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Abstract

Leti : L — X be a compact Kihler Lagrangian in a holomorphic symplectic variety
X/C. We use deformation quantisation to show that the endomorphism differential
graded algebra RHom (i *Ki/ 2, i *Ki/ 2) is formal. We prove a generalisation to pairs
of Lagrangians, along with auxiliary results on the behaviour of formality in families

of Aso-modules.
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14F40 (Secondary)

0.1 Introduction

Degeneration of the spectral sequence Leti : Z C X be alocally complete intersection
subvariety and choose a line bundle .Z on Z. The standard isomorphism of functors

Hom = T o sZom gives RHom = RI" o R7%0om , so we get a Grothendieck spectral
sequence, in this case the local-to-global Ext spectral sequence

EDY = HP (X, &xt qﬁx (ix2,i:.D)) = Ext%‘)’(’q (ixZ, ix2L).

We can rewrite this spectral sequence in more familiar terms. First, we observe that
the &xt -sheaves are independent of .Z.

Lemma 0.1.1 There are natural isomorphisms

Ext ?ﬁx (is.Z, i L) = Ext ?ﬁx (i:07,1.07) ®g7 L ®p, L = Ext ;fx (i+0z,i+07).
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Proof Indeed, the composition defines a natural map
Ftom Ox (ix+O0z7,1,0z) Qo & Qo LY — Hom Ox (i:.2, i, L)

which we see is an isomorphism working locally on Z. The ¢ > 0 cases follow from
s-effaceability. O

Now, we are ready to calculate the &xt -sheaves:
Proposition 0.1.2 There are natural isomorphisms &xt (llﬁx (ixZ, ix L) = ix N N7X.
Proof Since the question is local, we may assume .¥ = 7 and that Z is the zero

locus of a regular section s € HO(X, 0%) where ¢ = codim(Z, X). Then we have a
Koszul resolution

Taking JZom g, (—, i+O7) gives a complex

)
07— i,05 > 1,0 > ...

c

with all arrows zero. Hence, &xt ‘jﬁx (ix07,i.07) = iy ﬁé") and since s yields a regular
sequence, the natural map 0%, — %z induces an isomorphism &, = .97/ ﬂzz. O

So the spectral sequence takes a simpler form:
EVY = HP(Z, N Nyyx) = Ext?}:q (i, i.2L)
and the differentials on E» come from classes in
EthﬁX (N Az px, NTEA7x).
Let KS be the Kodaira-Spencer class, i.e. the extension class of
0— 7 — i*"Fx - Nzx — 0.

Example 0.1.3 For g = 1, we have an explicit description of the differential, showing
it’s often non-zero in general.

The differential acts via .47,x — Oz[2] which is (the adjoint of) the class

vy L — L Nxl2],

measuring the obstruction to extending .# from Z to 2Z.!

127 is the first infinitesimal neighbourhood of Z in X given by the ideal /22.
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This is purely Hodge-theoretic, i.e. ¢1(.Z) extends topologically and its (0, 2)
part is the obstruction to it being of type (1, 1), so a holomorphic line bundle. The
differential is a map H”(Z, 47 /X) —> H1’+2(Z, O’z) which is the contraction with
the class ¢ € H?(Z, </Vz7x) given by contracting ¢{(.¥) € H'(Z, Qz) with KS €

H'(Z, M)y ® T7).
Leti : L — X be a smooth complex Lagrangian in a (compact) holomorphic
symplectic variety X. Denote the holomorphic symplectic form by o and fix a line

bundle . € Pic(L). We are interested in the self-Ext groups of i,.Z. These are
naturally computed using the local-to-global spectral sequence just introduced:

By = HP (L, AT M x) = Bxt) (1.2, in.2).

We see that the holomorphic symplectic form o gives an isomorphism .4{, >~ Q| by
considering the diagram:

0 s A y i* Tx > AMx > 0

l li*a l

0 — Myx — i*Q > Q > 0

Hence, in the symplectic setting, the spectral sequence takes the form
E)? =HP(L, Q) = Extg—;q (is.2,ix.2).

Remark 0.1.4 We record a few observations from the discussion above:

e E; is de Rham cohomology H(L/C) of L.

e The second page is independent of the line bundle.

e The differential d, however, isn’t, e.g. the class o ¢ mentioned earlier clearly
depends on .Z.

Our first main result is on the degeneration of this spectral sequence for certain class
of line bundles .Z.

Theorem 0.1.5 Leti : L < X be a smooth complex Lagrangian in a compact hyper-
kcihler variety X /C, and let £ be a quantisable line bundle on L, such as KI{/ % Then
the local-to-global Ext spectral sequence

EJY =HP(L, Qf) = Ext), 1 (.2, i,.2)
degenerates on the second page.

Remark 0.1.6 e Recall that in the holomorphic case the existence of a line bundle
Ki/ 2 s equivalent to the existence of a spin structure on L. A choice of spin
structure corresponds to a choice of a square root K/ 2, see [2].
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o Infact, as we will explain later, the quantisable line bundles are precisely the twists

of K]{/ 2 by 2-torsion line bundles.

Remark 0.1.7 The proof is, unsurprisingly, via deformation quantisation. This doesn’t
require X compact Kéhler and, in fact, the proof shows we don’t even need L Kdhler -
it is enough it be smooth, compact with Hodge-to-de Rham spectral sequence degen-
erating on E;. Examples of such manifolds are given by any manifold satisfying the
99-lemma, e.g. non-projective Moishezon manifolds.

Formality results Recall that a differential graded algebra A is formal if A >~ HA as
differential graded algebras. By Kadeishvili’s theorem the cohomology of a differential
graded algebra is naturally an A-algebra. The homotopy class of the A -structure
on HA measures failure of formality for A. Kéhler formality of Deligne et al. (see [9])
says that Q*(L, C) is a formal differential graded algebra, hence H*(L/C) is formal
as an A-algebra. In light of H*(L/C) = @, ,HP (L, Q) = Ext{(i,.Z, i..%), it is
natural to ask whether the same goes for Ext(i,.Z, i.-%), i.e. if the differential graded
algebra RHom (i..%, i..%) is formal. We confirm this in the case where .’ is a square
root of the canonical bundle of L.

Theorem 0.1.8 Let X/C be holomorphic symplectic and let i : L — X be a smooth
compact Kihler Lagrangian submanifold whose canonical bundle admits a square
root. Then the differential graded algebra RHom(i*Ki/ 2, i*Ki/ 2) is formal, in fact,

quasi-isomorphic to the de Rham algebra H(L/C).

Results on pairs of Lagrangians Consider two smooth Lagrangians i : L — X,
Jj : M — X such that L N M is smooth. For any choice of line bundles .# € Pic(L)
and .# € Pic(M), we have a local-to-global Ext spectral sequence

EYY =HP(LNM, @y ® #) = ExtPT(i,.2, ju M),

where # := det Mamm ® LY || 1y @ AL

Theorem 0.1.9 Let X/C be a holomorphic symplectic variety. Suppose that i
L — X, j : M< X are smooth Lagrangians with a compact Kdhler inter-

section L N M of codimension c in L. Assume that KI{/ % and KMZ exist and let
\"
Hor = (KI{/ 2) KI{/{Z' ) ® Krnm. Then the Ext local-to-global spectral
LNM LNM
sequence

EYY = HP (L NM, Qv ® Hor) = Ext? (i, K[ %, juKy)

degenerates on the second page. In particular,
Extt (K", juKy() = @, HP (L OM, Q15 ® Hor) = HECL N M, Ror),

where Koy is the local system corresponding to the 2-torsion line bundle ;.

W Birkhauser



Formality of differential... Page 5 of 42 8

Remark 0.1.10 As above, we remark that the proof shows it is enough to assume the
intersection LNM smooth, compact such that its Hodge-to-de Rham spectral sequence
for the local system Ko degenerates on E;.

Example 0.1.11 Notice that Ext(i*Ki/ 2, j*Kllvfz) is a graded module over

Ext(i*Ki/z, i*Ki/z). A theorem of Deligne (see [12, 27]) asserts that Q*(L N M, Ror)
is a formal dg module over Q*(L N M, C). Let QS be the complex of 9-closed forms

with differential 9. The diagram

Q*(L,C) +—— QI(L,C) —— H(L/O)

1 0 {
Q*LNM, C) + QE(LNM,C) — H(LNM/C)

shows Q*(L N M, R,;) is also formal over 2*(L, C). Hence H(L "M, K,) is formal
as an Ax,-module over H(L/C).

We prove the same goes for the Ext modules:

Theorem 0.1.12 Let X/C be holomorphic symplectic. Suppose that i : L — X,
j : M — X are compact Kdhler Lagrangians with a smooth intersection. Assume
that their canonical bundles admit square roots. Then RHom(i*Kli/ 2, j*Kllvfz) is
a formal differential graded module over the (formal) differential graded algebra

. 1/2 . 1/2 .. . .
RHom(l*KL/ , I*KL/ ) Moreover, we have a quasi-isomorphism of pairs

(RHom (i,.K,"?, i.K{’?), RHom (iK%, juKyi?)) = (H(L/C), H* (L N M, &op)),

where c is the codimension of L "M in L.

Remark 0.1.13 A few observations regarding Theorem 0.1.12:

1. The proof shows that it is enough to assume L compact Kihler and M smooth such
that L N M is smooth.

2. A variant for the dg module structure over RHom ( j*KM 2 j*Klif) can be formu-
lated, reversing the assumptions on L and M in the part 1. of the remark.

0.2 Method of proof

The proof of Theorem 0.1.8 involves two main ingredients. We first observe that the dg
algebra RHom (i *Ki/ 2, i*KI{/ 2) can be deformed over C[[/]] to the de Rham complex
- this involves results of Schapira et al. on deformation quantisation [10, 22], hence
the square root of the canonical bundle. The deformation is the de Rham complex
Q*(L, C) over the generic point, therefore it is generically formal by Kihler formality
of [9]. Applying semicontinuity yields degeneration of the spectral sequence, proving

the degeneration for Ki/ % The formality requires a second ingredient - it is a theorem
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of Kaledin that generically formal dg algebras are formal (under certain conditions
which our family satisfies).

The proofs of Theorem 0.1.9 and Theorem 0.1.12 follow the same lines, however,
to prove the formality, we need Proposition 1.8.4 - the analogue to the result of Kaledin
for Aso-modules.

Kaledin [16] treats formality of dg algebras as triviality of the normal cone deforma-
tion. Our approach to formality of A,,-modules is also motivated by the deformation
to the normal cone as we now explain, although we phrase our results without refer-
ence to deformation theory, opting to use the language of A,-algebras and modules
instead.

Let A be a graded algebra over R. Consider a minimal A,,-module M over A.
Assume A, M projective over R. Let A = A[h] be the trivial deformation of A over
R[%]. Consider the graded R[Z]-module M[4]. Then (mlzvl, mgv[h, mﬂ’lhz, ---) turns
M[h] into an A-module over A[4] since the defining relations (), ) for A-modules
are homogeneous. Letting M be the so defined Aoo-module, observe that the general
fibre is M. We write M(2) for the minimal (formal) A,,-module (M, (m12\4, 0,0,--),
so the central fibre of M is M/h = M(2). In light of this, the following definition
seems natural.

Definition 0.2.1 The A,-module M is the deformation of M to the normal cone.

One should think of M as an A.-deformation of M(2) to M. Notice that the for-
mality of the Ay,-module M is the same as triviality of M as a deformation, i.e. in
either case we are asking for a quasi-isomorphism M ~ M(2)[h]. Reducing modulo
h — 1, we see that this implies that M is formal. The converse is also true. Hence for-
mality of M is equivalent to triviality of the deformation M, so we can use obstruction
theory and cohomology, standard deformation theory tools, to find formality criteria
for Aso-modules.

0.3 Context

The work of Solomon and Verbitsky In [30] the authors study the Fukaya category
of I-holomorphic graded spin Lagrangians in a hyperkéhler variety (X, I,J, K, g),
equipped with the symplectic form wy = g(J-, -). Recall that spin is needed to set up
Floer theory and is equivalent to choosing square roots of the canonical bundles in the
complex case. When L N M is smooth, they show that the Floer coboundary operator
w1 on CF(L, M) coincides with the de Rham differential, hence HF(L, M) is the de
Rham cohomology of LNM, up to Maslov index shifts and tensoring by A. Moreover,
for CF(L, L), u, is the wedge product of differential forms up to sign, while u; = 0
for k > 3. Thus, in the compact case, they recover a formality result of Ivan Smith:
the proof of Kéhler formality as in [9] shows that the Floer Ay-algebra CF(L, L) is
formal. We note that their results might be thought of as mirror to ours.

More generally, Solomon and Verbitsky consider a collection of I-holomorphic
graded spin compact Lagrangians £ and define a Fukaya A-category :Zlg. In light
of the formality of CF(L, L), the following conjecture of Ivan Smith is natural.

W Birkhauser
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Conjecture 0.3.1 :Zlg is a formal A..-category.

The category .7\1; is known to be intrinsically formal in the case of the A¢-Milnor
fibre by [1, 29] shows formality of A, in the case of a transverse nilpotent slice
of the adjoint quotient slhk(C) — C2=1 and a distinguished (finite) collection of
Lagrangians defined in [28]. We answer a similar question in the setting of virtual de
Rham cohomology - see Proposition 0.3.5 below.

Kapustin’s Seiberg-Witten duality and deformation quantisaion Another source of
motivation for us comes from Kapustin’s conjectural Seiberg-Witten duality [18]
between type A and B-branes on hyperkihler manifolds which pairs well with the
results of [30]. One way to make the conjectural duality of Kapustin precise is via
deformation quantisaion modules of Kashiwara-Schapira [23], cf. Conjecture 0.3.2.
We exploit this idea, using the deformation quantisation for complex Lagrangians
[10], to show that the analogue of the Solomon-Verbitsky degeneration holds for the
B-model. As explained, this should be regarded as a Seiberg-Witten duality between
commutative and non-commutative spaces. In particular, everything happens on the
same manifold and no T-duality is involved.

In earlier work [17] Kapustin conjectures that the Fukaya category of a hyper-
kdhler variety (X, I,J,K) with symplectic form wj should be equivalent to a
non-commutative deformation of the derived category on the holomorphic symplectic
manifold (X, I, o1 = wy + iwk). We suggest a precise deformation:

Conjecture 0.3.2 The Fukaya category of a hyperkihler variety (X, I, J, K) with sym-
plectic form wy is quasi-equivalent to the differential graded category of DQ modules
on the holomorphic symplectic manifold (X, I, o1 = wy 4 iwk).

Following [30] and Conjecture 0.3.2, one can speculate that the category A £ should
be quasi-equivalent to the full subcategory D/ of the category of DQ modules on X
whose objects are a choice of a simple holonomic module Zi, along L foreach L € L.
Our results show that D, is well-defined up to quasi-equivalence. In fact, we can
strengthen Theorem 0.1.8:

Theorem 0.3.3 Let X/C be holomorphic symplectic and let i : L — X be a smooth
compact Kihler spin Lagrangian submanifold. Then, for L = {L}, the differential
graded category Dy is formal.

In light of the results above, Conjecture 0.3.1 and the Seiberg-Witten duality Conjec-
ture 0.3.2, we expect:

Conjecture 0.3.4 Let £ be a Solomon-Verbitsky collection of Lagrangians in X. The
differential graded category D/ is formal.

Thus, Theorem 0.3.3 proves Conjecture 0.3.4 in the case of one Lagrangian. Our results
Theorem 0.1.9 and Theorem 0.1.12 on pairs of cleanly intersecting Lagrangians are the
first step towards Conjecture 0.3.4. We are not able to show formality of the differential
graded category in general but our weaker results concerning A,-modules show that
it is well-defined up to quasi-equivalence.

) Birkhauser
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Behrend and Fantechi The construction of a differential graded category C of
Lagrangians in a holomorphic symplectic variety X is sketched in [4]. This
construction depends on their constructible virtual de Rham complex
((g’BF = Ext gy (i*K1/2, j*KMZ), d). Locally X is the cotangent bundle of M and
L is given by the graph of d f for some f € I'(M, Owm), hence L N M is the critical
locus crit f. Then the sheaves &gp are the cohomology sheaves of (2, d f A). Since
d f A anticommutes with the de Rham differential d, we see that d descends to a dif-
ferential on &pF, still denoted d. The main result of [4] is that these locally defined
differentials glue. The cohomology of the morphism complexes Hom¢(L, M) is given
by the virtual de Rham cohomology RI" (&3, d) of the intersection L N M. There is a
spectral sequence computing RT"(&pF, d):

E[! = HY(X, &) = RPHT (Gr, d). M)

When L N M is compact Kihler, it degenerates by Hodge theory, hence our results
prove a corrected version of [4, Conjecture 5.8]:

Proposition 0.3.5 Let X/C be a holomorphic symplectic variety and suppose that
i:L— Xandj: M~ X are smooth Lagrangians such that Ki/z and KI]V{Z exist
and L N M is smooth compact. Assuming that the spectral sequence (1) degenerates
on Ey, e.g. if L N M is furthermore Kdhler, we have

.12 .12
RFT (8pr. d) = Ext¥, (iK%, . Kyp).

Remark 0.3.6 This conjecture is the analogue of the formality of .715 in the virtual
setting.

0.4 Plan of paper

In Sect. 1 we start by Ax-algebras and conclude with the formality theorems of
Kaledin [16]. In the next paragraph we define A,-modules and recall standard results
such as Kadeishvili’s theorem on minimal models. Then we have a paragraph on (bi-
graded) Hochschild cohomology of modules over graded algebras. It culminates in
some results on base-change for Hochschild cohomology, mirroring statements in [25].
After that, we develop obstruction theory for extending A,-modules to A, 1 1-modules
as well as A, -morphisms to A, -morphisms between modules - this is motivated
by similar ideas in [19] for Loo-algebras and [24] dealing with A..-algebras. The last
paragraph contains our results on formality of Ay,-modules.

In the next Sect. 2, we recall results of [3] on perverse sheaves on d-critical loci - a
structure that exists on the intersection of two Lagrangians. Then we have a reminder
on deformation quantisation modules, following [10, 23]. In particular, we compare
the compatibility of [10] to the results by Ginzburg et al. [5]. We conclude by relating
perverse sheaves on Lagrangian intersections and simple holonomic DQ modules.

In Sect. 3 we start by applying deformation quantisation to prove the degeneration
of the local-to-global Ext spectral sequence, for square roots of the canonical bundle,

W Birkhauser
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in both cases of single Lagrangian and a pair of cleanly intersecting Lagrangians. We
conclude with our main results on formality.

0.5 Conventions

We work with Ay-algebras and modules over a (unital) ring R and we shall assume
that R is a commutative algebra over a field k of characteristic 0.

1 A-algebras

A good general reference for A -algebrasis [24]. We recall A-algebrasoveraringR,
their bar construction, Kadeishvili’s theorem on minimal models and formality results
of Kaledin-Lunts. Then we review definitions and standard results on As.-modules.

The final paragraphs of the section contain Hochschild cohomology, obstruction theory
and our results on formality of Ay,-modules.

1.1 A-algebras

Definition 1.1.1 Let n € N U {oo}. An A,-algebra is a graded R-module A equipped
with a family of R-linear morphisms

m; : A% 5 A
of degree 2 — i for 1 <i < n such that for all m < n we have

Y D myd® @ me @ id®) = 0. (m)
J+k+l=m

Remark 1.1.2 1. If m; = O for all i # 2, then A is a graded algebra.
2. If m; =0foralli # 1, 2, A is a differential graded algebra.

Example 1.1.3 Let A be an Ay-algebra. Then the first relation is
(x1) mm; =0,
i.e. m is a differential. The second relation is
(x2) mimy =ma(m; ®id +id @ my),

meaning that m is a derivation for the multiplication m,. The third equation shows
my is associative up to the homotopy mj3:

(#3) ma(my ®id —id ® m) = mym3 +m3(m; ® id®? +id @ m; ® id + id®? @ m)).

) Birkhauser
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In particular, any minimal A, -algebra is associative. The cohomology of an A, -algebra
is a graded associative algebra.

Definition 1.1.4 Letn € NU {oo}. Let A, B be A, -algebras over R. An A, -morphism
f : A — B between A, -algebras is a family of R-linear morphisms

fi 1A% - B
of degree 1 — i for 1 < i < n such that for all m < n we have

S VM i emeeid®) = Y (D m(fi - ® fi),
Jtk+l=m i1+ tip=m
(**m)

where we set

s= Y (=i Y i)

2<u<r 1<v<u

The composition of f : A — B and g : B — C is defined by

o=, Y, D'g(fiy® 8 f)

rodpteetiy=n

Example 1.1.5 Let f : A — B be an Ay-morphism. Then

(xx1)  fimp =my f1,

that is, f1 is a morphism of complexes, i.e. Aj-morphisms are just morphisms of
complexes. The second relation is

(xx2)  fima =ma(fi ® f1) +myfo+ fa(m ®id +id @ my),
measuring the compatibility of f; with the multiplications of A and B.

Remark 1.1.6 We denote the category of A,-algebras and A,-morphisms by Alg, and
the category of Ao-algebras by Alg . The category of differential graded algebras is
a non-full subcategory of Alg.

Definition 1.1.7 Let n be a positive integer or oo.

1. A morphism f = (f1, f2,---,fx) : A — B of A,-algebras is a quasi-
isomorphism if fi is a quasi-isomorphism of the underlying complexes.

2. A and B are said to be quasi-isomorphic if there exist A,-algebras Cy, - - - C,, and
quasi-isomorphisms A < C; — --- < C,, — B.

Definition 1.1.8 Let n be a positive integer or co.

W Birkhauser
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1. An A, -algebra A is called minimal if m| = 0.
2. A minimal model for A is a minimal A,-algebra B together with a quasi-
isomorphism B — A.

Theorem 1.1.9 (Kadeishvili [15]) Let A be an Axo-algebra over R such that HA is
a projective R-module. For any choice of a quasi-isomorphism f1 : HA — A of
complexes of R-modules, there exists a minimal Aso-structure on HA, with mI;A being
induced by my, and an A -quasi-isomorphism f : HA — A lifting fi.

Definition 1.1.10 Let A be an A,,-algebra.

1. A is called A,-formal if it is A,-quasi-isomorphic to the A,-algebra (HA, mHA),
where m?A induced by mj and m?A = 0fori # 2.

2. A is called formal if it is Axg-quasi-isomorphic to the graded associative algebra
HA, viewed as an Ay,-algebra.

We have the following two important results due to Kaledin and Lunts.

Theorem 1.1.11 (Lunts [25]) Let A be a minimal A~-algebra over R which is projec-
tive as an R-module. Then A is formal iff it is Ay, -formal for all n.

Furthermore, Kaledin [16], shows that A, -formality is measured by a cohomology
class, called the Kaledin class, which gives the next result.

Theorem 1.1.12 (Kaledin-Lunts [16, 25]) Let R be an integral domain with field of
fractions k(n). Consider a minimal Ax-algebra A over R which is a finite projective
R-module. Assume that the Hochschild cohomology group with compact supports
HH% (A(2)) is torsion-free. If A,y = k(n) @r A is formal, then A is formal. In particular,
Ay is formal for all p € SpecR.

1.2 The bar construction

Let A be a graded R-module endowed with morphisms
m; : A® 5 A,

For i > 1 we have a bijection

Hom(A®', A) — Hom((A[1])®", A[1])
mi > di = (=1) 7 om0 (sTH®
where s : A — A[1] is the canonical degree —1 morphism. Remark that in our case
m; are of degree 2 — i, so the corresponding d; have degree 1. The morphisms d;
define a unique morphism

T(A[1]) — A[l],

) Birkhauser
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which by the universal property of the reduced tensor coalgebra corresponds to a
unique degree 1 coderivation

d: T(A[1]) = T(A[1]).

Lemma 1.2.1 (Lefevre-Hasegawa [24]) The morphisms m; define an Axs-algebra
structure on A iff d is a differential, i.e. d> = 0.

Definition 1.2.2 The bar construction of an A-algebra A is the differential graded
coalgebra B(A) := (T(A[1]), d).

Let A, B be graded objects. For i > 1 we have a bijection

Hom(A®', B) — Hom((A[1])®, B[1])

firs Fy = (—)i~+deefign o fo (s;1)®i.
If f; are of degree 1 — i, the maps F; define a degree O morphism of coalgebras
F: B(A) — B(B).
Lemma 1.2.3 (Leféevre-Hasegawa [24]) Let A, B be Axo-algebras and let f; €

Hom(A®!, B) be of degree 1 — i. The morphisms f; define an Aso morphism iff F is
compatible with the differentials, i.e. we have a bijection

Homapyg, (A, B) = Hom(B(A), B(B)).

1.3 A,o-modules

Definition 1.3.1 Letn € N U {oo} and let A be an A,-algebra over R. An A,;-module
over A is a graded R-module M together with a family of morphisms

mM M® A% > M
of degree 2 —i forall 1 <i <msuchthatforalll <m <n

> M L @me@id®) + ) (= D'm om)! @ 1d®)
Jtkt=m, j=1 ktl=m
Ce)

=0.

Definition 1.3.2 Let n € N U {oo} and let A be an A,-algebra and suppose M, N are
A,-modules over A. A morphism of A,-modules is a family of R-linear morphisms

fi M@ A® ! >N

W Birkhauser
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of degree | —i for 1 <i <nsuchthatforalll <m <n

Yoo VM @m@id®) = YT maa(f ®@id®).
Jjt+k+l=m k>1 r+s=m,r>1,s>0
(7,)

The composition of f : L — M and g : M — N is defined by

€ofln= Y &n(fi®1%).

k+l=n

Remark 1.3.3 Let A be an A-algebra and M be an A,-module over A. Then

1. (M, mll\/l) is a complex;
2. If f : M — N is a morphism of Ay-modules, f] is a morphism of complexes

fi: M, mMy = (N, m).

Example 1.3.4 If A is an Ay-algebra, then the morphisms m; : A%’ — A define an
Aso-module structure on A over A.

Remark 1.3.5 If A is a differential graded algebra regarded as Ayo-algebra, then any
differential graded module over A is canonically A,-modules and the category of
differential graded modules over A is a non-full subcategory of the category of Ao-
modules over A.

Definition 1.3.6 Let n be a positive integer or co. Let A be an A, -algebra and suppose
M and N are A,,-modules over A.

1. An A,-morphism f = (f1, f2, -, fu) : M — N is a quasi-isomorphism if f] is
a quasi-isomorphism of complexes.

2. M and N are said to be quasi-isomorphic if there exist A,-modules My, - - - My,
and quasi-isomorphisms M <— Mj; — --- < M,, - N.

Definition 1.3.7 Letn be a positive integer or co. Let A be an A,,-algebra and consider
an A,,-module M over A.

1. Mis called minimal if m' = 0.

2. A minimal model forM s apair (A’, M), consisting of aminimal A,,-algebra A’ and
a minimal A,-module M’ over it, together with quasi-isomorphisms f : A" — A
and g : M’ — f*M, where f*M is the restriction of M along f.

Remark 1.3.8 We shall say that (f, g) is a morphism of pairs (A’, M) — (A, M).

Theorem 1.3.9 (Kadeishvili [15]) Let A be an Aso-algebra and consider an Axo-
module M over A. Assume that HA and HM are projective R-modules. Then, for
any choice of quasi-isomorphisms

fi:HA—> A, g1 :HM - M
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of complexes of R-modules, inducing the identity in cohomology, there exists a minimal
Aco-module structure on HM over the Ax-algebra HA, with mgM induced by m12v1
such that there exists a quasi-isomorphism of pairs

(f,8) : (HA,HM) — (A, M),
lifting (f1, g1), i.e. a minimal model for M. It is unique up to Ao-isomorphism.
1.4 The bar construction for A ..-modules

Let A and M be graded R-modules. For i > 1 we have a bijection

HomM ® A® !, M) - Hom(M[1] ® (A[1D® !, M[1])

mM > dM = (=) IR om0 (sTHE

Let A be an A.-algebra and let (B(A))™ be its coaugmented bar construction. Then
the dlM define a unique comodule coderivation

dM  M[1]® (B(A)T — M[1] ® (B(A)T.

Lemma 1.4.1 (Lefevre-Hasegawa [24]) The morphisms mi\/[ define an Aso-module
structure of M over A iff the coderivation dM is a differential.

Let A, M, N be graded R-modules. For all i > 1 we have a bijection

HomM ® A® "', N) - HomM[1] ® (A[1])® !, N[1])

fl — Fi — (_1)i—1+degfiSB o f‘l o (S;l)®i.
and, if A is an Ay-algebra, the F; induce a morphism of (B(A))*-comodules
F:M® (BA)* - N® (BA)™.

Lemma 1.4.2 (Lefevre-Hasegawa [24]) Let A be an Ao-algebra and suppose given
graded objects M, N. For all i > 1 there is a bijection

Hom' """ (M ® A®"~!,N) = Homf} ,,(M ® (B(A))", N ® (B(A))™).

Furthermore, if M and N are A-modules, then we get an induced bijection between
morphisms M — N of Axo-modules and degree O morphisms of differential graded
(B(A))T-comodules.
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1.5 Differential graded pairs

Definition 1.5.1 Let A, B be differential graded algebras over R and let M (resp. N)
be a differential graded module over A (resp. B).

1. If f : A — B is a morphism of differential graded algebras and g : M — f*Nis
a morphism of differential graded modules, where f* denotes restriction along f,
we say that the pair (f, g) : (A, M) — (B, N) is a differential graded morphism
of pairs.

2. The pairs (A, M) and (B, N) are differential graded quasi-isomorphic, denoted
(A,M) =~ (B,N), if there exist pairs (Aj, My), - -, (An,M,;) and quasi-
isomorphisms of pairs

(A,M) <~ (A1, M) = -+ <~ (A, M) = (B,N).

3. If A is a formal differential graded algebra, we say that M is differential graded
formal if the pairs (A, M) and (HA, HM) are differential graded quasi-isomorphic.

Let A, B be differential graded algebras over R such that HA and HB are projective
R-modules, equpped with their minimal A -algebra structures. Given two differential
graded modules M and N over A and B, respectively, assume that HM and HN are
projective over R, so can be given minimal A,,-module structures over HA and HB.

Proposition 1.5.2 (Lefevre-Hasegawa [24]) The pairs (A, M) and (B, N) are differ-
ential graded quasi-isomorphic if and only if the pairs (HA, HM) and (HB, HN) are
Aco-quasi-isomorphic.

1.6 Hochschild cohomology

Let A be a graded algebra. We are going to define Hochschild cohomology for a graded
module M over A.

Let C”4(A,M) = Hom?(M ® A®P M). The module structure of M over A is a
graded morphism of degree 0, denoted by mlz\’[ :M®A — M. We can endow the
modules C?-7 (A, M) with a differential, called the Hochschild differential:

d:CPYA,M) — CPHLa (A, M)
£ Y (=D f(d® @mp @ id®) — md'(f @ id) + (—=1)P £ (m}! @ id?).

A calculation shows that d> = 0, so we indeed have a differential, the associated
complex is called the Hochschild complex.

Definition 1.6.1 The Hochschild cohomology HH?'9(A, M) of a graded module
M over a graded algebra A is the p™ cohomology of the Hochschild complex
(C*1(A, M), d).

) Birkhauser



8 Page160f42 B. Mladenov

Example 1.6.2 Suppose f : M[e] — MJe] is an A[e]-automorphism lifting the iden-
tity. Then, writing
f=r+rle
we have by assumption f° = idy;, and A-linearity implies
fl(ma) = fl(m)a

which is to say that f!is a (0, 0)-cocycle.

Definition 1.6.3 An infinitesimal Aso-deformation of an A-module M is an Ao-
module structure on M[€] over A[¢] extending the A-module structure on M.

Example 1.6.4 The (1, 0)-cocycles are precisely the A[e]-module structures on M[e],
i.e. they correspond to infinitesimal deformations. Indeed, if
m:M[e] ® Ale] — MJe]
is the multiplication, we decompose it as
m = mO + mle,

where m? is the A-module multiplication on M. As m defines a module structure, we
get

m'(m,a)a’ +m'(ma,a’) =m"(m, ad),

ie.m!isa (1, 0)-cocycle. Notice that there is a canonical A[€]-module structure on
Mle].

Definition 1.6.5 We call an infinitesimal A,-deformation of M trivial if it is quasi-
isomorphic to this canonical one.

Example 1.6.6 We note that (1, 0)-coboundaries correspond to trivial deformations
by a similar calculation, hence infinitesimal deformations of M are classified by
HH!'%(A, M).

More generally, assume we are given an infinitesimal Ao-deformation of M. Write

m =m0+mle,

where m? is the A-module structure on M and m! = (mé, mé ---). Notice the relations
(*},) are homogeneous in €, so as €2 = 0 we see that each m! is a cocycle in the
Hochschild complex of M and, conversely, any collection of cocycles satisfies (x/,)
for all m. Similarly, we see coboundaries correspond to trivial Ay-deformations,
hence

]_[ HH™ (A, M)

n>1
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classifies infinitesimal A,,-deformations.

Remark 1.6.7 Remark that here we assume the deformation parameter is in degree 0
with respect to the internal grading of our objects. If we consider derived deforma-
tions, i.e. allow the deformation parameter to have a non-zero degree with respect to
the internal grading, then we get different cohomology group, e.g. if it is in degree
1, the cohomology group classifying derived infinitesimal deformations becomes
HH"~1(A, M).

Remark 1.6.8 Given two graded modules M and N over A, let C?9(A, M, N) =
Hom? (M ® A®”, N). It carries a Hochschild differential and we define the Hochschild
cohomology of the pair (M, N), denoted HH?”9(A, M, N), to be the cohomology of
the resulting complex.

Proposition 1.6.9 Ler A be a graded algebra over R and let M be a graded module
over A. Assume that A and M are finite projective over R. Suppose that R — Q is a
morphism of commutative rings. Write Aq := A ®r Q and similarly for Mq. Then
we have

1. CP4(Aq, Mg) = CP(A, M) ®R Q.
2. Assuming Q flat over R, HH?9(Aq, Mq) = HH”9(A, M) ®r Q.

Proof Clearly it is enough to prove the first assertion. Since A and M are finite pro-
jective over R, so are M ® A®? for all p, hence we have isomorphisms of Q-modules

Homo(Mq ®q A", M) = Homg (M ®r A®”, Mq)
=~ Homg (M ®r A®?, M) ®r Q.
O

Proposition 1.6.10 Suppose that R is Noetherian. Consider a graded algebra A over
R and a graded module M over A. Assume that A, M are finite projective and that
forall p, q € Z the R-module HH?-1 (A, M) is projective. Then, for any morphism of
commutative rings R — Q, we have

HH”%(Aq, Mg) = HH”(A, M) & Q.

Proof This follows immediately from the next lemma. O

Lemma 1.6.11 (Lunts [25]) LetR be Noetherian and assume (K, d) is a bounded below
complex of finite projective R-modules such that each R-module HP (K) is projective.
Then, for each p, Im(dP?) is projective over R and hence K is homotopy equivalent to
its cohomology @ ,H? (K)[—p].

1.7 Obstruction theory

In this paragraph we formulate obstruction theory for A,-modules. Our goal is to
apply it to a problem where we are extending an A,-morphism f and we only care
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for keeping f; fixed. In particular, a theory for obstructions where the last component
is allowed to vary is good enough for us and that’s what we develop here. There
are more general versions where one allows the last » components to vary for some
r < n. Compared to the case where we keep all components fixed, our approach has
the advantage that the corresponding obstructions are cohomology classes rather than
equations in the space Hochschild cochains.

We show how the Hochschild cohomology defined in the previous section con-
trols the obstructions to extending A,-modules to A, 1-modules by allowing the last
multiplication to vary as well as A, -morphisms to A, 1-morphisms, varying the last
component. We focus on modules, analogous versions for algebras can be found in
[24].

Proposition 1.7.1 (Lefevre-Hasegawa [24]) Let A be a minimal A, -algebra. Let M be
a graded R-module and suppose

mMMAT! > M, 2<i<n+l,

are graded morphisms of degree 2 — i. Assume that for 1 <i < n the m?/[ define an
Ap-structure on M. Then the subexpression of (x, +1) &iven by

> Dm0 d® @ me @1d®)
1L k#L,2

defines a cocycle in (C(A(2), M(2)); d) which we denote by c(m13\4, e ,mnM) and
equation (%, ) becomes

cmdt, - mM ) +dmM) =o.

Proposition 1.7.2 (Lefevre-Hasegawa [24]) Let A be a minimal Ax-algebra. Let M
and N be two minimal Aso-modules over A. Suppose given

fi MA® T 5N, 1<i<n+1,

of degree 1 — i such that the morphisms f;, for 1 <i < n, define an A,-morphism.

The subexpression of (x%;, ;)

D (S @ my @ 1d®) — > mp(f; ®id®)
k#1,2 5#0,1

defines a cocycle in (C(A(2), M(2),N(2)); d), denoted by c(f1,---, fn—1). Then
equation (%%, ;) becomes

c(fi, o+ fum1) +d(fn) = 0.

W Birkhauser



Formality of differential... Page 19 of 42 8

1.8 Formality of A, modules

Definition 1.8.1 Let A be an Ay-algebra. Let n € N U {oo} and assume that A is
A, -formal. We say that an Ay,-module M over A is A,-formal if there exists an
A, -quasi-isomorphism of pairs (HA, HM) — (A, M), where HA (resp. HM) is the
ordinary graded associative algebra (resp. module).

Remark 1.8.2 1. In other words M is A, -formal if it admits a minimal A,,-model with
vanishing higher multiplications.

2. Notice that our definition of A,-formality for a module M over A assumes that the

Axc-algebra A is A,-formal.

. When n = oo, we drop the Ay, and simply say that M is formal.

4. By Proposition 1.5.2, under the usual projectivity assumptions, a differential graded
module M over a formal differential graded algebra A is differential graded formal
iff its minimal model HM is formal as an A,-module over the (formal) A,-algebra
HA.

W

Recall thatif A is aminimal Ay;-algebra, then A(2) stands for the underlying graded
associative algebra, so if A is just a graded associative algebra, then A = A(2).

Similarly, let M be a minimal A,,-module over a graded algebra A. Then M(2)
denotes the A,-module on the graded space M with structure morphisms given by

M)

MQ2) _
ny, i

=m)andm," "~ =0fori #2,
i.e. M(2) is the underlying graded associative A-module, considered as an A,-module
- this is possible precisely because M is minimal and A is just a graded associative
algebra, so has no higher multiplications, and the A -relations for M(2) reduce to
associativity. In this notation, M is a formal Ay,-module if it is quasi-isomorphic to
M(2).

Remark 1.8.3 Let M be a minimal A,-module over a graded algebra A. If M is formal,
there exists a quasi-isomorphism f : M — M(2) lifting the identity on the underlying
complexes.

Proposition 1.8.4 Let R be an integral domain with field of fractions k(n). Let A be a
graded R-algebra and let M be a minimal Aso-module over A such that both A and
M are finite projective as R-modules. Assume that HH'~" (A, M(2)) is torsion-free
Sforalln. If M, = k(n) ®r M is formal, then M is formal and there exists a quasi-
isomorphism f : M — M(2) lifting the identity on the underlying complexes. In
particular, the fibres My, are formal for all p € Spec(R).

Proof We are going to construct the quasi-isomorphism f inductively. Since M and
M(2) have the same underlying A;-modules, we set f| = id, and for any f,, we have
a quasi-isomorphism (id, f2) : M — M(2) of Ap-modules over A. Then [c(id)] =
[m3] is the Massey product which vanishes generically since M,, is formal. Since
HHZ ! (A, M(2)) is torsion-free, it follows that [c(id)] vanishes everywhere. Hence,
we can choose f> such that

c¢(id) +d(f2) = 0.
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There exists an As,-module structure M@ = (M, m®) on the graded R-module
M such that

m? =mmP =0and f := (d, f,0,---) : M - M?

is a quasi-isomorphism of A,.-modules. Indeed, M® can be constructed inductively
as follows: we treat the multiplications m® of M® as variables and require that
@id, f>, 0, - - -) defines a quasi-isomorphism of A -modules. The corresponding equa-
tions for m® can be uniquely solved as they are all of the form

S ) @ m ®id®) = m® +m | (f ®id®),
jAk+l=nk>2

)

where j + 1 + 1 = 1 or 2. For example, n = 2 implies that m( =mpandn = 31is

just the equation c(id) + d(f>) = mgz), Le. m§2) 0.

Assume by induction that we have constructed f3,---, f;, and M@ ... oM™
with

my) =mY andm’ = 0forall3 < j <i+1
such that, for all 2 < i < n, the maps

fi i=(id, 0, -+ ,0, f;,0,---) : MI™D - M®
fi=( fi,0

are quasi-isomorphisms of Ay,-modules.
In order to construct the pair (f,+1, M®+1), it suffices to show that there exists
fn+1 such that

(id, 0,---,0, fut1,0) : M® — M™(2)
is an A, 2-morphism, i.e. A, >-formality of M. We know that
(id, 0,---,0, fur1) : MW — M®(2)
is an A, 41-morphism for any f,, 4. The goal is to show f,, 41 can be chosen so that in
fact any f,4> would give an A, >-morphism M® — M (2),

By Proposition 1.7.2 it suffices that the cohomology class [c(id, O, - - - , 0)] vanish.
Notice that the function

(g2,---,8n) > c(d, g2,---, gn)

is constant precisely because the corresponding higher multiplications in M vanish,
and the same applies for the localised version M{". Since M,,, and hence also M{"”,
is formal, we see that

[c(id,0,---,0)], =0.
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Furthermore, HH"t1:~" (A, M(2)) is torsion-free, so we getthat[c(id, 0, --- ,0)] =0,
hence there exists f;,+1 such that

(1d, 0, -+, 0, fut1, fa42) : M<”) — M(n)(Z)

is an A, 7-morphism for any choice of f;, 7.
Then, as above, the standard construction gives an Ay,-module M@+D guch that

(n+1) M

m$" = mM and m "

i =0forall3<j<n+2
and the map f,,_H = (@d,0,---,0, f441,0,---) : M® — M®+D ig 4 quasi-
isomorphism of A,-modules.

The infinite composition

fi=-0fpo---0fr:M—> M2

defines the required quasi-isomorphism and we note that it is well-defined because
composition with f,, leaves the components in weights i < n fixed. O

In fact the proof shows also that the following proposition holds.

Proposition 1.8.5 Let A be a graded algebra. An Aso-module M over A is formal if
and only if it is A, -formal for all n € N.

Corollary 1.8.6 Suppose that R is Noetherian. Let A be a graded algebra over R and
let M be a minimal Aso-module over A. Suppose that A and M are finite projective
R-modules and HH?9 (A, M(2)) is projective for all p, q € Z. Then the set

FM) = {p € Spec(R) | the Axo-module My is formal }

is closed under specialisation.

Proof Assume F(M) is non-empty. Let p € F(M) and consider its closure p =
Spec(Q) C Spec(R). The ring Q is an integral domain and the base-changes
Ag = A®r Qand Mg = M ®g Q are finite projective over Q. Furthermore, by
Proposition 1.6.10 we have

HH"!'™"(Aq, M(2)q) = HH"!™"(A, M(2)) ®r Q,

so HH™!~"(Aq, M(2)q) is projective over Q, in particular torsion-free. Hence Mg is
formal by Proposition 1.8.4. O

Proposition 1.8.7 Suppose that R is Noetherian and 1 C R is an ideal such that
NI = 0. Let A be a graded algebra over R and let M be a minimal Ax-module over
A. Suppose that A and M are finite projective R-modules and that HH?-1 (A, M(2))
is projective for all p, q € Z. IfM/1 is a formal Aso-module over the graded algebra
A/l foralll € N, then M is formal.

) Birkhauser



8 Page220f42 B. Mladenov

Proof Since M is projective over R and minimal, it is Ap-formal. Then, as in the proof
of Proposition 1.8.4, to show it is Az-formal, it is enough to prove that the Massey
class [m3] vanishes in HH>~1 (A, M(2)). Using Proposition 1.6.10 we have

HH?9(A/1', M(2)/') = HH”Y(A, M(2)) @ R/I forall p, g € Z.

By assumption [m3] ® 1 = 0 in HHZ’_I(A/II, M(2)/Il) for all [ > 1. There is an
exact sequence 0 — NI —> R — IL R/I, since NyI' = 0 and HHP4 (A, M(2)) is
projective over R, we conclude that [m3] = 0. By induction M is A,-formal for all
n € N, done. 0O

Proposition 1.8.8 Suppose that R is Noetherian with trivial Jacobson radical J(R).
Let A be a graded associative algebra over R, and let M be a minimal A oo-module over
A. Suppose that A and M are finite projective R-modules and that HHP-1 (A, M(2))
is projective for all p, q € Z. If My, is formal for all closed points m € Spec(R), then
M is formal. In particular, My is formal for all p € Spec(R).

Proof As in the previous proposition, we prove that M is A,,-formal for alln € N. The
proof is exactly the same using the exact sequence 0 — J(R) - R — [],, R/m,
Proposition 1.6.10 and projectivity of HH”-7 (A, M(2)). O

2 Perverse sheaves and DQ modules

In this section we shall briefly review some results on DQ-modules and perverse
sheaves on Lagrangian intersections we need for applications. This is mainly to fix
notation, in particular we refer the reader to the original papers for proofs. The material
on perverse sheaves on Lagrangian intersections and, more generally, on d-critical loci
is due to Joyce et al. and we refer to [3, 14]. A good general reference for DQ-modules,
which we also closely follow, is Kashiwara and Schapira [23].

2.1 Perverse sheaves on dcritical loci

The local setting, we are interested in, is as follows: for a complex manifold X and a
function f on X, we consider the intersection crit f := X N I'qr, where I'gy C Qx
is the Lagrangian, given by the graph of df € I'(X, Qx). In particular, if X is the
cotangent bundle of a complex manifold M, then for any function f on M, we can
consider the Lagrangian L = Iq ¢, so crit f = L. N' M, i.e. in this case the intersection
of the Lagrangians can be written as the critical locus of f. It turns out that this remains
true locally in the general case where X is a holomorphic symplectic and L, M are two
Lagrangians.

On critf C X, we have a naturally defined perverse sheaf of vanishing cycles
%, r which is the image of Cx[dim X] under the vanishing cycles functor over the
critical values of f.

We are going to consider the global versions of the constructions discussed above.
Let X/C be a complex analytic space. Suppose we are given an embedding of X into a
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complex manifold S with ideal sheaf .#, then we define the complex of derived 1-jets
I} = 05/ 7% — Qslx,

in degrees —1 and 0. It can be shown that it is independent of the embedding and is
naturally quasi-isomorphic to the cone of the de Rham differential &x — Lx, where
Lx =.2%/% 2 Qs|x is the truncated cotangent complex. We are interested in the
sheaf

S = A7 IY).

Definition 2.1.1 (Joyce [14]) A structure of a d-critical locus on a complex analytic
space X is a choice of s € I'(X, .#%) such that for any x € X there exists an open U,
containing x, and a closed embedding of U into a smooth S together with a function
f on Ssuch that s|y = f in I'(U, Os/.#?) and U = crit f C S. The triple (U, S, f)
is a chart for the d-critical locus X.

Remark 2.1.2 Similarly, one can define a structure of an algebraic d-critical locus on
a scheme X, as explained in [14].

Let (X, s) be a d-critical locus. Then, given a chart (U, S, f), we can consider the
canonical bundle Ks|y,., and ask whether we can glue these line bundles for a covering
by critical charts. The answer is no, but we can glue their squares K§@2|Ured to get a
line bundle on Xeq. Suppose that X is of the form crit f, then the obstruction is a
+1-cocycle, hence we can glue the squares to get a line bundle on Xieq.

Proposition 2.1.3 (Joyce [14]) Let (X, s) be a d-critical locus. There exists a unique
line bundle K(x sy on Xreq such that for any chart (U, S, f) we have an isomorphism

~ 2
AUs.f) - Kk Ued = K U

such that for any étale morphism ¢ : (U, S, f) — (V, T, g) of charts, i.e. ¢ : S — T
is étale, |y : U < V is the canonical inclusion and f = g o ¢, we have

AUs. ) = det(d)®?[Upy © Av.T.) [Upea-

Example 2.1.4 1f X is smooth, then K(x,0) = Kg‘?z. We get an extra Kx factor because,
as a derived scheme, the critical locus crit(0 : X — C) is the shifted cotangent bundle
Qx[1].

Theorem 2.1.5 (Brav etal. [3]) Let (X, s) be a d-critical locus. Assume that its canon-
ical bundle K x 5y admits a square root, called orientation of (X, s). Then there exists
a perverse sheaf x5y on X such that if (U, S, f) is a chart, then we have a natural
isomorphism

Pxslu = s, § Qc Ror,

where R is the local system associated to K(Xl“/jlumd ® Ks|Ueq-
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Proposition 2.1.6 (Bussi [7]) Let X be a holomorphic symplectic variety. Suppose
giventwo Lagrangians L and M in X. Then then intersection LNM admits a structure of
ad-critical locus (LNM, s) with canonical bundle K np.s) = KL|LoM, . @KmlLnM, oy

Corollary 2.1.7 Consider the d-critical locus (L N M, s) and assume that the bundle
KLILAMeqg ® KMILAM,q admits a square root. Then there exists a perverse sheaf

PLm = PymL

on L N M with the properties described in Theorem 2.1.5.

Lemma 2.1.8 Let L, M be two Lagrangians intersecting cleanly, then there is an iso-
morphism

Kinm ® Keam = Kilpam ® Kmliawe:

Proof Let Erpy — Lpnm be the symmetric obstruction theory on the intersection.
Recall that

—TIes,res
Eim = [QXILmM ——> QLM D QMILmM] ,

the map Epp — Ly is defined via the quasi-isomorphism

Eim >~ [fo/szlenM — QMILmM] ,

and the symmetry comes from the holomorphic form on X. Then, we shall compute the
determinant of Er s in two ways. On the one hand, using that X has trivial canonical
bundle, we get:

detEpm = (det Qx|Lam)” ® det(rLam @ MmlLam) = Kilpam @ Kmliom -

Now, we can also calculate the determinant using the cohomology sheaves of the
complex Epy and obtain

detEpm = (det 277! (ELM))v ® det #° (ELm) = Kiom ® KL

O
Corollary 2.1.9 Let L N M be smooth. Then (L N M, s) is oriented and for any choice
of K(llf%M 5) we have 21, M = Rorldim X], where Ry is the local system associated
—1/2
to K(LﬂM,s) ® Kinm.

Proof Indeed, our assumption means that (L. N M, 0) is the unique d-critical structure
on the intersection. Hence,

LM = PLam,0 Qc Ror = Cram [dim(L N M)] ®@c Ror = Ror [dim(L N M)].
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2.2 DQ-algebras

We let X be a complex manifold. Let C[[/] be the ring of formal power series in A,
and C((h)) its field of fractions, i.e. the field of formal Laurent series. Define a sheaf
of C[[h]-algebras:

Ox[[h] = lim Ox ®c CIhl/h".

Definition 2.2.1 A star product on &x[[}] is a C[[/i]|-bilinear associative multiplication
* such that

fxg =Y _Pi(f. g, where f. g € O,

i>0

such that P; are holomorphic bidifferential operators with Po(f,g) = fg and
P;(f,1) = P;(1, f) = O for all i > 1. The pair (Ox[[A]], ) is called a star alge-
bra.

Definition 2.2.2 A deformation quantisation algebra (DQ-algebra) on a complex man-
ifold X is a sheaf of C[[A]-algebras «#x locally isomorphic to a star algebra as a
C[[~]-algebra.

Example 2.2.3 Let <7x be a DQ-algebra on X. Let 7 : afx — Ix/hatx = Ox. For
any f, g € Ox, choose lifts f, g such that 7 (f) = f and 7(g) = g. Then define a
bracket

(f.og)=nt"(fg—&f).
This is independent of the choices made and defines a Poisson structure on X.

Example 2.2.4 Let X be a complex manifold. The cotangent bundle Qx sup-
ports a filtered sheaf of C-algebras éADQX of formal microdifferential operators.
We start by recalling its definition. Fix (x1,--- , x,) coordinates on X, and write
(x1, -+, x4, &1, -+ -, &) for the induced coordinates on Qx. Let Og, (m) be the sheaf
of homogeneous functions in the fibre coordinates on Q2x of degree m, i.e.

(> g0/08 —m) fx.6) =0,
We define the sheaf of formal microdifferential operators of order < m by

ax(m) = [ | Oaxm — ).
jeN

In order to get a sheaf globally on Q2x, we glue these sheaves on overlaps using the
transformation rule for total symbols of differential operators. Taking the limit over
m € Z, we get the sheaf of formal microdifferential operators on Qx:
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éAaQX = 11_11)1 éAaQX(m)
meZ

Note that there are products é”gzx ) ®c @‘A"QX (m) —> @&QX (I + m), given by

1
(&) = ) — (/)™ - (9/9&)™ fi(x, €)

I=i+j—|a|
aeN

{(9/0x1)* -+ (3/0xn)*" g (x, &).

In particular co?"gx and éA"QX (0) are sheaves of (non-commutative) C-algebras. Notice
that the total symbol of a differential operator is a polynomial in &1, - - - , &,, so essen-
tially we are just allowing symbols which are general holomorphic functions rather
than just polynomials.

Let 7 be the coordinate on C and (¢; 7) - the symplectic coordinates on Qc. Let
QxxC,c0 be the open subset of 2x ¢ where T # 0. We have a map

P QxxCr20 = 2x, (X, 5§, 1)~ (x, tflé‘;).

Define the subsheaf of operators independent of ¢:
bay.c.i(0) = {P € day, (0) such that [P, 3] = 0}.
Then, letting % act as 7!, we define the canonical DQ-algebra on Qx by
#x(0) = pibg, (0.

The h-localisation of V/AX (0) is denoted by V/Ax.

Definition 2.2.5 Let X be atopological space. An R-algebroid on X is an R-linear stack
&/ which is locally non-empty and any two objects in .7 (U) are locally isomorphic
for any open U C X.

Example 2.2.6 Fix a topological space X. Let .o/ be a sheaf of R-algebras on X. We
consider the prestack U — &7 (U)*, where .27 (U) ™ is the R-linear category with one
object whose endomorphisms are given by 7 (U). The associated stack is denoted by
/7. It’s an R-algebroid.

Conversely, suppose that .27 is an algebroid. If < (X) is non-empty, choose any
7 € o/ (X). We have an equivalence </ ~ 5m (r, )" of R-algebroids.

Given an R-algebroid .o/ over X, let .#R be the stack of sheaves of R-modules on
X, we define the R-linear abelian category of modules over <7 by

Mod(<7) = Fet(< , MR).
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Definition 2.2.7 A deformation quantisation algebroid (DQ-algebroid) on X isa C[A]-
algebroid & such that, for any open U C X and 7 € &/ (U), the C[h]-algebra
Fom(t, 7) is a DQ-algebra on U.

Remark 2.2.8 If X is a holomorphic symplectic variety, then the holomorphic Darboux
theorem implies that locally we have canonical DQ-algebras associated with X, but
they won’t generally glue to a global DQ-algebra. In general, one has to twist them by
"half forms", i.e. by the twisted sheaf of half top forms and its dual. It is a theorem of
Polesello and Schapira [26] that the corresponding twisted DQ-algebras glue and we
obtain a DQ-algebroid still denoted V/AX(O).

Any other DQ-algebroid 7 on X will be equivalent to 7/})((0) ®crhry Z for some
invertible C[[A]-algebroid .. Hence DQ-algebroids are classified by H> (X, C[[h]]*).

Example 2.2.9 Example 2.2.3 shows that any DQ-algebroid on X induces a Pois-
son structure on X. Conversely, it is a theorem of Kontsevich [20] that in the C*®
setting (locally for algebraic varieties) any Poisson structure is induced by some DQ-
algebroid. The global algebraic quantisation is due to Yekutieli [32] and Van den Bergh
[31], and by Calaque et al. [8] for complex manifolds.

Remark 2.2.10 If «7x is a DQ-algebroid, the local notions of being locally free, coher-
ent, flat, etc. make sense for an 2%-module Z.

Definition 2.2.11 Let & be a sheaf of commutative C-algebras.

e An Z-algebroid is a C-algebroid 7 together with a morphism of sheaves of C-
algebras Z — &nd(idy).

e An Z-algebroid <7 is called invertible if Z|y — &nd(t) is an isomorphism for
every open U C X and any 7 € o7 (U).

Let: : C — C[[A] be the canonical inclusion, define a C-algebroid (* .o/ by taking
the stack associated with the prestack % given by

AU) = x(U) and Hom gy (0, 7) = Hom 4 () (0, 7)/hHom o4 ) (o, T).

The so defined C-algebroid is an ivertible &x-algebroid. There are functors of C-
algebroids

ax — Fax — Ox

and an equivalence of C-algebroids (*.ox =~ @#x /ha/x >~ Ox. In particular, we get a
functor preversing boundedness and coherence

D) > D) K P C ey 2.

The h-localisation of a DQ-algebroid % is &4‘” = C((h) ®cny #x. More gen-
erally, we have a functor

loc : DP (%) — DP(4).
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Lemma 2.2.12 (Kashiwara-Schapira [23]) If ¥ € Dgoh(mfx), then Supp(2) =
Supp(¢t* D). In particular, Supp(2) is a closed analytic subset of X.
If& eDP (42{)1(00), then Supp(&) is a closed analytic subset of X, coisotropic for

coh
the Poisson structure defined by 27x.

Remark 2.2.13 Note that we do not have a global equivalence t* @7x >~ O of invertible
OUx-algebroids. This is generally only true locally. In the algebraic case, the vanishing
of H2(X, 0%) in the Zariski topology implies that (*.o7x ~ Ox as Ox-algebroids
globally.

The second statement in the lemma is known as Gabber’s theorem and doesn’t hold
for coherent .27 -modules - note that any closed analytic subset of X can be the support
of such a module since any coherent &’x-module is a coherent .x-module.

Theorem 2.2.14 (Kashiwara-Schapira [23]) Let X be a complex manifold endowed
with a DQ-algebroid <7x. Let

2,8 € DY, (o)

and suppose that Supp(Z2) N Supp(&) is compact. Then RHom 4 (2, &) is a perfect
complex of C[h]]-modules.

Definition 2.2.15 Let X be complex manifold endowed with a DQ-algebroid @,
and let Y be a smooth submanifold of X. A coherent o/x-module & supported on
Y is called simple if *& is concentrated in degree 0 and H’(1*2) is an invertible
Oy ® gy 1" x-module.

Definition 2.2.16 Let X be a holomorphic symplectic variety equipped with a DQ-
algebroid o/.

1. An d;"c-module is called holonomic if it is coherent and its support is a Lagrangian
subvariety of X.

2. An @/x-module is called holonomic if it is coherent, A-torsion free and its A-
localisation is holonomic.

3. Let L be a smooth Lagrangian. An &%{"C—module 2 is called simple holonomic
if there exists locally an .x-module 2°, simple along L, which generates it, i.e.

(@0 ~ 9.

Theorem 2.2.17 (Kashiwara-Schapira [22]) Let X be a holomorphic symplectic vari-
ety of dimension 2n, equipped with a DQ-algebroid <7x. Suppose that 9 and & are
two holonomic sz)l(oc-modules. Then the complex R 5¢om Ao (2, &)[n] is a perverse

sheaf.

Theorem 2.2.18 (D’Agnolo-Schapira [10]) Let X be a holomorphic symplectic variety
and leti : L — X be a smooth Lagrangian. Assume that the canonical bundle Ky,

. . 1/2 .
of L admits a square root. Then, for any choice of a square root K / , there exists a

simple ”//AX (0)-module 1, supported on L, which quantises Kli/ 2,
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Remark 2.2.19 Notation as in the previous theorem, consider the short exact sequence

dl
1> C* = 0 =5 dop — 0.

It induces a long exact sequence in cohomology, and we are interested in the folloing
part of it:

H'(L.C*) — H'(L, ) % H' (L, d6y) > HA(L, C).

Let CK1 2 be the C-algebroid associated to the class & (%a(c 1(KL))). Then a general
L
version of the above theorem asserts that there exists a simple #x (0) ® CK1 ,2-module
L

along L, i.e. in general we only get a twisted Wx (0)-module.

Notice that C K2 is trivial iff there exists a line bundle . such that K; ® .#®?2
admits a flat connectlon hence . can be quantised. In particular, this agrees with the
results of [5] since V/X 0) ~ WX (0)°P implies that the Atiyah class At(”//x (0),L) =0.
Indeed, “//AX (0) is canonical in the sense of [6], that is, its non-commutative period in
H?(X)C[[72] is the constant power series. Note that this is always possible to achieve
by allowing stacky deformations. If we instead require that it be a deformation as a
sheaf, it may happen that no canonical deformation quantisations exist.

Remark 2.2.20 1In fact, the first Rozansky-Witten class RW (X) of X is an obstruction
for the canonical deformation quantisation algebroid to be a sheaf of algebras.

Theorem 2.2.21 (Gunningham-Safronov [13], Brav et al. [3]) Let X be a holomorphic
symplectic variety of dimension 2n, equipped with the canonical DQ-algebroid #x (0).
1/2 1/2
and Ky
Let .@B and .@1(\),[ be two simple holonomic Wx (0)-modules, supported on L and M,
respectively, as in Theorem 2.2.18. Then we have an isomorphism of perverse sheaves

Suppose that L and M are smooth Lagranglans and assume that Ky’ exist.

Rotom ;. (D, Dn)[n] = C(h) ®c ZLm.

where 9y is the h-localisation C(R)) @cyrj @8 and similarly for Dy.

Remark 2.2.22 For our applications, we only need the special case when the intersec-
tion is smooth. See Proposition 3.4.2 for a (stronger) statement in the case of a single
smooth Lagrangian L = M.

3 Applications

We begin with a few standard results on calculations of local &xt sheaves and their
multiplicative structure on locally complete intersections. In the second and third
paragraphs we prove degeneration of the spectral sequences for a single Lagrangian
and a pair of cleanly intersecting Lagrangians, respectively. We conclude with the
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formality of the endomorphism dg algebra RHom (i*KI{/ 2, i *KIIA/ 2) and the dg module

RHom (i*K]i/z, Jx Kllvfz) over it.

3.1 Sheaves on locally complete intersections

Proposition3.1.1 Leti : Z — X be a locally complete intersection. Suppose ¢ =
codim(Z, X), and let ¥ be a coherent sheaf on Z. Then

9®AiJV27X,O§i§C

AT ) = :
0, otherwise.

Proof Since i is a closed embedding, it suffices to show the claimed isomorphisms
after pushing forward along i, i.e.

i A1 F) Z i(F ®g, N NpJx) for0 <k <c
and i, *(i*i,.%) = 0 for k > c¢. Using the projection formula,
i AR T) Z Tor X 14F ik O7).

In order to compute the Jor -sheaves, we may work locally and the proof goes exactly
as in Proposition 0.1.2. O

Proposition3.1.2 Leti : Z — X be a locally complete intersection of codimension
c. Let % and 4 be coherent sheaves on Z.

1. Assume 7 locally free, then we have
. : i aV :
0, otherwise.

2. The Yoneda product coincides with the usual cup product. More precisely, let F,
4 be locally free sheaves, 7€ any coherent sheaf, then the Yoneda multiplication

Ext' (1,9, i, ) @ Ext! (i, T, 1,9) — Ext T (i, T i, H)
corresponds under the above isomorphisms to

N Nx @G @ ) @ in(N Nyyx @ F¥ ©F)
= i (N N7 x @ FY ® ),

given by exterior product and the natural map 4 ® 4 — 0.

Proof 1. For the first assertion, note that
RAom g, (i+F ,i:9) = i,RAom g, (%1 F ,9)
and apply Proposition 3.1.1, noting that the cohomology of i*i,.% is locally free.
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2. The second part is a local statement, so we shall assume Z is the zero locus of
a regular section s of a rank ¢ vector bundle & on X, and that F,%4 and S are
restrictions to Z of .%, % and S on X.

Tensoring the Koszul resolution for i, 07 with Z and 9 we get resolutions for i, %
and i,¢ which allow us to compute the R.7Z0m s. Then the R.7Zom multiplication is
induced by the wedge product AK€ ® AlE — AFHL & followed by the contraction
GRYG — 0x. Taking cohomology, we get the claim on the level of &xt s.

O

3.2 Degeneration of the spectral sequence

Let (X, o) be a holomorphic symplectic variety. Recall that a subvariety L is called
Lagrangian if 0|, = 0 and dimL = %dimX. Ifi : L — X is a smooth Lagrangian we
have Jx = Q;( via the symplectic form, hence i* 7x = i *Q§( There is a commutative
diagram:

0 s A s YT > AMx > 0

l l l

0 — Myx — i*Q > Q > 0

which shows we have isomorphisms QE = A9 /x. Hence the second page of the
local-to-global Ext spectral sequence, in the Lagrangian case, is Eg 4 =HP(L, Q! L)

Theorem 3.2.1 Let X/C be holomorphic symplectic, and consider a compact Kdhler
Lagrangian i : L — X whose canonical bundle admits a square root. Then the local-
to-global Ext spectral sequence

EJY = HP(L, @) = Ext"™(i,K; ", i.K{ /%)
degenerates on the second page. Hence

HNL/C) = ®, HP (L, Q)
= Ext*(i.K,, i.K)?).

Proof This proof was envisaged by Thomas, and Petit helped us make the ini-
tial sketch rigorous. It will be enough to show that dimc (Ext’ (i*Kl/ 2 l*Kl/ 2))
dime (H (L/C)).

Let @/ be the canonical quantisation V/X(O) of X. We fix a square root Ky’ /2 of

the canonical bundle. There exists a simple @/x-module @0 on L quantising K’ / . Let
aly 1o¢ e the localisation C((h)) ®crhy #x. Then @0 locallses to a simple holonomlc
DQ module %, over 2 loc
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Theorem 2.2.21 implies that
RAtom (71, Z1) ~ C(M)L,

so we get Ext! loc (@L, @L) =H! (L, C((h))). Hence the universal coefficients theorem
=X

implies that
dimcn) (Ext;{;{m (21, 21)) = dimc(H' (L/C)).
Furthermore Theorem 2.2.14, which requires L compact, states that
RHom . (2, 7}) € Perf (Spec(CIA1)).
Then we can apply the semicontinuity theorem on C[[A] to get that

dimc (H' (C ®cyny RHom 4 (77, 7))
> dimc((h)) (Hi (C((h)) Acyal RHomm/X (91(3’ ‘@E)))

It’s enough to observe that there is a quasi-isomorphism
C ®cyng RHom 4 (20, 70) ~ RHom (i K, %, i.K, /%)
and the projection formula implies that
C(h) ®cyny RHom o4 (70, 7)) ~ RHom e (71, 7).

Thus
dimc (Ext! (1,K; . i,K{'%)) = dimeqny (Ext o (21, 21))
X .

= dim¢ (H' (L/C))
3.3 Degeneration in case of pairs of Lagrangians
Having dealt with the case of one Lagrangian, we now turn to pairs of Lagrangians.
Leti : L — X and j : M — X be smooth submanifolds. We need a few standard
results computing & xt sheaves on smooth intersections. The argument in Lemma 0.1.1

extends readily to the following generalisation:

Proposition 3.3.1 Let & be locally free on L and 9 be coherent on M. Then, we have
a natural isomorphism for all p > 0:

Ext i ((xF, s9) = Ext ; (ixOL, jxOM) @ Grom ® F Lo
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Proposition 3.3.2 Assuming L N M smooth, we have
ExtP(i O, jxOm) = NPTCN @ det M nmMs

where ¢ = tkM amm, A = FxlLom /(AlLom + IMlLam) is the excess normal
bundle.

We begin by assuming L is the zero locus of a regular section s of a vector bundle
& on X. Then we have a Koszul resolution of i, 0.

Lemma 3.3.3 Assume M C L. Then
Ext g (ixOL, juOM) = ju A M yxIn.

Proof This follows at once from the Koszul resolution since, after restricting to M, all
differentials vanishas M C L. O

Recall that L and M intersect properly if
dimL N M + dimX = dimL + dimM.

Lemma 3.3.4 Assume L and M intersect properly. Then

det M nmm ifp=c

p . . ~
Ext ﬁx(l*ﬁb J*ﬁM) =o if p#c.

Proof Our assumption implies that s|y; is regular and L "M = Z(s|m). Hence the
complex computing the &xt sheaves is exact everywhere except at the right end, so
we get

Ext %X(i*ﬁb JxOm) = 0for p #0

and
Ext (O, juOn) = coker(A € M Ace
oy (1+OL, JxOM) = coker(A™ Elm —— A°E'lm)
= AElLam
E/\C%QM/M.

]

Remark 3.3.5 We note that Lemmas 3.3.3 and 3.3.4 remain true without the assumption
that L = Z(s).

Lemma 3.3.6 For any point x € L N M there exists an open neighbourhood U C X
and a smooth subvariety W C U containing L such that

e (LNM)NU =W NM scheme-theoretically and
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o W and M intersect properly.

Proof Let n = dimM — dim(L N M). If n = 0, then M C L and we can take W = X.
If n > 0, then Ty, is not contained in Ty, , since L N M is smooth, so its tangent space
is the intersection of the tangent spaces of L and M.

Since T, is the intersection of all hypersurfaces through x that contain L, we can
find a hypersurface X’ which contains L and Ty, x ¢ Tx/ x. Let M’ = M N X', Then,

LNM =LNM
and hence we can apply induction since now we have
dimM' — dim(L "M) =n — 1.

This concludes the proof. O
Proof of Proposition 3.3.2 Working locally on X, using Lemma 3.3.6, we have a smooth
WwithL C WandL "M = WNM with W and M intersecting properly. The change
of rings spectral sequence for &xt sheaves

EJY = &nl, (0L, Extl (Ow, On) = Ext 3 (O, On)
which by Lemma 3.3.4 has non-zero entries on the second page only for

g =c=codim(LNM Cc M)
given by
EVC = AP A wlLam ® det M vy

In order to conclude, we note that the natural map

AMywlLom = Avliam/ Alam = Ix oM/ A lLom
= KXlLom /(AlLm + MlLam)

is an isomorphism for dimension reasons - checking fibrewise suffices since L N M is
reduced. Hence,

Ext %X (ixOL, jsOM) ENPTN Q deh/ﬁ{mM/M.

This concludes the proof locally on X. Tracing through the identification, we see that
these do not depend on the choice of W and so the isomorphisms exist globally. O

In the Lagrangian case, which we assume from now on, we have an exact sequence:
0—> Jom = Alm ® IMlLem > IxlLom = Qrom — 0,
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hence
ExtP (i, O, jxOM) = Q y ® det M amym.
The adjunction formula yields an isomorphism
det A amm = Ky|; oy ® Kiom,
hence by Lemma 2.1.8 we obtain

det M v/ ® det M rv/m = OLam.

Corollary 3.3.7 Assuming there exist squre roots KII_/ 2 and Kllvf 2, define the orientation
bundle

K2

o= (K] ok

)v ® KLm

’LHM ’LDM

and set n = codim(L, X), so ¢ =n — dim(L N M). Then
c 12 12\ A ~g—
éaxtp(l*KL/ , ]*KNf ) ~ ngi,[ ® Hor.

Remark 3.3.8 Notice that the line bundle %5, is torsion, in fact of order 2. Hence the
monodromy representation associated to the local system Ky, arising from J#g;, is
unitary - see beginning of next proof for a brief sketch.

Theorem 3.3.9 Let X/C be a holomorphic symplectic variety. Suppose thati. : L —
X, j : M — X are smooth Lagrangians with a compact Kdhler intersection L. N M.

Assume that KII_/ % and Kllvfz exist. Then the Ext local-to-global spectral sequence

1/2

, —c . . 1/2
EVY = HP(LNM, Q7% ® Hor) = Ext? (iK%, . K\)

degenerates on the second page. In particular,

Ext* (iK%, juKy?) = @, gHP (LN M, Q15 ® Hor) = B (Ror).

Proof We have that Eg 4 = HP(L N M, Qg;ﬁ,[ ® Hor), where ¢ is the codimension
of LN M in L and M, and %, is defined in Corollary 3.3.7. The line bundle %, is
2-torsion, hence admits a flat Chern connection, so the associated representation of
w1 (L N'M, pt) is unitary. As a consequence the Hodge-to-de Rham spectral sequence
degenerates on E1, so, analogously to the case of one Lagrangian, it will be enough to
show that

dime (Bxt' (iK%, j.Ky/?)) = dime (H ¢ (Ror).
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Let @7 be the canonical quantisation Wx (0) of X. We shall fix square roots KIl‘/ Zand

KM % of the canonical bundles of L and M. Let @](3 and @& be the simple 2x-modules

on L and M quantising Ki/ % and KM 2, respectively. Then welet 71, = C(h) @cpag @E
and 2v = C((h)) ®crny 9& be the corresponding h-localisations.
Since the intersection L N M is smooth, Theorem 2.2.21 implies that

RAom g0 (P, Pn) = C(W)Lrm ®¢ Kor[—cl,

so we conclude that EXti{{loc (2L, Zm) = HS(L N M, C(h) ®c Kor). Hence the
X

universal coefficients theorem implies that
dimc(n (Extf e (21, Znm)) = dimc(H (L N M, Ror)).
Moreover Theorem 2.2.14, which requires L N M compact, states that
RHom g4 (@E, @18[) € Perf (Spec(C[[A])).
Thus, we can apply the semicontinuity theorem on C[[2] to conclude that

dimc (Hi (C ®cpr RHom g (98’ 919/1)))
> dime(ny (H' (C(R) @cyny RHom o4 (77, Zy)))-

Now observe that there is a quasi-isomorphism
C ®cjny RHom 4 (20, 2%) ~ RHom (i,.K; ", j.Ky")
and the projection formula implies that

C((h) ®cyry RHom o (.@E, .@1(\)4) ~ RHom%)l(oc (@L, @M).

Hence ) .
dimc (Ext! (i,K; %, juKyp?)) = dimeny (Bxt o (2. 1))
X .

= dimc(H' (L N M, Ror))

3.4 Formality

Lemma3.4.1 Let ¢ : C — C[h] be the inclusion of the central fibre and let C €
Perf (Spec(C[[h]] ) Suppose that for all i € Z we have

dim¢ (H' (¢*0)) = dimc(ry (H (C(h) ®cqry ©))-

Then the cohomology H(C) is free (of finite rank) over C[[h].
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Proof Consider the exact triangle C E) C — *C — C[1]. It induces a long exact
sequence in cohomology

H (C) & HI(C) — HI (*C) — HI*I(C) 55 HIt(0).
Hence there are exact sequences
0 — C ®cpry H (C) » H (:*C) — TortlM (C, H"“(C)) - 0.

In particular, we get that dim¢ (C ®cqry H (C)) < dime (H' (:*C)) . Since H (C) is
finitely generated, we may write it as

H'(C) = C[h)% @ Clal/AM @ --- @ - - - & C[Rl/Hb,

where ki, - - -, k,,, r; € N. Notice that
dime (C ®cyr H (C)) = d; + r; and dime(n) (C((h)) ®cpry H (C)) —d;.
It follows by flatness of C((/)) that
dimc ) (C((ﬁ)) ®cyap H' (C)) = dimcpn) (Hi (C() ®cyny C)) .

Hence, r; = 0 and H’ (C) is free. ]

Proposition 3.4.2 Ler X/C be a holomorphic symplectic variety, endowed with its
canonical DQ algebroid #x(0). Suppose L is a smooth Lagrangian in X and let 7y,
be a holonomic Wx-module on L. Then the quasi-isomorphism R 7om Wi (_@L, _@L) ~
C((h)L is compatible with the multiplicative structures, i.e. it is a quasi-isomorphism
of dg algebras.

Proof The question is local, we may assume X = . and L is the zero section in .
We shall fix coordinates (z1, - - - , z,) on L. Further, since any two holonomic WAX—
modules are locally isomorphic, we may let 21, = 01 ((h)). Then the Koszul complex
K(OL(h), 1, - - - , 3,), associated with the coregular sequence 91, - - - , 9,, acting (on
the left) on Oy (h)), gives a multiplicative model for R.72om Wi (ﬁL (), O, ((h))) and

the natural quasi-isomorphism C(h)L, — K(OL(h)), 91, - - - , 9,) is multiplicative. O

Theorem 3.4.3 Let X/C be holomorphic symplectic and let i : L — X be a smooth
compact Kdihler Lagrangian submanifold whose canonical bundle admits a square
root. Then the differential graded algebra RHom(i*K]i/ 2, i*K]i/ 2) is formal, in fact,

quasi-isomorphic to the de Rham algebra H(L/C).

Proof As before, let 27k be the canonical quantisation V/AX (0) of X. We fix a square root
Ki/ 2 of the canonical bundle. There exists a simple @7x-module 98 on L quantising
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KIIA/ % Let M)I(OC be the localisation C((h)) @cay #% and denote Z, = C(h)) ®cfag @B

the h-localised simple holonomic DQ-module over ,szf)l("c.
Consider the differential graded algebra RHom . (2, , 2) over C[1].. By Theo-
rem 2.2.21, we have that

R%m y/)](oc (QL, -@L) ad C((h))L

Degeneration of the spectral sequence on &2 = 0 allows us to apply Lemma 3.4.1, so
the cohomology of RHom 4 (%), 27) is free of finite rank over C[[A]. In particular,
Ext gz, (@E, 98) is a formal deformation of the graded algebra Ext (i *Ki/ 2, i *Kli/ 2) to

the de Rham algebra H(L/C)((R)). It follows that
dime (HH”4 (H(L/C))) < dime (HHPY (Ext(i.K; ">, i.K/?))). )

Furthermore, collapse of the spectral sequence on /2 = 0 also implies that there exists

a filtration F on the graded algebra Ext(i*Kl/ 2 *KI{/ 2) such that

Grr(Ext (iK%, i.K{/%)) = H(L/0),

as graded algebras, so the associated (completed) Rees algebra is a formal deformation
of the graded algebra H(L/C) to Ext i *Ki/ 2 i Ki/ 2) ®cC((h)). The Rees deformation

gives the opposite of (2), hence
dime(HH9 (H(L/C))) = dimc (HHP (Ext (iK%, i.K[ /%))

and by Lemma 3.4.1 the Hochschild cohomology groups HH”Y (Exta4 (27, 2)))
are free over C[[2]] for all p, g € Z. As a consequence, the Hochschild cohomology
groups with compact supports of Lunts, HH', (Ext o (@E, @E)), are free over C[7].
It follows, by formality of L, that the differential graded algebra RHom Ao (_@L @L)
is formal. Hence, RHom ., (@E, @E) is formal by Theorem 1.1.12.

In order to conclude the formality proof, we note that there is a quasi-isomorphism

RHom (i.K|/?, i,K|/%) =~ C ®cyny RHom 4 (20, 7).

Since the cohomology of RHom (91(3, @E) is free over C[[7]], it follows that the dg
algebra

RHom (i, K,/?, i,K//%)
is formal.
To prove the last statement of the theorem, note that EXt .4, (9](3 , @E) is a generically
constant deformation which leaves the dimension of HH>? unchanged. The classical

results on deformations of [11] extend to the graded case, thus Ext g (Z), 2) must
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be the trivial deformation - we give a summary of the proof, referring to [11, Section 3]

for details (in the non-graded case).

Let HH := HH(Ext(i.K;"*, i.K;"?)), HHy, := HH(Ext.4 (Z°, 20)) and HH s,

is the localisation of HHy, at fi. The reduction mod # gives amap HHy; — HH and since
HHj, is free over C[ ], taking a section of the reduction map, we get HH; = HH[[A].
We have an isomorphism of graded algebras

o Extos (20, 2) @ciry C(h) = H(L/C) ®c C(h).

Write mp, and mgg for the multiplications of Extg4 (2, 2{) and H(L/C), respec-
tively. Then by definition

mp = ¢;, ' mar (pn, ¢n). 3)

Differentiating (3) with respect to & gives
my, = —dn(gy ' ¢p). “)
where dj, is the Hochschild differential of the graded algebra Ext gz (@B, .@E), ie.
[m},] = 0 in HH(;). Writing
mp=m+mh +---,r>1,
we see that the left side of (4) is
eV D B
Hence we deduce that
me+ 4+ D/r-mpph+ G +2)/r -mppah? + -+

is a h-torsion class in HH%’O, lifting the class [m,] € HHZY, so it must vanish. Thus

[m,] = 0 too. If m, = d(yv"), then we can kill m, using id — ¥"/#”. By induction we
get ' for all i > r, the infinite composition

wﬁ — ((ld _ 1ﬂrhi’) ° (ld _ wr-i—lﬁr-‘rl) o )

makes sense and we have ¥, Um r(Yr, ¥r) = m, showing the triviality of mp.
Since Ext(i*Ki/ 2, i*Ki/ 2) and H (L/C) are finite dimensional over C and become

isomorphic after extending scalars to C((%)), they are already isomorphic over C. O

Corollary 3.4.4 Let X/C be holomorphic symplectic, and consider a compact Kiihler
Lagrangian i : L — X such that K]i/z exists. Then Ext(i*Ki/z, i*Ki/z) = H(@L/C)

as graded algebras.
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Theorem 3.4.5 Let X/C be holomorphic symplectic. Suppose that i : L — X,
Jj : M. — X are compact Kihler Lagrangians with a smooth intersection. Asu-
ume their canonical bundles admit square roots. Then RHom(i*KII_/ 2, j*KMZ) is
a formal differential graded module over the (formal) differential graded algebra

C 2 12 . . )
RHom(l*KL , K ) Moreover, we have a quasi-isomorphism of pairs

(RHom (i,K,"?, i.K{"?), RHom (iK%, juKy/?)) = (H(L/C), H* (L N M, &or)),

where c is the codimension of L N M in L.

Proof Let o7 be the canonical quantisation WAX (0) of X. We shall fix square roots KI{/ 2

and KM 2 of the canonical bundles of L and M. Let @8 and 9& be simple .o/x-modules

on L and M quantising Ki/ 2 and KI{,{ 2, respectively. Then welet 71, = C(h) @caj @8
and 2 = C((h) ®cyny _@1(\),[ be the corresponding f-localisations.
The complex RHom (@f, 9&) is a dg module over RHom .4, (@f, _@E). Since

the intersection L N M is smooth, Theorem 2.2.21 implies that
RAom 1o (21, Zm) ~ C(W)LAm Oc Rorl—cl.

It follows by Theorem 3.3.9 and Lemma 3.4.1 that the cohomology of
RHom g4, (@E, .@1(\),[) is free over C[[]]. In particular, we see that Ext .4 (QB, .@19/[) isa

formal deformation of the graded module Ext(i *Ki/ 2, j*KI{,{ 2) to the graded module

H*~¢(L N M, £or)(h). It follows that

dime (HH”7 (H(L/C), H (L N M, for)))
< dime(HHP (H(L/C), Ext(i.K[ "%, j.K}))).

As in the previous theorem, degeneration of the spectral sequence on i = 0 gives a

filtration F on Ext(i*Ki/ 2, j*KMZ) such that

Gr (Ext (i, K[/, juKy)7)) = H* (LN M, Ror)

as graded modules over H(L/C). The Rees deformation argument then implies the
opposite the above inequality, so we conclude

dim¢ (HH?7 (H(L/C), H* (LN M, Ror)))

= dim¢ (HH”? (H(L/C), Ext(i*Ki/z» J*Kllvfz)))

Thus, by Lemma 3.4.1, the Hochschild cohomology groups
HHP (Bxt (90, 70). Bxtg (90, 7))
are free over C[[/] for all p, g € Z.
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We observed in the beginning of the proof of Theorem 3.3.9 that the local
system R, corresponds to a unitary representation of the fundamental group of
L N M. Then, as explained on page 4, by a theorem of Deligne (see [12, 27]),
we conclude that RHomW)l(oc (QL, -@M) is a formal dg module over the dg algebra

RHOm(Q{)l(oc (@L, @L) Hence RHom (@0, 91(\),[) is a formal dg module over the dg

algebra RHom o (%0, 2)) by Proposition 1.8.4.
Next we note that there is a natural quasi-isomorphism of dg modules

RHom(i,K, ", j.Ky}%) =~ C ®cyay RHom 4 (22, 7).

associated with the quasi-isomorphism of dg algebras

RHom(i,K, ", i,K{/?) =~ C ®cyny RHom 4 (27, 7P).

It is now enough to recall that the cohomology of RHom g4 (.@0, @&) is free over
C[[A]l, hence RHom (i*Ki/ 2 j*KI{f) is formal over RHom(i*Ki/ 2 i*Ki/ 2).
For the last assertion, we observe that Ext gz (@0, 9&) is a generically constant

deformation that leaves HH'-" constant. Such a deformation must be trivial, the proof

being similar to the one for deformations of algebras discussed in the proof of The-
orem 3.4.3. Thus, Ext(i*KI{/z, j*Kllvfz) and H* (L N M, K,;) are isomorphic since
they are finite dimensional over C and become isomorphic upon extending scalars to

C(h). m
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