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Abstract The theory of symmetries of systems of coupled, ordinary differential
equations (ODE) is used to develop a concise algorithm in order to obtain the
entire space of solutions to vacuum Bianchi Einsteins field equations (EFEs). The
symmetries used are the well known automorphisms of the Lie algebra for the
corresponding isometry group of each Bianchi Type, as well as the scaling and the
time re-parametrization symmetry. The application of the method to Type V IIh
results in (a) obtaining the general solution of Type V II0 with the aid of the third
Painlevé transcendental PIII ; (b) obtaining the general solution of Type V IIh with
the aid of the sixth Painlevé transcendental PV I ; (c) the recovery of all known
solutions (six in total) without a prior assumption of any extra symmetry; (d) The
discovery of a new solution (the line element given in closed form) with a G3 isom-
etry group acting on T3, i.e., on time-like hyper-surfaces, along with the emergence
of the line element describing the flat vacuum Type V II0 Bianchi Cosmology.

Keywords Bianchi types, Lie symmetries, Painlevé, transcendentalExact
solutions

1 Introduction

The idea of using the group of automorphisms in order to have a unified develop-
ment of Bianchi Cosmologies has a long history [1]. In that direction Harvey [2]
was the first who found the automorphisms of all three-dimensional Lie Algebras,
while the corresponding results for the four-dimensional Lie Algebras have been
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reported in [3]. Jantzen’s tangent space approach sees the automorphism matri-
ces as the means for achieving a convenient parametrization of a full scale factor
matrix in terms of a desired, diagonal matrix [4; 5; 6]. Siklos used these time-
dependent automorphisms as a tool to correctly choose variables with the aim to
simplify the ensuing equations [7]. Samuel and Ashtekar were the first to look
upon automorphisms from a space viewpoint [8]. The notion of Time-Dependent
Automorphism Inducing Diffeomorphisms (A.I.D.’s), i.e., coordinate transforma-
tions mixing space and time in the new spatial coordinates and inducing automor-
phic motions on the scale-factor matrix, the lapse, and the shift has been developed
in [9]. The use of these covariances enables one to set the shift vector to zero with-
out destroying manifest spatial homogeneity. At this stage one can use the “rigid”
automorphisms, i.e., the remaining “gauge” symmetry, as Lie-point symmetries
of the EFE’s in order to reduce the order of these equations and ultimately com-
pletely integrate them [10]. The present work of ours consists in the application of
this method to the case of vacuum Bianchi Type V IIh Cosmology. The method is
recapitulated in Sect. 2 while its application to the above mentioned type, result-
ing in the exhaustive discovery of the entire solution space, is given in Sect. 3. In
Sect. 4 we discuss our results and give a brief description of the solution space in
the form of two tables.

2 The method

As it is well known, for spatially homogeneous space-times with a simply transi-
tive action of the corresponding isometry group [11; 12], the line element, assumes
the form

ds2 =
(
Nα Nα −N2) dt2 +2Nα σ

α
i dxidt + γαβ σ

α
i σ

β

j dxidx j (2.1)

where the 1-forms σα
i , are defined from:

dσ
α = Cα

βγ
σ

β ∧σ
γ ⇔ σ

α
i, j−σ

α
j,i = 2Cα

βγ
σ

γ

iσ
β

j. (2.2)

Then the field equations are (see, e.g., [9]):

Eo
.= Kαβ Kαβ −K2−R = 0 (2.3)

Eα

.= Kµ

αCε
µε −Kµ

εCε
αµ = 0 (2.4)

Eαβ

.= K̇αβ +N
(
2Kτ

α Kτβ −KKαβ

)
+2Nρ

(
KανCν

βρ
+KβνCν

αρ

)
−NRαβ =0

(2.5)

where

Kαβ =− 1
2N

(
γ̇αβ +2γανCν

βρ
Nρ +2γβνCν

αρ Nρ

)
(2.6)
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is the extrinsic curvature and

Rαβ = Cκ
στCλ

µν γακ γβλ γ
σν

γ
τµ +2Cκ

βλ
Cλ

ακ +2Cµ

ακCν

βλ
γµν γ

κλ

+2Cλ

βκ
Cµ

µν γαλ γ
κν +2Cλ

ακCµ

µν γβλ γ
κν (2.7)

the Ricci tensor of the hyper-surface.
In [9] particular space-time coordinate transformations have been found, which

reveal as symmetries of (2.3), (2.4), (2.5) the following transformations of the
dependent variables N,Nα ,γαβ :

Ñ = N, Ñα = Λ
ρ

α (Nρ + γρσ Pσ ), γ̃µν = Λ
α
µ Λ

β

ν γαβ (2.8)

where the matrix Λ and the triplet Pα must satisfy:

Λ α
ρ Cρ

βγ
= Cα

µν Λ
µ

β
Λ ν

γ (2.9)

2Pµ Cα
µνΛ ν

β
= Λ̇ α

β
(2.10)

These transformations were first given in the first of [4; 5; 6], see the discussion
on
p. 3586 of [9].

For all Bianchi Types, this system of equations admits solutions which contain
three arbitrary functions of time plus several constants depending on the Auto-
morphism group of each type. The three functions of time, are distributed among
Λ and P (which also contains derivatives of these functions). So one can use this
freedom either to simplify the form of the scale factor matrix or to set the shift
vector to zero. The second action can always be taken, since, for every Bianchi
type, all three functions appear in Pα .

In this work we adopt the latter point of view. When the shift has been set
to zero, there is still a remaining “gauge” freedom consisting of all constant Λ α

β

(Automorphism group matrices). Indeed the system (2.9), (2.10) accepts the solu-
tion Λ α

β
= constant, Pα = 0. The generators of the corresponding motions γ̃µν =

Λ α
µΛ

β

ν γαβ , induced in the space of dependent variables spanned by γαβ
′s (the

lapse is given in terms of γαβ , γ̇αβ by algebraically solving the quadratic con-
straint equation), are [13]:

X(I) = λ
ρ

(I)α γρβ

∂

∂γαβ

(2.11)

with λ satisfying:
λ

α

(I)ρ Cρ

βγ
= λ

ρ

(I)β Cα
ργ +λ

ρ

(I)γ Cα

βρ
. (2.12)

Now, these generators define a Lie algebra and each one of them induces,
through its integral curves, a transformation on the configuration space spanned
by the γαβ ’s. If a generator is brought to its normal form (e.g., ∂

∂ zi
), then the Ein-

stein equations, written in terms of the new dependent variables, will not explic-
itly involve zi. They thus become a first order system in the function żi [14]. If
the above Lie algebra happens to be abelian, then all generators can be brought,



4 P. A. Terzis, T. Christodoulakis

to their normal form simultaneously. If this is not the case, we can diagonalize in
one step the generators corresponding to any eventual abelian subgroup. The rest
of the generators (not brought in their normal form) continue to define a symmetry
of the reduced system of EFE’s if the algebra of the X(I)’s is solvable [15]. One can
thus repeat the previous step, by choosing one of these remaining generators. This
choice will of course depend upon the simplifications brought to the system at the
previous level. Finally if the algebra does not contain any abelian subgroup, one
can always choose one of the generators, bring it to its normal form, reduce the
system and search for its symmetries (if there are any). Lastly, two further symme-
tries of (2.3), (2.4), (2.5) are also present and can be used in conjunction with the
constant automorphisms: The time reparameterization t → f (t)+α , owing to the
non-explicit appearance of time in these equations, and the scaling by a constant
γαβ → µγαβ as can be straightforwardly verified. Their corresponding generators
are:

Y1 =
1
ḟ

∂

∂ t
(2.13)

Y2 = γαβ

∂

∂γαβ

(2.14)

These generators commute among themselves, as well as with the X(I)’s, as it
can be easily checked.

3 Application to Bianchi type V IIh

We are now going to apply the method, previously discussed, to the case of Bianchi
Type V IIh. For this type the structure constants are

C1
13 =−C1

31 = C2
23 =−C2

32 =−h

C1
32 =−C1

23 = C2
13 =−C2

31 = 1

Cα

βγ
= 0 for all other valueso f αβγ

(3.1)

Using these values in the defining relation (2.2) of the 1-forms σα
i we obtain

σ
α
i =


0 ehx sinx ehx cosx

0 ehx cosx −ehx sinx

1
2 0 0

 (3.2)

The corresponding vector fields ξ i
α (satisfying

[
ξα ,ξβ

]
= 1

2 Cγ

αβ
ξγ ) with respect

to which the lie derivative of the above 1-forms is zero are:

ξ1 = ∂y ξ2 = ∂z ξ3 = ∂x +(z−hy)∂y− (y+hz)∂z (3.3)
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The time depended A.I.D.’s are described by

Λ
α

β
=


cehP(t) cosP(t) cehP(t) sinP(t) x(t)

−cehP(t) sinP(t) cehP(t) cosP(t) y(t)

0 0 1

 (3.4)

and

Pα =
(

x(t)Ṗ(t)+h2 x(t)Ṗ(t)−h ẋ(t)+ ẏ(t)
2(1+h2)

, (3.5)

y(t)Ṗ(t)+h2 y(t)Ṗ(t)−h ẏ(t)− ẋ(t)
2(1+h2)

,
Ṗ(t)

2

)
(3.6)

where P(t),x(t) and y(t) are arbitrary functions of time. As we have already
remarked the three arbitrary functions appear in Pα and thus can be used to set
the shift vector to zero.

The remaining symmetry of the EFE’s is, consequently, described by the con-
stant matrix:

M =

 es1 s2 s3

−s2 es1 s4

0 0 1

 (3.7)

where the parametrization has been chosen so that the matrix becomes identity for
the zero value of all parameters.

Thus the induced transformation on the scale factor matrix is γ̃αβ = Mµ

α Mν

β
γµν ,

which explicitly reads:

γ̃11 = e2s1 γ11−2es1 s2 γ12 + s2
2 γ22

γ̃12 = e2s1 γ12− s2
2 γ12 + es1 s2 (γ11− γ22)

γ̃13 = es1 (s3 γ11 + s4 γ12 + γ13)− s2 (s3 γ12 + s4 γ22 + γ23)

γ̃22 = e2s1 γ22 +2es1 s2 γ12 + s2
2 γ11

γ̃23 = es1 (s3 γ12 + s4 γ22 + γ23)+ s2 (s3 γ11 + s4 γ12 + γ13)

γ̃33 = s3
2 γ11 +2s3 (s4 γ12 + γ13)+ s4

2 γ22 +2s4 γ23 + γ33

(3.8)

The previous equations, define a group of transformations Gr of dimension
r = dim(Aut(V IIh)) = 4. The four generators of the group, can be evaluated from
the relation:

XA =
(

∂ γ̃αβ

∂ sA

)
s=0

∂

∂γαβ

(3.9)
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where A = {1,2,3,4}. Applying this definition to (3.8) we have the generators:

X1 = 2γ11
∂

∂γ11
+2γ12

∂

∂γ12
+ γ13

∂

∂γ13
+2γ22

∂

γ22
+ γ23

∂

γ23
(3.10)

X2 =−2γ12
∂

∂γ11
+(γ11− γ22)

∂

∂γ12
− γ23

∂

∂γ13
+2γ12

∂

∂γ22
+ γ13

∂

∂γ23
(3.11)

X3 = γ11
∂

∂γ13
+ γ12

∂

∂γ23
+2γ13

∂

∂γ33
(3.12)

X4 = γ12
∂

∂γ13
+ γ22

∂

∂γ23
+2γ23

∂

∂γ33
(3.13)

The algebra gr that corresponds to the group Gr has the following table of
commutators:

[X1,X2] = 0, [X1,X3] = X3, [X1,X4] = X4,

[X2,X3] =−X4, [X2,X4] = X3, [X3,X4] = 0
(3.14)

As it is evident from the above commutators (3.14) the group is non-abelian, so
we cannot diagonalize at the same time all the generators. However, if we calculate
the derived algebra of gr, we have

gr′ = {[XA,XB] : XA,XB ∈ gr}⇒ gr′ = {X3,X4} (3.15)

and furthermore, it’s second derived algebra reads:

gr′′ = {[XA,XB] : XA,XB ∈ gr′}⇒ gr′′ = {0} (3.16)

Thus, the group Gr is solvable since the gr′′ is zero. As it is evident X3,X4,Y2
generate an Abelian subgroup, and we can, therefore, bring them to their normal
form simultaneously. The appropriate transformation of the dependent variables
is:



γ11 = eu1−u6

γ12 = eu1−u6 u2

γ13 = eu1−u6 (u3 +u2 u5)

γ22 = eu1−u6 u4

γ23 = eu1−u6 (u2 u3 +u4 u5)

γ33 = eu1−u6
(
eu6 +u3

2 +2u2 u3 u5 +u4 u2
5
)

(3.17)
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In these coordinates the generators Y2,XA assume the form:

Y2 =
∂

∂u1
X4 =

∂

∂u5
X3 =

∂

∂u3

X2 =
(
1+2u2

2−u4
) ∂

∂u2
−u5

∂

∂u3
+2 (u2 +u2 u4)

∂

∂u4
+u3

∂

∂u5
+2u2

∂

∂u6
(3.18)

X1 = −u3
∂

∂u3
−u5

∂

∂u5
−2

∂

∂u6

Evidently, a first look at (3.17) gives the feeling that it would be hopeless even
to write down the Einstein equations. However, the simple form of the first three
of the generators (3.18) ensures us that these equations will be of first order in the
functions u̇1, u̇3 and u̇5.

3.1 Description of the solution space

Before we begin solving the Einstein equations, a few comments on the allowable
range of values for the functions ui, i = 1, . . . ,6 will prove very useful.

The determinant of γαβ , is

det[γαβ ] = e3u1−2u6
(
−u2

2 +u4
)

(3.19)

so we must have u4 > u2
2.

The two linear constraint equations, written in the new variables (3.17), give

E1 = 0⇒ 1
2

e−u6 ((3h−u2) u̇3 +(3hu2−u4) u̇5) = 0 (3.20)

E2 = 0⇒ 1
2

e−u6 ((1+3hu2) u̇3 +(u2 +3hu4) u̇5) = 0 (3.21)

This system admits only the trivial solution, since the determinant of the 2× 2
matrix formed by the coefficients of u̇3, u̇5 becomes zero only for the forbidden
value u4 = u2

2. We thus have

u3 = k3, u5 = k5 (3.22)

Now, these values of u3,u5 make γ13,γ23 functionally dependent upon γ11,γ12,γ22
(see (3.17)). It is thus possible to set these two components to zero by means of
an appropriate constant automorphism.

We therefore can, without loss of generality, start our investigation of the solu-
tion space for Type V IIh vacuum Bianchi Cosmology from a block-diagonal form
of the scale-factor matrix (and, of course, zero shift)

γαβ =

 γ11 γ12 0

γ12 γ22 0

0 0 γ33

 (3.23)
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These unknown functions of time have to satisfy the quadratic and the third linear
constraint, as well as the spatial EFE’s. As we have earlier remarked, since the
algebra (3.14) is solvable, the remaining (reduced) generators X1,X2 (correspond-
ing to block-diagonal constant automorphisms) as well as Y2 continue to define a
Lie-point symmetry of the reduced EFE’s and can thus be used for further integra-
tion of this system of equations.

The remaining (reduced) automorphism generators are

X1 = 2γ11
∂

∂γ11
+2γ12

∂

∂γ12
+2γ22

∂

∂γ22
(3.24)

X2 = −2γ12
∂

∂γ11
+(γ11− γ22)

∂

∂γ12
+2γ12

∂

∂γ22

The appropriate change of dependent variables which brings these generators -
along with Y2- into normal form, is described by the following scale-factor matrix:

γαβ =


1
2 eu1+2u6 (1−2u2 sin2u4) eu1+2u6 u2 cos2u4 0

eu1+2u6 u2 cos2u4
1
2 eu1+2u6 (1+2u2 sin2u4) 0

0 0 eu1


(3.25)

The generators are now reduced to

Y2 =− ∂

∂u1
, X2 =

∂

∂u4
, X1 =− ∂

∂u6
(3.26)

indicating that the system will be of first order in the derivatives of these variables.
The remaining variable u2 will enter, (along with u̇2, ü2) explicitly in the system
and is therefore advisable (if not mandatory) to be used as the time parameter, i.e.,
to effect the change of time coordinate

t → u2(t) = s, u1(t)→ u1(t(s)), u4(t)→ u4(t(s)), u6(t)→ u6(t(s)). (3.27)

This choice of time will of course be valid only if u2 is not a constant. We are
thus led to consider two cases according to the constancy or non-constancy of this
dependent variable.

Until now, we have not commented upon the range of values that the parameter
h can attain. As it is well known, for the value h = 0 we come across the Class
A model, which admits a Lagrangian description, whereas for h 6= 0 we have the
Class B model which lacks such a Lagrangian description. So we are forced to
examine two further possibilities, as to whether h is equal to, or different from,
zero.
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3.1.1 Case I: h = 0 and u2(t) = k2

In the parametrization (3.25) the determinant of γαβ , is

det[γαβ ] =
1
4

e3u1+4u6
(
1−4k2

2
)

so we must have − 1
2 < k2 < 1

2 . The third linear constraint reads

E3 = 0⇒ 8k2
2 u̇4

−1+4k2
2

= 0⇒ u4 = k4 or k2 = 0 (3.28)

The case u4 = k4 leads, through equation E34 = 0 to k2 = 0. Thus, the only pos-
sibility is k2 = 0. Substituting this value into the quadratic constraint equation E0
we obtain

− 1
2
(
3 u̇2

1 +8 u̇1 u̇6 +4 u̇2
6
)

= 0 (3.29)

which has the following two solutions

u1 = k1−2u6 (3.30a)

u1 = k1−
2
3

u6 (3.30b)

For the first of (3.30) all the spatial EFE’s are equivalent to the equation

2 u̇6 NṄ +2N2 (u̇2
6− ü6

)
= 0 (3.31)

from which we have for the lapse function

N2 = k e−2u6 u̇2
6 (3.32)

Choosing a time parametrization u6 =− 1
2 ln( τ2

k ), and using the automorphism
matrix (3.7) with entries s1 = 1

2 (ln2− k1) , s2 = s3 = s4 = 0 we arrive at the line
element

d s2 =−d τ
2 + τ

2 d x2 +d y2 +d z2 (3.33)

which describes a flat space admitting a manifest V II0 symmetry [16]. To the best
of our knowledge, it is the first time that this line element emerges in the course
of investigation of the solution space to this Bianchi Type. Of course, this was to
be expected, since flat space is clearly LRS Bianchi I, hence V II0 (see Table 3 of
[11]).
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For the second of (3.30) all the spatial EFE’s are equivalent to the equation

2 u̇6 NṄ−2N2 (u̇2
6 + ü6

)
= 0 (3.34)

which gives the lapse function

N2 = k e2u6 u̇2
6 (3.35)

Choosing a time parametrization u6 = 1
2 ln( 4τ3

9k ), redefining the constant k1 =
1
3 ln 256

9k and using the automorphism matrix (3.7) with entries s1 = 1
2 ln 9k

8 , s2 =
s3 = s4 = 0 we arrive at the line element

d s2 =−τ d τ
2 +

1
τ

d x2 + τ
2 d y2 + τ

2 d z2 (3.36)

This line element is an axisymmetric geometry belonging to the Kasner family
[17]. It was first produced as a Type V IIh metric by Ellis [18; 19] (see also Table
3 of [11]) and admits, besides the three killing fields (3.3) (with h = 0), a fourth
symmetry generator

ξ4 = ∂x (3.37)

along with a homothetic vector field

η = 2τ ∂τ +4x∂x + y∂y + z∂z (3.38)

There is thus a G4 symmetry group acting (of course, multiply transitively) on
each V3 of this metric. However, it is interesting to note that we have not imposed
the extra symmetry from the beginning, but rather it emerged as a result of the
investigation process.

3.1.2 Case II: h = 0 and u2(t) = t

With this choice of time gauge the third linear constraint reads

E3 = 0⇒ 8 t2

4 t2−1
u̇4 = 0⇒ u4 = k4 (3.39)

With this information at hand, the quadratic constraint Eo yields the lapse function

N2 =− eu1

64 t2

(
(4 t2−1)(u̇1 +2 u̇6)(3 u̇1 +2 u̇6)+16 t (u̇1 + u̇6)+4

)
(3.40)

We now turn to the spatial equations of motion and substitute the above lapse.
The simplest is E33 = 0 and the coefficient of ü1 in this equation is proportional
to the quantity
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(
(4 t2−1) u̇6 +2 t

)
u̇1 +(4 t2−1) u̇2

6 +4 t u̇6 +1

which can be safely regarded different from zero, since by setting this quantity
equal to zero and solving for u̇1 we end up with zero lapse (with the help of the rest
of the equations of motion). We can thus solve E33 = 0 for ü1 and substitute into
E11 = 0. In this transformed equation E11 = 0, the coefficient of ü6 is proportional
to

(−2 t + sin(2k4))(u̇1 + u̇6)−1

a quantity which is different from zero, since it’s nihilism leads again to zero lapse.
From the transformed E11 = 0 we have the expression for ü6, so we finally arrive
at the following polynomial system of first order in u̇1, u̇6

ü1 = 〈u̇1|A1 |u̇6〉, ü6 = 〈u̇1|A2 |u̇6〉 (3.41)

where we have introduced the notation 〈u̇i|=
(
1 u̇i u̇2

i u̇3
i
)

and |u̇i〉= 〈u̇i|t with the
4×4 matrices A1, A2 given by

A1 =


4

4 t2−1
16 t

4 t2−1 4 0

4 t2+1
t (4 t2−1) 4 −4 t2−1

t 0

−1 2(−4 t2+1)
t 0 0

3(1−4 t2)
4 t 0 0 0

 ,

(3.42)

A2 =


6

−4 t2+1
−28 t2+1
t (4 t2−1) −8 −4 t2+1

t

16 t
−4 t2+1 −12 −8 t2+2

t 0

−3 −12 t2+3
4 t 0 0

0 0 0 0


Due to the form of A1,A2 (their components are rational functions of the time
t), system (3.41) can be partially integrated with the help of the following Lie-
Bäcklund transformation

u̇1(t) =
−16r2(t)+1

4(4 t2−1)r(t)
−4 t ṙ(t)

u̇6(t) =
−16r2(t)+16 t r(t)+3

8(−4 t2 +1)r(t)
+2 t ṙ(t)

(3.43)

resulting in the single, second order ODE for the function r(t)

r̈ =−1
r

ṙ2 +
(12 t2 +1)r + t
(−4 t2 +1) t r

ṙ (3.44)
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At this stage, in order to solve (3.44) we apply the contact transformation:

r(t) =
ξ w′(ξ )
4w(ξ )

, t =
1
2
− 1

1+w(ξ )
, ṙ(t) =−(w(ξ )−1)(w(ξ )+1)3

8w′(ξ )w(ξ )
(3.45)

which reduces it to

w′′(ξ ) =
w′(ξ )2

w(ξ )
− w′(ξ )

ξ
− 1

2
w(ξ )2−1

ξ
(3.46)

which is nothing else but the third Painlevé transcendent w := PIII(α,β ,γ,δ ) with
entries (α,β ,γ,δ ) = (−1/2,1/2,0,0). For completeness we give the general form
of the equation that the third Painlevé transcendent satisfies:

w′′(ξ ) =
w′(ξ )2

w(ξ )
− w′(ξ )

ξ
+

α w(ξ )2 +β

ξ
+ γ w(ξ )3 +

δ

w(ξ )
(3.47)

Using the final equation (3.46), the contact transformation (3.45) and the Lie-
Bäcklund transformation (3.43) we find that the functions u6 and u′1 are given by

u6(ξ ) =
1
4

ln
(∣∣∣ ξ

w(ξ )

∣∣∣(w(ξ )+1)2
)
− 1

2
u1(ξ ) (3.48a)

u′1(ξ ) =
ξ w′(ξ )2

4w(ξ )2 +
1
4

w(ξ )+
1

4w(ξ )
− 1

4ξ
− 1

2
(3.48b)

and the lapse function has the form

N2 =
1

16ξ
eu1 (3.49)

The scale-factor matrix γαβ is thus

γαβ =



1
2

√∣∣∣ ξ

w(ξ )

∣∣∣(w(ξ )+1)
1
2

√∣∣∣ ξ

w(ξ )

∣∣∣(w(ξ )−1) 0

1
2

√∣∣∣ ξ

w(ξ )

∣∣∣(w(ξ )−1)
1
2

√∣∣∣ ξ

w(ξ )

∣∣∣(w(ξ )+1) 0

0 0 eu1(ξ )


(3.50)

which can be brought to diagonal form with the aid of the automorphism matrix
(3.7) with entries s1 =− 1

2 ln2,s2 =− 1√
2

γαβ =



√∣∣∣ ξ

w(ξ )

∣∣∣w(ξ ) 0 0

0

√∣∣∣ ξ

w(ξ )

∣∣∣ 0

0 0 eu1(ξ )

 (3.51)
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Gathering all the pieces we arrive at the final form of the line element

d s2 = κ
2

(
− 1

16ξ
eu1 d ξ

2 +
1
4

eu1 d x2 +

√∣∣∣ξ
w

∣∣∣ (w sin2 x+ cos2 x
)

d y2

+

√∣∣∣ξ
w

∣∣∣ sin(2x) (w−1) d yd z+

√∣∣∣ξ
w

∣∣∣ (w cos2 x+ sin2 x
)

d z2

)
(3.52)

which represents the general solution of Bianchi Type V II0 non-flat Vacuum Cos-
mology, since it contains the expected number of three essential constants (two
implicit in the third Painlevé transcendent plus the overall κ). The above line ele-
ment was first given by Lorenz-Petzold [20], but it was not then pointed out that it
represented the general solution.

Particular solutions

In order for the contact transformation (3.45) to be well defined, it is obvious
that the function w(ξ ) must not be constant. However, remarkably enough, the
resulting line element (3.52) does not inherit this restriction. Thus, if there is some
constant solution to equation (3.46), it could produce a particular solution through
(3.52). By inspection it is obvious that (3.46) admits the solutions w(ξ ) =±1, so
we could use them to obtain two particular solutions.

• Subcase w(ξ ) = 1

With this value of w(ξ ) (3.52) indicates that ξ > 0, so plugging this value to
(3.48) we have

u1(ξ ) = k1−
1
4

lnξ u6(ξ ) =−1
2

k1 +
1
8

ln(16ξ 3) (3.53)

which, after using the usual simplifications brought by the automorphism matrix
(3.7) and redefining the variable ξ to ξ = τ4, results in

d s2 =−τ d τ
2 +

1
τ

d x2 + τ
2 d y2 + τ

2 d z2 (3.54)

which is the line element (3.36).
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• Subcase w(ξ ) =−1
Now from (3.52) we must have ξ < 0 and from (3.48b) we obtain

u1(ξ ) = k1−ξ − 1
4

ln
∣∣ξ ∣∣ (3.55)

while from (3.48a) u6 remains undefined. The line element (3.52) with the help of
the automorphism matrix (3.7) and the definition ξ =−τ4 becomes

d s2 = κ
2
(

eτ4
τ d τ

2 +
1

4τ
eτ4

d x2 + τ
2 cos(2x)d y2

−2τ
2 sin(2x)d yd z− τ

2 cos(2x)d z2
)

(3.56)

which, though physically acceptable, corresponds to Bianchi Type V II0 symmetry
on T3, and was first given by Barnes [21].

3.1.3 Case III: h 6= 0 and u2(t) = k2

In this case the determinant of the scale factor matrix γαβ is

det(γαβ ) =
1
4

e3u1+4u6 (1−4k2
2) (3.57)

so we must have − 1
2 < k2 < 1

2 in order for it to be positively defined.
The third linear constraint E3 = 0 reads

1
4k2

2−1

(
8k2

2 u̇4 +2h(1−4k2
2) u̇6

)
= 0⇒ u6 = k6 +

4k2
2

h(4k2
2−1)

u4 (3.58)

and the quadratic constraint Eo = 0 gives for the lapse function N2

N2 =
eu1

16h2 (4k2
2−1)(3h2 (4k2

2−1)−4k2
2)

(
3h2 (4k2

2−1)2 u̇2
1

+32hk2
2 (4k2

2−1) u̇1 u̇4 +16k2
2 (h2 (4k2

2−1)+4k2
2) u̇2

4

)
(3.59)

Now we are ready to attack the spatial equations of motion after substituting
in them the above lapse. E33 = 0 is again the simplest one. In this equation, the
coefficient of ü4 is proportional to

k2
2 u̇1

(
h(4k2

2−1) u̇1 +(4k2
2 +h2 (4k2

2−1)) u̇4
)

(3.60)

so in order to solve E33 = 0 for ü4 we must ensure that the above quantity is
different from zero. Setting this quantity equal to zero we get

u1 = k1−
4k2

2 +h2 (4k2
2−1)

h(4k2
2−1)

u4 (3.61a)

u1 = k1 (3.61b)
k2 = 0 (3.61c)
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• The solution (3.61a) leads to inconsistency.
• The solution (3.61b) forces equation E33 = 0 to give either k2 = ± h

2
√

h2+1

which leads to zero lapse or k2 =± h
2
√

h2−1
, which makes the determinant of

γαβ negative so is unacceptable.
• The solution (3.61c) satisfies all the spatial equations and leads, after the usual

simplifications achieved by the automorphism matrix (3.7) and the choice of
time gauge u1 = 2 ln(2hτ), to the line element

d s2 =−d τ
2 +h2

τ
2 d x2 + e2hx

τ
2 d y2 + e2hx

τ
2 d z2 (3.62)

which describes a flat space admitting a manifest V IIh symmetry, a line-
element first presented in [22] (p. 78, relation (51)) and later reproduced by
Doroshkevich et al. [23] and Siklos [24].

Having ensured that the term (3.60) is not equal to zero we can solve E33 = 0
for ü4 and substitute into the other equations of motion. From E11 = 0 we have

(sin(2u4)−2k2)
(

u̇1 +
2(3h2 (4k2

2−1)+4k2
2)

3h(4k2
2−1)

u̇4

)
×
(

u̇1−
2(4k2

2 (h2−1)−h2)
h(4k2

2−1)
u̇4

)
= 0 (3.63)

which leads to the following possibilities

u4 =
1
2

arcsin(2k2) (3.64a)

u1 = k1−
2(3h2 (4k2

2−1)+4k2
2)

3h(4k2
2−1)

u4 (3.64b)

u1 = k1 +
2(4k2

2 (h2−1)−h2)
h(4k2

2−1)
u4 (3.64c)

• The solution (3.64a) leads to zero lapse.
• The solution (3.64b) leads to inconsistency.
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• The solution (3.64c) satisfies all the spatial equations and leads, after the usual
simplifications with the automorphism matrix (3.7) and the choice of time
gauge u1 = τ , to the line element

d s2 =
1
4

e
−2λ2+2h2 (λ2−1)

h(λ2−1)
τ

(−d τ
2 +d x2)−2λ e2h(τ+x) sin2(τ + x)d yd z

+e2h(τ+x) (1+λ cos2(τ + x)) d y2

+e2h(τ+x) (1−λ cos2(τ + x)) d z2 (3.65)

which was presented in [23; 24]. This line element represents a plane-wave
solution and admits, besides the three killing fields (3.3), three more, namely

ξ4 = e
−λ2+h2 (λ2−1)

h(λ2−1)
(x−τ)

∂τ − e
−λ2+h2 (λ2−1)

h(λ2−1)
(x−τ)

∂x (3.66a)

ξ5 = ye
−λ2+h2 (λ2−1)

h(λ2−1)
(x−τ)

∂τ − ye
−λ2+h2 (λ2−1)

h(λ2−1)
(x−τ)

∂x

+e
−λ2−h2 (λ2−1)

h(λ2−1)
(x+τ)(

c1 cos2(τ + x)+ c2 sin2(τ + x)+ c3
)

∂y

+e
−λ2−h2 (λ2−1)

h(λ2−1)
(x+τ)(

c2 cos2(τ + x)− c1 sin2(τ + x)
)

∂z (3.66b)

ξ6 = ze
−λ2+h2 (λ2−1)

h(λ2−1)
(x−τ)

∂τ − ze
−λ2+h2 (λ2−1)

h(λ2−1)
(x−τ)

∂x

+e
−λ2−h2 (λ2−1)

h(λ2−1)
(x+τ)(

c2 cos2(τ + x)− c1 sin2(τ + x)
)

∂y

−e
−λ2−h2 (λ2−1)

h(λ2−1)
(x+τ)(

c1 cos2(τ + x)+ c2 sin2(τ + x)− c3
)

∂z

(3.66c)

where the constants (c1,c2,c3) are given by

c1 = −
λ h
(
λ 2 +h2 (λ 2−1)

)
4
(
λ 4 +h4 (λ 2−1)2 +2h2 (λ 2−1)(3λ 2−2)

) (3.67a)

c2 =
λ h2 (λ 2−1)

2
(
λ 4 +h4 (λ 2−1)2 +2h2 (λ 2−1)(3λ 2−2)

) (3.67b)

c3 =
h

4
(
λ 2 +h2 (λ 2−1)

) (3.67c)

Again it is worth mentioning that this G6 symmetry was not imposed from the
begging but emerged during the seeking of the solution space. The non-vanishing
commutators are
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[ξ1,ξ5] = ξ4 [ξ2,ξ6] = ξ4

[ξ3,ξ4] = 2
(

c1

c2
+h
)

ξ4 [ξ3,ξ5] = 2
(

c1

c2
+

h
2

)
ξ5 +ξ6

[ξ3,ξ6] = −ξ5 +2
(

c1

c2
+

h
2

)
ξ6 (3.68)

with (c1,c2) given by (3.67). Finally the line element (3.65) admits a homothetic
vector field

η =
h(λ 2−1)

−λ 2 +h2 (λ 2−1)
∂τ −

h(λ 2−1)
−λ 2 +h2 (λ 2−1)

∂x + y∂y + z∂z (3.69)

3.1.4 Case IV: h 6= 0 and u2(t) = t

In this case the determinant of the sale factor matrix becomes

det[γαβ ] =
1
4

e3u1+4u6 (1−4 t2)

so we must demand that |t| ≤ 1
2 in order for γαβ to be positive definite.

The third linear constraint E3 = 0 can be used to define the function u6

E3 = 0⇒ u̇6 =
2 t (2 t u̇4−h)

h(4 t2−1)
⇒ u6 = k6 +

∫ 2 t (2 t u̇4−h)
h(4 t2−1)

d t (3.70)

The quadratic constraint Eo = 0 defines the lapse function N2

N2 =
eu1

16h2 (4 t2−1)(3h2 (4 t2−1)−4 t2)

(
3h2 (4 t2−1)2 u̇2

1

+32ht2 (4 t2−1) u̇1 u̇4 +16 t2 (h2 (4 t2−1)+4 t2) u̇2
4−4h2

)
(3.71)

Substituting the above values of the lapse N2 and the function u6 in equation E33 =
0 we find the coefficient of ü1 to be proportional to

4 t2 (4 t2 +h2 (4 t2−1)
)

u̇2
4 +4ht2 (4 t2−1) u̇1 u̇4−h2

a quantity that can be safely regarded different from zero, since it’s nihilism leads
either to zero lapse or to inconsistency. Thus we can solve E33 = 0 for ü1 and
substitute it to E11 = 0. In order to solve this equation for ü4 we must be assured
that it’s coefficient does not vanish. Setting this coefficient equal to zero we arrive
at the following equation

u̇1 =
h cos2u4 +2 t

2 t (sin2u4−2 t)
− (4 t2 (h2 +1)−h2) u̇4−2ht

h(4 t2−1)

which is unacceptable because it leads to inconsistency. After solving equation
E11 =0 for ü4 we finally arrive to the following polynomial system of first order
in u̇1, u̇4

ü1 = 〈u̇1|B1 |u̇4〉, ü4 = 〈u̇1|B2 |u̇4〉 (3.72)
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where we have used again the notation 〈u̇i|=
(
1 u̇i u̇2

i u̇3
i
)

and |u̇i〉= 〈u̇i|t with the
4×4 matrices B1, B2 given by

B1 = f



4(h2−4(−1+h2) t2)
(1−4 t2)4 0 16 t2 (−16 t4+h4 (1−4 t2)2)

h2 (1−4 t2)4 0

−4 t (1−8 t2+6h2 (−1+4 t2))
(−1+4 t2)3

32 t2 (−h2+4(−1+h2) t2)
h(−1+4 t2)3

−4 t (−h2+4(−1+h2) t2)(4 t2+3h2 (−1+4 t2))
h2 (−1+4 t2)3 0

−3h2+12(−1+h2) t2

(1−4 t2)2
32 t3

h(1−4 t2)2 0 0

3 t
−1+4 t2 0 0 0



B2 = g



2h
4 t2+h2 (1−4 t2)

−6h2 (1−4 t2)2+4 t2 (−3+8 t2)
−4 t3+h2 t (−1+4 t2)

8(4 t4+h2 t2 (−1+4 t2))
−4ht2+h3 (−1+4 t2)

−4 t (−3h2+4 t2+12h2 t2)
h2

0 16 t2 (−1+4 t2)
−h2+4(−1+h2) t2

32 t3 (−1+4 t2)
−4ht2+h3 (−1+4 t2) 0

3h(1−4 t2)2

−8 t2+h2 (−2+8 t2)
3 t (1−4 t2)2

−h2+4(−1+h2) t2 0 0

0 0 0 0



where

f =
3h2 (4 t2−1)−4 t2

(4 t2−1)2 , g =
(4 t2−1)(3h2 (4 t2−1)−4 t2)

4(h2−1) t2−h2 (3.73)

Due to the form of B1,B2 (their components are rational functions of the time
t), system (3.72) can be partially integrated with the help of the following Lie–
Bäcklund transformation

u̇1 =
h2 (3h2 (4 t2−1)+4 t2) tanr(t)

2ht
√

1−4 t2 (3h2 (4 t2−1)−4 t2)
− 4(h2−1) t2−h2

2h
√

1−4 t2
ṙ(t)

(3.74a)

u̇4 =
3h2

√
1−4 t2 tanr(t)

4 t (3h2 (4 t2−1)−4 t2)
+

1
4

√
1−4 t2 ṙ(t) (3.74b)

yielding the single second order ODE for the function r(t)
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r̈ =
(

h
2

√
1−4 t2 + tanr

)
ṙ2

+
(
− 3(4 t2 (3h2−1)−h2)

t (4(3h2−1) t2−3h2)
+

h(3h2 (4 t2−1)−8 t2)
t (4(3h2−1) t2−3h2)

√
1−4 t2

tanr
)

ṙ

+
9h4 (sin2r+h

√
1−4 t2)

2 t2 (4 t2+3h2 (1−4 t2))2 sec2 r− h(3h2(1−4 t2)+8 t2)2

2 t2 (3h2 (1−4 t2)+4 t2)2
√

(1−4 t2)3

(3.75)

This equation contains all the information concerning the unknown part of the
solution space of the Type V IIh vacuum Cosmology (h 6= 0). Unfortunately, it
does not posses any Lie-point symmetries that can be used to reduce its order
and ultimately solve it. However, its form can be substantially simplified through
the use of new dependent and independent variable (ρ,u(ρ)) according to r(s) =
±arcsin u(ρ)√

ρ2−1
,

s =
√

3h2 (ρ−1)
12h2 (ρ−1)+8 thereby obtaining the equation

ü = ± h(1− u̇2)√
(6h2 ρ +4−6h2)(ρ2−u2−1)

⇒ ü2 =
h2 (1− u̇2)2

(6h2 ρ +4−6h2)(ρ2−u2−1)
(3.76)

This equation is a special case of the general equation

ü2 =
(1− u̇2)2

(κ +λ ρ)(ρ2−u2−1)
(3.77)

with the values κ =−6+ 4
h2 , λ = 6. The general solution of (3.77) was first given

in [25] and can be obtained as follows: First we apply the contact transformation:

u(ρ) =− 8
λ

y(ξ )+
4(2ξ −1)

λ
y′(ξ ) ρ =−κ

λ
+

4
λ

y′(ξ )

u̇(ρ) = 2ξ −1 ü(ρ) =
λ

2y′′(ξ )

(3.78)

which reduces it to

ξ
2 (ξ −1)2 y′′2 =−4y′ (ξ y′− y)2 +4y′2 (ξ y′− y)− κ

2
y′2 +

κ2−λ 2

16
y′

(3.79)

This equation is a special form of the equation SD-Ia, appearing in [26], where
a classification of second order second degree ordinary differential equations was
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performed. The general solution of (3.79) is obtained with the help of the sixth
Painlevé transcendent w := PVI(α,β ,γ,δ ) and reads:

y =
ξ 2 (ξ −1)2

4w(w−1)(w−ξ )

(
w′− w(w−1)

ξ (ξ −1)

)2

+
1
8

(1±
√

2α)2 (1−2w)− β

4

(
1− 2ξ

w

)
−γ

4

(
1− 2(ξ −1)

w−1

)
+
(

1
8
− δ

4

) (
1− 2ξ (w−1)

w−ξ

)
(3.80)

where the sixth Painlevé transcendent w := PVI(α,β ,γ,δ ) is defined by the ODE:

w′′ =
1
2

(
1

w−1
+

1
w

+
1

w−ξ

)
w′2−

(
1

ξ −1
+

1
ξ

+
1

w−ξ

)
w′

+
w (w−1) (w−ξ )

ξ 2 (ξ −1)2

(
α +β

ξ

w2 + γ
(ξ −1)

(w−1)2 +δ
ξ (ξ −1)

(w−ξ )2

)
(3.81)

The values of the parameters (α,β ,γ,δ ) of the Painlevé transcendent, can be
obtained from the solution of the following system:

α−β + γ−δ ±
√

2α +1 =−κ

2
(3.82a)

(β + γ)
(
α +δ ±

√
2α
)

= 0 (3.82b)

(γ−β )
(
α−δ ±

√
2α +1

)
+

1
4
(
α−β − γ +δ ±

√
2α
)2

=
κ2−λ 2

16
(3.82c)

1
4

(γ−β )
(
α +δ ±

√
2α
)2

+
1
4

(β + γ)2 (
α−δ ±

√
2α +1

)
= 0

(3.82d)

Plugging in (3.82) the values of κ = −6 + 4
h2 ,λ = 6 for Type V IIh, we have

twenty-four solutions (counting multiplicities) of this system. In order for the
parameters (α,β ,γ,δ ) to be real numbers we end up only with four possibilities

(α,β ,γ,δ ) =

(
4h2−1

2h2 −
√

3− 1
h2 ,

1
2h2 ,− 1

2h2 ,
1−2h2

2h2

)

(α,β ,γ,δ ) =

(
4h2−1

2h2 +

√
3− 1

h2 ,
1

2h2 ,− 1
2h2 ,

1−2h2

2h2

)
, |h| ≥ 1√

3

(3.83a)
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and

(α,β ,γ,δ ) =

(
1
2
,

2−3h2

2h2 +

√
1−3h2

h2 ,
3h2−2

2h2 +

√
1−3h2

h2 ,
1
2

)

(α,β ,γ,δ ) =

(
1
2
,

2−3h2

2h2 −
√

1−3h2

h2 ,
3h2−2

2h2 −
√

1−3h2

h2 ,
1
2

)
, |h|≤ 1√

3

(3.83b)

For the values h = ± 1√
3

the above relations coincide and as we will show these
values of h give rise to a particular solution.

Gathering all the pieces the final form of the general line element describing
Bianchi type V IIh vacuum Cosmology is

d s2 = κ
2

(
− eu1(ξ )

16h2 ξ (ξ −1)
(d ξ )2 +

√
ξ (ξ −1)

×

(√
y′(ξ )− sin(2u4(ξ ))

√
y′(ξ )− 1

h2

)
(σ1)2

+2 cos(2u4(ξ ))

√
ξ (ξ −1)(y′(ξ )− 1

h2 )σ
1

σ
2

+
√

ξ (ξ −1)

(√
y′(ξ )+ sin(2u4(ξ ))

√
y′(ξ )− 1

h2

)
(σ2)2 +eu1(ξ ) (σ3)2

)
(3.84)

where

u′1(ξ ) =

(
−1+h2

)
(−1+2ξ )+2h2 y(ξ )

2h2 (−1+ξ ) ξ
(3.85a)

u′4(ξ ) =
1−2ξ +2h2 y(ξ )

4h (−1+ξ ) ξ (−1+h2 y′(ξ ))
(3.85b)

and y(ξ ) is given by (3.80). Again, this line element contains three essential con-
stants, thus representing the general solution to the EFE’s for the Class B V IIh
case.

Particular solutions

Even though the line element (3.84) represents the general solution of Bianchi
Type V IIh vacuum Cosmology, it does not come into a manageable form due to
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the appearance of the sixth Painlevé transcendent. To partially remedy this incon-
venience, we give, in the following, some closed form line-elements arising from
particular solutions to (3.80) and (3.81).
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• Subcase y(ξ ) = c and |h| ≤ 1√
3

One way to obtain a particular solution from the above line element (3.84) is to
follow the reasoning of Case II, i.e to observe that, although the form of the contact
transformation (3.78) implies that the function y(ξ ) cannot be constant, the line
element (3.84) is free of this restriction; the difficulty with the negative argument
in the square root is circumvented by using the hyperbolic sine/cosine (see (3.86)
below). We can thus check if the assumption y(ξ )≡ c leads to a particular solution.

Skipping the calculational details, we find that for y(ξ ) ≡ c =
√

1−3h2

2h2 all the
Einstein’s field equations are satisfied and we end up with the new line element

d s2 = κ
2 sin(4hτ)

(
f (τ)(d τ)2 + sin(h ln f (τ))(σ1)2− sin(h ln f (τ))(σ2)2

+2 cos(h ln f (τ))σ
1

σ
2 + f (τ)(σ3)2

)
(3.86)

f (τ) = sin−
1

h2 (4hτ) tan−
√

1−3h2

h2 (2hτ), |h| ≤ 1√
3

which even though is physically acceptable it corresponds to Bianchi Type V IIh
symmetry on T3. Since the above line element admits only the three killing fields
(3.3) and no homothetic vector field we can conclude that the constant κ is essen-
tial.

An interesting property of the line element (3.86) is that, for the value h2 =
1
3

,
i.e.,

d s2 = κ
2
(

csc2 4τ√
3
(d τ)2− sin

4τ√
3

sin
(√

3 lnsin
4τ√

3

)
(σ1)2

+ sin
4τ√

3
sin
(√

3 lnsin
4τ√

3

)
(σ2)2

+2 sin
4τ√

3
cos
(√

3 lnsin
4τ√

3

)
σ

1
σ

2 + csc2 4τ√
3
(σ3)2

)
(3.87)

admits a fourth killing field, namely

η = e
−2x√

3 sin
4τ√

3
∂τ −2e

−2x√
3 cos

4τ√
3

∂x (3.88)

The geometry (3.87) was first given by Petrov [27] and it is the only vacuum
solution admitting a simply transitive G4 as its maximal group of motions. This
group of motions has two subgroups G3 of Bianchi Types I and V IIh2= 1

3
acting in

time-like hyper-surfaces.
• Elementary solution of Painlevé transcendent

As it is well known,although for generic values of the parameters (α,β ,γ,δ )
the Painlevé functions are transcendental, there exist a lot of elementary solutions
for special values of these parameters [28; 29]. In the case at hand the following
Lemma is applicable

Lemma The function w satisfying w(ξ )2−2ξ w(ξ )+ξ = 0 is a solution of (3.81)
when the parameters (α,β ,γ,δ ) obey the relations α +δ = 1

2 , β =−γ .
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Proof Direct computation. ut

Using (3.83a), the conditions of the above Lemma are fulfilled for h =± 2√
11

.

Then from the first of(3.83a) we have (α,β ,γ,δ ) = ( 1
8 , 11

8 ,− 11
8 , 3

8 ). Choosing now
the parametrization

w(ξ ) =
1

4h2 e4hτ , ξ = cosh2(2hτ) (3.89)

we can compute y(τ) from (3.80) (with the minus sign) and u1(τ),u4(τ) from
(3.85), thereby arriving at the following line element

d s2 = κ
2
(
−e

2τ

h sinh−
3
8 (4hτ)(d τ)2+e−2hτ sinh

1
2 (4hτ)(e4hτ +sin(4τ))(σ1)2

+2e−2hτ cos(4τ)σ
1

σ
2 + e−2hτ sinh

1
2 (4hτ)(e4hτ − sin(4τ))(σ2)2

+e
2τ

h sinh−
3
8 (4hτ)(σ3)2

)
(3.90)

This geometry was first given by Lukash [30] and, like (3.86), admits only the
three killing fields (3.3) and no homothetic vector field. Therefore, the constant κ

is essential.

4 Discussion

In [10; 25] a systematic approach for investigating the solution space of Bianchi
type cosmologies was developed by the use of automorphisms and the theory of
symmetries of ordinary, coupled differential equations. The result was the com-
prehensive recovery of all known closed form Type III solutions, as well as the
presentation of the general solution in terms of the sixth Painlevé transcendent.
In the present work we have applied the method to the case of Bianchi Type V IIh
family of vacuum geometries. Again, the general solution is implicitly given in
terms of the third (3.52) Painlevé transcendent or the sixth Painlevé transcendent
(3.84) for the Class A (h = 0)) and the Class B (h 6= 0) case respectively. One
could expect on general grounds (since Bianchi V II can be obtained via a reduc-
tion of the Einstein field equations with respect to an Abelian G2 and therefore
has an Ernst-like formalism ) to find a Painlevé function solution when there is a
further reduction with an extra Killing vector (see note 7 on p. 109 of [31]). But
finding the solutions is far from simple, and our method guarantees that the entire
solution space is swept.

Through the investigation of either Particular or Elementary solutions of the
Painlevé transcendents we are able to concisely recover, in a systematic fashion, all
six known solutions (3.36), (3.56), (3.62), (3.65), (3.87), (3.90). All these metrics
have originally been obtained in a time scale of 20 years or so, by prior assumption
of symmetry and/or other physical requirements; e.g., Petrov’ s solution [27] was
derived with the use of automorphisms seeking G4 homogeneous metrics while
Lukash’ s solution [30] was derived based on a physical interpretation of Type
V IIh cosmological models, in terms of circularly polarized gravitational waves of
arbitrary wavelength in a space having constant negative curvature. Their reacqui-
sition single-handed, proves, we believe, the value of our method. A very impor-
tant result is, of course, the discovery of the new family of solutions (3.86) for the
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Table 1 Bianchi Type V II0 metrics

Line element Isometry type Comments
d s2 =−(d t)2 +(σ1)2 +(σ2)2 + τ2 (σ3)2 G10 on V4 Flat space

d s2 =−τ (d τ)2 + τ2 (σ1)2 + τ2 (σ2)2 +
1
τ

(σ3)2 G4 on V3, τ > 0 LRS
G4 on T3, τ < 0

d s2 = κ2

(
eτ4

τ (d τ)2− τ2 (σ1)2 G3 on T3, τ > 0 Non-homothetic

+τ2 (σ2)2 +
eτ4

τ
(σ3)2

)

d s2 = κ2

(
− eu1(ξ )

16ξ
(d ξ )2 +

√∣∣ξ w(ξ )
∣∣(σ1)2 G3 on V3 General solution

+

√∣∣∣ ξ

w(ξ )

∣∣∣(σ2)2 + eu1(ξ ) (σ3)2

)

range of the group parameter h2 ≤ 1
3 . Besides of the obvious value of a new family

of solutions to the EFE’s it also points to the unexpected existence of a sector with
particular behavior for this Bianchi Type. It is known that Type V Ih model has
an exceptional sector corresponding to the value h2 = 1

9 but, for Type V IIh such
a behavior is first observed.It is also very interesting to point out that this family
of solutions is related, through a complex transformation of t,x to the V Ih solu-
tion of Ellis and MacCallum ((13.57) 0f [12]). The fact may be taken as a further
strengthening evidence of the widespread belief that the two Types are very much
similar. In fact, it seems highly probable that all the V I0/V Ih results, except those
for class Bbii of [11], can be similarly related to the solutions here presented. We
hope that the application of the method to Type V Ih will bear analogous fruits and
show how far this similarity can reach.

As for Types V III, IX , the recent discovery that some particular configurations
are described by the third Painlevé transcendent [32] strengthens our belief that
their solution space will also be attained by our method. We plan to return to these
issues in the immediate future. Finally, we deem it useful to end this discussion
by briefly describing the investigated solution space through the following Tables
1 and 2:

Where the 1-forms σα are given by

σ
1 = sinxd y+ cosxd z, σ

2 = cosxd y− sinxd z, σ
3 =

1
2

d x (4.1)

and u1(ξ ) is defined by equation (3.48b)

u′1(ξ ) =
ξ w′(ξ )2

4w(ξ )2 +
1
4

w(ξ )+
1

4w(ξ )
− 1

4ξ
− 1

2

with w(ξ ) standing for the third Painlevé transcendent w := PIII(− 1
2 , 1

2 ,0,0),
defined by (3.46).
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Where the 1-forms σα are given by

σ
1 = ehx (sinxd y+ cosxd z) , σ

2 = ehx (cosxd y− sinxd z) , σ
3 =

1
2

d x

(4.2)

the function f (τ) stands for

f (τ) = sin−
1

h2 (4hτ) tan−
√

1−3h2

h2 (2hτ) (4.3)

and the functions u1(ξ ), u4(ξ ) are defined by (3.85)

u′1(ξ ) =

(
−1+h2

)
(−1+2ξ )+2h2 y(ξ )

2h2 (−1+ξ ) ξ
(4.4a)

u′4(ξ ) =
1−2ξ +2h2 y(ξ )

4h (−1+ξ ) ξ (−1+h2 y′(ξ ))
(4.4b)

with y(ξ ) defined by (3.80).
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