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Abstract

Laser Wakef ield Acceleration (LWFA) has the potential to become the next-generation acceleration
technique for electrons. In particular, the large field gradients provided by these plasma-based accelerators
are an appealing property, promising a significant reduction of size for future machines and user facilities.
Despite the unique advantages of these sources, however, as of today, the produced electron bunches cannot
yet compete in all beam quality criteria compared to conventional acceleration methods. Especially the
stability in terms of beam pointing and energy gain, as well as a comparatively large energy spread of
LWFA electron bunches require further advancement for their applicability.

The accelerated particles are typically trapped from within the plasma which is used to create the large field
gradients in the wake of a high-power laser. From this results a lack of control and access to observing the
actual electron injection – and, consequently, a lack of experimental verification. To tackle this problem,
the injection of external electrons into a plasma wakefield seems promising. In this case, the initial
beam parameters are known, so that a back-calculation and reconstruction of the wakefield structure
are feasible. Such an experiment is planned at the Relativistic Electron Gun for Atomic Exploration
(Regae). Regae, which is located at Desy in Hamburg, is a small linear accelerator offering unique
beam parameters compatible with the requirements of the planned experiment. The observations and
results gained from such an external injection are expected to improve the beam quality and stability
of internal injection variants, due to the broadened understanding of the underlying plasma dynamics.
Furthermore, an external injection will always be required for so-called staging of multiple LWFA-driven
cavities. Also, the demonstration of a suchlike merging of conventional and plasma accelerators gives rise
to novel hybrid accelerators, where the matured beam control achievable in conventional electron sources
is combined with the huge gradients of a plasma booster stage. In this thesis, the concept of the external
injection experiment at Regae is presented. The physical foundations are illustrated and combined into
an extensive start-to-end design study. Using the key constraints from this results, the required beam line
design is developed.

An injection into a plasma wave with the aim of diagnosing the accelerating field inevitably requires
electron bunches which are much shorter then the period of the plasma wavelength. This reference length
is typically on the order of a few ten microns. The conventionally accelerated particle distribution must
therefore be compressed. At Regae the so-called ballistic bunching scheme is applied, leading to bunches
with a longitudinal extent of about 3 μm. Even better results can be obtained if nonlinearities arising
in the compression are compensated. A novel method to achieve this, based on the controlled beam
expansion, is the stretcher mode. It is developed and described in detail in the second part of this thesis.
Simulations that verify the analytic model presented in the thesis suggest a possible decrease in bunch
length by a factor of ten and more compared to the design parameters of Regae. Electron bunch lengths
below 300 nm, i.e., below one femtosecond (1 fs = 10−15 s) duration, can be produced. In addition, an
energy spread compensation leading to quasi mono-energetic beams can be achieved by this method.
Importantly, the approach is not restricted to Regae or similar machines, but can be generalized to a
variety of accelerators.
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Zusammenfassung
Laser-Wakefield-Beschleunigung hat das Potential, die nächste Generation der Beschleunigertechnologie
zu werden. Insbesondere die hohen Feldgradienten plasmabasierender Beschleuniger sind eine attraktive
Eigenschaft, die mit der Möglichkeit einer signifikanten Reduktion der Größe zukünftiger Beschleunigeran-
lagen verbunden ist. Trotz der herausragenden Vorteile derartiger Quellen, gibt es allerdings derzeit noch
Unterschiede bei der Strahlqualität im Vergleich zu konventionellen Techniken. Insbesondere sind Fluktu-
ationen im Bezug auf Emissionsrichtung und Energiestabilität, wie auch die Energiebreite vergleichsweise
groß und begrenzen die Anwendbarkeit von derartig erzeugten Elektronenpaketen.

Die beschleunigten Teilchen werden typischerweise aus dem Plasma selbst eingefangen, das auch als Grund-
lage für die enorm hohen Feldgradienten im sogenannten wake hinter dem Treiberlaser ist. Aus diesem
Grund ist die Teilcheninjektion nicht vollständig kontrollierbar, nicht komplett nachvollziehbar – und somit
auch nicht direkt experimentell bestätigt. Um dieses Problem anzugehen ist die Injektion externer Teilchen
in ein wakefield ein sinnvoller Ansatz. Denn in diesem Fall sind die Anfangsbedingungen bekannt, so dass
eine Rückrechnung und Rekonstruktion des beschleunigenden Feldes möglich sind. Ein derartiges Exper-
iment ist an der Relativistic Electron Gun for Atomic Exploration (Regae) geplant und Gegenstand
dieser Arbeit. Regae ist ein kleiner Linearbeschleuniger bei Desy in Hamburg, und besitzt einzigartige
Strahlparameter, die für das beschriebene Experiment geeignet sind. Die aus einer derartigen externen
Injektion gewonnenen Erkenntnisse sollen durch das vertiefte Verständnis der zugrunde liegenden Plasma-
dynamiken zur Verbesserung der Strahlqualität von internen Injektionsmethoden dienen. Außerdem ist
eine externe Injektion immer von Nöten, sobald sogenanntes staging benutzt wird, d. h. die Aneinander-
reihung von mehreren plasmabasierenden Beschleunigerstrukturen. Weiterhin liefert der Nachweis einer
derartigen Kopplung von konventioneller und plasmagetriebener Beschleunigertechnik die Grundlage für
neuartige Hybridkonzepte, bei denen die ausgereifte Strahlkontrolle konventioneller Elektronenquellen mit
den außergewöhnlich hohen Feldgradienten eines Plasma-Boosters kombiniert werden. In der vorliegen-
den Arbeit wird das Konzept eines solchen Externe-Injektionsexperiments dargelegt. Die physikalischen
Grundlagen werden erläutert und münden in eine umfassende Simulation des gesamten Versuchs. Mit den
daraus gewonnen Erkenntnissen wird der geplante Aufbau des Experiments dargelegt.

Die Injektion in eine Plasmawelle mit dem Ziel das beschleunigende Feld zu vermessen setzt voraus,
dass die verwendeten Elektronenpakete deutlich kürzer sind als die zugehörige Plasmawellenlänge. Diese
beträgt typischerweise wenige zehn Mikrometer. Die konventionell erzeugten Elektronenpakete müssen de-
shalb komprimiert werden. Bei Regae wird dazu der sogenannte ballistic bunching Mechanismus benutzt,
so dass Elektronenpakete mit einer longitudinalen Ausdehnung von etwa 3 μm entstehen. Noch bessere
Ergebnisse können allerdings erzielt werden, wenn Nichtlinearitäten im Zusammenhang mit der Kompres-
sion kompensiert werden. Im zweiten Teil dieser Arbeit wird eine neuartige Methode beschrieben dies zu
erreichen. Sie basiert auf der kontrollierten Expansion der Pakete und wird daher als stretcher mode beze-
ichnet. Simulationen, die den Ansatz des analytischen Modells bestätigen, lassen darauf schließen, dass
Kompressionen im Vergleich zu den Referenzparametern bei Regae um einen Faktor zehn gesteigert wer-
den kann. Elektronenpakete mit Längen unter 300 nm sind möglich, also mit einer Zeitdauer von weniger
als einer Femtosekunde (1 fs = 10−15 s). Zudem ermöglicht die Methode auch eine Kompensation der En-
ergiebreite des erzeugten Elektronenpakets, so dass ein quasi monoenergetischer Strahl entsteht. Darüber
hinaus muss betont werden, dass die Methode nicht auf Regae und ähnliche Maschinen beschränkt ist,
sondern auf eine Vielzahl von Beschleunigern erweitert werden kann.
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1 Introduction

The field of Laser Plasma Acceleration (LPA) has undergone a steep rise during the last decade.
The foundation was laid more than 35 years ago, though: In 1979, T.Tajima and J.M.Dawson
[1] already described the capability of laser-driven plasma oscillations to create and maintain
large electric field gradients which could be employed for electron acceleration. The strength of
such fields can exceed 100 GV/m, which is about three orders of magnitude beyond the values
manageable with current state-of-the-art radio-frequency (rf) resonators used in conventional
particle accelerators.

With the invention and development of the Chirped Pulse Amplification (CPA) technique [2],
the intensity of laser pulses could be increased to the level required for the first LPA schemes. In
various experiments using diverse concepts for the plasma wave generation, the large gradients
could be demonstrated and verified. However, the beams produced in the 1990s were of poor
quality, typically providing broad, exponential energy spectra [3]. A major breakthrough was
achieved in 2004, when three independent groups managed to produce electron bunches of a
much better quality, reducing the energy spread to only a few percent [4–6], followed by the
acceleration of electrons to the energy of 1 GeV within a 30 mm plasma capillary in 2006 [7]. By
now, that benchmark has been shifted to more than 4 GeV [8, 9].

The basic mechanism behind Laser Wakef ield Acceleration (LWFA) is the following: A highly
intensive ultra-short laser pulse is sent towards a gas target. Due to the high field strength
in the focus, the atoms are instantaneously ionized, that is, a plasma is created. Attributed
to the intensity variation – described by the temporal and spatial laser profile – the so-called
ponderomotive force deflects the electrons on the passage of the plasma, while the ions remain
mostly unaffected. The associated density modulation leads to a restoring force, and eventually
to an oscillation of the electrons around their rest position. As this perturbation rushes through
the plasma, following the driving pulse, a wakefield is created behind the laser.

In order to make use of these fields, particles have to be injected into and trapped inside the
plasma wave, i.e., – in mathematical terms – electrons have to be placed on a stable phase space
trajectory inside the separatrix, resulting from the solution of the differential equations of the
problem. A plasma naturally consists of a plethora of electrons, and there are several injection
mechanisms to capture and accelerate some of these internal particles. For example, in the self-
injection regime, the wake is driven so strongly that wave breaking occurs. This means that
particles in the density peak exceed the phase velocity of the wake and are scattered into the
wakefield, trapped, and accelerated [3]. A certain degree of control over the injection can be
obtained by using the so-called density-downramp injection, which leads to a localized electron
trapping [10]. Other mechanisms, for example the colliding pulse method, drive a wake in a
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1 Introduction

milder, quasi-linear regime and use an extra switch – an additional laser pulse – which creates a
beat wave with the driver, kicking particles onto stable phase space trajectories [11, 12].

The electron bunches resulting from internal injection typically have a very good normalized
transverse emittance (∼ 0.2 mm mrad [13, 14]) and are naturally much shorter than the plasma
wavelength (λp ≈ 30 μm at a plasma density of ne = 1018 cm−3); measurements demonstrated
length of a few femtoseconds (1 fs = 10−15 s) [15, 16]. In this respect, LWFA with internal
injection differs fundamentally from rf-based accelerators, which initially create long bunches
that have to be compressed during the acceleration process. In combination with the moderate
amount of charge, this leads therefore to remarkable peak currents. Based on this, LPAs give rise
to laser-plasma-driven light sources [17–20], especially concepts for compact free-electron x-ray
lasers [21–23].

However, the percent-level energy spread and rather large energy fluctuations presently delivered
by LWFA-driven sources is contrary to most possible applications. This is not surprising, though.
Due to the short wavelength and high gradient, an extraordinarily well localized injection with
respect to the phase of the wakefield is required in order to achieve results comparable with
conventional photo-injectors. The latter are driven by rf pulses with a wavelength on the order of
10 cm. A phase stability of 1 deg, for example, requires a timing stability of less than 1 fs for LPAs,
while these tolerances are relaxed by a factor of 1000 for conventional machines. Tolerances which
are to be fulfilled on top of complex, possibly nonlinear plasma dynamics, which leads to further
instabilities. Also, laser technology in the terawatt-class (1 TW = 1012 W) – the klystron of a
laser-driven plasma cavity – brings additional energy and pointing fluctuations, which are passed
on to the accelerated particle distribution. At the same time, the repetition rate is on the order
of 1 Hz (compared to possible MHz operation in conventional accelerators). It is limited by the
high energy amplifiers of the multistage titanium-sapphire lasers and the gas load of the plasma
targets, which are typically operated in pulsed mode thus giving rise to further instabilities.

Hence, there is a very high level of complexity in such a system, and therefore a variety of
improvements and optimized concepts are possible. Some of them are being tackled in the
Laola collaboration consisting of several Desy1 groups and the accelerator physics group of the
University of Hamburg [24]. The 200 TW laser system Angus which is used as driver for the
plasma wakefields at the Lux beam line [25], as well as for the Regae experiment described here,
is optimized for stability and availability – including the beam transport. Also, the development
and use of continuous flow targets is identified as a key feature to optimize stability [26] – coupled
with sophisticated beam line designs for differential pumping in order to fulfill and maintain the
accelerator vacuum conditions [26, 27]. First, this effort is vital due to the coupling of LWFA
and a conventional accelerator (Regae), and second, it reduces plasma instabilities while at the
same time enabling the use of the full laser repetition rate.

The external injection project described in this thesis, is part of these improvement efforts [28].
The experiment is designed to provide a diagnostics tool for a laser-driven plasma wakefield in
a pump-probe-type manner: Using the high-power laser Angus, a plasma wakefield is driven,
which is probed with a well-known bunch from the conventional accelerator Regae. The electrons

1Deutsches Elektronen-Synchrotron, the leading German center for accelerator and FEL research.
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Figure 1.1 – Basic concept of the external injection experiment planned at Regae: By injecting well-
characterized bunches (depicted by the small colored distributions) of known energy at dif-
ferent time delays, ∆t, into a laser-driven plasma wakefield [figure (a)], the resulting longitu-
dinal momentum change, ∆pz, is recorded in the energy spectra (b). It should reproduce the
shape of the accelerating field, depending on the phase, kpξ, where ξ is the distance to the
laser and kp the wave number of the plasma wave. Hence, a measurement of the accelerating
field is obtained, enabling a direct reconstruction of the associated plasma wakefield.
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1 Introduction

are injected at varying time delays ∆t between driver pulse and electrons, while the energy gain
cause by the plasma is determined; an illustration of the concept is shown in figure 1.1.

The goal is to directly measure and map out the wakefield by analyzing the resulting electron
spectra, and to verify and improve the understanding of the plasma properties [28]. Furthermore,
the demonstration of an emittance and charge conserving beam transport through the accelerating
plasma fields is planned [29]. So far, there is no way to measure the fields inside the plasma
directly. Since the initial conditions of the electron bunch as well as the wakefield itself are not
known a priori in an experiment with internal injection, it is impossible to make any calculations
regarding the field structure based on the energy gain. With a well-known, externally injected
bunch from a conventional photo gun, however, one of these unknown variables is removed, and
the reconstruction of the wakefield is feasible.

The decoupling of electron source and plasma wakefield allows for an (almost) arbitrary placement
of the electrons in the wake structure, enabling a mapping out of the accelerating fields in a wide
range – in longitudinal as well as in transverse direction. Moreover, as mentioned, the transverse
normalized emittance of electron sources based on LWFA is very good. However, due to the
combination of a large energy spread with a significant divergence at the end of the plasma target
that beam quality cannot be conserved [30]. Hence, strategies to reduce this effect are necessary
and have been and are still being developed [31, 32]. With a well characterized, externally injected
bunch, these concepts can be validated, and possibly unknown sources for emittance growth can
be identified.

The smallness of the plasma features is reflected in the demands and tolerances of the experiment.
A very short bunch, much shorter than the plasma wavelength, is required2, and likewise a fs-scale
on-target synchronization of the accelerator and the driver laser [33]. In addition, the transverse
offset of the laser with respect to the electrons should be well below the laser spot size, i.e.,
in the range of few μm or less. Therefore, the plan is to start with a low plasma density of
ne = 1016 cm−3, corresponding to a plasma wavelength of about 330 μm or a period length of one
picosecond (1 ps = 10−12 s).

Moreover, to avoid complications with nonlinearities and possible pollution of the results by dark
current of particles injected from the plasma itself, a (quasi) linear wake will be driven. This
is, however, not a drawback or devaluation of the results to be obtained: The laser strength
required to reach nonlinear plasma waves (and even the highly nonlinear bubble regime [34])
is getting weaker when the density is lowered. This is heuristically explained by the fact that
there are simply less electrons to be pushed aside, and consequently smaller restoring forces to
be overcome by the laser. At the same time, the opposite rule applies to the threshold for self-
injection: much more power is required to achieve self-injection at low densities [3]. Hence, in
principle, even the nonlinear regime is accessible and can be analyzed at the density of 1016 cm−3

after gaining experience in the linear regime. Moreover, external injection is required whenever
a second plasma stage is introduced – independent of the primary particle source. This means

2At this point it should be mentioned that around 1990 injection experiments into plasma waves were successfully
performed. However, the waves were created using the plasma beat wave acceleration mechanism, and the
injected bunches were much longer than the plasma wavelength [3].
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that the results – how to transport a beam through a plasma – especially in terms of emittance
conservation, are vital for any staged, plasma-based accelerator, like proposed high energy linear
colliders [35]. All stages behind the source in such booster schemes will be operated in the
linear or quasi-linear regime, to offer more control and avoid dark current, exactly like in the
experiment described here. A first demonstration of a two-stage plasma accelerator has been
shown recently [36]. However, there are large charge losses inside the second plasma stage, which
could be reduced with the results from the Regae experiment.

In particular, the outcome of this experiment should complement and improve the quality of elec-
tron bunch production at the second LWFA beamline operated at Desy. The Lux experiments
performed in the other side arm of the high-power laser are dedicated to the application of plasma
accelerated electrons [25]. Especially, the generation of highly brilliant extreme-ultraviolet and
(soft)-x-ray radiation by means of undulators [17–20]. The ultimate goal of these experiments is
the demonstration of a LWFA based Free-Electron Laser (FEL) [21–23].

Finally, the experiment opens the door to hybrid accelerators consisting of a standard photo
injector and one (or several) plasma booster stages. Hybrid concepts are already planned and
being set up in several accelerator laboratories [37]. One such experiment is going to take place
at Desy in the Sinbad facility [38].

One key feature of such hybrid concepts is for sure the control obtainable in terms of electron
bunch production – and the possibility to verify these bunch parameters. The quality of a beam
in a linear accelerator is set at the source, and can only be spoiled from that point on. Also, the
amount of charge can be controlled in a wide range from a few femto-Coulombs (1 fC = 10−15 C)
up to several nano-Coulombs (1 nC = 10−9 C). If the bunch can be sufficiently compressed, it
can in principle be injected into the plasma wake. The bunch will start to drive a wakefield on
its own, though, if the charge is too high. Consequently, this so-called beam-loading yields an
upper limit to the amount of charge, which is well below 1 nC [3, 39].

Conventional photo-injectors also offer a lot of possibilities for beam shaping. As mentioned,
in rf-based accelerators the bunches have to be compressed in order to achieve short electron
distributions and high peak currents. This is also true for Regae, not only for the case of the
external injection experiment, using a plasma wavelength on the order of 100 μm, but also for
another experiment performed at Regae: ultra-fast electron diffraction [40–42].

A limit for the minimal bunch length achievable is, of course, given by space charge repulsion.
However, there is also another factor which hinders the longitudinal compression, namely non-
linear phase space correlations. At modern FEL facilities, like Flash [43] or the European Xfel
[44] – both located at Desy – the longitudinal phase space is linearized using a dedicated cavity,
which is operated at a higher harmonic frequency of the main rf system [45–47].

In the course of this Ph.D. work, a novel technique has been developed to optimize the compres-
sion [48]. It is based on a controlled beam expansion after the electron gun, which has similar
effects to a higher harmonic structure: By the lengthening of the bunch, the curvature in the
particle distribution in the longitudinal phase space is reduced, so that the field applied in the
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1 Introduction

subsequent cavity – operated at the fundamental rf frequency – acts similar to a shorter rf wave-
length. The method is denoted as stretcher mode. Although the concept is catered to Regae, it
can be generalized and extended to a variety of accelerators.

The thesis is structured as follows. In the next chapter, the physical basics of transverse beam
optics are covered, as far as required for the following discourses. Likewise, the mechanism of
LWFA is explained, with a focus on the linear regime. In chapter 3, these foundations are applied,
leading to a conceptional design of the external injection experiment: By determining the key
parameters, an extensive start-to-end simulation has been performed which is evaluated, proving
the feasibility of the experiment. In particular, a broad range of the plasma wavelength can be
analyzed. A reconstruction of the accelerating field seems promising, as well.

With the constraints from the simulation, the design of the beam line is explained in chapter 4;
working out the upgrade of the machine was a major task of this Ph.D. work. Two projects are
highlighted in that section: On the one hand, a complex and elaborated interaction chamber has
been designed, which houses the three main experiments at Regae. On the other hand, a differ-
ential pumping section has been developed, which allows an operation at the full repetition rate
of the high-power laser system Angus, using a continuous flow gas target, and more importantly:
operating this leaking device within an accelerator grade vacuum system.

Finally, the last chapter deals with the afore-mentioned linearization method. It is described
in detail, deriving a complete mathematical formalism. That analytic description is used to
determine seed parameters, which are subsequently applied to simulations, in order to verify the
technique. The concept not only indicates the possibility to achieve bunches shorter than 1 fs
– improving the Regae design value by one order of magnitude – but also enables other phase
space manipulations. In particular, an energy spread compensation is successfully shown in a
simulation – which is another kind of a linear phase space distribution. Further (exemplary)
capabilities, beyond the Regae geometry are explored, as well.

The thesis is concluded with a discussion of the results.

1.1 REGAE

The accelerator to be used for the external injection experiment is called Regae [49, 50]. The
Relativistic Electron Gun for Atomic Exploration is located on the Desy campus in Hamburg.
It is a conventional machine, consisting of a state-of-the-art rf photo gun and an additional
buncher cavity. The accelerator is designed to provide unique beam parameters, first and foremost
to perform time-resolved Ultra-fast Electron Diffraction (UED) experiments, executed by the
group of R.J.D.Miller [42]. The machine and its upgrade for the external injection experiment
is described in great detail in chapter 4. Nevertheless, a short overview is given at this point, as
far as it is required for the next chapters. The basic layout of the machine is depicted in figure
1.2.

The electron bunches at Regae are produced in the gun cavity by a laser pulse shining on the
cathode, and are subsequently accelerated to up to 5.6 MeV in that rf resonator. After about
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1 Introduction

1.5 m, the electrons pass the buncher cavity. In this accelerating structure no mean energy gain
is acquired. Instead, a correlated energy spread is imprinted on the particle distribution, so that
the particles in the tail of the bunch are faster than those in the front. The mean velocity at
an energy of about 5 MeV is still small enough, and the velocity difference introduced by this
method is large enough for the tailing particles to outrun the heading electrons in the adjacent
drift. In other words, the bunch is compressed by this so-called ballistic bunching mechanism
[51, 52]. The achievable bunch length – without the mentioned linearization – is less than 10 fs.

Due to the typically used charge being low (Q ≤ 100 fC), the spot size of the laser pulse in
the cathode can be comparatively small, because space charge effects are likewise reduced. The
resulting beam therefore has a very low transverse emittance, i.e., a high quality (see chapter 2).
Based on this, there is a large transverse coherence [42, 50], resulting in highly resolved single
shot diffraction patterns. Combining this single shot quality with the short bunch length, it is
apparent that the machine is suitable to perform UED experiments.

A key feature of the electron approach in these experiments is the interaction cross section. It
is several orders of magnitude larger compared to that of x-ray photons. Therefore, the low
bunch charges are sufficient to produce a diffraction pattern, and on top of that, non-destructive
experimental conditions are given. The targets are rather destroyed by the pump laser pulse
creating the dynamics to be probed. The penetration depth of particles in that energy range is
also several millimeters, hence, also thicker samples can be used.

The topic of this thesis, however, is the usage of Regae as photo-injector for a laser-driven
plasma wakefield. The short bunches are very well suited for this purpose. However, a transverse
focusing is also required. Regae is equipped with three solenoids in front of the interaction
point. The first of these magnetic coils, which act as lenses, is located behind the gun cavity. It
is denoted by solenoid 1 (Sol 1). At about one meter behind the gun, solenoid 2/3 (Sol 2/3) is
located. The affix 2/3 indicates, that this device is actually a double solenoid consisting of two
coils which are oppositely wired. This removes the Larmor angle introduced by a single coil [53].
The same is true for solenoid 4/5 (Sol 4/5), which is about half a meter in front of the target
spot. An overview of this basic Regae layout is given in figure 1.2.

1.2 ANGUS

For the external injection experiment another device is required, namely a TW-class high-power
laser. The laser system, Angus, is located in a neighboring building to the Regae facility. It
provides 5 J photon pulses on target, which are compressed to a full-width-at-half-maximum
(fwhm) length of about τfwhm = 25 fs. With other words, pulses with up to 200 TW can be
unleashed by Angus. The repetition rate is 5 Hz, limited by the pump laser in the last amplifier
stage. However, due to technical reasons, the pulses will not be maximally compressed for the
external injection experiment. Instead, 50 TW will be directed into the gas target, located at the
interaction point: The pulse length is quadrupled, τfwhm = 100 fs.
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1.3 Simulation Tool: ASTRA

Angus is a titanium-sapphire based laser system with a central wavelength of 815 nm. It is
optimized for stability in terms of low energy fluctuations and in particular minimization of
variations in beam pointing. Regae and Angus will be synchronized with one another on a
few 10 fs level. To achieve this, a drift stabilized mechanism, based on a Mach-Zehnder electro-
optical modulator at 800 nm, will be used [33]. The concept is adapted from Flash, the extreme-
ultraviolet and soft-x-ray free-electron laser operated at Desy [54].

1.3 Simulation Tool: ASTRA

For the various particle simulations required in the course of this thesis, the numerical code astra
– A Space Charge Tracking Algorithm – is used. The program is developed and maintained
at Desy [55]. A big advantage of this is that adaptions specialized for issues arising from the
external injection experiment could be developed and implemented into the tool.

astra is a particle tracking code. It propagates charged (macro-)particles, taking into account
external electromagnetic fields defined by the user [56]. In addition, space charge effects from
the Coulomb interaction of the particles in a bunch can be considered in the simulations. If
the space charge routine is included, there are two possibilities to evaluate the forces: Either, a
cylindrically symmetric algorithm is applied, or a full 3D calculation is started.

In the course of this work, only the cylindrical algorithm has been used. It has the advantage
that the electron emission process at the cathode takes mirror charges into account. Furthermore,
less (macro)-particles are required. For the calculation of space charge forces, a (cylindrical) grid
is set up along the bunch, meaning the bunch is divided into longitudinal slices, which in turn
consist of concentric rings in radial direction. The grid is Lorentz transformed into the rest frame,
where the space charge fields are evaluated by an integration of the grid cells. The resulting field
components are transformed into the laboratory frames and treated like the other external forces
acting on the particles. The time propagation is ensured by means of a Runge-Kutta-based
integration. In order to save computation time, the space charge routine is not called at every
iteration step. Instead, the forces are scaled according to the variation of the evolving bunch
dimensions [56].

Laser Module

In order to analyze effects of the interaction of an electron bunch with the pulse of the high-power
laser, an additional module has been added to astra [57]. It describes the field propagation of
a laser pulse in vacuum for a transverse Gaussian beam, using the paraxial approximation [58].
The model implemented is based on a derivation by [59]; circular and linear laser polarization
can be considered. (Higher order effects in diffraction angle are not contained.)

Since the pulse must fulfill Maxwell’s equations, the longitudinal profile is described by a hy-
perbolic secant; a Gaussian temporal profile does not fulfill the free space wave equation [59].
Furthermore, from ∇ ·E = 0 it follows that there must be longitudinal field components present
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as well, because the derivative of the electric field E in the polarization direction is non-zero.
The resulting equations for the fields of a linearly polarized laser pulse are given as [59]:

Ex(r, ẑ) = E0
w0
w

exp
(
− r

2

w2

)
sech

(
ξ

ξ0

)
cos Ψ,

Ey(r, ẑ) = 0,

Ez(r, ẑ) = − x

zR

w2
0

w2E0
w0
w

exp
(
− r

2

w2

)
sech

(
ξ

ξ0

)
(sin Ψ + ẑ cos Ψ) ,

Bx(r, ẑ) = 0,
By(r, ẑ) = Ex,

Bz(r, ẑ) = − y

zR

w2
0

w2E0
w0
w

exp
(
− r

2

w2

)
sech

(
ξ

ξ0

)
(sin Ψ + ẑ cos Ψ) ,

with the phase Ψ = ξ + φce − ẑr2/w2 + arctan (ẑ) and ξ0 = ωτ/acosh [exp (1)]. Here, φce is the
carrier envelope phase, τ is the 1/e pulse length, and ξ = ωt− kz is the phase. w = w0

√
1 + ẑ2

gives the laser beam size evolution. The quantity ẑ = z/zR is the longitudinal position normalized
to the Rayleigh length zR = πw2

0/λ.

The laser module determines zR using the laser wavelength λ and 1/e focus spot diameter w0,
specified in the input deck. A diffraction limited Gaussian beam propagation is assumed, that
is the so-called beam quality factor M2 = 1 [60]. A model taking into account different laser
profiles is being worked on [57, 61, 62]. This is important, since the Angus beam propagation
deviates from a Gaussian beam.

Plasma Wakefield Module

The plasma can be described in astra as well [57]. The module for accelerating cavities has
been extended to that case. The respective accelerating fields are implemented according to the
equations of the linear LWFA regime, which are outlined in chapter 2.2. The validity of the
module in the linear regime has been successfully cross-checked in the context of another Ph.D.
project using particle-in-cell codes [63].

To calculate the strength and evolution of the plasma wakefield in astra, the plasma profile and
maximum plasma density has to be specified. Furthermore, the driving laser pulse is required in
terms of pulse length and intensity, since these quantities directly enter the wakefield equations.
The transverse laser evolution either follows a Gaussian envelope determined by the Rayleigh
length, zR, and the spot size in focus. Or alternatively, the laser envelope can be described
by a separate field table. Thus, a constant laser beam diameter over a certain length can be
assumed as well, like for example in the case of a guided laser. Furthermore, beams of a beam
quality factorM2 > 1 can be included by this method. Finally, the injection phase is specified by
the distance between the laser and the electron bunch at the time the bunch enters the plasma
region.
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1.3 Simulation Tool: ASTRA

With these modules, astra offers all required elements to perform a start-to-end simulation for
the external injection experiment described in this thesis.
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2 Fundamentals

In this chapter, the fundamental physics required for the external injection experiment is covered.
In the first part of the chapter, the basic formalism of the so-called (transverse) linear beam optics
is treated. Though, naturally, only aspects that are essential for the course of this work will be
looked at. The same holds true for the second part of the chapter, which is dedicated to the
essentials of laser wakefield acceleration, especially in the linear regime.

The coordinate system used in this chapter and throughout the whole thesis is defined as follows:
z denotes the global coordinate of the beam propagation – be it a laser pulse or an electron
bunch. The co-moving coordinate with the laser is ξ, while ζ is employed for the co-propagating
systems of electrons. x and y mark the horizontal and vertical transverse axes respectively.

2.1 Linear Beam Optics and Matrix Formalism

In an accelerator, a bunch of particles typically travels along the design trajectory. In the case of
a linear accelerator – often abbreviated as linac – that reference path is basically1 a straight line
which coincides with the z coordinate. Laser plasma accelerators also belong in this category.
Linear beam optics, though, does not refer solely to linacs, but is a concept where only linear
manipulations to the particle beam are taken into account.

If, in addition, there is no coupling of the dynamics between the coordinate planes, the movement
of a particle reduces to the description of three independent, one-dimensional problems. In each
plane a particle is then characterized by the distance to the reference coordinate and the rate of
change of this, i.e., the velocity or momentum in the respective subspace. For example, in the
horizontal plane, it is characterized by x and x′ or px. Here, the divergence x′ is the derivative
with respect to the (global) longitudinal coordinate, z. It is connected to the derivative in time
by ∂t = βc∂z, where β = vz/c is the velocity normalized to the speed of light, c. For particles
moving with a speed close to c, β approaches β ≈ βz ≈ 1, that is, ∂t = c∂z in that case.

A particle in a free drift now changes its position according to x = x0 + x′0s, where s is the
longitudinal distance covered in that drift, x0 is the initial position, and x′0 the initial divergence.
This is obviously a linear equation. x′ does not change in a free drift. In contrast, a thin
lens element would change x′, but does not influence x – since a thin lens acts, by definition,
instantaneously. It is thus natural, to combine (x, x′) into a vector, and include the changes to
the particle – i.e., to this vector – in a so-called transfer matrix, M ; here, in this simple picture,

1Of course, there are deviations from that path in transverse deflecting elements like dipole magnets in chicanes.
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2 Fundamentals

M is a 2 × 2 matrix. Of course, focusing elements of finite length can also be included in this
formalism.

In short, the transfer matrices for a drift of length s or a thin lens with focal length f are given
by [64, 65]

Ms =
(

1 s

0 1

)
and Mf =

(
1 0
−1/f 1

)
. (2.1)

A focusing element of finite length can be described by

MK =
(

cos(
√
K s) 1√

K
sin(
√
K s)

−
√
K sin(

√
K s) cos(

√
K s)

)
. (2.2)

Here s is again the length of the acting element, while K is the (constant) focusing strength.
K can also be negative, which leads to a hyperbolic solution describing a defocusing element.
Please note that a free drift is actually included in expression (2.2), which yields Ms for K = 0.
The focusing strength is typically resulting from a multipole expansion of the acting field, and
can be different for the transverse planes. For example, a dipole magnet only acts in one plane
(having a simple drift in the second plane), or if a quadrupole magnet has a positive (focusing)
Kx > 0 in x, then Ky < 0 (but |Kx| = |Ky|).

For the description of a particle’s behavior along an accelerator beam line, the segments of
constant K are put together by a matrix multiplication, so that the initial particle state (x0, x

′
0)

is mapped to the outgoing coordinates (x, x′) by this linear transformation. The product of the
individual transfer matrices results in the transfer matrix for the respective segment of elements.
An element of variable K can thus be approximated by splitting the element description into
smaller slices with piecewise constant K, which are then combined into the respective transfer
matrix by a multiplication of the corresponding slice matrices. It should be noted that the
matrix approach yields a separation of machine parameters described by the matrices and beam
parameters, which are included in the particle coordinate vectors.

The generalization of the formalism to a particle bunch is achieved by describing the beam in
terms of average and root mean square (rms) quantities. The average or mean (denoted with
〈 · 〉) is given by the so-called first moment for a function f(x) and a normalized density ρ(x):

〈f(x)〉 =
∫
ρ(x)f(x) dx, (2.3)

while the rms value, xrms = σx =
√
〈x2〉 , is connected to the variance or second central moment〈

·2
〉
, which is defined as:

〈
[f(x)]2

〉
=
∫
ρ(x) [f(x)]2 dx−

(∫
ρ(x)f(x) dx

)2
. (2.4)
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2.1 Linear Beam Optics and Matrix Formalism

2.1.1 Beam Emittance and Courant-Snyder Parameters

The combination of particle position and velocity/momentum into a vector naturally calls for
a phase space treatment of the problem. Plotting the individual particle coordinates into the
phase space x-px yields a cloud of particles covering a certain area. Now, by Liouville’s theorem,
the phase space density covered by this particle cloud is constant in a conservative Hamiltonian
system like the one treated here [64–66]. As a consequence, the phase space volume covered is
constant as well, since the number of particles is conserved. This is, strictly speaking, only true
for the six-dimensional phase space of the 3D problem, but if there are no couplings between the
planes, it is also valid for the projection to the subspaces.

The emittance, ε, is a measure for this phase space volume, and thus a constant of motion.
To tackle this mathematically, one basically takes the product of the rms quantities described
above minus possible linear correlations, which change in the phase space evolution (of linear
beam optics). This is necessary in order to ensure the conservation of this quantity. Put into a
formula, the normalized rms emittance, εrms, is defined as [30]

εx,rms = 1
mec

√
〈x2〉 〈p2

x〉 − 〈xpx〉
2 , (2.5)

where the second term in the brackets removes the linear correlations, and me is the electron
(rest) mass. The second term is also called the covariance of x and px, or generally for functions
f(x) and g(x):

〈f(x)g(x)〉 =
∫
ρ(x)f(x)g(x) dx−

∫
ρ(x)f(x) dx

∫
ρ(x)g(x) dx. (2.6)

In that sense, εrms can also be seen as the square root of the determinant of the covariance
matrix, C, which has the variance as diagonal elements and the covariance on the off-diagonal
positions [67]:

C =
(〈
f2〉 〈fg〉
〈gf〉

〈
g2〉
)
. (2.7)

For a discrete distribution, like (macro-)particles in a simulation, the integrals are replaced by
the corresponding sums over all particle coordinates (xi, x′i).

If there are couplings between the planes, for example x-pz, or if there are nonlinear correlations
which evolve along the beam propagation, the emittance described by this approach is no longer
conserved, as will be seen in chapters 3.2 and 5. This, however, does not mean that Liouville’s
theorem is not fulfilled: The 6D particle cloud still has a constant volume, independent of its
shape. The same holds true for the phase space in the projected 2D subspaces, if there are no
couplings between the planes. Since correlations are attributed to the shape of the phase space
distribution, they are not covered by Liouville’s theorem. Hence, the rms emittance does not
describe the phase space volume evolution according to this theorem in this case. It is rather
the sum consisting of a Liouville emittance plus nonlinear correlated contributions (which can
change and evolve along the beam propagation.) If not stated otherwise, the normalized rms
emittance is used in the following, i.e., ε := εrms.
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Figure 2.1 – Important points of the phase space ellipse describing the emittance and the according rela-
tions to the Courant-Snyder parameters (α, β, γ). (Figure adapted from [30].)

The normalized emittance, ε, has to be distinguished from the geometric emittance – in this work
marked by ε̂ – which is defined as [30, 68]:

ε̂ = 1
〈pz〉

√
〈x2〉 〈p2

x〉 − 〈xpx〉
2 = 1

〈βγ〉
ε. (2.8)

Here β is the normalized velocity as above and γ = 1/
√

1− β2 is the Lorentz factor. The conver-
sion to the normalized emittance in the last step is obtained using pz = βγmec. The geometric
emittance is hence getting smaller during acceleration, which is called adiabatic damping of the
emittance.

As mentioned earlier, the matrix formalism provides a natural separation of beam and machine
parameters. By introducing the so-called Courant-Snyder parameters2, (β, α, γ), [64, 65, 69], the
emittance can be parameterized as ε = γx2 +αxx′+βx′2, which is also known as Courant-Snyder
invariant [69].

This equation describes an ellipse in the 2D phase space; see figure 2.1. This ellipse has an
area3, but also further geometric properties, namely the orientation in phase space. Seen from
another perspective, one could say the Courant-Snyder parameters make use of this by defining a
normalized ellipse which carries along the geometric properties:

√
β is the extent in x, while √γ

is the width in x′. α defines the correlation, and thus the tilting of the ellipse in that coordinate
system. More precisely, −α/β describes the slope of the correlation axis going through the
outermost points of the ellipse, which lie on ±

√
β ; if α > 0, the beam is convergent, α < 0

describes a divergent beam and α = 0 describes a local minimum (focus) or maximum of the
beam envelope.

The evolution of the Courant-Snyder parameters can be similarly transported via the matrix
formalism. Instead of a vector, though, a matrix is required. It is given by (see for example

2These parameters are not to be confused with the Lorentz β and γ.
3The area contains a factor of π. It is usually included into the units, [ε] = πm rad, but omitted in the notation.
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[64]):

Σ =
(
β −α
−α γ

)
. (2.9)

And for the transport from position 1 to 2, the transport matrix M1,2 [e.g. equations (2.2) and
(2.1)] and additionally its transpose are needed [64, 65]:

Σ2 = M1,2Σ1M
T
1,2. (2.10)

Basically, equation (2.9) is once again the covariance matrix for the normalized ellipse. And,
hence, it follows: βγ − α2 =

√
1 , which means that the ellipse is defined as soon as two of these

parameters are known. Also, in the extrema of the beam envelope, where α = 0, the remaining
parameters are obviously coupled by γ = 1/β.

Finally, the beam size and divergence can be calculated to [30, 64, 65]:

xrms =
√
ε̂β and x′rms =

√
ε̂γ . (2.11)

See figure 2.1 for an illustration. Please note that the geometric emittance ε̂ is used here. The
correlations are also illustrated in figure 2.1. In particular, the rms emittance (and not Liouville)
is a quality criterion for an electron beam. It determines, for example, how well a beam can be
focused.

2.2 Laser Wakefield Acceleration

In the second part of this chapter, a short introduction to the mechanisms of laser wakefield
acceleration is given, focusing on the so-called linear regime. It is mainly based on the extensive
review paper by E. Esarey, C. B. Schroeder, and W. P. Leemans [3].

2.2.1 Ponderomotive Force

A laser pulse can be characterized by its vector potential A(x, y, z, t), where the associated electric
and magnetic fields are determined by E = −∂tA/c and B = ∇×A. Especially for high-power
lasers, it is convenient to use the normalized vector potential, a := eA/(mec): For a ≥ 1 one
speaks of a laser with a relativistic intensity, since an electron with charge e acquires a kinetic
energy equivalent to its rest mass me within one half cycle of the pulse, i.e., the Lorentz factor
of an electron at rest (γ = 1) doubles.

The coupling of an electron to the laser fields is given by the Lorentz force, which in terms of A

reads [3]:

dp

dt = e

c

(
∂A

∂t
− v ×∇×A

)
= e

c

{dA

dt −
[
(v · ∇) A + v ×∇×A

]}
. (2.12)
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Figure 2.2 – (a) Ponderomotive force acting on two co-moving particles starting at the same distance
from the beam axis. The blue colored plot has an offset in the polarization direction of
the laser (x), leading to a clearly visible wiggling and a net deflection due to the varying
field strength along the oscillating trajectory. The yellow line marks the trajectory of a
particle at an offset of the same magnitude, but in y-direction, that is, perpendicular to the
polarization. The wiggling is much weaker, since it is coupled to the magnetic field; it is
therefore not resolved. The net effect, however, is identical, i.e., the ponderomotive force
is (to leading order) radially symmetric, despite the polarized laser. Figure (b) depicts the
longitudinal momentum of a particle co-moving with the laser. The associated longitudinal
ponderomotive force results in a reduction of the momentum pz after the interaction, because
the laser intensity is increasing during the overtaking, so that the ponderomotive force on
the descending flank of the laser pulse exceeds the effect caused by the rising flank. The
frequency doubling in the oscillation compared to the transverse case is due to the coupling
of the magnetic field and the transverse velocity caused by the electric field. The gray area
illustrates the intensity profile of the laser for both cases.
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2.2 Laser Wakefield Acceleration

To leading order, the electron will follow the rapidly changing electric field described by the first
term of the right hand side. The velocity acquired by this so-called quiver motion is vqm =
eA/(mec) = a, for the case that a� 1, also called the linear limit. vqm enters the term in square
brackets leading to second order effects. The quiver term vanishes in the time-averaged result,
while the second order term can be simplified by a vector identity of the double cross product,
leading to the ponderomotive force,

F p = −mec
2

2 ∇a2. (2.13)

Particles are pushed out of the high intensity region of the laser pulse by this radiation pressure.
An intuitive explanation for this effect in the oscillation plane comes from the field-inhomogeneity
of the profile: An electron is accelerated in the laser’s field and displaced, so that the magnitude
of the repelling force upon sign change in the oscillation cycle is weaker – and the particle does
no longer reach its starting position. Hence, the electrons accumulate a time-averaged net change
in momenta during the interaction with the laser field. The other planes require the coupling via
the magnetic field. In that sense, the ponderomotive force relies on a kind of symmetry breaking
inhomogeneity and a large enough a in order to achieve a significant displacement within a half
laser cycle [70]. An illustration of the ponderomotive force is shown in figure 2.2.

The longitudinal ponderomotive force is also shown in figure 2.2. As can be seen, the oscillation
frequency in this case is double the frequency ω of the transverse oscillations. This is due to the
coupling of the electric field component Ex ∝ sin(ωt − kz) and the magnetic field component
By ∝ sin(ωt − kz) associated with the longitudinal oscillations in a laser field polarized in x-
direction: The corresponding transverse quiver velocity is resulting from

vx ∝
∫
Ex dt ∝ − cos(ωt− kz), (2.14)

and thus the change in momentum is given by

∆pz ∝ −
∫

sin(ωt− kz) cos(ωt− kz) dt = 1
4 cos [2 (ωt− kz)] + C, (2.15)

which explains the frequency doubling. Here, C is a constant of integration.

The overall loss of longitudinal momentum pz for the case shown in figure 2.2(b) is due to the
electron co-moving with the laser. During the overtaking, the laser intensity increases, since the
depicted process happens before the focus. Hence, the effect of the ponderomotive force in the
rising flank of the laser is less than the effect in the descending shoulder of the pulse. Thus a net
momentum loss is obtained in this case.

2.2.2 Plasma Wakefields

If a laser pulse of significant power is focused on a sufficiently small spot size, the peak normalized
vector potential in focus (the so-called laser strength parameter), a0, can be on the order of a0 ∼ 1,
and higher. The respective intensity for a 800 nm laser achieves values of I = 1018 W cm−2 in
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2 Fundamentals

this case. If such a pulse is directed into hydrogen, the gas is instantaneously ionized, since the
threshold for barrier suppression ionization of hydrogen is 1.4×1014 W cm−2 [70]. Thus, a plasma
is created.

The ponderomotive force associated with the pulse displaces the electrons inside the plasma, while
the protons are not affected considerably due to their comparatively large mass. The resulting
density modulation leads to an oscillation of the electrons with the plasma frequency

ωp =

√
nee2

ε0me
, (2.16)

where ne is the electron or plasma density and ε0 the vacuum permittivity. The perturbation
rushes through the (cold) plasma with the phase velocity, vp, which is approximately the group
velocity, vg, of the laser in this medium – so-called Langmuir waves are excited by this process [70];
their wavelength is given by the plasma wavelength λp = 2πc/ωp, in practical units λp(μm) ≈
3.3 × 1010/

√
ne(cm−3) . Due to the density gradient an (electric) wakefield builds up in the

trail of the laser. The magnitude of the wakefield can exceed the so-called cold non-relativistic
wave-breaking field [3],

E0 = cme
e
ωp. (2.17)

This field strength can be expressed in practical units by E0(V/m) ≈ 96
√
ne(cm−3) . Thus, for

a plasma with ne = 1018 cm−3, an accelerating field of Ez = 100 GV/m and more is possible.
This value exceeds the gradient of conventional accelerating cavities (Ez ∼ 100 MV/m) by three
orders of magnitude, marking the key feature of the LWFA technique and plasma acceleration in
general.

The response of the plasma to the exciting ponderomotive force depends on the strength of this
pump. For a0 � 1, a linear perturbation is created, leading to sinusoidal Langmuir waves. The
resulting wakefield has a sinusoidal shape, too. The theoretical formulations of this problem can
be analytically solved in three dimensions using a quasi-static approach [63]. In the following, a
linearly polarized, Gaussian shaped laser pulse – transverse and longitudinal4 – is assumed. If
the polarization is in x-direction, the normalized vector potential can be written as

a(r, ξ) = 1√
2
a(z) exp

(
− r2

w2(z)

)
exp

(
− ξ2

4ξ2
rms

)
cos (klξ) êx. (2.18)

Here, r =
√
x2 + y2 is the magnitude of the radial vector r while w(z) is the 1/e diameter of the

beam and a(z) is the amplitude of the vector potential, both evaluated at position z. ξ = z− vgt
is the transformation to the frame co-moving with the laser pulse, which is possible due to the
quasi-static approximation. ξrms denotes the rms length of the laser pulse. The laser group
velocity can be approximated by [3]

vg ≈
√

1−
ω2
p
ω2
l
c =

√√√√1− λ2
l
λ2
p
c, (2.19)

4As mentioned in chapter 1, this is strictly speaking not in accordance with the free space wave equation. However,
it is a reasonable approximation used in literature, like for example in [3].
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2.2 Laser Wakefield Acceleration

where ωl and λl are the carrier wave frequency and wavelength of the laser. Accordingly, kl
in equation (2.18) is the wave number. The factor 1/

√
2 in a (r, ξ) accounts for the intensity

expressed by the laser strength parameter, a2
0 = a2(0), which is defined for a circularly polarized

laser beam, and has to be corrected for linear polarization [3, 63].

The wakefield in this regime can now be calculated to [3, 32, 63]:

Ez (r, ξ) =
mec

2k2
pξrms

2e

√
π

2 a
2(z) exp

(
−
k2
pξ

2
rms

2 − 2r2

w2(z)

)
cos (kpξ) ,

Er (r, ξ) = −r2mec
2kpξrms
e

√
π

2
a2(z)
w2(z) exp

(
−
k2
pξ

2
rms

2 − 2r2

w2(z)

)
sin (kpξ) .

(2.20)

Hence, there is an accelerating, longitudinal field component, Ez, and a (de-)focusing transverse
part, Er. Er is shifted with respect to Ez by −π/2. In the linear regime, only longitudinal
oscillations of the electrons are assumed, that is, the beam size w is taken to be much larger than
the pulse length ξrms, so that electron displacements in z-direction are entirely dominating.

Using the linear term of a multipole expansion at r = 0 of the focusing field yields the focusing
strength K(ξ), like for any beam optical element, as mentioned in section 2.1. It is given by
[32]:

K(ξ) = e

γmec2
∂Er
∂r

∣∣∣
r=0

= −2kpξrms
γ

√
π

2
a2(z)
w2(z) exp

(
−
k2
pξ

2
rms

2

)
sin (kpξ) . (2.21)

Please note that due to the phase shift between transverse and longitudinal fields, there is only a
quarter of a wavelength where the wakefield is accelerating and at the same time focusing. The
fields are illustrated in figure 2.3.

In accordance with equations (2.20), the magnitude of the wakefield generated depends on a(z)
in this case, i.e., the local driver strength. This is an approximation, taking the evolution of the
laser’s caustic into account. In other words, at each longitudinal plasma position, a slightly dif-
ferent oscillation is generated. However, as stated earlier, there are only longitudinal oscillations
present in the linear regime, meaning that the electrons shift into the regions of different ampli-
tudes. If the Rayleigh length of the laser is much longer compared to the plasma wavelength, the
deviation is small, so that the assumption is justified. Also, the plasma density must not vary on
too short scales.

The laser intensity can be kept constant in the case of a guided beam. This can be achieved
by relativistic self-focusing, which is based on the increasing Lorentz factor γ of the electrons
accelerated in the laser’s field. For an electron in a laser pulse with vector potential a(r)2 � 1
this can be approximated to γ ≈ 1 + a(r)2/2 [3, 70]. The refractive index of the plasma is given
by [70]

η =

√√√√1−
ω2
p,rel
ω2
l

, (2.22)
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Figure 2.3 – Illustration of the longitudinal and transverse field components in the linear LWFA regime.
The fields are solved at the laser focus with a0 = 0.75 and w0 = 42.5 μm; ne = 1016 cm−3.
Figure (a) shows the longitudinal field depending on the phase and distance r to the laser
beam axis, while in (b) the focusing/defocusing component is plotted. The field pattern
is created solely by longitudinal electron displacements: Density extrema are at the zero
crossing of the accelerating field, Ez; a maximum is for example found at kpξ = −3/2π,
while minima are at kpξ = −1/2π and kpξ = −5/2π – compare with figure 2.4. In (c), the
accelerating field at the laser axis (r = 0) and the on-axis focusing strengthK ∝ ∂rEr

∣∣
r=0 are

evaluated. Please note the region of simultaneously focusing and accelerating fields, marked
by the vertical lines. Figure (c) adapted from [63].
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where the plasma frequency has been corrected for relativistic effects; compare with equation
(2.19). That means,

ωp,rel =
√

nee2

ε0γme
= ωp√

γ(r)
, (2.23)

with the non-relativistic plasma frequency ωp [equation (2.16)]. Hence, the refractive index has
a radial component depending on the lasers intensity profile, leading to a focusing effect. The
threshold for this relativistic self-focusing is given by the critical power [70],

Pc = 16πε0
m2

ec
5

2e2

(
ωp
ωl

)2
, (2.24)

which can be expressed in practical units as Pc(GW) ≈ 17.5 (ωp/ωl)2 [3, 70]. Alternatively (and
complementary), a shaping of the transverse density profile can also lead to such a focusing effect.
For a guided beam, these parameters are matched in such a way, that the natural diffraction of
the laser is exactly compensated by this focusing effect, keeping a constant beam radius and thus
a constant laser intensity [3, 70].

The wakefield description according to equations (2.20) has been implemented into astra, and
benchmarked against a so-called Particle-In-Cell (PIC) simulation of high computational effort
in order to cross-check and evaluate the approximation. (For details see [32, 63]). Since the
results are comparable, the above-described method (and the respective astra module) is used
in the following. Please note, PIC codes are lastly numerical models of the processes involved,
and thus provide no exact solutions of the problem. Also, there can and will be deviations from
the experimental results in this case. Therefore, it is one of the key points of the external injection
experiment described in this thesis to offer another, experimentally accessible benchmark for the
analytic and numerical descriptions of the wakefield formation.

The validity of the fields described above also diminishes with increasing laser intensity. For rel-
ativistic laser intensities, that is when approaching (and exceeding) a2

0 & 1, the plasma response
gets more and more nonlinear [70]. The increasing Lorentz factor, γ, included in the ponderomo-
tive force, starts to influence the plasma dynamics equations. Also, there is only a finite amount
of electrons to be displaced, meaning that at some point a deviation from the sinusoidal fields is
inevitable. The result is a spiked electron density profile with almost emptied regions in between.
Similar to a homogeneously charged sphere, a linear increasing electric field builds up in these
segments of low electron density due to the ion background – resulting in an overall saw-tooth
like electric field. Furthermore, the plasma wavelength gets elongated, due to the scaling of the
plasma frequency with ωp,rel ∝ 1/√γ .

An analytic description of this nonlinear regime is only possible in one dimension, and for certain
laser pulse shapes [3]. Figure 2.4 shows an example of the numerical solution for one of these
cases, leading to the afore-mentioned density spikes and saw-tooth-shaped wakefield structure.
In order to investigate transverse fields, self-injection mechanisms and many other effects, PIC
simulations are typically required. A treatment of the nonlinear regime is, however, beyond
the scope of this thesis and the experiment. The laser strength parameter in this case is about
a0 = 0.75.
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Figure 2.4 – Comparison of the linear LWFA regime (a) to the nonlinear regime (b) for a plasma density
of ne = 1016 cm−3. In case (a), the linearly polarized Gaussian driver has a laser strength
parameter of a0 = 0.75, in contrast to (b) with a0 = 4. Hence, in (a) a sinusoidal density
perturbation δn/ne is excited, leading to a likewise longitudinal field, Ez. For (b), on the
other hand, a lengthening of the plasma wavelength can be seen, accompanied by a spiked
density profile and a sawtooth-shaped Ez, which is characteristic for the nonlinear LWFA
regime. The curves are calculated by a numeric integration of the Poisson equation for the
one-dimensional, nonlinear regime given in [3].
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3 Conceptual Design of the External Injection
Experiment

Having introduced the basic features of LWFA in the linear regime in the previous chapter, this
chapter is dedicated to develop an explicit concept of a first laser-pump electron-probe experiment
on such plasma wakefields. The purpose of this experiment is to provide a diagnostics to directly
infer the shape of the accelerating field: By determining the energy gain of well-known electron
bunches injected into the plasma at different wakefield phases, a back-calculation to the respective
accelerating field is possible. In other words, the method allows for a mapping of the plasma
wakefield structure.

The chapter is structured as follows. First, the key parameters of the conceptualized experiment
will be discussed, followed by considerations on the beam transport through the plasma. As
will be shown, the bunch is overtaken by the faster laser pulse close to the focus. This tech-
nically could spoil the experiment if the effects of the ponderomotive force associated with the
laser-electron interaction were too severe. Hence, an investigation of this overtaking problem is
included. Finally, putting all these considerations together, a start-to-end simulation of the ex-
periment, using astra, is executed and analyzed. It is complemented by investigations of output
deviations resulting from fluctuations in the input parameters.

3.1 Key Parameters and Constraints

The first step in conceptualizing the external injection experiment is the definition of key pa-
rameters, resulting from technical and physical constraints and limitations. These fall into three
categories, namely plasma quantities, laser parameters, and electron bunch properties.

The plasma density is set to ne = 1016 cm−3, corresponding to a plasma wavelength of λp =
334 μm ∧= 1 ps. The advantages of such a comparatively low plasma density are derived from
several considerations: First, Regae is capable of producing electron bunches with an rms
length of about ζrms ≈ 3 μm ∧= 10 fs, i.e., the probe pulse is about 1 % of the structure to be
resolved in this case. This allows for a reasonable resolution for the mapping of the wakefield.
For higher densities, the ratio gets worse. It is also important to keep in mind that the field
variation of the sinusoidal wave happens within half the wavelength, and on the other hand, ζrms
is the rms value, which means, the whole bunch covers a larger phase interval.

Second, as discussed in chapter 2.2, only about a quarter of λp is accessible in the pump-probe
experiment, since in the remainder the bunch is spoiled by either defocusing or decelerating
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3 Conceptual Design of the External Injection Experiment

Plasma Laser Electrons

density ne = 1016 cm−3 strength a0 = 0.75 energy 〈T 〉 = 5.6 MeV
wavelength λp = 334 μm beam waist w0 = 42.5 μm Lorentz factor 〈γ〉 = 11.95
peak field Ez = 789 MV/m Rayleigh length zR = 3.1 mm beam size rrms ≈ 5 μm
plateau Lpt = 25 mm pulse length τfwhm = 100 fs bunch length ζrms ≤ 3 μm
ramps Ludr = 5 mm wavelength λ = 815 nm emittance εxy ≈ 50 nm rad

Table 3.1 – Overview of the key parameters relevant for the conceptual design of the external injection
experiment at Regae. The peak gradient of the plasma wakefield is calculated from the
maximal accelerating phase, kpξ = −π at the laser focus position using equation (2.20).

forces. At the low density, the useful region is extended into the decelerating (and focusing)
phase, because the expected field gradient is on the order of 1 GV/m, leading to an energy
gain/loss of only few a MeV for a centimeter scale target. Thus, the Regae electrons with about
5 MeV can pass the plasma even within a significant region of the decelerating phase interval.
The level and stability of the synchronization between Angus and Regae is closely connected
to this accessible field region. The implementation of a concept which suggests a locking of the
machines on a few 10 fs level is subject of another Ph.D. project [71, 33]. This jitter interval
should be significantly shorter than the structure to be resolved. Furthermore, the probe pulse
should possibly stay within the focusing interval. Hence, a plasma density of ne = 1016 cm−3

offers a good compromise.

The plasma profile is chosen to be as simple as possible: A constant plateau of 25 mm length,
complemented by a 5 mm long up- and downramp at the beginning and end of the target. It is
planned to create the plasma profile using a channel fed by two inlets which define the plateau
region; the ramps result from the short segments between beginning and end of the channel
and the respective inlet (please refer to chapter 4.2.2). Apart from keeping things simple at the
start, the measurement and verification of a plasma at such a low density is a challenge on its
own; see for example [26, 72–76]. Thus, more complicated profiles (transverse or longitudinal) can
probably not be resolved and validated. Moreover, a changing plasma density leads to a variation
of the plasma wavelength, adding considerable phase slippage. That circumstance increases the
complexity of a back-calculation. In the case of the present upramp, one already has to be careful
[63]: The overall acting accelerating and (de-)focusing fields depend on the bucket into which
the bunch is injected. The separation distance of the buckets is defined by the periodicity in
the plateau region, where the plasma density and hence the wavelength is constant. Since the
plasma density in the ramps is less than in the plateau region, the plasma wavelength decreases
accordingly. That is, a shift of 2π in the plateau region does not shift the phase by one period
in the ramps. Consequently, for each additional shift by one period in the region of constant
plasma density, the respective fields in the ramp are different for each of these shifts, while the
magnitude of the fields in the plateau is unchanged by the shifts.

However, due to the laser evolution, the effect is very weak in the case treated in the following:
The laser will not be guided within the plasma, since this requires much more laser strength than
Angus can provide at the plasma density aimed for – and/or additional transverse plasma profile
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Figure 3.1 – The local on-axis field Ez(z) evaluated for one injection phase (ξ0 = −424 μm). A step-wise
solution of equation (2.20) is compared to the output of an astra simulation. Phase slippage
of the electrons with respect to the field propagation is taken into account. The gray shaded
area marks the region of the plasma. The dots in the laser envelope line, w(z), are multiples
([−3, . . . ,+5]) of the Rayleigh length, zR around the focus. The region of strong accelerating
(and also transverse) forces is limited by the driver strength, and not by the length of the
plasma channel. The main acceleration happens within −2zR ≤ z ≤ +3zR, indicated by the
black upright lines. The asymmetry is attributed to the rate of phase slippage, which reduces
due to the energy gain. The dips in the ramps are based on density induced phase slippage.

shaping. The critical power for relativistic self-focusing (see chapter 2.2) in a plasma of a density
of ne = 1016 cm−3 is Pc = 3 PW = 3000 TW. In contrast, Angus can provide a peak power up
to 200 TW, so that relativistic self-focusing is impossible to achieve at this plasma density.

Instead, the laser is focused 10 mm behind the beginning of the plateau. This value roughly
corresponds to three Rayleigh length, zR. Considerable acceleration is expected within −2zR ≤
z ≤ 3zR (see figure 3.1), hence, the effect of the up- and downramp is reduced to an acceptable
amount. Finally, the group velocity of the laser inside the medium at this density is vg/c =
0.999997 according to equation (2.19), so that a (density profile dependent) correction for the
wave propagation is negligible.

Angus is focused within f = 4.2 m to a spot size diameter ofW = 50 μm fwhm, which translates
to a 1/e2-radius of w0 = 42.5 μm for a Gaussian beam. However, the beam profile of Angus is not
Gaussian, but of so-called super-Gaussian shape, (please see chapter 4.1), and the focus profile is
close to a sinc2 distribution. The Rayleigh length in this configuration is zR = 3.1 mm, according
to the ray tracing code zemax [77, 78]. The laser pulse duration is set to τ = 100 fs fwhm,
instead of possible 25 fs. This is a technical limitation determined by the damage threshold of
the last mirror before the focus. In this case, the normalized vector potential in the focus amounts
to a0 = 0.75. With these parameters, a comparatively long Rayleigh length is achieved, while
the laser intensity around the focus is high enough to excite a quasi-linear plasma wave. It is
noteworthy that an efficient plasma wake generation at a higher density of ne = 1017 cm−3 is also
possible with these settings.

27



3 Conceptual Design of the External Injection Experiment

The electrons emitted from the Regae gun have a maximum energy of 5.6 MeV when the gun
cavity is operated on-crest at a gradient of 120 MV/m. Since the buncher cavity is operated at
the zero crossing phase, this mean energy is not changed, meaning the probe particles are injected
with a Lorentz factor γ ≈ 12, and a normalized velocity β = v/c = 0.9965. As the wakefield
trails the laser pulse with the group velocity of the laser, there will be considerable slippage of the
electron bunch with respect to the wakefield phase, the Lorentz factor of which is γg ≈ 400. This
has to be included in the calculation of the local wakefield the bunch encounters, for example by
step-wise solution for the local field Ez(z), where ξ is updated each step according to the local
velocity difference of laser and electrons determined by the energy gain in this accelerating field.
A comparison of that method with an astra simulation for the same parameter set is in very
good agreement, as can be seen in figure 3.1. The maximum gradient reached for the specific
phase settings in the example is about 700 MV/m, and thus close to the maximum possible
accelerating field. The peak gradient is determined by Ez(z = 0, kpξ = −π) = 789 MV/m,
resulting from the amplitude of equation (2.20) evaluated at the position of the highest laser
intensity a(z) = a(0) = a0. (It is identical to equation (3.13) later in this chapter.)

3.2 Matching Strategy

In order to couple the electron beam from Regae into the plasma target, it is essential to
match the beam envelope to the beta function of the accelerating structure. As discussed in
section 2.2, apart from the longitudinal field gradient, there are focusing and defocusing forces
present in the wakefield dependent on the phase. Since an external electron bunch will have a
considerable length, compared to the plasma wavelength, it will cover a certain phase interval of
the accelerating wave – acquiring some energy spread. The same is true for the transverse fields:
Electrons located at different longitudinal positions inside the bunch will be subject to different
transverse fields, resulting in a different focusing strength, K(ξ), given in equation (2.21). Hence,
in the phase space picture, the ellipse of a longitudinal slice in the front of the bunch will rotate
at a different speed than that of a slice in the back of the bunch: The slice emittance ellipses will
fan out, and the overall phase space volume occupied by the bunch will grow, i.e., the emittance
will increase.

For a constant focusing channel (achieved by guiding of the laser), this effect has been analyzed
[79]: The emittance growth can by avoided if the beta function is matched to the focusing
channel. That is, the emittance drives a transverse expansion of the tightly focused beam, which
is exactly compensated by the focusing fields of the plasma. The slice emittance ellipses maintain
an upright shape in the phase space. The rotation of the ellipses is suppressed by this mechanism
and, hence, no emittance growth by the betatron phase mixing described above can occur. The
single particles circulate on these phase space ellipses; this motion is characterized by the so-called
phase advance [64, 65]. The conditions to achieve this setting are [79]:

βm,0 = 1√
K(ξ)

and αm,0 = 0, (3.1)

28



3.2 Matching Strategy

defocusing
region:

K(ξ) < 0

β
m
,0

(m
m
)

kpξ

-3π -2π -π 0

0

0.5

1

1.5

2

Figure 3.2 – The matched beta function, βm, depending on the injection phase, kpξ, according to equation
(3.1) for a plasma density of ne = 1016 cm−3. In the gray shaded regions the wakefield
becomes defocusing, and consequently there is no real solution. Please note, K scales with
K ∝ 1/γ according to equation (2.21).

i.e., the electron beam must be focused to a certain spot size, given by xrms =
√
ε̂β0 [equation

(2.11)].

As can be seen in figure 3.2, the matched beta function in focus for a plasma with a density of
ne = 1016 cm−3 is βm,0 < 0.5 mm for almost the entire focusing phase intervals. Assuming an
energy of 5.6 MeV and a normalized transverse emittance of ε = 100 nm rad, this translates to a
spot size of rrms < 2 μm – which is very challenging, if not impossible, to achieve.

However, there is no constant focusing channel in the case treated here. Instead, the transverse
fields increase when approaching the laser focus, and decrease behind that spot. The matching
conditions [equations (3.1)] have been complemented by an analysis of the transition zones into
and out of the plasma [31]: It can be shown that for an adiabatically changing focusing strength
the beta function evolves according to

βm(z) ≈ βm,0

√
K0

K(z; ξ) . (3.2)

Adiabatic in that context means that the Courant-Snyder parameters evolve slowly compared to
the phase advance, so that α and β are quasi constant per revolution of a particle on its phase
space ellipse. In this case, it is sufficient if the beta function is matched at an arbitrary point
along the plasma: the evolution of this matched beta function will be guided by the focusing
fields, while being automatically matched at the same time [31, 57].

These two results can be combined to solve the issue for the case treated here. Instead of a focusing
channel, conditions (3.1) are only fulfilled in the laser focus, i.e., at the point of maximal fields.
Due to the laser evolution with a long Rayleigh length, the adiabatic change of K is ensured, so
that a matching should be possible according to equation (3.2). Using the generally valid relation
α = −β′/2 yields the Courant-Snyder parameters at the plasma entrance.
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Figure 3.3 – Emittance growth for a mismatched beam compared to a matched bunch. The beam in
(a) enters the plasma, and the phase space ellipses of different longitudinal positions start
to rotate at different speeds. This is due to the varying focus strength K(ξ) depending
on the position behind the laser. Consequently, K also varies with longitudinal particle
positions along the bunch, characterized by ζ. In contrast, figure (b) shows a matched case
for the identical plasma parameters and a bunch with the same initial emittance, but with
parameters that were adjusted to the matching conditions. As can be seen, the area of the
ellipse in (b) is smaller, and, in contrast to (a), a distinction of the slices is not possible. The
beam is already in the expanding section behind the focus; the black line at about z = 8 mm
in (c) marks the position of the phase spaces depicted in (a) and (b). Figure (c) shows the
development of the emittance growth along the propagation z inside the plasma. The dashed
lines mark the evolution of the respective beta functions. As can be seen, there are large
betatron oscillations for the mismatched case βmm, resulting from the rotating ellipses; the
frequency of these oscillations increases with the rising focusing strength K. In contrast, the
matched envelope βm does not show that effect. Instead, the beta function evolves smoothly
and does not vary significantly. The unmatched case converges to the matched curve due
to the betatron phase mixing, albeit at the cost of an increased emittance: The smear
out effect seen in figure (a) eventually yields an ellipse with the same shape, but of larger
extent. The emittance growth saturates. The red dashed curve marks the beta function
βadb calculated according to the adiabatic assumption, equation (3.2). βadb agrees very well
with the matched beta function in the plateau region, i.e., the adiabatic matching condition
is fulfilled. In the up- and downramp the electrons slip through a defocusing section. The
beam is not considerably influenced by this, however, βadb ∝ 1/

√
K diverges at the zero

crossing of the focusing strength K, and is not defined for K < 0.
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Figure 3.4 – Matching procedure for the injection process (top). First, the reversed beam path from the
matching point is calculated (xrms,bp), which yields the required Courant-Snyder parameters
at the entrance of the plasma. A forward propagation (xrms,vf) with these values yields the
position of a virtual focus, while the result of a backward propagation is the required beta
function (and thus the beam size) at the location of the focusing element creating this focus;
at Regae this will be Sol 4/5 (see chapters 1.1 and 4). xrms,tr is the beam size evolution
of a tracked bunch using astra. It is injected with the calculated parameters and almost
exactly follows the calculated route. The figure at the bottom depicts the energy gain and
emittance change. The symbol δ[ · ] marks the relative difference to the reference value, in
this case the initial parameters for kinetic energy 〈T 〉 and transverse emittance εx.

Figure 3.3 shows the phase space for a mismatched case, compared to an accordingly matched
coupling into the plasma. As can be seen, the emittance of the mismatched case increases, in
contrast to the matched beta. Also, the mismatched beta function performs so-called betatron
oscillations, that is, the beam size increases and decreases upon the rotation of the phase space
ellipse. In the matched case this effect is not present.

It can be concluded then that in accordance with equations (3.1) and (3.2), a matched trans-
port of the beam through the plasma is possible. Moreover, the adiabatically increasing focusing
strength will guide the beam into the focus. That is, the constraints for the required focusing
optics are relaxed. The local focusing strength along the plasma target, K(z, ξ), can be evalu-
ated by the same approach used to calculate the accelerating field in figure 3.1. Instead of the
adiabatic approximation (3.2), the beta function at the plasma entrance is determined differently
in the following, though. Using the matrix formalism with piecewise constant K and the initial
parameters given by equations (3.1), the Courant-Snyder parameters at the plasma entrance are
obtained. Importantly, K also depends on the energy described by the Lorentz factor γ; see
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equation (2.21). Alternatively, one could also solve the beam envelope equation [32, 65],

x′′rms +K(z)xrms − ε̂2/x3
rms = 0, (3.3)

using numerical methods.

The matrix approach, which is chosen here, directly yields the Courant-Snyder parameters α, β,
γ at the entrance of the plasma. Since an arbitrary set of Courant-Snyder parameters is rather
complicated to adjust and determine, the following strategy is used: The knowledge of α, β, and
γ at the plasma entrance allows for a forward calculation – without plasma. By this approach,
suggested in [32], a virtual focus is found. This focus is a much more accessible machine setting.
Using the matrix formalism once more – again for a simple free drift but backwards from the
plasma entrance – the beta function in the last solenoid before the plasma can be determined.
These two parameters – position of the virtual transverse focus and beta function (i.e., beam size)
in the last focusing element – suffice to adjust the beam for a matched coupling into the plasma:
Using the second last focusing element, the beam size in the last solenoid before the plasma is
set. Then, this last element is adjusted for the position of the focus, while the plasma target is
not in the beam path. The combination yields the correct setting of α, β, γ at the entrance of
the plasma. An illustration of this matching strategy is depicted in figure 3.4.

Another source for beam quality degradation can be found at the plasma exit. However, in this
case it is not a mismatched beam which drives the emittance growth. The source is rather the
inevitable energy spread accumulated by the plasma passage, due to the finite (and compara-
tively large) phase interval covered by the bunch. This, in combination with a typically large
divergence at this point, increases the emittance in the subsequent drift [30]. As a consequence,
it is either important to refocus the beam as soon as possible, or to use the plasma once more
to expand the beam in a controlled way – for example by slowly adjusting the plasma profile in
order to adiabatically reduce the focusing strength. Since the emittance is conserved during the
expansion in this approach, the divergence must consequently shrink, so that the beam can be
safely transported [31, 32].

As a side note, it should be mentioned that the same effect of emittance growth can occur if
the focusing required to achieve the virtual focus is too steep, since the Regae bunch prior to
the injection already has a considerable energy spread, due to the ballistic bunching mechanism.
Thus, the plasma matching is highly beneficial as it relaxes the constraints for the focus size.

3.3 The Overtaking Problem

The external injection experiment is a pump-probe type scanning of the injection phase of the
Regae electron bunch with respect to the distance of the pump pulse delivered by Angus. In
order to achieve this configuration, electrons and laser have to travel collinearly – at least close to
the plasma target – with the photons being located ahead of the bunch. (For technical reasons,
this co-propagation region already starts about 3 m in front of the target in the experiment.)
However, there is a velocity difference between electrons and photons: While the laser pulse is
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traveling with the speed of light, c, the electrons, though relativistic, move slightly slower at
β = v/c = 0.9965 and can never catch up with the photons.

As a consequence, it is inevitable that the electron bunch enters the co-propagation section with
a head start to the laser. During the co-propagation the bunch is overtaken by the laser pulse, in
order to realize the desired phase offset on the order of the plasma wavelength, i.e., |ξ| ∼ 100 μm
at the target. The distance to the plasma target at which this overtaking takes place can be
calculated by the velocity difference (see also [80, 81]),

∆zot = βξ

1− β ≈ 2γ2ξ. (3.4)

Hence, for typical Regae parameters with γ ≈ 12, it is obvious, that the described process
happens at a distance of a few centimeters in front of the target. Since this is very close to
the laser focus, it is questionable whether the electron beam withstands the interaction with a
laser pulse of such intensity. Also, this proximity of the overtaking point to the plasma target
explains why an injection scheme based on a chicane (or similar magnetic arrangement) is hard,
if not impossible, to realize. In addition, such a concept would increase the beam emittance.
A mirror or foil close to the target would not survive the laser intensity, as well, and also spoil
the emittance of the Regae beam. An analysis of this overtaking problem was also subject of a
bachelor’s thesis [80], which covered the collinear case as well as offset scans summarized below.

The length of the interaction is given by the sum of the duration of the electric field of the laser
(τEM =

√
2 100 fs ∧≈ 50 μm fwhm) and the electron bunch length (ζrms = 3 μm). Both quantities

are likewise scaled with 2γ2, since the same mathematics applies. Assuming six standard devia-
tions as a measure to cover the whole interaction range from the tail of the bunch experiencing
the first photons to the complete pulse having passed the electrons, the overtaking takes place
within a length δz ≈ 4 cm ∧≈ 140 ps; z = zot lies in the center of this interval.

The effect of the laser pulse on the electrons is described by the ponderomotive force. It is
dependent on the magnitude and shape of the laser profile. Since the following analysis is done
on the assumption of a Gaussian transverse laser profile, it is important to bear in mind that
the results are not necessarily valid for the Angus beam. The radial intensity profile of Angus
is close to a so-called super-Gaussian distribution of eighth order with a 1/e2 beam diameter of
W = 76 mm, i.e.,

I(r) ∝ exp

−( r2

2σ2
r

)8
 = exp

[
−2
( 2r
W

)16
]
, (3.5)

where r is the radial coordinate and σr is the rms value of the underlying Gaussian distribu-
tion1.

However, for the description of an evolving pulse of initially super-Gaussian profile on its way to
the focus2, a (Maxwell-conform) analytic treatment is impossible and an implementation of such

1Please note that there is also another definition of the super-Gaussian order which absorbs the square of the
Gaussian curve.

2A sinc2-like profile is to be expected in the focus, given by the Fourier transform of the almost top-hat shaped
super-Gaussian profile.
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a scenario into astra has not been completed up to now [57]; it will be part of another Ph.D.
thesis [61]. The Gaussian case, in contrast, is implemented in the particle tracking tool (see
chapter 1), and the results were verified by analytic calculations using the (Lorentz transformed)
ponderomotive force [81]. The idea behind this that the ponderomotive force given in chapter
2.2 does not contain relativistic effects, so that a description of the overtaking in the rest frame
of the electrons with a subsequent Lorentz transformation of the resulting momenta was used to
account for that.

To analyze the overtaking process, extensive astra delay scans have been performed. Since
the interaction point lies within the caustic of the laser beam, the Rayleigh length zR needs
to be adapted to optimally mimic the super-Gaussian intensity increase towards the focus: As
stated above, a (diffraction limited) Gaussian beam is used in this model, which has a different
transverse beam evolution for the same focal length, or – stated more formal – another beam
parameter product [82].

The 1/e2-radius of the unfocused Angus beam is wsg8 = W/2 = 38.0 mm, which can be converted
to rms for a super-Gauss function of eighth order by

σr,sg8 = 1
2

1
16

√√√√√Γ
(

3
16

)
Γ
(

1
16

) wsg8 ≈ 0.54wsg8, (3.6)

employing the gamma function, Γ(t) =
∫∞

0 xt−1e−x dx, as extension of the factorial [83]. The
result is obtained by a straightforward calculation of the rms value according to the definition,
equation (2.9). Hence, σr,sg8 = 21.5 mm. The substituting Gaussian beam profile should con-
sequently start with that rms value, σr = σr,sg8, and be focused with the same focal length in
order to ensure a comparable slope of the caustic evolution during the overtaking process. This,
of course, results in a wrong focus spot size (and thus a wrong intensity in the focus), but the
focus is irrelevant for the laser-electron interaction.

The resulting Gaussian beam has an 1/e2-radius of w = 2σr = 41.0 mm. Solving the beam
envelope equation,

w(z) = w0

√
1 + z2

z2
R
, (3.7)

in combination with the Gaussian focus spot size, w0 =
√
λzR/π , yields a Rayleigh length of

zR = 2.72 mm for the Angus wavelength of λ = 815 nm and focal length, zf = 4.2 m. Figure
3.5 shows a comparison of the transverse beam profiles and beam sizes along the propagation
towards the focus. The rms beam sizes of both profiles agree very well at all positions.

The other laser pulse parameters in the astra simulations are a fwhm length τ = 100 fs, an
energy of E = 5 J and a focal spot size w0 = 26.6 μm, which reflects the focal length of zf = 4.2 m,
and is – as mentioned above – smaller than the real Angus focus. The laser is polarized in the
x-direction. The parameters are summarized in table 3.2.

Having found a way to deal with the laser evolution, the next step is the determination of a
criterion for the electron beam quality. Since the goal of the experiment is the injection of a
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Figure 3.5 – Comparison of the super-Gaussian profile and the mimicking Gaussian beam at the final
focusing parabola, (a), and in the region of the overtaking process, (b), that is at a distance
∆zf = 45.7 mm in front of the focus. The rms beam envelopes, (c), agree very well. The po-
sition marked by the black line corresponds to the one in figure (b). Data for the propagated
super-Gaussian beam simulated with zemax by [61] and [84].

Laser Parameters

wavelength λ = 815 nm
Rayleigh length zR = 2.72 mm
pulse energy E = 5 J
pulse length τfwhm = 100 fs
(spot size) w0 = 26.6 μm
polarization x-direction

Electron Parameters

kinetic energy 〈T 〉 = 5.6 MeV
emittance εxy = 40 nm rad
spot size rrms = 3.5 μm
bunch length ζrms = 2.1 μm

Table 3.2 – Overview of the simulation parameters used to analyze the effect of the overtaking process with
astra. The electron parameters are similar to those achieved in the start-to-end simulation
presented in section 3.4.
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Figure 3.6 – Emittance change due to the ponderomotive force during the overtaking process. If the laser
hits the electrons too close to the focus, (b), the emittance is not conserved, while the reduced
laser intensity due to an overtaking further away, (a), does not influence the emittance after
the laser passage; the large amplitudes are originating from the transverse momenta during
the overtaking process. The gray areas mark the position of the gas target. Figure (c) shows
the emittance increase compared to a reference case without laser. A significant deviation
only occurs up to the start of the accelerating section of the first bucket. Hence, an injection
should be possible behind this point. (Please note the logarithmic scale for ε/εref.)
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well-known bunch into the plasma wakefield, there are several important quantities to be looked
at. The most important parameter of the electron beam is the (transverse) beam emittance,
εxy, which should be conserved as well as possible. The effect of the laser pulse on this beam
quality criterion can be seen in figure 3.6, where the emittance behavior after the overtaking is
compared to a reference case without laser. The respective normalized emittance values, ε and
εref, are evaluated at the injection point, i.e., after the passage of the laser. If the overtaking
point, zot, is too close to the focus, the laser increases the emittance by a factor of more than
100. However, this unsatisfactory zone extends only slightly into the accelerating part of the first
bucket, so that almost the entire wakefield should be accessible in the pump-probe experiment
for a density of ne = 1016 cm−3. The emittance increase during the overtaking originates from
the rapid transverse oscillations of the particles within the laser pulse and the accordingly large
transverse momenta, which enter the calculation of the emittance – but have no net effect to first
order, as discussed in section 2.2.

Results obtained previously with another particle tracking tool [85], utilizing a similar laser pulse
with τ = 25 fs, are discussed in [28]. The results are comparable, indicating that for a distance of
|ζ| & 100 μm the transverse emittance is not influenced by the laser, and the first bucket should
hence be accessible. The same holds true for the results obtained in [80], where astra was used.
The collinear overtaking scenario shown here and the analysis have been redone in the context of
the start-to-end simulation presented in the next section of this chapter, so that this data, shown
in figures 3.6 and 3.7, is used in the following.

The beam size at the injection point is the second parameter which should be looked at, i.e., xrms
and yrms. If the laser has too strong a defocusing effect, the bunch will no longer be matched
to the plasma, leading to an emittance growth inside the plasma. The same holds true for the
divergence of the beam (x′rms, y′rms) – which is, of course, coupled with the beam size. Figure
3.7 shows the results of this analysis, depicting the deviations from a reference case without laser
– normalized to that reference case. The symbol δ [ · ], which is used frequently throughout this
chapter is defined as

δ [X] := X −Xref
Xref

. (3.8)

Similar to the transverse emittance, the influence of the laser vanishes close to the accelerating
section of the first bucket (and greater delays). Close to the laser focus, however, the beam size
rapidly increases sixfold, and the divergence is increased by a factor of about 25. These result are,
of course, not entirely astonishing. The ponderomotive force of the laser deflects the particles,
leading to an increased divergence, which consequently translates into an increased spot size in a
drift. Since the emittance is calculated from the product of these two parameters, they are also
the origin for the increase in ε. In this context, it is also interesting to look at the position of the
transverse focus, zf. The closer the overtaking comes to the laser focus, the further downstream
the transverse minimum of the electron beam envelope is displaced – until a sudden change in the
position occurs, with the electron focus shifted upstream of the original position. This behavior is
explained as follows: At the changing point the defocusing of the laser is so strong that the bunch
is directly expanding after the laser interaction, i.e., the focus now lies around the overtaking
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Figure 3.7 – Analysis of variations of important beam parameters due to the overtaking process. The
size (a) and divergence (c) of the beam are almost unaltered beyond a phase offset kpξ & π.
However, the focus position (e) is slightly shifted downstream, except for an overtaking close
to the focus; the red line marks the longitudinal focus position in figure (e). In the region
of milder laser intensity, the laser has also very little influence on the energy as depicted in
figure (f) and the energy spread (d). The laser reduces the bunch length (b), which can be
explained by the change in the correlated energy spread, 〈ζT 〉.
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Figure 3.8 – Parameter variations of the electron beam for the overtaking process with a transverse offset
of the laser denoted by δv (with v ∈ {x, y}). Changes to the emittance (a), beam size (b)
and divergence (d) are small. Longitudinal parameters, energy (c) and bunch length (b, red
line) are almost unaffected. There is a net angle (f) and an additional offset (e) resulting
from this angle. Dashed lines mark the offset in y. The plots also demonstrate the symmetry
of the ponderomotive force, despite the polarized laser. Data from [80].

point. For a weaker laser intensity, on the other hand, the beam is only less convergent, shifting
the minimum further downstream.

To further investigate the beam quality, it is also important to look at longitudinal parameters.
Interestingly, the laser has a positive effect on the bunch compression: Since the overtaking is
happening in the focusing region of the laser, the intensity increases while a particle slips through
the laser, so that a net deceleration of the particle occurs. In other words, the descending shoulder
of the pulse profile is effectively steeper, leading to a net deceleration by the ponderomotive
force. Particles in the front of the beam are surpassed later, that is, closer to the focus and,
thus, experience a greater deceleration. The bunching energy correlation, 〈ζT 〉, of the beam
is enhanced, leading to a shorter bunch length, ζrms. However, the influence on the overall
bunch energy, 〈T 〉, is negligible in the region beyond a phase offset of π – which is of uttermost
importance, since the energy change of the plasma is the main quantity analyzed in the context
of the external injection experiment. The bunch energy should, therefore, not be altered by
non-plasma effects.
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To map the experimental situation as best as possible and to include various eventualities, ad-
ditional analyses of two scenarios have been performed: Firstly, the effect of a laser offset with
respect to the electron axis has been looked at [80]. Secondly, possible angular deviations of laser
propagation and bunch trajectory have been simulated [86]. In the following, a brief summary of
the results of these two scenarios will be given.

Figure 3.8 shows the changes to the electron bunch caused by the overtaking process, if the laser
has a transverse offset with respect to the electron propagation axes. The offset was scanned in
x- and y-direction, up to 100 μm at an overtaking position of ∆zot ≈ 5 cm, which coincides again
with the accelerating and focusing region of the first bucket of the plasma wake. The reference
case in this analysis is the respective beam parameter determined for the same distance ∆zot,
but without offset. From the figure it can be seen, that there is a mild effect on the emittance,
ε, exceeding a 5 % growth at about δx = 30 μm. The influence on the beam spot size, rrms, is
likewise negligible. The same is true for the beam divergence, u′rms with u ∈ x, y. There is a
slight asymmetry of the effects for these three quantities, explicable by the divergence behavior:
As can be seen, u′rms is only affected in the offset plane – which is completely compatible with
the ponderomotive force: All particles on the respective side of the laser are deflected further
away, spreading the beam. Hence, the beam size grows in that dimension, and so, consequently
does the transverse emittance. However, as already mentioned, the effect is very weak.

There is also a net deflection of the whole beam, characterized by 〈u′〉, because all particles sit on
one side of the laser pulse in the offset plane and, thus, experience a ponderomotive force in the
same direction. Furthermore, the beam gains an additional offset 〈u〉 resulting from this. This
deviation, however, is much smaller than the initial offset. Longitudinal effects can hardly be
detected, even for large offsets. As a side note, it is worth mentioning the plots again demonstrate
the symmetry of the ponderomotive force, despite the x-polarization of the laser.

The results for a scan with a crossing angle ψx,y between laser and electron trajectories are shown
in figure 3.9. ψx is defined as the angle between the trajectories in the x-z-plane, and ψy is defined
analogously. For both cases, ψ has been varied within ψ = ±1 mrad. The type and magnitude
of the effect on the bunch is almost identical to the offset analysis. There are also no changes
on the longitudinal parameters. The transverse parameters are influenced more in the plane of
rotation. This similarity can be explained by the crossing angle resulting in an offset of the beam
to first order.

As a conclusion, it can be stated that an injection into the first bucket of a plasma wakefield
with ne = 1016 cm−3 (λp = 334 μm) should be possible, despite the fact that the bunch has to
be overtaken by the intense laser pulse. Only the decelerating region directly behind the laser
(|ξ| < 100 μm) is inaccessible according to the simulations. For higher plasma densities only an
injection into later buckets will be feasible as long as the electron energy is not considerably
increased. The overtaking is relatively insensitive to transverse deviations of the propagation
paths: Offset and angular deviations only have small additional effects compared to the initial
deviations, i.e., a transverse offset during the overtaking will in any case lead to an off-axis
injection into the plasma wakefield, since the wakefield is defined by the laser axis. A slight
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Figure 3.9 – Change of electron beam parameters due to overtaking by laser and electrons propagating
with an angular deviation in the range of δψ = ±1 mrad. The effect is similar to an off-
axis overtaking. Longitudinal effects like the bunch length (b, red line) and energy (c) are
very weak. Changes to the transverse emittance (a) are within few percent. The transverse
momenta (d) change by less than 1 %. In this case, a transverse offset (e) of a few microns
and an additional angle between the propagation directions (f) are introduced as well. Data
from [86].
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additional shift due to the laser overtaking will only have a minor impact compared to the
already mismatched beam.

Due to the different laser profile in the experiment, additional investigations are required. Al-
though the mean intensity during the overtaking should be comparable for both cases, the profile
is not. And since the ponderomotive force is given by the gradient of the laser profile, there
will be deviations. A model to propagate such a more realistic beam is already implemented
into astra, employing field maps generated with zemax. However, it is still being worked on
[57, 61]; it is planned to be presented in [62].

Finally, it should be stressed that such a model is just this: a model. Hence, it is of utmost
importance to measure the effects of the overtaking as best as possible, as soon as the Angus
laser system is connected to the accelerator. Lastly, resulting influences on the Regae bunches
by the overtaking process must be quantified in order to ensure a well-characterized electron
bunch.

3.3.1 Bunch Length Diagnostic: Collinear Ponderomotive Scattering

The deviations from the beam path caused by an off-axis overtaking can also be used to perform
an electron bunch length diagnostics. Since the bunch is co-propagating with the laser pulse,
different sections of the bunch are surpassed with different laser intensities. Thus, a particle in
the front will gain a larger transverse momentum than one in the back of the bunch. Hence,
measuring the width of the distribution on a screen after the overtaking should in principle be
correlated to the duration of the overtaking process. And since the laser pulse length is known
– and constant – this duration depends only on the longitudinal bunch extent. The concept is
depicted in figure 3.10.

It is vital to know at which z-position the electron bunch has been hit by the laser. However,
this is also encoded into the image if the transverse offset is known – which can be measured
directly using simple screens: The mean deviation of the distribution on the screen behind the
overtaking depends on the mean ponderomotive force acting, that is, on the longitudinal position
of the electron bunch within the laser’s caustic.

Hence, this collinear ponderomotive scattering in principle provides a timing and bunch length
diagnostics, where the timing (i.e., the longitudinal offset) is determined by the mean (or first
moment) of the deflected beam, while the bunch length is encoded into the width of the distri-
bution – that is, the second moment. The determination of timing and bunch length, which is
very delicate at such a low charge as it is used at Regae, is transferred to a geometrical problem
(in combination with very precise knowledge of the laser envelope and beam profile). Figure 3.11
shows exemplary screens for the distributions of bunches with different lengths. In a separate
master’s thesis, the potential resolution was determined to be in the region of a few femtoseconds
[81].

The feasibility strongly depends on stable experiment conditions, though. The electrons must
have a constant mean energy, and the transverse position of electrons with respect to the laser
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Figure 3.10 – Concept of the collinear ponderomotive scattering diagnostic. If an electron bunch is over-
taken off-axis, it gains a net deflection due to the ponderomotive force F (r, z). Since the
laser intensity, I(r, z), is increasing during the overtaking process, an electron in the front
of the bunch gains a higher transverse momentum than a trailing particle. Consequently,
for a longer bunch (drawn schematically below zero), which is overtaken at the same mean
position, the transverse momentum spread must be larger.

beam caustic must be known and fixed as well. Thus, the pointing jitter of the laser should be
minimized. Moreover, a characterization of the laser profile evolution over the whole distance of
the overtaking is important – which, in addition, should not fluctuate from shot to shot.

Lastly, the technique is a translation of the temporal properties to spatial parameters, requiring
very precise settings. However, some of these requirements can be measured independently
after the interaction. Especially, the laser’s pointing and longitudinal profile will be constantly
monitored. This possibly yields a correction for that deviations, so that the constraints are
reduced. If experimentally viable, the method provides a single shot arrival time and bunch length
diagnostics. Moreover, all required instrumentation will be available at beam line, anyways, since
these components are also needed for the external injection experiment.

3.4 Start-to-End Simulation

Equipped with the various parameters and results from the previous analysis, especially the
matching strategy, it is now possible to implement all of this information into a start-to-end
simulation using astra. For this, the standard Regae lattice is used – slightly modified to
reflect changes discussed in the next chapter – complemented by a laser model for the overtaking
process and a module for plasma acceleration. In the post-plasma region, the new beam transport
as well as the shifted (and upgraded) electron spectrometer are added. The simulation itself is
divided into several steps, which mimic a possible real scenario. First, the longitudinal focus is
adjusted to the position of the plasma target, followed by a characterization of the plasma fields,
which enables the calculation of the matched beam size. Applying the matching strategy, the
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Figure 3.11 – (a) Spatial, transverse distribution of bunches with different lengths ζrms,ot hit by an identi-
cal laser pulse during an off-axis overtaking process. The increasing transverse momentum
spread manifests itself in an increasing width xrms on the beam image and is clearly depen-
dent on the bunch length, as can also be seen in figure (b). For a further analysis please
refer to [81].
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3 Conceptual Design of the External Injection Experiment

Cavity Ez (MV/m) ϕ (deg) z (m)

gun 120.00 0.00 0.000
buncher 31.77 −90.00 1.290

Table 3.3 – Cavity settings used in the start-to-end simulation in order to achieve a bunching configura-
tion. The buncher cavity is operated at the zero crossing of the accelerating field: This does
not yield a net energy gain, but applies a negatively correlated energy spread.

bunch charge Q = 100 fC
kinetic energy 〈T 〉 = 5.570 MeV
energy spread Trms ≈ 25 keV
emittance εxy ≈ 50 nm rad
beam size rrms ≈ 8 μm
bunch length ζrms ≈ 2.5 μm

Table 3.4 – Parameters of the electron bunches at the plasma entrance. The approximate values vary
slightly due to the adjustments required by the matching. The kinetic energy is fixed.

beam size in solenoid 4/5 (Sol 4/5) is set via the upstream lens (Sol 2/3) – see figure 1.2 on page
7. Focusing effects from the buncher cavity are also taken into account. In a next step, the focus
position is adjusted to the location of the virtual focus. At this point, the plasma is added (based
on the linear model described in chapter 2.2) and the laser is switched on – the latter meaning
that the overtaking process is explicitly taken into account3. The cavity settings resulting from
this strategy are given in table 3.3. The parameters of the electron bunch prior to the injection
are summarized in table 3.4.

Using this method a phase scan varying the injection phase at the plasma entrance, ξ0, over
about 1.2 mm has been performed for a target with properties as described above: It consists
of a 25 mm long plateau of constant density, confined by an additional up- and downramp of
5 mm; the profile in the ramp follows a sinc2-shoulder, which is an adequate description of this
pressure decrease [87]. The density in the plateau range is ne = 1016 cm−3; the laser is focused
10 mm behind the start of this constant density region. In the machine coordinate system, this
point lies 5.5 m downstream of the origin: the gun cathode. However, for the analysis in the
following, the laser focus is used as origin of the coordinate system. The matching point hence
lies at z = zm = 0 mm as well.

Figure 3.12 shows the final energy of the bunch after the plasma target, as well as a sequence of
spectra for a second bucket injection. There is a clear periodicity visible in the phase scan, but
also a large deviation from a mere cosine function. Such a deviation is not surprising, though,
since this behavior happens especially in the defocusing region of the plasma. As can be seen

3Please note that a matching with the laser switched on is experimentally not feasible, since the required screens
would be destroyed by the highly intensive pulse. Therefore, a characterization of the laser’s influence must be
performed prior to the experiments, ideally excluding regions where the bunch is disturbed.
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Figure 3.13 – Phase correction taking into account velocity changes within the plasma up to the laser
focus position at z = 0. Plots (a) and (b) show the deviation of the initial phase offset ξin
with respect to ξeff due to the velocity change within the plasma for an accelerating (a) as
well as a decelerating case (b). The corrected phase at the position of the laser focus is
defined as ξ. The deviation of ξ from ξ0 over about three periods is shown in figure (c).

from the scatter plots in that domain, the bunch is strongly defocused and expelled by the plasma
fields, the result being that it hardly gains any energy. (In the real experiment, these electrons
would not reach the electron spectrometer.) Also, the magnitude of the divergence shows an
oscillating pattern in the focusing and accelerating section, but for all cases of this region, the
values are well below 5 mrad. The decelerated, yet focused beams are more spread out – but can
still pass the plasma, extending the measurable region to almost the whole focusing range, as
mentioned above.

In order to do a more thorough analysis, one has to apply a phase correction: Due to the beam
energy changes along the plasma, the phase slippage is not constant. However, the injection
phase ξ0 is calculated from the distance between the pump pulse and an electron beam of the
injection energy, where the reference ξ0 = 0 is defined as the overlap of particle bunch and laser
at the position of the laser focus, i.e., at z = zf = 0 in the plasma coordinate system. Taking
into account the velocity changes during acceleration up to that reference point – by a stepwise
integration as in 3.1 – a slightly modified phase occurs, which is defined as ξ in the following. The
change is illustrated in figure 3.13. Please note, that the largest deviation happens, of course, in
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Figure 3.14 – (a) Energy gain curve from the simulation in comparison to an analytic estimation, given
by A cos (kpξ); the amplitude can be calculated to A = −6.45 MeV. The periodicity of the
curves is identical. There is also an excellent agreement of the curves in the accelerating
and focusing range. The deviations are explained by increasing phase slippage and the lack
of energy gain of the particles being ejected out of the wake in the defocusing fields, which
are proportional to − sin (kpξ). Figure (b) illustrates the phase slippage: δξ is calculated
as the difference of the phase at symmetric positions z = ±qzR, q ∈ {1, 2, 3}, with respect
to the phase kpξ at z = 0, where the laser is focused at. In the decelerating and focusing
section, the phase slippage increases drastically, especially in the second half of the plasma
channel, due to the constant deceleration of the particles. An asymmetric shape evolves in
that region. The dashed lines in figure (b) depict kpδξ = 1. The gray-shaded areas mark
the defocusing sections; they will be used throughout this chapter.

the decelerating region, as the velocity difference is getting larger in this case.

Using this correction, the energy gain ∆T can be compared to an analytic estimation, which to
first order reproduces a cosine shape:

∆T =
∫ zout

zin
Ez(z) dz =

∫ zout

zin
Êz(z) cos

{
kp
[
ξ − δξ(z)

]}
dz

= Êz(0)
∫ zout

zin

1
1 + (z/zR)2 cos

{
kp
[
ξ − δξ(z)

]}
dz,

(3.9)

where the argument in the cosine given by the phase slippage interval around the injection phase,
ξ. Ez(z) is the longitudinal accelerating field according to equation (2.20), centered around the
laser focus at z = 0. The amplitude Êz(0) is the maximal on-axis field in the focus, i.e.,

Êz(0) =
mec

2k2
pξrms

2e

√
π

2 a
2
0 exp

(
−
k2
pξ

2
rms

2

)
. (3.10)
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For the parameters used in the simulation (see table 3.1 on page 26), this amounts to Êz(0) =
789 MV/m.

To estimate the integral, it is useful to approximate the cosine by a Taylor expansion at ξ:

cos
{
kp
[
ξ + δξ(z)

]}
≈ cos (kpξ)− kp sin (kpξ) δξ(z) + · · · . (3.11)

Since the first term of this approximation is independent of z, the integral to leading order is∫ zout

zin

1
1 + (z/zR)2 dz = zR arctan

(
z

zR

) ∣∣∣zout

zin
, (3.12)

where the integration has to be performed over the plasma length, δz = zout − zin. Looking at
a typical energy gain curve – see for example the red curve in figure 3.13(b) – can serve as a
plausibility check: The function seems to be described well by an arctan-like shape.

Combining these results, the energy gain can be expressed as ∆T = A cos (kpξ), with the ampli-
tude,

A = zR arctan
(
z

zR

) ∣∣∣zout

zin
Êz(0) = −6.45 MeV, (3.13)

if the integration limits are zin = −10 mm and zout = 15 mm, which covers the region of constant
plasma density. The up- and downramp are neglected.

In figure 3.14, this approximation with the numerical value for A from equation (3.13) is compared
to the energy gain determined by the simulation. The approximation works exceptionally well in
the accelerating and focusing region.

To understand this agreement as well as the deviations in the decelerating range, it is helpful to
look at plot (b) of the figure: In this graph, the phase difference δξ with respect to ξ is plotted at
symmetric positions around z0, namely at z = z0 ± qzR with q ∈ {1, 2, 3}. As can be seen, there
is a considerable slippage in all of these intervals – at any phase. However, in the focusing and
accelerating section, the slippage is still much smaller than one, and more importantly, it is almost
symmetric, as can be deduced from the shaded areas. This means that the function δξ(z) must
be close to an odd function in these symmetric parts, since the sign changes and δξ(z = z0) ≡ 0
by definition, i.e., δ(−z) ≈ −δ(z). So, the higher order integral vanishes (for symmetric integral
bounds). Also, close to the maximum accelerating field, the sine in this second term of the Taylor
expansion vanishes as well, so that the higher order influence is negligible around that point, even
though the symmetry is not perfect.

Actually, at the phases around the maximal energy gain, a slight asymmetry to the positive side
is given – which is easily explained: Since the particles gain momentum in the field, the velocity
difference between the wave and the electrons reduces, with the result that the slippage is less
in the second half. Towards the decelerating field, this trend turns, so that a strong asymmetry
builds up in the opposite direction, since the particles are delayed. In the worst case, there is a
phase difference kpδξ > π, i.e., the particles are pushed back into the accelerating region, and
even regain some of the lost energy. This explains the bend at the minimum of the energy gain
curve which is close to this point of maximal slippage.
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On the other end of the energy scale, one finds that the maximum possible gain is not achieved.
This is again explained by slippage: Particles which would end up at the maximum energy will
eventually slip into the defocusing region and are, thus, swiftly scattered out of the wake, stopping
any further energy gain. The same is true for particles entering the plasma in the defocusing
sections, which explains the flat energy gain curve in these regions.

The next step is to look at the matching quality. Figure 3.15(a) compares the change in the
emittance at the entrance with the one at the exit of the plasma. Once more, the symbol δ[ · ], as
defined in equation (3.8), is used. For an artificial bunch with ideal parameters calculated with the
strategy described in section 3.2, the matching in the focusing and accelerating region is almost
perfect, with an emittance growth close to zero; in the decelerating region the emittance suffers,
starting at the position of the turning point known from the energy gain curve. Particles beyond
this region are probably injected into the defocusing region and shifted back into a focusing part
by the decelerating fields before the transverse fields can push them completely out of the plasma.
However, the emittance is spoiled during this injection process; this range is denoted as extended
defocusing region in the following. In contrast, the Regae bunches, which are tracked along the
whole machine and matched to the plasma using the beam optics elements to achieve the virtual
focus, pass the plasma in the good-field region with an emittance growth of about δ[εxy] ≈ 25 %;
at injection, the absolute normalized transverse emittance lies around εxy,in ≈ 50 nm rad.

Figures 3.15(b,c) depict the beta function βvf, and the accompanying transverse beam size xrms
in the virtual focus. As can be seen, these quantities are smaller for the ideally matched, artificial
bunch compared to the Regae case. Therefore, the matching condition is not fulfilled for the
latter case, leading to an increased emittance. This can also be seen from in 3.16, which illustrates
an exemplary matching for a certain phase setting. The ideal trajectory, xrms,id, passes the
plasma without visible betatron oscillations, in contrast to the Regae beam, xrms,Rg. Thus, the
respective emittance grows because of betatron phase mixing as explained above.

Two factors can be identified as the cause of the deviating beam size: First, the ideal bunch is
tracked without space charge, which leads to an increased beam size and a different beta function
close to the waist. Second, the solenoids are no thin lenses. Hence, a beam size at the focusing
element is not well defined; also, the divergence change happens over a certain distance and not
instantaneously, as would be the case in the thin lens approximation. Thus, the decoupling of
parameters by first setting a calculated beam size at the final solenoid and then adjusting the
focus position with this last lens has its limitations. These issues explain the slightly deviating
beam profile and the resulting emittance growth – which is, nevertheless, not very dramatic. One
should also keep in mind that, depending on the steepness of the focusing and divergence at the
plasma exit, there can be additional emittance growth within the free drifts [30].

Finally, βm,0 in graph (b) of figure 3.15 depicts the much smaller beta function that has to be
achieved at the matching point – and thus illustrates the charm of the plasma guidance by means
of an adiabatically increasing focusing fields. A sharp transition without a density ramp and the
laser focused directly at the entrance of the plasma channel would require a much smaller beam
spot to be reached only with the Regae beam optics, which is almost impossible to achieve due
to space charge repulsion.
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Figure 3.15 – Analysis of the matching quality. Figure (a) displays the emittance growth between plasma
entrance and exit versus the injection phase. An ideal beam, according to the matching
strategy, has almost no emittance growth, while a start-to-end beam shows a mild increase
of about 25 % in the focusing and accelerating section. The relative emittance value in the
defocusing region for the ideal bunch is a numerical artifact, resulting from an extremely
large reference emittance. In figure (b), the respective beta function at the virtual focus
is shown, explaining this discrepancy: the Regae bunch does not achieve the injection
parameters perfectly due to space charge repulsion and deviations from the thin lens ap-
proximation. In comparison, the black, dotted line shows the required beta function at the
matching point – which would be very challenging to achieve without the final focusing from
the plasma fields due to space charge repulsion; the matched beta function is not defined in
the defocusing region. Figure (c) shows the corresponding beam size in the virtual focus,
which is about twice as large as required in the case of the Regae beam – driven by space
charge and deviations from the thin lens approximation. In the extended defocusing region,
a matched injection is impossible.
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Figure 3.16 – Exemplary beam evolution within the plasma for a distance of ξ = −472 μm, which is close
to the maximum accelerating phase of the second bucket. The ideal beam evolution, xrms,id
differs slightly from the actual beam parameters in the start-to-end Regae simulation:
Space charge effects and deviations from the thin lens approximation lead to a different
focus. Hence, the emittance increases from about εRg = 50 nm to εRg = 60 nm, while there
is almost no emittance growth in the ideal case.

In the defocusing range, the matched beta function is not defined. In this region, which is
extended by phase slippage, an emittance conservation is impossible despite the result displayed
for the ideal bunch in figure 3.15(a). The apparent emittance conservation in that regions is due
to a numerical artifact caused by an extremely large reference value. These segments are mostly
neglected in the subsequent discussion and marked by the gray shaded area in the following
plots. Likewise, the first bucket is excluded owing to the deviating results, which presumably
result from the overtaking process.

Figure 3.17 shows the settings necessary for the beam optics to achieve the relevant beam sizes.
For the accelerating region, it is interesting to note that the farther away the position of the
virtual focus shifts from the matching point, the closer the injection phase moves towards the
maximum gradient (figure 3.17(b)). The explanation for this is as follows: The focusing forces
are maximal around the zero crossing of the accelerating field. However, the focusing strength
also depends on the particle energy: K ∝ 1/γ [equation (2.21) in chapter 2.2]. That is, in the
decelerating region, the overall focusing strength is larger. Hence, the matched beam size is
reached faster, i.e., within a shorter distance. Thus, the virtual focus is closer to the matching
point. For the high accelerating gradients, the focusing forces are weaker, requiring a longer
action of the guiding fields. An important consequence of this discussion is, that the injection
optics has to be (slightly) tuned for each injection phase.

Figure 3.18 depicts the most relevant parameters for the beam transport and imaging onto
the spectrometer screen. As can be seen, an energy spread on the order of about 100 keV is
accumulated, which is well below 5 % with regard to the mean energy. It is especially low around
the maximal accelerating field. As in the case of a standard accelerating cavity (see 5), this is
due to the flatness of the cosine curve at the maximum and the consequently vanishing slope,
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Figure 3.17 – (a) Solenoid settings according to the start-to-end simulation to achieve the matched beta
function at the plasma entrance. For the defocusing phases there is of course no meaningful
solution, because the matching condition is not valid. The matching algorithm calculates
an unrealistic small beta function, which requires a very large beam size in solenoid 4/5, so
that the preceding lens is switched off. Figure (b) shows the position of the virtual focus.
Due to the increased focusing forces towards the decelerating section, the bunch reaches
the matched focus faster, resulting in the position of the virtual focus being closer to the
matching point.
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Figure 3.18 – Investigation of the resulting rms energy spread (a), beam divergence (b), and beam size
(c) after the plasma passage. The energy spread is less than Trms < 200 keV, so that the
relative energy spread Trms/ 〈T 〉 is well below 5 % in the good-field region. The transverse
divergence, x′rms is on the order of 1 mrad, while the beam size is about x′rms ≈ 10 μm in
this region. The purpose of the last plot (c), however, is to demonstrate the particle loss in
the extended defocusing range: Most of the particles will be deflected into the boundaries
of the plasma target, which are depicted by the black line.
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Figure 3.19 – Correlated energy spread (a) and bunch length (b) at three locations along the plasma:
Yellow marks the beginning of the plasma (zin), red the position of maximal field (z0), and
blue the exit of the plasma channel (zout). In the accelerating region, the wakefield always
imprints a negatively correlated energy spread: The beam is further compressed (below
1 fs) and even partly over-compressed. The black lines mark cases (1) to (3) shown in figure
3.20. The correlated energy spread results from the slope of the accelerating fields, which
is proportional to sin(kpξ). As can be seen, the red curve in the good-field region mainly
resembles that shape.

so that only the quadratic order contributes. Of course, the (correlated) energy spread acquired
depends on the bunch length achieved at the injection point. The divergence at the exit of the
plasma, figure (b), is about x′rms ≈ 1 mrad in the good-field region – a promising value. In the
complementing phase intervals this parameter strongly increases, due to the defocusing plasma
fields. The lower graph shows the beam size at the exit of the plasma target with the black line
depicting the radius of the channel. Thus, the defocused electrons are already scattered into the
target material, so that a transport to and detection in the electron spectrometer is not possible:
The beams injected in these phases are lost.

The development of the correlated energy spread, 〈ζT 〉, provides much information about the
bunch length behavior inside the plasma; both parameters are shown in figure 3.19. Since the
usable part of the wakefield is completely contained within the bunching slope of the accelerating
field, and the beam enters the plasma with almost zero correlated energy spread, the strong fields
further compress the electron bunch inside the plasma. Space charge forces are easily surpassed
by the plasma fields. Particles around the zero crossing are even compressed below a bunch
length of trms < 1 fs at the end of the plasma.

In the decelerating region, the beam reaches the minimum bunch length within the plasma.
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Figure 3.20 – Bunch length evolution for three different injection phases. Case (1), with ξ(1) = −392 μm,
is in the decelerating region. The bunch is strongly compressed and reaches its longitudinal
focus within the plasma. (2) is around the zero crossing of the field, ξ(2) = −430 μm. Here,
the bunch length minimum is – by chance – around the plasma exit. Finally, (3) is injected
close to the peak field, at ξ(3) = −472 μm. Due to the energy gain, the bunching mechanism
is strongly suppressed, shifting the longitudinal focus downstream of the plasma.

Therefore, the energy-position correlation is positive in that phase interval at the end of the
plasma channel, as can be seen from the figure. On the other hand, the length of high energy
bunches is kept almost constant. Both behaviors can be explained by the scaling of bunch
compression using ballistic bunching. As will be seen in chapter 5, the effect of this method
scales with 1/γ3 (where γ is the Lorentz factor). Hence, if the particles lose energy (while
maintaining or increasing the correlated energy spread), the compression is enhanced. If the
energy is increased, ballistic bunching is strongly suppressed and the bunch length is frozen –
or at least, the minimum is shifted downstream. Figure 3.20 complements figure 3.19, explicitly
showing the bunch length evolution for three exemplary bunches.

3.5 Beam Transport

Knowing the key characteristics of the resulting bunches from the previous section, the next step
is to address the beam transport of the particles from the plasma target to the detector in order
to measure the properties described above. The electron spectrometer (eSpec), which is used for
this purpose, is located about 2.5 m downstream of the plasma cell.

Thus, a proper beam optics is required to transport the bunches towards the spectrometer.
Ideally, the magnets used minimize the beta function of the design energy in the (horizontal)
dispersion plane for a high resolution. At the same time, it is desirable to reduce the divergence
in the vertical plane, while avoiding a focus. With such a configuration, spectra like in figure 3.12
would be produced. Solenoids, which are typically used at Regae, are no longer a viable option.
The focusing strength of solenoids Ks scales with 1/γ2 [53], which already requires quite big
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electron detector z Qb Qa

eSpec
dipole

l1 = 769 mm

l2 = 43 mm
l3 = 217 mm

l4 = 43 mm
l5 = 1580 mm

Rhe = 175 mm
l7 = 110 mm

gas target

l6 = 275 mm

Figure 3.21 – Drift lengths for the calculation of the transfer matrix according to equations (3.15), de-
scribing the beam transport from the end of the plasma target to the electron detector in
the eSpec.

and elaborate solenoids for the higher energies achieved in the experiment. Therefore, two small
quadrupole magnets will be used instead. They have a better energy scaling (1/γ) and also enable
an astigmatic focusing and, thus, yield the desired asymmetric imaging in this experiment.

The dipole magnet of the electron spectrometer is a focusing device as well – at least in the
dispersion plane. This becomes obvious when looking at the transfer matrix of a dipole in the
dispersion plane [64, 65]:

Mdp =
(

cos (s/R) R sin (s/R)
− 1
R sin (s/R) cos (s/R)

)
. (3.14)

Thus, Mdp is simply a version of MK defined in equation (2.2), where the focusing strength is
given by the radius of curvature, i.e., R = 1/

√
K . And, since R > 0, the dipole has focusing

properties.

Once again the matrix formalism can be used to find a solution for this problem and obtain the
desired focusing. Basically, one has to multiply the transfer matrices of the two quadrupoles, the
dipole and the drifts in between:

Mbt,x = Ms(l7) ·Mdp(R, l6) ·Ms(l5) ·MK(Kb, l4) ·Ms(l3) ·MK(Ka, l2) ·Ms(l1),
Mbt,y = Ms(l7) ·Ms(l6) ·Ms(l5) ·MK(−Kb, l4) ·Ms(l3) ·MK(−Ka, l2) ·Ms(l1).

(3.15)

Here, Ka < 0 and Kb > 0 are the strength of the individual quadrupole magnets. The first
magnet is thus chosen to be defocusing, while the second one is focusing in the dispersion plane,
and vice versa in the vertical plane. In this second plane, the dipole matrix describes a simple
drift of length l6; this length is also linked to the radius of curvature, R, since the eSpec is
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3 Conceptual Design of the External Injection Experiment

designed for a 90 deg bend. This means l6 = πR/2. l1 is the distance between plasma and first
magnet, while l7 is the final drift after the dipole towards the scintillator screen of the detector.
The drift lengths l1 to l7 are fixed by the geometry of the (upgraded) Regae accelerator. R is
the radius of curvature for the design energy, and hence fixed as well. Thus, there are two free
parameters, Ka and Kb, which suffice to find a solution. The drift lengths are depicted in figure
3.21.

As only a focus in the dispersion plane is required, the problem is actually over-determined. A
whole class of solutions can be calculated which yields α = 0, i.e., a focused beam at the detector.
The result with the smallest beta function at the eSpec scintillator is chosen – provided it does
not violate the second demand: to map the transverse momentum distribution in the y-plane,
reducing the divergence, but avoiding a focus at the same time. The calculation with the focusing
strength has the advantage that it is energy independent. So, the solutions of Ka, Kb (like R)
are constant over the whole energy range, but the magnetic fields have to be adjusted for the
respective energies. However, this poses no significant problem: All magnets have to be adjusted
for the same particle energy – which is given by the longitudinal momentum the dipole is set for.
In other words, the magnet currents have to be tuned depending on the injection phase. But
the current in the dipole also automatically determines the required magnetic strength of the
quadrupoles, because the dipole determines which energy is monitored anyway. (In that sense,
one could also treat the focusing optics and the dipole as one single instrument that has to be
adjusted to a certain energy.)

One thing is missing to calculate Ka and Kb, though: The initial Courant-Snyder parameters
are required. And in principle, this can spoil the universal solution for the focusing strengths K,
since the beta function is not necessarily constant at the end of the plasma for different phases.
Put differently, the lattice should be matched to the preceding accelerator segment, i.e., the
Courant-Snyder parameters at the end of the plasma. An analysis of the emerging beta function
is therefore necessary. As can be seen in figure 3.22, the beta function at the end of the plasma
is on the order of βpe ≈ 0.025 m, varying at most by a factor of two. The other Courant-Snyder
parameters fluctuate in a similar range around αpe ≈ −2 and γpe ≈ 200 m−1.

The beam transport according to equation (2.10) is described by

Σdet =
(
βdet −αdet
−αdet γdet

)
= Mbt

(
βpe −αpe
−αpe γpe

)
MT

bt, (3.16)

which has to be evaluated for the x and y plane with the respective transport matrix given in
equation (3.15). Using the mean Courant-Snyder parameters in combination with the positions
and lengths of the beam transport elements specified in figure 3.21, the combinations for Ka and
Kb can thus be calculated by solving for αx,det ≡ 0; the results are shown in figure 3.23. The
minimal beta function in x is found for Ka = −61.5 m−2 and Kb = 63.6 m−2. The resulting
evolution of β is depicted in figure 3.24. As it turns out, the focusing strength of the dipole is so
strong that it requires the source to be located close to the magnet entrance due to associated
short focal distance; this effect was also found in [88]. Hence, the quadrupole system focuses the
beam in front of the dipole, creating an additional beam waist. This situation is not ideal since
Coulomb repulsion in this transverse focus could spoil the measurement. However, the bunch is
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Figure 3.22 – Courant-Snyder parameters at the end of the plasma channel. The beta function in the
good-field region varies slightly around βpe ≈ 25 mm. The correlation parameter α shows a
similar behavior.
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Figure 3.23 – Possible solutions for a focused beam at the eSpec detector using the matrix formalism. The
square marks the chosen parameter combination, which is corrected for an optimized focus
in the spectrometer using astra in a next step. This slightly deviating value is marked
by the red circle. The dashed lined marks the second solution resulting from the quadratic
dependence on M in equation (3.16).
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Figure 3.24 – Beta functions for the transverse planes in the post-plasma section. The first quadrupole,
Qa, is defocusing in the dispersion plane, while the second one, Qb, creates an additional
beam waist in βx in front of the eSpec. Since the dipole magnet has a comparatively strong
focusing effect in the dispersion plane, this artificial source is required for a proper imaging
at the detector. In the vertical plane, y, the beam divergence is reduced behind the second
quadrupole.

already significantly expanded in the longitudinal dimension at this point, which is why space
charge effects are only a minor issue.

The focusing strength of the dipole with a (hard edge) radius of curvature of Rhe = 175 mm, see
chapter 4.2.2, is about Kdp = 1/R2

he ≈ 30 m−2 which is roughly half of the values obtained for
the quadrupoles. But at the same time, the drift length inside the dipole is more than six times
larger, explaining the comparatively short focal length.

In a next step, the result is verified and refined with astra by scanning the second quadrupole
strength. This shifts the focus position in front of the eSpec, optimizing the final focus at the
detector. The resulting parameter is Kb = 72.6 m−2, due to the shift ∆Kb = 9 m−2; see figure
3.25. The energy resolution will be dominated by the beam size, as can be deduced from an
analysis of the spectrometer [88]: As can be seen in figure 3.25, the beam spot for a mono-
energetic bunch amounts to x′rms ≈ 250 μm and is thus much larger than the detectors pixel size,
which is about 6 μm. The resolution can be estimated to about δpz/pz = 0.1 %. For a detailed
description of the eSpec see chapter 4.2.2 and [88].

The analytic method is used to check the tolerance of the focusing system with respect to fluctuat-
ing beta functions at the end of the plasma channel. By varying the Courant-Snyder parameters
at that position within a range of about 10 mm < βx,pe < 50 mm and −4 < αx,pe < −1, it can
be seen that the beta function at the detector is not influenced to a large degree: The solutions
for βx,det in the parameter space are depicted in figure 3.26. The Courant-Snyder parameters
at the plasma exit, obtained from the astra simulations in the previous section, are marked
by the yellow dots. For the majority of cases, the beta function in x is about βx,det ≈ 250 mm,
varying below a factor of two. Only for parameter combinations which seem to be very unlikely,
the increase can be larger – but still less than one order of magnitude. Therefore, a constant
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3 Conceptual Design of the External Injection Experiment

K-setting is used in the following, regardless of the phase in the plasma: Ka,x = −61.5 m−2 and
Kb,x = 72.6 m−2.

Finally, a comparison of the spectra obtained in the analysis of the previous section and the
resulting images on the spectrometer screen is possible. The images in the previous section have
been obtained from the phase space shortly behind the plasma exit. Using astra, the bunches
are now transported to the eSpec detector, employing measured field maps for the magnets.
Figure 3.27 shows the three exemplary cases once again: ξ(1) = −392 μm, ξ(2) = −430 μm,
ξ(3) = −472 μm.

The determined energy and energy spread from the spatial position on the detector screen is very
close to the actual values, which is also attributed to the simulation environment. However, the
plots demonstrate that the structure of the spectra determined directly behind the plasma can
in principle be transported to the detector and can be resolved.

In connection with this, the divergence at the plasma exit can, furthermore, be estimated from
the eSpec image, using the matrix formalism once more. The beam size at the detector is
yrms,det =

√
ε̂βy,det , with the geometric emittance ε̂. Using equation (3.16), the relationship

with the beta function at the plasma exit is explicitly given by [64, 65]:

βdet = M2
1,1βpe +M2

1,2γpe − 2M1,1M1,2αpe. (3.17)

The Courant-Snyder parameters at the exit of the plasma are not known, which prevents a
solution of this equation. However, some assumptions can be made. Using βγ−α2 = 1, equation
(3.17) can be written as

βdet = M2
1,1βpe +M2

1,2(1 + α2
pe)/βpe − 2M1,1M1,2αpe, (3.18)

where Mi,j are the respective matrix elements of Mbt,y.

The elements of the transport matrix M are machine parameters and can be calculated from
the settings of the beam optics lattice. The values for Ka,y = 61.5 m−2 and Kb,y = −72.6 m−2

yield M1,1 = −2.8 and M1,2 = +1.7 m, which means that the products of the matrix elements
appearing in equation (3.17) are of similar magnitude. Furthermore, the beam is diverging at
the plasma exit, i.e., αpe < 0, so the last term is negative, while the other two are positive. The
beam size at the plasma exit, xrms,pe is small, and consequently βpe � 1 m. Hence, the first term
in equation (3.17) can be neglected compared the second one, so that

βdet ≈M2
1,2(1 + α2

pe)/βpe − 2M1,1M1,2αpe ≈
[
3(1 + α2

p)/βpe(m)− 10αpe
]
m. (3.19)

Here, β(m) means that the beta function has to be given in meters. The explicit values for Mi,j

from above are included.

The ratio 10αpe/[3(1 + α2
pe)] is bounded by |10αpe/[3(1 + α2

pe)]| . 2, so that the first term
in equation (3.19) is dominating due to the smallness of βpe. Hence, the beta function at the
detector βdet is almost completely determined by γpe = (1 + α2

pe)/βpe.
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3 Conceptual Design of the External Injection Experiment

Assuming that the emittance is not changing in the drift from the plasma to the detector, the
divergence y′rms,pe =

√
ε̂γpe can thus be estimated from the beam size at the detector:

y′rms,pe ≈
yrms,det
|M1,2|

. (3.20)

Please note, that this approximate expression is similar to the beam transport of a single particle.
For the three exemplary cases, this method determines the divergence with a remarkable accuracy.
The deviation is about 3 % in the worst case. The calculated values are given in figure 3.27. The
respective phase spaces (and thus the back-calculated divergence values) are taken 8 cm behind
the plasma exit, so that M1,2 = 1.9 is slightly different from the value given above, due to the
reduced drift length l1.

With these results, the idealized start-to-end scenario illustrated in the last sections is completed.
Of course, it is important to keep the limitations in mind: First of all, there is a perfect envi-
ronment assumed in a simulation, which is in this case applied to one specific plasma target
configuration. In addition, astra uses the linear plasma model without the plasma wake de-
caying or damping with increasing distance to the laser. However, experiments have shown the
formation of about ten and more buckets with similar structures in plasma wakefields [89]. Also,
the laser evolution – and thus the local field strength – is only an approximation. This is exactly
one of the purposes of the experiment: proving the viability of the model or gaining information
that can lead to its improvement.

In summary, the simulations show that matched injection of electrons from Regae into a laser-
driven plasma wakefield is in principle feasible over almost the entire focusing region of the plasma
fields. The overtaking of the electron bunch by the laser seems to be manageable. An analysis
making use of the super-Gaussian laser profile is necessary, though. As long as the damping of
the plasma wakefield is not an issue, injection into a higher bucket is always an option in case
the bunch should be spoiled too much by the driver laser.

In addition, a transport of the accelerated bunch towards the detector can be achieved through
relatively simple standard methods, making it possible to determine the energy and the energy
spread to a high degree. Furthermore, a reconstruction of the transverse momenta at the plasma
exit can be achieved. The structure of the pz-py closely behind the target is clearly mapped to the
detector screen. A detailed analysis of the visible structure is beyond the scope of this thesis.

The a priori required knowledge of the beta function at the end of the plasma channel is of course
somewhat unsatisfactory. In the real experiment, one will probably need to scan and tune the
beam optics lattice for the highest resolution on the spectrometer screen. (Which is of course
challenging, since the beam has a considerable energy spread.) The calculated values should
still provide a good starting point for such scans. Clearly, this requires a high stability of the
injection mechanism, especially in terms of timing. However, the eSpec is always set for a certain
energy, and the resulting beam will jitter around this position. In that sense, the spectrometer
also serves as a filter, allowing for the identification of shots which yield central hits and, thus,
enable a sorting of the results. Since the bunches leading to central hits should have the right
energy, they can be used for the optics adjustment.
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If the resolution is not sufficient for detailed analyses, the spectrometer can be extended by
a second detector, which is further away from the dipole (see chapter 4.2.2). Another option
would be to use a more elaborate spectrometer design, like a concept suggested in [90–92], which
is optimized for imaging over a certain energy range. However, such a device should sit close
enough to the plasma target to image the source directly, which is impossible at this point in
time due to space constraints.

3.6 Parameter Tolerances

In the start-to-end scenario of the previous section, the conditions are taken to be almost ideal –
apart from measured magnet field maps. In the experiment, there will be deviations from such
ideal conditions, though. There will be jitter sources, like the temporal synchronization of laser
and electron gun, or the beam pointing stability of the laser system and its beam transport. Also,
systematic errors can occur, such as for example a mismatched beam due to space charge effects
in the case discussed above – or deviations in the plasma profile.

Therefore, parameter scans have been performed in order to gain estimates of the impact of single
parameter deviations at the beginning of the plasma on the resulting beam at the exit. Each
input parameter is varied in a separate analysis, so that the resulting deviations at the plasma
exit are directly related to this input variation. The goal of these considerations is twofold. On
the one hand, it serves the identification of misconceptions which could spoil the experiment
realization. On the other hand, it allows for beam line adaptions, so that beams injected under
less-than-ideal conditions can still be detected.

astra is used again for the investigations. The scans are done within the usable phase interval
of the second bucket, i.e., from ξ = −381 μm to ξ = −490 μm which covers about one third of the
plasma wave length. The phase interval is sampled in about 3 μm steps, resulting in 41 different
phase settings; the three exemplary points used in the previous section lie within this region. The
respective input parameter is scanned for each of the injection phases around the optimal case
determined in the previous section; space charge is not taken into account to avoid overlaying
effects. The resulting output parameters are then compared to the ideal case, using the same
notation as in section 3.3:

δ [X] = X −Xref
Xref

. (3.21)

Based on the phase sampling, 41 results are obtained for each deviating step from a particular
reference parameter. To quantify the impact of a certain parameter offset for all phase settings,
it is necessary to find a way which combines the output for all phases into one figure of merit for
each parameter step.

The first candidates for such quantities are the arithmetic mean and the standard deviation, i.e.,
the first and second moment of the distributions. However, the meaningfulness of the variance
in particular is limited in this case: The resulting distribution is not the statistical fluctuation
around a measuring point. Instead, for each phase, a direct relation to the input parameter is
given. Furthermore, the distributions tend to be highly asymmetric. Especially the phases close
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3 Conceptual Design of the External Injection Experiment

Interval Lower Percentile Upper Percentile

50 % 25 % 75 %
80 % 10 % 90 %
90 % 5 % 95 %
100 % 0 % 100 %

Table 3.5 – Definition of the percentile-intervals in figures 3.28 to 3.34.

to the interval boundaries can have large deviations from the majority of data points, meaning
that the mean and variance can get extremely large by only a few outlying points. Of course,
this is also caused by the small number of sampling points, based on the steps of about three
degrees in the preceding start-to-end simulation.

Therefore, another measure is additionally used, which is less sensitive to the influence of these
outlying points, and in addition provides a method to determine the symmetry of the distribution:
The median, combined with so-called percentiles [93, 94]. The median of a distribution simply
separates the higher half of numbers from the lower half. This means the same amount of
sample points is located on the left side of the median as on the right. In a similar manner, the
first quartile is the intersections where 25 % of the distribution have a lower value and 75 % are
larger. The third quartile marks the exact opposite: 75 % of the values are below that boundary,
and the rest above [95]. The median in that sense is the second quartile. The percentile is
a generalization of that definition to arbitrary percent ratios. These measures directly include
possible asymmetries in the distribution, since for example the first and third quartile are specified
to be lower/higher than the median – in contrast to the standard deviation, which does per se
not tell anything about the distortion of the distribution and the direction of deviations. (This
would be contained in the third moment, also called the skewness.) Also, the percentiles provide
an estimate how many bad points lead to the deviation.

In the graphs of this section, the following percentiles are used and combined: The median gives
the trend, while the first and third quartile mark the upper and lower boundary of the region into
which half of the deviations fall. The 80 % region is likewise defined by the 10 %-to-90 % span, to
the median. The other intervals are similarly defined by such symmetric borders; please see table
3.5. The processing of the data by this method thus combines the 41 results into a trend line,
which is less sensitive to possible large deviations of single outliers compared to the mean value.
Also, the number of outliers and the shape of the distribution of the results is included. The
graphical illustration can be treated similar to level curves, giving the number of cases within
the respective interval.

The following analysis is divided into two parts. The first one concerns errors which lead to
transverse symmetric deviations while the second one deals with errors that result in different
deviations in the horizontal and vertical plane. The reference values are taken from the ideally
matched case in section 3.4. The value is determined at the entrance of the plasma channel. The
resulting beam parameters are obtained at the end of the channel.
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Figure 3.28 – Variation of the beta function at the beginning of the plasma with respect to the matched
parameter, βm. Only symmetric quantities are influenced. The main deviations occur in
the emittance (c) due to a mismatched beam, and tied to this an increased divergence (d).
The relative changes in the mean energy (a) and the rms energy spread (b) are on a percent
level or less. The shaded areas marking the percentile sections will be kept throughout all
tolerance plots in the following; the percentage values apply to these areas. The mean, as
well as the standard deviation are plotted for reference. 41 equally spaced phase settings
in the range of ξ = −381 μm to ξ = −490 μm have been analyzed and are depicted in the
distributions illustrated by the percentiles.

Beta Function and Correlation Parameter

The first parameter to be varied is the beta function at the start of the plasma. Consequently,
this leads to a mismatch of the beam, compared to the reference. Since the focusing elements
before the plasma are only solenoids, the deviations should by symmetric, i.e., the radial beam
shape is scaled, but not deformed. The radius is varied within a range, starting with a factor of
0.5 and ending with 2.5 times the initial value. The output should be symmetric as well, since the
plasma fields obey the same symmetry. Thus, only four quantities are analyzed: Mean kinetic
energy 〈T 〉, energy spread Trms, transverse emittance εxy, and divergence x′rms. As can be seen in
figure 3.28, the first two (longitudinal) quantities are not influenced, as for e.g. 〈T 〉 varies by less
than 1 %. The median of the energy spread is also in that range. However, there are fluctuations
of a few percent. The emittance, however, is drastically increased by the mismatch. This applies
to both cases, if the beam size is either too small or too large. An increase of β by a factor of
two also doubles εxy. Likewise, the divergence is increased by a factor up to two. Since the rms
emittance is given by ε2

x =
〈
x2〉 〈x′2〉−〈xx′〉2 [compare (2.5)], but scales similar to the divergence

this means that there are no additional correlations added by the mismatched plasma passage.
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Figure 3.29 – Dependencies of the symmetric beam quantities on the correlation coefficient, α. The longi-
tudinal parameters, i.e., mean energy (a) and rms energy spread (b) show no considerable
influence, the emittance (c) and divergence (d) are increasing. (Basically, a change in α

also amounts to a mismatched beam.)

As a side note it should be mentioned that the emittance behavior is an example for the shift
of the mean by outlying parameters with respect to the median, showing the highly asymmetric
distributions and large influence of those outliers.

The behavior of all four quantities is as expected. The beam size at injection should not alter
the energy parameters greatly because the phase is unchanged. The emittance must, of course,
grow, since the beam is no longer matched, as discussed in section 3.2. In the matching analysis
of the previous chapter, a similar emittance growth for the real beam could be observed. It was,
however, weaker than figure 3.28(c) would suggest. A direct comparison of the two graphs is not
valid, though. In the previous chapter, the beta function of the virtual focus was analyzed, while
in this discussion, the beta function is taken at the beginning of the plasma, instead.

The increased emittance is attributed to a similarly increased divergence, which enters the cal-
culation of εxy. For the experimental situation, these increases are, however, not as bad as one
could assume: An increase of the incoming emittance by a factor of two is still on the 100 nm rad
level. Finally, the divergence increases to a few mrad, and should so be transportable towards
the detector without considerably beam loss.

A change of the correlation parameter, α, shows a very similar behavior; see figure 3.29. It is
depicted in figure 3.29. In the end, it also changes the beta function at the matching point,
which means that the results are comparable. In this case, the linear phase space correlation,
−(α/β)xrms, has been varied within ±1 mrad. Since the reference value is not zero, the behavior
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Figure 3.30 – Variation of the electron bunch length. The rms energy spread (b) is influenced most, while
the mean energy (a), as well as the transverse emittance (c) and the divergence (d) stay
constant for the main part of the analyzed phase interval. Certain outliers can be explained
by parts of longer bunches reaching into the defocusing regions.

is slightly asymmetric. Again, this has almost no influence on the energy parameters and only
causes an increase of the transverse quantities by a factor up to two. Hence, although the beam
is not perfectly matched, it should still be measurable within these boundaries.

Bunch Length and Arrival Time

The bunch length is the next parameter to be screened. Again, the assumption is that no
asymmetric effects will occur. The results are shown in figure 3.30. There is no deviation in the
energy, since the phase is unchanged. The energy spread, thought, shows a clear dependence:
Since a longer bunch covers a larger phase interval, it, thus, accumulates a larger correlated
energy spread – and vice versa for a shorter bunch. Rearranging the definition of the symbol
δ[ · ], one obtains

Trms
Trms,ref

= δ [Trms] + 1, (3.22)

which yields that the relative change in ζrms/ζrms,ref directly translates into the relative change
of the rms energy spread. For example, at ζrms/ζrms,ref = 2, the analysis results in δ[Trms] = 1
according to figure 3.30(b), and thus Trms/Trms,ref = 2. The change in the energy spread is hence
purely due to the correlated contribution added by the wakefield.

In the majority of steps in the analyzed phase interval, emittance and divergence remain un-
changed. The median is a constant line, which also covers the 50 % region almost entirely. (It
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Figure 3.31 – Dependency of the output parameters on the arrival time. As to be expected, the resulting
mean energy (a) correlates with the deviating injection phase. The other quantities, i.e.,
rms energy spread (b), emittance (c), and divergence (d), are less affected according to the
median, but show a larger variation, especially for large deviations in ξ: Here, more and
more bunches from the good-field interval enter the defocusing section.

is thus a very peaked distribution.) For larger bunch lengths there are certain outliers, probably
caused by parts of longer bunches reaching into the defocusing fields. Also, the increased energy
spread will lead to an emittance growth in the subsequent drift. Nevertheless, a variation of the
bunch length in the analyzed range does not pose a risk to the experiment.

A major issue in conducting the experiment is the synchronization of the laser with respect to
the electron gun. Scanning the plasma wakefield requires a much more stable locking between
the systems than the plasma period. According to [33], a few 10 fs should be achievable. Thus,
ξ is scanned in the limits of δξ = ξ − ξref = ±15 μm ∧= ±50 fs. Of course, this will alter the
final energy, because it means that the acceleration subsequently happens on a different phase.
The deviation is up to 25 % and, thus, larger than the range covered by the eSpec detector.
An analytic estimate yields a comparable value: A shift of δξ = 15 μm corresponds to a phase
offset of δφ = 2πδξ/λp ≈ 0.28 rad. The slope of the cosine is maximal around the zero crossing.
Approximating the deviation in energy at this point by a Taylor expansion simply amounts to

∆T ≈ A cos(kpξ)−A sin(kpξ)kpδξ. (3.23)

The cosine vanishes, since it is at the zero crossing, while the sine is equal to one. A is the
maximum energy gain of the accelerating field, which was determined above to A = −6.45 MeV
(equation (3.13)). Moreover, the reference energy is Tref = Tin = 5.6 MeV, because no mean
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energy gain is acquired at the zero crossing. From that it follows that

δ [T ] = T − Tref
Tref

= ∆T
Tref
≈ 1.2 δφ ≈ 0.3. (3.24)

The eSpec screen only covers an energy range of about ∆pz/ 〈pz〉 ≈ ±10 %. Thus, the timing
is required to be within δt < ±25 fs to resolve every shot. The other way round, the plasma
provides a measurement for the level of the synchronization achieved – assuming the wakefield
behaves as expected. If the timing is not as good as required, not every shot will hit the detector,
which would be unsatisfactory, but does not spoil the experiment.

For the majority of cases, the other three parameters – mean energy, emittance, and divergence –
are again almost not influenced and show a slightly linear correlation. All of this is simply based
on the phase offset, which leads to a slightly different slope of the field, which in turn explains the
altered energy spread. It also accounts for the change in emittance, since the matching condition
is calculated for a different phase. The divergence is increased in a similar manner. The latter is,
however, only very mildly affected. The emittance change shows that, in principle, the matching
has to be adjusted for each phase. Moreover, there are several outliers, which are again caused
by bunches being shifted into the defocusing region. (These bunches will not reach the detector
in any case.) Here, the advantage of using the median as measure can also be seen: Especially in
figure 3.31(c), where the emittance is depicted the mean is artificially boosted to extreme values
by only 5 % of the cases, while the majority yields almost identical results.

Spatial Offset and Beam Pointing

Apart from the rotational symmetric input parameter variations, there are two asymmetric devi-
ations which should be analyzed: an off-axis injection into the plasma and the injection with an
angular variation. Both scenarios are likely to happen due to pointing instabilities of the laser,
which defines the symmetry axis of the wakefield.

Thus, an offset scan has been performed, increasing the distance to the plasma axis from 〈xin〉 =
0 μm to 〈xin〉 = 25 μm, which corresponds to about half a laser spot diameter in the focus;
the laser (and laser transport) is assumed to provide a stability on that level. The number of
quantities to be analyzed increases due to the symmetry breaking. Emittance and divergence
have to be treated in both planes, while in addition an offset as well as an angular deviance of
the exiting bunch could occur. The results are shown in figure 3.32.

As in the previous cases of an unchanged injection phase, the energy is almost unaffected with
changes on the order of 1 % or less. The energy spread is also only mildly affected; the phase
interval covered is unchanged, after all.

In contrast, the emittance in the offset plane is rising up to six times the reference value. But it
is still below ε = 1 μm rad, taken a reference value of about 100 nm rad. Of course, an influence
of the emittance was to be expected.
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Figure 3.32 – Deviations caused by an off-axis injection in x-direction. Emittance (c) and divergence (e)
in the off-axis plane show a great dependence, while the influence of the respective quantities
(d,f) in the other plane is much less. The same holds true for the resulting off-set (g,h) and
beam pointing (i,j); these quantities are almost unaffected in the y-plane. The changes to
the mean energy (a) and the rms energy spread (b) are on the level of a few percent only.
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Figure 3.33 – Phase space distribution for an off-axis injected particle bunch into a plasma wakefield. The
beam is injected at a decelerating phase. Due to the additional dipole component, the beam
wiggles around the symmetry axis given by the plasma. Since the dipole strength varies
along the bunch, the beam is pulled apart. The change in energy changes the influence
of the plasma fields and thus the amplitude of the oscillations. The combination of these
effects results in a spiralized phase space distribution.

An off-axis injection means that the bunch as a whole sees a deflecting force towards the symmetry
axis defined by the laser. The deflection can be described by an additional dipole component
present on top of the focusing term, analogous for example to an off-axis passage in a quadrupole
magnet. The bunch acquires transverse momentum and starts to wiggle around the symmetry
axis of the wakefield. In the phase space picture this means that the whole bunch now rotates
on an ellipse, the center of which is defined by the laser axis. Like in the case of the focusing
forces, the dipole component varies along the bunch, and hence the associated rotation speed in
phase space is different for the separate bunch slices. As a result, the phase space distribution is
pulled apart – an analogous effect to the fan out of the slice emittance ellipses discussed in section
3.2; [39, 57]. The effect can be seen in figure 3.33. If a bunch is injected on purpose in such
an off-axis configuration, the correlation of the transverse fields strength with the longitudinal
position can be exploited to build a plasma-based diagnostic similar to a transverse deflecting
structure [63, 96]. The plasma interaction must be limited to dimensions much shorter than an
oscillation period for this application.

The additional spiralization in the phase space of figure 3.33 is attributed to the change in energy
of the bunch. The action of the deflecting forces depends on the inverse of the Lorentz factor
γ, and thus, the acceleration of the beam changes the dipole strength for each slice. Therefore,
the amplitude of the oscillation is no longer constant. In the case of figure 3.33, the bunch is
decelerated, so that the dipole component is increasing, and hence the amplitude gets smaller.
That is, the beam spirals around the plasma axis defined by the laser. The rms emittance of such
a structured phase space distribution is consequently increased compared to the initial shape.

In the vertical plane, the emittance increases only very slightly for the majority of cases. Just
some outliers reach values of several 10 % and more. In this plane, the focusing is still symmetric
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with respect to the bunch position. But, due to the transverse oscillation of the bunch as a whole
in the horizontal plane, that focusing force gains an additional breathing, so that the matching
is getting spoiled. Yet, the effect is rather small.

Looking at the divergence, there is a similar behavior to the one described for the emittance. In
the x-plane, there is a huge increase, up to the double of the reference value, while the y-plane
is influenced much less. The explanation for this is the same as for the emittance discussion:
The transverse wiggling in the offset plane changes the momentum distribution which is the
divergence. In the second plane, the mismatch manifests due to the different – but still symmetric
– forces.

The offset at the exit is almost symmetric with respect to the plasma axis: In this case, the
absolute value is plotted – including the initial offset. However, the mean and median values
are below this initial offset. This can be attributed to the oscillation potential, which has its
minimum at the symmetry axis of the wakefield. That is, despite the offset injection, the rest
position of the oscillations is still the plasma axis. The exit position depends on the oscillation
period, which is in turn connected to the forces acting. These, however, vary across the different
injection phases. And thus, the exit positions will be distributed around the plasma axis, rather
than around the offset axis at injection. Still, a slight trend of the offset is also visible, but is is
not even half of the initial offset at injection. Importantly, the resulting offsets are small enough,
so that there does not occur a clipping of bunches at the walls of the plasma target. The y-plane
is not affected at all, which is to be expected due to the symmetry.

The angular deviation of the bunch at the exit of the plasma due to an offset injection shows a
similar behavior to the resulting offset at the plasma exit. In the vertical plane, figure 3.8(j), there
is no influence. But, in x, the bunches are expelled, almost symmetrically distributed with respect
to the beam axis, with a standard deviation of up to 〈x′〉rms ≈ 3 mrad. The behavior is likewise
explained by the betatron oscillations, the whole bunch experiences. The magnitude of the
angular deviance seems to be manageable, except when the offsets are too large: In combination
with the associated beam divergence, the beam transport gets critical, due to possible particle
loss at the beam pipe.

As a side note, due to the acceleration also adiabatic damping effects can be expected. In the
case of an acceleration, the divergence is decreased since the ratio of transverse and longitudinal
momentum is decreased [64, 65]. At the same time, the deflecting and focusing forces decrease
due to the scaling with 1/γ, leading to larger oscillation amplitudes – which is coupled to a
reduced divergence as well. For the decelerating phases these effects are reversed. Hence, the
effects are expected to be less critical for the accelerating part of the wakefield.

Finally, the injection under an angle is analyzed, see figure 3.34. The injection point in this case
is on the symmetry axis and the rotation is in the x-plane. The energy is – once again – not
influenced. Also the energy spread is only very mildly affected for larger angles. The quantities
in the y-plane also do not see great effects, since in this case, the symmetry is unspoiled. The
minor variations in the symmetric transverse quantities, i.e., εy and y′rms, can be attributed to
the additional deviation in the focusing forces due to the betatron motion in the x-plane: Due
to the angle between laser axis and electron trajectory, the whole bunch drifts off-axis, until
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Figure 3.34 – Beam parameter changes for an angular deviation in x-direction. Mainly the values in the
x-z plane are influenced, i.e., emittance (c), divergence (e), offset (g), and beam pointing
(i). The respective quantities (d,f,h,j) in the y-z plane show very little changes. The mean
energy (a) and the rms energy spread (b) are also almost unaffected.
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Figure 3.35 – Deviation of the beta function at the end of the plasma channel for the variation of sym-
metric input parameters, i.e., the beta function at the plasma entrance (a), the correlation
parameter (b), the bunch length (c), and the injection phase (d). Mean and median of the
distributions are close to zero. For most cases, the deviations are on the order of a few 10 %
or less.

the transverse momentum is overcome, leading to a similar situation like in an off-axis injection
scenario discussed above. Hence, the same pattern results in the x-quantities: The emittance
and divergence increase, but to a manageable degree.

Since there is an overall transverse momentum present in the bunch distribution, there exists an
additional asymmetry. This manifests in the asymmetric distributions of final offset and angle,
which clearly follow the trend of the input angular deviance. Since the transverse momentum
is not zero, the beam has a mean drift away from the axes around which it oscillates. The
parameters gained from this trend analysis are not dramatic, and, in addition, the laser pointing
jitter is expected to be on the order of 100 μrad; see chapter 4.

Beta Function for Beam Transport

In this context, one should also investigate the development of the beta function at the plasma
exit, βpe, since this parameter defines the beam size and resolution at the spectrometer. Figures
3.35 and 3.36 show the results for all parameters varied in this section. In the first figure, the
symmetric cases are depicted, while in the second one the asymmetric parameters are plotted. The
variation of the beta function in all cases is typically below a factor of two. Thus, according to the
analysis in the previous chapter, figure 3.26, the beta function should not degrade the resolution
to an unfeasible value. One should, however, keep in mind that also increased emittances will
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Figure 3.36 – Deviation of the beta function at the end of the plasma channel for an off-axis injection
(a,c), and an angular deviation (b,d). For the latter, no considerable increase in the beta
function is determined in both planes. For the offset, an increase of median and mean by
about 50 % can be observed in the offset plane (a). A few cases show enhancement by more
than a factor of two. Still, the image quality at the eSpec should be sufficient.
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enlarge the spot size at the eSpec screen. Hence, especially transverse offsets should be minimized
as best as possible.

Conclusion

For the analyzed parameters, it follows that especially deviations in arrival time and spatial offsets
have a considerable impact on the beam parameters at the exit of the plasma channel. Sources
for such deviations are mainly identified to be the timing jitter between Angus and Regae
and the pointing instabilities of the laser, respectively. Therefore, a high degree of stability in
terms of synchronization – ideally (much) better than 25 fs on target – is mandatory. Likewise, a
minimization of laser pointing jitter is essential, so that the transverse focus position fluctuates
less than half of the laser focus size. The latter possibly requires a stabilization concept for the
laser transport beam line, for example using fast, piezo-based adaption of the mirrors to the
signal of a high repetition rate pilot laser beam [97]. Fluctuations in the beam path of the 5 Hz
Angus pulse could be reduced by this method. However, the laser stability on target has not
been measured yet. A final conclusion regarding this instrumentation can thus not be made at
this point in time.

In case the stability of this jitter sources cannot be increased to the required level, the experiment
can still be executed. However, it is necessary to acquire a large statistics, so that the impact of the
fluctuations is reduced by averaging over the results for each nominal injection settings. This also
allows for a sorting of the results with respect to the reference given by the average. Furthermore,
it provides a measure which makes it possible to identify and exclude strongly deviating shots
resulting from large fluctuations. If, in addition, the fluctuations can be measured independently,
a correlation with the respective single-shot spectra is possible.

For the timing, in the worst case, not every shot is successfully recorded by the eSpec detector,
since it is only this parameter, for which the energy shows a significant variation. An on-target
arrival time diagnostics is planned, which enables a sorting of the results and the attribution of
lost shots. This, however, depends on the resolution of this so-called beam arrival cavity, which
is still under development. Asymmetric injections, in particular transverse offsets resulting from
the pointing jitter of the laser, could be more problematic. The large emittance growth due to
phase space mixing and spiralization can spoil the measurement, because of the enlarged image
at the eSpec detector. However, the spiralization shows a clear dependence on the longitudinal
bunch coordinate, meaning that the image at the eSpec will show an oscillating pattern, that
might be clipped due to the amplitude of this oscillation, but still can be attributed to this effect.
The imaged structure thus reveals the spiralization, and allows for a sorting of these shots and
moreover for an analysis of this effect. Also here, it may happen that some shots are lost, but
the impact can be overcome by a sufficiently high statistics. Furthermore, the post-plasma laser
diagnostics is planned to record the final pointing direction, allowing for a correlation of the
results with the pointing jitter.

For the non-jitter deviations, like a mismatched beta function, the influence on the beam quality
is weaker. And since these errors are systematic, parameters can be optimized by scans, for
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example, minimizing the beam spot in the dispersion plane of the eSpec. This approach is of
course hampered – but not spoiled – by the possible high statistics required due to fluctuations
based on temporal and spatial jitter.

Especially the average energy can by determined in almost any scenario, because this parameter
is only notably influenced by the beam arrival time. Apart from that, an image larger than the
detector screen hampers the measurement of the energy spread. Thus, the first experimental
campaign, which will be dedicated to the final energy depending on the injection phase, should
be realizable. The experience gained from that can then be included in further investigations.
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4 REGAE Beamline Upgrade

Knowing the key constraints to the external injection experiment from the concept and analysis
presented in the previous part of this thesis, the required adaptions of the Regae beam line to
the demands of the experiment can be described in the following chapter. Apart from the Regae
front-end, which contains the accelerating structures, the whole beam line will be rebuilt.

The following description is structured according to the sections of the whole setup. First, the
laser which has to be included into the system, as well as the required laser transport beam
line will be introduced. This part has been developed by members of the Lux team [25]. The
planning and design of the electron beam line, which is presented afterward, was part of this Ph.D.
project. In particular, the interaction chamber and the differential pumping scheme developed
in the course of this work are thus discussed in detail.

4.1 Laser

The Angus laser system is housed close to the Regae facility. Angus is a titanium sapphire
(Ti:Sa) based high-power laser system providing pulses up to 200 TW at a repetition rate of 5 Hz.
The amplification of the light pulses to energies of about 5 J is accomplished in an amplifier chain
based on the chirped pulse amplification technique [2]. After the final compression, the pulse has
a duration of 25 fs. The transverse intensity profile at this stage is of a super-Gaussian shape of
eighth order with a 1/e2 beam diameter of W1/e2 = 76 mm, as already discussed in chapter 3.3.
The main parameters of the laser system are summarized in table 4.1.

The laser is a commercial system with a focus on availability and stability. In order to maintain
and improve the already outstanding performance, the laser group has implemented a multitude
of diagnostics and automations. Being attached to an accelerator center, the philosophy is to treat
the laser like a klystron1 [98]. In accordance with this underlying idea, all diagnostics, as well
as the automatization and feedback systems are implemented in the standard Desy accelerator
control system.

The system is mainly used for two purposes. On the one hand, it serves the Lux experiments
[25], where the focus lies on self-injection based LWFA, and the application of these accelerators.
Especially LWFA-driven x-ray light sources are on the agenda of this experimental campaign,
basing on the previously achieved results: the generation of LWFA driven undulator radiation at
a wavelength of λ = 17 nm [17, 18] as well as the stabilization and advancement of this source
towards higher photon energies at λ ≈ 4 nm, which lies in the so-called water-window [19, 20].

1A klystron delivers the rf pulses powering conventional accelerating structures.
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4 REGAE Beamline Upgrade

Parameter Value Remark

peak power 200 TW
pulse duration 25 fs fwhm minimal
repetition rate 5 Hz
pulse energy 5 J
relative energy stability 1.5 % rms over 500 shots
contrast ratio 1010 : 1 at 100 ps

108 : 1 at 10 ps
central wavelength 815 nm
spectral bandwidth 40 nm fwhm
Strehl ratio 0.9
beam pointing stability 3 μrad rms over 500 shots
beam profile super-Gaussian 8th order
beam diameter 76 mm 1/e2

REGAE Beam Line Specific

pulse duration 100 fs fwhm beam damage limit
effective focal length 4.2 m
Rayleigh length 3.1 mm simulation
focus position stability 25 μm rms assumptions
focus pointing stability 100 μrad rms assumptions

Table 4.1 – Main performance parameters of the Angus laser system [78] and pulse properties in the
focus at the Regae beam line. The lengthened laser pulse in the Regae case is necessary to
stay below the damage threshold of the coating of the last mirror before the focus.
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4.1 Laser

The ultimate goal is the demonstration of a laser-driven free-electron laser [19, 21, 22]. Once
again, the main objective is to improve the LWFA technique so it becomes a usable and reliable
tool.

The other experiment Angus is planned to be used for is the external injection campaign de-
scribed in this work. Since there is naturally a big overlap of the experimental environment and
demands, there is, of course, also a big overlap of design concepts and a constant exchange of
ideas with the Lux group. Lastly, both systems are LWFA-driven with a focus on reliability
and stability and connected to the same laser, which in turn is attached to the same vacuum
system of a conventional accelerator. Hence, both experiments have a lot of problems in common,
resulting in joint efforts to find solutions for them. The presented results are based on a very
fruitful collaboration with the Lux group [25].

4.1.1 Laser Transport Beam Line

The last element in the Angus amplification chain is the grating based compressor. At the same
time, it is the first segment of the Laser Transport Beam Line (LTBL). Like the whole LTBL,
the compressor is part of the vacuum system, in contrast to the amplifier chain, which is operated
in air. Since the accelerating cavities of Regae are located at the other end of that tube system,
it needs to be compatible with Desy vacuum standards [27]. This approach is in line with the
intent to build and set up a reliable (laser) system.

The LTBL is depicted in figure 4.1. From the compressor onwards the pulse is transported over
a distance of about five meters. There it passes the so-called switch yard, where the beam can
either be sent to the experiments in the Lux tunnel or to Regae. On the second route, which has
an approximate length of 30 m, there are seven turning mirrors. The mounting of the mirrors, as
well as the chambers and the support were carefully designed in order to minimize the influence
of external vibrations [99]. Furthermore, at each mirror, the position and pointing direction of
the laser pulse can be determined by the analysis of the leakage signal through the deflector.
Additionally, four of the turning mirrors are motorized, so that the laser beam alignment can
automatically be adjusted and monitored.

At the end of the LTBL, the chamber for the final focusing parabola is mounted. It is named
MBA and based on the design of its big sibling installed at the Lux beam line, especially the
sophisticated parabola alignment based on (motorized) universal joints [100]. The 12.5 deg off-
axis parabola has an effective focal length of f = 4.2 m; the focus position can be shifted by
about ±20 mm by an according shift of the parabola. Just like in the turning mirror chambers,
position and beam pointing can also be diagnosed at this essential spot.

From the MBA onwards the beam size reduces. However, it still has to pass one mirror, located
in the so-called Incoupling Chamber (Regae), ICR, which is the entry point into the Regae
beam line; see figure 4.2. From there on, electrons and photons travel along the same pipe.
This has some peculiar implications. First of all, it leads to the overtaking problem discussed
in chapter 3. The necessity of the 2.8 m long co-propagation towards the focus results from the
damage threshold of the ICR mirror coating: The beam has a diameter of about 50 mm at that
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4 REGAE Beamline Upgrade

CR8

CR7

CR6
CR5

CR4

ICR

MBA

z

CL2: switch yard

CR3

to Lux

from
compressor

Regae
electrons

Figure 4.1 – Laser transport beam line from Angus to Regae. The turning mirror chambers are labeled
by CR3–CR8. The MBA houses the final focusing parabola while the laser enters the Regae
beam line at the ICR. Concept by the Lux team [25] and D. Kocoň (ELI Beamlines. Prague,
Czech Republic).
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4 REGAE Beamline Upgrade

point and, thus, about 2.5 times the intensity as compared to the mirrors in the LTBL. This
is close to the damage threshold of the already optimized coating, leaving not much room for
possible transverse intensity fluctuations and hotspots. However, a coupling into the beam line
further upstream towards the cavities is not possible, since there is no space, and even if it were
possible, the beam would be clipped by the cavity irises.

This problem of intensity is also the reason for the lengthening of the pulse to 100 fs, since the
company providing the mirror does not have specifications for standard Angus parameters, and
thus cannot guarantee the suitability. However, the scaling of the wakefield strength with pulse
length is rather weak: On the one hand, one looses a factor of

√
4 = 2 in terms of a0, but on the

other hand, the wake is driven closer to the resonance, which almost compensates for this, so that
the amplitude of the wakefield is nearly the same [3, 39]. A reduction of the focal length instead
is not an option. In this case, the Rayleigh length would be shortened, so that the accelerating
region would be reduced, as discussed in the previous chapter.

The mirror in the ICR has to have a hole of a diameter of 5 mm for the electrons to pass through
it; (for this reason, this special deflector goes by the name of holey mirror). To avoid charge up
effects due to dark current electrons from Regae being dumped into the mirror material, a thick
collimator is located upstream of the mirror substrate, so that the electrons are stopped before
they reach the substrate. Charge concentrations inside the mirror would lead to a static field,
possibly influencing the accelerator’s electron beam, and in the worst case also could lead to the
mirror breaking because of uncontrolled discharge.

The effect of the holey mirror on the focus quality has been analyzed by [61]. Since the hole cuts
a fraction of the beam, deviations from the sinc2 distribution are possible. The analysis using
zemax [77] shows slightly enhanced wings of this distribution. In order to also measure and
verify the difference, it was decided to add a second mirror without a hole, but with identical
parameters. This, of course, requires the mirrors to be motorized. However, this was planned
all along: The holey mirror reduces the aperture for the electron beam, meaning it needs to be
removed if it poses a problem for the other experiments at the Regae beam line; see chapter
4.2.1. In addition, if the mirror charges up – despite the precautions to avoid this – it is inevitable
to remove the item from the beam path.

The next chamber within the joint beam line section that is relevant for the laser is a vacuum
cross – LD1e: Laser (and electron) Diagnostic 1 – containing a so-called wedge which can be
driven into the beam path and deflects a fraction of the laser pulse towards the pre-target laser
diagnostics table. With this diagnostics stage, the lasers caustic and intensity profile can be
analyzed close to the focus. Without the wedge, the beam travels towards the target chamber,
where it enters the hydrogen filled gas cell and creates the desired plasma wakefield. In order
to properly align the beam, there are also several sapphire screens close to the target to allow a
determination of the beam position and axis; see also section 4.2.2.

Behind the target section, the beam is decoupled from the beam line at the Laser Diagnostic
2 chamber (LD2). Once again, a holey mirror is used at this point, so that the electrons can
pass this deflector, since the electron spectrometer has to be located further downstream. The
mirror is about two meters behind the target and, thus, even closer to the laser focus than the
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4.2 Electron Beam Line

ICR deflector. Hence, it is subject to an even higher fluence. Of course, it would be preferable
to first deflect the electrons and then mirror out the complete laser beam, but the beam line
diameter is reduced to a size smaller than the laser beam diameter behind the present position of
the mirror owing to the requirements of another experiment. The electron Spectrometer (eSpec)
also cannot be shifted closer to the target, since there is either not enough space or, where there
is space, the eSpec chamber does not have a wide enough aperture for the laser. Thus, the mirror
position cannot be shifted, leading to the unfavorable situation described, completed by a second
simple (safety) mirror behind the eSpec inside the Laser Out cross (LO). The mirror deflects
the remaining fraction of the laser pulse, in order to safely dump the photons and protect the
diffraction detector located further downstream.

The main diagnostic for the laser is located at LD2. The pulse is weakened by the reflection at
several wedges and then sent to the diagnostics table. Here, the laser profile after the interaction
is analyzed – as good as possible despite the second hole, which will have an influence, of course.
(Also here, a variant without whole is planned, to analyze that effect.) Furthermore, beam
parameters like pointing direction, position, spectrum and especially the pulse length will be
diagnosed, using the FROG technique [101]. The laser diagnostics is a copy of the version used
at Lux, but has not been finalized yet. Thus, it is still subject to changes.

A redundant safety and control concept is required to ensure that all relevant mirrors are in the
right positions: It is important, that the laser only can be sent in, if all three mirrors are driven
in the Regae beam line, while electrons only are allowed if no or only holey mirrors are in. Joint
operation is only possible with the combination of holey mirrors and safety mirror.

4.2 Electron Beam Line

4.2.1 REGAE

The Relativistic Electron Gun for Atomic Exploration (Regae) is a small conventional, yet
novel, accelerator designed to deliver low charge, ultra-short high quality electron pulses. The
machine consists of two accelerating rf structures: the electron gun and the buncher cavity, both
operated in the S-band at 3 GHz. The front-end of the machine is depicted in figure 4.3.

The electron gun is a scaled version of the electron source used at the Flash2 accelerator, which is
operated at a different rf frequency. It is a so-called photo gun, meaning that the electron bunches
are produced by use of the photoelectric effect of a laser pulse shining on the photo cathode. The
cathode plane marks the origin of the accelerator coordinate system. The particle cloud, which
is released by this process, mimics the shape of the triggering light pulse. By this means, a
high level of control over the initial electron distribution is achieved, for example enabling the
beam quality that is required for the operation of an FEL like Flash or the European Xfel.
Also, other beam manipulations, as discussed in the next chapter, are enabled by these electron
sources. In the case of Regae, the electrons are released by frequency tripled Ti:Sa laser pulses

2Flash is a (conventional) soft-x-ray FEL facility operated at Desy.
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z

DDC1

collimator

Sol 1
electron
gun

buncher
cavity

DaMon1

DDC2

Sol 2/3

Figure 4.3 – Schematic of the Regae front-end shown from the side. DaMon1 marks the interface to the
next segment.

——–
DaMon1: Dark current Monitor 1 — DDC: Double Diagnostic Cross — Sol: Solenoid.
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with a wavelength of about 270 nm. The pulses typically have an energy of about 150 nJ within
∼ 500 fs fwhm [102]. Ideally, the laser is focused to an rms spot size of a few 10 μm, enabling
the low transverse normalized emittance (ε ∼ 30 nm rad) of this machine.

Within the 1.5 gun cells, the electrons are accelerated by a field gradient of up to 120 MV/m,
so that bunches with a maximum kinetic energy of 〈T 〉 = 5.6 MeV are produced. In the second
cavity, the buncher, the particles do not gain additional energy. Instead, this four-cell cavity is
operated at the zero crossing of the longitudinal sinusoidal field, such that the electrons in the
head of the bunch are decelerated, while the trailing electrons gain energy. As a consequence,
the faster particles at the back will outrun those in the front of the bunch, leading to a reduction
of the bunch duration up to the longitudinal focus, which is reached at the position of the
target chamber. In that sense, the buncher cavity can be seen as a longitudinal lens, since the
description in the phase space is equivalent to that of a transverse focusing element. After that
point, at z = 5.5 m, the beam expands again, due to the still present energy spread. For a formal
description of this process, which is called ballistic bunching, please refer to the next chapter.
After the beam has passed the target area, it drifts up to the diffraction detector and is dumped.
At the moment, both cavities are fed by one klystron, the power of which is distributed by means
of a splitter and a phase shifter. Since this, however, is not ideal and proves to be insufficient
to achieve the tolerances required for the design parameters of Regae, it is planned to install a
second klystron in the near future.

The magnet lattice of the machine consists of solenoid magnets and steerer magnets. There
are four magnetic lenses in total: one single solenoid (Sol 1) and three solenoid pairs (Sol 2/3,
Sol 4/5, and Sol 6/7). Sol 1 is located close to the gun, while Sol 2/3 is straight in front of the
buncher cavity. The other two lenses are positioned symmetrically around the target chamber
at zS45 ≈ 5.0 m and zS67 ≈ 6.0 m. The steering magnets are small dipole magnets arranged in
pairs, so that the beam can be deflected horizontally and vertically. The lattice is completed
by the dipole of the electron spectrometer, which is presently located close behind the buncher
cavity at about z = 2.6 m. Due to the low energy of the Regae bunch, the beam optics lattice
is complemented by a pair of Helmholtz coils, formed by two coils spanning the whole machine,
in order to compensate for the transverse component of the earth magnetic field [103].

The machine is equipped with several diagnostic stations, which typically house one or several
scintillator screens. These three so-called (Double) Diagnostic Crosses (DC and DDC) are
located behind the cavities and at the electron spectrometer [104, 105]. The scintillator material
used in theses stations is LYSO [106], because of its short decay time of about 50 ns and high light
yield [107]. This combination is complemented by intensified CCD cameras with a comparable
gating time, allowing to detect bunches of very low charge: At Regae, few 10 fC are typically used
and resolved by this technique [105]. The charge itself can be measured using so-called Faraday
cups, located in the three diagnostic crosses and at the end of the beam line. In addition, the
DaMon cavity provides another, very sensitive and non-invasive method to detect bunches with
a resolution below 10 fC [105, 108]. In the beam line from gun to DaMon1, two collimators are
installed, i.e., movable tantalum blocks with small holes of various sizes. They are used to stop
electrons from dark current. In addition it is possible to scrape of outlying fractions of the Regae
beam, shaping the phase space and improving the emittance [29, 109]. The machine up to the
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4 REGAE Beamline Upgrade

DaMon forms the front-end of Regae, containing all relevant parts for the acceleration, except
for the eSpec. It is depicted in figure 4.3.

Downstream of that section, there is – in the present version of the beam line – mainly drift space,
the target chamber, and the so-called diffraction detector at the end of the beam line; please see
figure 4.4. At the target chamber, a movable sample holder is installed, which also contains a
LYSO crystal, and various diffraction targets. The scintillator is imaged by an elaborate camera
system, allowing for different magnifications and a switchable intensifier [107]. At the target
chamber, a laser pulse, split of the injector laser, can also be coupled into the system to pump
target materials.

Finally, the diffraction detector is based on another type of scintillator. Here, CsI:Tl is used,
grown on a plate of optic fibers. In fact, a multitude of separate scintillator crystals is created
by this method, each having a diameter of 6 μm [110]. The advantage of a this configuration is
that light created inside the CsI crystal leaves the scintillator in a directed way, resulting in a
high spatial resolution and better yield than for a LYSO crystal [111]. These devices are called
Fiber Optic Scintillator (FOS) [110]. In combination with an intensified camera, they allow for
the detection of single electrons [112].

Furthermore, the combination of these devices allows for a high dynamic range. A detector of
that quality is necessary to detect single shot diffraction patterns resulting from the time-resolved
UED experiments, the purpose the machine is built for: At the low charge of 80 fC (about 5×105

electrons), a bunch length of less than τrms = 10 fs can be achieved at Regae. At the same
time, the low charge mitigates space charge repulsion at the gun cathode, enabling a very low
transverse emittance of about ε ∼ 30 nm rad. A bunch like that has a large transverse coherence,
enabling high quality diffraction patterns [42, 50]. Thus, Regae is well suited for single shot
diffraction experiments.

Moreover, owing to the moderate, but still relativistic kinetic energy of 〈T 〉 = 5.6 MeV (γ = 12,
β = 0.9965), the particles can penetrate comparatively thick samples, in contrast to low energy
machines of 100 keV electrons. On the other hand, the scattering cross-section is several orders
of magnitude higher than for photons used for comparable diffraction experiments [42]. Also, the
targets are not destroyed by the electron probe.

The machine, thus, offers the possibility to investigate, for example, phase transitions or chemical
reactions, which are triggered by a pump pulse split of the injector laser. Each snapshot taken,
thus, has a time resolution given by and ultimately limited by the bunch length on target and
the laser length, i.e., on the level of a few femtoseconds. This potential is also implied by the
accelerator’s name: Relativistic Electron Gun for Atomic Exploration. In short, the machine is
designed for one specific goal [40]:

“Making the molecular movie.” – R. J.D. Miller

Another project campaign planned at Regae is about so-called time-resolved transmission elec-
tron microscopy (TEM) experiments [42, 113, 114]. In this case, a real imaging of target objects
is aimed for, with the resolution limited by space charge. For this reason, strong solenoid lenses
of high quality are required, although they are not yet implemented in the machine.
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4 REGAE Beamline Upgrade

Finally, the external injection experiment discussed in the previous chapter is also designed with
Regae in mind and scheduled for that machine. But for both of these future experiments, a
major beam line adaption must first realized, the conception and design of which regarding the
external injection experiment is part of this Ph.D. project and, thus, described in the following.

4.2.2 Beam Line Upgrade

The illustration of the beam line upgrade is split into three sections, each of which is based on
certain segments of the machine. It starts behind the Regae front-end, which is unchanged,
with the subsequent drift. In this co-propagation section, the laser is coupled into the main
beam line. Then, there is the interaction region, containing the target chamber and required
infrastructure. Finally, the area after the interaction chamber, sometimes called post-plasma or
diagnostics section, also requires a huge amount of rework. Naturally, the sections overlap with
the already described path of the laser.

Co-propagation Section

The co-propagation section starts directly behind the Regae front-end, i.e., after DaMon1. An
illustration of this segment is shown in figure 4.5. The electron spectrometer has to be removed
and is shifted downstream behind the target chamber, so that also the particles passing the
plasma can be measured. Instead, the ICR chamber is placed at this point. It contains the last
turning mirror and three pumping ports, as the chamber is a key element for the differential
pumping, described in section 4.4. A vacuum shutter between the ICR and the MBA, containing
the final focusing parabola, makes it possible to separate the accelerator vacuum system from
the laser transport beam line.

Importantly, the overall diameter of that section has to be increased, starting with pipes of
a diameter of D = 100 mm, reducing step by step, following the lasers caustic with a safety
margin of about the 1.65-fold3 of the 1/e2-diameter to avoid clipping. Within the drift section,
two additional pumping chambers (nEVOC3, NEGcross), separable by a vacuum shutter, are
foreseen. This is important insofar as the pump further upstream is a so-called non-evaporable
getter pump (see section 4.4) which cannot be switched off. Hence, without the shutter, this
pump would be saturated every time the target chamber is vented. Between the two pumps, a
diagnostics cross for laser and electrons is housed (LD1e). A screen for the latter is required for
the matching, though it is not situated directly at solenoid 4/5, which is located close to the
target chamber at the end of the co-propagation section.

The last element before the interaction section is the Beam Arrival Cavity (BAC). As the name
suggests, it is a device to determine the arrival time of the electron bunch. The reference signal
for this measurement will be the Regae master oscillator. At a later stage it would be desirable
to directly reference the signal to a fraction of the Angus pulse. Thus, a timing reference close

3The factor of 1.65 is deduced from the ratio of the laser beam diameter and the effective mirror size in the laser
transport beam line.

92



4.2 Electron Beam Line

IC
R

M
B
A

D
aM

on
1

z

pu
m
ps

sh
ut
te
r

LD
1e

nE
V
O
C
3

So
l4
/5

B
A
C

in
te
ra
ct
io
n

ch
am

be
r

LT
B
L

N
EG

cr
os
s

Fi
gu

re
4.
5
–
Ill
us
tr
at
io
n
of

th
e
co
-p
ro
pa

ga
tio

n
se
ct
io
n
be

tw
ee
n

R
eg

ae
fr
on

t-
en
d
an

d
in
te
ra
ct
io
n
ch
am

be
r
sh
ow

n
in

a
sid

e
vi
ew

.
T
he

la
se
r
is

co
up

le
d
in
to

th
e
el
ec
tr
on

be
am

lin
e
at

th
e
IC

R
.

—
—
–

B
A
C
:

B
ea
m

A
rr
iv
al

C
av
ity

—
D
aM

on
1:

D
ar
k
cu
rr
en
t

M
on

ito
r

1
—

IC
R
:

In
co
up

lin
g

C
ha

m
be

r
R

eg
ae

—
LD

1e
:

L
as
er

(a
nd

el
ec
tr
on

)
D
ia
gn

os
tic

1
—

LT
B
L:

L
as
er

T
ra
ns
po

rt
B
ea
m

L
in
e
—

M
B
A
:M

in
iB

A
—

So
l:

So
le
no

id
.

93



4 REGAE Beamline Upgrade

to the target is established, in addition to the elaborate synchronization of the laser oscillators
to the rf master oscillator, as described below. Basically, the cavity picks up the electric field
carried by the charged particles of a Regae bunch. The decay of that signal can be used in order
to determine the arrival time. However, due to the low charge of a typical Regae bunch, the
carried field is very weak, of course. This requires a stable, high quality resonator [115, 116], state
of the art electronics and more details beyond the scope of this thesis. Despite the challenges, a
concept has been developed in a collaboration together with Desy and the Technical University
of Darmstadt, Germany, which could allow for a precision in arrival time measurement on the
order of 10 fs at a charge of 1 pC.

Interaction Chamber: “Sancho Panza”

The heart of the experiment is located within the interaction chamber. The center of the vessel
is located at z = 5.5 m downstream of the gun cathode. At this position, the bunches are
longitudinally focused, reaching their minimal duration. Thus, all three experiments (UED,
TEM, and LWFA) are clustering at this point. In addition, the bunch length determination and
further beam characterization measurements are complex experiments in their own – and also
have to be performed in this location.

In order to meet these requirements, a sophisticated Interaction Chamber (IAC), also called
“Sancho Panza”, had to be developed during the course of this thesis. It is depicted in figure
4.6. The chamber has about 30 flanges for various purposes. It is bigger in diameter (600 mm)
than the present target chamber, but offers all the options of its predecessor. The IAC has a
large lid, on top of which the four-axis manipulator for the diffraction experiments is mounted,
as well as two cameras with lighting for the observation of the various motorized components
inside the chamber. In addition, a pressure gauge can be mounted here. The vessel itself has
four laser grade view ports for the pump laser of the UED experiments. For the UED and TEM
experiments, a so-called Liquid Cell (LQC) is installed, allowing for the investigation of liquid
samples. The TEM also requires additional collimators, mounted on a separate manipulator.
Furthermore, several flanges allow access for assembly, partly also used for monitoring the inner
workings. Of course, the reused target camera – which has to be adjusted – also requires an
access port, complemented by a second window for lighting. Moreover, due to the expected high
gas load, two big turbo molecular pumps are mounted on the vessel (see section 4.4). These have
magnetic bearings and vibration amplitudes below 20 nm [117].

A window, which is transparent for infrared signals, is used to determine the bunch length by
Coherent Transition Radiation (CTR, [118–120]): A charged particle carries an electric field,
which has to change if the particle passes the boundary of two media of different dielectric
constants. The associated energy loss is emitted as radiation in a broad energy range. For the
case of multiple particles, like in an electron bunch, this radiation is emitted coherently in the
wavelength regions longer then the bunch length. Monitoring the spectrum over a preferably wide
span enables a back-calculation of the bunch length and even the charge distribution along the
bunch: The so-called form factor can be deduced from the spectrum, so that a Fourier transform
yields the aforementioned result. However, since the phase is unknown, the reconstruction is not
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4 REGAE Beamline Upgrade

Figure 4.7 – Piezo-based hexapod mechanics. Picture by courtesy of SmarAct GmbH (Oldenburg, Ger-
many).

unique, such that certain assumptions are required. At the low bunch charge used at Regae,
however, it is unclear whether the signal will be strong enough for a successful measurement.

The plasma experiments at Sancho Panza are served from the bottom by two additional linear
translators, complemented by a third, identical manipulator for the TEM experiment (see figure
4.6): Two of these move PermanentMagnetic Solenoids (PMS) [121] in and out of the beam path,
which can be used for the external injection, and are required for the microscope experiments –
thus creating synergies between the experiments. This so-called lifting system is complemented
by additional flanges which allow for an optional bread board decoupled from the main chamber,
thus minimizing vibrations. (This option is not considered at this point in time, though.)

All in all, there are six independent manipulator arms reaching into the chamber, the paths of
which can overlap partly, especially at the desired center of the chamber. On top of the lifting
system, there are two piezo based hexapod positioning systems and one linear stage based on
the same principle. So, overall there are even 22 independent movement axes – requiring a
sophisticated and failsafe collision avoidance system.

The hexapod mechanics are specially designed for the demands of the experimental environment:
The material used is suited for accelerator grade vacuum and nonmagnetic. The travel ranges
are about ±75 mm and ±25 mm in the horizontal plane, and 2 mm in the vertical direction. The
latter is sufficient, since the movement in this direction is complemented by the lifting system.
Despite this large travel range, the positioning devices offer a precision of 1 nm. The hexapods can
carry a weight of more than 1.5 kg. Figure 4.7 shows a photograph of the item. The movement
axes are depicted in figure 4.8.

On each of the outer lifting system axes, a solenoid based on permanent magnets (PMS) is
mounted. They can be positioned along the electron beam axis with one of the hexapods (up-
stream, long travel range aligned in z) or the linear stage (downstream). The PMS serve as lenses
to achieve very small beam sizes of about 2 μm, which is too small to achieve a matched beam
at a plasma density of 1016 cm−3, as discussed in the previous chapter. However, for higher gas
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Figure 4.8 – Detailed view of the setup inside the target chamber. The red arrows mark the movement
axis of the piezo-based hexapod positioners and the linear stage.

——–
CTR: Coherent Transition Radiation — FOS: Fiber Optic Scintillator — PMS: Permanent
Magnetic Solenoid.
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Figure 4.9 – Permanent magnetic solenoid surrounded by the shielding made of pure iron and coated with
copper.

densities such small spot sizes could be necessary. In order to shield stray fields of the magnets,
which could disturb the Regae beam if the solenoids are moved out of the beam line and also to
minimize attractive forces between the two PMS, the magnets are surrounded by a shielding of
pure iron, coated with copper. An image of a PMS is shown in figure 4.9. A detailed description
of the PMS design and properties can be found in [53, 29, 121].

The central pillar of the lifting system brings the plasma targets into position. The hexapod on
top of this linear translator is mounted in such a manner that the long horizontal motion axis is
perpendicular to the beam path. With this configuration, a multitude of different diagnostics can
also be shifted in and out of the beam path. An overview is shown in figure 4.10. As mentioned,
a CTR measurement is planned in order to characterize the bunch length on target. Therefore,
an aluminum coated silicon wafer is mounted in an angle of about 13 deg upwards, intersecting
the beam path if in position. The backwards emitted radiation is directed onto a gold coated
parabolic reflector, mounted on top of the upstream lifting pipe. The light is collimated by the
mirror and sent out of the chamber through a zinc selenide window, which is transparent for
infrared radiation in a wavelength range between λir = 0.6 μm and λir = 15 μm. From here,
the light is transported to two wavelength selective detectors measuring the integrated signal in
a limited spectral range, since the signal will not suffice for a complete characterization of the
spectrum. However, an estimate for the bunch length can still be retrieved [122, 123], and a more
precise knowledge of the substructures of the bunch is not required at this point.

As a second diagnostics, several scintillator screens are mounted on the central hexapod at four
different locations, see figure 4.10. At each of these positions an FOS based diagnostics is chosen,
as in the diffraction or eSpec detector, due to their high light yield. Three of these – one
a few centimeters upstream, one on height of the injection point and one a few centimeters
downstream – are oriented perpendicular to the beam path. They are monitored via a camera
system downstream of the chamber in propagation direction. Hence, distortions caused by the
camera perspective and refraction at the scintillator edges are avoided [111]. It is, therefore,
possible to achieve a high position accuracy of the electron beam at these locations and, thus,
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Figure 4.10 – Top view of the diagnostics inside the interaction chamber. The colored patches illustrate
the light path of the diagnostics signals.

——–
CTR: Coherent Transition Radiation — DC3: Diagnostic Cross 3 — FOS: Fiber Optic
Scintillator.

determine the electron beam axis. To relate this position to the laser beam propagation, sapphire
plates are mounted in the same three imaging planes, which can be driven into the beam path,
instead. It is planned to visualize the laser positions at these locations by white-light generation
[78, 124, 125].

The idea behind this is the following: In order to monitor the laser’s position at a specific
location with a diagnostics in the beam path direction, a separation of the direct laser light from
the co-propagating diagnostics photons is required. The laser signal is much stronger, so that the
photons from the screens cannot be determined because of that huge background signal. Using a
nonlinear process, like white-light generation or alternatively second harmonic generation [124],
the laser photons are shifted towards higher energy, so that the main pulse can be blocked by an
edge pass filter. Since the FOS signal from the electrons is around 550 nm [126, 111], it is not
blocked by the edge pass filter and can likewise be detected using the identical camera setup. In
other words, both signals, which are to be referenced to each other, can be monitored with the
same imaging system. The signal from the nonlinear process also contains less photons compared
to the laser itself. Thus, the demand on the dynamic range of the associated camera system is
reduced. The white-light generation is chosen, since the sapphire plate is much cheaper than, for
example, a BBO crystal, which can be used for a second harmonic generation. Also, the white
light has a broad spectrum, allowing for a better adjustment and damping of the transmitted
signal by the choice of the edge pass filter. That is, it is better suited to adjust for the dynamic
range of the camera. This also explains the choice of the scintillator type. The radiation produced
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by the FOS is directed, as mentioned above, thus maximizing possibility the photons eventually
being detected by the camera [111].

A fourth scintillator stage is included on the central hexapod on the height of the targets, as can
be seen in figure 4.10. It is tilted 35 deg with respect to the beam axis, so that the surface plane
of the crystals is parallel to the imaging plane of the re-designed target camera. This monitoring
system is attached to a window flange of Sancho Panza, rotated by that angle. Here, likewise a
sapphire plate is included, as well as an FOS and a LYSO crystal. The imaging system includes
an in-vacuum lens which is located as close as possible to the targets, i.e., in a distance of about
100 mm to the center of the chamber, so that the light collection efficiency and especially the
resolution is increased, compared to the present setup at Regae [112]. The increased resolution is
important to determine the beam size < 10 μm of the electron bunches. Using the Abbe criterion,
the resolution limit of the imaging system with this configuration is about

r = 1.22 λf
D
≈ 1 μm, (4.1)

where r is the radius of the first zero of the Airy disc, f ≈ 100 mm the focal length, andD = 50 mm
the diameter of the entrance pupil given by the 2′′ in-vacuum lens; the scintillator wavelength of
LYSO is about λ ≈ 400 nm [111]. The camera system is completed by a commercial high quality
objective outside of the chamber in a distance of about 250 mm from the lens; it is attached to an
intensified CCD camera. (Without the in-vacuum lens, the resolution that might theoretically
be reached by the imaging system would worsen to r = 3.5 μm, limited by the aperture of the
window flange.)

The resolution of the whole system will be limited by the scintillators. The fiber optics plate
of the FOS has a pixelated structure with a fiber diameter of 6 μm, which is on the order of
the focused electron beam size. Hence, structures below about 10 μm cannot be resolved. The
LYSO crystal does not have this intrinsic structuring. However, the image formation inside that
crystal type leads to a so-called Lambertian source [107]: The photons are emitted along a line
in the 300 μm. This must be taken into account because the photon spot will thus be larger and
differ from the electron beam size, so that the resolution of the FOS will be better compared to
the LYSO crystal. In addition, the image plane for which the camera is set for in the crystal
is important. Hence, some image post-processing is required [111]. The same is true for the
sapphire screen which is included here as well. For this laser detector, there is an additional
refraction effect to be considered: The photons are already deflected when entering the tilted
screen. Thus, if the electrons are geometrically matched to the laser position, the spots on the
camera system will differ. Consequently, it is necessary to conduct some image analysis and make
additional calculations correcting for deviations from Snell’s law [111].

The perpendicular screens described above can also be driven into the beam. In this case, no
offsets from refraction are to be expected. However, the surfaces of the crystals are no longer
parallel to the image plane, which again complicates a proper imaging and reconstruction of the
beam positions and size. Since there is no experience, which configuration is better suited, all of
these are implemented into the system. Also, a LYSO perpendicular to the beam is included in
the diffraction setup, which can, thus, additionally be used. Please refer to [111] for a detailed
analysis and description of the scintillator setups and imaging.
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Figure 4.11 – Scanning electron microscope image of a polished knife-edge foil. The unevenness of the
edge is reduced to a value below 100 nm. The quality achieved is sufficient for the knife-edge
based bunch diagnostics. Image from [111] by courtesy of K. Krausert.

Due to the imaging limit in the scintillator approaches, another method has been developed in
order to determine the beam position and, more importantly, the beam size. It is an adaption of
the well-known wire scanner technique and also inspired by the knife-edge based beam profiling
used in laser physics. Owing to the high precision of the hexapod axes, a scattering foil can be
driven into the beam, partly shadowing the bunch. Of course, in this case, the particles are not
stopped, like photons of a laser, but scattered. Stopping the Regae electrons would require a few
millimeter thick high-Z material like copper or tantalum, as used in the case of the collimators
within the Regae front-end.

The scattering rate into a certain solid angle, however, depends on the amount of particles hitting
the foil. And thus, a stepwise scanning of the electron beam and determination of the scattering
signal allows for the reconstruction of the beam size, since the relative quantity of scattered
particles in dependence of the position yields the integrated beam profile. Assuming a Gaussian
distribution, one would, for example, expect the shape of an error function [83]. (Since the
distribution is two-dimensional, the back-calculation is more complicated, of course [111].)

Gold is used as a scattering material because of its good processing properties, vacuum compat-
ibility and high Z value. The thickness and edge of the 25 μm thick foil must be very precise to
ensure a constant scattering cross section. Especially the variations of the latter must be much
less than the size of the electron beam, which can be focused down to about 2 μm, using the
permanent magnetic solenoids. For a matched injection, the beam size is ideally on the order of
5 μm, see chapter 3. Such precision cannot be reached using laser cutting methods, especially,
since the edge must also be perpendicular to the surface of the foil. Thus, a grinding method
has been used, suggested by [127] from the Technical University of Darmstadt, who provided the
foils. It was successfully tested at the Desy sources lab [111], as can be seen in picture 4.11. It
shows the image of a polished edge recorded with a scanning electron microscope.

One knife-edge is mounted in the vertical and horizontal direction each, perpendicular to the beam
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on the central hexapod in the target chamber. More precisely, at each of the three perpendicular
scintillator positions discussed above a knife-edge setup is implemented. This makes it possible
to determine and cross-correlate the beam size and position at these three locations. (Also the
laser can in principle be located with that setup if it is attenuated enough to not destroy the
foil.)

The scattering signal is collected by another FOS, which is located downstream of the knife edge
setups, located on the third lifting pillar; see figure 4.10. In this case, it is a 400 μm thick CsI:Tl
scintillator layer on top of the fiber optics plate, in order to maximize the light yield. Since the
relevant quantity is the (relative) number of electrons scattered into the solid angle covered by
the detector, the spatial resolution is not important. Therefore, the 15×15 mm2 wide scintillator
is not imaged using the target camera, but the light is directed onto a photo-multiplier, instead.
Thus, the scintillator is used similar to a photo diode. In addition to this, the diffraction detector
downstream of the target chamber can be used to measure the complementary signal from the
undisturbed electrons.

In principle, the method provides an option to determine the beam size and position with a
sub-micron precision. However, since it is a multi-shot technique, it is susceptible to shot-to-shot
fluctuations. For this reason, it requires a very solid positioning of the lifting system, as well
as a stable electron beam. A comprehensive analysis and discussion of all the transverse beam
diagnostics systems planned in the target chamber can be found in [111].

The main elements on top of the central hexapod platform are the gas targets. Three targets of
different lengths are planned: One with the dimensions calculated in chapter 3, i.e., 25 mm length
with additional 5 mm on both sides where the pressure drops rapidly to the pressure inside the
chamber. The second target is shorter, with a 10 mm plateau, but similar up- and downramp.
Finally, a short target of ∼ 2 mm length without dedicated ramps is foreseen, which allows to
probe the plasma almost without phase slippage effects [39]. The matching condition is harder
to fulfill in this case, probably requiring the use of the PMS lens.

The longer targets with a plateau have symmetric inlets confining the range; see figure 4.8 on page
97. The short one has only one inlet, which restricts the quasi-constant region to the dimensions
of this feed. The targets are produced either by laser ablation machining [76] or CNC milling.
Therefore, they have a square profile with an edge length of 500 μm for the shorter ones and
1 mm for the long version. These dimension are a compromise between the diameter of the driver
laser beam at the channel ends and the gas flow required to achieve the desired pressure. The
latter should be minimized, since it results in a lower overall pressure in the system. This is
important for the differential pumping section described in section 4.4, which needs to be able
to handle the gas load put into the setup. The targets are made of sapphire, which has a very
high ablation threshold of about 8 J/cm2 for a 100 fs laser pulse [128]. It can thus withstand the
intensity of the Angus beam in the side lobes, associated with the sinc2 distribution close to the
focus [61]. The target structure is machined into a 2 mm thick sapphire plate, which is afterward
covered with an untreated second sapphire plate. Thus, no careful alignment of the two halves
is required. The two parts are brazed together. A prototype based on the target design is under
construction at this point in time.
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Figure 4.12 – Illustration of the gas distribution system.

An additional hole is located in the middle of the target channels. At this point a capacitive
pressure sensor is connected, which allows to determine the gas pressure with an accuracy better
than 1 %, similar to the targets used at the Lux beamline [26, 76]. The measurement requires
a continuous flow operation of the targets. Only then is a stable equilibrium pressure built up.
Simulations with the described target geometry, using the fluid dynamics code OpenFOAM
[129], show that these produce the desired density profile [87], including the pressure measure-
ment. Also, first measurements on similar target geometries show promising results – at least for
symmetric targets, like those planned for Regae [76].

The gas targets are supplied through conduits in the hexapod plate. The connection to the
pressure gauges is achieved that way as well. Flexible hoses are connected to feedthroughs in
the lifting pipe, keeping most movable parts out of vacuum. By this approach, the risk for
complications like the entanglement of the supply lines inside the vacuum chamber is reduced.
Furthermore, it minimizes the outgassing rate into the vacuum system because the overall surface
of the inside of the interaction chamber is reduced accordingly. For the same reason, the electric
connections for the piezo drives are done through the pipe, as well.

Outside of the chamber, the gas distribution system is located. It is illustrated in figure 4.12.
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The first element in the supply line is a particle filter, ensuring that the particle free accelerator
environment is not spoiled by the hydrogen source. After that, a flow meter is located measuring
the gas flow. Then, a fine regulating valve sets the flow/pressure eventually achieved in the
targets. To stabilize the system, a small buffer volume is included. It is contained in a vacuum
cross, which has a separate pressure gauge and is connected to a pump, which can evacuate the
system. This is important, since a pumping through the supply lines and targets, using the pumps
attached to the interaction chamber is very inefficient. Thus, a reduction of the pressure in the
targets could hardly be achieved without the separate pump. Also, if no plasma experiments are
executed, the gas system would act like a virtual leak if not pumped by its own. A vacuum valve
separates the pump from the buffer volume if not required. At the last flange of the cross, the
inflow is split into three lines which feed the gas targets. Each conduit can be opened and closed
by a full-metal sealed valve. Finally, the pressure gauges for the gas targets are also mounted at
the gas distribution board.

The hydrogen gas used is produced in a hydrogen generator via electrolysis. Hydrogen is a
highly explosive gas with a lower explosive limit of 4 % and an upper explosive limit of 75 %
[130]. Therefore, the amount of hydrogen gas held in stock in the accelerator tunnel is reduced
to a minimum by the use of the generator. Also, it allows for an (additional) regulation and
stabilization of the flow. For the same safety reasons, a dilution with an inert gas like nitrogen
is necessary at the pumps evacuating the system. Both of these gases are however scentless,
not visible and suffocating. Hence, a controlled emission into the environment is taken care of,
combined with a leakage control of the vacuum and gas system, as well as warning sensors for
hydrogen levels and oxygen lack.

Post-plasma Section

Behind the target chamber, a diagnostics section is located. It is illustrated in figure 4.13. It starts
with a so-called Transverse Deflecting Structure (TDS) [131]. This is another type of rf cavity,
however it exerts a (time-dependent) transverse momentum change, instead of a longitudinal
acceleration. I.e., the electron bunch gets a transverse kick, which varies along the bunch length,
so that the longitudinal phase space is mapped to transverse coordinates which can easily be
imaged on a subsequent screen. With such a configuration, the longitudinal structure of the
bunch at the location of the TDS, that is, the bunch length and even the current profile, can be
determined.

The next element in this beam line section is a diagnostics cross, labeled DC3. Here, the down-
stream imaging system monitoring the in-line beam diagnostics in Sancho Panza is located. Also,
an additional FOS and a LYSO scintillator are positioned here, combined with another sapphire
plate. That is, at this point an additional reference for the overlap of laser and electrons is
located. Moreover, a Faraday cup is added here for charge measurement.

Directly behind DC3 two quadrupole magnets, Qa,b, are used to image the plasma electrons.
They have a distance of 260 mm to each other. In between another solenoid (Sol 6/7) is located,
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Figure 4.14 – Geometry of the upgraded Regae spectrometer. The nominal radius of curvature is R =
175 mm. The detector is located at a distance of L = 110 mm measured from the edge of
the dipole magnet. A second detector which is further away can be optionally included into
the setup. Please note the x-direction on the detector, defined by the co-moving coordinate
system of the electrons.

hence this segment is labeled QSQ. Sol 6/7 is of the same type as the previous Sol 2/3 and Sol 4/5
upstream of the target chamber. The solenoid is used for the diffraction experiments.

Behind QSQ another diagnostic cross is located. Here, the (main) laser diagnostic, LD2, is set up.
Thus, the chamber contains the holey decoupling mirror mentioned above, as well as a version
without a hole. The laser beam is sent towards the laser diagnostics table, as discussed in section
4.1. The beam pipe from Sancho Panza is gradually increased up to this point, following the laser
beam expansion. LD2 is neighboring the first TEM solenoid, Sol 8. This is a stronger lens than
those installed in the upstream beam line of Regae. Also, this element, which cannot be shifted
further downstream due to imaging reasons, determines the position of LD2: The diameter of the
beam pipe has to decrease to a size smaller than that of the laser caustic diameter, which means
that the photons have to be sent out of the beam line at this position. Behind Sol 8, anotherDark
current Monitor (DaMon2) is located. Thus, the charge of the accelerated plasma electrons can
be verified, and more importantly, compared to the charge accelerated by Regae. That is, the
ratio of injected and transmitted particles can be measured using the signals of DaMon1 and
DaMon2.

Behind DaMon2, the electrons enter the field of the eSpec dipole magnet. The nominal radius
of curvature of the electrons in the B-field is R = 175 mm, determined by the dimensions of the
magnet. The geometry of the spectrometer is shown in figure 4.14. To calculate the dispersion,
the beam optics formalism introduced in chapter 2 must be extended by including the linear
momentum deviation δ = ∆pz/ 〈pz〉; the underlying differential equation gets inhomogeneous.
The solution can be described by a 3×3 matrix [64, 65], while the particle vector gains an
additional entry, δ. The resulting elements x and x′ in the linear approximation for an off-
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momentum particle in a dipole are then given by

x = x0 cos (s/R) + x′0R sin (s/R) + δ R [1− cos (s/R)]︸ ︷︷ ︸
∆x

,

x′= (x0/R) sin (s/R) + x′0 cos (s/R) + δ sin (s/R)︸ ︷︷ ︸
∆x′

.
(4.2)

Thus, one can calculate the deviations within the magnet to

∆xdp = δ R [1− cos (s/R)] = δ R,
∆x′dp = δ sin (s/R) = δ.

(4.3)

Here, the sine and cosine terms vanish, since the eSpec is designed for a 90 deg bend, i.e., s/R =
π/2.

The offset between particles of different longitudinal momentum is further increased during the
drift towards the detector due to the resulting divergence at the dipole exit. It is thus simply
described by ∆xdr = L∆x′dp, where L is the distance between magnet edge and detector screen.
The overall offset is then given by

∆xdet = ∆xdp + ∆xdr = δ (R+ L) = δ (R+D −R) = δD = ∆pz
〈pz〉

D, (4.4)

using D = L + R which characterizes the perpendicular distance of the detector to the original
beam axis. This is again only valid for the 90 deg bend case. The distance is D = 285 mm for
the upgraded Regae eSpec, as can be seen in figure 4.14.

Using D, it is possible to determine a relative energy calibration and estimate the resolution
of the eSpec. Assuming a beam spot with xrms = 250 μm as deduced in section 3.5 of the
previous chapter, the ratio yields xrms/D ≈ 0.1 % as a rough estimate for the resolution of the
instrument.

Figure 4.15 shows a calibration curve according to equation (4.4). In addition, a quadratic fit to
the results of an astra reference case is shown, taking into account deviations from the linear
model. This yields a slightly better result. The corresponding fit model is

∆xdet = a

( ∆p
〈pz〉

)2
+ b

∆p
〈pz〉

+ c, (4.5)

with a = 144.6 mm, b = −278.5 mm, and c = 0.6 mm. The linear factor, b, is almost equal to
D.

The deviations are due to two reasons: First, only the linear momentum deviation is included
in the analytic model, i.e., there are deviations for larger values of δ. Second, when one looks
at figure 4.14, one can see that the electrons are not perfectly bent by 90 deg in the magnet. In
fact, the bend starts already prior to the hard edge of the magnet and lasts longer. Fringe fields
of the dipole extend the effective field area. A corresponding effective radius of curvature can be
estimated to Reff ≈ 220.0 mm using the calibration simulations with a measured field map. This,
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Figure 4.15 – Calibration curves for the eSpec detector located at L = 175 mm. The linear model is
slightly refined by a quadratic fit. The gray shaded area marks the size of the detector.
The boundaries of the covered relative momentum interval are ∆p/ 〈pz〉 |min = −8 % and
∆p/ 〈pz〉 |max = +9 %.

for example, shifts the detector position slightly downstream by 4.3 mm to 179.3 mm measured
from the dipole edge.

The absolute energy calibration for the magnet can be deduced from the simulation:

B

〈pz〉
= 1
cReff

= 15.16 mT c
MeV . (4.6)

The spectrometer is equipped with a 47×47 mm2 wide FOS screen, imaged by an intensified CCD
camera. The energy interval covered ranges from about ∆p/ 〈pz〉 |min = −8 % to ∆p/ 〈pz〉 |max =
+9 %. The mirror behind the scintillator, which deflects the signal by 90 deg, is a aluminum coated
silicon wafer. This avoids a back scattering of electrons from the mirror material, which would
produce erroneous signals from the FOS [112]. Also, the particles can be caught by a Faraday
cup, so that the charge can be determined. Thus, a cross-calibration of the light emission to
the bunch charge is possible. If the resolution above is not sufficient, the eSpec is designed in a
way that makes it possible to attach an additional detector allowing for a longer drift. (In fact,
the detector of the original instrument can be easily attached.) However, this requires a careful
balancing in terms of imaging.

An elaborate analysis of the eSpec can be found in [88]. The resolution determined in that work,
however assumes more optimistic parameters at the end of the plasma target, so that the influence
of the emittance and beta function on the resolution is less dominating. Furthermore, the change
in resolution along the detector is investigated in that work, since the electron imaging suffers
from chromaticity.

Finally, directly behind the eSpec the last component related to the external injection experiment
is located: the LaserOut (LO) chamber. It contains a mirror which deflects the laser light passing
the hole in the previous LD2 mirror. It is to protect the beam line segments beyond that point
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from damage caused by the laser pulses. If the mirror is not driven into the beam line, the laser
may not be sent into the Regae beam line. The electrons in turn can now drift towards the two
FOS based diffraction detectors, passing additional TEM magnets and being finally dumped into
a Faraday cup at the end of the beam line.

To summarize and disentangle this description of the beam line, figure 4.16 shows a schematic
illustration of diagnostic elements.

4.3 Synchronization of the RF System and ANGUS

The synchronization between Angus and Regae should be on a few 10 fs level in order to
successfully demonstrate the injection and map out the wakefield. To achieve this, the following
concept will be implemented, which is presented in detail in [33]:

Timing drifts between the rf reference generated from the rf master oscillator and Angus will be
minimized by a Mach-Zehnder modulator based laser-to-rf phase detector [71, 132]. The setup
has been built recently and tested [33]. It is similar to the concept described in [54]. This provides
a drift free and very precise phase determination between rf and laser pulse trains. Also, it is
a balanced scheme, meaning that it is virtually insensitive to fluctuations of the input optical
power. The Regae injector laser will be locked by the same mechanism.

In addition, there are instabilities and drifts in the distribution to various points where the
reference rf signal is tapped. The source for such timing fluctuations is related to environmental
disturbances, like for example temperature and humidity changes. Therefore, the plan is to set
up an rf interferometer, based on a concept developed at Fermilab [133]. The basic principle of
this instrument is to hold the end of a transmission line at constant phase, terminate the line
with a short, and sum the forward and reflected wave at each directional coupler down the line to
cancel out the phase drifts. By this synchronization scheme, the oscillators of the two lasers and
the rf system should be locked with the required precision. The development of these systems is
the topic of another Ph.D work. Please refer to [33] for a detailed description.

There are additional sources for timing fluctuations in the laser chains, as well as time-of-flight
jitters of the Regae electrons. The latter have been measured and analyzed in [134]. According to
the results obtained, the fluctuations are about 50 fs, based on the phase and amplitude stability
at Regae. However, two major changes will be made to improve the situation. The first consists
in the mentioned change to the phase locking of the gun laser to the rf system and the second
in the implementation of a separate klystron, which will power the buncher cavity. The new rf-
source allows for a more precise setting of the cavity parameters and eliminates coupling effects
between the two resonators which are currently present.

Within the laser chains, environmental changes can and will cause an arrival time jitter at the
target. For the gun laser, this translates into a phase instability of the gun, so that the electrons
are emitted at slightly different accelerating gradients from shot to shot, contributing to the time-
of-flight jitter. The pulses from Angus will likewise arrive at different time delays on target. In
order to minimize this effect, the above-described BAC will be installed. It does not minimize
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4.4 Differential Pumping Section

the arrival time jitter, but allows for a sorting of the results by detecting the electron arrival time
close to the target. The signal of the BAC includes all jitter sources, which can consequently be
eliminated to a large degree from the measurements.

In order to change the delay between Angus and Regae on purpose, as required for the phase
scans in the external injection experiment, a delay stage will be included into the Angus laser
chain.

4.4 Differential Pumping Section

The combination of a high-power laser beam line and a conventional accelerator brings additional
complications, especially in the case of the planned LWFA experiments: As discussed, the exper-
iment is conceived for a continues flow gas target, which seen from a vacuum system perspective
is simply a (big) leakage. This, of course, conflicts with the demands set by a particle accelerator
grade vacuum system. Hence, the gas load must be removed from the system as well and effi-
ciently as possible. Ideally, the gas is removed before it enters the cavity sections, which are very
sensitive to rising pressures, leading to break down effects and the emission of dark current.

The standard approach to deal with such a situation is to design and implement a differential
pumping section, where the pressure is gradually reduced by the iterative combination of pumps
and apertures which allow only for a small gas flow towards the direction of low pressure. In
an optimal scenario, the apertures are displaced with respect to each other, and not aligned
collinearly, in order to back-scatter particles coming from a high pressure zone. However, the
beam pipe of a linear accelerator naturally does not offer the possibility for displaced apertures
– at least without chicanes. In addition, the co-propagation of light pulses and electron bunches
within one beam pipe towards the target chamber requires large diameters on the order of several
centimeters to avoid clipping of the laser. This means the conditions somewhat undermine the
concept of an efficient differential pumping section allowing for a significant pressure reduction.

Nevertheless, a differential pumping concept has been developed for the Regae upgrade. It will
be described and analyzed in the following.

4.4.1 Analytic Estimations

The rate of particles moving along a vacuum system of varying pressure p(z) is characterized by
the flow, Q = −c(z) dp/dz [135], where c(z) is the specific molecular conductance of the system,
describing the probability of a particle passing the associated segment. The unit of this quantity
in the following is [Q] = mbar l/s.

If c is constant within a length L, for example in a pipe of constant diameter, the conductance
is C = c/L. The description of the particle flow Q in a vacuum system with segments of two
different pressure regions p1/2 connected by a pipe can then be treated similar to a electric circuit
of resistors: The pressure difference ∆p = p1 − p2 corresponds to the potential difference, while
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the conductance value C of the pipe is treated like the conductance of the resistor. The resulting
flow in the pipe corresponds to the current in the circuit analogue [87, 136].

A problem with this simplified description is that, strictly speaking, the pressure in the separate
chambers is not known a priori, but instead adjusts dynamically, depending on the incoming
and outgoing flow. However, vacuum science deals with orders of magnitudes, meaning that two
chambers in a differential pumping section, connected by a pipe, usually have a large pressure
difference so that this pressure difference can be approximated by the higher pressure. An iterative
description of the differential pumping chain can then be deduced as follows: A flow Qin enters a
vacuum chamber which is equipped with a pump of a certain pumping speed S. The ratio of Qin
and S determines the resulting pressure p1 in that chamber – and thus the potential difference
∆p ≈ p1. If the chamber is connected to another vessel by a tube, which has a certain conductance
value C, the flow into the next chamber can immediately be estimated to Q1 = C ∆p ≈ C p1.
Using the pumping speed at that chamber, the next pressure can be determined and the iterative
application of these steps allows for a calculation of the whole cascade.

The conductance depends on the mass, temperature, and density of the particles, as well as on
the geometry of the connecting element. It describes the probability of a particle entering and
passing the connection. For simple geometries it can be estimated with analytic calculations.
More complex structures are typically evaluated using Monte Carlo simulations (see also 4.4.5),
the results of which are, however, valid only in the molecular flow regime. This regime requires
a low enough pressure, so that the mean free path L of the particles is (much) larger than the
characteristic length of the vacuum vessels, Dc. This means that the probability of a collision
with the chamber walls are much more likely than collisions with other particles. This is typically
described by the Knudsen number Kn = L/Dc, which consequently should be larger than one
for the molecular flow regime [136].

The conductance of a sequence of elements, for example pipes of different diameter or several
apertures without pumping section in between, results from a summation of the reciprocals of the
individual conductance values. Thinking back to the current circuit analogy helps to understand
why this is the case: In a series connection resistance is calculated by the sum of the resistances
of the single elements. The conductance is the analogous of the inverse resistance.

For molecular flow, which is assumed for the following analysis, the dependence of the conductance
on the gas parameters scales typically with

√
T/Mm , where T is the temperature and Mm is the

molecular mass. Hence, the efficiency of a differential pumping section is higher for heavy gases
at low temperature compared to light gases – like hydrogen – or gases at high temperature. The
conductance of a circular aperture, Cap, scales with the area and thus with d2, where d is the
diameter of the element. Inside tubes (Cln) with a length l, the scaling is proportional to d3/l

[136]:

Cap = πd2

4

√
R0T

2πMm
, Cln = πd3

3l

√
R0T

2πMm
, (4.7)

Ctb = 1
1/Cap + 1/Cln

. (4.8)
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Here, R0 is the universal gas constant. The last equation gives the result for a tube, which
consists of the circular entrance aperture and the effects inside the tube. As pointed out, they
have to be summed up reciprocally.

For hydrogen, the conductance values can be expressed in practical units as [136]

Cap(l/s) = 0.346× d2(mm) and Cln(l/s) = 0.461× d3

l
(mm). (4.9)

The values Cln inside the tube are precise for a ratio of l/d > 50. For smaller values, a correction
of up to 15 % can occur [136]. However, the formalism is used only to get an estimate on the
pump strength required at certain points and to provide a measure to identify reasonable pump
locations. Hence, equations (4.9) suffice for such a rough estimate. The final calculations will be
crosschecked with results from Monte Carlo simulations.

4.4.2 Numerical Analysis

As described in the previous section, the vacuum pressure in the distinctive chambers will set
dynamically in accordance with leakage/outgassing and pumping speed. This can be expressed
by a linear differential equation [135],

d
dz

[
c(z)dp(z)

dz

]
− s(z)p(z) = −q(z), (4.10)

where c(z) is the specific conductance as defined above, s(z) is the linear pumping speed, and
q(z) is the specific outgassing rate. If c, s and q are assumed to be piecewise constant, a solution
to the problem can be achieved analogously to the transfer matrix approach of beam optics (see
chapter 2). This is the basis for numerical tools like vaktrak [135], which has been used for the
calculation of various accelerator vacuum systems.

The advantage of this tool is its computation speed. Furthermore, it is possible to determine
the required pumping speed at certain locations in order to achieve a desired pressure. The
disadvantage, on the other hand, is the dependence on the conductance values which have to
be known. Therefore, additional calculations with the Monte Carlo code molflow+ [137] are
used to crosscheck the results – despite the related computational effort. The analysis requires a
3D-model of the vacuum system, in which a cloud of particles is launched and reflected from the
wall segments, following a probability distribution for the reflectance angle. The main challenge
for a Monte Carlo simulation in this case lies in the goal of a differential pumping segment: A
significantly reduced particle density in the low pressure region – in the case of the Regae upgrade
six orders of magnitude. To achieve a statistical significant result, about 1000 particles should hit
the polygons in the low pressure region, i.e., about 109 particles have to be launched. However,
depending on the complexity of the system – measured in number of polygons – the launch rate
can get as low as one particle per second. There are two ways to reduce the complexity of the
system. Either the system is simulated in segments which are combined later on, or the number of
polygons in the whole system has to be minimized. The first approach has the disadvantage that
the beam line has a closure at the separation points. Additional assumptions have to be made

113



4 REGAE Beamline Upgrade

to set an artificial pumping speed for the separating surface to the following segment. Since this
would be based on the analytic method, such an approach is not suited to serve as independent
crosscheck. However, by properly modeling the system, it has been made possible to simulate
the whole Regae beam line with a launch rate of more than 10 000 particles per second, so that
a result can be expected within a finite time scale.

The results obtained with vaktrak and in particular with molflow+ are still only valid for
molecular flow.

4.4.3 Pumps

The last piece to describe the differential pumping section of the upgraded Regae beam line is
the choice of suitable pumps. There are different types, each with advantages and disadvantages,
depending on the vacuum environment they are exposed to.

The pump type which is probably most known, is a Turbo Molecular Pump (TMP) [136]:
Particles are pushed out of the vacuum system by several rotors which add a small momentum to
particles entering the pump. TMPs can be used at comparatively high pressure regions, and thus
will be used close to the gas target. However, there are several disadvantages, especially when
dealing with hydrogen. A TMP requires an additional backing pump which removes the gas at
the outlet; it cannot pump against atmospheric pressure. The pumping speed for light gases is
relatively low, since these have a high velocity at room temperature, so that the additional kick
from the rotors has only a small effect. Also, the compression ratio, which is the ratio of the
inlet pressure compared to the outlet pressure, is limited by this effect: The reference gas for
the performance of a TMP is nitrogen, for which compression ratios on the order of 109 can be
achieved. In contrast, this value is typically about 104 for hydrogen. Also the pumping speed is
only about 70 % of that of nitrogen.

In addition, there are several safety issues. First of all, hydrogen is an explosive gas, as discussed
in 4.2.2. Hence, additional infrastructure for the exhaust of the backing pump is required: A
(monitored) dilution with nitrogen is necessary, as well as a controlled emission into the environ-
ment via a leak tight pipe system. Direct hazards derive from the tremendous rotational energy
stored in the rotors of the pump. The pumps directly at the target chamber, for example, have
a torque at failure of about 50 kNm, which in case of a crash could be released with devastating
effects and with possibly lethal consequences for persons in the proximity of the disintegrating
pump. The housing of the pump should resist such an event, but the mounting of the pump must
also withstand such an impact – leading to bulky constructions for such big TMPs.

To avoid a crash, additional splinter guards have to be included in the setup, protecting the
rotors from small parts like screws falling into the pump – and reducing the pumping speed by
an additional 10% [117]. Magnetic (stray) fields of surrounding magnets, for example used for
the accelerator’s beam optic, must be below a certain threshold at the TMPs location: Resulting
eddy currents would heat up the rotors, leading to an expansion and ultimately a collision of the
rotor with the casing [138].
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On the other hand, there are also requirements for the pump stemming from the experiments
themselves: Only magnetic bearings are allowed for the Regae vacuum system, because of the
danger of hydrocarbon contamination by lubricants [27, 138]. Thus, the pump is a source for
magnetic fields, which could disturb the electron beam of comparatively low energy, so that a
sufficient distance between the pump and the beam axis is mandatory. To avoid a backwards
venting through a failing TMP– including particle and possible hydrocarbon contamination from
the exhaust – a vacuum shutter should be installed at the inlet side of the pump. However, only
full-metal sealed valves are allowed, which have a price in the range of the (expensive) pump itself
and more. Finally, vibrations of the pump should be as low as possible, and ideally decoupled
from the experiments – which is, however, in contrast to a rigid mounting of the pump due to
the required bellows.

Another class of pumps are getter pumps. There are various types, three of which will be shortly
introduced here. Ion Getter Pumps (IGPs) use the Penning discharge mechanism to trap an
electron cloud [136]. The electrons ionize gas atoms and molecules by impact ionization. The
ions are accelerated towards the cathodes and buried into the cathode material. On impact, the
chemically active cathode material is sputtered onto the surrounding surfaces, acting as a fresh
getter material which binds atoms and molecules by chemisorption and physisorption. By these
mechanisms, IGPs are suited to reach vacuum pressures down to 10−11 mbar, but at pressures on
the order of 10−4 mbar, saturation takes place very rapidly. In the case of hydrogen, the second
binding mechanism is much more likely combined with a diffusion of the gas into the cathode
material; a sputtering does not occur. The consequence is that the pumping rate does not reduce
for hydrogen, in contrast to heavier gases where the cathode surface slowly becomes coated. Also,
saturation takes much longer and can be delayed even further when thicker titanium cathodes
are used. Hydrogen optimized versions can be operated for about 75 000 hours at a pressure of
10−6 mbar. For each order of magnitude less the operating time is increased by a factor of ten;
this scaling is also valid in the opposite direction [117]. The Penning mechanism used has the
side effect that one can determine the pressure inside an IGP by measuring the current in the
pump. This is the standard method applied at Desy. For that purpose, small IGPs are even
attached to segments which are pumped by different pump types [138].

The pumping speed of IGPs can reach about 1000 l/s for nitrogen, and is even higher by 50 %
and more for hydrogen [117]. There are no moving parts inside and also, naturally, no lubricants,
so that a contamination of the system with hydrocarbons cannot occur. But, due to the large
volume occupied by the required cathodes and especially the big magnets, IGPs with such a high
pumping speed are very heavy and bulky. Furthermore, the magnetic field is again a source for
disturbances of the beam within an accelerator. For pumping of inert and especially noble gases,
special material combinations are required.

Titanium Sublimation Pumps (TSPs) also use chemisorption to bind particles [136]. A pump
of this type consists of a titanium filament inside a chamber – typically a simple pipe. The
filament can be heated by a high current so that the sublimation temperature of the metal is
reached, which leads to a clean titanium layer coating at the wall of the surrounding chamber.
This process has to be repeated when the pumping speed drops due to saturation. Pure titanium
is excellent in binding reactive gases, but has a rather poor performance for noble gases. Hence,
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TSPs, which easily reach pumping speeds of 1000 l/s, are typically supported by another pump,
for example a small (noble gas optimized) IGP [138].

TSPs are comparatively cheap and flexible due to the simple design. In addition, no magnetic
or vibrating components are used, hence, a disturbance of the experiments or the beam is not
possible – at least as long as there is no refreshing cycle in progress. In order to keep the refreshing
rate low, the pressure should be well below 10−6 mbar. A disadvantage of TSPs is the coating
process: They cannot be used in the vicinity of optical components since these would be coated
as well, leading to a degradation in performance. In the case of a higher power laser, this in turn
leads to the probability of severe damage to the component – and, thus, to a possible particle
contamination of the vacuum system.

Non-Evaporable Getter pumps (NEGs) are similar to TSPs in terms of the pumping mechanism
[136]. They, too, use the high chemisorption capability of pure metals. In these pumps, however,
the metal is present in a porous alloy or powder. Since the pure metals are easily coated with
oxygen, NEG pumps need to be activated by being heated to around 500 deg C. This allows
the oxygen (and other bound atoms) to diffuse into the material, refurbishing the pump. As a
consequence, a NEG cannot be switched off but simply pumps until saturation – which requires
another activation cycle to restart the pump. NEGs provide the highest pumping speed per
active volume and are especially efficient in pumping hydrogen, which directly diffuses into the
material, forming a solid solution [136].

NEG pumps are very lightweight and compact considering their pumping speed. They have a
mass of less then 10 kg even for a pump such as the one used at the upgraded Regae beam
line, which has a pumping speed of 3500 l/s for hydrogen. NEGs do not have any vibrating
parts nor do they require any magnetic field. Their permeability is also negligible. But, in case
of a machine venting, they simply pump until saturation – restricting access to NEG pumped
segments to a minimum, since activation can only be done a few ten times. Also, these pumps
cannot be used to pump noble gases, and, thus, need to be supported by additional pumps of a
different kind [138].

In summary, TMPs are rather inefficient for pumping hydrogen and come with a lot of problems
and hazards, leading to an overall bad cost-benefit-ratio. They are, however, indispensable in the
regions of higher pressure. Getter pumps are a more convenient choice due to the better hydrogen
pumping speed compared to the price, as well as the safer storage of hydrogen by trapping it in
the getter material. All three discussed getter types will be used at the upgraded Regae beam
line, depending on the location and required pumping speed.

4.4.4 Concept

From the discussion of the previous sections it becomes clear that in order to reduce the pressure
along a differential pumping section, the diameter of the connecting elements should be as small
as possible, while the pumping speed should be maximized. Because the high-power laser is to
be included into the beam line, there is a minimum pipe diameter which cannot be undercut.
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This threshold is set to 1.65 times the 1/e2 diameter of the laser’s intensity profile as pointed out
in 4.2.2.

It follows that in the co-propagation sections, the pipe diameter will be several centimeters leading
to conductance values of hundredths of liters per second. Hence, the differential pumping in the
region upstream of the target – towards the accelerating cavities – will consist of two sections:
one close to the target until the laser beam size requires too large beam pipes, so that an efficient
pumping is rendered useless, and one between the cavities and the ICR, since there is no lower
limit to the beam pipe diameter given by the laser beam.

Using the above-described methods, the following pumping concept has been developed; an
overview of the pump locations is shown in figure 4.17: The target chamber is pumped by
two 1500 l/s TMPs. In order to overcome the compression limit, these pumps are supported by
an additional 300 l/s turbo pump which is added at the exhaust side of the TMPs at the chamber.
Thus, an overall compression greater than 108 should be within reach – which is important in
order to pump the chamber down to a reasonable pressures when the hydrogen supply is not in
operation. (A compression limited TMP cannot reduce the pressure below the limit given by the
compression rate, even if there is no more gas flow [87].) In order to achieve the desired pressure
of pgt = 0.2 mbar in the gas target, corresponding to a plasma density of ne = 1016 cm−3, a
conservative estimate yields a required flow of Qgt = 1 mbar l/s, as determined by measurements
using first prototype targets [87, 76].

The pressure inside Sancho Panza is, hence, expected to be pSP = 3.3 × 10−4 mbar during
operation, owing to the overall pumping speed of 3000 l/s of the attached TMPs. The flow to
the next chamber (nEVOC3) is determined by the 21 mm beam pipe with a conductance of
CBAC = 10 l/s. At nEVOC3 another 800 l/s TMP is installed, supported by another small TMP.
The ratio of pumping speed and flow results in a pressure on the order of pnE3 ≈ 10−5 mbar. The
pressure is determined by a small IGP, which is the standard method at Desy. Hence, at the
subsequent pumping point – NEGcross – it is already possible to place a strong NEG: This device
has a pumping speed of 3500 l/s, so that it can maintain a pressure below pNc < 10−6 mbar, and
thus does not saturate too quickly. The NEG section can be separated from the target area by a
vacuum shutter, in order to keep the NEG in a vacuum environment if Sancho Panza is vented,
for example in the case of a target change. Behind the NEGcross, the beam pipe diameter is too
large to support an efficient differential pumping.

The next limiting aperture is thus at the holey mirror inside the ICR. Here, finally, the conduc-
tance can by efficiently reduced since the diameter of the hole is only 5 mm; it is extended by
a hole with the same diameter in the collimator piece behind the reflector protecting the glass
substrate. The conductance at this point is estimated to be less than 5 l/s. The mirror chamber
is pumped by another NEG (2000 l/s) to capture particles reflected at the mirror and entering
the system from the laser transport line. The pressure at the holey mirror is about 10−7 mbar.
Behind the mirror-collimator, two TSPs (1000 l/s) separated by a 21 mm pipe are placed, followed
by the unchanged Regae front-end. In this section, four more pumping ports are located: two
right in front of the cavities at the rf couplers and two at the diagnostic stations DDC1/2. Each
of these is equipped with a TSP-IGP combination. However, the respective pumping speeds are
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Figure 4.18 – Calculated pressure profiles for the Regae beam line. In the low pressure regions, the
analytic calculation shows a large deviation from the Monte Carlo simulation. This is
caused by beaming effects which are not taken into account by that model: The Monte
Carlo results show a pressure rise at the ICR, due to particles reflected at the holey mirror.
In the accelerator sections it is necessary to use the collimators, which interrupt the beaming
effect at this point. Without collimators a pressure above pgun > 10−8 mbar arises in the
gun, depicted by the gray curve. With collimators, the pressure drops by more than six
orders of magnitude along the beam line, so that the pressure inside the cavities is below
p = 10−9 mbar. The black dashed line depicts the position of DaMon1, i.e., the entrance
into the Regae front-end. The speed of the pumps marked with * has been adjusted to
account for the conductance values towards the pump inlet.

reduced due to apertures limiting the conductance to the pumps. In addition, the collimators
are also located at DDC1/2. In terms of the differential pumping, they are used as apertures,
reducing the flow towards the cavities, so that a sufficiently low pressure, pgun < 10−9 mbar, can
be achieved in the gun.

Upstream of the target chamber the pressure demands are more relaxed. Here only one TMP is
used in order to reduce the pressure and flow to values allowing for IGPs to be used to maintain
a pressure below p < 10−6 mbar.

4.4.5 Results

The overall design of the differential pumping section is analyzed by two methods. First, the
code vaktrak [135] is employed to determine and verify the estimated pumping speeds. Then,
the result is crosschecked with the Monte Carlo simulation molflow+ [137].
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4 REGAE Beamline Upgrade

The result of the vaktrak calculation can be seen in figure 4.18. The planned setup reduces the
pressure towards the cavities below a value of p = 10−9 mbar, which fulfills the design criterion.
The values below p = 10−10 mbar as suggested by the analytic calculation are, however, not
feasible: Outgassing of the vacuum pipes will lead to an equilibrium condition at higher pressures.
Also, so-called beaming effects reduce the efficiency of the differential pumping setup. This will
further be discussed below. The pressure rise towards the gun is due to the boundary conditions
assumed for the solution of the differential equation system. In the downstream direction, the
analytic model likewise predicts that the required parameters can be achieved.

The comparison with the molflow+ results shows a very good agreement in the higher pressure
regions. However, at the ICR an unexpected pressure rise can be seen. It results from beaming
effects [26, 136]: Since there is no offset of the apertures and tubes, which limit the conductance
between the pumping sections, the whole setup works like a filter and rectifier: Particles which
start at the target on trajectory close to the electron axis never hit a wall and thus cannot be
deflected towards a pump, since there are no particle-particle interactions. Moreover, the thin
pipes in the pumping sections redirect particles on that path: Inside a tube, atoms and molecules
are scattered at the wall until they are on a path close to the beam axis which allows them to
leave that tube. These atoms and molecules thus pass through the system until they hit the holey
mirror and are reflected in a random direction. Therefore, the pressure drop at the NEGcross is
overestimated: The particle flow is directed past the associated pump and these excess particles
increase the pressure towards the ICR. A similar effect occurs at the gun cathode, caused by the
apertures in the ICR, leading to a pressure rise above p = 10−8 mbar in the gun cavity. (This
increase in pressure is indicated by the gray colored profile in figure 4.18 in the cavity region.)

An illustration of that effect is shown in figure 4.19. It shows the number N1 of particles traveling
on a trajectory which has an angular deviation of less then 1 deg from the z-axis, that is, the
beam pipe direction. The value is taken at seven different positions between Sancho Panza and
the gun, and normalized to the respective amount of all particles passing the various points,
Ntot. As can be seen, at the height of the ICR, almost all particle trajectories are confined to
that narrow cone. The same effect can be seen at DDC2, caused by the apertures of the ICR.
If, however, the collimator is used, the majority of particles is reflected at this device, leading
to a randomization of the propagation directions. The same effect occurs at the gun cathode in
both the case with and without collimator, explaining the low value of the ratio N1/Ntot < 0.2
for either of the cases. However, the overall number of particles, Ntot, is much less at this point
if the collimators are used.

In other words, the collimator reduces the acceptance angle of the filter. The randomization prior
to the cavities at the same time increases the pumping efficiency at DDC1 and DDC2, while the
pressure in the gun is reduced. Using both collimators with an aperture diameter of 1 mm results
in a pressure of pgun < 10−9 mbar, and is thus sufficiently low. As discussed, the incoming flow
at the target (Qgt = 1 mbar l/s) is also estimated very conservatively, so that the real value at
the gun should be even lower.

Please note: The outgassing of the beam line components has not been analyzed. In that sense,
the pressure determined above is only the partial pressure contribution when the plasma experi-
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Figure 4.19 – Relative number of gas particles with a trajectory within an angular cone of 1 deg around
the accelerator axis at various positions between gun cavity and Sancho Panza. Towards
the cavities, almost all particles are confined to that narrow cone, that is, beaming occurs.
Using the collimator at DDC2 interrupts that effect; the same is true for the gun cathode.
The collimators increase the pumping efficiency at DDC1 and DDC2, so that the pressure
in the Regae front-end stays below p = 10−9 mbar. Inside the gun the confinement to the
1 deg cone is not given in either case, since the particles are scattered at the cathode and
reflected in a randomized way, so that the distribution is similar. The overall amount of
particles is less with the use of collimators, though. Hence, the resulting pressure is lower
in that case.

ment is carried out. However, since the first segment of the beam line is unchanged compared to
the previous machine, it is known that in this segment part the outgassing rate is low enough to
achieve the desired final pressure. In the new section, the surface area of the components is larger
compared to the old machine and, consequently, the same holds true for the overall outgassing.
But the pressure is on the order of 10−7 mbar in this region due to the partial pressure of the
hydrogen gas so that the contribution from the properly cleaned and heated beam line segments
is expected to be much lower. Furthermore, also for these effects the pumping stage is effective.

The contribution from the laser beam line can be treated as an additional outgassing. To keep
this influence low, the MBA chamber, which is close to the joint of the beam lines – and close
to the cavities –, is pumped with another 3500 l/s NEG pump, so that the flow contribution is
negligible, or even better directed towards the MBA if the pressure in this is lower compared to
the Regae beam line, in particular the ICR; see figure 4.17. In addition, another IGP is located
at this point to determine the pressure and, more importantly, to reduce the partial pressure of
non-reactive gases in the co-propagation segment, mainly pumped by NEGs.

In conclusion, the differential pumping section described in this part is well-suited to reduce the
partial pressure of hydrogen stemming from the plasma experiment. It is capable of a pressure
reduction by more than six orders of magnitude, despite the continuous flow operation of the
plasma cell. Since the incoming flow at the target is assumed with a large safety margin of more
than one order of magnitude, the pressure rise at the cavities should be small enough for an
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undisturbed accelerator operation. Also, this overestimation could enable a possible operation
at higher gas densities.

4.5 Summary

In this chapter, an overview of the whole experimental setup has been given. The external
injection experiment requires a high-power laser (Angus), an accelerator (Regae), as well as
the synchronization of these two systems on the level of few 10 fs. For the verification and analysis
of the injection process, the Regae beam line has to be upgraded with various diagnostics and
adapted for the needs of the laser propagation. Furthermore, Regae cannot be used exclusively
for this purpose. Instead, two more experiments are planned and carried out at the machine and
need to be taken into consideration when it comes to the beam line upgrade.

Therefore, a sophisticated target chamber (Sancho Panza) has been developed, respecting the
various demands and restrictions. Furthermore, all relevant segments for the external injection
experiment have been drafted in this chapter, such as the upgraded electron spectrometer or
the various beam position diagnostics. An important part of the new electron beam line is
the differential pumping section. It allows for the reduction of the pressure between the target
chamber and the Regae front-end by six orders of magnitude. Hence, the pressure in the
accelerating structures is low enough to allow for a stable operation – despite the gas flow from
the plasma targets.

The upgraded beam line is scheduled to be commissioned in the second quarter of 2017. Apart
from the ongoing diffraction projects and the newly introduced transmission electron microscope
option, the machine will be well-suited to perform the external injection experiment under stable
conditions, making use of the full repetition rate of Angus, especially due to the continuous flow
operation.

This concludes the analysis and illustration of the external injection experiment and the require-
ments in order to achieve the project goals. In contrast, the next chapter is not purely focused
on this special case, but deals with longitudinal electron beam dynamics. It is about the opti-
mization of the bunch compression, especially in the case of the ballistic bunching method used
at Regae – also in the case of external injection.
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5 Linearization of the Longitudinal Phase Space
Without Higher Harmonic Field

Modern particle accelerator applications, like FELs or time-resolved electron diffraction as per-
formed at Regae, require bunches of very short longitudinal extent. Likewise, the external
injection experiment described in this thesis is reliant on an electron bunch duration which is
only a small fraction of the plasma wavelength. A limit for the shortest achievable bunch length
is set by space charge repulsion. However, another reason that hinders the maximal achievable
longitudinal compression are nonlinear phase space correlations. At modern FEL facilities, like
Flash [43] or the European Xfel [44], the phase space is linearized using a dedicated cavity,
which is operated at a higher harmonic frequency of the main rf system [45–47]. In the course
of this Ph.D. work, another method has been developed, which is described in this chapter. It is
based on a controlled beam expansion of the electron bunch after the gun. If the stretched bunch
enters a cavity, operated at the fundamental rf frequency, this has similar effects to a bunch of
unchanged length passing higher harmonic structure, i.e., a field of shorter wavelength. The novel
method is denoted as stretcher mode.

The concept is described and analyzed in the following, largely based on the Regae geometry
which is used exemplary to test and demonstrate the approach. The derived formalism is based
on the so-called ballistic bunching mechanism [51, 52]. However, the approach is not limited to
that. Also, a compression using a magnetic chicane [139] can, in principle, be included in the
description.

In the first part of the chapter, an analytic description of the process is derived, which is based
on the longitudinal bunch kinetics in a free drift. This model is afterwards tested using astra.
According to the simulation, an optimization of the Regae bunches by one order of magnitude
is feasible, compared to the design value: A linearized bunch shorter than 1 fs is demonstrated –
including space charge repulsion. In the context of such a third-order corrected bunch, a special
case, the overcompensation mode, is introduced.

Another application of the stretcher mode is the compensation of the energy spread acquired
in the gun cavity, using the buncher. The resulting electron distribution has a remarkably low
energy spread of Trms/ 〈T 〉 < 10−5. A beam with such properties is very interesting for the
transmission electron microscopy experiment planned at Regae.

In the last section of this chapter, possibilities of applying the method detached from the Regae
geometry are explored. Varying the focus position, for example, allows for even shorter bunches,
entering the attosecond regime for extremely low charges (1 as = 10−18 s). Also, the option to
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produce electron bunches with a micro-bunching structure of high quality is discussed. Further-
more, the extension of the concept to larger machines in terms of a transport of such optimized
bunches is addressed. And finally, an attempt is made to inject such a compressed bunch into a
plasma wakefield, thus coming back to the previous discussions in this Ph.D. work.

The first part of the chapter is closely related to the publication, which emerged from the deriva-
tion of the concept [48].

5.1 Ballistic Bunching

Longitudinal beam dynamics is described in the longitudinal phase space. In the following, this
subspace is constructed from the respective particle position in the co-moving frame, ζ, and the
particles energy, expressed in terms of the Lorentz factor, γ. The bunch length is thus the width
of the resulting distribution in ζ. Typically, the rms value is chosen as a measure. The current
profile associated with the bunch is a projection of the number of particles onto the ζ-axis.

In order to compress a bunch, a negative energy correlation must be imprinted. That is, the
tailing electrons should have a higher energy than those in the front. Depending on the mean
velocity of the bunch, there are then two options to shorten the bunch extent. Either – for high
energy particles – a magnetic chicane must be used, or a simple drift can suffice. The magnetic
structure makes use of different path lengths determined by the dispersion in dipoles (similar
to an electron spectrometer, see section 4.2.2): Particles with higher energy have a more rigid
trajectory and thus a shorter path, while those with less energy experience a larger offset and
thus travel a longer path. Ideally, the distance between the particles is reduced after the chicane,
i.e., the bunch is compressed.

The ballistic bunching works in a similar manner. However, in this case, the velocity difference
compared to the mean velocity is large enough for the higher energy particles in the back to
outrun the slower electrons in the front within a reasonably finite distance. This method is used
at Regae, and the subsequent sections will be based on this scenario.

The longitudinal shift, ∆ζ, between two particles within a drift z0 → z to first order is given
by

∆ζ(z) := ∆v(z)
(
t(z)− t(z0)

)
= 1
β

∆β(γ)(z − z0)

= 1
β̄

[dβ
dγ

∣∣∣
γ̄
δγ
]
z0

(z − z0) =
[ 1
γ̄3β̄2 δγ

]
z0

(z − z0) .
(5.1)

Here, β is again the velocity normalized to the speed of light, c, and γ = 1/
√

1− β2 is the
Lorentz factor, characterizing the particle energy. β̄ and γ̄ are these quantities, determined for
the central particle of the bunch, located at ζ = 0. That position also marks the center of the
linear approximation. δγ denotes the energy difference from γ̄. [ · ]z0

means that the expression
has to be evaluated at z = z0. Figure 5.1 shows the bunch length evolution for an exemplary
case, as well as the phase space distributions at several points along the electron path. After
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Figure 5.1 – Ballistic bunch compression: Figure (a) shows an exemplary bunch length evolution. Figures
(b) depict the process in the longitudinal phase space. In the buncher cavity, a negative,
almost linearly correlated energy spread is imprinted. In the subsequent drift, the bunch
length reduces until the focus is achieved, and the bunch starts to lengthen again. Space
charge effects are excluded in this astra simulation.

the buncher cavity at about z = 1.3 m, an (almost) linear correlated energy spread is imprinted,
leading to a longitudinal focus at zf = 5.5 m.

It is noteworthy that the shift between the particles scales with 1/γ3, i.e., for high energies
and thus large γ-factors, the shift between the particles is strongly suppressed, and the bunch
shape freezes out. In other words, ballistic bunching is no longer an efficient way for the bunch
compression. Magnets must be employed, instead.

5.1.1 Higher Order Effects

The ideal distribution at the position of the longitudinal focus would be a straight, upright line.
However, taking a closer look at the phase space at the location of the shortest bunch extent
reveals a parabolic shape (see figure 5.2).

There are two reasons for this nonlinearity. First of all, the energy correlation is not linear, not
even at the beginning. The bunch has a finite length and thus covers a finite phase interval in the
gun. Since the accelerating field is curved, obeying a sinusoidal shape, and there is additionally
considerable slippage of the bunch with respect to the phase of the field, a nonlinear energy
correlation accumulates. This can already be seen in figure 5.1(b): The energy distribution
decreases towards the edges of the bunch.
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Figure 5.2 – Close up of the phase space in the longitudinal focus for the same case as in figure 5.1. As
can be seen, the particle distribution has a parabolic shape, which limits the minimal bunch
extent. The gray line depicts the corresponding current profile.

Moreover, even for a linearly correlated energy spread, a curvature will build up during the drift.
This second effect is based on the nonlinear dependency of velocity and energy: γ = 1/

√
1− β2 .

This means that for a more exact description, equation (5.1) has to be extended by means of a
Taylor expansion around the energy of the central particle, γ̄, i.e., at ζ = 0. The equation then
reads [51]:

∆ζ(z) = 1
β̄

[dβ
dγ

∣∣∣
γ̄
δγ + 1

2
d2β

dγ2

∣∣∣
γ̄

(δγ)2 + 1
6

d3β

dγ3

∣∣∣
γ̄

(δγ)3 + · · ·
]
z0

(z − z0) . (5.2)

The coefficients of this Taylor polynomial are given by:

η1 (γ̄) := 1
β̄

dβ
dγ

∣∣∣
γ̄

= 1
γ̄3β̄2 ,

η2 (γ̄) := 1
2β̄

d2β

dγ2

∣∣∣
γ̄

= 2− 3γ̄2

2γ̄6β̄4 ,

η3 (γ̄) := 1
6β̄

d3β

dγ3

∣∣∣
γ̄

= 2− 5γ̄2 + 4γ̄4

2γ̄9β̄6 .

(5.3)

From this kinetics, it is apparent that almost any energy distribution will generate higher order
distortions in the longitudinal phase space, solely due to a free drift. As can be seen, the higher
order terms rapidly vanish for large γ-values, so that the effects are strongly suppressed for high
energies. However, in almost any conventional accelerator, there is a drift between electron source
and first booster cavity, where the energy is in the order of a few MeV, so that an initial curvature
will build up.

The effect of a cavity on the phase space curvature can be expressed in a similar manner. The
bunch covers a finite phase intervall ±δφ around the nominal accelerating phase φ. Hence, again
a Taylor expansion in δφ can be employed around φ. An important prerequisite for this approach
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is that the uncorrelated energy spread is less than the correlated energy spread. If this is the
case, the longitudinal phase space structure can be described by a function. (In other words, the
phase space distribution can be treated as a line and does not have ambiguities in φ.) Since the
central particle is located at ζ = 0 in the longitudinal phase space, and this point corresponds to
φ, the Taylor polynomial can be written in phase space coordinates, using δφ = −kζ. Here, k is
the wave number of the accelerating rf field.

The energy gain ∆γ in a cavity thus can be expressed as

∆γ (ζc) = Ã0 + Ã1ζc + Ã2ζ
2
c + Ã3ζ

3
c + · · · . (5.4)

The phase space coordinate, ζc, is taken at the position z = zc of the cavity; the Ãi are the
Taylor coefficients. The energy gain is added on top of the already present energy distribution
of a bunch entering a cavity, marked by γ̂. It is likewise expressed in ζc, and thus the resulting
energy distribution behind the cavity is given by

γ (ζc) = γ̂ (ζc) + ∆γ (ζc) = A0︸︷︷︸
γ̄

+A1ζc +A2ζ
2
c +A3ζ

3
c + · · ·︸ ︷︷ ︸

δγ

. (5.5)

Here the coefficients Ai = Âi + Ãi are determined by the sums of the coefficients of γ̂ (ζc) and
the Ãi. From this, the energy of the central particle, γ̄, and the energy spread δγ can now be
inserted into equation (5.2), which describes the dynamics in the subsequent drift.

At this point, it is helpful to write out the square and cube of δγ, neglecting orders higher than
ζ3
c :

[δγ(ζc)]1 = A1ζc +A2ζ
2
c +A3ζ

3
c +O(ζ4

c ),
[δγ(ζc)]2 = A2

1ζ
2
c + 2A1A2ζ

3
c +O(ζ4

c ),
[δγ(ζc)]3 = A3

1ζ
3
c +O(ζ4

c ).
(5.6)

Within the drift, the abscissa of a particle in phase space is hence shifted according to

ζ (z) = ζc + ∆ζ,

where ∆ζ is a polynomial in δγ [equation (5.2)]. Inserting equations (5.6) yields an expression
which maps the phase space coordinates, ζc, in the cavity onto the resulting particle positions at
an arbitrary drift coordinate, z, behind the cavity – again as a third order polynomial:

ζ(z) = χ1 (z) ζc + χ2 (z) ζ2
c + χ3 (z) ζ3

c . (5.7)

The coefficients χi are obtained by rearranging and sorting according to powers:

χ1(z) = 1 + (z − z0) [η1A1] ,

χ2(z) = (z − z0)
[
η1A2 + η2A

2
1

]
,

χ3(z) = (z − z0)
[
η1A3 + 2η2A1A2 + η3A

3
1

]
.

(5.8)
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In order to cover the complete evolution of the phase space within a drift, one should keep in
mind that each particle in the bunch has a coordinate pair [ζ(z), γ(z)]. And, it is assumed that
the energy γ = γ(ζ(z)) can be treated as a function in ζ. The equations (5.7) and (5.8) describe
the evolution of the abscissa in that sense. This might appear strange at first glance, and can
spoil the functional description, since ambiguities can occur by this mapping of coordinate pairs.
This typically happens in the focus of a beam, like in figure 5.2: Clearly, this curve cannot be
described by a function in ζ. (Nevertheless, the mere mapping of coordinate pairs is still possible,
as will be seen.) In the majority of cases, however, no ambiguities do occur.

In a drift, the energy of a particle does not change since space charge is neglected in this discussion.
Hence, the magnitude of γ for each particle, that is, its ordinate, is unchanged – and known,
since it results from the cavity. However, if γ can be expressed as a function of ζ, this polynomial
function must reflect for the changes in the abscissa, in order to ensure the unchanged γ-value
along the drift. Thus, the description at the end of a cavity [equation (5.5)] is a special case of a
general solution:

γ(ζc) = A0 +A1ζc +A2ζ
2
c +A3ζ

3
c ≡ a0 + a1ζ + a2ζ

2 + a3ζ
3︸ ︷︷ ︸

δγ

= γ(ζ). (5.9)

Here, the small letters are the coefficients of the general polynomial at an arbitrary position,
while the capital letters describe the situation at the end of a cavity. This naming will be kept
in the following.

The final step now is to insert the already obtained expression for ζ in the drift [equation (5.7)] into
the right hand side of equation (5.9), which yields the general coefficients of the γ-polynomial:

a0 = A0 = γ̄, a1 = A1
χ1

,

a2 = A2 − a1χ2
χ2

1
= · · · = A2χ1 −A1χ2

χ3
1

,

a3 = A3 − a1χ3 − 2a2χ1χ2
χ3

1
.

(5.10)

Thus, changes in ζ are compensated for by the coefficients ai, keeping the magnitude of the
γ-coordinates constant.

Equations (5.7) and (5.9) map the initial phase space coordinates of each particle in a bunch
leaving a cavity – known and expressed by ζc and γ(ζc) – to the evolved phase space at an
arbitrary point in the subsequent drift. The mapping functions only depend on cavity parameters,
i.e., Ai and η(A0). Possible correlations present in the bunch prior to the cavity are included in
that polynomial by equation (5.5).

Please note that by this formulation, the effect of the cavity is described by an instantaneous
energy change, i.e., the spatial bunch evolution inside a cavity is neglected. This is analogous to
the treatment of a thin lens in the transverse phase space. In contrast in the drift, the energy of
the particles is kept constant, while the relative positions shift according to the equations derived.
In other words, a cavity only changes the γ-coordinate, while the drift only affects the abscissa,
i.e., the ζ-coordinates of the individual particles. The concept is illustrated in figure 5.3.

128



5.1 Ballistic Bunching

−Ez (arb. u.)

(b)(a)

ζ (arb. u.)

δγ
(a
rb
.u
.)

ζ (arb. u.)

-5 0 5-5 0 5

-5

0

5

Figure 5.3 – Effects of a cavity field (a) and a drift (b) on an electron bunch described in the longitudinal
phase space. The cavity instantaneously increases the particles’ energy depending on the
respective phase – imprinting its curvature. In the drift, the energy of each individual particle
is unchanged, while the position is shifted according to equations (5.2), resulting in a change
of the bunch length and an evolution of the curvature.

Iterative Application

By means of equations (5.4)–(5.10) also the phase space at the entrance of the next cavity can be
described, of course. And thus, provided no ambiguities arise, the drift behind this accelerating
structure can be expressed in an iterative manner. In the following, such a generalization for a
machine like Regae is done.

Hence, two cavities (gun and buncher) and two drift sections have to be treated. Therefore, Ai
and ai are replaced by Gi/gi and Bi/bi respectively. As mentioned, capital letters describe the
cavity polynomials, and small letters the general formulation. The gun parameters, Gi are taken
from a numerical simulation in the later analysis, so that the analytic treatment starts at the
end of the gun cavity using these quantities as initial distribution.

Following the logic of the previous section, the bunch shape at the entrance of the buncher cavity,
zb, thus can be written in the respective phase space coordinates [ζb, γ̂(ζb)], using

γ̂ (ζb) = g0(zb) + g1(zb)ζb + g2(zb)ζ2
b + g3(zb)ζ3

b. (5.11)

In the cavity, an energy change is imprinted, which is incorporated by the application of equation
(5.5), giving the energy polynomial after the action of the buncher:

γb(ζb) =
(
g0 + B̃0

)
+
(
g1 + B̃1

)
ζb +

(
g2 + B̃2

)
ζ2
b +

(
g3 + B̃3

)
ζ3
b

= B0 +B1ζb +B2ζ
2
b +B3ζ

3
b.

(5.12)

Again applying the drift kinetics for the phase space distribution according to equation (5.11)
finally yields

ζ(z ≥ zb) = ζb + ∆ζ(z ≥ zb) = X1ζb +X2ζ
2
b +X3ζ

3
b, (5.13)
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5 Linearization of the Longitudinal Phase Space Without Higher Harmonic Field

where the coefficients Xi are defined as

X1 := 1 + (z − zb) [H1B1] ,

X2 := (z − zb)
[
H1B2 +H2B

2
1

]
,

X3 := (z − zb)
[
H1B3 + 2H2B1B2 +H3B

3
1
]
.

(5.14)

Here, H and X have to be treated as capital letters of η and χ respectively. This is to reflect that
the parameters H are the functions η [equation (5.3)], evaluated for the total mean energy after
the buncher cavity, γ̄b = B0 = g0 + B̃0. The coefficients Xi consequently have the same structure
as χi in equations (5.8).

Finally, applying the same pattern as in equations (5.9) and (5.10), the energy polynomial in
the second drift is determined. With that, a complete description of the bunch evolution along a
Regae-like beam line is achieved within the limits of this method. The phase space coordinates
[ζ, ζ(γ)] are determined at any point within that system.

Even the focus can be calculated, despite the lack of a functional description. It is possible because
the energy does not change, as employed several times: the γ-value in the particle coordinate
vector [ζ, γ] is a constant. And, for the focus, it is not necessary to have a polynomial expression
for the energy, since that is only required when the bunch is injected into a cavity, where the
associated energy changes need to be added. That means, the phase space evolution can also be
calculated in the focus and beyond – despite the breakdown of a functional description. The shift
in ζ, which is the only relevant part here, is unspoiled: The description according to equation
(5.13) is still valid. At the longitudinal focus, one, therefore, finds – analogously to equations
(5.9) and (5.10):

γb(ζ) = b0 + b1ζ + b2ζ
2 + b3ζ

3, (5.15)

b0 = B0 = γ̄b, b1 = B1
X1

,

b2 = B2 − b1X2
X2

1
= · · · = B2X1 −B1X2

X3
1

,

b3 = B3 − b1X3 − 2b2X1X2
X3

1
.

(5.16)

5.1.2 Phase Space Linearization

So far, the reasons for nonlinear phase space correlations have been explored. The general
description of the phase space in the focus derived above – making use of the ballistic bunching
scheme – is obviously nonlinear.

In the formalism, everything is dependent on the cavity coefficients, which are not fixed at this
point in the discussion. In principle, each cavity in the system has two free parameters: amplitude
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5.1 Ballistic Bunching

and phase. The accelerating on-axis field in a standing wave cavity can be expressed as [51]

Ez(z, φ) = 1
2E0

[
sin (φ) + sin (φ+ 2kz)

]
, (5.17)

where the phase is defined as φ = ωt− kz + φ0. Here, E0 is the amplitude and ω is the angular
frequency of the rf field, and φ0 is a constant phase offset. If the particle is at the speed of light,
ωt− kz, and thus φ becomes constant.

The energy gain in the case of constant phase φ for a cavity of length L ∝ π/(2k) can be written
as

∆γ =
L∫

0

e

mc2Ez(z, φ) dz = αkL sin (φ) , (5.18)

using the normalized vector potential α := (eE0)/(2mc2k) for the field amplitude, similar as for
the laser in equation (2.18) of chapter 2.2. The second term in Ez(z), describing the counter-
propagating part of the standing wave, has no contribution to the integral due to the restriction
on L. To fix the phase offset φ0, it is common practice to define φ = 0 as the phase of maximum
energy gain.

The central particle of a bunch is injected on a phase φ = ωt − kz, while a particle with a
longitudinal offset enters the cavity at a later/earlier point in time. However, it still runs on a
constant phase, φ̃ = ω(t+ δt)− kz. This leads to a constant phase offset δφ = φ̃− φ = ωδt.

The transfer from the laboratory frame (i.e., cavity frame) to the co-moving longitudinal phase
space is achieved by a Galilean transformation, as in chapter 2.2 for the plasma wakefield: ζ̄ =
z̄ − ct ≡ 0. Again, ζ̄ and z̄ describe the central particle of the bunch. Hence, the offset between
the reference particle at z̄(t) and an arbitrary particle at location z(t) is

δz = z − z̄ = (z − ct)︸ ︷︷ ︸
ζ

− (z̄ − ct)︸ ︷︷ ︸
ζ̄≡0

= ζ ≡ −cδt. (5.19)

The minus sign in δz = −cδt reflects that a particle passing a certain position at a later point in
time (i.e., a larger t) has a smaller initial position z, since the bunch travels in positive z-direction.
It follows that δφ = −kζ, making use of the fundamental relationship ω = ck.

The phase deviation of a particle at ζ translates thus into a deviating energy gain,

∆γ = akL sin (φ+ δφ)

≈ akL
[
sin (φ) + cos (φ) (δφ)− 1

2 sin (φ) (δφ)2 − 1
6 cos (φ) (δφ)3 ]

= akL sin (φ)︸ ︷︷ ︸
Ã0

+
[
−ak2L cos (φ)

]
︸ ︷︷ ︸

Ã1

ζc +
[
−1

2ak
3L sin (φ)

]
︸ ︷︷ ︸

Ã2

ζ2
c +

[1
6ak

4L cos (φ)
]

︸ ︷︷ ︸
Ã3

ζ3
c .

(5.20)

The index c, and the coefficients Ãi are defined as in section 5.1.1. As a consequence, the cavity
coefficients depend on the phase and frequency of the structure.
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5 Linearization of the Longitudinal Phase Space Without Higher Harmonic Field

The system in the Regae scenario consists of two cavities, resulting in four parameters which
can be chosen almost freely. In order to linearize the phase space – and thus optimize the focus
– an elegant approach is the introduction of a higher harmonic cavity [45–47]. To illustrate the
principle, the kinetic curvature evolution according to equation (5.3) is neglected for a moment,
so that only the field curvature is present. Having two cavities in the system, the idea is now
to choose the cavity phases and amplitudes in such a way that the nonlinear terms cancel each
other out exactly. That is, G̃2 ≡ −B̃2 and G̃3 ≡ −B̃3, where G and B are used for the gun and
buncher cavity again.

Breaking that down, two equations have to be fulfilled:

LgEgk
2 sin (φg) = −LbEbk

2 sin (φb) ,
LgEgk

3 cos (φg) = −LbEbk
3 cos (φb) .

(5.21)

Taking the ratio of these, results in

1
k

tan (φg) = 1
k

tan (φb) , (5.22)

which leads to LgEg = −LbEb. In other words, the solution results in either a phase shift of π
between the cavities in combination with the same magnitude and sign of amplitudes, which are
proportional to LE, or equivalently the same frequency and same magnitude of the amplitude,
but of opposite sign. Put differently, the energy gain from the first cavity is completely absorbed
by the second one, so that the bunch would be entirely decelerated.

The situation changes, however, if k is not equal for the cavities. Motivated by a Fourier series
approach, for example, a cavity operated at triple the frequency can be used [45–47]: The cur-
vature in this reduced model is only determined by the sum of acting fields. Thus, it would be
ideal to use a flat profile, which can be achieved by the sum of uneven harmonics like for a square
pulse. Free-electron lasers, like for example Flash [43] and the upcoming European Xfel [44]
use exactly this approach to optimize the peak current. Such a decelerating structure is typically
included in the accelerator in addition to the main cavities. I.e., in the case of Regae, the
structure would be placed between the gun and buncher cavities, or behind the buncher – which
is still required in order to imprint the linearly correlated energy spread. An astra simulation
of Regae with an added third harmonic structure shows the feasibility of bunches with a length
of 700 as [51].

The disadvantage of a higher harmonic structure is the requirement of a separate and costly rf
system, which for Regae would for example be an expensive X-band structure. Also, there is no
space left for the inclusion of an additional cavity in the beam line. (Compare chapter 4.2.2.)

Therefore, another method has been developed in the course of this work, suggested by [57].
Instead of the inclusion of a higher harmonic structure, a similar effect can be introduced if the
bunch is expanded in a controlled way between the electron gun and the buncher cavity: The
increase in the bunch length reduces the phase space curvature. This means that in reference to
the bunch, the curvature of the buncher cavity field is increased compared to the evolved bunch
shape, although this cavity is operated at the same frequency as the gun. Thus, the buncher
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Figure 5.4 – Schematic overview of the uncorrected ballistic bunching technique (a), the third harmonic
concept (b), and the new stretcher mode method (c). Each row shows snapshots of the
longitudinal phase space evolution at important points in the respective method, starting on
the left. Phase slippage in the cavities, especially the gun is ignored for the sake of simplicity
in this illustration. Also, nonlinear bunch evolution in the drifts is neglected in this sketch
depicting the principle of the concepts. Fields acting on the bunch in a previous section
are marked by dashed lines; the violet line indicates the sum of all fields acting so far. The
bunch shape is shown in the insets. In figure (a), the distribution acquires a curvature in the
gun, which is transported almost unchanged towards the buncher. Due to the linear slope at
the zero crossing of the latter cavity, the curvature is still present in the focus distribution.
In (b), the curvature of the gun is compensated by the deceleration in the third harmonic
cavity. Hence, the distribution towards the focus is much more linear. Finally, the stretcher
mode in (c) shows the reduction of the curvature during the drift due to the expansion of
the beam. Hence, a bunching and correcting phase can be found by the application of the
formalism. Again, a linearly correlated distribution is created. Figure adapted from [48].
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Xi =0Xi, biBi =gi+B̃i
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Figure 5.5 – Segments I–V used in the linearization scheme. The bunch leaves the gun, I, on an expanding
phase, so that the bunch length increases in the first drift section, II. Using the formalism
derived in section 5.1.1, the expansion can be described precisely. In the buncher cavity, III,
the energy spread is changed in such a way that a bunching configuration is achieved; the
dashed white line marks the thin lens approximation of the cavity. Hence, ζrms reduces in
the second drift, IV, until the beam reaches the focus V. Ideally, all nonlinearities vanish at
this point. The shaded zones, marking the segments, will be used throughout this chapter.
To illustrate the relevant quantities for the analytic description, the symbols used in the
respective zones are given as well. Figure adapted from [48].

cavity provides an option to eliminate higher order effects similar to a higher harmonic system.
By this approach, which requires an operation of the gun at an off-crest phase, the assumptions
which lead to equations (5.21) and (5.22) are no longer valid. It is thus possible, to find a solution
for a linearized focus without a higher harmonic field by this method, which is called stretcher
mode. The basic principle of these two methods are sketched in figure 5.4.

Importantly, a controlled expansion of the bunch is required for this approach. It is enabled by
the analytic description of the beam evolution derived in chapter 5.1.1 of this thesis.

5.1.3 Linearization Strategy

To find a mathematical solution for the linearization method sketched above, the formalism
derived in section 5.1.1 is used. Five steps need to be taken up to the focus, located at z = zf.
They are illustrated in figure 5.5 and summarized in the following; the numbers I–V correspond
to the respective zones in the figure. The Regae geometry is used as an exemplary case in the
evaluation.

I. The bunch starts at the gun. The dynamics in the gun cavity is quite complex due to the
strong phase slippage. The energy gain in the gun is, therefore, obtained numerically by
an astra phase scan. The longitudinal coordinates ζg and the energy coefficients Gi are
derived from a polynomial fit and a Taylor expansion around the phase of the central par-
ticle, respectively. An analytic approach to describe the dynamics including phase slippage
can be found in [140]; the accuracy of this description is, however, not sufficient for the
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5.1 Ballistic Bunching

delicate analysis discussed here. The phase space at the end of the gun is given by[
ζg,

∑
Giζ

i
g

]
.

II. Behind the gun, the bunch is expanding, which leads to an additional curvature acquisition
due to the drift effects characterized by ηi, equations (5.3). It leads to a relative shift of
particles in the longitudinal phase space which manifests in the ζ(z) coordinate, described
by χi(z) (equations (5.7) and (5.8)). The magnitude of the energy coordinate of each
particle is unchanged. However, the function describing γ(ζ; z) depends on the changing
longitudinal coordinate, so that the coefficients in the energy polynomial must be adapted
to compensate for the drift kinetics, maintaining the value of the individual γ-coordinates:
The special solutions Gi at the gun exit are replaced by general expressions gi(z) [equations
(5.9), (5.10)]. The phase space coordinates in the interval zg ≤ z ≤ zb are:[∑

χi(z)ζig︸ ︷︷ ︸
ζ(z)

,
∑

gi(z)ζ(z)i
]
.

III. The transportation of the phase space to the buncher cavity at z = zb by means of II leads
to an expression of the bunch structure in the respective longitudinal coordinates ζb =
ζ(zb). Likewise, the γ-polynomial is determined. The energy gain caused by the buncher is
described by a Taylor series around the injection phase of the central particle, which yields
the coefficients B̃i, equation (5.11). They can simply be added to the incoming particle
distribution, since that energy polynomial, γ̂(ζb) =

∑
gi(zb)ζib ≡

∑
B̂iζ

i
b, is expressed in

the same longitudinal coordinates; Bi = B̂i + B̃i. The approximation of the buncher cavity
as a thin lens is important for this approach, i.e., the energy change is instantaneously
applied and the longitudinal bunch distribution does not evolve: The individual particle
coordinates ζb are constant in the cavity. The phase space coordinates are thus:[∑

χi(zb)ζig︸ ︷︷ ︸
ζb

,
∑

Biζ
i
b

]
.

IV. The description of the second drift segment towards the focus, zb ≤ z ≤ zf, replicates the
mathematical structure of II. The longitudinal coordinate changes are now described as
polynomial in ζb. The corresponding coefficients Xi are given by equations (5.8), evaluated
for the phase space at the end of the buncher. The energy polynomial with the respec-
tive coefficients bi(z) are determined by the same strategy: Keeping the magnitude of the
individual γ-values constant by compensating for changes in ζ with adaptions in bi.[∑

Xi(z)ζib︸ ︷︷ ︸
ζ(z)

,
∑

bi(z)ζ(z)i
]
.

V. The longitudinal focus marks the end of segment IV. The longitudinal coordinates are
determined by the polynomial evaluated at z = zf. In order to achieve maximal bunch
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compression, ζ(zf) should be zero for each individual particle, i.e., all electrons are simul-
taneously located at the same position z = zf. The energy can no longer be expressed as a
function of ζ(zf) at this point, since multiple particles at one position make for an ambigu-
ous mapping. But, during the drift in segment IV the magnitude of γ has not changed for
each individual particle. Thus, this coordinate can simply be expressed by the value at the
exit of the buncher cavity. (A functional description is only important if an energy change
of a subsequent cavity must be applied.) Thus, the phase space in focus is characterized by[∑

Xi(zf)ζib︸ ︷︷ ︸
ζ(zf)

!=0

,
∑

Biζ
i
b

]
.

With these five steps, a start-to-end description from the electron gun to the longitudinal focus
is accomplished: The phase space coordinates from the beginning of the beam line are mapped
to those at the focus, z = zf. Setting Xi = 0 yields an upright line in the phase space at the
focus position, i.e., the nonlinearities up to the third order vanish; the minimal bunch length is
improved. Please note that there is no restriction on the start distribution so far, except for the
demands that it can be approximated by a line. Furthermore, the formalism can be extended to
more then two cavities, also employing different frequencies – as for example a third harmonic
system. Apart from the numerical effort that comes along with more free parameters, it should
be possible to calculate even higher order corrections by using this method

5.1.4 Longitudinal Emittance

As already mentioned in chapter 2.1, nonlinear phase space correlations increase the magnitude
of the associated rms emittance. This is also true for the longitudinal phase space, of course.
Hence, ε can be used as a measure for the nonlinearities.

Following equation (2.5), the longitudinal rms emittance is determined by

ε =
√
〈ζ2〉 〈T 2〉 − 〈ζT 〉2 . (5.23)

The symbol ε is used in the subsequent discussions to denote this quantity.

It can be shown that this expression is proportional to the product of the rms bunch length and
the nonlinear energy spread [140]. That is,

ε ∝
√〈

δγ2
nl
〉
〈ζ2〉 = δγnl,rms ζrms, (5.24)

where the nonlinear energy spread δγnl is defined as:

δγnl := δγ − 〈ζδγ〉
〈ζ2〉

ζ. (5.25)
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Going back to equations (5.9) and (5.10), there is an expression for δγ as a function of ζ. Thus,
the only thing left to evaluate ε is the density distribution, ρ(ζ). Assuming, for example, a
uniform density distribution,

ρ(ζ) =
{ 1

2ζm
for |ζ| ≤ ζm,

0 else,
(5.26)

equation (5.25) can be applied, and the integration according to equations (2.3) and (2.4) can be
performed. It results in

δγnl = a2ζ
2 + a3ζ

3 − 3
5a3ζ

2
mζ, (5.27)

which are exactly the nonlinear elements of the γ-polynomial [equation (5.9)], except for the last
item. This term removes a linear correlation which results from the cubic term and thus does
not contribute to the emittance.

The mean of this expression calculates to 〈δγnl〉 = a2ζ
2
m/3; this value is required for the calculation

of the variance and denotes the difference to the energy of the central particle of the distribution,
γ̄. Combining all this, the nonlinear rms energy spread according to the definition above [equation
(5.25)] yields

δγnl,rms =
√〈

δγ2
nl
〉

=
[

1
2ζm

ζm∫
−ζm

(
a2ζ

2 + a3ζ
3 − 3

5a3ζ
2
mζ

)2
dζ −

(1
3a2ζ

2
m

)2
] 1

2

=
√

4
45a

2
2ζ

4
m + 4

175a
2
3ζ

6
m .

(5.28)

The rms value of the distribution ρ(ζ), i.e., the bunch length, is calculated to ζrms =
√

1/3 ζm.
Hence equation (5.28) to first order gives

δγnl,rms ≈
2√
5
|a2|ζ2

rms. (5.29)

The scaling with |a2|ζ2
rms to leading order is valid for any particle distribution which is symmetric

in ζ. Only the proportionality factor depends on the explicit shape of ρ(ζ) in this cases. As a
consequence, the emittance evolution along the beam line can be characterized by

ε(z) = D(z)
∣∣a2(z)

∣∣ζrms(z)3 ≈ D(z)
∣∣a2(z)χ1(z)3∣∣ζ3

c,rms

≡ D(z)
∣∣A2χ1(z)−A1χ2(z)

∣∣ζ3
c,rms,

(5.30)

where D(z) in this expression is the proportionality factor, and ζc,rms denotes the bunch length
at the cavity, according to the naming convention used above.

Strictly speaking, the assumption ζrms(z) = χ1(z)ζc,rms is only valid for linear changes of the
particle positions. That is, the particle at location ζc,rms always stays at the rms position
throughout the evolution. This also implies that the kind of the distribution is unchanged in the
drift, i.e., D(z) ≡ D is a constant. Nonlinear changes, however, are of order O(ζ4) which justifies
the assumption. The linear particle shifts are exactly described by χ1(z).
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5 Linearization of the Longitudinal Phase Space Without Higher Harmonic Field

As long as the symmetry is preserved, one can also include the nonlinear changes to the distri-
bution in D(z). Thus, the derivation entails that the changes to the rms emittance due to the
drift are to a certain degree independent of the initial distribution. This, of course, traces back
to the fact that the particle shifts themselves do not depend on a distribution at all, according
to the derived formalism.

The behavior of the emittance by means of equation (5.30) is no longer valid close to the lon-
gitudinal focus, because the symmetry of ρ breaks down. Nevertheless, the expression provides
a useful tool for the determination of a linearized focus: In such a case, the right hand side of
equation (5.30) must vanish, since χ1 = χ2 = 0, as discussed. And thus, the emittance is zero as
well at that point if only second order effects are treated. More precisely, if χ2 vanishes, it must
be zero independently of the bunch position, z, according to equations (5.8)1. In this case, the
emittance evolution is hence described by ε(z) ∝ |A2χ1(z)| = |A2 [1 + (z − z0) η1A1]|, i.e., it is
linear in z and proportional to the (linear) bunch length evolution, and thus both curves have to
vanish at the position of the linearized longitudinal focus.

A vanishing emittance is, of course, only possible in the line model. A line in phase space does
not have a volume, and thus no emittance in the sense of Liouville, which is a lower limit to the
rms emittance. This, in addition to uncorrected higher order effects, as well as the mentioned
asymmetry of the distribution in the focus, will lead to a deviating value.

However, the important point in this discussion is not the absolute value ε = 0. Instead, it is the
general behavior of the emittance function: ε ∝ |a2| implies that a local minimum exists in the
case of vanishing second order, a2, which dominates ε. Hence, the formalism also reflects that the
rms emittance is basically the sum of Liouville’s contribution and higher order correlations.

For the case of a focus, i.e, χ1(zf) = 0, however, a2 ∝ 1/χ3
1 diverges. This is also a consequence

of the functional formalism, γ = γ(ζ), breaking down: The phase space is given by an upright
line in this case. The emittance, in contrast, is still well defined due to the combination of a2χ

3
1

being present in equation (5.30), which removes the singularity. The dominating influence of the
second order in the emittance is here indicated by the discussed minimum in ε – for the case that
χ2 = 0. A vanishing χ1 does not suffice.

Thus, if the second order should be corrected in the focus, one needs to match the position of
minimal bunch length and the position of the (local) minimum of the longitudinal rms emittance
to the location of the desired focus. This allows, for example, the construction of numerical
optimization algorithms to adjust the machine settings – at least in simulations.

5.2 Applications

The next step to be taken is the verification of the applicability of the derived formalism and, more
importantly, the demonstration of the new linearization concept, using astra simulations.

1This does not imply a vanishing second order along the whole drift, since the evolution of the second order is
described by a2(z) in the function γ(ζ).
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Figure 5.6 – Solutions for X1 = 0 and X2 = 0, depending on the buncher parameters. The gun is set to
Eg = 100.0 MV/m and φg = 34.1 deg in this exemplary case. The parameters determined by
the intersection of the lines yield a second order corrected focus. The black line marks the
typical bunching phase, φb = −90.0 deg.

As described earlier, it is necessary to solve the following system of equations in order to achieve
a linearized focus:

X1 = 1 + (zf − zb) [H1B1] ≡ 0,

X2 = (zf − zb)
[
H1B2 +H2B

2
1

]
≡ 0,

X3 = (zf − zb)
[
H1B3 + 2H2B1B2 +H3B

3
1
]
≡ 0.

(5.31)

Since there are two cavities present, four free parameters can be used: phases and amplitudes
of the rf fields. Thus, the system can in principle be solved, leaving one parameter to fix, for
example, the energy. (However, the parameters can be varied in restricted domains only, so that
the energy cannot be set entirely arbitrarily.) The system cannot be solved analytically, though.
The phase in equations (5.31) enters in trigonometric functions, while the amplitude is linearly
included, i.e., the equations are transcendent.

Instead, a numerical approach is developed, which is based on the idea of a graphic solution: The
equations for X1 and X2 are evaluated in a parameter space determined by the buncher variables
(0 MV/m < Eb ≤ 50 MV/m, −180 deg ≤ φb ≤ 0 deg). From these solutions, the parameter
combinations which yield X1 = 0 or X2 = 0 are derived; typically the points lie on a line; see
figure 5.6. In a next step, the intersection of the lines is determined, which yields the parameters
for a second order corrected focus: X1 determines the linear energy correlation required for a
focus at position z = zf, while X2 = 0 eliminates the second order.

For an elimination of the third order, one must also solve X3 = 0, using the gun parameters, and
determine the solution for which the three lines intersect at one point – now in a three-dimensional
parameter space. Therefore, a second order correction is attempted in the beginning.
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Figure 5.7 – Cavity phase settings for the cases (i–iii). The peculiar shape of the energy gain curve for
the gun (a) is due to phase slippage effects, since particles released at the cathode have
almost zero kinetic energy. The respective maximum energy gain phases define φ = 0. Cases
(ii,iii) are accelerated on this phase in the gun, while in the buncher (b) no net energy is
gained. Only the required energy correlation is imprinted. In Contrast, case (i) is set to an
expanding phase, which is accompanied by a slightly decelerating setting for the buncher.
Figures adapted from [48].

5.2.1 Second Order Correction

There exists a whole set of solutions for the correction of the second order, since the gun phase
is not fixed. For reasons of simplicity, the case solved in figure 5.6 is picked out of the numerical
solutions derived above. It is marked with (i), for comparison with two reference cases. The
calculated cavity parameters are Eg(i) = 100.0 MV/m, φg(i) = 34.1 deg and Eb(i) = 21.2 MV/m,
φb(i) = −109.3 deg. As mentioned above, the phases are defined in such a way that φg = φb = 0
yields the maximal energy gain in the respective cavity. The resulting bunch has an energy of
〈T 〉(i) = 3.2 MeV. So, like in the case of a third harmonic structure, the bunch is decelerated.

The scenarios for the comparison are defined as follows: For case (ii), the gun is set to the max-
imum acceleration phase (φg(ii) = 0.0 deg) while keeping the gradient of Eg(ii) = 100.0 MV/m.
For (iii) on the other hand, the amplitude is reduced to Eg(iii) = 70.0 MV/m. In addition, the
on-crest phase is chosen again, φg(iii) = 0.0 deg. Hence, for both cases, the bunch does not ex-
pand towards the buncher cavity, which is operated at the zero crossing: φb(ii,iii) = −90.0 deg.
To achieve a focus at the same position, the amplitudes have to be set to Eb(ii) = 17.6 MV/m
and Eb(iii) = 6.6 MV/m, respectively. The energy in focus for the bunches of the cases (ii,iii) is
〈T 〉(ii) = 4.6 MeV and 〈T 〉(iii) = 3.2 MeV.

Figures 5.7 depict the phase settings. A comparison of the analytically calculated phase spaces
in the focus is shown in figure 5.8. Cases (ii) and (iii) clearly show the parabolic depen-
dence of the second order, limiting the minimal bunch extent to ζrms(ii) = 6.6 μm ∧= 22 fs and
ζrms(iii) = 5.9 μm ∧= 20 fs. Case (i), in contrast, is no longer limited by the second order contri-
bution. Instead, a clear signature of the third order is visible. The bunch length in this case is
ζrms(i) = 230 nm ∧= 770 as.

For the calculation of the explicit bunch length, an initial particle distribution is required, which
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Figure 5.8 – Phase space distributions in focus for the three cases (i–iii). The standard bunching scenarios
(ii,iii) clearly show a second order signature, while the optimized case has a much shorter
longitudinal extent, limited by the third order, which manifests in the S-shaped structure.
Figure adapted from [48].

Case Method Space Eg φg Eb φb T ζrms(zF) σt(zF)
Charge (MV/m) (deg) (MV/m) (deg) (MeV) (μm) (fs)

(i) analytic — 100.00 34.13 21.21 -109.29 3.17 0.23 0.77
(i) simulation no 100.00 34.13 21.66 -111.99 3.12 0.19 0.63
(ii) analytic — 100.00 0.00 17.60 -90.00 4.60 6.58 21.95
(iii) analytic — 70.00 0.00 6.60 -90.00 3.19 5.89 19.66
(iv) analytic — 100.00 42.75 20.94 -94.45 3.35 0.01 0.04
(iv) simulation no 100.00 38.00 21.77 -104.15 3.25 0.11 0.38
(iv) simulation 50 fC 100.00 42.00 21.63 -97.42 3.32 0.24 0.80

Table 5.1 – Summary of the cavity parameters and resulting bunch lengths for the different cases treated.

is transported using the method derived in section 5.1. For all cases treated in this discussion, an
inverted parabolic distribution at the gun is used. It is assumed that the released electron cloud
in the gun mimics the shape of the gun laser pulse. The advantage of the inverted parabolic
distribution is the reduction of space charge influences on the curvature in the focus [51]: Com-
bined with a transversely uniform density, this distribution develops similarly to an ellipsoidal
density profile where space charge forces are entirely linear. If not stated otherwise, the laser
pulse length at the cathode is set to τrms = 1 ps. (Since the analytic treatment starts at the end
of the gun, bunch length changes inside that cavity are taken into account, leading to an adapted
start parameter.)

In order to crosscheck and verify the method, astra simulations have been performed. The
calculated values from case (i) have been used as seed parameters for the tracking code. Also,
the initial bunch length has been set to the identical value. Though the distribution is optimized
for space charge effects, the second order simulations have been performed without Coulomb
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interaction. Since the buncher cavity has a significant length, deviations from the analytic cal-
culation are to be expected: The thin lens approximation used in the analytic description is, of
course, not fulfilled. Hence, an optimization algorithm based on the emittance minimization has
been developed to tweak the buncher parameters towards an overlap of the minimum in ε(z) and
ζrms(z) at z = zf.

Figure 5.9 shows the bunch length evolution for the astra output, compared to the analytic
solution (i) and the reference case (iii), which is set to the same energy after the buncher. The
simulation of (i) requires a slight adaption of about ∆φb = −2 deg, as well as a minimal correction
of the amplitude; the parameters are given in table 5.1. As can be seen, the curves depicting the
stretcher mode are in excellent agreement. As desired, the bunch length firstly extends up to the
buncher, where the energy correlation is set to compression. Due to the controlled lengthening,
the rf curvature of the buncher is larger than the evolved second order originating from the gun –
nonlinearities can be corrected, similar to a higher harmonic system. Compared to the reference
case using standard phases, the minimal bunch extent is much less for cases (i). As already
mentioned, the analytic calculation of (i) results in ζrms = 230 nm, while the simulation predicts
an even better value of ζrms = 190 nm ∧= 630 as. Taking the initial value of 1 ps, the achieved
compression ratio is thus larger than 1000. Also, the longitudinal emittance shows the required
minimum at the focal spot, i.e., the second order vanishes at this point. As can be seen from
the analytic curve, the emittance in the buncher goes through a minimum. This means, that the
curvature has to be overcompensated by the buncher. That is, the drift effect [equations (5.3)]
on the second order alone is strong enough to achieve the minimum even before z = zf. The
buncher, therefore, increases the curvature and, consequently, the emittance (please refer also to
[51]). The price for this optimized focus is a deceleration of the particles in the buncher.

In figure 5.10, four phase space distributions of case (i) around the focus are depicted. Simulation
and analytic calculation agree very well. Thus, the kinetic model and mechanism derived in
section 5.1 yield a good applicability. Please note that the rms based focus is actually at distance
∆z = −2 mm compared to the focus according to the analytical model: The presence of the
negative slope compensates partly for the third order wings, which determine the S-shape. The
rms value at this point is hence less than that of the case at ∆z = 0 mm. The latter case, in
contrast, yields a focus in the sense of the model: An upright distribution – at least up to the
second order. Resulting from the minor adjustment of the buncher cavity parameters (see table
5.1), the mean energy of the astra bunch is about 80 keV less compared to the mathematical
description.

5.2.2 Third Order Correlations and Space Charge

So far, the method derived in section 5.1 has not been used to its full potential, though. The
stretcher concept is also capable of eliminating even the third order, which dominates the phase
space distribution obtained in the previous chapter by its prominent S-shape.

As discussed earlier, the solution of X3
!= 0 – for likewise vanishing X1 and X2 [equations

(5.31)]– is the determination of an intersection of three lines in a three-dimensional parameter
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Figure 5.9 – Comparison of the bunch length (a) and emittance evolution (b) for a second order optimized
case (i) – analytically calculated and simulated – and a reference case (iii) using standard
bunching settings. The bunch length for case (i) increases, reflecting the controlled beam
expansion, while case (iii) does not show a significant change in ζrms up to the buncher.
Behind the longitudinal lens, the bunch length reduces towards the focus. As can be seen
from the inset, the minimal bunch extent is much less for case (i). As discussed, the emittance
(b) also has a minimum at the focus position for the linearized case (i). The energy curve
(c) shows that the beam is decelerated in the stretcher mode (i), while (iii) does not show
an energy change due to operation on the zero crossing. The simulation results are in very
good agreement with the analytic calculations. Figure adapted from [48].
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Figure 5.10 – Evolution of the longitudinal phase space around the focus for case (i). The particle dis-
tributions result from an astra simulation, while the red lines are calculations according
to the mathematical description of the previous chapter. For both cases, the same longitu-
dinal initial distribution has been assumed. The analytic model accurately reproduces the
phase space structure obtained with the simulation; the curve is not fitted. The S-shaped
distribution is a clear sign of the dominating third order. The yellow line marks the current
profile associated with the respective electron density. At ∆z = 0 mm, the bunch is in the
focus according to the definition in the analytical model: The slope is almost infinite, while
the second order is eliminated, that is, all particles occupy the same ζ-coordinate, except
for third order deviations, which are not corrected in this case. The fwhm of the current
profile is minimal at this location, corresponding to an fwhm bunch length of 780 as; since
the rms value at this point is about the same as the fwhm, one can conclude that the
amount of particles in the wings is comparatively small. However, the minimal rms bunch
length, ζrms, is obtained shortly before that point at ∆z = −2 mm: The third order effects
are partly compensated for by the negative slope. Figure adapted from [48].
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Figure 5.11 – Evaluation of X3 depending on the gun phase φg. For each gun phase setting, the buncher
parameters are tuned to eliminate X1 and X2. At φg ≈ 43 deg the third order coefficient
changes its sign. Hence, all three coefficients Xi vanish simultaneously at this point. The
gun amplitude is kept at Eg = 100 MV/m. Figure adapted from [48].

space. Since this is rather complex, a reduced variant is applied. For the minimization up to the
second order, only the buncher cavity has been used. Thus, the third order will be adjusted by
the gun, namely the phase φg. In order to solve the system, the strategy for the first and second
order is kept, but, the parameters for X1 = X2 = 0 are now solved for in a range of gun phases:
0 deg < φg ≤ 60 deg. For all of these solutions, the magnitude of X3 is evaluated. The result is
depicted in figure 5.11. Thus, the system is not solved in the complete parameter space and the
numerical effort is reduced.

As can be seen from the plot in figure 5.11, X3 is negative at low gun phases but increases towards
larger values of φg. At about φg = 43 deg, the sign changes, i.e., X3 ≈ 0 m−2. The gun amplitude
is kept at Eg = 100.0 MV/m for this parameter set which marks this new case, (iv). Also, the
focus position is unchanged, zf = 5.50 m.

According to the mathematical model, the exact cavity parameters for case (iv) are Eg =
100.0 MV/m, φg = 42.8 MV/m, and Eb = 20.9 MV/m, φb = −94.5 deg. In contrast, the gun
phase in case (i) obtained in the previous section is at φg = 34.1 deg and thus has a much larger
magnitude of X3(i) ≈ −1600 m−2.

Figure 5.12 shows the resulting phase space curves in the focus for the analytic calculation of case
(i) compared to case (iv). As can be seen, the new parameter set yields a much shorter bunch:
The prominent S-shape is no longer visible, instead a slight Z-shape can be seen indicating a
change of sign has indeed taken place in the third order. The associated bunch length is reduced
by more than one order of magnitude to about 10 nm in the idealized mathematical method.
The ideal focus in that model approaches zero. In a simulation, the bunch length for such
a configuration is entirely determined by the uncorrelated energy spread, and possible fourth
and higher order effects: Using astra without space charge as a comparison, yields a bunch
compressed to ζrms = 115 nm ∧= 380 as – which is about half of value previously obtained in
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Figure 5.12 – Phase space curvature for cases (i) and (iv) in the focus according to the mathematical
model. Case (iv) no longer exhibits an S-shaped structure in contrast to (i). Instead, a
slight Z-shape can be seen. This means that the third order contribution, X3, changed sign.
Also, the bunch length in case (iv) is much shorter. Figure adapted from [48]

case (i). The gun phase in the simulation without space charge deviates about 10 % from the
calculated value, which leads to a similar shift in the buncher phase.

Finally, space charge is included in another simulations of case (iv). The amount of charge is set
to Q = 50 fC to keep the influence of the associated repulsion effects low. The value is in the range
of typical Regae bunches used for the diffraction experiments [42], as well as for the planned
injection campaign (see chapter 3). The space charge forces also require an adaption of the cavity
parameters. Interestingly, these are closer to the calculated values than those resulting from the
astra simulations without particle interaction. The minimal bunch length obtained with space
charge is about 240 nm, i.e., about 800 as. This is a considerable improvement compared to the
design value of the machine, which is on the order of ζrms ≈ 3 μm ∧= 10 fs. The phase space
of the third order compensated bunch, including space charge effects, is depicted in figure 5.13.
Since the bunch is launched with τrms = 1 ps, the compression factor – even with space charge –
is still larger than 1 000. The side wings and bumps in this distribution can be attributed to the
Coulomb repulsion during the emission process in the gun [51]. The inverted parabolic particle
distribution used for the initial bunch formation minimizes this effect.

5.2.3 Overcompensation Mode

Associated with the higher gun phase required for the correction of the third order, the longitudi-
nal rms emittance has a first local minimum prior to the buncher cavity. This is no coincidence.
In fact, it is necessary that the coefficient of the second order in the energy polynomial, g2,
changes its sign in order to eliminate the third order, X3, at the focus, at least for the case that
the second order should vanish at the same time. The immediate consequence of this is a local
minimum in the emittance, as discussed in 5.1.4.

146



5.2 Applications

ζrms = 252 nm
δγ

/γ̄
(%

)

ζ (μm)

fwhm = 310 nm

I
(a
rb
.u
)

-2 -1 0 1 2

-2

-1

0

1

2

0

1

Figure 5.13 – Longitudinal phase space of case (iv) resulting from an astra simulation. The depicted
distribution is determined close to the focus. In the focus, the bunch has an extent of
ζrms ≈ 240 nm ∧= 800 as. The charge in this simulation is Q = 50 fC. The nonlinearities up
to the third order are compensated. The bumps and wings in the distribution can mainly
be attributed to space charge effects happening in the electron gun. Figure adapted from
[48].
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Figure 5.14 – Longitudinal rms emittances for cases (i) and (iv); both results are taken from the respective
astra simulation. In case (i), space charge is not considered and only the second order is
corrected. In contrast, case (iv) is simulated with space charge forces and a compensation
up to the third order. The emittance evolution of case (iv) has a minimum, attributed
to the change of sign in the second order correlation – illustrated in the insets. It can be
shown, that this effect is mandatory in order to eliminate the third order.
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Starting with X3 = 0, it follows that

X3 = 0 = H1B3 + 2H2B1B2 +H3B
3
1 = H1︸︷︷︸

>0

B3︸︷︷︸
<0

+
(
H3 − 2H

2
2

H1

)
︸ ︷︷ ︸

<0

B3
1︸︷︷︸

<0

, (5.32)

where the last step is a direct consequence of the vanishing second order: X2 = 0 = H1B2+H2B
2
1 .

The coefficients ηi andHi are combinations of β and γ [see equations (5.3)], so that η1 > 0, η2 < 0,
and η3 > 0, since γ ≥ 1; the same is true for Hi due to the same structure. The expression in
brackets is negative, since the term can be explicitly expressed as

H3 − 2H
2
2

H1
= −2 + 7γ2 − 5γ4

2γ9β6 < 0 ∀ γ > 1. (5.33)

The coefficient B1 in equation (5.32) is negative, since this value describes the slope of the energy
polynomial behind the buncher, i.e., the linear contribution to the ballistic bunching process,
which requires B1 = ∂γ/∂ζ < 0. Consequently B3 must be negative as well in order to achieve
X3 = 0, since H1 = γ−3β−2 > 0.

Furthermore, B1 = g1 + B̃1 and g1 > 0, since the beam is expanding between gun and buncher,
and g1 is the slope describing this effect. Thus, the slope of the field applied in the buncher, B̃1
must be negative to compensate for g1 > 0. This has a direct consequence on B3 = g3 + B̃3:
Since the buncher field is of sinusoidal shape, Eb ∝ sin(−kζ), B̃3 always has the opposite sign of
B̃1:

B̃1 = ∂Eb
∂ζ
∝ − cos(−kζ), B̃3 = ∂3Eb

∂ζ3 ∝ cos(−kζ). (5.34)

Hence, B̃3 must be positive, and therefore g3 < 0 to ensure B3 = g3 + B̃3 < 0 as required by
equation (5.32).

Now, the third order of the energy gain curve at the end of the gun [figure 5.7(a)] is posi-
tive according to a numerical differentiation of γ resulting from astra at that point. That is,
G3 = g3(z = zg) > 0. Hence, g3 starts positive and has to change sign in the drift up to the
buncher cavity. However, to satisfy this requirement, g2 must cross zero as well: Using equations
(5.10), the coefficient is given by

g2 = (G2 − g1χ2)/χ2
1.

The curvature of the gun polynomial, G2, is negative, as can be deduced from figure 5.7(a) again.
The coefficient

χ2(z) = (z − zg)
[
η1G2 + η2G

2
1

]
is thus likewise less than zero, since η1 > 0 and η2 < 0. Moreover, the magnitude of χ2(z)
increases with z. Therefore, g2 starts with a negative value at z = zg, where it is equal to G2,
but gradually increases towards zero due to the change in χ2, since g1 > 0, as pointed out.

Finally, as deduced, g3 starts with a positive value but needs to be negative in the segment from
buncher to focus. This switch must be achieved prior to the buncher, since the coefficients gi
are constant in the compression section afterwards. In short, g2 is growing with z, while g3 is
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decreasing. Furthermore, g2 also enters the expression for g3. Thus, an evaluation of the third
order at the point where g2 = 0 reveals

g3 = G3 − g1χ3 − 2g2χ1χ2
χ3

1

g2=0= G3 − g1χ3
χ3

1
= G3 +G2χ3/χ2

χ3
1

> 0, (5.35)

since G3, χ3 and χ1 are positive for the expanding case, and G2 and χ2 are negative. This means
that at the point where g2 crosses zero, the respective third order coefficient is still positive. And
since g3 has to change its sign as well, both zero crossings must happen prior to the buncher cavity.
Important for this conclusion is the fact that both functions, g2 and g3 should be monotone: More
than one change of sign in the second or third order within a free drift are physically impossible.

Hence, the longitudinal rms emittance, which is dominated by g2 in the segment between gun
and buncher – see above – has to have a minimum within that region. This effect, necessary
for a third order compensation according to the mathematical model, is subsequently denoted as
overcompensation mode. Figure 5.14 depicts the process, indicating the associated swap of the
curvature in the phase space distribution.

5.2.4 About Tolerances

The phases and amplitudes of accelerator cavities are subject to jitter in certain boundaries
around the respective set points. At Regae, the goal is to reach a phase stability of δφ ≤ 10−2 deg
and a relative amplitude stability of δE/E ≤ 10−4. With these values, which are achievable
parameters for state-of-the-art accelerators [57], the arrival time jitter on target for the design
values of the UED experiments is less than 10 fs. To analyze the sensitivity of the linearization
method with respect to these fluctuations, astra simulations have been performed. Five sets of
999 runs each have been employed, using the parameters of case (iv) as set points. Space charge
is included in this analysis. In four of these sets, an isolated jitter source has been used, that is,
only one of the four parameters varies in the above limits. In the fifth set, all cavity parameters
are subject to fluctuations.

The results of the latter set are depicted in figure 5.15. It shows that the minimal achievable
bunch length ζrms,f is very robust and insensitive to the input fluctuations. The mean of this
shortest extent along the drift, 〈ζrms,f〉 = 266 nm, is slightly higher than the value obtained in
the previous chapter. This is, however, mainly attributed to the reduced number of particles in
the simulation, compared to the above simulation. A number of 10 000 macro particles have been
employed in the tolerance runs, in contrast to 300 000 used for the result in the previous section;
this step was necessary to reduce the computational effort. The standard deviation within the
combined set is only about

σζrms,f =
√〈

ζ2
rms,f

〉
≈ 1 nm. (5.36)

However, the shortest bunch extent is not reached at the nominal focus position z∗f = 5.500 m.
Instead, the position fluctuates by several millimeters, with a standard deviation of σzf ≈ 4 mm,
as can be seen in figure 5.15. The mean bunch length obtained at the nominal focus position is
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Figure 5.15 – Tolerance analysis of the achievable bunch length with respect to fluctuating cavity phases
and amplitudes. Minimal bunch length (a), position of the longitudinal focus (b), and bunch
length ζ∗rms at the nominal focus position zf = 5.500 m (c) are analyzed. A phase stability
of δφ ≤ 10−2 deg and a relative amplitude stability of δE/E ≤ 10−4 has been assumed for
both cavities; 999 runs have been performed. The relative bunch length in focus (a) and
the relative focal length variation (b) are on the order of 10−3, which in the latter case
results in variations of a few millimeters due to the focal length of 4 m. Consequently, the
bunch length at the nominal focus position (c) is subject to larger fluctuations, since it is
dominated by the slope being present in the case of shifted minimum position.
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Set 1 2 3 4 1–4 5 Relative Errors

Parameter Eg φg Eb φb
√∑

σ2
k all — set 5 —

σζrms,f (nm) 0.8 0.3 0.1 0.4 0.9 0.9 3.5× 10−3

σzf (mm) 2.7 2.3 1.2 1.1 3.9 3.8 0.9× 10−3

Table 5.2 – Results from the numerical tolerance analysis using astra. The bunch length in focus, σrms,f,
is only mildly affected by the input fluctuations. The focus position itself, however, varies
by several millimeters. The relative errors are comparable, though, and can be explained by
error propagation using the mathematical model.

〈ζ∗rms〉 ≈ 560 nm. This value corresponds to about 2 fs, and is about double the minimal bunch
length achieved in the focus. The standard deviation of the fluctuations at the nominal focus is
σζ∗rms = 289 nm, and thus much larger than at the actual focus. Nevertheless, the results at z∗f
are still below 1 μm, which is a remarkable value. Furthermore, as can be seen in figure 5.15(c),
in many cases, the lower boundary given by the optimal focus at z∗f is achieved.

In table 5.2, the results for the actual focus are summarized. As can be seen, all four parameters
have a similar effect on fluctuations of the minimal bunch length, σζrms,f , and fluctuations of the
respective focus position, σzf . For the focus position, the influence of the gun is about double
that of the buncher, while for the minimal length achieved the gun amplitude and the buncher
phase are pronounced in comparison to the respective other cavity parameters. The square root
of the quadratic sum over these four sets,

√∑
σ2
k is very close to the results of set 5, where

all parameter deviations are combined. Hence, the single fluctuations enter into the final result
statistically independently.

To understand the strong influence of the parameter jitters on the focus position, compared to
the mild influence on the actual bunch length in focus, it is helpful to once more employ the
mathematical model of the process, as described above. The fluctuations enter the coefficients of
the cavity polynomials, general described by Ai [equations (5.5)]. They are proportional to the
amplitude and in a linear approximation likewise proportional to the phase-deviations [equation
(5.20)]. The phase fluctuations of δφ = 0.01 deg ∧= 2 × 10−4 rad thus leads to a similar relative
fluctuation of δAi/Ai ≈ 10−4. As can be deduced from the evolution of the cavity coefficients,
ai, described in equation (5.10), the evolved coefficients gi will also follow that scaling to leading
order.

The bunch length in focus is described by the expressions Xi, equations (5.14), which are explicit
functions of Bi = gi+ B̃i (i ∈ 1, 2, 3), that is, the (partly evolved) higher order cavity coefficients,
and Hi, which are functions of B0 = g0 +B̃0. As in the case above, the tilde marks the coefficients
of the energy gain in the buncher. The scaling of the relative fluctuations in the summed cavity
parameters B is still on the order of 10−4. The same holds true for the functions Hi:

δHi

Hi
= 1
Hi

∂Hi

∂γ̄
δγ̄ ≈ nδγ̄

γ̄
≈ n× 10−4 . 10−3. (5.37)
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5 Linearization of the Longitudinal Phase Space Without Higher Harmonic Field

This claim is justified as follows: In a rough estimate, the derivative ∂γ̄Hi(γ̄) ≈ nHi/γ̄ will be
dominated by the term of highest exponent, n, of γ̄ in Hi – see equations (5.3) on page 126.
Hence, the relative quantity (∂γ̄Hi)/Hi to leading order yields (∂γ̄Hi)/Hi ≈ n/γ̄. Since γ̄ = B0,
the deviations scale as δγ̄/γ̄ ≈ 10−4. The magnitude of the leading order exponent is |n| ≤ 5 for
Hi (i ∈ 1, 2, 3), so that equation (5.37) holds.

The focus position is determined by X∗1 = 1 + (zf − zb) [H1B1] ≡ 0 from equations (5.14). The
asterisks denotes the design focus position z = z∗f , which would be z∗f = 5.500 m for Regae. A
deviation in Ai then results in

X1 = 1 + (zf − zb︸ ︷︷ ︸
∆z

+δz) [(H1 + δH1)(B1 + δB1)] ≡ 0, (5.38)

i.e., the focus position must shift by δz to compensate for the cavity fluctuation. Rearranging
the equation yields:

−1
∆z + δz

≈ −1 + δz/∆z
∆z =

[
H1

(
1 + δH1

H1

)
B1

(
1 + δB1

B1

)]

≈ H1B1︸ ︷︷ ︸
−1/∆z

(
1 + 2× 10−4

) (
1 + 1× 10−4

)
≈ −1

∆z
(
1 + 4× 10−4

)
,
(5.39)

using the more accurate value for δH1/H1 ≈ 2δγ̄/γ̄. Thus, the focus position varies on the order
of

δz

∆z . 2× 10−3, (5.40)

which is in the range of a few millimeters for ∆z ≈ 4 m as for Regae, and in line with the values
obtained in the simulations.

A similar calculation can be performed for X2/3, showing an analogous behavior, with a slightly
increased impact due to the scaling of δH2/H2 ∝ 4γ̄ and δH3/H3 ∝ 5γ̄. Also, an increased
number of error terms contributes to the overall resulting deviations. However, X2/3 do not
influence the focus position, as can be deduced from the different structure. In contrast to X1
which has an additional term (+1), the nonlinear coefficients X2/3 are just proportional to ∆z.
That is, their magnitude fluctuates with the same error level, which likewise contributes to the
fluctuation in bunch length on that level. In the actual (shifted) focus, X1 is zero, the bunch
length is determined by the slightly varying X2 term with δX2/X2 being on the order of 10−3.

At the nominal focus position z∗f the bunch length is determined due to the linear evolution
given by the slope to achieve the focus, H1B1 ≈ −1/4 m−2, the distance ∆zf = zf − z∗f ≈ 4 mm,
and the bunch length at the buncher which is about ζrms,b ≈ 600 μm ∧= 2 ps, assuming a beam
expansion from gun to buncher by a factor of two. That is, ζ∗rms,f = ∆zfH1B1ζrms,b ≈ 600 nm,
which is about the same value as the mean obtained in the jitter analysis, shown in figure 5.15(c):
〈ζ∗rms〉 = 560 nm, depicted by the black line. In other words, the average bunch length at the
nominal focus is entirely dominated by the error propagation of the relative fluctuation in the
focal length.
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Figure 5.16 – Compensation of the energy spread imprinted by the gun, using the buncher cavity. By the
application of the stretcher concept, the beam is not compressed in this case. Instead, a flat
line is created by the correction of the higher orders directly at the buncher. The resulting
energy spread in this case, using the parameters described in the text, is Trms = 15 eV for
a beam of 〈T 〉 = 3.9 MeV. That is, Trms/ 〈T 〉 < 10−5; please note the scale of the energy
axis. As can be seen from the polynomial fit, the curvature is eliminated. Figure adapted
from [48].

In conclusion, fluctuations in the cavity parameters mainly manifest in a shift of the focus.
This is intrinsic to any bunching scheme: The focal length determined by the linear correlation
fluctuates on the level of the (combined) instabilities. The linearization method itself is only
slightly affected. This is also sustained by the formalism derived in sections 5.1 and 5.1.1, which
yields similar error estimates.

5.2.5 Energy Spread Compensation

Phase space linearization does not necessarily mean that the distribution is resembled by an
upright line in phase space, resulting in a strongly compressed bunch. Other configurations can
be thought of as well. A particular application of the above-mentioned method that is also usable
at Regae is the compensation of the energy spread resulting from the gun curvature by means
of the buncher cavity. Of course, this will not lead to a maximal compressed bunch. Instead, a
flat line in phase space is now produced.

Such a configuration is very interesting for the planned TEM experiments [42]. In the case of real
space imaging, the resolution is limited by the quality of the solenoid lenses and, especially, their
chromaticity, i.e., the energy dependence of the focal length. (The focusing strength of a solenoid
scales with 1/γ2 [53].) Hence, an electron bunch with a small energy spread reduces aberrations
in the imaging process of the instrument. To achieve this, one can start with a short bunch,
reducing the influence of nonlinearities. However, space charge repulsion at the sample position
of the TEM severely limits the resolution due to the high charge density at the transverse focus
in this case.
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5 Linearization of the Longitudinal Phase Space Without Higher Harmonic Field

The linearization approach offers a method to start with a comparatively long bunch at the gun,
which expands even further, so that space charge effects in the transverse focus are reduced.
Using the stretcher mode concept, the considerable rf-based energy spread, which is imprinted
during the emission, can be compensated in the buncher, so that image degradations due to both
solenoid chromaticity and space charge repulsion are reduced.

In this case, it is sufficient to describe the beam transport up to the buncher cavity, applying equa-
tions (5.7)–(5.11). At that point, the coefficients gi can be canceled by a choice of corresponding
factors B̃i. That is, B1 = B2 = B3 ≡ 0 for i ∈ {1, 2, 3}, defined in equation (5.12).

An example of such settings can be seen in figure 5.16. Here, the parameters according to the
formalism are Eg = 100.0 MV/m, φg = 48.1 deg and Eb = 13.5 MV/m, φb = −64.8 deg, which
have been refined using astra. Space charge forces are considered, using a charge of Q = 50 fC.
Despite this degrading influence, the resulting bunch shows an extremely small energy spread of
Trms = 15 eV. Compared to the kinetic energy of the bunch, 〈T 〉 = 3.9 MeV, the relative energy
spread is thus Trms/ 〈T 〉 = 4× 10−6. The bunch length is still on the order of a few picoseconds.
The refined astra parameters are Eg = 100.0 MV/m and φg = 45.7 deg, while the buncher is set
to Eb = 14.1 MV/m and φb = −69.9 deg.

Furthermore, this case is also an application of the overcompensation mode. The second order
flips and changes its sign along the drift. An immediate consequence of this is, that the buncher
cavity does not decelerate the bunch. Instead, the compensation of the energy spread is achieved
at an accelerating phase. Please refer to figure 5.17.

In order to get an estimate on the influence of the parameter fluctuations, a sequence of 999
astra runs with jittering cavity settings has been performed once more. As in the tolerance
study above, an rms phase jitter of 0.01 deg has been assumed, as well as a relative amplitude
stability of δE/E = 10−4. The result is shown in figure 5.18. The mean energy spread is
〈Trms〉 = 24 eV with a standard deviation of σTrms = 10 eV. That is, the majority of cases is well
below 50 eV; all cases result in a relative rms energy spread of Trms/ 〈T 〉 < 10−5.

5.3 Beyond REGAE

So far, the stretcher mode concept has been applied to the Regae geometry, resulting in bunches
of a length less than 1 fs for typical Regae parameters. Also, the energy spread compensation
is an interesting concept usable at that accelerator. To explore more aspects of the method, the
constraints given by the layout of this machine are relaxed in the following.

The purpose of this last section is to introduce ideas for additional applications. The examples
are mostly analyzed without space charge forces, demonstrating the underlying principle. The
considerations are of an exemplary and preliminary character, meaning that further studies are
required to examine the experimental feasibility.
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Figure 5.17 – Mean energy (a), rms energy spread (b), and longitudinal rms emittance (c) during the
drift from gun to the buncher cavity for the discussed energy compensation settings. As can
be seen in figure (c), the parameters are such that the machine is set to overcompensation
mode. As a consequence, the energy spread compensation is achieved on an accelerating
phase. Behind the buncher, the energy spread is eliminated almost entirely. Figure adapted
from [48].
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Figure 5.18 – Jitter analysis for the energy spread compensation settings described in the text. A fluc-
tuation of of the cavity parameters of 0.01 deg for the phases and 10−4 for the relative
amplitudes has been assumed. The resulting rms energy spread is well below 100 keV for
all cases, which results in a relative rms energy spread of Trms/ 〈T 〉 < 10−5.
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Figure 5.19 – Definition of the emission phase, φem, in comparison to the gun phase, φg. In this example,
these two phase definitions are shifted by a constant offset of about 40 deg with respect to
each other. The maximum energy gain is obtained at φg = 0 deg (following the definition in
section 5.1.2). The extraction field is about Ez,extr ≈ 60 MV/m at this point and increases
towards larger gun phases. Figure adapted from [48].
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5.3.1 Transverse Emittance

The stretcher mode approach relies on phase settings in the gun that lead to the expansion of the
beam in the subsequent drift. To achieve that, the gun is not operated at the maximal accelerating
phase. Instead, a phase around φg ≈ 40 deg is used in the examples above. Due to phase slippage
of the initially (almost) resting electron emitted by the cathode and the field, a certain offset
exists between the maximum energy gain, which is used as reference for the definition of φg = 0,
and the maximum extraction field Ez,extr at the cathode. The emission phase φem describes the
rf field at the cathode and is defined such that the field reaches its maximum E0 at φem = 90 deg,
i.e., Ez,extr ∝ E0 sin (φem).

However, this maximum emission phase does not coincide with the maximal accelerating phase,
φg = 0. Instead, the emission phase is about φem ≈ 40 deg at the point of maximum energy gain,
which means that the extracting field is only about 60 % of the maximum field. In contrast, the
phase is shifted by 40 deg in the stretcher mode configuration, i.e., φem ≈ 80 deg. As a conse-
quence, the extracting field is larger than in the standard operation where φg = 0, corresponding
to φem = 40 deg. The phase offsets are illustrated in figure 5.19.

In order to optimize the electron emission in the gun for a minimized transverse emittance, one
has to balance the beam spot size of the laser against space charge forces. The laser spot should
be focused as tight as possible, since the initial transverse bunch extent defines the minimal
emittance. However, space charge repulsion, which pushes the electrons apart and increases the
emittance, gets stronger, the smaller the initial bunch volume gets – especially for these low
energy particles. Hence, there is an optimum. The higher extraction field of the stretcher mode
shifts this optimum to smaller spot sizes, since an increased initial phase space density can be
utilized due to the more rapid acceleration. Also, the linearization makes it possible to increase
the bunch length at emission, because the associated curvature effects are compensated at a later
stage. This leads to a further reduction of the Coulomb repulsion and, in addition, to a more
linear behavior of the space charge forces due to the beam aspect ratio. Hence, the stretcher
mode could possibly allow for a better transverse emittance for the gun.

For cases of high bunch charges, which require an emittance compensation scheme [141, 142], the
associated energy spread conflicts with this concept, though. The concept relies on controlled
refocusing of the beam which is defocused by the space charge forces. The defocusing effect
is described by the so-called perveance [143], which describes the space charge repulsion in the
beam envelope equation, analogous to a focusing strength. The perveance scales with 1/γ3 [142].
Hence, it changes along the bunch, if a large correlated energy spread is present, so that a
controlled compensation of the space charge driven emittance increase seems no longer feasible.
Further studies are required to examine the effects in detail, though.

Apart from this, there might be an increased space charge influence in the free drift, resulting from
the reduced overall energy. Also, the transverse divergence combined with the energy spread will
lead to an increased emittance in free drifts [30]. Furthermore, due to the long bunch, rf-induced
emittance effects also need to be analyzed: So-called chromatic emittance variation caused by
different transverse cavity fields along the bunch and the high energy spread especially in the
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5 Linearization of the Longitudinal Phase Space Without Higher Harmonic Field

first gun half-cell can also drive an emittance growth. The effect is getting stronger for higher
emission phases [140] and thus needs to be explored for the stretcher mode.

A comprehensive treatment of gun dynamics and the emittance effects is beyond the scope of
this thesis. More studies on this topic are required.

5.3.2 Varying Focus Position

An extension to the parameters emerging from the Regae geometry is the variance of the focus
position. Like for a laser beam, or the transverse focusing of an electron bunch, a shorter focal
length should yield shorter bunches – at least if it is limited by the emittance.

Similar to the beam size evolution for a Gaussian laser beam via the Rayleigh length, the behavior
can be expressed by the beta function for an electron bunch. Here, the beta function in the
longitudinal space is required, which can be treated analogously to the transverse case. In a free
drift of length s, the evolution of β(s) starting at a waist with β(0) =: β∗ is given by [64, 65]:

β(s) = β∗ + s2

β∗
. (5.41)

Starting with a fixed beta function at the buncher, βb, which is not in the waist, and replacing
the distance to the waist by ∆z, as used above, this expression can be rearranged to describe β∗
depending on ∆z,

β∗1/2 = 1
2

(
βb ±

√
β2
b − 4(∆z)2

)
. (5.42)

The smaller solution describes the reduction of β∗ by shorter distances ∆z to the focus, i.e.,
stronger focusing. Also, the larger the beta function βb in the buncher for constant focal length
∆z, the more dominant does the first term in the square root become, so that β∗ likewise
decreases. Again, comparisons can be drawn to optics: A larger beam can be focused to smaller
spot sizes.

In order to analyze the influence of the focus position, it has been varied in a range of 2.0 m ≤
zf ≤ 8.0 m, using astra; the cavity positions are unchanged with respect to the Regae geometry,
i.e., zg = 0.00 m and zb = 1.29 m. A first scan has been performed without space charge. As
expected, the minimal bunch length gets smaller, the closer the longitudinal focus is located with
respect to the buncher’s position. However, for very short focal length, the beam extent increases
again, so that there is an optimum around zf = 3.5 m; see figure 5.20.

The behavior can be attributed to two effects. First, having a look at the shape of the longitudinal
phase space for the short focal length – figures 5.21 – one finds that a third order is present for
zf < 3.5 m, in contrast to the shortest bunch length achieved at zf = 3.5 m. In the latter case, a
W-shape can be seen, indicating the fourth order; this bunch has an extent of 17 nm. Space charge
effects are excluded. A comparison of the start phases of the different cases shows that for shorter
focal length, φg gets closer to the maximum accelerating phase. As a consequence of this, the
bunches which are focused closely behind the buncher cavity slip out of the overcompensation
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Figure 5.20 – Minimal bunch length for different focus positions. The resulting bunches get shorter with
decreasing focal length, except for very close focus settings. The optimum is around zf =
3.5 m, having a bunch length of ζrms = 17 nm. The astra simulations have been performed
without space charge forces.

mode. Thus, the third order dominates the bunch length for these cases, hindering a further
compression. Shifting the buncher cavity further downstream should hence enable even shorter
bunches, since this recovers the overcompensation mode even for shorter focal length.

A second reason which leads to the increased bunch length is found in transverse effects: Figure
5.21(b) shows the radial particle distribution in r-ζ space of bunches in the focus for different
cases. As can be seen, for very short focal length, the off-axis particles fall behind. In other
words, due to the high focus quality, differences in path length based on the transverse focusing
of the beam start to influence the longitudinal structure of the bunch. The effect can also be
seen from the layering in the longitudinal phase space plots according to the initial radial particle
position.

For illustration one can assume two particles at the same longitudinal position behind the gun
and with the same energy, but one on the central axis of the beam while the other one lies on a
divergent trajectory. If the latter electron increases its transverse offset by 200 μm in the drift of
1 m from the gun to the buncher cavity, a longitudinal separation of the two particles of about

δz =
[√

12 + (2× 10−4)2 − 1
]

m ≈ 2× 10−8 m = 20 nm, (5.43)

builds up. For typical electron bunches such a small value is negligible. However, the bunches
treated here are likewise on the order of a few 10 nm, and thus, the lengthening is significant.

This gets even more interesting when looking at the longer focal length. Suddenly, off-axis
particles which have to travel a longer distance surpass the on-axis electrons. This counter-
intuitive result can also be explained by off-axis effects. Particles starting with a larger divergence
at the gun travel a longer distance towards the buncher. Here, the delayed particles gain more
energy than expected, since they arrive at a later phase compared to the reference particle from
their initial longitudinal bunch slice. However, this means that these particles are now faster.
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Figure 5.21 – (a) Longitudinal phase space distributions in the focus for three different focal lengths. For
the case of zf = 2.5 m, a third order contribution is still present, in contrast to the larger
focal length: The W-shape indicates a dominating fourth order. The color code depicts the
radial particle momenta pr,g at the end of the electron gun at z = 0.1 m. The phase space
distribution shows a layering according to the associated initial particle divergence. The
same effect can be seen in figures (b), where the radial position at the focus is compared
to the longitudinal particle coordinate. Transverse effects start to influence the achievable
bunch length.
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Figure 5.22 – Gun phase φg as function of the focus position. The closer the longitudinal focus is shifted
to the buncher cavity, the more φg is reduced. For focus positions zf < 3.5 m, the machine
settings slip out of the overcompensation mode, leading to the third order effect visible in
figure 5.21.

And thus, the off-axis particles can compensate for the loss and even outrun the on-axis electrons,
despite the longer way they have to travel again in the second section. In the case of the shortest
bunch extent, both effects cancel each other out, leading to a bunch length of ζrms = 17 nm. Thus,
a compression ratio greater than 2.5×104 is reached, taking into account the fully expanded beam
of about 450 μm.

By this effect the complexity of the bunch compression scheme increases, giving room to optimize
the bunch structure in focus even further. It now depends also on the settings of the beam optics,
and with that comes an additional dependency on the energy, apart from the kinetic factors ηi
defined in equations (5.3). Furthermore, the cavities also exert (de-)focusing forces on the bunch,
depending on the phase [140]. However, one should keep in mind that space charge is excluded
in the presented simulations, which, of course, is bound to have additional effects.

Finally, shifting the focus to positions further away from the buncher yields another option: The
buncher phase approaches the zero crossing more and more until, eventually, a bunching and
accelerating configuration is found. For the parameter set used here, this happens at about
zf = 10 m. Of course, coupled to the long focal length, the minimal bunch length achieved is
larger than in the case of a hard focus.

Space Charge and Initial Bunch Length

Adding space charge and sampling the focal length in finer steps, slightly shifts the position of the
shortest bunches towards zf = 3.25 m. The minimal bunch length achieved increases due to the
repulsing effects and the associated increase in the longitudinal emittance by this uncorrelated
effect.
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Figure 5.23 – Minimal bunch length in the focus versus emission time at the gun, tem,rms, evaluated
for different bunch charges. With a lower charge, the optimum shifts towards shorter
emission times, while higher charged bunches require a longer emission time. The optimum
results from balancing the Coulomb repulsion in the gun against the cavity- and drift-based
nonlinearities in phase space. For long emission times, the results converge to the case
without space charge. For very short emission times, the high charge cases do not lead to
stable beams.

Most of the influence of the Coulomb interaction happens at the electron emission and acceleration
in the first half-cell of the gun, while space charge effects are decreasing with larger energies. Also,
the charge density at the cathode is comparatively large due to the small beam spot of the laser,
as discussed in 5.3.1. In order to further optimize the results one can try to increase the initial
bunch length, i.e., vary the length of the cathode laser pulse, τrms, reducing the charge density and
thus the influence of the Coulomb interaction. Going back to the ballistic bunching formalism,
equations (5.19), it is apparent that ζg,rms enters directly the description of the bunch length in
focus. In other words, the minimal achievable bunch length in focus increases with larger τrms due
to uncorrected higher order nonlinearities, and possible remainders of not perfectly eliminated
second and third order contributions. Hence, there should be an optimum of the competing
effects.

Figure 5.23 shows a scan for different space charge scenarios. As expected, there is an optimal
setting, between 0.5 ps ≤ τrms ≤ 3.0 ps, depending on the charge. For longer initial pulses,
all cases converge to the same final bunch extent, since here the contribution of ζg,rms in the
polynomials becomes dominant, while space charge effects can be neglected.

Please note that for very low charges of Q = 1 fC, bunch length below 100 as are predicted by
the simulation, which is on the level of the shortest light pulses created in attosecond-science
[144, 145]. However, only about 5 000 particles contribute to such an electron bunch. Hence, if
the linearization technique can be pushed to these limits, this could, for example, result in an
increase of time-resolution for ultra-fast electron diffraction to this level. However, prior to such
claims, an electron bunch of this type needs to be demonstrated first. This requires a suitable
measurement concept for such short structures with so little charge. Furthermore, if the method
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Q (fC) tem,rms (ps) ζrms (nm) trms (fs) Ipk (A)

1 0.8 24 0.1 7
10 1.0 58 0.2 40
100 1.7 190 0.6 150
1000 2.4 513 1.7 400
2000 2.8 753 2.5 550

Table 5.3 – Parameters for electron bunches focused at zf = 3.25 m, employing different bunch charges.
The emission time is balanced for the shortest bunch length depending on the charge, as
depicted in figure 5.23. For very low charges, bunches on the order of 100 as are predicted,
while high charge cases produce (local) peak currents of several hundred Amperes.

proves viable, the timing fluctuations need to be reduced to a similar level, especially for an
external pump pulse. In addition, the target has to be positioned precisely in the extremely
localized focus, due to the strong focusing.

In contrast, for much higher charges, peak currents of several hundred amperes can be achieved.
Using for example a 2 pC bunch, a compression to about 750 nm can still be achieved, which
corresponds to Ipk ≈ 550 A. The bunch length and peak currents for the various cases are
summarized in table 5.3.

An analytic estimate for the achievable bunch length at the focus depending on the charge is
complex. It is limited by the non-correlated contributions to the longitudinal emittance by the
Coulomb repulsion, mostly happening in the gun. It thus requires the description of the influence
of space charge effects on the longitudinal emittance inside the gun, which is tied to additional
dynamics due to the large change in energy in the gun and other effects like mirror charges at
the cathode during the emission process. The description of the gun dynamics, however, is not
covered by the analytical model derived in section 5.1.2. Furthermore, space charge effects in the
longitudinal focus need to be considered, which also needs an extension of the analytic model.
Interestingly, the values obtained for the bunch length at the focus, given in table 5.3 suggests
a scaling like ζrms ∝

√
Q , see figure 5.24, which requires further investigations beyond the scope

of this thesis.

5.3.3 Energy Modulation

The energy spread compensation and the linearized bunch compression scheme are only two
special cases of a linearized phase space. In principle, there must also be solutions eliminating
these higher orders, but resulting in a skew line in phase space.

An interesting option making use of that is the creation of a periodically structured electron den-
sity, i.e., a micro-bunched beam. The idea itself is not new, see for example [146–149]. However,
the quality of the resulting spike pattern can be improved employing the overcompensation mode:
One can add a modulation to the bunch in the first emittance minimum which evolves into a
spiked current pattern in the subsequent drift. The energy modulation develops into a density
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Figure 5.25 – Concept of the micro-bunch evolution based on a modulation of the initial electron bunch. In
(a) the initial bunch has a uniform current profile and a negatively correlated energy spread,
i.e., it is set for bunch compression. A sinusoidal modulation is added to the distribution,
which evolves into the staircase pattern depicted in (b), according to equation (5.47). The
associated current distribution develops evenly spaced spikes in this linear model.
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modulation, while the global energy spread compresses the whole bunch structure. If the param-
eters are chosen in such a way that the second emittance minimum and the maximal micro-bunch
pattern coincide, the resulting spikes in the current distribution are spaced very evenly and are
of similar magnitude. The first of these properties is achieved, because the emittance values at
the locations of the two minima are of comparable magnitude, so that a linear mapping between
the two points is ensured [57]. The second property is resulting from a (more or less) uniform
charge density at the modulation point and the underlying phase space linearization, which – on
average – yields a likewise uniform density distribution in the second emittance minimum.

Employing a radiation emission process at the location of maximum modulation, for example by
making use of a foil, will hence yield a coherent emission at the wave length of the spacing [147,
150] – which is determined by the overall compression of the bunch. Possible processes to imprint
the modulation in the first emittance minimum are not explored here; see for example [148, 149],
where the modulation is induced by the wakefields of the bunch in a dielectric structure. In the
following, only the basic concept of applying the overcompensation mode to the modulation-based
micro-bunch formation is demonstrated.

At the modulation spot zm, the bunch is linear in the sense that the second order, g2 vanishes.
Following the notation in equations (5.4) and (5.5), the incoming energy at this point can be
expressed as

γ̂m = g0 + g1(zm)ζm + g2(zm)︸ ︷︷ ︸
≡0

ζ2
m + · · · =: M̂0 + M̂1ζm. (5.44)

The modulation is added by a sine function:

γ̃m = Γ sin (κζm) , (5.45)

where Γ is the amplitude describing the modulation depths, and κ = 2π/λm is the respective
wave vector. It is chosen such that the modulation wavelength is shorter than the bunch length,
i.e., λm < ζm,rms. The energy function then reads

γm = γ̂m + γ̃m = M0︸︷︷︸
γ0

+M1ζm + Γ sin (κζm)︸ ︷︷ ︸
δγ

. (5.46)

Here, Mi=M̂i, since the effect of the modulation is entirely contained in the sine term.

To first order, the position change of a particle in the bunch is given by

ζ(z) = ζm + η1δγ (z − zm)
= ζm [1 + η1M1 (z − zm)] + η1Γ sin (κζm) (z − zm) ,

(5.47)

analogously to equation (5.1). The evolution of a modulated bunch described by equation (5.47)
can be seen in figure 5.25. In this case, M1 is negative, so that the bunch length decreases. As
can be seen, the sine structure leads to a stair case pattern at a later point, and hence the particle
density develops spikes.

The location of this micro-bunching is determined by the amplitude Γ. In this case, it is ad-
justed such that the micro-bunch pattern builds up at the second emittance minimum behind
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Figure 5.26 – Application of the micro-bunching concept in the case of the overcompensation mode: The
bunch is modulated in the first emittance minimum, where the phase space distribution is
linear. The micro-bunch pattern is achieved in the second minimum, shortly in front of the
longitudinal focus.

the buncher. Contrary to the previous cases, the parameters for the compression behind the
buncher are chosen such that this emittance minimum itself is slightly in front of the actual
focus, defined by X1 = 0; see figure 5.26. Thus the distribution is linear again, but the line is
not upright. Moreover, the emittance values at the two points are of comparable magnitude, and
hence, the mapping between the phase spaces at the two points is close to linear. In consequence,
the micro-bunch pattern is spread evenly and thus the bunch can be turned into a coherent
radiation source, for example making use of light emission from transition radiation.

The radiation process should happen localized, due to the constant changing bunch length and
nonlinear contributions which build up again in a longer drift section. That is, an undulator, for
example, would not be a suitable tool. The emitted photons have a wavelength that is given by
the modulation period divided by the compression factor of the associated ballistic bunching. It
can be calculated from the bunch form factor (BFF), which is the Fourier transform of the line
charge density [147, 150]. Since the beam is not in focus, the bunching factor will be on the order
of 100, rather than 1 000. A modulation at optical wavelengths could thus be transferred into
extreme ultra-violet radiation or even soft-x-rays. Also (and more likely), THz radiation could be
produced [147–150]. And, due to the high quality associated with the linearization, higher orders
of the emission process could also be employed, either further reducing the produced wavelength,
or relaxing the demands on the modulation period.

The result from an astra simulation for such a case is shown in figure 5.27; the simulation has
been performed without space charge forces. The rms bunch length at the modulation point
is ζrms,mod ≈ 0.9 mm ∧= 3 ps. Since the distribution is still an inverted parabola, the maximum
bunch extent is given by ∆ζmax = 2

√
5 ζrms,mod ≈ 4.2 mm. The modulation wavelength is 267 μm,

so that the bunch covers 15 full periods. The amplitude of the modulation is δpz = 150 eV/c,
which is about 3.6× 10−5 of the mean longitudinal momentum 〈pz〉 = 4.2 MeV/c.
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Figure 5.27 – astra simulation of a bunch modulated in the first emittance minimum and tracked to the
second minimum. As can be seen from the phase space pattern and the current profile de-
picted in figure (a), a spiked charge density builds up. Figure (b) shows the expected bunch
form factor. The separation of the micro-bunches in figure (a), ∆ζ = 2.4 μm corresponds to
the fundamental wavelength of λ = 2.4 μm ∧= 1.25× 1014 Hz in figure (b). The calculation
of the BFF has been performed using the astra post-processing tool [56].
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As pointed out above, a micro-bunch pattern evolves with a spacing of ∆ζ = 2.4 μm, corre-
sponding to a compression factor of about 100. In figure 5.27(b), the corresponding bunch form
factor is shown. The fundamental frequency of ν1 = 1.25× 1014 Hz corresponds to a wavelength
λ1 = 2.4 μm = ∆ζ. The high accuracy of the spacing in the micro-bunch pattern is demonstrated
by the more than 20 harmonics that can be identified. This is made possible by the linearity of
the mapping. The bunch form factor does not reach the theoretical optimum, which can be esti-
mated for a perfect structure with zero emittance to 0.4473n−1/3 [146], where n is the harmonic
number.

To evaluate the applicability of the concept, an analysis with space charge is required. However,
since the beam is not set for maximal compression, one could start with a long bunch of higher
charge. This way, the local electron density is low enough to reduce the influence of the Coulomb
repulsion on the spike formation and the linearity of the process. It is also important that the
transverse beam diameter is small enough for a coherent emission: rrms � ζrms/γ must be fulfilled
in order to apply the line charge model [147], leading to the bunch form factor. Also, suitable
modulation concepts and compression ratios are required to shift the resulting radiation towards
the THz or extreme ultra-violet (EUV) frequency bands. For EUV radiation, thus modulation
concepts in the optical to ultra-violet are required, assuming a compression ratio of 100. Please
note that the compression ratio can be adjusted within certain limits, allowing for a tunable
radiation source.

5.3.4 Freeze-Out

The ballistic bunching mechanism leads to short bunches, but only at a specific location. However,
the bunching factors ηi scale with 1/γ3, and higher powers for the nonlinear coefficients. Hence,
an injection of a linearized and focused bunch into a subsequent cavity could effectively freeze
out the bunch structure due to the increasing γ value. Especially the second and third order
nonlinearities, which are proportional to 1/γ4 and 1/γ5 respectively, can be eliminated by this
approach. The resulting bunch would keep the short extent over a longer distance, ideally over
the entire length of the accelerator.

A simulation of this concept has been done, using the Regae geometry once more, but adding
a 5 m S-band Traveling Wave Structure (TWS) with an average accelerating gradient of about
28 MV/m, resulting in an energy gain of about ∆T ≈ 140 MeV. As can be seen in figure 5.28,
the absolute energy spread is even reduced in this case, due to the short phase interval covered
by the injected bunch. The correlated energy spread is almost eliminated at the end of the TWS,
meaning that the bunch is injected such that the focus is nearly reached during acceleration, while
the ballistic bunching is more and more suppressed. The actual focus is achieved at about two
meters behind the TWS. The longitudinal bunch evolution is negligible, though, as it is less than
1 nm within five meters of drift. Also, the longitudinal emittance freezes at the minimal value,
meaning that the higher order correlations are suppressed, which has been as assumed beforehand:
The nonlinear coefficients are suppressed by a factor of 8×105 and 2×107, compared to a bunch
with γ = 10. The linear term is likewise suppressed more, namely by a factor of 3× 104. Space
charge forces have not been considered in the simulation.
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Figure 5.28 – Evolution of the mean kinetic energy (a), the energy spread (b), as well as the bunch
length (c) and the longitudinal emittance (d) for the injection of a linearized bunch into a
TWS. Behind the additional cavity, the ballistic bunch compression mechanism is strongly
suppressed, so that the correlated energy spread 〈ζT 〉 is close to zero, and ζrms and ε are
frozen at their minimal values. The insets depict the longitudinal phase space distribution at
various points along the beam line. The axis limits of the scatter plots are set to identical
values, that is, the bunch evolution is frozen. Space charge forces were disabled in the
simulation.
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Figure 5.29 – Evolution of a linearized bunch injected into a plasma wakefield. Mean energy (a), rms
energy spread (b), bunch length (c), and longitudinal as well as transverse emittance (d)
are depicted. Due to the short plasma wavelength, a significant energy spread is acquired.
As a consequence, the ballistic bunching process is not entirely suppressed. The transverse
emittance is increased inside the plasma due to a mismatched beta function, and grows
further in the subsequent drift due to the acquired energy spread combined with the diver-
gence of the beam. The longitudinal emittance is increased due to nonlinearities caused by
the wakefield.

The ideal is to carefully optimize each order so that it gets frozen at the desired position. In some
cases, it will even be necessary to achieve and maintain a certain curvature setting. For example,
if a magnetic chicane compressor is additionally used, one can pre-compensate for the curvature
acquired in that device. Another option is to freeze a micro-bunched configuration as discussed
above. In this case, it would be possible to use an undulator for the radiation process. However,
the linear energy spread along the whole bunch must be taken into account and compensated
by the TWS for such a setup. Also, the curvature applied by the booster cavity needs to be
considered. Please note that since the longitudinal bunch evolution is eliminated in the drift
behind the booster, the curvature does not change the current density. Hence, a compensation
is possibly not required, as long as no dispersive elements are used.

Another candidate for the freeze-out scheme would be a plasma booster. Due to the shortness
of the bunch, the relative energy spread acquired inside the plasma remains within reasonable
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bounds, while the high gradient rapidly suppresses the ballistic bunching process and the evolu-
tion of the nonlinearities. Depending on the associated plasma wavelength, a curvature similar
to that in an rf-like structure will build up, though. Also, due to the small beam spots required
because of the matching, transverse effects can reduce the longitudinal focus quality. Likewise,
space charge in a transversely and longitudinally focused bunch poses a problem for such a deli-
cate technique. However, even a second order corrected bunch would further improve the results
of the experiment described in chapter 3.

A simulation of the injection of a linearized bunch into a plasma wakefield has been performed.
The plasma density in this case was set to ne = 1017 cm−3, using a 35 mm plateau, and 5 mm
ramps. Laser guiding has been assumed, that is, the laser beam envelope was constant over
the last 20 mm of the plateau. Specific numbers for the self-focusing threshold have not been
calculated for this case. The injected electron bunch results from a similar case to case (iv)
depicted in section 5.2. However, the gun amplitude has been increased to 120 MV/m and the
transverse focus has been set to the plasma position. The bunch has an energy of about 3.7 MeV,
a charge of Q = 50 fC, and a length of about 1 μm. The increase in the bunch extent by a factor
of more than three is attributed to space charge repulsion and a slight longitudinal mismatch, so
that the injection happens prior to the longitudinal focus. The bunch is further compressed in
the plasma. Transverse effects have not been analyzed and could contribute to the lengthening.

Within the plasma, the beam is accelerated to 〈T 〉 = 300 MeV. As can be seen in figure 5.29,
a freezing effect can be achieved. However, the effect is not as strong as the one in the TWS
case. This is a result of the additional correlated energy spread acquired in the plasma, due to
the shortness of the plasma wave length. Also, the longitudinal emittance is strongly increased
due to the energy spread, as well as nonlinearities imprinted by the plasma. The transverse
emittance is increased by a about 50 % in the plasma, meaning that the beam is not ideally
matched. The divergence in combination with the large energy spread leads to an additional
growth of this quantity in the subsequent drift, which could be reduced if a focusing element
were to be included. The same effect already leads to an increased emittance during the focusing
into the plasma.

Figure 5.30 depicts the phase space of the accelerated beam. It shows a complex structure and
also some curvature effect in the high charge region. An in-depth analysis of this particular
injection has not been performed. Nevertheless, this last case shows that an injection of low
energy electrons into a plasma wakefield can be achieved even at shorter plasma wavelength.
The parameters of the plasma profile as well as the machine settings of Regae can be further
improved to optimize the result of this exemplary case.

5.4 Summary

In this chapter, a novel linearization scheme of the longitudinal phase space has been described.
Instead of using a shorter wavelength cavity for that purpose, like in a higher harmonic structure,
the method takes advantage of the beam dynamics itself by stretching the bunch, thus achieving
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Figure 5.30 – Longitudinal phase space of a linearized bunch injected into a plasma wakefield. Despite
the shorter bunch extent, the smallness of the plasma features lead to a complex structure.

a similar effect with an accelerating field at the fundamental frequency of the rf system. The
technique is called stretcher mode.

For the application of the stretcher mode, a controlled beam expansion is mandatory. Therefore,
an analytic model has been developed in the course of this thesis, describing the process. It is
very well supported by astra simulations. If the special case of the overcompensation mode is
applied, even the third order nonlinearity can be eliminated. The results of the simulations in
this case suggest an improvement of the bunch compression ratio at Regae by a factor of ten
compared to the design parameters, i.e., possible bunch durations below 1 fs – including space
charge. As an alternative, bunches with a relative energy spread below Trms/ 〈T 〉 < 10−5 can be
produced.

Even shorter bunches can be generated when the focal length is reduced. Further possible appli-
cations are the freeze-out scheme or the generation of evenly spaced micro-bunch patterns in a
long electron bunch. However, more investigations – including a treatment of space charge forces
– are required on these topics.

The general method provides a broad applicability, since an additional higher harmonic cavity
as well as the associated rf system are not required. At Regae, for example, a third harmonic
system would be a 9 GHz structure, which results in high acquisition costs – apart from the fact
that there is no space to include such an X-band device and the demands from the Angus beam
into the drift section between buncher cavity and interaction chamber.

The experiments drafted for Regae can in principle be conducted with the machine as it is. The
first step for that demonstration will be the energy spread compensation, since it is relatively
insensitive to fluctuations and more importantly, the bunch evolution is stopped behind the
buncher cavity. This makes the measurement more accessible, since it only relies on a high
resolution electron spectrometer. The additional klystron to be installed at Regae is essential
for the measurement, though. In order to demonstrate the improved bunch compression, a
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transverse deflecting structure is required and planned. It could, however, also be measured
using a plasma-based concept [96].

The ultimate goal is the acceleration of such a linearized bunch by an (emittance conserving) in-
jection into a laser-driven plasma wakefield, thus combining the concepts developed and described
in this Ph.D. work.
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The preceding chapters of this work have dealt with two major topics. In the first part, the ex-
ternal injection of conventionally generated electron bunches into a laser-driven plasma wakefield
has been explored, while the last chapter has been dedicated to a novel method to further improve
the beam quality of conventional sources in terms of longitudinal beam dynamics – holding the
promise to extend this also to laser wakefield acceleration.

The external injection experiment is designed as a diagnostic tool for the plasma fields. The
electrons emitted by Regae are injected into the plasma at varying time delays with respect to
the driving laser pulse and thus at different phases of the plasma wakefield. By analyzing the
resulting energy spectrum, the strength of the accelerating field can be determined and correlated
to the injection phase. Thus, it allows for the mapping of the wakefield.

The simulations performed and presented in this thesis show that an injection into a laser-driven
plasma wakefield at Regae is possible. In particular, it is feasible to transport electron bunches
through the plasma for phase settings which cover about one third of the plasma wavelength,
despite the low injection energy and the accordingly large phase slippage. The emittance growth
within the plasma can be limited to less than 50 %, using the standard focusing optics to adjust
the beam parameters at the plasma entrance according to the matched beta function.

The back-calculation of the accelerating field structure from the resulting spectra – the goal of
the experiment – can be performed in the case of an on-axis injection in the accelerating and
focusing phase region. However, only the integrated field is accessible by the measurement of
the resulting energy, so that a model has to be assumed in an iterative method: If the model
is correct, measurement and calculation result in the same energy gain curve. However, it is
not proven that the local field reconstruction, i.e., the model, is unique. Furthermore, for the
integration performed in the case analyzed in this thesis, the less important decelerating phase
region is not well reconstructed. As a result, it requires a more exact treatment of the phase
slippage, which is asymmetric around the peak of the field.

An issue with this approach is the combination of the phase slippage and the varying wakefield
amplitude caused by the evolution of the laser intensity. A simplification could thus be obtained
if a guiding channel were used. In that case, the laser beam envelope stays constant, and hence
the wakefield amplitude does not change, either.

The mapping of the wakefield can also be extended to transverse offsets, so that a three-
dimensional wakefield profile is obtained. In this case, however, the bunch performs betatron
oscillations around the symmetry axis defined by the laser’s path. Since the accelerating field
strength depends on the radial position, this leads to an additional amplitude variation of the
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accelerating field – on top of the phase slippage and laser envelope issues. The magnitude of this
effect requires further investigations.

The betatron oscillations also lead to an increase of the rms emittance of the bunch and thus
raises questions about the beam transport to the spectrometer, i.e., the measurement of an
off-axis injected beam. Since the emittance growth, however, is based on the described phase
space mixing, the slice emittance is affected far less by this spiralization effect. In combination
with the imprinted energy correlation, this means that an oscillating pattern is created at the
spectrometer screen. The image might be clipped, but it should be possible to attribute the
fragments to the off-axis injection. The combination of slice emittance and energy chirp thus
mitigates the influence of transverse offset jitters of laser and electrons, which is one of the main
issues identified in terms of parameter tolerance along with the timing jitter between Regae and
the laser. Both uncertainties are based on statistical fluctuations, so that a large statistics leads
to a reduction of the impact.

Another uncertainty not treated in the course of this work stems from variations of the plasma
density. An overall deviating density leads to different accelerating fields and a different plasma
period. Hence, the periodicity in the measured signal changes accordingly, so that this case can
be deduced directly from the phase scan performed in the laser-pump electron-probe experiment.
A fluctuation of the plasma density on top of a constant plateau is more challenging. The
electrons pass through varying phases and amplitudes, depending on the strength of the density
fluctuations. The effect is further complicated by the laser evolution, i.e., the local driver strength
of the wake. Further investigations are required to judge the impact of such uncertainties. In
addition, a precise characterization of the plasma density in the experiment is required in order
to avoid these instabilities.

astra uses the analytic equations of the linear regime of laser wakefield acceleration. Thus,
there can be deviations from that model if, for example, nonlinear plasma fields occur. A way to
identify a nonlinear behavior is to look at the period length of the plasma, which gets elongated in
the nonlinear case. To distinguish this lengthening from a linear wake at lower density, which also
has a longer plasma wavelength, one could compare the range of phases that allow for a passage
of the electrons. Since the focusing phase interval in the nonlinear regime is increased compared
to the increasingly reduced defocusing section, the overall phase range in which a passage of
electrons through the plasma is possible increases, broadening the detectable phase range, and
thus shifting the ratio to values larger than 1/3, as deduced from the simulations of the linear
case.

An explicit deviation of the astra simulations in this thesis from the later experiment is the
description of the laser beam during the overtaking process. The laser profile of the Angus
laser system is different from the Gaussian model, which has been used in the analysis, since the
implementation of a super-Gaussian beam propagation model into the particle tracking code has
not been finalized, yet. Hence, further investigations and measurements of the laser’s effect on
the electrons during the overtaking are required and planned [62].

The wakefield reconstruction should also yield a description of the emittance behavior, i.e., the
emittance changes due to the beam dynamics induced by the plasma must be derivable from
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the fields and thus covered by the model. The emittance in turn must be measured to refine
the model and understand the plasma effects. Analysis on this topic can also be found in [29].
Such a measurement requires stable experimental conditions, since the concepts to determine
the emittance typically rely on a multi-shot method. To mitigate additional emittance effects
in the drift behind the plasma, a beam optics closely behind the plasma targets is required to
reduce the divergence. At Regae, an additional permanent solenoid is included in the target
chamber, which can be used for this purpose. By this approach, concepts to mitigate plasma
induced emittance growth [31, 32, 79] by matched injection and controlled (transverse) beam
expansion at the plasma exit can be tested and analyzed with the external injection experiments
at Regae.

An emittance-conserving beam transport is of utmost importance for staged laser wakefield accel-
erators and hybrid machines using a plasma-based booster. The bunch charge of such machines
is typically on the order of several pico-Coulombs and more. In order to compress and focus
an electron bunch of this kind, a dedicated photo injector with a higher injection energy than
provided by Regae is required. Since space charge forces scale inversely with the energy, their
effect is reduced by higher energies.

Coulomb repulsion is not the only effect which hinders bunch compression. Nonlinear correlations
in the longitudinal phase space lead to a lower limit for the minimal bunch extent, too. In order
to eliminate the contribution at Regae, a new method has been derived in the course of this
thesis. This stretcher mode concept relies on the controlled beam expansion after the electron
gun, such that the evolved nonlinearities can be corrected by the subsequent buncher cavity. The
idea is to mimic a higher harmonic structure by this expansion: The reference for the curvature
and higher order effects is the bunch length. That is, nonlinearities in a bunch of unchanged
length which can be corrected by a higher harmonic structure can likewise be eliminated in an
expanded beam which is sent through a cavity operated at the fundamental frequency of the rf
system.

The concept described and mathematically derived in the second part of this thesis works excep-
tionally well according to astra simulations. For the case of Regae, a bunch length well below
1 fs can be obtained, compared to 7 fs without linearization. Using less charge and a shorter focal
length, even shorter bunches down to a 100 fs level are suggested by the simulations. Alterna-
tively, an energy spread compensation to relative values of Trms/ 〈T 〉 < 10−5 can be obtained.

Further improvements of the model could include an analytic formulation which incorporates
space charge forces. However, the treatment of Coulomb forces changes the drift description
from a purely kinetic to a dynamic problem. In addition, the calculation of the Coulomb fields
in an electron bunch is complex [142]: The scaling of the space charge fields depends on the
longitudinal (L) and radial size (R) of the bunch, since the behavior of the space charge fields
differs for various aspect ratios A = R/L. A radial dependency has not been considered in the
formalism so far. The longitudinal space charge field, Ez, shows a nonlinear behavior along the
ζ-coordinate towards the edges of a long bunch (A < 1), whilst this dependency is linear in the
case of a short bunch (A > 1), converging to a constant field strength given by an infinitesimally
thin sheet of charge for extremely short bunches (A � 1). That is, the behavior can change
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during the compression process, where the bunch shape evolves from a long, cylindrical shape
to a pancake like structure in the focus. Since the aspect ratio is given in the rest frame of the
bunch, there is an additional dependence on the energy, γ. Also, since the transverse beam size is
not constant, A shows another variation along the beam line, given by the focusing elements and
possible transverse space charge forces. On top of this complications, the fields depend on the
type of the charge density distribution – which can evolve and change along the drift as well.

Another improvement would be the inclusion of the gun dynamics in the mathematical formu-
lation. In the work presented here, the bunch structure at the end of the gun is taken from an
astra simulation. Due to the large phase slippage in the first half cell of the gun, an analytic
description can only be achieved by an approximation [140]. To extend the stretcher mode model
to this gun dynamics description, it is hence important to analyze the calculated bunch structure
at the end of the gun up to the third order and compare it to the corresponding Taylor polynomial
obtained by an astra simulation. For too large deviations, an adaption of the gun dynamics
description is required. A stretcher mode model which includes both, space charge effects and
phase slippage in the gun, would be beneficial, since it should provide a scaling of the minimal
bunch length obtainable with the charge carried by the bunch.

The linearization concept can be adapted to different machine configurations. For example by
the inclusion of a third harmonic structure, which could be used to even correct for forth and
fifth order nonlinearities. This is important in the case of very long bunches. Also, a chicane
formalism can be developed. Ballistic bunching is limited to energies on the order of 10 MeV,
since the linear bunching factor scales with 1/γ3. That is, an energy doubling at Regae from
5 MeV to 10 MeV already reduces the efficiency by one order of magnitude, meaning that the
focal length increases to about 40 m. This can be partly reduced by an increased gradient of the
buncher cavity, and/or an increased length of that structure. Both of these counter measures,
however, scale linearly only and are limited, meaning the ballistic bunching concept is rendered
inefficient for higher energies.

Instead, chicane-based bunching schemes are required. The dispersion in a magnetic chicane
leads to different path lengths for different energies, so that a longitudinal shift between particles
of different longitudinal momentum occurs. Similar to the kinetic evolution described in chapter
5.1.1, this shift is subject to a nonlinear evolution. The description of chicane-based bunching
is typically done via the matrix formalism. The linear matrix element is denoted by R56. The
higher orders are described in that formalism by the matrix element T566 for the second order and
the matrix element U5666 for the third order [46]. Since the same polynomial structure underlies
formulations of both concepts, a chicane can be included into the stretcher mode formalism –
or, alternatively, the stretcher mode concept can be included in the matrix formalism. Hence,
chicane effects in principle can be (pre-)compensated by the stretcher mode. Lastly, the novel
concept effectively does the same as higher harmonic structures, which are successfully operated
at various accelerator facilities.

The stretcher mode concept can also be applied to improve the micro-bunch formation obtained
from an upstream modulation: The sinus pattern added at the modulation point develops into
a staircase structure in phase space, resulting in a spiked current profile. In the case of the
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stretcher concept, or more precisely the special case of the overcompensation mode, the quality
of the pattern can be improved, resulting in an evenly spaced spiked current profile. Hence, in
a radiation process, coherent radiation is emitted. The simulation performed in the context of
this thesis to demonstrate the concept contains more than ten harmonics. However, the case has
not been analyzed with space charge forces enabled, which must be considered for such delicate
structures. Hence, further investigations are needed.

Two factors determine the spacing of the current spikes, and thus the radiation frequency: The
modulation wavelength and the compression ratio. The compression ratio cannot be too large,
i.e., it will be on the order of 100 and less, because the bunch must not be in the longitudinal
focus at the point where the full micro-bunch pattern unfolds; in the focus all particles are at
the same longitudinal position, so that the spikes would be on top of each other. In the example
given, the wavelength of the emitted radiation, would be in the infrared region. To produce
radiation in the nanometer range, e.g., the water window below 4 nm, either a modulation in the
ultraviolet region is required, or the usage of a large harmonic of the radiation is chosen, which
in turn requires a very high quality micro-bunch pattern. At this point in time, the concept thus
seems more feasible for THz radiation, where similar sources already exist.

Radiation of 1 THz corresponds to 300 μm ∧= 1 ps. The modulation thus would be in the mil-
limeter range and can be obtained for example by wakefield induced energy modulations in a
dielectric structure [149]. The bunch length at the modulation point consequently needs to be on
the order of several millimeters. The wavelength emitted by the source can be tuned by adapt-
ing the compression ratio. Shifting the radiation to the optical band could be an interesting
option for diagnostics and the demonstration of the linearization concept in the context of the
micro-bunch formation.

Alternatively, one could think about a combination with a booster cavity, so that the micro-
bunched beam is injected into that subsequent accelerating structure, where the pattern is frozen.
The ballistic bunching process which underlies the compression and the micro-bunching process
is suppressed with 1/γ3. In that case, the emission angle θ = 1/γ of the radiation reduces, too,
due to this scaling associated with synchrotron radiation. If the booster cavity at the same time
corrects for the linear energy correlation, the bunch could even be sent through an undulator, i.e.,
the requirement for a local emitter is no longer valid. Depending on the number of micro-bunches,
the modulation could possibly even seed an FEL process.

A long bunch cannot be injected into a plasma. However, the micro-bunching concept yields
an interesting option here, as well. If the spacing of the current spikes is tuned to the plasma
wavelength, an injection in a way that each micro-bunch is accelerated in a separate bucket
can be obtained. The resulting multi-bunch train can for example be further compressed in a
downstream chicane, since an energy correlation is still present: Each micro-bunch is assumed to
be injected into an accelerating field of the same magnitude, so that ideally the energy correlation
from the preceding ballistic bunching process is maintained. At the same time, the defocusing
fields of the plasma filter out a fraction of the electrons between the spikes, thus reducing the
associated background signal. The length of the micro-bunch pattern, i.e., the maximum number
of current spikes, depends also on the number of stable buckets formed by the plasma in that
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6 Discussion and Outlook

case, which might limit the applicability as an FEL driver due to slippage of the bunch with
respect to the emitted light field. This, however, needs to be further explored. In any case, the
approach poses an interesting concept for plasma injection.

Including the stretcher-mode linearization scheme into the photo-injector line for a hybrid ac-
celerator described above allows for maximum compression to operate the plasma-booster at
a density of ne = 1017 cm−3. This results in higher accelerating gradients of up to 30 GV/m,
depending on the driver laser strength. At the same time, the use of bunch charges of a few pico-
Coulombs is possible due to the higher injection energy. Thus, with such an injection-optimized
pre-accelerator, an emittance conserving beam transport and acceleration as suggested in [32]
could be obtained.

The Regae studies, which are conceptually described in this thesis, and the insights gained from
the experiments are first steps to test the applicability of the advanced concepts described in this
chapter. The required beam line upgrade at Regae, which has been developed in the course of
this thesis, is planned for the near future. The experiments are scheduled for 2017. Since the
experiments at the Lux project are in the starting phase, experiences gained with the Angus
laser system and experimental insights – like for example optimized alignment procedures – can
be transferred and adapted to the Regae side arm, leading to possible changes and adaptions
of the systems illustrated here.

When the external injection experiment at Regae is finally executed, the knowledge and results
gained from that wakefield diagnostic will be transferred to Lux and combined with the findings
at this beam line. Despite the low charge, the results obtained in terms of the field distribution
and, in particular, matching and beam transport through the plasma are cornerstones for any
plasma booster scenario. No matter whether it is the staging of several plasma cells, or the
external injection from a conventional source: In order to produce a usable bunch, a controllable
and emittance conserving beam transport through the plasma is inevitable. The linearization
concept can be applied to various low- and mid-charge accelerators, including photo injectors for
novel hybrid machines, which are possible candidates for FEL operations due to their compactness
based on the large acceleration gradients of the plasma fields and the high level of beam control
obtained with conventional techniques.
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