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A machine learning approach to Bayesian parameter
estimation
Samuel Nolan1, Augusto Smerzi1✉ and Luca Pezzè 1✉

Bayesian estimation is a powerful theoretical paradigm for the operation of the approach to parameter estimation. However, the
Bayesian method for statistical inference generally suffers from demanding calibration requirements that have so far restricted its
use to systems that can be explicitly modeled. In this theoretical study, we formulate parameter estimation as a classification task
and use artificial neural networks to efficiently perform Bayesian estimation. We show that the network’s posterior distribution is
centered at the true (unknown) value of the parameter within an uncertainty given by the inverse Fisher information, representing
the ultimate sensitivity limit for the given apparatus. When only a limited number of calibration measurements are available, our
machine-learning-based procedure outperforms standard calibration methods. Our machine-learning-based procedure is model
independent, and is thus well suited to “black-box sensors”, which lack simple explicit fitting models. Thus, our work paves the way
for Bayesian quantum sensors that can take advantage of complex nonclassical quantum states and/or adaptive protocols. These
capabilities can significantly enhance the sensitivity of future devices.
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INTRODUCTION
Precise parameter estimation in quantum systems can revolutio-
nize current technology and prompt scientific discoveries1,2.
Prominent examples include gravitational wave detection3–5, time
and frequency standards in atomic clocks6, field sensing in
magnetometers7, inertial sensors8,9, and biological imaging10. As
such, improving the sensitivity of quantum sensors is currently an
active area of research with most work focused on the control and
reduction of noise and decoherence, and on the use of
nonclassical probe states1. Furthermore, the development of data
analysis techniques to extract information encoded in complex
quantum states11–19 is another crucial, yet often overlooked step
toward ultra-precise quantum sensing.
Among different strategies20–22, Bayesian parameter estimation

(BPE) is known to be particularly efficient and versatile. The output
of BPE is a conditional probability distribution P(θ∣μ) which is
interpreted as a degree of belief that the parameter θ equals the
true (unknown) value θtrue, given the sequence of mmeasurement
results μ= μ1,…, μm and any prior information about θtrue

16,17.
BPE is free of any assumption about the probability distribution of
the measurement data and can meaningfully assign a confidence
interval to any result, even a single detection event (m= 1). As m
becomes large, P(θ∣μ) converges to a Gaussian centered at θtrue
and with a width proportional to the inverse Fisher information, a
result which crucially holds for any probability model and all
values of the parameter θtrue16,21,22. Finally, BPE forms the basis of
several adaptive protocols in parameter estimation23–30. However,
performing BPE necessitates a detailed characterization of the
measurement apparatus, which typically requires either modeling
the sensor explicitly, or else collecting a prohibitively large amount
of calibration data. Although BPE has been demonstrated in
single-qubit systems, such as NV center magnetometrs25,29,31–33,
its demanding calibration requirements remain a major limitation
when moving to more complex systems. For example, complex
nonclassical states are now routinely generated in ensembles of
ultra-cold atoms1. BPE using entangled states has so far only

limited to some proof-of-principle investigations in few-particle
systems12,14,15. To employ BPE in systems that cannot be easily
modeled, methods must be developed to efficiently calibrate the
device given limited data.
In this manuscript, we provide a machine-learning approach to

BPE. We propose that parameter estimation can be formulated as
a classification task—similar to the identification of handwritten
digits, see Fig. 1—able to be performed efficiently with supervised
learning techniques based on artificial neural networks34–36.
Classification problems are naturally Bayesian: for instance, the
output of the classification network in Fig. 1(a) is the probability
that the handwriting is one of the digits 0, . . . , 9, in this case, a
well-trained network should assign the highest probability to the
digit 2. Analogously, we design a neural network adapted for
parameter estimation whose output is, naturally, a Bayesian
parameter distribution. Based on this interpretation, we provide a
theoretical framework that enables a network to be trained using
the outcome of individual measurement results. This training
provides a set of Bayesian distributions for each possible
experimental outcome and a Bayesian prior that we unambigu-
ously identify and directly link to the training of the network.
These Bayesian distributions and prior are subsequently multi-
plied, depending on experimental outcomes, and used to perform
BPE for the estimation of an arbitrary unknown parameter. We
show that our BPE protocol is asymptotically unbiased and
consistent: it obeys relevant Bayesian bounds17 dictated, in our
examples, by quantum and statistical noise. Our method is tested
on a variety of quantum states, demonstrating that classical
sensitivity limits can be surpassed when using entangled states.
Crucially, the neural network needs to be trained with a relatively
small amount of data and thus provides a practical advantage
over the standard calibration-based BPE.
Although there is a significant body of literature on the

application of machine learning techniques to solve problems in
quantum science37,38, quantum sensing has received relatively
little attention39. Current studies have mainly focused on the
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optimization of adaptive estimation protocols40–49, improved
readout for magnetometry25,50, and state preparation51. Similar
tasks such as tomography52–58, learning quantum states59–64,
Hamiltonian estimation65–68, and state discrimination69,70 have
also been considered. Neural networks have been applied in the
context of parameter estimation with the aim to infer/forecast
noisy signals71–73, and for the calibration of a frequentist estimator
directly from training data74. Unlike these approaches, we show
here that a properly trained neural network naturally performs BPE
without any assumptions about the system. The machine-
learning-based parameter estimation illustrated in this manuscript
can be readily applied for data analysis in current quantum
sensors, providing all the important advantages of BPE, while
enjoying less stringent calibration/training requirements. The
method applies to any (mixed or pure) state and measurement
observable. In practical applications, noise and decoherence that
affect the apparatus are directly included (via the training process)
in the Bayesian posterior distributions which therefore fully
account for experimental imperfections.

RESULTS
In a general parameter estimation problem, a probe state ρ
undergoes a transformation that depends on an unknown
parameter θtrue. The goal is to estimate θtrue from measurements
performed on the output state ρθtrue . A detection event μ occurs
with probability PðμjθtrueÞ ¼ Tr½ρθtrueEμ�, where fEμg is a complete
set of positive, Eμ � 0, and complete,

P
μEμ ¼ 1 operators75.

The parameter estimation discussed in this manuscript is divided
in two parts: i) a neural network is trained and ii) Bayesian estimation
performed on a test set, which we detail below. A test set refers to
an arbitrary sequence of measurement results μ of length m,
possibly different to the number of measurements found in the
training set. To build intuition we first illustrate the theory with a
pedagogical example consisting in the estimation of the rotation
angle of a single-qubit state exp �iσyθ=2

� � "j i, (σx,y,z are Pauli
matrices and "j i, #j i are eigenstates of σz). The rotation angle θ is

estimated by projecting the output state ψðθÞj i ¼ exp �iσyθ=2
� � "j i

on σz . The two possible output results, μ= ↑, ↓, can occur with
probability Pð" jθÞ ¼ cos2ðθ=2Þ and P(↓∣θ)= 1− P(↑∣θ), respectively,
which are monotonic over the interval θ∈ [0, π]. Aside of being
purely pedagogical, such a system is relevant to NV center
magnetometers25,29,31–33 Later, we generalize to systems of many
qubits, in separable and entangled states, eventually including noise
during state preparation and/or in the output measurement.

Training of the neural network
First, the parameter domain is discretized to form a uniform grid of d
points θ1, . . . , θd which are assumed to be perfectly known. The
training set consists of mθj measurements performed at each θj. For
example, the training set for a single qubit would contain d tuples
{m↑,θ,m↓,θ}, where mμ,θ is the number of times the result μ= ↑, ↓ was
observed at a particular θ. During training, the network is shown all
mtrain ¼ Pd

j¼1 mθj measurement results μ, along with the labels θj
that are sampled from the (unknown) joint distribution37,

Pðμ; θjÞ ¼ PðμjθjÞPðθjÞ: (1)

Here, P(μ∣θj) is the probability to observe a measurement result μ
when the parameter is set to θj. This distribution fully characterizes
the experimental apparatus (including all sources of noise and
decoherence). It is typically unknown to the experimentalist and is
never seen by the network. Additionally, the probabilities P(μ∣θj) need
not be sampled uniformly in θj, which may also have some
distribution P(θj).
Via the optimization of weights and links of artificial neurons,

the network attempts to learn the conditional probability PΛ(θj∣μ)
that gives the degree of certainty that θj is the correct label given
the particular μ shown during training. This is the essential idea of
supervised learning. Here, the subscript Λ denotes the depen-
dence of the output on the randomly chosen initial network, the
training algorithm, and the training data itself. In Fig. 2(a) we show
the two possible outputs of the network for the single-qubit
example: that is PΛ(θj∣↑) and PΛ(θj∣↓) (blue dots), as a function of
the label set θ1, . . . , θd in [0, π].

Bayesian inversion and prior distribution
Here, we recognize that the output of the neural network, PΛ(θj∣μ)
δθ, can be interpreted as a Bayesian posterior distribution. As we
have discretized the continuous random variable θ, it is necessary
to account for the grid spacing δθ= θd/(d− 1). We show that the
posterior distribution is formally obtained from the Bayes rule,

PΛðθj jμÞ ¼ PΛðμjθjÞPΛðθjÞ
PΛðμÞ : (2)

We emphasize that the Bayesian inversion in Eq. (2) is performed
indirectly by the network, which does not have access to any of the
quantities on the right-hand side of Eq. (2). PΛ(μ) normalizes the
posterior distribution,

Pd
j¼1 PΛðθj jμÞδθ ¼ 1 and PΛ(θj) is called

the prior, which plays a conceptual as well as a practical role.
Throughout this manuscript, we are treating possible measure-
ment results μ as a discrete random variable.
We calculate PΛ(θj) from its definition as the marginal

distribution, PΛ(θj)= ∑μPΛ(θj∣μ)PΛ(μ) with the sum extending over
all possible measurement results μ. As PΛ(μ) is also unknown, we
can eliminate it by again inserting the marginal expression
PΛðμÞ ¼

Pd�1
k¼1 PΛðμjθkÞPΛðθkÞδθ, which results in the implicit

integral equation

PΛðθjÞ ¼
X
μ

PΛðθjjμÞ
Xd
k¼1

PΛðμjθkÞPΛðθkÞδθ (3)

Equation (3) is a consistency relation that can be solved for PΛ(θj),
given the network output PΛ(θj∣μ) and the likelihood function

Fig. 1 Parameter estimation as a classification task. a By learning
the characteristic features of ideal digits directly from training
examples80, the network can correctly classify handwritten digits
with high accuracy. The network provides the conditional prob-
ability P(digit∣data) that the image is assigned to a certain ideal digit
(2 in this example) given the input pixel data. b In parameter
estimation, the network input is the result μ of a measurement made
at the output of a quantum sensor. In analogy with the digits 0-9,
the true (but unknown) probability distribution P(μ∣θj) represents a
category, labeled by the discrete parameter θj. A handwritten digit is
analogous to a crude sampling from this distribution, used to train
the network. Then, the output layer would assign a conditional
probability P(θj∣μ) that a particular classification is correct, given the
observed result μ.
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PΛ(μ∣θj). The relation Eq. (3) can be solved for PΛ(θj)≡ pj by
recasting it as an eigenvalue problem Ap= 0, for the matrix

Ajk ¼ δjk �
X
μ

PΛðθjjμÞPΛðμjθkÞδθ; (4)

where δjk is the Kronecker delta. To evaluate Eq. (4) the likelihood
PΛ(μ∣θk) is needed; however, the network only provides PΛ(θj∣μ).
For a sufficiently well-trained network, we can approximate it with
the ideal likelihood distribution, PΛ(μ∣θk) ≈ P(μ∣θk), which is
either known from theory, or else can be well approximated by
the relative frequencies observed in the training data
PΛðμjθjÞ � mμ;θj=mθj . We have found that the prior calculation in
Eqs. (3) and (4) is robust to the choice of PΛ(μ∣θk).
As shown in Fig. 3, the prior PΛ(θj) is determined by the

sampling of the training data. For instance, if the training data is
distributed uniformly (mθj ¼ m independent of θ), then PΛ(θj) is
flat, as in Fig. 3 (a, b). A nonflat prior could be achieved by
choosing a nonuniform distribution of training measurements. For
instance, if mtrain is the total number of measurements collected in
the full training set, the number of measurements mθj at each θj
could be distributed according to mθj ¼ mtrainqðθjÞ where q(θj) is a
positive function of θj with

Pd
j¼1 qðθjÞ ¼ 1. In this case, a well-

trained network will learn a prior well approximated by PΛ(θj) ≈ q
(θj). Two examples are shown in Fig. 3, panels (c, d) and (e, f). The
grid itself could also be varied, resulting in a nonuniform grid
spacing δθj= θj+1− θj, which would also result in a nonflat prior.
However, this is equivalent to a choice of q(θj) on a uniform grid.
This is clearly illustrated by the step function example [Fig. 3(c, d)].
Rather than q(θj) itself being a step function, the same result could
be achieved using a flat q(θj) over a grid spanning [π/2, π] (rather
than [0, π]) but sampled at twice the density. For this reason, we
consider only uniform grid spacing throughout this manuscript.
The prior thus retains the subjective nature that characterizes the
Bayesian formalism: here, this subjectivity is associated with the
arbitrariness in the collection of the training data.

Network-based BPE
The training of the network gives access to the single-measurement
(m= 1) conditional probabilities PΛ(θj∣μ) and the prior distribution
PΛ(θj). We thus proceed with the estimation of an unknown
parameter θtrue (of course in the numerical experiment θtrue is
known but this information is never used). Notice that θtrue does
not need to coincide with one of the grid values θj. We sample m
random measurement results μ= μ1, . . . , μm from P(μ∣θtrue). The

Bayesian posterior distribution corresponding to the sequence μ is

PΛðθjjμÞ ¼ N PΛðθjÞ
Ym

i¼1
~PΛðθjjμiÞ; (5)

where ~PΛðθj jμiÞ ¼ PΛðθj jμiÞ=PΛðθjÞ and N is the normalization
factor. For concreteness, in the single-qubit example, if a sequence
of m measurements gives m↑ results ↑ and m↓=m−m↑ results ↓,
the corresponding Bayesian probability distribution is
PΛðθj jμÞ ¼ N PΛðθjÞ~PΛðθjj #Þm#~PΛðθj j "Þm" , see Fig. 2(b, c). Equation
(5) represents an update of knowledge about θtrue as measure-
ments are collected. Such Bayesian update is based on single-
measurement distributions PΛ(θj∣μ) and the prior PΛ(θj). Indeed, a
key advantage of our method is that, while the network is trained
with single (m= 1) measurement events, the Bayesian analysis can
be performed, according to Eq. (5), for arbitrary large m. In other
words, we do not need to train the network for eachm: the network
is trained for m= 1, which guarantees the optimal use of training
data. We emphasize that the prior PΛ(θj) in Eq. (5) is obtained by
solving Eq. (3): even for a uniform training, the Eq. (3) gives a better
results compared to P(θj)= 1/π.
Given PΛ(θj∣μ), we can estimate θtrue by, for instance,

ΘðμÞ ¼ argmax
θj

PΛðθjjμÞ; (6)

where the corresponding parameter uncertainty is quantified by
the posterior variance

Δ2θðμÞ ¼
Xd
j¼1

PΛðθjjμÞ ΘðμÞ � θj
� �2

δθ; (7)

which assigns a confidence interval to any measurement
sequence μ. In a sufficiently well-trained network, as the number
of measurements m increases, PΛ(θj∣μ) converges to the Gaussian
distribution16,21

PΛðθjjμÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mFðθtrueÞ

2π

r
e�mFðθtrueÞ θj�θtrueð Þ2=2; (8)

centered at the true value θtrue and with variance 1/[mF(θtrue)],
where

FðθÞ ¼
X
μ

1
PðμjθÞ

dPðμjθÞ
dθ

� �2

(9)

is the Fisher information. F(θ) provides a frequentist bound on the
precision of a generic estimator Δ2θ ≥ Δ2θCRB= 1/[mF(θtrue)], called
the Cramér-Rao bound. This behavior is clearly exhibited by the

Fig. 2 Bayesian inference performed with a neural network. Here we show results of BPE for the pedagogical example of a single qubit (see
Methods and text). The output layer PΛ(θj∣μ) of a uniformly-trained network and finite training data (blue dots, details in Methods) compared
to the exact Bayesian distribution P(θ∣μ)= P(μ∣θ)P(θ)/P(μ) (orange line), where P(θ)= 1/π and P(μ) provides normalization. a Bayesian posterior
probabilities corresponding to the single-measurement event ↑ and ↓. Panels (b) and (c) show the Bayesian posterior distributions Eq. (5) form
= 10 and m= 100 repeated measurement events respectively. These are obtained from the m= 1 posterior distribution with Eq. (5). We set
θtrue= 0.6π (black dashed vertical lines) and randomly generate a sequence of results: μ ¼ fm";θtrue ;m#;θtrueg ¼ f3; 7g in (b), μ= {29, 71} in (c).
d Mean value of the maximum a-posterior estimators as a function of the training size mθj . The shaded region is the CRB (here Δ2θCRB= 1/m),
and the error bars are the mean posterior variance, shown explicitly in (e). In (d, e) we fixed m= 50.
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network in Fig. 2(b, c): the distribution narrows as a function of m
and centers around θtrue. The result Eq. (8) is valid for a sufficiently
dense grid (i.e. δθ � 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mFðθtrueÞ

p
) and in an appropriate phase

interval around θtrue. Furthermore, Eq. (8) holds for any prior
distribution P(θj), provided that P(θj) is non-vanishing around θtrue.
By repeating the measurements and using Eq. (5), we can thus
gain a factor

ffiffiffiffi
m

p
in sensitivity, Δθ � 1=

ffiffiffiffi
m

p
, without requiring

either additional training data or additional training for each m. In
other words, a single network can be used to provide an estimate
for any number of repeated measurements m, limited only by the
grid size, meaningful for Δθ≫ δθ. In the opposite limit, and thus
for m≫ F(θtrue)/(δθ)2, the estimation is biased, namely
jhΘðμÞ � θtrueij\

ffiffiffiffiffiffiffiffiffiffiffiffi
hΔ2θi

p
. The brackets 〈⋯ 〉 denote the average

over the likelihood function P(μ∣θtrue). The presence of an
asymptotic bias is intrinsic of Bayesian estimation on a finite grid,
when θtrue does not coincide with one of the grid points. The
effect is present also when using ideal probabilities (namely in the
limit mtrain→∞) and it is not associated with the neural network.
Of course, insufficient training produces a network that poorly
generalizes to larger m. Figure 2(d, e) shows convergence to the
expected asymptotic result as a function of the number of training
examples mθj , for a fixed number of measurement events m= 50.
The strategy of classifying a sequence μ following training based

on single-measurement results μ only (μ= ↑, ↓ for the single-qubit
case) is a key difference between this work and typical supervised
learning problems such as image recognition34–36. With image
recognition there is a risk that during training a network will merely
memorize the training images, and poorly generalize to unseen
images (this is called overfitting). The single-measurement training
that we use avoids this problem. Instead, our network is expected
to generalize from the single-measurement results seen during
training, to sequences with m > 1 via Eq. (5). Therefore, the network
will never be asked to perform a prediction on an input μ not found
in the training set (which will also only ever contain e.g., μ= ↑, ↓, as

in the single-qubit example). Rather, if the machine-learned
Bayesian posterior for the single-measurements μ is noisy or
imperfect, this error will quickly compound when Eq. (5) is applied.
Therefore, it is important to compute metrics relevant to parameter
estimation such as the mean bias or posterior variance (as in Fig. 4).

Application to many-qubit states
In this section, we extend our procedure to systems of N qubits
and demonstrate its effectiveness for both separable and
entangled states. We introduce the collective spin operators
Jk ¼

PN
i¼1 σ

ðiÞ
k =2, where σðiÞ

k is the kth Pauli matrix for the ith qubit.
Making use of these observables, the generalization from a single
qubit to many qubits is straightforward: the network is trained to
recognize the result of a single Jz measurement with N+ 1
possible outcomes. The Bayesian posterior for many measure-
ments is then obtained from Eq. (5). We consider phase-
dependence encoded by a rotation about Jy , which is equivalent
to a Mach-Zehnder interferometer1. In Fig. 4 we apply our method
to a coherent-spin state (CSS) CSSj i ¼ #j i�N (top panels), a twin-
Fock state (TFS) given by the symmetrized combination
of N/2 spin-up and N/2 spin-down particles TFSj i ¼
Symmf #j i�N=2; #j i�N=2g (middle panels), and a depolarized TFS
ρ ¼ ð1� ϵÞ TFSj i TFSh j þ ϵI=ðN þ 1Þ, where I is the identity matrix
(in the subspace of permutation-symmetric states) and ϵ= 0.1
(bottom panels). We quantify the performance of the network by
the mean posterior variance 〈Δ2θ(μ)〉 and bias 〈Θ(μ)− θtrue〉,
averaged over all possible measurement sequences μ. For all three
states, Fig. 4 shows that our neural network-based BPE is
asymptotically efficient and unbiased when tested on a θ not
found in the training grid. As expected for the CSS, the posterior
variance saturates the standard quantum limit on average (SQL,
Δ2θSQL= 1/[mN]). Similarly, the TFS posterior variance (7) over-
comes the SQL and approaches, on average, the Cramér-Rao
bound Δ2θCRB= 1/[mN(N/2+ 1)] in the limit of many repeated
measurements m. The same is true for the depolarized TFS,
demonstrating that our neural network-based BPE is also applicable
to mixed states. Furthermore, on average, the estimator (6) gives the
true value of the parameter, as expected—so long as the training set
is sufficiently large relative to the desired number of measurements
m. In particular, networks that are shown more measurements
during training are better able to generalize to large m.

Comparison to calibration-based BPE
It is natural to ask how well the network compares to conventional
(calibration-based) BPE12,14,15 making use of the same training
data. Consider a training set where mθj measurements are
performed at each θj, with result μ occurring mμ times at this θj.
We assume a uniform distribution mθj , corresponding to a flat
prior. The standard approach to either Bayesian or maximum
likelihood estimation is to take this data set and estimate the
likelihood functions P(μ∣θj) using the relative frequencies
PðμjθjÞ � mμ;θj=mθj 	 f μ;θj , usually aided by some kind of fitting
procedure12,14. The posterior distribution P(θj∣μ) is then obtained
by choosing a prior P(θj) and applying Bayes theorem
Pðθj jμÞ ¼ PðθjÞ

Qm
i¼1 PðμijθjÞ=PðμÞ, where P(μ) provides normal-

ization and μ= μ1, . . . , μm is a measurement sequence. We call this
a calibration-based Bayesian analysis. A drawback is that it
generally requires collecting a large calibration data set, such
that relative frequencies fμ,θ well approximate the corresponding
probabilities. A further problem is that it is not possible to
associate a Bayesian probability to (rare) detection events that did
not appear during the calibration, unless the probability is inferred
through an arbitrary fit or interpolation procedure. Both issues are
overcome by our neural network-based BPE.
In Figure 5, we compare our network-based BPE to the

calibration-based BPE. We consider a multipartite entangled,

Fig. 3 Prior vs. training distribution. In the left column panels we
show examples of distribution of training data, mθj as a function of
θj. The right column panels show the corresponding Bayesian prior
distribution PΛ(θj). In all three examples the total number of
measurements are held fixed. Specifically, in (a, b)mθj are distributed
uniformly, resulting in a flat prior. In (c, d) data is distributed
according to a step function, clearly resulting in a prior that is zero-
valued over the part of the domain where no measurements were
performed. Finally, in (e, f) a smooth distribution q(θj) is used, which
is clearly reproduced by the network.
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non-Gaussian state (ENGS) of N= 50 qubits. Entanglement is
generated using the one-axis twisting Hamiltonian HOAT ¼ _χJ2z

76,
for χt= 0.3π which is in the over-squeezed regime77. Being highly
non-Gaussian, it is difficult to aid the calibration with parametric
curve fitting. The network on the other hand, is well suited to
learning arbitrary probability distributions. Figure 5(a) shows a
typical example of a single-shot posterior distribution learned by
the network, compared to the relative frequencies in Fig. 5(b). The
relative frequencies are intrinsically coarse grained, e.g., in Fig. 5(b)
the resolution limit 1=mθj is visible, unlike the network which is
smooth. In Fig. 5(c, d) we compare the statistically-averaged
posterior mean-square error (MSE),

Δ2θMSEðμÞ ¼
Xd
j¼1

Pðθj jμÞ θtrue � θj
� �2

δθ; (10)

which quantifies the fluctuations in the deviation of the Bayesian
estimate from θtrue (see

17 and refs. therein). The posterior MSE is a
useful figure of merit in realistic models (either a network or a
calibration attempt) because imperfections due to the unavoid-
able noise in training/calibration data can result in an individual
estimate Θ(μ) deviating from the true value θtrue, even asympto-
tically. Calibration/training noise can result in positively or
negatively biased estimates with equal frequency, which can lead
to a deceptively low bias on average (this explains the low bias in
Fig. 4 when mθj ¼ 10). Figure 5(c, d) clearly show that the neural
network outperforms the calibration (see Methods for details),
independently of the phase shift θtrue or the number of
measurements m. As a sanity check, we have verified that the
calibration and the network agree well when the training set is
large enough. The solid orange curve is the exact result (as would
be produced by a perfect calibration/network). This is clear
evidence that with limited training/calibration data, our machine
learning approach can provide an advantage over conventional

calibration techniques for states that are difficult or impossible to
fit. Finally, in Fig. 5(e) we include the effects of finite detection
resolution Δμ, which is a major limitation in large N systems1.
Modeling of detection noise is discussed in Methods. Although
the sensitivity is degraded, network-based BPE continues to
outperform calibration-based BPE given equal training/calibration
resources, see Methods for details.

DISCUSSION
By reformulating parameter estimation as a classification task, we
have shown how to efficiently perform BPE using an artificial
neural network with an optimal use of calibration data. The prior
distribution—which is the characteristic trait of BPE—is directly
linked to the training process: the subjectivity of prior knowledge
is reflected by the subjective choice of the training strategy.
BPE offers important advantages, most notably the asymptotic

saturation of the frequentist Cramér-Rao bound that holds
regardless the statistical model. Indeed, we have demonstrated
that our strategy is consistent and efficient for both separable and
entangled states of many qubits. Compared to other BPE
protocols based on calibration data, our method is the most
effective for non-Gaussian states. We found that our neural
network-based BPE procedure can outperform standard
calibration-based BPE protocols when the training/calibration
data is limited and in the absence of an obvious or simple fitting
functions. This advantage persists in the presence of finite
detection resolution and for noisy probe states. In fact, our
approach is the most valuable when the quantum sensor is a black
box, namely when conditional probabilities of possible measure-
ment results lack an simple explicit model based on a few fitting
parameters. In this case, our knowledge about the quantum
sensor operations is limited to calibration data.

Fig. 4 Consistency and efficiency for many-qubit states. Here we plot the mean Bayesian posterior variance Eq. (7) (left panels) and the bias
〈Θ(μ)− θtrue〉 (right) as a function of the number of repeated measurements m. Top panels consider a CSS, the middle panels a TFS, and the
bottom panels a depolarized TFS, all with N= 10 qubits. For all states, three networks are trained with uniform data mθj ¼ 10 (blue dots),
mθj ¼ 102 (green squares), mθj ¼ 103 (red triangles). The solid orange lines are the exact result, obtained from Bayes rule using the true
probabilities P(μ∣θ) and a flat prior. Dashed black lines are the standard quantum limit (SQL) and the frequentist Cramér-Rao bounds (CRB).
Here θtrue= 0.3π (not found in the training grid) and all results are averaged over 103 randomly generated measurement sequences of length
m. See Methods for details on the network parameters.
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Our neural network-based BPE is readily applicable to current
optical and atomic experiments, and therefore could enable BPE
with entangled non-Gaussian states in current high precision
quantum sensors. Although we focus on single-parameter
estimation, our result could also be extended to the simultaneous
estimation of multiple parameters.

METHODS
Machine-learning methods
Throughout this manuscript, we employ densely connected, feed-forward
neural networks. The networks are implemented and trained using the

python-based, open-source package Keras78. All hidden layers use ReLU
neurons (rectified linear unit). All networks have a single input neuron, which
accepts a single, real number μ. The number of hidden layers depends on
the system, but for a single qubit a single layer of four neurons is sufficient
(see Fig. 2). For larger and more complex states, more layers and neurons
can help, as in Figs. 4 or 5. The output layer is d softmax neurons, one for
each θj grid point, whose value is denoted a, which is normalized ∑jaj= 1 by
construction. As we argue in the main text, the output of the network should
be interpreted as a Bayesian posterior distribution,

aj ¼ PΛðθj jμÞδθ: (11)

The training process is described in depth elsewhere, see for instance
refs. 34,36. Briefly, the network is first initialized with random weights. For
efficiency, the training set is randomly divided into subsets called mini-
batches. The label θj is encoded as a d-dimensional vector whose kth
element is a Kronecher delta function δjk. Each training element in the
current mini-batch is fed into the network, and its label is used to evaluate
a cost function C. We use the categorical cross-entropy, which for a μ with
label θj is simply C ¼ �log aj

� �
. C is then averaged over the whole mini-

batch, and minimized using the ADAM algorithm79. This is repeated until
the entire training set is exhausted, which is called a training epoch.
Typically many epochs are required to reach an optimal network.

Numerical details for figures
In Fig. 2, the network has a single input neuron (which takes as input the
result of a single-measurement μ), a single hidden layer of 4 neurons and
100 output neurons (corresponding to a θ grid with 100 grid points). The
training set contained mθj ¼ 103 training measurements per grid point,
evenly distributed (corresponding to a flat prior). The network was trained
for five epochs with a mini-batch size of 128.
In Fig. 3, networks were trained to perform inference on a single qubit,

and have 40 output neurons (corresponding to a θ-grid of 40 points), but
otherwise have the same architecture as the network in Fig. 2. Training is
performed for 10 epochs with a mini-batch size of 128. The training set
contains total of mtrain= 40 × 103 measurement results.
In Fig. 4, the network trained for coherent-spin states had 1 input neuron,

1 hidden layer of 8 neurons, and 1000 output neurons between 0 ≤θj ≤ π.
The twin-Fock state network was more complex, 1 input neuron, 2 hidden
layers with 32 neurons each, and 1000 output neurons uniformly distributed
between 0 ≤ θj ≤ π/2. Training parameters are adapted to the size of the
training set, which is uniform (corresponding to a flat prior). The coherent-
spin state training parameters are for mθj ¼ 10; 100; 1000: 60 epochs with a
min-batch size of 8, 40 with 16, and 20 with 32, respectively. The twin-Fock
state training parameters are for mθj ¼ 10; 100; 1000: 60 epochs with a min-
batch size of 8, 40 with 16, and 30 with 128, respectively.
In Fig. 5, the neural network had three hidden layers with 256 neurons in

each, and an output grid with 2000 neurons between 0 ≤ θj ≤ π. The
training was for 60 epochs with a mini-batch size of 1024. The calibration
was performed by approximating the likelihood function P(μ∣θj) by the
relative frequencies observed in the training data, smoothed with a cubic
interpolation at twice the grid density. The interpolation was performed
using interp1d from Python’s scipy package.

Finite detection resolution
Figure 5(e) also includes the effects of finite detector resolution Δμ.
Following ref. 1,16, detection resolution is modeled as Gaussian
noise with variance Δμ2 and mean μ. The probability of measuring
the correct result μ is given detector uncertainty Δμ is the
convolution Pðμjθ;ΔμÞ ¼ P

μ0 Cμ0 exp½�ðμ� μ0Þ2=2Δμ2�Pðμ0jθÞ where

Cμ0 ¼
P

μ exp½� μ� μ0ð Þ2=2Δμ2�
	 
�1

normalises P(μ∣θ, Δμ).

DATA AVAILABILITY
The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.

CODE AVAILABILITY
Any code used for the current study are available from the corresponding author on
reasonable request.

Fig. 5 Comparison with calibration-based BPE. Comparison
between neural network-based BPE to calibration-based BPE using
the same number of training/calibration measurements for an over-
squeezed state of N= 50 qubits, as discussed in the main text. a, b
Example of a single-shot posterior for μ= 15, learned directly by the
network (a) or inferred from the training data (assuming a flat prior)
(b), both from the same set of mθj ¼ 100 training/calibration
measurements at each phase. (c, d, e) The posterior MSE shows
the advantage of the neural network procedure over the calibration,
for mθj ¼ 500. In (c) the network is shown to stay closer to the true
posterior MSE (solid orange) over a much larger range of m values
than the calibration, at a fixed value of the true phase θtrue= 0.6π
[not an element of the training grid, vertical black dashed line in (d)].
In (d, e) we study the performance on a grid of θtrue values spanning
the entire estimation domain [0, π] that were not found in the
training grid. In (d) the advantage is found to persist over many
values of θtrue, at m= 200 shots [vertical black dashed line in (c)].
Finally (e) includes the effects of finite detection resolution Δμ2=
0.25, but otherwise parameters are the same as in (d). The likelihood
average is approximated by averaging over 104 randomly chosen
measurement sequences μ. See Methods for details on numerical
parameters.
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