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Abstract The complexity factor, originally based on a
probabilistic description of a physical system, was re-defined
by Herrera et al. for relativistic systems. This involves an
assessment of the energy density inhomogeneity, anisotropic
and shear stresses, and in the case of radiating collapse, the
effects of heat flux. Already well integrated into the mod-
elling of static configurations, the complexity factor is now
being studied with respect to dynamical, self-gravitating sys-
tems. For static systems, the constraint of vanishing com-
plexity is typically used however for the non-static case, the
physical viability of the vanishing condition is less clear. To
this end, we consider the ideal case of vanishing complexity
in order to solve for the time-dependent gravitational poten-
tials and generate models. We find that vanishing complexity
constrains the metric to be of a form similar to that of Maiti’s
conformally flat metric.

1 Introduction

The process of gravitational collapse of massive objects is
a challenging topic in relativistic astrophysics, having been
pioneered by Oppenheimer and Snyder [1]. As the end state
of the collapse process is approached, it is likely that the phys-
ical quantities calculated via modelling processes become
inaccurate and less representative of the actual physics at
work. Certainly, in the case where the remnant formed is a
black hole, an accurate description of the final stage of col-
lapse might be elusive. This is not due to shortcomings in the
theory of general relativity, but rather a result of the mod-
elling process which often involves setting up initial static
configurations [2,3] with associated boundary conditions and
equations of state [4]. Initial conditions can also include an
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inhomogeneous energy density [5] which is relevant to our
study involving complexity. Constraints based on a quasi-
static system in the distant past might lose relevance as the
collapse process proceeds. The progression of the collapse is
also assumed to proceed in a well-behaved manner, mainly
governed by the heat flux boundary condition of Santos [6]
in the case of non-adiabatic collapse. So far, this has been
successful in generating models and may well be accurate
for most of the collapse process. However, near the time
of remnant formation where energy densities and pressures
escalate to extreme measures, additional non-linear effects
might arise, rendering the initial conditions and assumptions
made in setting up the model of little relevance.
In an effort to generate models, other physical constructs such
as gravitational decoupling [7] and complexity factor anal-
ysis are now being considered. A definition of complexity
from the statistical point of view was developed by López-
Ruiz et al. [8] and involves the interplay between entropy
and information content. In the case of relativistic objects,
it is more suitable to seek a measure of complexity in terms
of the field equations of relativity. This was done by Her-
rera [9] for static systems and also for the dynamical case
[10] which can by applied to the problem of gravitational
collapse. With respect to relativistic objects, complexity was
considered to assist in discerning equations of state of static
compact objects [11]. The complexity factor focuses on the
degree of energy inhomogeneity and can be coupled with
pressure anisotropy, shear stress and in the case of radiating
collapse, the heat flux. Much work has already been done in
the case of static systems in which the constraint of vanishing
complexity has been implemented. In the case of dynamical
systems the situation is less clear and the complexity factor
might likely have a specific, non-vanishing behaviour at cer-
tain stages during collapse. Initial investigations have already
been conducted in this respect [12]. In this work, we assume
the contrary that the dynamical complexity factor vanishes,
in order to establish the restriction on the models obtainable
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under this regime. The framework has then been set up for
future work whereby the complexity factor could be linked
to a physically desirable non-vanishing function of space-
time. This could then lead to more suitable models in which
improved stability and more realistic physical features are
obtainable.

2 Dissipative collapse

For the modelling of a radiating star undergoing shear-free
gravitational collapse, the interior spacetime is described by
the spherically symmetric line element

ds2 = −A2(r, t)dt2 + B2(r, t)

×[dr2 + r2(dθ2 + sin2 θdφ2)], (1)

in which the metric functions A and B, describing the gravi-
tational potentials, are yet to be determined. This shear-free
metric was studied in detail by Bonnor et al. [13]. The energy
momentum tensor for a fluid which dissipates heat to the
exterior is given by

Tab = (ρ + p) uaub + pgab + qaub + qbua, (2)

where ρ and p are the energy density and isotropic pressure
of the fluid. The heat flow vector qa is orthogonal to the
velocity vector so thatqaua = 0. The Einstein field equations
describing the interior of the stellar fluid are
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where the dot and prime are derivatives with respect to time
and radial distance respectively. We obtain the condition of
pressure isotropy by equating (4) and (5)[
A′′

A
+ B ′′

B
−

(
2
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+ 1

r

) (
A′
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+ B ′

B

)]
= 0 (7)

and we note that this is time-independent. Time dependence
can then be introduced by promoting the constants of inte-
gration to functions of time. This was recognised by Ivanov
[14].

Since the star is radiating energy, the exterior spacetime
is described by the Vaidya metric [15]

ds2 = −
(

1 − 2m(v)

r

)
dv2 − 2dvdr + r2

[dθ2 + r2 sin2 θdφ2] (8)

where v is the retarded time and m is the total mass inside the
comoving surface Σ forming the boundary of the star. Match-
ing of the interior line element (1) to the exterior spacetime
(8) is achieved via the junction conditions, originally pro-
posed by Santos [6]. These are

(r B)Σ = rΣ, (9)

pΣ = (qB)Σ, (10)

mΣ =
[
r3B Ḃ2

2A2 − r2B ′ − r3B ′2

2B

]
Σ

, (11)

where mΣ is the total mass within a sphere of radius rΣ
and (10) represents the conservation of the momentum flux
across the boundary Σ .
Lastly, we note that the shear-free approximation is prone to
instability and in some respects, pressure anisotropy assists
in overcoming this problem [16]. In our application to mod-
elling, we evaluate the adiabatic index in order to highlight
this aspect.

3 Complexity

The complexity factor for radiating, self-gravitating systems,
as defined by Herrera [10] is given by

YT F = 8πδ + 4π
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which in terms of our shear-free metric and associated field
equations (3)–(6) gives
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The integration in (13) can be completed to yield

YT F = 8πδ − 1
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3.1 Isotropic systems

In the case of isotropic systems (δ = 0), we find that vanish-
ing complexity is ensured if

B ′ = C(t)B2r (15)
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where C(t) is a promoted constant of integration. A general
solution for B is then given by

B(r, t) = R(t)

1 + k(t)r2 (16)

where R(t) and k(t) arise from integration and transforma-
tion.

The pressure isotropy condition, obtained via the Einstein
field equations, gives

A′′ − A′
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r
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+ A
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B
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− B ′
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)
= 0

(17)

which may be integrated after substituting the form for B(r, t)
in (16). A solution is then given by

A(r, t) = ξ(t) + ζ(t)

1 + k(t)r2 (18)

where ξ(t) and ζ(t) are further constants of integration which
have been promoted to functions of time. These are to be
set according to boundary conditions, equations of state, or
additional physical constraints.

3.2 Anisotropic systems

For a more general, anisotropic system (δ �= 0), the com-
plexity factor (14) is given by
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B2

[
1

A

(
A′′ − A′

r

)
− 2

A′

A

B ′

B

]
(19)

and for vanishing complexity, a first integration yields

A′ = C(t)B2r (20)

which reduces the problem of finding solutions to a single-
generating function.

4 Application to modelling

The application of the vanishing complexity condition has
become an integral part of modelling relativistic objects
within the static regime. For dynamical systems, the com-
plexity factor as given according to the above definition is
less likely to vanish especially in the case of gravitational
collapse [12]. This is expected due to the causal nature of
dynamical processes whereby the establishment of an equi-
librium with respect to pressure anisotropy, energy density
inhomogeneity and heat flux cannot occur instantaneously.
Nevertheless, the vanishing complexity condition might still
be valid for quasi-static systems or in our case, at early stages
in the collapse process.

We see that for the isotropic case, vanishing complex-
ity results in metrics which are similar to those of Maiti

and Bergmann [17–19]. On application to compact, radiating
fluid spheres, the field equations give homogeneous energy
density profiles as is the case with the simple Schwarzschild
interior solution [13,20].

Maiti’s solution can represent a fluid with heat flux in a
conformally flat spacetime and the general form is given by

A = 1 + M(t)

1 + kr2/4
, B = R(t)

1 + kr2/4
.

Banerjee et al. [21] also considered this metric and
explored its generality in terms of conformal flatness.
We make use of the results obtained from vanishing complex-
ity for the isotropic case and set the gravitational potentials
as follows,

A(r, t) = A0(r) f (t) (21)

B(r, t) = B0(r) f (t) (22)

where f (t) is some function of time, and the static part is
given by

A0(r) = 1 + ζ

1 + r2 (23)

B0(r) = 2R

1 + r2 . (24)

We thus chose (k(t) → 1 and R(t) → 2R f (t)) in (16) and
(ξ(t) → f (t) and ζ(t) → ζ f (t)) in (18). This is almost that
of the Maiti form, apart from the modified time-dependence
on metric function A. Metric functions with the above sep-
arable form in radial distance and time have been utilised
by Tewari [22] and is a more general form of that used by
Bonnor et al. [13].

The associated field equations for the above system (21)–
(22) are
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where ρs and ps denote the energy density and pressure
respectively of the initial static configuration. These are given
by
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Table 1 Characteristics of shear-free, radiating fluid collapse following Maiti-type metric. ( fLmax = 0.0004113; fBH = 0.00004696)

f t M/M� ρ pΣ L∞ z
(s) (MeV/fm3) (MeV/fm3) (×1054 erg/s)

1 −∞ 5.01 1.33E−4 0 0 0.00344

0.7 −7.60 3.51 2.71E−4 1.22E−7 1.66 0.00480

0.4 −4.20 2.01 8.31E−4 1.11E−6 4.91 0.00748

0.1 −1.59 0.517 1.37E−2 6.59E−5 17.9 0.0186

fLmax −85.9E−3 0.0352 1.34E+4 87.1 183 0.505

fBH −28.8E−3 0.0343 8.77E+6 20.0E+3 0 9E+15

Using the boundary condition (ps |Σ = 0) for the initial
static configuration, we obtain

ζ = 1 + r2
Σ

−2 + r2
Σ

. (30)

Considering the time-dependent, collapsing phase, the
appropriate boundary condition is (pΣ = (qB)Σ ) which
provides an equation for the temporal dependence,

2 f f̈ − ḟ 2 − 2α f ḟ = 0 (31)

where

α =
(
A′

0

B0

)
Σ

. (32)

A first integration of (31) yields

ḟ = −2α
√

f
(

1 − √
f
)

(33)

and further integration,

t = 1

α
ln (1 − √

f ). (34)

We now consider the collapse of a 5M� shear-free fluid of
initial radius rΣ B0(rΣ) = 2.159×103 km and initial density
ρ0 = 2.363×108 g/cm3. The initial density then determines
the value of R to be R = 2.608 × 104 km. These parameters
may be compared with data from the extensive and in-depth
study done on Supernova 1987A [23]. The associated model
parameters and calculated quantities are given in Table 1.

5 Discussion

As noted in application to modelling, imposing a vanishing
complexity constraint results in metric line elements of the
Maiti and Bergmann form.
The Maiti form was selected with the gravitational potentials
set in variable separable form, providing a static configura-
tion consistent with the Schwarzschild interior solution. This
method has been used by Pinheiro and Chan [24] with metric
functions chosen such that only the spatial part incorporated
time dependence. We followed the approach of Tewari and

Fig. 1 Mass

Charan [25] in which both metric functions A and B are
spatially and temporally separable. In particular, the time
dependence was not removed from gravitational potential
A(r, t) = A0(r) f (t) as it is common to set A(r, t) → A0(r)
[13,24]. By including time dependence, we incorporate hori-
zon formation and comparison may be made with systems
which follow the perturbative approach [26]. Gravitational
collapse models with heat flow and without horizon forma-
tion have also been studied [27].
From Table 1, we see that horizon formation occurs at f ≈ 0
when most of the mass (99.3%) has been radiated as seen in
Fig. 1. In Figs. 2 and 3 we see that the energy density and pres-
sure become exceedingly large within the last 100 ms. The
luminosity peaks at about 57 ms before horizon formation as
seen in Fig. 4, which is about two orders of magnitude slower
than that predicted for the gravitational collapse of unstable
neutron stars [4]. It could be that a non-vanishing complex-
ity might provide for additional processes or pathways which
are conducive to more rapid gravitational collapse. The inclu-
sion of a string field has already shown that inhomogeneity
promotes earlier horizon formation [26]. In addition, non-
vanishing complexity might assist with stability. In Fig. 5,
it is evident that our radiating model suffers from instabil-
ity towards the centre and instability appears to grow as the
collapse proceeds. This is in contrast to the adiabatic case in
which isotropic pressure and homogeneous energy density
lead to the stability of the vanishing complexity condition
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Fig. 2 Density

Fig. 3 Isotropic pressure at the co-moving boundary

Fig. 4 Luminosity at infinity

[28]. It has been noted that the condition of zero complexity
is affected by heat dissipation [29] and initial investigations
into non-vanishing complexity for self-gravitating systems
have recently been made [12].

6 Conclusion

We have generated a model for the collapse of a self-
gravitating, shear-free and isotropic fluid with heat flux,
based only on the constraint of vanishing complexity. No ini-
tial static configuration was used apart from the specification
of the initial mass and radius. Vanishing complexity restricts

Fig. 5 Effective adiabatic index

the gravitational potentials to that of a Maiti type metric.
The potentials were assumed to be separable in radial and
time coordinates and a temporal behaviour similar to that
of Tewari was followed. In other studies, temporal depen-
dence is only included on the spatial part of the metric which
can lead to models without horizon formation. In our model,
temporal dependence on both metric functions ensured the
formation of a horizon, albeit at a point where most of the
mass has been radiated.
We also concluded a relationship between the metric func-
tions for the anisotropic case with vanishing complexity.
Specification of one of the metric functions is then required,
allowing for the inclusion of an initial state configuration. The
modelling process then depends on the successful determina-
tion of the other metric function. It is expected that anisotropy
would assist in improved stability.
Lastly, future work on the complexity factor might result in
non-vanishing trends in the factor during certain stages of
the collapse process. The resulting differential equation in
the metric functions would no doubt be much more complex
and likely require numerical techniques.
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