
ABSTRACT

U(1) × U(1) GAUGE THEORY
APPLIED TO MAGNETIC

MONOPOLES

In this paper we build up a U(1) (i.e. one dimensional unitary) gauge

theory beginning with a standard complex scalar field Lagrangian, then by

introducing a local gauge transformation and subsequently redefining the derivative,

we will be able to obtain Maxwell’s equations with the Noether current. This will

show that electromagnetic fields arise in this form as the result of the invariance of

the complex scalar field Lagrangian under local gauge transformations. From there

we will extend to a U(1) × U(1) theory by introducing a second vector potential

which will result in Maxwell’s equations allowing magnetic charge and a Lagrangian

with an extra massless photon inconsistent with the Standard Model. Using the

Higgs’ mechanism this photon will gain mass and represent a new “magnetic

photon.” We will then extend the theory by introducing a second scalar potential

which will result in conditions on magnetic and electric charge.
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NOTATION

The notation used in the main section of this paper will follow that of Lewis

Ryder’ Quantum Field Theory, 2nd Edition. There are sections where the units

are those used in J.D Jackson’s Classical Electrodynamics 2nd Edition. Therefore

the reader might notice missing or erroneous units of c and h̄ from one chapter to

the next, but this is of no great concern since they are simply constants. The 4-vector

notation used in later chapters is standard Einstein notation.



I dedicate this thesis to my father, who I hope will eventually read it, and my mother

for her support



CHAPTER 1: INTRODUCTION

The magnetic monopole has been a sought after particle for well over a

century and a half. And while it has not been found, outside of a few monopole-like

simulations, the concept has led to new and interesting discoveries in physics.

Despite having not been found, physicists have constructed a handful of physical

descriptions of magnetic monopole particles including, but not limited to, the

structures that will be discussed in this paper. As a precursor to discussions of

magnetic monopoles, one must first address the fact that the Maxwell equations, as

we well know, do not allow for magnetic charge. The magnetic field, written as the

curl of a vector potential, cannot have divergence due to the mathematical caveat

that the divergence of the curl of a well behaved function is simply zero. This leads

to Maxwell equations that are strikingly symmetric with the exception that the

divergence of the electric field results in a charge density, while the divergence of the

magnetic field gives zero. Were it not for this lack of divergence in the magnetic

field, the theory would be symmetric with the interchange of the electric and

magnetic fields. That is, a duality transformation or a rotation through some

arbitrary angle of the electric and magnetic fields could be performed and the

Maxwell equations would still be satisfied. Moreover, observed particles would have

the same ratio of magnetic charge to electric charge. This lack of magnetic charge

density in Maxwell’s equations was not enough to discourage physicists from

throwing out the concept of a magnetic monopole.

Maxwell chose not to include magnetic charge in his equations due to the

fact that experiments at the time showed no profit in considering magnetic

monopoles. While this may have been the fruitful convention, notable physicists

such as Pierre Curie pointed out that monopoles were not strictly eliminated by
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Maxwell’s choice. The first suggestive monopole theory came from Paul Dirac [1] in

the early 1930s. Dirac envisioned an infinitely long and infinitely thin, solenoid-like

construction which would produce a magnetic monopole-like field at its end.

Choosing not so well behaved vector potentials, one could construct a magnetic field

that had a non-zero divergence, and as long as one posited that the resulting

nonphysical singularity could be “hidden” then the construction would appear

physical. Furthermore, the construction led to quantized electric charge which

excited many in the field since experiments at the time suggested electric charge

came in integer values. Today we observe quantized electric charge from quarks and

non-Abelian symmetry groups [2] rather than from the existence of magnetic

monopoles and the Dirac quantization condition.

In 1974, Gerard t’Hooft and Alexander Polyakov [3] found that when the

gauge symmetry is extended from the Abelian gauge group U(1) to a non-Abelian

group and symmetry breaking is performed the field equations produce a topological

magnetic monopole term [2]. Interestingly, they found the Dirac condition

multiplied by a factor of two. In addition, new research in Grand Unified theories

suggest the presence of t’Hooft-Polyakov monopoles, although such monopoles have

mass orders of magnitude larger than anything the Large Hadron Collider could spit

out [4]. While t’Hooft-Polyakov monopoles may be impractical to consider in a

collider event, it is still suggested that elementary magnetic monopole-like particles

could be found in collisions and experiments such as ATLAS and MoEDAL at the

LHC continue to look for such specimens [4].

In this paper, we would like to formalize a new construction of the magnetic

monopole. Standard unitary U(1) gauge theory introduces a single vector potential,

usually denoted
−→
A , which is a necessity to keep the Lagrangian invariant under

local gauge transformations. Classically we understand the vector potential as the
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result of ∇ ·
−→
B = 0 which means that the field B must be the curl of some vector

potential
−→
A such that

−→
B = ∇×

−→
A . Beginning with Maxwell’s equations and

allowing magnetic charge density, we will show that Maxwell’s equations can be

uniquely and efficiently described with the addition of a second vector potential.

This construction will allow us to treat magnetic and electric charge as gauge

symmetries. We will also show that such a construction leads to a second massless

gauge boson which is unwanted. This unwanted gauge boson will be resolved into a

new mass carrying photon-like particle through the introduction of the Higgs’

mechanism. The resulting particle will be what is labeled as a “magnetic photon”

which carries mass and arises from the introduction of magnetic charge [5].



CHAPTER 2: EARLY MONOPOLE FORMULATIONS

The Dirac Monopole

For 150+ years, physicists have questioned whether or not a magnetic

equivalent of the electron exists. This idea of a particle of charge that is not electric

in nature but rather something consistent with an isolated north or south magnetic

pole has yet to be discovered. The idea of a magnetic monopole is generally first

credited to Pierre Curie from his 1894 paper, despite this publication being long

after the Maxwell equations (∼1860) were formally written and posited that

magnetic charge could not exist as ∇ ·
−→
B = 0.

It is worth noting here that this formulation for Maxwell’s equations

dismisses the possibility of a magnetic monopole as the result of pure math. If the

magnetic field,
−→
B is the curl of a vector potential,

−→
A such that

−→
B = ∇×

−→
A , then

we must have that

∇ ·
−→
B = ∇ ·

(
∇×

−→
A
)

= 0

since the divergence of the curl of a vector must be zero. Notice though that this

“proof” makes two subtle requirements; the vector potential must be

twice-differentiable, and it also must be “nice” in the sense that it doesn’t have any

singularities. If one were to consider a vector potential that is not “nice” then it

might be that ∇ ·
−→
B 6= 0 and there would be a monopole-like term.

One such vector potential that has singularities and can generate a radial

magnetic field term is as follows;

−→
A = g

1− cos θ

r sin θ
φ̂ . (2.1)

If one considers an angle in θ such that θ → π, then the denominator goes to zero

and the vector potential blows up to infinity. Furthermore, if we calculate the curl
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of the vector potential we have
−→
B = ∇×

−→
A =

1

r sin θ

[
∂

∂θ
(Aφ sin θ)− ∂Aθ

∂φ

]
r̂ +

1

r

[
1

sin θ

∂Ar
∂φ
− ∂

∂r
(rAφ)

]
θ̂+

1

r

[
∂

∂r
(rAθ)−

∂Ar
∂θ

]
φ̂ .

All terms above compute to zero except for φ components,

1

r sin θ

[
∂

∂θ
(Aφ sin θ)

]
r̂ +

1

r

[
− ∂

∂r
(rAφ)

]
θ̂ .

If we then plug in the vector potential and canceling terms we will have,

g

r sin θ

[
∂

∂θ

(
1− cos θ

r

)]
r̂ − g

r

[
∂

∂r

(
1− cos θ

sin θ

)]
θ̂ .

Notice that the term containing the partial derivative with respect to r has no r

dependence; therefore, this term goes to zero leaving,

−→
B =

g

r2 sin θ

[
− ∂

∂θ
cos θ

]
r̂ =

g

r2
r̂ . (2.2)

As we anticipated we are left with a magnetic field term that is radial in r̂ direction

and has a magnetic charge coefficient, g. The singularity of the vector potential

(2.1) extends along the z axis to infinity and is commonly known as the “Dirac

String.” Magnetic monopole vector potentials of this kind require a singularity and

as a result there will be a characteristic “string” that travels out of the particle to

infinity. Often this string is envisioned as an infinitely long and infinitely thin

solenoid with some current value. A singularity of this sort is not very physical and

hinders the prospect of a magnetic monopole. In standard solenoid examples, the

produced field is dipole in nature but if one considers the theoretical nonphysical

construction then the magnetic field that would be observed at one end would be



6

that of a monopole. As we will see, one can force conditions that make the

un-physical string “disappear.” The process will be to consider Aharonov-Bohm

effects and force conditions that make the string invisible to an incident particle.

Let us extend this example further by rewriting the magnetic field equation from

(2.2) as,
−→
B =

g

r2
r̂ =

g

r3
−→r = −g∇

(
1

r

)
.

Taking the divergence of this field we obtain

∇ ·
−→
B = 4πδ3(r)

Calculating the flux of the magnetic field we obtain

Φ =

∫ ∫ −→
B · n̂dS = B

∫ ∫
r2 sin θdθdφ = 4πr2B = 4πg (2.3)

Let us now take a free particle with electric charge, e, and place it in the monopole

field. The wave function for a free particle is

ψ = |ψ|e
i
h̄(−→p ·−→r −Et)

When the free particle is subjected to an electromagnetic field it undergoes a phase

change from the potential through the Aharonov-Bohm effect. The Aharonov-Bohm

effect describes how the wave function for a free particle will pick up a phase

difference due to the potential of the field. That is, −→p → −→p −
(
e
c

)−→
A , giving us,

ψ → ψe−
ie
h̄c

−→
A ·−→r

therefore if the phase is written as α, the change is α→ α− e
h̄c

−→
A · −→r [2]. Now if one

computes the total phase change along a closed path with fixed radial direction and

θ angular component but allow φ angle to rotate through 2π radians then one finds
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that

δα =
e

h̄c

∮ −→
A · dl

An application of Stokes’ Theorem allows us to write this as

δα =
e

h̄c

∫ (
∇×

−→
A
)
· dS =

e

h̄c

∫ −→
B · dS

One notices that the change in phase is just constant terms times the magnetic flux

we calculated in (2.3). That is, δα = 4πe
h̄c
g. The free particle we introduced picks up

a phase change that depends on the vector potential which gave us our magnetic

monopole term. The vector potential considered in (2.1) had singularities which will

make the wave function vanish on the axis of the singularity making the phase

indeterminate [2]. We must require that the wave function remain single valued so

we must require that the change in phase δα = 2πn. Therefore, from our phase

change calculation we end with the famous Dirac quantization condition,

2πn = 4πe
h̄c
g or

eg =
1

2
nh̄c . (2.4)

This condition suggests that both magnetic charge and electric charge are

quantized, assuming magnetic monopoles exist. Furthermore, the condition suggests

that magnetic charge is a massive quantity in comparison to electric charge. The

electric charge strength is proportional to the square root of the fine structure

constant, αe the dimensionless fine structure constant which is defined as

αe = e2

h̄c
≈ 1

137
. The fine structure constant tells one about the strength of the

electric interaction. Since αe << 1 this indicates that the electric interaction is

small. One can define a magnetic fine structure constant as αm = g2

h̄c
. Due to the

Dirac quantization condition of (2.4) one finds that (for n = 1 in equation 2.4)
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αm ≈ 137
4

. That is, the strength of the magnetic interaction of magnetic charges are

about 104 times stronger than their electric charge cousins.

The Wu-Yang Monopole

The method of finding the Dirac quantization condition for magnetic and

electric charges is not unique. The magnetic monopole that will be discussed is a

construction by Tai Wu and Chen Yang in 1975 [6], and while the construction is

physically different, we will find that the condition found in the previous section is

preserved. In fact, one might consider this formulation more physical than the

standard Dirac string formulation since the singularity in the vector potential is

stripped away. As the reader will see, using two vector potentials similar to the

Dirac string example, one can hide the nonphysical singular points of the potentials.

From the previous section, the Dirac monopole construction considered a vector

potential of the form,

−→
A1 = g

1− cos θ

r sin θ
φ̂ (2.5)

This vector potential leads to a singularity along the r = −z axial direction. We can

also consider a mirrored potential of the form

−→
A2 = −g1 + cos θ

r sin θ
φ̂ (2.6)

where now the singular point lies along the r = +z direction. Using these two

potentials, we would like to stitch together a vector potential that is free of the

singularities on the ±z axis. More precisely, we would like to consider two

overlapping regions dividing the space around the monopole in which the vector

potential is defined by the two different potentials given above. We will have a

northern hemisphere where the vector potential is defined by (2.5) and a southern
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hemisphere defined by the potential (2.6). In the regions of overlap the two vector

potentials will have different values. For this construction to be physical, our total

vector potential needs to be single valued. The trick then is to devise a way to write

one vector potential as a gauge transformation of the other [2].

If we consider just the components of these vector potentials,

A1
φ =

g

r sin θ
− g cos θ

r sin θ
and A2

φ = − g

r sin θ
− g cos θ

r sin θ

then one notices that we can write the vector potentials as,

A2
φ = A1

φ −
2g

r sin θ
φ̂ . (2.7)

If computed, both of these potentials would give us the same magnetic field

equation. If we were to take the curl of both sides of equation (2.7) then we would

have the curl of the difference equal to zero. In fact, we force this condition by

requiring that the difference between the two vector potentials be curl-less. That is,

the factor − 2g
r sin θ

must be the gradient of some other variable, call it α. Then, our

gradient term is ∇α. If we turn to look at spherical coordinates, we notice that the

gradient of the azimuthal angle is,

∇φ =

[
r̂
∂

∂r
+

1

r
θ̂
∂

∂θ
+

1

r sin θ
φ̂
∂

∂φ

]
φ =

1

r sin θ
φ̂

therefore we can write the difference between the two potentials as

2g

r sin θ
φ̂ = 2g∇φ (2.8)

Now consider a gauge transformation of the form, S = e2igeφ. We can use this gauge

to re-write (2.8) as follows,

− i
e
S∇φS

−1 = − i
e
e2igeφ

[
1

r sin θ

∂

∂φ
e−2igeφ

]
= − i

e
e2igeφ

[
−2ige

r sin θ
e−2igeφ

]
φ̂ =
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− 2g

r sin θ
φ̂

This allows us to write the transformation from one vector potential to the other as,

A2
φ = A1

φ − 2g∇φ = A1
φ −

i

e
S∇φS

−1 . (2.9)

We now have have found our full gauge transformation. The requirement that our

vector potentials be single-valued means that our gauge transformation function, S,

must also be single-valued. Therefore, we require that as φ→ φ+ 2π, we obtain the

same phase. If we allow φ→ φ+ 2π, then the phase becomes 2igeφ+ 4πige. For

single valued-ness we must then have 4πige = 2πn. This equates to,

ge =
1

2
n (2.10)

which we recognize (pending units of h̄ and c) to be the Dirac quantization

condition (2.4) from the previous section. Indeed, the quantization condition is not

unique to the physical construction of the magnetic monopole.

Furthermore, we can show that this construction does indeed give us a

monopole by calculating the total magnetic flux. The flux is given by,

Φ =

∫
Fµνdx

µν =

∮ (
∇×

−→
A
)
· d
−→
S .

If we split the integral into two regions, R1 and R2 defined by the two vector

potentials with the union at θ = π/2, we can write∫
R1

(
∇×

−→
A1

)
· dS +

∫
R2

(
∇×

−→
A2

)
· d
−→
S .

We then apply Stokes’ theorem, noting the orientation of the boundary at θ = π/2,∮
θ=π/2

−→
A1 · d

−→
l1 −

∮
θ=π/2

−→
A2 · d

−→
l2 .
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Now using the gauge transformation,∮
θ=π/2

−→
A1 · d

−→
l1 −

∮
θ=π/2

[
−→
A1 −

i

e
S∇φS

−1φ̂

]
· d
−→
l2

we can re-write the last term in the second integral as a full derivative of the

natural log of the inverse of S giving,

Φ =
i

e

∮
d

dφ

(
lnS−1

)
dφ =

i

e

∮
(−2ige)dφ = 4πg

which we note is consistent with the flux calculated in the Dirac string monopole

case (2.3). Thus we have obtained both the original Dirac condition and magnetic

flux of the Dirac string via the Wu-Yang monopole construction. One will be quick

to point out that the conditions were obtained in similar but different fashions. The

Dirac string formulation required single valued-ness of the wave equation for an

incident electron which would be effected by passing near the infinitesimal solenoid

due to the Aharonov-Bohm effect. The Wu-Yang monopole required single

valued-ness of the gauge factor in the gauge transformation relating the two vector

potentials with opposing singularities. This condition again forced the Dirac

condition. Amazingly, two different monopole defining structures have led to the

same condition between electric and magnetic charge.

At this point in time we would like to introduce a new formulation for the

magnetic monopole. Unlike the Dirac string and the Wu-Yang monopole cases, the

formulation we will discuss in a later section will not give an explicit vector

potential. We still require an non-zero divergence of the magnetic field of course.

With this assumption in Maxwell’s equations, we will introduce a second unspecified

vector potential and do a Lagrangian formulation in the realm of quantum field

theory. Before we jump into that, we must first introduce some basic mathematical

methods in the context of field theory. Then we will construct a Lagrangian that

contains Maxwell’s equations with a non-zero divergence of the magnetic field.



CHAPTER 3: GAUGE SYMMETRY

Complex Scalar Fields with a Global Gauge Transformation

We begin our discussion with a Lagrangian for a complex scalar field

containing a kinetic energy and a potential term,

L = ∂µφ∂
µφ∗ −m2φ∗φ . (3.1)

We consider a complex scalar field because we want to consider symmetries other

than those under translation, rotation or Lorentz transformations. Such

transformations can be achieved with simply a single real scalar field Lagrangian [2].

Using this complex scalar field Lagrangian, we hope that once a local gauge

transformation is performed, we can show implicitly that the electromagnetic fields

arise from the gauge invariance of the scalar fields. To begin, let us first show that

the Lagrangian in (3.1) gives us the appropriate equations of motion describing the

two real scalar fields. We can write the complex scalar fields in terms of two real

scalar fields as

φ =
1√
2

[φ1 + iφ2] (3.2)

and

φ∗ =
1√
2

[φ1 − iφ2] . (3.3)

Using metric terms, we can rewrite the complex scalar field Lagrangian as,

L = gµν∂µφ∂νφ
∗ −m2φ∗φ
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and then plug in the fields defined by (3.2) and (3.3). This expansion will give us

the Lagrangian in terms of two real scalar fields as shown below;

L =
1

2
gµν∂µ (φ1 + iφ2) ∂ν (φ1 − iφ2)−m2φ∗φ =

1

2
gµν (∂µφ1 + i∂µφ2) (∂νφ1 − i∂νφ2)−m2φ∗φ =

1

2
gµν [∂µφ1∂νφ1 − i∂µφ1∂νφ2 + i∂µφ2∂νφ1 + ∂µφ2∂νφ2]− m2

2
φ∗φ

With inspection of the final line, one notices that the two terms with imaginary

coefficients are identical and cancel leaving a Lagrangian with two scalar fields;

1

2
gµν [∂µφ1∂νφ1 + ∂µφ2∂νφ2]− m2

2

[
φ2

1 + φ2
2

]
(3.4)

The Euler-Lagrange equations, in 4-vector notation, applied to this Lagrangian are,

∂L

∂λφ1

− ∂λ
∂L

∂(∂λφ1)
= 0 (3.5)

and

∂L

∂λφ2

− ∂λ
∂L

∂(∂λφ2)
= 0 (3.6)

These two Euler-Lagrange equations will give us relationships for the two real scalar

fields individually. Direct computation shows us that the equations of motion φ1

and φ2 respectively are

m2φ2 + ∂λ

[
1

2
gµνδλµ∂νφ2 +

1

2
gµν∂µφ2δ

λ
ν

]
=

m2φ2 + ∂λ∂
λφ2 = 0 (3.7)

and similarly,
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m2φ1 + ∂λ∂
λφ1 = 0 . (3.8)

We immediately recognize that these are just the Klein-Gordon equations for φ1 and

φ2 which describe the two spinless scalar fields. We can reobtain expressions for φ

and φ∗ with the relations, 1√
2

[(3.2) + i(3.3)] and 1√
2

[(3.2)− i(3.3)]. Using these we

obtain [
∂λ∂

λ +m2
]
φ = 0 and

[
∂λ∂

λ +m2
]
φ∗ = 0

We could have alternatively just performed the derivatives in terms of φ and φ∗ and

arrived here without using the real parts but it is nice to see the de-construction

into real components. What we have achieved here is to show that this complex

scalar Lagrangian formulation gives equations of motion for two complex scalar

fields. Note that these are fields and not particles. In fact, the Klein-Gordon

equations, unlike the Schrodinger equation, allow a probability density to take on

negative values. Furthermore, the Klein-Gordon equations allow for negative energy

terms which seems problematic. The quantization of the scalar fields resolves these

issues [2].

To lead us into the next section, let us now consider a global gauge

transformation. The global gauge transformation has us multiply the scalar fields by

an exponential with some phase written as,

φ→ e−iΛφ and φ∗ → eiΛφ∗ (3.9)

where ΛεR. It is simple enough to show that the equations are unchanged by such a

transformation. Direct application gives,

L = gµν∂µ
[
e−iΛφ

]
∂ν
[
eiΛφ∗

]
−m2e−iΛeiΛφ∗φ .



15

Since Λ for a global gauge transformation is a scalar, the exponentials are

unaffected by the derivatives and cancel. We immediately see that we are left with

the original Lagrangian. This transformation is a unitary transformation of

dimension one or U(1) and is isomorphic to the rotation group S0(2) [2]. We can

see this parallel to the rotation group by writing the transformation of the fields in

terms of its real expansion

φ′ = φ′1 + iφ′2 → e−iΛφ = e−iΛ [φ1 + iφ2]

φ′∗ = φ′1 − iφ′2 → eiΛφ = eiΛ [φ1 − iφ2]

or

φ′1 + iφ′2 → (cos Λ− i sin Λ) [φ1 + iφ2] (3.10)

φ′1 − iφ′2 → (cos Λ + i sin Λ) [φ1 − iφ2] . (3.11)

The addition of (3.10) and (3.11) gives

φ′1 = cos Λφ1 + sin Λφ2

while the subtraction of (3.10) and (3.11) gives

φ′2 = − sin Λφ1 + cos Λφ2 .

Writing these relationships in vector and matrix notation gives,

 φ′1

φ′2

 =

 cos Λ sin Λ

− sin Λ cos Λ

 φ1

φ2

 (3.12)

which is essentially the rotation group S0(2). Arbitrary constant valued Λ allows the

matrix in (3.12) to act as any rotation in the space defined by the two scalar fields.
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The global gauge transformation above is not sufficient. While we see that a

complex scalar Lagrangian is invariant under a global gauge transformation, we

would like to consider gauge parameters that are not constant in space-time. We

want to concern ourselves now with a gauge transformation in which Λ is explicitly

defined as a function of position in space-time. In the next section, since our phase

term will have space-time components, we will write it as Λ(xµ).

The Local Gauge Transformation

When we considered the global gauge transformation we were restricted to

performing the rotation in φ-space at all points in space at the same time. We want

to consider a transformation that is space-time dependent. Restrictions from

requiring local gauge symmetry has, as is seen in Yang-Mills theory, led to

fundamental descriptions of particle interactions. Such things as gauge bosons and

their interactions are described by local gauge symmetry. We must then consider a

gauge transformation with a space-time dependent phase. As we will see, this spoils

the symmetry we found in the global gauge transformation case. For the Lagrangian

to remain invariant we ultimately redefine our derivative and introduce a vector

potential. To start, consider the transformation,

φ→ e−iΛ(xµ)φ φ∗ → eiΛ(xµ)φ∗

and its derivatives

∂µφ→ ∂µ
[
e−iΛφ

]
= −ie−iΛφ∂µΛ + e−iΛ∂µφ

∂νφ
∗ → ieiΛφ∗∂νΛ + eiΛ∂νφ

∗

Applying this transformation to the Lagrangian,

L→ gµν
[
−ie−iΛφ∂µΛ + e−iΛ∂µφ

] [
ieiΛφ∗∂νΛ + eiΛ∂νφ

∗]−m2φφ∗ (3.13)
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where as in the global case, the mass term has no change since the exponentials

simply cancel. If we then multiply out the first term in (3.13) and ignore for now

the pieces that were in the original Lagrangian, (gµν∂µφ∂νφ
∗), we are left with only

the change in the Lagrangian. Labelling this difference, δL, we find that

δL = gµν [φφ∗∂µΛ∂νΛ− iφ∂νφ∗∂µΛ + iφ∗∂µφ∂νΛ] =

φφ∗∂µΛ∂µΛ + i (φ∗∂µφ∂
µΛ− φ∂µφ∗∂µΛ) . (3.14)

Looking at the term in (3.14) with the imaginary coefficient, we can raise and lower

the indices over the second term leaving the Noether Current,

Jµ = i (φ∗∂µφ− φ∂µφ∗). Specifically, we can write,

δL = φφ∗∂µΛ∂µΛ + i∂µΛ (φ∗∂µφ− φ∂µφ∗) = φφ∗∂µΛ∂µΛ + (∂µΛ) Jµ . (3.15)

Due to this extra term, our Lagrangian is not invariant under our global

transformation of the fields. We are forced to introduce a new 4-vector term coupled

to the 4-current to restore invariance. We also require that our new 4-vector term,

Aµ, transforms as Aµ → Aµ + 1
e
∂µΛ.[2] We will first try adding a Lagrangian term

L1 = −eJµAµ, where e is the coupling strength. It will also become the charge of

the scalar field, φ. Under the transformation of both the scalar fields and the

4-vector, this term becomes

L1 → −ie
[
eiΛφ∗

(
−ie−iΛφ∂µΛ + e−iΛ∂µφ

)
−e−iΛφ

(
ieiΛφ∗∂µΛ + eiΛ∂µφ∗

) ] [
Aµ +

1

e
∂µΛ

]
=

−ie
[
− iφ∗φ∂µΛ + φ∗∂µφ− iφφ∗∂µΛ− φ∂µφ∗

] [
Aµ +

1

e
∂µΛ

]
.

Simplifying this, we have

L1 → −eJµAµ − Jµ∂µΛ− 2eφ∗φ∂µΛAµ − 2φ∗φ∂µΛ∂µΛ .
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Once again if we ignore the terms originally in L1, we have the leftovers δL1 as,

δL1 = −Jµ∂µΛ− 2eφ∗φ∂µΛAµ − 2φ∗φ∂µΛ∂µΛ . (3.16)

There is now some cancellation between (3.15) and (3.16), but we are still left with

extra terms. We must consider a third additional term to our Lagrangian, squared

in the scalar field as well as the 4-vector term. This new term is L2 = e2AµA
µφφ∗

and transforms as,

L2 → e2

[
Aµ +

1

e
∂µΛ

] [
Aµ +

1

e
∂µΛ

]
φφ∗

(where I have left out the exponentials from the transformed scalar field since they

trivially cancel). Multiplied out we get,

L2 →
[
e2AµA

µ + eAµ∂
µΛ + e∂µΛAµ + ∂µΛ∂µΛ

]
φφ∗

Notice that the two terms with a vector potential and its derivative are equivalent

upon raising and lowering of indices. The leftover terms from the transformation

can be written then as,

δL2 = 2eAµ∂
µΛφφ∗ + φφ∗∂µΛ∂µΛ . (3.17)

We now have a complete cancellation of leftover terms. The addition of

(3.15),(3.16), and (3.17) gives,

δL+ δL2 + δL2 =

φφ∗∂µΛ∂µΛ + (∂µΛ) Jµ − Jµ∂µΛ− 2eφ∗φ∂µΛAµ−

2φ∗φ∂µΛ∂µΛ + 2eAµ∂
µΛφφ∗ + φφ∗∂µΛ∂µΛ = 0

If one now adds Ltot = L+ L1 + L2, the new total Lagrangian reads,
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Ltot = ∂µφ∂
µφ∗ −m2φ∗φ− eJµAµ + e2AµA

µφφ∗ . (3.18)

Once again we have a Lagrangian that is invariant under gauge transformation.

Moreover, this Lagrangian is invariant under a local gauge transformation. To

restore invariance we had to introduce a vector field potential term coupled to the

current as well as a Lagrangian term that was squared in the coupling constant,

vector field and scalar field terms. While invariance has been re-established, this is

not the end of the story. Since we have introduced a vector field, we have to assume

it will contribute its own derivative terms to the Lagrangian [2]. The derivative

terms we add will also have to be invariant under the local gauge transformation

otherwise we will have gained nothing.

Local Gauge Invariance Implicitly Introduces Electromagnetic Fields

We have formulated a total Lagrangian that is invariant under local gauge

transformations with primarily the introduction of a 4-vector potential term.

Presumably, this term will also contribute its derivatives to the Lagrangian and the

Euler-Lagrange equations. We know of such a derivative term from relativistic

electrodynamics. The Field Strength tensor, Fµν contains the derivatives of a vector

field and futhermore, this term is invariant under the transformation of the vector

field due to the local gauge transformation. Direct computation shows,

Fµν = ∂µAν − ∂µAµ

Fµν → ∂µ

[
Aν +

1

e
∂νΛ

]
− ∂ν

[
Aµ +

1

e
∂µΛ

]
=

∂µAν +
1

e
∂µ∂νΛ− ∂νAµ −

1

e
∂ν∂µΛ
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where reordering the derivatives, we have a cancellation of the new terms and are

thus left with the same Fµν . The standard Lagrangian term for electromagnetic

fields is L3 = −1
4
F µνFµν . If Fµν is invariant, so will be L3 and we add this to our

full Lagrangian,

L = ∂µφ∂
µφ∗ −m2φ∗φ− eJµAµ + e2AµA

µφφ∗ − 1

4
F µνFµν . (3.19)

This Lagrangian can be made more succinct if we describe a covariant derivative,

Dµφ. This derivative is analogous to the covariant derivative in relativity,

∇µVν = ∂µVν − ΓρµνVρ, which uses the Christoffel symbols to describe the derivatives

of the basis vectors through a transport over a non-Euclidean surface. As a parallel,

our covariant derivative will have additional terms which can be viewed as a

consequence of transport through the vector field Aµ that has a local gauge

transformation. Thus we have Dµφ = (∂µ + ieAµ)φ and the conjugate,

(Dµφ)∗ = (∂µ − ieAµ)φ∗. We do not have to do any work to retrieve these terms

from the Lagrangian as they are already imbedded. Reordering the Lagrangian in

(3.19) and looking strictly at the first two terms,

L = ∂µφ∂
µφ∗ + e2AµA

µφφ∗ −m2φ∗φ− eJµAµ −
1

4
F µνFµν

we have exactly,

L = (Dµφ) (Dµφ)∗ −m2φ∗φ− eJµAµ −
1

4
F µνFµν (3.20)

We can further show that these derivatives are in fact the covariant derivative by

transformation,

Dµφ→
[
∂µ + ie

(
Aµ +

1

e
∂µΛ

)]
e−iΛφ =

−ie−iΛφ∂µΛ + e−iΛ (∂µφ+ ieAµφ) + ie−iΛφ∂µΛ = e−iΛ (∂µ + ieAµ)φ
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and so

Dµφ→ e−iΛDµφ .

Similar computation gives

(Dµφ)∗ → eiΛDµφ
∗ .

We see that the derivative does transform covariantly under the local gauge

transformation. Furthermore, we can now associate the scalar fields, φ and φ∗ with

the charges e and −e respectively.

So far we have only introduced a 4-vector potential and the field strength

tensor terms, but we have not actually shown how this implies the electromagnetic

field per se. Let us then show directly that the Maxwell equations arise from this

Lagrangian by taking the partials with respect to Aµ in the Euler-Lagrange

equations,

∂L

∂Aµ
− ∂η

[
∂L

∂ (∂ηAµ)

]
= 0 .

Let us use metric terms to get the indices the way we want,

∂

∂Aµ

[
gµγe2AµAγφφ

∗ − eJµAµ
]
− ∂η

[
∂

∂ (∂ηAµ)

(
−1

4
F µνFµν

)]
= 0 .

Application of Euler-Lagrange gives a stand alone current term and the partials on

the field strength tensor,(
e2gµγAγ + e2gµγAµδ

µ
γ

)
φφ∗ − eJµ − ∂η

[
∂

∂ (∂ηAσ)

(
−1

4
gµγgνρFγρFµν

)]
= 0 .

Combining the first two terms and performing the derivatives that are left over gives,

2e2Aµφφ∗ − eJµ +
1

4
gµγgνρ∂η

[
∂

∂ (∂ηAσ)
(∂γAρ − ∂ρAγ) (∂µAν − ∂νAµ)

]
= 0 .

Reorganizing,

2e2Aµφφ∗ − eJµ+
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1

4
gµγgνρ∂η

[ (
δηγδ

σ
ρ − δηρδσγ

)
(∂µAν − ∂νAµ)+(∂γAρ − ∂ρAγ)

(
δηµδ

σ
ν − δηνδσµ

) ]
= 0

and multiplying metric terms through the deltas what is left is,

2e2Aµφφ∗ − eJµ+

1

4
∂η

[
(gµηgνσ − gµσgνη) (∂µAν − ∂νAµ)+(∂γAρ − ∂ρAγ) (gηγgσρ − gσγgηρ)

]
= 0 .

Or, written more efficiently,

2e2Aµφφ∗−eJµ+
1

4
∂η

[
∂ηAσ−∂σAη−∂σAη+∂ηAσ+∂ηAσ−∂σAη−∂σAη+∂ηAσ

]
= 0 .

Recombining the identical field strength tensor terms and factoring out a minus sign

gives,

2e2Aµφφ∗ − eJµ − ∂η
[
∂σAη − ∂ηAσ

]
= 0

or finally,

2e2Aµφφ∗ − eJµ − ∂ηF ση = 0 .

What is left is the derivative of the field strength tensor equal to the current plus an

extra term in 2e2Aµφφ∗. But if we remember, the current Jµ was not invariant

under our local gauge transformation. Remembering that the current was defined as,

∂ηF
ση = 2e2Aµφφ∗ − ie (φ∗∂µφ− φ∂µφ∗) (3.21)

we can rewrite the two terms on the right hand side using the covariant derivative,

Dµφ = (∂µ + ieAµ)φ, as

∂ηF
ση = −ie (φ∗Dµφ− φDµφ∗) .

Rewriting this term as, J µ = i (φ∗Dµφ− φDµφ∗), as our conserved covariant

current [2] shows its explicit invariance under the local gauge transformation. We
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can then write,

∂ηF
ση = −eJ µ

and note that the anti-symmetric property of F µν gives ∂µJ µ = 0. This derivative

on the covariant current gives Maxwell’s equations.



CHAPTER 4: U(1)xU(1) GAUGE THEORY

Introducing a Second Vector Potential

We would now like to consider the introduction of a new 4-vector potential,

Cµ = (φm,
−→
C ), with the intention of describing magnetic charge. First consider

Maxwell’s equations in the presence of a magnetic and electric charge [7],

∇ ·
−→
E = ρe ∇×

−→
B =

∂
−→
E

∂t
+

1

c

−→
J e (4.1)

∇ ·
−→
B = ρm −∇×

−→
E =

∂
−→
B

∂t
+

1

c

−→
J m (4.2)

Consider now the electric and magnetic fields as described by the standard 4-vector

potential, Aµ = (φe,
−→
A ), and the new 4-vector potential Cµ,

−→
E = −∇φe −

1

c

∂
−→
A

∂t
−∇×

−→
C (4.3)

−→
B = −∇φm −

1

c

∂
−→
C

∂t
−∇×

−→
A . (4.4)

If these 4-vector potentials are chosen to satisfy the Lorentz gauge condition then

one can write,

∂µA
µ =

(
1

c

∂

∂t
,∇
)
·
(
φe,
−→
A
)

=
1

c

∂φe
∂t

+∇ ·
−→
A = 0 (4.5)

∂µC
µ =

(
1

c

∂

∂t
,∇
)
·
(
φm,
−→
C
)

=
1

c

∂φm
∂t

+∇ ·
−→
C = 0 . (4.6)
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If these definitions of the fields are used in conjunction with Maxwell’s equations

with magnetic charge, we will obtain what is typically referred to as the

inhomogeneous Maxwell equations. The difference here is, instead of having an

equation relating a scalar potential to a charge density and an equation relating the

vector potential to a current density, we will have two sets of these equations: one

for each scalar potential and one for each vector potential. Let us begin with

electric charge density. Direct computation gives,

ρe = ∇ ·
−→
E = ∇ ·

(
−∇φe −

1

c

∂
−→
A

∂t
−∇×

−→
C

)
=

−∇2φe −
1

c

∂

∂t
∇ ·
−→
A −∇ ·

(
∇×

−→
C
)
.

If we assume the vector potential
−→
C is well behaved, then the last term is the

divergence of a curl which is zero. This leaves,

ρe = −∇2φe −
1

c

∂

∂t
∇ ·
−→
A .

If we use the Lorentz gauge condition for the 4-vector Aµ (4.5), and substitute

directly into the equation for the electric charge density, this gives

ρe = −∇2φe +
1

c2

∂2φe
∂t2

. (4.7)

This can now be understood as one of the original inhomogeneous Maxwell

equations relating the electric charge density and the scalar field associated to the

electric charge. In a similar fashion we can compute an equivalent equation that

related the magnetic charge density to the scalar field associated to the magnetic

charge. This does not appear in the original Maxwell equations. As before,

beginning with the magnetic charge density,

ρm = ∇ ·
−→
B = ∇ ·

(
−∇φm −

1

c

∂
−→
C

∂t
−∇×

−→
A

)
=
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−∇2φm −
1

c

∂

∂t
∇ ·
−→
C +∇ ·

(
∇×

−→
A
)
.

Once more, if we assume the vector potential
−→
A is well behaved then we can throw

away the divergence of a curl which gives,

ρm = −∇2φm −
1

c

∂

∂t
∇ ·
−→
C .

Using the Lorentz gauge condition imposed on the vector potential Cµ (4.6), this

becomes

ρm = −∇2φm +
1

c2

∂2φm
∂t2

. (4.8)

What we have constructed so far are the scalar potential inhomogeneous Maxwell’s

equations. We have one for electric charge as is standard, but now we also have one

describing a magnetic charge. Now what is needed are the vector potential

formulations. Starting with the second equation in (4.1),

∇×
−→
B =

1

c

(
∂
−→
E

∂t
+
−→
J e

)

substitute in the new electric field definition (4.3),

∇×
−→
B = ∇×

(
−∇φm −

1

c

∂
−→
C

∂t
−∇×

−→
A

)
=

−∇× (∇φm)− 1

c

∂

∂t
∇×

−→
C +∇×

(
∇×

−→
A
)
.

If the vector identities, [∇× (∇φ) = 0] and [∇× (∇×−→v ) = ∇ (∇ · −→v )−∇2−→v ], are

used then this can be written as,

∇×
−→
B = −1

c

∂

∂t
∇×

−→
C +∇

(
∇ ·
−→
A
)
−∇2−→A . (4.9)
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Also, from the second equation (4.2), and substitution for E with the new definition

(4.3), the following relation can be written,

∇×
−→
B =

1

c

∂

∂t

(
−∇φe −

1

c

∂
−→
A

∂t
−∇×

−→
C

)
+

1

c

−→
J e . (4.10)

Equating (4.9) and (4.10) and immediately cancelling the repetitive time derivative

of the curl of the 4-vector
−→
C term gives,

∇
(
∇ ·
−→
A
)
−∇2−→A = −1

c

∂

∂t
∇φe −

1

c2

∂2−→A
∂t2

+
1

c

−→
J e .

Rewriting this as,

∇2−→A − 1

c2

∂2−→A
∂t2

+
1

c

−→
J e = ∇

[
∇ ·
−→
A +

1

c

∂

∂t
φe

]

one immediately notices that the right hand side is simply the Lorentz gauge

condition, ∂µA
µ = 0. Throwing this term away leaves,

∇2−→A − 1

c2

∂2−→A
∂t2

= −1

c

−→
J e . (4.11)

This is the standard inhomogeneous Maxwell equation relating the electric charge

current and the vector potential. Again, we have introduced a second vector

potential and we can expect a similar relationship relating the new vector potential

and the corresponding magnetic charge current. To obtain the final equation, we

repeat the same procedure but instead begin with the second equation in (4.2).

That is, starting with,

−∇×
−→
E = −∇×

(
−∇φe −

1

c

∂
−→
A

∂t
−∇×

−→
C

)

and using vector identities we have,

−∇×
−→
E =

1

c

∂

∂t
∇×

−→
A +∇×

(
∇ ·
−→
C
)
−∇2−→C .
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Computation of the left hand side of this equation gives,

−∇×
−→
E =

1

c

∂

∂t

(
−∇φm −

1

c

∂
−→
C

∂t
+∇×

−→
A

)
+

1

c

−→
J m .

Once more, equating the two sides and cancelling the time derivatives of the curl of
−→
A gives,

−1

c

∂

∂t
∇φm −

1

c2

∂2−→C
∂t2

+
1

c

−→
J m = ∇

(
∇ ·
−→
C
)
−∇2−→C

and finally using the Lorentz gauge, ∂µC
µ, we obtain

1

c

∂

∂t
∇φm +

1

c2

∂2−→C
∂t2

=
1

c

−→
J m . (4.12)

Summarizing, what has been constructed are the inhomogeneous Maxwell equations

describing the charge densities and current densities for magnetic and electric

charge. We see that the introduction of a new vector potential and the supplement

of magnetic charge in to Maxwell’s original equations allows for a new set of

inhomogeneous Maxwell equations with magnetic charge and magnetic current

density that was not previously present. Writing (4.7), (4.8), (4.11) and (4.12)

together in succinct fashion

∇2φe −
1

c2

∂2φe
∂t2

= −ρe , ∇2−→A − 1

c2

∂2−→A
∂t2

= −1

c

−→
J e

∇2φm −
1

c2

∂2φm
∂t2

= −ρm ,
1

c

∂

∂t
∇φm +

1

c2

∂2−→C
∂t2

=
1

c

−→
J m

So far the analysis has been done primarily in 3-vector notation. We now convert

these equations to 4-vector notation to coincide with the notation that will be used

later in the paper. To write these equations in 4-vector notation, we begin by

describing two field strength tensors;

F µν = ∂µAν − ∂νAµ (4.13)
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describing the Lagrangian contributions for the derivatives of the vector potential
−→
A

and

Gµν = ∂µCν − ∂νCµ (4.14)

describing the Lagrangian contributions for the derivatives of the vector potential
−→
C . Notice that standard Maxwell’s equations typically only have the one field

strength tensor, (4.13), but since we have added a second vector potential we also

need to describe its field strength tensor. An application of 4-derivatives on the field

strength tensors allows us to reobtain the new inhomogeneous Maxwell equations we

just derived. Computation gives,

∂µF
µν = ∂µ∂

µAν − ∂µ∂νAµ

reordering the derivatives in the second term gives ∂ν∂µA
µ, which is zero by the

Lorentz Gauge. We are left with

∂µF
µν = ∂µ∂

µAν =

∂µ∂
µAν =

(
∇2 − 1

c2

∂2

∂t2

)
Aν =

1

c
Jνe

Similarly,

∂µG
µν = ∂µ∂

µCν − ∂µ∂νCµ

again reordering the derivatives in the second term gives ∂ν∂µC
µ, which is zero by

Lorentz Gauge. We have,

∂µG
µν = ∂µ∂

µCν =

∂µ∂
µCν =

(
∇2 − 1

c2

∂2

∂t2

)
Cν =

1

c
Jνm
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Here, the notation used for the 4-currents respective to their charges are

Jµe =
(
ρe,
−→
J e

)
and Jµm =

(
ρm,
−→
J m

)
. Inspection shows immediately that these are

exactly descriptions of the inhomogeneous Maxwell equations. The use of 4-vector

notation here allows us to write the four inhomogeneous Maxwell equations more

efficiently with just two equations. Now that we have built up the Maxwell

equations using a second vector potential to describe magnetic charge, we would like

to turn our attention to the Lagrangian. We are going to build a complex scalar

field Lagrangian with the contributions from the vector potentials as we have done

in the previous chapter. Since we now have two vector potentials and two field

strength tensors, we expect both terms to appear in the Lagrangian.

The Scalar Lagrangian Containing Magnetic Charge

Consider a complex scalar field Lagrangian, as we have in previous sections,

but now with an additional contribution from the derivatives of the second vector

potential in terms of the second field strength tensor. The Lagrangian is,

LS = DµΦ∗DµΦ− 1

4
FµνF

µν − 1

4
GµνG

µν − V (Φ2) (4.15)

where the full gauge-covariant derivative here is defined as,

Dµ = ∂µ − iqeAµ − iqmCµ and the potential term is V (Φ2) = m2(Φ∗Φ) + λ(Φ∗Φ)2.

This Lagrangian has been constructed to remain invariant under local gauge

transformations as shown in the previous chapter. Notice the potential has a λ term

which is a self interaction. This is typically referred to as as Lambda-Phi fourth

term and is crucial to the symmetry breaking we will perform in a moment. If we

write out the covariant derivatives explicitly, we have,

LS = (∂µ + iqeAµ + iqmCµ) Φ∗ (∂µ − iqeAµ − iqmCµ) Φ−
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1

4
FµνF

µν − 1

4
GµνG

µν − V (Φ2) =

∂µΦ∗∂µΦ− iqe∂µΦ∗AµΦ− iqm∂µΦ∗CµΦ + iqeAµΦ∗∂µΦ + q2
eAµA

µΦ∗Φ+

qeqmAµC
µΦ∗Φ + iqmCµΦ∗∂µΦ + qeqmCµA

µΦ∗Φ + q2
mCµC

µΦ∗Φ−

1

4
FµνF

µν − 1

4
GµνG

µν − V (Φ2)

One notices the standard kinetic energy term for the scalar fields. What appears to

be a nasty mess of terms can be made efficient if we define the currents as,

Jµe = iqe [Φ∗ (∂µΦ)− Φ (∂µΦ)∗] (4.16)

Jµm = iqm [Φ∗ (∂µΦ)− Φ (∂µΦ)∗] . (4.17)

These currents are written following the formulation of the Noether current. We

now have two currents, one describing electric charge current and one for magnetic

charge current. The subscripts e and m as well as the associated charges

differentiate the two. Using (4.16) and (4.17), we can simplify the Lagrangian as

LS = ∂µΦ∗∂µΦ− 1

4
FµνF

µν − 1

4
GµνG

µν + Jµe Aµ + JµmCµ − V (Φ2)

+q2
eAµA

µΦ∗Φ + q2
mCµC

µΦ∗Φ + 2qeqmAµC
µΦ∗Φ

Now we notice some higher order interaction terms left over from this Lagrangian

definition. These terms can be cleaned up by writing,

LS = ∂µΦ∗∂µΦ− 1

4
FµνF

µν − 1

4
GµνG

µν + Jµe Aµ + JµmCµ−

V (Φ2) + (qeAµ + qmCµ) (qeA
µ + qmC

µ) Φ∗Φ . (4.18)
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At this point, the Lagrangian really does not tell us much. What we would like to

do is apply spontaneous symmetry breaking and give the scalar field a negative

mass squared value. In doing so, the vacuum expectation value for the scalar field

will drop below zero and we will have to re-parameterize to the new minimum. This

same process was used by Jeffrey Goldstone to find the Goldstone boson and later

in the Higgs’ model as well as the Weinberg-Salam model for electroweak

interactions. The requirement that the mass squared be negative seems unphysical

since it implies imaginary mass. The “mass” at this point is really just considered a

parameter and not a mass per se. So let us consider m2 < 0, then the minimum of

the potential V (Φ2) is

∂V

∂φ
= m2 + 2λΦ∗Φ = 0 .

This leads to a minimum of

|Φ| = Φ∗Φ =

[
−m2

2λ

]1/2

≡ v√
2
.

When the fields are quantized, Φ becomes an operator and the magnitude of Φ

refers to the vacuum expectation value of the field, written as,

〈Φ〉 = |〈0|Φ|0〉|2 =

[
−m2

2λ

]1/2

≡ v√
2
.

where |0〉 is the ground state of the wave equation. If the potential is now plotted

against the two real scalar fields, one would see the standard “Mexican hat” shaped

potential graph. The minimum value corresponds to a circle of points that are all

related through rotation about the potential of the real scalar fields. That is to say,

the ground state is degenerate and the symmetry of the Lagrangian is no longer

shared by the ground state solution. To resolve this, we use our new minimum for

the vacuum expectation value to parameterize our complex scalar field Φ so that the
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vacuum expectation value lies along the real component. This gives

Φ(x) =
1√
2

(v + η(x) + iζ(x))

Consider now the real components of the complex scalar field to be small

oscillations, then and exponential term eiζ/v can be expanded as

1√
2

(v + η(x)) eiζ(x)/v ≈ 1√
2

(v + η(x))

(
1 + i

ζ(x)

v
− ζ(x)2

2v2

)
=

1√
2

(
v + iζ(x)− ζ(x)2

2v
+ η(x) + iη(x)

ζ(x)

v
− η(x)

ζ(x)2

2v2

)
.

Since we are considering small oscillation real scalar fields, we can ignore of order

greater than two in the scalar fields which makes this statement approximately

1√
2

(v + iζ(x) + η(x))

We therefore have the approximation that the complex scalar field acts as,

Φ(x) =
1√
2

(v + η(x) + iζ(x)) ≈ 1√
2

[v + η(x)] eiζ(x)/v . (4.19)

Writing the complex scalar field in this way has a nice feature in that we can apply

a gauge transformation and lose the exponential term. Consider a gauge

transformation, e−iζ/v, to the unitary gauge. This gauge transformation will

effectively eliminate the real ζ(x) component of our complex scalar field. The

transformation is computed as follows

Φ′(x) = e−iζ(x)/vΦ(x) ≈ 1√
2

(v + η(x)) (4.20)

Bµ ≡ A′µ(x) = Aµ(x)− 1

2qev
∂µζ(x) (4.21)
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Eµ ≡ C ′µ(x) = Cµ −
1

2qmv
∂µζ(x) (4.22)

For notational simplicity, I have redefined the transformed vector potentials under

new variables. When we write the gauge transformed Lagrangian later, instead of

writing out the explicit transformation of the vector potentials, the new notation

will be substituted. For now, to show the invariance of terms, I will continue to use

the primed notation. Notice that this gauge transformation transforms the covariant

derivative as it should,

DµΦ′ =

[
∂µ − iqe

(
Aµ(x)− 1

2qev
∂µζ(x)

)
− iqm

(
Cµ − 1

2qmv
∂µζ(x)

)]
e−iζ(x)/vΦ(x) =

e−iζ(x)/v [∂µΦ(x)− iqeAµ(x)Φ(x)− iqmCµΦ(x)]−

ie−iζ(x)/v

[
∂µζ(x)

v
Φ(x)− 1

2v
∂µζ(x)Φ(x)− 1

2v
∂µζ(x)Φ(x)

]
.

The last two terms cancel and we are left with

DµΦ′ = e−iζ(x)/vDµΦ

In addition, the field strength tensor terms are invariant under this transformation,

F ′µν = ∂µA
′
ν − ∂νA′µ = ∂µ

[
Aν(x)− 1

2qev
∂νζ(x)

]
− ∂ν

[
Aµ(x)− 1

2qev
∂µζ(x)

]
=

∂µAν(x)− 1

2qev
∂µ∂νζ(x)− ∂νAµ(x) +

1

2qev
∂ν∂µζ(x) = Fµν

similarly,

G′µν = ∂µC
′
ν −∂νC ′µ = ∂µ

[
Cν(x)− 1

2qmv
∂νζ(x)

]
−∂ν

[
Cµ(x)− 1

2qmv
∂µζ(x)

]
= Gµν .

The complex scalar Lagrangian (4.15), written with the potential terms,

LS = DµΦ∗DµΦ− 1

4
FµνF

µν − 1

4
GµνG

µν −m2(Φ∗Φ)− λ(Φ∗Φ)2
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has now been shown to contain only terms that are invariant under the gauge

transformation. Expanding out the covariant derivatives using our new notation for

the vector potentials gives

LS = [∂µ + iqeBµ + iqmE
µ] Φ∗ [∂µ − iqeBµ − iqmEµ] Φ−

1

4
FµνF

µν − 1

4
GµνG

µν −m2(Φ∗Φ)− λ(Φ∗Φ)2 .

Now using the approximation of the complex scalar field (4.20), we have

1

2
[∂µ + iqeBµ + iqmE

µ] (v + η(x)) [∂µ − iqeBµ − iqmDµ] (v + η(x)) (4.23)

−1

4
FµνF

µν − 1

4
GµνG

µν − V
[

1

2
(v + η(x))2

]
Let us first deal with the potential term, V (Φ2). Using the approximation (4.20),

this term becomes

m2

2
(v + η(x))2 +

λ

4
(v + η(x))4 =

m2

2
v2 +m2vη(x) +

m2

2
η2(x) +

λ

4
(v4 + 4v3η(x) + 6v2η2(x) + 4vη3(x) + η4(x))

Adding constants to a Lagrangian will not affect the equations of motion, therefore

we can reduce this term by ignoring pure constants leaving,

m2vη(x) +
1

2
m2η2(x) + λv3η(x) +

3

2
λv2η2(x) + λvη3(x) +

1

4
λη4(x)

Now if we recall that the vacuum expectation value was found to be
(
−m2

2λ

)1/2

= v√
2

or λ = −m2

v2 , then we can write this as,

m2vη(x) +
1

2
m2η2(x)− m2

v2
v3η(x)− 3

2

m2

v2
v2η2(x) + λvη3(x) +

1

4
λη4(x) =

−m2η2(x) + λvη3(x) +
1

4
λη4(x) (4.24)
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The overall contribution then, labeling the term Lv, is

Lv = m2η2(x)− λvη3(x)− 1
4
λη4(x). Now referring back the derivative terms in

Lagrangian (4.15), we can write this explicitly as,

1

2
[∂µη(x) + iqeBµ (v + η(x)) + iqmE

µ (v + η(x))]×

[∂µη(x)− iqeBµ (v + η(x))− iqmEµ (v + η(x))]

(Note: the use of the multiplication symbol here is simply that and not a cross

product. The equation is too long for one line.) Now, expanding out further we see

a kinetic energy term, 1
2
∂µη(x)∂µη(x) and the following

−qeqmBµE
µ(v + η(x))2 − q2

e

2
BµB

µ(v + η(x))2 − q2
m

2
EµE

µ(v + η(x))2 =

−1

2

(
v2 + 2vη(x) + η2(x)

) [
2qeqmBµE

µ + q2
eBµB

µ + q2
mEµE

µ
]

The cross terms we notice between the vector potentials are unsatisfactory

since they complicate the process of finding the mass spectrum of the gauge bosons.

We can write this term in the form of a mass-mixing matrix in order to “de-couple”

the vector potentials. The process, as we will see, actually removes one vector

potential from the Lagrangian with exception of the terms of the Field-Strength

Tensor.

Let us first define a variable, K, that can have values K = {v2

2
, v

2
η(x), 1

2
η2(x)}

then we notice that this last term can be written in the form of matrix

multiplication. More precisely, if we index K and sum only over that index, we have

Kn (Bµ, Eµ)

 q2
e qeqm

qeqm q2
m

 Bµ

Eµ

 =

(
1

2
v2 + vη(x) +

1

2
η2(x)

)[
2qeqmBµE

µ + q2
eBµB

µ + q2
mEµE

µ
]

In this notation we can do a duality transformation and chose the phase angle
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appropriately so that we can diagonalize. It is worth pointing out that a similar

diagonalization of the mass matrix using the properties of the duality

transformation was performed by Glashow, Weinberg and Salam to find the mass

spectrum of the electroweak gauge bosons in the Standard Model. The duality

transformation we use is as follows,

Bµ → Bµ cos θ + Eµ sin θ

Eµ → −Bµ sin θ + Eµ cos θ

Notice that these are just rotations of the vector potentials about some angle. If we

apply these transformations to our interaction matrix we obtain the following,

(Bµ, Eµ)

 cos θ − sin θ

sin θ cos θ

 q2
e qeqm

qeqm q2
m

 cos θ sin θ

− sin θ cos θ

 Bµ

Eµ


the computed matrix terms for the charge matrix and the rotations are,

(1, 1) = q2
e cos2 θ − 2qeqm sin θ cos θ + q2

m sin2 θ

(1, 2) =
(
q2
e − q2

m

)
sin θ cos θ + qeqm

(
cos2 θ − sin2 θ

)
(2, 1) =

(
q2
e − q2

m

)
sin θ cos θ + qeqm

(
cos2 θ − sin2 θ

)
(2, 2) = q2

e sin2 θ + 2qeqm sin θ cos θ + q2
m cos2 θ

The notation used here (i, j) simply represents the row-column element in the

matrix. The off diagonal terms in this matrix are the same, so to diagonalize this

matrix we simply make a choice of angle that forces,(
q2
e − q2

m

)
sin θ cos θ + qeqm

(
cos2 θ − sin2 θ

)
= 0
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if we make the choice that cos θ = qm√
q2
r+q2

m

and sin θ = qe√
q2
e+q2

m

then,(
q2
e − q2

m

) qeqm
q2
e + q2

m

+ qeqm

(
q2
m

q2
e + q2

m

− q2
e

q2
e + q2

m

)
= 0

One might think that the choices for cos θ and sin θ force a relationship between qe

and qm since the angle of rotation of the duality transformation, θ is both

cos−1

[
qm√
q2
e+q2

m

]
and sin−1

[
qe√
q2
e+q2

m

]
. This is not the case. In fact, we could have

only given the cos θ value and the sin θ value would have followed. Furthermore,

with a little trigonometry one can show that the two conditions on θ do not force a

condition between the electric and magnetic charges. Using the identity that

sin−1(z) = cos−1(−z)− 1
2
π we find,

cos−1

[
qm

sqrtq2
e + q2

m

]
= sin−1

[
qe√

q2
e + q2

m

]

cos−1

[
qm

sqrtq2
e + q2

m

]
= cos−1

[
− qe√

q2
e + q2

m

]
− 1

2
π

or

qm√
q2
e + q2

m

= cos

[
cos−1

[
− qe√

q2
e + q2

m

]
− 1

2
π

]
using the identity, cos(α + β) = cosα cos β − sinα sin β,

qm√
q2
e + q2

m

= − qe√
q2
e + q2

m

cos

(
1

2
π

)
− sin

[
cos−1

(
− qe√

q2
e + q2

m

)]
sin

(
−1

2
π

)

finally using the identity, sin (cos−1(x)) =
√

1− x2, we obtain,

qm√
q2
e + q2

m

=

√
1− q2

e

q2
e + q2

m

and so they are equal as they should be and there is no condition relating qe and qm.

Returning to the max mixing matrix, we have set the off diagonal terms to

zero by making conditions on the angle of rotation. Now we show what happens to
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the diagonal components. q2
e cos2 θ − 2qeqm sin θ cos θ + q2

m sin2 θ 0

0 q2
e sin2 θ + 2qeqm sin θ cos θ + q2

m cos2 θ


Making substitutions, the 1-1 component of the matrix becomes,

q2
e

q2
m

q2
e + q2

m

− 2qeqm
qeqm
q2
e + q2

m

+ q2
m

q2
e

q2
e + q2

m

= 0

and the 2-2 component becomes,

q2
e

q2
e

q2
e + q2

m

+ 2qeqm
qeqm
q2
e + q2

m

+ q2
m

q2
m

q2
e + q2

m

=
q4
e + 2q2

eq
2
m + q4

m

q2
e + q2

m

=

(q2
e + q2

m)2

q2
e + q2

m

= q2
e + q2

m

so we finally see that our Duality transformation with appropriate choice for angle

diagonalizes the interaction matrix leaving the following relationships,

Kn (Bµ, Eµ)

 0 0

0 q2
e + q2

m

 Bµ

Eµ

 (4.25)

Writing out these terms we can see the Lagrangian contribution,(
1

2
v2 +

1

2
vη(x)

1

2
η2(x)

)(
q2
e + q2

m

)
EµE

µ

Now piecing together all of our transformed Lagrangian components and the field

strength tensor terms we have,

LS =
1

2
∂µη(x)∂µη(x) +

1

2
(2m2)η2(x)− 1

4
FµνF

µν − 1

4
GµνG

µν+

(
1

2
v2 +

1

2
vη(x)

1

2
η2(x)

)(
q2
e + q2

m

)
EµE

µ − λvη3(x)− 1

4
λη4(x)

The initial set of particles in the Lagrangian were two massless Gauge bosons

and two scalar fields. Via the Higgs’ mechanism these have become one massive
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scalar field, one massless gauge field and one massive gauge field. The coupling

strength of the scalar field to the gauge boson is g = (q2
e + q2

m)
1/2

. That is to say the

scalar field carries a magnetic charge of strength g.

Addition of a Second Scalar Potential

Let us begin with the Lagrangian considered in Scalar Lagrangian section

(4.15). We have,

LS = DµΦ∗DµΦ− 1

4
FµνF

µν − 1

4
GµνG

µν − V (Φ2)

which when written out became,

LS = ∂µΦ∗∂µΦ− 1

4
FµνF

µν − 1

4
GµνG

µν + Jµe Aµ + JµmCµ − V (Φ2)

+q2
eAµA

µΦ∗Φ + q2
mCµC

µΦ∗Φ + 2qeqmAµC
µΦ∗Φ

We would now like to add a second scalar term. The hopes here are to reobtain the

Aµ vector potential interaction terms that we lost via the process of the Higgs

mechanism in previous sections. Let us consider then,

LS2 = DµΦ∗1D
µΦ1 +DµΦ∗2D

µΦ2 −
1

4
FµνF

µν − 1

4
GµνG

µν − V (Φ2
1)

We do not add any new potential terms for the second scalar Lagrangian but it

should be noted that the covariant derivatives operating on Φ1 and Φ2 are different.

More precisely they are,

DµΦ1 = (∂µ − iqeAµ − iqmCµ) Φ1

DµΦ2 = (∂µ − iq′eAµ − iq′mCµ) Φ2

We will obtain the same expanded Lagrangian terms as before except we will have

new terms for Φ2 contribution,



41

∂µΦ∗1∂
µΦ1 − iqe∂µΦ∗1A

µΦ1 − iqm∂µΦ∗1C
µΦ1 + iqeAµΦ∗1∂

µΦ1 + q2
eAµA

µΦ∗1Φ1+

qeqmAµC
µΦ∗1Φ1 + iqmCµΦ∗1∂

µΦ1 + qeqmCµA
µΦ∗1Φ1 + q2

mCµC
µΦ∗1Φ1−

1

4
FµνF

µν − 1

4
GµνG

µν − V (Φ2
1)+

∂µΦ∗2∂
µΦ2 − iq′e∂µΦ∗2A

µΦ2 − iq′m∂µΦ∗2C
µΦ2 + iq′eAµΦ∗2∂

µΦ2 + (q′e)
2AµA

µΦ∗2Φ2+

q′eq
′
mAµC

µΦ∗2Φ2 + iq′mCµΦ∗2∂
µΦ2 + q′eq

′
mCµA

µΦ∗2Φ2 + (q′m)2CµC
µΦ∗2Φ2

Now if we consider current terms as

Jµe = iqe [Φ∗1 (∂µΦ1)− Φ1 (∂µΦ1)∗]

Jµe′ = iq′e [Φ∗2 (∂µΦ2)− Φ2 (∂µΦ2)∗]

Jµm = iqm [Φ∗1 (∂µΦ1)− Φ1 (∂µΦ1)∗]

Jµm′ = iq′m [Φ∗2 (∂µΦ2)− Φ2 (∂µΦ2)∗]

then we can simplify the Lagrangian,

∂µΦ∗1∂
µΦ1 + ∂µΦ∗2∂

µΦ2 + Jµe Aµ + Jµe′Aµ + JµmCµ + Jµm′Cµ −
1

4
FµνF

µν − 1

4
GµνG

µν−

V (Φ2
1) + q2

eAµA
µΦ∗1Φ1 + q2

mCµC
µΦ∗1Φ1 + 2qeqmAµC

µΦ∗1Φ1+

(q′e)
2AµA

µΦ∗2Φ2 + (q′m)2CµC
µΦ∗2Φ2 + 2q′eq

′
mAµC

µΦ∗2Φ2

or combining terms as we have done before,

∂µΦ∗1∂
µΦ1 + ∂µΦ∗2∂

µΦ2 + Jµe Aµ + Jµe′Aµ + JµmCµ + Jµm′Cµ −
1

4
FµνF

µν − 1

4
GµνG

µν−

V (Φ2
1)+(qeAµ + qmCµ) (qeA

µ + qmC
µ) Φ∗1Φ1+(q′eAµ + q′mCµ) (q′eA

µ + q′mC
µ) Φ∗2Φ2



42

At this point we would like to consider the gauge transformation done in the

previous section. That is

Φ′1(x) = e−iζ(x)/vΦ1(x) =
1√
2

(v + η(x))

A′µ(x) = Aµ(x)− 1

2qev
∂µζ(x)

C ′µ(x) = Cµ −
1

2qmv
∂µζ(x)

which in one recalls gave the covariant derivative transformation

DµΦ1 → e−iζ(x)/vDµΦ1

We also must require that the covariant derivative that operates on Φ2 remain

invariant under this same gauge transformation. The covariant derivative that

operates on Φ2 contains the vector potentials Aµ and Cµ which transform. The

requirement that this second derivative remain invariant will force a condition

between the charges qe, q
′
e, qm, q

′
m. We see this by transforming the derivative,

DµΦ2 → (∂µ − iq′eAµ − iq′mCµ) Φ2

Notice that the scalar potential Φ2 does not transform. That is one avenue that will

be considered in another section. For now we will consider a scalar potential that

doesn’t transform. Continuing we have,

DµΦ2 →
[
∂µ − iq′e

(
Aµ(x)− 1

2qev
∂µζ(x)

)
− iq′m

(
Cµ − 1

2qmv
∂µζ(x)

)]
Φ2 =

[
∂µ − iq′eAµ(x) + i

q′e
2qev

∂µζ(x)− iq′mCµ + i
q′m

2qmv
∂µζ(x)

]
Φ2 =

DµΦ2 +

[
i
q′e

2qev
∂µζ(x) + i

q′m
2qmv

∂µζ(x)

]
Φ2

So we see that the term on the right is in addition to the original covariant
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derivative operating on Φ2. We require this term to be zero,

i
q′e

2qev
∂µζ(x) + i

q′m
2qmv

∂µζ(x) = 0

simplifying we are left with a condition on the charges that,

q′e
qe

= −q
′
m

qm

that is, the ratio of electric charges is the negative of the ratio of magnetic charges.

We note that this condition is similar to the original condition from Dirac’s work

that the ratio of electric to magnetic charges be equal. In fact, in the condition

above, one can make somewhat arbitrary conditions on the relationship of the

charges. That is, one may write a condition that q′m = kqm where k is some

arbitrary constant. This condition would also then force q′e = −kqe. Making such a

substitution into our Lagrangian gives,

∂µΦ∗1∂
µΦ1 + ∂µΦ∗2∂

µΦ2 + Jµe Aµ + Jµe′Aµ + JµmCµ + Jµm′Cµ −
1

4
FµνF

µν − 1

4
GµνG

µν−

V (Φ2
1) + (qeAµ + qmCµ) (qeA

µ + qmC
µ) Φ∗1Φ1−

k2 (qeAµ − qmCµ) (qeA
µ − qmCµ) Φ∗2Φ2

Let us return back to the unexpanded Lagrangian and perform the gauge

transformation as we did in the previous section. Upon visual inspection one

immediately sees that the process will return the same Lagrangian we had in the

previous section with the exception of the new terms involving Φ2 and its conjugate.

The condition we forced on the covariant derivative acting on Φ2 means that the

gauge transformation will not have an overall effect on the term DµΦ∗2D
µΦ2. The

Lagrangian that will remain if we reuse the approximation,

e−iζ(x)/vΦ1 ≈ 1√
2
(v + η(x)), is
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Ls2 =
1

2
∂µη(x)∂µη(x) +DµΦ∗2D

µΦ2 −
1

4
FµνF

µν − 1

4
GµνG

µν+

−1

2

(
v2 + 2vη(x) + η2(x)

) [
2qeqmBµE

µ + q2
eBµB

µ + q2
mEµE

µ
]

+

m2η2(x)− λvη3(x)− 1

4
λη4(x)

If we then expand the derivatives on the second scalar field and use the notation

above for the primed currents we will pick up the extra terms,

DµΦ∗2D
µΦ2 = ∂µΦ∗2∂

µΦ2 + Jµe′Bµ + Jµm′Eµ + (q′eBµ + q′mEµ) (q′eB
µ + q′mE

µ) Φ∗2Φ2

Now if we use the charge condition mentioned above we can write this term as,

∂µΦ∗2∂
µΦ2 + kJµe Bµ + kJµmEµ + k2 (qeBµ + qmEµ) (qeB

µ + qmE
µ) Φ∗2Φ2

The last term above is the same mixed vector potentials term that we already have

in our Lagrangian. If we make the substitution,

Ls2 =
1

2
∂µη(x)∂µη(x) + ∂µΦ∗2∂

µΦ2 + kJµe Bµ + kJµmEµ −
1

4
FµνF

µν − 1

4
GµνG

µν+

−1

2

(
v2 + 2vη(x) + η2(x) +

k2

2
Φ∗2Φ2

)[
2qeqmBµE

µ + q2
eBµB

µ + q2
mEµE

µ
]

+

m2η2(x)− λvη3(x)− 1

4
λη4(x)

Now our Lagrangian is in a form where we can once again use matrix notation and

diagonalize to remove mixed vector potential terms. Using the same results as in

the previous section we will obtain,

Ls2 =
1

2
∂µη(x)∂µη(x)− 1

2

(
v2 + 2vη(x) + η2(x) +

k2

2
Φ∗2Φ2

)(
q2
e + q2

m

)
EµE

µ+

∂µΦ∗2∂
µΦ2 + kJµe Bµ + kJµmEµ−

1

4
FµνF

µν − 1

4
GµνG

µν +m2η2(x)− λvη3(x)− 1

4
λη4(x)

Suppose we consider a Φ2 scalar field that also transforms under a gauge
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transformation. If we assume, Φ′2 = e−ikζ(x)/vΦ2, so that the transformation is just a

constant coefficient k multiple of the gauge for the Φ1 field then the covariant

derivative transforms as,

DµΦ2 → (∂µ − iq′eAµ − iq′mCµ) e−ikζ(x)/vΦ2 =

[
∂µ − iq′e

(
Aµ − 1

2qev
∂µζ(x)

)
− iq′m

(
Cµ − 1

2qmv
∂µζ(x)

)]
e−ikζ(x)/vΦ2

If we compute this through and consider only the left over terms, then for the

covariant derivative to transform properly we must have the condition that these

extra terms go to zero. What is left then is,(
−ik
v
∂µζ(x) + i

q′e
2qev

∂µζ(x) + i
q′m

2qmv
∂µζ(x)

)
e−ikζ(x)/vΦ2 = 0

canceling mutual terms leaves,

−k +
q′e
2qe

+
q′m
2qm

= 0

Since the term k is constant, we absorb the fraction on one half and consider a

gauge coefficient term w that must be

w = 2k =
q′e
qe

+
q′m
qm

It is interesting to note that if we choose the gauge constant to be zero then (as

would be expected) we simply reobtain the charge condition found previously when

no gauge transformation was performed on Φ2. This new charge condition says that

the ratio of magnetic charge must be an arbitrary constant value plus the ratio of

electric charge. In the Lagrangian, the only term that will differ from the previous

example will be the covariant derivative term,

Dµe
ikζ(x)/vΦ2D

µe−ikζ(x)/vΦ2 =

(∂µ + iq′eBµ + iq′mEµ) eikζ(x)/vΦ2 (∂µ − iq′eBµ − iq′mEµ) e−ikζ(x)/vΦ2
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Inspecting this, one can see that it will yield the same current terms, kinetic energy

terms and mixed terms as before with the exception that there will be the following

additional terms,

k2

v2
Φ∗2Φ2 + i

k

v
(Φ∗2∂

µΦ2 − Φ2∂µΦ∗2) +

kq′e
v

(Bµ +Bµ) Φ∗2Φ2 +
kq′m
v

(Eµ + Eµ) Φ∗2Φ2

Notice that there is a particle in Φ2 now that has a mass value of k
v

and there is a

current associated with this particle, call it Jµk such that

Jµk = ik
v

(Φ∗2∂
µΦ2 − Φ2∂µΦ∗2). We can rewrite these new terms as,

k2

v2
Φ∗2Φ2 + Jµk +

kq′e
v

(Bµ +Bµ) Φ∗2Φ2 +
kq′m
v

(Eµ + Eµ) Φ∗2Φ2

The last two terms are somewhat unsatisfactory. This leads us to believe

that performing a gauge transformation on the second scalar potential is not ideal.

From this point, the next option would be to give the second scalar field a negative

mass squared and potential term. This would make its vacuum expectation value

negative as we find the first scalar field. This more complicated example is where

this paper will meet its end. The examination of a second scalar potential with a

non zero expectation value will be left for further research.



CHAPTER 5: CONCLUSIONS

In this paper we have discussed a variety of magnetic monopole formulations

and laid the ground work to develop more sophisticated models. Starting with the

Dirac string monopole from PAM Dirac in 1931 and working up to the Wu-Yang

fiber bundle model of 1975, one could show a definitive quantization condition and

forced relationship between magnetic and electric charges. The original argument

was that if magnetic monopoles exist, such a quantized condition would occur and

more importantly, the quantization of electric charge was consistent with

experimentation at the time. The apparent quantization of electric charge is today

credited to isospin properties and [2] conditions rather than the still missing

magnetic monopole particle.

After discussion of monopole examples, the reader was thrust in to a

quantum field theory formulation of the monopole. Upon forcing the Maxwell

equations to contain magnetic charge, and without explicitly describing a vector

potential, an electromagnetic Lagrangian was written and a scalar vector potential

term was introduced. While the scalar potential was arbitrarily described, the

condition that it had a potential and a negative mass squared term allowed one to

apply the Higgs’ mechanism to the Lagrangian. Prior to the use of the Higgs’

mechanism, the Lagrangian with this scalar potential term would have yielded a

second massless photon which is undesirable in a physical model as only one

massless photon has been found in nature. The model would have been inconsistent

with the standard model. Application of the Higgs’ mechanism allowed one to

“shift” the mass to one massless photon making it massive, not unlike a W-boson.

With the introduction of a new vector potential term, no condition was

found on the magnetic-like particle. That is, no conclusions could be drawn as to its
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mass and no condition on electric and magnetic charge was found. The theory up to

that point started with one scalar potential and two vector potentials. Since scalar

and vector potentials are not so mathematically independent in electromagnetic

physics, it seemed natural to introduce a second scalar potential so that the theory

had two scalar potentials and two vector potentials. Two directions were taken with

the extra scalar field. First was scalar field with no gauge transformation. This

formulation led to interesting conditions on the electric and magnetic charges. In

fact, what was observed was the Dirac condition that magnetic charge and electric

charge must have the same ratio, except we observed that condition with a negative

sign. The second route was to perform a gauge transformation of a constant value

multiple of the gauge transformation on our original scalar field. This resulted in a

constant multiple added to the condition we obtained in the first method.

At this point, the next mathematical step would be to consider a second

scalar potential that had a negative mass squared value and a potential term in the

Lagrangian. With this arrangement we could find the vacuum expectation value of

the second scalar field and parameterize as we have done already. This next step

will be left for further research and hopefully publication.
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