The Sixteenth Marcel Grossmann Meeting Downloaded from www.worl dscientific.com

by GERMAN ELECTRON SYNCHROTRON @ HAMBURG on 01/30/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

1265

Stress-energy tensor for a quantized scalar field in a four-dimensional
black hole that forms from the collapse of a null shell

Shohreh Gholizadeh Siahmazg*, Paul R. Anderson’ and Raymond D. Clark

Department of Physics, Wake Forest University,
Winston Salem, North Carolina 27109, USA
* E-mail: ghols18Qufu.edu
T E-mail: anderson@ufu.edu

Alessandro Fabbri

Departamento de Fisica Tedrica and IFIC, Universidad de Valencia-CSIC
C. Dr. Moliner 50, 46100 Burjassot
E-mazil: afabbri@ific.uv.es

A method is presented which allows for the numerical computation of the stress-energy
tensor for a quantized massless minimally coupled scalar field in the region outside the
event horizon of a 4D Schwarzschild black hole that forms from the collapse of a null shell.
This method involves taking the difference between the stress-energy tensor for the in
state in the collapsing null shell spacetime and that for the Unruh state in Schwarzschild
spacetime. The construction of the modes for the in vacuum state and the Unruh state
is discussed. Applying the method, the renormalized stress-energy tensor in the 2D case
has been computed numerically and shown to be in agreement with the known analytic
solution. In 4D, the presence of an effective potential in the mode equation causes scat-
tering effects that make the the construction of the in modes more complicated. The
numerical computation of the in modes in this case is given.
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1. Introduction

The expectation value of the renormalized stress-energy tensor operator for a quan-
tized field is a useful way to study quantum effects curved space. It can also be used
in the context of semiclassical gravity to compute the backreaction of the quantum
field on the background geometry. In the case of four-dimensional, 4D, black holes,
this quantity has to date only been computed for static black holes! %6715
black holes.'®17 However, to our knowledge, a full numerical computation of this
quantity has not been done for a quantized field in a 4D spacetime in which a black
hole forms from the collapse of a null shell, which is probably the simplest model
for the formation of a black hole.

In Ref. 18, we developed a method to numerically compute the full renormalized
stress-energy tensor for a massless minimally coupled scalar field in the case of a
spherically symmetric black hole in 4D that forms from the collapse of a null shell.
This method can be used in the region outside the null shell and future horizon,
where by Birkhoff’s theorem, the geometry is described by the Schwarzschild metric.

and Kerr
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In this proceeding, we review this method with a focus on the computation
of a complete set of in modes that can be used to construct the quantum field
in the region outside the null shell. We also present new numerical results for a
low frequency in mode on the future horizon and for a mode with relatively high
frequency on the part of the future horizon close to the null shell trajectory.

In Sec. 2, we review the null shell spacetime and the metrics describing the ge-
ometry inside and outside of the null shell. In Sec. 3, we discuss the quantization
of the massless minimally coupled scalar field in the null shell spacetime. In Sec.
4, we present our method to expand the in modes in terms of a complete set of
modes in pure Schwarzschild spacetime and present our numerical results for the
high and low frequency modes on the future horizon. In Sec. 5, a proper method for
the renormalization of the stress-energy tensor is given. In this section, we summa-
rize the application of our method in Ref. 18 to the case of a collapsing null shell
spacetime which has a perfectly reflecting mirror at the spatial origin.

2. Collapsing null shell

The model we consider is a spherically symmetric null shell whose collapse results
in the formation of a black hole. The Penrose diagram of the spacetime is depicted
in Fig. 1 The spacetime inside the null shell is described by the flat metric

ds® = —dt® + dr® + r2dQ? ,
and from Birkhofl’s theorem, the metric outside the shell is the Schwarzschild metric

2M oM\ !
ds® = — (1 - ) dt? + (1 - ) dr® + r2d9?
T T

with dQ? = dh? + sin® #dp?. It is more convenient to use radial null coordinates to
match the geometries inside and outside of the shell. In the interior,

u=t—r, v=t+r.
and in the exterior region,

Us =Tg —Ts, UV=1s+7Ts,

where r, = r +2M In (Tgfé” ) is the tortoise coordinate in Schwarzschild space-

time. The null shell trajectory is v = vg. We match the two spacetimes so that
the v coordinate and the angular coordinates are continuous across the null shell
trajectory. Applying this condition gives the following relation between the u an wug

coordinates!? 20

us = u —4M log <UIZ]\_4U> ,

where vg = vy — 4M.
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Fig. 1. Penrose diagram for a spacetime in which a null shell collapses to form a spherically
symmetric black hole. The vertical line on the left corresponds to the surface »r = 0 which is also
the surface where u = v. The dashed red line on v = vg is the trajectory of the null shell. The
horizon, H% is the dotted blue curve. Inside the shell trajectory HT corresponds to the surface
u = vy and outside the shell trajectory it corresponds to us = co. A Cauchy surface is shown by
the dashed line. It is the union of the surface v = vg with the part of .~ with v > vg.

3. Massless minimally coupled scalar field

We consider a massless minimally coupled scalar field in the null shell spacetime. In
a general static spherically symmetric spacetime, it can be expanded in the following
way,

(b Z Z / awémfwfm + a’wfmfwém]

£=0 m=—/¢

with O f,¢m = 0. In the region inside the null shell, v < vy, separation of variables
gives

f _ }/gm( ) }/gm(e,(]ﬁ) 7zwt
BT Vi

while in the region outside the null shell, v > vg, it gives

f _ Y—Zm(aa ¢) Ym(e, ¢) efiwt
whm rvamrw rv4mw

In the regions v < vy and v > vg respectively, the radial parts of the mode functions
satisfy the differential equations

d%x. L0+1
i == =5 ®

E e S S | R VR

qué( ) Xw@(r)v (1)

Yue(ts;r) = *Xewt (1)- (2)
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WU

The in state is fixed by requiring that v,, = e~
vanishes at r = 0. The solution with these properties has the form

on past null infinity and it

i,’}(r, t) = Cre™twrijs(wr) (5)

inside the null shell, where CY is fixed by the aforementioned condition on past null
infinity. Here j, is a spherical bessel function of the first kind. It is not possible for
this solution to have the form e~ ,,(r) outside the null shell. The solution in

this region is more complicated.

4. Computatlon of fim

We can compute outside the null shell and the event horizon by expanding it

w/m
in terms of a complete set of modes since the geometry here is the Schwarzschild
geometry. This problem can be mapped to the shaded part of pure Schwarzschild
spacetime shown in Fig 2. We choose a complete sets of modes that consists of the

union of the modes that are posmve frequency on future horizon and zero on

wEm
future null infinity, and the modes fw wm that are positive frequency on the future

null infinity and zero on the future horizon, i.e.,

gt
wem Z Z / dw w@mw’é’ /f ’K’ '+Bw€mw’€’m’ (fw’f’m’)*

=0m/'=—¢
Awémw’f’ f ’Z’ ’+Bw€mw’€’ (f ’Z’ ’) (6)
Th hi ffi AZ, BZ, Al d BY
e matching coefficients wémw’f’ 1y Bmw orm’ s Aotme’ 7m? s &1 wemw'e' , can

be found using the following scalar products on the Cauchy surface shown in
Fig. 2.

(]‘F H+) o (ﬂJr H+)
AwEmw’Z"m/ - ( wlm> f w'l'm’ ) (7)
ﬁ+ H+ lIl y+ H+
Bo(.)fmw/l’r?z/ = ( wlm> (f(’é’m’ )) ) (8)

r=0

Fig. 2. Penrose diagram for Schwarzschild spacetime showing the Cauchy surface used for match-
ing the in modes in the null shell spacetime to a complete set of modes in Schwarzschild spacetime
in the region outside the past and future horizons. The Cauchy surface is denoted by the dashed
red curve.
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The reason one can expand the in modes in this way is that the same differential
equations govern the evolution of the in modes in the shaded region in Fig. 1 and
the shaded region in Fig. 2 because the metric is the same in both regions. However,
one may notice that the union of the part of past null infinity with v > vy and the
null shell surface does not form a Cauchy surface in pure Schwarzschild spacetime.
We resolve this issue by adding the part of the future horizon with —co < v < g to
the union of ¢~ with v > vy and the null shell surface v = vy, as shown in Fig. 2.
We also need to specifity wf:} on the Cauchy surface to evaluate the scalar products
in Egs. 7 and 8. On the part of the Cauchy surface with v > vy on past null infinity,

fj} = ¢~ and on the part where v = vg , Z;e is given by Eq. 5. For the part
with v < vg on the future horizon, we can specify wﬁ any way we like so long as it
is continuous at v = vy.
Before computing the matching coefficients, we introduce a different complete
set of modes that are defined by two linearly independent solutions to the radial

mode equation in Schwarzschild spacetime with the following properties

X5 — e Ty — 00, (9)
X — em T — 00. (10)
Near the horizon, they have the behaviors?!
X% — Er(w)e™™ + Fr(w)e ™" | Ty — —00, (11)
X = Ep(w)e™™ 4+ Fr(w)e ™" T —> —00. (12)

where Er, Er, Fr, and F, are scattering parameters that can be determined nu-
merically.

Evaluating the scalar products in Egs. 7 and 8 gives the following results for the
matching coefficients!®

. Foy! . i —
gt 0w e B (051, v0) + i jw 1 el(w' —w)vo
o — a - B a - B
we'l o\ w W —ie WET 2V w Ff (W, ) W' —w+ie

ot [ D] 92 ). o), (13)

. i ’
7 W' e~ W vo

) . / 1 efi(wth')vg
BH‘*'/ _ =z in _ i 1
Wt on \w W + e wi Vi, vo) 2V w Fr(w,0) ' +w —ie

o= [ )] 0l () v0) (14)
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A!/+ _ FR(W g) —i(w—w’)vg
w Ff w0 w —w+ie

ww'’l 2,]_(_

€] 9,4, " (we(w),v0),  (15)

w@ U, 'Uo)

27r\/7 /

n i [ Fr(W',0) emilwtevo

Bj/ = -
W't on \ w Fr(W', 0) o +w — i€
U, Vo —iwvo u),vg). 16
b [ [l ) - 0 (). (16)
. . . i
In the case { = 0‘, the in mode functions have the form fi5, = - Nz where
in = eTWv — e7U for y < vg. Note that the terms with closed form in Egs.

13-16 (v-dependent terms) are the only terms that contribute to the v—dependent

mn

part of f}, and the integral terms contribute to the u-dependent part of f2j,.
We used the v-dependent terms in the matching coefficients to construct f%, on
H™. The numerical results are shown in Fig. 3 and Fig. 4. In Fig. 3, the real
and imaginary parts of the v-dependent part of the in mode function have been
numerically computed on HT. The results show that in mode function is continuous
across the null shell as expected. For large values of w, the effective potential in the
mode equation is always small compared to w? and one can ignore the scattering
effects. Hence, one should expect to see the same behaviour as in the 2D case where
there are no scattering effects. This is shown to be correct in Fig. 4. where the real

and imaginary parts of £, are plotted for Mw = 9.

0.0

=021

o1 -03fn

20 40 60 80 100 20 40 60 80 100

M M

Fig. 3. Real part (left) and imaginary part (right) of 1%, (v) on HT for v > vo. 3% = 3 and
Mw = 0.02. The dashed lines and solid lines correspond to the in modes in the 2D and the 4D
cases respectively.

5. Stress-energy tensor and renormalization

One can renormalize the stress-energy tensor by subtracting from the unrenormal-
ized expression for the stress-energy tensor for the in vacuum state, the unrenor-
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Fig. 4. Real part (left) and imaginary part (right) of 1&@’60(1)) on HYt for v > wvg. K—? = 3 and
Mw = 9. The dashed blue lines and solid yellow lines correspond to the in modes in the 2D and
the 4D cases respectively.

malized stress-energy tensor for the Unruh state. Since the renormalization coun-
terterms are local and thus do not depend on the state of the quantum field, this
quantity will be finite. Then one can add back the unrenormalized stress-energy
tensor for the Unruh state and subtract from it the renormalization counter terms.
Schematically one can write

<in|Tab‘in>ren = A<T’ab> + <U|Tab|U>ren> (17)

where A(Tup) = (in|Tup|in)unren — (U|Tup|U)unren- Note that the Unruh state is
defined by a set of modes that are positive frequency on the past horizon with
respect to the Kruskal time coordinate and the set of modes that have the form
e = €™ on past null infinity. The quantity (U|Tys|U)ren has been numerically
computed for a massless minimally coupled scalar field in Schwarzschild space-
time. Thus what remains is to compute the difference between the unrenormalized
expressions.

The unrenormalized stress-energy tensor can be computed by taking derivatives
of the Hadamard Green’s function as follows,??

1 . < < cd’
(Tab)unren = 1 xl’lglz [(ga G;(Cl,);b(x,x') + g5 Gfi?c/(a:,x’)> — Gap 9°° G;(Cl;)d, (x,x’)} ,
(18)

where the quantity ggl parallel transports a vector from z’ to x and is called the
bivector of parallel transport.

5.1. Stress-energy tensor in 2D

In this section, we show how our method can be applied to the case of a 2D null shell
spacetime which has a perfectly reflecting mirror at » = 0. There is no scattering



The Sixteenth Marcel Grossmann Meeting Downloaded from www.worl dscientific.com

by GERMAN ELECTRON SYNCHROTRON @ HAMBURG on 01/30/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

1272

that means Er = F;, =1 and E;, = Fr = 0. The matching coefficients are,'®
1 w . ’ . ’ F(l — Z4MUJI)
A = = 2 (4 MM p—i(w—w ) un _ 19
ww 271. (.AJ/( ) (& [—l(w _w/) _|_6]17’L4MUJ,7 ( )
1w LiaMe' —i(wte D(1 +i4Mw')
B,]t = — = (4M idMw i(wtw vy : ) 20
Y 2w (40M) c [—i(w + w') + ] LMW (20)

The expression for f" can be obtained by substituting Eqgs. 19 and 20 into Eq. 6.
Those for fU™™! can be obtained using similar expressions. See Ref. 18 for more
details. Next, we construct the Hadamard form of the Green’s function which in 2D
is

G wna!) = [ ) 27 ) 2 (@) 2. (21)
We subtract off the corresponding expression for the Unruh state to obtain
AG(z,2) = Ggi)(x,x’) - G&)Huh(x, '),

which gives

2M 1
A(Ty) = —(1= =) ln (G, + AGy). (22)

r x’'—x

Our method results in a complicated operation for A(T};) which initially contains a
triple integral. One of the integrals can be computed in closed form with the result!'®

_ { > > —27 M (w1 +w
A<Ttt> = m{sﬂ_s/o d(U1 A dUJQ (& (w1 2)

o it (AMwy eThr )4 iMwr D(1 — 43 Mw, )T(1 + 4iMws)
e s 5 .
(AMwgqehr )4iMws AM (w1 — wo — i€)

+ e ilwrtwn)us (g 0oy e ) HM@L (4 Ny e ThT ) 4iM w2

I(1 — 4iMw))T(1 — 4iMws)
x 4M(W1 —+ WQ) }} )

(23)

This quantity has been computed numerically and the results are shown in Fig. 5.
The stress-energy tensor for a massless minimally coupled scalar field in the 2D
collapsing null shell spacetime has been previously computed analytically using a
different method!?-20:23-25 and the stress-energy tensor for the Unruh state has also
been computed analytically.'? 2023730 Qur results are shown with the dots in Fig. 5
and the result found by using previous methods is shown with a solid curve. They
agree to more than ten digits. It is worth mentioning that in 2D, once A(Ty) is
numerically computed, A(T}..) and A(T,;) can be easily determined.'®
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Ug

Fig. 5. The quantity 10*M? (Ttt) is plotted for the massless minimally coupled scalar field in the
region exterior to the null shell and to the event horizon. The dots correspond to the results of
the numerical computations. The solid curve represents the analytic results in (reference).

6. Summary

We have reviewed a method of computing the stress-energy tensor for a massless
minimally-coupled scalar field in a spacetime in which a spherically symmetric black
hole is formed by the collapse of a null shell. This method primarily involves two
parts. One part is the expansion of the in mode functions in terms of a complete set
of modes in the part of a Schwarzschild black hole that is outside the event horizon.
The matching coeflicients of the expansion have been found in terms of the integrals
of the mode functions and closed form terms. These matching coefficents have been
used to numerically compute part of the in mode function on the future horizon of
the black hoe.

The second part of the method is the renormalization of the stress-energy tensor
which involves taking the difference between the stress-energy tensor for the “in”
state in the collapsing null shell spacetime and that for the Unruh state in the
Schwarzschild spacetime. Finally, we reviewed the computation of the stress-energy
tensor in the corresponding 2D case using aformentioned method.

Acknowledgment

P. R. A. would like to thank Eric Carlson, Charles Evans, Adam Levi, and Amos
Ori for helpful conversations and Adam Levi for sharing some of his numeri-
cal data. A.F. acknowledges partial financial support from the Spanish Ministe-
rio de Ciencia e Innovacién grant FIS2017-84440-C2-1-P and from the Generalitat
Valenciana grant PROMETEO/2020/079. This work was supported in part by the
National Science Foundation under Grants No. PHY-1308325, PHY-1505875, and
PHY-1912584 to Wake Forest University. Some of the numerical work was done



The Sixteenth Marcel Grossmann Meeting Downloaded from www.worl dscientific.com

by GERMAN ELECTRON SYNCHROTRON @ HAMBURG on 01/30/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

1274

using the WFU DEAC cluster; we thank the WFU Provost’s Office and Informa-
tion Systems Department for their generous support.

References

. S. Fawcett, Commun. Math. Phys 89, 103 (1983).

. W. Howard and P. Candelas, Phys. Rev. Lett. 53, 403 (1984).

. W. Howard, Phys. Rev. D 30, 2532 (1984).

. Jensen and A. Ottewill, Phys. Rev. D 39, 1130 (1989).

. Jensen, J. G. McLaughlin, and A. C. Ottewill, Phys. Rev. D 43, 4142 (1991).

. Jensen, J. G. Mc Laughlin, and A. C. Ottewill, Phys. Rev. D 45, 3002 (1992).
. Anderson, W. A. Hiscock, and D. A. Samuel, Phys. Rev. Lett. 70, 1739 (1993).
. Anderson, W. A. Hiscock, and D. A. Samuel, Phys. Rev. D 51, 4337 (1995).

. Anderson, W. A. Hiscock, and D. J. Loranz, Phys. Rev. Lett. 74, 4365 (1995).
. Carlson, W. H. Hirsch, B. Obermayer, P. R. Anderson, and P. B. Groves, Phys.
Rev. Lett. 91, 051301 (2003).

SO WND U W
caliaeliaciigeiivelivelive il il il
OUmm e

—_

11. P. R. Anders.on7 R. Balbinot, and A. Fabbri, Phys. Rev. Lett. 94, 061301 (2005).

12. C. Breen and A. C. Ottewill, Phys. Rev. D 85, 084029 (2012).

13. A. Levi and A. Ori, Phys. Rev. Lett. 117, 231101 (2016).

14. A. Levi, Phys. Rev. D 95, 025007 (2017).

15. N. Zilberman, A. Levi, A. Ori, Phys. Rev. Lett. 124, 171302 (2020).

16. G. Duffy and A. C. Ottewill, Phys. Rev. D 77, 024007 (2008).

17. A. Levi, E. Eilon, A. Ori, and M. van de Meent, Phys. Rev. Lett. 118, 141102 (2017).
18. P. R. Anderson, S Gholizadeh Siahmazgi, R. D. Clark, and A. Fabbri, Phys. Rev. D

102, 125035 (2020).

19. A. Fabbri and J. Navarro-Salas, Modeling black hole evaporation (Imperial College
Press, London, UK, 2005).

20. S. Massar and R. Parentani, Phys. Rev. D 54, 7444 (996).

21. P. R. Anderson, A. Fabbri, and R. Balbinot, Phys. Rev. D 91, 064061 (2015).

22. S. M. Christensen, Phys. Rev. D 14, 2490 (1976).

23. M. R. R. Good, P. R. Anderson, and C. R. Evans, Phys. Rev. D 94, 065010 (2016).

24. P. R. Anderson, R. D. Clark, A. Fabbri, and M. R. R. Good, Phys. Rev. D 100,

061703(R) (2019).

25. W. A. Hiscock, Phys. Rev. D 23, 2813 (1981).

26. S. W. Hawking, Commun. Math. Phys. 43 199 (1975).

27. W. G. Unruh, Phys. Rev. D 14, 870 (1976).

28. T. Elster, Phys. Lett. 94A, 205 (1983).

29. E. T. Akhmedov H. Godazgar, and F. K. Popov, Phys. Rev. D 93, 024029 (2016).

30. P. C. W. Davies, S. A. Fulling, and W. G. Unruh, Phys. Rev. D 13, 2720 (1976).

31. P. R. Anderson, R. Balbinot, A. Fabbri, and R. Parentani, Phys. Rev. D 87, 124018
(2013).


https://link.springer.com/article/10.1007/BF02345020

	9789811269776_0101



