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Abstract. The measurement and compensation of electrostatic forces between conducting 

surfaces play a major role in various experiments, including measurements of the Newtonian 

constant of gravitation, measurements of the Casimir force, precision tests of general relativity 

in space, searches for hypothetical forces (fifth forces), gravity on elementary particles, heating 

in ion traps, and the physics of Rydberg atoms [1, 2]. Although the actual value of the contact 

potential was not of direct interest, it was necessary to eliminate it accurately in these 

experiments in order to avoid residual electrostatic forces that may limit the accuracy and 

precision of such experiments. We demonstrate how PTB’s nanonewton force facility [3, 4] can 

be used to accurately determine and compensate for the contact potential difference. To measure 

the contact potential difference as well as the distance between a force sensor and a measured 

object, a new three-voltage method was developed. A new method of adjusting the parallelism 

of the plates is also presented. The methods and the results of measuring the contact potential 

difference and the distance in vacuum are presented for a so-called plane-plane geometry and a 

ball-plane geometry. Measurements of the temporal and spatial variations of the contact potential 

difference were performed. Measurements were carried out at distances in the micrometer range 

between the metallic surfaces. A significant dependence of the contact potential difference on 

the distance between the conducting surfaces and on the time was found. 

1.  Introduction  

Compared to other surface forces, electrostatic force has a very long range. The contact potential 

difference is obtained from the difference in the work functions between the conducting surfaces. The 

work function may vary over a polycrystalline metal surface due to inequivalent crystal facets or due to 

non-uniform contamination, producing an electrostatically patchy surface (patch effect). It is well 

known that the work function of a metal surface depends on the crystallographic plane it lies on; as an 

example, for gold, the work functions are 5.47 eV, 5.37 eV, and 5.31 eV for surfaces in the <100>, 

<110>, and <111> directions, respectively. The electrostatic potential along a chemically clean metal 

surface varies along the length of the typical size of surface crystallites, which can vary from the 

submicron scale to the millimeter scale or larger. Variations on the order of 0.16 V are expected for 

atomically clean surfaces; however, surface contamination generally seems to reduce these variations to 

about 10 mV. The baking surfaces in an ultra-high vacuum increased the patch variations, while 

exposure to air decreased them. It would appear that preferential adsorption of background contaminants 

is the reason for this, possibly in addition to the migration of existing adsorbates along the surface. For 



Joint IMEKO TC1-TC7-TC13-TC18 Symposium 2019

Journal of Physics: Conference Series 1379 (2019) 012039

IOP Publishing

doi:10.1088/1742-6596/1379/1/012039

2

 

 

 

 

 

 

example, water molecules present on the surface, even in an ultra-high vacuum, have a substantial 

intrinsic dipole moment. Depending on the coverage and experimental conditions, water on a surface 

forms different low-dimensional structures ranging from isolated monomers and clusters to one-

dimensional (1D) chains and two-dimensional (2D) ordered overlayers. The presence of intrinsic or 

applied gradient electric fields will lead to an increase in the adsorption (as well as the distortion and 

migration) of these water structures. Migration and distortion can also occur with surface crystallites. 

This leads to a change in the distribution of charges and potentials on the surface. A significant temporal 

dependence of the contact potential difference between the metallic surfaces at distances in the 

micrometer range has been reported in [7]. Surface electric noise, i.e., the non-uniform and non-

stationary distribution of charges and potentials on a surface, poses a great experimental challenge in 

modern precision force measurements. In this paper, we present an improved version of PTB’s 

nanonewton force facility, which was first published in [3, 4]. The facility is based on a disc pendulum 

with an electrostatic control system that reduces the stiffness of the pendulum as well as its deflection 

from a selected position. The improvement of this facility includes a new electrostatic control system in 

order to generate an electrostatic compensation force and to reduce the angular oscillation of the disc 

pendulum in a high vacuum. For example, the angular movements of the disc pendulum have been 

reduced from 10-2 rad to 210-7 rad in a vacuum of 10-6 mbar. To control the mutual arrangement of the 

upper edges of the plates, a method analogous to confocal laser scanning microscopy (CLSM) was used. 

The facility is able to measure horizontal forces in the range below 1 µN with a resolution below 5 pN 

and an uncertainty below 2.7 % for a measured force of 1 nN at a measurement duration of about 20 s 

[4]. We demonstrate the possibility of using the nanonewton force facility to accurately determine the 

contact potential difference. To measure the contact potential difference as well as the distance between 

a force sensor and a measured object, a new three-voltage method was developed. This method makes 

it possible to compensate for the contact potential difference in real time. For plane-plane geometry and 

plane-ball geometry, which will be described later, the method used to measure the contact potential 

difference in a vacuum and the measurement results are presented below. A new method of adjusting 

the parallelism of the plates (so-called plane-plane geometry) is presented. Measurements of the 

temporal and spatial variations of the contact potential difference were performed. A significant 

dependence of the contact potential difference on the distance between the conducting surfaces was 

found. 

2.  New design of the nanonewton force facility 

The facility consists of a measuring part and an identical reference part in order to reduce thermal drift 

and seismic noise [3, 4]. The new functional diagram of the measuring part is presented in figure 1. The 

facility is based on a disc pendulum with electrostatic reduction of its deflection and stiffness in the X-

direction. The facility uses a disc pendulum (1) between two electrodes (2) with an electrostatic control 

system for force measurement. The disc pendulum is made of gold-coated silicon plates (size 30 mm x 

30 mm, thickness Tp = 0.425 mm) that are suspended on two gold-coated tungsten wires (1d) (dw = 10 

 1 µm in diameter and approx. 424 mm in length). The deflection of the pendulum due to a force is 

measured by means of an interferometer (8) (attocube FPS3010). The facility can measure horizontal 

forces in the range below 1 µN, with a resolution below 5 pN and an uncertainty of 2.7 % down to a 

measured force of 1 nN at a measuring duration of about 20 s [4]. One of the main objectives of the new 

upgrades was the modification of the disc pendulum design to achieve greater flexibility. A new 

measuring disc-pendulum was developed wherein a rod (1a) is mounted horizontally through a hole in 

the center of the pendulum; a gold-coated silicon plate – the “sensor plate” (1b) (size 20 mm x 20 mm, 

thickness 0.425 mm) – is attached to one side of the rod and a counterbalance (1c) to the other side. The 

rod (1a) is made of Zerodur with a coefficient of thermal expansion of less than 10-8 K-1. To ensure 

electrical conductivity and to eliminate static charges, all elements are coated with a 100 nm gold layer. 

The main source of measurement uncertainty and instability in a high vacuum is the free angular 

oscillations of the disc pendulum around the pendulum’s main axes. Such oscillations have a high quality 

factor and can achieve amplitudes of 10-2 rad. To detect these oscillations, a laser beam (9) is reflected 
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from one end of the rod (1a) onto a quadrant photodiode (10). Each of the electrodes (2) consists of four 

segments that can be controlled individually by using the signals from the quadrant photodiode (10). 

The angular oscillations are compensated by means of two additional independent electrostatic control 

systems, the first of which compensates for angular oscillations relative to the Y-axis, and the second of 

which compensates for the angular oscillations relative to the Z-axis. 

  

Figure 1. Functional diagram of the measuring part of the 

nanonewton force facility: (1) gold-coated disc pendulum; 

(1a) gold-coated Zerodur rod; (1b) sensor plate; (1c) 

counterbalance; (1d) disc pendulum suspension (thin gold-

coated tungsten wires); (2) outer conductive electrodes 

(each consists of four segments); (3) probe plate; (4) 6D 

positioner; (5) single mode fiber laser system; (6) focusing 

optical system; (7) 6D positioner (Hexapod); (8) 

interferometer; (9) laser beam; (10) quadrant photodiode; 

(11) focused laser beam; (12) voltage source; (13) rotator.   
 

Figure 2. The location of the sensor 

(1b) and of the probe plates (3) (2A 

= 20 mm; 2B = 4 mm). 

The angular oscillations can be reduced by several orders of magnitude. For example, in a vacuum 

of 10 -6 mbar, the angular oscillations of the disc pendulum have been reduced from 10 -2 rad to 2·10-7 

rad. The quadrant photodiode with the two electrostatic control systems also makes it possible to 

measure the torque that acts on the disc pendulum (sensor plate). The nanonewton force facility contains 

three independent electrostatic control systems. Each of these systems is a PID (proportional-integral-

derivative) real-time control system with a sampling period of about 1 µs. Control voltages are applied 

independently to each of the eight segments from the FPGA card. The FPGA card operates under the 

control of a real-time system and provides voltages from 0 V to 10 V. For a so-called plane-plane 

geometry, a gold-coated silicon plate (size 20 mm x 4 mm, thickness 0.425 mm) was used as a probe 

plate (3). This plate is attached and moved using a 6D positioner (4). A slit whose width is in the sub-

micrometer to millimeter range can be created between the probe plate (3) and the sensor plate (1b). The 

electrical voltages may be applied between the plates (3, 1b) by means of the voltage source (12). The 

electrostatic force arises between the sensor plate (1b) and the probe plate (3). The location of the sensor 

plate and of the probe plate is presented in figure 1. 

This force is measured by means of the nanonewton force facility. To control the arrangement of the 

upper edges of the plates (3, 1b), a method analogous to confocal laser scanning microscopy (CLSM) is 

used. The light is provided by a single mode fiber laser system with a wavelength of  = 1550 nm (5) 

and an output power P (0 W< P < 2 W). The laser beam is focused by means of an optical system (6) 

until it forms a spot radius of about  = 4 µm (11) on the upper edges of the plates. The whole optical 

system is mounted on a compact 6D positioner called a hexapod (7). The hexapod is used as a scanning 

system. The power of the radiation reflected from the upper edges of the plates and returned to the single 

mode fiber is measured. For the so-called plane-ball geometry, the probe plate (3) is replaced with a ball 

(hemisphere). 
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Figure 3. Ball-plane geometry: (1) disc 

pendulum (sensor plate); (1d) disc pendulum 

suspension (thin gold-coated tungsten wires); (2) 

movable mounting rod; (3) probe ball; (4) voltage 

source. 

Figure 4. Ball-ball geometry: (1) sensor ball; (2) 

probe ball; (3) movable mounting rod; (4) voltage 

source. 

3.  New three-voltage method 

In this section, we first consider a so-called plane-plane geometry (Figure 1 and 2), which is a most 

complicated case. To measure the contact potential difference u as well as the distance d0 between the 

center of the sensor plate (1b) and the center of the probe plate (3) (Figure 1 and 2), a new three-voltage 

method was developed (first presented in [5]). Let us assume that an electrical voltage u exists between 

the sensor plate and the probe plate. The beginning of the Cartesian coordinate system is located in the 

center of the sensor plate at the point Os (Figure 2). Let us assume that the centers of the plates (points 

Os and Op) are located on the X-axis. The required position of the plates is controlled by means of 

confocal laser scanning microscopy (CLSM). The angles of rotation between the plates are  (relative 

Y-axis) and β (relative Z-axis). We will assume that the dimensions of the 2A and 2B plates considerably 

exceed the distance d0 between them (d0 << 2A, d0 << 2B). In this case, the edge effects can be neglected. 

Assuming that  << 1 and β << 1, the electrostatic force F(u) between the plates can be described by 

the following expressions: 

                      𝐹(𝑢) =
1

2
∙

𝜕𝐶𝑝𝑝

𝜕𝑑0
∙ 𝑢2 =   

𝜀0∙𝑢2

2
 ∙ ∫ 𝑑𝑧

𝐴

−𝐴 ∫
𝑑𝑦

(𝑑0−𝛼𝑧−𝛽𝑦)2

𝐵

−𝐵
=  

𝑇𝑝𝑝∙𝑢2

𝐷(𝑑0)2  ,                                 (1) 

                                                                 𝑇𝑝𝑝 = 2 ∙ 𝜀0 ∙ 𝐴 ∙ 𝐵 ,                                                                         (2) 

                                                      𝐷(𝑑0)2 =  𝑑0
2 −  (𝛼 ∙ 𝐴)2 − (𝛽 ∙ 𝐵)2  ,                                                     (3) 

where Cpp is the capacity between the plates,  0 is the vacuum permittivity. 

The voltages u0, u1and u2 are applied between the plates by means of the voltage source (12). At the 

same time, the forces F(u0), F(u1), and F(u2) are measured. Taking the contact potential difference u 

into account, these measured forces can be written as: 

                                                            𝐹(𝑢0) =  
𝑇𝑝𝑝∙(𝑢0+𝛿𝑢)2

𝐷(𝑑0)2 + 𝛿𝐹  ,                                                      (4) 

                                                            𝐹(𝑢1) =  
𝑇𝑝𝑝∙(𝑢1+𝛿𝑢)2

𝐷(𝑑0)2 + 𝛿𝐹 ,                                                       (5) 

                                                            𝐹(𝑢2) =  
𝑇𝑝𝑝∙(𝑢2+𝛿𝑢)2

𝐷(𝑑0)2 + 𝛿𝐹 ,                                                      (6)  

where F is the offset force (any force independent of the applied voltage). 

Solving the system of equations (4-6), the contact potential difference u and the parameter   

𝐷(𝑑0)2 =  (𝑑0
2 − (𝛼 ∙ 𝐴)2 − (𝛽 ∙ 𝐵)2) are represented by means of the following expressions: 
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                                           𝛿𝑢 =  −
𝐹(𝑢0)∙(𝑢2

2−𝑢1
2)+𝐹(𝑢1)∙(𝑢0

2−𝑢2
2)+𝐹(𝑢2)∙(𝑢1

2−𝑢0
2)

2∙(𝐹(𝑢0)∙(𝑢2−𝑢1)+ 𝐹(𝑢1)∙(𝑢0−𝑢2)+ 𝐹(𝑢2)∙(𝑢1−𝑢0))
   ,                                 (7) 

                                                          𝐷(𝑑0)2 =  
𝑇𝑝𝑝∙((𝑢1+𝛿𝑢)2−(𝑢0+𝛿𝑢)2)

𝐹(𝑢1)−𝐹(𝑢0)
 ,                                                  (8)  

                                                 𝐷(𝑑0)2 =  𝑑0
2 − 𝐿2 ,     𝐿2 =  (𝛼 ∙ 𝐴)2 + (𝛽 ∙ 𝐵)2 .                               (9) 

To determine the distance d0, the probe plate (3) (Figures 1 and 2) is displaced in the X-direction by 

a known distance . Using the three-voltage method and the equations (7, 8) at a distance d0 (unknown) 

and at a distance (d0 + ), the parameters D(d0)
2 and D(d0+)2 are determined. Using equation (9), the 

distance d0 is calculated by means of the following expression: 

                                                                𝑑0 =  
𝐷(𝑑0+∆)2− 𝐷(𝑑0)2−∆2

2∙∆
                                                         (10) 

When the distance d0 is known and equation (9) is used, the parameter L and the minimum distance 

between the plates dmin (Figure 2) are given by the following equations: 

                                                     𝐿2 =  (𝛼 ∙ 𝐴)2 +  (𝛽 ∙ 𝐵)2 =  𝑑0
2 −  𝐷(𝑑0)2  ,                                   (11) 

                                                                             𝑑𝑚𝑖𝑛 = 𝑑0 − 𝐿 .                                                            (12)   

Note that the method can be easily expanded to include a ball-plane geometry (Figure 3) and a ball-

ball geometry (Figure 4). Using of the so-called proximity force theorem (PFT) [6], the electrostatic 

force Fbp of the ball-plane geometry is given by means of the equations: 

                                                              𝐹𝑏𝑝 =  𝑇𝑏𝑝 ∙
𝑢2

𝑑𝑏𝑝
 ,          𝑇𝑏𝑝 =  𝜋 ∙ 𝜀0 ∙ 𝑅 ,                                   (13) 

where R is the radius of the ball, dbp is the distance between the ball and plane (Figure 3). Replacing Tpp 

with Tbp and D(d0)
2 with dbp in equations (4-6) and using equations (8,13) the distance dbp is calculated 

by means of the expression: 

                                                                𝑑𝑏𝑝 =  
𝑇𝑏𝑝∙((𝑢1+𝛿𝑢)2−(𝑢0+𝛿𝑢)2)

𝐹(𝑢1)−𝐹(𝑢0)
  .                                             (14) 

Using the PFT, the electrostatic force Fbb of the ball-ball geometry is given by means of the equations: 

                                                       𝐹𝑏𝑏 =  𝑇𝑏𝑏 ∙
𝑢2

𝑑𝑏𝑏
 ,          𝑇𝑏𝑏 =  𝜋 ∙ 𝜀0 ∙

𝑅1∙𝑅2

(𝑅1+𝑅2)
,                                 (15) 

Where R1 and R2 are the radiuses of the balls, dbb is the distance between the balls (Figure 4). 

Replacing Tpp with Tbb and D(d0)
2 by dbb in equations (4-6) and using equations (8,15), the distance dbb 

is calculated by means of the expression: 

                                                              𝑑𝑏𝑏 =  
𝑇𝑏𝑏∙((𝑢1+𝛿𝑢)2−(𝑢0+𝛿𝑢)2)

𝐹(𝑢1)−𝐹(𝑢0)
  .                                                   (16) 

The contact potential differences u of the ball-plane geometry and the ball-ball geometry, as well 

as those of the plane-plane geometry, are given by equation (7). Note that the contact potential difference 

u determined from equation (7) does not depend on the calibration of the force meter used. Note also 

that equation (7) can be used for any given geometry and relative position of the conductive surfaces. 

4. Adjustment of the parallelism of the plates 

The parameter L characterizes the degree of the parallelism of the probe plate (3) relative to the sensor 

plate (1b). The parallelism of the plates corresponds to the zero value of the parameter L. Another 

method of setting the parallelism of the plates is to minimize the torque applied to the sensor plate (1b) 

by the probe plate (3) (Figures 1 and 2). Using CLSM (Section 2), an angle of β < 10-4 rad between the 

plates is achieved in practice. To simplify the calculations, we assume that the angle β between the plates 
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is zero. In this case, the torque MY() applied to the sensor plate (1b) by the probe plate (3) can be written 

as 

                            𝑀(𝛼)𝑌 =  ∫
𝜀0∙𝑢2∙𝐵∙𝑧∙𝑑𝑧

(𝑑0−𝛼∙𝑧)2

𝐴

−𝐴
=  

4∙𝜀0∙𝑢2∙𝐴3∙𝐵

3∙𝑑0
3 ∙ 𝛼 ∙ (1 +

6

5
∙ (

𝛼∙𝐴

𝑑0
)2 + 𝑂((

𝛼∙𝐴

𝑑0
)4)) .               (17) 

If the angle  between the plates is small (A << d0), it follows from equation (17) that the 

dependence of the torque MY() on the  is linear. The parallelism of the plates ( = 0) corresponds to 

the zero value of the torque MY(). After parallelism of the plates has been achieved, the desired angles 

of inclination  and β can be set by turning and displacing the probe plate (3) by means of the 6D 

positioner (4). 

5.  Measurements 

Figures 5 and 6 show the measurements of the contact potential difference u and the distance d0 

between the plates (1b, 3) for plane-plane geometry by means of the new three-voltage method. The 

voltages u(t) are applied between the plates (1b, 3) by means of the voltage source (12). Figures 7 and 

8 show the measurements of the contact potential difference u (blue solid line) and the distance d0 

(brown solid line) between the plates (1b, 3) for plane-plane geometry by means of the new three-voltage 

method, when distance changes cyclically. To change the distance between the plates, the probe plate 

(3) is moved stepwise relative to the sensor plate (1b) with a step size of 20 nm and a time step of 90 s. 

During each step of the probe plate with a time step of p = 90 s, the voltage changes three times with a 

basic time interval of u = 30 s. The mean values of the force are calculated from the signal measured 

after it has passed a Bessel low-pass filter (0.05 Hz, 12th order) in the interval from 21 s to 30 s after the 

start of the voltage interval. During each step, the contact potential difference (compensation voltage) 

u and the distance d0 are calculated. Thus, the contact potential difference u using the three-voltage 

method is measured and compensated to zero for each step of the probe plate. The measurements were 

carried out in a vacuum of about 210-7 mbar.  

  

Figure 5.  Demonstration of the new three-

voltage method without compensation of the 

contact potential difference: applied voltage = 

blue dashed line; applied voltage after the low-

pass filter = blue solid line; measured force after 

the low-pass filter = red line. 

Figure 6.  Demonstration of the new three-voltage 

method with the contact potential difference 

compensation: applied voltage = brown dashed 

line; applied voltage after the low-pass filter = 

brown solid line; measured force = red line; 

measured and compensated contact potential 

difference = blue solid line. 
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The probe plate (3) was tilted around the vertical Z-axis (= 210-3 rad) and the horizontal Y-axis ( 

= 10-3 rad) relative to the sensor plate (1b). The measured contact potential difference u(t) versus time 

and its power spectral density are presented in figure 9 (vacuum p = 210-7 mbar). In this experiment, 

the distance between the plates d0 = 23.4 µm (dmin = 1 µm) was constant. 

For ball-plan geometry, the probe ball (3) (hemisphere with a radius R = 4.2 mm) is moved stepwise 

relative to the sensor plate (1) (Figure 3) with a step size of 5 nm and a time step of 60 s. The measured 

contact potential difference u and temperature variations of the facility versus the distance dbp in a 

vacuum p = 0.1 mbar are presented in figure 10.  

  

Figure 7. Measurements of the contact potential 

difference u (blue solid line) and the distance d0 

(brown solid line) between the plates (1b, 3) for 

plane-plane geometry when distance changes 

cyclically: position of the probe plate = black dashed 

line; temperature variations of the facility = red line. 

Figure 8. Measurements of the contact 

potential difference u (blue solid line) and 

the distance d0 (brown solid line) between the 

plates (1b, 3) for plane-plane geometry when 

distance changes cyclically (5 cycles): 

position of the probe plate = black dashed 

line. 

 

 
 

Figure 9. Measured contact potential difference 

u(t) versus time (blue line) and its power 

spectral density (black line) in a vacuum p = 

210-7 mbar for plane-plane geometry. 

Figure 10. Measured contact potential difference 

u (blue line) and temperature variations of the 

facility (red line) versus the distance dbp in a 

vacuum p = 0.1 mbar for ball-plane geometry. 

It should be noted that there is only a weak correlation of the contact potential difference u with the 

temperature variations of the facility. It should also be noted that there is a strong variability in the 
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dependences of the contact potential difference u versus the distance d0 (Figures 7 and 8). This behavior 

can be explained by structural surface changes as a result of the action of electric fields arising between 

the surfaces. These changes may include the structure of gold clusters that cover the surfaces. Temporary 

changes in the contact potential difference in some experiments exceeded 100 mV per day.  Changes in 

the contact potential difference u should be compensated during precision measurements. 
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