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Abstract

The nature of the accelerated expansion of the Universe remains one of the

greatest challenges in modern physics. The simplest explanation is that the

acceleration is driven by a cosmological constant. Large quantum corrections

from the various matter fields in the Universe will contribute to the value of this

constant. Unfortunately, these quantum effects lead to a discrepancy between

the theoretical prediction of the rate of expansion and the observed rate by

many orders of magnitude. Problems such as this have lead theorists to develop

alternative models which can account for the accelerated expansion without a

cosmological constant. These include the addition of an exotic matter species or

even a modification to General Relativity itself. Many such theories introduce a

scalar field, a concept which appears frequently in particle physics. For example,

the Higgs particle is an excitation of a scalar field called the Higgs field which is

a crucial component in the Standard Model of particle physics. Invoking a scalar

field in cosmology adds an extra dynamical degree of freedom that can drive

the accelerated expansion of the Universe, as well as introduce novel physical

effects such as enhancing the clustering of matter. It is not a trivial task to

include a scalar field into General Relativity as it can often lead to theoretical

instabilities. There has recently been substantial interest in Horndeski theory,

which is a general theory which couples the scalar field to gravity while avoiding

theoretical issues. Subsets of Horndeski theory include a large range of common

scalar field models such as quintessence. In order to study how the cosmological

phenomenology of Horndeski theory differs from standard cosmology it is useful

to have a generalised approach which enables the connection of theoretical

predictions with observational data, without restricting to specific subclasses of

models. The effective field theory of dark energy provides such a framework.

However, the effective field theory of dark energy is purely phenomenological.

In order to put constraints on Horndeski theory itself it is necessary to connect

the constraints placed on the parameters in effective field theory with Horndeski
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theory. The aim of this thesis is to provide a method to connect constraints

on cosmological parameters, soon to be measured to an unprecedented precision

with the next generation of surveys, with Horndeski theory.

This thesis begins with an introduction to General Relativity and cosmology

before discussing models which go beyond standard cosmology. A reconstruction

which maps from the effective field theory of dark energy back to the space

of covariant theories is then presented. This provides a method to connect

constraints on phenomenological effective field theory parameters to covariant

theories. We present many applications of this reconstruction. For example,

we discuss how to map from frequently utilised observational parameters to an

underlying Horndeski theory. This allows one to reconstruct, for example, a

Horndeski theory which exhibits a weakening of the growth of structure relative

to standard General Relativity. Extending these results into the nonlinear regime

is then discussed. In principle this provides the necessary tools to systematically

apply stringent tests to Horndeski theory with the next generation of cosmological

surveys across a broad range of length scales.
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Lay Summary

Humanity has always possessed a desire to understand the Universe in which
we live. Over the past hundred years our comprehension of our place in the
Universe has shifted drastically from the Ptolemaic model of a fixed Earth at
the centre of everything. Progress has been made at an astonishing rate. Many
of the questions that troubled us have been answered. But science never ends,
and these solved problems have given rise to many more questions. Slowly but
surely we are determining the right questions to ask but there is still a long way
to go. We know that the Universe had a beginning, called the Big Bang, but we
do not yet know whether it will have an end. We know that black holes exist, yet
we do not know how to reconcile their existence with other fundamental physical
laws. Contradictions in science can often generate significant breakthroughs. This
thesis is a study of a profound contradiction which has persisted for at least 20
years.

The Universe is expanding. This has been known since the famous observations
made by Edwin Hubble in 1929. However, the expansion is accelerating. As yet
no-one understands why this is this case. The name given to our ignorance is dark
energy. Why is the Universe accelerating? Dark energy. What is dark energy?
It is causing the Universe to accelerate. The nature of dark energy, thought to
make up around seventy percent of the total “stuff” in the Universe, remains a
profound mystery and is a central topic of this thesis. Einstein famously invoked
a concept called the cosmological constant in his theory of General Relativity
before Hubble’s discovery of the expanding Universe in order to achieve a static
Universe. He later called this idea the greatest blunder of his life. It might be
seen as a testament to Einstein’s genius that even his mistakes seem to have
importance. The cosmological constant is now back with a vengeance. When
included in the Einstein equations it can also act to accelerate the universe, thus
potentially explaining the underlying nature of dark energy.

This would surely have been the end of the story if it wasn’t for quantum
mechanics. Quantum mechanics describes the world at the smallest scales,
predicting how electrons behave in atoms and the nature of particle interactions
in accelerators such as the Large Hadron Collider. It also gives a prediction for
the value of the cosmological constant. Unfortunately, this prediction does not
match the observed rate of accelerated expansion by many orders of magnitude.
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This contradiction between two of the most successful physical theories ever
conceived, General Relativity and quantum mechanics, has lead to a great deal of
new ideas which aim to explain the accelerated expansion of the Universe without
necessarily invoking a cosmological constant. We will soon see an influx of new
observations from cosmological surveys such as Euclid, which will measure the
properties of our Universe to an unprecedented precision. It is hoped that these
measurements can shed some light on the nature of the mechanism driving the
accelerated expansion. Making measurements to an ever greater precision will not
mean anything at all, unless there is a link between these measurements and the
underlying theories. This link is what this thesis explores. It is no understatement
to say that we could be on the cusp of a revolution in our understanding of the
Universe. It is an open question whether the cosmological constant will do a better
job at describing the observations than other theories. Or is there a new theory
waiting in the wings poised to be revealed by the data? If it turns out to be the
latter scenario, then this thesis provides a method to connect the observations
with this new theory. Perhaps some day soon our understanding of not only
cosmology, but of fundamental physics, will be transformed.
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Chapter 1

General Relativity and Cosmology

People assume that time is a strict

progression of cause to effect, but

actually from a nonlinear,

non-subjective viewpoint, it is

more like a big ball of

wibbly-wobbly, timey-wimey stuff.

Doctor Who

1.1 Overview and motivation

What is the Universe made of? It is such a seemingly fundamental question

that it is quite the embarrassment that, for the most part, nobody really knows.

During the past fifty years there has been a major revolution in our understanding

of what constitutes the majority of the “stuff” in the Universe. There was a time

when humans thought that the Earth was situated at the centre of everything.

This notion came to an abrupt end with Copernicus placing the Earth away

from the centre of the Solar System. He was then later followed by Einstein,

who argued that the very idea of centre was meaningless. Things were becoming

complicated.

Atoms were then discovered and the baffling questions about nature’s basic

building blocks were thought to be overcome. Everything was made of indivisible
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entities, just as Leucippus and Democritus had suggested over two thousand years

ago [10–12]. New discoveries in particle physics during the twentieth century

radically altered this simplistic notion. By dividing atoms into electrons and

nuclei, and subsequently nuclei into quarks and gluons, it became increasingly

clear that there was far more depth and variety in the fundamental structures of

the Universe. An extended family of composite and elementary particles revealed

nature to be far more complicated than anyone imagined.1

Nature not behaving entirely as expected turned out to be the theme of twentieth

century physics. It perhaps should have come as no surprise when it was then

discovered that the contribution of every person, plant, planet and star both

known and unknown, make up barely five per cent of the total “stuff” in the

Universe.

For a start, much of the matter in the Universe does not interact with light. It is

called dark matter and we infer that it must be there through the gravitational

influence that it has on the rotation curves of galaxies [13], the dynamics of

clusters of galaxies [14], how light is lensed as it traverses the Universe [15] and

through the temperature patterns in the relic radiation left over from the Big Bang

[4]. The nature of dark matter remains a pressing issue for modern astronomy

and theoretical physics. It is often regarded to be a new massive elementary

particle that is yet to be directly detected [16–18]. Alternatively, there has

been revived interest in studying whether dark matter could be composed of low

mass primordial black holes [19]. In either case, despite its fundamental nature

remaining a mystery it can generally be considered as some species of ordinary

matter which gravitates in accordance with the standard laws of gravity, namely

the theory of General Relativity (GR) [20–22]. It simply doesn’t interact with

electromagnetic radiation and therefore we cannot see it directly. However, the

majority of the Universe is made up of something which is so bizarre that it may

result in a re-formulation of General Relativity itself.

Throw a tennis ball into the air and it continues to move upwards. For the briefest

moment it then comes to a halt, before reversing its motion to travel back the

way it came towards the ground. The name given to this everyday phenomenon is

gravity. Simply put, any object with mass such as me, you, the tennis ball and the

Earth pulls on every other object with mass. Despite being the oldest known force,

gravity remains the least understood. By all means, our understanding of gravity

1An up to date list of particle discoveries can be obtained via the Particle Data Group at
pdg.lbl.gov/2018/listings/contents listings.html
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has indeed considerably developed over time. An inconsistency between special

relativity and Maxwell’s theory of electromagnetism lead Einstein to develop GR.

There has to date been no inconsistent measurement of GR with observations

many of which have been either laboratory or Solar System tests [23]. From the

perihelion of Mercury to the gravitational deflection of light it has proved to be

remarkably successful and perhaps stands as the pinnacle of theoretical insight

and predictive power. Gravitational waves stood as the last major prediction of

the theory that remained to be directly detected until 2015 [24], 100 years after

Einstein first formulated the theory. It has even found a commercial application

in the everyday use of GPS navigation. So why is it also the least understood of

all the forces in nature?

First and foremost GR cannot be the fundamental theory of gravity. The

existence of singularities both at the Big Bang and in black holes indicate that

it must break down when applied at high energies. There are entirely different

physical laws that apply on very small scales which have a fundamentally different

character to GR. These laws describe all known elementary particles in terms of

quantum fields. They are discrete where GR is smooth and random where GR is

deterministic. Reconciling the two theories into a quantum theory of gravity has

proved profoundly challenging but progress is being made [25, 26].

Perhaps the most compelling reason hinting that GR needs developing comes

from the fascinating observation that the Universe is accelerating in its expansion.

Standard General Relativity says that the Universe should in a sense behave like

the tennis ball thrown upwards on Earth. It will at first expand before the

gravitational pull of all the matter in the Universe eventually leads to a brief

halt and ends in a big crunch as the Universe collapses in on itself. This is not

at all what is actually happening. The Universe is expanding at an accelerated

rate. It is like throwing the tennis ball into the air and watching it keep on

racing ever faster towards the sky. This is not how things are supposed to work.

Understanding this strange aspect of nature remains one of the greatest challenges

in physics. The driver of this acceleration was dubbed dark energy and it is a

central topic of this thesis.

General Relativity has yet to be rigorously tested on cosmological scales. The

next generation of cosmological surveys such as Euclid [27, 28] and LSST [29]

aim to put constraints on GR at the largest scales to an unprecedented precision.

Such surveys may provide the necessary signpost pointing towards a consistent

theory beyond GR. This thesis explores how to connect the information that these
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surveys will provide with underlying physical theories. The eventual outcome will

be to obtain a deeper understanding of fundamental physics from cosmological

probes.

The structure of this thesis is as follows. Chapter 1 begins with an overview

of General Relativity and important aspects of cosmology in order to set the

scene for how the current consensus on our understanding of the Universe

developed. Chapter 2 then provides some of the more technical background

necessary to understand the ideas that go beyond General Relativity. We shall

discuss a number of such models along with two important theorems that have

motivated various research directions in achieving cosmic acceleration without a

cosmological constant, namely the Weinberg no-go theorem and the Ostrogradsky

theorem. Effective field theory is then introduced and discussed in some detail

as it provides much of the theoretical backbone on which the rest of the thesis is

based. Chapter 3 introduces the method of reconstructing physical theories from

the effective field theory of dark energy. Chapter 4 discusses some applications

of this reconstruction and shows how it can used to obtain theories which exhibit

the desired cosmological phenomenology. Chapter 5 investigates the nonlinear

freedom that is included in the reconstruction. In particular it will demonstrate

how screening mechanisms can be incorporated into a reconstructed action,

introduce a class of models which exhibit kinetic self-acceleration as well as

extend the reconstruction to nonlinear scales. In principle this will allow one to

reconstruct models beyond ΛCDM via constraints from a broad range of length

scales.

1.2 General Relativity

1.2.1 What is gravity?

Consider again the tennis ball being tossed into the air. Throughout its motion it

experiences a constant acceleration towards the ground. Isaac Newton’s famous

force law F = mIa links this acceleration with a force, a force which we call

gravity. This force law was quantified by Newton by expressing the gravitational

force between two masses m1 and m2 as being proportional their product and

inversely proportional to the square of distance r between them with Newton’s
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constant G being the proportionality constant

F =
Gm1m2

r2
. (1.1)

This beautifully compact equation is capable of describing a vast range of

gravitational phenomena from the motion of planets, asteroids and comets around

the Sun, the moon around the Earth and a tennis ball thrown into the air. Even

with the tremendous success that Newton’s law of gravitation acquired it was not

complete. Eq. (1.1) is purely descriptive. It can do a fantastic job in predicting

gravitational phenomena but it was not known why nature chose such a force law

in the first place. In other words, there was no mechanism.

The crucial insight was provided by Albert Einstein three-hundred years later

with his theory of General Relativity. This introductory section will give an

overview of some of the key ideas and machinery that are needed to understand

this new revolutionary view of the Universe. There are of course many excellent

introductory reviews and books on the subject which the unfamiliar reader is

encouraged to read [20–22, 30].

We shall begin with an observation that a gravitational force can seemingly be

removed by a transformation to an accelerated frame of reference. In other words,

in a sufficiently small region, there is no experiment that can determine whether

an observer is in a non-inertial frame of reference or a gravitational field. Consider

an object inertial mass mI and gravitational mass mg placed in an elevator which

is itself situated in a gravitational field. The equation of motion is given by

mI
d2x

dt2
= F̃ −mgg . (1.2)

For simplicity we have assumed that the mass can only move in the direction

x aligned with the axis of the gravitational acceleration g. F̃ represents any

other forces which may be acting on the mass, such as electromagnetic forces if

it happens to be charged. The gravitational mass mg can be thought of as the

gravitational “charge” of the particle. By performing a coordinate transformation

along the direction of motion in terms of the new coordinate x′

x′ = x+
1

2
gt2 , (1.3)
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the equation of motion becomes

mI
d2x′

dt2
= F̃ + (mI −mg)g . (1.4)

Equation (1.4) shows that if the inertial mass mI is equal to the gravitational

mass mg then the particle’s equation of motion does not include any gravitational

forces. Applying this argument in reverse, an inertial frame of reference described

by a nonlinear coordinate system may appear to have gravitational forces even in

the absence of mass. As an example, a particle which moves along a straight line in

Cartesian coordinates appears to experience a repulsive force away from the origin

when the same motion is expressed in polar coordinates. This repulsive force,

known as centrifugal force, is simply an artefact of using a curved coordinates

to describe linear motion. This notion of choosing “bad” coordinate systems

to describe theories occurs time and time again in theoretical physics and it is

important to understand whether a particular physical quantity really is physical

or whether it can be removed by the freedom that exists in the theory. The

equivalence between inertial mass and gravitational mass was well known before

Einstein from Galileo’s experiments rolling balls down inclined planes. The

difference was that Einstein was the first person to take it seriously, elevating

this equivalence into a principle called the equivalence principle. We shall discuss

distinctions between different versions of this principle in Sec. 2.2.4.

A further motivation for Einstein was an apparent contradiction between

Newtonian gravity and Maxwell’s theory of electromagnetism. Maxwell’s theory

predicts that the electric force FE experienced between two charges q1 and q2

placed at a distance r is given by Coulomb’s law

FE =
kq1q2

r2
, (1.5)

where k is a constant of proportionality. The similarities between Eqs. (1.5)

and (1.1) seem highly suggestive. Eq. (1.5) can be derived from Maxwell’s

electromagnetic field equations which describe all electromagnetic phenomena

in terms of a vector field Aµ(x, t). The static limit of these field equations yields

Eq. (1.5). If Coulomb’s law can be derived from a field theory, then perhaps

it is possible to derive the law of Newtonian gravity in Eq. (1.1) from a field

theory as well. The importance of this fact was recognised by Newton, albeit

without the mathematical machinery of a field to quantify his intuition. Newton’s

theory of gravity relied on “action at a distance” whereby the gravitational force
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experienced by a mass m1 is exerted seemingly instantaneously when another

mass m2 is placed in its vicinity. This instantaneousness troubled Newton, noting

that [31]

That Gravity should be innate . . . action and force may be conveyed

from one to another, is to me so great an absurdity that I believe no

man who has in philosophical matters a competent faculty of thinking,

can ever fall into it . . . Gravity must be caused by an agent acting

constantly according to certain laws; but whether this agent be material

or immaterial, I have left to the consideration of my readers.

Fortunately, his readers included James Clerk Maxwell and Michael Faraday.

Action at a distance is avoided in Maxwell’s theory as all electromagnetic

interactions are propagated via the electromagnetic field, or light. Einstein’s

special theory of relativity forbade any signals which travel faster than the speed

of light. It was therefore of the utmost importance that a field theory for

gravitation was developed which did not include action at a distance, and in

the static limit reduced to Eq. (1.1). This field theory was provided by GR.

Before commencing our discussion of GR we stress an important point. It is

always possible to perform a nonlinear coordinate transformation to remove the

gravitational field in a sufficiently small region. For an extended mass m1 which

is near another mass m2 the gravitational force experienced at one point of m1

will be different to another position. A real gravitational force should induce tidal

effects. There is no coordinate transformation which can remove tidal forces. Let

us assume that there are two particles freely falling in a gravitational potential

Φ(xi) separated by a distance ∆xi. The relative acceleration experienced between

the two objects is given by

∆ẍi = −∇iΦ(xi + ∆xi) +∇iΦ(xi) ,

= −∆xj∇i∇jΦ . (1.6)

Eq.(1.6) demonstrates that the relative acceleration experienced by two bodies

is given by the second derivative of the gravitational potential. The fact that it

is the second derivative was a key insight into connection between gravity and

geometry.
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1.2.2 Gravity and geometry

The observation that any local non-inertial frame of reference can be transformed

to an inertial frame with a nonlinear coordinate transformation lends itself to a

neat geometrical interpretation. It makes use of the framework of Riemannian

geometry which provided Einstein with the mathematical machinery to construct

GR. In this section we shall briefly review some of the key elements of Riemannian

geometry and GR while referring the reader to Refs. [30, 32, 33] for a more

complete discussion.

Riemannian geometry is a generalisation of Euclidean geometry to curved spaces.

The main geometrical object in Riemannian geometry is a manifold. Formally,

an n-dimensional manifold M is a collection of open sets Uα with a mapping ψ

from each open set to n-dimensional Euclidean space Rn such that ψα : Uα → Rn

which satisfies three properties:

• There is an open set Uα which encompasses every element of p ∈M .

• Every open subset Uα ∈M can be associated with a bijective map onto an

open subset of Rn such that ψα : Uα → Vα where Vα ∈ Rn.

• For any points in M which belong to the intersection of two open subsets

of M there is a mapping from Rn → Rn which maps from ψα [Uα ∩ Uβ] →
ψβ [Uα ∩ Uβ].

Each map ψα is called a chart or a coordinate system. The existence of a map

from each point in a manifold to Rn expresses mathematically the notion that

locally a manifold resembles flat space, despite potentially possessing non-zero

curvature globally. It is this mathematical structure which enabled Einstein to

formulate his physical intuition of the equivalence principle into a quantitative

theory.

Let us review what is meant by flat space. In special relativity, the infinitesimal

distance between two points in spacetime is given by the Minkowski line element

ds2 = ηµνdx
µdxν ,

= −dt2 + dx2 + dy2 + dz2 , (1.7)

where ηµν = (−1, 1, 1, 1). Two parallel straight lines in this space will never

intersect, a statement which may not hold for a general surface. For example, the
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infinitesimal distance between any two points on a sphere of radius r is given by

ds2 = r2dθ2 + r2sin2θdφ2 , (1.8)

where θ and φ are the polar and azimuthal angles respectively. Two parallel

lines drawn from the equator to a pole will inevitably intersect. A sphere is of

course a curved surface but it is important to properly define this notion. After

performing a nonlinear coordinate transformation in Eq. (1.7) it may not be

obvious at all that the space is flat. How is it possible to distinguish between a

flat space written in a nonlinear coordinate system and a genuinely curved space

like a sphere? This distinction is completely parallel to the question of how one

can distinguish between non-inertial forces and gravitational forces as discussed

in the previous section.

The line element on a general space can be written as

ds2 = gµν(x)dxµdxν . (1.9)

where gµν(x) is called the metric tensor. It is a function of the coordinates and

contains all the necessary information to describe the geometrical properties of the

manifold. In particular, we shall describe how the specification of a metric tensor

determines whether a space is flat or curved. Under a coordinate transformation

xµ → x̃µ the components of the metric transform as

g̃µν =
∂xρ

∂x̃µ
∂xσ

∂x̃ν
gρσ . (1.10)

Note that a tensor in itself is a geometrical object that is defined independently

of the coordinate system used to describe it. A vector is a simple example of

a tensor with one index. Under a coordinate transformation the components of

the vector and the basis vectors both transform in such a way as to leave the

vector itself unchanged. We shall briefly give a specific example by transforming

flat three dimensional Euclidean space into spherical polar coordinates (r, θ, φ)

related via

x = r sin θ cosφ , y = rsin θ sinφ , z = r cos θ . (1.11)

Each component of the metric in the spherical polar coordinate system must then
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be computed using equation (1.10). For example, the grr component becomes

grr =

(
∂x

∂r

)2

gxx +

(
∂y

∂r

)2

gyy +

(
∂z

∂r

)2

gzz ,

= 1 . (1.12)

By computing the other components in the same manner the metric of flat space

written in spherical polars is given by

ds2 = dr2 + r2dθ2 + r2sin2θ dφ2 . (1.13)

Note the similarity of this equation with that in Eq. (1.8). Of course these two

metrics describe spaces of different dimension but it demonstrates the care that

must be taken when distinguishing between the metric describing a genuinely

curved space, such as Eq. (1.8), and the metric of a flat space written in a

nonlinear coordinate system, such as Eq. (1.13).

We shall now demonstrate that in a sufficiently small region the metric is

equivalent to that of a flat space. This geometrical fact is the crucial ingredient in

the formulation of the equivalence principle. For example, fixing the polar angle

on the sphere to be θ = π/2 the line element (1.8) becomes r2 (dθ2 + dφ2). After

re-scaling the coordinates by r so that θ̃ = rθ and φ̃ = rφ, Eq. (1.8) becomes

dθ̃2+dφ̃2. So by considering the form of the metric around the local region θ = π/2

one finds that the sphere is flat. For a general four-dimensional spacetime metric

gµν , locally around any point xµ = 0 we must have that gµν = ηµν . The condition

for this to hold is

∂σgµν = 0 . (1.14)

Eq. (1.14) is a compact way of writing forty equations, with four derivatives of ten

independent components of the metric. At quadratic order, a general coordinate

transformation from xµ → yµ can be expressed as

xµ = yµ + Cµ
ρσy

ρyσ , (1.15)

where we have assumed that locally the y coordinate system approximately equals

the x coordinate system. The terms Cµ
ρσ do not necessarily transform as tensors,

but are simply numbers encoding all possible quadratic expansions between the

coordinate systems. It is symmetric in ρ and σ and therefore has forty components

in four dimensions. The condition for the metric to be locally flat then amounts
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to solving forty equations in Eq. (1.14) for forty unknowns in Eq. (1.15). It is

not possible in general to extend this calculation to higher order by requiring

higher derivatives of the metric to vanish, a fact which has important physical

consequences.

A key concept in understanding the properties of curved spaces is the covariant

derivative. This notion generalises the idea of a derivative to curved spaces and

nonlinear coordinate systems. To highlight the necessity of generalising the notion

of a derivative let us take an ordinary partial derivative of the components of a

vector in a coordinate system x̃µ and see how it transforms when written in terms

of the coordinate system xµ

∂Ṽ µ

∂x̃ν
=

∂

∂x̃ν

(
∂x̃µ

∂xσ
V σ

)
. (1.16)

Because the ∂/∂x̃ν operator acts on both terms inside the parentheses, there

is an extra term which means it does not transform as a tensor. The partial

derivative of a vector is therefore not an invariant notion and different observers

using different coordinate systems will not agree on its value. The extra term that

appears in Eq.(1.16) can be accounted for with the addition of another quantity

in the definition of the derivative. The covariant derivative is defined as

∇µV
ν = ∂µV

ν + ΓνµσV
σ . (1.17)

where Γµµσ are the Christoffel connections. If equation (1.14) can hold in an

arbitrary coordinate system as we have shown, then it must be the case that

∇µgρσ = 0 . (1.18)

This condition can be used to derive the form of the Christoffel connections which

are given by

Γνµσ =
1

2
gλν (∂µgλσ + ∂σgµλ − ∂λgµσ) . (1.19)

With this definition it is then a lengthy but straightforward exercise to check

that under a coordinate transformation ∇µV
ν does indeed transform as a tensor.

Note that the Christoffel connections Γνµσ can be defined independently of the

metric. It is only after imposing the condition (1.18) that they relate directly to

the metric.

Derivatives measure the rate at which a quantity changes. In order for this to
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make sense it is necessary to define what a quantity is changing with respect to.

For the case of the covariant derivative in equation (1.17) it the rate of change of

a vector along a curve on the manifold relative to whether it had been parallel

transported along the curve. Consider a curve on a manifold parameterised by λ

given by xµ(λ). A vector V ν is parallel transported along the curve if its direction

does not change as it moves, or more quantitatively

dxµ

dλ
∇µV

ν = 0 , (1.20)

which can be thought of as projecting the covariant derivative ∇µV
ν along the

direction of the tangent vector to the curve dxµ

dλ
. If the vector is itself the tangent

vector such that V ν = dxν/dλ then the condition for parallel transport becomes

d2xν

dλ2
+ Γνµσ

dxµ

dλ

dxσ

dλ
= 0 . (1.21)

This is the geodesic equation which determines the motion of objects in a curved

space in the absence of external forces. It can also be derived by minimising the

action of a free particle in a curved space, given by the integral of the proper

time along the path of the particle S =
∫
dτ (see for example Ref. [22]). Armed

with the notion of a derivative on a curved manifold, we possess the machinery to

determine whether a manifold is truly curved, or whether it is flat with a nonlinear

coordinate system. The curvature of a space is quantified through the Riemann

tensor which can be derived as follows. Consider the parallel transport of a vector

around a closed loop on a curved space, as in Fig. 1.1. On a flat space the vector

should not change direction when it returns to its starting position. On a curved

space this does not happen. The degree to which the vector changes is quantified

by the Riemann curvature tensor.2 The commutator of two derivative operators

acting on a vector quantifies how much a vector changes relative to whether it

was parallel transported along xµ followed by xν compared to xν followed by xµ.

This change is determined by the Riemann curvature tensor Rρ
σµν defined by

[∇µ,∇ν ]V
ρ = Rρ

σµνV
σ . (1.22)

If this commutator is non-zero then the space is not flat. Explicitly Rρ
σµν is given

by

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ . (1.23)

2Note that we neglect torsion.
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Figure 1.1 Parallel transport of a vector along a closed curve on a sphere. The
direction of the vector has changed when it returns to its starting
point, a situation which would not occur on a flat space.

Observe that the Riemann curvature tensor depends on the second derivatives of

the metric. Now recall that the presence of a gravitational force depended on the

second derivative of the gravitational potential, i.e. the presence of tidal forces.

This was a crucial insight that enabled Einstein to make the connection between

gravity and geometry. Gravity is not a force per-se, it is simply an artefact of the

fact that spacetime can bend. A gravitational field does not exist on spacetime,

as Maxwell’s electromagnetic field does, the gravitational field is itself spacetime.

They are one and the same. Not only does GR provide a mechanism for Newton’s

gravitational force, but it also gives the deeper insight that spacetime is also a

field, just like the electromagnetic field. For this reason, GR is often considered

among the most beautiful of physical theories.

There is one key element missing. Spacetime does not bend of its own accord. A

source of stress-energy is required, such as a planet, star, galaxy or a student

writing their PhD thesis. The stress energy tensor of a system of particles

is a tensor with two spacetime indices Tµν . This quantity acts as the source

for spacetime curvature. Taking the trace of Rρ
σµν gives the Ricci tensor Rµν

which provides a natural ansatz for the relation between spacetime curvature

and the stress-energy tensor given by Rµν ∝ Tµν . Conservation of the stress-
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energy tensor requires that that ∇µT
µν = 0 and unfortunately ∇µR

µν 6= 0 so

this ansatz cannot hold. There is however a specific combination of geometrical

terms whose covariant derivative does vanish which can be determined from the

Bianchi identity ∇µ
(
Rµν − 1

2
gµνR

)
= 0. This can therefore allow us to write out

a consistent relation between spacetime curvature and stress-energy as

Rµν −
1

2
gµνR = 8πGTµν , (1.24)

where the constants on the right hand side are determined from the requirement

that the theory possesses a valid Newtonian limit [21, 22]. The quantity R = Rµ
µ

is called the Ricci scalar. Eq. (1.24) is the final form of the Einstein equation

relating the curvature of spacetime on the left hand side to the presence of a

source of stress-energy on the right hand side.

It is also possible to derive Eq. (1.24) from an action principle. By varying the

metric gµ → gµν + δgµν in the so-called Einstein-Hilbert action

SEH =
M2
∗

2

∫
d4x
√
−g R , (1.25)

and setting δSEH = 0 the equation of motion (1.24) is obtained with Tµν = 0.

Note we also write the gravitational constant G in terms of the Planck mass M∗,

related via M2
∗ = 1/8πG and we work in units where c = ~ = 1 throughout this

thesis. With the addition of a term describing the matter sector Sm in Eq. (1.25)

the full Einstein equation (1.24) can be obtained with Tµν determined from

Tµν = − 2√
−g

δSm
δgµν

. (1.26)

The Einstein equations predicts the existence of a wealth of new exotic phenomena

previously unimaginable to 19th century physicists such as gravitational waves

and the expansion of the Universe.3 As this thesis is primarily concerned with

the accelerated expansion of the Universe, the next section will apply GR to the

Universe as whole.

3It is interesting to note that the first mention of an astronomical object resembling a black
hole came in 1784 by John Michell, 131 years before General Relativity. He considered the
situation of a massive body with a gravitational pull so great that not even light could not
escape it [34]. Many thanks to Ed Copeland for pointing this out.

14



1.3 Cosmology

1.3.1 The background Universe

In this section we shall discuss the application of GR to cosmology. The first

step is to apply the cosmological principle, which states that on large scales the

Universe is homogeneous and isotropic. They are distinct concepts. For example,

all points on the surface of a cylinder are equivalent, but there are two distinct

directions, one leading to the end of the cylinder and the other back to the

original position. It is therefore homogeneous but not isotropic. The size of the

observable Universe is estimated to be around 3000Mpc and observations suggest

that the cosmological principle holds above 100Mpc [35]. In fact, the isotropy of

the Universe has recently been tested using the CMB to roughly one part in 105

[36]. For the purposes of the above analysis we shall assume that the cosmological

principle does indeed hold on the largest scales.

In order to apply GR to the Universe it is necessary to find a solution to the

Einstein equations which is both homogeneous and isotropic. The condition that

the spatial metric be homogeneous and isotropic greatly reduces the number

of admissible geometries to being either flat, a sphere with positive spatial

curvature or a hyperboloid with constant negative spatial curvature. These spaces

are maximally symmetric, in that they possess the symmetry group of every

translation and rotation in the space. This discussion closely follows examples

given in Ref. [37].

We shall now derive the form of the metric in a maximally symmetric space by

embedding a three dimensional sphere of radius a in four dimensional Euclidean

space. The defining equation of this surface is given by

x2 + y2 + z2 + w2 = a2 . (1.27)

By taking the differential of Eq. (1.27)

xdx+ ydy + zdz + wdw = 0 , (1.28)

and using Eq. (1.28) to eliminate dw we obtain the induced metric of the sphere
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in four dimensional Euclidean space

ds2 = dx2 + dy2 + dz2 +
(xdx+ ydy + zdz)2

a2 − x2 − y2 − z2
. (1.29)

This expression can be greatly simplified by transforming to spherical polar

coordinates x = r̃ sin θ cosφ, y = r̃ sin θ sinφ and z = r̃ cos θ where it becomes

ds2 =

(
1− r̃2

a2

)−1

dr̃2 + r̃2dθ2 + r̃2 sin2 θdφ2. (1.30)

After re-defining the radial coordinate r̃ such that r = r̃/a one obtains

ds2 = a2

[
dr2

1− r2
+ r2(dθ2 + sin2 θdφ2)

]
, (1.31)

which is the metric of a space of constant positive curvature. By reversing the sign

of a2, or indeed by setting a2 to zero in Eq. (1.27) one can repeat this calculation

to obtain the metric of a three dimensional space of constant negative curvature

or zero curvature. The general metric is given by

ds2 = a2

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (1.32)

where k is a constant that takes the value +1 in a positively curved space, −1

in a negatively curved space and is 0 in a flat space. Furthermore, it is useful to

define a new coordinate χ such that

dχ2 =
dr2

1− kr2
. (1.33)

The relationship between r and χ then takes the form

r = Sk(χ) =


sinhχ, k = −1

χ, k = 0

sinχ, k = +1

, (1.34)

and Eq. (1.32) becomes

ds2 = a2
(
dχ2 + S2

k(χ)dΩ2
)
, (1.35)

where dΩ2 = dθ2 + sin2 θdφ2 is the metric of a two dimensional sphere. Even

though Eq. (1.35) was derived from embedding a constant curvature surface in
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four dimensional Euclidean space, it does not rely on this embedding for its

definition. It is then straightforward to write down the metric of four dimensional

Minkowski space with constant spatial curvature in the following way as

ds2 = −dt2 + a2(t)
(
dχ2 + S2

k(χ)dΩ2
)
, (1.36)

where the radius of curvature a has been promoted to a function of time a(t). This

is the Friedman-Lemâıtre-Robertson-Walker (FLRW) metric. It is the unique

metric of a homogeneous and isotropic space with a time coordinate t, and is

therefore a useful ansatz for the metric describing the Universe on the largest

scales. One can also define the conformal time τ with dτ = dt/a(t) so placing the

temporal and spatial coordinates on an equal footing. The metric in Eq. (1.36)

then becomes

ds2 = a2(τ)
[
−dτ 2 + dx2

]
, (1.37)

where we have written the spatial components of the metric in a general

coordinate system x.

Dynamics of the homogeneous Universe

Now that we have constructed the metric of a homogeneous and isotropic

spacetime in Eq. (1.36) it is important to check that it is a solution to the Einstein

equations. The only dynamical quantity that appears in the metric is the scale

factor a(t) which is related to the time dependent stress-energy content of the

Universe through two equations called the Friedmann equations. See Ref. [38] for

a more detailed derivation.

Computing the Christoffel symbols for the metric (1.36) one can obtain the

corresponding Riemann curvature tensor from Eq. (1.23). For example, one can

show that

Γ0
ij = a2Hhij , Γi0j = Hδij , (1.38)

where hij is the spatial metric and H(t) ≡ ȧ/a is the Hubble parameter. Once

every Christoffel connection has been computed the Ricci tensor and scalar can

be determined. The components of the Ricci tensor are given by

R00 = −3
(
Ḣ +H2

)
, (1.39)

R0i = Ri0 = 0 , (1.40)

Rij = a2
(

3H2 + Ḣ + 2k
a2

)
hij , (1.41)
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and the Ricci scalar is found to be

R = 6

(
2H2 + Ḣ +

k

a2

)
. (1.42)

The metric is of course just one ingredient in the Einstein equation. It is

also necessary to include the contribution of the stress-energy tensor Tµν . On

cosmological scales it is a good approximation to treat matter as a perfect fluid

with an energy-momentum tensor of the form

Tµν = (ρ+ p)uµuν − pgµν , (1.43)

where uµ is the four-velocity of a fluid element which is given by uµ = (−1, 0, 0, 0)

in the rest frame. The energy density ρ is related to the pressure p through the

equation of state parameter

w =
p

ρ
. (1.44)

Dark matter and baryons have an equation of state w = 0 and radiation has w =

1/3. We can now determine the background metric evolution when the Universe

is dominated by a matter species with a general equation of state w. Plugging in

the stress-energy tensor (1.43) into the right hand side of the Einstein equation

and using the components the Ricci tensor for an FRW metric in equation (1.36)

we find

H2 =
8πG

3
ρ− k

a2
, (1.45)

3H2 + 2Ḣ = −8πGp− k

a2
. (1.46)

Eliminating H from these equations it is possible to show that

ρ̇+ 3H (ρ+ p) = 0 . (1.47)

This is the continuity equation which can also be derived as the time component

of stress-energy conservation ∇µT
µν = 0. Equations (1.45) and (1.46) are the

Friedmann equations which can be solved to obtain H(t) for a given ρ(t). The

continuity equation (1.47) can be solved for a general matter species with an

equation of state w to give

ρ ∝ a−3(1+w) , (1.48)

which shows that the energy density of matter scales as ρm ∝ a−3 and radiation as

ρr ∝ a−4. It also shows that if there is a matter contribution which has a constant
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energy density ρ̇ = 0 this implies w = −1. As ρ must be positive this implies that

a constant energy density is associated with negative pressure. The cosmological

constant is by definition a constant energy density, and from Eq. (1.46) one can

see that its associated negative pressure implies ä > 0, i.e. accelerated expansion.

Using equation (1.45) one can determine the energy density required to have a

flat Universe with k = 0. This is called the critical density and is given by

ρcrit0 =
3H2

0

8πG
, (1.49)

where H0 is the present day value of the Hubble parameter. Using this critical

value we can define present day density parameters

Ωi0 ≡
ρi0
ρcrit0

. (1.50)

Now let us assume that the Universe is made up of matter, radiation, a

cosmological constant w = −1 and spatial curvature. Equation (1.45) can then

be expressed in terms of each Ωi0 in the following way

H2/H2
0 = Ωm0a

−3 + Ωr0a
−4 + ΩΛ0 + Ωk0a

−2 , (1.51)

where Ωk = −k/H2
0 is the curvature density parameter. A useful way of

interpreting equation (1.45) can be seen by re-writing equation (1.45) as

ȧ2 ∝ Ωm0a
−1 + Ωr0a

−2 + ΩΛ0a
2 + κ , (1.52)

where κ is a constant. Written in this way the Friedmann equation looks like a

Hamiltonian for the scale factor with the first three terms on the right hand side

interpreted as an effective potential −Φeff (a). If ΩΛ is the dominant contribution

then it reduces to ȧ2 ∝ a2 which has accelerated expansion of a(t) as a solution.

In this way the dynamics of the background expansion of the Universe can be

considered as being equivalent to a particle moving in a potential.

As the contribution from radiation is negligible at late times, determining the

cosmology of the Universe reduces to determining where the Universe we live in

happens to sit in the parameter space of Ωm0 and ΩΛ0. The alternate possibilities

are illustrated in Fig. 1.2. For example, the absence of spatial curvature implies

that Ωm + ΩΛ = 1. Anywhere above (below) this line corresponds to an open

(closed) Universe. As an open, closed and flat Universe all evolve differently, by

determining the shape of the potential in equation (1.52) each point on this plane
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Figure 1.2 The expansion history of the Universe is determined from points in
the (ΩΛ,Ωm) plane. The solid blue line ΩΛ + Ωm = 1 corresponds to
a flat Universe, with all points above belonging to a closed Universe
k > 0 and those below to an open Universe k < 0. All points above
the dashed blue line correspond to a Universe which will never cease
expanding whereas points below correspond to Universes which will
reach a peak radius and then re-collapse. Combing the supernovae
constraint with the CMB results of k ≈ 0 results in a Universe with
ΩΛ ≈ 0.7 and Ωm ≈ 0.3.
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geometry and the future evolution of the Universe. Also shown in figure 1.2 are

the constraints arising from the type Ia Supernovae (see Sec.1.3.3). It is clear that

the Supernovae result alone do not determine that the Universe is dominated by

ΩΛ. It could either be an open matter dominated Universe or a closed Universe

with significant contributions from matter and a cosmological constant. Only

when the spatial curvature of the Universe was determined to be flat from the

cosmic microwave background radiation (see Sec. 1.3.3) was it clear that Universe

we live in lay close to ΩΛ ≈ 0.7 and Ωm ≈ 0.3. As the density of baryons was

determined from Big Bang Nucleosynthesis to be Ωb ≈ 0.04 this also provided

strong evidence that the majority of the matter was in the form of dark matter

which does not interact with electromagnetic radiation.

The Friedmann equation (1.45) and (1.46) determine the background expansion

history of the Universe. Departures from homogeneity and isotropy arising from

the presence of structures in the Universe are discussed in the next section. We

then conclude this introductory chapter with a discussion of the observational

basis for the present consensus on the stress-energy content of the Universe.

1.3.2 The perturbed Universe

SVT decomposition

In the previous section we examined the dynamics of the Universe when it was

treated as entirely homogeneous and isotropic. This assumption must break down

at some length scale. The Universe has structure in the form of dark matter halos,

filaments, galaxy clusters and super-clusters. In order to describe a Universe

with this structure it is necessary to go beyond the assumptions of homogeneity

and isotropy. This section discusses the important machinery that is needed

to account for the presence of structure on top of a homogeneous and isotropic

Universe. We do not discuss the highly nonlinear regime where models of spherical

collapse are necessary (see, for example, Ref. [39] Sec.7.5) but instead restrict

to a regime where structure can be treated as small perturbations on top of a

background FLRW Universe.

The nonlinear nature of the Einstein equations suggests that this approach could

be challenging. Fortunately, the story greatly simplifies at the level of first-order

perturbations through a mathematical trick called a scalar-vector-tensor (SVT)
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decomposition. In this approach the various degrees of freedom separate into

components which all evolve independently. Due to the importance of being able

to perform such a decomposition for the formulation of linear perturbation theory,

we shall now justify it in some detail. The proceeding discussion closely follows

that presented in the appendix of Ref. [40].

Consider a general perturbation δQ written in Fourier space

δQ(t,k) =

∫
d3x δQ(t,x)e−ik·x . (1.53)

We shall show that each Fourier mode of the perturbation evolves independently

because of translational invariance. Let us assume that the evolution of the

perturbation is determined by an equation, in this case the Einstein equation,

that determines possible couplings between different modes as well as determining

the time dependence

δQi(t2,k) =
N∑
j=1

∫
d3k̄Tij(t2, t1,k,k) δQj(t1,k) . (1.54)

Here, Tij is the matrix which involves the relation between the modes k and k

from time t1 to t2 which is determined from the evolution equation. Shifting the

coordinates to a new frame xi
′
= xi + ∆xi results in an extra phase factor, as can

be seen from

δQ′(t,k) =

∫
d3x′δQ(t,x′)e−ik·x

′
, (1.55)

= e−ik·∆x

∫
d3x δQ(t,x′)e−ik·x , (1.56)

= e−ik·∆x

∫
d3x δQ(t,x)e−ik·x , (1.57)

where the final line was obtained through the invariance of the integral after the

shift in coordinates. Therefore

δQ′(t,k) = e−ikj∆x
j

δQ(t,k) , (1.58)

where we have written k and ∆x in terms of their components ki and ∆xi.

Plugging this result in Eq. (1.54) the equation of motion transforms as

δQ′i(t2,k) =
N∑
j=1

∫
d3k̄Tij(t2, t1,k,k) e−i(ki−ki)∆x

i

δQ′j(t1,k) . (1.59)
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This expression must be equal to the original expression with the transfer matrix

also in the primed frame

δQ′i(t2,k) =
N∑
j=1

∫
d3k̄T ′ij(t2, t1,k,k) δQ′j(t1,k) . (1.60)

As the equations of motion must be the same before and after the translation

from the symmetry of the underlying action from which they were derived, such

as the Einstein-Hilbert action in Eq. (1.25), it must be the case that

T ′ij(t2, t1,k,k) = Tij(t2, t1,k,k) e−i(ki−ki)∆x
i

. (1.61)

This can only be true if the transfer matrix is zero, or if ki = ki. In other

words, the transfer matrix is diagonal and so on linear scales each Fourier mode

evolves independently. Going beyond linear scales results in more complicated

relations between Fourier modes where Eq. (1.61) does not hold. The modes

become coupled on nonlinear scales.

Now that we have established that each mode of a linear perturbation evolves

independently through translational invariance, let us explore a similar argument

how this argument extends with another symmetry in the action, namely

rotational invariance. If following a rotation by an angle ψ a perturbation changes

by eimψ then it is a perturbation of helicity m. Rotational invariance allows us

to set the wavevector of the perturbation to be k = (0, 0, k) such that the only

spatial dependence of the perturbation is along the x3 axis with the factor eikx
3
.

Rotations around k are simpler in an alternate basis for the unit vectors in the

two orthogonal directions in Fourier space e1 and e2 defined by

e± ≡
e1 ± ie2√

2
, (1.62)

where the basis vector along the k3 direction e3 is kept fixed. Under a standard

rotation, for example with x′1 = x1cosψ+x2sinψ the new basis vectors transform

as

e′± = e±iψe± . (1.63)

This gives the coordinate transformations

∂x+′

∂x+
= eiψ ,

∂x+′

∂x−
= 0 ,

∂x−′

∂x+
= 0 ,

∂x−′

∂x−
= e−iψ . (1.64)
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A tensor with a number of indices will then transform under a rotation as

T ′i1i2...in = ei(n+−n−)ψTi1i2...in . (1.65)

For example we would have that

T ′++ = e2iψT++ , (1.66)

showing that T++ is a helicity 2 object. Similarly, as e3 is unchanged after a

rotation we have that

T ′3− = e−iψT3− , (1.67)

showing that T3− is helicity 1. Following a similar argument to the independence

of the evolution of Fourier modes due to translational invariance, it is possible

to determine that as a consequence of rotational invariance modes of different

helicities will all evolve independently. Therefore it is possible, for example, to

decompose a tensor of rank two Tij into the sum of separate components such as

in Eq. (1.66) and Eq. (1.67) which obey independent evolution equations as they

have different helicities.

A vector with one index can be decomposed as

βi = βSi + βVi , (1.68)

where βSi = −ikiβ̂ and βVi are the components that cannot be written as the

gradient of a scalar, which in Fourier space is equivalent to all those components

whose wave vectors are orthogonal to ki. The circular polarization basis is

particularly well suited for this purpose. Under a rotation in this basis we have

that βV ′+ = eiψβV+ . It thus comprises the helicity one components of this vector,

which can also be considered as the curl of a vector in three dimensions. In a

similar manner, a rank two traceless symmetric tensor can be written as a sum

of in helicity zero, one and two components

γij = γSij + γVij + γTij . (1.69)

with each term representing the decomposition into different helicity states. The

helicity zero component must be composed of two derivatives acting on a scalar

to preserve the index structure. The tracelessness condition then fixes it to be

γSij = (−kikj +
1

3
δijk

2)γ . (1.70)
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The symmetric condition on the vector component then fixes this term to be

γVij = − i
2

(kiγj + kjγi) . (1.71)

The helicity two component γTij is the transverse and traceless part of the tensor.

Couple that with the fact it is also symmetric leaves only two independent

components for this part. These components eventually acquire a physical

interpretation as the two independent polarizations of gravitational waves.

Now that we have determined that we can separate the perturbation evolution

equations into those of different wavenumber and different helicity we shall now

apply these ideas to study the form of the perturbation equations for a perturbed

FLRW Universe.

Cosmological perturbation theory

A key question which arises in perturbation theory is whether a given perturbation

is physical or simply an artefact of a poorly chosen coordinate system. It is a

completely analogous situation to the discussion in Sec. 1.2.1 where we discussed

fictitious forces which appear as a result of a choice of a non-inertial reference

frame. In the same manner, a perturbation may arise from a poor choice of

coordinates.4 Consider a homogeneous FLRW background metric written in

conformal time τ as in Eq. (1.37) with the coordinates τ and xi shifted by a

first-order quantity ζµ(x, τ) such that x̃µ = xµ + ζµ(x, τ). If we assume for

simplicity that ζ0(x, τ) = 0 then after this coordinate shift Eq. (1.37) becomes

ds2 = a2(τ)
[
−dτ 2 + 2ζ ′idx̃

idτ +
(
δij + 2∂(i ζ j)

)
dx̃idx̃j

]
, (1.72)

where ∂(i ζ j) is a symmetric sum over the indices i and j. Eq. (1.72) appears to

be a FLRW metric with added perturbations. However, we began with a smooth

homogeneous background metric and only changed the coordinates, so Eq. (1.72)

is still a smooth homogeneous FLRW background metric. It is just written in

a poorly chosen coordinate system. As a further example, if ζ0(x, τ) 6= 0 then

fictitious density perturbations may arise through ρ(τ + ζ0) = ρ̄(τ) + ρ̄′ζ0. In

this coordinate system it seems there is a density perturbation δρ = ρ̄′ζ0. This is

not a physical density perturbation and is an artefact of the chosen time slicing.

4The following discussion follows Daniel Baumann’s cosmology notes available from
http://www.damtp.cam.ac.uk/user/db275/Cosmology.pdf.
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This discussion can apply in reverse. With a different choice of time slicing it is

possible to work in a coordinate system were the physical matter perturbations

are zero by choosing the hypersurface of constant time to be equivalent to the

hypersurface of constant energy density.

This freedom to transform between different coordinate systems is often called

gauge freedom. Although it seems like it may be a problem, it is actually extremely

useful as this freedom allows one to perform calculations in particular gauges

where there are great simplifications. This is done by fixing the gauge, meaning,

choosing a gauge which removes the fictitious perturbations completely. After the

gauge has been fixed, one can be rest assured that any remaining perturbations

can be treated as physical. Let us see how this is achieved. Consider a general

perturbed FLRW metric written in conformal time

ds2 = a2(τ)
[
−(1 + 2A)dτ 2 + 2Bidx

idτ + (δij + hij)dx
idxj

]
. (1.73)

For the moment the perturbations A, Bi and hij may be unphysical as the gauge

has not been fixed. Note also that Bi and hij can be expanded in an SVT

decomposition

Bi = B̂i + ∂iB , (1.74)

hij = 2Cδij + 2∂〈i∂j〉E + 2∂(i∂ j)Ê + 2Êij , (1.75)

where ∂〈i∂j〉 indicate a traceless combination of derivatives and ∂(i∂ j) indicates

a symmetric summation of derivatives. Now let us make a gauge transformation

by shifting the coordinates x̃µ = xµ + ζµ(x, τ) with ζ0 = T and ζ i = ∂iL + L̂i.

Recall that under a coordinate transformation the metric transforms as

gµν(x) =
∂x̃α

∂xµ
∂x̃β

∂xν
g̃αβ(x̃) . (1.76)

The key quantities which arise from the partial derivatives are given by

∂x̃0

∂x0
= T ′ + 1 ,

∂x̃0

∂xi
= ∂iT ,

∂x̃k

∂x0
= ∂0L

k ,
∂x̃k

∂xi
= δki + ∂iL

k . (1.77)
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For example, the time-time component transforms as

g00 = a2(τ)(1 + 2A) ,

=

(
∂x̃0

∂x0

)2

g̃00(x̃) ,

= (1 + T ′)2a2(τ + T )(1 + Ã) . (1.78)

Taylor expanding the last line to first-order and solving for Ã gives

Ã = A− T ′ −HT , (1.79)

where H = a′/a is the conformal Hubble factor. This defines how the metric

perturbation A transforms after a change in coordinates. Similarly we can find

that at first-order in the perturbations

B̃i = Bi + ∂iT − L′i , (1.80)

h̃ij = hij − 2∂(iL j) − 2HTδij . (1.81)

One way to proceed is to combine the various perturbations in such a way

that the combination remains invariant after a gauge transformation. These are

called Bardeen variables or gauge invariant variables. Alternatively, by making

particular coordinate transformations with ζµ(x, τ) the perturbed metric can

considerably simplify. For example, by choosing ζµ(x, τ) such that B = E = 0

the perturbed metric does not contain any mixed time-space components and

simplifies to

ds2 = a2 (τ)
[
− (1 + 2Ψ) dτ 2 + (1 + 2Φ) δijdx

idxj
]
, (1.82)

where the new perturbations are Φ ≡ C and Ψ ≡ A. This particular choice of

coordinates is called the Newtonian gauge. As we have used up all the coordinate

freedom in ζµ in order to set B = E = 0 and thus obtain equation (1.82)

the perturbations Φ and Ψ can be considered physical perturbations, not an

artefact of a nonlinear coordinate choice. There are of course other gauges but

the Newtonian gauge is the most common and shall be adopted throughout this

thesis.

Of course, the perturbations to the metric are only one half of the Einstein
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equations. See Ref. [41] for a more detailed discussion of the following calculation.

It is also necessary to consider perturbations in the matter sector. Taking

the four-velocity of a comoving fluid element with a perturbation around the

background flow uµ = uµ + δuµ, and applying the condition uµu
µ = −1 it can be

shown that

δuµ = a−1
(
−A, vi

)
, δuµ = a (−A, vi +Bi) , (1.83)

where δui ≡ vi/a is the spatial component of the four-velocity perturbation and

we have used Eq. (1.73). To make the connection with the Einstein equation

we must derive the form of the perturbed energy-momentum tensor for a perfect

fluid. This can be obtained by taking ρ = ρ + δρ and p = p + δp along with the

expressions above for δuµ and δuµ and perturbing Eq. (1.43)

δTµν = (δρ+ δp)uµuν + δpgµν + 2(ρ+ p)u(µ δuν) + pδgµν + a2pπµν , (1.84)

where gµν is the background FLRW metric and πµν is any transverse traceless

component of the stress energy perturbations called anisotropic stress. The

contribution from πµν is generally small enough that it shall be neglected from

now on. The non-zero components of the stress-energy tensor are given by

δT00 = ρa2 (δ + 2A) , (1.85)

δT0i = −ρa2 [(1 + w) vi +Bi] , (1.86)

δTij = δpa2δij , (1.87)

where δ ≡ δρ/ρ is the matter density perturbation. As with any perturbed

quantity in GR it is necessary to ensure these are really physical perturbations.

In the same manner as with metric perturbations it is possible to define a set of

gauge invariant variables for the stress-energy tensor and treat those as the real

physical perturbations. On the other hand one can fix a gauge and work in a

simplified coordinate system where all of the gauge freedom has been exploited.

A particular choice of gauge invariant variables for the matter perturbations is

given by

δN = δ +
ρ′

ρ
(B − E ′) . (1.88)

This is a useful because if we choose to work in the Newtonian gauge with E =

B = 0 then the matter density perturbation δ is now gauge invariant. It is also
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the case that in this gauge the velocity perturbation vi is gauge invariant. For

this reason the Newtonian gauge is commonly used to study the dynamics of

cosmological perturbations.

We shall now derive the form of the perturbed Einstein equations which enable

the computation of the evolution of the perturbations in different cosmologies.

For the following we perform an SVT decomposition of the velocity three-vector

vi = ∂iv + ṽi. There are four independent Einstein equations and two energy-

momentum equations. They determine the evolution of the six perturbation

variables Φ, Ψ, δ, v, ṽ and δp. It is therefore a solvable closed system of differential

equations. The relevant Einstein equations arise from the (00), (0i) the trace-

free (ij) and the trace (ii) components of Eq. (1.24). In the absence of spatial

curvature and anisotropic stress the (00) component gives

∇2Ψ = 4πGa2ρ̄∆m , (1.89)

where ∆m ≡ δ − 3Hv is called the comoving curvature perturbation. The trace-

free (ij) component of the Einstein equation leads to the relation between the

metric perturbations Φ + Ψ = 0. Note that in a theory of modified gravity

the right hand side of this equation may no longer vanish (see Sec. 4.3.4). The

remaining Einstein equations are dynamical and can be solved to obtain the time

evolution of the perturbations

Φ′ −HΨ = 4πa2Gρ̄(1 + w)v , (1.90)

c2
s∇2Φ− Φ′′ − 3H

(
1 + c2

s

)
Φ′ −

[
2H′ +H2

(
1 + 3c2

s

)]
Φ = 0 , (1.91)

where c2
s = δp/δρ is the sound-speed. There are two more equations needed

to close the system. These arise from the perturbed part of the stress-energy

conservation equation δ (∇µT
µν) = 0. They give the evolution of the density

perturbation and the scalar component of the velocity perturbation. In the

Newtonian gauge they are given by

δ′ + 3H
(
c2
s − w

)
δ = − (1 + w)

(
∇2v + 3Φ′

)
, (1.92)

v′ +H
(
1− 3c2

s

)
v = Φ− c2

s

1 + w
δ . (1.93)

This analysis can also be carried out on the vector and tensor perturbations but
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as these do not contribute to the growth of structure in the Universe they shall

not be discussed in detail.

Of course, it is not possible to precisely predict the underlying density field with

perturbation theory. Statistical tools are necessary to compare the theoretical

predictions with the observations. In particular a commonly employed observable

is the 2-point function, called the power spectrum in Fourier space or the

correlation function in real space. There are a number of definitions of the 2-

point function. We shall discuss here the principal interpretations. The first is

to consider the correlation function as a convolution between two density fields.

ζ(r) = 〈δ(x)δ(x+ r)〉 =

∫
d3xd3x′δ(x)δ(x′)δD(r − |x− x′|) . (1.94)

where δ(x) could be an over-density of galaxies, dark matter, temperature

anisotropies or so forth and δD(x) is the Dirac δ-function. In this interpretation

there is a fixed underlying density field and for a given r, the correlation function

samples every point in this density field to obtain the correlation function. A

different interpretation of the correlation function is to take an average over an

ensemble of different density fields for a fixed r. This case corresponds to a

functional integral over the space of different density fields

〈δ(x1)δ(x2)〉ensemble =

∫
D[δ]δ(x1)δ(x2)P [δ] . (1.95)

There is of course only one Universe with one density field and so in practice this

is not a particularly useful way of defining the correlation function. It is not too

important however, as the ergodic hypothesis states that these two definitions are

equivalent in the limit of an infinite number of distributions. In other words the

ensemble average is equal to the sample average. Of course this is an assumption

which cannot test with only the one Universe. It is more common to express the

correlation function in Fourier space where it is called the power spectrum P (k)

defined by

〈δ̃(k)δ̃(k′)〉 = (2π)3P (k)δ(3)(k − k′) . (1.96)

The power spectrum gives a measure on the amount of matter clustering on each

scale. A flat power spectrum indicates that the amplitude of matter clustering is

the same no matter what scale is considered. In general, the amount of clustering

that occurs is dependent on the particular theory of gravity which is considered.

A theory of modified gravity, an extra dark energy component or an exotic dark

matter particle may alter the shape and amplitude of the power spectrum. It
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can therefore provide a useful probe to test different models of gravity. For

most models it is assumed that the density field is Gaussian meaning that the

power spectrum provides a complete statistical description of the properties of

the density field. However it may be the case that in order to distinguish between

different theoretical models it is necessary to examine clustering on smaller length

scales. Nonlinear effects become increasingly relevant at smaller scales and the

underlying density field becomes less and less Gaussian. Higher-order statistics

such as the 3-point function, also called the bispectrum, are then utilised in order

to study the effects of various models on nonlinear structure [42].

1.3.3 The ΛCDM model

In this section we shall go over some of the key observations which culminated in

the current cosmological standard model Λ Cold Dark Matter (ΛCDM). The three

key pieces of evidence are the age of the Universe, supernovae observations and

the cosmic microwave background (CMB). We shall then conclude this opening

chapter which a discussion of photon trajectories in a perturbed Universe, which

is a key observational probe into the properties of dark energy.

Age of the Universe

In this section we shall discuss why, simply by considering the age of the Universe,

it is clear that we do not live in a Universe dominated by matter with w = 0.

Recall the Friedmann equation (1.52)

H2

H2
0

= Ωr0 (1 + z)4 + Ωm0 (1 + z)3 + Ωk0 (1 + z)2 + ΩΛ0 , (1.97)

where the scale factor a has now been written in terms of redshift z. Using the

relation between coordinate time t and redshift z given by dt = −dz/(1 + z)H

we can integrate Eq. (1.97) to obtain the age of a Universe, neglecting radiation

which is composed of matter, a cosmological constant and spatial curvature

t =
1

H0

∫ ∞
1

dx

x (Ωm0x3 + ΩΛ0 + Ωk0x2)
, (1.98)
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where x ≡ 1 + z. For a flat matter dominated Universe with Ωk0 = ΩΛ0 = 0 this

can be evaluated to be

t0 =
2

3H0

. (1.99)

With the definition of H0 = 100h km s−1 Mpc−1 and h ≈ 0.72 the age of a flat

matter dominated Universe cannot be more than 10 billion years. The presence

of stars in the Universe that are much older than this [43–45] indicates that

the composition of the Universe cannot be so simple. There must therefore be

some contribution from the cosmological constant and/or spatial curvature to

the energy budget of the Universe in order to accommodate these astrophysical

constraints.

Supernovae

A key piece of observational evidence for dark energy was provided by observa-

tions of Type Ia Supernovae [46, 47]. They are certainly a useful cosmological

probe, but as we shall see, are not sufficient to precisely determine the composition

of the Universe (see Fig. 1.2). It is only in combination with other observables

such as the cosmic microwave background radiation and baryonic acoustic

oscillations that the composition of the Universe can be tightly constrained. In

this section we shall discuss how supernovae provide a complimentary probe of

the stress-energy content of the Universe. Recall the form of an FLRW metric

Eq. (1.36) in a spacetime with non-zero spatial curvature

ds2 = −dt2 + a2(t)
(
dχ2 + S2

k(χ)dΩ2
)
, (1.100)

where χ is the comoving distance, the distance that light has travelled from the

big bang to today and sets the causal horizon of the Universe given by

χ =

∫ z

0

dz′

H(z′)
. (1.101)

The combination 4πSk(χ) is the surface area of a sphere in a closed, flat or open

Universe at comoving distance χ where

Sk(χ) =


sinχ k = −1

χ k = 0

sinhχ k = +1 .

(1.102)

32



The key observable which Supernovae probe is the luminosity distance, defined

as

d2
L =

Ls
4πF

. (1.103)

Ls is the intrinsic luminosity of the source, i.e. the energy emitted per unit

time, and the observed flux is F = L0/4πS
2
k(χ) where L0 is the observed

luminosity of the source. The luminosity distance therefore depends on the

comoving distance through Sk(χ) and is therefore dependent on H(z) through

Eq. (1.101). The luminosity distance is then a probe the stress-energy content

of the Universe. Observationally, the luminosity distance dL can be related to

the absolute magnitude M of a Supernovae which is defined to be its apparent

magnitude m at a distance of 10pc

m−M = 5 log10

(
dL

10pc

)
. (1.104)

With an object of known absolute magnitude, measuring the apparent magnitude

of the same object allows one to infer the luminosity distance directly. For

this technique to work it is necessary to observe an astronomical object with

a fixed absolute luminosity called a standard candle. Type Ia supernovae are

very useful in this regard. They are believed to be the end result of a white

dwarf star in a binary companion accreting matter. Once the mass of the white

dwarf reaches the Chandrasekhar limit where the electron degeneracy pressure

in the core of the white dwarf is insufficient to prevent further gravitational

collapse, the result is one of the most energetic thermonuclear explosions known

to exist in the Universe, often being brighter than an entire galaxy. Due to the

specific conditions needed to generate a type Ia supernovae explosion the absolute

magnitude of the peak luminosity are all very close to M ≈ −19. Unfortunately,

type Ia supernovae cannot be considered as precise standard candles but rather,

as standardizeable candles. There is some spread in the intrinsic luminosity of

each type Ia supernovae. However, it was found that there is a useful correlation

between the width of the light curve and the absolute magnitude [48]. This

enables one to correct the estimate of the absolute magnitude to obtain a

measure of the luminosity distance. By measuring the wavelength of some of the

key absorption lines the redshift can be determined and hence the relationship

between luminosity distance and redshift. Refs. [46, 47] used this relationship

to disfavour a matter dominated Universe, instead favouring models dominated

by a cosmological constant. Fig. 1.2 demonstrates that the constraints arising

from type Ia supernovae are orthogonal to spatial curvature. A determination
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Figure 1.3 The spectrum of the temperature fluctuations in the cosmic
microwave background from the Planck 2018 results [4]

of the spatial curvature of the Universe could then highly constrain the stress-

energy composition. It was fortuitous then that this constraint had already been

provided by the CMB.

Cosmic Microwave Background and Baryonic Acoustic Oscillations

The Cosmic Microwave Background (CMB) radiation provides the most stringent

constraints that we have on the properties of dark energy to-date. The principal

reason for high constraining power of the CMB is its capability of measuring

the spatial curvature of the Universe, with the latest Planck 2018 constraint on

the contribution of spatial curvature to the stress-energy budget being Ωk =

0.001± 0.002 [4]. It is the radiation that is left over from the Big Bang, bathing

the Universe in photons at a temperature of around 2.73K. Detailed observations

of the properties of this radiation revealed small fluctuations away from this

smooth background at the order of 10−5. These anisotropies in the temperature

distribution of the CMB were initially sourced by quantum fluctuations generated

during the inflationary era. The statistical distribution of the amplitude of

the anisotropies at different angular scales is characterised by an angular wave-
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number `. The wave pattern that can be observed in figure 1.3 is a signature of

the sound waves in the photon-baryon plasma which filled the Universe prior to

recombination.

The CMB has many different sources of anisotropy arising from different physical

effects occurring on different length scales which all alter the shape of the

spectrum in Fig. 1.3. A primary source of anisotropy originates from the Sachs-

Wolfe effect, occurring on angular scales of θ > 1◦. This is a large-scale super-

horizon effect were gravity is dominating. The hot plasma falls into dark matter

potential wells and heats up. The temperature anisotropy that occurs on these

scales is roughly given by [38, 41]

∆T

T
=

1

3
Ψ . (1.105)

This implies that the temperature anisotropies on these scales is determined

directly from the dark matter potential. The potential is nearly scale invariant

and so the CMB spectrum is essentially flat for small `. On smaller angular scales

the dominating effects are baryon acoustic oscillations (BAO). These dominate on

scales of θ ≈ 1◦. The radiation pressure of the plasma prevents complete collapse,

and an oscillatory behaviour is observed with a soundspeed of cs ≈ c/
√

3. At

recombination, these waves of plasma are frozen into the matter distribution at

a characteristic scale that corresponds to the sound horizon of the plasma when

the baryons decoupled from the photons. In an interval dt of coordinate time

light can travel a comoving distance dχ = cdt/a(t). After a time t from the Big

Bang, this can be integrated to obtain the total comoving distance that light has

travelled at redshift z since the Big Bang. Integrating over the scalar factor out

to redshift z the comoving distance is given by [38, 39]

rH,com(z) =

∫ (1+z)−1

0

cda

a2H(a)
. (1.106)

After matter-radiation equality, the integral is dominated by dust. Approximat-

ing H(a) ≈ H0

√
Ωma

− 3
2 and plugging it into the integral gives

rH,com(z) ≈ 2c

H0

√
(1 + z)Ωm

. (1.107)

The proper distance is obtained by dividing this expression by a = 1/(1 + z).
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The angular size on the sky of this length scale at recombination is given by

θH,rec =
rH,com(zrec)

DA(zrec)
, (1.108)

where DA(z) is the angular diameter distance. As the size of the horizon is related

to the horizon of the plasma, θH,rec is directly obtainable once one measures the

redshift of recombination. The scale of the first acoustic peak of the CMB is

∝ rH,prop(zrec). By measuring the scale of the acoustic peak from the CMB, one

is measuring θH,rec. As rH,prop(zrec) is known, one now has to determine what

DA(zrec) should be in order to give the observed max acoustic peak at 1◦. It

turns out that the best fit for DA(z) comes from a flat universe. Therefore the

CMB very tightly constrains the spatial curvature of the Universe to be flat,

meaning that it lies along the line of Ωm + ΩΛ = 1 in Fig. 1.2. With the previous

constraints on Ωm this implies that ΩΛ ≈ 0.7. The Universe is then dominated

by a constant energy density with a negative equation of state.

Due to the tight coupling of the baryons and the photons prior to recombination,

the oscillations in the plasma should also leave an imprint in the baryonic matter

distribution after recombination. This imprint takes the form of an enhanced

clustering of matter at the scale of the sound horizon at recombination, giving

a peak in the galaxy correlation function which can be measured at different

redshifts, which can be seen in Fig. 1.4. These are the baryonic acoustic

oscillations. They provide a standard ruler which can be used as a complementary

probe of H0 which can then be used to constrain the composition of the Universe.

1.3.4 Matter clustering

The power spectrum of matter can provide a measurement of Ωm, and can

therefore be used to determine that the majority of matter in the Universe is

dark with the remaining energy budget composed of dark energy. This can be

seen by considering the growth of the density perturbations in the early Universe.

The growth of perturbations in the early Universe can be obtained by solving

the background and perturbation equations in a radiation dominated and then,

following matter-radiation equality, a dust-dominated Universe. The growth of

a perturbation depends on its scale in relation to the size of the horizon in

Eq. (1.106). If the Universe is dominated by radiation free streaming prevents the

growth of perturbations within the horizon. Super-horizon perturbations do grow

36



Figure 1.4 The enhancement in the clustering of galaxies at a comoving
separation of around 100 h−1Mpc detected in Ref. [5], demonstrating
the imprint of oscillations in the baryon-photon plasma at early
times on the large-scale structure at late times.

as δ ∝ a2 in a radiation dominated Universe, which can be obtained by solving the

perturbation equation in the limit k � r−1
H . There are no physical interactions

which can be propagated on super-horizon scales leaving them unaffected by

free streaming. When the Universe becomes dominated by matter after matter-

radiation equality at redshift zeq the sub-horizon perturbations begin to grow and

the super-horizon perturbations grow at a different rate ∝ a. The change in the

rate of growth of the perturbations leads to a singling out of a specific scale in

the matter power spectrum corresponding to the size of the comoving horizon at

matter-radiation equality. By evaluated in the integral (1.106) at this redshift it

can be shown that this scale goes as Ω−1
m (see Ref. [39]). A measurement of this

scale in the matter power spectrum where the slope changes then gives another

measurement on the matter content of the Universe.

We shall conclude this introductory chapter with a discussion of how a light ray

propagates through a perturbed Universe, principally following the discussion in

Ref. [49]. In particular, we shall cover the ideas of weak lensing and the integrated

Sachs-Wolfe (ISW) effect which are two key observational probes of theories which

go beyond ΛCDM.
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The two key equations that determine how a photon propagates through the

Universe are the geodesic equation and the null ray condition. Defining the affine

parameter along the trajectory of the photon to be λ the four-momentum of the

photon is given by pµ = dxµ/dλ. The null condition is given by

pµpµ = 0 , (1.109)

and the geodesic equation by

dpµ

dλ
+ Γµαβp

αpβ = 0 . (1.110)

We shall restrict ourselves to outlining the key elements of this calculation and

refer the reader to Refs. [38, 49] for a comprehensive discussion. By perturbing

the photon four-vector pµ = p̂µ + δpµ and computing the propagation of δpµ in

a perturbed FLRW metric in the Newtonian gauge the following two expressions

can be derived from the time component and the spatial component of the

geodesic equations

d

dτ

(
δp0

p0

)
= −

(
∂Ψ

∂τ
+
∂Φ

∂τ
+ 2

∂Φ

∂r

)
, (1.111)

d2xi

dλ2
+ 2Hdτ

dλ

dxi

dλ
=

(
dτ

dλ

)2
∂

∂xi
(Ψ + Φ) . (1.112)

Each index i in Eq. (1.112) corresponds to a coordinate transverse to a radial line

of sight r. Note also that we have not used the Einstein equation Ψ = −Φ which

would set the right hand side of equation (1.112) to zero, as it may not hold in

more general models to be discussed in chapter 2.

Let us examine Eq. (1.111). Along a null trajectory dr = dτ . This then implies

that the total derivative dΦ/dτ becomes

dΦ

dτ
=
∂Φ

∂τ
+
∂Φ

∂r
. (1.113)

We can therefore eliminate ∂Φ/∂r in equation (1.111) in favour of derivatives

with respect to τ . This implies it can be integrated along the line of sight to

obtain the change in the perturbed energy of the photon between emission E and

observation O to obtain

δp0

p0
= −2Φ

∣∣O
E
−
∫ O

E

(
∂Ψ

∂τ
+
∂Φ

∂τ

)
dτ . (1.114)
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The average temperature of a black-body distribution, such as a thermal bath

of photons, is proportional to the average frequency of the photons ν̄. For an

observer moving with comoving velocity uµ this average frequency is given by

ν̄ = −pµuµ, which can simply be taken to be in the rest frame. The left hand side

of Eq. (1.114) can therefore be interpreted as δT/T and relates the temperature

anisotropies observed in the CMB to the metric perturbations at emission and

observation, known as the Sachs-Wolfe effect. We have already encountered this

in Eq. (1.105) which can be derived from Eq. (1.114) by restricting to large

scales with adiabatic initial conditions and neglecting the time derivatives of the

potentials. The second term on the right-hand side of Eq. (1.114) describes the

effect on the energy of the photon from metric potentials which change in time.

This is the ISW effect, and it can be a particularly powerful observational probe

of alternative models to ΛCDM (see for example, Ref. [50]).

All light which travels through the Universe undergoes some degree of gravita-

tional lensing due to the inhomogeneous matter that makes up the Universe.

The larger the amplitude of the matter perturbations, the greater the deflection

angle which lead to larger deformations in the observed images of galaxies. The

distortions of high redshift galaxies are extremely hard to detect individually.

The presence of structure such as dark matter halos, can then only be inferred on

a statistical basis by correlating the distortion of a larger number of galaxies.

This technique is called weak lensing (see for example Refs. [51? –53]). It

is particularly useful as it provides a measure of the total matter distribution,

not just the baryons, and so acts as a valuable probe of the properties of dark

matter. The clustering properties of dark matter are in turn, affecting by the

underlying theory of gravity as well as any additional contributions to the stress-

energy content of the Universe. Weak lensing observations can therefore provide

powerful constraints on models beyond concordance cosmology.

Taking the affine parameter to be the conformal time λ ≡ τ in Eq. (1.112) and

using dτ = dr the spatial component of the geodesic equation reduces to

d2xi

dr2
=

∂

∂xi
(Ψ + Φ) . (1.115)

As xi is the transverse coordinate to the line of sight it can be written in terms

of a deflection angle θi defined by by xi = rθi. Eq. (1.115) can then be integrated

twice to obtain

θi = θio +
1

r

∫ r

0

dr′′
∫ r′

0

dr′
∂

∂xi
(Ψ + Φ) . (1.116)
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By reversing the order of integration in the double integral it can be re-written

as a single integral

θi = θio +

∫ r

0

dr′
(

1− r′

r

)
∂

∂xi
(Ψ + Φ) . (1.117)

The deflection angle along the line of sight is therefore dependent of the derivatives

of the two metric potentials transverse to the line of sight. For our purposes,

the dependence on both the metric potentials makes gravitational lensing a

particularly powerful probe of theories in which they may not be equal (see

Sec. 4.3.4).

This chapter has discussed some of the key elements of General Relativity and

Cosmology. It has been by no means a comprehensive overview and the reader is

encouraged to follow the references for more details. The following chapter will

begin to delve into the deeper theoretical issues that this thesis is concerned with,

namely, the problems surrounding ΛCDM as well as theortical ideas that have

been developed to overcome them.
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Chapter 2

Beyond Λ

All you really need to know for the

moment is that the Universe is a

lot more complicated than you

might think, even if you start from

a position of thinking it is pretty

damn complicated in the first

place.

Douglas Adams

2.1 The cosmological constant problem

By far the simplest physical mechanism to obtain accelerated background

expansion is to introduce a constant into the Einstein-Hilbert action. This

cosmological constant may seem like a rather ad-hoc solution, but its inclusion

is perfectly allowed by the symmetries of the Einstein-Hilbert action. Einstein

himself famously added such a constant in order to obtain a static Universe with

ȧ = 0. Later on he retracted the idea, describing it as the greatest blunder

of his life when Hubble discovered the expansion of the Universe. This section

opens the chapter with a discussion of the theoretical issues which arise when

introducing this constant. The remainder of the chapter is then concerned

with alternative theoretical models which don’t necessarily need a cosmological
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constant to accelerate the Universe. There are many excellent reviews on the

cosmological constant which we refer the reader to for more details [54–59].

The action of General Relativity with a classical cosmological constant is given

by
M2
∗

2

∫
d4x
√
−g [R− 2ΛGR] + SM [gµν , ψ] , (2.1)

where ΛGR is the bare classical cosmological constant with no quantum effects

included and SM is the matter action coupling the matter fields ψ to the metric

gµν . By re-deriving the background Friedmann equation (1.46) it is possible to

show that ä ∝ ΛGR. In short, a positive cosmological constant acts to accelerate

the background expansion. In order for the classical cosmological constant ΛGR

to be responsible for the observed rate of accelerated expansion of the Universe

it should be of the order of the Hubble parameter H0. Written in units of the

Planck mass we encounter the unfortunate situation that the observed value of

the cosmological constant is unnaturally small

Λobs ∼ H2
0 ∼ 10−120M2

∗ . (2.2)

For a parameter in a theory to be “natural” it should be of the same order

as the other parameters in the theory. In this case, the measured value of the

cosmological constant is many orders of magnitude smaller than the Planck mass

which can be considered the natural scale in the Einstein-Hilbert action. On

the face of it this is not in itself a fundamental problem, albeit an aesthetically

unpleasing one. It does however hint that more issues may arise further down to

the line.

In fact, the real problems associated with the cosmological constant arise when

quantum corrections are included. It is necessary to re-tune the classical

cosmological constant to the observed value each time higher-order corrections in

the quantum perturbative expansion are computed. The cosmological constant

is highly sensitive to high energy, or Ultra-Violet (UV), physics. A small change

in the UV has significant consequences for the low energy, or Infrared (IR),

physics. This usually is not a problem in other areas of quantum field theory. For

example, the quantum corrections to the electron mass are proportional to the

electron mass itself which keep them under control. The reason this occurs for the

electron mass and not the cosmological constant is that in the limit of the electron

mass going to zero the Lagrangian possesses an extra symmetry, namely chiral

symmetry, which acts on the fermion fields. In general, a parameter in a theory
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is technically natural if the theory possesses an extra symmetry in the limit of the

parameter going to zero. As quantum corrections respect the symmetries of the

underlying Lagrangian, this means that the quantum corrections to the electron

mass must be proportional to the electron mass. It could very well be the case

that there is a UV theory which posses an extra symmetry in the limit where

the cosmological constant goes to zero. This would provide a natural reason for

why the cosmological constant is small relative to the Planck scale but, so far,

such a theory remains elusive. Note there is an analogous situation in the case of

the Higgs mass known as the hierarchy problem. The Higgs mass should receive

quantum corrections from physics in the UV which drive it towards a higher scale.

In order to prevent the Higgs mass from being of the order of the cutoff scale of the

Standard Model of particle physics (see Sec. 2.3) there must be some mechanism

to ensure the quantum corrections to the Higgs mass remain stable. This may

arise via a hidden symmetry in a UV-completion of the Standard Model.

We shall now examine more quantitative arguments. To begin, we will follow the

discussion in Ref. [58] and show that the vacuum expectation value (VEV) of any

field placed in the vacuum state must have a constant energy density. The VEV

of the matter field must then contribute to the bare value of the cosmological

constant. The only invariant tensor in Minkowski spacetime is ηµν which implies

that, as the vacuum state must be the same for all observers in a flat spacetime

〈Tµν〉 ∝ ηµν . This is a local approximation to what we should expect on a curved

spacetime through the equivalence principle, and so on a curved background it

follows 〈Tµν〉 = −ρvac(x, t)gµν where ρvac(x, t) is a free function of space and time

and the negative sign ensures the 00 component is positive. Using stress-energy

conservation and metric compatibility it immediately follows that ρvac(x, t) must

be a constant ρvac. In which case we can write

〈Tµν〉 = 〈0|Tµν |0〉 = −ρvacgµν , (2.3)

where ρvac is the constant energy density of the vacuum state |0〉. Because the

vacuum state has a none-zero constant energy density, and according to GR

energy gravitates, the vacuum gravitates. Adding in the contribution from the

matter fields to the Einstein equation the effective cosmological constant takes

the form

Λeff = ΛGR + ρvac . (2.4)

It is this effective cosmological constant which appears to drive the accelerated

expansion of the Universe. Now it remains to estimate the amplitude of ρvac.
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As this was derived from the VEV of the matter fields its value is inherently

a quantum field theory prediction. A commonly employed approach in the

literature is to impose a sharp cutoff such as the Planck scale M∗ and sum up the

contributions of the zero point energy modes up to this cutoff scale. For a scalar

field of mass m this would contribute as

ρvac =
1

4π2

∫ M∗

0

dkk2
√
k2 +m2 ∝M4

∗ . (2.5)

In other words the cosmological constant should go as the fourth power of the

cut-off scale of theory. Note however that, as pointed out in Refs. [58, 60] that if

the above calculation was taken seriously then the vacuum energy should behave

like radiation with an equation of state w = 1/3. The reason for this is that by

imposing a sharp cutoff Lorentz invariance is not maintained. In order to obtain

physical predictions using regularisation it is necessary that the adopted scheme

respects the underlying symmetries of the theory. If a Lorentz invariant scheme

is used, such as dimensional regularisation, then a different result is obtained

[58, 60] which goes as

ρvac ∼
∑
i

Oi(1)m4
i . (2.6)

The sum is over all of the particles that exist in the Standard Model of particle

physics with massmi raised to the fourth power multiplied by order-one constants.

Unfortunately this value of ρvac is still far too large by many orders of magnitude,

even when the sum is dominated by the top quark mass, to adequately account

for the accelerated expansion without a fine-tuned choice of ΛGR to match Λobs.

It is debatable whether this one off fine tuning is a fundamental issue. The real

problem is that it is not stable against quantum corrections.

We shall not discuss any loop diagrams here to demonstrate this radiative

instability but rather draw on an elegant argument outlined in Refs. [59, 61]

using effective actions. The Wilsonian effective action assumes that the path

integral for a field theory can be split into light modes φ` and heavy modes φh

between some cutoff scale µ. The low energy effective action Seff [φ`] is defined

by integrating out the heavy modes φh of the full action S [φ`, φh]

eiSeff [φ`] =

∫
DφheiS[φ`,φh] . (2.7)

As the cutoff µ is the largest mass scale that appears in the effective action

Seff [φ`] the vacuum energy for this theory should scale as ρvac ∼ µ4. We then
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require the classical cosmological constant to be tuned such that the combination

of ΛGR and the vacuum energy matches the observed value

Λobs = ΛGR +O(1)µ4 . (2.8)

So far no problem. Let us now move the scale µ which separates the light modes

from the heavy modes to some new scale µ′. In exactly the same manner, the

cosmological constant predicted from this new effective action should now scale

as ρvac ∼ µ′4. The bare cosmological constant has already been fixed by the

requirement of cancelling the contribution of the vacuum energy with the cutoff

scale at µ. We could re-tune it to cancel the contribution from this new scale, but

that is precisely the point. The effective description of a healthy theory in the IR

should not be dependent on the choice of the cutoff scale. This constant re-tuning

to match the IR physics is the essence of the cosmological constant problem.

These theoretical issues associated with the cosmological constant motivated a

great deal of work in going beyond it. Perhaps the accelerated expansion of

the Universe is not driven by a cosmological constant, but a modification to the

laws of General Relativity which apply on cosmological scales? The following

sections will look at how theorists have attempted in recent years to go beyond

the cosmological constant. However, it should be stressed that many of these ideas

do not directly address the cosmological constant problem. Even if one of these

theories end up being favoured by data there would still be the need to address the

radiative instability of the vacuum from a purely theoretical standpoint, without

considering cosmic acceleration.

2.2 Beyond ΛCDM: Dark Energy and Modified

Gravity

Having assessed various issues related to the cosmological constant problem we

shall now examine models which go beyond Λ. The majority of these models

do not tackle the cosmological constant problem directly. They seek instead to

provide an alternate explanation for the accelerated expansion of the Universe

which does not rely on a cosmological constant. A natural extension is to replace

the constant with a scalar field field. The existence of such a cosmological scalar

field is particularly motivated by the discovery of the Higgs boson, which is the
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particle excitation of a quantum scalar field. It is natural to suppose that the

observed value of the cosmological constant is simply the value the scalar field

takes at the minimum of its potential. The question is then how to determine the

form of the scalar field potential. This rather natural solution is unfortunately

not viable. Weinberg showed [54] that one would have to tune the minimum

of the scalar field potential just as much as one would have had to tune the

cosmological constant. This is a famous no-go result which we shall now review.

It is an important concept that determines that scalar fields cannot provide a

simple solution to the cosmological constant problem, and that, even if they are

included to drive cosmic acceleration the issues discussed in Sec. 2.1 remain.

2.2.1 Weinberg’s no-go theorem

The cosmological constant problem was an issue from a purely theoretical

perspective in the decades preceding the discovery of cosmic acceleration. This

subsection reviews the result of Weinberg [54] that shows the cosmological

constant cannot be interpreted as the minimum value of the potential of a scalar

field. The potential of the field would have to be fine-tuned just as much as the

cosmological constant. A more detailed discussion of the following proof can be

found in Refs. [54, 59, 62]. The assumptions that go into Weinberg’s result are

quite general but we shall explicitly state them here.

• The theory consists of a local Lorentz four-dimensional field theory

including a metric field gµν and a collection of scalar fields φi.

• We further assume that the fields are transitionally invariant on-shell, such

that gµν = const and φi = const.

• The Lagrangian is built out of invariant combinations of these quantities.

The residual symmetry that is left over once one assumes translational invariance

is the rotational symmetry of four dimensional constant matrices. In other words,

the four dimensional general linear group GL(4). If these matrices are denoted

by Mµν , the coordinates change by xµ = Mµ
ν x

ν so that the metric transforms as

gµν = Mµ
αM

ν
β g

αβ . (2.9)

The term
√
−g implies that the Lagrangian also transforms as L → det (M)L.

Now assuming that the transformation is infinitesimal Mµ
ν = δµν + δMµ

ν the
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change in the metric is simply

δgµν = δMµν + δMνµ . (2.10)

As we are neglecting higher powers of δMµν the change in the Lagrangian reduces

to

δL = Tr (δM)L , (2.11)

which can be more clearly determined by working in a basis whereMµν is diagonal.

The determinant is then the product over all of the diagonal elements, which at

first-order is the trace. The variation of the Lagrangian then reads

δL =
∂L
∂φi

δφi +
∂L
∂gµν

δgµν . (2.12)

By setting δL = 0 the field equations read

∂L
∂φi

= 0 ,
∂L
∂gµν

= 0 . (2.13)

There are two distinct scenarios to consider. The first is that Eqs. (2.13) hold

independently of one another. Assuming that ∂L/∂φi = 0 we then have that

∂L
∂gµν

(δMµν + δMνµ) = Tr (δM)L , (2.14)

where have used Eq. (2.10). This equation must hold for any matrix

M ∈ GL(4). This then implies that

∂L
∂gµν

=
1

2
gµνL , (2.15)

which can be seen by contracting both sides with δgµν and noting that gµνδgµν =

2gµνδMµν . By applying the relation

∂

∂gµν

√
−g =

1

2
gµν
√
−g , (2.16)

we see that, if the Lagrangian is to satisfy Eq. (2.15), the solution must be of the

form

L =
√
−gV (φi) . (2.17)

Taking the second field equation ∂L/∂gµν = 0 we see that this is only satisfied

for V (φi) = 0. We shall now consider the case where the field equations do not
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hold independently of one another. This then implies that there should be some

relation between the two sets of field equations. The most general expression that

one may write down is of the form

gµν
∂L
∂gµν

=
∑
i

fi(φ)
∂L
∂φi

. (2.18)

If there exists a symmetry such that

δgµν = 2εgµν , δφi = −εfi , (2.19)

for some small parameter ε then the degeneracy condition in Eq. (2.18)

immediately implies that Eqs. (2.13) also hold. By rotating the set of scalar

fields such that only one of them transforms under the GL(4) transformation so

that now the symmetry becomes

δgµν = 2εgµν , δφ̃0 = −ε , δφ̃i 6=0 = 0 , (2.20)

we can construct an invariant quantity e2φ̃0gµν as

δ(e2φ̃0gµν) = 2δφ̃0e
2φ̃0gµν + e2φ̃0δgµν = 0 , (2.21)

where the last equality uses Eq. (2.20). As the Lagrangian is constructed

from invariant quantities and we require the scalar field and metric degeneracy

condition in Eq. (2.18) to hold, we conclude that this is equivalent to assuming

no degeneracy condition but with the metric replaced by gµν → g̃µν = e2φ̃gµν and

φ̃i → φi 6=0. The latter transformation follows from the fact that φ̃i=0 is a scalar

and thus doesn’t transform under the GL(4) symmetry group. We conclude that

when applying the degeneracy condition and assuming the Lagrangian must take

the form

L =
√
−ge4φ̃0V (φ̃i 6=0) , (2.22)

this then implies that either V (φ̃i 6=0) = 0, corresponding to fine tuning, or e4φ̃0 =

0. The trajectories of massive particles satisfy e2φ̃0gµνu
µuν = −m2e2φ̃0 and so

every massive particle now comes with an extra factor of e2φ̃0 . Setting this to

zero implies the theory cannot contain massive particles. In other words, the

theory must respect conformal symmetry and this simply is not the Universe we

live in.
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2.2.2 Scalar fields and the Ostrogradsky Theorem

In this section we review another important theorem which forms the background

of the work in this thesis. Even if the scalar field is not used in the theory

to tackle the cosmological constant, it is nevertheless important to take care

when adding a scalar field for the purposes of cosmic acceleration. The following

theorem is purely classical and makes no assumptions about the physical system

under consideration other than it is described in a Lagrangian formulation. The

Ostrogradsky theorem states that it is necessary to restrict the equations of

motion of a dynamical system to have at most two time derivatives. If this

is not the case then it will lead to an unbounded Hamiltonian producing an

Ostrogradsky ghost. In the context in which we are interested, namely a scalar

field coupled to GR, this theorem has important consequences. In 1974 Horndeski

[63] wrote down the most general local Lorentz invariant Lagrangian in four

dimensions describing a scalar field coupled to the Einstein-Hilbert action. The

detailed form of the theory will be discussed in Sec. 2.2.5, but for now it is

sufficient to note that the structure of each of term in the theory is such that

Ostrogradsky ghosts do not appear in the field equations. Due to the relevance

this theorem had in the construction of Horndeski scalar-tensor theory it is worth

discussing how it works in a simple example. More detailed discussions can be

found in Refs. [62, 64, 65] which we follow.

Let us assume that a Lagrangian describing the motion of a particle with position

q(t) depends explicitly on the first and second time derivatives L(q, q̇, q̈). After

varying q(t)→ q(t) + δq(t) the equation of motion can be determined to be

∂L
∂q
− d

dt

∂L
∂q̇

+
d2

dt2
∂L
∂q̈

= 0 . (2.23)

If ∂2L/∂q̈2 6= 0 then the equation of motion is a fourth order differential equation.

It therefore needs four pieces of initial data in order to obtain a complete solution

{q0, q̇0, q̈0,
...
q 0}. This condition is known as non-degeneracy. Note that it may be

that the higher derivatives satisfy some constraint equations so that they do not

introduce new degrees of freedom. This is a degenerate system, and Degenerate

Higher Order Scalar-Tensor (DHOST) theories have recently been a subject of

some interest [66].

The four initial data correspond to four canonical coordinates Q1, Q2, P1, P2 given
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by

Q1 = q , Q2 = q̇ , (2.24)

P1 =
∂L
∂q̇
− d

dt

∂L
∂q̈

, P2 =
∂L
∂q̈

, (2.25)

which can be used to construct the Hamiltonian

H(Q1, Q2, P1, P2) =
2∑
i=1

Piq
(i) − L(Q1, Q2, F (Q1, Q2, P2)) , (2.26)

where q(1) ≡ q̇, q(2) ≡ q̈, and q̈ = F (Q1, Q2, P2) is the inversion allowed by the

non-degeneracy condition. This choice of canonical coordinates reproduces the

standard Hamiltonian equations of motion

∂H

∂Pi
= Q̇i ,

∂H

∂Qi

= −Ṗi . (2.27)

We can now write out the Hamiltonian for this theory as

H = P1Q̇1 + P2Q̇2 − L (Q1, Q2, F (Q1, Q2, P2)) (2.28)

= P1Q2 + P2F (Q1, Q2, P2)− L (Q1, Q2, F (Q1, Q2, P2)) , (2.29)

where we have replaced q̈ in the Lagrangian with q̈ = F (Q1, Q2, P2). The first

term in the Hamiltonian is linear in the momentum variable P1. This is a disaster

for constructing a healthy theory. Physical states will cascade down towards

infinitely low energy with this Hamiltonian which is unbounded from below.

This is an Ostrogradsky instability. The presence of non-degenerate higher order

derivatives in the Lagrangian implies a Hamiltonian which will produce negative

energy states. In order to construct a theory that has higher derivative terms

in it is necessary to do so in such a way as to remove them at the level of the

equations of motion.

2.2.3 Quintessence and k-essence models

In this section we begin to examine models of cosmic acceleration which go beyond

a cosmological constant. The first and perhaps simplest extension is to add a

dynamical scalar field to the stress-energy component of GR. We do not assume

at this stage any direct coupling to the metric (see Sec. 2.2.4). A model which

includes a standard scalar field kinetic term and a potential is called quintessence
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[67]. The form of the theory is

S =

∫
d4x
√
−g
[
M2
∗

2
R− 1

2
X − V (φ)

]
. (2.30)

where X ≡ ∂µφ∂
µφ is the standard kinetic term and V (φ) is the potential of the

scalar field. The energy-momentum tensor for the scalar field is given by

Tµν = ∂µφ∂νϕ− gµν
[

1

2
(∂φ)2 − V (φ)

]
. (2.31)

We can use this expression to assign a pressure from the spatial components and

energy density from the time component to the scalar field and thus derive an

equation of state parameter. If the scalar field is completely homogeneous and

isotropic, a reasonable assumption on large scales, then it can only be a function

of time. The equation of state then takes the form

wφ =
1
2
φ̇2 − V (φ)

1
2
φ̇+ V (φ)

. (2.32)

In the limit where the scalar field is slowly rolling with φ̇� 1 in units of the Planck

mass, the potential dominates the energy budget and w ≈ −1. By constructing

models such that this slow role condition holds, just as in inflation [40], it is

possible to construct models which mimic the expansion history of ΛCDM with

a scalar field instead of a cosmological constant.

It is possible to generalise quintessence to models with non-canonical kinetic

terms. These are called k-essence models [68, 69]. By adding a general function

of the derivatives of the scalar field and kinetic terms K(φ,X) one can construct

more exotic models. A k-essence model takes the form

S =

∫
d4x
√
−g
[
M2
∗

2
R +K(φ,X)

]
. (2.33)

The precise phenomenology of the theory entirely depends on the functional form

of K(φ,X). The equation of state wK is now more general. For a model with no

explicit φ dependence such that K(φ,X) ≡ K(X) it is given by [70]

wK =
K

2XKX −K
. (2.34)

These models will automatically avoid the Ostrogradsky instability as they only

contain products of first derivatives ensuring that the resulting equations of
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motion remain no higher than second order.

2.2.4 Non-minimal couplings

It is also possible to directly couple the metric to the scalar field via a non-

minimal coupling. This will allow a natural distinction to be drawn between

variations of the equivalence principle following Ref. [71]. The weak equivalence

principle states that all test particles follow the geodesics of a universal metric. It

can be elevated to a strong equivalence principle by extending it to bodies which

self-gravitate. For example, in a theory which violates the strong equivalence

principle black holes may follow different trajectories to ordinary matter species.

Formally these ideas can be expressed by writing the action for a scalar field

theory where each matter species ψi follows the geodesics set by the Jordan

frame metric g̃µν = A2
i (φ)gµν . The subscript i indicates that different matter

species may follow different trajectories depending on the form of the non-minimal

coupling function Ai(φ) for each ψi. The action is given by

S =

∫
d4x
√
−g
[
M2
∗

2
R− 1

2
X − V (φ)

]
+ SM

[
A2
i (φ)gµν , ψi

]
. (2.35)

If each matter species couples to the Jordan frame metric in the same way such

that Ai(φ) ≡ A(φ) then this theory satisfies the weak equivalence principle, where

each particle follows the trajectory set by a universal Jordan frame metric. On

the other hand, the no-hair theorem guarantees that a black hole cannot possess

any physical quantities other than charge, mass and angular momentum [72, 73].

This excludes the possibility that the black hole can have a scalar charge. Non-

minimal couplings imply that the trajectory of black holes will be different to that

of ordinary matter. Another way to see this is to recognise that a black hole is a

property of the first term on the right hand side of Eq. (2.35) and knows nothing

about the form of A(φ). As black holes are self-gravitating bodies the presence

of A(φ) implies that the strong equivalence principle has also been broken. The

modification to the geodesic equation in this case takes the form

d2xi

dt2
= −∂i [Φ + lnA(φ)] . (2.36)

It is always possible to perform a conformal transformation such that the matter

fields are universally coupled to the Jordan frame metric. This will alter the

gravitational sector of the theory such that, although matter particles follow the
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geodesics of a universal metric, this metric is now no longer determined from the

GR field equations but from a modified field equation involving the scalar field.

We stress that physics in the Einstein and the Jordan frame are equivalent and

can be related [74, 75]. Under a conformal transformation in four dimensions the

Ricci scalar in the Jordan frame R̃ is related to the Ricci scalar in the Einstein

frame R through [76]

R̃ =
R

A2(φ)
+

6

A3(φ)
�A(φ) (2.37)

where � ≡ gµν∇µ∇ν . In the Jordan frame there is therefore a function of φ which

is directly coupled to the Ricci scalar along with additional interaction terms of

the scalar and the metric through the � operator. Such a theory which involves

this non-minimal coupling function is called a scalar-tensor theory. How these

theories connect with cosmological observables forms the basis for much of the

work in this thesis.

2.2.5 Generalised scalar-tensor theories: Galileons and

Horndeski theory

When adding a scalar field into the Einstein equations, with or without the non-

minimal coupling function A2(φ), it is important to ensure that the Ostrogradsky

theorem is respected. As discussed in Sec. 2.2.2 higher derivatives of the scalar

field appearing in the action may lead to an unbounded Hamiltonian. There

exists a class of theories which exist on flat space, possess higher derivatives and

yet retain second order equations of motion which are called Galileons [77]. They

possess a Galilean shift symmetry φ→ φ+a+bµx
µ from which they obtained their

name. The original motivation for these theories came from examining theories

of massive gravity [78] in various limits, but they also possess a number of nice

theoretical properties such as a non-renormalisation theorem as well as possessing

a finite number of terms in d-dimensions [79, 80].

Generalising Galileons beyond flat space leads to an interesting class of scalar-

tensor theories which can be applied on a cosmological background while avoiding

the Ostrogradsky ghost [81]. These generalised Galileons were then found to

be equivalent to a theory written down by Horndeski many years earlier [63].

Horndeski theory is the most general way of incorporating a scalar field into the

Einstein field equations in four dimensions with at most second-order equations of

motion. Because of its generality it has been applied in many areas of theoretical
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physics such as black holes to cosmology [82–85]. The freedom in the theory is

determined by a choice of five free functions of both the scalar field φ and its

kinetic term X ≡ ∂µφ∂
µφ.

S =
5∑
i=2

∫
d4x
√
−gLi , (2.38)

where the four Lagrangian densities are defined as

L2 ≡ G2(φ,X) , (2.39)

L3 ≡ G3(φ,X)�φ , (2.40)

L4 ≡ G4(φ,X)R

−2G4X(φ,X)
[
(�φ)2 − (∇µ∇νφ)(∇µ∇νφ)

]
, (2.41)

L5 ≡ G5(φ,X)Gµν∇µ∇νφ

+
1

3
G5X(φ,X)

[
(�φ)3 − 3(�φ)(∇µ∇νφ)(∇µ∇νφ)

+2(∇µ∇νφ)(∇σ∇νφ)(∇σ∇µφ)] , (2.42)

where GiX ≡ ∂Gi/∂X. The non-minimal coupling function has now been

generalised to include derivative interactions of the scalar field. Quintessence

and k-essence models are subsets of Horndeski theory with G4 = 1 and G2 set

by the specific model. GR is also a subset of Horndeski theory with G4 = 1 and

G2 = G3 = G5 = 0. It is theoretically interesting to study in its own right, but

there are deeper theoretical reasons to test this theory which we now touch on.

2.2.6 Motivation for Scalar-Tensor Theories: Brane World

and Kaluza-Klein theories

Before exploring the phenomenology of scalar-tensor theories it is worth exam-

ining their theoretical motivation beyond simply extending the ΛCDM model.

Even if it is discovered that a scalar-tensor theory is preferred over standard

GR in cosmological observations it should not be considered to be fundamental.

There may well be many potential UV-completions which give rise to equivalent

scalar-tensor theories and cosmological observations. In this section we follow an

example from Ref. [86] which demonstrates how a scalar-tensor theory can arise

from a more fundamental theory.

Let us assume that there is an D-dimensional metric g
(D)
µ̄ν̄ which can be separated
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into a four-dimensional metric gµν and an n-dimensional metric g̃αβ where n =

(D − 4) such that

ds2 = g
(D)
µ̄ν̄ dx

µ̄dxν̄ , (2.43)

= gµνdx
µdxν + Ω2(x)g̃αβdθ

αdθβ . (2.44)

The indices µ, ν run from 0 to 4 and the indices α, β run over the remaining n

indices. We label the coordinates on the (D − n)-dimensional space as θα. Note

also that we neglect any mixed components such gµα for simplicity.

The Lagrangian for the full theory is given by

L =
1

2
C
√
−g(D)R(D) , (2.45)

where C is a constant to ensure the dimensions match and R(D) is the Ricci scalar

in the full D-dimensional theory. The determinant can be decomposed as√
−g(D) =

√
−gΩn

√
g̃ . (2.46)

We can obtain an effective Lagrangian of the four-dimensional theory by

integrating the full theory only over the θα coordinates

L̃4 = Ṽ −1
n

∫
Ldnθ , (2.47)

where

Ṽn =
√
g̃dnθ . (2.48)

This can then be related to L4 =
√
−gL4 where

L4 =
1

2
ΩnṼ −1

n

∫ √
g̃Rdnθ . (2.49)

We have omitted the relation between the R(D) and R which includes extra factors

of Ω. See Appendix A in Ref. [86] for the full relation. For n > 1 and by making

the field redefinition

φ = 2

√
n− 1

n
Ω
n
2 , (2.50)

L4 can be written as

L4 =
1

8

n

n− 1
φ2R +

1

2
gµν∂µφ∂νφ+

1

2

(
1

4

n

n− 1
φ2

)1−2/n

. (2.51)
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One can see that the effective Lagrangian in four-dimensions reduced from the

full D-dimensional metric behaves like a scalar-tensor theory with a non-minimal

coupling function in front of the Ricci scalar, a kinetic term and a potential.

Further motivation for the existence of the scalar field comes from the dilaton in

string theory and other brane-world models. By testing theories which go beyond

ΛCDM one is also testing more fundamental theories of gravity. It is possible

therefore that such analyses will eventually shed light on the connections between

quantum field theory and general relativity which has been a highly active field

of research during recent decades [25, 26].

2.2.7 Screening mechanisms

The Chameleon mechanism

Einstein’s theory of General Relativity has to date been extremely well tested on

Solar System scales [87]. Therefore it is necessary have some form of screening

mechanism which ensures that the effects of a fifth force which may act on large

scales disappear in the regime where GR has been well tested. We follow the

distinction drawn in Refs. [62, 71] and classify different screening mechanisms

as to whether they screen through a local field value, via the first derivative of

the scalar field or the second derivative of the scalar field. The first example we

shall give is one which exhibits screening through the local field value, called the

chameleon mechanism [88, 89].

We shall begin again with the action of a general scalar-tensor theory written in

the Einstein frame

S =

∫
d4x
√
−g
{
M2
∗

2
R− 1

2
X − V (φ)

}
+ SM

[
A2(φ)gµν , ψi

]
. (2.52)

It is necessary to derive the equation of motion for the field φ. The first term

on the right hand side of equation (2.52) results in the standard Klein-Gordon

equation. However it is necessary to also compute the additional contribution

from the non-minimal coupling in the matter action through the Jordan frame

metric g̃µν = A2(φ)gµν . After a variation of φ this becomes

δSM [A2(φ)gµν , ψi]

δφ
=
δSM [A2(φ)gµν , ψi]

δg̃µν
∂g̃µν

∂φ
. (2.53)
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The second term on the right hand side above becomes

∂g̃µν

∂φ
=

∂

∂φ
(A2(φ)gµν),

= 2A(φ)gµν
∂A

∂φ
,

= 2A−1(φ)g̃µν
∂A

∂φ
.

(2.54)

Using the definition of the Jordan frame stress-energy tensor

δSM [A2(φ)gµν , ψi]

δg̃µν
=

√
−g̃
2

T̃µν , (2.55)

and the transformation of the determinant of the metric√
−g̃ = A4(φ)

√
−g , (2.56)

the variation of the matter action with respect to φ becomes

δSM [A2(φ)gµν , ψi]

δφ
= A3(φ)T̃

∂A(φ)

∂φ

√
−g , (2.57)

where T̃ = g̃µνT̃µν is the trace of the Jordan frame stress energy tensor. The

equation of motion for φ is then

�φ =
∂V

∂φ
− A3(φ)T̃

∂A(φ)

∂φ
. (2.58)

In the Jordan frame matter fields are universally coupled the Jordan frame stress-

energy tensor T̃µν which is conserved ∇̃µT̃
µν = 0. After using the relation T̃ =

A−4T the divergence of the stress-energy tensor becomes

∇µT
µν =

T

A(φ)

∂A(φ)

∂φ
∂νφ . (2.59)

After defining an energy density ρ ≡ T/A it can be shown that Eq. (2.59) is

equivalent to the standard continuity equation in an expanding FLRW Universe

in Eq. (1.47). The equation of motion for the scalar field is then given by the

standard Klein-Gordan equation with an effective potential which is dependent

on the local matter density

�φ =
∂Veff
∂φ

, (2.60)
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Figure 2.1 The shape of the effective density dependent potential which
gives rise to the chameleon mechanism in high density regions.
Reproduced from Ref.[6].

with

Veff(φ) = V (φ) + A(φ)ρ . (2.61)

The shape of this potential is sketched in figure 2.1. The effective mass of the

scalar particle is given by the second derivative of the effective potential with

respect to φ. As the mass of the particle determines the range of propagation

of the fifth force through a Yukawa type potential, the larger the mass of the

scalar, the lower the propagation range. In high density regions the scalar cannot

propagate much at all and the fifth force is suppressed.

Derivative screening

In this section we shall examine a screening mechanism which arises through the

derivatives of the scalar field. In the first instance, let us consider a model which

only includes first derivatives of the scalar field, such as k-essence models, using

an example from Ref.[62]. Consider the Lagrangian

L =
1

2
X +

α

4Λ4
X2 +

g

M∗
φT , (2.62)

where in this subsection Λ is a mass scale which sets the regime where the

derivative interactions become relevant. Computing the equation of motion gives
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�φ− α

Λ4
∇µ (∂µφX) = − g

M∗
T . (2.63)

It is not obvious by simply examining this equation of motion that there is a

screening mechanism at work to suppress the fifth force propagated by φ. Let

us examine the radial field profile around a point source to study how kinetic

screening works. With T = −Mδ(3)(x), restricting to radial coordinates r and

integrating each side of the equation over a sphere of radius r the scalar field

equation becomes

φ′ − α

Λ4
φ′3 =

gM

4πr2M∗
, (2.64)

where a prime indicates a derivative with respect to r. It is possible to solve this

equation analytically for φ′(r), but for our purposes it is sufficient to examine

the solution in the region close to the source. This scale is characterised by a

crossover distance r∗ ≡ (gM/M∗Λ
2)

1/2
where r � r∗ defines the region where the

screening mechanism operates. In this region the solution to equation (2.64) is

φ′(r)
∣∣∣
r�r∗

= Λ2
(r∗
r

)2/3

. (2.65)

The fifth force force goes as φ′(r) ∼ r−2/3 and the standard gravitational force

scales as r−2. Therefore in regions close to a massive object the scalar force

is suppressed relative to the gravitational force. We have worked through this

example using a particularly simple k-essence model, however it can be shown

to hold in more general models with higher powers of the first derivative of the

scalar field appearing in the action [90, 91].

It is also possible to use higher derivatives to obtain a screening mechanism.

We shall briefly review an example of higher derivative screening, also called

Vainshtein screening [92], which works in a similar way to kinetic screening.

Following the example in Ref. [62] we begin with a theory which contains higher

derivatives of the scalar field

L = −3X − 1

Λ3
X�φ+

g

M∗
φT . (2.66)

Despite the higher derivatives which appear in the Lagrangian the equation of

motion remains second order

6�φ+
2

Λ3

[
(�φ)2 − (∇µ∇νφ)2] = − g

M∗
T . (2.67)
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Considering a point mass and examining the radial profile of the field around this

source one finds that the equation of motion is given by

6φ′(r) +
4φ′2(r)

Λ3r
=

gM

4πr2M∗
. (2.68)

Defining the Vainshtein radius to be rV = (gM/M∗Λ
3)

1/3
it is possible to examine

the form of the solution for φ′(r) with Eq. (2.68) in the regime r � rV and

r � rV . In the first regime of r � rV the solution scales as φ′ ∼ r−2 which

has the same behaviour as the standard gravitational force up to O(1) numerical

factors. However, in the region close to the source the solution goes as

φ′(r)
∣∣∣
r�rV

∼ r−1/2 . (2.69)

It is therefore suppressed relative to the r−2 scaling of the gravitational force,

allowing standard GR to be recovered in the vicinity of the source.

2.3 Effective Field Theory

2.3.1 What is EFT?

It may not be too far fetched to state that a synonym for effective field theory is

simply “physics”. Any physical theory is only applicable within a certain energy

range or range of length scales. Calculating the trajectory of a tennis ball thrown

in the air does not necessitate the full mechanics of GR. Newtonian mechanics

is sufficient. Similarly, when the ball hits the ground one does not need to use

quantum mechanics to compute the electromagnetic force between every atom in

the ball and the ground which stops it from falling through the earth. We care

even less about the interactions between the quarks in the nuclei of the atoms

when it comes to tennis ball throwing. In the same way, GR is incapable of

describing the physical state at the singularity of a black hole. GR must be a low

energy description of a theory with new degrees of freedom at a higher energies.

Furthermore, the Standard Model of particle physics has currently been well

verified up to technologically feasible energy scales of ∼ TeV. This cannot be the

full story. The Higgs hierarchy problem and the presence of neutrino masses are

only two issues which the Standard Model cannot account for. One must treat it

as an effective field theory, valid only up to a certain energy scale, and introduce
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new operators which become relevant at higher energies which may help resolve

some of these issues.

No theory is valid at all length scales. The infinities which arise in the

conventional renormalisation process in standard QFT [93, 94] are a consequence

of the assumption that the theory is valid on all length scales. These infinities

can be removed by absorbing them into a redefinition of a finite number of

coupling parameters whose value changes with energy scale such that one can

predict measurable quantities. By insisting that the theory is renormalizable in

the first place, the theory is automatically restricted to a finite set of operators.

EFT accepts that it is not possible to write down a theory which is valid at all

energy scales and so there is no problem including non-renormalizable operators

in the theory. The drawback is that there are now infinitely many operators. In

principle, this means an infinite set of couplings which would require an infinite

set of measurements. Naively, the predictivity of the theory is destroyed. We are

saved by the fact that EFT works within a finite range of energy scales within

which not all of the operators are relevant. There is some cutoff energy scale in

the theory Λc. The theory is capable of making definite physical predictions at

energies below Λc because there are only a finite number of operators which are

not suppressed below this cutoff.

Let us examine how this works in practice. We shall present a simple example of

a scalar field theory in four dimensions which demonstrates the key ideas of EFT

without getting lost in the technical details. We require the theory to respect

Lorentz invariance and φ→ −φ symmetry. The action is then

S =

∫
d4xL(φ, ∂µφ) , (2.70)

where the Lagrangian is a Lorentz invariant function of the scalar field and its

derivatives. For example, there could be terms that involve φ2, X2 or X(�φ)2

and so on, where X ≡ ∂µφ∂
µφ and � ≡ ∇µ∇µ. Of particular importance in

this theory is the standard kinetic term X. This sets the dynamical scale of the

theory. If we are working in a regime where the kinetic term is suppressed then the

field equation will not contain any derivative terms and so φ is non-propagating.

Therefore we assume that the theory in Eq. (2.70) is valid near the scale set by

X ∼M4
∗ . We shall now compare the relevance of all the other operators relative

to this kinetic term.
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As an example Lagrangian consider

L = g0 + g2φ
2 + g4φ

4 + (∂φ)2 + g6φ
6 + . . . , (2.71)

where the dots indicate the addition of a potentially infinite number of operators

involving higher powers and derivatives of φ. Each coupling gi has a mass

dimension to ensure that the action itself is dimensionless. The mass dimension

of a scalar field in four dimensions is [φ] = 1 which can be derived by examining

the kinetic term and noting that [∂µ] = 1. The relevance of each term in the

action can then be studied by introducing another mass scale Λc such that each

gi can be rendered dimensionless, their original dimension being accounted for by

factors of Λc. The Lagrangian can then be written as

L = g̃0Λ4
c + g̃2Λ2

cφ
2 + g̃4φ

4 + (∂φ)2 +
g̃6

Λ2
c

φ6 + . . . , (2.72)

where each g̃i is dimensionless. The scale Λc is the cutoff of the theory. Every

higher dimensional operator involving higher powers and more derivatives of the

scalar field are suppressed by powers of this cutoff. In order to obtain concrete

predictions from the theory this cutoff needs to be larger than the dynamical

scale of the field φ, i.e. Λc >> M∗. As φ ∼ M∗, the ratio of the mass term to

the kinetic term goes as Λ2
c/M

2
∗ . The mass term therefore becomes more relevant

when the theory is applied at low energies where the cutoff is large relative to

M∗. This is an EFT approach to understanding the Higgs hierarchy problem.

2.3.2 Broken symmetries and the unitary gauge

Postulating the existence of a scalar degree of freedom to drive the accelerated

expansion of the Universe in both the inflationary era or the late-time dark energy

dominated era may seem ad-hoc. A particularly powerful argument exists to

suggest in fact that this can be rather natural. A light scalar degree of freedom can

arise from any theory that possesses broken time translational symmetry. This

section reviews this concept. Accelerated expansion in the background indicates

broken time translational symmetry, which is then associated with a pseudo-

Nambu Goldstone boson. Pseudo here means the symmetry is only approximately

broken and the Goldstone boson acquires a small mass as a consequence.

A symmetry is said to be spontaneously broken if the ground state is no longer

invariant under the symmetries of the full theory. In other words, if there is a

62



collection of scalar fields Φi whose theory is globally invariant under a symmetry

group represented by a matrix M , then the vacuum field configuration Φ̃0 changes

under the global transformation such that MΦ̃0 6= 0. If the broken generators

of the transformation matrix are labelled τi the full transformation between

degenerate vacua can be expressed as M = exp (i
∑

i πiτi). After promoting πi to

a field πi(x), it can now be interpreted as one field per broken group generator

which are called Goldstone bosons. Let us consider a concrete example, namely

the Higgs mechanism. The SU(2) × U(1) symmetry is broken and the Higgs

doublet is given by excitations h(x) around the minimum ν

φ = (ν + h(x), 0) . (2.73)

The unitary gauge is defined such that all the Goldstone fields are zero. In

this gauge one has explicitly broken the gauge symmetry and is left only

with the relevant physical degrees of freedom that the theory contains. The

Lagrangian is no longer invariant under the broken group generators but will

still be invariant under the unbroken generators. In the case of the Higgs

mechanism, after breaking the SU(2)×U(1) symmetry one still has a remaining

U(1) symmetry corresponding to the massless photon. However the other three

Goldstone modes are absorbed by the gauge fields which become massive, thus

breaking the gauge symmetry. It is possible to reintroduce the gauge symmetry

by “undoing” the gauge transformation at the expense of reintroducing the

Goldstones. This is called the Stückelberg method. Starting from a theory which

has a broken symmetry, applying such a symmetry transformation will involve

new terms appearing involving the Goldstones which now realise the symmetry

in combination. For example, starting with a theory describing a free massive

vector field Aµ with the Lagrangian

L = −1

4
FµνF

µν − 1

2
m2AµA

µ , (2.74)

where the field strength tensor is Fµν = ∂µAν − ∂νAµ we can perform a gauge

transformation Aµ → Aµ − 1
q
∂µπ to obtain

L = −1

4
FµνF

µν − 1

2
m2

(
Aµ −

1

q
∂µπ

)(
Aµ − 1

q
∂µπ

)
. (2.75)

If we now treat the field π as the Goldstone field and make a further gauge

transformation with a new field χ this will take Aµ → Aµ+∂µχ and π → π+qχ. It

is straightforward to check that this transformation leaves the theory in equation
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(2.75) invariant.

How is this discussion relevant for cosmology? Throughout the inflationary

and dark energy dominated epochs time translational symmetry is broken.

The expansion of the Universe in both periods has a preferred time direction.

Therefore it is natural to suppose that there is an associated Goldstone boson

introduced through this breaking of time translations. A theory constructed in

the unitary gauge involving a scalar field and gravity does not necessarily have

to include the scalar field explicitly in the action. The dynamics of the scalar

field can be absorbed by the metric with a specific choice of time foliation such

that constant φ hypersurfaces correspond to constant t hypersurfaces (See also

the discussion in Sec. 1.3.2). As we are constructing a theory which explicitly

breaks time transitional symmetry, we shall now discuss a formulation of General

Relativity which does precisely this. This provides the necessary formalism to

write down an effective field theory of a scalar field and gravity.

2.3.3 The Arnowitt-Deser-Misner (ADM) formalism

Let us begin this section by noting some facts about the structure of the Einstein

equations. The Einstein equation (1.24) is really ten partial differential equations

which determine the dynamical evolution of the metric tensor gµν in the presence

of a source of stress-energy Tµν . Four of these equations are constraint equations

and only six are dynamical. To define a dynamical system there must be two

time derivatives acting on the dynamical quantity. From the structure of the

Riemann tensor in Eq. (1.23) only Ri0j0 can contain two time derivatives acting

on the spatial components of the metric gij. The time derivatives of g0i and g00

do not appear in any of the equations, and no second time derivatives appear on

gij in the space-time or time-time equations. Is it therefore possible to perform

a split such that the generally covariant structure of GR is maintained but the

relevant dynamical variables are made explicit? This is the basis the Arnowitt-

Deser-Misner (ADM) formulation, or (1 + 3) formulation, of General Relativity

[21, 95]. The following discussion follows that in Ref. [76].

In this formalism four dimensional general covariance is broken by foliating

the spacetime with a series of spacelike hypersurfaces. We can describe these

hypersurfaces with a scalar field t(xµ), such that t = constant define the family

of hypersurfaces Σ(t). A congruence of curves can be set up to intersect the

hypersurface at one point per hypersurface. They are not necessarily geodesics
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Figure 2.2 Pictorial representation of the ADM decomposition of spacetime into
constant time hypersurfaces.

or orthogonal to the hypersurface. We shall denote the parameter along the curve

as t. The unit normal vector to a hypersurface Σ(t∗) where t has been set to a

particular value t∗, is defined as

nµ = −N∂µt∗. (2.76)

Here N is a normalisation, chosen such that nµn
µ = −1, and the negative sign

ensures that it is timelike. Each Σ(t) is given coordinates yi. The smoothness

of the spacetime is maintained with the congruence of curves that flow between

the hypersurfaces. Each curve defines the trajectory through the spacetime that

keeps yi constant for successive values of t. This defines the coordinate system

on the entire spacetime xµ = (t, yi). The projection tetrad is defined as

eµi =
∂xµ

∂yi
, (2.77)

which takes any vector and projects it along the ith coordinate direction. A

tangent vector belonging to the congruence of curves in the spacetime can then

be decomposed in terms its components perpendicular to the hypersurface and

orthogonal to the hypersurface such that

tµ = Nnµ +N ieµi , (2.78)
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where the set of three functions N i form a vector called the shift. From these

definitions one can write the infinitesimal coordinate shift as

dxµ = tµdt+ eµi dy
i ,

= Nnµdt+
(
N idt+ dyi

)
eµi .

(2.79)

The spacetime line element is then

ds2 = gµνdx
µdxν ,

= −N2dt2 + gµνe
µ
i e
ν
j

(
N idt+ dyi

) (
N jdt+ dyj

)
,

= −N2dt2 + hij
(
N idt+ dyi

) (
N jdt+ dyj

)
,

(2.80)

and the induced spatial metric is the projection of the full four dimensional metric

onto the hypersurface hij = gµνe
µ
i e
ν
j . By defining h00 = N iNi and h0i = Ni we

can write this in four dimensional notation as

hµν = gµν + nµnν . (2.81)

It is possible to define the notion of a covariant derivative that acts on vectors

tangential to the spacelike hypersurface. The natural definition for such a

derivative operator takes the usual covariant derivative operator acting on a

vector Vµ satisfying V µnµ = 0, and uses the induced metric to project onto

the hypersurface. We then have that

DµVν = hσµh
ρ
ν∇σVρ . (2.82)

The derivative operator acts on scalars as Dµφ = hσµ∇σφ.

The question of how Σ(t) is precisely embedded in the spacetime manifold is

addressed with idea of the extrinsic curvature tensor. Intuitively the more nµ

changes direction as it is moved around one hypersurface the more curved the

hypersurface is within the bulk spacetime. The normal vector will not change if

the slicing is flat leading to no extrinsic curvature. Quantitatively, the extrinsic

curvature tensor Kµν is defined as the covariant derivative of the normal vector,

projected onto the hypersurface with the induced metric

Kµν = hσµ∇σnν . (2.83)

We shall now demonstrate that Kµν is symmetric. The following proof requires
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the Frobenius theorem which states that

n[µ∇λnν] = 0 , (2.84)

where the brackets indicate an antisymmetric sum over all the indices. Starting

from the definition of Kµν and expanding it out with the definition of hµν we have

that

Kµν = ∇µnν + nλnµ∇λnν . (2.85)

From the Frobenius theorem we can derive the fact that

nµ∇λnν = nλ∇µnν + nµ∇νnλ + nν∇λnµ − nλ∇νnµ − nν∇µnλ . (2.86)

Inserting this identity in equation (2.85) and using nλ∇µn
λ = 0 and nµn

µ = −1

we arrive at the result

Kµν = ∇νnµ + nνn
λ∇λnµ = Kνµ . (2.87)

The symmetry of the extrinsic curvature tensor is a useful property for future

calculations. By examining the spatial components in equation (2.87) we find

that Kij = ∇inj = NΓ0
ij. After expanding out the Christoffel symbol in terms

of the induced metric it is possible to show that

Kij =
1

2N

(
ḣij −DiNj −DjNi

)
, (2.88)

where recall the covariant derivative Di acts on tensors with spatial indices in

the same way as ∇µ acts on tensors with spacetime indices. Now we set the

congruence of curves that parameterize the time coordinate to align exactly with

the normal vector to each time slice. In this coordinate system one has that

Ni = 0 and the extrinsic curvature becomes

Kij =
1

2N
ḣij . (2.89)

This gives a natural geometrical interpretation of the extrinsic curvature tensor

as the time derivative of the induced spatial metric.

Of course, we have previously encountered another form of curvature that does

not rely on how the surface is embedded in a higher dimensional space, namely the

Riemann curvature tensor in Eq. (1.23). This is an example of intrinsic curvature.

It is natural to suppose that each hypersurface has its own intrinsic as well as
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extrinsic curvature. This is quantified with R(3), defined in the same way as the

full Ricci scalar but using the induced metric hij in place of the full metric gµν .

It can be related to the extrinsic curvature and the full four-dimensional Ricci

scalar through the Gauss-Codazzi relation

R(3) = R−KµνK
µν +K2 − 2∇ν(n

ν∇µn
µ − nµ∇µn

ν) , (2.90)

which can be obtained by projecting out the full Riemann tensor onto the

hypersurface using the induced metric (see Sec 12.2 of Ref. [76] for the full

derivation).

The ADM formulation has proved to be very useful in the study of dark energy

and modified gravity models. It can be used to define the unitary gauge for scalar-

tensor theories by associating the scalar field with the uniform time hypersurface

which absorbs the scalar field perturbations into the metric, greatly simplifying

the computation of cosmological perturbations.

2.3.4 Effective Field Theory of Dark Energy

This section discusses the application of effective field theory to dark energy. The

formalism originally was applied to inflation [96, 97] before being applied later to

dark energy [7–9, 85, 97–103]. It provides an efficient and generalised description

of the evolution of the cosmological perturbations in a large range of scalar-tensor

theories. Following the spirit of effective field theory every operator that satisfies

the symmetries we impose can be included in the theory. In this construction we

use the ADM decomposition in order to break time diffeomorphism invariance.

We construct the theory in the unitary gauge by associating ADM spacelike

hypersurfaces to correspond to uniform scalar field hypersurfaces. The scalar field

is therefore “hidden” in the choice of time coordinate. The EFT operators are

the cosmological perturbations. Operators which respect spatial diffeomorphism

invariance but which could change under a shift in the time coordinate can be

included in the action. At the level of the background the action is given by

S(0,1) =
M2
∗

2

∫
d4x
√
−g
[
Ω(t)R− 2Λ(t)− Γ(t)δg00

]
, (2.91)

where the index (0, 1) indicates that this action contains only background terms

and a term depending on a first-order perturbation δg00. The function Ω(t)
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introduces a non-minimal coupling between the scalar field and the metric. Λ(t)

can be added as a free function of time as it is consistent with the symmetries. The

next term involves a first order perturbation δg00 which vanishes when computing

the equations of motion so that Γ(t) affects the background. One may wonder why

there are no perturbations linear in δK. The reason is that K = 3H on an FLRW

background and so δK ≡ K − 3H = ∇µn
µ − 3H. These terms can be absorbed

into re-definitions of the terms that already appear in equation (2.91). Taking

the variation of Eq. (2.91) with respect to the metric gµν → gµν + δgµν we can

obtain the background equations of motion which correspond to the Friedmann

equations in a general scalar-tensor theory of gravity. See Eqs. (3.16) and (3.17)

for their explicit form.

The utility of the EFT approach is that now we can write down an action which

can describe the first order perturbations in a unified way. The action that is

sufficient to describe the perturbations in Horndeski theory will be presented

in chapter 3 (see Eq.(3.15)). Every perturbation that is compatible with the

symmetries of broken time diffeomorphisms, such as δg00, δK and R(3), are

included as operators in the EFT expansion.

We shall now follow an example given in Ref. [7] which nicely demonstrates the

principles involved in deriving the equations of motion from an EFT action. This

is important if the theory is to be connected with observable parameters. We shall

see that the EFT expansion incorporates the effect of a modified gravitational

slip and Poisson equation. In the following we shall work on a perturbed FRW

background metric in the Newtonian gauge keeping the two metric potentials

independent

ds2 = − (1 + 2Ψ) dt2 + a2(t) (1 + 2Φ) dx2 . (2.92)

The Stückelberg transformation reintroduces the explicit dependence of the EFT

action on the scalar field. By transforming the time coordinate by an infinitesimal

shift such that

t→ t+ π(x, t) , (2.93)

the operators will change non-trivially. Gauge invariance is then restored, albeit

realised in a nonlinear manner. Furthermore any function that explicitly depends

on time will introduce terms that depend on π after Taylor expanding around the

new time coordinate. For example Λ(t) transforms as

Λ(t+ π) ≈ Λ(t) + Λ̇(t)π +
1

2
Λ̈(t)π2 . (2.94)
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The perturbation operators also transform non-trivially under a time diffeomor-

phism. By using the tensor transformation law to transform the metric into the

new coordinate system with t′ = t+ π in equation (1.10) the time components of

the metric and the extrinsic curvature transforms as [7]

g00 → g00 + 2g0µ∂µπ + gµν∂µπ∂νπ , (2.95)

g0i → gµi + gµi∂µπ , (2.96)

δKij → δKij − Ḣπhij − ∂i∂jπ , (2.97)

δK → δK − 2Ḣπ − 1

a2
∇2π . (2.98)

The scalar field equation of motion from the EFT is then obtained in the usual

way by taking π → π + δπ and requiring the variation of the action to be zero.

With the perturbed FLRW metric in equation (2.92) we can calculate the Ricci

scalar. If we restrict to scales much smaller than the horizon by sending H → 0

in the resulting expression R becomes

1

2

√
−gR = −3Ψ̇2 + (∇Φ)2 − 2∇Φ∇Φ . (2.99)

By combining equation (2.99) with equations (2.94) to (2.98) we can obtain an

action describing the dynamics of the gravitational and scalar field perturbations

from which the modified equations of motion are derived. Taking an action of

the form
1

2

∫ √
−gM2

∗Ω(t)R + c(∂π)2 , (2.100)

where c is a constant and then applying the Stückelberg method we obtain a

series of terms involving powers of the perturbations. Varying this action with

respect to Φ, Ψ and π gives an equation of motion for each. The first is a modified

Poisson equation which takes the form1− M2
∗ Ω̇

2/Ω

4
(
c+M2

∗ Ω̇
2/Ω

)
∇2Ψ =

δρm
2M2

∗Ω
. (2.101)

Another quantifies the difference between the two metric potentials, called the
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gravitational slip η ≡ −Φ/Ψ, which is given by

η = 1 +
M2
∗ Ω̇

2/Ω

2
(
c+M2

∗ Ω̇
2/Ω

) . (2.102)

In general the metric potentials will not be equal in a modified gravity or exotic

dark energy model. This is why weak gravitational lensing can provide a powerful

probe of such models (see Eq. (1.117)).

2.3.5 L3 in the unitary gauge

In this section we derive in detail how the Horndeski Lagrangian L3 in Eq. (2.40)

can be expressed in the unitary gauge. This will therefore enable an effective field

theory description of models with a nonzero L3, i.e. terms of the form Xm�φ.

As K = ∇µnµ with nµ = −∂µφ/
√
−X we can express �φ as

�φ = −∇µ
(
nµ
√
−X

)
. (2.103)

The result depends on whether the m is even or odd as we shall soon see. After

expanding out each derivative term Xm�φ becomes

Xm�φ = −Xm
√
−XK +

Xm

2
√
−X

nµ∂µX . (2.104)

The first term can readily be expanded in cosmological perturbations with K =

3H + δK and X = (1 − δg00)φ̇2. The second term is not so trivial but we shall

now derive another form. We now focus on the second term

Xm

2
√
−X

nµ∂µX = −X∇µ

{
Xmnµ

2
√
−X

}
, (2.105)

= − Xm+1

2
√
−X

K − Xnµ

2
∂µ

(
Xm

√
−X

)
+ b.t , (2.106)

= ±
{

(−X)m+1

2
√
−X

K − Xnµ

2
∂µ

(
(−X)m√
−X

)}
, (2.107)

where the plus sign is for m even and and minus sign for m odd and b.t stands

for a boundary term which can be neglected. As the only difference now is an

overall minus sign we consider case of even m. The first term simplifies to

(−X)m+1

2
√
−X

K =
1

2
(−X)m+ 1

2K. (2.108)
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After simplification and taking into account an integration by parts, the second

term becomes

−Xn
µ

2
∂µ

(
(−X)m√
−X

)
= −Xn

µ

2
∂µ(−X)m−

1
2 , (2.109)

=
1

2
(−X)m−

1
2nµ∂µX −

1

2
(−X)m+ 1

2K + b.t , (2.110)

= −n
µ∂µ(−X)m+ 1

2

2m+ 1
− 1

2
(−X)m+ 1

2K , (2.111)

=
K(−X)m+ 1

2

2m+ 1
− 1

2
(−X)m+ 1

2K + b.t. (2.112)

Combining all of the expressions above we arrive at the final expression for Xm�φ

we see that the second term cancels with (2.108) to give

Xm�φ = ∓(−X)m+ 1
2K ± 1

(2m+ 1)
(−X)m+ 1

2K (2.113)

There will be additional contributions from the successive integrations by parts

from any function ξ(φ) which multiplies Xm�φ. Here we shall repeat the

calculation above with fewer details in order to account for these extra terms.

Taking the case of m being even we have as before

ξ(φ)Xm�φ = ξ(φ)(−X)m+ 1
2K +

ξ(φ)X

2
√
−X

nµ∂µX . (2.114)

After the integration by parts this becomes

ξ(φ)Xm�φ = −ξ(φ)Xm+1

2
√
−X

K− ξ(φ)Xnµ

2
∂µ

(
Xm

√
−X

)
+

1

2
ξ′(φ)(−X)m+1 , (2.115)

where the prime indicates a derivative with respect to φ. An extra two boundary

terms arise from the integration by parts of the second term above. In other

words

−ξ(φ)Xnµ

2
∂µ

(
Xm

√
−X

)
=
ξ(φ)

2
(−X)m−

1
2nµ∂µX−

ξ(φ)

2
(−X)m+ 1

2K−1

2
ξ′(φ)(−X)m+1,

(2.116)

An extra term arises from

−ξ(φ)nµ∂µ(−X)m+ 1
2

2m+ 1
=
ξ(φ)K(−X)m+ 1

2

2m+ 1
+
ξ′(φ)(−X)m+1

2m+ 1
(2.117)
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Putting these results together we have that

ξ(φ)Xm�φ = ∓ 2m

2m+ 1
ξ(φ)(−X)m+ 1

2K ± 1

2m+ 1
ξ′(φ)(−X)m+1, (2.118)

where the sign on top indicates the solution for m being even. This expression is

now in a useful form to obtain the cosmological perturbations of any term that

appears in L3.

2.3.6 L4 in the unitary gauge

Here we shall present the full calculation of transforming L4 in Eq. (2.41) into the

unitary gauge, following Ref. [100]. an important term to analyse is the second

spacetime derivative of φ.

∇µ∇νφ . (2.119)

as partial derivatives commute ∂µ∂ν and Γσµν is symmetric in µ and ν Eq. (2.119)

is symmetric. In order to simplify the notation we follow Ref. [100] and define

γ ≡ 1/
√
−X for this section only. The acceleration vector is defined as

ṅµ = nσ∇σnµ . (2.120)

It can be related to the extrinsic curvature via

∇µnν = Kµν − nµṅν . (2.121)

Using these relations one finds that

∇µ∇νφ = −∇µ

(
nν
γ

)
,

= −γ−1∇µnν − nν∂µ
√
−X ,

= −γ−1 (Kµν − nµṅν) +
γ

2
nν∂µX .

(2.122)

73



where in the final line we have used the expression in equation (2.121). The last

term in the expression above can be decomposed in the following way

γ

2
nν∂µX =

γ

2
nνgµσ∂

σX

=
γ

2
nνhµσ∂

σX − γ

2
nνnµnσ∂

σX

=
γ

2
nνhµσ∂

σX +
γ2

2
nνnµ∂σφ∂

σX .

(2.123)

The final step is to show that the first term above can be written as γ−1nνṅµ.

Staring from the definition of ṅµ we have that

ṅµ = −nλ∇λ(γ∇µφ) ,

= −nλ∇µφ∇λγ − γnλ∇λ∇µφ ,

= γ−1nλnµ∇λγ − γnλ∇λ∇µφ ,

= γ−1
(
hλµ − δλµ

)
∇λγ − γnλ∇λ∇µφ ,

= γ−1hλµ∇λγ − γ−1∇µγ − γnλ∇λ∇µφ .

(2.124)

Let us first take a look at the final term. Commuting the derivatives acting on φ

γnλ∇λ∇µφ = γnλ∇µ∇λφ ,

= −γnλ∇µ(γ−1nλ) ,

= γ∇µγ
−1 ,

= −γ−1∇µγ ,

(2.125)

where in the third line we used the fact that nλ∇µnλ = 0. This then brings about

a cancellation such that

ṅµ = γ−1hλµ∇λγ ,

= γ−1hλµ∇λ(−X)−
1
2 ,

=
γ2

2
h λ
µ ∇λX .

(2.126)

Plugging this back into Eq. (2.119) and using its trace, it is possible to show that

[100]

L4 = G4R
(3) + (2XG4X −G4)

(
K2 −KµνK

µν
)
− 2
√
−XG4φK . (2.127)

This expression forms the basis for studying the cosmological perturbations of

L4. We do not discuss L5 as it does not introduce new free functions at the level
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of the background or linear pertrbations.
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Chapter 3

Reconstructing Horndeski theories

from the effective field theory of

dark energy

You could find out most things, if

you knew the right questions to

ask. Even if you didn’t, you could

still find out a lot.

Ian M. Banks

Identifying the nature of the observed late-time accelerated expansion of the

Universe [46, 47] is one of the major outstanding problems in physics. The

cosmological constant provides the simplest explanation but, as discussed in

Sec. 2.1, it is associated with a range of theoretical challenges [58]. We therefore

discussed in the previous chapter the approach of including an additional dark

energy component in the matter sector or modifying General Relativity on

cosmological scales [23, 62, 71, 104], to address the observed cosmic acceleration

without necessarily including a cosmological constant. Large-scale modifications

of gravity may be motivated by low-energy extra degrees of freedom that could

arise as effective remnants of a more fundamental theory of gravity and couple to

the metric non-minimally (see Sec. 2.2.6). Moreover, non-standard gravitational

effects can also be of interest to address problems in the cosmological small-scale

structure [105]. Cosmological observations provide a new laboratory for tests of
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gravity that differ by about fifteen orders of magnitude in length scale to the more

conventional tests in the Solar System [87]. Therefore it is well worth studying

the range of possible large-scale modifications that can arise and the independent

constraints on them that can be inferred from cosmology.

In the simplest case the modification is introduced by a universally non-minimally

coupled scalar field. This is the scenario considered throughout this thesis. Recall

from Sec. 2.2.5 that the most general scalar-tensor theory introducing at most

second-order equations of motion to evade Ostrogradsky instabilities is described

by the Horndeski action [63, 81, 106]. Despite providing restrictions on the

space of possible scalar-tensor models, there remains considerable freedom within

Horndeski theory. As a result, testing any observational consequences of the free

functions in the Horndeski action directly is inefficient. It is necessary to solve

the equations of motion for each model that one wishes to test in turn, and then

compare it with observations.

Fortunately the formalism of effective field theory (EFT), introduced in Sec. 2.3,

addresses these issues. One starts from the bottom up, with minimal assumptions

about the underlying theory, and then constrains a smaller set of functions that

parametrize a much larger class of covariant theories. It has proved to be a

fruitful approach. For example, it was shown using EFT that Horndeski theories

cannot yield an observationally compatible self-acceleration that is genuinely due

to modified gravity, unless the speed of gravitational waves significantly differs

from the speed of light [107, 108], now known to be incompatible with observations

[109] (see Sec. 4.3.2). The same techniques used in EFT were also utilized

in the discovery that there exists a class of scalar-tensor theories that contain

higher order time derivatives, yet still avoid ghost-like instabilities [110] (also see

Ref. [111]). Further applications can be found in Ref. [112–119].

Despite the utility of EFT, some issues remain to be addressed. For instance,

it is not clear whether the chosen parametrization of the EFT functions

arises naturally in modified gravity models [120–122]. Moreover, constraints

on parametrized EFT functions describing the cosmological background and

perturbations around it, cannot be connected to the non-perturbative nonlinear

regime or to different backgrounds than the cosmological setting. This omits,

for instance, constraints arising from the requirement of screening effects [62] in

high-density regions. Hence, in order to connect the observational constraints

and interpret them in terms of the allowed forms of the Horndeski functions, one

requires a covariant description of the phenomenological modifications adopted.
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In this chapter we present the reconstruction of a baseline covariant scalar-tensor

action from the EFT functions of a second-order unitary gauge action, defined in

Sec. 3.1, that shares the same cosmological background and linear perturbations

around it. Variations can then be applied to this action to move to another

covariant theory that is equivalent at the background and linear perturbation

level. This reconstruction enables measurements of parametrized EFT functions

to be related to a range of sources from the covariant Horndeski terms, which

can then be used to address the theoretical motivation of the phenomenological

parameterizations, a topic discussed in chapter 4. It can also be employed to

extend predictions to the nonlinear sector or to non-cosmological environments

and implement screening conditions on the theoretical parameter space. This

shall be explored in chapter 5.

The chapter is organised as follows. In Sec. 3.1, for convenience we briefly review

Horndeski scalar-tensor theory and the unitary gauge formalism that provides

the tools for an EFT approach to the cosmological perturbations. More details

can be found in chapter 2. We then present in Sec. 3.2 the covariant action

that is constructed to reproduce the unitary gauge action up to second order

in the perturbations and hence yield the equivalent cosmological background

dynamics and the linear perturbations around it. In Sec. 3.3, the derivation of

the reconstructed action is discussed, before applying it to a few simple example

models in Sec. 3.4. Finally, we present the conclusion of this chapter in Sec. 3.5.

3.1 Horndeski gravity and effective field theory

Horndeski gravity [63, 81, 106] describes the most general local, Lorentz-covariant,

four-dimensional theory of a single scalar field interacting with the metric that

yields at most second-order equations of motion and hence avoids Ostrogradsky

instabilities. We have encountered this action in Sec. 2.2.5 but we shall repeat it

here for convenience. It is given by

S =
5∑
i=2

∫
d4x
√
−gLi , (3.1)
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where the four Lagrangian densities are defined as

L2 ≡ G2(φ,X) , (3.2)

L3 ≡ G3(φ,X)�φ , (3.3)

L4 ≡ G4(φ,X)R

−2G4X(φ,X)
[
(�φ)2 − (∇µ∇νφ)(∇µ∇νφ)

]
, (3.4)

L5 ≡ G5(φ,X)Gµν∇µ∇νφ

+
1

3
G5X(φ,X)

[
(�φ)3 − 3(�φ)(∇µ∇νφ)(∇µ∇νφ)

+2(∇µ∇νφ)(∇σ∇νφ)(∇σ∇µφ)] , (3.5)

were X ≡ gµν∂µφ∂νφ. These Lagrangians have been studied in a variety of

different systems including black holes [123, 124], neutron stars [125, 126] and

inflationary models [127, 128]. For cosmological purposes, at the background

and linear level, it has proven useful to adopt a unitary gauge description

of Eq. (3.1) [7, 85, 100, 101]. In this EFT formalism the freedom in the

cosmological background metric and each Gi(φ,X) reduces to five free time-

dependent functions. One describes the background dynamics while the other

four functions encompass the linear perturbations around it.

In the following, we shall briefly discuss the principles that go into building this

EFT for the cosmological dynamics in the unitary gauge (see Refs. [7, 85] for

more details). The Friedmann-Lemâıtre-Robertson-Walker (FLRW) background

metric is defined as

ds2 = −dt2 + a2(t)dx2 , (3.6)

where a(t) is the scale factor. The general procedure then invokes the Arnowitt-

Deser-Misner (ADM) formalism of General Relativity (see Sec. 2.3.3 for more

details) on an FLRW background to foliate the spacetime with spacelike

hypersurfaces. The ADM line element is given by [95]

ds2 = −N2dt2 + hij
(
dxi +N idt

) (
dxj +N jdt

)
, (3.7)

where N is the lapse, N i is the shift and hij is the induced metric on the spacelike

hypersurface. The induced metric can also be written in four-dimensional

notation as

hµν = gµν + nµnν , (3.8)

by identifying h00 = N iNi and h0i = Ni. This framework provides a
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natural motivation for the introduction of the scalar field by treating it as

the pseudo-Nambu-Goldstone boson of spontaneously broken time translational

symmetry [85, 129]. By associating the time coordinate with the scalar field,

the scalar perturbations are absorbed into the metric. One is free to choose the

functional form of the spacetime foliation, as long as the scalar field is a smooth

function with a time-like gradient. We can then simplify the calculations by

setting

φ = tM2
∗ , (3.9)

where M∗ is a mass scale to match the dimensions. It can be thought of as a bare

Planck mass related to the physical Planck mass through corrections from the

EFT parameters [7]. Note that as the coordinate time is related to the scale factor

in the FLRW background metric a(t), and this in turn is related to the matter

content of the universe through the Friedmann equations, the gravitational action

and the matter action are now no longer independent after this identification has

been made.

In this unitary gauge, we furthermore have

X = g00φ̇2 = (−1 + δg00)M4
∗ , (3.10)

where g00 is related to the lapse via g00 = −N−2. Here and throughout this

chapter dots denote time derivatives and primes will represent derivatives with

respect to the scalar field φ. Another geometrical quantity that will be used in

the EFT action is the extrinsic curvature Kµν defined as

Kµν = hµσ∇σnν , (3.11)

where nµ is the normal vector on the uniform time hypersurface,

nµ = −
δ0
µ√
−g00

. (3.12)

On a spatially flat FLRW background Kµν = Hhµν , where H ≡ ȧ/a is the

Hubble parameter, and hence the perturbation of the extrinsic curvature becomes

δKµν = Kµν−Hhµν . The final geometrical quantity that will be used is the three

dimensional Ricci scalar R(3), defined in the usual way but with the metric hµν .

The full unitary gauge action that describes the background and linear dynamics
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of Horndeski gravity is then given by [7, 85, 100, 101]

S = S(0,1) + S(2) + SM [gµν , ψ] , (3.13)

where

S(0,1) =
M2
∗

2

∫
d4x
√
−g
[
Ω(t)R− 2Λ(t)− Γ(t)δg00

]
, (3.14)

and

S(2) =

∫
d4x
√
−g
[

1

2
M4

2 (t)(δg00)2 − 1

2
M̄3

1 (t)δKδg00

−M̄2
2 (t)

(
δK2 − δKµνδKµν −

1

2
δR(3)δg00

)]
. (3.15)

For the zeroth and first-order action S(0,1) we have adopted the notation of

Ref. [113]. S(2) is the action at second order and SM is the matter action with

minimal coupling between metric and matter fields. Note here that R(3) is itself a

perturbation on flat FLRW. Although everything in this work assumes flat space

we keep the above notation of δR(3) to emphasize that it is a first- order quantity

throughout.

The EFT action (3.13) separates out the background dynamics and the per-

turbations around it in a systematic way. We have six free functions of time,

where a seventh free function of time enters through the FLRW metric with

the scale factor a(t) or equivalently H(t). Four free functions are introduced

at the background level, while another three enter the dynamics of the linear

perturbations. Note, however, that two of the background EFT functions in

Eq. (3.14), including H(t), will be fixed by the Friedmann equations with a

specified matter content. Given H(t), this leaves a degenerate background

function which is only fixed at the level of the linear perturbations. The separation

of the background and linear perturbations is more manifest in the notation

introduced in Ref. [8], in which there is one free function H(t) that determines

the background evolution and four free functions describing the perturbations.

More specifically, the background equations that follow from the EFT action,

providing the two constraints, are given by [7, 113]

Γ +Λ = 3(ΩH2 + Ω̇H)− ρm
M2
∗
, (3.16)

Λ = 2ΩḢ + 3ΩH2 + 2Ω̇H + Ω̈ , (3.17)

where we assumed a matter-only universe with pressureless dust.
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Finally, an important aspect of the unitary gauge action (3.13) for the discussion

in Secs. 3.2 and 3.3 is that, at the level of linear theory, no new EFT functions

appear in the description of L5 in addition to those introduced for L1−4 [100, 101].

Hence, it will be sufficient to consider the reconstruction of a baseline covariant

action for L1−4 only.

3.2 Reconstructed Horndeski action

So far, much work has been devoted to representing specific theories in terms of

the unitary gauge EFT parameters and devising parametrizations of the time-

dependent EFT functions (see, e.g. Ref. [7–9, 85, 100, 101, 130]). Here we

are interested in the inverse procedure. That is, the class of covariant theories

that a set of EFT functions corresponds to. While a previous reconstruction was

presented in Ref. [7], the resulting general covariant action is not of the Horndeski

type. Therefore it is not guaranteed to be theoretically stable. We shall now

present a covariant formulation of a scalar-tensor theory that is embedded in

the Horndeski action (3.1) and is reconstructed from the free EFT functions

of the second-order unitary gauge action (3.13) such that they share the same

cosmological background and linear dynamics. Given that it is not possible to

specify a unique covariant theory based on its background and linear theory only,

the reconstructed action will serve as a foundation upon which variations can

then be applied to move between different covariant theories that are equivalent

at the background and linear perturbation level. The basis of this reconstruction

is the correspondence between the covariant formalism and the particular unitary

gauge adopted, specified by Eq. (3.10).

The covariant Horndeski action that reproduces the same dynamics of the

cosmological background and linear perturbations as the EFT action (3.13) is

given by (see Sec. 3.3 for a derivation)

G2(φ,X) =−M2
∗U(φ)− 1

2
M2
∗Z(φ)X + a2(φ)X2

+ ∆G2 , (3.18)

G3(φ,X) = b0(φ) + b1(φ)X + ∆G3 , (3.19)

G4(φ,X) =
1

2
M2
∗F (φ) + c1(φ)X + ∆G4 , (3.20)

G5(φ,X) = ∆G5 , (3.21)
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U(φ) = Λ + Γ
2
− M4

2

2M2
∗
− 9HM̄3

1

8M2
∗
− (M̄3

1 )′

8
+

M2
∗ (M̄2

2 )′′

4
+

7(M̄2
2 )′H

4
+ M̄2

2H
′ +

9H2M̄2
2

2M2
∗

Z(φ) = Γ
M4
∗
− 2M4

2

M6
∗
− 3HM̄3

1

2M6
∗

+
(M̄3

1 )′

2M4
∗
− (M̄2

2 )′′

M2
∗
− H(M̄2

2 )′

M4
∗
− 4H′M̄2

2

M4
∗

a2(φ) =
M4

2

2M8
∗

+
(M̄3

1 )′

8M6
∗
− 3HM̄3

1

8M8
∗
− (M̄2

2 )′′

4M4
∗

+
H(M̄2

2 )′

4M6
∗

+
H′M̄2

2

M6
∗
− 3H2M̄2

2

2M8
∗

b0(φ) = 0 b1(φ) =
2HM̄2

2

M6
∗
− (M̄2

2 )′

M4
∗

+
M̄3

1

2M6
∗

F (φ) = Ω +
M̄2

2

M2
∗

c1(φ) =
M̄2

2

2M4
∗

Table 3.1 The coefficients of powers of X in the Horndeski functions Gi(φ,X),
Eqs. (3.18) through (3.20), reconstructed from the EFT functions of
the unitary gauge action (3.13) (Sec. 3.3).

where the functional forms of the coefficients of Xn are presented in Table 3.1.

The notation in Eqs. (3.18) through (3.20) is motivated such that Eq. (3.13)

reduces to the scalar-tensor action of Ref. [131] in the limit that a2 = b0,1 = c1 =

0. The variations ∆Gi characterize the changes that can be performed on the

baseline action (∆Gi = 0) to move between different covariant actions that are

degenerate at the level of background and linear cosmology. For example, one may

add terms to G2 which are O [(1 +X/M4
∗ )

3]. In the unitary gauge these terms

will be at least of order (δg00)3 and hence do not affect linear theory. Similarly,

after one takes into account an integration by parts relating terms in b0(φ) and

Z(φ) the variations ∆G3 are O [(1 +X/M4
∗ )

3]. In fact, any non-zero contribution

in b0(φ) can be absorbed into Z(φ) in this way. Given this freedom, we have

set b0 to zero by default. The ∆G4 term must be O [(1 +X/M4
∗ )

4], which is due

to the presence of G4X in Eq. (3.35), changing anything of O [(1 +X/M4
∗ )

4] to

O [(1 +X/M4
∗ )

3] with the variation having no effect on linear theory. Finally, as

emphasized in Sec. 3.1, at the linear level contributions from G5 can be absorbed

into G2, G3, and G4, and so the first term that appears in G5 only affects nonlinear

scales. As L5 in the unitary gauge has at most one X derivative acting on G5

[100], as with ∆G4, ∆G5 starts at O [(1 +X/M4
∗ )

4].

Importantly, note that the coefficients in Eqs. (3.18) through (3.20) are not inde-

pendent since there are only five free independent EFT functions in Eq. (3.13).

Hence, this leads to constraint equations between the coefficients. Another aspect

worth noting is that due to the variations of the form (1 + X/M4
∗ )
n around the

baseline covariant theory expressed in orders of Xn, the variations introduce
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well defined changes to all orders of each Gi in Eqs. (3.18) through (3.20). The

functional form of each ∆Gi is specified by

∆G2,3 =
∑
n>2

ξ(2,3)

n (φ)

(
1 +

X

M4
∗

)n
, (3.22)

∆G4,5 =
∑
n>3

ξ(4,5)

n (φ)

(
1 +

X

M4
∗

)n
, (3.23)

where ξ(i)
n (φ) are a set of n free functions for each ∆Gi. Note that, using the

reconstruction, one can build a model with a non-zero constant EFT function Λ

and all the other EFT functions set to zero. As the addition of a ∆Gi term does

not affect linear theory, by adding these extra terms one can construct a theory

that can only be discriminated from ΛCDM on nonlinear scales.

Given a set of unitary gauge EFT functions Ω,Γ,Λ,M4
2 , M̄

3
1 , M̄

2
2 and H, one can

plug them into the relations given in Table 3.1 and Eqs. (3.18) through (3.20) and

derive the corresponding baseline covariant action. However, it is important to

stress again that the action obtained in the process is not unique. Indeed, it may

require the addition of specific ∆Gi as well as several field redefinitions to recover

a recognisable form for a given theory. Examples of this are given in Sec. 3.4.

Finally, for ease of use, we present in Table 3.2 the relation of the EFT functions

we have adopted to different parameterizations that are frequently used in the

literature. These expressions can be thought of as consistency relations. For

example, we have the relationship between the background conformal factor Ω,

the mass scale M and the speed of gravitational waves c2
T

Ω(t) =
M2

M2
∗
c2
T . (3.24)

As discussed in Ref. [107], a cosmological self-acceleration that is genuinely due

to modified gravity implies a significant evolution in Ω departing from the value

Ω = 1 of General Relativity. The relation (3.24) makes it explicit that this

requires a deviation of the Planck mass from its bare value M∗, or a speed of

gravitational waves that differs from that of light. It hence tests the consistency

of a self-acceleration effect between the cosmological background, the large-scale

structure, and the propagation of gravitational waves.
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EFT functions Notation in Ref. [7] α-parametrization

Ω(t) f(t) M2

M2
∗
c2
T

Γ(t) 2c(t)
M2
∗

− ρm
M2
∗
− M2

M2
∗
β(t)

Λ(t) Λ(t)−c(t)
M2
∗

M2

M2
∗

[3H2c2
T (1 + αM) + β(t) + 3Hα̇T ]

M4
2 (t) M4

2 (t) 1
4
ρm + M2

4
[H2αK + β(t)]

M̄3
1 (t) m3

3(t) M2 [HαMc
2
T + α̇T − 2HαB]

M̄2
2 (t) m2

4(t) −1
2
M2αT

Table 3.2 Relationship of the EFT functions adopted in this thesis to the
notation used in Ref. [7]. We have also derived here the expressions of
the EFT functions in terms of the α-parametrization of Ref. [8] (with
conventions of Ref. [9]). Dots denote derivatives with respect to phys-
ical time t, c2

T = 1+αT is the tensor sound speed squared, and we have

defined here β(t) ≡ c2
T

[
2Ḣ +Hα̇M + αM

(
Ḣ −H2 +H2αM

)]
+

Hα̇T (2αM − 1) + α̈T for reasons of compactness.

3.3 Reconstruction Method

We shall now provide a derivation of the reconstructed covariant Horndeski action

presented in Sec. 3.2. The general approach to this reconstruction is as follows.

We consider the sequence of terms of the unitary gauge action (3.13) contributing

at zeroth, first, and second- order. We contrast those with the different Li
contributions to the covariant Horndeski Lagrangian, Eqs. (3.2) through (3.4).

For this, we put them into the unitary gauge, which is a well defined procedure

that has been dealt with in previous work [100, 101]. This will identify the

Lagrangians that include the required terms in the unitary gauge action, but those

will also give rise to extra terms. Using Eq. (3.10) it is possible to make these

extra terms covariant and subtract them from the Horndeski Lagrangian that

one originally started with. By construction, one is left with a covariant action

that reduces to the required terms in the unitary gauge action after making that

transformation. This procedure is only necessary for L3 and L4, where for L2 the

reconstruction is straightforward. As discussed in Sec. 3.2, L5 does not introduce

terms in the unitary gauge additional to the contributions arising from L2−4 and

can thus be omitted. With this procedure we obtain a self consistent and well
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defined reconstruction of a baseline covariant theory from the unitary gauge action

that shares the same cosmological background and linear perturbations around

it, and to which variations can be applied to move to another covariant theory

that is equivalent at the background and linear perturbation level (Sec. 3.2).

For the discussion of reconstructing a covariant action from the terms in S(2),

we introduce the notation S
(2)
i with i = 1, 2, 3 referring to S(2) with all EFT

parameters set to zero apart from M4
2 , M̄3

1 , and M̄2
2 , respectively.

In Sec. 3.3.1, we discuss the quadratic contribution to Eq. (3.2) arising from

the zeroth and first-order EFT action (3.14). The derivation of the first cubic

contribution to Eq. (3.3) from second-order perturbations in the EFT action is

discussed in Sec. 3.3.2. Finally, the quartic term, Eq. (3.4), is derived in Sec. 3.3.3.

3.3.1 Quadratic term L2

To start, consider the unitary gauge action up to first order in the perturbations,

S
(0,1)
Ω=1 =

M2
∗

2

∫
d4x
√
−g
{
R− 2Λ(t)− Γ(t)δg00

}
, (3.25)

where we have set Ω = 1 (Ω 6= 1 will be considered in Sec. 3.3.3). The

corresponding covariant action can be obtained through Eq. (3.10), which yields

S
(0,1)
Ω=1 =

∫
d4x
√
−g
{
M2
∗

2
R−M2

∗Λ(φ)

−M
2
∗

2
Γ(φ)− Γ(φ)

2M2
∗
X

}
. (3.26)

This is simply the action of a quintessence model with a non-canonical kinetic

term (see Sec. 3.4.1).

The contribution of the first second-order perturbation in the unitary gauge

action (3.15) is

S
(2)
1 =

∫
d4x
√
−g
{

1

2
M4

2 (t)(δg00)2

}
. (3.27)

Putting this into covariant form, one obtains the action

S
(2)
1 =

∫
d4x
√
−g
{
M4

2 (φ)

2
+
M4

2 (φ)

M4
∗
X +

M4
2 (φ)

2M8
∗
X2

}
. (3.28)

Eq. (3.28) is the contribution that a k-essence model [132] makes to Eq. (3.26)

at second order in X. The covariant or unitary gauge combinations S
(0,1)
Ω=1 + S

(2)
1
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describe the same cosmological background and linear theory of any function

G2(φ,X) in Eq. (3.2) with G3 = G5 = 0 and G4 = M2
∗/2.

3.3.2 Cubic term L3

Next, we consider a non-vanishing M̄3
1 coefficient, which is the first term to give

rise to a contribution to the cubic Lagrangian L3. It appears in the EFT action

as

S
(2)
2 =

∫
d4x
√
−g
{
−1

2
M̄3

1 (t)δg00δK

}
. (3.29)

We now reconstruct a covariant action that reduces to Eq. (3.29) to second-order

perturbations in the unitary gauge. For this purpose, it is sufficient to consider

the special case of G3(φ,X) = `3(φ)X where `3 is a smooth function of φ only.

One could do an alternative derivation by making G3(φ,X) a function of an

arbitrary power of X. Although the reconstructed covariant action would be

different, the linear theory would be the same. After a few integrations by parts,

in the unitary gauge adopting Eq. (3.9) this term becomes [7, 100, 101]

M−6
∗ `3(φ)X�φ =

[
˙̀
3(t)− 3`3(t)H

]
g00 − `3(t)δg00δK

− 3`3(t)H +
3H

4
`3(t)(δg00)2

− 1

4
˙̀(t)(δg00)2 . (3.30)

We take all the terms apart from that involving δg00δK to the left-hand side

of the equation and use Eq. (3.10) to write δg00 in covariant form. Comparing

Eqs. (3.30) and (3.29), we also make the identification

`3(t) ≡ 1

2
M̄3

1 (t)M−6
∗ . (3.31)

Hence, the covariant action that follows is given by

S
(2)
2 =

∫
d4x
√
−g
{

9HM̄3
1

8
+
M2
∗ (M̄

3
1 )′

8
+

M̄3
1

2M6
∗
X�φ

+

[
3HM̄3

1

4M4
∗
− (M̄3

1 )′

4M2
∗

]
X +

[
(M̄3

1 )′

8M6
∗
− 3HM̄3

1

8M8
∗

]
X2

}
, (3.32)

which reduces to Eq. (3.29) at second order in the unitary gauge. Note that after

making the replacement (3.10), there are also extra factors of M∗ appearing from

the replacement of the time derivative with a derivative with respect to the scalar
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field via ˙̄M3
1 = M2

∗ (M̄
3
1 )′.

3.3.3 Quartic term L4

Finally, we reconstruct the quartic Lagrangian density L4. The first contribution

arises from the background term Ω(t),

S
(0,1)
Λ=Γ=0 =

M2
∗

2

∫
d4x
√
−g {Ω(t)R} , (3.33)

which, after using equation (3.9), yields the quartic contribution G4 = M2
∗Ω(φ)/2.

We now proceed to the reconstruction of a covariant action that reduces to the

second order unitary gauge action (3.15) with all the EFT coefficients set to zero

apart from M̄2
2 ,

S
(2)
3 =

∫
d4x
√
−g
{
−M̄2

2 (t)
(
δK2 − δKµνδKµν

)
+

1

2
M̄2

2 (t)δR(3)δg00

}
. (3.34)

For this purpose, consider the quartic Horndeski Lagrangian (3.4) and transform

it into the unitary gauge. This results in [100]

L4 = G4R
(3) + (2g00M4

∗G4X −G4)(K2 −KµνK
µν)

−2M2
∗

√
−g00G4φK. (3.35)

In order to carry out the reconstruction it is necessary to identify G4 in terms

of the EFT parameters. To do this one has to compare the coefficient of R in

the covariant Lagrangian with that of R(3) in the unitary gauge Lagrangian. To

compare each term consistently, we will make use of the Gauss-Codazzi relation

R(3) = R−KµνK
µν +K2 − 2∇ν(n

ν∇µn
µ − nµ∇µn

ν) , (3.36)

which relates R to R(3). Hence, the contribution to the quartic term is

G4(φ,X) =
M̄2

2 (φ)

2

(
1 +

X

M4
∗

)
, (3.37)
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and the covariant Horndeski Lagrangian therefore is

L4 =
M̄2

2 (φ)

2

(
1 +

X

M4
∗

)
R

− M̄2
2 (φ)

M4
∗

[
(�φ)2 −∇µ∇νφ∇µ∇νφ

]
. (3.38)

Note that we have used that δR(3) = R(3) in flat space. Putting this into the

unitary gauge gives

L4 =− M̄2
2

(
δK2 − δKµνδKµν

)
+

1

2
M̄2

2 δR
(3)δg00

+ 6M̄2
2H

2 − 4M̄2
2HK − 3H2M̄2

2 δg
00

+ 2M̄2
2HKδg

00 − ˙̄M2
2 δg

00K +
1

2
˙̄M2

2K(δg00)2 . (3.39)

To obtain a covariant action that yields the second-order unitary gauge ac-

tion (3.35), we take the last two lines of Eq. (3.39) and move it to the left-hand

side. Care must be taken in the transformation of the term −4M̄2
2HK. In making

it covariant one first has to do an integration by parts to take the derivative in

K = ∇µn
µ onto the other coefficients. Using then the definition of nµ in Eq. (3.12)

one obtains an expansion in powers of δg00 that up to second order goes as

−4M̄2
2HK =

d

dt
(M̄2

2H)

{
4− 2δg00 − 1

2
(δg00)2

}
. (3.40)

One can then make the usual replacement for δg00 in Eq. (3.10) and use the result

from Sec. 3.3.2 to transform all the terms involving a δg00δK. This yields the

covariant action

S
(2)
3 =

∫
d4x
√
−g

{[
1

2
M̄2

2 +
M̄2

2

M4
∗
X

]
R− M̄2

2

M4
∗

[
(�φ)2 −∇µ∇νφ∇µ∇νφ

]
− M4

∗ (M̄
2
2 )′′

4
− 7M2

∗ (M̄
2
2 )′H

4
−M2

∗H
′M̄2

2 −
9H2M̄2

2

2
+

[
(M̄2

2 )′′

2
+
H(M̄2

2 )′

2M2
∗

+
2H ′M̄2

2

M2
∗

]
X

−
[

(M̄2
2 )′′

4M4
∗
− H(M̄2

2 )′

4M6
∗
− H ′M̄2

2

M6
∗

+
3H2M̄2

2

2M8
∗

]
X2 +

[
2HM̄2

2

M6
∗
− (M̄2

2 )′

M4
∗

]
X�φ

}
.

(3.41)

After putting action (3.41) back into the unitary gauge, at second order in the

perturbations one obtains action (3.34). Note that a different reconstruction of

δg00δR(3) that is not contained within the Horndeski action was recently presented
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in Ref. [133].

Combining the actions S
(0,1)
Λ=Γ=0, S

(0,1)
Ω=1 , S

(2)
1 , S

(2)
2 , and S

(2)
3 in Eqs. (3.33), (3.26),

(3.28), (3.32), and (3.41), respectively, we obtain the expressions given for Gi

in Eqs. (3.18) through (3.20), which thus are constructed to produce the same

cosmological background and linear perturbations as the EFT action (3.13). Note

that, as discussed in Sec. 3.2, the quintic term G5 does not introduce additional

EFT functions in S(0−2) and thus its phenomenology at the background and linear

perturbation level can be captured by G2−4. For simplicity, we have therefore

adopted a baseline reconstruction with G5 = 0 but allow for variations around

this solution in Eq. (3.21).

3.4 Simple Examples

For illustration, we provide here a brief discussion of the application of the

reconstruction for three simple examples. In Sec. 3.4.1, we show how a

quintessence model can be reconstructed and discuss some subtleties about the

canonical form of the scalar field action. We then apply the reconstruction to

f(R) gravity, cubic galileon gravity and a quartic model in Secs. 3.4.2, 3.4.3 and

3.4.4 respectively.

3.4.1 Quintessence

Let us assume a measurement of Ω(t) = 1, non-vanishing Λ(t) and Γ(t), and

vanishing values for the other EFT functions. Applying this to the reconstructed

action defined by Eqs. (3.18) through (3.21), one finds the action (3.26). Note

that the kinetic contribution is not in its canonical form. To find the canonical

form of the action, we perform the field redefinition

∂χ

∂φ
=

1

M∗

√
Γ(φ) (3.42)

such that in terms of the new scalar field χ, we obtain

S =

∫
d4x
√
−g
{

1

2
M2
∗R− V (χ)− 1

2
(∂χ)2

}
, (3.43)
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where

V (χ) = M2
∗

(
Λ(χ) +

1

2
Γ(χ)

)
. (3.44)

Including a non-minimal coupling term Ω(t) in front of R further allows one to

reconstruct a Brans-Dicke action in a similar way by choosing a suitable Γ(t)

associated with the Brans-Dicke function ω(φ).

3.4.2 f(R) gravity

Next, we assume a measurement of varying Ω(t) and Λ(t) while all other EFT

functions vanish. This is the scenario that would be expected for a f(R) model.

f(R) gravity can be written as a Brans-Dicke type scalar-tensor theory with a

scalar field potential and ω = 0 (hence, vanishing Γ). The scalar field in this

case can be associated with fR ≡ df(R)/dR, where the potential has a particular

dependence on fR, specified by f(R) and R.

While we can therefore follow the same procedure as in Sec. 3.4.1 for the

reconstruction, we also consider here a slightly different approach (cf. [7]). In this

case, instead of identifying the time coordinate with the scalar field, one identifies

it with the Ricci scalar, adopting a gauge where its perturbations vanish, δR = 0.

Hence, in this case, we directly find

Lf(R) = Ω(R)R− 2Λ(R) = R + [Ω(R)R−R− 2Λ(R)]

≡ R + f(R) . (3.45)

3.4.3 Cubic Galileon

Let us assume a measurement of

M2
∗Γ = 4M4

2 = 3HM̄3
1 = −λH , (3.46)

and Ω(t) = exp(−2M∗t) with a positive constant λ and all other EFT functions

vanishing. Applying this to the reconstructed action, defined by Eqs. (3.18)

through (3.20), and setting λ = 6M5
∗ r

2
c , defining a crossover distance rc, we

obtain

L =
M2
∗

2
e−2φ/M∗R− r2

c

M∗
X�φ+ LM , (3.47)
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which is the Lagrangian density of a cubic galileon model [7, 134].

3.4.4 Quartic Lagrangian

To give a simple example of a reconstruction of a model involving G4, let us

assume that the relation M̄2
2 = λ holds for some constant λ. In addition, assume

that the other EFT functions are related to H in the following way

M̄3
1 = −4λH , M4

2 = −λḢ ,

Γ + Λ = −12H2 , Γ− Λ = 8Ḣ .
(3.48)

Using these relations in the reconstructed action in Eqs. (3.18) to (3.20) it is found

that, upon identifying λ = M2
∗ , one recovers the following quartic Horndeski

Lagrangian

L =

(
M2
∗

2
+

1

2M2
∗
X

)
R− 1

M2
∗

[
(�φ)2 −∇µ∇νφ∇µ∇νφ

]
. (3.49)

3.5 Conclusions

This chapter has presented a reconstruction method which maps from parameters

in the effective field theory of dark energy back to a fully covariant Horndeski

action. The EFT of dark energy and modified gravity does enable a generalised

and efficient examination of a large class of theories and there has been much

work examining how to express a variety of given covariant theories in terms of

the EFT functions. To connect observables with theoretical Horndeski models the

inverse mapping is also required. Starting from a given EFT unitary gauge action,

for instance provided by measurement, one can derive a covariant Horndeski

Lagrangian that shares the same dynamics of the cosmological background and

linear fluctuations around it. As the reconstruction cannot be unique, we have

focused on the recovery of a baseline covariant Horndeski action that reproduces

the desired equivalent background and linear dynamics. We have furthermore

characterised the variations of this action that can be performed to move between

the covariant theories degenerate at the background and linear level. For

illustration, we have applied the reconstruction method to a few simple example

models embedded in the Horndeski action: quintessence, f(R) gravity, a cubic

galileon model and a quartic model.
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The following chapter will present a number of applications of the reconstruction.

Of particular interest is the construction of a covariant realisation of the linear

shielding mechanism shown to be present in Horndeski theories by analysis of its

unitary gauge action [113] (also see Ref. [135]). This mechanism operates in a

large class of theories that can become degenerate with ΛCDM in the expansion

history and linear perturbations. However, the degeneracy can be broken

by the measurement of the speed of cosmological propagation of gravitational

waves [107]. This is now known to be equal to the speed of light [136] but as we

shall discuss this should not completely eliminate interest in these models. With

the reconstruction, we shall also examine the question of how well motivated

the frequently adopted parametrizations of the EFT functions in observational

studies are [120–122, 137]. Furthermore, the reconstruction will enable one to

directly employ measurements of the EFT functions to impose constraints on the

covariant Horndeski terms, which will be of particular interest to future surveys

such as Euclid [27, 28] or the Large Synoptic Survey Telescope (LSST) [29].

Finally, the covariant reconstruction disentangles the cosmological dependence of

the Horndeski modifications in the EFT functions that is due to the spacetime

foliation adopted in the unitary gauge. Hence, a reconstructed action from

phenomenological EFT functions can be applied to non-perturbative regimes (see

e.g. Ref. [138]) or non-cosmological backgrounds and used to connect further

observational constraints, for instance, arising from the requirement of screening

effects in high-density regimes. This shall be explored in chapter 5. This list of

applications of the reconstructed Horndeski action is far from exhaustive.
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Chapter 4

Applications of the reconstruction

You can know the name of a bird

in all the languages of the world,

but when you’re finished, you’ll

know absolutely nothing whatever

about the bird. So let’s look at the

bird and see what it’s doing.

That’s what counts.

Richard P. Feynman

4.1 Introduction

This chapter presents a number of applications of the reconstruction from the

EFT of dark energy back to manifestly covariant Horndeski theories introduced

in the previous chapter. In particular, it will be concerned with the connection of

observational parameters with underlying theories, providing a vital link between

the parameter constraints from future cosmological data sets and their theoretical

interpretation. Eventually it is hoped that through such techniques it will be

possible to significantly rule out or favour Horndeski theory as a whole with

various cosmological observations. Recently, the LIGO/Virgo measurement of

the gravitational wave GW170817 [109] emitted by a binary neutron star merger

with the simultaneous observations of electromagnetic counterparts [136, 139]

has already led to a significant reduction of the available theory space within
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Horndeski at late times, as was first anticipated in Refs. [107, 108]. The

GW170817 event occurred in the NGC 4993 galaxy of the Hydra cluster at a

distance of about 40 Mpc and enabled a constraint on the relative deviation of the

speed of gravity cT from the speed of light (c = 1) at O(10−15) for z . 0.01 [136].

This agrees with forecasts [107, 140] inferred from the increased likelihood with

increasing volume at the largest distances resolved by the detectors, expecting a

few candidate events per year, and emission time uncertainties. It was anticipated

that the measurement would imply that a genuine cosmic self-acceleration

from Horndeski scalar-tensor theory and its degenerate higher-order extensions,

including the Galileon theories, can no longer arise from an evolving speed of

gravity and must instead be attributed to a running effective Planck mass [107].

The minimal evolution of the Planck mass required for self-acceleration with

cT = 1 was derived in Ref. [108] and was shown to provide a 3σ worse fit to

cosmological data than a cosmological constant. Strictly speaking, this only

applies to Horndeski theories, where cT = 1 breaks a fundamental degeneracy in

the large-scale structure produced by the theory space [107, 113]. Generalizations

of the Horndeski action reintroduce this degeneracy [113] but self-acceleration in

general scalar-tensor theories is expected to be conclusively testable at the 5σ

level with Standard Sirens [107] (also see Refs. [141–144]), eventually allowing

an extension of this No-Go result. The minimal model serves as a null-test for

self-acceleration from modified gravity. It is therefore worth examining whether

future observational probes of the large-scale structure are capable of tightening

the constraint beyond the 3σ-level. Finally, the measurement of cT ' 1 with

GW170817 in particular implies that the quintic and kinetically coupled quartic

Horndeski Lagrangians must be negligible at late times [145, 146] (also see e.g.,

Refs. [107, 117, 147–155] for more recent discussions). The measurement also

led to a range of further astrophysical and cosmological implications (see, e.g.,

Ref. [156]).

Despite giving strong restrictions on the set of scalar-tensor theories that could

explain the accelerated expansion, there remains a great deal of freedom in the

model space after the GW170817 observation and the phenomenological study

of the quintic and kinetically coupled quartic Horndeski Lagrangians should not

be dismissed so soon. There are two important aspects to be considered in this

argument. On the one hand, the speeds of gravity and light are only constrained

to be effectively equal at the low redshifts of z . 0.01. This certainly applies to

the regime of cosmic acceleration but not to the early Universe, where a decaying

deviation in cT could still lead to observable signatures without invoking fine-
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tuning. Moreover, for more general scalar-tensor theories, the linear shielding

mechanism [113] may be extended to a modified gravitational wave propagation,

where the Horndeski terms could cause cosmic self-acceleration while other terms

may come to dominate for the wavelengths relevant to GW170817. These

wavelengths differ by those associated with cosmic acceleration by O(1019) [157].

Hence, in this chapter we will not exclusively restrict to the models satisfying

the GW170817 constraint, envisaging more general applications of the methods

presented.

As we have discussed in Sec. 2.3.4 the EFT of dark energy provides a useful

approach to studying the cosmological effects of a variety of Horndeski models in

a unified way. This generality comes at a cost. Currently, one either has to start

from a given fully covariant theory and compute the EFT coefficients in terms

of the functions defined in the covariant action, or take a phenomenologically

motivated parameterization for the EFT functions. In the first instance, one

is essentially left with the original problem of having a large range of theories

to compare with observations. Following the second approach gives a general

indication of the effects of modified gravity on different observational probes, but

it is generally unclear what physical theories are being tested when a particular

parameterization is adopted.

In the previous chapter we developed a mapping from the EFT coefficients to

the family of Horndeski models which give rise to the same background evolution

and linear perturbations. This mapping provides a method to study the form

of the Horndeski functions determined from observations on large scales. One

can furthermore address the question of what theories various phenomenological

parameterizations of the EFT functions correspond to. We shall examine the

form of the underlying theories corresponding to two commonly used EFT

parameterizations for late-time modifications motivated by cosmic acceleration.

Reconstructed actions that exhibit minimal self-acceleration and linear shielding

are also presented. We furthermore apply the reconstruction to phenomenological

parameterizations such as a modified Poisson equation and gravitational slip [158–

162] as well as the growth-index parametrization [163–165]. These are the primary

parameters that the next generation of galaxy-redshift surveys will target [27–

29]. With the reconstruction it is possible to connect these parameterizations

with viable covariant theories, and explore the region of the theory space being

sampled when a particular parameterization is adopted. The reconstruction is

also applied to a phenomenological model that exhibits a weakening of the growth
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of structure relative to ΛCDM today, which may be of interest to address potential

observational tensions [166, 167]. Finally, in every analysis of the EFT model

space it is necessary to ensure that the chosen model parameters do not lead to

ghost or gradient instabilities. When comparing models with observations this

can, for instance, lead to a highly inefficient sampling of the model space and

misleading statistical constraints due to complicated stability priors. To avoid

those issues, we propose an alternative parameterization of the EFT function

space, which uses the stability parameters directly as the basis set such that

every sample drawn from that space is inherently stable.

The chapter is organised as follows. In Sec. 4.2 we briefly review the EFT

formalism, in particular reviewing a commonly used alternative basis for the

EFT functions, before specifying the stability criteria imposed on the model

space. We then propose a new inherently stable EFT basis that we argue

is most suitable for statistical comparisons of the available theory space to

observations. Sec. 4.3 covers a number of different reconstructions, ranging from

commonly adopted parameterizations encountered in the literature (Sec. 4.3.1)

to models for minimal self-acceleration (Sec. 4.3.2), linear shielding (Sec. 4.3.3),

phenomenological modifications of the Poisson equation and gravitational slip

(Sec. 4.3.4), the growth-index parametrization (Sec. 4.3.5), and weak gravity

(Sec. 4.3.6). In Sec. 4.3.7 we provide an example of a reconstruction from the

inherently stable parameter space. before inspecting the impact of the choice

of EFT parametrization on the reconstructed theories in Sec. 4.4. Finally, we

discuss conclusions in Sec. 4.5.

4.2 Alternate bases for EFT of dark energy

parameters

At second order, Horndeski gravity corresponds to the EFT action in Eqs.(3.14)

and (3.15). In general, various subsets of Horndeski theory lead to separate

contributions from the EFT coefficients. In particular, theories compatible with

the GW1710817 observation must satisfy M̄2
2 (t) ' 0 at z . 0.01. Taking

into account the Hubble expansion H(t) ≡ ȧ/a and the two constraints from

the Friedmann equations, Eqs. (3.13)–(3.15) contain five independent functions

capable of describing the background and linear perturbations of Horndeski

theory.
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An alternative basis for these EFT functions with a more direct physical

interpretation [8]. See Table I of Ref. [9] and Table 3.2 for the connection between

the two descriptions, although bear in mind the different conventions. This basis

is defined via

αM ≡ M2
∗Ω
′ + 2(M̄2

2 )′

M2
∗Ω + 2M̄2

2

, (4.1)

αB ≡ M2
∗HΩ′ + M̄3

1

2H
(
M2
∗Ω + 2M̄2

2

) , (4.2)

αK ≡ M2
∗Γ + 4M4

2

H2
(
M2
∗Ω + 2M̄2

2

) , (4.3)

αT ≡ − 2M̄2
2

M2
∗Ω + 2M̄2

2

, (4.4)

where throughout this section primes denote derivatives with respect to ln a.

Here αM describes the running of the effective Planck mass M =
√
M2
∗Ω + 2M̄2

2

defined through αM = d lnM2/d ln a, allowing for some variation in the strength

of the gravitational coupling over time. The function αB describes a braiding

or mixing between the kinetic contributions of the scalar and tensor fields. The

function αK enters through the kinetic term of the scalar field and only becomes

relevant on scales comparable to the horizon. Finally, αT describes the deviation

of the speed of gravitational waves from the speed of light with c2
T = 1 + αT .

4.2.1 Stability Criteria

To ensure the absence of ghost and gradient instabilities it is necessary to impose

certain constraints on the EFT functions. For instance, in order to avoid a kinetic

term with the wrong sign or an imaginary sound speed for the scalar modes one

must have [8]

α ≡ αK + 6α2
B > 0 , c2

s > 0 , (4.5)

where the soundspeed cs is given by

c2
s =− 2

α

[
α′B + (1 + αT )(1 + αB)2

−
(

1 + αM −
H ′

H

)
(1 + αB) +

ρm
2H2M2

]
. (4.6)
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Furthermore, the stability of the background to tensor modes requires

c2
T > 0 , M2 > 0 . (4.7)

One must be careful when using parametrizations of the EFT functions to

reconstruct covariant theories that the stability conditions are satisfied. A way to

achieve this that we adopt in Secs. 4.3.1–4.3.5 is to set the soundspeed equal to

unity and use this as a constraint on the EFT coefficients. It then remains to check

that the other conditions are also satisfied by hand. This is somewhat restrictive

as there are many viable stable scalar-tensor theories that do not have c2
s = 1.

An alternative approach is to directly parameterize the stability conditions as a

new set of EFT functions (Secs. 4.2.2 and 4.3.7).

4.2.2 A New Inherently Stable Parameterization

For generic tests of modified gravity and dark energy, a range of different time

parametrizations (see Sec. 4.3.1) are commonly adopted for the EFT coefficients

in S(0,1) and S(2) or for the αi functions. These parameterizations do not a priori

satisfy the stability criteria in Eqs. (4.5) and (4.7). As a consequence the sampling

in this parametrization, for example when conducting a Markov Chain Monte

Carlo (MCMC) analysis to constrain the EFT parameter space with observations,

can be highly inefficient. Only a very small fraction of the samples will hit a stable

region of parameter space. Moreover, the stability criteria can yield contours on

the parameter space that are statistically difficult to interpret. For instance,

ΛCDM can be confined to a narrow corner of two intersecting edges produced by

the stability requirements. This corner may only be sparsely sampled and could

lead to spurious evidence against concordance cosmology.

To avoid those issues, we propose here a new basis for the parametrization of

modified gravity and dark energy models in the effective field theory formalism.

We will make use of the GW170817 constraint αT ' 0 at z . 0.01 and assume

that it applies throughout the late-time domain of interest here. We define a

function B through

1 + αB ≡
B′

B
. (4.8)

Eq. (4.6) can then be expressed as a linear homogeneous second-order differential
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equation for B with

B′′ −
(

1 + αM −
H ′

H

)
B′ +

(
ρm

2H2M2
+
α c2

s

2

)
B = 0 . (4.9)

By the existence and uniqueness theorem for ordinary differential equations a real

solution exists for real boundary conditions on B and B′. Alternatively, we may

provide an initial or present value αBi or αB0, respectively.

Hence an inherently stable parametrization of the EFT function space for

modified gravity and dark energy can be defined by parametrizations of the basis

M2 > 0 , c2
s > 0 , α > 0 , αB0 = const. , (4.10)

along with the Hubble parameter H. The braiding function αB can be determined

from the integration of Eq. (4.9) and αK from αB and α.

We advocate that this basis should be used for observational constraints on

the EFT function space to avoid the problems described earlier. It also

provides a direct physical interpretation of the observational constraints. While

parametrizations in H classify quintessence dark energy models where α > 0, c2
s

describes more exotic dark energy models with αB0 6= 0 adding an imperfection to

the fluid and M 6= M∗ modifying gravity. In ΛCDM, M = M∗, cs drops out and

the remaining parameters vanish. This parameterization furthermore addresses

the measure problem on the parameter space. While it is difficult to know a priori

what is a reasonable prior range to place on the αi parameters, it is much clearer

in this physical parameterization. In addition, if measurements of these physical

parameters seem to approach a fixed value it becomes easier to place bounds on

the desired accuracy. We shall apply the reconstruction to a model defined in this

basis in Sec. 4.3.7. Note that one can easily add the beyond-Horndeski parameter

αH to this basis, which will introduce a modification in c2
s. Various examples of

how to map this parameterization to different dark energy and modified gravity

models can be found in Ref. [168].

4.3 Reconstructing covariant theories

We now present a series of applications of the mapping relations derived in the

previous chapter. We begin with a reconstruction of common parameterizations

of the EFT functions used in the literature (Sec. 4.3.1) and then examine the
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Figure 4.1 Reconstructed contributions to the Horndeski action for ΛCDM,
normalized with powers of H received in the reconstruction (See
Table. 3.1). The curves serve as reference for the comparison of
the reconstructed modifications in Secs. 4.3.1–4.3.7. Due to the
normalization with H2, the cosmological constant appears to decay
at high redshift.

form of the underlying theory of the minimal self-acceleration model (Sec. 4.3.2)

and theories that exhibit linear shielding (Sec. 4.3.3). Following this, we discuss

reconstructions from more phenomenological modifications of gravity with a

modified Poisson equation and a gravitational slip (Sec. 4.3.4) as well as the

growth-index parametrization (Sec. 4.3.5). We then present a reconstruction of a

model which has a weakened growth of structure relative to ΛCDM (Sec. 4.3.6)

before concluding with an example of a reconstruction from the inherently stable

parameterization introduced in Sec. 4.2.2 (Sec. 4.3.7).

Recall the reconstructed Horndeski action is defined such that when expanded

up to second order in unitary gauge one recovers Eq. (3.13) with the Horndeski

functions given in Eqs. (3.18) through (3.21). It is worth noting that taking

cT ' 1 as a linear constraint sets c1 = 0 in Eq. (3.20) but does not directly make

a statement about ∆G4X/5. However, excluding the highly unlikely cancellation

of c1 and ∆G4X/5, and assuming approximately linear theory from the outskirts

of the Milky Way with c1 = 0, the nonlinear contributions ∆G4/5 are still

constrained by |cT − 1| . 10−13.

In illustrations of the reconstructed Horndeski functions Gi, each contributing
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term is divided by the powers of H it receives multiplying the EFT functions

in the reconstruction (see Table 3.1). This ensures a meaningful comparison

of the effective modifications from ΛCDM rather than providing illustrations

for deviations that are suppressed and do not propagate to the cosmological

background evolution and linear perturbations. For instance, we have U(φ)/H2 ∼
b1(φ)/H ∼ M̄2

2 . As a reference, we show in Fig. 4.1 the Horndeski functions Gi

that correspond to ΛCDM, where G4 = 1, G2 = −2Λ and G3 = G5 = 0, i.e.,

in particular the term Λ/H2. The Planck 2015 value Ωm = 0.308 [169] for the

matter density parameter is adopted throughout the thesis. We also work in

units where the bare Planck mass M∗ = 1, such that the vertical axis on each

plot indicates the deviation from this value. Because the choice of how the scalar

field is defined is arbitrary, we present the reconstructed terms as functions of

ln a rather than φ, except for the examples given in Secs. 4.3.1 and 4.3.2. The

colour scheme is set such that the terms in blue correspond to terms that can be

identified in the matter sector, whereas the red terms couple to the metric and so

in that sense are a “modification” of gravity. These modified gravity terms are

F (φ) and c1(φ), the latter being non-zero when the αT = 0 constraint is dropped.

It is worth noting that one always has the freedom to redefine the scalar field

φ in the action. We shall briefly discuss how one can recast the reconstructed

coefficients of the covariant theory from functions of ln a to a more standard

description. For this purpose, we choose the Brans-Dicke representation, where

F (φ) ≡ ψ, and then re-express all of the terms in the reconstructed action as a

function of the new scalar field ψ. This choice implies φ = F−1(ψ) and

∂µφ = f(ψ)∂µψ , (4.11)

where for simplicity we have defined the function f(ψ) ≡ d(F−1)/dψ. After this

field re-definition the reconstructed action written in terms of φ is transformed

into a scalar-tensor action for ψ with (∂φ)2 = f 2(ψ)(∂ψ)2 and �φ = f(ψ)�ψ +

df/dψ (∂ψ)2. The new representation of the theory then involves the terms

Ũ(ψ) = U(ψ) , (4.12)

Z̃(ψ) = f 2(ψ)Z(ψ) , (4.13)

b̃1(ψ) = f 3(ψ)b1(ψ) , (4.14)

ã2(ψ) = a2(ψ)f 4(ψ) + b1(ψ)f 2(ψ)
df

dψ
. (4.15)

Depending on the functional form of f(ψ) higher-derivative terms may be
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enhanced or suppressed in this description. For consistency, in this representation

we also transform the Hubble parameter to be a function of ψ such that H → H̃.

We will show examples of this transformation in Secs. 4.3.1 and 4.3.2.

4.3.1 Reconstruction of common EFT parameterizations

A common choice of phenomenologically motivated functional forms of the EFT

modifications is to parameterize them in such a way that they only become

relevant at late times. Typically their evolution is tied to the scale factor

a(t) or to the dark energy density ΩΛ(a) ≡ H2
0 ΩΛ/H

2 raised to some power q.

Note that now, with the GW170817 constraint, self-acceleration from modified

gravity is strongly challenged as a direct explanation for the late-time accelerated

expansion [108] and it can be questioned whether the functional form of such

parameterizations continues to be well motivated. On the other hand, a dark

energy model may still introduce a related modification of gravity, for instance,

as a means to remedy the old cosmological constant problem of a non-gravitating

vacuum. We set this issue aside for now and adopt the two parametrizations

A : αi = αi0a(t)qi , (4.16)

B : αi = αi0

(
ΩΛ(a)

ΩΛ,0

)qi
. (4.17)

Here the label i runs over the set of functions {i ∈M,T,K,B} in Eqs. (4.1)–(4.4).

The two parametrizations can be used to study the effect of small deviations from

ΛCDM in the linear late-time fluctuations resulting from a set of non-vanishing

αi.

In principle, there are many alternative parameterizations that could be used

beyond these simple ones. For the purposes of this chapter we shall however

restrict to these two examples which have been frequently used in the literature

(see e.g. Ref. [137]). It was recently suggested that those are sufficiently

general to encompass the linear effects of the different time dependencies in a

variety of modified gravity theories [122] (however, also see Ref. [120]). The

reconstruction from EFT back to manifestly covariant theories provides a method

to examine how the underlying covariant theory changes with a different choice

of parameterization. One can thus begin to address the question of what scalar-

tensor theory is actually being constrained when a particular parameterization is

adopted.
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Figure 4.2 Examples of reconstructed actions arising from two different
parameterizations of the EFT functions A and B specified in
Eqs. (4.16) and (4.17). We chose equal amplitudes for the
comparison. The general evolution of the modifications is
unaffected by the particular choice of time parametrization, although
the magnitude of the various terms is enhanced when using
parameterization A. This can be attributed to the convergence to
constant αi at late times in B. The reconstructed terms of the scalar-
tensor action can be converted into functions of a scalar field ψ,
for instance, by adopting a Brans-Dicke representation and casting
the functions in terms of F → ψ (see Fig. 4.3). However, as the
choice of scalar field is arbitrary, the reconstructions shall generally
be illustrated as functions of ln a.
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Figure 4.3 Brans-Dicke representation, with F (φ) ≡ ψ, of the reconstructed
scalar-tensor theories illustrated in Fig. 4.2. We have transformed
the Hubble rate H → H̃ such that it is also a function of ψ and
divided each term in the action by appropriate powers of H̃ (see
Sec. 4.3).
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To provide concrete examples for the models that are reconstructed from

Eqs. (4.16) and (4.17), we parametrize αM , αB and αT with A or B and then set

αK such that c2
s = 1 (see discussion in Sec. 4.2.1). Note that strictly speaking

this deviates from adopting Eqs. (4.16) and (4.17) for all αi but it simplifies the

stability treatment of the model. Furthermore, the deviation is only relevant on

near-horizon scales. Numerical values for αi0 are then chosen to ensure that the

stability condition α > 0 in Eq. (4.5) is satisfied. For illustration, we set αM0 = 1,

αB0 = −0.3 and αT0 = 0 with qi = q = 1. This yields a stable scalar-tensor theory

for both parameterizations A and B. The corresponding terms of the Horndeski

functions are shown in Fig 4.2. The behavior of the reconstructed theories is

tied to the functional form of the parameterization used, with the Horndeski

modifications becoming more relevant at later times. We note that the general

form of these modifications is independent of the particular parametrization

adopted between A and B. However, one can identify minor differences. For

instance, the magnitude of the reconstructed modifications for A are larger. This

is due to saturation of the modifications in B at late times. This particular choice

for each αi0 leads to a model with an enhanced potential relative to ΛCDM and

the standard kinetic term Z(φ) dominating the action at late times. There is

a small contribution from the cubic term b1(φ) but the k-essence term a2(φ) is

negligible. We present a number of examples which examine the sensitivity of the

reconstruction to changes in αi0 and qi in Sec. 4.4. For instance, by increasing

the powers qi in each of the parameterizations, the effects of modified gravity and

dark energy are delayed to later times. Changing the amplitude of each αi0 on

the contrary has a larger effect on the underlying theory. For example, when αB

dominates over αM the cubic Galileon term b1(φ) dominates over the potential

U(φ) at late times, whereas when αM dominates over αB the potential and kinetic

term Z(φ) are enhanced with smaller contributions from the k-essence and cubic

Galileon terms. However, we find that the mapping is relatively robust, with

small deviations in the αi parameters around some fixed values not significantly

altering the underlying theory. While we have checked this for a number of

examples, further work is necessary to investigate this aspect more thoroughly.

Finally, in Fig. 4.3 we illustrate the corresponding Brans-Dicke representations

of the reconstructed theories for A and B that are presented in Fig. 4.2. In this

description the behavior of each term in the reconstruction is now dependent on

the evolution of F (φ). It is clear that the functional form of each term in the

theory remains broadly similar whether parameterization A or B is chosen.
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4.3.2 Minimal self-acceleration

The LIGO/Virgo constraint of |cT − 1| . O(10−15) and its implication that a

genuinely self-accelerated Universe in scalar-tensor gravity must be attributed to

a significant evolution in M2 was first anticipated in Ref. [107]. This trivially

excludes acceleration arising from an evolving speed of gravity cT and the

according class of gravitational models such as genuinely self-accelerated quartic

and quintic Galileons and their Horndeski and higher-order generalizations with

αT 6= 0, i.e., G4X , G5 6= 0 for Horndeski gravity (see e.g. Ref. [145, 146]). With

this expectation, Ref. [108] devised the minimal surviving modification of gravity

that can yield cosmic self-acceleration consistent with an event like GW170817.

We briefly review this model, before presenting a corresponding reconstructed

covariant scalar-tensor theory.

While self-acceleration may generally be defined as cosmic acceleration without

a cosmological constant or a scalar field potential, this definition includes exotic

dark energy models like k-essence [132] or cubic Galileon and Kinetic Gravity

Braiding (KGB) [170] models. Hence, a more precise definition is required if

cosmic acceleration is genuinely to be attributed to an intrinsic modification

of gravity. This definition also needs to distinguish between models where

dark energy or a cosmological constant drives cosmic acceleration but where

a modification of gravity may still be present. As a definition of a genuinely

self-accelerated modification of gravity in chameleon gravity models, Ref. [171]

argued that while cosmic acceleration should be present in the Jordan frame with

metric gµν , it should not occur in the conformally transformed Einstein frame

g̃µν = Ωgµν with the conformal factor Ω. Otherwise, the acceleration should be

attributed to an exotic matter contribution. In Ref. [107] this argument was

generalized to include an evolving speed of gravity cT in addition to an evolving

strength of gravity M−2 as the cause of self-acceleration. This encompasses the

quartic and quintic Galileon models as well as their generalizations in the full

Horndeski action and beyond. These effects can be described by an effective

conformal factor in the cosmological background that absorbs the contributions

from conformal and disformal couplings in the Einstein frame. An Einstein-

Friedmann frame can then be defined from the effective conformal (or pseudo-

conformal) transformation of the cosmological background. Alternatively, this

can be viewed as assigning genuine cosmic self-acceleration to the magnitude of

the breaking of the strong equivalence principle [71]. Note that self-acceleration

arising from a dark sector interaction would correspondingly be attributed to the
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Figure 4.4 Top: The scalar-tensor theory yielding the minimal modification
of gravity required for self-acceleration with cT = 1. Note that
the scalar field potential at early times ensures a recovery of the
decelerating phase of ΛCDM and decays in the accelerating phase
H2 < Λ to barely prevent positive acceleration in Einstein frame.
Bottom: The minimal self-acceleration model expressed using the
Brans-Dicke representation in terms of ψ. We have divided each
term by the corresponding factors of f(ψ) for a clearer comparison
to the left-hand panel. Note that as F (φ) is decreasing, the forward
direction in time corresponds to decreasing values of ψ.
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breaking of the weak equivalence principle.

With this definition, genuine self-acceleration implies that in the Einstein-

Friedmann frame
d2ã

dt̃2
≤ 0 , (4.18)

with the minimal modification obtained at equality. From inspection of the

transformed Friedmann equations, it follows that this condition can hold only

if the EFT function Ω satisfies [107]

−d ln Ω

d ln a
& O(1) . (4.19)

Note that

Ω =
M2

M2
∗
c2
T , (4.20)

implying that self-acceleration requires a significant deviation in the speed of

gravitational waves or an evolving Planck mass. Since GW170817 strongly

constrains the deviations of cT at low redshifts, i.e., in the same regime of cosmic

acceleration, one can set cT = 1 (αT = 0) in Eq. (4.20), so that self-acceleration

must solely arise from the effect of M2 (or αM) [107]. The minimal modification of

gravity for genuine cosmic self-acceleration can then be derived by minimizing the

impact of a running M2 on the large-scale structure. For Horndeski gravity, this

implies αB = αM with c2
s = 1 setting αK [108]. The EFT functions of the model

are then fully specified by a given expansion history H(z), which for a minimal

departure from standard cosmology can be set to match ΛCDM. We present

the reconstructed scalar-tensor action for minimal genuine self-acceleration in

Fig. 4.4.

Note that for a ΛCDM expansion history, cosmic acceleration in Jordan frame

occurs when H2 < Λ. Hence, a minimal self-acceleration must recover U/H2 = 1

at the transition from a decelerating to an accelerating cosmos. There is therefore

still a scalar field potential or cosmological constant that contributes to reproduce

the ΛCDM expansion history in the decelerating phase where there are no

modifications of gravity but then it decays at a rate so as not to introduce any

positive acceleration in the Einstein-Friedmann frame, keeping the Universe at

a constant expansion velocity. The cosmic acceleration in Jordan frame is then

solely driven by the decaying Planck mass, commencing at the threshold H2 < Λ.

It is in this sense a model with the minimal gravitational modification required for

positive acceleration. Alternatively, the scalar field potential could be removed
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by hand, but this would lead to a loss of generality and the conservative character

of the inferred conclusions.

The reconstructed scalar-tensor terms F (φ) and U(φ) for minimal self-acceleration

in Fig. 4.4 are decaying functions as expected, with the behavior of the other

terms acting to minimize the impact on scalar perturbations and the large-

scale structure. At redshift z = 0, we find comparable contributions from the

quintessence Z(φ), k-essence a2(φ) and cubic Galileon b1(φ) terms indicating that

they are all required to ensure a minimal self-acceleration. Ref. [108] performed

a MCMC analysis of the model with recent cosmological data, finding a 3σ worse

fit than ΛCDM and hence strong evidence for a cosmological constant over the

minimal modification of gravity required in Horndeski scalar-tensor theories for

self-acceleration and consistent with the expectation of the GW170817 result.

The constraints are driven by the cross correlation of the integrated Sachs-

Wolfe effect with foreground galaxies. It is worth noting that the minimal

self-acceleration derived for M2 also applies to beyond-Horndeski [110, 111]

theories or Degenerate Higher-Order Scalar-Tensor (DHOST) theories [66]. Due

to the additional free EFT functions introduced in those models, however, the

measurement of αT ' 0 is not sufficient to break the dark degeneracy and linear

shielding is still feasible [113]. However, it was pointed out in Ref. [107] that

Standard Sirens tests of the evolution of M2 are not affected by this degeneracy

and may provide a 5σ result on minimal self-acceleration for Horndeksi gravity

and its generalizations over the next decade. Independently of future gravitational

wave measurements, minimal self-acceleration provides a benchmark model which

can quantify to what extent galaxy-redshift surveys like Euclid [27, 28] or LSST

[29] can exclude cosmic self-acceleration from modified gravity, precluding dark

degeneracies (or linear shielding) in higher-order gravity.

4.3.3 Covariant model with Linear Shielding

A number of classes of scalar-tensor theories that cannot be distinguished

from concordance cosmology via observations of the large-scale structure and

background evolution alone were presented in Ref. [113]. This phenomena arises

through a linear shielding mechanism. It was then shown in Ref. [107] that for

Horndeski theories the measurement of αT = 0 breaks this degeneracy. However,

linear shielding still remains viable in more general scalar-tensor theories and

its extension to the modified gravitational wave propagation may even provide
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Figure 4.5 The scalar-tensor theory that exhibits linear shielding for the
parameterization in Eq. (4.23).

a means to evade the GW1701817 constraint for self-acceleration from cT [157].

It is furthermore worth considering that the αT ' 0 constraint only applies at

late times and it may remain of interest to examine Horndeski models with non-

vanishing αT at higher redshifts that may also undergo linear shielding. It is

therefore worthwhile to examine some basic forms of the scalar-tensor theories

that give rise to linear shielding.

In order to recover ΛCDM in the linear cosmological small-scale limit, for models

belonging to theMII class of linear shielding, the EFT functions must satisfy the

conditions [107, 113]

αMM
2 = αBκ

2M4 − 1− κ2M2

αB

×
{
ρm

2H2
+

[
α′B + αB + (1 + αB)

H ′

H

]
M2

}
, (4.21)

αT =
κ2M2 − 1

(1 + αB)κ2M2 − 1
αM . (4.22)

Applying these constraints, setting the background expansion to match ΛCDM

and fixing c2
s = 1 leaves one free EFT function. With a parameterization of this

function and applying the reconstruction, one can then find a scalar-tensor theory

that exhibits linear shielding.
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Here we adopt the same parameterization as Ref. [113] and choose

Ω(a) = 1 + Ω+a
n , (4.23)

with Ω+ = −0.1 and n = 4. The general behavior of all the terms in the

reconstruction of this linear shielding model is fairly insensitive to changing the

magnitude of Ω+, the one free parameter in the model. The action does differ

under a change in the sign of Ω+, but this acts to decelerate the expansion.

We illustrate the reconstructed scalar-tensor action for the choice of parameters in

Fig. 4.5. U(φ) is dominated by the EFT function Λ(t) which behaves in a similar

way to the minimal self-acceleration model, acting as a cosmological constant at

early times before decaying away at late times. The late-time decay of Λ(t) is

compensated by the other terms in the reconstruction to ensure that the linear

perturbations are not affected in their ΛCDM behavior. F (φ) also decays which

is a consequence of the choice of a negative Ω+, required for self-acceleration. The

linearly shielded Horndeski model requires a decrease in the speed of gravitational

waves over time which leads to c1(φ) growing in time. The kinetic terms become

more dominant at late times, predominantly being driven by Γ and M4
2 with the

form of a2(φ) essentially mimicking that of M4
2 . In b1(φ) the contributions M̄3

1

and M̄2
2 compete and suppress it relative to the other terms in the action.

Although the conditions for linear shielding may seem contrived when expressed

in terms of the EFT parameters, we find that it is nevertheless the case that

there is a generic scalar-tensor theory which gives rise to this mechanism for

the particular parameterization we adopt. It is also worth bearing in mind that

observational large-scale structure constraints allow for a broad variation around

the strict conditions in Eqs. (4.21) and (4.22) in which the model space remains

observationally degenerate with ΛCDM.

4.3.4 µ and η reconstruction

The effects of modified gravity and dark energy on the large-scale structure can

be described phenomenologically by the behaviour of two functions of time and

scale that parameterize a deviation in the Poisson equation µ(a, k) and introduce

a gravitational slip η(a, k) [158–162]. We shall work with a perturbed FLRW

metric in the Newtonian gauge with Ψ ≡ δg00/2g00 and Φ ≡ δgii/2gii and matter

density perturbations ∆m in the comoving gauge. The effects of modified gravity
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Figure 4.6 Left: Reconstructed action from a direct parameterization of the
modified Poisson equation and the gravitational slip. Right:
Reconstructed action from the growth-index parametrization.
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and dark energy on the perturbations can be described via the relations

k2
HΨ = −κ

2ρm
2H2

µ(a, k)∆m , (4.24)

Φ = −η(a, k)Ψ , (4.25)

where kH ≡ k/(aH). Energy and momentum conservation then closes the

system of differential equations and one can solve for the evolution of the linear

perturbations.

The modifications µ(a, k) and η(a, k) are more general than the EFT formalism

but the two can be linked in the domain covered by the EFT functions.

Specifically, in the formal linear theory limit of kH → ∞ the functions µ and

η can be treated as only functions of time. In this limit, they can be related to

the EFT functions via

µ∞ =
2 [αB(1 + αT )− αM + αT ]2 + α(1 + αT )c2

s

αc2
sκ

2M2
, (4.26)

η∞ =
2αB [αB(1 + αT )− αM + αT ] + αc2

s

2 [αB(1 + αT )− αM + αT ]2 + α(1 + αT )c2
s

. (4.27)

For the purposes of this chapter we shall remain in this small-scale regime and

parameterize the time-dependent modifications as

µ(a) = 1 + (µ0 − 1)an , (4.28)

η(a) = 1 + (η0 − 1)an , (4.29)

with n = 2. For simplicity, we furthermore consider a background evolution

H(t) that matches that of ΛCDM and we adopt αT = 0 at all times to break

the degeneracy in parameter space. The kineticity function αK is set by the

choice c2
s = 1. The set of EFT functions is then closed by Eqs. (4.26) and (4.27),

determining the evolution of αB and αM . Given a choice of parameters µ0, η0

we can now reconstruct a corresponding Horndeski scalar-tensor theory. For this

example we choose a model that exhibits both a non-zero gravitational slip and

an enhanced growth of structure today by setting µ0 = η0 = 3/2.

The reconstructed scalar-tensor action is illustrated in Fig. 4.6. The dominant
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term at redshift zero is U(φ). It behaves as a cosmological constant which is

enhanced relative to its ΛCDM value. F (φ) is determined through the evolution

of M2. Despite the enhanced growth with this parameterization of µ and η the

Planck mass increases from its GR value today. The enhanced growth is therefore

coming from the clustering effect of αB. This can be seen more clearly by writing

µ =
M2
∗

M2

(
1 +

2(αB − αM)2

αc2
s

)
. (4.30)

Although the Planck mass is increasing, αB also increases to dominate over αM

and gives rise to the pre-defined evolution in µ(a). The domination of αB over

αM also causes b1(φ) to be negative. This is because b1 ∼ M̄3
1 ∼ (αM − 2αB) up

to numerical factors and positive background terms. In this model αK ≈ 0. The

background terms that contribute to M4
2 compete to cancel each other out. The

dominant term in a2(φ) is from −M̄3
1 or αB, which is small and positive.

4.3.5 Ωγ
m reconstruction

One of the most commonly used formalisms for testing departures from GR

with the large-scale structure is the growth-index parametrization [163–165]. It

involves a direct parameterization of a modification of the growth rate

f ≡ d ln ∆m(a, k)

d ln a
= Ωm(a)γ (4.31)

with the growth-index parameter γ, which is generally considered a trigger or

consistency parameter. Any observational deviation from its GR value γ ≈ 6/11

[163] will indicate a breakdown of GR.

On sub-horizon scales (k � aH) the modified growth equation for the matter

density contrast is given by

∆′′m +

(
2 +

H ′

H

)
∆′m −

3

2
Ωm(a)µ∞(a)∆m = 0 , (4.32)

which follows from the modified Poisson equation (4.24) and momentum conser-

vation. Inserting Eq. (4.31) into (4.32), one obtains a relation between µ∞(a)

and γ,

µ∞ =
2

3
Ωγ−1
m

[
Ωγ
m + 2 +

H ′

H
+ γ

Ω′m
Ωm

+ γ′ln (Ωm)

]
, (4.33)

where we allowed γ to be time dependent for generality. Given a particular choice
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of γ, the functional form of µ∞ can then be obtained from Eq. (4.33). However,

as γ can only be used to determine µ∞, one must separately parameterize

the gravitational slip η∞ (and some additional specifications are required for

a relativistic completion [116, 172, 173]). One can then reconstruct a covariant

theory that gives rise to the particular choices of γ and η∞. This allows to directly

examine what kind of theories can be associated with an observational departure

from GR in γ.

In this example, we set for simplicity η∞ = 1 as in GR. This implies that, with

αT = 0, αM = 0 or αB = αM . We choose the second condition. With this choice

we have that M2 = 1/µ∞ and we fix αK such that c2
s = 1. We shall reconstruct

a theory which gives rise to a constant deviation in the growth index from the

GR value of γ ≈ 0.55. The value for γ needs to be chosen such that the stability

condition α > 0 is satisfied and so we choose γ = 0.4 for this purpose. In fact, the

theoretical stability of the theory requires 0.35 . γ . 0.55, preferring enhanced

growth of structure, with any value chosen outside this range leading to α < 0.

As long as the theoretical conditions are satisfied then it is straightforward to

apply the reconstruction and obtain a covariant theory for any numerical value

for γ.

The corresponding model is illustrated in Fig. 4.6. As we have chosen a rather

large departure from ΛCDM the reconstructed theory displays a somewhat

unnatural behavior with a potential that is negative and substantial contributions

from the kinetic and Galileon terms in order to maintain the background

expansion history. Therefore, even with this seemingly simple parameter it is

quite possible that exotic regions of the space of theories are being explored when

it deviates from its concordance value.

4.3.6 Weak gravity

Typically scalar-tensor theories exhibit an enhanced growth of the matter

density fluctuations relative to ΛCDM, with Brans-Dicke gravity being a simple

example [174]. More precisely, they lead to a modification such that µ > 1 in

Eq. (4.24). However, it is possible that modifications arise such that one obtains

a weaker growth of structure, or weaker gravity, with µ < 1. This scenario has

recently received some attention [112, 114, 155, 175, 176], particularly in the

context of potential tensions in the cosmological data [166, 167].
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Figure 4.7 Top: Contour plot in the space of M2
0 and αB0 displaying the regions

that allow for a weakened growth of structure with 0 < µ0 < 1 today.
Bottom: The dark strip indicates the region of EFT parameter space
that allows for a weakening of growth with a positive, sub-luminal
soundspeed at redshift zero. After imposing the past boundary
conditions µ = 1 and c2

s > 0 at ln a = −3 indicated by the lighter
yellow region it is possible to reconstruct a viable covariant model
from any point in the intersecting region. We have ensured that the
chosen point used for the reconstruction in Fig. 4.8 satisfies c2

s > 0
for all time.
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Figure 4.8 Top: The behaviour of the deviation from the Poisson’s equation
over time for the model in Sec. 4.3.6, where one may identify a
dynamical Geff ≡ µ. There is a characteristic period of enhanced
growth at ln a ≈ −0.96 before entering an epoch of weakening of
the growth persisting today. Bottom: A reconstructed scalar-tensor
theory that exhibits a weakening of the growth of structure (“weak
gravity”) with αT = 0, which satisfies the stability requirements
and past boundary conditions. It is essentially a Brans-Dicke type
model with a potential and standard kinetic term along with small
contributions from the k-essence and cubic terms.
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In this section we demonstrate how one may use the reconstruction to derive a

stable scalar-tensor theory of weak gravity for a particular parameterization of

the EFT functions with αT = 0.

We begin by choosing the parameterization of the Planck mass M2 as

M2 = 1 + (M2
0 − 1)

ΩΛ(a)

ΩΛ0

, (4.34)

where M2
0 is the value of the Planck mass today. The particular choice of Planck

mass evolution when M2
0 > 1 is a priori suggestive of weak gravity as M2 appears

in the denominator of Eq. (4.26) such that the increasing Planck mass with time

leads to a decreasing µ if fixing the other EFT parameters. However, there is still

a great deal of freedom in choosing numerical values for M2
0 and the evolution

of the remaining αi. For instance, it may be the case that the evolution in

αB is enough to compensate for the weakened growth effect and give rise to an

enhancement instead. For this example, we adopt the functional form of B in

Sec. 4.3.1 with qi = q = 1 for the parameterization of the αB function and we

set αK = 0 for simplicity and to easily guarantee that the stability condition

α > 0 is satisfied. As previously mentioned, αK only becomes relevant on scales

comparable to the horizon and so the requirement that µ < 1 is independent of

the choice of αK . Parameter values for M2
0 and αB0 are then chosen to ensure

that the condition c2
s > 0 is satisfied.

We explore the viable regions of parameter space producing a given µ0 ≡ µ(z = 0)

in the left-hand panel of Fig. 4.7. One can easily identify a large region that allows

for weak gravity with 0 < µ0 < 1 when M2
0 > 1 while remaining stable and

having the Planck mass return to its bare value in the past by construction. All

of these requirements severely restrict the allowed model space. In fact, we find

that within the particular parameterization adopted here, a period of enhanced

growth in the past is required in order for all of these criteria to be satisfied.

We explore this circumstance in more detail in the right-hand panel of Fig. 4.7.

For this purpose, we allow for a small period of enhanced growth in the past at

O(10−4), which allows one to find an overlap of stable parameter choices that also

yield weak gravity at late times. Increasing this value causes the viable parameter

regions to overlap at an even greater extent. Restricting parameters to an upper

bound of exactly unity instead eliminates any overlap.

A suitable parameter choice that satisfies all of the requirements described here
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is M2
0 = 3/2 and αB0 = 0.3 and we checked that for this choice the soundspeed

remains positive at all times in the past. The left-hand panel of Fig. 4.8 displays

the evolution of the gravitational coupling through time with this choice of EFT

parameters. One can clearly identify a period of enhanced growth which peaks

around ln a ≈ −0.96 with µ ≈ 1.03 before decaying and producing weak gravity

with µ ≈ 0.65 at redshift z = 0.

Once given the choice of EFT parameters it is straightforward to implement

them in the reconstruction and obtain a stable scalar-tensor theory that exhibits

a weakening of growth of structure with αT = 0. The corresponding model is

illustrated in the right-hand panel of Fig. 4.8. The evolution of U(φ) mimics

that of a cosmological constant, but as Λ ∼ M2H2 it is enhanced relative to its

ΛCDM behavior due to the increase of the Planck mass over time. This is similar

to the behaviour observed in Sec. 4.3.4. The Planck mass also determines the

evolution of F (φ) which increases over time. The behaviour of b1(φ) is determined

by the combination αM − 2αB. The braiding term is sub-dominant at early

times, but becomes important at late times, where it contributes to drive b1(φ)

negative. There is also a small negative k-essence term a2(φ) that is comparable

in magnitude to b1(φ).

Bear in mind that different choices of q0, a non-zero αK or a parameterization

in terms of αM rather than M2 impacts the form of the theory. However, it

is primarily sensitive to significant changes in the amplitudes of parameters as

discussed in Sec. 4.4, and one does not have much freedom in increasing the

amplitude of αB while keeping the theory stable (Fig. 4.7). Finally, note that

this weak gravity model differs from Ref. [155] as αM 6= αB, thus exhibiting

a non-vanishing gravitational slip. More work is necessary to understand what

general conditions need to hold in order to obtain a stable scalar-tensor theory

the exhibits a weakened growth of structure and αT = 0.

4.3.7 Reconstruction from inherently stable

parameterizations

Throughout this work it has been necessary to check that the reconstructed

theories obey the stability constraints in Eqs. (4.5) and (4.7). This is due to

the function space spanned by the basis of αi, or equivalently the coefficients in

the EFT action in Eqs (3.14) and (3.15), not being a priori stable. As discussed

120



-1.0 -0.8 -0.6 -0.4 -0.2 0.0
-3

-2

-1

0

1

2

3

lna

Inherently Stable Reconstruction
ci
2=0.5, c0

2=1, n=1, M0
2=0.5

αi=0.5, α0=0

U(ϕ)/H2

Z(ϕ)/H2

a2(ϕ)/H2
F (ϕ)

b1(ϕ)/H

Figure 4.9 Reconstructed scalar-tensor theory from a direct parametrization of
the stability functions c2

s > 0, α > 0 and M2 > 0 with αT = 0.

in Sec. 4.2.2, rather than cumbersomely checking that these stability criteria are

satisfied for a particular parameterization, one may instead consider discarding

the αi functions in favor of another parameterization that automatically satisfies

the stability requirements. Therefore, any observational constraints will by

definition be restricted to a theory space that obeys the no-ghost and no-gradient

instability conditions. We introduced such an inherently stable basis in Sec. 4.2.2.

We shall now briefly present a reconstruction from this basis. For this purpose

we adopt the functional forms

c2
s = c2

i + (c2
0 − c2

i )a
n , (4.35)

α = αi + (α0 − αi)an , (4.36)

where the constants c2
i and αi are initial conditions for the soundspeed and the

kinetic term respectively (defined for the limit a→ 0) whereas c2
0 and α0 set their

values today. Each value should be chosen such that α, c2
s > 0 ∀a. For the Planck

mass we adopt the parameterization in Eq. (4.34).

In Fig. 4.9 we illustrate a reconstructed theory with a ΛCDM background, an

increasing soundspeed as well as decaying kinetic term and Planck mass. More

specifically, we set c2
i = 0.5, c2

0 = 1, αi = 0.5, α0 = 0, M2
0 = 0.5, and

n = 1. Although the reconstructed terms seem somewhat exotic, for example
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Figure 4.10 The effect of varying parameter values in a parameterization of
EFT functions on the reconstructed scalar-tensor theory for a
model with a dominant Planck mass evolution αM ( left panel)
and a model with a dominant braiding term αB ( right panel).
Note that αM0 and αB0 are of opposite sign to satisfy the stability
requirements. In the right-hand panel where αB dominates, the
cubic Galileon term b1 is the most prevalent modification as the
potential and quintessence terms decay to zero. There is also a non-
negligible contribution from the k-essence term. On the contrary, a
dominating αM leads to a large potential and quintessence kinetic
term, with smaller contributions from the cubic and k-essence
terms.

the potential is very different to its ΛCDM behavior despite the concordance

background evolution, by construction the model is guaranteed to be stable.

4.4 Effect of varying the parameterization on the

underlying theory

Finally, we examine the sensitivity of the reconstructed theories on the variation

of parameter values for a given parametrization of the EFT functions. We shall

only use the functional form A, discussed in Sec. 4.3.1, which is broadly used in

literature. Recall that we have found that the form of the underlying theory is

rather insensitive to the choice between functions A and B (Fig. 4.2). In all cases

we check that the stability condition α > 0 is satisfied and with the remaining

freedom in αK we set c2
s = 1. We furthermore set αT = 0. As a consequence of

these choices, the signs of αB and αM are opposite.

In Fig. 4.10 we show the effect on the theory when the braiding term αB dominates
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Figure 4.11 The effect of varying the powers q in the parameterization on
the underlying theory. It is apparent that with this choice of
αi functions every term in the reconstruction becomes relevant.
Modifications are suppressed at high redshift with increasing power,
with a steepening at low redshifts. For this choice of amplitudes,
the k-essence term is particularly sensitive, increasing from zero to
dominate over the potential for large q. The standard kinetic term
and potential become more negative at z = 0 for larger powers.
This is in contrast to the cubic term b1(φ), which remains relatively
unaffected by this alteration in the parameterization.
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Figure 4.12 Effects on the reconstructed scalar-tensor theory from incremental
changes in the amplitude of αM for a fixed αB and vice versa. The
general form of the underlying theory is rather insensitive to these
changes. Enhancing αB suppresses the potential and enhances all
the other terms whereas enhancing αM increases every term in the
reconstruction other than the k-essence term a2(φ). Note that the
colour scheme here bears no distinction between dark energy and
modified gravity in contrast to all other figures.
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over the variation in the Planck mass αM and vice versa. In the first instance,

the dominant terms are a potential behaving like a cosmological constant and a

large kinetic term for the scalar field mimicking a Brans-Dicke theory with small

k-essence and cubic Galileon contributions. On the contrary, when αB dominates

over αM the cubic term b1(φ) becomes the most relevant term in the theory with

the potential decaying away rapidly towards z = 0. In both scenarios the ΛCDM

expansion history is maintained by the behaviour of the complementary terms in

the reconstruction that compensate for the change in the potential.

Next, we examine the effects of varying the power in the parametrization while

retaining consistency in the stability requirements. We fix the magnitude of

αM0 and αB0 to be equal but opposite. The effects of changing the power

on the underlying theory are illustrated in Fig. 4.11. When the power of the

parameterization is increased the effects of modified gravity become more relevant

at later times. The cubic term is generally unaffected by this variation, but the

kinetic and k-essence terms are enhanced. When a large power is chosen, the

k-essence contribution comes to dominate at late times.

Finally, in Fig. 4.12 we illustrate the effects of changing αM0 while keeping αB0

fixed and vice versa. We find that the form of the underlying theory is fairly

insensitive to small changes in the amplitude, although certain terms may be

enhanced or suppressed relative to others with different choices. For example,

increasing αM has the effect of enhancing the potential relative to that of ΛCDM.

This is again due to the dependence of Λ ∼ M2. The kinetic term Z(φ) is also

enhanced although to a lesser degree than the potential whereas the k-essence

and cubic Galileon terms a2(φ) and b1(φ) are rather insensitive to these O(10−1)

changes in αM . The term a2(φ) remains least affected with smaller variations

restricted to the past. Thus, in general we find that by enhancing αM0 for a

fixed, small αB0, one is enhancing the potential and the standard kinetic term of

the scalar-tensor model. In contrast, for a fixed small value of αM0, enhancing

the effects of αB0 leads to a suppression of the potential and an enhancement of

the cubic Galileon term.

4.5 Conclusions

Finding a natural explanation for the observed late-time accelerated expansion

of our Universe continues to be a significant challenge in cosmology. It is
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therefore important that efficient methods are devised with the aim of connecting

cosmological observables with the wealth of proposed theories to obtain a deeper

understanding of the underlying physical mechanism driving the expansion.

These efforts may furthermore give crucial insights into the persistent issues

related to the reconciliation of quantum field theory with general relativity.

As we have emphasised, the effective field theory of dark energy provides a useful

tool for studying the dynamics of cosmological perturbations of a large family of

scalar-tensor theories in a unified framework. Many of the upcoming surveys of

the large-scale structure plan to utilize this formalism to constrain the freedom in

modified gravity and dark energy phenomenology [27–29]. It is therefore crucial to

be able to connect any observational constraints to the underlying space of scalar-

tensor theories, which in turn can be connected to more fundamental theories of

gravity.

Chapter 3 developed a reconstruction method that maps from a set of EFT

functions to the family of Horndeski theories degenerate at the level of the

background and linear perturbations. In this chapter we applied this mapping

to a number of examples. These include the comparison of the resulting action

when one utilises two frequently adopted phenomenological parameterizations for

the EFT functions to study the effects of dark energy and modified gravity at

late times. We find that changing between the two parameterizations has a small

effect on the general form of the underlying theory, although certain terms can

be enhanced relative to others. The underlying theory is instead more sensitive

to the amplitudes of the different EFT functions.

Of particular interest is the reconstruction of a model that exhibits minimal

self-acceleration. The reconstructed scalar-tensor theory possesses the minimum

requirements on the evolution of the Planck mass for self-acceleration from a

modification of gravity consistent with a propagation speed of gravitational waves

equal to that of light. It is a useful model to test for the next generation of surveys,

as it acts as a null-test for self-acceleration from modified gravity.

We also examine models that exhibit a linear shielding mechanism to hide the

gravitational modifications in the large-scale structure. Although the simplest

models require a non-vanishing αT , it is worth bearing in mind that the stringent

constraint on the speed of gravity with αT = 0 only applies at low redshifts and

may also involve scale dependence [157] for more general theories. While the

constraints in the space of the EFT functions for linear shielding to operate seem
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rather complicated, using the reconstruction we find there are generic Horndeski

theories that exhibit this effect.

We furthermore provide a direct connection between various parameterizations

that exist in the literature and the corresponding underlying theories. For

example, we reconstruct theories from a phenomenological parameterization of

the modified Poisson equation and gravitational slip as well as from the growth-

index parameter. One can use these reconstructions to connect constraints arising

from such parameterizations with viable Horndeski models. We also apply the

reconstruction to obtain a theory that exhibits a weakening of the present growth

of structure relative to ΛCDM, i.e., a weak gravity model, a possibility that may

ease potential tensions in the growth rate at low redshift [166, 167].

Finally, we proposed an alternative parameterization basis for studying dark

energy and modified gravity models which is manifestly stable. These are the

Planck mass, the dark energy soundspeed, the kinetic energy of the scalar field

and a braiding amplitude as the new basis of EFT functions. Any constraints

placed on these physical parameters are guaranteed to correspond to healthy

theories. It is no longer necessary to perform separate and cumbersome stability

checks on sampled theories when using this basis.
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Chapter 5

Screening and degenerate kinetic

self-acceleration from the nonlinear

freedom

Mathematical science shows what

is. It is the language of unseen

relations between things. But to

use and apply that language, we

must be able fully to appreciate, to

feel, to seize the unseen, the

unconscious.

Ada Lovelace

5.1 Introduction

The cost of generality in the EFT of dark energy formalism is its restricted

applicability to certain length scales, usually just the cosmological background

and linear perturbations. Recently however there has been some work in

extending the expansion to higher-order perturbations [177, 178]. An alternative

approach is to start from the full covariant action. The loss of generality is then

traded for the applicability on a much broader range of length scales, allowing

nonlinear effects such as screening to be studied. We have presented in chapter
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3 a reconstruction from the EFT of dark energy on the level of the background

and linear perturbations to the class of Horndeski theories that give rise to the

particular set of given EFT functions. With this covariant action it becomes

feasible to generally connect the nonlinear regime to that of the background and

linear scales. This link shall be the focus of this chapter.

More precisely, within the reconstructed theory there are correction terms defined

in Eqs. (3.22) and (3.23) that account for the nonlinear freedom that exists

between Horndeski theories that are degenerate at the level of the background

and linear perturbations. Specification of these correction terms allows one to

move between linearly degenerate theories.

We first discuss the uniqueness of the correction terms in the reconstructed theory.

Applying the recent constraint on the equality between the speeds of light and

of gravitational waves [136] we show that the number of free functions that are

present at higher order in the EFT of dark energy is significantly reduced to two

per order in perturbation theory. This then implies that the nonlinear freedom

is uniquely specified by the nonlinear correction terms. It is worth noting that

out of the four new EFT functions found in Ref. [42] at second order in the

cosmological perturbations of Horndeski theory, the two functions dominating

in the sub-horizon regime vanish for a luminal speed of gravity, and the impact

of the nonlinear correction terms on the weakly nonlinear regime of structure

formation remains to be examined in detail.

As an initial demonstration of the implications of the correction terms, we show

how this nonlinear freedom can be used to endow a reconstructed theory with a

screening mechanism. Due to the tight Solar-System constraints on deviations

from GR [179] it is necessary for a large-scale modification of GR to employ a

screening mechanism that suppresses the effects of a fifth force on small scales.

These screening mechanisms fall into one of three categories [71]: those that screen

through deep gravitational potentials such as the chameleon [88] or symmetron

mechanisms [180], screening through first derivatives of the potentials such as k-

mouflage models [90] or screening through second derivatives as for the Vainshtein

mechanism [92]. See Sec. 2.2.7 for an overview.

A simple scaling method was developed in Refs. [146, 181] to determine whether a

given theory possesses an Einstein gravity limit or not. We present an application

of this scaling method to the reconstructed theory and demonstrate with three

examples that there is enough freedom in the nonlinear regime of a reconstructed
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theory to obtain, in principle, any of these three screening mechanisms.

A further interesting consequence that arises when considering theories built

from the correction terms is that it is simple to construct theories that are

indistinguishable from ΛCDM to arbitrary level in cosmological perturbations.

Only observations in the nonlinear regime can be used to distinguish them from

ΛCDM. Such degenerate theories may be built from kinetic terms alone without

including a cosmological constant, hence providing a kinetic self-acceleration

effect.

Finally, we present a reconstruction from the nonlinear EFT back to the space of

manifestly covariant theories. This follows a similar structure to the background

and linear reconstruction and in principle provides a method for obtaining a

Horndeski theory reconstructed from a range of different length scales from the

background to the nonlinear regime.

The chapter is organised as follows. We present in Sec. 5.2 the Horndeski field

equations arising from the remaining freedom in Horndeski after the luminal

speed of gravity constraint is applied. These will be relevant for the application to

screening in Sec. 5.4. The nonlinear correction terms in the reconstructed action

are also reviewed for convenience. The uniqueness of the nonlinear correction

terms in the reconstructed action is examined in Sec. 5.3. Sec. 5.4 briefly reviews

the scaling method and discusses how the nonlinear freedom in the reconstructed

scalar-tensor theories can be used to implement screening effects due to large

gravitational potentials and large first or second derivatives of the potential. In

Sec. 5.5 we discuss how the nonlinear freedom can be used to construct models

that accelerate the cosmic expansion without a cosmological constant with a

suitable choice of kinetic terms, yet are degenerate with standard cosmology at

the background level or even to arbitrary level of perturbations. The derivation

of a third-order reconstruction is presented in Sec. 5.6 along with a discussion of

the extension to n-th order. Finally, we provide conclusions on the results in the

chapter in Sec. 5.7.
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5.2 Horndeski field equations and nonlinear

freedom

Following the simultaneous detection of gravitational waves with an electro-

magnetic counterpart [136], the available freedom in Horndeski theory greatly

simplified to [146]

L2 ≡ G2(φ,X) , (5.1)

L3 ≡ G3(φ,X)�φ , (5.2)

L4 ≡ G4(φ)R , (5.3)

where now L5 can be set to zero. We now present the metric and scalar field

equations that are obtained from varying gµν and φ in Eqs. (5.1) to (5.3).

Although the structure of these equations is complicated the relevance for the

application in Sec. 5.4 is simply the number of spacetime derivatives and powers

of the scalar field that enter into each of the field equations. The metric field

equation is given by [106, 146]

ΓRµν = −
4∑
i=2

T (i)
µν +

(
Tµν −

1

2
gµνT

)
/M2
∗ (5.4)

and the scalar field equation is given by

Γ
∑
i=2,3,4

(∇µJ (i)
µ − P

(i)
φ ) + Ξ

4∑
i=2

T (i) = − T

M2
∗

Ξ , (5.5)

where Γ ≡ 2G4/M
2
∗ , Ξ ≡ 2G4φ/M

2
∗ and

P
(2)
φ =

2

M2
∗
G2φ , (5.6)

P
(3)
φ =

2

M2
∗
∇µG3φ∇µφ , (5.7)

P
(4)
φ =

2

M2
∗
G4φR , (5.8)

J (2)
µ =−G2X∇µφ , (5.9)
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J (3)
µ =−G3X�φ∇µφ+G3X∇µX + 2G3φ∇µφ , (5.10)

T (2)
µν =− 1

M2
∗
G2X∇µφ∇νφ

+
1

2M2
∗
gµν (XG2X + 2G2) , (5.11)

T (3)
µν =

2

M2
∗
G3XS(4,3) +G3φ∇µφ∇νφ , (5.12)

T (4)
µν =G4φS(2,1) +G4φφS(2,2) . (5.13)

Note that J
(4)
µ = 0. The S(i,j) notation indicates a term that contains i spacetime

derivatives and j powers of the scalar field. As discussed in Sec. 5.4, knowledge

of these quantities is sufficient to determine whether a given term will become

dominant or sub-dominant in a screened or un-screened limit, not its precise

functional form. We refer the reader to the appendix of Ref. [146] for the explicit

expressions but note the different definitions of the Gi functions and X.

Under the assumption of luminal speed of gravity [136] we shall show in Sec. 5.3

that the unique nonlinear correction terms in the reconstructed theory are

specified only by Eq.(3.22), which we reproduce here for convenience

∆G2,3 =
∑
n>2

ξ(2,3)

n (φ)

(
1 +

X

M4
∗

)n
, (5.14)

where ∆G4,5 = 0 and ξ(i)
n (φ) are free functions of the scalar field, reflecting the

large degree of freedom that exists on nonlinear scales without affecting linear

scales. These terms arise from noting that in the unitary gauge with the foliation

φ = tM2
∗ the kinetic term of the scalar field becomes X = (−1 + δg00)M4

∗ .

Eq. (5.14) is therefore an expansion in (δg00)n.

The freedom in the correction term (5.14) may be exploited to endow the

reconstructed theories with some desired nonlinear features without affecting

linear theory. In particular, ξ(i)
n (φ) can be designed to implement a screening

mechanism (Sec. 5.4) or even to hide a kinetic self-acceleration effect of the cosmic

background expansion to an arbitrary level of nonlinear perturbations (Sec. 5.5).
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5.3 Uniqueness of the ∆Gi corrections

Due to the importance of the ∆Gi nonlinear correction terms for the applications

of interest in Secs. 5.4, 5.5 and 5.6 we shall first investigate to what extent

these terms are the unique corrections to the reconstructed Horndeski action

in Eqs. (3.18) to (3.21).

Recall that the correction terms in (5.14) were inferred from the requirement that

in covariant language δg00 = 1+X/M4
∗ . Successive powers of 1+X/M4

∗ therefore

yield corrections that do not affect lower-order perturbations, in particular, the

background or linear theory. However, there are of course other operators which

can be added to the EFT which will not affect the background and linear dynamics

such as δK3 and (δR(3))3. In principle a term such as δK3 could be added to the

EFT action, which would affect the dynamics of the second-order perturbations.

Note however that for the same reason that δK2 only appears in combination

with δKµνδK
µν after L4 is written in the unitary gauge and expanded in the

perturbations, it is not possible to simply add δK3 as there are no terms in

the Horndeski action that give rise to this term alone. More specifically, on the

cosmological background Kµν = Hhµν , the perturbation δK = K − 3H must

appear in the combination

K3 − 3KKµνK
µν + 2KµνK

µσKν
σ , (5.15)

which gives rise to a number of nonlinear operators in the EFT action involving

δKµν [177, 178]. The only term in the Horndeski action that gives rise to such a

combination is in L5. Following the spirit of EFT one may add these nonlinear

operators because they are consistent with the symmetries that we have imposed,

but the theory which is underlying such a combination generally violates the

luminal speed of gravity constraint [146] such that we will omit these terms. By

use of the Gauss-Codazzi relation

R(3) = R−KµνK
µν +K2 − 2∇ν (nν∇µn

µ − nµ∇µn
ν) , (5.16)

relating the 3-dimensional Ricci scalar R(3) to the 4-dimensional Ricci scalar R

and Kµν , one can furthermore see that adding on higher powers of R(3) to the

EFT in a similar manner will inevitably introduce higher powers of δK, and the

previous argument applies. The same logic also requires ∆G4 and ∆G5 to vanish

and the nonlinear freedom is now completely specified by Eq. (5.14).
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An alternative perspective on this argument is to consider a covariant form of the

extrinsic curvature tensor, or for simplicity its trace

K = −∇µ

(
∂µφ√
−X

)
. (5.17)

By expressing the denominator in terms of the metric perturbations, Taylor

expanding and performing the replacement of δg00 with 1 + X/M2
∗ , one obtains

in schematic form

K = �φ+ F (X,∇µφ,∇µX) , (5.18)

where F (X,∇µφ,∇µX) is some complicated function of the scalar field and

derivatives of the scalar field obtained after the expansion, the precise form of

which is not relevant to the discussion. Taking higher powers of δK and making

use of Eq. (5.18) will lead to terms such as (�φ)n. Such expressions belong either

to Horndeski models with non-luminal speed of gravitational waves or beyond-

Horndeski theories. Reversing the logic, it is necessary to start from such a

model in order to obtain a nonlinear correction involving a higher power of δK.

Therefore, any correction terms to the EFT of dark energy that make use of

the operators (δK)n with n ≥ 2 and R(3) will reconstruct a theory that has a

non-vanishing G4X or G5 term or a beyond-Horndeski model.

For Horndeski models with luminal speed of gravity, the only nonlinear operators

that appear at n-th order are therefore

(
δg00

)n
,
(
δg00

)n−1
δK . (5.19)

which adds two new independent EFT functions per order in the perturbations.

More explicitly, the n-th order contribution to the EFT action with n ≥ 3 is given

by

δS(n) =

∫
d4x
√
−g

n∑
i=3

[
M̄4

i (t)
(
δg00

)i
+ M̄3

i (t)
(
δg00

)i−1
δK
]
, (5.20)

where each M̄3
i (t) and M̄4

i (t) are the two free functions that contribute at i-th

order in the action. This is a logical extension to n-th order of the first two

operators which appear in S(2) in Eq. (3.15), namely (δg00)2 and δg00δK.
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5.4 Nonlinear freedom for screening

As a first application of the free nonlinear correction term in Eq. (5.14)

in the reconstructed scalar-tensor action we shall consider the realization of

screening mechanisms that are required to recover GR in the well-tested Solar-

System regime [179]. For this purpose, we shall employ the scaling method of

Refs. [146, 181] (also see applications in Refs. [138, 182, 183]) that allows an

efficient identification of the existence of Einstein gravity regimes for a particular

choice of Horndeski functions. We briefly review the method (Sec. 5.4.1) and

then apply it for a characterization of the nonlinear correction terms ∆Gi that

realize screening by large gravitational potentials ΦN > Λ for some threshold

Λ (Sec. 5.4.2), large first derivatives ∇ΦN > Λ (Sec. 5.4.3) or large second

derivatives ∇2ΦN > Λ (Sec. 5.4.4) [71].

5.4.1 Scaling method

The scaling method was developed in Refs. [146, 181] to efficiently determine

whether a given Horndeski theory possesses an Einstein gravity limit. It proceeds

as follows. At the level of the field equations the scalar field φ is expanded in

terms of a field perturbation ψ as

φ = φ0 (1 + αqψ) , (5.21)

where φ0 denotes the background value and α is the theoretical parameter relevant

to the expansion. For example, it could be the speed of light or the coupling of

a Galileon interaction term. After performing this expansion, the scalar field

equation of the Horndeski model (see Eq. (5.5)) takes the generic form

αs+mqF1(ψ, X̃) + αt+nqF2(ψ, X̃) =
T

M2
∗
, (5.22)

where s,m, t, n ∈ N and X̃ = ∂µψ∂
µψ. Now consider the limit of α → ∞ or

α→ 0. As the right-hand side of Eq. (5.22) is independent of α the leading-order

term on the left-hand side must also be independent of α to balance the equation.

This restricts the possible values of the exponent q. Therefore there must be at

least one term which scales as α0 with every other term involving non-zero powers

of α vanishing in the α → 0 or α → ∞ limit. For example, choosing q = −s/m
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and taking the α → ∞ limit requires −s/m < −t/q, so that t + n(−s/m) < 0

and the dominating terms in the field equation become

F1(ψ, X̃) =
T

M2
∗
. (5.23)

If in a given α limit the metric field equations reduce to the Einstein equations

after performing the expansion (5.21), then the corresponding scalar field equation

applies to the screened limit where the fifth force is suppressed. To ensure

consistency the value of q chosen to obtain a screened limit must be the same in

both the scalar and metric field equations. Note that there may also be terms

that involve powers of α that do not depend on q. Depending on whether they

are raised to a positive or a negative power they will diverge or vanish in either

limit of α. If they vanish then this is not an issue, but if they diverge extra care

must be taken. For example, it may be important to use the freedom in the ∆Gi

terms to remove any divergences which arise in either limit.

In the following we present the recovery of three distinct screening mechanisms by

suitable choices of ∆Gi. Drawing on the distinction discussed in Ref. [71] this will

encompass the known screening mechanisms: (i) by large gravitational potentials

ΦN > Λ for some threshold Λ (Sec. 5.4.2), (ii) by large first derivatives ∇ΦN > Λ

(Sec. 5.4.3) and (iii) by large second derivatives ∇2ΦN > Λ (Sec. 5.4.4). We

shall find that there is more than sufficient freedom in the nonlinear sector to, in

principle, endow the reconstructed theory with a particular screening mechanism

regardless of the constraints of the background and the linear perturbations.

Importantly, however, while this generally implies the existence of Einstein

gravity limits in the deeply nonlinear regime, this does not guarantee that a

given observed region is nonlinear enough for the screening mechanism to be

activated. The numerical value of the screening scale needs to be computed

separately and ultimately decides whether a theory is compatible with stringent

Solar-System tests. It is not surprising that screening mechanisms can be added

to linearly reconstructed models as they are inherently nonlinear effects. It is

however important to verify this explicitly.

5.4.2 Large field value screening

As a first example we consider the implementation of a screening effect by

large field values ΦN > Λ. More specifically, we will focus on the Chameleon
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Mechanism [88, 89]. We shall first cast the reconstructed theory into the Brans-

Dicke representation with F (φ) = φ/M∗ (see Sec. 4.3). With this choice we have

that Γ = φ/M∗ and Ξ = 1 in Eqs. (5.4) and (5.5). By making use of the freedom

in ∆Gi it is possible to add a term to G2 that sets the q-value to be arbitrarily

positive or negative. To see this let us begin with the full reconstructed Horndeski

action in Eqs. (3.18) to (3.20) with a ∆G2 term that takes the form

∆G2 = ξ(φ)

(
1 +

X

M4
∗

)n
, (5.24)

with n ≥ 3 and ξ(φ) given by

ξ(φ) = M2
∗U(φ)− λ−N

2
(φ− φmin)k , (5.25)

where λ is a coupling parameter, N and k are both positive integers, U(φ) is

the reconstructed potential in Eq. (3.18) and φmin denotes the minimum value of

the second contribution to the potential in Eq. (5.25). No other ∆Gi terms are

necessary as they all contain derivative terms which vanish in the screened limit.

We shall take the scaling parameter α to be the coupling λ.

This choice cancels the potential obtained from the linear reconstruction and

replaces it with a power-law potential that takes a similar form to the chameleon

screening example in Ref. [146, 184] but with α → α−N . It is with a suitable

choice of N that no derivative terms contribute in the screening limit. In this

limit we then obtain the Einstein equation

φ

M∗
Rµν = −T (2)

µν +

(
Tµν −

1

2
gµνT

)
/M2
∗ +Hm [∇µφ] , (5.26)

where T (2)
µν is defined in Eq. (5.11) and Hm [∇µφ] represents all the terms that

involve derivatives of φ in the metric field equation, the precise form of which is

not relevant as we shall find that they disappear in the α → 0 limit of interest.

Taking the trace of Eq. (5.26) leads to φR/M∗ = −T (2) which, noting that T (2) =

2G2/M
2
∗ , gives a relation between R and G2. The scalar field equation is given

by

− 2φ

M2
∗

(G2φ +G4φR) + T (2) +Hs [∇µφ] = −T/M2
∗ , (5.27)

where Hs [∇µφ] represents all the terms in the scalar field equation involving

derivatives of φ which will disappear in the α→ 0 limit. With the choice of ∆G2

in Eq. (5.24) there is no contribution from the reconstructed potential U(φ) to
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the scalar field equation. After eliminating R and T (2) in favour of G2 the scalar

field equation becomes

α−N (φ− φmin)k−1 [φk − 2 (φ− φmin)] +Hs [∇µφ] = −T . (5.28)

Applying the scaling method with the scalar field now expanded in terms of ψ as

in Eq. (5.21), we examine the set of q values which leave non-vanishing terms on

the left-hand side of Eq. (5.28) in the α → 0 limit. As α → 0 it is necessary to

take the largest q value from this set after the scaling in Eq. (5.28). Disregarding

the derivative terms in Hs [∇µφ], we find that q takes one of two possible values

q ∈
{

N

k − 1
,
N

k

}
. (5.29)

We must take q = N/(k − 1) as it is the largest in the set of q values from G2.

The integer N can then be chosen in Eq. (5.25) to be arbitrarily large. In the

limit of α → 0 this will send all terms involving spacetime derivatives of φ to

zero, justifying the original choice of ξ(φ). This is important as in principle the

value of n in Eq. (5.24) is only bounded from below by the requirement that it is

a nonlinear correction. All the terms involving derivatives of the scalar field scale

as Xm = φ2m
0 α2mN/(k−1)X̃ → 0 as α→ 0 with m = {1, . . . , n}.

Now we expand the scalar field around the minimum of the potential such that

φmin ≈ φ0. This then implies that φ− φ0 = φ0α
qψ. The remaining terms in the

scalar field equation for α → 0 relate the local value of the scalar field to the

matter density as

ψ =

(
−T
φk0k

) 1
k−1

, (5.30)

which recovers the chameleon screening effect for k < 1. The metric field equation

in the same limit reduces to

φ0Rµν =

(
Tµν −

1

2
gµνT

)
/M∗ , (5.31)

recovering the standard Einstein equation with a re-scaled Planck mass set by

the background field value φ0. Therefore we have implemented a Chameleon

Mechanism in a scalar-tensor action that is reconstructed from an arbitrary

cosmological background evolution and linear perturbations by adding a suitable

choice of ∆G2. Whether the screening effect operates in the Solar System to

comply with stringent local tests of gravity needs to be checked numerically for
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a given reconstructed model.

5.4.3 First-derivative screening

Next we examine the implementation of a screening effect that operates through

large first derivatives ∇ΦN > Λ. More specifically, we focus on the k-mouflage

screening effect [90, 185]. We may simply choose here the scaling parameter α

to be the kineticity function αK and take the α→∞ limit. EFT functions such

as αK are typically parameterised as αK0f(a) where f(a) is some function of

the scale factor with f(a = 1) ≡ 1. Often this is simply a power of the scale

factor or the evolution of the dark energy density normalised to the present value

ΩDE(a)/ΩDE0. This ensures that the effects of the modifications only become

relevant at late times. We shall take here the scaling parameter to correspond

to the value of αK today α = αK0. It is also possible to take αB0 or αM0

as the scaling parameter but as the reconstruction depends differently on these

EFT parameters this will lead to different behaviour in the screened limit (see

Sec. 5.4.4). Taking α to be αK0, we see that as the reconstructed action is linear

in the EFT functions we have from Table 3.1 that each term scales as U(φ) ∼ α,

Z(φ) ∼ α, a2(φ) ∼ α and b1(φ) ∼ α0, which follows from the fact that M̄3
1 is

independent of αK (see Table 3.2 for the full set of relations between the EFT

coefficients of the different bases). With this choice we have that the terms in G2

will scale as α1+nq for some integer n but those in G3 will scale as αnq.

In order to obtain an Einstein field equation it is necessary to remove the potential

to avoid divergences in the α → ∞ limit. This also makes physical sense as the

screening mechanism in this case operates via the kinetic terms. We shall also

remove all of the dependence on the canonical kinetic term linear in X to ensure

that the screening operates through higher powers of X. To this end, we choose

∆G2 = ∆G
(1)
2 + ∆G

(2)
2 , where

∆G
(1)
2 =

1

2
M6
∗Z(φ)

(
1 +

X

M4
∗

)4

− 1

2
M6
∗Z(φ)

(
1 +

X

M4
∗

)3

, (5.32)

∆G
(2)
2 = 2M2

∗U(φ)

(
1 +

X

M4
∗

)3

−M2
∗U(φ)

(
1 +

X

M4
∗

)6

. (5.33)

These nonlinear corrections ensure that every term in G2 is now at least

proportional to X2 or greater. With this choice the relevant term in the scalar
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field equation is

∇µJ (2)
µ = −G2XX∇µX∇µφ−XG2Xφ , (5.34)

where J
(2)
µ is defined in Eq. (5.9). The first term on the right-hand side in

Eq. (5.34) scales as α1+3q, which sets the minimum q-value to be q = −1/3. As

every term in G3 scales as αnq with n > 0 this will send every term involving G3

to zero in the α→∞ limit. This particular q-value will also ensure that T (i)
µν → 0

as α→∞ so that the metric field equation reduces to the standard Einstein field

equation. The resulting scalar field equation corresponds to a k-mouflage model

ξ(φ)∂µX∂µφ = − T

M2
∗
, (5.35)

with

ξ(φ) = a2(φ) +
9Z(φ)

2M2
∗
− 9U(φ)

M8
∗

. (5.36)

5.4.4 Second-derivative screening

Finally, we consider the implementation of screening through large second

derivatives ∇2ΦN > Λ, more explicitly the realization of the Vainshtein

mechanism in the α → ∞ limit where the scaling parameter α is taken to be

αB only. The procedure is similar to Sec. 5.4.3. In this case U(φ) ∼ α, Z(φ) ∼ α,

a2(φ) ∼ α as before, but in contrast to Sec. 5.4.3, b1(φ) ∼ α, which follows from

the fact that M̄3
1 ∝ αB. We begin by adding on the nonlinear counterterms in

Eqs. (5.32) and (5.33) to ensure the X dependence of G2 is at least X2.

It turns out that the important term in the scalar field equation which gives rise

to a non-trivial equation of motion and Vainshtein screening is ∇µJ
(3)
µ where J

(3)
µ

is given in Eq. (5.10). Plugging in the expression in Eq. (3.19) we have that

∇µJ (3)
µ = b1(φ)S(4,2) +Hs [∇µφ] , (5.37)

where again Hs [∇µφ] represents all of the terms involving derivatives of φ that

will vanish in the α → ∞ limit. Furthermore S(4,2) is a term that involves four

derivative operators and two powers of the scalar field, which is given explicitly

by

S(4,2) = (�φ)2 + ∂µφ∂
µ�φ+�X . (5.38)
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These terms each scale as α1+2q requiring a q-value of −1/2 to ensure indepen-

dence of α on the left-hand side. As we have also ensured that G2 starts at least

at X2, scaling as α4q with q = −1/2, these higher-derivative terms will disappear

in the α→∞ limit. The scalar field equation in this limit then becomes

φ3
0

M∗
b1(φ0)

[
(�ψ)2 + ∂µψ∂

µ�ψ +�X̃
]

= − T

M2
∗
, (5.39)

where X̃ ≡ ∂µψ∂
µψ. This is a typical scalar field equation involving higher

derivatives of ψ expected for Vainshtein screening. It is necessary to ensure that

the standard Einstein equation is obtained in the same limit in the metric field

equations so that we can be sure this is the screened limit.

Having already set q = −1/2 from the scalar field equation and ensured that G2

starts at X2 with ∆G
(1)
2 and ∆G

(2)
2 , every term T (i)

µν in the metric field equation

(5.4) vanishes in the α→∞ limit. For example the first term in T (4)
µν scales as

G4φS(2,1) ∼ α2q ∼ α−1 → 0 , (5.40)

and the first one in T (3)
µν scales as

2

M2
∗
G3XS(4,3) ∼ α1+3q ∼ α−

1
2 → 0 . (5.41)

With the choice of the Brans-Dicke representation of F (φ) = φ/M∗ we have that

Γ = φ0/M∗ and Ξ = 1, and the metric field equation reduces to Eq. (5.31).

To summarize, by choosing αB0 as the scaling parameter and removing the

constant and linear terms in X from G2 one can obtain the standard Einstein

field equation with a re-scaled Planck mass and a scalar field equation involving

second derivatives in ψ as expected in the case of Vainshtein screening.

5.5 Nonlinear freedom for degenerate kinetic

self-acceleration

As a further application of the nonlinear freedom in reconstructed scalar-tensor

theories, we demonstrate how the correction term in Eq. (5.14) can be configured

to construct scalar-tensor theories that are degenerate with standard cosmology

to an arbitrary level of cosmological perturbations (Sec. 5.5.1). As a particular
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interesting example we show how this allows for models that accelerate the

Universe without a cosmological constant yet remain dynamically degenerate with

ΛCDM through a suitable configuration of the kinetic terms (Sec. 5.5.2).

5.5.1 Perturbative degeneracy with ΛCDM

An important implication of Eq. (5.14) is that it is possible to use the ∆Gi terms

to write down a Horndeski theory that possesses a highly non-trivial form for

the nonlinear perturbations yet reduces to ΛCDM on the background, where the

correction terms vanish. This degeneracy may even be extended to an arbitrary

level of perturbations. The existence of such classes of theories is a natural

consequence of the reconstruction being an expansion in (1 +X/M4
∗ )
n

with n ∈ N.

One can therefore construct theories whose physical effects only become relevant

at a particular level of higher-order perturbations characterized by the power n.

To see how this works in practice let us choose, for example,

G2 = −M2
∗Λ + ξ(2)

n (φ)

(
1 +

X

M4
∗

)n
, (5.42)

with G3 = 0, G4 = M2
∗/2 and n ≥ 3. After performing an ADM decomposition

with φ = tM2
∗ the second term in Eq. (5.42) becomes ξ(2)

n (t) (δg00)
n
. On the

background and linear scales therefore there will be no effects arising from the

non-canonical kinetic terms and it will appear to be exactly ΛCDM. Note that this

argument does not rely on the specific foliation adopted as we shall verify shortly

for a specific example, but for now simply note that any non-zero perturbations

that arise from another choice of foliation must be pure gauge. At the nonlinear

level Eq. (5.42) departs from ΛCDM and we have discussed the mapping of the

ξ(2)
n (t) functions onto nonlinear EFT functions in Sec. 5.6. It is also possible to

write a theory with G2 = Λ and

G3 = ξ(3)

n (φ)

(
1 +

X

M4
∗

)n
. (5.43)

In an equivalent manner this corresponds to a Galileon theory that can only be

distinguished from ΛCDM on nonlinear scales. Combinations of ∆G2 and ∆G3

can also be used to construct more non-trivial theories.

For clarity we shall provide an explicit example of this degeneracy and compute

the background equations of motion and check that the expansion is indeed
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matching that of ΛCDM. A more detailed analysis, including the investigation

of possible instabilities and perturbative effects, will be the subject of further

analysis. For simplicity, we shall only focus here on the degeneracy at the level

of the background and not for the linear perturbations. Hence, we take n = 2 in

Eq. (5.42) so that

G2 = −M2
∗Λ + ξ(φ)

(
1 +

X

M4
∗

)2

,

= −M2
∗Λ + ξ(φ) + 2ξ(φ)X/M4

∗ + ξ(φ)X2/M8
∗ , (5.44)

where ξ(φ) is a free function of φ. Not making any assumptions about the space-

like foliation we now put this equation into the unitary gauge by setting the scalar

field to be just a function of time. With X = (−1 + δg00) φ̇2 we have at linear

order

G2 =−M2
∗Λ + ξ(t) +

2ξ(t)X0

M4
∗

+
ξ(t)X2

0

M8
∗

−
[

2ξ(t)X0

M4
∗

+
2ξ(t)X2

0

M8
∗

]
δg00 , (5.45)

where X0 is the value that X takes on the background, i.e., X0 = −φ̇2. This

gives an explicit expression for the EFT functions Λ(t) and Γ(t) in the unitary

gauge expansion of G2 in Eq. (5.45), where first line corresponds to −M2
∗Λ(t) and

the second line to −M2
∗Γ(t)/2. Recall that the Friedmann equations in the EFT

formulation are given by [7, 9, 113]

Γ(a) +Λ(a) = 3H2 − ρm
M2
∗
, (5.46)

Λ(a) = 2HH ′ + 3H2 , (5.47)

where we have set the non-minimal coupling parameter Ω = 1, we parameterise

the time t in terms of the scale factor a. With the expressions for Γ(a) and Λ(a)

obtained from Eq. (5.45) one can take linear combinations of the Friedmann

equations (5.46) and (5.47) to eliminate the dependence on the background

expansion H and obtain a field equation for the background value of the scalar

field. This is determined from the resulting expression

Γ(a) +
1

3
[Γ(a) + Λ(a)]′ = 0 (5.48)
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to be [
4ξ(a)X0

M10
∗

+
ξ′(a)

M10
∗

(
X0 −M4

∗/3
)] (

X0 +M4
∗
)

(5.49)

+X ′0

[
2ξ(a)

3M6
∗

+
2ξ(a)X0

M10
∗

]
= 0 , (5.50)

which is the non-trivial Klein-Gordan scalar field equation. It has a trivial

solution X0 = −M4
∗ . More complicated solutions to the background scalar field

equation will be explored in the future. From X0 = −M4
∗ , one immediately

recognizes in Eq. (5.44) that G2(X0) = −Λ, and hence the recovery of the

ΛCDM background expansion. Alternatively, once the solution to the background

evolution of the scalar field has been obtained it is possible to derive the equation-

of-state parameter for the resulting k-essence model given by [70]

w(a) =
−M2

∗Λ + ξ(φ) (1 +X/M4
∗ )

2

M2
∗Λ− ξ(φ) (1 +X/M4

∗ ) (1− 3X/M4
∗ )
. (5.51)

After inserting the background solution X = X0 = −M4
∗ one obtains w = −1,

confirming that the background expansion is indeed matching that of ΛCDM.

5.5.2 Degenerate kinetic self-acceleration

To highlight the implications of the perturbative degeneracy, we will now study

a particularly interesting example of Eq. (5.42). Let us consider a class of models

specified by ξ(φ) = M2
∗Λφ in Eq. (5.44). The subscript φ indicates that Λφ

is a coupling parameter in the higher-order kinetic terms of the scalar field φ.

Eq. (5.44) then becomes

G2 = −M2
∗ΛGR +M2

∗Λφ

(
1 +

X

M4
∗

)2

, (5.52)

where we defined Λ ≡ ΛGR. We also set G4 = 1 and G3 = 0 and stress that any

contributions to ΛGR from quantum corrections of matter fields in this discussion

are neglected. If we now set Λφ = ΛGR this model exhibits the particular feature

of having no explicit cosmological constant. The model is now simply

G2 = 2ΛφX/M
2
∗ + ΛφX

2/M6
∗ . (5.53)
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However, the observed cosmological constant Λobs in the cosmological background

of this model remains Λobs = Λφ = ΛGR. An alternative approach is to start with

the model

G2 = 2ΛφX/M
2
∗ + ΛφX

2/M6
∗ − 2M2

∗ΛGR , (5.54)

and then set ΛGR = 0. In summary, in one interpretation the coupling Λφ is

tuned to match a non-vanishing ΛGR that corresponds to the observed Λobs or

ΛGR = 0 and Λφ = Λobs.

With either interpretation these models generate a kinetic self-acceleration effect

that is degenerate with the cosmological constant to the (n − 1)-th order

of cosmological perturbations. While this may certainly be viewed as an

engineered self-acceleration effect, it also raises more general questions about the

genuineness of a kinetic self-acceleration that resembles a cosmological constant

for observational compatibility. We note that a similar expansion to Eq. (5.52)

can be performed for G3 with similar implications. For instance, one may consider

a kinetic gravity braiding model with nontrivial G2 and G3. By combining power

series of (1 + X/M4
∗ )
n in G2 and G3 that only contribute at (n − 1)-th order in

cosmological perturbations, one can choose the coefficients of G2 and G3 in an

expansion in X to cancel off to just leave a term Xn in G2 and G3 for arbitrarily

large n. Greater values of n then correspond to models which are more difficult

to distinguish from ΛCDM and for which nonlinear data must be used for their

discrimination. This may shed some light on the results of Ref. [186], where

better agreement with ΛCDM at the linear level was likewise found for kinetic

gravity braiding models with G3 ∝ Xn for large n but adopting a canonical G2

instead, which is not feasible with using ∆Gi corrections only.

It is worth noting however that a further interesting consequence of Λobs being

interpreted as a coupling rather than a bare constant is that it may be possible

to render the acceleration effect in Eq. (5.52) technically natural as it can now

enter as a coefficient to an irrelevant operator rather than as a non-renormalizable

constant [187, 188]. At a more practical level, we emphasise that these models

have the interesting property that discriminatory effects of this type of cosmic

acceleration are left exclusively to the nonlinear observational regime.
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5.6 Higher-order reconstruction

With the higher-order EFT expansion in Eq. (5.20) and the freedom in the

nonlinear sector having been significantly reduced by the restriction to a

luminal speed of gravity, it becomes straightforward to perform a n-th order

reconstruction of the corresponding class of Horndeski theories by fixing the ∆Gi

functions order-by-order in terms of the nonlinear EFT functions M̄3,4
i . We

shall now see how this extra information modifies the reconstruction from the

background and linear scales by adding in the new free functions and slightly

changing the dependence on the linear EFT functions. We shall elaborate on this

explicitly for the case of i = 3 before outlining the general n-th order case.

Let us begin by noting that in the unitary gauge a term that takes the form

ξ(φ)Xm�φ becomes

ξ(φ)Xm�φ =∓ 2m

2m+ 1
ξ(φ)(−X)m+ 1

2K

± 1

2m+ 1
ξ′(φ)(−X)m+1 , (5.55)

where the sign difference on the top and bottom indicate even or odd m

respectively and the prime denotes a derivative with respect to φ. After expanding

Eq. (5.55) in the unitary gauge there will be several terms that contribute and

that can be mapped onto the operators in Eq. (5.20).

We shall proceed along the same lines as chapter 3 to obtain a corresponding

covariant action. To begin, by using the replacement δg00 = 1 + X/M2
∗ the

(δg00)
3

operator becomes

M̄4
3 (t)

(
δg00

)3
= M̄4

3 (φ)

(
1 +

3X

M4
∗

+
3X2

M8
∗

+
X3

M12
∗

)
. (5.56)

This contributes to U(φ), Z(φ), a2(φ) along with a new, now necessarily non-

vanishing contribution to the coefficient of X3 that we call a3(φ). Let us now

derive the covariant action which gives rise to the following expansion in the

unitary gauge

M̄3
1 (t)δg00δK + M̄3

3 (t)(δg00)2δK . (5.57)

We shall take the case of m = 1, 2 in Eq. (5.55) for simplicity and begin with the

combination

G3 = b1(φ)X�φ+ b2(φ)X2�φ+ ∆G
(4)
3 , (5.58)
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U(φ) = Λ + Γ
2
− M4

2

2M2
∗
− 3HM̄3

1

2M2
∗

+
3HM̄3

3

M2
∗
− 3(M̄3

1 )′

20
+

(M̄3
3 )′

5
− M̄4

3

M2
∗

Z(φ) = Γ
M4
∗
− 2M4

2

M6
∗
− 3HM̄3

1

M6
∗

+
12HM̄3

3

M6
∗

+
3(M̄3

1 )′

5M4
∗
− 4(M̄3

3 )′

5M4
∗
− 6M̄4

3

M6
∗

a2(φ) =
M4

2

2M8
∗
− 3HM̄3

3

M8
∗

+
(M̄3

1 )′

5M6
∗
− 3(M̄3

3 )′

5M6
∗

+
3M̄4

3

M8
∗

a3(φ) =
(M̄3

1 )′

40M10
∗
− (M̄3

3 )′

5M10
∗

+
M̄4

3

M12
∗

b1(φ) =
3M̄3

1

4M6
∗
− 2M̄3

3

M6
∗

F (φ) = Ω b2(φ) =
M̄3

1

8M10
∗
− M̄3

3

M10
∗

Table 5.1 Contributions to the reconstructed Horndeski action arising from
the nonlinear corrections in the EFT action at third order. The
reconstruction can easily be expanded to arbitrary higher order.

where ∆G
(4)
i indicates that the nonlinear corrections now start at fourth order.

We transform Eq. (5.58) into the unitary gauge and then solve for b1(φ) and b2(φ)

in terms of the EFT functions. It is necessary to have two independent functions

in the covariant expansion as there are two independent EFT functions. At third

order in the perturbations we obtain

G3 ⊃− b1(φ)M6
∗ δg

00δK +
1

4
b1(φ)M6

∗ (δg
00)2δK (5.59)

+ 2b2(φ)M10
∗ δg

00δK − 3

2
b2(φ)M10

∗ (δg00)2δK , (5.60)

where for the sake of clarity we have not shown the terms which are independent

of δK. We then require that

−b1(φ)M6
∗ + 2b2(φ)M10

∗ = M̄3
1 (φ) , (5.61)

b1(φ)M6
∗ − 6b2(φ)M10

∗ = 4M̄3
3 (φ) . (5.62)

This system of equations can be straightforwardly solved to obtain b1(φ) and

b2(φ). The results are shown in Table 5.1 along with the contributions to G2.

Importantly, this method can straightforwardly be extended to higher orders,

where at each order it is necessary to invert an n × n matrix to obtain the

corresponding EFT coefficients in terms of covariant functions in G3. It is then

possible to derive a reconstruction from the M̄4
i , M̄

3
i terms which proceeds in
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exactly the same manner as discussed for n = 3. It is also important to stress

that a different combination of the terms in Eq. (5.55) with different choices of

m could have been chosen to develop the reconstruction. From the structure

of Eq. (5.55) there will always be terms involving (δg00)
n
δK to arbitrary order

for any m which can be used as the basis for deriving the reconstructed theory.

There is therefore a degeneracy in the space of models which go as Xm�φ on the

behaviour of the background and perturbations.

The reconstructed Horndeski theory that covers the background, linear- and

second-order cosmological perturbations is given by

G2(φ,X) =−M2
∗U(φ)− 1

2
M2
∗Z(φ)X + a2(φ)X2

+ a3(φ)X3 + ∆G2 , (5.63)

G3(φ,X) = b0(φ) + b1(φ)X + b2(φ)X2 + ∆G3 , (5.64)

G4(φ,X) =
1

2
M2
∗F (φ) . (5.65)

The precise form of each term written in terms of the EFT functions is presented

in Table 5.1. Note that now that we have extended the reconstruction to nonlinear

order it is necessary to include higher powers of X in the reconstruction, both

in G2 and G3. In the same manner, if we were to extend the reconstruction to

(n − 1)-th order in cosmological perturbations it would introduce terms of the

form Xn in G2 and G3.

Finally, it is also of interest to examine what effect these higher-order perturba-

tions have on the physical EFT basis introduced in chapter 4, and developed

in Ref. [168]. It consists of parameterizing the EFT formalism in terms of

inherently stable basis functions: The effective Planck mass squared M2, the

sound-speed squared c2
s, the kinetic energy of the scalar field α and the background

expansion H(t), along with αB0. Any constraints placed on these parameters are

guaranteed to satisfy the conditions for avoiding ghost and gradient instabilities,

which otherwise must be checked independently for other bases. For higher-order

perturbations, note that by shifting the time coordinate infinitesimally such that

t → t + π the important operators for our purpose in the EFT action change in

accordance with the following Stückelberg transformations [7, 85]

g00 → g00 + 2g0µ∂µπ + gµν∂µ∂νπ , (5.66)
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δK → δK − 3Ḣπ − a−2�π , (5.67)

where π is interpreted as the extra scalar degree of freedom which was hidden

when the action was written in the unitary gauge. An operator of the form

M̄4
3 (t)(δg00)3 will introduce terms in the full Lagrangian such as M̄4

3 (t)π̇2 after

applying the time diffeomorphism. As the physical basis for the EFT functions

is defined through the coefficients of such terms, this implies that these higher-

order operators act to correct the lower-order EFT functions. For example, the

soundspeed will now depend on these higher-order EFT functions and so the

linear stability may be affected by what occurs at the nonlinear level. Physically

this makes sense. If one has a second-order perturbation which is unstable, it will

produce a runaway effect such that it will grow to affect the linear and background

scales. In other words, the perturbations of the perturbations must be kept under

control if the theory is to be completely stable. The stability of the full theory can

of course be computed at the level of the covariant action. EFT naturally splits

up the dynamics of the different length scales, and in order to obtain a theory

that is stable, this stability must be kept at all orders in the EFT expansion.

5.7 Conclusions

Constraining models beyond ΛCDM is a worthwhile and promising endeavour of

modern cosmology. We are about to see an enormous influx of observational data

from surveys such as Euclid [27, 28] and LSST [29], which will provide percent-

level constraints on the cosmological parameters. The outcome of these surveys

will be twofold. Either the Universe turns out to be consistent with ΛCDM,

which will motivate a more directed effort in tackling the cosmological constant

problem (see, e.g., Refs. [189–202]). On the other hand, if recent observational

tensions [4, 203, 204] persist then that will be strong evidence that the theory

describing the Universe on cosmological scales requires revision and potentially

will go beyond a cosmological constant. Constraints on deviations from GR are

obtained on a broad range of different length scales, and a potential new theory

acting on large cosmological scales must also be consistent with observations at

nonlinear scales.

In this chapter we have discussed how in generalised scalar-tensor theories

observations made at the level of the background and the linear perturbations
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may be connected with the nonlinear regime and vice-versa. This is made possible

through the reconstruction of covariant Horndeski theory from the EFT of dark

energy derived in chapter 3. The reconstructed theories are degenerate to linear

order in cosmological perturbations and differ only by nonlinear correction terms

∆Gi. We first explored the uniqueness of these correction terms. At n-th order

in perturbation theory the number of EFT operators that one can write down

which are consistent with the symmetry of broken time diffeomorphisms becomes

unmanageable. However, we have argued that by restricting to Horndeski theories

that respect the GW170817 constraint of luminal speed of gravity [136, 146] the

number of free functions that enter the EFT expansion at each order is limited

to two. The two correction terms at n-th order can then be related to the free

functions ξ(2,3)
n (φ) specifying ∆G2 and ∆G3.

As a first application of the nonlinear correction terms, we have considered

the implementation of screening mechanisms. With the reconstructed covariant

theory it is possible to apply techniques that have been developed [146, 181] to

identify the existence of Einstein gravity limits within a given Horndeski theory.

With the use of these methods we have demonstrated that there is enough freedom

on nonlinear scales to employ a particular type of a screening mechanism by a

suitable configuration of the correction terms. More specifically, we have provided

the examples of realizing a chameleon, k-mouflage and Vanshtein mechanism.

A further consequence of the reconstruction method concerns the identification

of a class of models that is degenerate with ΛCDM at the level of the

background and linear perturbations but departs from it at arbitrary order of

nonlinear perturbations. A subclass of these models further exhibits kinetic

self-acceleration, where the background expansion is accelerating exactly like

ΛCDM but there is no explicit cosmological constant written in the theory. The

acceleration is instead driven by the kinetic terms. An immediate consequence

of the existence of such models is that even if the background expansion and

linear matter power spectrum is measured to agree with ΛCDM from the next

generation of surveys, the degenerate alternatives may not generally be excluded.

Moreover, a theoretically appealing aspect of these models is that, with the

cosmological constant now acting as a coefficient of kinetic terms rather than

a bare constant, it may be possible to render it technically natural. These

implications warrant a more detailed study of these models. Finally, the same

techniques that were employed in the development of the reconstruction of the

Horndeski action to linear order in cosmological perturbations were utilized here
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to derive a reconstructed theory that includes the nonlinear EFT functions. For

given constraints on these functions this enables a reconstruction of the Horndeski

theory across a broad range of length scales, which may be supplemented with

a restriction of the allowed forms of ∆Gi to those that employ a screening

mechanism.

There remain many further applications to be examined for the nonlinear sector

of the reconstruction method. For example, obtaining the stability conditions

is an important step in understanding the viability of the sampled models in

parameter estimation analyses and it is as yet unclear what effect the nonlinear

correction terms have on the stability of the theory. There may also be a more

physical basis for the correction terms such as that presented in Ref. [168] for

linear perturbations, which automatically satisfies the stability constraints at the

nonlinear level.
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Chapter 6

Conclusion

There are three stages in scientific

discovery. First, people deny that

it is true, then they deny that it is

important; finally they credit the

wrong person.

Bill Bryson

Understanding the accelerated expansion of the Universe remains one of the

most fascinating problems in modern physics. Cosmic acceleration could provide

crucial clues to develop our understanding of the deep connections between

quantum field theory and General Relativity. Intimately entwined in this story

is the cosmological constant problem (CCP) [54, 58, 59]. Tackling the CCP will

almost certainly shed light on the physical mechanism driving cosmic acceleration.

Is it being driven solely by a cosmological constant, or is it a hint of new physics

appearing on cosmological length scales? Theoretical issues abound with the

cosmological constant as discussed in chapter 2. This motivated a concerted

effort in the development of a large number of alternative mechanisms for cosmic

acceleration [23, 62, 71]. One of the simplest approaches is to generalise the

constant in the Einstein-Hilbert action to a scalar field which permeates the

Universe, and whose dynamics drives the accelerated expansion as in inflation.

The existence of the Higgs boson, the excitation of the Higgs scalar field, and

low energy effective theories which arise from a broad range of string theory and

higher-dimensional brane-world models can motivate the presence of such a field
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acting on cosmological scales. Even ignoring these theoretical motivations, the

vast difference in length scales between the earth and the observable Universe

warrants the examination of whether there are new forces which become relevant

on cosmological scales. After all, so far GR has only been rigorously tested within

the Solar System [179].

Adding a scalar field to GR does not come without difficulties. It can often

lead to the appearance of Ostrogradsky ghosts as we have seen in chapter 2.

The most general theory which avoids these theoretical pathologies is Horndeski

scalar-tensor theory. It therefore provides a well motivated starting point as a

theory to test beyond-ΛCDM cosmology involving scalar fields. Horndeski theory

is a fully covariant theory which can be applied to black holes [123, 124], neutron

stars [125, 126] and inflation [127, 128]. In order to study the phenomenology

of Horndeski theory on cosmological scales the effective field theory (EFT) of

dark energy was developed [7–9, 85, 100–102] to provide a generalised description

of the dynamics of the cosmological background as well as linear perturbations

in Horndeski theory. Only five free functions of time are needed in the EFT of

dark energy to completely capture the dynamics of the background and linear

perturbations. This may still seem like too much freedom, but compared with

the essentially infinite amount of freedom in the full Horndeski theory it is a

great reduction in the number of parameters needed to constrain Horndeski using

cosmological observations.

The remaining freedom may näıvely suggest that it is potentially impossible

to distinguish between a particular Horndeski model from ΛCDM in the data.

Indeed, in Ref. [107] it was shown that there were in fact infinitely many Horndeski

models with the same background and linear cosmology as ΛCDM, as long as

the speed of gravitational waves is allowed to deviate from the speed of light.

Counting the number of observables, H for the background and µ(a) and η(a) for

the linear perturbations (see Sec. 4.3.4) against the five free functions immediately

leads to this degeneracy. One of the EFT functions becomes irrelevant in the

sub-horizon regime and so this degeneracy is a consequence of one EFT function,

chosen to be the deviation of the speed of gravitational waves from the speed

of light. Fortunately, the recent discovery that the speed of gravitational waves

is equal to the speed of light [109] immediately broke this degeneracy, and in

doing so ruled out a large subclass of Horndeski theory [145, 146]. It is worth

noting however that there are some interesting caveats which should be considered

[157, 205].
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Even in light of the gravitational wave speed result, there does remain a great

deal of freedom in Horndeski theory. The important difference post-GW170817 is

that this freedom is falsifiable. This thesis has explored the connection between

cosmological observables and Horndeski models. The eventual aim will be to use

the vast data sets generated from the next generation of cosmological surveys

[27–29] to directly constrain Horndeski theory. Many of the constraints which

will arise from these surveys will be placed on generic parameters which aim to

encompass a large number of beyond-ΛCDM models. It is therefore crucial to

provide the link between commonly used parameterisations for dark energy and

modified gravity models and the underlying Horndeski theory. Constraints alone

do mean anything without theoretical interpretation. This thesis provides such

a connection.

Chapter 3 developed a reconstruction from the effective field theory of dark energy

back to fully covariant Horndeski theories. In principle, this reconstruction will

enable one to bypass the effective field theory of dark energy altogether, and map

directly from generic parameterizations back onto Horndeski theory. Chapter

4 explored ways in which this could be done, by taking specific examples of

the modified Poisson parameter µ(a) and the gravitational slip η(a) and using

them to reconstruct the corresponding covariant theory. Although these examples

were idealised, it provides a method to take constraints on these parameters

and map them onto a Horndeski theory. Future work will tackle connecting the

reconstruction with cosmological data sets. In principle, this provides a method

to determine the shape of, for example, the scalar field potential directly from

data.

In order to conclusively rule it out it is necessary to determine possible observable

signatures of Horndeski theory in the nonlinear regime. This was studied in

chapter 5, with a more detailed examination of the nonlinear corrections which are

added on to the action reconstructed from background and linear cosmology. An

interesting consequence which arose from studying these nonlinear corrections is

the existence of a class of models which possess exactly the same phenomenology

as ΛCDM at the level of the background and linear perturbations, but differ

only in the nonlinear regime. These theories pose an important question to be

resolved with upcoming surveys. Even if ΛCDM remains fully consistent with

linear and background data it is not possible to determine whether it really is

ΛCDM without an analysis of the nonlinear regime. Alternatively, there may

be theoretical arguments which rule them out, an area which deserves a more
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thorough investigation. A specific sub-class of these models can even give rise

to ΛCDM-like background and linear cosmology and yet does not include a

cosmological constant. They exhibit kinetic self-acceleration. As the cosmological

constant now appears as a coupling rather than as a bare constant in these

kinetically self-accelerating models it may render it radiatively stable. For this

reason, and for their interesting cosmological phenomenology, these models will

be the subject of a more detailed study in the future.

Throughout the following years it may very well be the case that concordance

cosmology holds out well against the observational constraints and, just as the

search for new physics at the LHC seems to be unsuccessful, so the search for

new physics in cosmology may be unsuccessful. Of course, we may be simply

asking the wrong questions and exploring dead-end avenues, but until the arrival

of revolutionary insights it is surely a worthy goal. In spite of this, let us not

forget the elephant in the room. Many theories that have been proposed to

explain cosmic acceleration do not address the cosmological constant problem.

There are of course models which do precisely this [59, 193, 206], but they are

precisely constructed with this aim in mind. The outcome of the analysis of

future cosmological data sets will, with any luck, answer one question: ΛCDM

or not ΛCDM? In the first instance, it is vital that there is a more concerted

effort in tackling the theoretical issues associated with the cosmological constant.

Such research could have a tremendous impact not just on our understanding of

cosmology, but also of fundamental physics. If the latter scenario occurs, this

thesis provides a signpost towards a theory, or a collection of theories, which

is/are more compatible with what the data might reveal.

Nature is full of surprises. At every turn the only law that seems to hold is

to expect the unexpected. Cosmology is no different. It is no overstatement

to suggest that we are on the cusp of a revolution in our understanding of the

Universe in which we live. The data could tell an unforeseen story, transforming

the expected into the implausible. In twenty or thirty years we may look up at

the sky through a different lens. After all, whenever the impossible has been

eliminated whatever remains, however improbable, must be the truth.
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