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Abstract

The current technique employed to determine the parameters which
specify the betatron oscillation in the PEPII ring at SLAC is a global
procedure in that the data from each BPM (Beam Position Monitor)
is weighted equally. However for more accurate interaction point (IP)
measurements it would be beneficial to weight the data from the BPMs
closest to the IP much more heavily. Researchers are thus considering the
possibility of developing a technique to determine the oscillation parame-
ters near the IP using as few BPMs as possible. In this paper, allowing
BPM gains and cross coupling, we show analytically that given data from
N BPMs there remain 6N + 2 degrees of freedom in the matrices My, 4,
MB, A, ...,Mn,n-1 unspecified by the observable data alone. From this we
demonstrate that data from at least 3 BPMs is required to completely
specify the system when the transfer maps between BPMs are assumed
known, and that 4 BPMs may be more suitable.
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1 Introduction

As particles circle around a storage ring, such as the PEPII ring at SLAC, they
move longitudinally in a tight beam. The particles will also have transverse
momenta and therefore will tend to diverge. To prevent this from happening,
in addition to the required bending dipoles, a series of quadrupole magnets is
used to alternately focus the beam and then defocus the beam. As the particles
move around the ring they will then oscillate in transverse phase space and are
prevented from diverging. This oscillation is known as the betatron motion of
the beam and is uniquely determined at each BPM (Beam Position Monitor)
by 10 beam parameters. In this paper we will be investigating how many of
these parameters can be determined from orbit data.

The transverse phase space position of the beam at BPM4 and turn n
around the ring is denoted by 7, 4 = (x,pI,y,py),TL’A, although we will some-
times drop the subscript specifying the BPM when the meaning is clear. The
position of the beam at BPM,4 uniquely determines what it will be when it
reaches BPMp. Therefore we can define a function fp 4 as follows:

fB.ATnd — TnB (1)

Thus fp 4 maps the beam’s phase space position at BPM 4 to what it will be
at BPMp. In particular we can define the 1-turn map fa 4 which maps the
phase space position at BPM 4 at turn n to what it will be at turn n + 1:

fAA Tn A — Tnt1,4 (2)

These functions are known to be largely linear and therefore we may ap-
proximate these maps by 4x4 matrices which operate on the phase space. For
example, the linear approximation of f4 4 will be denoted by My 4. If it were
possible to measure all components of the beam’s phase space position as it
passed by the BPM it would be a simple matter to determine this matrix. We
would only need to invert the orbit as follows:

To X1 i) T3 I Xro I3 X4
Ma 4 Pzo Pz1 Pz Pzx3 _ Px1 Pz Pzx3 Pag R
' Yo Y1 Y2 Y3 Y1 Y2 Y3 Y4
Pyg Pyy DPys DPyz / 4 Pyir Pya Pys Pyg /) 4
—1
Z1 X2 xs3 T4 Zo Z1 X2 xs3
MA,A _ Pz1 Pzo Pz3 DPxa Pzo Pz1 Pz Pz3 (3)
2 Y2 Ys Ya Yo hn Y2 Ys

Pyy Pys Pys Pys / 4 \ Pyo Py1 Pys DPysz / 4

Knowing the phase space position at 5 consecutive turns thus gives you
complete information about the map. Further, the position of the beam at any
later time is in the space spanned by the first 4 positions. This implies that no
new information can be obtained by looking at more turns of the orbit.



Unfortunately, the BPMs can only measure the spatial coordinates of the
beam and cannot measure its transverse momenta. Thus we are only able to
measure half of the coordinates of its phase space position. For this reason it has
been assumed that the information one can get from orbit data is insufficient to
solve for the parameters without some a priori information about the machine
lattice. We confirm this is true; however, it may be possible that some of the
information lost about the map which is contained in the momenta at each turn
could be recovered by looking at the z and y positions at later turns in the
orbit. In this paper we demonstrate rigorously the number of parameters left
unspecified by the orbit data and further give a lower bound on the number
of BPMs required to determine all the parameters when the matrices Mp 4,
Mc¢ B, etc. are assumed known.

2 One-Dimensional Case

We will begin by analyzing lattices which oscillate only in the z-direction. In
section 2.1 we will look at what can be determined from data from 1 BPM
alone. In section 2.2 we will analyze the case of data from 2 or more BPMs. In
section 2.3 we will discuss our results in terms of the machine parameters. And
in section 2.4 we will demonstrate how a natural assumption permits a solution.

2.1 Single BPM Analysis

In this section we will prove that given the z-orbit data from a single BPM, BPM 4,
it is impossible to determine the map M4 4. Further we will show that there
are in fact 2 degrees of freedom in M4 4 left unspecified by this data alone.

Symplectic Matrices and Normalized Phase Space

A 2x2 symplectic matrix M is defined as one such that:

MTSM =S, where §— < O ) (4)

In the 2x2 case, it is easy to show that the symplectic condition is equivalent to
the condition det(M) = 1.

One condition on the matrices M 4, Mp, 4, etc. is that they be symplectic.
This is a consequence of the fact these matrices represent systems in which
the hamiltonian is time-independent. Another condition on M4 4 is that its
eigenvalues be complex-conjugates and of modulus 1. We can see that is true
as follows:

As M4, 4 is symplectic — AjAy = 1 where Aj, Ao are its eigenvalues. As
the machine is designed so that the orbits of M4 4 will remain bounded it
cannot be true that either [A1] or |A2| > 1, as this would result in an expanding
orbit. This implies |A1| = |A2] = 1. If A, Ay are complex, then they are



necessarily conjugate by the conjugate root theorem. Also if they are real,
A2 =1 — Ay = )y and again they must be conjugate.

With these two conditions on M4 4 it can be shown that it is always possible
to decompose My 4 as follows:

MA,A = AARA)AAZ:L With, (5)

0 .
AA = \—/(@ 1 and RA.A = ( CO'S 2%\ S A > (6)
\/[Z \/E ' —sinpag COSlA

Thus the matrix AZI transforms to a normalized space in which the one turn
map is a simple clockwise rotation which induces circular orbits.

This decomposition explicitly shows that there are 3 parameters determining
the matrix M4 4 in the 1-Dimensional case. The rotation angle 14 is set by the
operators of the machine during runtime. This angle is always chosen so that
the tune, v = 52, is irrational for if the linear orbits were periodic, nonlinear
effects would start to play a more important role. One consequence of this choice
is that the eigenvalues of M4 4 are necessarily complex. B4 causes the orbit to
become an ellipse when it differs from 1 while a4 has the effect of skewing the

ellipse.

Number of Independent Orbit Data Sets

As mentioned above, the BPMs can only measure the spatial coordinates
of the beam and cannot measure its transverse momenta. Therefore for a 1-
Dimensional lattice a typical data set from an orbit may look like that in Table
2.1 below. At each turn the x position of the beam is recorded as it passes by
BPM 4, but the momentum p, is unknown.

The goal is to determine as much as we can about M4 4 from this z-orbit
data. The first question we might ask ourselves then is: How many independent
z-orbit data sets can we use to determine M4 4?7 The answer is that (after
normalization) all orbits are actually the same, in that any given orbit will
contain all other orbits. Therefore no new information can possibly be gained
by taking more than 1 x-orbit data set. The proof follows:

Consider two z-orbit data sets taken at BPM4: xg,x1,... and Xg, X1, ....
The first step in the proof that the second orbit, Xy, X1, ..., is contained in the
first is to discuss normalization:

Turn : 0 1 2 3 4 5
TA 3.1623 3.0075 2.5583 1.8587 0.9772 0.0000
Pza | Po=! p1=! p2=! p3=! pg=7 p5s="

Table 1: Example BPM 4 data for a 1-Dimensional lattice



Consider the evolution of the orbit Zj,Z7, ... instead in normalized space.

That is consider the orbit:Ale_o’, Azlx_f, ;67, ;{7, .... In normalized space

the transfer matrix is simply R4, 4, a clockwise rotation. Thus:

—_—
m%-&-l = RA,A@ - (7)
—_

N =N =1 m (8)

as R4 4 conserves the norm. Similarly:

—_—
Xn1\1[+1 = RA,AXWm - (9)
—_—
XY | =1X8 =L vm (10)

Now:

= —aa 1

VBa  /Ba

N
m

= (m 0 )Ej (11)

This implies that x,, is maximized when z,; is maximized. Now in normalized
space x—j\}m is rotating around a circle of radius [ in N —p®~ space. As v is irrational

— the normalized orbit 3@ , :v—]l\lz ,... gets arbitrarily close to the z™V-axis, as the
orbit of an irrational rotation is dense on the unit circle [2]. Therefore:

max |z | =1 — (12)

max |, | = /Bal (13)

Similarly:
max | XN| =L — (14)

max | X,,| = /B4l (15)

Therefore, measuring max |z,,| = v/fal and max |X,,| = v/BaL and then divid-

ing the two we obtain:
Max ||

=Il/L= 1
max | X, | ' " (16)

We can now multiply the second orbit by r to obtain a new orbit:
X0, T X1, ... E)?O,)?f,... (17)

rXV XY= XN XN (18)
We now have two orbits whose normalized phase space positions have the same
norm:

N = XN =1 Vm,n (19)



Once again, as v is irrational — the orbit x—évz ,a? ,... is dense on the circle of

radius [. As Xgl lies on this circle — the orbit %\} , w_{\'} ,... must get arbitrarily
close to X N As it can get arbitrarily close, there must be some j(k) such that:

—~ N
\x;\gk) - X < 10*, for any k (20)

: N P
Therefore we can choose a k such that the difference between z7,) and X§™ is
unmeasurable. Doing this we find:

N YN N _ N YN _ y*N
i = XoN = Raax)y = ahpy e ~ RaaX§™ = XN (21)
— —"
— AAxﬁk) =T = AaXy" = )?0, T+l = )?1 (22)
that is: s
Tj(k)y Lj(k)+1s Lj(k)+25 - >~ XO,Xl,X27... (23)

where of course the two orbits will stay close for more turns the larger k is
chosen. This concludes the proof that any properly normalized second orbit
will always be included (to an arbitrary degree of accuracy) within another
arbitrarily chosen orbit. As a single orbit contains all other orbits, this implies
we need only consider one when we are attempting to determine the parameters
of our map.

Specifying a Single z-Orbit

We have seen above that you can get no new information about M4 4 by using
more than 1 x-orbit data set. The next thing we will show is that in fact, only
the first 3 = data points are required to specify an entire z-orbit. proof:

As M4, 4 is a real matrix with complex eigenvalues, the eigenvectors of M4 4
must also be complex. As the zeroth turn of the orbit is a real vector, it
cannot be an eigenvector of M4 4. Therefore the first two turns of the orbit are
independent and we can write, for some a and b:

o )=o) (5) (24)

That is, 73 is in the span of T and Z7. Multiplying on the left by M7} , gives:

oz )=o) (0) )
Danao Den  Prntl b

This gives 2 independent recursion relations for x,, and p,,,. By definition:

( Tp+1 Tp42 ) _ MAA ( Tn Tn41 ) N (26)

Pzny1 Prni2 ’ Pzp  Prnt1

det( Tkl ot ) :det( o ot > =Q (27)
Pzpt1 Pzpy2 Pzyn  Prnii



as detMa 4 = 1. Note that () # 0 as the first two turns are linearly independent.
From Eq.(27) we get the following two equations:

T1Pzo + Q
Pz1 = .TOO (28)
r2 T T T1T Zo

Plugging in Eq.(28) and Eq.(29) into Eq.(24) gives after a little manipulation:

X X
Q(iO + 2 b) = pxo(axo + br1 — x2) (30)
X1 T

By Eq.(24) azg 4+ bx1 — 22 =0 —

U -3 (31)
I I
which finally gives:
p— Lo + T2 (32)
Z1
a=-1 (33)

Plugging in then to Eq.(25) we see that the entire z-orbit is specified uniquely
by xg,x1, and x. Further the x-orbit depends only on these 3 = values and not
at all on the p, values.

Conclusion of Single BPM Analysis

We are now ready to demonstrate that it is impossible to determine the matrix
My, 4 from the z-orbit data alone. In order to do this we will show how to con-
struct an infinite set of matrices, all of which are symplectic and could produce
the observed z-orbit data. As our only assumption on the form of M4 4 is that
it be symplectic we cannot determine which of the matrices in this set is the
correct M4 4 when using only the z-orbit data:

Let us begin by considering an observed x-orbit data set: xg,x1,... with the
momenta unspecified as usual. Then we know:

-1
I T2 o I
M = 34
A < Pz1 P2 > ( Pzo Pz ) (34)
M4, 4 is symplectic —

Pz1(To +
Puy = % ~ Pag (35)

This reduces the number of unknown parameters specifying M4 4 to 2, those
being pzo and pg;. We are unable to measure these two momenta using the
BPMs, but the question still remains if there is some way that you could find



out what these are. We see that one cannot: For if you guess at M4 4 by
randomly choosing both a p,4, and p,4, and plug these into Eq.(34) you will
obtain a different matrix:

—1
GA,A@xgo,pmgl)—( o )( roo M ) (36)

Pxzgq  Pzxgo Pzgy Pzgq

which is symplectic if p,4, is obtained by plugging into Eq.(35). By def-
inition, given input phase space position ZTz5 = (o, pIgO)T the orbit under
G 4,4(Pzgg» Pxg,) Will have the same first three turn x positions: g, z1,z2. As
the entire x,, orbit is determined by its first 3 values, this z,, orbit will match that
of the observed data set. Therefore as each of these matrices, G4, 4(Pzgg> Pegq)
is symplectic and could produce the x-orbit observed we cannot determine which
of them is the actual one turn map My 4.

We shall write D = 2, to signify the fact that there are 2 degrees of freedom
in M4, 4 left unspecified by the observable data alone. Thus 2 extra constraints
in addition to the z-orbit data from a single BPM are required to determine
the 1-turn map M4 4 in a 1-dimensional lattice.

2.2 Multiple BPM Analysis

Now that we have proven that it is impossible to determine M4 4 given just
the z-orbit data from BPM 4 the next question we must answer is whether or
not it may be possible to determine M 4 using the z-orbit data from multiple
BPMs around the ring in conjunction. The answer, as we shall see, is that
again you cannot.

We begin by looking at a hypothetical storage ring which has 2 BPMs. As
the beam circles around the ring the z-position of the beam is recorded turn by
turn as it passes by BPM 4 and then again as it passes by BPMp. We define
an orbit data set as a complete set of data for all BPMs under consideration
for a given run. Of course the transverse momenta is still unmeasurable at each
of the BPM s and so a typical orbit data set may look like that in Table 2.2
below.

As in the single BP M proof above, our analysis of the double BPM case will
hinge on the construction of an infinite set of symplectic matrices, Ga a(a,b, ...)
and Gp a(a,b,...), which are capable of producing the x,-orbits observed in the
orbit data sets. First, however, we must turn our attention to the number of
independent orbit data sets we may use.

Turn : 0 1 2 3 4 5
TA 3.0046 3.0391 2.5351 1.5817 0.3480 —0.9473

DA po=! p1=? pa=? p3=7? ps=7 ps=?
B 3.4580 3.4345 2.8022 1.6734 0.2479 —1.2215

Pzp | Po=! p1=! pa=?! p3=! py=! ps="

Table 2: Example BPM 4 and BPMp data for a 1-Dimensional lattice
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Number of Independent Orbit Data Sets

As in the analogous section above, we wish to show that all orbit data sets are
contained (to any desired degree of accuracy) within every other orbit data set.
We can easily extend the result we obtained above:

Consider two orbit data sets, each consisting of the orbit data from BPM4
and the data from BPMpg:

setl : (.’EO_VA,:L'LA,...,x073,$1737...) set2 : (XO,A;XLA,m,XO,B,Xl,B; )

If we now plug in the orbits =, 4 and X, 4 into Eq.(16) we shall obtain the nor-

malization ratio r 4. Multiplying both the orbit (X,, 4...) and the orbit (X, 5...)
. . . Ey=rmnd Ey=raand

by 74, we obtain the normalized orbit data set, (X} 4...) and (X, p...). Now

by Eq.(20) we can find a j(k) such that the following holds:
—~— N
|37§\Ek),A - Xgal < 10%, for any k (37)

If we choose a large k then, we have by Eq.(23) that:

S5 o o
xj(k)’A, xj(k)+1,Aaxj(k)+2,A7 L X07AvX1,Aa XQ,Av (38)

where the two orbits stay close for more turns the larger k is chosen. Multiplying
on the left by Mp 4 we obtain:

Mp ATj(k), As MB AT (k) 11,45 - = Tj(k),B> Tj(k)+1,B5
> > > o
~ Mp aXg a4, M, aX] a4y = Xg s X1 g e —
* * *
xj(k))B, l‘j(k)+1’3, xj(k)+27B7 A )(07]37 Xl,B: X2,Ba (39)

showing that the 2nd orbit at B is contained in the first as well. Clearly this
argument can be extended to any number of BPMs by proceeding inductively.
In general we see that for 1-dimensional lattices a single orbit data set contains
all others, implying we need only consider one when attempting to determine
the matrices Ma 4, Mp a, Mc, B, etc..

Construction of Guess Matrices

By definition, the actual matrix Mp 4 satisfies the following relation:

MB,A( Z0,A T1,A ) _ ( Z0,B Z1,B ) (40)
Pzo,A Pz1,A Pzo,B DPz1,B
from which we obtain,

-1
MB’A:< Zo,B  *1,B )( To,A  T1,A ) (41)

Pzo,B Pz1,B Pzo,A Px1,A

11



Ma. 4 is given by Eq.(34). Again the symplectic condition Eq.(35) still holds for
Ma, 4, while setting the determinant of Eq.(41) to 1 we see that the symplectic
condition applied to Mp 4 is equivalent to:
Z1,B T1,A Z0,A
Pz1,B = 7~ Pz0,B ~ — PzoA T T Pz1A (42)
T0,B Zo,B T0,B
Thus the symplectic condition reduces the number of unknown parameters to 3:
Do > P14, and prg g. Choosing random values for these momenta we can con-

struct the symplectic matrices G4, (P as Pe1 4> Pzo g) a0d GB A(Pzo 4> Pz1,4> Pro,B)
by plugging into Eq.(34) and Eq.(41):

—1
GA)A:( TiA  ToA )( Toa  T1A ) (13)

Dzg1.a Pzgo a Dzgg .4 Pzgy a

-1
GB,A:( Z0,B X1,B )( Z0,A T1,A ) (44)

DPzgg p Pxg1,B DPzgg a4 Pzgy A
By the above, given input data Ty A = (20,4, Pagy 4)° we know that the @, 4
orbit under G 4 4 will match that of the observed orbit data set. By definition

the x40, and x41,p values of the first two turns will also match the authentic

data set, where:
Zgn,B Tn,A
’ =Gpga ( ’ > 45
( DPzg, B ) ' Pzg,, 4 (45)

If we could show that x42 p also matches the observed orbit data set, then the
first 3 x4, p values would match. This would then imply that the entire x4, p
orbit matches the observed orbit data. Apply G 4 to obtain the third x-value
in the orbit:

1
< Tg2 B >_< Z0,B T1,B ) < Zo,A T1,A ) ( T2 A > (46)
Dzgy B Pzgg p Pzg1,B Pzgg a4 Pzgya Pxgy 4

By Eq.(24): »
() ()
Dxgo.a Pzgy a Pzgy 4 b

Using Eq.(32), and Eq.(33) and plugging into Eq.(46) we get,

( Tg2,B ) _ ( Top  T1,B > ( mo,A+1r2,A ) (48)
Pzg, B DPzgg. g Pzg1,B 14

Explicitly showing that z42 g depends only on xg g, 1B, T0,4, 1,4, and x3 4
but is completely independent of all A and B momenta. As all of these x values
match the authentic data, it follows that x40 p = 22 p and therefore x4, p =
ZTn,BYN.

Thus we have shown that the matrices Ga A(Pzo 4,Pz145Pro,p)> and

G B,4(Pzo,4>Pz1,4,Pro, ) given in Eq.(43) and Eq.(44) are symplectic and could

12



produce the observed x,-orbits at both BPM4 and BPMp for any choice of
the values p:g 4,Pxz1 4, and pzo . Therefore the observable z-orbit data from
2 BPMs is insufficient to determine the matrices M4 4 and Mp 4 and leaves
the global number of undetermined parameters in these matrices at D = 3.

Extension to Multiple BPMs

We may extend this result to multiple BPMs by proceeding inductively. Take,
for example, a storage ring consisting of 3 BPMs. By the above, we need only
consider a single orbit data set in the following.

Looking first at only BPM4 and BPMpg construct the matrices G4 4 and
Gp,a using Eq.(43) and Eq.(44). Now construct G¢ g by randomly choosing

-1
GC,B:< Zo,C x1,c )( Z0,B X1,B ) (49)

Dzgg,c Pzg1,c Pzgog B Pzg1 p

Dagg -

Where puq, g is given by Eq.(42) and the symplectic condition on G¢ g gives

Pro10f T T T

DPzg1,c = ﬁpxgo,c - ﬁngo,B + ﬁpmgl,B (50)
The symplectic condition on G'4,4, Gp,4 and G¢,p reduces the number of un-
known parameters to 4. Similar to the above we can see that no matter what
our choice is for these 4 parameters, we will generate a consistent set of sym-
plectic matrices which could generate orbits with x,-orbits matching that of the
observed orbit data set. As the x data from the orbit data set is all the infor-
mation we know, we cannot possibly reduce the number unknown parameters
specifying the system to less than 4.

Continuing in this fashion we obtain the following result: The constraints
supplied by the observable data from N BPMs alone are insufficient to deter-
mine the symplectic matrices M4 4, Mp 4, ...,Mn n—1 and leaves the global
number of unknown parameters specifying these matrices at D = N + 1.

2.3 Results in Terms of Standard Parameters

In this section we will quickly describe the work above in terms of the machine
parameters we are interested in determining, namely the «o’s, 3’s, and p’s.

The only parameters that can be determined from the observable data alone
are the u’s. We can see intuitively that yas = up = g = ... = p and this can be
proven mathematically without too much difficulty. To find p from the x data
one need only set up the recursion relation Eq.(25) and solve for the roots of its
characteristic equation. These roots will have the form e**.

From Eq.(13), we see that max |z, 4| = v/Bal and max |z, 5| = /B5l.

max Ty, B|\2 s .
7max|mm,A|) (4. Similarly, we may write

Be in terms of 34 and so on. Therefore once (34 is specified, all other (s can
be determined from the orbit data.

From these two we may write: Gp = (

13



If there are N BPM s in our storage ring, then by the above, the measurable
orbit data leaves N + 1 parameters unspecified. Note that in terms of the
ap,ap,Qc..., Ba,PB,0c..., and p parameters, we have already reduced the
number required to specify them all to N + 1, those being the N as, (one
at each BPM) and (4. As these parameters completely specify our system,
this must mean that the N as and B4 are unspecified by the data and are
independent: even if you somehow knew N of the parameters a4, ap, ..., ay,
and 34, you still could not determine the N + 1°¢ from the observable data
alone.

Note: To provide some physical intuition as to why we cannot determine all
the parameters a4, ap, etc., consider a lattice with just a single BPM. We can
measure only the x-orbit values and not the momenta. But the values x,, are
simply given by, z,, = v/BazX, which is completely independent on a4 and so
we cannot hope (at least in the single BPM case) to get at ava from this data.

2.4 Approximate Solution

As we cannot determine the matrices M 4, Mp 4, etc. from the measurable
data alone, we must resort to approximate solution techniques. A reasonable
approximation can be obtained for 2 or more BPMs when the BPMs are
spaced close to one another around the ring. We may approximate the transverse
motion of the particle beam between the quadrupole magnets as being essentially

a drift:
1 4
b (19) -

where ¢ is determined by measuring the distance between the two magnets.
Meanwhile, as the beam passes by one of the quadrupole magnets it is either

focused or defocused:
1 0
r= (4T (52)

(x 1) &

F, represent an z-focusing matrix, F), represents an z-defocusing matrix. If we
approximate the matrix Mp 4 as a product of these 3 types of matrices we can
then easily determine My 4. Assuming Mp 4 known:

Ey

a b
MB,A - < c d > g
(o)) = G )-
c d pévn,A pwn,B
1 a
Pana = 3%nB = 3TnA (54)

14



Plugging these momenta values into Eq.(34) we obtain M4 4 and the entire set
of parameters is determined.

2.5 A Note on Rational Tunes

The results above assumed that the tune v = % is irrational. As I mentioned

before, this is the case in PEPII as a rational tune would result in nonlinear
resonance effects. However, if one chose a rational tune which would result in
very large periods, e.g. v = w%(modl% then the resonance effects would be
minimal. If v were chosen so, would it then be possible to determine the map
M4, 47 We prove below that it is not:

Assume that for some 1-turn map M4 4 with rational tune v you could
determine the matrix M4 4 using only the observable data. The set of irrationals
is dense in the set of reals and therefore we may find an irrational v, infinitely
close to v. Consider now a second 1-turn map My, 4 2 which is identical to M4 4
except that it’s tune is v5 rather than v. The orbit data you would measure
under My 42 would be infinitely close to that from M4 4 and therefore you
would be able to use the same technique used to determine M4 4 to get an
approximation to M4 42 which is infinitely accurate, if not exact. However,
we have shown above that it is not possible to accurately determine the matrix
M4, 4,2 and therefore our original assumption must be wrong: it is not possible
to determine the matrix M4 4 for any rational tune v. (further it’s not possible
to accurately determine anything with a rational v that you couldn’t with an
irrational v.) This result can easily be extended to lattices with multiple BPMs
and applies to 2-dimensional lattices as well.

3 Two-Dimensional Case

We can now apply what we have learned from the 1-Dimensional lattice problem
above to the more relevant 2-Dimensional problem which describes the lattice
in PEPII. In section 3.1 we shall look at what can be determined from data
from a single BPM alone, in section 3.2 we will analyze lattices containing 2 or
more BPM'’s, and in section 3.3 we will discuss how many BPMs are required
to determine the machine parameters when the matrices Mp 4, Mc, g, etc. are
assumed known.

3.1 Single BPM Analysis

In this section we shall prove that given x and y orbit data from a single BPM
it is impossible to determine the 1-turn map M 4 and that there are 8 degrees
of freedom left unspecified by the data alone.
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Symplectic Matrices Revisited

A 4x4 symplectic matrix M is defined as one such that:

M7 SypsM = Syza (55)
where,
Soza 0242
Siza = 56
dod (0212 Szm) (56)

It can be shown [3] that in the 2-dimensional case the symplectic matrices My as
can be decomposed in a form analogous to that in Eq.(5):

Myy = ENRN,MAVX/}
= CNANRN)MAK;CJ;[I (57)

where Ry ar, An, and Cyy have the following forms:

- Ronar Oa2
Rny = ( Oz Ryy ) (58)
Az O2q2
A = ’ 59
M ( 023:2 Ay,M ) ( )

Cm

_ ( Ingocosd  —S2,0W T Soy0sin ¢ ) (60)

—W sin ¢ I5.5 cos ¢

Ron s Ry ags Ay, and Ay, have the same form as those in Eq.(6) and W

is a 222 matrix:
a b
W = ( ¢ d ) (61)

If we assume that all elements of W are nonzero, it can be shown that we can
choose d = d(a,b,c) such that C is symplectic. Thus there are 10 unknown
parameters specifying the symplectic matrix My 4:

g,y B, Ay, ﬁyv Moy oy, ¢, a, b, and c

In addition to these 10, there are 4 unknown parameters describing errors in
how the BPM measures the position of the beam. These are g, gy, 04,4, and
0y, and they are defined as follows: if the actual transverse position of the
beam is (z,y) then the BPM will read out:

TR = Gz T + 0myy

YR = Gyy + Oy (62)

This brings the number of unknown parameters specifying the measurement
error and the one turn map at BPM4 to 14.

Looking back at the decomposition Eq.(57), we see that C]\_/Il transforms
into an uncoupled space, consisting of two 2z2 subspaces, the 2V-pY and y"-pfJ
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eigenplanes (the U superscript denoting the uncoupled space). Thus in this
space the orbits may be decomposed as the conjunction of two independent
1-Dimensional lattice orbits, one in each eigenplane. Again the matrix AJT/II
transforms into the normalized space in which the orbits in each eigenplane are
circular.

Number of Independent Orbits

In this section we shall demonstrate that it is possible to manipulate an orbit
data set by normalizing its two independent 1-dimensional orbits in the nor-
malized space so that the new normalized orbit data set will be contained in a
second orbit data set. For simplicity, we shall ignore the measurement errors
associated with the parameters g, gy, 0y, and 6, , in this section. However,
it can easily be seen that the same method described below is still applicable
when these parameters are included. We begin by describing the normalization
process:

In the normalized space we have,

N COSNly  Sinnpiy zy
N )= : N (63)
Dan —sinnu, Ccosni, Dao)

Multiplying on the left by A, we must have,

x¥ s t COS Ny
(o )=o) (5 ®

for some constants s, t, u, and v. Similarly we have,

u w o x cosn
(o )= (0 1) () 9
Dy, Yy oz sin nfiy

for some constants w, x, y, and z. Multiplying ;g:(xf{,pz,[{, yg7pyg)T on the
left by C'4 we obtain:
Ty, = JCOSNUy + ksinnpug + 1 cosnpy, + msinnpu, (66)
Yn = NCOS Ny + 08in N, + pcosnpy + gsinn, (67)

7, k, I, m, n, o, p, and ¢ all constants. To determine these coefficients we
must first find the values of u, and p,. These can be determined by setting
up a recursion relation like that in Eq.(25) and then solving for the roots of
its characteristic equation. Once the values of u, and u, are known we can
determine the coefficients j, k, [, m, n, o, p, and ¢ using the first 4 positions of
the orbit. Noting the form of C4 and A,4, we must have:

j cos i, + ksinnp, = cos o/ e’y (68)
P COS Nty + gsinnp, = cos (;S\/ﬁiyyflv (69)
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Writing, (2, p22 )T = I and [(yY,p,Y)"| = I, (which are independent of n
as the normalized orbit in each eigenplane lies on a circle) and recalling that i,
and p, are irrational we must have:

max(j cos np, + ksinnu,) = | cos ¢/ Buls (70)
and,
max(p cos njy + gsinnp,) = | cos ¢|\/Byly (71)

Considering now a second orbit data set )Tr::(Xn, P...Y,, Pyn)T, we have:

Xpn = Jcosnpy + K sinnpu, + Lcosny, + M sinn, (72)
Y,, = N cosnp, + O sinnp, + P cosnp, + Q sinny, (73)
with,
max(J cosnp, + K sinnp,) = cos ¢/ By Ly (74)
max(P cosnp, + Qsinnpu,) = cos ¢/ By Ly (75)
Dividing Eq.(70) by Eq.(74) and Eq.(71) by Eq.(75) we obtain,
max(j cosnp, + k51.n Nily) e _— (76)
max(J cosnp, + Ksinny,) Ly
max(p cos njty + gsinnp,) _ly 0, (77)

max(P cosnpu, + @Qsinnu,) Ly,

If we now multiply all terms of the orbit )TTZ containing u, by r, and all terms
containing u, by ry, we obtain a new orbit X. For example the X5 orbit will
be given by:

Xy =rgJ cosnpy + ry K sinnp, + ry L cosnp, + 7, M sinnp, (78)

In effect, we have constructed another observable orbit, )?n st (XN, PN T =

I, and |(Y,;N, P,*N)T| = 1,. Thus in normalized space, (X;:V, P,xV)T is rotat-
ing around in a circle which has the same radius as the circular orbit (1Y, p, V)T
and (Y;V, P,*™)T is rotating around in a circle which has the same radius as
the circular orbit (y2',p,N)7.

The rotation angles u, and p, are always chosen not equal as this results in
resonances. As they are both irrational, it can then be shown that there must

be some j(k) such that:
(X, Pag™)T = (504 Payioy)T | < 108 (79)

and,
(YN, Pys)T — (yﬁk),pyé\ék))ﬂ < 10%, for any k (80)

Multiplying on the left by C4 A4 we find,

YTF Vv vH
Tk} Tj(k)+1s Ti(k)t2s - = Xgs X7, X,y (81)
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where the two orbits will stay close for more turns the larger k is chosen. Thus
the second normalized orbit is contained in the first.

Although the "normalization” process described here is not as simple as the
scaling factor used in the 1-dimensional process, they amount to the same thing:
we can take a single orbit data set and from it construct all others. This implies
no new information about the map can be obtained by taking more data and
again we need only consider one orbit data set when attempting to determine
My 4.

Construction of Guess Matrices

Consider a single orbit data set Zg g, Z1 g, ... We shall construct a set of symplec-
tic guess matrices G g, 4 which produce the observed o g, z1 g, ... and Yo.r, Y1,R, ---
orbits. Begin by randomly choosing g, gy, 04y, and 6,,. Inverting Eq.(62) we
obtain:

( Tn,g ) _ 1 ( 9yg  —bayg ) ( Tn,R > (82)
Yn,g 92,99y,9 — ozcy,gayx,g _oyxag 9z,g Yn,R

obtaining a guess at the actual position of the beam for each turn of the orbit.
Now randomly choose the parameters determining the matrix C'4. These are:
a, b, ¢, and ¢ (recall d = d(a,b,c)).

Can=( Spionty s it ) <83>

Similar to Eq.(66) and Eq.(67) we may decompose z,, 4 and y,_ 4 as follows:
Tn,g = Jj COSNpy + ksinnu, + lcosnu, +msinnu, (84)
Yn,g = N COS Ny + 0SINNLL; + P COSNLLy + ¢Sy (85)

for some new constants j, k, [, m, n, o, p, and ¢ which can again be solved for
by using the first 4 positions of the orbit. From Eq.(57) and Eq.(60) we obtain,

Tp,g = COS ¢9x,ll]7g + dg sin qﬁgyg,g —bysin ¢>gpyg7g (86)

< U < U < U
Yn.g = COS PgYy, , — Qg SIN Pgxy,  — by SN Pypay o (87)

comparison with Eq.(84) and Eq.(85) gives:

1
xrl{,g ~ cos o (j cosnpiy + ksinnpy) (88)
= o sy + s (59)
Plugging these back into Eq.(86) and Eq.(87),
-1 S
pl'v[{,g = m[n COSNfly + osinnp, + ag ZZ; zz (j cosnpig + ksinnpy)]

o agj n B agk 0 .
B [bg COS Qg * by sin ¢g} COS T [bg cos gy by sin ¢g] ST
= 7rcosniiy + ssinniy, (90)

19



Similarly we find:

d,p dgq
U g 9 :
= — cosn — sinn
Pyn.g bgcosp, by sin d)g] Py [bg cos g  bgysin qﬁg] Hy
= tcosnpy + usinnpy, (91)
From x,l{}g and pw,l{)g we obtain Azg 4 and Rgzg 4. From yg)g and pygg we obtain

Ayg 4 and Ryg 4. Now we can construct the entire guess matrix.

Gaa = GA,A(g:c,ga emy,g, 9y.9> gym,g, ag, by, g, ¢g)

= CagAagRacALlCLY (92)
With the initial condition Zg g = Ca 4 (xgg,pmgg, ygg,pygg)T
backwards from Eq.(90) and Eq.(91) that the symplectic matrices G4 4, given
by Eq.(92), will all produce the same z,, and y,, orbits as those in the observed
orbit data set. As 8 parameters are randomly chosen to obtain the G4, 4, the
z-orbit data from a single BPM alone must be insufficient to determine the
1-turn map M4 4. Further we must have D = 8 exactly as all the remaining
14 — 8 = 6 parameters are uniquely determined once these 8 are specified.

we see by working

3.2 Multiple BPM Analysis

We begin by considering a 2-Dimensional lattice consisting of 2 BPMs. Again
we shall show that the constraints supplied by the observable data are insuffi-
cient to determine the matrices M4 4, and Mp 4. We shall then extend this
result to the general storage ring consisting of N BPMs.

Number of Independent Orbits

To show that we need only consider a single orbit data set we may use the same
argument as was used in the 1-dimensional lattice case.

Consider two orbit data sets, each consisting of the  and y data from BPM 4
and BPMp:

setl : (xO,A7x1,A7'-'7$0,B7x1,37“') set2 : (XO,A;XI,A7'-'aXO,Ble,B; )

Looking first at only the data from BPM,4 we may normalize the second orbit
data set, obtaining a new one, (Xg 4, X7 4, .., X§ g, X7 g, --.), which is contained
in the first:

* * *
Tj(k),As Tj(k)+ LAs Tj(k)+2,As - =2 X§ 4> X7 45 X3 45 (93)

as in the above. Now multiplying on the left by Mp 4 we obtain:

Mp ATj(k), As MB AT (k)1 1,45 - = Tj(k),B> Tj(k)+1,B5
* * v*x o v*
~ Mp aXg a0, Mp AX7 pr o = Xg o Ko s e —
T* O yvr O wvr
Tj(k),Bs Ti(k)+1,B> Tj(k)12,B> - == X0, 5, X1,B: X2 B - (94)
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showing that the 2nd orbit is contained in the first at BPMp as well. This
argument can be extended to any number of BPMs by proceeding inductively.
In general we see that for 2-dimensional lattices it is possible to normalize an
orbit data set so that it will be contained in another. As a single orbit data set
contains all others (up to this normalization), this implies we need only consider
one when attempting to determine the matrices Ma 4, Mp a, Mc,B, etc..

Construction of Guess Matrices

Consider a single orbit data set Tag g, TA1 g,--» ZBo.gsTB1 Ry -~ Using only
the data from BPM,4 we could proceed as in the above and find a family of
matrices which could produce the observed data at BPM 4. Similarly using
the data from BPMp we could find another family of matrices which produce
the observed data at BPMp. For each choice of the symplectic guess matrices
Ga,4 and Gp,p we obtain a different guess at the actual phase space orbits of
the beam and thus a different guess matrix Gp, 4,

Gp.aA=(T50:T81,755,T53)(TA0,TA1,TA3,TAs) (95)

(the fact that Gp 4 will map the entire orbit at A to the orbit at B can be
shown easily, by considering the map in the uncoupled space.) We must apply
the symplectic condition to G 4 to determine which of the G4 4 and Gg, g are
valid guesses. We may simplify the application of the symplectic condition to
these matrices by first factoring them. Note that we can decompose the G, 4
in the following form,

Gpa=Apg UA, =CpgApUAL CLl (96)
for some matrix U as the matrices A, and Cy are all invertible. By definition:
Gaa = GB}AGB,BGB,A —
CA,gAA,gRA,AA:\}gCZ}g = GE}AOB,gAB,gRB,BAB}gCE}QGB,A (97)
Plugging in Eq.(96) we get:
Raa=U"'RppU (98)

The rotations R4 _4 and Rp_p share the same 4 eigenvectors, namely: (1,4,0,0)7
and (0,0, 1,42)7. As these matrices are similar under U it follows that U maps
this set of eigenvectors to itself modulo some scalar factors. Further, as U is
real, it maps complex conjugate vectors to complex conjugate vectors. There-
fore either U(1,41,0,0)T = a(1,42,0,0)” or U(1,42,0,0)T = a(0,0,1,42)T.
However, we know that Gp 4 will not swap the x — p, and y — p, eigenplanes
implying that U(1,42,0,0)7 = a(1,42,0,0)7 and similarly U(0,0,1,+:)7 =
b(0,0,1,+2)T so that U is block diagonal.

Uzs  O2a2
U= 1 r 99
( 02.’102 Uy ) ( )
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We may now easily apply the symplectic condition to the matrices G 4.
The Cy and A, matrices are symplectic by construction. Therefore by Eq.(96),
requiring G g 4 symplectic is equivalent to requiring the block diagonal matrix
U, to be symplectic. Plugging in Eq.(99) to Eq.(55), we see this is equivalent
to requiring each of the diagonal matrices of U to be symplectic. Thus we get
the following two symplectic constraints:

—1
detUw_det( Yo.g - Tlg > ( P09 Tlg ) —1  (100)
p:rO,g pa:l,g B sz,g pzl,g A

—1
detUgydet< Yog  Ylg ) ( Yog  Ylg > =1 (101
' Pyo,g Pyl,g /g \ Pyo,g DPylyg ) 4

Applying these constraints we obtain the symplectic matrices G4, 4 and Gp g
which are consistent with a symplectic map G'g 4 and produce the observed orbit
data. As 14 parameters are randomly chosen to obtain these matrices (8 from
each of the two 1-turn maps, minus 2 due to the symplectic conditions, Eq.(100)
and Eq.(101)), the z-orbit data from 2 BPMs alone must be insufficient to
determine the maps My 4 and Mp 4. Further D = 14 exactly as the remaining
28 — 14 = 14 parameters are uniquely determined once these 14 are chosen.

Extension to Multiple BPMs

The extension to a lattice with N BPMs follows very easily. By the above we
need only consider a single orbit data set,

TA0,RyTAL Ry TBO,RyTB1,Ry 53 LNO,RyTN1,R>

)

when attempting to determine the matrices Ma 4, Mp a,....Mn n—1. We may
construct with 8 degrees of freedom each, the matrices G4 4, GB,B,..., and
Gn,n. Applying the 2(IN—1) symplectic constraint equations similar to Eq.(100)
and Eq.(101) on the matrices Gg 4, Gec,Bs...\GN.N—1, We are left with the
infinite set of matrices G4 4,...,Gn,~, Which are consistently symplectic and
produce the observed z, and y, orbit data. The constraints supplied by the
observable data are again insufficient to determine the matrices M4 4, Mp 4,
..My n—1 and leave the global number of undetermined parameters in these
matrices at D =8N —2(N — 1) = 6N + 2.

3.3 Approximate Solution and Future Work

For a 2-dimensional lattice consisting of N BPMs, we saw above that the
observable data supplies an insufficient number of constraints to specify correctly
the matrices M4 4, Mp a,..., Mn nv—1. We must therefore turn to the method
described in section 2.4 to determine these matrices.

Suppose we have z and y-orbit data from both BPM, and BPMp and
further that we have knowledge of the symplectic matrix Mp 4. As there are 10
independent elements in a 4x4 symplectic matrix, knowledge of Mp 4 supplies
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10 constraint equations. However, the system is still under-constrained as the
observable data leaves the number of unknown parameters at D = 14. Therefore,
even if Mp 4 is known, we still cannot determine M4 4; a result which differs
from its 1-dimensional analog.

If we have = and y-orbit data from 3 BPMs and knowledge of both Mp 4 and
Mc,p it may then be possible to determine the matrix M4 4: The observable
data leaves the number of unknown parameters at D = 20 but we also obtain 20
additional constraint equations from knowledge of Mp 4 and M¢ p. Although
it may be theoretically possible to determine M4 4 using just 3 BPMs, an over-
constrained system would be preferable as the use of some least squares fitting
approach would enable the reduction of error. Therefore we have proven that 3 is
a lower bound on the number of BPMs required to have a properly constrained
system while we recommend 4 as the minimum to be used in practice.

The use of 4 BPMs will soon be tested numerically here at SLAC. Pending
those results, 2 new BPMs may be installed near the interaction point of the
LER and HER rings, in the hope that using a localized measurement approach
in conjunction with the current global scheme may improve beam position mea-
surements and ultimately increase the efficiency of the machine.
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