits on σ(GKK)× B, as a function of ρm vs. m(R1), for
a resonance model with three gluons in the final state. The excluded regions from
this search (black hatched) are optimized for the GKK → φ + g → ggg decay with
ggrav = 6.0 and gGKK = 3.0. These excluded regions are compared with those obtained
from a reinterpretation of the inclusive CMS dijet resonance search [30], which is more
sensitive to the decay channel GKK → qq (red hatched). The vertical band between the
m(R1) values of ≈3.0 and ≈3.1TeV, for ρm . 0.19, is not excluded by the dijet search
because of an upward statistical fluctuation in the observed limit. The white, dashed
lines represent a sample of curves corresponding to fixed m(R2) values.

resonances that follows the cascade decay chain R1 → R2 + P3 → P1 + P2 + P3,
introduced in Sec. 3.3, with respect to previous CMS searches. In the benchmark
model studied, the excluded limit on the GKK mass is extended by up to ∼1TeV.
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Chapter 9

Conclusions and perspectives
for future analyses

In this dissertation a search for new phenomena beyond the Standard Model, involving
the production of two hadronic resonances, is presented. The analysis uses data from
proton-proton collisions produced at the CERN LHC at a center-of-mass energy of
13TeV, and corresponding to a luminosity of 138 fb−1.

Searches for hadronic resonances by the CMS and ATLAS experiments typically
assume the existence of a single new resonance that decays into two or more SM
particles. Depending on the hypothesis it can be produced individually, in pairs or
in association with other SM particles.

In this thesis we consider a new final state, not explored by previous searches.
We consider the production of a first high-mass hadronic resonance (R1) that decays
into a parton and a second resonance (R2), which in turn decays into a pair of
partons.

The final state topology, resulting from the cascade decay, depends on the ratio
between the masses of the two resonances: ρm = m(R2) /m(R1). This analysis
assumes m(R2) to be much lighter than m(R1) (ρm . 0.2). In this case the partons
from the R2 decay are collimated and can be reconstructed as a single jet. The
resulting topology is then formed by a system of two jets (dijet), with an invariant
mass (mjj) distribution that peaks around the value of m(R1). Moreover, the jet
from the R2 decay (R2-jet) has a mass compatible with m(R2) and the pattern of
its constituents shows a dipolar substructure.

We analyze final states with a dijet-like topology, selecting events with two high-
pT jets, back-to-back in the plane orthogonal to the beam direction. In addition to
the standard dijet selections, the properties of the R2-jet are exploited to disentangle
the signal from the background. The two-prong substructure of the R2-jet is used for
its identification. The events are then divided into categories based on the jet masses.
We build then the mjj spectra for the events of each category. A signal+background
fit is used to search for excesses above the background predictions compatible with
the presence of a signal peak. The R1 and R2 masses are unknown, therefore we
scanned a wide range of values. For each m(R2) value, different event categories are
defined and the analysis is repeated on the selected events.

We searched R1 resonances in the mass range between 2 and 9TeV, for ρm values
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between 0.1 and 0.2 (m(R2) between 0.2 and 1.8TeV). The CMS trigger thresholds
prevent the search for resonances with mass below 2TeV.

The largest excesses is found for m(R1) = 2.9TeV and ρm = 0.138, and cor-
responds to a local significance of 3.2σ. Because of the large number of signal
hypotheses tested, after correcting for the look-elsewhere effect, the global signifi-
cance of the excess is below 1.6σ, and therefore the excess is not significant.

We derived the 95% CLs upper limits on the production cross section of R1
times the branching fraction of its decay into R2 and a parton. The limits are also
compared with the theoretical prediction for the decay of a Kaluza–Klein (KK) gluon
(GKK) into a radion (φ) and a gluon, evaluated in the assumption WED benchmark
model described in Sec. 2.2.3.

From the comparison, GKK masses in the range from 2.0 to 4.3TeV are excluded at
95% confidence level, together with radion masses in the range from 0.20 to 0.74TeV.
The excluded region is also compared to that obtained by a reinterpretation of
the limits from the latest CMS dijet search [30] on the GKK → qq decay. We can
conclude that the analysis presented here is more sensitive to the model under study,
with an exclusion range on the GKK mass extended by up to ∼1TeV for low values
of ρm.

The analysis results have been presented by the author of this thesis for the first
time at the LHC Physics Conference on June 9, 2021 [126], and are reported in a
paper submitted to the Physics Letter B journal on January, 2022 [127].

We conclude this thesis with an outlook on possible upgrades of this analysis
and possible extensions to similar decay chains.

The extension of the search in the mass region below 2TeV could be obtained
by using the CMS scouting technique. This data acquisition strategy allow to lower
the jet trigger thresholds by storing a minimal amount of data at trigger level.

New searches, with a different analysis strategy, are possible for models with ρm
values above 0.2. In this regime the R2 resonance does not have a large Lorentz-boost
anymore and the final state presents three resolved jets. Initial studies are ongoing
on this research within the CMS experiment.

The WED model foresees the existence of other KK partners of SM gauge bosons,
besides the KK gluon studied in this thesis. Some of these searches are currently
performed within the CMS collaboration. One example is the search for WKK boson
which decays to 3 W bosons, the search is performed in both the semileptonic and
fully hadronic final states [36, 35]. These searches can be extended to ZKK or γKK.
The latter particle, for example, would decay in the process γKK → φγ → γγγ. The
signature would be a peak in the invariant mass of three photons, which is little
explored by searches at the LHC.
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Appendix A

The Kaluza–Klein theory

The first formulation of a theory of gravity with an extra spatial dimension was
made by the German mathematician and physicist Theodor Kaluza in 1921 [128]
(see also [129] for a recent translation of the original paper), followed by the Swedish
physicist Oskar Klein in 1926 [130], which postulated the extra dimension to be
"curled up", or compactified.

This work is generally known as the Kaluza–Klein theory, and provides an
extension of the General Relativity (GR) to 5 dimensions, which also offer a possibility
for the unification of the GR and the electromagnetism. The general scheme of a
space with a compact dimension is show in Fig. A.1, where the vertical axis of the
cylinder stands for the traditional 4 dimensions (time + 3 spatial dimensions), which
are infinite and flat. The fifth dimension is finite, and compactified on a circle of
radius R. The universe corresponds then to the surface of the cylinder, with nothing
inside or outside of it. The most relevant aspect of the KK 5D theory of gravity is
that it can be used to construct a 4D effective theory with an infinite spectrum of
4D fields. This is known as the KK decomposition and it is described in the next
Section.

A.1 The Kaluza–Klein decomposition scheme

The KK decomposition, which is essentially a normal mode expansion, converts a
5D Lagrangian into a 4D Lagrangian with an infinite spectrum of 4D particles. This
allows to convert the 5D theory in a 4D effective theory, integrating out the extra
dimensions from their equation of motion (EOM).

For simplicity, we will show this process on a scalar field ϕ with null potential.
The action of the 5D theory is of the form:

S =
∫
d4xdy

1
2∂Mϕ(x, y)∂Mϕ(x, y)

=
∫
d4xdy

1
2
[
(∂µϕ)2 − (∂yϕ)2

] (A.1)

with M = 0, 1, 2, 3, 4 and the extra dimension is x4 = y. The variation of this action
gives the following EOM for ϕ:
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Figure A.1. Representation of KK space with a compact dimension. The vertical axis
represent the 3 + 1 traditional dimension, while the fifth dimension is curled up in a
circle of radius R. The 5d fields are quantized along the compact dimension generating
massive 4-dimensional fields.

∂2
µϕ− ∂

2
yϕ = 0 (A.2)

Since the y dimension is compactified on a circle, we can introduce periodic boundary
conditions. As a consequence, the EOM for ϕ admits periodic solutions along the y
direction that can be decomposed in a Fourier series of the form:

ϕ(x, y) = 1√
2πR

∞∑
n=−∞

ϕ(n)(x)ei
n
R
y (A.3)

with ϕ(n)∗ = ϕ(−n) in order to guarantee that ϕ is real. Replacing this expression
of ϕ back into Eq. A.2 and using the orthogonality relations of the Fourier modes
we obtain

S =
∫
d4x

∑
n>0

∂µϕ
(n)†∂µϕ(n) − n2

R2 |ϕ
(n)|2 (A.4)

The momentum along the compact direction is then quantized by the boundary
conditions, and its spectrum appears as a 4D tower of particle with masses mn =
n/R. Unfortunately the KK theory is not able to describe the SM as we know it
today, because the SM fermions are chiral under the SM gauge group, while KK
decomposition give rise to a vector-like fermion spectrum. Nonetheless, it probes that
theories with extra dimensions provide an intriguing way to achieve the unification
of apparently disparate forces, by obtaining 4D massive fields from a 5D theory.
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Appendix B

ECAL Endcaps intercalibration
with Z → e+e− events

This Chapter reports my study about the inter-calibration of the CMS electromag-
netic calorimeter (ECAL). All the procedures and techniques adopted by CMS for
the ECAL calibration are briefly introduced, giving more details about one specific
method, which exploits electron-positron pairs (ee) from Z bosons decays.

The excellent performance in the reconstruction and identification of high energy
photons and electrons has played a key role in the observation of the Higgs boson
and the study of its properties during the LHC Run 1.

The LHC Run 2 represented a challenge for the detector, which has been success-
fully passed. In fact, the ECAL ensured its reliability on the energy reconstruction,
even in the harsher environment of the Run 2, where the LHC achieved a stable
instantaneous luminosity of 2× 1034 cm−2 s−1, twice the design value.

Maintaining and improving the ECAL performance also in Run 3 is vital for all
the physics analyses that include photons and/or electrons in their final state. The
materials of which the ECAL is composed, in fact, tend to degrade because of the
radiation damage that affects both the crystals and the photodetectors, causing their
response to change with time. Achieving stable energy reconstruction performances
requires then a continuous effort in the operation, monitoring, and calibration of the
calorimeter.

In the next sections we will briefly discuss the ECAL energy reconstruction and
calibration techniques, while the results of my study will be discussed in Sec. B.4.

B.1 ECAL energy reconstruction

The first step of the ECAL energy reconstruction is the identification of the group
of crystals (a "supercluster") in which an electromagnetic particle deposited energy.
Electrons and positrons bend along the azimuthal φ-coordinate with respect to the
longitudinal magnetic field of CMS, and release bremsstrahlung photons spread in
φ, which are recovered by the supercluster algorithm [131] in combination to the
photon conversion energy. The reconstructed energy is then calculated as a sum of
the signals from all crystals within this supercluster (SC):
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Ee,γ = Fe,γ ×
[
G(η)× {

∑
i∈SC

Si(t)× Ci ×Ai}+ Epreshower

]
(B.1)

Here, the factors Ai are the raw pulse amplitudes of the signals from the ECAL
read-out electronics, which are proportional to the energy deposited by the particle
in the ECAL crystals. A detailed description of the raw amplitudes can be found
in Ref. [132]. G(η) contains the conversion factor from the amplitude of the signal:
from counts from the analogue-to-digital converter (ADC) to GeV. It is η-dependent
to incorporate geometry effects. The factor Fe,γ corrects for imperfect clustering and
other geometry effects, and depends on the particle type. For electrons and photons
incident on the endcaps, Epreshower contains an estimate of the energy absorbed by
the ECAL preshower. The factors Si(t) are correction factors that account for the
different crystal response to the incoming particle. They are evaluated using a laser
system as discussed in Sec. B.2. The inter-calibration coefficients Ci, instead, are
used to set an energy scale at the granularity of a single crystal, accounting for
small differences between crystals that are not corrected by the laser corrections;
the procedure for obtaining these coefficients is discussed in Sec. B.3.

B.2 Crystal response to the scintillation signal

The response of each ECAL crystal to a scintillation signal varies with time. In
order to monitor this response, ECAL operates a dedicated laser system [133] which
shines laser light into all ECAL crystals and measures the response. For ECAL
crystals, the scintillation signal drift, Si in Eq. B.1, is assumed to be related to the
laser monitoring signal L by a power law:

S

S0
=
(
L

L0

)α
(B.2)

The evolution of the ECAL response to the laser pulse L/L0 is shown in Fig. B.1.
The response decrease during the data taking because of radiation damage, that
reduces the crystal transparency to scintillation light. After ∼6 years of LHC activity,
this loss is significant and it is very large especially at high |η|.

The Figure shows also how, during the LHC shutdown, there is a partial recovery
of the transparency at room temperature. Fluctuations due to these trends affect the
crystal response on short time-scales as well; the response of crystals to scintillation
can vary significantly within an LHC fill.

The laser-correction procedure works well for short-term drifts in the response to
the scintillation signal, but there still remains a long-term residual drift that cannot
be picked up by the laser monitoring. For example, α varies slightly from crystal
to crystal, and there are residual aging effects that affect each crystal differently.
To compensate for all these additional factors, we include the crystal-dependent
inter-calibration coefficients Ci, which are the subject of the next Section.
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Figure B.1. Evolution of the ECAL channel response to laser light versus time since 2011.
The channels are subdivided in ranges of |η|. The bottom panel shows the instantaneous
luminosity delivered by the LHC in the same time period.

B.3 Inter-calibration coefficients evaluation

The evaluation of the inter-calibration coefficients Ci exploits several physics signals:

• azimuthal symmetry of minimum bias events;

• photons from π
0 decays;

• comparison between particles energy and momentum (E/p ratio);

• electron pairs from Z boson decays.

Dedicated reduced data streams are saved for each type of event. The following
sections briefly describe each calibration method, while Sec. B.3.5 describes the
combination of the inter-calibrations from the various methods. For more information
on these topics, see Ref. [134]

B.3.1 Inter-calibration from azimuthal symmetry of minimum bias
events

A first method of calculating the inter-calibration coefficients Ci is the φ–symmetry
method, which exploits the intrinsic symmetry of the energy deposits in rings of
fixed azimuthal angle (φ) in minimum bias collision events. The latter are inelastic
events from soft interactions of the colliding partons, selected by triggers with loose
requirements that introduce as little bias as possible. This method enables us to
set the relative inter-calibration coefficients for crystals at the same η, because
these minimum bias events are highly sensitive to geometric effects, including
some absorption in the tracker, the precision of the coefficients obtained using this
technique is lower than that achieved with other available methods.
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In the φ–symmetry procedure ECAL hits between a minimum and a maximum
threshold are summed for each crystal for a given period. The energy sums are
equalized between crystals in the same η ring. This method can provide a measure-
ment of Ci per crystal every few tens of minutes. However, it is very sensitive to
the energy thresholds. Since the noise evolves in the ECAL, due to transparency
changes in the crystals and photodetector radiation damage, the accuracy of this
method was worse than the other methods in Run 2. Therefore it was mostly used
to monitor the single crystal response and to spot anomalous channels, rather than
to derive crystal inter-calibrations.

B.3.2 Inter-calibration using π0 → γγ decay

At the end of each year the full statistics of the π
0 → γγ data is used to compute

channel-to-channel intercalibration. For each crystal, events with one hit in that
crystal are selected, and the γγ invariant mass distribution is fitted separately with
this selection. Because each fit depends on the inter-calibration coefficients of all
crystals, the true values are obtained following an iterative process in which the
coefficients at iteration n are obtained from the coefficients at iteration n− 1; after
a sufficient number of iterations, the peak of the fitted distributions for all crystals
converges to the value of the π

0 mass, as shown in Fig. B.2. In Ref. [135] this
technique is described for the Z → ee inter-calibrations, but it can be applied more
generally to π

0 → γγ.

Figure B.2. Reconstructed invariant mass distribution of photon pairs around the π
0 mass

peak for one barrel crystal in 2017.

At iteration n,

Ci =
n∏

iteration j=1

1 + 1
2


(
mj
γγ(events with crystal i)

mPDG
γγ

)2

− 1


−1

(B.3)
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Figure B.3. Template used in 2012 for the distribution of the fraction E/p for the ECAL
endcaps.

The final Ci for a crystal is normalized to the η–ring average, because the η–scale
correction is found to be much more precise when done with the Z → ee method
described in Sec. B.3.4.

B.3.3 Inter-calibration using E/p ratio

The CMS tracker provides an independent measurement of the momentum of a
charged particle by reconstructing its track and obtaining its curvature in the
magnetic field. Specifically, the ratio E/p, where E= ECAL supercluster energy
(which depends on the inter-calibration factors) and p = tracker momentum, should
remain stable over time. We first obtain the E/p templates from a high purity
sample of high energy electrons from W/Z decay. These templates vary with η;
one example template, used in 2012 for all endcap electrons, is shown in Fig. B.3.
Next, the inter-calibration coefficients are derived using an iterative approach which
ensures that the observed E/p distribution matches these templates.

B.3.4 Inter-calibration using Z → ee

In this technique, the inter-calibration constants are chosen such that the overall
Z-peak, reconstructed from Z → ee decays in all crystals, yields the correct mass
and lifetime. We perform a maximum likelihood fit of the data to a Voigtian, a
convolution of the natural Z-shape (which depends on Z-mass and lifetime), and a
Gaussian spread due to resolution effects:

L =
∏

Z→ee events
V oigt(mee , σee ,MZ ,ΓZ) (B.4)

where
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me1e2
=
√

2× Ecorrected(e1)× Ecorrected(e2)× (1− cos θ12)

σe1e2
= 1

2 ×MZ ×

√(
σE
E

)2
(e1) +

(
σE
E

)2
(e2)

Ecorrected = EECAL
r(η) + Epreshower

(B.5)

Here, r(η) is an η-dependent correction which is equivalent to normalizing correctly
between all bins in η. The inter-calibration coefficients, which affect the reconstructed
energy, are parameters that are evaluated from the fit, which maximizes the likelihood
comparing the reconstructed mass distribution with that predicted by Monte Carlo
simulation. The method can also be used to calculate the inter-calibrations in
crystal rings, to estimate the energy resolution of electrons in different η regions
and to equalize the response of the different rings (absolute energy calibration). The
software that has been developed for this is called iJAZZ [136]. Since 2016, because
of the larger integrated luminosity, this method is used to inter-calibrate the ECAL
channels at the single crystal level. Typically, for this task the fit of the Z → ee
peak requires the full data sample collected in one year, but in my study reported
in Sec. B.4 I show that only a fraction of one year of data-taking is enough for the
intercalibration of only the ECAL region corresponding to |η| > 2.5.

B.3.5 Combined estimation of the inter-calibration coefficients and
their uncertainty

Having three independent measurements of the inter-calibration coefficients for each
crystal, it is possible to combine them in a single value with a smaller uncertainty
with respect to the single measures.

At first the uncertainty on the inter-calibration coefficients from the three
methods, σ1, σ2, σ3, are evaluated from the data. We construct the three distribution
of the differences between the intercalibration coefficients obtained with the different
methods. Assuming that the three measurements methods are uncorrelated, the
spread of these distributions is connected to σ1, σ2, σ3 by:

σ2
1 + σ2

2 = σ2
1-2

σ2
1 + σ2

3 = σ2
1-3

σ2
2 + σ2

3 = σ2
2-3

(B.6)

The values of the spread in the difference σ2
i-j can be determined by the distribu-

tion of these differences evaluated from data. The values of σ1, σ2, σ3 can be then
obtained by:

σ2
1 = 1

2

(
σ2

1-2 + σ2
1-3 − σ

2
2-3
)

σ2
2 = 1

2

(
σ2

1-2 + σ2
2-3 − σ

2
1-3
)

σ2
3 = 1

2

(
σ2

1-3 + σ2
2-3 − σ

2
1-2
) (B.7)

This provides estimates of the uncertainty due to each method individually.
Note that both the statistical and systematic uncertainties are accounted for in this
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estimate of the factors σi. The combined inter-calibration coefficient for each crystal
is then obtained as the mean of the coefficients obtained by each individual method
weighted by 1/σ2

i . The residual uncertainty in the inter-calibration coefficients is
shown in Fig. B.4 for 2017 data. In the barrel region, the E/p method has the best
precision (0.4-0.6%), while the π

0 and Z → ee methods have comparable performance
(0.5-1%). In the endcaps, the π

0 method works well for |η| < 2 with an accuracy
of ∼3%, the E/p method has an accuracy of 1.5% and the Z → ee method has the
best accuracy. The Z → ee method is the only one used to calibrate the crystals
in the endcap region |η| > 2.5 crystals, therefore its precision is fully determined
from the fit to the Z-peak. The black points represent the combined weighted
precision. As shown, with the increased statistics available in 2017, the precision of
the inter-calibration is now at the sub-percent level throughout the barrel.

Figure B.4. Final individual and combined inter-calibration precision for 2017.

B.4 Monitoring of inter-calibration coefficients of ECAL
forward endcaps

In the sections above we discussed the algorithm of the ECAL energy reconstruction
and on its calibration. In particular, Sec. B.3 is dedicated to the evaluation of
the crystal inter-calibration coefficients (ICs) that correct for residual differences
between the response of different ECAL crystals, after the application of the laser
corrections.

During Run 1 and Run 2, ECAL data have been first reconstructed applying
only the laser corrections, and released every 48 hours (prompt reconstruction). The
evaluation of the ICs, and the resulting re-calibration of ECAL energy, has been
done only at the end of each year of data-taking. This approach has been adopted
both because the energy precision of prompt data is sufficient for most of the CMS
analyses, and because the use of the methods for IC evaluation described above
require the analysis of a sufficiently large data sample.

However, this would not be necessarily true during the Run 3 of the LHC,
especially in the forward region of the ECAL endcaps. As shown in Fig-B.1, in fact,
the region corresponding to |η| > 2.5 shows the worst degradation in terms of ECAL
response to the laser pulse. This means that in Run 3, where the luminosity of the
LHC will further increase above its current value of 2× 1034 cm−2 s−1, the ECAL
performances on the energy reconstruction will change rapidly with time.
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To make sure ECAL maintains its performances during Run 3, also in the
|η| > 2.5 region, it could be possible to evaluate the ICs multiple times during the
year in order to monitor their values. In this forward region the Z → ee method is
the only one that can be used. We already said that this method requires the analysis
of a data sample as large as that collected in one year of data-taking. However,
since most of the electrons from the Z decay hit the forward region of the ECAL
detector, this region can be calibrated even analyzing only a fraction of the data,
corresponding to an integrated luminosity of few fb−1.

In the study reported in this section, I analyzed the evolution of the crystals IC
in the forward region of the ECAL endcaps during 2017 and 2018. For this study
I divided the 2017 and 2018 datasets in sub-datasets corresponding to luminosity
intervals of ∼5 fb−1 (Tabs. B.1 and B.2). I used prompt data, where the only energy
correction applied is that from the laser corrections. I used the iJAZZ software to
evaluate the IC with the Z → ee method, for each sub-dataset individually.

Table B.1. 2017 sub-datasets

Label Lint [ fb
−1 ] Start date

2017B_1 4.80 16/06/2017
2017C_1 4.99 18/07/2017
2017C_2 4.59 07/08/2017
2017D_1 4.25 30/08/2017
2017E_1 5.01 24/09/2017
2017E_2 4.31 04/10/2017
2017F_1 5.38 13/10/2017
2017F_2 5.30 22/10/2017
2017F_3 2.86 03/11/2017

Table B.2. 2018 sub-datasets

Label Lint [ fb
−1 ] Start date

2018A_1 5.13 03/05/2018
2018A_2 5.28 14/05/2018
2018A_3 3.13 23/05/2018
2018B_1 5.07 04/06/2018
2018B_2 1.71 15/06/2018
2018C_1 5.01 14/07/2018
2018C_2 1.60 22/07/2018
2018D_1 5.38 07/08/2018
2018D_2 5.28 17/08/2018
2018D_3 5.00 28/08/2018
2018D_4 5.27 06/09/2018
2018D_5 5.03 30/09/2018
2018D_6 5.97 16/10/2018

It is possible then to plot the single-crystal ICs from each luminosity interval
against the time of the data-taking to study the evolution of the IC during 2017 and
2018. Figure B.5 shows the IC evolution over time for a single ECAL crystal in the
forward region of one of the two endcaps. The IC value significantly drifts from its
initial value during one year.

This result shows that in principle, it is possible to evaluate the IC for crystals
in the |η| > 2.5 region every ∼5 fb−1 of integrated luminosity collected, which
correspond to roughly 2 weeks of data-taking, and monitor the IC evolution with time.
This would allow to achieve better performances on the ECAL energy calibration,
and improve the quality of the prompt data of ECAL. Finally, Fig. B.6 shows an
estimation of the uncertainty on the IC value (σIC) averaged over crystals in the same
|η| region. The values reported show that the precision of the IC, when evaluated
using only the Z → ee, is below 2% for |η| < 2.5, and below 10% elsewhere.
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(a) 2017 (b) 2018

Figure B.5. Evolution over time during two years of data-taking for the IC of a single
ECAL crystal. The IC evaluated for each luminosity interval of Tabs. B.1 and B.1 are
plotted against the timestamp corresponding to the starting date of the data-taking.
The timestamp is a progressive integer number that mark the time from the start of
LHC activity.

Figure B.6. IC error (σIC) averaged over crystals in the same |η| region, for crystals in
the endcaps and for different luminosity intervals from 2017 (top) and 2018 (bottom)
data. The average precision of the IC, evaluated from the fit, using the Z → ee method
is below 2% for |η| < 2.5 and below 10% elsewhere.
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Appendix C

Fisher tests for background
parameterization choice

In this Section we report the study carried out for the choice of the number of
parameters of the background fit function. We performed the test using simulated
QCD multijet events and looked at fits to the dijet mass spectrum in all event
categories individually, for a selection of 6 signal hypotheses. This procedure allows
us to test the fit function independently in all categories, which may have very
different event yields. The test procedure starts from general assumption. Lets
assume we have two fit models, M0 and M1, with n and n+ 1 parameters:

M0 : (θ0, ..., θn) and M1 : (θ0, ..., θn+1) (C.1)

Given the set of observation y, the post-fit likelihoods for the two models are:

L(y|M0, θ̂0, ..., θ̂n) and L(y|M1, θ̂0, ..., θ̂n, ˆθn+1) (C.2)

For the Neyman-Pearson lemma [137], the best discriminating variable for the
comparisons of the goodness of the two fits is the likelihood ratio:

LR(θn+1) = L(y|M1, θ̂0, ..., θ̂n, ˆθn+1)
L(y|M0, θ̂0, ..., θ̂n)

(C.3)

If we assume, in our model, that the errors on each of the observation yi are
Gaussian, the two likelihoods are simply the product of Gaussian distributions:

LR(θn+1) =
∏
i

exp
(
−yi−µi(M1)

2σi

)2

exp
(
yi−µi(M0)

2σi

)2 (C.4)

where yi are the observed data, σyi are the Gaussian errors, and µi(M0) and
µi(M1) are the prediction for M0 and M1 respectively. Since the logarithm is a
monotonic function, we can take the logarithm of Eq. C.3 and multiply by -2.
Therefore, we can re-write the expression above as:
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LLR = −2 logLR(θn+1) =
∑
i

(
yi − µy(M1)

σi

)2

−
∑
i

(
yi − µy(M0)

σi

)2

= χ2(νθ = n+ 1)− χ2(νθ = n) = χ2(ν = 1)

(C.5)

where νθ is the number of fit parameters, and ν = 1 the degrees of freedom. LLR is
then written as the difference between χ2 from fits with the two models. The result
is a random variable which follows a χ2 distribution with 1 degree of freedom. The
p-value (right tail) of the LLR distribution has the following meaning:

• p-value > 0.05: The difference between chi squares is not statistically relevant.
The model with lower number of parameters is generally preferred.

• p-value < 0.05: Model M1 performs better than M0.

We perform the study using three functions with a different number of parameters.
All functions tested are members of the standard dijet family and are reported in
Tab. C.1 where x = mjj√

s
. The study has been performed as follows:

• the events from the simulated background sample (QCD multijet events) have
been divided into categories following the procedure described in Sec. 7.2,
under 6 different signal hypotheses: m(R1) = 3, 4, 5TeV for both ρm = 0.1
and 0.2;

• the mjj spectra from each category, for all the signal hypotheses, have been
simultaneously fitted with the method described in Sec. 7.3, using the three
functions of Tab. C.1;

• the χ2 of the fits has been evaluated for each category, assuming Gaussian
uncertainties on the mjj bins of σi =

√
Ni, where Ni is the content of the i-th

bin;

• We then evaluated the two LLR, using Eq. C.5, for the comparison between
f2par and f3par, and between f3par and f4par.

• The resulting p-values of the LLR obtained are shown in Figs. from C.1 to C.6,
for the categories belonging to the 6 different signal hypotheses.

Table C.1. Standard dijet fit functions tested.

number of parameters function
f2par p0(1− x)p1

f3par
p0(1−x)p1

x
p2

f4par
p0(1−x)p1
x
p2+p3 log x

The left parts of Figs. from C.1 to C.6 show the p-value from the comparison
between f2par and f3par. The test show that, especially at low m(R1), the f3par
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performs better than f2par in almost half of the cases. Instead, the comparison of
f3par with f4par, in the right parts of the same Figures, show that the addition of a
fourth parameter does not significantly improve the goodness of the fit in almost all
cases.

After these considerations, we decided to use the 3-parameters function to fit
the mjj spectra of the categories of all the signal hypotheses. There are some cases
(Fig. C.1a, C.2a, C.3a, C.4a, C.5a, C.6a) where the fit with 2 parameters is as good
as the fit with 3 parameters, but we decided to maintain the use of f3par for all the
categories, to keep more simple the fit procedure without degrading its performances.

(a) f2par vs. f3par (b) f3par vs. f4par

Figure C.1. background fit function test for m(R1) = 3TeV and ρm = 0.1.

(a) f2par vs f3par (b) f3par vs f4par

Figure C.2. background fit function test for m(R1) = 5TeV and ρm = 0.1.
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(a) f2par vs f3par (b) f3par vs f4par

Figure C.3. background fit function test for m(R1) = 7TeV and ρm = 0.1.

(a) f2par vs f3par (b) f3par vs f4par

Figure C.4. background fit function test for m(R1) = 3TeV and ρm = 0.2.

(a) f2par vs f3par (b) f3par vs f4par

Figure C.5. background fit function test for m(R1) = 5TeV and ρm = 0.2.
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(a) f2par vs f3par (b) f3par vs f4par

Figure C.6. background fit function test for m(R1) = 7TeV and ρm = 0.2.
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Appendix D

Binning for mjj spectra

For the mjj spectra shown in this thesis we chose the following binning:

bin edges =[1, 3, 6, 10, 16, 23, 31, 40, 50, 61, 74, 88, 103, 119, 137, 156, 176, 197, 220, 244,
270, 296, 325, 354, 386, 419, 453, 489, 526, 565, 606, 649, 693, 740, 788, 838,
890, 944, 1000, 1058, 1118, 1181, 1246, 1313, 1383, 1455, 1530, 1607, 1687, 1770,
1856, 1945, 2037, 2132, 2231, 2332, 2438, 2546, 2659, 2775, 2895, 3019, 3147, 3279,
3416, 3558, 3704, 3854, 4010, 4171, 4337, 4509, 4686, 4869, 5058, 5253, 5455, 5663,
5877, 6099, 6328, 6564, 6808, 7150, 7500, 7850, 8250, 8650, 8999, 9500, 9999]

(D.1)

The binning has been fixed in the previous dijet analysis in CMS and the bin
size corresponds roughly to the experimental resolution at that mass.
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