
Work supported  by Department of Energy contract DE-AC02-76SF00515

Localized PEPII Storage Ring Optics

Measurements

Jonathan Landy
Office of Science, SULI Program
California Institute of Technology
Stanford Linear Accelerator Center

Menlo Park, California

August 19, 2005

Prepared in partial fulfillment of the requirements of the Office of Science,
DOE Science Undergraduate Laboratory Internship (SULI) Program under the
direction of Dr. Yiton Yan in the Accelerator Research Department A at Stan-
ford Linear Accelerator Center.

Participant:

Signature

Research Advisor:

Signature

1

SLAC-TN-05-055



Localized PEPII Storage Ring Optics Measurements. JONATHAN LANDY
(California Institute of Technology, Pasadena, CA 91126) YITON YAN (Stan-
ford Linear Accelerator Center, 2575 Sand Hill Road Menlo Park, CA 94025)

Abstract

The current technique employed to determine the parameters which
specify the betatron oscillation in the PEPII ring at SLAC is a global
procedure in that the data from each BPM (Beam Position Monitor)
is weighted equally. However for more accurate interaction point (IP)
measurements it would be beneficial to weight the data from the BPMs
closest to the IP much more heavily. Researchers are thus considering the
possibility of developing a technique to determine the oscillation parame-
ters near the IP using as few BPMs as possible. In this paper, allowing
BPM gains and cross coupling, we show analytically that given data from
N BPMs there remain 6N + 2 degrees of freedom in the matrices MA,A,
MB,A, ...,MN,N−1 unspecified by the observable data alone. From this we
demonstrate that data from at least 3 BPMs is required to completely
specify the system when the transfer maps between BPMs are assumed
known, and that 4 BPMs may be more suitable.
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1 Introduction

As particles circle around a storage ring, such as the PEPII ring at SLAC, they
move longitudinally in a tight beam. The particles will also have transverse
momenta and therefore will tend to diverge. To prevent this from happening,
in addition to the required bending dipoles, a series of quadrupole magnets is
used to alternately focus the beam and then defocus the beam. As the particles
move around the ring they will then oscillate in transverse phase space and are
prevented from diverging. This oscillation is known as the betatron motion of
the beam and is uniquely determined at each BPM (Beam Position Monitor)
by 10 beam parameters. In this paper we will be investigating how many of
these parameters can be determined from orbit data.

The transverse phase space position of the beam at BPMA and turn n
around the ring is denoted by −−→xn,A = (x, px, y, py)T

n,A, although we will some-
times drop the subscript specifying the BPM when the meaning is clear. The
position of the beam at BPMA uniquely determines what it will be when it
reaches BPMB . Therefore we can define a function fB,A as follows:

fB,A : −−→xn,A → −−→xn,B (1)

Thus fB,A maps the beam’s phase space position at BPMA to what it will be
at BPMB . In particular we can define the 1-turn map fA,A which maps the
phase space position at BPMA at turn n to what it will be at turn n + 1:

fA,A : −−→xn,A → −−−−→xn+1,A (2)

These functions are known to be largely linear and therefore we may ap-
proximate these maps by 4x4 matrices which operate on the phase space. For
example, the linear approximation of fA,A will be denoted by MA,A. If it were
possible to measure all components of the beam’s phase space position as it
passed by the BPM it would be a simple matter to determine this matrix. We
would only need to invert the orbit as follows:

MA,A


x0 x1 x2 x3

px0 px1 px2 px3

y0 y1 y2 y3

py0 py1 py2 py3


A

=


x1 x2 x3 x4

px1 px2 px3 px4

y1 y2 y3 y4

py1 py2 py3 py4


A

→

MA,A =


x1 x2 x3 x4

px1 px2 px3 px4

y1 y2 y3 y4

py1 py2 py3 py4


A


x0 x1 x2 x3

px0 px1 px2 px3

y0 y1 y2 y3

py0 py1 py2 py3


−1

A

(3)

Knowing the phase space position at 5 consecutive turns thus gives you
complete information about the map. Further, the position of the beam at any
later time is in the space spanned by the first 4 positions. This implies that no
new information can be obtained by looking at more turns of the orbit.
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Unfortunately, the BPMs can only measure the spatial coordinates of the
beam and cannot measure its transverse momenta. Thus we are only able to
measure half of the coordinates of its phase space position. For this reason it has
been assumed that the information one can get from orbit data is insufficient to
solve for the parameters without some a priori information about the machine
lattice. We confirm this is true; however, it may be possible that some of the
information lost about the map which is contained in the momenta at each turn
could be recovered by looking at the x and y positions at later turns in the
orbit. In this paper we demonstrate rigorously the number of parameters left
unspecified by the orbit data and further give a lower bound on the number
of BPMs required to determine all the parameters when the matrices MB,A,
MC,B , etc. are assumed known.

2 One-Dimensional Case

We will begin by analyzing lattices which oscillate only in the x-direction. In
section 2.1 we will look at what can be determined from data from 1 BPM
alone. In section 2.2 we will analyze the case of data from 2 or more BPMs. In
section 2.3 we will discuss our results in terms of the machine parameters. And
in section 2.4 we will demonstrate how a natural assumption permits a solution.

2.1 Single BPM Analysis

In this section we will prove that given the x-orbit data from a single BPM, BPMA,
it is impossible to determine the map MA,A. Further we will show that there
are in fact 2 degrees of freedom in MA,A left unspecified by this data alone.

Symplectic Matrices and Normalized Phase Space

A 2x2 symplectic matrix M is defined as one such that:

MT SM = S, where S =
(

0 1
−1 0

)
(4)

In the 2x2 case, it is easy to show that the symplectic condition is equivalent to
the condition det(M) = 1.

One condition on the matrices MA,A, MB,A, etc. is that they be symplectic.
This is a consequence of the fact these matrices represent systems in which
the hamiltonian is time-independent. Another condition on MA,A is that its
eigenvalues be complex-conjugates and of modulus 1. We can see that is true
as follows:

As MA,A is symplectic → λ1λ2 = 1 where λ1, λ2 are its eigenvalues. As
the machine is designed so that the orbits of MA,A will remain bounded it
cannot be true that either |λ1| or |λ2| > 1, as this would result in an expanding
orbit. This implies |λ1| = |λ2| = 1. If λ1, λ2 are complex, then they are
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necessarily conjugate by the conjugate root theorem. Also if they are real,
λ1λ2 = 1 → λ1 = λ2 and again they must be conjugate.

With these two conditions on MA,A it can be shown that it is always possible
to decompose MA,A as follows:

MA,A = AARA,AA−1
A with, (5)

AA =

( √
βA 0

−αA√
βA

1√
βA

)
and RA,A =

(
cos µA sinµA

− sinµA cos µA

)
(6)

Thus the matrix A−1
A transforms to a normalized space in which the one turn

map is a simple clockwise rotation which induces circular orbits.

This decomposition explicitly shows that there are 3 parameters determining
the matrix MA,A in the 1-Dimensional case. The rotation angle µA is set by the
operators of the machine during runtime. This angle is always chosen so that
the tune, ν ≡ µA

2π , is irrational for if the linear orbits were periodic, nonlinear
effects would start to play a more important role. One consequence of this choice
is that the eigenvalues of MA,A are necessarily complex. βA causes the orbit to
become an ellipse when it differs from 1 while αA has the effect of skewing the
ellipse.

Number of Independent Orbit Data Sets

As mentioned above, the BPMs can only measure the spatial coordinates
of the beam and cannot measure its transverse momenta. Therefore for a 1-
Dimensional lattice a typical data set from an orbit may look like that in Table
2.1 below. At each turn the x position of the beam is recorded as it passes by
BPMA, but the momentum px is unknown.

The goal is to determine as much as we can about MA,A from this x-orbit
data. The first question we might ask ourselves then is: How many independent
x-orbit data sets can we use to determine MA,A? The answer is that (after
normalization) all orbits are actually the same, in that any given orbit will
contain all other orbits. Therefore no new information can possibly be gained
by taking more than 1 x-orbit data set. The proof follows:

Consider two x-orbit data sets taken at BPMA: x0, x1, ... and X0, X1, ....
The first step in the proof that the second orbit, X0, X1, ..., is contained in the
first is to discuss normalization:

Turn : 0 1 2 3 4 5 ...
xA 3.1623 3.0075 2.5583 1.8587 0.9772 0.0000 ...
pxA p0 =? p1 =? p2 =? p3 =? p4 =? p5 =? ...

Table 1: Example BPMA data for a 1-Dimensional lattice
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Consider the evolution of the orbit −→x0,−→x1, ... instead in normalized space.
That is consider the orbit:A−1

A
−→x0, A

−1
A
−→x1, ... ≡

−→
xN

0 ,
−→
xN

1 , .... In normalized space
the transfer matrix is simply RA,A, a clockwise rotation. Thus:

−−−→
xN

m+1 = RA,A

−→
xN

m → (7)

|
−−−→
xN

m+1| = |
−→
xN

m| ≡ l ∀m (8)

as RA,A conserves the norm. Similarly:

−−−→
XN

m+1 = RA,A

−−→
XN

m → (9)

|
−−−→
XN

m+1| = |
−−→
XN

m | ≡ L ∀m (10)

Now:

−→xm =

( √
βA 0

−αA√
βA

1√
βA

)
−→
xN

m (11)

This implies that xm is maximized when xN
m is maximized. Now in normalized

space
−→
xN

m is rotating around a circle of radius l in xN−pNspace. As ν is irrational
→ the normalized orbit

−→
xN

0 ,
−→
xN

1 , ... gets arbitrarily close to the xN -axis, as the
orbit of an irrational rotation is dense on the unit circle [2]. Therefore:

max |xN
m| = l → (12)

max |xm| =
√

βAl (13)

Similarly:
max |XN

m | = L → (14)

max |Xm| =
√

βAL (15)

Therefore, measuring max |xm| =
√

βAl and max |Xm| =
√

βAL and then divid-
ing the two we obtain:

max |xm|
max |Xm|

= l/L ≡ r (16)

We can now multiply the second orbit by r to obtain a new orbit:

r
−→
X0, r

−→
X1, ... ≡

−→
X?

0 ,
−→
X?

1 , ... (17)

r
−−→
XN

0 , r
−−→
XN

1 , ... ≡
−−→
X?N

0 ,
−−→
X?N

1 , ... (18)

We now have two orbits whose normalized phase space positions have the same
norm:

|
−→
xN

m| = |
−−→
X?N

n | = l ∀m,n (19)
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Once again, as ν is irrational → the orbit
−→
xN

0 ,
−→
xN

1 , ... is dense on the circle of
radius l. As

−−→
X?N

0 lies on this circle → the orbit
−→
xN

0 ,
−→
xN

1 , ... must get arbitrarily
close to

−−→
X?N

0 . As it can get arbitrarily close, there must be some j(k) such that:

|
−−→
xN

j(k) −
−−→
X?N

0 | < 10k, for any k (20)

Therefore we can choose a k such that the difference between
−−→
xN

j(k) and
−−→
X?N

0 is
unmeasurable. Doing this we find:

−−→
xN

j(k) '
−−→
X?N

0 → RA,A

−−→
xN

j(k) =
−−−−→
xN

j(k)+1 ' RA,A

−−→
X?N

0 =
−−→
X?N

1 ... (21)

→ AA

−−→
xN

j(k) = −−→xj(k) ' AA

−−→
X?N

0 =
−→
X?

0 , −−−−→xj(k)+1 '
−→
X?

1 ... (22)

that is:
−−→xj(k),

−−−−→xj(k)+1,
−−−−→xj(k)+2, ... '

−→
X?

0 ,
−→
X?

1 ,
−→
X?

2 , ... (23)

where of course the two orbits will stay close for more turns the larger k is
chosen. This concludes the proof that any properly normalized second orbit
will always be included (to an arbitrary degree of accuracy) within another
arbitrarily chosen orbit. As a single orbit contains all other orbits, this implies
we need only consider one when we are attempting to determine the parameters
of our map.

Specifying a Single x-Orbit

We have seen above that you can get no new information about MA,A by using
more than 1 x-orbit data set. The next thing we will show is that in fact, only
the first 3 x data points are required to specify an entire x-orbit. proof:

As MA,A is a real matrix with complex eigenvalues, the eigenvectors of MA,A

must also be complex. As the zeroth turn of the orbit is a real vector, it
cannot be an eigenvector of MA,A. Therefore the first two turns of the orbit are
independent and we can write, for some a and b:(

x2

px2

)
=
(

x0 x1

px0 px1

)(
a
b

)
(24)

That is, −→x2 is in the span of −→x0 and −→x1. Multiplying on the left by Mn
A,A gives:(

xn+2

pxn+2

)
=
(

xn xn+1

pxn pxn+1

)(
a
b

)
(25)

This gives 2 independent recursion relations for xn and pxn. By definition:(
xn+1 xn+2

pxn+1 pxn+2

)
= MA,A

(
xn xn+1

pxn pxn+1

)
→ (26)

det

(
xn+1 xn+2

pxn+1 pxn+2

)
= det

(
xn xn+1

pxn pxn+1

)
≡ Q (27)
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as detMA,A = 1. Note that Q 6= 0 as the first two turns are linearly independent.
From Eq.(27) we get the following two equations:

px1 =
x1px0 + Q

x0
(28)

px2 =
x2px1 + Q

x1
=

Q

x1
+

x2Q

x1x0
+

x2px0

x0
(29)

Plugging in Eq.(28) and Eq.(29) into Eq.(24) gives after a little manipulation:

Q(
x0

x1
+

x2

x1
− b) = px0(ax0 + bx1 − x2) (30)

By Eq.(24) ax0 + bx1 − x2 = 0 →

x0

x1
+

x2

x1
− b = 0; (31)

which finally gives:

b =
x0 + x2

x1
(32)

a = −1 (33)

Plugging in then to Eq.(25) we see that the entire x-orbit is specified uniquely
by x0, x1, and x2. Further the x-orbit depends only on these 3 x values and not
at all on the px values.

Conclusion of Single BPM Analysis

We are now ready to demonstrate that it is impossible to determine the matrix
MA,A from the x-orbit data alone. In order to do this we will show how to con-
struct an infinite set of matrices, all of which are symplectic and could produce
the observed x-orbit data. As our only assumption on the form of MA,A is that
it be symplectic we cannot determine which of the matrices in this set is the
correct MA,A when using only the x-orbit data:

Let us begin by considering an observed x-orbit data set: x0, x1, ... with the
momenta unspecified as usual. Then we know:

MA,A =
(

x1 x2

px1 px2

)(
x0 x1

px0 px1

)−1

(34)

MA,A is symplectic →

px2 =
px1(x0 + x2)

x1
− px0 (35)

This reduces the number of unknown parameters specifying MA,A to 2, those
being px0 and px1. We are unable to measure these two momenta using the
BPMs, but the question still remains if there is some way that you could find
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out what these are. We see that one cannot: For if you guess at MA,A by
randomly choosing both a pxg0 and pxg1 and plug these into Eq.(34) you will
obtain a different matrix:

GA,A(pxg0, pxg1) =
(

x1 x2

pxg1 pxg2

)(
x0 x1

pxg0 pxg1

)−1

(36)

which is symplectic if pxg2 is obtained by plugging into Eq.(35). By def-
inition, given input phase space position −→xg0 = (x0, pxg0)

T the orbit under
GA,A(pxg0, pxg1) will have the same first three turn x positions: x0, x1, x2. As
the entire xn orbit is determined by its first 3 values, this xn orbit will match that
of the observed data set. Therefore as each of these matrices, GA,A(pxg0, pxg1),
is symplectic and could produce the x-orbit observed we cannot determine which
of them is the actual one turn map MA,A.

We shall write D = 2, to signify the fact that there are 2 degrees of freedom
in MA,A left unspecified by the observable data alone. Thus 2 extra constraints
in addition to the x-orbit data from a single BPM are required to determine
the 1-turn map MA,A in a 1-dimensional lattice.

2.2 Multiple BPM Analysis

Now that we have proven that it is impossible to determine MA,A given just
the x-orbit data from BPMA the next question we must answer is whether or
not it may be possible to determine MA,A using the x-orbit data from multiple
BPMs around the ring in conjunction. The answer, as we shall see, is that
again you cannot.

We begin by looking at a hypothetical storage ring which has 2 BPMs. As
the beam circles around the ring the x-position of the beam is recorded turn by
turn as it passes by BPMA and then again as it passes by BPMB . We define
an orbit data set as a complete set of data for all BPMs under consideration
for a given run. Of course the transverse momenta is still unmeasurable at each
of the BPMs and so a typical orbit data set may look like that in Table 2.2
below.

As in the single BPM proof above, our analysis of the double BPM case will
hinge on the construction of an infinite set of symplectic matrices, GA,A(a, b, ...)
and GB,A(a, b, ...), which are capable of producing the xn-orbits observed in the
orbit data sets. First, however, we must turn our attention to the number of
independent orbit data sets we may use.

Turn : 0 1 2 3 4 5 ...
xA 3.0046 3.0391 2.5351 1.5817 0.3480 −0.9473 ...
pxA p0 =? p1 =? p2 =? p3 =? p4 =? p5 =? ...
xB 3.4580 3.4345 2.8022 1.6734 0.2479 −1.2215 ...
pxB p0 =? p1 =? p2 =? p3 =? p4 =? p5 =? ...

Table 2: Example BPMA and BPMB data for a 1-Dimensional lattice
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Number of Independent Orbit Data Sets

As in the analogous section above, we wish to show that all orbit data sets are
contained (to any desired degree of accuracy) within every other orbit data set.
We can easily extend the result we obtained above:

Consider two orbit data sets, each consisting of the orbit data from BPMA

and the data from BPMB :

set1 : (−−→x0,A,−−→x1,A, ...;−−→x0,B ,−−→x1,B , ...) set2 : (−−−→X0,A,
−−−→
X1,A, ...;−−−→X0,B ,

−−−→
X1,B , ...)

If we now plug in the orbits xn,A and Xn,A into Eq.(16) we shall obtain the nor-
malization ratio rA. Multiplying both the orbit (−−−→Xn,A...) and the orbit (−−−→Xm,B ...)
by rA, we obtain the normalized orbit data set, (

−−−→
X?

n,A...) and (
−−−→
X?

m,B ...). Now
by Eq.(20) we can find a j(k) such that the following holds:

|
−−−−→
xN

j(k),A −
−−−→
X?N

0,A| < 10k, for any k (37)

If we choose a large k then, we have by Eq.(23) that:

−−−−→xj(k),A,−−−−−−→xj(k)+1,A,−−−−−−→xj(k)+2,A, ... ' −−−→X?
0,A,

−−−→
X?

1,A,
−−−→
X?

2,A, ... (38)

where the two orbits stay close for more turns the larger k is chosen. Multiplying
on the left by MB,A we obtain:

MB,A
−−−−→xj(k),A,MB,A

−−−−−−→xj(k)+1,A, ... = −−−−→xj(k),B ,−−−−−−→xj(k)+1,B , ...

' MB,A
−−−→
X?

0,A,MB,A
−−−→
X?

1,A, ... =
−−−→
X?

0,B ,
−−−→
X?

1,B , ... →
−−−−→xj(k),B ,−−−−−−→xj(k)+1,B ,−−−−−−→xj(k)+2,B , ... ' −−−→X?

0,B ,
−−−→
X?

1,B ,
−−−→
X?

2,B , ... (39)

showing that the 2nd orbit at B is contained in the first as well. Clearly this
argument can be extended to any number of BPMs by proceeding inductively.
In general we see that for 1-dimensional lattices a single orbit data set contains
all others, implying we need only consider one when attempting to determine
the matrices MA,A, MB,A, MC,B , etc..

Construction of Guess Matrices

By definition, the actual matrix MB,A satisfies the following relation:

MB,A

(
x0,A x1,A

px0,A px1,A

)
=
(

x0,B x1,B

px0,B px1,B

)
(40)

from which we obtain,

MB,A =
(

x0,B x1,B

px0,B px1,B

)(
x0,A x1,A

px0,A px1,A

)−1

(41)
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MA,A is given by Eq.(34). Again the symplectic condition Eq.(35) still holds for
MA,A, while setting the determinant of Eq.(41) to 1 we see that the symplectic
condition applied to MB,A is equivalent to:

px1,B =
x1,B

x0,B
px0,B −

x1,A

x0,B
px0,A +

x0,A

x0,B
px1,A (42)

Thus the symplectic condition reduces the number of unknown parameters to 3:
px0,A, px1,A, and px0,B . Choosing random values for these momenta we can con-
struct the symplectic matrices GA,A(px0,A, px1,A, px0,B) and GB,A(px0,A, px1,A, px0,B)
by plugging into Eq.(34) and Eq.(41):

GA,A =
(

x1,A x2,A

pxg1,A pxg2,A

)(
x0,A x1,A

pxg0,A pxg1,A

)−1

(43)

GB,A =
(

x0,B x1,B

pxg0,B pxg1,B

)(
x0,A x1,A

pxg0,A pxg1,A

)−1

(44)

By the above, given input data −−−→xg0,A = (x0,A, pxg0,A)T we know that the xn,A

orbit under GA,A will match that of the observed orbit data set. By definition
the xg0,B , and xg1,B values of the first two turns will also match the authentic
data set, where: (

xgn,B

pxgn,B

)
= GB,A

(
xn,A

pxgn,A

)
(45)

If we could show that xg2,B also matches the observed orbit data set, then the
first 3 xgn,B values would match. This would then imply that the entire xgn,B

orbit matches the observed orbit data. Apply GB,A to obtain the third x-value
in the orbit:(

xg2,B

pxgn,B

)
=
(

x0,B x1,B

pxg0,B pxg1,B

)(
x0,A x1,A

pxg0,A pxg1,A

)−1(
x2,A

pxg2,A

)
(46)

By Eq.(24): (
x0,A x1,A

pxg0,A pxg1,A

)−1(
x2,A

pxg2,A

)
=
(

a
b

)
(47)

Using Eq.(32), and Eq.(33) and plugging into Eq.(46) we get,(
xg2,B

pxgn,B

)
=
(

x0,B x1,B

pxg0,B pxg1,B

)( −1
x0,A+x2,A

x1,A

)
(48)

Explicitly showing that xg2,B depends only on x0,B , x1,B , x0,A, x1,A, and x2,A

but is completely independent of all A and B momenta. As all of these x values
match the authentic data, it follows that xg2,B = x2,B and therefore xgn,B =
xn,B∀n.

Thus we have shown that the matrices GA,A(px0,A, px1,A, px0,B), and
GB,A(px0,A, px1,A, px0,B) given in Eq.(43) and Eq.(44) are symplectic and could
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produce the observed xn-orbits at both BPMA and BPMB for any choice of
the values px0,A, px1,A, and px0,B . Therefore the observable x-orbit data from
2 BPMs is insufficient to determine the matrices MA,A and MB,A and leaves
the global number of undetermined parameters in these matrices at D = 3.

Extension to Multiple BPMs

We may extend this result to multiple BPMs by proceeding inductively. Take,
for example, a storage ring consisting of 3 BPMs. By the above, we need only
consider a single orbit data set in the following.

Looking first at only BPMA and BPMB construct the matrices GA,A and
GB,A using Eq.(43) and Eq.(44). Now construct GC,B by randomly choosing
pxg0,C :

GC,B =
(

x0,C x1,C

pxg0,C pxg1,C

)(
x0,B x1,B

pxg0,B pxg1,B

)−1

(49)

Where pxg1,B is given by Eq.(42) and the symplectic condition on GC,B gives
pxg1,C :

pxg1,C =
x1,C

x0,C
pxg0,C −

x1,B

x0,C
pxg0,B +

x0,B

x0,C
pxg1,B (50)

The symplectic condition on GA,A, GB,A and GC,B reduces the number of un-
known parameters to 4. Similar to the above we can see that no matter what
our choice is for these 4 parameters, we will generate a consistent set of sym-
plectic matrices which could generate orbits with xn-orbits matching that of the
observed orbit data set. As the x data from the orbit data set is all the infor-
mation we know, we cannot possibly reduce the number unknown parameters
specifying the system to less than 4.

Continuing in this fashion we obtain the following result: The constraints
supplied by the observable data from N BPMs alone are insufficient to deter-
mine the symplectic matrices MA,A, MB,A, ...,MN,N−1 and leaves the global
number of unknown parameters specifying these matrices at D = N + 1.

2.3 Results in Terms of Standard Parameters

In this section we will quickly describe the work above in terms of the machine
parameters we are interested in determining, namely the α’s, β’s, and µ’s.

The only parameters that can be determined from the observable data alone
are the µ’s. We can see intuitively that µA = µB = µc = ... ≡ µ and this can be
proven mathematically without too much difficulty. To find µ from the x data
one need only set up the recursion relation Eq.(25) and solve for the roots of its
characteristic equation. These roots will have the form e±ıµ.

From Eq.(13), we see that max |xm,A| =
√

βAl and max |xm,B | =
√

βBl.
From these two we may write: βB = (max |xm,B |

max |xm,A| )
2βA. Similarly, we may write

βC in terms of βA and so on. Therefore once βA is specified, all other βs can
be determined from the orbit data.
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If there are N BPMs in our storage ring, then by the above, the measurable
orbit data leaves N + 1 parameters unspecified. Note that in terms of the
αA, αB , αC ..., βA, βB , βC ..., and µ parameters, we have already reduced the
number required to specify them all to N + 1, those being the N αs, (one
at each BPM) and βA. As these parameters completely specify our system,
this must mean that the N αs and βA are unspecified by the data and are
independent: even if you somehow knew N of the parameters αA, αB , ..., αN ,
and βA, you still could not determine the N + 1st from the observable data
alone.

Note: To provide some physical intuition as to why we cannot determine all
the parameters αA, αB , etc., consider a lattice with just a single BPM . We can
measure only the x-orbit values and not the momenta. But the values xn are
simply given by, xn =

√
βAxN

n , which is completely independent on αA and so
we cannot hope (at least in the single BPM case) to get at αA from this data.

2.4 Approximate Solution

As we cannot determine the matrices MA,A, MB,A, etc. from the measurable
data alone, we must resort to approximate solution techniques. A reasonable
approximation can be obtained for 2 or more BPMs when the BPMs are
spaced close to one another around the ring. We may approximate the transverse
motion of the particle beam between the quadrupole magnets as being essentially
a drift:

D =
(

1 δ
0 1

)
(51)

where δ is determined by measuring the distance between the two magnets.
Meanwhile, as the beam passes by one of the quadrupole magnets it is either
focused or defocused:

Fx =
(

1 0
−k 1

)
(52)

Fy =
(

1 0
k 1

)
(53)

Fx represent an x-focusing matrix, Fy represents an x-defocusing matrix. If we
approximate the matrix MB,A as a product of these 3 types of matrices we can
then easily determine MA,A. Assuming MB,A known:

MB,A =
(

a b
c d

)
→(

a b
c d

)(
xn,A

pxn,A

)
=

(
xn,B

pxn,B

)
→

pxn,A =
1
b
xn,B −

a

b
xn,A (54)
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Plugging these momenta values into Eq.(34) we obtain MA,A and the entire set
of parameters is determined.

2.5 A Note on Rational Tunes

The results above assumed that the tune ν = µ
2π is irrational. As I mentioned

before, this is the case in PEPII as a rational tune would result in nonlinear
resonance effects. However, if one chose a rational tune which would result in
very large periods, e.g. ν ≡ 1

1050 (mod1), then the resonance effects would be
minimal. If ν were chosen so, would it then be possible to determine the map
MA,A? We prove below that it is not:

Assume that for some 1-turn map MA,A with rational tune ν you could
determine the matrix MA,A using only the observable data. The set of irrationals
is dense in the set of reals and therefore we may find an irrational ν2 infinitely
close to ν. Consider now a second 1-turn map MA,A,2 which is identical to MA,A

except that it’s tune is ν2 rather than ν. The orbit data you would measure
under MA,A,2 would be infinitely close to that from MA,A and therefore you
would be able to use the same technique used to determine MA,A to get an
approximation to MA,A,2 which is infinitely accurate, if not exact. However,
we have shown above that it is not possible to accurately determine the matrix
MA,A,2 and therefore our original assumption must be wrong: it is not possible
to determine the matrix MA,A for any rational tune ν. (further it’s not possible
to accurately determine anything with a rational ν that you couldn’t with an
irrational ν.) This result can easily be extended to lattices with multiple BPMs
and applies to 2-dimensional lattices as well.

3 Two-Dimensional Case

We can now apply what we have learned from the 1-Dimensional lattice problem
above to the more relevant 2-Dimensional problem which describes the lattice
in PEPII. In section 3.1 we shall look at what can be determined from data
from a single BPM alone, in section 3.2 we will analyze lattices containing 2 or
more BPM ′s, and in section 3.3 we will discuss how many BPMs are required
to determine the machine parameters when the matrices MB,A, MC,B , etc. are
assumed known.

3.1 Single BPM Analysis

In this section we shall prove that given x and y orbit data from a single BPM
it is impossible to determine the 1-turn map MA,A and that there are 8 degrees
of freedom left unspecified by the data alone.
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Symplectic Matrices Revisited

A 4x4 symplectic matrix M is defined as one such that:

MT S4x4M = S4x4 (55)

where,

S4x4 ≡
(

S2x2 02x2

02x2 S2x2

)
(56)

It can be shown [3] that in the 2-dimensional case the symplectic matrices MN,M

can be decomposed in a form analogous to that in Eq.(5):

MN,M = ÃNRN,M Ã−1
M

= CNANRN,MA−1
M C−1

M (57)

where RN,M , AM , and CM have the following forms:

RN,M =
(

RxN,M 02x2

02x2 RyN,M

)
(58)

AM =
(

Ax,M 02x2

02x2 Ay,M

)
(59)

CM =
(

I2x2 cos φ −S2x2W
T S2x2 sinφ

−W sinφ I2x2 cos φ

)
(60)

RxN,M , RyN,M , AxM , and AyM have the same form as those in Eq.(6) and W
is a 2x2 matrix:

W =
(

a b
c d

)
(61)

If we assume that all elements of W are nonzero, it can be shown that we can
choose d ≡ d(a, b, c) such that C is symplectic. Thus there are 10 unknown
parameters specifying the symplectic matrix MA,A:

αx, βx, αy, βy, µx, µy, φ, a, b, and c

In addition to these 10, there are 4 unknown parameters describing errors in
how the BPM measures the position of the beam. These are gx, gy, θx,y, and
θy,x and they are defined as follows: if the actual transverse position of the
beam is (x, y) then the BPM will read out:

xR = gxx + θxyy

yR = gyy + θyxx (62)

This brings the number of unknown parameters specifying the measurement
error and the one turn map at BPMA to 14.

Looking back at the decomposition Eq.(57), we see that C−1
M transforms

into an uncoupled space, consisting of two 2x2 subspaces, the xU -pU
x and yU -pU

y
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eigenplanes (the U superscript denoting the uncoupled space). Thus in this
space the orbits may be decomposed as the conjunction of two independent
1-Dimensional lattice orbits, one in each eigenplane. Again the matrix A−1

M

transforms into the normalized space in which the orbits in each eigenplane are
circular.

Number of Independent Orbits

In this section we shall demonstrate that it is possible to manipulate an orbit
data set by normalizing its two independent 1-dimensional orbits in the nor-
malized space so that the new normalized orbit data set will be contained in a
second orbit data set. For simplicity, we shall ignore the measurement errors
associated with the parameters gx, gy, θx,y, and θy,x in this section. However,
it can easily be seen that the same method described below is still applicable
when these parameters are included. We begin by describing the normalization
process:

In the normalized space we have,(
xN

n

px
N
n

)
=
(

cos nµx sinnµx

− sinnµx cos nµx

)(
xN

0

px
N
0

)
(63)

Multiplying on the left by Ax we must have,(
xU

n

px
U
n

)
=
(

s t
u v

)(
cos nµx

sinnµx

)
(64)

for some constants s, t, u, and v. Similarly we have,(
yU

n

py
U
n

)
=
(

w x
y z

)(
cos nµy

sinnµy

)
(65)

for some constants w, x, y, and z. Multiplying
−→
xU

n =(xU
n , px

U
n , yU

n , py
U
n )T on the

left by CA we obtain:

xn = j cos nµx + k sinnµx + l cos nµy + m sinnµy (66)

yn = n cos nµx + o sinnµx + p cos nµy + q sinnµy (67)

j, k, l, m, n, o, p, and q all constants. To determine these coefficients we
must first find the values of µx and µy. These can be determined by setting
up a recursion relation like that in Eq.(25) and then solving for the roots of
its characteristic equation. Once the values of µx and µy are known we can
determine the coefficients j, k, l, m, n, o, p, and q using the first 4 positions of
the orbit. Noting the form of CA and AA, we must have:

j cos nµx + k sinnµx = cos φ
√

βxxN
n (68)

p cos nµy + q sinnµy = cos φ
√

βyyN
n (69)
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Writing, |(xN
n , px

N
n )T | ≡ lx and |(yN

n , py
N
n )T | ≡ ly (which are independent of n

as the normalized orbit in each eigenplane lies on a circle) and recalling that µx

and µy are irrational we must have:

max(j cos nµx + k sinnµx) = | cos φ|
√

βxlx (70)

and,
max(p cos nµy + q sinnµy) = | cos φ|

√
βyly (71)

Considering now a second orbit data set −→Xn=(Xn, Pxn, Yn, Pyn)T , we have:

Xn = J cos nµx + K sinnµx + L cos nµy + M sinnµy (72)

Yn = N cos nµx + O sinnµx + P cos nµy + Q sinnµy (73)

with,
max(J cos nµx + K sinnµx) = cos φ

√
βxLx (74)

max(P cos nµy + Q sinnµy) = cos φ
√

βyLy (75)

Dividing Eq.(70) by Eq.(74) and Eq.(71) by Eq.(75) we obtain,

max(j cos nµx + k sinnµx)
max(J cos nµx + K sinnµx)

=
lx
Lx

≡ rx (76)

max(p cos nµy + q sinnµy)
max(P cos nµy + Q sinnµy)

=
ly
Ly

≡ ry (77)

If we now multiply all terms of the orbit −→Xn containing µx by rx and all terms
containing µy by ry, we obtain a new orbit

−→
X?

n. For example the X?
n orbit will

be given by:

X?
n = rxJ cos nµx + rxK sinnµx + ryL cos nµy + ryM sinnµy (78)

In effect, we have constructed another observable orbit,
−→
X?

n, s.t. |(X?N
n , Px

?N
n )T | =

lx and |(Y ?N
n , Py

?N
n )T | = ly. Thus in normalized space, (X?N

n , Px
?N
n )T is rotat-

ing around in a circle which has the same radius as the circular orbit (xN
n , px

N
n )T

and (Y ?N
n , Py

?N
n )T is rotating around in a circle which has the same radius as

the circular orbit (yN
n , py

N
n )T .

The rotation angles µx and µy are always chosen not equal as this results in
resonances. As they are both irrational, it can then be shown that there must
be some j(k) such that:

|(X?N
0 , Px

?N
0 )T − (xN

j(k), px
N
j(k))

T | < 10k (79)

and,
|(Y ?N

0 , Py
?N
0 )T − (yN

j(k), py
N
j(k))

T | < 10k, for any k (80)

Multiplying on the left by CAAA we find,

−−→xj(k),
−−−−→xj(k)+1,

−−−−→xj(k)+2, ... '
−→
X?

0 ,
−→
X?

1 ,
−→
X?

2 , ... (81)
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where the two orbits will stay close for more turns the larger k is chosen. Thus
the second normalized orbit is contained in the first.

Although the ”normalization” process described here is not as simple as the
scaling factor used in the 1-dimensional process, they amount to the same thing:
we can take a single orbit data set and from it construct all others. This implies
no new information about the map can be obtained by taking more data and
again we need only consider one orbit data set when attempting to determine
MA,A.

Construction of Guess Matrices

Consider a single orbit data set −−→x0,R,−−→x1,R, ... We shall construct a set of symplec-
tic guess matrices GB,A which produce the observed x0,R, x1,R, ... and y0,R, y1,R, ...
orbits. Begin by randomly choosing gx, gy, θxy, and θyx. Inverting Eq.(62) we
obtain:(

xn,g

yn,g

)
=

1
gx,ggy,g − θxy,gθyx,g

(
gy,g −θxy,g

−θyx,g gx,g

)(
xn,R

yn,R

)
(82)

obtaining a guess at the actual position of the beam for each turn of the orbit.
Now randomly choose the parameters determining the matrix CA. These are:
a, b, c, and φ (recall d ≡ d(a, b, c)).

CA,g =
(

I2x2 cos φg −S2x2W
T
g S2x2 sinφg

−Wg sinφg I2x2 cos φg

)
(83)

Similar to Eq.(66) and Eq.(67) we may decompose xn,g and yn,g as follows:

xn,g = j cos nµx + k sinnµx + l cos nµy + m sinnµy (84)

yn,g = n cos nµx + o sinnµx + p cos nµy + q sinnµy (85)

for some new constants j, k, l, m, n, o, p, and q which can again be solved for
by using the first 4 positions of the orbit. From Eq.(57) and Eq.(60) we obtain,

xn,g = cos φgx
U
n,g + dg sinφgy

U
n,g − bg sinφgpy

U
n,g (86)

yn,g = cos φgy
U
n,g − ag sinφgx

U
n,g − bg sinφgpx

U
n,g (87)

comparison with Eq.(84) and Eq.(85) gives:

xU
n,g =

1
cos φg

(j cos nµx + k sinnµx) (88)

yU
n,g =

1
cos φg

(p cos nµy + q sinnµy) (89)

Plugging these back into Eq.(86) and Eq.(87),

px
U
n,g =

−1
bg sinφg

[n cos nµx + o sinnµx + ag
sinφg

cos φg
(j cos nµx + k sinnµx)]

= −[
agj

bg cos φg
+

n

bg sinφg
] cos nµx − [

agk

bg cos φg
+

o

bg sinφg
] sinnµx

≡ r cos nµx + s sinnµx (90)
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Similarly we find:

py
U
n,g = [

dgp

bg cos φg
− l

bg sinφg
] cos nµy + [

dgq

bg cos φg
− m

bg sinφg
] sinnµy

≡ t cos nµx + u sinnµx (91)

From xU
n,g and px

U
n,g we obtain Axg,A and Rxg,A. From yU

n,g and py
U
n,g we obtain

Ayg,A and Ryg,A. Now we can construct the entire guess matrix.

GA,A ≡ GA,A(gx,g, θxy,g, gy,g, θyx,g, ag, bg, cg, φg)
= CA,gAA,gRA,GA−1

A,gC
−1
A,g (92)

With the initial condition −−→x0,g = CA,g(xU
0,g, px

U
0,g, y

U
0,g, py

U
0,g)

T we see by working
backwards from Eq.(90) and Eq.(91) that the symplectic matrices GA,A, given
by Eq.(92), will all produce the same xn and yn orbits as those in the observed
orbit data set. As 8 parameters are randomly chosen to obtain the GA,A, the
x-orbit data from a single BPM alone must be insufficient to determine the
1-turn map MA,A. Further we must have D = 8 exactly as all the remaining
14− 8 = 6 parameters are uniquely determined once these 8 are specified.

3.2 Multiple BPM Analysis

We begin by considering a 2-Dimensional lattice consisting of 2 BPMs. Again
we shall show that the constraints supplied by the observable data are insuffi-
cient to determine the matrices MA,A, and MB,A. We shall then extend this
result to the general storage ring consisting of N BPMs.

Number of Independent Orbits

To show that we need only consider a single orbit data set we may use the same
argument as was used in the 1-dimensional lattice case.

Consider two orbit data sets, each consisting of the x and y data from BPMA

and BPMB :

set1 : (−−→x0,A,−−→x1,A, ...;−−→x0,B ,−−→x1,B , ...) set2 : (−−−→X0,A,
−−−→
X1,A, ...;−−−→X0,B ,

−−−→
X1,B , ...)

Looking first at only the data from BPMA we may normalize the second orbit
data set, obtaining a new one, (

−−−→
X?

0,A,
−−−→
X?

1,A, ...,
−−−→
X?

0,B ,
−−−→
X?

1,B , ...), which is contained
in the first:

−−−−→xj(k),A,−−−−−−→xj(k)+1,A,−−−−−−→xj(k)+2,A, ... ' −−−→X?
0,A,

−−−→
X?

1,A,
−−−→
X?

2,A, ... (93)

as in the above. Now multiplying on the left by MB,A we obtain:

MB,A
−−−−→xj(k),A,MB,A

−−−−−−→xj(k)+1,A, ... = −−−−→xj(k),B ,−−−−−−→xj(k)+1,B , ...

' MB,A
−−−→
X?

0,A,MB,A
−−−→
X?

1,A, ... =
−−−→
X?

0,B ,
−−−→
X?

1,B , ... →
−−−−→xj(k),B ,−−−−−−→xj(k)+1,B ,−−−−−−→xj(k)+2,B , ... ' −−−→X?

0,B ,
−−−→
X?

1,B ,
−−−→
X?

2,B , ... (94)
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showing that the 2nd orbit is contained in the first at BPMB as well. This
argument can be extended to any number of BPMs by proceeding inductively.
In general we see that for 2-dimensional lattices it is possible to normalize an
orbit data set so that it will be contained in another. As a single orbit data set
contains all others (up to this normalization), this implies we need only consider
one when attempting to determine the matrices MA,A, MB,A, MC,B , etc..

Construction of Guess Matrices

Consider a single orbit data set −−−→xA0,R,−−−→xA1,R, ..., −−−→xB0,R,−−−→xB1,R, .... Using only
the data from BPMA we could proceed as in the above and find a family of
matrices which could produce the observed data at BPMA. Similarly using
the data from BPMB we could find another family of matrices which produce
the observed data at BPMB . For each choice of the symplectic guess matrices
GA,A and GB,B we obtain a different guess at the actual phase space orbits of
the beam and thus a different guess matrix GB,A,

GB,A = (−−→xB,0,−−→xB,1,−−→xB,2,−−→xB,3)(−−→xA,0,−−→xA,1,−−→xA,2,−−→xA,3)−1 (95)

(the fact that GB,A will map the entire orbit at A to the orbit at B can be
shown easily, by considering the map in the uncoupled space.) We must apply
the symplectic condition to GB,A to determine which of the GA,A and GB,B are
valid guesses. We may simplify the application of the symplectic condition to
these matrices by first factoring them. Note that we can decompose the GB,A

in the following form,

GB,A = ÃB,gUÃ−1
A,g = CB,gAB,gUA−1

A,gC
−1
A,g (96)

for some matrix U as the matrices Ag and Cg are all invertible. By definition:

GA,A = G−1
B,AGB,BGB,A →

CA,gAA,gRA,AA−1
A,gC

−1
A,g = G−1

B,ACB,gAB,gRB,BA−1
B,gC

−1
B,gGB,A (97)

Plugging in Eq.(96) we get:

RA,A = U−1RB,BU (98)

The rotations RA,A and RB,B share the same 4 eigenvectors, namely: (1,±ı, 0, 0)T

and (0, 0, 1,±ı)T . As these matrices are similar under U it follows that U maps
this set of eigenvectors to itself modulo some scalar factors. Further, as U is
real, it maps complex conjugate vectors to complex conjugate vectors. There-
fore either U(1,±ı, 0, 0)T = a(1,±ı, 0, 0)T or U(1,±ı, 0, 0)T = a(0, 0, 1,±ı)T .
However, we know that GB,A will not swap the x − px and y − py eigenplanes
implying that U(1,±ı, 0, 0)T = a(1,±ı, 0, 0)T and similarly U(0, 0, 1,±ı)T =
b(0, 0, 1,±ı)T so that U is block diagonal.

U =
(

Ux 02x2

02x2 Uy

)
(99)
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We may now easily apply the symplectic condition to the matrices GB,A.
The Cg and Ag matrices are symplectic by construction. Therefore by Eq.(96),
requiring GB,A symplectic is equivalent to requiring the block diagonal matrix
Ug to be symplectic. Plugging in Eq.(99) to Eq.(55), we see this is equivalent
to requiring each of the diagonal matrices of U to be symplectic. Thus we get
the following two symplectic constraints:

detUg,x = det
(

x0,g x1,g

px0,g px1,g

)
B

(
x0,g x1,g

px0,g px1,g

)−1

A

= 1 (100)

detUg,y = det
(

y0,g y1,g

py0,g py1,g

)
B

(
y0,g y1,g

py0,g py1,g

)−1

A

= 1 (101)

Applying these constraints we obtain the symplectic matrices GA,A and GB,B

which are consistent with a symplectic map GB,A and produce the observed orbit
data. As 14 parameters are randomly chosen to obtain these matrices (8 from
each of the two 1-turn maps, minus 2 due to the symplectic conditions, Eq.(100)
and Eq.(101)), the x-orbit data from 2 BPMs alone must be insufficient to
determine the maps MA,A and MB,A. Further D = 14 exactly as the remaining
28− 14 = 14 parameters are uniquely determined once these 14 are chosen.

Extension to Multiple BPMs

The extension to a lattice with N BPMs follows very easily. By the above we
need only consider a single orbit data set,

−−−→xA0,R,−−−→xA1,R, ...;−−−→xB0,R,−−−→xB1,R, ...; ...;−−−→xN 0,R,−−−→xN 1,R, ...,

when attempting to determine the matrices MA,A, MB,A,...,MN,N−1. We may
construct with 8 degrees of freedom each, the matrices GA,A, GB,B ,..., and
GN,N . Applying the 2(N−1) symplectic constraint equations similar to Eq.(100)
and Eq.(101) on the matrices GB,A, GC,B ,...,GN,N−1, we are left with the
infinite set of matrices GA,A,...,GN,N , which are consistently symplectic and
produce the observed xn and yn orbit data. The constraints supplied by the
observable data are again insufficient to determine the matrices MA,A, MB,A,
...,MN,N−1 and leave the global number of undetermined parameters in these
matrices at D = 8N− 2(N− 1) = 6N + 2.

3.3 Approximate Solution and Future Work

For a 2-dimensional lattice consisting of N BPMs, we saw above that the
observable data supplies an insufficient number of constraints to specify correctly
the matrices MA,A, MB,A,..., MN,N−1. We must therefore turn to the method
described in section 2.4 to determine these matrices.

Suppose we have x and y-orbit data from both BPMA and BPMB and
further that we have knowledge of the symplectic matrix MB,A. As there are 10
independent elements in a 4x4 symplectic matrix, knowledge of MB,A supplies
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10 constraint equations. However, the system is still under-constrained as the
observable data leaves the number of unknown parameters atD = 14. Therefore,
even if MB,A is known, we still cannot determine MA,A; a result which differs
from its 1-dimensional analog.

If we have x and y-orbit data from 3 BPMs and knowledge of both MB,A and
MC,B it may then be possible to determine the matrix MA,A: The observable
data leaves the number of unknown parameters at D = 20 but we also obtain 20
additional constraint equations from knowledge of MB,A and MC,B . Although
it may be theoretically possible to determine MA,A using just 3 BPMs, an over-
constrained system would be preferable as the use of some least squares fitting
approach would enable the reduction of error. Therefore we have proven that 3 is
a lower bound on the number of BPMs required to have a properly constrained
system while we recommend 4 as the minimum to be used in practice.

The use of 4 BPMs will soon be tested numerically here at SLAC. Pending
those results, 2 new BPMs may be installed near the interaction point of the
LER and HER rings, in the hope that using a localized measurement approach
in conjunction with the current global scheme may improve beam position mea-
surements and ultimately increase the efficiency of the machine.
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