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Abstract We propose a new scenario of using the dark
axion portal at one-loop level to explain the recently observed
muon anomalous magnetic moment by the Fermilab Muon
g-2 experiment. Both axion/axion-like particle (ALP) and
dark photon are involved in the same vertex with photon.
Although ALP or dark photon alone cannot explain muon
g − 2, since the former provides only negative contribu-
tion while the latter has very much constrained parameter
space, dark axion portal can save the situation and signif-
icantly extend the allowed parameter space. The observed
muon anomalous magnetic moment provides a robust probe
of the dark axion portal scenario.

1 Introduction

The muon anomalous magnetic moment aμ ≡ (gμ − 2)/2,
where gμ is the muon g-factor, is one of the most precisely
measured physical parameters in the Standard Model (SM)
of particle physics [1–3]. The Muon g-2 experiment [4,5] at
Fermilab provides the currently best measurement [6]

aexp
μ (FNAL) = 116592040 (54) × 10−11, (1)

which is consistent with the previous measurement 116592-
080 (63)×10−11 [7] by the E821 experiment at Brookhaven
National Laboratory (BNL). Then the world average becomes

aexp
μ = 116592061 (41) × 10−11. (2)

From the BNL result to the Fermilab one, both the central
value and the uncertainty decreases.

Huge amount of work has been done to match the unprece-
dented precision. The SM contribution to aμ contains four
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parts [8],

aSM
μ = aQED

μ + aEW
μ + aHVP

μ + aHLbL
μ . (3)

The first two are the QED and electroweak (EW) predictions,
respectively, while aHVP

μ is the hadronic vacuum polariza-
tion (HVP) and aHLbL

μ the hadronic light-by-light (HLbL)
contribution. Although the biggest source of uncertainty
comes from the hadronic part [9–12], the most recent cal-
culations [13–15] have included the updated measurement
of the hadronic contributions [16–18]. The latest theoretical
calculation [21] gives

aSM
μ = 116591810 (43) × 10−11, (4)

where the uncertainty mainly comes from the hadronic vac-
uum polarization aHVP

μ and the light-by-light part aHLbL
μ .

The longstanding discrepancy [2,19] between theoretical
predictions [20,21] and experimental results is also observed
by the new measurement (2) at Fermilab with 4.2 σ signifi-
cance (combined with BNL E821),

�aμ ≡ aexp
μ − aSM

μ = 251 (59) × 10−11. (5)

The discrepancy increases from 3.7 σ to 4.2 σ from the BNL
measurement to the new world average.

Due to its unprecedented precision, the muon anomalous
magnetic moment provides a sensitive probe of new physics
(NP) beyond the SM [22–24]. The previous 3.7 σ discrep-
ancy between the E821 measurement and the SM prediction
has stimulated many novel ideas. An incomplete list includes
lepton flavor violation [25], Z ′ [26–29], neutral scalars [30–
33], ALP [34], leptoquarks [35,36], supersymmetry [37–44],
dark photon [45–49], and dark matter portals [50–55].

In this letter, we explore the possibility that the dark axion
portal [56] with coupling among ALP a, photon γ , and a mas-
sive dark photon γ ′ can explain the observed muon anoma-
lous magnetic moment at the Fermilab Muon g-2 experiment.
Since this dimension-5 operator was proposed only recently
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Fig. 1 The one-loop contribution to the muon anomalous magnetic
moment from the dark axion portal that couples photon (γ ), ALP (a),
and dark photon (γ ′)

and involves two invisible particles, its coupling Caγ γ ′ is
not strongly constrained yet. With TeV scale new physics,
Caγ γ ′ ∼ 3/TeV, a sizable parameter space is still available
as we will elaborate in this letter.

2 The dark axion portal contribution

The dark axion portal [56] establishes the connection
between the visible sector with the dark one via not just a
single ALP or a single photon but both of them,

L � 1

2
Caγ γ ′aFμν

˜Xμν, (6)

where Fμν ≡ ∂μAν − ∂ν Aμ is the photon field strength.
Through this dimension-5 operator, the CP-violating ALP a
couples with the dual field strength of dark photon ˜Xμν ≡
1
2εμναβXαβ where Xμν ≡ ∂μXν −∂νXμ. As shown in Fig. 1,
the dark axion portal can contribute to the muon anomalous
magnetic moment if the ALP and dark photon also couple
with muon,

L � yμ
a aμ̄(iγ5)μ − εeμ̄γ νμXν . (7)

Here, yμ
a is the Yukawa coupling with ALP while ε is

the kinetic mixing between the dark photon and photon,
1
2εFμνXμν . In principle, the ALP coupling with two photons
can also contribute by replacing the dark photon in Fig. 1 with
a photon [34,57]. However, due to its stringent constraint, we
omit this diagram for simplicity.

The contribution of dark axion portal depicted in Fig. 1 is
divergent. With the cut-off regularization, the result can be
expressed in terms of the ultra-violet (UV) scale 
,

aμ = mμ

4π2 εyμ
a Caγ γ ′G, (8a)

where the loop function G is

G ≡
∫ 1

0
dx

[

(1 − x)

(

ln

2

(1 − x)m2
a + x2m2

μ

− 1

2

)

− (1 − x)m2
γ ′ + 2x2m2

μ

m2
a − m2

γ ′
ln

(1 − x)m2
a + x2m2

μ

(1 − x)m2
γ ′ + x2m2

μ

]

,

(8b)

Fig. 2 The ALP (left) and dark photon (right) contributions to the
muon anomalous magnetic moment

as a function of the ALP mass ma , the dark photon mass
mγ ′ , and the muon mass mμ. The dark axion portal contri-
bution (8a) has linear dependence on the Yukawa coupling
yμ
a . When yμ

a is larger than the SM counterpart mμ/v where
v ≈ 246 GeV is the Higgs vacuum expectation value, the
dark axion portal contribution can be enhanced in compar-
ison with the SM one. Similar feature has been observed
and named as chiral enhancement in many models but with
quadratic dependence [58–60].

Since the interaction in (6) is non-renormalizable, it is only
valid up to some cut-off scale ∼ C−1

aγ γ ′ . In addition, the diver-
gent loop integral can be assumingly regularized by a similar
cut-off 
 with origin from the same UV physics. However,
the predicted aμ in (8a) has mild dependence on 
 which
only appears in a log function. Orders of variation in 
 can
only change aμ by several times which can be easily com-
pensated by tuning couplings. For comparison, the Yukawa
coupling yμ

a and the kinetic mixing parameter ε are dimen-
sionless, hence cannot directly reflect the new physics scale.

The dark axion portal can also contribute to the muon
anomalous magnetic moment at two-loop level via the photon
vacuum polarization sub-diagram [61]. However, this con-
tribution is always negative and numerically negligible. For
example, with Caγ γ ′ = 3 TeV−1, the two-loop contribu-
tion is roughly two orders of magnitude smaller than its one-
loop counterpart. Therefore, we neglect their contribution
and focus on the one-loop diagrams in this letter. Note that
the dark axion portal coupling, Caγ γ ′ = 3 TeV−1, adopted
here satisfies existing experimental constraints [61].

In principle, the ALP can also couple with the SM Z
boson, 1

2Caγ ZaFμν Z̃μν [62,63]. Then a similar contribution
from the ALP-photon-Z vertex, by replacing the dark photon
γ ′ in Fig. 1 with Z . The analytical formula (8) still applies
after replacing the dark photon mass mγ ′ by the Z boson
mass mZ , the coupling constants Caγ γ ′ by Caγ Z and eε by
gV = g

cW

( 1
4 − s2

W

) ≈ 4.5×10−2e of the vector part of the Z -
muon coupling while the axial-vector part does not contribute
due to the mismatch of parity and charge conjugation proper-
ties. The good thing is that the Z coupling with muon and the
Z boson mass have already been measured, hence reducing
the number of parameters by two. However, the current bound

123



Eur. Phys. J. C           (2021) 81:787 Page 3 of 8   787 

Fig. 3 Experimental constraints on the ALP Yukawa coupling with
muon from (1) supernova cooling from SN1987a (purple region) [69];
(2) kaon decay K → μνa [66] (red region) at NA62; (3) final-state
radiation e+e− → μ+μ−a (green region) at the BaBar experiment
[66,70]; (4) rare Z decay (blue region) at CMS [71]. The projected sen-
sitivities at NA64 (brown dashed line) [67], Belle II (green dashed line),
and HL-LHC (blue dashed line) [68] are also shown for comparison.
The black contours are the allowed region for explaining the observed
muon anomalous magnetic moment together with dark axion portal at
95% CL

on the coupling Caγ Z � 0.03 TeV−1 [64] from the anoma-
lous Z decay Z → γ a [65] is rather stringent. The contribu-
tion from the ALP-photon-Z vertex is negligibly small.

3 The individual contribution of ALP or dark photon

The ALP or dark photon alone can also contribute to the
muon anomalous magnetic moment as shown in Fig. 2. We
first consider the contribution from the ALP which is finite,

aaμ = (yμ
a )2

4π2

m2
μ

m2
a
Fa

(

mμ

ma

)

, (9a)

Fa(η) ≡ −1

2

∫ 1

0
dx

x3

(1 − x)
(

1 − η2x
) + η2x

. (9b)

Note that this ALP-only contribution is negative [34] since
Fa(η) � 0 where η ≡ mμ/ma . The pseudoscalar case is
completely different from the scalar scenario which can con-
tribute a positive term. A pseudoscalar alone cannot explain
why the observed aexp

μ is larger than the SM prediction aSM
μ

unless the experimental measurement is smaller than the the-
oretical prediction.

The contribution from the dark photon shown in the right
panel of Fig. 2 takes the form as [45–47],

aγ ′
μ = ε2e2

4π2

m2
μ

m2
γ ′
Fγ ′

(

mμ

mγ ′

)

, (10a)

Fγ ′(η) ≡ 1

2

∫ 1

0
dx

2x2(1 − x)

(1 − x)
(

1 − η2x
) + η2x

, (10b)

Fig. 4 Experimental constraints on the dark photon kinetic mixing
parameter ε as a function of the dark photon mass mγ ′ from: (1) elec-
tron anomalous magnetic moment (g − 2)e (purple) [46]; (2) resonant
production of dark photon at the BaBar experiment (green) [73]; (3) dark
photon from pion decay at the NA48 experiment (red) [74]; (4) dark
photon production from various mesons at LHCb [75,76] and Higgs at
CMS (blue) [77]; (5) electroweak precision observables (yellow) [78].
The hashed band is the allowed region for explaining the muon g-2
with dark photon alone while the black contour is obtained together
with dark axion portal at 95% CL

with η ≡ mμ/mγ ′ . Different from the loop function Fa for
the ALP-only contribution, Fγ ′ � 0 always holds. It seems
that the single contribution from the dark photon can explain
the observed muon anomalous magnetic moment. However,
the required parameter space in the mγ ′ − ε plane to explain
the observed �aμ has already been excluded by other exper-
imental bounds [49] as we will discuss in detail below.

4 Parameter space

It is instructive to compare the three distinct contributions:
(8a) for dark axion portal, (9) for ALP, and (10) for dark
photon,

aμ

aaμ
∼ ε

yμ
a

m2
aCaγ γ ′

mμ

∼ ε

10−3

0.1

yμ
a

( ma

100 GeV

)2
, (11a)

aμ

aγ ′
μ

∼ yμ
a

εe2

m2
γ ′Caγ γ ′

mμ

∼ 105 10−3

ε

yμ
a

0.1

( mγ ′

100 GeV

)2
, (11b)

where Caγ γ ′ ∼ TeV−1. The loop function ratios, G/Fa
and G/Fγ ′ , are dropped out since they are comparable with
each other. For the dark axion portal contribution to domi-

nate, aμ � aaμ, aγ ′
μ , the ALP and dark photon masses are

bounded from below, ma �
√

yμ
a /ε 10 GeV and mγ ′ �

√

ε/yμ
a

√
10 GeV. If the two dimensionless couplings are

comparable with each other, ε ∼ yμ
a , both the ALP mass

ma and the dark photon mass mγ ′ are around the GeV scale.
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Fig. 5 The allowed region for explaining the muon g−2 with the fixed
ALP parameters yμ

a = 0.082 and ma = 110 GeV at 1 σ CL

Richer mass patterns can be realized by tuning the two cou-
plings to change the mass limits, or allowing the ALP-only
and dark photon-only contributions in Fig. 2 to be compara-
ble with the dark axion portal one in Fig. 1. Below we explore
the allowed parameter spaces in detail.

As argued above, the interesting ALP mass is around GeV
to a few hundreds of GeV scale. In this range, the experimen-
tal constraints [66–68] mainly come from SN1987a, beam
dump experiment NA62, low energy electron positron col-
liders such as BaBar, and collider searches at LHC. We sum-
marize in Fig. 3 those constraints that can apply to the config-
uration in this letter, where the ALP only couples with muon
rather than electron or tau.

The purple region at the left-bottom corner of Fig. 3
is excluded by the supernova (SN) cooling rate from the
SN1987a observation [69]. The bound reaches yμ

a ≈ 10−6

and can exclude the mass region up to 0.2 GeV.
The red region in Fig. 3 is excluded by the NA62 exper-

iment [66] using the search of rare kaon decay channel
K → μνa. The probe of ma is limited by the kaon mass
(∼ 494 MeV), explaining why the excluded region can only
extend to � 400 MeV. For comparison, we also show the
projected sensitivity from the μ+N → μ+N + a process at
the NA64 muon beam dump experiment (brown dashed line)
[67].

The green region in Fig. 3 was obtained from the BaBar
experiment with final-state radiation of the invisible Z ′ which
further decays into a μ+μ− pair, e+e− → μ−μ+Z ′ →
μ−μ+μ−μ+. Although this bound is not originally obtained
for ALP, it can be easily converted [66,70]. The BaBar exper-
iment is an electron-positron collider with center-of-mass
energy around 10 GeV. Consequently, the sensitive mass
region is ma ∈ [0.1, 4] GeV. The similar situation happens
for the CMS rare Z decay constraint [71] shown as the blue
region in Fig. 3 which covers the range from 5 GeV up to
50 GeV. For comparison, we also show the projected sen-

Fig. 6 The allowed ALP region for explaining the muon g − 2 with
the fixed dark photon parameters ε = 0.003 and mγ ′ = 100 GeV at 1 σ

CL

sitivities at Belle II (green dashed line) and HL-LHC [68]
(blue dashed line).

It is evident that there is a very large region of the parame-
ter space to be explored for masses above 0.2 GeV. All other
constraints compiled in [66–68] involves Yukawa couplings
with either electron or tau leptons and hence cannot apply to
the configuration considered in this letter. The gap between
the BaBar and CMS region can be covered by the future
HL-LHC searches (blue dashed line) and Belle II can also
increase the sensitivity below 4 GeV (green dashed lines)
[68]. Even so, the available parameter space is still quite siz-
able.

The current bounds [49,72] on the dark photon mass mγ ′
and its kinetic mixing ε with photon has been summarized
in Fig. 4. These constraints covers the dark photon mass
range from 1 MeV to 1 TeV. In contrast to the ALP case,
since the kinetic mixing leads to universal coupling between
the dark photon and all charged leptons, those experimental
constraints involving electron can also apply here. It is inter-
esting to see that the electron anomalous magnetic moment,
(g−2)e, excludes the very light dark photon scenario (purple
region) [46]. The dark photon can be resonantly produced at
the BaBar experiment. With 10 GeV center-of-mass energy,
the excluded region (green) spans from around 20 MeV up
to roughly 10 GeV [73]. In between, the NA48 searches for
dark photon from pion decay cover the red region from 9
to 100 MeV [74]. The decays of various mesons at LHCb
[75,76] and Higgs at CMS [77] also give strong constraints
shown as gaped blue regions. At CMS, the dark photon is
produced from Higgs decay, h → Zγ ′ and h → γ ′γ ′, and it
further decays to a pair of muons. The yellow region comes
from the electroweak (EW) precision observables [78]. It is
interesting to observe that the EW precision observables fill
the gap around Z boson mass.
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5 Revival with dark axion portal

With the available parameter space compiled in Fig. 3 for
ALP and Fig. 4 for dark photon, we are ready to explore the
allowed region for explaining the recently observed muon
anomalous magnetic moment at Fermilab. This can be quan-
titatively done with χ2 function,

χ2 ≡
(

�aμ − �aNP
μ

σ(�aμ)

)2

, (12)

with central value �aμ and uncertainty σ(�aμ) taken from
(5). The new physics prediction �aNP

μ here contains the four
parameters, ma and yμ

a for ALP as well as mγ ′ and ε for dark
photon, in addition to the fixed coupling Caγ γ ′ = 3 TeV−1

and cut-off 
 = 1 TeV. To illustrate the allowed parameter
space of ALP, for each point of Fig. 3 the values of ma and
yμ
a are fixed while the dark photon parameters mγ ′ and ε are

varied to obtain the smallest value χ2
min(ma, y

μ
a ). The dark

photon parameters scan in the range mγ ′ ∈ [10−3, 350] GeV
and ε ∈ [10−5, 1]. However, those points that fall inside the
experimentally excluded regions of Fig. 4 are not included
in the scan. The resulting χ2

min(ma, y
μ
a ) is then a marginal-

ized χ2 function of just the two ALP parameters. Similar
procedures can also produce a marginalized χ2

min(mγ ′ , ε)
after scanning the ALP parameters in the range of ma ∈
[10−2, 350] GeV and yμ

a ∈ [10−6, 1] but deducting experi-
mentally excluded regions. So from Fig. 3 we can read off
the values of ma and yμ

a , but not the corresponding values
of mγ ′ and ε. The similar situation happens for Fig. 4. The
black contours of ma and yμ

a in Fig. 3 are obtained with
χ2

min(ma, y
μ
a ) < 5.99 at 95% CL and similarly for Fig. 4.

The black contours in Fig. 3 cover a large part of the
remaining parameter space. As argued at the beginning of
this section, the ALP mass is bounded from below, ma �
√

yμ
a /ε 10 GeV, in order for the dark axion portal contribu-

tion to dominate. With smaller Yukawa coupling yμ
a , the ALP

mass can also be smaller and hence cover the whole mass
range in Fig. 3. The ALP contribution is always negative [34]
no matter what is the sign of the Yukawa coupling yμ

a as indi-
cated by (9). This forbids the possibility of using only ALP to
explain the observed positive �aμ. However, in the presence
of dark axion portal, the ALP or pseudoscalar at large receives
significant parameter space to explain the muon anomalous
magnetic moment. Although the black contour is marginal-
ized over the dark photon parameters, namely its mass mγ ′
and kinetic mixing ε, we can still show the dependence on
the dark photon mass by specifying the mass range of dark
photon to be marginalized over. The solid black contour is
obtained with mγ ′ ≤ 200 GeV while the dashed one with
200 GeV ≤ mγ ′ ≤ 350 GeV. It is interesting to see that with
larger dark photon mass, the allowed ALP parameter space
becomes larger with the Yukawa coupling yμ

a touching down

to as small as 10−4. The ALP solution can be readily saved
by the dark axion portal.

For the dark photon parameter space illustrated in Fig. 4,
almost all mass range below 200 GeV has been experi-
mentally constrained to ε � 10−3. Especially, the required
parameter space, the hashed region in Fig. 4, for dark photon
to explain the muon anomalous magnetic moment has been
excluded by various observations including electron (g−2)e,
NA48/2, BaBar, and LHCb+CMS. It is very interesting to
see that the dark axion portal coupling can also help to save
the situation. Now the required parameter space significantly
expands to the black contours, the solid one forma ≤ 15 GeV
and the dashed one for 15 GeV ≤ ma ≤ 350 GeV. The heavy
mass region, mγ ′ � O(10) GeV, still has sizable space.
Even the low mass region around mγ ′ ≈ 10 MeV opens
for 15 GeV ≤ ma ≤ 350 GeV.

In the large mass limit (ma,mγ ′ � mμ), the total con-
tribution shows decoupling features. To make it explicit, we
fix the ALP parameters, ma = 110 GeV and yμ

a = 0.082,
as an example. The total contribution �aμ(mγ ′ , ε) is then
a function of the two dark photon parameters mγ ′ and ε.
Fig. 5 shows the allowed region of �aμ(mγ ′ , ε) = (251 ±
59) × 10−11 as grey area. With larger dark photon mass, the
dark photon coupling ε also needs to increase to maintain
the prediction of �aμ(mγ ′ , ε). Otherwise, for a fixed ε, the
predicted �aμ(mγ ′ , ε) would decrease with the dark photon
mass. This decoupling behavior can be understood analyt-
ically with the approximate forms of (8)–(10) in the large
mass limit,

aμ ≈ mμ

4π2 εyμ
a Caγ γ ′

m2
a ln 


ma
− m2

γ ′ ln 

mγ ′

m2
a − m2

γ ′
, (13a)

aaμ ≈ −
(

yμ
a

2π

)2 m2
μ

m2
a

(

ln
ma

mμ

− 11

12

)

, (13b)

aγ ′
μ ≈ 1

3

( εe

2π

)2 m2
μ

m2
γ ′

. (13c)

For mγ ′ � ma , we can see that aμ ∝ ln 

mγ ′ and aγ ′

μ ∝
1/m2

γ ′ . Both terms decrease with mγ ′ and hence have decou-
pling behavior.

Figure 6 shows the decoupling behavior in the ALP
parameter space. Taking the two dark photon parameters,
mγ ′ = 100 GeV and ε = 0.003, the allowed region of
�aμ(ma, y

μ
a ) = (251 ± 59) × 10−11 in the ma − yμ

a plane
is the grey area. Since yμ

a ∼ O(10−1) is relatively large,
both aaμ and aμ provide the dominant contributions, one has
quadratic dependence on yμ

a and the other linear. Conse-
quently, for a given ALP mass ma , there are two possible
solutions for the Yukawa coupling yμ

a to match the experi-
mental result. This is why the grey area of Fig. 6 is a circle
rather than a line as in Fig. 5.
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For ma � mγ ′ , we can also see decoupling features:
with larger ALP mass the prediction �aμ(ma, y

μ
a ) becomes

smaller. This is because both aμ ∝ ln 

ma

and aaμ ≈
(m2

μ/m2
a) ln(ma/mμ) decrease with ma . With larger ALP

mass, the Yukawa coupling yμ
a should also increase in order

to maintain the same prediction of �aμ(ma, y
μ
a ).

However, with both dark photon and ALP parameters, the
decoupling features are not transparent. For illustration, we
take mγ ′ = 100 GeV, ma = 110 GeV, and ε = 3 × 10−3

(combined with our assumptions: Caγ γ ′ = 3 TeV−1 and

 = 1 TeV), leading to,

aμ ≈ 4.2 × 10−8yμ
a , aaμ ≈ −1.4 × 10−7(yμ

a )2, (14)

together with aγ ′
μ 
 �aμ. Then either yμ

a = 0.082 or
yμ
a = 0.22 gives the observed discrepancy. The points

(ma, y
μ
a ) = (110 GeV, 0.082 or 0.22) and (mγ ′, ε) =

(100 GeV, 3 × 10−3) are inside our 95% CL band in Figs. 3
and 4, as expected, but yμ

a and ε need not to be of the same
order. In other words, the presence of both contributions can
in fact enlarge the parameter space, including larger values
of ma and mγ ′ .

6 Conclusion

The latest measurement of the muon anomalous magnetic
moment at the Fermilab Muon g-2 experiment further
enhances the discrepancy with theoretical prediction from
3.7σ to 4.2σ . This clearly indicates that there is something
new beyond the SM, although a decisive conclusion still
awaits more data. On one hand, this discrepancy enhances
theoretical exploration of possible solutions. But on the other,
some solutions have been already excluded, including either
the ALP or dark photon scenario. Even though the dark axion
portal was originally motivated as a way to connect the vis-
ible world with the dark side, it can surprisingly save the
ALP and dark photon for explaining the muon anomalous
magnetic moment. Since dark matter contributes five times
more energy density in the Universe than the ordinary matter
and the latter already has rich particle spectrum, there is no
reason to assume that the dark sector is composed of a single
particle. In this sense, the dark axion portal provides a more
interesting option than just ALP or dark photon. And muon
anomalous magnetic moment can provide a robust probe of
this new scenario.
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