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Abstract

The nature of the accelerated expansion of the Universe remains one of the
greatest challenges in modern physics. The simplest explanation is that the
acceleration is driven by a cosmological constant. Large quantum corrections
from the various matter fields in the Universe will contribute to the value of this
constant. Unfortunately, these quantum effects lead to a discrepancy between
the theoretical prediction of the rate of expansion and the observed rate by
many orders of magnitude. Problems such as this have lead theorists to develop
alternative models which can account for the accelerated expansion without a
cosmological constant. These include the addition of an exotic matter species or
even a modification to General Relativity itself. Many such theories introduce a
scalar field, a concept which appears frequently in particle physics. For example,
the Higgs particle is an excitation of a scalar field called the Higgs field which is
a crucial component in the Standard Model of particle physics. Invoking a scalar
field in cosmology adds an extra dynamical degree of freedom that can drive
the accelerated expansion of the Universe, as well as introduce novel physical
effects such as enhancing the clustering of matter. It is not a trivial task to
include a scalar field into General Relativity as it can often lead to theoretical
instabilities. There has recently been substantial interest in Horndeski theory,
which is a general theory which couples the scalar field to gravity while avoiding
theoretical issues. Subsets of Horndeski theory include a large range of common
scalar field models such as quintessence. In order to study how the cosmological
phenomenology of Horndeski theory differs from standard cosmology it is useful
to have a generalised approach which enables the connection of theoretical
predictions with observational data, without restricting to specific subclasses of
models. The effective field theory of dark energy provides such a framework.
However, the effective field theory of dark energy is purely phenomenological.
In order to put constraints on Horndeski theory itself it is necessary to connect

the constraints placed on the parameters in effective field theory with Horndeski



theory. The aim of this thesis is to provide a method to connect constraints
on cosmological parameters, soon to be measured to an unprecedented precision

with the next generation of surveys, with Horndeski theory.

This thesis begins with an introduction to General Relativity and cosmology
before discussing models which go beyond standard cosmology. A reconstruction
which maps from the effective field theory of dark energy back to the space
of covariant theories is then presented. This provides a method to connect
constraints on phenomenological effective field theory parameters to covariant
theories. We present many applications of this reconstruction. For example,
we discuss how to map from frequently utilised observational parameters to an
underlying Horndeski theory. This allows one to reconstruct, for example, a
Horndeski theory which exhibits a weakening of the growth of structure relative
to standard General Relativity. Extending these results into the nonlinear regime
is then discussed. In principle this provides the necessary tools to systematically
apply stringent tests to Horndeski theory with the next generation of cosmological

surveys across a broad range of length scales.
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Lay Summary

Humanity has always possessed a desire to understand the Universe in which
we live. Over the past hundred years our comprehension of our place in the
Universe has shifted drastically from the Ptolemaic model of a fixed Earth at
the centre of everything. Progress has been made at an astonishing rate. Many
of the questions that troubled us have been answered. But science never ends,
and these solved problems have given rise to many more questions. Slowly but
surely we are determining the right questions to ask but there is still a long way
to go. We know that the Universe had a beginning, called the Big Bang, but we
do not yet know whether it will have an end. We know that black holes exist, yet
we do not know how to reconcile their existence with other fundamental physical
laws. Contradictions in science can often generate significant breakthroughs. This
thesis is a study of a profound contradiction which has persisted for at least 20
years.

The Universe is expanding. This has been known since the famous observations
made by Edwin Hubble in 1929. However, the expansion is accelerating. As yet
no-one understands why this is this case. The name given to our ignorance is dark
energy. Why is the Universe accelerating? Dark energy. What is dark energy?
It is causing the Universe to accelerate. The nature of dark energy, thought to
make up around seventy percent of the total “stuft” in the Universe, remains a
profound mystery and is a central topic of this thesis. Einstein famously invoked
a concept called the cosmological constant in his theory of General Relativity
before Hubble’s discovery of the expanding Universe in order to achieve a static
Universe. He later called this idea the greatest blunder of his life. It might be
seen as a testament to Einstein’s genius that even his mistakes seem to have
importance. The cosmological constant is now back with a vengeance. When
included in the Einstein equations it can also act to accelerate the universe, thus
potentially explaining the underlying nature of dark energy.

This would surely have been the end of the story if it wasn’t for quantum
mechanics. Quantum mechanics describes the world at the smallest scales,
predicting how electrons behave in atoms and the nature of particle interactions
in accelerators such as the Large Hadron Collider. It also gives a prediction for
the value of the cosmological constant. Unfortunately, this prediction does not
match the observed rate of accelerated expansion by many orders of magnitude.
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This contradiction between two of the most successful physical theories ever
conceived, General Relativity and quantum mechanics, has lead to a great deal of
new ideas which aim to explain the accelerated expansion of the Universe without
necessarily invoking a cosmological constant. We will soon see an influx of new
observations from cosmological surveys such as Euclid, which will measure the
properties of our Universe to an unprecedented precision. It is hoped that these
measurements can shed some light on the nature of the mechanism driving the
accelerated expansion. Making measurements to an ever greater precision will not
mean anything at all, unless there is a link between these measurements and the
underlying theories. This link is what this thesis explores. It is no understatement
to say that we could be on the cusp of a revolution in our understanding of the
Universe. It is an open question whether the cosmological constant will do a better
job at describing the observations than other theories. Or is there a new theory
waiting in the wings poised to be revealed by the data? If it turns out to be the
latter scenario, then this thesis provides a method to connect the observations
with this new theory. Perhaps some day soon our understanding of not only
cosmology, but of fundamental physics, will be transformed.
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Chapter 1

General Relativity and Cosmology

People assume that time is a strict
progression of cause to effect, but
actually from a nonlinear,
non-subjective viewpoint, it is
more like a big ball of
wibbly-wobbly, timey-wimey stuff.

Doctor Who

1.1 Overview and motivation

What is the Universe made of? It is such a seemingly fundamental question
that it is quite the embarrassment that, for the most part, nobody really knows.
During the past fifty years there has been a major revolution in our understanding
of what constitutes the majority of the “stuff” in the Universe. There was a time
when humans thought that the Earth was situated at the centre of everything.
This notion came to an abrupt end with Copernicus placing the Earth away
from the centre of the Solar System. He was then later followed by Einstein,
who argued that the very idea of centre was meaningless. Things were becoming

complicated.

Atoms were then discovered and the baffling questions about nature’s basic

building blocks were thought to be overcome. Everything was made of indivisible



entities, just as Leucippus and Democritus had suggested over two thousand years
ago [I0HI2]. New discoveries in particle physics during the twentieth century
radically altered this simplistic notion. By dividing atoms into electrons and
nuclei, and subsequently nuclei into quarks and gluons, it became increasingly
clear that there was far more depth and variety in the fundamental structures of
the Universe. An extended family of composite and elementary particles revealed

nature to be far more complicated than anyone imaginedE]

Nature not behaving entirely as expected turned out to be the theme of twentieth
century physics. It perhaps should have come as no surprise when it was then
discovered that the contribution of every person, plant, planet and star both
known and unknown, make up barely five per cent of the total “stuff” in the

Universe.

For a start, much of the matter in the Universe does not interact with light. It is
called dark matter and we infer that it must be there through the gravitational
influence that it has on the rotation curves of galaxies [13], the dynamics of
clusters of galaxies [14], how light is lensed as it traverses the Universe [15] and
through the temperature patterns in the relic radiation left over from the Big Bang
[4]. The nature of dark matter remains a pressing issue for modern astronomy
and theoretical physics. It is often regarded to be a new massive elementary
particle that is yet to be directly detected [I6HIS]. Alternatively, there has
been revived interest in studying whether dark matter could be composed of low
mass primordial black holes [19]. In either case, despite its fundamental nature
remaining a mystery it can generally be considered as some species of ordinary
matter which gravitates in accordance with the standard laws of gravity, namely
the theory of General Relativity (GR) [20-22]. It simply doesn’t interact with
electromagnetic radiation and therefore we cannot see it directly. However, the
majority of the Universe is made up of something which is so bizarre that it may

result in a re-formulation of General Relativity itself.

Throw a tennis ball into the air and it continues to move upwards. For the briefest
moment it then comes to a halt, before reversing its motion to travel back the
way it came towards the ground. The name given to this everyday phenomenon is
gravity. Simply put, any object with mass such as me, you, the tennis ball and the
Earth pulls on every other object with mass. Despite being the oldest known force,

gravity remains the least understood. By all means, our understanding of gravity

1An up to date list of particle discoveries can be obtained via the Particle Data Group at
pdg.lbl.gov/2018/listings/contents_listings. html



has indeed considerably developed over time. An inconsistency between special
relativity and Maxwell’s theory of electromagnetism lead Einstein to develop GR.
There has to date been no inconsistent measurement of GR with observations
many of which have been either laboratory or Solar System tests [23]. From the
perihelion of Mercury to the gravitational deflection of light it has proved to be
remarkably successful and perhaps stands as the pinnacle of theoretical insight
and predictive power. Gravitational waves stood as the last major prediction of
the theory that remained to be directly detected until 2015 [24], 100 years after
Einstein first formulated the theory. It has even found a commercial application
in the everyday use of GPS navigation. So why is it also the least understood of

all the forces in nature?

First and foremost GR cannot be the fundamental theory of gravity. The
existence of singularities both at the Big Bang and in black holes indicate that
it must break down when applied at high energies. There are entirely different
physical laws that apply on very small scales which have a fundamentally different
character to GR. These laws describe all known elementary particles in terms of
quantum fields. They are discrete where GR is smooth and random where GR is
deterministic. Reconciling the two theories into a quantum theory of gravity has

proved profoundly challenging but progress is being made [25, 26].

Perhaps the most compelling reason hinting that GR needs developing comes
from the fascinating observation that the Universe is accelerating in its expansion.
Standard General Relativity says that the Universe should in a sense behave like
the tennis ball thrown upwards on Earth. It will at first expand before the
gravitational pull of all the matter in the Universe eventually leads to a brief
halt and ends in a big crunch as the Universe collapses in on itself. This is not
at all what is actually happening. The Universe is expanding at an accelerated
rate. It is like throwing the tennis ball into the air and watching it keep on
racing ever faster towards the sky. This is not how things are supposed to work.
Understanding this strange aspect of nature remains one of the greatest challenges
in physics. The driver of this acceleration was dubbed dark energy and it is a

central topic of this thesis.

General Relativity has yet to be rigorously tested on cosmological scales. The
next generation of cosmological surveys such as Euclid [27, 28] and LSST [29]
aim to put constraints on GR at the largest scales to an unprecedented precision.
Such surveys may provide the necessary signpost pointing towards a consistent

theory beyond GR. This thesis explores how to connect the information that these



surveys will provide with underlying physical theories. The eventual outcome will
be to obtain a deeper understanding of fundamental physics from cosmological

probes.

The structure of this thesis is as follows. Chapter 1 begins with an overview
of General Relativity and important aspects of cosmology in order to set the
scene for how the current consensus on our understanding of the Universe
developed. Chapter 2 then provides some of the more technical background
necessary to understand the ideas that go beyond General Relativity. We shall
discuss a number of such models along with two important theorems that have
motivated various research directions in achieving cosmic acceleration without a
cosmological constant, namely the Weinberg no-go theorem and the Ostrogradsky
theorem. Effective field theory is then introduced and discussed in some detail
as it provides much of the theoretical backbone on which the rest of the thesis is
based. Chapter 3 introduces the method of reconstructing physical theories from
the effective field theory of dark energy. Chapter 4 discusses some applications
of this reconstruction and shows how it can used to obtain theories which exhibit
the desired cosmological phenomenology. Chapter 5 investigates the nonlinear
freedom that is included in the reconstruction. In particular it will demonstrate
how screening mechanisms can be incorporated into a reconstructed action,
introduce a class of models which exhibit kinetic self-acceleration as well as
extend the reconstruction to nonlinear scales. In principle this will allow one to
reconstruct models beyond ACDM via constraints from a broad range of length

scales.

1.2 General Relativity

1.2.1 What is gravity?

Consider again the tennis ball being tossed into the air. Throughout its motion it
experiences a constant acceleration towards the ground. Isaac Newton’s famous
force law F' = mja links this acceleration with a force, a force which we call
gravity. This force law was quantified by Newton by expressing the gravitational
force between two masses m; and msy as being proportional their product and

inversely proportional to the square of distance r between them with Newton’s



constant GG being the proportionality constant

F= @ . (1.1)
This beautifully compact equation is capable of describing a vast range of
gravitational phenomena from the motion of planets, asteroids and comets around
the Sun, the moon around the Earth and a tennis ball thrown into the air. Even
with the tremendous success that Newton’s law of gravitation acquired it was not
complete. Eq. is purely descriptive. It can do a fantastic job in predicting
gravitational phenomena but it was not known why nature chose such a force law

in the first place. In other words, there was no mechanism.

The crucial insight was provided by Albert Einstein three-hundred years later
with his theory of General Relativity. This introductory section will give an
overview of some of the key ideas and machinery that are needed to understand
this new revolutionary view of the Universe. There are of course many excellent
introductory reviews and books on the subject which the unfamiliar reader is
encouraged to read [20-22), [30].

We shall begin with an observation that a gravitational force can seemingly be
removed by a transformation to an accelerated frame of reference. In other words,
in a sufficiently small region, there is no experiment that can determine whether
an observer is in a non-inertial frame of reference or a gravitational field. Consider
an object inertial mass m; and gravitational mass m, placed in an elevator which
is itself situated in a gravitational field. The equation of motion is given by

d*r -
m[ﬁ =F — mgyg . (12)

For simplicity we have assumed that the mass can only move in the direction
z aligned with the axis of the gravitational acceleration g. F' represents any
other forces which may be acting on the mass, such as electromagnetic forces if
it happens to be charged. The gravitational mass m, can be thought of as the
gravitational “charge” of the particle. By performing a coordinate transformation

along the direction of motion in terms of the new coordinate 2’

1
x :x+§gt2, (1.3)



the equation of motion becomes

d*x -

My =F+ (m;—my)g. (1.4)
Equation shows that if the inertial mass m; is equal to the gravitational
mass my, then the particle’s equation of motion does not include any gravitational
forces. Applying this argument in reverse, an inertial frame of reference described
by a nonlinear coordinate system may appear to have gravitational forces even in
the absence of mass. As an example, a particle which moves along a straight line in
Cartesian coordinates appears to experience a repulsive force away from the origin
when the same motion is expressed in polar coordinates. This repulsive force,
known as centrifugal force, is simply an artefact of using a curved coordinates
to describe linear motion. This notion of choosing “bad” coordinate systems
to describe theories occurs time and time again in theoretical physics and it is
important to understand whether a particular physical quantity really is physical
or whether it can be removed by the freedom that exists in the theory. The
equivalence between inertial mass and gravitational mass was well known before
Einstein from Galileo’s experiments rolling balls down inclined planes. The
difference was that Einstein was the first person to take it seriously, elevating
this equivalence into a principle called the equivalence principle. We shall discuss

distinctions between different versions of this principle in Sec. 2.2.4]

A further motivation for Einstein was an apparent contradiction between
Newtonian gravity and Maxwell’s theory of electromagnetism. Maxwell’s theory
predicts that the electric force Fy experienced between two charges ¢; and ¢

placed at a distance r is given by Coulomb’s law

_ kqiqo

Fy
r2

, (1.5)

where k is a constant of proportionality. The similarities between Eqs. (1.5
and seem highly suggestive. FEq. can be derived from Maxwell’s
electromagnetic field equations which describe all electromagnetic phenomena
in terms of a vector field A, (z,t). The static limit of these field equations yields
Eq. . If Coulomb’s law can be derived from a field theory, then perhaps
it is possible to derive the law of Newtonian gravity in Eq. from a field
theory as well. The importance of this fact was recognised by Newton, albeit
without the mathematical machinery of a field to quantify his intuition. Newton’s

theory of gravity relied on “action at a distance” whereby the gravitational force



experienced by a mass m; is exerted seemingly instantaneously when another
mass my is placed in its vicinity. This instantaneousness troubled Newton, noting
that [31]

That Gravity should be innate ... action and force may be conveyed
from one to another, is to me so great an absurdity that I believe no
man who has in philosophical matters a competent faculty of thinking,
can ever fall into it ... Gravity must be caused by an agent acting
constantly according to certain laws; but whether this agent be material

or immaterial, I have left to the consideration of my readers.

Fortunately, his readers included James Clerk Maxwell and Michael Faraday.
Action at a distance is avoided in Maxwell’s theory as all electromagnetic
interactions are propagated via the electromagnetic field, or light. Einstein’s
special theory of relativity forbade any signals which travel faster than the speed
of light. It was therefore of the utmost importance that a field theory for
gravitation was developed which did not include action at a distance, and in

the static limit reduced to Eq. (1.1)). This field theory was provided by GR.

Before commencing our discussion of GR we stress an important point. It is
always possible to perform a nonlinear coordinate transformation to remove the
gravitational field in a sufficiently small region. For an extended mass m; which
is near another mass ms the gravitational force experienced at one point of m,
will be different to another position. A real gravitational force should induce tidal
effects. There is no coordinate transformation which can remove tidal forces. Let
us assume that there are two particles freely falling in a gravitational potential
®(z;) separated by a distance Ax’. The relative acceleration experienced between

the two objects is given by

Eq.(1.6) demonstrates that the relative acceleration experienced by two bodies
is given by the second derivative of the gravitational potential. The fact that it
is the second derivative was a key insight into connection between gravity and

geometry.



1.2.2 Gravity and geometry

The observation that any local non-inertial frame of reference can be transformed
to an inertial frame with a nonlinear coordinate transformation lends itself to a
neat geometrical interpretation. It makes use of the framework of Riemannian
geometry which provided Einstein with the mathematical machinery to construct
GR. In this section we shall briefly review some of the key elements of Riemannian
geometry and GR while referring the reader to Refs. [30, 32 [33] for a more

complete discussion.

Riemannian geometry is a generalisation of Euclidean geometry to curved spaces.
The main geometrical object in Riemannian geometry is a manifold. Formally,
an n-dimensional manifold M is a collection of open sets U, with a mapping v
from each open set to n-dimensional Euclidean space R" such that ¢, : U, — R"

which satisfies three properties:

e There is an open set U, which encompasses every element of p € M.

e Every open subset U, € M can be associated with a bijective map onto an
open subset of R™ such that 1, : U, — V,, where V,, € R™.

e For any points in M which belong to the intersection of two open subsets

of M there is a mapping from R™ — R" which maps from v, [U, N Ug|] —
Vg [Us N Ug.

Each map v, is called a chart or a coordinate system. The existence of a map
from each point in a manifold to R" expresses mathematically the notion that
locally a manifold resembles flat space, despite potentially possessing non-zero
curvature globally. It is this mathematical structure which enabled Einstein to
formulate his physical intuition of the equivalence principle into a quantitative

theory.

Let us review what is meant by flat space. In special relativity, the infinitesimal

distance between two points in spacetime is given by the Minkowski line element

ds® = Nudxtdx”

= —dt* + da® + dy* + dz*, (1.7)

where 7,, = (—1,1,1,1). Two parallel straight lines in this space will never

intersect, a statement which may not hold for a general surface. For example, the



infinitesimal distance between any two points on a sphere of radius r is given by
ds® = r2df* + r’sin*0d¢? (1.8)

where 6 and ¢ are the polar and azimuthal angles respectively. Two parallel
lines drawn from the equator to a pole will inevitably intersect. A sphere is of
course a curved surface but it is important to properly define this notion. After
performing a nonlinear coordinate transformation in Eq. it may not be
obvious at all that the space is flat. How is it possible to distinguish between a
flat space written in a nonlinear coordinate system and a genuinely curved space
like a sphere? This distinction is completely parallel to the question of how one
can distinguish between non-inertial forces and gravitational forces as discussed

in the previous section.

The line element on a general space can be written as
ds® = g, (v)dxtdx” . (1.9)

where g, () is called the metric tensor. It is a function of the coordinates and
contains all the necessary information to describe the geometrical properties of the
manifold. In particular, we shall describe how the specification of a metric tensor
determines whether a space is flat or curved. Under a coordinate transformation
" — x# the components of the metric transform as

oxP 0x°

i = g oz

(1.10)

Note that a tensor in itself is a geometrical object that is defined independently
of the coordinate system used to describe it. A vector is a simple example of
a tensor with one index. Under a coordinate transformation the components of
the vector and the basis vectors both transform in such a way as to leave the
vector itself unchanged. We shall briefly give a specific example by transforming
flat three dimensional Euclidean space into spherical polar coordinates (7,6, ¢)
related via

x=rsinfcos¢ , y=rsinfsing , z =rcosh. (1.11)

Each component of the metric in the spherical polar coordinate system must then



be computed using equation ((1.10)). For example, the g,, component becomes

B @ 2 N @ 2 N % 2
Grr = 87" Gax 87' gyy 87’ 9zz

=1. (1.12)

By computing the other components in the same manner the metric of flat space

written in spherical polars is given by
ds® = dr? + r*d6? + r’sin*0 d¢? . (1.13)

Note the similarity of this equation with that in Eq. . Of course these two
metrics describe spaces of different dimension but it demonstrates the care that
must be taken when distinguishing between the metric describing a genuinely
curved space, such as Eq. , and the metric of a flat space written in a
nonlinear coordinate system, such as Eq. .

We shall now demonstrate that in a sufficiently small region the metric is
equivalent to that of a flat space. This geometrical fact is the crucial ingredient in
the formulation of the equivalence principle. For example, fixing the polar angle
on the sphere to be § = /2 the line element becomes r? (d6? + dp?). After
re-scaling the coordinates by r so that 6 = rf and é = r¢, Eq. becomes
df%+dg¢?. So by considering the form of the metric around the local region 6 = 7 /2
one finds that the sphere is flat. For a general four-dimensional spacetime metric
9w, locally around any point 2# = 0 we must have that g,, = 7,,. The condition
for this to hold is

Ov G = 0. (1.14)

Eq. (1.14) is a compact way of writing forty equations, with four derivatives of ten
independent components of the metric. At quadratic order, a general coordinate
transformation from z* — y* can be expressed as

at =yt + ChoyPy”, (1.15)
where we have assumed that locally the y coordinate system approximately equals
the @ coordinate system. The terms C%, do not necessarily transform as tensors,
but are simply numbers encoding all possible quadratic expansions between the

coordinate systems. It is symmetric in p and o and therefore has forty components

in four dimensions. The condition for the metric to be locally flat then amounts

10



to solving forty equations in Eq. (1.14) for forty unknowns in Eq. (1.15)). It is
not possible in general to extend this calculation to higher order by requiring

higher derivatives of the metric to vanish, a fact which has important physical

consequences.

A key concept in understanding the properties of curved spaces is the covariant
derivative. This notion generalises the idea of a derivative to curved spaces and
nonlinear coordinate systems. To highlight the necessity of generalising the notion
of a derivative let us take an ordinary partial derivative of the components of a
vector in a coordinate system Z* and see how it transforms when written in terms

of the coordinate system z*

ove 9 [0ir_
07— 07" (&B”V ) ' (1.16)

Because the 0/0%" operator acts on both terms inside the parentheses, there
is an extra term which means it does not transform as a tensor. The partial
derivative of a vector is therefore not an invariant notion and different observers
using different coordinate systems will not agree on its value. The extra term that
appears in Eq. can be accounted for with the addition of another quantity

in the definition of the derivative. The covariant derivative is defined as
vV, V' =0,V" + FZUV" ) (1.17)

where I' - are the Christoffel connections. If equation (.14 can hold in an

arbitrary coordinate system as we have shown, then it must be the case that
Vugpa =0. (1.18)

This condition can be used to derive the form of the Christoffel connections which

are given by

v 1 v
Tho = 59" (0u930 + Oogur — Orguo) - (1.19)

With this definition it is then a lengthy but straightforward exercise to check
that under a coordinate transformation V, V" does indeed transform as a tensor.
Note that the Christoffel connections I'/, can be defined independently of the
metric. It is only after imposing the condition that they relate directly to

the metric.

Derivatives measure the rate at which a quantity changes. In order for this to

11



make sense it is necessary to define what a quantity is changing with respect to.
For the case of the covariant derivative in equation ({1.17)) it the rate of change of
a vector along a curve on the manifold relative to whether it had been parallel
transported along the curve. Consider a curve on a manifold parameterised by A
given by z#(\). A vector V¥ is parallel transported along the curve if its direction

does not change as it moves, or more quantitatively

dzt

HVMV” - O, (120)

which can be thought of as projecting the covariant derivative V,V* along the
direction of the tangent vector to the curve %. If the vector is itself the tangent
vector such that V¥ = dz” /d\ then the condition for parallel transport becomes
2. v [0

%%—T;ff%% =0. (1.21)
This is the geodesic equation which determines the motion of objects in a curved
space in the absence of external forces. It can also be derived by minimising the
action of a free particle in a curved space, given by the integral of the proper
time along the path of the particle S = [ dr (see for example Ref. [22]). Armed
with the notion of a derivative on a curved manifold, we possess the machinery to
determine whether a manifold is truly curved, or whether it is flat with a nonlinear
coordinate system. The curvature of a space is quantified through the Riemann
tensor which can be derived as follows. Consider the parallel transport of a vector
around a closed loop on a curved space, as in Fig.[I.I} On a flat space the vector
should not change direction when it returns to its starting position. On a curved
space this does not happen. The degree to which the vector changes is quantified
by the Riemann curvature tensor.ﬂ The commutator of two derivative operators
acting on a vector quantifies how much a vector changes relative to whether it
was parallel transported along x* followed by z¥ compared to z* followed by z*.

This change is determined by the Riemann curvature tensor R’, , defined by
Vu, V|V =R, V. (1.22)

If this commutator is non-zero then the space is not flat. Explicitly R, ,, is given
by
A A
Ry, =00, =01, + FZAFW — F’V’AFW . (1.23)

2Note that we neglect torsion.
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Figure 1.1 Parallel transport of a vector along a closed curve on a sphere. The
direction of the vector has changed when it returns to its starting
point, a situation which would not occur on a flat space.

Observe that the Riemann curvature tensor depends on the second derivatives of
the metric. Now recall that the presence of a gravitational force depended on the
second derivative of the gravitational potential, i.e. the presence of tidal forces.
This was a crucial insight that enabled Einstein to make the connection between
gravity and geometry. Gravity is not a force per-se, it is simply an artefact of the
fact that spacetime can bend. A gravitational field does not exist on spacetime,
as Maxwell’s electromagnetic field does, the gravitational field is itself spacetime.
They are one and the same. Not only does GR provide a mechanism for Newton’s
gravitational force, but it also gives the deeper insight that spacetime is also a
field, just like the electromagnetic field. For this reason, GR is often considered

among the most beautiful of physical theories.

There is one key element missing. Spacetime does not bend of its own accord. A
source of stress-energy is required, such as a planet, star, galaxy or a student
writing their PhD thesis. The stress energy tensor of a system of particles
is a tensor with two spacetime indices T),,. This quantity acts as the source

for spacetime curvature. Taking the trace of R, gives the Ricci tensor R,

ouv
which provides a natural ansatz for the relation between spacetime curvature

and the stress-energy tensor given by R,, o< T},,. Conservation of the stress-
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energy tensor requires that that V,7"” = 0 and unfortunately V,R*" # 0 so
this ansatz cannot hold. There is however a specific combination of geometrical
terms whose covariant derivative does vanish which can be determined from the
Bianchi identity V# (RW — % g,“,R) = (0. This can therefore allow us to write out

a consistent relation between spacetime curvature and stress-energy as

1
R = 59wR = 87GT,, . (1.24)

where the constants on the right hand side are determined from the requirement
that the theory possesses a valid Newtonian limit |21} 22]. The quantity R = RF,
is called the Ricci scalar. Eq. is the final form of the Einstein equation
relating the curvature of spacetime on the left hand side to the presence of a

source of stress-energy on the right hand side.

It is also possible to derive Eq. ((1.24) from an action principle. By varying the

metric g, —+ g, + 0g,, in the so-called Einstein-Hilbert action

M2
SEH == 7*/d4I\/—gR, (125)

and setting 0Sgy = 0 the equation of motion is obtained with 7, = 0.
Note we also write the gravitational constant G in terms of the Planck mass M,,
related via M? = 1/87G and we work in units where ¢ = I = 1 throughout this
thesis. With the addition of a term describing the matter sector S,, in Eq.
the full Einstein equation can be obtained with 7}, determined from

2 0Sn

T, = ——2om 1.2
T Vg og (126)

The Einstein equations predicts the existence of a wealth of new exotic phenomena
previously unimaginable to 19th century physicists such as gravitational waves
and the expansion of the Universe.ﬂ As this thesis is primarily concerned with
the accelerated expansion of the Universe, the next section will apply GR to the

Universe as whole.

3Tt is interesting to note that the first mention of an astronomical object resembling a black
hole came in 1784 by John Michell, 131 years before General Relativity. He considered the
situation of a massive body with a gravitational pull so great that not even light could not
escape it [34]. Many thanks to Ed Copeland for pointing this out.

14



1.3 Cosmology

1.3.1 The background Universe

In this section we shall discuss the application of GR to cosmology. The first
step is to apply the cosmological principle, which states that on large scales the
Universe is homogeneous and isotropic. They are distinct concepts. For example,
all points on the surface of a cylinder are equivalent, but there are two distinct
directions, one leading to the end of the cylinder and the other back to the
original position. It is therefore homogeneous but not isotropic. The size of the
observable Universe is estimated to be around 3000Mpc and observations suggest
that the cosmological principle holds above 100Mpc [35]. In fact, the isotropy of
the Universe has recently been tested using the CMB to roughly one part in 10°
[36]. For the purposes of the above analysis we shall assume that the cosmological

principle does indeed hold on the largest scales.

In order to apply GR to the Universe it is necessary to find a solution to the
Einstein equations which is both homogeneous and isotropic. The condition that
the spatial metric be homogeneous and isotropic greatly reduces the number
of admissible geometries to being either flat, a sphere with positive spatial
curvature or a hyperboloid with constant negative spatial curvature. These spaces
are maximally symmetric, in that they possess the symmetry group of every
translation and rotation in the space. This discussion closely follows examples

given in Ref. [37].

We shall now derive the form of the metric in a maximally symmetric space by
embedding a three dimensional sphere of radius a in four dimensional Euclidean

space. The defining equation of this surface is given by
22+ 4 22w =t (1.27)
By taking the differential of Eq.
xdzr + ydy + zdz + wdw =0, (1.28)

and using Eq. ((1.28)) to eliminate dw we obtain the induced metric of the sphere
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in four dimensional Euclidean space

(zdx + ydy + 2dz)?

2 19 2 2
ds® = dx” + dy” + dz* + -

(1.29)

This expression can be greatly simplified by transforming to spherical polar

coordinates © = rsinf cos ¢, y = rsinfsin ¢ and z = r cos # where it becomes

o —1
ds® = (1 - T_) di? + 7d6* + 72 sin® 0de?. (1.30)

a2
After re-defining the radial coordinate 7 such that r = 7/a one obtains

dr?

T2 + 72(d6* + sin® Od¢?) | (1.31)

ds® = a® [

which is the metric of a space of constant positive curvature. By reversing the sign
of a?, or indeed by setting a® to zero in Eq. (1.27) one can repeat this calculation
to obtain the metric of a three dimensional space of constant negative curvature

or zero curvature. The general metric is given by

dr?

2 2
ds”=a 1 —kr?

+ r%(d6? + sin” 0d¢?) | (1.32)

where k is a constant that takes the value +1 in a positively curved space, —1
in a negatively curved space and is 0 in a flat space. Furthermore, it is useful to

define a new coordinate x such that

dr?
2
=—. 1.

dx 1 — kr? (1.33)

The relationship between r and x then takes the form

sinhy, k=-1
r=Sp(x) = X, k=0 (1.34)

siny, k=+1

and Eq. (1.32)) becomes

ds® = a® (dx® + Sp(x)d??) (1.35)

where dQ? = df? + sin® d¢? is the metric of a two dimensional sphere. Even
though Eq. ([1.35) was derived from embedding a constant curvature surface in
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four dimensional Euclidean space, it does not rely on this embedding for its
definition. It is then straightforward to write down the metric of four dimensional

Minkowski space with constant spatial curvature in the following way as
ds* = —dt* + a*(t) (dx® + Sp(x)dQ?) | (1.36)

where the radius of curvature a has been promoted to a function of time a(t). This
is the Friedman-Lemaitre-Robertson-Walker (FLRW) metric. It is the unique
metric of a homogeneous and isotropic space with a time coordinate t, and is
therefore a useful ansatz for the metric describing the Universe on the largest
scales. One can also define the conformal time 7 with dr = dt/a(t) so placing the
temporal and spatial coordinates on an equal footing. The metric in Eq.
then becomes

ds* = a*(7) [—dr® + dx*] | (1.37)

where we have written the spatial components of the metric in a general

coordinate system x.

Dynamics of the homogeneous Universe

Now that we have constructed the metric of a homogeneous and isotropic
spacetime in Eq. it is important to check that it is a solution to the Einstein
equations. The only dynamical quantity that appears in the metric is the scale
factor a(t) which is related to the time dependent stress-energy content of the
Universe through two equations called the Friedmann equations. See Ref. [38] for

a more detailed derivation.

Computing the Christoffel symbols for the metric ((1.36) one can obtain the
corresponding Riemann curvature tensor from Eq. (1.23]). For example, one can
show that

0 2 i i

where h;; is the spatial metric and H(t) = a/a is the Hubble parameter. Once
every Christoffel connection has been computed the Ricci tensor and scalar can

be determined. The components of the Ricci tensor are given by

Roo = —3 (H + H2> , (1.39)
Roi = Riyp =0, (1.40)
Ri; = a? <3H2 +H+ 3—’5) hij , (1.41)
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and the Riceci scalar is found to be

R_G@H?+H+£>. (1.42)

The metric is of course just one ingredient in the Einstein equation. It is
also necessary to include the contribution of the stress-energy tensor 7,,. On
cosmological scales it is a good approximation to treat matter as a perfect fluid

with an energy-momentum tensor of the form

T,uzz - (P + p)u,uuu — PAuv (143)

where u* is the four-velocity of a fluid element which is given by u* = (-1, 0,0, 0)
in the rest frame. The energy density p is related to the pressure p through the
equation of state parameter

w="2 (1.44)

P

Dark matter and baryons have an equation of state w = 0 and radiation has w =
1/3. We can now determine the background metric evolution when the Universe
is dominated by a matter species with a general equation of state w. Plugging in
the stress-energy tensor into the right hand side of the Einstein equation

and using the components the Ricci tensor for an FRW metric in equation (/1.36))

we find 8 .
=" 2 1.45
5P (1.45)
2 : k
3H"+2H = —8rGp — — . (1.46)
a
Eliminating H from these equations it is possible to show that
p+3H (p+p)=0. (1.47)

This is the continuity equation which can also be derived as the time component
of stress-energy conservation V,T* = 0. Equations and are the
Friedmann equations which can be solved to obtain H(t) for a given p(¢). The
continuity equation can be solved for a general matter species with an
equation of state w to give

pox a 30w (1.48)

which shows that the energy density of matter scales as p,, o =2 and radiation as

pr o< a~*. Tt also shows that if there is a matter contribution which has a constant
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energy density p = 0 this implies w = —1. As p must be positive this implies that
a constant energy density is associated with negative pressure. The cosmological
constant is by definition a constant energy density, and from Eq. one can
see that its associated negative pressure implies a > 0, i.e. accelerated expansion.
Using equation ([1.45]) one can determine the energy density required to have a

flat Universe with & = 0. This is called the critical density and is given by

3H?

crit) — s 1.49
Perito Ry ( )

where Hj is the present day value of the Hubble parameter. Using this critical

value we can define present day density parameters

Peritd
Now let us assume that the Universe is made up of matter, radiation, a
cosmological constant w = —1 and spatial curvature. Equation (1.45) can then

be expressed in terms of each §2;y in the following way
Hz/Hg = Qmoaig + QT()CL74 + QAO + Qk0a72 R (151)

where Q = —k/HZ is the curvature density parameter. A useful way of

interpreting equation (|1.45)) can be seen by re-writing equation ({1.45]) as
) -1 -2 2
a° X Qoa™ " + Qoa™* 4+ Qproa” + kK, (1.52)

where « is a constant. Written in this way the Friedmann equation looks like a
Hamiltonian for the scale factor with the first three terms on the right hand side
interpreted as an effective potential —®.sr(a). If Q, is the dominant contribution
then it reduces to a* o< a* which has accelerated expansion of a(t) as a solution.
In this way the dynamics of the background expansion of the Universe can be

considered as being equivalent to a particle moving in a potential.

As the contribution from radiation is negligible at late times, determining the
cosmology of the Universe reduces to determining where the Universe we live in
happens to sit in the parameter space of €2,,0 and 259. The alternate possibilities
are illustrated in Fig. [1.2l For example, the absence of spatial curvature implies
that €, + Qx = 1. Anywhere above (below) this line corresponds to an open
(closed) Universe. As an open, closed and flat Universe all evolve differently, by
determining the shape of the potential in equation each point on this plane
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Figure 1.2 The expansion history of the Universe is determined from points in
the (Qa, Q) plane. The solid blue line Qp + €y, = 1 corresponds to
a flat Universe, with all points above belonging to a closed Universe
k > 0 and those below to an open Universe k < 0. All points above
the dashed blue line correspond to a Universe which will never cease
expanding whereas points below correspond to Universes which will
reach a peak radius and then re-collapse. Combing the supernovae
constraint with the CMB results of k ~ 0 results in a Universe with

Qp =~ 0.7 and Q,, = 0.3.
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geometry and the future evolution of the Universe. Also shown in figure [1.2| are
the constraints arising from the type Ia Supernovae (see Sec[1.3.3)). It is clear that
the Supernovae result alone do not determine that the Universe is dominated by
Qa. It could either be an open matter dominated Universe or a closed Universe
with significant contributions from matter and a cosmological constant. Only
when the spatial curvature of the Universe was determined to be flat from the
cosmic microwave background radiation (see Sec. was it clear that Universe
we live in lay close to Q5 ~ 0.7 and §2,, ~ 0.3. As the density of baryons was
determined from Big Bang Nucleosynthesis to be 2, &~ 0.04 this also provided
strong evidence that the majority of the matter was in the form of dark matter

which does not interact with electromagnetic radiation.

The Friedmann equation and determine the background expansion
history of the Universe. Departures from homogeneity and isotropy arising from
the presence of structures in the Universe are discussed in the next section. We
then conclude this introductory chapter with a discussion of the observational

basis for the present consensus on the stress-energy content of the Universe.

1.3.2 The perturbed Universe

SVT decomposition

In the previous section we examined the dynamics of the Universe when it was
treated as entirely homogeneous and isotropic. This assumption must break down
at some length scale. The Universe has structure in the form of dark matter halos,
filaments, galaxy clusters and super-clusters. In order to describe a Universe
with this structure it is necessary to go beyond the assumptions of homogeneity
and isotropy. This section discusses the important machinery that is needed
to account for the presence of structure on top of a homogeneous and isotropic
Universe. We do not discuss the highly nonlinear regime where models of spherical
collapse are necessary (see, for example, Ref. [39] Sec.7.5) but instead restrict

to a regime where structure can be treated as small perturbations on top of a
background FLRW Universe.

The nonlinear nature of the Einstein equations suggests that this approach could
be challenging. Fortunately, the story greatly simplifies at the level of first-order

perturbations through a mathematical trick called a scalar-vector-tensor (SVT)

21



decomposition. In this approach the various degrees of freedom separate into
components which all evolve independently. Due to the importance of being able
to perform such a decomposition for the formulation of linear perturbation theory,
we shall now justify it in some detail. The proceeding discussion closely follows
that presented in the appendix of Ref. [40].

Consider a general perturbation 0¢) written in Fourier space
SOt k) = / dPx 5Ot x)e— % (1.53)

We shall show that each Fourier mode of the perturbation evolves independently
because of translational invariance. Let us assume that the evolution of the
perturbation is determined by an equation, in this case the Einstein equation,
that determines possible couplings between different modes as well as determining

the time dependence
N
6Qi(ta, k) = Z/dSkTij(tg,tl,k,E) 6Q;(t1, k). (1.54)
j=1

Here, T;; is the matrix which involves the relation between the modes k and k
from time ¢; to t; which is determined from the evolution equation. Shifting the
coordinates to a new frame ¥ = 2% + Az’ results in an extra phase factor, as can

be seen from

5O/ (1K) = / BR5Q(t, x e ¥ (1.55)
= e_ik'Ax/d3X 5Q(t,x")e k> (1.56)
= e_ik'Ax/d3x 5Q(t,x)e x| (1.57)

where the final line was obtained through the invariance of the integral after the

shift in coordinates. Therefore
0Q (1, k) = e 2 5Q(t, k), (1.58)

where we have written k and Az in terms of their components k% and Ax’.
Plugging this result in Eq. (1.54)) the equation of motion transforms as

N
0Qi(ta k) =) / &k T (ta, 1, k, k) e "R 507 (1 k) . (1.59)
j=1
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This expression must be equal to the original expression with the transfer matrix

also in the primed frame
Q' (t, k Z/dSkT’ ta,t1, k, k) 0Q (1, k) . (1.60)

As the equations of motion must be the same before and after the translation
from the symmetry of the underlying action from which they were derived, such
as the Einstein-Hilbert action in Eq. (1.25)), it must be the case that

TZ/J (t27 t, k, E) = Tij (t27 t1,k, E) e_i(ki_a)Aﬂ . (1.61)

This can only be true if the transfer matrix is zero, or if k;, = k;. In other
words, the transfer matrix is diagonal and so on linear scales each Fourier mode
evolves independently. Going beyond linear scales results in more complicated
relations between Fourier modes where Eq. does not hold. The modes

become coupled on nonlinear scales.

Now that we have established that each mode of a linear perturbation evolves
independently through translational invariance, let us explore a similar argument
how this argument extends with another symmetry in the action, namely
rotational invariance. If following a rotation by an angle ¢ a perturbation changes
by € then it is a perturbation of helicity m. Rotational invariance allows us
to set the wavevector of the perturbation to be k = (0,0, k) such that the only
spatial dependence of the perturbation is along the z® axis with the factor eikz®
Rotations around k are simpler in an alternate basis for the unit vectors in the

two orthogonal directions in Fourier space e; and e, defined by

(S5} + iez

\/5 )

where the basis vector along the ks direction ej is kept fixed. Under a standard

ey = (1.62)

rotation, for example with x| = x;cosy + x9siny the new basis vectors transform
as
e, =ete, . (1.63)

This gives the coordinate transformations

+7 47 — —
Ox _ i 0x _ Ox _ Ox _ it

or+ " Ox— T Oxt " Ox—

(1.64)
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A tensor with a number of indices will then transform under a rotation as

T iyiy = €Ty (1.65)

¢T++ ) (166)

showing that T, is a helicity 2 object. Similarly, as e3 is unchanged after a
rotation we have that
Ty =e ™y, (1.67)

showing that T3_ is helicity 1. Following a similar argument to the independence
of the evolution of Fourier modes due to translational invariance, it is possible
to determine that as a consequence of rotational invariance modes of different
helicities will all evolve independently. Therefore it is possible, for example, to
decompose a tensor of rank two T;; into the sum of separate components such as
in Eq. and Eq. which obey independent evolution equations as they

have different helicities.

A vector with one index can be decomposed as

Bi=B+8, (1.68)

where 37 = —ik;3 and BY are the components that cannot be written as the
gradient of a scalar, which in Fourier space is equivalent to all those components
whose wave vectors are orthogonal to k;. The circular polarization basis is
particularly well suited for this purpose. Under a rotation in this basis we have
that 6}:’ = ewﬁr It thus comprises the helicity one components of this vector,
which can also be considered as the curl of a vector in three dimensions. In a
similar manner, a rank two traceless symmetric tensor can be written as a sum

of in helicity zero, one and two components

Yij = ’75 + %‘J/- + %-7;- . (1.69)

with each term representing the decomposition into different helicity states. The
helicity zero component must be composed of two derivatives acting on a scalar

to preserve the index structure. The tracelessness condition then fixes it to be
s Lo oo
Vi = (—kik; + §5ijk )7 - (1.70)
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The symmetric condition on the vector component then fixes this term to be

i
Yy = =5 (ki + k). (1.71)

The helicity two component 'yg;- is the transverse and traceless part of the tensor.
Couple that with the fact it is also symmetric leaves only two independent
components for this part. These components eventually acquire a physical

interpretation as the two independent polarizations of gravitational waves.

Now that we have determined that we can separate the perturbation evolution
equations into those of different wavenumber and different helicity we shall now
apply these ideas to study the form of the perturbation equations for a perturbed
FLRW Universe.

Cosmological perturbation theory

A key question which arises in perturbation theory is whether a given perturbation
is physical or simply an artefact of a poorly chosen coordinate system. It is a
completely analogous situation to the discussion in Sec. where we discussed
fictitious forces which appear as a result of a choice of a non-inertial reference
frame. In the same manner, a perturbation may arise from a poor choice of
coordinatesﬁ Consider a homogeneous FLRW background metric written in
conformal time 7 as in Eq. with the coordinates 7 and z° shifted by a
first-order quantity (*(z,7) such that ## = a* + (*(z,7). If we assume for
simplicity that ¢°(xz,7) = 0 then after this coordinate shift Eq. becomes

ds® = a®(1) [—dr® + 2¢/dF'dT + (0; + 20, (;)) di'di] (1.72)

where J; () is a symmetric sum over the indices 7 and j. Eq. appears to
be a FLRW metric with added perturbations. However, we began with a smooth
homogeneous background metric and only changed the coordinates, so Eq.
is still a smooth homogeneous FLRW background metric. It is just written in
a poorly chosen coordinate system. As a further example, if (°(z,7) # 0 then
fictitious density perturbations may arise through p(t + ¢°) = p(7) + p'¢°. In
this coordinate system it seems there is a density perturbation dp = p'¢°. This is

not a physical density perturbation and is an artefact of the chosen time slicing.

4The following discussion follows Daniel Baumann’s cosmology notes available from
http:/ /www.damtp.cam.ac.uk/user/db275/Cosmology. pdf.
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This discussion can apply in reverse. With a different choice of time slicing it is
possible to work in a coordinate system were the physical matter perturbations
are zero by choosing the hypersurface of constant time to be equivalent to the

hypersurface of constant energy density.

This freedom to transform between different coordinate systems is often called
gauge freedom. Although it seems like it may be a problem, it is actually extremely
useful as this freedom allows one to perform calculations in particular gauges
where there are great simplifications. This is done by fixing the gauge, meaning,
choosing a gauge which removes the fictitious perturbations completely. After the
gauge has been fixed, one can be rest assured that any remaining perturbations
can be treated as physical. Let us see how this is achieved. Consider a general

perturbed FLRW metric written in conformal time
ds* = a®(1) [~ (1 + 24)dr? + 2Bida'dr + (8;5 + hyj)da'dz’] . (1.73)

For the moment the perturbations A, B; and h;; may be unphysical as the gauge
has not been fixed. Note also that B; and h;; can be expanded in an SVT
decomposition

B, = B; + 9,B, (1.74)

where 0;0;) indicate a traceless combination of derivatives and d;;9;y indicates
a symmetric summation of derivatives. Now let us make a gauge transformation
by shifting the coordinates 7# = a* + (*(z,7) with (* = T and ¢* = 'L + L.
Recall that under a coordinate transformation the metric transforms as

07> 03P
guu(x)ZZIEZB;Ei;;Qaﬁ(m)- (1.76)

The key quantities which arise from the partial derivatives are given by

Ok

oz° 21° oz* ozt
ort

v _ 9. Y _ 97Tk
EE*T+1’%WJMW = 0pL" |

» 50 SF+o,Lx. (1.77)
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For example, the time-time component transforms as

Joo = 02(7')<1 +24),

07O\ _
= (@) goo(iﬂ),

=(1+T)Ya*(r+T)(1+ A). (1.78)

Taylor expanding the last line to first-order and solving for A gives
A=A—-T —HT, (1.79)

where H = a/a is the conformal Hubble factor. This defines how the metric
perturbation A transforms after a change in coordinates. Similarly we can find

that at first-order in the perturbations

B;=B;+ 9T — L, (1.80)

One way to proceed is to combine the various perturbations in such a way
that the combination remains invariant after a gauge transformation. These are
called Bardeen variables or gauge invariant variables. Alternatively, by making
particular coordinate transformations with (#(z,7) the perturbed metric can
considerably simplify. For example, by choosing (#(x,7) such that B = E =0
the perturbed metric does not contain any mixed time-space components and

simplifies to
ds* = a® (1) [ (1 +20) dr’ + (1 + 29) 6;;dx"da’] | (1.82)

where the new perturbations are ® = C' and ¥ = A. This particular choice of
coordinates is called the Newtonian gauge. As we have used up all the coordinate
freedom in ¢* in order to set B = E = 0 and thus obtain equation (|1.82])
the perturbations ® and ¥ can be considered physical perturbations, not an
artefact of a nonlinear coordinate choice. There are of course other gauges but
the Newtonian gauge is the most common and shall be adopted throughout this

thesis.

Of course, the perturbations to the metric are only one half of the Einstein
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equations. See Ref. [41] for a more detailed discussion of the following calculation.
It is also necessary to consider perturbations in the matter sector. Taking
the four-velocity of a comoving fluid element with a perturbation around the
background flow u* = u* + éu*, and applying the condition u,u* = —1 it can be
shown that

out =a ' (=A0) |, duy=a(—A v+ By, (1.83)

where du’ = v'/a is the spatial component of the four-velocity perturbation and
we have used Eq. . To make the connection with the Einstein equation
we must derive the form of the perturbed energy-momentum tensor for a perfect
fluid. This can be obtained by taking p = p+ dp and p = p + dp along with the
expressions above for du* and du, and perturbing Eq.

6T, = (6p + 0p) W, + 6p7,,,, + 2(P + D)TU(u Oty + POgu + a’pmy,,  (1.84)

where g, is the background FLRW metric and ,, is any transverse traceless
component of the stress energy perturbations called anisotropic stress. The
contribution from 7, is generally small enough that it shall be neglected from

now on. The non-zero components of the stress-energy tensor are given by

8Too = pa® (5 + 2A4) (1.85)
57—;']' = (5pa2(5l-j s (187)

where § = dp/p is the matter density perturbation. As with any perturbed
quantity in GR it is necessary to ensure these are really physical perturbations.
In the same manner as with metric perturbations it is possible to define a set of
gauge invariant variables for the stress-energy tensor and treat those as the real
physical perturbations. On the other hand one can fix a gauge and work in a
simplified coordinate system where all of the gauge freedom has been exploited.
A particular choice of gauge invariant variables for the matter perturbations is
given by /

N :5+%(B—E’). (1.88)

This is a useful because if we choose to work in the Newtonian gauge with £ =

B = 0 then the matter density perturbation ¢ is now gauge invariant. It is also
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the case that in this gauge the velocity perturbation v* is gauge invariant. For
this reason the Newtonian gauge is commonly used to study the dynamics of

cosmological perturbations.

We shall now derive the form of the perturbed Einstein equations which enable
the computation of the evolution of the perturbations in different cosmologies.
For the following we perform an SVT decomposition of the velocity three-vector
v; = O;v + ¥;. There are four independent Einstein equations and two energy-
momentum equations. They determine the evolution of the six perturbation
variables ®, U, §, v, v and dp. It is therefore a solvable closed system of differential
equations. The relevant Einstein equations arise from the (00), (0¢) the trace-
free (ij) and the trace (i7) components of Eq. (1.24). In the absence of spatial

curvature and anisotropic stress the (00) component gives
V2V = 47Ga’pA, (1.89)

where A, = 0 — 3Huv is called the comoving curvature perturbation. The trace-
free (i7) component of the Einstein equation leads to the relation between the
metric perturbations ® + W = 0. Note that in a theory of modified gravity
the right hand side of this equation may no longer vanish (see Sec. . The
remaining Einstein equations are dynamical and can be solved to obtain the time

evolution of the perturbations

' — HV = d7a®Gp(1 + w)v, (1.90)

AVPO — " —3H (1+2) ' — P2H +H* (1+3c2)] @ =0, (1.91)

where ¢ = dp/dp is the sound-speed. There are two more equations needed
to close the system. These arise from the perturbed part of the stress-energy
conservation equation 0 (V,T"") = 0. They give the evolution of the density
perturbation and the scalar component of the velocity perturbation. In the

Newtonian gauge they are given by

& +3H (2 —w)d=—(1+w)(Vv+30), (1.92)
/ 2 02
v+7—[(1—305)v:®—1+w5. (1.93)

This analysis can also be carried out on the vector and tensor perturbations but
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as these do not contribute to the growth of structure in the Universe they shall

not be discussed in detail.

Of course, it is not possible to precisely predict the underlying density field with
perturbation theory. Statistical tools are necessary to compare the theoretical
predictions with the observations. In particular a commonly employed observable
is the 2-point function, called the power spectrum in Fourier space or the
correlation function in real space. There are a number of definitions of the 2-
point function. We shall discuss here the principal interpretations. The first is

to consider the correlation function as a convolution between two density fields.
Cr)y=(0(x)d(x+1)) = /d3xd3x'5(x)6(x/)5[)(r — |z —2']). (1.94)

where §(z) could be an over-density of galaxies, dark matter, temperature
anisotropies or so forth and dp(x) is the Dirac d-function. In this interpretation
there is a fixed underlying density field and for a given r, the correlation function
samples every point in this density field to obtain the correlation function. A
different interpretation of the correlation function is to take an average over an
ensemble of different density fields for a fixed r. This case corresponds to a

functional integral over the space of different density fields
(0(21)0(22)) ensemble = /D[5]5(x1)5(x2)P[(5]. (1.95)

There is of course only one Universe with one density field and so in practice this
is not a particularly useful way of defining the correlation function. It is not too
important however, as the ergodic hypothesis states that these two definitions are
equivalent in the limit of an infinite number of distributions. In other words the
ensemble average is equal to the sample average. Of course this is an assumption
which cannot test with only the one Universe. It is more common to express the
correlation function in Fourier space where it is called the power spectrum P(k)
defined by

(6(k)o(K)) = (2n)*P(k)6® (k — k). (1.96)

The power spectrum gives a measure on the amount of matter clustering on each
scale. A flat power spectrum indicates that the amplitude of matter clustering is
the same no matter what scale is considered. In general, the amount of clustering
that occurs is dependent on the particular theory of gravity which is considered.
A theory of modified gravity, an extra dark energy component or an exotic dark

matter particle may alter the shape and amplitude of the power spectrum. It
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can therefore provide a useful probe to test different models of gravity. For
most models it is assumed that the density field is Gaussian meaning that the
power spectrum provides a complete statistical description of the properties of
the density field. However it may be the case that in order to distinguish between
different theoretical models it is necessary to examine clustering on smaller length
scales. Nonlinear effects become increasingly relevant at smaller scales and the
underlying density field becomes less and less Gaussian. Higher-order statistics
such as the 3-point function, also called the bispectrum, are then utilised in order

to study the effects of various models on nonlinear structure [42].

1.3.3 The ACDM model

In this section we shall go over some of the key observations which culminated in
the current cosmological standard model A Cold Dark Matter (ACDM). The three
key pieces of evidence are the age of the Universe, supernovae observations and
the cosmic microwave background (CMB). We shall then conclude this opening
chapter which a discussion of photon trajectories in a perturbed Universe, which

is a key observational probe into the properties of dark energy.

Age of the Universe

In this section we shall discuss why, simply by considering the age of the Universe,
it is clear that we do not live in a Universe dominated by matter with w = 0.

Recall the Friedmann equation ({1.52])

H2

H? = Qo (14 2)* 4+ Qo (14 2)* + Qo (1 + 2)* + Qo (1.97)

where the scale factor a has now been written in terms of redshift z. Using the
relation between coordinate time ¢ and redshift z given by dt = —dz/(1 + z)H

we can integrate Eq. (1.97)) to obtain the age of a Universe, neglecting radiation

which is composed of matter, a cosmological constant and spatial curvature

1 o dx
t=— , 1.98
Ho /1 X (Qm()IS + QAO -+ Qk0$2) ( )
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where £ = 1 + z. For a flat matter dominated Universe with Qg = Qa9 = 0 this

can be evaluated to be 5

= SH.
With the definition of Hy = 100 hkm s~ Mpc™! and h ~ 0.72 the age of a flat
matter dominated Universe cannot be more than 10 billion years. The presence
of stars in the Universe that are much older than this [43H45] indicates that

the composition of the Universe cannot be so simple. There must therefore be

to (1.99)

some contribution from the cosmological constant and/or spatial curvature to
the energy budget of the Universe in order to accommodate these astrophysical

constraints.

Supernovae

A key piece of observational evidence for dark energy was provided by observa-
tions of Type Ia Supernovae [46], [47]. They are certainly a useful cosmological
probe, but as we shall see, are not sufficient to precisely determine the composition
of the Universe (see Fig. . It is only in combination with other observables
such as the cosmic microwave background radiation and baryonic acoustic
oscillations that the composition of the Universe can be tightly constrained. In
this section we shall discuss how supernovae provide a complimentary probe of
the stress-energy content of the Universe. Recall the form of an FLRW metric
Eq. in a spacetime with non-zero spatial curvature

ds* = —dt* + a*(t) (dx* + Sp(x)d’) (1.100)

where Y is the comoving distance, the distance that light has travelled from the

big bang to today and sets the causal horizon of the Universe given by

z dZ/
o H(2) '

X = (1.101)

The combination 47Sk() is the surface area of a sphere in a closed, flat or open

Universe at comoving distance xy where

siny k=-1
Sk(x) = x k=0 (1.102)
sinhy k=+41.
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The key observable which Supernovae probe is the luminosity distance, defined

as

L
d3 = —.
L drF
L, is the intrinsic luminosity of the source, i.e. the energy emitted per unit
time, and the observed flux is F' = Lg/4wS:(x) where Lo is the observed

luminosity of the source. The luminosity distance therefore depends on the

(1.103)

comoving distance through Si(x) and is therefore dependent on H(z) through
Eq. . The Iuminosity distance is then a probe the stress-energy content
of the Universe. Observationally, the luminosity distance d; can be related to
the absolute magnitude M of a Supernovae which is defined to be its apparent

magnitude m at a distance of 10pc

m — M = 5logy, <%§c) . (1.104)
With an object of known absolute magnitude, measuring the apparent magnitude
of the same object allows one to infer the luminosity distance directly. For
this technique to work it is necessary to observe an astronomical object with
a fixed absolute luminosity called a standard candle. Type Ia supernovae are
very useful in this regard. They are believed to be the end result of a white
dwarf star in a binary companion accreting matter. Once the mass of the white
dwarf reaches the Chandrasekhar limit where the electron degeneracy pressure
in the core of the white dwarf is insufficient to prevent further gravitational
collapse, the result is one of the most energetic thermonuclear explosions known
to exist in the Universe, often being brighter than an entire galaxy. Due to the
specific conditions needed to generate a type la supernovae explosion the absolute
magnitude of the peak luminosity are all very close to M ~ —19. Unfortunately,
type la supernovae cannot be considered as precise standard candles but rather,
as standardizeable candles. There is some spread in the intrinsic luminosity of
each type Ia supernovae. However, it was found that there is a useful correlation
between the width of the light curve and the absolute magnitude [48]. This
enables one to correct the estimate of the absolute magnitude to obtain a
measure of the luminosity distance. By measuring the wavelength of some of the
key absorption lines the redshift can be determined and hence the relationship
between luminosity distance and redshift. Refs. [46, 47] used this relationship
to disfavour a matter dominated Universe, instead favouring models dominated
by a cosmological constant. Fig. demonstrates that the constraints arising

from type la supernovae are orthogonal to spatial curvature. A determination
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Figure 1.3 The spectrum of the temperature fluctuations in the cosmic
microwave background from the Planck 2018 results [{)]

of the spatial curvature of the Universe could then highly constrain the stress-

energy composition. It was fortuitous then that this constraint had already been
provided by the CMB.

Cosmic Microwave Background and Baryonic Acoustic Oscillations

The Cosmic Microwave Background (CMB) radiation provides the most stringent
constraints that we have on the properties of dark energy to-date. The principal
reason for high constraining power of the CMB is its capability of measuring
the spatial curvature of the Universe, with the latest Planck 2018 constraint on
the contribution of spatial curvature to the stress-energy budget being €2, =
0.001 4 0.002 [4]. Tt is the radiation that is left over from the Big Bang, bathing
the Universe in photons at a temperature of around 2.73K. Detailed observations
of the properties of this radiation revealed small fluctuations away from this
smooth background at the order of 107°. These anisotropies in the temperature
distribution of the CMB were initially sourced by quantum fluctuations generated
during the inflationary era. The statistical distribution of the amplitude of

the anisotropies at different angular scales is characterised by an angular wave-
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number ¢. The wave pattern that can be observed in figure [1.3|is a signature of
the sound waves in the photon-baryon plasma which filled the Universe prior to

recombination.

The CMB has many different sources of anisotropy arising from different physical
effects occurring on different length scales which all alter the shape of the
spectrum in Fig. [I.3] A primary source of anisotropy originates from the Sachs-
Wolfe effect, occurring on angular scales of # > 1°. This is a large-scale super-
horizon effect were gravity is dominating. The hot plasma falls into dark matter
potential wells and heats up. The temperature anisotropy that occurs on these

scales is roughly given by [38] 41]

— =-U. 1.105
. (1.105)

This implies that the temperature anisotropies on these scales is determined
directly from the dark matter potential. The potential is nearly scale invariant
and so the CMB spectrum is essentially flat for small £. On smaller angular scales
the dominating effects are baryon acoustic oscillations (BAO). These dominate on
scales of # =~ 1°. The radiation pressure of the plasma prevents complete collapse,
and an oscillatory behaviour is observed with a soundspeed of ¢s ~ ¢/ V3. At
recombination, these waves of plasma are frozen into the matter distribution at
a characteristic scale that corresponds to the sound horizon of the plasma when
the baryons decoupled from the photons. In an interval dt of coordinate time
light can travel a comoving distance dy = cdt/a(t). After a time t from the Big
Bang, this can be integrated to obtain the total comoving distance that light has
travelled at redshift z since the Big Bang. Integrating over the scalar factor out

to redshift z the comoving distance is given by [38, 39]

(142)~1 cda
com(2) = . 1.106
rmem(®) = [ (1.106)

After matter-radiation equality, the integral is dominated by dust. Approximat-
ing H(a) =~ HO\/Qma_% and plugging it into the integral gives
2c

T'icom(2) . 1.107
teom(2) Hor/(1+ 2)0 (1.107)

The proper distance is obtained by dividing this expression by a = 1/(1 + z).
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The angular size on the sky of this length scale at recombination is given by

Ortree — THcom{Zrec). (1.108)

D s (zrec)
where D 4(z) is the angular diameter distance. As the size of the horizon is related
to the horizon of the plasma, 0y . is directly obtainable once one measures the
redshift of recombination. The scale of the first acoustic peak of the CMB is
X T'H prop(Zrec). By measuring the scale of the acoustic peak from the CMB, one
is measuring 0 rec. AS THprop(Zrec) 18 known, one now has to determine what
D A(zree) should be in order to give the observed max acoustic peak at 1°. It
turns out that the best fit for D4(2z) comes from a flat universe. Therefore the
CMB very tightly constrains the spatial curvature of the Universe to be flat,
meaning that it lies along the line of ,, + Q2 = 1 in Fig.[1.2l With the previous
constraints on 2, this implies that 2, &~ 0.7. The Universe is then dominated

by a constant energy density with a negative equation of state.

Due to the tight coupling of the baryons and the photons prior to recombination,
the oscillations in the plasma should also leave an imprint in the baryonic matter
distribution after recombination. This imprint takes the form of an enhanced
clustering of matter at the scale of the sound horizon at recombination, giving
a peak in the galaxy correlation function which can be measured at different
redshifts, which can be seen in Fig. [I.4f These are the baryonic acoustic
oscillations. They provide a standard ruler which can be used as a complementary

probe of Hy which can then be used to constrain the composition of the Universe.

1.3.4 Matter clustering

The power spectrum of matter can provide a measurement of €2,,, and can
therefore be used to determine that the majority of matter in the Universe is
dark with the remaining energy budget composed of dark energy. This can be
seen by considering the growth of the density perturbations in the early Universe.
The growth of perturbations in the early Universe can be obtained by solving
the background and perturbation equations in a radiation dominated and then,
following matter-radiation equality, a dust-dominated Universe. The growth of
a perturbation depends on its scale in relation to the size of the horizon in
Eq. (1.106)). If the Universe is dominated by radiation free streaming prevents the

growth of perturbations within the horizon. Super-horizon perturbations do grow
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Figure 1.4 The enhancement in the clustering of galaxies at a comoving
separation of around 100 h~! Mpc detected in Ref. [5], demonstrating
the imprint of oscillations in the baryon-photon plasma at early
times on the large-scale structure at late times.

as d o< a? in a radiation dominated Universe, which can be obtained by solving the
perturbation equation in the limit k£ < r;ll. There are no physical interactions
which can be propagated on super-horizon scales leaving them unaffected by
free streaming. When the Universe becomes dominated by matter after matter-
radiation equality at redshift z., the sub-horizon perturbations begin to grow and
the super-horizon perturbations grow at a different rate oc a. The change in the
rate of growth of the perturbations leads to a singling out of a specific scale in
the matter power spectrum corresponding to the size of the comoving horizon at
matter-radiation equality. By evaluated in the integral at this redshift it
can be shown that this scale goes as 2! (see Ref. [39]). A measurement of this
scale in the matter power spectrum where the slope changes then gives another

measurement on the matter content of the Universe.

We shall conclude this introductory chapter with a discussion of how a light ray
propagates through a perturbed Universe, principally following the discussion in
Ref. [49]. In particular, we shall cover the ideas of weak lensing and the integrated
Sachs-Wolfe (ISW) effect which are two key observational probes of theories which
go beyond ACDM.
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The two key equations that determine how a photon propagates through the
Universe are the geodesic equation and the null ray condition. Defining the affine
parameter along the trajectory of the photon to be A\ the four-momentum of the

photon is given by p* = dx*/dA. The null condition is given by
Pp.=0, (1.109)
and the geodesic equation by
g Koo B

We shall restrict ourselves to outlining the key elements of this calculation and
refer the reader to Refs. [38] [49] for a comprehensive discussion. By perturbing
the photon four-vector p* = p* + dp* and computing the propagation of Jp* in
a perturbed FLRW metric in the Newtonian gauge the following two expressions
can be derived from the time component and the spatial component of the

geodesic equations

d (&p° or  9d b
Sl e Ol Y ) D 1.111
dT(pO) (87+8T+ 87")’ ( )
d2z dr dz’ dr\?* o
3 +2”Ha = (ﬁ) o (T +®) . (1.112)

Each index 7 in Eq. (1.112)) corresponds to a coordinate transverse to a radial line
of sight r. Note also that we have not used the Einstein equation ¥ = —® which
would set the right hand side of equation (1.112)) to zero, as it may not hold in

more general models to be discussed in chapter 2.

Let us examine Eq. (1.111)). Along a null trajectory dr = dr. This then implies
that the total derivative d®/dr becomes

Ao 9D 0

E—Eﬁ-E. (1.113)

We can therefore eliminate 90®/0r in equation ((1.111)) in favour of derivatives
with respect to 7. This implies it can be integrated along the line of sight to
obtain the change in the perturbed energy of the photon between emission £ and

observation O to obtain

5p° 0 O/oT 9D
— = 20| — —_—+ — . 1.114
g |E /E (87 + 87) dr ( )
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The average temperature of a black-body distribution, such as a thermal bath
of photons, is proportional to the average frequency of the photons 7. For an
observer moving with comoving velocity u* this average frequency is given by
v = —p,ut, which can simply be taken to be in the rest frame. The left hand side
of Eq. can therefore be interpreted as §7/T and relates the temperature
anisotropies observed in the CMB to the metric perturbations at emission and
observation, known as the Sachs-Wolfe effect. We have already encountered this
in Eq. which can be derived from Eq. by restricting to large
scales with adiabatic initial conditions and neglecting the time derivatives of the
potentials. The second term on the right-hand side of Eq. describes the
effect on the energy of the photon from metric potentials which change in time.
This is the ISW effect, and it can be a particularly powerful observational probe
of alternative models to ACDM (see for example, Ref. [50]).

All light which travels through the Universe undergoes some degree of gravita-
tional lensing due to the inhomogeneous matter that makes up the Universe.
The larger the amplitude of the matter perturbations, the greater the deflection
angle which lead to larger deformations in the observed images of galaxies. The
distortions of high redshift galaxies are extremely hard to detect individually.
The presence of structure such as dark matter halos, can then only be inferred on
a statistical basis by correlating the distortion of a larger number of galaxies.
This technique is called weak lensing (see for example Refs. [51?7 -53]). It
is particularly useful as it provides a measure of the total matter distribution,
not just the baryons, and so acts as a valuable probe of the properties of dark
matter. The clustering properties of dark matter are in turn, affecting by the
underlying theory of gravity as well as any additional contributions to the stress-
energy content of the Universe. Weak lensing observations can therefore provide

powerful constraints on models beyond concordance cosmology.

Taking the affine parameter to be the conformal time A = 7 in Eq. (1.112) and

using d7 = dr the spatial component of the geodesic equation reduces to

R 0
dr2 Ot

(U +2). (1.115)

As 2 is the transverse coordinate to the line of sight it can be written in terms
of a deflection angle 6 defined by by 2! = rf*. Eq. (1.115]) can then be integrated

twice to obtain

0" =0 + /dr”/ dr— (U +9) . (1.116)
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By reversing the order of integration in the double integral it can be re-written

as a single integral

r

ei:93+/ dr’ (1—1> 8.(\1/+<1>). (1.117)
0 8£UZ

The deflection angle along the line of sight is therefore dependent of the derivatives
of the two metric potentials transverse to the line of sight. For our purposes,
the dependence on both the metric potentials makes gravitational lensing a

particularly powerful probe of theories in which they may not be equal (see

Sec. [4.3.4).

This chapter has discussed some of the key elements of General Relativity and
Cosmology. It has been by no means a comprehensive overview and the reader is
encouraged to follow the references for more details. The following chapter will
begin to delve into the deeper theoretical issues that this thesis is concerned with,
namely, the problems surrounding ACDM as well as theortical ideas that have

been developed to overcome them.
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Chapter 2

Beyond A

All you really need to know for the
moment is that the Universe is a
lot more complicated than you
might think, even if you start from
a position of thinking it is pretty
damn complicated in the first

place.

Douglas Adams

2.1 The cosmological constant problem

By far the simplest physical mechanism to obtain accelerated background
expansion is to introduce a constant into the Einstein-Hilbert action. This
cosmological constant may seem like a rather ad-hoc solution, but its inclusion
is perfectly allowed by the symmetries of the Einstein-Hilbert action. Einstein
himself famously added such a constant in order to obtain a static Universe with
a = 0. Later on he retracted the idea, describing it as the greatest blunder
of his life when Hubble discovered the expansion of the Universe. This section
opens the chapter with a discussion of the theoretical issues which arise when
introducing this constant. The remainder of the chapter is then concerned

with alternative theoretical models which don’t necessarily need a cosmological
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constant to accelerate the Universe. There are many excellent reviews on the

cosmological constant which we refer the reader to for more details [54-59].

The action of General Relativity with a classical cosmological constant is given

by
M2

% [ dev=a IR~ 2 + Su gl 2.1)

where Agpr is the bare classical cosmological constant with no quantum effects
included and Sy, is the matter action coupling the matter fields ¢ to the metric
g"’. By re-deriving the background Friedmann equation (|1.46|) it is possible to
show that d o< Aggr. In short, a positive cosmological constant acts to accelerate
the background expansion. In order for the classical cosmological constant Agg
to be responsible for the observed rate of accelerated expansion of the Universe
it should be of the order of the Hubble parameter Hy. Written in units of the
Planck mass we encounter the unfortunate situation that the observed value of

the cosmological constant is unnaturally small
Agps ~ Hi ~ 107120012, (2.2)

For a parameter in a theory to be “natural” it should be of the same order
as the other parameters in the theory. In this case, the measured value of the
cosmological constant is many orders of magnitude smaller than the Planck mass
which can be considered the natural scale in the Einstein-Hilbert action. On
the face of it this is not in itself a fundamental problem, albeit an aesthetically
unpleasing one. It does however hint that more issues may arise further down to
the line.

In fact, the real problems associated with the cosmological constant arise when
quantum corrections are included. It is necessary to re-tune the classical
cosmological constant to the observed value each time higher-order corrections in
the quantum perturbative expansion are computed. The cosmological constant
is highly sensitive to high energy, or Ultra-Violet (UV), physics. A small change
in the UV has significant consequences for the low energy, or Infrared (IR),
physics. This usually is not a problem in other areas of quantum field theory. For
example, the quantum corrections to the electron mass are proportional to the
electron mass itself which keep them under control. The reason this occurs for the
electron mass and not the cosmological constant is that in the limit of the electron
mass going to zero the Lagrangian possesses an extra symmetry, namely chiral

symmetry, which acts on the fermion fields. In general, a parameter in a theory
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is technically natural if the theory possesses an extra symmetry in the limit of the
parameter going to zero. As quantum corrections respect the symmetries of the
underlying Lagrangian, this means that the quantum corrections to the electron
mass must be proportional to the electron mass. It could very well be the case
that there is a UV theory which posses an extra symmetry in the limit where
the cosmological constant goes to zero. This would provide a natural reason for
why the cosmological constant is small relative to the Planck scale but, so far,
such a theory remains elusive. Note there is an analogous situation in the case of
the Higgs mass known as the hierarchy problem. The Higgs mass should receive
quantum corrections from physics in the UV which drive it towards a higher scale.
In order to prevent the Higgs mass from being of the order of the cutoff scale of the
Standard Model of particle physics (see Sec. there must be some mechanism
to ensure the quantum corrections to the Higgs mass remain stable. This may

arise via a hidden symmetry in a UV-completion of the Standard Model.

We shall now examine more quantitative arguments. To begin, we will follow the
discussion in Ref. [58] and show that the vacuum expectation value (VEV) of any
field placed in the vacuum state must have a constant energy density. The VEV
of the matter field must then contribute to the bare value of the cosmological
constant. The only invariant tensor in Minkowski spacetime is 7),,, which implies
that, as the vacuum state must be the same for all observers in a flat spacetime
(T),,) % M. This is a local approximation to what we should expect on a curved
spacetime through the equivalence principle, and so on a curved background it
follows (T},,) = —pvac(®, 1) g Where pyac(x,t) is a free function of space and time
and the negative sign ensures the 00 component is positive. Using stress-energy
conservation and metric compatibility it immediately follows that pya.(z,t) must

be a constant py,.. In which case we can write

<T;w> = <0|T;w|0> = —PvacGuv > (23>

where pyac is the constant energy density of the vacuum state |0). Because the
vacuum state has a none-zero constant energy density, and according to GR
energy gravitates, the vacuum gravitates. Adding in the contribution from the
matter fields to the Einstein equation the effective cosmological constant takes

the form
Acrr = Agr + puac - (2.4)

It is this effective cosmological constant which appears to drive the accelerated

expansion of the Universe. Now it remains to estimate the amplitude of py.c.
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As this was derived from the VEV of the matter fields its value is inherently
a quantum field theory prediction. A commonly employed approach in the
literature is to impose a sharp cutoff such as the Planck scale M, and sum up the
contributions of the zero point energy modes up to this cutoff scale. For a scalar

field of mass m this would contribute as
1 (M
Puac = 75 / dkk*VE2 +m?2 oc M. (2.5)
™ Jo

In other words the cosmological constant should go as the fourth power of the
cut-off scale of theory. Note however that, as pointed out in Refs. [58, [60] that if
the above calculation was taken seriously then the vacuum energy should behave
like radiation with an equation of state w = 1/3. The reason for this is that by
imposing a sharp cutoff Lorentz invariance is not maintained. In order to obtain
physical predictions using regularisation it is necessary that the adopted scheme
respects the underlying symmetries of the theory. If a Lorentz invariant scheme
is used, such as dimensional regularisation, then a different result is obtained
[58, [60] which goes as

prac ~ 3 O(1)m. (2.6)

i

The sum is over all of the particles that exist in the Standard Model of particle
physics with mass m; raised to the fourth power multiplied by order-one constants.
Unfortunately this value of p.. is still far too large by many orders of magnitude,
even when the sum is dominated by the top quark mass, to adequately account
for the accelerated expansion without a fine-tuned choice of Agr to match A,.
It is debatable whether this one off fine tuning is a fundamental issue. The real

problem is that it is not stable against quantum corrections.

We shall not discuss any loop diagrams here to demonstrate this radiative
instability but rather draw on an elegant argument outlined in Refs. [59] [61]
using effective actions. The Wilsonian effective action assumes that the path
integral for a field theory can be split into light modes ¢, and heavy modes ¢y,
between some cutoff scale p. The low energy effective action Seys[¢] is defined

by integrating out the heavy modes ¢y, of the full action S [¢, @3]
eiSerrldd — /D¢h€i8[¢e’¢h]. (2.7)

As the cutoff p is the largest mass scale that appears in the effective action

Sess ¢4 the vacuum energy for this theory should scale as pyac ~ ut. We then
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require the classical cosmological constant to be tuned such that the combination

of Agr and the vacuum energy matches the observed value
Aops = Agr + O(1) . (2.8)

So far no problem. Let us now move the scale p which separates the light modes
from the heavy modes to some new scale p/. In exactly the same manner, the
cosmological constant predicted from this new effective action should now scale
as pwac ~ M'*. The bare cosmological constant has already been fixed by the
requirement of cancelling the contribution of the vacuum energy with the cutoff
scale at u. We could re-tune it to cancel the contribution from this new scale, but
that is precisely the point. The effective description of a healthy theory in the IR
should not be dependent on the choice of the cutoff scale. This constant re-tuning

to match the IR physics is the essence of the cosmological constant problem.

These theoretical issues associated with the cosmological constant motivated a
great deal of work in going beyond it. Perhaps the accelerated expansion of
the Universe is not driven by a cosmological constant, but a modification to the
laws of General Relativity which apply on cosmological scales? The following
sections will look at how theorists have attempted in recent years to go beyond
the cosmological constant. However, it should be stressed that many of these ideas
do not directly address the cosmological constant problem. Even if one of these
theories end up being favoured by data there would still be the need to address the
radiative instability of the vacuum from a purely theoretical standpoint, without

considering cosmic acceleration.

2.2 Beyond ACDM: Dark Energy and Modified
Gravity

Having assessed various issues related to the cosmological constant problem we
shall now examine models which go beyond A. The majority of these models
do not tackle the cosmological constant problem directly. They seek instead to
provide an alternate explanation for the accelerated expansion of the Universe
which does not rely on a cosmological constant. A natural extension is to replace
the constant with a scalar field field. The existence of such a cosmological scalar

field is particularly motivated by the discovery of the Higgs boson, which is the
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particle excitation of a quantum scalar field. It is natural to suppose that the
observed value of the cosmological constant is simply the value the scalar field
takes at the minimum of its potential. The question is then how to determine the
form of the scalar field potential. This rather natural solution is unfortunately
not viable. Weinberg showed [54] that one would have to tune the minimum
of the scalar field potential just as much as one would have had to tune the
cosmological constant. This is a famous no-go result which we shall now review.
It is an important concept that determines that scalar fields cannot provide a
simple solution to the cosmological constant problem, and that, even if they are

included to drive cosmic acceleration the issues discussed in Sec. 2.1] remain.

2.2.1 Weinberg’s no-go theorem

The cosmological constant problem was an issue from a purely theoretical
perspective in the decades preceding the discovery of cosmic acceleration. This
subsection reviews the result of Weinberg [54] that shows the cosmological
constant cannot be interpreted as the minimum value of the potential of a scalar
field. The potential of the field would have to be fine-tuned just as much as the
cosmological constant. A more detailed discussion of the following proof can be
found in Refs. [54] 59, [62]. The assumptions that go into Weinberg’s result are

quite general but we shall explicitly state them here.

e The theory consists of a local Lorentz four-dimensional field theory

including a metric field g,, and a collection of scalar fields ¢;.

e We further assume that the fields are transitionally invariant on-shell, such

that g,, = const and ¢; = const.

e The Lagrangian is built out of invariant combinations of these quantities.

The residual symmetry that is left over once one assumes translational invariance
is the rotational symmetry of four dimensional constant matrices. In other words,
the four dimensional general linear group GL(4). If these matrices are denoted
by M

w, the coordinates change by z# = M* 2" so that the metric transforms as

g = M*, M’jﬁgaﬁ. (2.9)

The term /—g implies that the Lagrangian also transforms as £ — det (M)L.

Now assuming that the transformation is infinitesimal M*, = 6*, + dM*, the
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change in the metric is simply
0 = OM,,, +0M,,, . (2.10)

As we are neglecting higher powers of M, the change in the Lagrangian reduces
to
0L ="Tr(6M)L, (2.11)

which can be more clearly determined by working in a basis where M, is diagonal.
The determinant is then the product over all of the diagonal elements, which at

first-order is the trace. The variation of the Lagrangian then reads

oL oL
= —00; + — . 2.12
oL 96, d0p; + D O (2.12)
By setting 6L = 0 the field equations read
oL oL
=0, — =0. 2.13
06" Dgu (219

There are two distinct scenarios to consider. The first is that Eqgs. (2.13) hold

independently of one another. Assuming that 0L/0¢; = 0 we then have that
oL
— (6M,,, +6M,,) =Tr (6M)L, (2.14)
0

where have used Eq. (2.10)). This equation must hold for any matrix

M € GL(4). This then implies that

or 1

— — g
0 2g

L, (2.15)

which can be seen by contracting both sides with dg,, and noting that g*”dg,, =
2g""OM,,,. By applying the relation

0
09

/=g = %guv\/__’ (2.16)

we see that, if the Lagrangian is to satisfy Eq. (2.15]), the solution must be of the

form
L=+=gV(gi). (2.17)

Taking the second field equation 9L£/0g,, = 0 we see that this is only satisfied
for V(¢;) = 0. We shall now consider the case where the field equations do not
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hold independently of one another. This then implies that there should be some
relation between the two sets of field equations. The most general expression that

one may write down is of the form

oL oL
v = (D)= 2.18
g = S 055 (218)
If there exists a symmetry such that
0w = 2€gu , 0¢i = —€fi, (2.19)

for some small parameter e then the degeneracy condition in Eq. ({2.18]
immediately implies that Eqs. (2.13) also hold. By rotating the set of scalar
fields such that only one of them transforms under the GL(4) transformation so

that now the symmetry becomes
O = 2€gus . 600 = —€ , 0hizg =0, (2.20)
we can construct an invariant quantity e2%0 v aS
(5(625’09“,,) = 2(5(5062‘50%1, + 62‘2’0(59”” =0, (2.21)

where the last equality uses Eq. . As the Lagrangian is constructed
from invariant quantities and we require the scalar field and metric degeneracy
condition in Eq. to hold, we conclude that this is equivalent to assuming
no degeneracy condition but with the metric replaced by g, — g, = eZJ)gW and
@- — ¢iz0. The latter transformation follows from the fact that qu-:o is a scalar
and thus doesn’t transform under the GL(4) symmetry group. We conclude that
when applying the degeneracy condition and assuming the Lagrangian must take

the form
L= /—ge*V (pis), (2.22)

this then implies that either V((%#O) = 0, corresponding to fine tuning, or eido =
0. The trajectories of massive particles satisfy ez‘z’ogwu“u” = —m2e2% and so
every massive particle now comes with an extra factor of 6200, Setting this to
zero implies the theory cannot contain massive particles. In other words, the
theory must respect conformal symmetry and this simply is not the Universe we

live in.
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2.2.2 Scalar fields and the Ostrogradsky Theorem

In this section we review another important theorem which forms the background
of the work in this thesis. Even if the scalar field is not used in the theory
to tackle the cosmological constant, it is nevertheless important to take care
when adding a scalar field for the purposes of cosmic acceleration. The following
theorem is purely classical and makes no assumptions about the physical system
under consideration other than it is described in a Lagrangian formulation. The
Ostrogradsky theorem states that it is necessary to restrict the equations of
motion of a dynamical system to have at most two time derivatives. If this
is not the case then it will lead to an unbounded Hamiltonian producing an
Ostrogradsky ghost. In the context in which we are interested, namely a scalar
field coupled to GR, this theorem has important consequences. In 1974 Horndeski
[63] wrote down the most general local Lorentz invariant Lagrangian in four
dimensions describing a scalar field coupled to the Einstein-Hilbert action. The
detailed form of the theory will be discussed in Sec. 2.2.5] but for now it is
sufficient to note that the structure of each of term in the theory is such that
Ostrogradsky ghosts do not appear in the field equations. Due to the relevance
this theorem had in the construction of Horndeski scalar-tensor theory it is worth
discussing how it works in a simple example. More detailed discussions can be
found in Refs. [62] 64], 65] which we follow.

Let us assume that a Lagrangian describing the motion of a particle with position
q(t) depends explicitly on the first and second time derivatives L(q, q,q). After
varying ¢(t) — q(t) + dq(t) the equation of motion can be determined to be

oL doL A oL

T OE 2.9
o¢ dtoq Tarag Y (2:23)

If 92L/9G* # 0 then the equation of motion is a fourth order differential equation.
It therefore needs four pieces of initial data in order to obtain a complete solution
{40, G0, Go, ¢} This condition is known as non-degeneracy. Note that it may be
that the higher derivatives satisfy some constraint equations so that they do not
introduce new degrees of freedom. This is a degenerate system, and Degenerate
Higher Order Scalar-Tensor (DHOST) theories have recently been a subject of

some interest [66].

The four initial data correspond to four canonical coordinates @1, Q2, Pi, P given
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Qi=4q,Q2=4, (2.24)

_oc_doc o
T o4 dtoi’ Tt 0§’

which can be used to construct the Hamiltonian

Py (2.25)

2
H(Q1,Q2, P, P2) =Y Pig — L(Q1,Q2, F(Q1,Q2, Py)), (2.26)
=1

where ¢V = ¢, ¢® = §, and § = F(Q1,Qa, P,) is the inversion allowed by the
non-degeneracy condition. This choice of canonical coordinates reproduces the
standard Hamiltonian equations of motion

OH . OH

EPHZQi’TQi:_B' (2.27)

We can now write out the Hamiltonian for this theory as

H=P1Q1+P2Q2—ﬁ(Q1>Q2,F(Q17Q2>Pz)) (2.28)
= PiQs + PF(Q1,Q2, P) — L(Q1,Q2, F(Q1,Q2, P2)) , (2.29)

where we have replaced ¢ in the Lagrangian with § = F(Q1, @2, P»). The first
term in the Hamiltonian is linear in the momentum variable P;. This is a disaster
for constructing a healthy theory. Physical states will cascade down towards
infinitely low energy with this Hamiltonian which is unbounded from below.
This is an Ostrogradsky instability. The presence of non-degenerate higher order
derivatives in the Lagrangian implies a Hamiltonian which will produce negative
energy states. In order to construct a theory that has higher derivative terms
in it is necessary to do so in such a way as to remove them at the level of the

equations of motion.

2.2.3 Quintessence and k-essence models

In this section we begin to examine models of cosmic acceleration which go beyond
a cosmological constant. The first and perhaps simplest extension is to add a
dynamical scalar field to the stress-energy component of GR. We do not assume
at this stage any direct coupling to the metric (see Sec. . A model which

includes a standard scalar field kinetic term and a potential is called quintessence

20



[67]. The form of the theory is

/d4x\/_{ “R— 1X V(gzﬁ)} (2.30)

where X = 0,00"¢ is the standard kinetic term and V' (¢) is the potential of the

scalar field. The energy-momentum tensor for the scalar field is given by

Ty = 0,600 — g | 007~ V(0)] (231

We can use this expression to assign a pressure from the spatial components and
energy density from the time component to the scalar field and thus derive an
equation of state parameter. If the scalar field is completely homogeneous and
isotropic, a reasonable assumption on large scales, then it can only be a function

of time. The equation of state then takes the form

L

= M : (2.32)
30+ V(9)

In the limit where the scalar field is slowly rolling with ¢ < 1 in units of the Planck

mass, the potential dominates the energy budget and w ~ —1. By constructing

models such that this slow role condition holds, just as in inflation [40], it is

possible to construct models which mimic the expansion history of ACDM with

a scalar field instead of a cosmological constant.

It is possible to generalise quintessence to models with non-canonical kinetic
terms. These are called k-essence models [68, [69]. By adding a general function
of the derivatives of the scalar field and kinetic terms K (¢, X') one can construct

more exotic models. A k-essence model takes the form

/d4:v\/_[ “ R+ K(¢, X)} (2.33)

The precise phenomenology of the theory entirely depends on the functional form
of K(¢,X). The equation of state wg is now more general. For a model with no
explicit ¢ dependence such that K (¢, X) = K(X) it is given by [70]

K

—. 2.34
2XKx — K (2:34)

WK =

These models will automatically avoid the Ostrogradsky instability as they only

contain products of first derivatives ensuring that the resulting equations of
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motion remain no higher than second order.

2.2.4 Non-minimal couplings

It is also possible to directly couple the metric to the scalar field via a non-
minimal coupling. This will allow a natural distinction to be drawn between
variations of the equivalence principle following Ref. [T1]. The weak equivalence
principle states that all test particles follow the geodesics of a universal metric. It
can be elevated to a strong equivalence principle by extending it to bodies which
self-gravitate. For example, in a theory which violates the strong equivalence
principle black holes may follow different trajectories to ordinary matter species.
Formally these ideas can be expressed by writing the action for a scalar field
theory where each matter species 1); follows the geodesics set by the Jordan
frame metric g = A?(¢)g"”. The subscript i indicates that different matter
species may follow different trajectories depending on the form of the non-minimal

coupling function A;(¢) for each ;. The action is given by

5= [dey=g [ Mor-lx—vie) +su a0 v] . @)

If each matter species couples to the Jordan frame metric in the same way such
that A;(¢) = A(¢) then this theory satisfies the weak equivalence principle, where
each particle follows the trajectory set by a universal Jordan frame metric. On
the other hand, the no-hair theorem guarantees that a black hole cannot possess
any physical quantities other than charge, mass and angular momentum [72, [73].
This excludes the possibility that the black hole can have a scalar charge. Non-
minimal couplings imply that the trajectory of black holes will be different to that
of ordinary matter. Another way to see this is to recognise that a black hole is a
property of the first term on the right hand side of Eq. and knows nothing
about the form of A(¢). As black holes are self-gravitating bodies the presence
of A(¢) implies that the strong equivalence principle has also been broken. The

modification to the geodesic equation in this case takes the form

R
dt?

= —0;[® +In A(¢)] . (2.36)

It is always possible to perform a conformal transformation such that the matter
fields are universally coupled to the Jordan frame metric. This will alter the

gravitational sector of the theory such that, although matter particles follow the
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geodesics of a universal metric, this metric is now no longer determined from the
GR field equations but from a modified field equation involving the scalar field.
We stress that physics in the Einstein and the Jordan frame are equivalent and
can be related [74], [75]. Under a conformal transformation in four dimensions the
Ricci scalar in the Jordan frame R is related to the Ricci scalar in the Einstein

frame R through [70]
R 6

A2(5) T A(9)

where U = ¢""V,V,,. In the Jordan frame there is therefore a function of ¢ which

R:

OA() (2.37)

is directly coupled to the Ricci scalar along with additional interaction terms of
the scalar and the metric through the [ operator. Such a theory which involves
this non-minimal coupling function is called a scalar-tensor theory. How these
theories connect with cosmological observables forms the basis for much of the

work in this thesis.

2.2.5 Generalised scalar-tensor theories: Galileons and

Horndeski theory

When adding a scalar field into the Einstein equations, with or without the non-
minimal coupling function A%(¢), it is important to ensure that the Ostrogradsky
theorem is respected. As discussed in Sec. higher derivatives of the scalar
field appearing in the action may lead to an unbounded Hamiltonian. There
exists a class of theories which exist on flat space, possess higher derivatives and
yet retain second order equations of motion which are called Galileons [77]. They
possess a Galilean shift symmetry ¢ — ¢+a+b,z" from which they obtained their
name. The original motivation for these theories came from examining theories
of massive gravity [78] in various limits, but they also possess a number of nice
theoretical properties such as a non-renormalisation theorem as well as possessing

a finite number of terms in d-dimensions [79, [80].

Generalising Galileons beyond flat space leads to an interesting class of scalar-
tensor theories which can be applied on a cosmological background while avoiding
the Ostrogradsky ghost [81]. These generalised Galileons were then found to
be equivalent to a theory written down by Horndeski many years earlier [63].
Horndeski theory is the most general way of incorporating a scalar field into the
Einstein field equations in four dimensions with at most second-order equations of

motion. Because of its generality it has been applied in many areas of theoretical
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physics such as black holes to cosmology [82H85]. The freedom in the theory is
determined by a choice of five free functions of both the scalar field ¢ and its
kinetic term X = 0,¢00"¢.

S = Z/d%\/—_gﬁi, (2.38)

where the four Lagrangian densities are defined as

LQ = G2(¢,X), (239)
£4 = G4(¢,X)R
~2G.x(6.X) [(00)° — (VFV*6)(V,V.0)] | (2.41)
Ly = Gs5(¢, X)G, V"V
+5Gax(6.X) [(O0F — 3(00)(V,7,0)(V*7"9)
+2(V,.V,0)(VIV ) (V,VF )] (2.42)
where G;x = 0G;/0X. The non-minimal coupling function has now been

generalised to include derivative interactions of the scalar field. Quintessence
and k-essence models are subsets of Horndeski theory with G4 = 1 and G5 set
by the specific model. GR is also a subset of Horndeski theory with G4 = 1 and
Gy = G3 = G5 = 0. It is theoretically interesting to study in its own right, but

there are deeper theoretical reasons to test this theory which we now touch on.

2.2.6 Motivation for Scalar-Tensor Theories: Brane World

and Kaluza-Klein theories

Before exploring the phenomenology of scalar-tensor theories it is worth exam-
ining their theoretical motivation beyond simply extending the ACDM model.
Even if it is discovered that a scalar-tensor theory is preferred over standard
GR in cosmological observations it should not be considered to be fundamental.
There may well be many potential UV-completions which give rise to equivalent
scalar-tensor theories and cosmological observations. In this section we follow an
example from Ref. [86] which demonstrates how a scalar-tensor theory can arise

from a more fundamental theory.

(D

Let us assume that there is an D-dimensional metric gﬂ,;) which can be separated
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into a four-dimensional metric g,, and an n-dimensional metric g,3 where n =

(D — 4) such that

ds* = gf—g)dxﬂdxf’, (2.43)
= gudrtdr” + Q*(2)Gasdd™do” . (2.44)

The indices p, v run from 0 to 4 and the indices «, 8 run over the remaining n
indices. We label the coordinates on the (D — n)-dimensional space as ,. Note

also that we neglect any mixed components such g,, for simplicity.

The Lagrangian for the full theory is given by

1
L= §C\/—g(D)R(D) , (2.45)

where C is a constant to ensure the dimensions match and R®) is the Ricci scalar

in the full D-dimensional theory. The determinant can be decomposed as

V—9®P) = /=gQ"\/5. (2.46)

We can obtain an effective Lagrangian of the four-dimensional theory by

integrating the full theory only over the 6, coordinates
Ly,=V! / Ld™9 (2.47)

where
V, = /gd"d. (2.48)

This can then be related to L4 = /—gL4 where
1 -
L, = 5Q"v,;l / VGRd"8. (2.49)

We have omitted the relation between the R®) and R which includes extra factors
of Q. See Appendix A in Ref. [86] for the full relation. For n > 1 and by making

the field redefinition
n—1

=2 Q2 (2.50)
L4 can be written as
1 n 1 1/1 n 1=2/n
L,=—- R+ =g"0,00,0 + = | - 2 . 2.51
Sl v L U ¢+2<4n—1¢) (2:51)
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One can see that the effective Lagrangian in four-dimensions reduced from the
full D-dimensional metric behaves like a scalar-tensor theory with a non-minimal
coupling function in front of the Ricci scalar, a kinetic term and a potential.
Further motivation for the existence of the scalar field comes from the dilaton in
string theory and other brane-world models. By testing theories which go beyond
ACDM one is also testing more fundamental theories of gravity. It is possible
therefore that such analyses will eventually shed light on the connections between
quantum field theory and general relativity which has been a highly active field

of research during recent decades [25, 26].

2.2.7 Screening mechanisms

The Chameleon mechanism

Einstein’s theory of General Relativity has to date been extremely well tested on
Solar System scales [87]. Therefore it is necessary have some form of screening
mechanism which ensures that the effects of a fifth force which may act on large
scales disappear in the regime where GR has been well tested. We follow the
distinction drawn in Refs. [62] [71] and classify different screening mechanisms
as to whether they screen through a local field value, via the first derivative of
the scalar field or the second derivative of the scalar field. The first example we
shall give is one which exhibits screening through the local field value, called the

chameleon mechanism [88], [89].
We shall begin again with the action of a general scalar-tensor theory written in

the Einstein frame

]\ng B %X - VW} + Sur [A(0) g, Y] - (2.52)

S:/d4x\/—_g{

It is necessary to derive the equation of motion for the field ¢. The first term
on the right hand side of equation (2.52)) results in the standard Klein-Gordon
equation. However it is necessary to also compute the additional contribution
from the non-minimal coupling in the matter action through the Jordan frame

metric g, = A%(¢)g,,. After a variation of ¢ this becomes

05w [A*(D) gy, ¥i] _ 05w [A%(D)guw, 1i] OF™

5 T 0 (2.53)
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The second term on the right hand side above becomes

g 0
- AQ inZ
= A
0A
=2A m— 2.54
(9)g 9 (2.54)
0A
=247 (¢)g" == .
(¢)g 99
Using the definition of the Jordan frame stress-energy tensor
S [A2<¢>g,uwwi] _V —3
S = T, (2.55)

and the transformation of the determinant of the metric

V=g=A")V-g, (2.56)
the variation of the matter action with respect to ¢ becomes

0SM [A*(D) Gy, Vi) _ 43, 172 OA(D)
5 =A (¢)Ta—¢\/__g7 (2.57)

where T = Q“VTW is the trace of the Jordan frame stress energy tensor. The
equation of motion for ¢ is then

AT

~0A(9)
o~ AT

Oo = —r 2.58
s e (2.5%)
In the Jordan frame matter fields are universally coupled the Jordan frame stress-
energy tensor Tu,, which is conserved @HT‘“’ = 0. After using the relation T =
AT the divergence of the stress-energy tensor becomes
T 9A(9)
VT = ———20"¢. (2.59)
! A(p) 0¢
After defining an energy density p = T/A it can be shown that Eq. (2.59) is
equivalent to the standard continuity equation in an expanding FLRW Universe
in Eq. (1.47). The equation of motion for the scalar field is then given by the
standard Klein-Gordan equation with an effective potential which is dependent
on the local matter density
_ Vs

o= —5o% (2.60)
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Figure 2.1 The shape of the effective density dependent potential which
gives rise to the chameleon mechanism in high density regions.
Reproduced from Ref.[6].

with
Verr(9) = V(o) + A(¢)p. (2.61)

The shape of this potential is sketched in figure 2.1} The effective mass of the
scalar particle is given by the second derivative of the effective potential with
respect to ¢. As the mass of the particle determines the range of propagation
of the fifth force through a Yukawa type potential, the larger the mass of the
scalar, the lower the propagation range. In high density regions the scalar cannot

propagate much at all and the fifth force is suppressed.

Derivative screening

In this section we shall examine a screening mechanism which arises through the
derivatives of the scalar field. In the first instance, let us consider a model which
only includes first derivatives of the scalar field, such as k-essence models, using
an example from Ref.[62]. Consider the Lagrangian

1 «

L=2X x?+ 2
2t T T

oT (2.62)

where in this subsection A is a mass scale which sets the regime where the

derivative interactions become relevant. Computing the equation of motion gives
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O¢ — %vy (0" X) = —AZ T. (2.63)

It is not obvious by simply examining this equation of motion that there is a

screening mechanism at work to suppress the fifth force propagated by ¢. Let
us examine the radial field profile around a point source to study how kinetic
screening works. With 7' = —M§®) (z), restricting to radial coordinates r and
integrating each side of the equation over a sphere of radius r the scalar field

equation becomes
a3 gM

B ng ~ 4ar2M,’

where a prime indicates a derivative with respect to r. It is possible to solve this

¢ (2.64)

equation analytically for ¢'(r), but for our purposes it is sufficient to examine
the solution in the region close to the source. This scale is characterised by a
crossover distance r, = (gM /M*Az)l/ ? where r < r, defines the region where the

screening mechanism operates. In this region the solution to equation ([2.64) is

¢'(r

T*)m . (2.65)

o =2

The fifth force force goes as ¢'(r) ~ r~2/3 and the standard gravitational force

scales as r—2.

Therefore in regions close to a massive object the scalar force
is suppressed relative to the gravitational force. We have worked through this
example using a particularly simple k-essence model, however it can be shown
to hold in more general models with higher powers of the first derivative of the

scalar field appearing in the action [90] OT].

It is also possible to use higher derivatives to obtain a screening mechanism.
We shall briefly review an example of higher derivative screening, also called
Vainshtein screening [92], which works in a similar way to kinetic screening.
Following the example in Ref. [62] we begin with a theory which contains higher

derivatives of the scalar field

_ 1 g
L= -3X A3XD¢+M*¢T. (2.66)

Despite the higher derivatives which appear in the Lagrangian the equation of

motion remains second order

606 + 5 [(08)? — (VuV.0)"] = -2

*

T. (2.67)
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Considering a point mass and examining the radial profile of the field around this

source one finds that the equation of motion is given by

d¢”(r) _ gM
A3y Amwr2M,

6¢'(r) + (2.68)
Defining the Vainshtein radius to be ry = (gM/ M*A?’)l/ ? it is possible to examine
the form of the solution for ¢'(r) with Eq. (2.68)) in the regime r > ry and
r < ry. In the first regime of r > ry the solution scales as ¢ ~ r=2 which
has the same behaviour as the standard gravitational force up to O(1) numerical

factors. However, in the region close to the source the solution goes as

&' (r) ~ Y2 (2.69)

r<ry

2

It is therefore suppressed relative to the r~= scaling of the gravitational force,

allowing standard GR to be recovered in the vicinity of the source.

2.3 Effective Field Theory

2.3.1 What is EFT?

It may not be too far fetched to state that a synonym for effective field theory is
simply “physics”. Any physical theory is only applicable within a certain energy
range or range of length scales. Calculating the trajectory of a tennis ball thrown
in the air does not necessitate the full mechanics of GR. Newtonian mechanics
is sufficient. Similarly, when the ball hits the ground one does not need to use
quantum mechanics to compute the electromagnetic force between every atom in
the ball and the ground which stops it from falling through the earth. We care
even less about the interactions between the quarks in the nuclei of the atoms
when it comes to tennis ball throwing. In the same way, GR is incapable of
describing the physical state at the singularity of a black hole. GR must be a low
energy description of a theory with new degrees of freedom at a higher energies.
Furthermore, the Standard Model of particle physics has currently been well
verified up to technologically feasible energy scales of ~ TeV. This cannot be the
full story. The Higgs hierarchy problem and the presence of neutrino masses are
only two issues which the Standard Model cannot account for. One must treat it

as an effective field theory, valid only up to a certain energy scale, and introduce
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new operators which become relevant at higher energies which may help resolve

some of these issues.

No theory is valid at all length scales. The infinities which arise in the
conventional renormalisation process in standard QFT [93] [04] are a consequence
of the assumption that the theory is valid on all length scales. These infinities
can be removed by absorbing them into a redefinition of a finite number of
coupling parameters whose value changes with energy scale such that one can
predict measurable quantities. By insisting that the theory is renormalizable in
the first place, the theory is automatically restricted to a finite set of operators.
EFT accepts that it is not possible to write down a theory which is valid at all
energy scales and so there is no problem including non-renormalizable operators
in the theory. The drawback is that there are now infinitely many operators. In
principle, this means an infinite set of couplings which would require an infinite
set of measurements. Naively, the predictivity of the theory is destroyed. We are
saved by the fact that EFT works within a finite range of energy scales within
which not all of the operators are relevant. There is some cutoff energy scale in
the theory A.. The theory is capable of making definite physical predictions at
energies below A, because there are only a finite number of operators which are

not suppressed below this cutoff.

Let us examine how this works in practice. We shall present a simple example of
a scalar field theory in four dimensions which demonstrates the key ideas of EFT
without getting lost in the technical details. We require the theory to respect

Lorentz invariance and ¢ — —¢ symmetry. The action is then

S = / d*z L(9,0,0), (2.70)

where the Lagrangian is a Lorentz invariant function of the scalar field and its
derivatives. For example, there could be terms that involve ¢?, X? or X (O¢)?
and so on, where X = 0,¢00"¢ and OO = V,V#. Of particular importance in
this theory is the standard kinetic term X. This sets the dynamical scale of the
theory. If we are working in a regime where the kinetic term is suppressed then the
field equation will not contain any derivative terms and so ¢ is non-propagating.
Therefore we assume that the theory in Eq. is valid near the scale set by
X ~ MZ2. We shall now compare the relevance of all the other operators relative

to this kinetic term.
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As an example Lagrangian consider

L= go+ g20* + g10* + (00)* + gs0® + ..., (2.71)

where the dots indicate the addition of a potentially infinite number of operators
involving higher powers and derivatives of ¢. Each coupling ¢; has a mass
dimension to ensure that the action itself is dimensionless. The mass dimension
of a scalar field in four dimensions is [¢] = 1 which can be derived by examining
the kinetic term and noting that [0,] = 1. The relevance of each term in the
action can then be studied by introducing another mass scale A. such that each
g; can be rendered dimensionless, their original dimension being accounted for by

factors of A.. The Lagrangian can then be written as
L= GoAl + 520267 + Gug' + (99)” + %& o (2.72)

where each g; is dimensionless. The scale A. is the cutoff of the theory. Every
higher dimensional operator involving higher powers and more derivatives of the
scalar field are suppressed by powers of this cutoff. In order to obtain concrete
predictions from the theory this cutoff needs to be larger than the dynamical
scale of the field ¢, i.e. A, >> M,. As ¢ ~ M,, the ratio of the mass term to
the kinetic term goes as A?/M?. The mass term therefore becomes more relevant
when the theory is applied at low energies where the cutoff is large relative to

M.,. This is an EFT approach to understanding the Higgs hierarchy problem.

2.3.2 Broken symmetries and the unitary gauge

Postulating the existence of a scalar degree of freedom to drive the accelerated
expansion of the Universe in both the inflationary era or the late-time dark energy
dominated era may seem ad-hoc. A particularly powerful argument exists to
suggest in fact that this can be rather natural. A light scalar degree of freedom can
arise from any theory that possesses broken time translational symmetry. This
section reviews this concept. Accelerated expansion in the background indicates
broken time translational symmetry, which is then associated with a pseudo-
Nambu Goldstone boson. Pseudo here means the symmetry is only approximately

broken and the Goldstone boson acquires a small mass as a consequence.

A symmetry is said to be spontaneously broken if the ground state is no longer

invariant under the symmetries of the full theory. In other words, if there is a
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collection of scalar fields ®; whose theory is globally invariant under a symmetry
group represented by a matrix M, then the vacuum field configuration ®, changes
under the global transformation such that M®, # 0. If the broken generators
of the transformation matrix are labelled 7; the full transformation between
degenerate vacua can be expressed as M = exp (i ), m;7;). After promoting m; to
a field m;(z), it can now be interpreted as one field per broken group generator
which are called Goldstone bosons. Let us consider a concrete example, namely
the Higgs mechanism. The SU(2) x U(1) symmetry is broken and the Higgs

doublet is given by excitations h(x) around the minimum v
¢ = (v+h(x),0) . (2.73)

The wunitary gauge is defined such that all the Goldstone fields are zero. In
this gauge one has explicitly broken the gauge symmetry and is left only
with the relevant physical degrees of freedom that the theory contains. The
Lagrangian is no longer invariant under the broken group generators but will
still be invariant under the unbroken generators. In the case of the Higgs
mechanism, after breaking the SU(2) x U(1) symmetry one still has a remaining
U(1) symmetry corresponding to the massless photon. However the other three
Goldstone modes are absorbed by the gauge fields which become massive, thus
breaking the gauge symmetry. It is possible to reintroduce the gauge symmetry
by “undoing” the gauge transformation at the expense of reintroducing the
Goldstones. This is called the Stiickelberg method. Starting from a theory which
has a broken symmetry, applying such a symmetry transformation will involve
new terms appearing involving the Goldstones which now realise the symmetry
in combination. For example, starting with a theory describing a free massive

vector field A, with the Lagrangian

1 L1
L=—Fu " - 577»L2AMAM, (2.74)
where the field strength tensor is F,, = 0,4, — 0,A, we can perform a gauge

transformation A, — A, — é@uﬂ to obtain

1 1 1 1
=—-F F" ——m?(A,— = Al — —0# . 2.
L 7 Fw 5™ < " q(?ﬂr) < q@ 7T> (2.75)

If we now treat the field m as the Goldstone field and make a further gauge
transformation with a new field x this will take A, = A, +0,x and 7 — 7+¢x. It

is straightforward to check that this transformation leaves the theory in equation
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(2.75) invariant.

How is this discussion relevant for cosmology? Throughout the inflationary
and dark energy dominated epochs time translational symmetry is broken.
The expansion of the Universe in both periods has a preferred time direction.
Therefore it is natural to suppose that there is an associated Goldstone boson
introduced through this breaking of time translations. A theory constructed in
the unitary gauge involving a scalar field and gravity does not necessarily have
to include the scalar field explicitly in the action. The dynamics of the scalar
field can be absorbed by the metric with a specific choice of time foliation such
that constant ¢ hypersurfaces correspond to constant ¢ hypersurfaces (See also
the discussion in Sec. [.3.2). As we are constructing a theory which explicitly
breaks time transitional symmetry, we shall now discuss a formulation of General
Relativity which does precisely this. This provides the necessary formalism to

write down an effective field theory of a scalar field and gravity.

2.3.3 The Arnowitt-Deser-Misner (ADM) formalism

Let us begin this section by noting some facts about the structure of the Einstein
equations. The Einstein equation is really ten partial differential equations
which determine the dynamical evolution of the metric tensor g, in the presence
of a source of stress-energy 7),,. Four of these equations are constraint equations
and only six are dynamical. To define a dynamical system there must be two
time derivatives acting on the dynamical quantity. From the structure of the
Riemann tensor in Eq. only R

on the spatial components of the metric g;;. The time derivatives of gy, and ggo

i0jo can contain two time derivatives acting
do not appear in any of the equations, and no second time derivatives appear on
gij in the space-time or time-time equations. Is it therefore possible to perform
a split such that the generally covariant structure of GR is maintained but the
relevant dynamical variables are made explicit? This is the basis the Arnowitt-
Deser-Misner (ADM) formulation, or (1 + 3) formulation, of General Relativity
[21], 95]. The following discussion follows that in Ref. [76].

In this formalism four dimensional general covariance is broken by foliating
the spacetime with a series of spacelike hypersurfaces. We can describe these
hypersurfaces with a scalar field ¢(z#), such that ¢ = constant define the family
of hypersurfaces »(t). A congruence of curves can be set up to intersect the

hypersurface at one point per hypersurface. They are not necessarily geodesics
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Figure 2.2 Pictorial representation of the ADM decomposition of spacetime into
constant time hypersurfaces.

or orthogonal to the hypersurface. We shall denote the parameter along the curve
as t. The unit normal vector to a hypersurface ¥(¢,) where ¢ has been set to a

particular value t,, is defined as
n, = —NO,t.. (2.76)

Here N is a normalisation, chosen such that n,n* = —1, and the negative sign
ensures that it is timelike. Each X(t) is given coordinates y’. The smoothness
of the spacetime is maintained with the congruence of curves that flow between
the hypersurfaces. Each curve defines the trajectory through the spacetime that
keeps y' constant for successive values of t. This defines the coordinate system
on the entire spacetime z# = (t,y*). The projection tetrad is defined as

oxt

H— 2.77
=G (277)

h coordinate direction. A

which takes any vector and projects it along the it
tangent vector belonging to the congruence of curves in the spacetime can then
be decomposed in terms its components perpendicular to the hypersurface and

orthogonal to the hypersurface such that

t' = Nn* + N'e! (2.78)
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where the set of three functions N? form a vector called the shift. From these

definitions one can write the infinitesimal coordinate shift as

dzt = thdt + el'dy’

| | (2.79)
= Nn*dt + (N'dt + dy') e!'.

The spacetime line element is then

ds?® = Gudxtdz”
= —N%dt* + g ef'e? (N'dt + dy') (N7dt + dy’) | (2.80)
= —N?%dt* + h;; (N'dt + dy') (N7 dt + dy’) |,

and the induced spatial metric is the projection of the full four dimensional metric
onto the hypersurface h;; = g, el ef. By defining hoo = N ‘N; and hg; = N; we

can write this in four dimensional notation as
hyw = G + npny (2.81)

It is possible to define the notion of a covariant derivative that acts on vectors
tangential to the spacelike hypersurface. The natural definition for such a
derivative operator takes the usual covariant derivative operator acting on a
vector V,, satisfying V#n, = 0, and uses the induced metric to project onto

the hypersurface. We then have that
DV, =h?,h"V,V,. (2.82)

The derivative operator acts on scalars as D¢ = h?,V;¢.

The question of how X(t) is precisely embedded in the spacetime manifold is
addressed with idea of the extrinsic curvature tensor. Intuitively the more n,
changes direction as it is moved around one hypersurface the more curved the
hypersurface is within the bulk spacetime. The normal vector will not change if
the slicing is flat leading to no extrinsic curvature. Quantitatively, the extrinsic
curvature tensor K, is defined as the covariant derivative of the normal vector,

projected onto the hypersurface with the induced metric
K =h°,Ven, . (2.83)

We shall now demonstrate that K, is symmetric. The following proof requires
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the Frobenius theorem which states that
N Vany =0, (2.84)

where the brackets indicate an antisymmetric sum over all the indices. Starting
from the definition of K, and expanding it out with the definition of h,, we have
that

K, = V,n, +n'n,Vn, . (2.85)

From the Frobenius theorem we can derive the fact that
n,Van, =m\V,n, +n,V,ny+n,Vyn, —n\V,n, —n,V,n,. (2.86)

Inserting this identity in equation (2.85) and using n\V,n* = 0 and n,n* = —1

we arrive at the result
K, =V,n, +n,n'Vin, = K,,. (2.87)

The symmetry of the extrinsic curvature tensor is a useful property for future
calculations. By examining the spatial components in equation (2.87)) we find
that K;; = Vin; = N Foij. After expanding out the Christoffel symbol in terms

of the induced metric it is possible to show that

1 /.
K= 5x (hij — D;N; — DjNi) , (2.88)
where recall the covariant derivative D, acts on tensors with spatial indices in
the same way as V, acts on tensors with spacetime indices. Now we set the
congruence of curves that parameterize the time coordinate to align exactly with
the normal vector to each time slice. In this coordinate system one has that

N; = 0 and the extrinsic curvature becomes

1

Ki =355

hij . (2.89)
This gives a natural geometrical interpretation of the extrinsic curvature tensor

as the time derivative of the induced spatial metric.

Of course, we have previously encountered another form of curvature that does
not rely on how the surface is embedded in a higher dimensional space, namely the
Riemann curvature tensor in Eq. (1.23). This is an example of intrinsic curvature.

It is natural to suppose that each hypersurface has its own intrinsic as well as
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extrinsic curvature. This is quantified with R®), defined in the same way as the
full Ricci scalar but using the induced metric h;; in place of the full metric g, .
It can be related to the extrinsic curvature and the full four-dimensional Ricci

scalar through the Gauss-Codazzi relation
R® =R - K, K" + K? - 2V,(n"V " —n"V,n"), (2.90)

which can be obtained by projecting out the full Riemann tensor onto the
hypersurface using the induced metric (see Sec 12.2 of Ref. [76] for the full

derivation).

The ADM formulation has proved to be very useful in the study of dark energy
and modified gravity models. It can be used to define the unitary gauge for scalar-
tensor theories by associating the scalar field with the uniform time hypersurface
which absorbs the scalar field perturbations into the metric, greatly simplifying

the computation of cosmological perturbations.

2.3.4 Effective Field Theory of Dark Energy

This section discusses the application of effective field theory to dark energy. The
formalism originally was applied to inflation [96], 97] before being applied later to
dark energy [7H9] 85, O7HIO3]. It provides an efficient and generalised description
of the evolution of the cosmological perturbations in a large range of scalar-tensor
theories. Following the spirit of effective field theory every operator that satisfies
the symmetries we impose can be included in the theory. In this construction we
use the ADM decomposition in order to break time diffeomorphism invariance.
We construct the theory in the unitary gauge by associating ADM spacelike
hypersurfaces to correspond to uniform scalar field hypersurfaces. The scalar field
is therefore “hidden” in the choice of time coordinate. The EFT operators are
the cosmological perturbations. Operators which respect spatial diffeomorphism
invariance but which could change under a shift in the time coordinate can be

included in the action. At the level of the background the action is given by

SO — MTQ / d*zy/=g [Qt)R — 2A(t) — T'(t)6g™] | (2.91)

where the index (0, 1) indicates that this action contains only background terms

and a term depending on a first-order perturbation d¢g%. The function Q(t)
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introduces a non-minimal coupling between the scalar field and the metric. A(t)
can be added as a free function of time as it is consistent with the symmetries. The
next term involves a first order perturbation §¢g% which vanishes when computing
the equations of motion so that I'(t) affects the background. One may wonder why
there are no perturbations linear in 6 K. The reason is that K’ = 3H on an FLRW
background and so K = K — 3H = V, n* — 3H. These terms can be absorbed
into re-definitions of the terms that already appear in equation (2.91). Taking
the variation of Eq. with respect to the metric g" — g"” + dg"” we can
obtain the background equations of motion which correspond to the Friedmann

equations in a general scalar-tensor theory of gravity. See Egs. (3.16)) and ({3.17))
for their explicit form.

The utility of the EFT approach is that now we can write down an action which
can describe the first order perturbations in a unified way. The action that is
sufficient to describe the perturbations in Horndeski theory will be presented
in chapter 3 (see Eq.). Every perturbation that is compatible with the
symmetries of broken time diffeomorphisms, such as 6¢%°, 6K and R®), are

included as operators in the EFT expansion.

We shall now follow an example given in Ref. [7] which nicely demonstrates the
principles involved in deriving the equations of motion from an EFT action. This
is important if the theory is to be connected with observable parameters. We shall
see that the EFT expansion incorporates the effect of a modified gravitational
slip and Poisson equation. In the following we shall work on a perturbed FRW
background metric in the Newtonian gauge keeping the two metric potentials
independent

ds® = — (1 +2V) dt* + a*(t) (1 + 29) dx>. (2.92)

The Stiickelberg transformation reintroduces the explicit dependence of the EFT
action on the scalar field. By transforming the time coordinate by an infinitesimal
shift such that

t—t+m(zx,t), (2.93)

the operators will change non-trivially. Gauge invariance is then restored, albeit
realised in a nonlinear manner. Furthermore any function that explicitly depends
on time will introduce terms that depend on 7 after Taylor expanding around the

new time coordinate. For example A(t) transforms as

At +7) ~ A(t) + A)r + %[\(t)wQ | (2.94)

69



The perturbation operators also transform non-trivially under a time diffeomor-
phism. By using the tensor transformation law to transform the metric into the
new coordinate system with ¢ =t 4 7 in equation (|1.10f) the time components of

the metric and the extrinsic curvature transforms as [7]

g — ¢" + 260, 7 + g" 0,70, (2.95)
g% = g" + g" o, (2.96)
0Kij = 0K;; — Hrhi; — 0,0, (2.97)
. 1_,
0K — 6K — 2Hr — V7. (2.98)
a

The scalar field equation of motion from the EFT is then obtained in the usual
way by taking @ — 7 + d7 and requiring the variation of the action to be zero.
With the perturbed FLRW metric in equation (2.92)) we can calculate the Ricci
scalar. If we restrict to scales much smaller than the horizon by sending H — 0

in the resulting expression R becomes

1 .
~V/—gR = —30% 4 (VO)* - 2VOVD. (2.99)
2

By combining equation (2.99) with equations (2.94) to (2.98) we can obtain an
action describing the dynamics of the gravitational and scalar field perturbations
from which the modified equations of motion are derived. Taking an action of

the form

. / VEGMEQDR + c(0m)? (2.100)

where ¢ is a constant and then applying the Stiickelberg method we obtain a
series of terms involving powers of the perturbations. Varying this action with
respect to @, ¥ and 7 gives an equation of motion for each. The first is a modified

Poisson equation which takes the form

202
MY/ vy = OPm (2.101)

1_4<c+M3§22/Q> C2MEQ

Another quantifies the difference between the two metric potentials, called the
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gravitational slip n = —® /W, which is given by

M202/Q

n:1+2<c+M,EQ?/Q) '

(2.102)

In general the metric potentials will not be equal in a modified gravity or exotic

dark energy model. This is why weak gravitational lensing can provide a powerful

probe of such models (see Eq. (1.117)).

2.3.5 L3 in the unitary gauge

In this section we derive in detail how the Horndeski Lagrangian £3 in Eq. (2.40))
can be expressed in the unitary gauge. This will therefore enable an effective field

theory description of models with a nonzero L3, i.e. terms of the form X™¢.
As K = V¥n,, with n, = —0,¢/v/—X we can express (¢ as

O¢ = —V* <nu\/3) . (2.103)

The result depends on whether the m is even or odd as we shall soon see. After

expanding out each derivative term X™[¢ becomes

Xm
2V =X

The first term can readily be expanded in cosmological perturbations with K =

X"O¢ = —X"V—XK +

nt0,X . (2.104)

3H + 0K and X = (1 — §¢g°)$?. The second term is not so trivial but we shall

now derive another form. We now focus on the second term

xm XMt
o, X = —-XV,{ ——xv (2.105)
w—-x " : {2\/—)(} ’
Xm+1 X nt Xm
= ——K— 0 +b.t, 2.106
2v/—-X 2 <\/—X) ( )

_ 4 {%K . X;“a# ((\;%71)} , (2.107)

where the plus sign is for m even and and minus sign for m odd and b.t stands
for a boundary term which can be neglected. As the only difference now is an

overall minus sign we consider case of even m. The first term simplifies to
K = 5(—X)m+5K. (2.108)
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After simplification and taking into account an integration by parts, the second

term becomes

Xty ((—X)’”) _ A (—xymh (2.109)

1 1
= 5(—X>m‘%n“8uX - 5(—X)m+%K +bt, (2110)
O, (=X)"E 1
= - — = (=x)" 111
ome1 2 ) (2.11)
K(=X)™t2 1
= (Qm—+)12 - 5(—X)m+%K + b.t. (2.112)

Combining all of the expressions above we arrive at the final expression for X™[J¢
we see that the second term cancels with (2.108) to give

1

X"Op = (- X)) K 4+ ——

(—X)"t2 K (2.113)
There will be additional contributions from the successive integrations by parts
from any function &(¢) which multiplies X™[¢. Here we shall repeat the
calculation above with fewer details in order to account for these extra terms.
Taking the case of m being even we have as before

m _ _ m+% £<¢>X
§(0)X™0o = () (—X) K+2m

n9,X . (2.114)
After the integration by parts this becomes

§(9) XM = —

SAX™ g@)Xnt [ X"
WX BT 2 8#(@

where the prime indicates a derivative with respect to ¢. An extra two boundary

)+ 3¢ @Ex", 219

terms arise from the integration by parts of the second term above. In other

words

SO 5, (%) - e xytwa, x-S e Jeo om

2 J—x) " 2 2
(2.116)

An extra term arises from
€ -X)" g@KEXM g0t

2m + 1 2m +1 2m +1
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Putting these results together we have that

2m 1 1

S SO EX)E £ e E(O)(-X) (2118)

§()X "0 = F

where the sign on top indicates the solution for m being even. This expression is
now in a useful form to obtain the cosmological perturbations of any term that

appears in Ls.

2.3.6 L, in the unitary gauge

Here we shall present the full calculation of transforming £, in Eq. (2.41)) into the
unitary gauge, following Ref. [I00]. an important term to analyse is the second

spacetime derivative of ¢.
V.V, (2.119)

as partial derivatives commute 9,0, and '}, is symmetric in 4 and v Eq. (2.119)
is symmetric. In order to simplify the notation we follow Ref. [I00] and define
v = 1/+/—X for this section only. The acceleration vector is defined as

n, =n’Ven, . (2.120)
It can be related to the extrinsic curvature via
Vo, = K, —nyn, . (2.121)

Using these relations one finds that

n,
V.V, =-V, <7) ,
=y 'V, —n,0,V-X, (2.122)
= —~71 (K —nyiy) + %nyauX.
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where in the final line we have used the expression in equation (2.121f). The last

term in the expression above can be decomposed in the following way

%n,,@uX = %n,,g,w@"X

g — .
= 5 whye0° X = Snynyng0”X (2.123)

= bt X 4 Loy, 0,007 X
- Enu no + Enunu a¢ .

The final step is to show that the first term above can be written as v~ 'n,n,,.

Staring from the definition of 7, we have that

hu = _n/\v)\(’yvu¢) )
= —n*V,0Vyy — 0V, V.0,
=7 ', Vay =y VaV,0, (2.124)
="' (), = 6)) Vay = *VaV,u0,
=7'Vay =7 Vuy = 1t VaV,e.
Let us first take a look at the final term. Commuting the derivatives acting on ¢
YAVAV,h =V, V6,
= =y V(77 na)

=1V,
=—7"'Vuy,

(2.125)

where in the third line we used the fact that n*V,n, = 0. This then brings about

a cancellation such that
h,u = 7_1h2v)\77
_ 1
= Va(=X) "2, (2.126)

2
7 A
—?hHVAX.

Plugging this back into Eq. (2.119) and using its trace, it is possible to show that
[100]

Li=GiR® + (2XGux — Gy) (K? = K, K"™) — 2V =XGyK .  (2.127)

This expression forms the basis for studying the cosmological perturbations of

L4. We do not discuss L5 as it does not introduce new free functions at the level
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of the background or linear pertrbations.
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Chapter 3

Reconstructing Horndeski theories
from the effective field theory of

dark energy

You could find out most things, if
you knew the right questions to
ask. Even if you didn’t, you could
still find out a lot.

Tan M. Banks

Identifying the nature of the observed late-time accelerated expansion of the
Universe [46], [47] is one of the major outstanding problems in physics. The
cosmological constant provides the simplest explanation but, as discussed in
Sec. [2.1] it is associated with a range of theoretical challenges [58]. We therefore
discussed in the previous chapter the approach of including an additional dark
energy component in the matter sector or modifying General Relativity on
cosmological scales [23], 62} [7T], 104], to address the observed cosmic acceleration
without necessarily including a cosmological constant. Large-scale modifications
of gravity may be motivated by low-energy extra degrees of freedom that could
arise as effective remnants of a more fundamental theory of gravity and couple to
the metric non-minimally (see Sec. [2.2.6]). Moreover, non-standard gravitational
effects can also be of interest to address problems in the cosmological small-scale

structure [105]. Cosmological observations provide a new laboratory for tests of
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gravity that differ by about fifteen orders of magnitude in length scale to the more
conventional tests in the Solar System [87]. Therefore it is well worth studying
the range of possible large-scale modifications that can arise and the independent

constraints on them that can be inferred from cosmology.

In the simplest case the modification is introduced by a universally non-minimally
coupled scalar field. This is the scenario considered throughout this thesis. Recall
from Sec. that the most general scalar-tensor theory introducing at most
second-order equations of motion to evade Ostrogradsky instabilities is described
by the Horndeski action [63, 81, [106]. Despite providing restrictions on the
space of possible scalar-tensor models, there remains considerable freedom within
Horndeski theory. As a result, testing any observational consequences of the free
functions in the Horndeski action directly is inefficient. It is necessary to solve
the equations of motion for each model that one wishes to test in turn, and then

compare it with observations.

Fortunately the formalism of effective field theory (EFT), introduced in Sec. 2.3
addresses these issues. One starts from the bottom up, with minimal assumptions
about the underlying theory, and then constrains a smaller set of functions that
parametrize a much larger class of covariant theories. It has proved to be a
fruitful approach. For example, it was shown using EFT that Horndeski theories
cannot yield an observationally compatible self-acceleration that is genuinely due
to modified gravity, unless the speed of gravitational waves significantly differs
from the speed of light [107, [108], now known to be incompatible with observations
[109] (see Sec. [4.3.2). The same techniques used in EFT were also utilized
in the discovery that there exists a class of scalar-tensor theories that contain
higher order time derivatives, yet still avoid ghost-like instabilities [I10] (also see
Ref. [I11]). Further applications can be found in Ref. [TT2HIT9).

Despite the utility of EFT, some issues remain to be addressed. For instance,
it is not clear whether the chosen parametrization of the EFT functions
arises naturally in modified gravity models [120-122]. Moreover, constraints
on parametrized EFT functions describing the cosmological background and
perturbations around it, cannot be connected to the non-perturbative nonlinear
regime or to different backgrounds than the cosmological setting. This omits,
for instance, constraints arising from the requirement of screening effects [62] in
high-density regions. Hence, in order to connect the observational constraints
and interpret them in terms of the allowed forms of the Horndeski functions, one

requires a covariant description of the phenomenological modifications adopted.
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In this chapter we present the reconstruction of a baseline covariant scalar-tensor
action from the EFT functions of a second-order unitary gauge action, defined in
Sec. [3.1] that shares the same cosmological background and linear perturbations
around it. Variations can then be applied to this action to move to another
covariant theory that is equivalent at the background and linear perturbation
level. This reconstruction enables measurements of parametrized EFT functions
to be related to a range of sources from the covariant Horndeski terms, which
can then be used to address the theoretical motivation of the phenomenological
parameterizations, a topic discussed in chapter 4. It can also be employed to
extend predictions to the nonlinear sector or to non-cosmological environments
and implement screening conditions on the theoretical parameter space. This

shall be explored in chapter 5.

The chapter is organised as follows. In Sec. 3.1} for convenience we briefly review
Horndeski scalar-tensor theory and the unitary gauge formalism that provides
the tools for an EFT approach to the cosmological perturbations. More details
can be found in chapter 2. We then present in Sec. the covariant action
that is constructed to reproduce the unitary gauge action up to second order
in the perturbations and hence yield the equivalent cosmological background
dynamics and the linear perturbations around it. In Sec. the derivation of
the reconstructed action is discussed, before applying it to a few simple example

models in Sec. [3.4] Finally, we present the conclusion of this chapter in Sec. [3.5]

3.1 Horndeski gravity and effective field theory

Horndeski gravity [63, 8], T06] describes the most general local, Lorentz-covariant,
four-dimensional theory of a single scalar field interacting with the metric that
yields at most second-order equations of motion and hence avoids Ostrogradsky
instabilities. We have encountered this action in Sec. but we shall repeat it

here for convenience. It is given by

S = Z/d%\/—_gﬁi, (3.1)
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where the four Lagrangian densities are defined as

Ly = Gafo, X), (3.2)
Ly = Gs(¢, X)0o, (3.3)
Ly = Ga(9, X)R

—2Gax(¢, X) [(0¢)* — (V'V"9)(V,.V.0)] | (3.4)
Ly = Gs5(¢, X)G, V"V

+5Gax(6,X) [(00)° — 3(00)(V,¥,0) (79"0)
2AV,V,0)(VIV6) (To9"0)] (35

were X = ¢"0,00,¢. These Lagrangians have been studied in a variety of
different systems including black holes [123, [124], neutron stars [125] 126] and
inflationary models [127, 128]. For cosmological purposes, at the background
and linear level, it has proven useful to adopt a unitary gauge description
of Eq. [7, 85, 100, 101]. In this EFT formalism the freedom in the
cosmological background metric and each G;(¢, X) reduces to five free time-
dependent functions. One describes the background dynamics while the other

four functions encompass the linear perturbations around it.

In the following, we shall briefly discuss the principles that go into building this
EFT for the cosmological dynamics in the unitary gauge (see Refs. [7, 85] for
more details). The Friedmann-Lemaitre-Robertson-Walker (FLRW) background
metric is defined as

ds® = —dt* + a*(t)dx?, (3.6)

where a(t) is the scale factor. The general procedure then invokes the Arnowitt-
Deser-Misner (ADM) formalism of General Relativity (see Sec. for more
details) on an FLRW background to foliate the spacetime with spacelike
hypersurfaces. The ADM line element is given by [95]

ds? = —N?dt* + hy; (do' + N'dt) (da? + N7dt) (3.7)

where N is the lapse, N* is the shift and h;; is the induced metric on the spacelike
hypersurface. The induced metric can also be written in four-dimensional

notation as

h,uzz = G + nyny , (38>

by identifying hgy = N'N; and hg; = N;. This framework provides a
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natural motivation for the introduction of the scalar field by treating it as
the pseudo-Nambu-Goldstone boson of spontaneously broken time translational
symmetry [85, 129]. By associating the time coordinate with the scalar field,
the scalar perturbations are absorbed into the metric. One is free to choose the
functional form of the spacetime foliation, as long as the scalar field is a smooth
function with a time-like gradient. We can then simplify the calculations by
setting

¢=tM?, (3.9)

where M, is a mass scale to match the dimensions. It can be thought of as a bare
Planck mass related to the physical Planck mass through corrections from the
EFT parameters [7]. Note that as the coordinate time is related to the scale factor
in the FLRW background metric a(t), and this in turn is related to the matter
content of the universe through the Friedmann equations, the gravitational action
and the matter action are now no longer independent after this identification has

been made.

In this unitary gauge, we furthermore have
X =g%¢" = (=1+6¢") M, (3.10)

where g% is related to the lapse via ¢°° = —N~2. Here and throughout this
chapter dots denote time derivatives and primes will represent derivatives with
respect to the scalar field ¢. Another geometrical quantity that will be used in

the EFT action is the extrinsic curvature K, defined as
K, =h,Von,, (3.11)

where n,, is the normal vector on the uniform time hypersurface,

ny, = ——=—. (3.12)

On a spatially flat FLRW background K,, = Hh,,, where H = a/a is the
Hubble parameter, and hence the perturbation of the extrinsic curvature becomes
0K, = K, — Hh,,,. The final geometrical quantity that will be used is the three

dimensional Ricci scalar R, defined in the usual way but with the metric Py

The full unitary gauge action that describes the background and linear dynamics
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of Horndeski gravity is then given by [7, 85] 100, [101]
S =S0Y 1 5@ 1+ Sy g, ], (3.13)

where

SO — MTE/d4x\/—_g [Q(H)R —2A(t) — T(t)5g™] | (3.14)

and
5@ _ / dia/=g BMg(t)((ngO)Z ~ S (0)5K g

— M (t) (51{2 — 0K"OK,, — %5R(3)5g00>] : (3.15)

For the zeroth and first-order action S©' we have adopted the notation of
Ref. [I13]. S@ is the action at second order and Sy, is the matter action with
minimal coupling between metric and matter fields. Note here that R®) is itself a
perturbation on flat FLRW. Although everything in this work assumes flat space
we keep the above notation of §R® to emphasize that it is a first- order quantity

throughout.

The EFT action separates out the background dynamics and the per-
turbations around it in a systematic way. We have six free functions of time,
where a seventh free function of time enters through the FLRW metric with
the scale factor a(t) or equivalently H(t). Four free functions are introduced
at the background level, while another three enter the dynamics of the linear
perturbations. Note, however, that two of the background EFT functions in
Eq. (3.14), including H(t), will be fixed by the Friedmann equations with a
specified matter content. Given H(t), this leaves a degenerate background
function which is only fixed at the level of the linear perturbations. The separation
of the background and linear perturbations is more manifest in the notation
introduced in Ref. [§], in which there is one free function H(t¢) that determines
the background evolution and four free functions describing the perturbations.
More specifically, the background equations that follow from the EFT action,

providing the two constraints, are given by [7, 113]

I +A=3(QH?+QH) — ik (3.16)
A =2QH +3QH? +2QH +Q, (3.17)

where we assumed a matter-only universe with pressureless dust.
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Finally, an important aspect of the unitary gauge action for the discussion
in Secs. and [3.3) is that, at the level of linear theory, no new EFT functions
appear in the description of L5 in addition to those introduced for £;_4 [100, [10T].
Hence, it will be sufficient to consider the reconstruction of a baseline covariant

action for £;_4 only.

3.2 Reconstructed Horndeski action

So far, much work has been devoted to representing specific theories in terms of
the unitary gauge EFT parameters and devising parametrizations of the time-
dependent EFT functions (see, e.g. Ref. [7HI, 85, 100, 10T, 130]). Here we
are interested in the inverse procedure. That is, the class of covariant theories
that a set of EFT functions corresponds to. While a previous reconstruction was
presented in Ref. [7], the resulting general covariant action is not of the Horndeski
type. Therefore it is not guaranteed to be theoretically stable. We shall now
present a covariant formulation of a scalar-tensor theory that is embedded in
the Horndeski action (3.1)) and is reconstructed from the free EFT functions
of the second-order unitary gauge action such that they share the same
cosmological background and linear dynamics. Given that it is not possible to
specify a unique covariant theory based on its background and linear theory only,
the reconstructed action will serve as a foundation upon which variations can
then be applied to move between different covariant theories that are equivalent
at the background and linear perturbation level. The basis of this reconstruction

is the correspondence between the covariant formalism and the particular unitary
gauge adopted, specified by Eq. (3.10).

The covariant Horndeski action that reproduces the same dynamics of the
cosmological background and linear perturbations as the EFT action (3.13)) is
given by (see Sec. for a derivation)

Go(6, X) = = MU(9) — S MPZ(6)X + ay(9) X

+AGs, (3.18)
(s X) = bo(d) + b1 (6)X + AGs, (3.19)
G, X) = %MEF(qﬁ) +e1(6)X + AGy, (3.20)
Gs(6 X) = AGs, (3.21)
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Z<¢):L_2M§ 3HM3 (ardy (M2 H(M3)  4H'M3
M4 MS

. M4 (MS)/ SHM?) (MQ " H(MQ)/ H/M2 3H2M2
az(¢) = ﬁ"’" 8]\/1[§ B 8M§1 B 41\31:3 + 4Mf6 + M§2 o 2M§2
B _HNMZ  (MZ) | M
bo(6) = 0 bi(@) = o — i+ awi
M3 M3
F(¢) = Q+ 3 c1(6) = o1k

Table 3.1  The coefficients of powers of X in the Horndeski functions G;(¢, X),
Eqs. (3.18) through (3.20)), reconstructed from the EFT functions of
the unitary gauge action (3.13)) (Sec. .

where the functional forms of the coefficients of X™ are presented in Table [3.1]
The notation in Egs. through is motivated such that Eq.
reduces to the scalar-tensor action of Ref. [I31] in the limit that as = by; = ¢; =
0. The variations AG; characterize the changes that can be performed on the
baseline action (AG; = 0) to move between different covariant actions that are
degenerate at the level of background and linear cosmology. For example, one may
add terms to Gy which are O [(1+ X/M2)?]. In the unitary gauge these terms
will be at least of order (6¢g°°)% and hence do not affect linear theory. Similarly,
after one takes into account an integration by parts relating terms in by(¢) and
Z(¢) the variations AG3 are O [(1 + X/M2)?]. In fact, any non-zero contribution
in by(¢) can be absorbed into Z(¢) in this way. Given this freedom, we have
set by to zero by default. The AG, term must be O [(1 + X/M2})*], which is due
to the presence of Gux in Eq. (3.35)), changing anything of O [(1 + X/M!)* to
O[(1+ X/M2})3] with the variation having no effect on linear theory. Finally, as
emphasized in Sec. 3.1} at the linear level contributions from G5 can be absorbed
into G, G3, and (G4, and so the first term that appears in G5 only affects nonlinear
scales. As L5 in the unitary gauge has at most one X derivative acting on Gj
[100], as with AG,, AG5 starts at O [(1 + X/M)4].

Importantly, note that the coefficients in Eqgs. through are not inde-
pendent since there are only five free independent EFT functions in Eq. (3.13).
Hence, this leads to constraint equations between the coefficients. Another aspect
worth noting is that due to the variations of the form (1 + X/M2)" around the

baseline covariant theory expressed in orders of X", the variations introduce
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well defined changes to all orders of each G; in Egs. (3.18)) through (3.20). The
functional form of each AG;, is specified by

AGua =360 (1437 ) (3.22)
n>2 *

MG =670 (14 55 ) (3.23)
n>3 *

where £(¢) are a set of n free functions for each AG;. Note that, using the
reconstruction, one can build a model with a non-zero constant EFT function A
and all the other EFT functions set to zero. As the addition of a AG; term does
not affect linear theory, by adding these extra terms one can construct a theory

that can only be discriminated from ACDM on nonlinear scales.

Given a set of unitary gauge EFT functions Q, T, A, M4, M3, M2 and H, one can
plug them into the relations given in Table and Eqgs. through and
derive the corresponding baseline covariant action. However, it is important to
stress again that the action obtained in the process is not unique. Indeed, it may
require the addition of specific AG; as well as several field redefinitions to recover

a recognisable form for a given theory. Examples of this are given in Sec. [3.4]

Finally, for ease of use, we present in Table the relation of the EFT functions
we have adopted to different parameterizations that are frequently used in the
literature. These expressions can be thought of as consistency relations. For
example, we have the relationship between the background conformal factor €2,

the mass scale M and the speed of gravitational waves c%

M,

Q(t) = WCT .

(3.24)
As discussed in Ref. [I07], a cosmological self-acceleration that is genuinely due
to modified gravity implies a significant evolution in €2 departing from the value
Q2 = 1 of General Relativity. The relation makes it explicit that this
requires a deviation of the Planck mass from its bare value M,, or a speed of
gravitational waves that differs from that of light. It hence tests the consistency
of a self-acceleration effect between the cosmological background, the large-scale

structure, and the propagation of gravitational waves.
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EFT functions | Notation in Ref. [7] a-parametrization

(1) 1 (t) e

r(t) e ~ i — 4B()

A(t) A Mz BH?G (14 awr) + B(t) + 3Hovy]
M (t) M (t) Lpm + 2 [H2ax + B(1)
M3(t) mi(t) M? [Hayc + ap — 2Hag]

M3 (1) mi(t) —3M?ar

Table 3.2  Relationship of the EFT functions adopted in this thesis to the
notation used in Ref. [1]. We have also derived here the expressions of
the EF'T functions in terms of the a-parametrization of Ref. [8] (with
conventions of Ref. [9]). Dots denote derivatives with respect to phys-
ical time t, c% = 1+arg is the tensor sound speed squared, and we have

defined here B(t) = c& [2H+HdM+aM (H_H2+H204M>} 4

Harp(2ap — 1) + ap for reasons of compactness.

3.3 Reconstruction Method

We shall now provide a derivation of the reconstructed covariant Horndeski action
presented in Sec. [3.2] The general approach to this reconstruction is as follows.
We consider the sequence of terms of the unitary gauge action contributing
at zeroth, first, and second- order. We contrast those with the different L;
contributions to the covariant Horndeski Lagrangian, Eqgs. through (3.4)).
For this, we put them into the unitary gauge, which is a well defined procedure
that has been dealt with in previous work [100, 10T]. This will identify the
Lagrangians that include the required terms in the unitary gauge action, but those
will also give rise to extra terms. Using Eq. it is possible to make these
extra terms covariant and subtract them from the Horndeski Lagrangian that
one originally started with. By construction, one is left with a covariant action
that reduces to the required terms in the unitary gauge action after making that
transformation. This procedure is only necessary for £3 and £4, where for £, the
reconstruction is straightforward. As discussed in Sec. L5 does not introduce
terms in the unitary gauge additional to the contributions arising from £,_4 and

can thus be omitted. With this procedure we obtain a self consistent and well
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defined reconstruction of a baseline covariant theory from the unitary gauge action
that shares the same cosmological background and linear perturbations around
it, and to which variations can be applied to move to another covariant theory
that is equivalent at the background and linear perturbation level (Sec. .
For the discussion of reconstructing a covariant action from the terms in S
we introduce the notation SZ.(Q) with i = 1,2,3 referring to S with all EFT
parameters set to zero apart from My, M7 and M2, respectively.

In Sec. , we discuss the quadratic contribution to Eq. arising from
the zeroth and first-order EFT action . The derivation of the first cubic
contribution to Eq. from second-order perturbations in the EFT action is
discussed in Sec.|3.3.2 Finally, the quartic term, Eq. , is derived in Sec.|3.3.3|

3.3.1 Quadratic term L,
To start, consider the unitary gauge action up to first order in the perturbations,

gon _ M2
Q=1 2

d*z/—g {R —2A(t) = T(t)6g™} , (3.25)

where we have set 2 = 1 (2 # 1 will be considered in Sec. [3.3.3). The
corresponding covariant action can be obtained through Eq. (3.10)), which yields

SQO?_/d%\/_{ “ R — M2A(¢)

J‘g* T(¢) — g(—]\gx} . (3.26)

This is simply the action of a quintessence model with a non-canonical kinetic

term (see Sec. |3.4.1)).

The contribution of the first second-order perturbation in the unitary gauge
action (3.15]) is

s = [aev=a{ o | (3:27)

Putting this into covariant form, one obtains the action

5 /d4x\/_{M4(¢) M;Z(;)X+ ]\ﬁg))@}. (3.28)

Eq. (3.28)) is the contribution that a k-essence model [132] makes to Eq. (3.26))

at second order in X. The covariant or unitary gauge combinations Sg);ll) + Sf)

86



describe the same cosmological background and linear theory of any function
G2(¢,X) in Eq " with G3 = G5 =0 and G4 = ME/Q

3.3.2 Cubic term L3

Next, we consider a non-vanishing M} coefficient, which is the first term to give
rise to a contribution to the cubic Lagrangian L3. It appears in the EFT action

as

1 -
Séz) = /d4x\/—g {—iMf(t)égooéK} : (3.29)

We now reconstruct a covariant action that reduces to Eq. to second-order
perturbations in the unitary gauge. For this purpose, it is sufficient to consider
the special case of G3(¢, X) = l3(¢)X where /3 is a smooth function of ¢ only.
One could do an alternative derivation by making G3(¢, X) a function of an
arbitrary power of X. Although the reconstructed covariant action would be
different, the linear theory would be the same. After a few integrations by parts,
in the unitary gauge adopting Eq. this term becomes [7], 100, [101]

M50y(¢) X0l = [ég(t) - 3@@)}1] 9% — 05(£)0g"5 K

L b5(0) (59"

— )5 (3.30)

— 30,(H)H +

We take all the terms apart from that involving 6¢"°0K to the left-hand side
of the equation and use Eq. (3.10) to write d¢g% in covariant form. Comparing

Egs. (3.30) and (3.29)), we also make the identification

l3(t) = M (t)M°. (3.31)

N| —

Hence, the covariant action that follows is given by

HM3 M2 M?)/ MS
552):/614.%\/__9{9 8 1 + *( 1) + 1 Xl:kb

g MO
SHM}? (M) (MP)  3HM} .,

_ X _ X 32
{ vyl R Y VISV ’ (3:32)

which reduces to Eq. (3.29) at second order in the unitary gauge. Note that after
making the replacement (3.10)), there are also extra factors of M, appearing from

the replacement of the time derivative with a derivative with respect to the scalar
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field via M3 = M2(N3).

3.3.3 Quartic term L4

Finally, we reconstruct the quartic Lagrangian density £,. The first contribution

arises from the background term Q(t),

M2
Sy =25 [ dev=giamny (3.33)

which, after using equation (3.9)), yields the quartic contribution G, = M?2Q(¢)/2.

We now proceed to the reconstruction of a covariant action that reduces to the
second order unitary gauge action ([3.15]) with all the EFT coefficients set to zero

apart from M2,

S = d‘{m/_ { ) (0K? — 6K"0K,,)

—_

+5 M3(t)OR 3)5900} : (3.34)

\)

For this purpose, consider the quartic Horndeski Lagrangian (3.4)) and transform
it into the unitary gauge. This results in [100]

L, = G4R® 4 (26" MG yx — G4)(K* — K, K™)
—2M?2\/—g"G K. (3.35)

In order to carry out the reconstruction it is necessary to identify G4 in terms
of the EFT parameters. To do this one has to compare the coefficient of R in
the covariant Lagrangian with that of R® in the unitary gauge Lagrangian. To

compare each term consistently, we will make use of the Gauss-Codazzi relation
R® =R - K, K" + K?—2V,(n"V,n" —n"V,n"), (3.36)

which relates R to R®). Hence, the contribution to the quartic term is

G, x) = M) <1+ X) | (3.37)

2 M}
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and the covariant Horndeski Lagrangian therefore is

2

_ M3(9)
M4

[(O6)? — V,.V,6V V] . (3.38)

Note that we have used that §R®) = R®) in flat space. Putting this into the

unitary gauge gives

_ 1 -
Ly=—M; (0K* - 6K"0K,,) + §M§53<3>590°
+6MIH?* —AMZHK — 3H*M366%

— - 1 -
+2MIHKSg™ — M36g" K + §M22K(5goo)2 : (3.39)

To obtain a covariant action that yields the second-order unitary gauge ac-
tion (3.35)), we take the last two lines of Eq. and move it to the left-hand
side. Care must be taken in the transformation of the term —4MZ2H K. In making
it covariant one first has to do an integration by parts to take the derivative in
K = V,n* onto the other coefficients. Using then the definition of n* in Eq.

one obtains an expansion in powers of §¢°° that up to second order goes as
2 d o 00 Lo 00y
—AM;HK = %(]\/[2 H)q4—26g" — 5(5{] ) p (3.40)

One can then make the usual replacement for §¢% in Eq. (3.10) and use the result
from Sec. to transform all the terms involving a d¢g"°6K. This yields the

covariant action

S5? / d*zv/—g { { M3 + %ﬁix} R— %i [(0¢)* — VIV"¢V,V,¢]

MA(M3)"  TM2(M3Z)H ., 9H?MZ  [(M2)"  H(M3Z)  2H'M?
o * o * _M2H/M2_ 2 2 2 2 X
4 4 * 2 2 +{ 2 2M?2 M?
(M3)"  H(M3) H'M; 3H>M3)| _,  [2HM; (M3)
— — — X X0
{4M§ IMS O MS o R YT V7, ¢

(3.41)

After putting action (3.41)) back into the unitary gauge, at second order in the
perturbations one obtains action (3.34)). Note that a different reconstruction of

5¢g°°6 R that is not contained within the Horndeski action was recently presented
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in Ref. [133].

Combining the actions S/(\O:JF):O, Sg(lojl), Sf), 552), and S;)EQ) in Egs. , ,
, , and , respectively, we obtain the expressions given for G;
in Egs. through , which thus are constructed to produce the same
cosmological background and linear perturbations as the EFT action . Note
that, as discussed in Sec. [3.2] the quintic term G5 does not introduce additional
EFT functions in S(°=2 and thus its phenomenology at the background and linear
perturbation level can be captured by G,_4. For simplicity, we have therefore

adopted a baseline reconstruction with G5 = 0 but allow for variations around

this solution in Eq. (3.21)).

3.4 Simple Examples

For illustration, we provide here a brief discussion of the application of the
reconstruction for three simple examples. In Sec. B.4.I, we show how a
quintessence model can be reconstructed and discuss some subtleties about the

canonical form of the scalar field action. We then apply the reconstruction to

f(R) gravity, cubic galileon gravity and a quartic model in Secs. |3.4.2] and
respectively.

3.4.1 Quintessence

Let us assume a measurement of Q(t) = 1, non-vanishing A(¢) and I'(¢), and
vanishing values for the other EFT functions. Applying this to the reconstructed
action defined by Egs. through , one finds the action . Note
that the kinetic contribution is not in its canonical form. To find the canonical

form of the action, we perform the field redefinition

a1
o M,

I'(¢) (3.42)

such that in terms of the new scalar field y, we obtain

S = / diy/ =g {%MER “V(y) - %(0;@2} | (3.43)
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where 1

V00 =32 (A0 + 5700 (3.44)
Including a non-minimal coupling term Q(¢) in front of R further allows one to
reconstruct a Brans-Dicke action in a similar way by choosing a suitable I'(¢)

associated with the Brans-Dicke function w(¢).

3.4.2 f(R) gravity

Next, we assume a measurement of varying €2(¢) and A(¢) while all other EFT
functions vanish. This is the scenario that would be expected for a f(R) model.
f(R) gravity can be written as a Brans-Dicke type scalar-tensor theory with a
scalar field potential and w = 0 (hence, vanishing I'). The scalar field in this
case can be associated with fr = df(R)/dR, where the potential has a particular
dependence on fg, specified by f(R) and R.

While we can therefore follow the same procedure as in Sec. for the
reconstruction, we also consider here a slightly different approach (cf. [7]). In this
case, instead of identifying the time coordinate with the scalar field, one identifies
it with the Ricci scalar, adopting a gauge where its perturbations vanish, 0 R = 0.

Hence, in this case, we directly find

Ly = QR)R—2A(R) = R+ [Q(R)R— R —2A(R)]
= R+ f(R). (3.45)

3.4.3 Cubic Galileon

Let us assume a measurement of
M?2T = 4My = 3HM} = —\H , (3.46)

and Q(t) = exp(—2M.t) with a positive constant A and all other EFT functions
vanishing. Applying this to the reconstructed action, defined by Egs. (3.18))
through (3.20)), and setting A = 6M2r?, defining a crossover distance r., we
obtain

M? r?
L= T*e—%/M*R - 3 X0+ Lar, (3.47)
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which is the Lagrangian density of a cubic galileon model [7, [134].

3.4.4 Quartic Lagrangian

To give a simple example of a reconstruction of a model involving Gy, let us
assume that the relation M2 = X holds for some constant A. In addition, assume

that the other EFT functions are related to H in the following way

M} = —4\H, My = —\H ,

. (3.48)
F+A=—-12H* T —A=8H.

Using these relations in the reconstructed action in Eqgs. (3.18)) to (3.20)) it is found
that, upon identifying A = M2, one recovers the following quartic Horndeski

Lagrangian

L= My + L x)\r-L [(O¢)* — V.V, oV V"¢ (3.49)
2 2M2 M?2 nrv ' '

*

3.5 Conclusions

This chapter has presented a reconstruction method which maps from parameters
in the effective field theory of dark energy back to a fully covariant Horndeski
action. The EFT of dark energy and modified gravity does enable a generalised
and efficient examination of a large class of theories and there has been much
work examining how to express a variety of given covariant theories in terms of
the EFT functions. To connect observables with theoretical Horndeski models the
inverse mapping is also required. Starting from a given EFT unitary gauge action,
for instance provided by measurement, one can derive a covariant Horndeski
Lagrangian that shares the same dynamics of the cosmological background and
linear fluctuations around it. As the reconstruction cannot be unique, we have
focused on the recovery of a baseline covariant Horndeski action that reproduces
the desired equivalent background and linear dynamics. We have furthermore
characterised the variations of this action that can be performed to move between
the covariant theories degenerate at the background and linear level. For
illustration, we have applied the reconstruction method to a few simple example
models embedded in the Horndeski action: quintessence, f(R) gravity, a cubic

galileon model and a quartic model.
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The following chapter will present a number of applications of the reconstruction.
Of particular interest is the construction of a covariant realisation of the linear
shielding mechanism shown to be present in Horndeski theories by analysis of its
unitary gauge action [II3] (also see Ref. [135]). This mechanism operates in a
large class of theories that can become degenerate with ACDM in the expansion
history and linear perturbations. However, the degeneracy can be broken
by the measurement of the speed of cosmological propagation of gravitational
waves [107]. This is now known to be equal to the speed of light [136] but as we
shall discuss this should not completely eliminate interest in these models. With
the reconstruction, we shall also examine the question of how well motivated
the frequently adopted parametrizations of the EFT functions in observational
studies are [120H122] 137]. Furthermore, the reconstruction will enable one to
directly employ measurements of the EF'T functions to impose constraints on the
covariant Horndeski terms, which will be of particular interest to future surveys
such as Euclid [27, 28] or the Large Synoptic Survey Telescope (LSST) [29).
Finally, the covariant reconstruction disentangles the cosmological dependence of
the Horndeski modifications in the EFT functions that is due to the spacetime
foliation adopted in the unitary gauge. Hence, a reconstructed action from
phenomenological EFT functions can be applied to non-perturbative regimes (see
e.g. Ref. [I38]) or non-cosmological backgrounds and used to connect further
observational constraints, for instance, arising from the requirement of screening
effects in high-density regimes. This shall be explored in chapter [5] This list of

applications of the reconstructed Horndeski action is far from exhaustive.
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Chapter 4

Applications of the reconstruction

You can know the name of a bird
in all the languages of the world,
but when you’re finished, you’ll
know absolutely nothing whatever
about the bird. So let’s look at the
bird and see what it’s doing.

That’s what counts.

Richard P. Feynman

4.1 Introduction

This chapter presents a number of applications of the reconstruction from the
EFT of dark energy back to manifestly covariant Horndeski theories introduced
in the previous chapter. In particular, it will be concerned with the connection of
observational parameters with underlying theories, providing a vital link between
the parameter constraints from future cosmological data sets and their theoretical
interpretation. Eventually it is hoped that through such techniques it will be
possible to significantly rule out or favour Horndeski theory as a whole with
various cosmological observations. Recently, the LIGO/Virgo measurement of
the gravitational wave GW170817 [109] emitted by a binary neutron star merger
with the simultaneous observations of electromagnetic counterparts [136], 139

has already led to a significant reduction of the available theory space within
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Horndeski at late times, as was first anticipated in Refs. [107, 108]. The
GW170817 event occurred in the NGC 4993 galaxy of the Hydra cluster at a
distance of about 40 Mpc and enabled a constraint on the relative deviation of the
speed of gravity ¢z from the speed of light (¢ = 1) at O(10~1) for z < 0.01 [136].
This agrees with forecasts [107), [140] inferred from the increased likelihood with
increasing volume at the largest distances resolved by the detectors, expecting a
few candidate events per year, and emission time uncertainties. It was anticipated
that the measurement would imply that a genuine cosmic self-acceleration
from Horndeski scalar-tensor theory and its degenerate higher-order extensions,
including the Galileon theories, can no longer arise from an evolving speed of
gravity and must instead be attributed to a running effective Planck mass [107].
The minimal evolution of the Planck mass required for self-acceleration with
cr = 1 was derived in Ref. [I08] and was shown to provide a 30 worse fit to
cosmological data than a cosmological constant. Strictly speaking, this only
applies to Horndeski theories, where ¢ = 1 breaks a fundamental degeneracy in
the large-scale structure produced by the theory space [107, [113]. Generalizations
of the Horndeski action reintroduce this degeneracy [113] but self-acceleration in
general scalar-tensor theories is expected to be conclusively testable at the 5o
level with Standard Sirens [107] (also see Refs. [141HI144]), eventually allowing
an extension of this No-Go result. The minimal model serves as a null-test for
self-acceleration from modified gravity. It is therefore worth examining whether
future observational probes of the large-scale structure are capable of tightening
the constraint beyond the 3c-level. Finally, the measurement of ¢y ~ 1 with
GW170817 in particular implies that the quintic and kinetically coupled quartic
Horndeski Lagrangians must be negligible at late times [145] [146] (also see e.g.,
Refs. [107, 117, T47HI55] for more recent discussions). The measurement also
led to a range of further astrophysical and cosmological implications (see, e.g.,
Ref. [150]).

Despite giving strong restrictions on the set of scalar-tensor theories that could
explain the accelerated expansion, there remains a great deal of freedom in the
model space after the GW170817 observation and the phenomenological study
of the quintic and kinetically coupled quartic Horndeski Lagrangians should not
be dismissed so soon. There are two important aspects to be considered in this
argument. On the one hand, the speeds of gravity and light are only constrained
to be effectively equal at the low redshifts of z < 0.01. This certainly applies to
the regime of cosmic acceleration but not to the early Universe, where a decaying

deviation in cr could still lead to observable signatures without invoking fine-
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tuning. Moreover, for more general scalar-tensor theories, the linear shielding
mechanism [IT3] may be extended to a modified gravitational wave propagation,
where the Horndeski terms could cause cosmic self-acceleration while other terms
may come to dominate for the wavelengths relevant to GW170817. These
wavelengths differ by those associated with cosmic acceleration by O(10'%) [157].
Hence, in this chapter we will not exclusively restrict to the models satisfying
the GW170817 constraint, envisaging more general applications of the methods

presented.

As we have discussed in Sec. the EFT of dark energy provides a useful
approach to studying the cosmological effects of a variety of Horndeski models in
a unified way. This generality comes at a cost. Currently, one either has to start
from a given fully covariant theory and compute the EFT coefficients in terms
of the functions defined in the covariant action, or take a phenomenologically
motivated parameterization for the EFT functions. In the first instance, one
is essentially left with the original problem of having a large range of theories
to compare with observations. Following the second approach gives a general
indication of the effects of modified gravity on different observational probes, but
it is generally unclear what physical theories are being tested when a particular

parameterization is adopted.

In the previous chapter we developed a mapping from the EFT coefficients to
the family of Horndeski models which give rise to the same background evolution
and linear perturbations. This mapping provides a method to study the form
of the Horndeski functions determined from observations on large scales. One
can furthermore address the question of what theories various phenomenological
parameterizations of the EFT functions correspond to. We shall examine the
form of the underlying theories corresponding to two commonly used EFT
parameterizations for late-time modifications motivated by cosmic acceleration.
Reconstructed actions that exhibit minimal self-acceleration and linear shielding
are also presented. We furthermore apply the reconstruction to phenomenological
parameterizations such as a modified Poisson equation and gravitational slip [I58-
162] as well as the growth-index parametrization [163H165]. These are the primary
parameters that the next generation of galaxy-redshift surveys will target [27-
29]. With the reconstruction it is possible to connect these parameterizations
with viable covariant theories, and explore the region of the theory space being
sampled when a particular parameterization is adopted. The reconstruction is

also applied to a phenomenological model that exhibits a weakening of the growth
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of structure relative to ACDM today, which may be of interest to address potential
observational tensions [160, [167]. Finally, in every analysis of the EFT model
space it is necessary to ensure that the chosen model parameters do not lead to
ghost or gradient instabilities. When comparing models with observations this
can, for instance, lead to a highly inefficient sampling of the model space and
misleading statistical constraints due to complicated stability priors. To avoid
those issues, we propose an alternative parameterization of the EFT function
space, which uses the stability parameters directly as the basis set such that

every sample drawn from that space is inherently stable.

The chapter is organised as follows. In Sec. we briefly review the EFT
formalism, in particular reviewing a commonly used alternative basis for the
EFT functions, before specifying the stability criteria imposed on the model
space. We then propose a new inherently stable EFT basis that we argue
is most suitable for statistical comparisons of the available theory space to
observations. Sec. covers a number of different reconstructions, ranging from
commonly adopted parameterizations encountered in the literature (Sec.
to models for minimal self-acceleration (Sec. [£.3.2)), linear shielding (Sec. [£.3.3),
phenomenological modifications of the Poisson equation and gravitational slip
(Sec. , the growth-index parametrization (Sec. , and weak gravity
(Sec. . In Sec. we provide an example of a reconstruction from the
inherently stable parameter space. before inspecting the impact of the choice
of EFT parametrization on the reconstructed theories in Sec. 4.4, Finally, we

discuss conclusions in Sec. 1.5

4.2 Alternate bases for EFT of dark energy

parameters

At second order, Horndeski gravity corresponds to the EFT action in Eqs.
and . In general, various subsets of Horndeski theory lead to separate
contributions from the EFT coefficients. In particular, theories compatible with
the GW1710817 observation must satisfy M2(t) ~ 0 at z < 0.01. Taking
into account the Hubble expansion H(t) = a/a and the two constraints from
the Friedmann equations, Egs. f contain five independent functions
capable of describing the background and linear perturbations of Horndeski

theory.
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An alternative basis for these EFT functions with a more direct physical
interpretation [8]. See Table I of Ref. [9] and Table [3.2|for the connection between
the two descriptions, although bear in mind the different conventions. This basis

is defined via

M2QY + 2(NI2Y

= = 4.1
ca M2Q + 2007 (4.1)
MZHSY + M?
ap = ——ro L (4.2)
2H (M2 + 2)12)
M2T + 40}
= * = 4.3
KT T (M2 + 2003) (43)
202
- M 4.4
o M2Q + 2012 (4.4)

where throughout this section primes denote derivatives with respect to Ina.
Here )y describes the running of the effective Planck mass M = \/M2Q + 2M2
defined through ay; = dIn M?/d1n a, allowing for some variation in the strength
of the gravitational coupling over time. The function ap describes a braiding
or mixing between the kinetic contributions of the scalar and tensor fields. The
function ak enters through the kinetic term of the scalar field and only becomes
relevant on scales comparable to the horizon. Finally, cr describes the deviation

of the speed of gravitational waves from the speed of light with c% = 1 + ar.

4.2.1 Stability Criteria

To ensure the absence of ghost and gradient instabilities it is necessary to impose
certain constraints on the EFT functions. For instance, in order to avoid a kinetic
term with the wrong sign or an imaginary sound speed for the scalar modes one
must have [§]

a=ag+6ap>0, >0, (4.5)

S

where the soundspeed ¢, is given by
2 21, 2
=== [+ (1 + ar)(1 + ap)

H' Pm
_(1+QM_E><1+O[B)+W . (46)
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Furthermore, the stability of the background to tensor modes requires
>0, M*>0. (4.7)

One must be careful when using parametrizations of the EFT functions to
reconstruct covariant theories that the stability conditions are satisfied. A way to
achieve this that we adopt in Secs. is to set the soundspeed equal to
unity and use this as a constraint on the EFT coefficients. It then remains to check
that the other conditions are also satisfied by hand. This is somewhat restrictive
as there are many viable stable scalar-tensor theories that do not have ¢? = 1.
An alternative approach is to directly parameterize the stability conditions as a
new set of EFT functions (Secs. [4.2.2 and [4.3.7)).

4.2.2 A New Inherently Stable Parameterization

For generic tests of modified gravity and dark energy, a range of different time
parametrizations (see Sec. are commonly adopted for the EFT coefficients
in SO and S® or for the a; functions. These parameterizations do not a priori
satisfy the stability criteria in Egs. and . As a consequence the sampling
in this parametrization, for example when conducting a Markov Chain Monte
Carlo (MCMC) analysis to constrain the EFT parameter space with observations,
can be highly inefficient. Only a very small fraction of the samples will hit a stable
region of parameter space. Moreover, the stability criteria can yield contours on
the parameter space that are statistically difficult to interpret. For instance,
ACDM can be confined to a narrow corner of two intersecting edges produced by
the stability requirements. This corner may only be sparsely sampled and could

lead to spurious evidence against concordance cosmology.

To avoid those issues, we propose here a new basis for the parametrization of
modified gravity and dark energy models in the effective field theory formalism.
We will make use of the GW170817 constraint ar ~ 0 at z < 0.01 and assume
that it applies throughout the late-time domain of interest here. We define a

function B through

/

B
1+CMBEE. (4.8)

Eq. (4.6) can then be expressed as a linear homogeneous second-order differential
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equation for B with

H' p ac?
B"— (1 —— | B = =1 B=0. 4.9
( + ans H) +<2H2M2+ 5 ) (4.9)
By the existence and uniqueness theorem for ordinary differential equations a real
solution exists for real boundary conditions on B and B’. Alternatively, we may

provide an initial or present value ap; or apgg, respectively.
Hence an inherently stable parametrization of the EFT function space for
modified gravity and dark energy can be defined by parametrizations of the basis

M*>0, >0, a>0, apy)=const., (4.10)

S

along with the Hubble parameter H. The braiding function az can be determined
from the integration of Eq. (4.9) and ak from ap and a.

We advocate that this basis should be used for observational constraints on
the EFT function space to avoid the problems described earlier. It also
provides a direct physical interpretation of the observational constraints. While
parametrizations in H classify quintessence dark energy models where o > 0, ¢?
describes more exotic dark energy models with agg # 0 adding an imperfection to
the fluid and M # M, modifying gravity. In ACDM, M = M,, ¢, drops out and
the remaining parameters vanish. This parameterization furthermore addresses
the measure problem on the parameter space. While it is difficult to know a priori
what is a reasonable prior range to place on the a; parameters, it is much clearer
in this physical parameterization. In addition, if measurements of these physical
parameters seem to approach a fixed value it becomes easier to place bounds on
the desired accuracy. We shall apply the reconstruction to a model defined in this
basis in Sec. Note that one can easily add the beyond-Horndeski parameter
ag to this basis, which will introduce a modification in ¢2. Various examples of
how to map this parameterization to different dark energy and modified gravity
models can be found in Ref. [16§].

4.3 Reconstructing covariant theories

We now present a series of applications of the mapping relations derived in the
previous chapter. We begin with a reconstruction of common parameterizations
of the EFT functions used in the literature (Sec. 4.3.1) and then examine the
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Figure 4.1 Reconstructed contributions to the Horndeski action for ACDM,
normalized with powers of H received in the reconstruction (See
Table. . The curves serve as reference for the comparison of
the reconstructed modifications in Secs. 4.3.1.  Due to the
normalization with H?, the cosmological constant appears to decay
at high redshift.

form of the underlying theory of the minimal self-acceleration model (Sec.
and theories that exhibit linear shielding (Sec. . Following this, we discuss
reconstructions from more phenomenological modifications of gravity with a
modified Poisson equation and a gravitational slip (Sec. as well as the
growth-index parametrization (Sec. . We then present a reconstruction of a
model which has a weakened growth of structure relative to ACDM (Sec.

before concluding with an example of a reconstruction from the inherently stable

parameterization introduced in Sec. 4.2.2| (Sec. 4.3.7)).

Recall the reconstructed Horndeski action is defined such that when expanded
up to second order in unitary gauge one recovers Eq. with the Horndeski
functions given in Egs. through . It is worth noting that taking
cr ~ 1 as a linear constraint sets ¢; = 0 in Eq. but does not directly make
a statement about AG,x/5. However, excluding the highly unlikely cancellation
of ¢; and AGyx/s, and assuming approximately linear theory from the outskirts
of the Milky Way with ¢; = 0, the nonlinear contributions AGy/s are still

constrained by |cp — 1] < 10713,

In illustrations of the reconstructed Horndeski functions G;, each contributing
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term is divided by the powers of H it receives multiplying the EFT functions
in the reconstruction (see Table [3.1). This ensures a meaningful comparison
of the effective modifications from ACDM rather than providing illustrations
for deviations that are suppressed and do not propagate to the cosmological
background evolution and linear perturbations. For instance, we have U(¢)/H? ~
bi(¢)/H ~ M2. As a reference, we show in Fig. the Horndeski functions G;
that correspond to ACDM, where G4 = 1, Gy = —2A and G3 = G5 = 0, i.e.,
in particular the term A/H?. The Planck 2015 value €, = 0.308 [169] for the
matter density parameter is adopted throughout the thesis. We also work in
units where the bare Planck mass M, = 1, such that the vertical axis on each
plot indicates the deviation from this value. Because the choice of how the scalar

field is defined is arbitrary, we present the reconstructed terms as functions of

Ina rather than ¢, except for the examples given in Secs. [4.3.1| and 4.3.2, The

colour scheme is set such that the terms in blue correspond to terms that can be
identified in the matter sector, whereas the red terms couple to the metric and so
in that sense are a “modification” of gravity. These modified gravity terms are

F(¢) and ¢;(¢), the latter being non-zero when the ar = 0 constraint is dropped.

It is worth noting that one always has the freedom to redefine the scalar field
¢ in the action. We shall briefly discuss how one can recast the reconstructed
coefficients of the covariant theory from functions of Ina to a more standard
description. For this purpose, we choose the Brans-Dicke representation, where
F(¢) = 1, and then re-express all of the terms in the reconstructed action as a
function of the new scalar field ¢. This choice implies ¢ = F~!(¢)) and

O = fF(W)Ou¥, (4.11)

where for simplicity we have defined the function f(¢)) = d(F~1)/di. After this
field re-definition the reconstructed action written in terms of ¢ is transformed
into a scalar-tensor action for ¢ with (9¢)% = f2(¢)(9v)?* and U¢ = f(v)0y +
df /dip (O1))?. The new representation of the theory then involves the terms

U() = U@, (4.12)
ZW) = f)Z{), (4.13)
(o) = PO, (4.14)
(0) = @)+ bW (4.15)

Depending on the functional form of f() higher-derivative terms may be



enhanced or suppressed in this description. For consistency, in this representation

we also transform the Hubble parameter to be a function of ¢ such that H — H.

We will show examples of this transformation in Secs. 4.3.1| and [4.3.2]

4.3.1 Reconstruction of common EFT parameterizations

A common choice of phenomenologically motivated functional forms of the EFT
modifications is to parameterize them in such a way that they only become
relevant at late times. Typically their evolution is tied to the scale factor
a(t) or to the dark energy density Qu(a) = HZQ/H? raised to some power g.
Note that now, with the GW170817 constraint, self-acceleration from modified
gravity is strongly challenged as a direct explanation for the late-time accelerated
expansion [I08] and it can be questioned whether the functional form of such
parameterizations continues to be well motivated. On the other hand, a dark
energy model may still introduce a related modification of gravity, for instance,
as a means to remedy the old cosmological constant problem of a non-gravitating

vacuum. We set this issue aside for now and adopt the two parametrizations

Ly = Oéi0a<t)qi s (416)
qi
B L0y = Oy (QA(CL)> . (417)
QA,O

Here the label i runs over the set of functions {i € M, T, K, B} in Eqgs. (4.1)—(4.4).
The two parametrizations can be used to study the effect of small deviations from
ACDM in the linear late-time fluctuations resulting from a set of non-vanishing

(678

In principle, there are many alternative parameterizations that could be used
beyond these simple ones. For the purposes of this chapter we shall however
restrict to these two examples which have been frequently used in the literature
(see e.g. Ref. [I37]). It was recently suggested that those are sufficiently
general to encompass the linear effects of the different time dependencies in a
variety of modified gravity theories [122] (however, also see Ref. [120]). The
reconstruction from EFT back to manifestly covariant theories provides a method
to examine how the underlying covariant theory changes with a different choice
of parameterization. One can thus begin to address the question of what scalar-
tensor theory is actually being constrained when a particular parameterization is

adopted.
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Examples of reconstructed actions arising from two different

parameterizations of the EFT functions A and B specified in
FEqs. and . We chose equal amplitudes for the
COmparison. The general evolution of the modifications is
unaffected by the particular choice of time parametrization, although
the magnitude of the wvarious terms 1is enhanced when using
parameterization A. This can be attributed to the convergence to
constant o at late times in B. The reconstructed terms of the scalar-
tensor action can be converted into functions of a scalar field i,
for instance, by adopting a Brans-Dicke representation and casting
the functions in terms of F — 1 (see Fig. . However, as the
choice of scalar field is arbitrary, the reconstructions shall generally
be illustrated as functions of Ina.
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Figure 4.3 Brans-Dicke representation, with F(¢) = 1, of the reconstructed
scalar-tensor theories illustrated in Fig. [{.3. We have transformed
the Hubble rate H — H such that it is also a function of ¥ and
divided each term in the action by appropriate powers of H (see

Sec. .

105



To provide concrete examples for the models that are reconstructed from
Eqgs. and , we parametrize o/, ag and ar with A or B and then set
ag such that ¢ = 1 (see discussion in Sec. . Note that strictly speaking
this deviates from adopting Egs. and for all a; but it simplifies the
stability treatment of the model. Furthermore, the deviation is only relevant on
near-horizon scales. Numerical values for o,y are then chosen to ensure that the
stability condition o > 0 in Eq. is satisfied. For illustration, we set apg = 1,
apy = —0.3 and arg = 0 with ¢; = ¢ = 1. This yields a stable scalar-tensor theory
for both parameterizations A and B. The corresponding terms of the Horndeski
functions are shown in Fig 4.2l The behavior of the reconstructed theories is
tied to the functional form of the parameterization used, with the Horndeski
modifications becoming more relevant at later times. We note that the general
form of these modifications is independent of the particular parametrization
adopted between A and B. However, one can identify minor differences. For
instance, the magnitude of the reconstructed modifications for A are larger. This
is due to saturation of the modifications in B at late times. This particular choice
for each ayy leads to a model with an enhanced potential relative to ACDM and
the standard kinetic term Z(¢) dominating the action at late times. There is
a small contribution from the cubic term b;(¢) but the k-essence term as(¢) is
negligible. We present a number of examples which examine the sensitivity of the
reconstruction to changes in ;o and ¢; in Sec. [£.4] For instance, by increasing
the powers ¢; in each of the parameterizations, the effects of modified gravity and
dark energy are delayed to later times. Changing the amplitude of each a;y on
the contrary has a larger effect on the underlying theory. For example, when apg
dominates over ay, the cubic Galileon term b;(¢) dominates over the potential
U(¢) at late times, whereas when «; dominates over ap the potential and kinetic
term Z(¢) are enhanced with smaller contributions from the k-essence and cubic
Galileon terms. However, we find that the mapping is relatively robust, with
small deviations in the a; parameters around some fixed values not significantly
altering the underlying theory. While we have checked this for a number of

examples, further work is necessary to investigate this aspect more thoroughly.

Finally, in Fig. we illustrate the corresponding Brans-Dicke representations
of the reconstructed theories for A and B that are presented in Fig. In this
description the behavior of each term in the reconstruction is now dependent on
the evolution of F(¢). It is clear that the functional form of each term in the

theory remains broadly similar whether parameterization A or B is chosen.
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4.3.2 Minimal self-acceleration

The LIGO/Virgo constraint of |er — 1| < O(107%9) and its implication that a
genuinely self-accelerated Universe in scalar-tensor gravity must be attributed to
a significant evolution in M? was first anticipated in Ref. [I07]. This trivially
excludes acceleration arising from an evolving speed of gravity c¢r and the
according class of gravitational models such as genuinely self-accelerated quartic
and quintic Galileons and their Horndeski and higher-order generalizations with
ar # 0, i.e., Gyx, G5 # 0 for Horndeski gravity (see e.g. Ref. [145] [146]). With
this expectation, Ref. [108] devised the minimal surviving modification of gravity
that can yield cosmic self-acceleration consistent with an event like GW170817.
We briefly review this model, before presenting a corresponding reconstructed

covariant scalar-tensor theory.

While self-acceleration may generally be defined as cosmic acceleration without
a cosmological constant or a scalar field potential, this definition includes exotic
dark energy models like k-essence [I32] or cubic Galileon and Kinetic Gravity
Braiding (KGB) [I70] models. Hence, a more precise definition is required if
cosmic acceleration is genuinely to be attributed to an intrinsic modification
of gravity. This definition also needs to distinguish between models where
dark energy or a cosmological constant drives cosmic acceleration but where
a modification of gravity may still be present. As a definition of a genuinely
self-accelerated modification of gravity in chameleon gravity models, Ref. [171]
argued that while cosmic acceleration should be present in the Jordan frame with
metric g,,, it should not occur in the conformally transformed Einstein frame
Guw = §2g,, with the conformal factor 2. Otherwise, the acceleration should be
attributed to an exotic matter contribution. In Ref. [I07] this argument was
generalized to include an evolving speed of gravity ¢y in addition to an evolving
strength of gravity M~2 as the cause of self-acceleration. This encompasses the
quartic and quintic Galileon models as well as their generalizations in the full
Horndeski action and beyond. These effects can be described by an effective
conformal factor in the cosmological background that absorbs the contributions
from conformal and disformal couplings in the Einstein frame. An FEinstein-
Friedmann frame can then be defined from the effective conformal (or pseudo-
conformal) transformation of the cosmological background. Alternatively, this
can be viewed as assigning genuine cosmic self-acceleration to the magnitude of
the breaking of the strong equivalence principle [71]. Note that self-acceleration

arising from a dark sector interaction would correspondingly be attributed to the
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Figure 4.4 Top: The scalar-tensor theory yielding the minimal modification
of gravity required for self-acceleration with cp = 1. Note that
the scalar field potential at early times ensures a recovery of the
decelerating phase of ACDM and decays in the accelerating phase
H? < A to barely prevent positive acceleration in Finstein frame.
Bottom: The minimal self-acceleration model expressed using the
Brans-Dicke representation in terms of v. We have divided each
term by the corresponding factors of f(v) for a clearer comparison
to the left-hand panel. Note that as F(¢) is decreasing, the forward
direction in time corresponds to decreasing values of 1.
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breaking of the weak equivalence principle.

With this definition, genuine self-acceleration implies that in the Einstein-
Friedmann frame
@ <0 (4.18)
dez =
with the minimal modification obtained at equality. From inspection of the
transformed Friedmann equations, it follows that this condition can hold only

if the EFT function (Q satisfies [107]

dIn Q)
_ > 1). 4.1
201 (4.19)
Note that 172

implying that self-acceleration requires a significant deviation in the speed of
gravitational waves or an evolving Planck mass. Since GW170817 strongly
constrains the deviations of cr at low redshifts, i.e., in the same regime of cosmic
acceleration, one can set cr = 1 (ar = 0) in Eq. (4.20), so that self-acceleration
must solely arise from the effect of M? (or ayy) [107]. The minimal modification of
gravity for genuine cosmic self-acceleration can then be derived by minimizing the
impact of a running M? on the large-scale structure. For Horndeski gravity, this
implies ag = aj with ¢ = 1 setting a [108]. The EFT functions of the model
are then fully specified by a given expansion history H(z), which for a minimal
departure from standard cosmology can be set to match ACDM. We present

the reconstructed scalar-tensor action for minimal genuine self-acceleration in
Fig. (4.4

Note that for a ACDM expansion history, cosmic acceleration in Jordan frame
occurs when H? < A. Hence, a minimal self-acceleration must recover U/H? = 1
at the transition from a decelerating to an accelerating cosmos. There is therefore
still a scalar field potential or cosmological constant that contributes to reproduce
the ACDM expansion history in the decelerating phase where there are no
modifications of gravity but then it decays at a rate so as not to introduce any
positive acceleration in the Einstein-Friedmann frame, keeping the Universe at
a constant expansion velocity. The cosmic acceleration in Jordan frame is then
solely driven by the decaying Planck mass, commencing at the threshold H? < A.
It is in this sense a model with the minimal gravitational modification required for

positive acceleration. Alternatively, the scalar field potential could be removed
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by hand, but this would lead to a loss of generality and the conservative character

of the inferred conclusions.

The reconstructed scalar-tensor terms F(¢) and U(¢) for minimal self-acceleration
in Fig. are decaying functions as expected, with the behavior of the other
terms acting to minimize the impact on scalar perturbations and the large-
scale structure. At redshift z = 0, we find comparable contributions from the
quintessence Z(¢), k-essence as(¢) and cubic Galileon b (¢) terms indicating that
they are all required to ensure a minimal self-acceleration. Ref. [T08] performed
a MCMC analysis of the model with recent cosmological data, finding a 30 worse
fit than ACDM and hence strong evidence for a cosmological constant over the
minimal modification of gravity required in Horndeski scalar-tensor theories for
self-acceleration and consistent with the expectation of the GW170817 result.
The constraints are driven by the cross correlation of the integrated Sachs-
Wolfe effect with foreground galaxies. It is worth noting that the minimal
self-acceleration derived for M? also applies to beyond-Horndeski [110), [111]
theories or Degenerate Higher-Order Scalar-Tensor (DHOST) theories [66]. Due
to the additional free EFT functions introduced in those models, however, the
measurement of ap =~ 0 is not sufficient to break the dark degeneracy and linear
shielding is still feasible [I13]. However, it was pointed out in Ref. [107] that
Standard Sirens tests of the evolution of M? are not affected by this degeneracy
and may provide a 5o result on minimal self-acceleration for Horndeksi gravity
and its generalizations over the next decade. Independently of future gravitational
wave measurements, minimal self-acceleration provides a benchmark model which
can quantify to what extent galaxy-redshift surveys like Euclid [27], 28] or LSST
[29] can exclude cosmic self-acceleration from modified gravity, precluding dark

degeneracies (or linear shielding) in higher-order gravity.

4.3.3 Covariant model with Linear Shielding

A number of classes of scalar-tensor theories that cannot be distinguished
from concordance cosmology via observations of the large-scale structure and
background evolution alone were presented in Ref. [I13]. This phenomena arises
through a linear shielding mechanism. It was then shown in Ref. [I07] that for
Horndeski theories the measurement of ay = 0 breaks this degeneracy. However,
linear shielding still remains viable in more general scalar-tensor theories and

its extension to the modified gravitational wave propagation may even provide
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Figure 4.5 The scalar-tensor theory that exhibits linear shielding for the
parameterization in Eq. (4.23)).

a means to evade the GW1701817 constraint for self-acceleration from ¢z [157].
It is furthermore worth considering that the apr ~ 0 constraint only applies at
late times and it may remain of interest to examine Horndeski models with non-
vanishing a7 at higher redshifts that may also undergo linear shielding. It is
therefore worthwhile to examine some basic forms of the scalar-tensor theories

that give rise to linear shielding.

In order to recover ACDM in the linear cosmological small-scale limit, for models
belonging to the My class of linear shielding, the EFT functions must satisfy the
conditions [107, [113]

1 — k2 M?

ap

ayM? = agr®’M* —

Pm H' 2
X {m + |iO/B+C¥B—|— (1+043)ﬁ:| M } , (421)

K2ZM? — 1
.
(L + ap)? — 1M

ap = (4.22)
Applying these constraints, setting the background expansion to match ACDM
and fixing ¢ = 1 leaves one free EFT function. With a parameterization of this
function and applying the reconstruction, one can then find a scalar-tensor theory

that exhibits linear shielding.
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Here we adopt the same parameterization as Ref. [113] and choose
Qa) =14+ Qa", (4.23)

with €, = —0.1 and n = 4. The general behavior of all the terms in the
reconstruction of this linear shielding model is fairly insensitive to changing the
magnitude of €2, the one free parameter in the model. The action does differ

under a change in the sign of €2, , but this acts to decelerate the expansion.

We illustrate the reconstructed scalar-tensor action for the choice of parameters in
Fig.[i.5l U(¢) is dominated by the EFT function A(¢) which behaves in a similar
way to the minimal self-acceleration model, acting as a cosmological constant at
early times before decaying away at late times. The late-time decay of A(t) is
compensated by the other terms in the reconstruction to ensure that the linear
perturbations are not affected in their ACDM behavior. F(¢) also decays which
is a consequence of the choice of a negative €2, | required for self-acceleration. The
linearly shielded Horndeski model requires a decrease in the speed of gravitational
waves over time which leads to ¢;(¢) growing in time. The kinetic terms become
more dominant at late times, predominantly being driven by I and M with the
form of ay(¢) essentially mimicking that of M. In by(¢) the contributions M

and M2 compete and suppress it relative to the other terms in the action.

Although the conditions for linear shielding may seem contrived when expressed
in terms of the EFT parameters, we find that it is nevertheless the case that
there is a generic scalar-tensor theory which gives rise to this mechanism for
the particular parameterization we adopt. It is also worth bearing in mind that
observational large-scale structure constraints allow for a broad variation around
the strict conditions in Eqs. and in which the model space remains
observationally degenerate with ACDM.

4.3.4 [, and 7 reconstruction

The effects of modified gravity and dark energy on the large-scale structure can
be described phenomenologically by the behaviour of two functions of time and
scale that parameterize a deviation in the Poisson equation u(a, k) and introduce
a gravitational slip 7(a, k) [I58H162]. We shall work with a perturbed FLRW
metric in the Newtonian gauge with W = §gg9/2g00 and ® = d¢;;/2g;; and matter

density perturbations A,, in the comoving gauge. The effects of modified gravity
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Figure 4.6 Left: Reconstructed action from a direct parameterization of the
modified Poisson equation and the gravitational slip.  Right:
Reconstructed action from the growth-index parametrization.
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and dark energy on the perturbations can be described via the relations

2

2q _ _ FPm
k¥ = — VoL wla, k)A, (4.24)
¢ = —n(a,k)¥, (4.25)
where ky = k/(aH). Energy and momentum conservation then closes the

system of differential equations and one can solve for the evolution of the linear

perturbations.

The modifications p(a, k) and n(a, k) are more general than the EFT formalism
but the two can be linked in the domain covered by the EFT functions.
Specifically, in the formal linear theory limit of kg — oo the functions p and
1 can be treated as only functions of time. In this limit, they can be related to
the EFT functions via

2[ap(1+ ar) — ay + ar]® + a(l + ar)c?

ac2k?M? ’
e = 205 [ap(1 + ar) — ay + ar] + ac? (4.27)
© 2[ap(l+ar) —ay +ar]’ +a(l+ap)@ '

foo = (4.26)

For the purposes of this chapter we shall remain in this small-scale regime and

parameterize the time-dependent modifications as

p(a) =14 (po — 1)a”, (4.28)

n(a) =1+ (no —1)a", (4.29)

with n = 2. For simplicity, we furthermore consider a background evolution
H(t) that matches that of ACDM and we adopt ap = 0 at all times to break
the degeneracy in parameter space. The kineticity function ay is set by the
choice ¢ = 1. The set of EFT functions is then closed by Egs. and (4.27),
determining the evolution of ag and «ay;. Given a choice of parameters g, 7
we can now reconstruct a corresponding Horndeski scalar-tensor theory. For this
example we choose a model that exhibits both a non-zero gravitational slip and

an enhanced growth of structure today by setting ug = 179 = 3/2.

The reconstructed scalar-tensor action is illustrated in Fig. [4.6f The dominant
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term at redshift zero is U(¢). It behaves as a cosmological constant which is
enhanced relative to its ACDM value. F(¢) is determined through the evolution
of M2. Despite the enhanced growth with this parameterization of ;1 and 1 the
Planck mass increases from its GR value today. The enhanced growth is therefore

coming from the clustering effect of ag. This can be seen more clearly by writing

M2 2(043 — OéM)2
== (1+——. 4.
% M2( + o2 (4.30)

Although the Planck mass is increasing, ap also increases to dominate over ajy
and gives rise to the pre-defined evolution in u(a). The domination of ap over
s also causes by (¢) to be negative. This is because by ~ M3 ~ (apr — 2ap) up
to numerical factors and positive background terms. In this model ax =~ 0. The
background terms that contribute to My compete to cancel each other out. The

dominant term in ay(¢) is from —M; or ap, which is small and positive.

4.3.5 () reconstruction

One of the most commonly used formalisms for testing departures from GR
with the large-scale structure is the growth-index parametrization [I63HI65]. It

involves a direct parameterization of a modification of the growth rate

dln A, (a, k)

/= dlna = le)? (4.3

with the growth-index parameter v, which is generally considered a trigger or
consistency parameter. Any observational deviation from its GR value v ~ 6/11
[163] will indicate a breakdown of GR.

On sub-horizon scales (k > aH) the modified growth equation for the matter

density contrast is given by

H' 3
A+ (2 + ﬁ) Al — §Qm(a)uoo(a)Am =0, (4.32)
which follows from the modified Poisson equation (4.24) and momentum conser-

vation. Inserting Eq. (4.31]) into (4.32)), one obtains a relation between fi..(a)
and 7,

2 H/ /
oo = 30" [ﬂln +24+ 7 g+ (@) (4.33)

where we allowed v to be time dependent for generality. Given a particular choice
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of 7, the functional form of i« can then be obtained from Eq. (4.33). However,
as v can only be used to determine pu., one must separately parameterize
the gravitational slip 7., (and some additional specifications are required for
a relativistic completion [116] [172] [173]). One can then reconstruct a covariant
theory that gives rise to the particular choices of v and 7,,. This allows to directly
examine what kind of theories can be associated with an observational departure

from GR in 7.

In this example, we set for simplicity 7., = 1 as in GR. This implies that, with
ar =0, apy = 0 or ag = apr. We choose the second condition. With this choice
we have that M? = 1/us and we fix ax such that ¢2 = 1. We shall reconstruct
a theory which gives rise to a constant deviation in the growth index from the
GR value of v = 0.55. The value for v needs to be chosen such that the stability
condition o > 0 is satisfied and so we choose v = 0.4 for this purpose. In fact, the
theoretical stability of the theory requires 0.35 < v < 0.55, preferring enhanced
growth of structure, with any value chosen outside this range leading to o < 0.
As long as the theoretical conditions are satisfied then it is straightforward to
apply the reconstruction and obtain a covariant theory for any numerical value

for .

The corresponding model is illustrated in Fig. 4.6, As we have chosen a rather
large departure from ACDM the reconstructed theory displays a somewhat
unnatural behavior with a potential that is negative and substantial contributions
from the kinetic and Galileon terms in order to maintain the background
expansion history. Therefore, even with this seemingly simple parameter it is
quite possible that exotic regions of the space of theories are being explored when

it deviates from its concordance value.

4.3.6 Weak gravity

Typically scalar-tensor theories exhibit an enhanced growth of the matter
density fluctuations relative to ACDM, with Brans-Dicke gravity being a simple
example [I74]. More precisely, they lead to a modification such that p > 1 in
Eq. . However, it is possible that modifications arise such that one obtains
a weaker growth of structure, or weaker gravity, with p < 1. This scenario has
recently received some attention [112, 114, 155 [I75, 176], particularly in the

context of potential tensions in the cosmological data [166], [167].
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Figure 4.7 Top: Contour plot in the space of M02 and apg displaying the regions
that allow for a weakened growth of structure with 0 < po < 1 today.
Bottom: The dark strip indicates the region of EFT parameter space
that allows for a weakening of growth with a positive, sub-luminal
soundspeed at redshift zero. After imposing the past boundary
conditions = 1 and ¢2 > 0 at Ina = —3 indicated by the lighter
yellow region it is possible to reconstruct a viable covariant model
from any point in the intersecting region. We have ensured that the
chosen point used for the reconstruction in Fig. satisfies 2 > 0
for all time.
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Figure 4.8 Top: The behaviour of the deviation from the Poisson’s equation
over time for the model in Sec. [4.5.0, where one may identify a
dynamical Geg = p. There is a characteristic period of enhanced
growth at Ina ~ —0.96 before entering an epoch of weakening of
the growth persisting today. Bottom: A reconstructed scalar-tensor
theory that exhibits a weakening of the growth of structure (“weak
gravity”) with ap = 0, which satisfies the stability requirements
and past boundary conditions. It is essentially a Brans-Dicke type
model with a potential and standard kinetic term along with small
contributions from the k-essence and cubic terms.
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In this section we demonstrate how one may use the reconstruction to derive a
stable scalar-tensor theory of weak gravity for a particular parameterization of
the EFT functions with a7 = 0.

We begin by choosing the parameterization of the Planck mass M? as

Q4(a)
Qno

M?* =1+ (M;—1) (4.34)
where Mg is the value of the Planck mass today. The particular choice of Planck
mass evolution when Mg > 1 is a priori suggestive of weak gravity as M? appears
in the denominator of Eq. such that the increasing Planck mass with time
leads to a decreasing p if fixing the other EFT parameters. However, there is still
a great deal of freedom in choosing numerical values for MZ and the evolution
of the remaining «;. For instance, it may be the case that the evolution in
ap is enough to compensate for the weakened growth effect and give rise to an
enhancement instead. For this example, we adopt the functional form of B in
Sec. with ¢; = ¢ = 1 for the parameterization of the ap function and we
set ag = 0 for simplicity and to easily guarantee that the stability condition
a > 0 is satisfied. As previously mentioned, ax only becomes relevant on scales
comparable to the horizon and so the requirement that © < 1 is independent of
the choice of a. Parameter values for Mg and apg are then chosen to ensure

that the condition ¢ > 0 is satisfied.

We explore the viable regions of parameter space producing a given py = p(z = 0)
in the left-hand panel of Fig. 4.7 One can easily identify a large region that allows
for weak gravity with 0 < po < 1 when MZ > 1 while remaining stable and
having the Planck mass return to its bare value in the past by construction. All
of these requirements severely restrict the allowed model space. In fact, we find
that within the particular parameterization adopted here, a period of enhanced

growth in the past is required in order for all of these criteria to be satisfied.

We explore this circumstance in more detail in the right-hand panel of Fig. 1.7}
For this purpose, we allow for a small period of enhanced growth in the past at
O(10~%), which allows one to find an overlap of stable parameter choices that also
yield weak gravity at late times. Increasing this value causes the viable parameter
regions to overlap at an even greater extent. Restricting parameters to an upper

bound of exactly unity instead eliminates any overlap.

A suitable parameter choice that satisfies all of the requirements described here
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is M? = 3/2 and apy = 0.3 and we checked that for this choice the soundspeed
remains positive at all times in the past. The left-hand panel of Fig. displays
the evolution of the gravitational coupling through time with this choice of EFT
parameters. One can clearly identify a period of enhanced growth which peaks
around Ina ~ —0.96 with p =~ 1.03 before decaying and producing weak gravity
with p ~ 0.65 at redshift z = 0.

Once given the choice of EFT parameters it is straightforward to implement
them in the reconstruction and obtain a stable scalar-tensor theory that exhibits
a weakening of growth of structure with ar = 0. The corresponding model is
illustrated in the right-hand panel of Fig. The evolution of U(¢) mimics
that of a cosmological constant, but as A ~ M?H? it is enhanced relative to its
ACDM behavior due to the increase of the Planck mass over time. This is similar
to the behaviour observed in Sec. 3.4 The Planck mass also determines the
evolution of F'(¢) which increases over time. The behaviour of b1 (¢) is determined
by the combination aj,; — 2ag. The braiding term is sub-dominant at early
times, but becomes important at late times, where it contributes to drive b;(¢)
negative. There is also a small negative k-essence term ay(¢) that is comparable

in magnitude to b;(¢).

Bear in mind that different choices of gy, a non-zero ay or a parameterization
in terms of aj; rather than M? impacts the form of the theory. However, it
is primarily sensitive to significant changes in the amplitudes of parameters as
discussed in Sec. [£.4] and one does not have much freedom in increasing the
amplitude of ap while keeping the theory stable (Fig. . Finally, note that
this weak gravity model differs from Ref. [I55] as aps # ap, thus exhibiting
a non-vanishing gravitational slip. More work is necessary to understand what
general conditions need to hold in order to obtain a stable scalar-tensor theory

the exhibits a weakened growth of structure and ar = 0.

4.3.7 Reconstruction from inherently stable

parameterizations

Throughout this work it has been necessary to check that the reconstructed
theories obey the stability constraints in Eqgs. and . This is due to
the function space spanned by the basis of «;, or equivalently the coefficients in
the EFT action in Eqs and , not being a priori stable. As discussed
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Figure 4.9 Reconstructed scalar-tensor theory from a direct parametrization of
the stability functions ¢ >0, a > 0 and M? > 0 with ar = 0.

in Sec. [£.2.2] rather than cumbersomely checking that these stability criteria are
satisfied for a particular parameterization, one may instead consider discarding
the «; functions in favor of another parameterization that automatically satisfies
the stability requirements. Therefore, any observational constraints will by
definition be restricted to a theory space that obeys the no-ghost and no-gradient
instability conditions. We introduced such an inherently stable basis in Sec. [£.2.2]

We shall now briefly present a reconstruction from this basis. For this purpose

we adopt the functional forms

& = i+ (cg—c)a", (4.35)
a = «a;+ (ag— a;)a”, (4.36)

where the constants ¢ and «; are initial conditions for the soundspeed and the
kinetic term respectively (defined for the limit a — 0) whereas ¢2 and aq set their
values today. Each value should be chosen such that a,¢? > 0 Va. For the Planck
mass we adopt the parameterization in Eq. .

In Fig. |4.9| we illustrate a reconstructed theory with a ACDM background, an
increasing soundspeed as well as decaying kinetic term and Planck mass. More
specifically, we set ¢ = 05, 2 = 1, a; = 0.5, o9 = 0, M = 0.5, and

n = 1. Although the reconstructed terms seem somewhat exotic, for example

121



A: =2 A: =2

4r  amo=1, app=-0.3 4r  am=0.1, app=—1
[ (ITOZO

-

O I
of —U@HE T

= Z@®)/H*>  -- F($) \"\\ :

—Ap - a(@)/H? - bi(¢p)/H 1 -4
_6 . . . . _6 ‘ ‘ ‘ ‘

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

Ina Ina

Figure 4.10 The effect of varying parameter values in a parameterization of
EFT functions on the reconstructed scalar-tensor theory for a
model with a dominant Planck mass evolution apr (left panel)
and a model with a dominant braiding term ap (right panel).
Note that aprg and apy are of opposite sign to satisfy the stability
requirements. In the right-hand panel where ap dominates, the
cubic Galileon term by is the most prevalent modification as the
potential and quintessence terms decay to zero. There is also a non-
negligible contribution from the k-essence term. On the contrary, a
dominating ayr leads to a large potential and quintessence kinetic
term, with smaller contributions from the cubic and k-essence
terms.

the potential is very different to its ACDM behavior despite the concordance

background evolution, by construction the model is guaranteed to be stable.

4.4 Effect of varying the parameterization on the

underlying theory

Finally, we examine the sensitivity of the reconstructed theories on the variation
of parameter values for a given parametrization of the EFT functions. We shall
only use the functional form A, discussed in Sec. [.3.1] which is broadly used in
literature. Recall that we have found that the form of the underlying theory is
rather insensitive to the choice between functions A and B (Fig.[4.2)). In all cases
we check that the stability condition o > 0 is satisfied and with the remaining
freedom in ax we set ¢2 = 1. We furthermore set ar = 0. As a consequence of

these choices, the signs of ag and a,; are opposite.

In Fig. we show the effect on the theory when the braiding term «p dominates
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Figure 4.11 The effect of varying the powers q in the parameterization on

the underlying theory. It is apparent that with this choice of
«; functions every term in the reconstruction becomes relevant.
Modifications are suppressed at high redshift with increasing power,
with a steepening at low redshifts. For this choice of amplitudes,
the k-essence term is particularly sensitive, increasing from zero to
dominate over the potential for large q. The standard kinetic term
and potential become more negative at z = 0 for larger powers.
This is in contrast to the cubic term by (), which remains relatively
unaffected by this alteration in the parameterization.
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Figure 4.12

Effects on the reconstructed scalar-tensor theory from incremental
changes in the amplitude of aps for a fized ap and vice versa. The
general form of the underlying theory is rather insensitive to these
changes. Enhancing ap suppresses the potential and enhances all
the other terms whereas enhancing apy increases every term in the
reconstruction other than the k-essence term az(¢). Note that the
colour scheme here bears no distinction between dark energy and
modified gravity in contrast to all other figures.

124



over the variation in the Planck mass «); and vice versa. In the first instance,
the dominant terms are a potential behaving like a cosmological constant and a
large kinetic term for the scalar field mimicking a Brans-Dicke theory with small
k-essence and cubic Galileon contributions. On the contrary, when ap dominates
over oy the cubic term by (¢) becomes the most relevant term in the theory with
the potential decaying away rapidly towards z = 0. In both scenarios the ACDM
expansion history is maintained by the behaviour of the complementary terms in

the reconstruction that compensate for the change in the potential.

Next, we examine the effects of varying the power in the parametrization while
retaining consistency in the stability requirements. We fix the magnitude of
apo and apy to be equal but opposite. The effects of changing the power
on the underlying theory are illustrated in Fig. £.1I When the power of the
parameterization is increased the effects of modified gravity become more relevant
at later times. The cubic term is generally unaffected by this variation, but the
kinetic and k-essence terms are enhanced. When a large power is chosen, the

k-essence contribution comes to dominate at late times.

Finally, in Fig. we illustrate the effects of changing a9 while keeping apg
fixed and vice versa. We find that the form of the underlying theory is fairly
insensitive to small changes in the amplitude, although certain terms may be
enhanced or suppressed relative to others with different choices. For example,
increasing «y; has the effect of enhancing the potential relative to that of ACDM.
This is again due to the dependence of A ~ M2, The kinetic term Z(¢) is also
enhanced although to a lesser degree than the potential whereas the k-essence
and cubic Galileon terms as(¢) and by(¢) are rather insensitive to these O(1071)
changes in ajs. The term as(¢) remains least affected with smaller variations
restricted to the past. Thus, in general we find that by enhancing ay, for a
fixed, small agg, one is enhancing the potential and the standard kinetic term of
the scalar-tensor model. In contrast, for a fixed small value of a9, enhancing
the effects of apy leads to a suppression of the potential and an enhancement of

the cubic Galileon term.

4.5 Conclusions

Finding a natural explanation for the observed late-time accelerated expansion

of our Universe continues to be a significant challenge in cosmology. It is
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therefore important that efficient methods are devised with the aim of connecting
cosmological observables with the wealth of proposed theories to obtain a deeper
understanding of the underlying physical mechanism driving the expansion.
These efforts may furthermore give crucial insights into the persistent issues

related to the reconciliation of quantum field theory with general relativity.

As we have emphasised, the effective field theory of dark energy provides a useful
tool for studying the dynamics of cosmological perturbations of a large family of
scalar-tensor theories in a unified framework. Many of the upcoming surveys of
the large-scale structure plan to utilize this formalism to constrain the freedom in
modified gravity and dark energy phenomenology [27H29]. It is therefore crucial to
be able to connect any observational constraints to the underlying space of scalar-
tensor theories, which in turn can be connected to more fundamental theories of

gravity.

Chapter 3 developed a reconstruction method that maps from a set of EFT
functions to the family of Horndeski theories degenerate at the level of the
background and linear perturbations. In this chapter we applied this mapping
to a number of examples. These include the comparison of the resulting action
when one utilises two frequently adopted phenomenological parameterizations for
the EFT functions to study the effects of dark energy and modified gravity at
late times. We find that changing between the two parameterizations has a small
effect on the general form of the underlying theory, although certain terms can
be enhanced relative to others. The underlying theory is instead more sensitive
to the amplitudes of the different EFT functions.

Of particular interest is the reconstruction of a model that exhibits minimal
self-acceleration. The reconstructed scalar-tensor theory possesses the minimum
requirements on the evolution of the Planck mass for self-acceleration from a
modification of gravity consistent with a propagation speed of gravitational waves
equal to that of light. It is a useful model to test for the next generation of surveys,

as it acts as a null-test for self-acceleration from modified gravity.

We also examine models that exhibit a linear shielding mechanism to hide the
gravitational modifications in the large-scale structure. Although the simplest
models require a non-vanishing a, it is worth bearing in mind that the stringent
constraint on the speed of gravity with a = 0 only applies at low redshifts and
may also involve scale dependence [I57] for more general theories. While the

constraints in the space of the EFT functions for linear shielding to operate seem
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rather complicated, using the reconstruction we find there are generic Horndeski
theories that exhibit this effect.

We furthermore provide a direct connection between various parameterizations
that exist in the literature and the corresponding underlying theories. For
example, we reconstruct theories from a phenomenological parameterization of
the modified Poisson equation and gravitational slip as well as from the growth-
index parameter. One can use these reconstructions to connect constraints arising
from such parameterizations with viable Horndeski models. We also apply the
reconstruction to obtain a theory that exhibits a weakening of the present growth
of structure relative to ACDM, i.e., a weak gravity model, a possibility that may
ease potential tensions in the growth rate at low redshift [166], 167].

Finally, we proposed an alternative parameterization basis for studying dark
energy and modified gravity models which is manifestly stable. These are the
Planck mass, the dark energy soundspeed, the kinetic energy of the scalar field
and a braiding amplitude as the new basis of EFT functions. Any constraints
placed on these physical parameters are guaranteed to correspond to healthy
theories. It is no longer necessary to perform separate and cumbersome stability

checks on sampled theories when using this basis.
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Chapter 5

Screening and degenerate kinetic
self-acceleration from the nonlinear

freedom

Mathematical science shows what
is. It is the language of unseen
relations between things. But to
use and apply that language, we
must be able fully to appreciate, to
feel, to seize the unseen, the

UNCONSCIOUS.

Ada Lovelace

5.1 Introduction

The cost of generality in the EFT of dark energy formalism is its restricted
applicability to certain length scales, usually just the cosmological background
and linear perturbations. Recently however there has been some work in
extending the expansion to higher-order perturbations [I77, [I78]. An alternative
approach is to start from the full covariant action. The loss of generality is then
traded for the applicability on a much broader range of length scales, allowing

nonlinear effects such as screening to be studied. We have presented in chapter
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3 a reconstruction from the EFT of dark energy on the level of the background
and linear perturbations to the class of Horndeski theories that give rise to the
particular set of given EFT functions. With this covariant action it becomes
feasible to generally connect the nonlinear regime to that of the background and

linear scales. This link shall be the focus of this chapter.

More precisely, within the reconstructed theory there are correction terms defined
in Egs. and that account for the nonlinear freedom that exists
between Horndeski theories that are degenerate at the level of the background
and linear perturbations. Specification of these correction terms allows one to

move between linearly degenerate theories.

We first discuss the uniqueness of the correction terms in the reconstructed theory.
Applying the recent constraint on the equality between the speeds of light and
of gravitational waves [I36] we show that the number of free functions that are
present at higher order in the EFT of dark energy is significantly reduced to two
per order in perturbation theory. This then implies that the nonlinear freedom
is uniquely specified by the nonlinear correction terms. It is worth noting that
out of the four new EFT functions found in Ref. [42] at second order in the
cosmological perturbations of Horndeski theory, the two functions dominating
in the sub-horizon regime vanish for a luminal speed of gravity, and the impact
of the nonlinear correction terms on the weakly nonlinear regime of structure

formation remains to be examined in detail.

As an initial demonstration of the implications of the correction terms, we show
how this nonlinear freedom can be used to endow a reconstructed theory with a
screening mechanism. Due to the tight Solar-System constraints on deviations
from GR [I79] it is necessary for a large-scale modification of GR to employ a
screening mechanism that suppresses the effects of a fifth force on small scales.
These screening mechanisms fall into one of three categories [71]: those that screen
through deep gravitational potentials such as the chameleon [88] or symmetron
mechanisms [I80], screening through first derivatives of the potentials such as k-

mouflage models [90] or screening through second derivatives as for the Vainshtein

mechanism [92]. See Sec. for an overview.

A simple scaling method was developed in Refs. [146, 18] to determine whether a
given theory possesses an Einstein gravity limit or not. We present an application
of this scaling method to the reconstructed theory and demonstrate with three

examples that there is enough freedom in the nonlinear regime of a reconstructed
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theory to obtain, in principle, any of these three screening mechanisms.

A further interesting consequence that arises when considering theories built
from the correction terms is that it is simple to construct theories that are
indistinguishable from ACDM to arbitrary level in cosmological perturbations.
Only observations in the nonlinear regime can be used to distinguish them from
ACDM. Such degenerate theories may be built from kinetic terms alone without
including a cosmological constant, hence providing a kinetic self-acceleration
effect.

Finally, we present a reconstruction from the nonlinear EFT back to the space of
manifestly covariant theories. This follows a similar structure to the background
and linear reconstruction and in principle provides a method for obtaining a
Horndeski theory reconstructed from a range of different length scales from the

background to the nonlinear regime.

The chapter is organised as follows. We present in Sec. the Horndeski field
equations arising from the remaining freedom in Horndeski after the luminal
speed of gravity constraint is applied. These will be relevant for the application to
screening in Sec. [5.4] The nonlinear correction terms in the reconstructed action
are also reviewed for convenience. The uniqueness of the nonlinear correction
terms in the reconstructed action is examined in Sec. 5.3} Sec. briefly reviews
the scaling method and discusses how the nonlinear freedom in the reconstructed
scalar-tensor theories can be used to implement screening effects due to large
gravitational potentials and large first or second derivatives of the potential. In
Sec. 5.5 we discuss how the nonlinear freedom can be used to construct models
that accelerate the cosmic expansion without a cosmological constant with a
suitable choice of kinetic terms, yet are degenerate with standard cosmology at
the background level or even to arbitrary level of perturbations. The derivation
of a third-order reconstruction is presented in Sec. along with a discussion of

the extension to n-th order. Finally, we provide conclusions on the results in the
chapter in Sec. [5.7]
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5.2 Horndeski field equations and nonlinear

freedom

Following the simultaneous detection of gravitational waves with an electro-

magnetic counterpart [136], the available freedom in Horndeski theory greatly

simplified to [140]

Ly = G, X)), (5.1)
Ly = Gy(6, X)00, (5.2)
Li = Gio)R, (5.3)

where now L5 can be set to zero. We now present the metric and scalar field

equations that are obtained from varying g,, and ¢ in Egs. (5.1) to (5.3).
Although the structure of these equations is complicated the relevance for the

application in Sec. is simply the number of spacetime derivatives and powers
of the scalar field that enter into each of the field equations. The metric field

equation is given by [106], 140]

4
i 1 2
TR, = — 2; T + (TW - 5gWT) /M (5.4)
and the scalar field equation is given by
. 1 T
r Z (V“JS)—PQEZ))-FEZT@) = _WE’ (5.5)
i=2,3,4 =2 *
where I' = 2G4 /M2, E = 2G44/M? and
2
2
qu ! :M*Q G2¢>7 (56)
PO — 2 G Vhe (5.7)
2
4
PV = i GuR, (5.8)
J® = — GaxV,.0, (5.9)
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IO = — G3x0¢V,.0 + G3x V. X + 2G34V .6, (5.10)

1
Ti) == 3 CaxVudV.o
1
+ 2_]\/[*29uu (XGQX + 2G2> y (511)
2
7;(3) :WG?,XSM’B) + GV, 0V, 0, (5.12)
7;(3) :G4¢8(2’1) + G4¢>¢>5(2’2) . (5.13)

Note that Jff) = 0. The S notation indicates a term that contains 7 spacetime
derivatives and j powers of the scalar field. As discussed in Sec. [5.4] knowledge
of these quantities is sufficient to determine whether a given term will become
dominant or sub-dominant in a screened or un-screened limit, not its precise
functional form. We refer the reader to the appendix of Ref. [146] for the explicit

expressions but note the different definitions of the GG; functions and X.

Under the assumption of luminal speed of gravity [136] we shall show in Sec.
that the unique nonlinear correction terms in the reconstructed theory are
specified only by Eq.(3.22)), which we reproduce here for convenience

AGas = &29(¢) (1 + %) : (5.14)
n>2 *

where AGy; = 0 and £(¢) are free functions of the scalar field, reflecting the

large degree of freedom that exists on nonlinear scales without affecting linear

scales. These terms arise from noting that in the unitary gauge with the foliation

¢ = tM? the kinetic term of the scalar field becomes X = (—1 + d¢%°) ML

Eq. (5.14) is therefore an expansion in (6¢g*)".

The freedom in the correction term may be exploited to endow the
reconstructed theories with some desired nonlinear features without affecting
linear theory. In particular, £’(¢) can be designed to implement a screening
mechanism (Sec. or even to hide a kinetic self-acceleration effect of the cosmic

background expansion to an arbitrary level of nonlinear perturbations (Sec. .
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5.3 Uniqueness of the AG; corrections

Due to the importance of the AG; nonlinear correction terms for the applications
of interest in Secs. [5.4] and we shall first investigate to what extent
these terms are the unique corrections to the reconstructed Horndeski action
in Egs. (3.18) to (3.21)).

Recall that the correction terms in were inferred from the requirement that
in covariant language g% = 1+ X/M?. Successive powers of 1+ X/M? therefore
yield corrections that do not affect lower-order perturbations, in particular, the
background or linear theory. However, there are of course other operators which
can be added to the EFT which will not affect the background and linear dynamics
such as 0K and (§R®)3. In principle a term such as § K could be added to the
EFT action, which would affect the dynamics of the second-order perturbations.
Note however that for the same reason that §K? only appears in combination
with 0K, 0 K* after £4 is written in the unitary gauge and expanded in the
perturbations, it is not possible to simply add §K? as there are no terms in
the Horndeski action that give rise to this term alone. More specifically, on the

cosmological background K,, = Hh,,, the perturbation 0K = K — 3H must

g
appear in the combination

K? - 3KK,, K" + 2K, K" K", (5.15)

which gives rise to a number of nonlinear operators in the EFT action involving
0K, [I77,178]. The only term in the Horndeski action that gives rise to such a
combination is in L5. Following the spirit of EFT one may add these nonlinear
operators because they are consistent with the symmetries that we have imposed,
but the theory which is underlying such a combination generally violates the
luminal speed of gravity constraint [I46] such that we will omit these terms. By

use of the Gauss-Codazzi relation
R® =R - K, K" 4+ K* -2V, (n"V,n" —n'V,n") , (5.16)

relating the 3-dimensional Ricci scalar R® to the 4-dimensional Ricci scalar R
and K, one can furthermore see that adding on higher powers of R®) to the
EFT in a similar manner will inevitably introduce higher powers of § K, and the
previous argument applies. The same logic also requires AG4 and AGj5 to vanish
and the nonlinear freedom is now completely specified by Eq. .
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An alternative perspective on this argument is to consider a covariant form of the

extrinsic curvature tensor, or for simplicity its trace

K=-V, (%) . (5.17)

By expressing the denominator in terms of the metric perturbations, Taylor
expanding and performing the replacement of §¢g% with 1+ X/M?, one obtains
in schematic form

K =0¢+ F(X,V,6,V,X), (5.18)

where F'(X,V,0,V,X) is some complicated function of the scalar field and
derivatives of the scalar field obtained after the expansion, the precise form of
which is not relevant to the discussion. Taking higher powers of § X' and making
use of Eq. will lead to terms such as ((J¢)™. Such expressions belong either
to Horndeski models with non-luminal speed of gravitational waves or beyond-
Horndeski theories. Reversing the logic, it is necessary to start from such a
model in order to obtain a nonlinear correction involving a higher power of K.
Therefore, any correction terms to the EFT of dark energy that make use of
the operators (0K)" with n > 2 and R® will reconstruct a theory that has a

non-vanishing G4x or G5 term or a beyond-Horndeski model.

For Horndeski models with luminal speed of gravity, the only nonlinear operators

that appear at n-th order are therefore
(69°)" , (69%)" " 0K . (5.19)

which adds two new independent EFT functions per order in the perturbations.
More explicitly, the n-th order contribution to the EFT action with n > 3 is given
by

s = [[atey=g " [N (09")' + 30 (59) " oK] . (520)

where each M3?(t) and M}(t) are the two free functions that contribute at i-th
order in the action. This is a logical extension to n-th order of the first two
operators which appear in S@® in Eq. (3.15)), namely (6¢°°)? and 6¢%°6 K.
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5.4 Nonlinear freedom for screening

As a first application of the free nonlinear correction term in Eq.
in the reconstructed scalar-tensor action we shall consider the realization of
screening mechanisms that are required to recover GR in the well-tested Solar-
System regime [I79]. For this purpose, we shall employ the scaling method of
Refs. [146] 181] (also see applications in Refs. [I38] [182], [183]) that allows an
efficient identification of the existence of Einstein gravity regimes for a particular
choice of Horndeski functions. We briefly review the method (Sec. and
then apply it for a characterization of the nonlinear correction terms AG; that
realize screening by large gravitational potentials &5 > A for some threshold
A (Sec. [5.4.2), large first derivatives V&y > A (Sec. or large second
derivatives V2@ > A (Sec. [71].

5.4.1 Scaling method

The scaling method was developed in Refs. [146, I81] to efficiently determine
whether a given Horndeski theory possesses an Einstein gravity limit. It proceeds
as follows. At the level of the field equations the scalar field ¢ is expanded in

terms of a field perturbation 1 as

¢ = ¢o (14 ), (5.21)

where ¢y denotes the background value and « is the theoretical parameter relevant
to the expansion. For example, it could be the speed of light or the coupling of
a Galileon interaction term. After performing this expansion, the scalar field
equation of the Horndeski model (see Eq. (5.5)) takes the generic form

. ~ T
TR (1, X) + o TR (Y, X)) = 5 (5.22)
where s,m,t,n € N and X = 0", Now consider the limit of o — oo or

a — 0. As the right-hand side of Eq. is independent of a the leading-order
term on the left-hand side must also be independent of « to balance the equation.
This restricts the possible values of the exponent q. Therefore there must be at
least one term which scales as a” with every other term involving non-zero powers

of a vanishing in the & — 0 or @ — oo limit. For example, choosing ¢ = —s/m
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and taking the @ — oo limit requires —s/m < —t/q, so that t + n(—s/m) < 0
and the dominating terms in the field equation become

- T
Fl(w7X> = W

(5.23)
If in a given « limit the metric field equations reduce to the Einstein equations
after performing the expansion , then the corresponding scalar field equation
applies to the screened limit where the fifth force is suppressed. To ensure
consistency the value of ¢ chosen to obtain a screened limit must be the same in
both the scalar and metric field equations. Note that there may also be terms
that involve powers of a that do not depend on ¢. Depending on whether they
are raised to a positive or a negative power they will diverge or vanish in either
limit of c. If they vanish then this is not an issue, but if they diverge extra care
must be taken. For example, it may be important to use the freedom in the AG;

terms to remove any divergences which arise in either limit.

In the following we present the recovery of three distinct screening mechanisms by
suitable choices of AG;. Drawing on the distinction discussed in Ref. [71] this will
encompass the known screening mechanisms: (i) by large gravitational potentials
@y > A for some threshold A (Sec.[5.4.2), (ii) by large first derivatives V®y > A
(Sec. and (iii) by large second derivatives V2®y > A (Sec. [5.4.4). We
shall find that there is more than sufficient freedom in the nonlinear sector to, in
principle, endow the reconstructed theory with a particular screening mechanism
regardless of the constraints of the background and the linear perturbations.
Importantly, however, while this generally implies the existence of Einstein
gravity limits in the deeply nonlinear regime, this does not guarantee that a
given observed region is nonlinear enough for the screening mechanism to be
activated. The numerical value of the screening scale needs to be computed
separately and ultimately decides whether a theory is compatible with stringent
Solar-System tests. It is not surprising that screening mechanisms can be added
to linearly reconstructed models as they are inherently nonlinear effects. It is

however important to verify this explicitly.

5.4.2 Large field value screening

As a first example we consider the implementation of a screening effect by

large field values &5 > A. More specifically, we will focus on the Chameleon
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Mechanism [88] 89]. We shall first cast the reconstructed theory into the Brans-
Dicke representation with F(¢) = ¢/M, (see Sec. [4.3)). With this choice we have
that ' = ¢/M, and = = 1 in Egs. and (5.5)). By making use of the freedom
in AG; it is possible to add a term to GG, that sets the ¢-value to be arbitrarily

positive or negative. To see this let us begin with the full reconstructed Horndeski

action in Egs. (3.18) to (3.20)) with a AG5 term that takes the form

AGs = () (1 + A‘)}L)n , (5.24)

with n > 3 and &£(¢) given by

-N

§(0) = MIU(9) = =5~ (6 = dmin)" (5.25)

where \ is a coupling parameter, N and k are both positive integers, U(¢) is
the reconstructed potential in Eq. and ¢,,;, denotes the minimum value of
the second contribution to the potential in Eq. . No other AG; terms are
necessary as they all contain derivative terms which vanish in the screened limit.

We shall take the scaling parameter o to be the coupling .

This choice cancels the potential obtained from the linear reconstruction and
replaces it with a power-law potential that takes a similar form to the chameleon
screening example in Ref. [146] 184] but with o — oV, It is with a suitable
choice of N that no derivative terms contribute in the screening limit. In this

limit we then obtain the Einstein equation

¢

1
ﬁRw — 7@ 4 (Tuu — —gWT) /M? 4 H,, V.9 , (5.26)

2% 9

where 7:53) is defined in Eq. and H,, [V,¢] represents all the terms that
involve derivatives of ¢ in the metric field equation, the precise form of which is
not relevant as we shall find that they disappear in the a — 0 limit of interest.
Taking the trace of Eq. leads to ¢R/M, = —T @ which, noting that 7?3 =
2Gy/M?, gives a relation between R and Go. The scalar field equation is given

by
2¢

—ap (Goo+ GupR) + T + H, [V, = —T/M, (5.27)

where H,[V,¢| represents all the terms in the scalar field equation involving
derivatives of ¢ which will disappear in the a — 0 limit. With the choice of AG,
in Eq. (5.24) there is no contribution from the reconstructed potential U(¢) to

137



the scalar field equation. After eliminating R and 7® in favour of G5 the scalar

field equation becomes

&N (G — Gmin)" T [Ok — 2(¢ — Goin)] + H, [V, = —T. (5.28)

Applying the scaling method with the scalar field now expanded in terms of 1 as
in Eq. , we examine the set of ¢ values which leave non-vanishing terms on
the left-hand side of Eq. in the o — 0 limit. As o« — 0 it is necessary to
take the largest g value from this set after the scaling in Eq. . Disregarding

the derivative terms in H, [V ,¢], we find that ¢ takes one of two possible values

g€ {%%} . (5.29)

We must take ¢ = N/(k — 1) as it is the largest in the set of ¢ values from GS.
The integer N can then be chosen in Eq. to be arbitrarily large. In the
limit of @ — 0 this will send all terms involving spacetime derivatives of ¢ to
zero, justifying the original choice of £(¢). This is important as in principle the
value of n in Eq. is only bounded from below by the requirement that it is
a nonlinear correction. All the terms involving derivatives of the scalar field scale
as X™ = @2 N/E-DX 5 0as o — 0 with m = {1, ... ,n}.

Now we expand the scalar field around the minimum of the potential such that
Omin ~ ¢o. This then implies that ¢ — @9 = ¢ga?y). The remaining terms in the
scalar field equation for a — 0 relate the local value of the scalar field to the

matter density as
1
_T\ 1
P = (—> ’ (5.30)
Gk
which recovers the chameleon screening effect for £ < 1. The metric field equation

in the same limit reduces to

1
¢0RMV = (T;u/ - §g,uuT) /M* ) (531)

recovering the standard Einstein equation with a re-scaled Planck mass set by
the background field value ¢y. Therefore we have implemented a Chameleon
Mechanism in a scalar-tensor action that is reconstructed from an arbitrary
cosmological background evolution and linear perturbations by adding a suitable
choice of AG5. Whether the screening effect operates in the Solar System to

comply with stringent local tests of gravity needs to be checked numerically for
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a given reconstructed model.

5.4.3 First-derivative screening

Next we examine the implementation of a screening effect that operates through
large first derivatives V@5 > A. More specifically, we focus on the k-mouflage
screening effect [90] [I85]. We may simply choose here the scaling parameter «
to be the kineticity function a and take the o — oo limit. EFT functions such
as o are typically parameterised as axof(a) where f(a) is some function of
the scale factor with f(a = 1) = 1. Often this is simply a power of the scale
factor or the evolution of the dark energy density normalised to the present value
Qpe(a)/Qpgo. This ensures that the effects of the modifications only become
relevant at late times. We shall take here the scaling parameter to correspond
to the value of ag today a = ago. It is also possible to take apy or au
as the scaling parameter but as the reconstruction depends differently on these
EFT parameters this will lead to different behaviour in the screened limit (see
Sec. . Taking a to be akg, we see that as the reconstructed action is linear
in the EFT functions we have from Table [3.1| that each term scales as U(¢) ~ a,
Z(¢) ~ a, ay(¢p) ~ a and bi(¢) ~ a°, which follows from the fact that M3 is
independent of ag (see Table for the full set of relations between the EFT
coefficients of the different bases). With this choice we have that the terms in G

will scale as a'*™? for some integer n but those in G5 will scale as ™.

In order to obtain an Einstein field equation it is necessary to remove the potential
to avoid divergences in the @ — oo limit. This also makes physical sense as the
screening mechanism in this case operates via the kinetic terms. We shall also
remove all of the dependence on the canonical kinetic term linear in X to ensure

that the screening operates through higher powers of X. To this end, we choose
AGy = AGS) + AG;Z), where

4 3
ac) = btz (145 ) — gz (1455) - 62)
X 3 X 6
AGY = 2M2U (¢) (1 + W) — M?U(¢) (1 + W) . (5.33)

These nonlinear corrections ensure that every term in (G5 is now at least

proportional to X? or greater. With this choice the relevant term in the scalar
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field equation is
VIR = —Goxx V' XV, — XGaxy, (5.34)

where Jf) is defined in Eq. . The first term on the right-hand side in
Eq. scales as '™ which sets the minimum g-value to be ¢ = —1/3. As
every term in (G5 scales as o™ with n > 0 this will send every term involving Gy
to zero in the a — oo limit. This particular g-value will also ensure that 7;(;) — 0
as a — 0o so that the metric field equation reduces to the standard Einstein field

equation. The resulting scalar field equation corresponds to a k-mouflage model

T
§0)0"X0,6 =~ 15 (5.35)

with
92(0) _ 9U(0)

(5.36)

5.4.4 Second-derivative screening

Finally, we consider the implementation of screening through large second
derivatives V2®y > A, more explicitly the realization of the Vainshtein
mechanism in the a — oo limit where the scaling parameter « is taken to be
ag only. The procedure is similar to Sec.[5.4.3] In this case U(¢) ~ a, Z(¢) ~ a,
az(¢) ~ a as before, but in contrast to Sec. [5.4.3] b1(¢) ~ a, which follows from
the fact that M} oc ap. We begin by adding on the nonlinear counterterms in
Eqgs. and to ensure the X dependence of G is at least X?2.

It turns out that the important term in the scalar field equation which gives rise

to a non-trivial equation of motion and Vainshtein screening is V# J;(L?’) where J;(L?))

is given in Eq. ((5.10). Plugging in the expression in Eq. (3.19)) we have that
VMJ,(E) = bl(¢)3(4,2) + H,[V,¢], (5.37)

where again H, [V ,¢] represents all of the terms involving derivatives of ¢ that
will vanish in the o — oo limit. Furthermore S*? is a term that involves four
derivative operators and two powers of the scalar field, which is given explicitly
by

S = (0¢)* + 0,00*0¢ + OX . (5.38)
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These terms each scale as o™ requiring a g-value of —1/2 to ensure indepen-
dence of o on the left-hand side. As we have also ensured that Gy starts at least
at X2, scaling as o’ with ¢ = —1/2, these higher-derivative terms will disappear

in the o — oo limit. The scalar field equation in this limit then becomes

T
_ME’

%%
M,

bi(go) |(OV)? + B0 Ty + DX | = (5.39)
where X = 0,0, This is a typical scalar field equation involving higher
derivatives of 1 expected for Vainshtein screening. It is necessary to ensure that
the standard Einstein equation is obtained in the same limit in the metric field

equations so that we can be sure this is the screened limit.

Having already set ¢ = —1/2 from the scalar field equation and ensured that G
starts at X? with AGél) and AGéQ), every term 7;(12,) in the metric field equation

(5.4)) vanishes in the @ — oo limit. For example the first term in 7;(3) scales as
GipS*Y ~a® ~a ! 50, (5.40)

and the first one in 72(3) scales as

2 1

EG3X8(473) ~al™ a2 50, (5.41)
With the choice of the Brans-Dicke representation of F'(¢) = ¢/M, we have that
I' = ¢9/M, and = = 1, and the metric field equation reduces to Eq. (5.31)).

To summarize, by choosing apy as the scaling parameter and removing the
constant and linear terms in X from (G5 one can obtain the standard Einstein
field equation with a re-scaled Planck mass and a scalar field equation involving

second derivatives in ¢ as expected in the case of Vainshtein screening.

5.5 Nonlinear freedom for degenerate kinetic

self-acceleration

As a further application of the nonlinear freedom in reconstructed scalar-tensor
theories, we demonstrate how the correction term in Eq. can be configured
to construct scalar-tensor theories that are degenerate with standard cosmology
to an arbitrary level of cosmological perturbations (Sec. . As a particular
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interesting example we show how this allows for models that accelerate the

Universe without a cosmological constant yet remain dynamically degenerate with
ACDM through a suitable configuration of the kinetic terms (Sec. [5.5.2)).

5.5.1 Perturbative degeneracy with ACDM

An important implication of Eq. is that it is possible to use the AG; terms
to write down a Horndeski theory that possesses a highly non-trivial form for
the nonlinear perturbations yet reduces to ACDM on the background, where the
correction terms vanish. This degeneracy may even be extended to an arbitrary
level of perturbations. The existence of such classes of theories is a natural
consequence of the reconstruction being an expansion in (1 + X/M*)" withn € N.
One can therefore construct theories whose physical effects only become relevant

at a particular level of higher-order perturbations characterized by the power n.

To see how this works in practice let us choose, for example,

Gy = —MZ?A+£2(¢) (1 + %) , (5.42)
with G3 = 0, G4 = M?/2 and n > 3. After performing an ADM decomposition
with ¢ = tM? the second term in Eq. becomes €2 (t) (6g°°)". On the
background and linear scales therefore there will be no effects arising from the
non-canonical kinetic terms and it will appear to be exactly ACDM. Note that this
argument does not rely on the specific foliation adopted as we shall verify shortly
for a specific example, but for now simply note that any non-zero perturbations
that arise from another choice of foliation must be pure gauge. At the nonlinear
level Eq. departs from ACDM and we have discussed the mapping of the
2 (t) functions onto nonlinear EFT functions in Sec. [5.6] It is also possible to
write a theory with Gy = A and

G3 =¢&P(0) (1 + %) . (5.43)

In an equivalent manner this corresponds to a Galileon theory that can only be
distinguished from ACDM on nonlinear scales. Combinations of AGy and AGj3

can also be used to construct more non-trivial theories.

For clarity we shall provide an explicit example of this degeneracy and compute

the background equations of motion and check that the expansion is indeed
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matching that of ACDM. A more detailed analysis, including the investigation
of possible instabilities and perturbative effects, will be the subject of further
analysis. For simplicity, we shall only focus here on the degeneracy at the level

of the background and not for the linear perturbations. Hence, we take n = 2 in

Eq. (5.42) so that

X\ 2

= —MZA +€(9) + 26(0) X/ M + €(9) X2 /M (5.44)
where £(¢) is a free function of ¢. Not making any assumptions about the space-
like foliation we now put this equation into the unitary gauge by setting the scalar

field to be just a function of time. With X = (=1 + d¢%°) ¢? we have at linear

order

26(t) Xo n £(t) X5

Gy = — M2A+£(t) +

M M
26(t)Xo | 26()X3] 0o
R + AF dg™, (5.45)

where X, is the value that X takes on the background, i.e., Xy = —¢2. This
gives an explicit expression for the EFT functions A(t) and I'(¢) in the unitary
gauge expansion of G5 in Eq. , where first line corresponds to —M2A(t) and
the second line to —M?2T'(¢)/2. Recall that the Friedmann equations in the EFT
formulation are given by [7, 9l 113]

T(a) +A(a)=3H? - ]’\)2”2 , (5.46)

*

A(a) =2HH' +3H?, (5.47)

where we have set the non-minimal coupling parameter {2 = 1, we parameterise
the time ¢ in terms of the scale factor a. With the expressions for I'(a) and A(a)
obtained from Eq. one can take linear combinations of the Friedmann
equations and to eliminate the dependence on the background
expansion H and obtain a field equation for the background value of the scalar

field. This is determined from the resulting expression

['(a) + % [T(a) +A(a)] =0 (5.48)
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to be

46(a)Xo  &'(a) 4 4
[ M gm0 (Xo — M}/3)| (Xo + M) (5.49)
28(a) | 28(a)Xo

+ X [3Mf + M0 =0, (5.50)
which is the non-trivial Klein-Gordan scalar field equation. It has a trivial
solution Xg = —M2. More complicated solutions to the background scalar field
equation will be explored in the future. From X, = —MZ, one immediately
recognizes in Eq. (5.44) that Go(Xy) = —A, and hence the recovery of the

ACDM background expansion. Alternatively, once the solution to the background
evolution of the scalar field has been obtained it is possible to derive the equation-

of-state parameter for the resulting k-essence model given by [70]

_ —M2A + €(9) (1 + X/MY)?
T MZA - £(¢) (1 + X/MP) (1 - 3X/M?b)

w(a) (5.51)
After inserting the background solution X = X, = —M? one obtains w = —1,

confirming that the background expansion is indeed matching that of ACDM.

5.56.2 Degenerate kinetic self-acceleration

To highlight the implications of the perturbative degeneracy, we will now study
a particularly interesting example of Eq. (5.42)). Let us consider a class of models
specified by £(¢) = MZ2A, in Eq. (5.44). The subscript ¢ indicates that Ay

is a coupling parameter in the higher-order kinetic terms of the scalar field ¢.

Eq. (5.44) then becomes

X 2
Gy = _MEAGR + MEA¢ (1 + W) , (552)

where we defined A = Agr. We also set G4 = 1 and G3 = 0 and stress that any
contributions to Agr from quantum corrections of matter fields in this discussion
are neglected. If we now set Ay = Agp this model exhibits the particular feature

of having no explicit cosmological constant. The model is now simply

Go = 20, X/M? + Ay X? /MY . (5.53)
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However, the observed cosmological constant A, in the cosmological background
of this model remains A, = Ay = Agr. An alternative approach is to start with
the model

Go = 20, X/M? + Ay X?/M? — 2M?Agr, (5.54)

and then set Aqr = 0. In summary, in one interpretation the coupling A, is
tuned to match a non-vanishing Aggr that corresponds to the observed A, or
AGR =0 and Ad’ = Aobs'

With either interpretation these models generate a kinetic self-acceleration effect
that is degenerate with the cosmological constant to the (n — 1)-th order
of cosmological perturbations. While this may certainly be viewed as an
engineered self-acceleration effect, it also raises more general questions about the
genuineness of a kinetic self-acceleration that resembles a cosmological constant
for observational compatibility. We note that a similar expansion to Eq.
can be performed for G5 with similar implications. For instance, one may consider
a kinetic gravity braiding model with nontrivial G5 and G3. By combining power
series of (1 + X/M})™ in Gy and G that only contribute at (n — 1)-th order in
cosmological perturbations, one can choose the coefficients of GGo and G5 in an
expansion in X to cancel off to just leave a term X" in G and G3 for arbitrarily
large n. Greater values of n then correspond to models which are more difficult
to distinguish from ACDM and for which nonlinear data must be used for their
discrimination. This may shed some light on the results of Ref. [186], where
better agreement with ACDM at the linear level was likewise found for kinetic
gravity braiding models with G5 oc X" for large n but adopting a canonical G,

instead, which is not feasible with using AG; corrections only.

It is worth noting however that a further interesting consequence of A, being
interpreted as a coupling rather than a bare constant is that it may be possible
to render the acceleration effect in Eq. technically natural as it can now
enter as a coefficient to an irrelevant operator rather than as a non-renormalizable
constant [187, [I88]. At a more practical level, we emphasise that these models
have the interesting property that discriminatory effects of this type of cosmic

acceleration are left exclusively to the nonlinear observational regime.
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5.6 Higher-order reconstruction

With the higher-order EFT expansion in Eq. and the freedom in the
nonlinear sector having been significantly reduced by the restriction to a
luminal speed of gravity, it becomes straightforward to perform a n-th order
reconstruction of the corresponding class of Horndeski theories by fixing the AG;
functions order-by-order in terms of the nonlinear EFT functions M>*. We
shall now see how this extra information modifies the reconstruction from the
background and linear scales by adding in the new free functions and slightly
changing the dependence on the linear EFT functions. We shall elaborate on this

explicitly for the case of ¢ = 3 before outlining the general n-th order case.

Let us begin by noting that in the unitary gauge a term that takes the form
£(¢)X™O¢ becomes

E(@)X™0¢ = F Qﬁ E(0)(-X)" K
1
€)X, (5.55)

where the sign difference on the top and bottom indicate even or odd m
respectively and the prime denotes a derivative with respect to ¢. After expanding
Eq. in the unitary gauge there will be several terms that contribute and
that can be mapped onto the operators in Eq. .

We shall proceed along the same lines as chapter 3 to obtain a corresponding
covariant action. To begin, by using the replacement 6g%° = 1+ X/M? the

(69™)° operator becomes

(5.56)

NEA(D) (5900)3:]\—4;(@ <1+3X 3X2 X3)

ST VE

This contributes to U(¢), Z(¢), az(¢) along with a new, now necessarily non-
vanishing contribution to the coefficient of X3 that we call as(¢). Let us now
derive the covariant action which gives rise to the following expansion in the
unitary gauge

M} (#)6g" 6K + M3 (t)(69°)*0K . (5.57)

We shall take the case of m = 1,2 in Eq. (5.59]) for simplicity and begin with the
combination

G5 = by (¢) X + by(¢) X0 + AG (5.58)
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U(gzﬁ) A T M3 3HM3 3HM3 3(M3) +( 3) M
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2~ 2M2 2M2 + M2 20

2(¢) = o — M NP | LU SOH) O0K) 60

— MI T MS T 5M% ~ T5MZ M8

M2 3HM3 M3 3(M3) 3ME

az(¢) = 2]\/[2§ - M83 + (5Mf)5 - éz\f’fi) + 75’
M3) M3) M 3M3 QM3
a3(¢):w_(M1)o +M12 bl(qﬁ):m—ﬁ
M M3
F(¢) =9 b2(¢) = g — 37io

Table 5.1 Contributions to the reconstructed Horndeski action arising from
the nonlinear corrections in the EFT action at third order. The
reconstruction can easily be expanded to arbitrary higher order.

where AG§4) indicates that the nonlinear corrections now start at fourth order.
We transform Eq. into the unitary gauge and then solve for by (¢) and bs(¢)
in terms of the EFT functions. It is necessary to have two independent functions
in the covariant expansion as there are two independent EFT functions. At third

order in the perturbations we obtain

G3 D — bi(¢)MS6g™ 5K + ibl(@Mf((ngO)QdK (5.59)

F20u(0) M5 5K — Sba(6) (56" 20K (560

where for the sake of clarity we have not shown the terms which are independent
of 0 K. We then require that

—by() M + 2By ()M = M ()., (5.61)

bu(6) M — Gby(6) M2 = 4113() (5.62)

This system of equations can be straightforwardly solved to obtain b;(¢) and
ba(¢). The results are shown in Table along with the contributions to Gs.

Importantly, this method can straightforwardly be extended to higher orders,
where at each order it is necessary to invert an m X n matrix to obtain the
corresponding EFT coefficients in terms of covariant functions in Gs. It is then

possible to derive a reconstruction from the M} M? terms which proceeds in
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exactly the same manner as discussed for n = 3. It is also important to stress
that a different combination of the terms in Eq. with different choices of
m could have been chosen to develop the reconstruction. From the structure
of Eq. there will always be terms involving (§¢g°°)" 6K to arbitrary order
for any m which can be used as the basis for deriving the reconstructed theory.
There is therefore a degeneracy in the space of models which go as X™[J¢ on the

behaviour of the background and perturbations.

The reconstructed Horndeski theory that covers the background, linear- and

second-order cosmological perturbations is given by

Go(6, X) = = M2U(6) = S MPZ(6)X + ax(9) X

+ a3(0) X? + AGy, (5.63)
G3(p, X) =bo(¢) + b1 ()X + ba(¢)X? + AG3, (5.64)
Gu(6,X) = 3MF(0). (5:65)

The precise form of each term written in terms of the EFT functions is presented
in Table[5.1l Note that now that we have extended the reconstruction to nonlinear
order it is necessary to include higher powers of X in the reconstruction, both
in Gy and G3. In the same manner, if we were to extend the reconstruction to
(n — 1)-th order in cosmological perturbations it would introduce terms of the
form X™ in G5 and G3.

Finally, it is also of interest to examine what effect these higher-order perturba-
tions have on the physical EFT basis introduced in chapter 4, and developed
in Ref. [168]. It consists of parameterizing the EFT formalism in terms of
inherently stable basis functions: The effective Planck mass squared M?, the
sound-speed squared ¢?, the kinetic energy of the scalar field o and the background
expansion H (t), along with apg. Any constraints placed on these parameters are
guaranteed to satisfy the conditions for avoiding ghost and gradient instabilities,
which otherwise must be checked independently for other bases. For higher-order
perturbations, note that by shifting the time coordinate infinitesimally such that
t — t + w the important operators for our purpose in the EFT action change in

accordance with the following Stiickelberg transformations [7], 85]

" = g% +2¢"0,7 + ¢ 0,0,7, (5.66)
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0K — 0K —3Hn —a*Or, (5.67)

where 7 is interpreted as the extra scalar degree of freedom which was hidden
when the action was written in the unitary gauge. An operator of the form
M (#)(0g%)? will introduce terms in the full Lagrangian such as M3 (¢)7? after
applying the time diffeomorphism. As the physical basis for the EFT functions
is defined through the coefficients of such terms, this implies that these higher-
order operators act to correct the lower-order EFT functions. For example, the
soundspeed will now depend on these higher-order EFT functions and so the
linear stability may be affected by what occurs at the nonlinear level. Physically
this makes sense. If one has a second-order perturbation which is unstable, it will
produce a runaway effect such that it will grow to affect the linear and background
scales. In other words, the perturbations of the perturbations must be kept under
control if the theory is to be completely stable. The stability of the full theory can
of course be computed at the level of the covariant action. EFT naturally splits
up the dynamics of the different length scales, and in order to obtain a theory

that is stable, this stability must be kept at all orders in the EFT expansion.

5.7 Conclusions

Constraining models beyond ACDM is a worthwhile and promising endeavour of
modern cosmology. We are about to see an enormous influx of observational data
from surveys such as Euclid [27, 28] and LSST [29], which will provide percent-
level constraints on the cosmological parameters. The outcome of these surveys
will be twofold. Either the Universe turns out to be consistent with ACDM,
which will motivate a more directed effort in tackling the cosmological constant
problem (see, e.g., Refs. [I89-202]). On the other hand, if recent observational
tensions [4l, 203], 204] persist then that will be strong evidence that the theory
describing the Universe on cosmological scales requires revision and potentially
will go beyond a cosmological constant. Constraints on deviations from GR are
obtained on a broad range of different length scales, and a potential new theory
acting on large cosmological scales must also be consistent with observations at

nonlinear scales.

In this chapter we have discussed how in generalised scalar-tensor theories

observations made at the level of the background and the linear perturbations
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may be connected with the nonlinear regime and vice-versa. This is made possible
through the reconstruction of covariant Horndeski theory from the EFT of dark
energy derived in chapter 3. The reconstructed theories are degenerate to linear
order in cosmological perturbations and differ only by nonlinear correction terms
AG;. We first explored the uniqueness of these correction terms. At n-th order
in perturbation theory the number of EFT operators that one can write down
which are consistent with the symmetry of broken time diffeomorphisms becomes
unmanageable. However, we have argued that by restricting to Horndeski theories
that respect the GW170817 constraint of luminal speed of gravity [136], 146] the
number of free functions that enter the EFT expansion at each order is limited
to two. The two correction terms at n-th order can then be related to the free
functions 2% (¢) specifying AG, and AGs.

n

As a first application of the nonlinear correction terms, we have considered
the implementation of screening mechanisms. With the reconstructed covariant
theory it is possible to apply techniques that have been developed [146, 18] to
identify the existence of Einstein gravity limits within a given Horndeski theory.
With the use of these methods we have demonstrated that there is enough freedom
on nonlinear scales to employ a particular type of a screening mechanism by a
suitable configuration of the correction terms. More specifically, we have provided

the examples of realizing a chameleon, k-mouflage and Vanshtein mechanism.

A further consequence of the reconstruction method concerns the identification
of a class of models that is degenerate with ACDM at the level of the
background and linear perturbations but departs from it at arbitrary order of
nonlinear perturbations. A subclass of these models further exhibits kinetic
self-acceleration, where the background expansion is accelerating exactly like
ACDM but there is no explicit cosmological constant written in the theory. The
acceleration is instead driven by the kinetic terms. An immediate consequence
of the existence of such models is that even if the background expansion and
linear matter power spectrum is measured to agree with ACDM from the next
generation of surveys, the degenerate alternatives may not generally be excluded.
Moreover, a theoretically appealing aspect of these models is that, with the
cosmological constant now acting as a coefficient of kinetic terms rather than
a bare constant, it may be possible to render it technically natural. These
implications warrant a more detailed study of these models. Finally, the same
techniques that were employed in the development of the reconstruction of the

Horndeski action to linear order in cosmological perturbations were utilized here
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to derive a reconstructed theory that includes the nonlinear EFT functions. For
given constraints on these functions this enables a reconstruction of the Horndeski
theory across a broad range of length scales, which may be supplemented with
a restriction of the allowed forms of AG; to those that employ a screening

mechanism.

There remain many further applications to be examined for the nonlinear sector
of the reconstruction method. For example, obtaining the stability conditions
is an important step in understanding the viability of the sampled models in
parameter estimation analyses and it is as yet unclear what effect the nonlinear
correction terms have on the stability of the theory. There may also be a more
physical basis for the correction terms such as that presented in Ref. [I68] for
linear perturbations, which automatically satisfies the stability constraints at the

nonlinear level.

151



Chapter 6

Conclusion

There are three stages in scientific
discovery. First, people deny that
it 1s true, then they deny that it is
important; finally they credit the

wrong person.

Bill Bryson

Understanding the accelerated expansion of the Universe remains one of the
most fascinating problems in modern physics. Cosmic acceleration could provide
crucial clues to develop our understanding of the deep connections between
quantum field theory and General Relativity. Intimately entwined in this story
is the cosmological constant problem (CCP) [54] [58] 59]. Tackling the CCP will
almost certainly shed light on the physical mechanism driving cosmic acceleration.
Is it being driven solely by a cosmological constant, or is it a hint of new physics
appearing on cosmological length scales? Theoretical issues abound with the
cosmological constant as discussed in chapter 2. This motivated a concerted
effort in the development of a large number of alternative mechanisms for cosmic
acceleration [23 62, [7I]. One of the simplest approaches is to generalise the
constant in the Einstein-Hilbert action to a scalar field which permeates the
Universe, and whose dynamics drives the accelerated expansion as in inflation.
The existence of the Higgs boson, the excitation of the Higgs scalar field, and
low energy effective theories which arise from a broad range of string theory and

higher-dimensional brane-world models can motivate the presence of such a field
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acting on cosmological scales. Even ignoring these theoretical motivations, the
vast difference in length scales between the earth and the observable Universe
warrants the examination of whether there are new forces which become relevant
on cosmological scales. After all, so far GR has only been rigorously tested within
the Solar System [179).

Adding a scalar field to GR does not come without difficulties. It can often
lead to the appearance of Ostrogradsky ghosts as we have seen in chapter 2.
The most general theory which avoids these theoretical pathologies is Horndeski
scalar-tensor theory. It therefore provides a well motivated starting point as a
theory to test beyond-ACDM cosmology involving scalar fields. Horndeski theory
is a fully covariant theory which can be applied to black holes [123] 124], neutron
stars [125], 126] and inflation [127, 128]. In order to study the phenomenology
of Horndeski theory on cosmological scales the effective field theory (EFT) of
dark energy was developed [7H9) 85, TO0H102] to provide a generalised description
of the dynamics of the cosmological background as well as linear perturbations
in Horndeski theory. Only five free functions of time are needed in the EFT of
dark energy to completely capture the dynamics of the background and linear
perturbations. This may still seem like too much freedom, but compared with
the essentially infinite amount of freedom in the full Horndeski theory it is a
great reduction in the number of parameters needed to constrain Horndeski using

cosmological observations.

The remaining freedom may naively suggest that it is potentially impossible
to distinguish between a particular Horndeski model from ACDM in the data.
Indeed, in Ref. [107] it was shown that there were in fact infinitely many Horndeski
models with the same background and linear cosmology as ACDM, as long as
the speed of gravitational waves is allowed to deviate from the speed of light.
Counting the number of observables, H for the background and p(a) and n(a) for
the linear perturbations (see Sec. [4.3.4]) against the five free functions immediately
leads to this degeneracy. One of the EFT functions becomes irrelevant in the
sub-horizon regime and so this degeneracy is a consequence of one EFT function,
chosen to be the deviation of the speed of gravitational waves from the speed
of light. Fortunately, the recent discovery that the speed of gravitational waves
is equal to the speed of light [I09] immediately broke this degeneracy, and in
doing so ruled out a large subclass of Horndeski theory [145, [146]. It is worth
noting however that there are some interesting caveats which should be considered
[157, 205].
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Even in light of the gravitational wave speed result, there does remain a great
deal of freedom in Horndeski theory. The important difference post-GW170817 is
that this freedom is falsifiable. This thesis has explored the connection between
cosmological observables and Horndeski models. The eventual aim will be to use
the vast data sets generated from the next generation of cosmological surveys
[27-29] to directly constrain Horndeski theory. Many of the constraints which
will arise from these surveys will be placed on generic parameters which aim to
encompass a large number of beyond-ACDM models. It is therefore crucial to
provide the link between commonly used parameterisations for dark energy and
modified gravity models and the underlying Horndeski theory. Constraints alone
do mean anything without theoretical interpretation. This thesis provides such

a connection.

Chapter 3 developed a reconstruction from the effective field theory of dark energy
back to fully covariant Horndeski theories. In principle, this reconstruction will
enable one to bypass the effective field theory of dark energy altogether, and map
directly from generic parameterizations back onto Horndeski theory. Chapter
4 explored ways in which this could be done, by taking specific examples of
the modified Poisson parameter p(a) and the gravitational slip n(a) and using
them to reconstruct the corresponding covariant theory. Although these examples
were idealised, it provides a method to take constraints on these parameters
and map them onto a Horndeski theory. Future work will tackle connecting the
reconstruction with cosmological data sets. In principle, this provides a method
to determine the shape of, for example, the scalar field potential directly from
data.

In order to conclusively rule it out it is necessary to determine possible observable
signatures of Horndeski theory in the nonlinear regime. This was studied in
chapter 5, with a more detailed examination of the nonlinear corrections which are
added on to the action reconstructed from background and linear cosmology. An
interesting consequence which arose from studying these nonlinear corrections is
the existence of a class of models which possess exactly the same phenomenology
as ACDM at the level of the background and linear perturbations, but differ
only in the nonlinear regime. These theories pose an important question to be
resolved with upcoming surveys. Even if ACDM remains fully consistent with
linear and background data it is not possible to determine whether it really is
ACDM without an analysis of the nonlinear regime. Alternatively, there may

be theoretical arguments which rule them out, an area which deserves a more
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thorough investigation. A specific sub-class of these models can even give rise
to ACDM-like background and linear cosmology and yet does not include a
cosmological constant. They exhibit kinetic self-acceleration. As the cosmological
constant now appears as a coupling rather than as a bare constant in these
kinetically self-accelerating models it may render it radiatively stable. For this
reason, and for their interesting cosmological phenomenology, these models will

be the subject of a more detailed study in the future.

Throughout the following years it may very well be the case that concordance
cosmology holds out well against the observational constraints and, just as the
search for new physics at the LHC seems to be unsuccessful, so the search for
new physics in cosmology may be unsuccessful. Of course, we may be simply
asking the wrong questions and exploring dead-end avenues, but until the arrival
of revolutionary insights it is surely a worthy goal. In spite of this, let us not
forget the elephant in the room. Many theories that have been proposed to
explain cosmic acceleration do not address the cosmological constant problem.
There are of course models which do precisely this [59] 193] 206], but they are
precisely constructed with this aim in mind. The outcome of the analysis of
future cosmological data sets will, with any luck, answer one question: ACDM
or not ACDM? In the first instance, it is vital that there is a more concerted
effort in tackling the theoretical issues associated with the cosmological constant.
Such research could have a tremendous impact not just on our understanding of
cosmology, but also of fundamental physics. If the latter scenario occurs, this
thesis provides a signpost towards a theory, or a collection of theories, which

is/are more compatible with what the data might reveal.

Nature is full of surprises. At every turn the only law that seems to hold is
to expect the unexpected. Cosmology is no different. It is no overstatement
to suggest that we are on the cusp of a revolution in our understanding of the
Universe in which we live. The data could tell an unforeseen story, transforming
the expected into the implausible. In twenty or thirty years we may look up at
the sky through a different lens. After all, whenever the impossible has been

eliminated whatever remains, however improbable, must be the truth.
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