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Abstract The theory of symmetries of systems of coupled, ordinary differential
equations (ODE) is used to develop a concise algorithm in order to obtain the
entire space of solutions to vacuum Bianchi Einsteins field equations (EFEs). The
symmetries used are the well known automorphisms of the Lie algebra for the
corresponding isometry group of each Bianchi Type, as well as the scaling and the
time re-parametrization symmetry. The application of the method to Type VII,
results in (a) obtaining the general solution of Type VIIy with the aid of the third
Painlevé transcendental Pyj;; (b) obtaining the general solution of Type VII, with
the aid of the sixth Painlevé transcendental Pyj; (c) the recovery of all known
solutions (six in total) without a prior assumption of any extra symmetry; (d) The
discovery of a new solution (the line element given in closed form) with a G3 isom-
etry group acting on 73, i.e., on time-like hyper-surfaces, along with the emergence
of the line element describing the flat vacuum Type V 1]y Bianchi Cosmology.

Keywords Bianchi types, Lie symmetries, Painlevé, transcendentalExact
solutions

1 Introduction

The idea of using the group of automorphisms in order to have a unified develop-
ment of Bianchi Cosmologies has a long history [[1]]. In that direction Harvey [2]
was the first who found the automorphisms of all three-dimensional Lie Algebras,
while the corresponding results for the four-dimensional Lie Algebras have been
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reported in [3]]. Jantzen’s tangent space approach sees the automorphism matri-
ces as the means for achieving a convenient parametrization of a full scale factor
matrix in terms of a desired, diagonal matrix [4} 5; |6]. Siklos used these time-
dependent automorphisms as a tool to correctly choose variables with the aim to
simplify the ensuing equations [[7]. Samuel and Ashtekar were the first to look
upon automorphisms from a space viewpoint [8]]. The notion of Time-Dependent
Automorphism Inducing Diffeomorphisms (A.1.D.’s), i.e., coordinate transforma-
tions mixing space and time in the new spatial coordinates and inducing automor-
phic motions on the scale-factor matrix, the lapse, and the shift has been developed
in [9]. The use of these covariances enables one to set the shift vector to zero with-
out destroying manifest spatial homogeneity. At this stage one can use the “rigid”
automorphisms, i.e., the remaining “gauge” symmetry, as Lie-point symmetries
of the EFE’s in order to reduce the order of these equations and ultimately com-
pletely integrate them [[10]. The present work of ours consists in the application of
this method to the case of vacuum Bianchi Type V11, Cosmology. The method is
recapitulated in Sect. [2| while its application to the above mentioned type, result-
ing in the exhaustive discovery of the entire solution space, is given in Sect. (3| In
Sect. ] we discuss our results and give a brief description of the solution space in
the form of two tables.

2 The method

As it is well known, for spatially homogeneous space-times with a simply transi-
tive action of the corresponding isometry group [[11;[12], the line element, assumes
the form

ds? = (N*Ng — N?) di* + 2NeG% dx'd + Yupo %P diidx’  (2.1)

where the 1-forms Gi“, are defined from:

do® = C“Bycﬁ No' & 0% —0% = ZC“MGYI-GB].. (2.2)
Then the field equations are (see, e.g., [9]):
E,=K%Kys —K>—R=0 (2.3)
Eq = K'4C®e —K":C%, =0 (2.4)
Eqp = Kap +N (2K Kep — KKp) +2N° (KayC'y, + KpyChap ) ~NRyg =0
(2.5)
where
I /.
Kap =35 (Yap +27arCpp NP +275,C"up NP 2.6)
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is the extrinsic curvature and
R(xﬁ = CKGTCluv YOCKYIM YGVYT# + ZCK[MCA(XK +2 Cua Kcvﬁ}, Yuv y,d
+2C%, Cl Yan v +2C% 4 Cly 12 V™ @.7)

the Ricci tensor of the hyper-surface.

In [9]] particular space-time coordinate transformations have been found, which
reveal as symmetries of (2.3), 2.4), (2.5) the following transformations of the
dependent variables N, Ng, Yop :

N=N, No=AP(Np+%sP°), Tuv=A%AD, 7 (28
where the matrix A and the triplet P* must satisfy:
o _ u
AO;,CM—CO‘WA ﬁA"y (2.9)
2PHCY A Y = A% (2.10)

These transformations were first given in the first of [4515;16]], see the discussion
on
p- 3586 of [9].

For all Bianchi Types, this system of equations admits solutions which contain
three arbitrary functions of time plus several constants depending on the Auto-
morphism group of each type. The three functions of time, are distributed among
A and P (which also contains derivatives of these functions). So one can use this
freedom either to simplify the form of the scale factor matrix or to set the shift
vector to zero. The second action can always be taken, since, for every Bianchi
type, all three functions appear in P%.

In this work we adopt the latter point of view. When the shift has been set
to zero, there is still a remaining “gauge” freedom consisting of all constant A%
(Automorphism group matrices). Indeed the system (2.9), (2.10) accepts the solu-
tion AE‘ = constant, P% = 0. The generators of the corresponding motions ¥,y =

A"I‘JAﬁ vYap, induced in the space of dependent variables spanned by Y, 's (the
lapse is given in terms of Y,g, Vup by algebraically solving the quadratic con-
straint equation), are [[13|:

d
_ 4P
Xy =Ha o8 Gy 2.11)
with A satisfying: ) ) )
o _ o o
Ao C gy = Hp Cort Ay - 2.12)

Now, these generators define a Lie algebra and each one of them induces,
through its integral curves, a transformation on the configuration space spanned
by the ¥up’s. If a generator is brought to its normal form (e.g., a%_), then the Ein-
stein equations, written in terms of the new dependent variables, will not explic-
itly involve z;. They thus become a first order system in the function z; [14]. If
the above Lie algebra happens to be abelian, then all generators can be brought,
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to their normal form simultaneously. If this is not the case, we can diagonalize in
one step the generators corresponding to any eventual abelian subgroup. The rest
of the generators (not brought in their normal form) continue to define a symmetry
of the reduced system of EFE’s if the algebra of the X(;)’s is solvable [[15]. One can
thus repeat the previous step, by choosing one of these remaining generators. This
choice will of course depend upon the simplifications brought to the system at the
previous level. Finally if the algebra does not contain any abelian subgroup, one
can always choose one of the generators, bring it to its normal form, reduce the
system and search for its symmetries (if there are any). Lastly, two further symme-
tries of 2.3)), 2.4), (2.5) are also present and can be used in conjunction with the
constant automorphisms: The time reparameterization t — f(z) + ¢, owing to the
non-explicit appearance of time in these equations, and the scaling by a constant
Yap — UYap as can be straightforwardly verified. Their corresponding generators
are:

10
d
Ys = Yup pr (2.14)

These generators commute among themselves, as well as with the X;)’s, as it
can be easily checked.

3 Application to Bianchi type VI,

We are now going to apply the method, previously discussed, to the case of Bianchi
Type V11, For this type the structure constants are

C113 = _C131 = C223 = _C232 =—h
Clyp=-Cly=C5=-C4 =1 (3.1
Caﬁy:O forall othervaluesof o3y

Using these values in the defining relation (2.2) of the 1-forms o;* we obtain

0 " sinx e cosx
0 e™cosx —e" sinx (3.2)

0 0

=

The corresponding vector fields &; (satisfying [Eq,&g] = %CYaB &y) with respect
to which the lie derivative of the above 1-forms is zero are:

Si=0y &=0 &G=0it(z—hy)dy—(y+hz)o (3.3)
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The time depended A.L.D.’s are described by

cePDcosP(t)  cePOsinP(t)  x(r)

AG =1 —cePDsinP(t) ceVcosP(t) y(t) (3.4)
0 0 1
and
w  [(X(O)P@)+h*x(t)P(t) — hx(t) + (1)
P= < 2(1+42) ’ G-
Y(O)P(1) + h y(t) P(t) — hy(1) — () P(tr)
2(1+h2) ’2) (36)

where P(t),x(t) and y(r) are arbitrary functions of time. As we have already
remarked the three arbitrary functions appear in P* and thus can be used to set
the shift vector to zero.

The remaining symmetry of the EFE’s is, consequently, described by the con-
stant matrix:

e 2 83
M= —sp €' s4 3.7
0 0 1

where the parametrization has been chosen so that the matrix becomes identity for
the zero value of all parameters.
Thus the induced transformation on the scale factor matrix is Y5 = MY Ml‘; Yuv

which explicitly reads:

Y11 =¥ 11— 2 a2+ 530

Fio = €1 Y10 — s3 iz + €% 52 (Vi1 — P2)

Ti3=¢€" (5371 +sa 72+ %3) — 52 (5312 + 5412+ 123) .
Po =142 5272 +53 71 oy

Pz =" (5312 + 542+ 23) +52 (S3%11 +54 2+ 713)

T3 =532 Vi1 +253 (4 Vi + N3) + 547 V2 + 254 o3 + P33

The previous equations, define a group of transformations G, of dimension
r =dim(Aut(VI11I;)) = 4. The four generators of the group, can be evaluated from

the relation:
8}70,3) 0
X, = 3.9
A < 351 ) o ap (3.9)
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where A = {1,2,3,4}. Applying this definition to (3.8) we have the generators:

X1 =2mm 8;9/11 +27128f/12 + %3 EIv +2722722 +}’23yi (3.10)
X2=—27’1zaf/11+(711—}’22)a)a/12—}’23a§13 +2}’128f/22+713aay23 (3.11)
X3_y”8(}9/]3+%28aq/23+2%38?/33 (3.12)
X4:}’128§13+Y228m+2723a%3 (3.13)

The algebra g, that corresponds to the group G, has the following table of
commutators:

[X1,X2] =0, X1, X3] = X3, [Xi1,X4] = X4,
(3.14)
X0, X3] = —X4, [X0,X4]=X3, [X3,X4]=0

As itis evident from the above commutators (3.14)) the group is non-abelian, so
we cannot diagonalize at the same time all the generators. However, if we calculate
the derived algebra of g,, we have

g = {[XA,XB] 1 X4, Xp € gr} = gy = {Xg,X4} 3.15)
and furthermore, it’s second derived algebra reads:
8 = {[XA,XB] : X4, Xp € gr’} = g = {O} (3.16)

Thus, the group G, is solvable since the g, is zero. As it is evident X3,X4,Y>
generate an Abelian subgroup, and we can, therefore, bring them to their normal
form simultaneously. The appropriate transformation of the dependent variables
is:

/}/11 — el s
Yz =€ uy
Y13 = €17 (u3 +upus)
(3.17)

Yoo = €170 uy

Vo3 = €17 (upu3 +ugus)

Y33 =et17H6 (6“6 +uz? +2up uz us + uy ug)
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In these coordinates the generators Y», X, assume the form:

N T R )
2= duy 4_<9u5 3_8143
d d d d d
X2: (1+2u%_u4)87142_“587143_'—2(“24_”2“4)7144—’_“387145_‘_2”287146
(3.18)
d d d
X1=—u3—

— -2
8u3 s 8u5 8u6

Evidently, a first look at gives the feeling that it would be hopeless even
to write down the Einstein equations. However, the simple form of the first three
of the generators ensures us that these equations will be of first order in the
functions 1, u3 and 15.

3.1 Description of the solution space

Before we begin solving the Einstein equations, a few comments on the allowable
range of values for the functions u;,i = 1,...,6 will prove very useful.
The determinant of g, is

det[Yup] = €172 (—u3 +uy) (3.19)

so we must have ug > u3.
The two linear constraint equations, written in the new variables (3.17), give

1
E,=0=> 567% (<3h7u2)1ft3+(3hu27u4)u5):0 (3.20)

1
E2=0:>§e_u6 ((1+3hup)us+ (up +3husa)us) =0 (3.21)

This system admits only the trivial solution, since the determinant of the 2 x 2
matrix formed by the coefficients of 3,15 becomes zero only for the forbidden
value uy = u5. We thus have

uz = k3, us = k5 (3.22)

Now, these values of u3,u5 make 73, %»3 functionally dependent upon Y11, 12, Y22
(see (3.17)). It is thus possible to set these two components to zero by means of
an appropriate constant automorphism.

We therefore can, without loss of generality, start our investigation of the solu-
tion space for Type V11, vacuum Bianchi Cosmology from a block-diagonal form
of the scale-factor matrix (and, of course, zero shift)

o Y2 O
Yap=| N2 P2 O (3.23)
0 0 153
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These unknown functions of time have to satisfy the quadratic and the third linear
constraint, as well as the spatial EFE’s. As we have earlier remarked, since the
algebra (3.14) is solvable, the remaining (reduced) generators X;, X (correspond-
ing to block-diagonal constant automorphisms) as well as Y, continue to define a
Lie-point symmetry of the reduced EFE’s and can thus be used for further integra-
tion of this system of equations.

The remaining (reduced) automorphism generators are

0
X1 =2y 1+2J/12

a +27

0
712 Iy

(3.24)

Yo 29t (1) 22y O
2= %237’11 Yi1— "2 72 %287/22

The appropriate change of dependent variables which brings these generators -
along with Y;- into normal form, is described by the following scale-factor matrix:

%e“‘“”‘) (1—2up sin2uy) 11246 1y 082 uy 0
Yap = 11246 1y cos 2 uy %e“l‘””f’ (142up sin2ug) 0
0 0 et

(3.25)

The generators are now reduced to

d d d

Vo=——, Xp=—) ——
2 8u1 2 8u4 8u6

(3.26)

indicating that the system will be of first order in the derivatives of these variables.
The remaining variable u; will enter, (along with 15, iiy) explicitly in the system
and is therefore advisable (if not mandatory) to be used as the time parameter, i.e.,
to effect the change of time coordinate

t—up(t)=s, wu(t) —ui(t(s)), wus(t)— usa(t(s)), ue(t)—ue(t(s)). (3.27)

This choice of time will of course be valid only if u, is not a constant. We are
thus led to consider two cases according to the constancy or non-constancy of this
dependent variable.

Until now, we have not commented upon the range of values that the parameter
h can attain. As it is well known, for the value 7 = 0 we come across the Class
A model, which admits a Lagrangian description, whereas for 4 # 0 we have the
Class B model which lacks such a Lagrangian description. So we are forced to
examine two further possibilities, as to whether # is equal to, or different from,
Zero.
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3.1.1 Case I: h = 0 and uy(t) = ky

In the parametrization (3.25) the determinant of Y, is
1
det[Yap] = ; et (1 —443)

so we must have —% <k < % . The third linear constraint reads

8K ity

E3=0= —24
3 — 1442

=0=u=k or k=0 (3.28)

The case uq = k4 leads, through equation E34 = 0 to k» = 0. Thus, the only pos-
sibility is k» = 0. Substituting this value into the quadratic constraint equation E
we obtain

1, . . .
-3 (34i] + 81ty tig +4iig) =0 (3.29)

which has the following two solutions

uy = kl — 2146 (3.3021)
2
uy = k] - g Ug (330b)

For the first of (3.30) all the spatial EFE’s are equivalent to the equation
246 NN +2N? (1§ — i) =0 (3.31)
from which we have for the lapse function
N? = ke "6 4] (3.32)

. . Lo 2 . .
Choosing a time parametrization ug = f% In( %), and using the automorphism

matrix (3.7) with entries 51 = % (In2 —ky), so = s3 = s4 = 0 we arrive at the line
element

ds’* = —dT+2dx* +dy* +dz* (3.33)

which describes a flat space admitting a manifest VIIy symmetry [16]. To the best
of our knowledge, it is the first time that this line element emerges in the course
of investigation of the solution space to this Bianchi Type. Of course, this was to
be expected, since flat space is clearly LRS Bianchi 7, hence VIl (see Table 3 of

[L1]).
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For the second of (3.30)) all the spatial EFE’s are equivalent to the equation
246NN —2N? (i + iig) = 0 (3.34)
which gives the lapse function

N? = ke*"s il (3.35)

. . Lo 3 .
Choosing a time parametrization ug = % ln(‘;ik), redefining the constant k; =

1 1, 256 : : : . : _ 1% o _
3 IngP and usmg.the autom.orphlsm matrix (3.7) with entries 51 = 5 In<g, 55 =
s3 = 54 = 0 we arrive at the line element

1
ds? = —rd12+;dx2+r2dy2+rzdz2 (3.36)

This line element is an axisymmetric geometry belonging to the Kasner family
[L7]. It was first produced as a Type VII;, metric by Ellis [18;[19]] (see also Table
3 of [I1])) and admits, besides the three killing fields (3:3) (with 2 = 0), a fourth
symmetry generator

&=, (3.37)
along with a homothetic vector field
N =270 +4x0+ydy+29; (3.38)

There is thus a G4 symmetry group acting (of course, multiply transitively) on
each V3 of this metric. However, it is interesting to note that we have not imposed
the extra symmetry from the beginning, but rather it emerged as a result of the
investigation process.

3.1.2 Casell: h =0and uy(t) =t

With this choice of time gauge the third linear constraint reads

2

E3=0=——
3 4121

s =0=uy =ky (3.39)

With this information at hand, the quadratic constraint E,, yields the lapse function

ujp
N2 = _6e4t2 (462 =1) (1) +24i6) (311 + 2ii) + 161 (iig + i) +4)  (3.40)

We now turn to the spatial equations of motion and substitute the above lapse.
The simplest is E33 = 0 and the coefficient of #; in this equation is proportional
to the quantity
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(422 — 1) tig +21) ity + (417 — 1) ug + 4t tig + 1

which can be safely regarded different from zero, since by setting this quantity
equal to zero and solving for #; we end up with zero lapse (with the help of the rest
of the equations of motion). We can thus solve E33 = 0 for ii; and substitute into
E1 = 0. In this transformed equation E1; = 0, the coefficient of iig is proportional
to

(=2t +sin(2ky)) (1) +116) — 1

a quantity which is different from zero, since it’s nihilism leads again to zero lapse.
From the transformed Ej; = 0 we have the expression for iig, so we finally arrive
at the following polynomial system of first order in i1, i

i = <ll1|A1 ‘L't6>, lig = <L21|A2 |u6> (3.41)

where we have introduced the notation (i;| = (14; 47 i} ) and |ii;) = (i;|" with the
4 x 4 matrices Ay, Ay given by

4 16¢
421 4121 4 0
412+1 4 —412—1 0
A = 1(412—-1) R t
1 2(74; +1) 0 0 ’
3(1—412)
n 0 0 0
(3.42)
6 —2812+1 _3 —41241
—4124+1 t(412—1) t
16¢ —81242
Ay = —42+1 —12 t 0
-3 7124t:+3 0 0
0 0 0 0

Due to the form of Aj,A, (their components are rational functions of the time
1), system (3.41)) can be partially integrated with the help of the following Lie-
Bicklund transformation

—1672 1
“lt) = 3ar —(tl))—:(t) —HH)
(3.43)
der) = —167%(t) + 161 r(t) +3 C2eh(r)

8(—4r2+1)r(r)
resulting in the single, second order ODE for the function r(z)

1, (12241)r+t
L L, (204 )r+t 4
' . (—4r2+1)tr ' (344
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At this stage, in order to solve (3.44) we apply the contact transformation:

Ew'(§) 1 1 . w(&)—DHw(&)+1)°
V=g T e T s %Y
which reduces it to

/" _ W/(g)z . w' (&) _1 W(é)z_l
w'(§) = () g (3.46)

which is nothing else but the third Painlevé transcendent w := P (e, 8,7, 8) with
entries (a,f3,7,8) = (—1/2,1/2,0,0). For completeness we give the general form
of the equation that the third Painlevé transcendent satisfies:

(6 w(E)  aw@)’+B 6
w(g)=""1Er ), FwEP e (34D)
w(E) S § w(S)
Using the final equation (3.46)), the contact transformation (3.43) and the Lie-
Biicklund transformation (3.43) we find that the functions ue and u} are given by

(@) =i (|l +1?) Ju@) cas
w (E)2
u’l(é)=iw((§))2+iW(€)+4wl(é)—41€—; (3.48b)

and the lapse function has the form

2:7141 4
N 1656 (3.49)

The scale-factor matrix ¥y is thus

o e@en 3y le@-n o
Yap = % }Wé)’(w(é)—l) % ’Wé)‘(w(é)ﬂ) 0 (3.50)
0 0 e (8)

which can be brought to diagonal form with the aid of the automorphism matrix
(3.7) with entries s; = —% In2,sp = —

Yop = ’ & ‘ (3.51)
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Gathering all the pieces we arrive at the final form of the line element

1 1
ds* = «* <—16€e”ld§2+4e’“ dx*+ ‘%‘ (w sin®x+cos®x) dy*

+ ‘ﬁ‘sin(Zx)(w—l)dydz—i- ‘é‘( coszx—i-sinzx)dzZ)
w w

(3.52)

which represents the general solution of Bianchi Type VIIy non-flat Vacuum Cos-
mology, since it contains the expected number of three essential constants (two
implicit in the third Painlevé transcendent plus the overall k). The above line ele-
ment was first given by Lorenz-Petzold [20], but it was not then pointed out that it
represented the general solution.

Particular solutions

In order for the contact transformation to be well defined, it is obvious
that the function w(&) must not be constant. However, remarkably enough, the
resulting line element @ does not inherit this restriction. Thus, if there is some
constant solution to equation (3.46)), it could produce a particular solution through
(3.52). By inspection it is obvious that admits the solutions w(&) = +1, so
we could use them to obtain two particular solutions.

e Subcase w(§) =1

With this value of w(&) (3:52)) indicates that & > 0, so plugging this value to
(3:48) we have

ul(é):kl—%lné u6(§):—%k1+éln(l6§3) (3.33)

which, after using the usual simplifications brought by the automorphism matrix
(3.7) and redefining the variable £ to & = 74, results in

1
ds? = —Td’cz—i-;dxz—i-fzdyz—i-rzdzz (3.54)

which is the line element (3.36).



14 P. A. Terzis, T. Christodoulakis

e Subcase w(&) =—1
Now from (3.52) we must have £ < 0 and from (3.48b) we obtain

ul(é):kl—é—%lnm (3.55)

while from (3.484)) ug remains undefined. The line element (3.52) with the help of
the automorphism matrix (3.7) and the definition & = —1* becomes

1
ds* = k2 (er4 td 7’ + P ™ dx* + 12 cos(2x)dy?
~22 sin(2x)dydz— 72 cos(2x)d2?) (3.56)

which, though physically acceptable, corresponds to Bianchi Type VIl symmetry
on T3, and was first given by Barnes [21]].

3.1.3 Case IIl: h # 0 and uy(t) = ky

In this case the determinant of the scale factor matrix Y,z is
1
znm%ﬁyzzém+“w1—46) (3.57)

so we must have —% <ky < % in order for it to be positively defined.
The third linear constraint £53 = O reads

413

8k2uy +2h(1 —4Kk) i) =0 = ug = kg + ——2——
(8k3iia +2h( 3) i) Us 6+h(4k%_1)

— 3.58

and the quadratic constraint E, = 0 gives for the lapse function N?
2 _ et

©16h2 (4k3 — 1) (32 (4k3 — 1) —4K3)

@#@@—Wﬁ

4—32hk§(4k§-—1)u1u44-16k§(h2(4k§-1)4—4k§)u3) (3.59)

Now we are ready to attack the spatial equations of motion after substituting
in them the above lapse. E33 = 0 is again the simplest one. In this equation, the
coefficient of ii4 is proportional to

Ky (h(4K3 — )iy + (4k3 + h* (4k3 — 1)) ity (3.60)

so in order to solve E33 = 0 for iis we must ensure that the above quantity is
different from zero. Setting this quantity equal to zero we get

43+ h* (4k3 — 1)
(42 —1)
uy = k] (3.61b)
kr =0 (3.61¢)

Ui = Ky Uus (3.61&)
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The solution (3.61a)) leads to inconsistency.

The solution forces equation Esz = 0 to give either ky = +—2
@ q 33 g 2 zm

, which makes the determinant of

h

2v/h2 -1
Yap Degative so is unacceptable.
e The solution satisfies all the spatial equations and leads, after the usual
simplifications achieved by the automorphism matrix and the choice of
time gauge u; =2 In(2/7), to the line element

which leads to zero lapse or ky = £

ds® = —d v+ R v?dx* + " 2 dy? + 12 d (3.62)

which describes a flat space admitting a manifest VII;, symmetry, a line-
element first presented in [22]] (p. 78, relation (51)) and later reproduced by
Doroshkevich et al. [23]] and Siklos [24].

Having ensured that the term (3.60) is not equal to zero we can solve E33 =0
for iis and substitute into the other equations of motion. From Ej; = 0 we have

(sin(2us) —2k2) <u1+ 2(3K% (453 —1)+443) '4>

3h(4k2—1)

24k -1) =) )
X <u1 — h(4k%f 0 g | =0 (3.63)

which leads to the following possibilities

1

=5 arcsin(2 k) (3.64a)
2(3h%(4k3 — 1) +4k3

uy = ki — (347 . )+ 2)u4 (3.64b)

3h(4k3 —1)
2(4k3 (h* —1) —h?)
=k 2 3.64
u 1+ A= 1) Uy (3.64¢)

e The solution (3.644) leads to zero lapse.
e The solution (3.64b)) leads to inconsistency.
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e The solution (3.64¢) satisfies all the spatial equations and leads, after the usual
simplifications with the automorphism matrix (3.7) and the choice of time
gauge u; = T, to the line element

1 —222+212 (A2-1)

dszzze 0020 (—d 4 dx®) =242 sin2 (T4 x)dydz

L 2h(et) (14 A cos2(t+x)) dy?

&2 (1= A cos2(t+x)) d 2 (3.65)

which was presented in [23; 24]]. This line element represents a plane-wave
solution and admits, besides the three killing fields (3.3)), three more, namely

A2 (A2 A2 (A2
Er=e A7) (x T>8r—e h(22-1) « T)ax (3.66a)
A2 (A1) v
& =ye -1 « r)(9T—ye oy T)ax
—22-n2(A2-1)
=2 A ) (x4t .
Lo warn )(cl0052(T+x)+c2Sln2(7+x)+c3)ay
—A2-n2(A2-1)
=2 2 ) (k4T .
e warn )(CZCOSZ(’H—x)—clSIHZ(T—I—x))aZ (3.66b)
a2y 2oy
Es —ze 021 (x T>&1*Z€ ROZ—T) (x T)ax
—A2-h2(22-1)

+e HAZD (e+2) (c2cos2(T+x) —cy sin2(T+x)) 9y

—A2-n2(A%2-1)

—e h27-) (X+T)(C1 cos2(T+x)+csin2(T+x) —c3) 0,

(3.66¢)
where the constants (c,c¢p,c3) are given by
Ah(A%2+h* (A% -1
¢ = — (A7 ) (3.67a)
4(l4+h4 (A2—1)2+2n2 (12—1)(3/12—2))
AR (A% —1)

= 3.67b
SRR (- DGBA—2)) O
e h (3.67¢)

T AR (A2 o0))

Again it is worth mentioning that this G4 symmetry was not imposed from the
begging but emerged during the seeking of the solution space. The non-vanishing
commutators are
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61,85 = & (2,86 = &4
[63,84] =2 <Zl+h> &4 [53755]22(24-;1) Es+ &
63,86 = —&s5+2 ( > & (3.68)

with (c1,cz) given by (3.67). Finally the line element (3.63) admits a homothetic
vector field
 h(A*-1) P h(A?—1)
AR RZ(A2—1) T A2 R2(A2 1)

d+ydy+2z9.  (3.69)

3.14 CaseIV: h # 0and uy(t) =t
In this case the determinant of the sale factor matrix becomes
1
det[}’aﬁ} 3M1+4Ll6 (1 —4[2)

so we must demand that |z < 5 in order for Y,p to be positive definite.
The third linear constraint E3 = 0 can be used to define the function ug

] 2t(2tu4—h 2t (2tug —
—0 —k N (30
T G- 6+/ H@E2 1) (3.70)

The quadratic constraint E, = 0 defines the lapse function N?

et

N? =
1672 (412 — 1) (3h2 (412 — 1) — 412)

(3 W2 (412 — 122

+32m2(4t2—1)u1u4+16t2(h2(4t2—1)+4z2)u3—4h2) 3.71)

Substituting the above values of the lapse N2 and the function ug in equation E33 =
0 we find the coefficient of ii; to be proportional to

417 (42 + R (402 — 1)) if +4ht* (462 — 1) iy tig — B

a quantity that can be safely regarded different from zero, since it’s nihilism leads
either to zero lapse or to inconsistency. Thus we can solve E33 = 0 for ii; and
substitute it to E1; = 0. In order to solve this equation for iy we must be assured
that it’s coefficient does not vanish. Setting this coefficient equal to zero we arrive
at the following equation

hcos2ug+2t (412 (B2 +1) —h*) iy —2ht
21 (sin2uy — 21) h(412—1)

u =

which is unacceptable because it leads to inconsistency. After solving equation
E11 =0 for iiy we finally arrive to the following polynomial system of first order
in uy, ty

i = <I/l] |B] ‘L't4>, lig = <I,'t] |Bz |u4> (3.72)
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where we have used again the notation (i;| = (11; 47 i3) and [u;) = (i;|" with the
4 x 4 matrices B1, B, given by

42 —4(=141)12) 162 (~16¢4+i* (1-472)°)
4 A1) ) 0 16 (16r 4 (17417) ) 0
(1-412) h2 (1-412)
—41 (1-812+6h% (—1+41%)) 3202 (=244 (= 1402 2) —41 (124 (1402 2) (424312 (—1+44%) 0
Bi=f (—1+412)} h(—1+412)° 2 (—1+412)°
—3R2+12(=14h) 1% 3213
(1-422)? h(1-42)° 0 °
3
i 0 0 0
2n —6h2 (1-412)° +41% (=3+81%) 8 (41t +h2 12 (—1441%)) —41(=3h* 44211207 %)
412+h2 (1-412) —483 412t (—14+412) —4ht24+h3 (—1+412) h?
0 1612 (—1+41%) 3263 (—14412) 0
By—g —h2 44 (—1+h2)12 —4ht24+h3 (—1+412)
3n(1-412)° 3r(1-412) 0 0
—812+h2 (—2+812) —h2+4 (—14+h2)12
0 0 0 0
where
f 3h% (412 —1) — 412 (412 —1)(3h% (412 — 1) — 41?) (3.73)
T @ 0 8T AR -2 -1 '

Due to the form of Bj,B; (their components are rational functions of the time
1), system (3.72) can be partially integrated with the help of the following Lie—
Biécklund transformation

2 (3h* (412 —1)+4¢) tanr(t)  4(h*—1)12—h? 0
- - r
oI AR (3R (42 —1)—42)  2hV/1_ 42

(3.74a)

3h* V1 —412 tanr(t)

1
T 4r(BR2(A2—1)—42) T 4

V1—412(1) (3.74b)

iy

yielding the single second order ODE for the function r(t)
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= (Z 1—4t2—l—tanr> 7

(‘3(4t2(3h2_1)‘h2> h(3R (42 1) ~81%) tanr>f

t(43R2—1)12=3h%) 1 (4(3h2—1)2 —3h2)V1—412

9h* (sin2r+h/1-412) h(3h*(1—412)481%)?

2242430 (1=42)) T 22 (32 (1—422) 14122\ J(1—412)3
(3.75)

This equation contains all the information concerning the unknown part of the
solution space of the Type VII, vacuum Cosmology (h # 0). Unfortunately, it
does not posses any Lie-point symmetries that can be used to reduce its order
and ultimately solve it. However, its form can be substantially simplified through
the use of new dependent and independent variable (p,u(p)) according to r(s) =

+arcsin _ulp)

V-1’
s = _3r(p-) thereby obtaining the equation
=\ 2 (p_1)+8 y g q

h(1—u?)
V(6Rp+4—60%)(p2 —u? —1)
) h* (1 —ii?)?

= G+ 4—61) (P =2 —1) (3.76)

ii =+

This equation is a special case of the general equation

2 (1 _uz)z
“ T (k+Ap)(p2—ut—1) 3.77)

with the values kK = —6+ };iz, A = 6. The general solution of (3.77) was first given
in [25] and can be obtained as follows: First we apply the contact transformation:

up) =@+ 2y o= Kty
ip) =261 o) = 57 -
PI= )= 2yiE)
which reduces it to
2 132
62(5—l)zy”z=—4y'(<§y’—y)2+4y/2(§y’—y)—gy’2+%y’
(3.79)

This equation is a special form of the equation SD-Ia, appearing in [26], where
a classification of second order second degree ordinary differential equations was



20 P. A. Terzis, T. Christodoulakis

performed. The general solution of (3.79) is obtained with the help of the sixth
Painlevé transcendent w := Pyi(a, B, 7, 8) and reads:

_EE-D (, ww=DY
! w—nw}5>< 1>

(1£vV2a)*(1 2w)—§(1—2§>
V(26D (L0 () 2ew—D)
1 (1 w1 + s 7 1 o C (3.80)
where the sixth Painlevé transcendent w := Pyy(a, 8,7, §) is defined by the ODE:
S SR S S RN G S S B B
" ‘z<w—1+w+w—&>w <§—1+&+w—§>w

ww—1) (w=5) g (-1 (-1
62(5—1)2 (a+/3w2+y(w_1)2+6(w_§)2> (3.81)

+

o — =

The values of the parameters (@, 3,7, 8) of the Painlevé transcendent, can be
obtained from the solution of the following system:

a—B+y—5i\/ﬁ+1:—§ (3.82a)
B+7) (a+5i\/ﬁ) =0 (3.82b)
(rB) (a—5=v2a+1) + (a—p-7+5+v2a) = KQ;é“
(3.82¢)
%(Y*ﬁ) (a+5i\/ﬁ) ﬁ+y) (a—8+V2a+1)=
(3.82d)

Plugging in 1b the values of kK = —6+ %,l = 6 for Type VII,, we have
twenty-four solutions (counting multiplicities) of this system. In order for the
parameters (o, 3,7, 0) to be real numbers we end up only with four possibilities

4021 / 1 1 1 1-2K
(avﬁv%5>< 2h2 - 37?72}12’72112’ 2h2 )
42 —1 1 1 1 1-2#r 1
=" /35,5 — = h>—

(3.83a)



The general solution of Bianchi type V1Ij, vacuum cosmology 21

and

1 2-3r% V1-3h2 3K2—
L L

(aaB7Y>6):<za 2h2 + h

24_\/1—3h2 1
2h? hr 2

(0. B.7.6) = 12—3h2 V1=3hr2 3h*=2 1-31? 1 |h|<i
P10 =\ 3 T Y 2 2 M=

(3.83b)

For the values h = j:% the above relations coincide and as we will show these
values of & give rise to a particular solution.

Gathering all the pieces the final form of the general line element describing
Bianchi type VI, vacuum Cosmology is

()
ds* = «? <16h2§(§1)(d€)2+ §(&-1)

x ( V(&) sin(2u(£)) yf(é)—,jz> (o'

F2e0s2u(8) £ (E -1 (E) - h)o' e

+VEE-T) (x/y’<€)+sin(2u4(é)) yf(é)—,fz> (02 e @) <o3>2>

where
_ 2\ (_ 2
uy () = ( l+h2)h(2 (I_Jlri?)zz}l /6) (3.852)
gy 1-2&+2R%y(§)
O T E Ty @) G830

and y(€) is given by (3.80). Again, this line element contains three essential con-
stants, thus representing the general solution to the EFE’s for the Class B VI,
case.

Particular solutions

Even though the line element (3.84) represents the general solution of Bianchi
Type VII, vacuum Cosmology, it does not come into a manageable form due to
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the appearance of the sixth Painlevé transcendent. To partially remedy this incon-
venience, we give, in the following, some closed form line-elements arising from

particular solutions to (3.80) and (3-8T).
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e Subcase y(&) =cand |h| < ﬁ

One way to obtain a particular solution from the above line element (3.84) is to
follow the reasoning of Case 11, i.e to observe that, although the form of the contact
transformation implies that the function y(&) cannot be constant, the line
element (3.84) is free of this restriction; the difficulty with the negative argument
in the square root is circumvented by using the hyperbolic sine/cosine (see (3.86)
below). We can thus check if the assumption y(€) = ¢ leads to a particular solution.

VI3 o1l the

Skipping the calculational details, we find that for y(§) = ¢ = Y
Einstein’s field equations are satisfied and we end up with the new line element

ds? = k*sin(4ht) (f(r) (d7)*+sin(hInf(1)) (o) —sin(hIn f(7)) (6°)?

12 cos(hIn f(7)) 6 62 + £(1) (03)2) (3.86)
1 _ Vi 1
f(t)=sin #(4ht)tan # (2h7T), |h| < —

V3

which even though is physically acceptable it corresponds to Bianchi Type VII;
symmetry on 73. Since the above line element admits only the three killing fields
(3.3) and no homothetic vector field we can conclude that the constant x is essen-
tial.

1
An interesting property of the line element (3.86) is that, for the value h*> = 3

1.e.,

4 4 4
ds* = K2(0s02 —T(dr)z —sin—; sin (ﬁlnsin—r) (ch)?

V3 V3 V3

4 4
+ sin 27 Sin <\/§ Insin —T) (6%)?

V3 V3
125in 2T cos (V3 Insin 5 ' 62 +esc? ﬂ(03)2> (3.87)
V3 V3 V3
admits a fourth killing field, namely
2= 47 —2x 47
=e V3 sin—0d; —2e V3 cos — oy 3.88

The geometry (3.87) was first given by Petrov [27] and it is the only vacuum
solution admitting a simply transitive G4 as its maximal group of motions. This
group of motions has two subgroups G3 of Bianchi Types I and VI, _ ! acting in
time-like hyper-surfaces.
e Elementary solution of Painlevé transcendent

As it is well known,although for generic values of the parameters (a, 3,7, 6)
the Painlevé functions are transcendental, there exist a lot of elementary solutions
for special values of these parameters [28; [29]. In the case at hand the following
Lemma is applicable

Lemma The function w satisfying w(&)*> —2Ew(&E)+& =0 is a solution of (3.81)
when the parameters (o, 3,7, 0) obey the relations @+ 6 = %, B=-v.
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Proof Direct computation. a
. .. _ L
Using (3.83a)), the conditions of the above Lemma are fulfilled for 4 = + NGE

Then from the first of (3.83a) we have (o, 3,7,6) = (%, %, —%, %) Choosing now
the parametrization

w() = ﬁe“’”, & =cosh?(2h1) (3.89)

we can compute y(7) from (3.80) (with the minus sign) and u;(7),us(7) from
(3:83)), thereby arriving at the following line element

ds* = k* (—e% sinh™ 3 (45 7) (dT)2+e 217 sinh? (45 7) (¢*" T +sin(4 7)) (61)>

+2672h7 cos(41) 6! 62 + ¢ 27 sinh? (44 T) (¢*h7 —sin(4 1)) (02)2
2t ., 0 _3 372
+e sinh™# (4h1) (%) ) (3.90)

This geometry was first given by Lukash [30] and, like (3.86)), admits only the
three killing fields (3.3) and no homothetic vector field. Therefore, the constant x
is essential.

4 Discussion

In [10; 25] a systematic approach for investigating the solution space of Bianchi
type cosmologies was developed by the use of automorphisms and the theory of
symmetries of ordinary, coupled differential equations. The result was the com-
prehensive recovery of all known closed form Type /11 solutions, as well as the
presentation of the general solution in terms of the sixth Painlevé transcendent.
In the present work we have applied the method to the case of Bianchi Type V11,
family of vacuum geometries. Again, the general solution is implicitly given in
terms of the third Painlevé transcendent or the sixth Painlevé transcendent
for the Class A (h = 0)) and the Class B (h # 0) case respectively. One
could expect on general grounds (since Bianchi VII can be obtained via a reduc-
tion of the Einstein field equations with respect to an Abelian G, and therefore
has an Ernst-like formalism ) to find a Painlevé function solution when there is a
further reduction with an extra Killing vector (see note 7 on p. 109 of [31]]). But
finding the solutions is far from simple, and our method guarantees that the entire
solution space is swept.

Through the investigation of either Particular or Elementary solutions of the
Painlevé transcendents we are able to concisely recover, in a systematic fashion, all
six known solutions (3.36), (3.56), (3.62), (3.63), (3-87)), (3.90). All these metrics
have originally been obtained in a time scale of 20 years or so, by prior assumption
of symmetry and/or other physical requirements; e.g., Petrov’ s solution [27] was
derived with the use of automorphisms seeking G4 homogeneous metrics while
Lukash’ s solution [30] was derived based on a physical interpretation of Type
VI, cosmological models, in terms of circularly polarized gravitational waves of
arbitrary wavelength in a space having constant negative curvature. Their reacqui-
sition single-handed, proves, we believe, the value of our method. A very impor-
tant result is, of course, the discovery of the new family of solutions (3.86)) for the
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Table 1 Bianchi Type V1ly metrics

Line element Isometry type Comments

ds> = —(d1)?+ (6" + (62)? + 1% (67)? GioonVy Flat space
1

ds2:—r(d‘c)z—f—rz(G')z—l—rz(cz)z—i—;(63)2 GyonVs,7>0 LRS

GyaonTs, T<0

ds* =«? <674 7(dt)? -1 (c!)? GzonTs, >0  Non-homothetic

et
+12(62)* + - (0'3)2>
e (8)
16&

+ \f((azyﬂméucw)

ds? =12 | — (dE)? + General solution

|Ew(&)] (') Gz onVs

range of the group parameter /? < % Besides of the obvious value of a new family
of solutions to the EFE’s it also points to the unexpected existence of a sector with
particular behavior for this Bianchi Type. It is known that Type VI, model has
an exceptional sector corresponding to the value 2 = { but, for Type VI, such
a behavior is first observed.It is also very interesting to point out that this family
of solutions is related, through a complex transformation of #,x to the VI, solu-
tion of Ellis and MacCallum ((13.57) Of [[12]). The fact may be taken as a further
strengthening evidence of the widespread belief that the two Types are very much
similar. In fact, it seems highly probable that all the VIy/V I}, results, except those
for class Bbii of [[11], can be similarly related to the solutions here presented. We
hope that the application of the method to Type VI, will bear analogous fruits and
show how far this similarity can reach.

As for Types VIII,IX, the recent discovery that some particular configurations
are described by the third Painlevé transcendent [32] strengthens our belief that
their solution space will also be attained by our method. We plan to return to these
issues in the immediate future. Finally, we deem it useful to end this discussion
by briefly describing the investigated solution space through the following Tables
[Mand

Where the 1-forms c% are given by

1
o! =sinxdy+cosxdz, ©*=cosxdy—sinxdz, o> = de 4.1)

and u; (&) is defined by equation (3.48b)

EW(E)? 1 1 11

u(§) = W+ZW(§)+4W(§) ~71F 5

with w(&) standing for the third Painlevé transcendent w := Pyy(—3,3,0,0),

defined by (3.46).
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(9 (2 + o(20) (& = (M (Dmus+ ()N ) (1= 9/ +
00(&=(900-2 3 M (mr)s00z+

uonnos [e3ouaH A 00 €9 19 (F =AM (@mous - (AN (1= 99N +(3p) DI )y = op
(2(0) (up) y ums o+
L= (0) (@ p)uss —,412) (24 ) LqUIS 4y 2+ 20,0 (21)s09 52T+
dnAYIOWoY-UoN €A U0 €0 (10) ((ap)urs+,,2) (2 p) zyuts ,yz 2+ (2p) (24p) s _yus y2 |v A=5p
F=a Amﬁmbvmx‘wmomo.fwb_b Amx‘vEmEM\/vmgmp\,\vEmm._.
v [eWIXeN €[ uo o (;9) AW\,‘w ursuy ¢\ ) urs m\/‘w urs +
A £ £ _
JNJYIOWOY-UON :(19) AQ EmEQ/v urs Fo uIs — (2p) 75 980 ) A = Sp
£s ) (2(c0) (0)f + 20 0 (2)f upy)soo T+
JTIOYJOWIOY-UON €7 Uo €0 NANbv ((2)fury)urs — Nfbv ((2)fury)urs+ NC\ r) A.Skv (2yp)urs =5p
(£9)(19) 27500 Y 122+ ,(;0) (2guIs <A+ ﬁlvv ) ml
)y
OHIOWOH A U0 %D (29) (Grus Y+ 1) 1y22 £ + (o(¢0) v+ 2 P-) A.e :J& NNWMJJ«TV o f = g5p
ooeds e A U0 01 (£0) 2 v+ o(:0) 2 i+ .(19) 2 U+ (2P)— = 5P
SIUAUIWIOD) 9d Ay Anyowosy JUSWID[Q dUI]

sotewr Y7 A 2dAL myouerg g IqeL
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Where the 1-forms o are given by

o' =" (sinxdy+cosxdz), 62 = " (cosxdy —sinxdz), 6> = %dx
4.2)
the function f(7) stands for
_L _ Vi3
f(t)=sin # (4ht)tan ¥ (2h7) 4.3)
and the functions u; (&), us (&) are defined by (3.83)
e (F14HR) (—1428)+2R%y(§)
/gy 1-28+21y(§)
O O T RYE) an

with y(&) defined by (3.80).
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