ABSTRACT

U(1) x U(1) GAUGE THEORY
APPLIED TO MAGNETIC
MONOPOLES

In this paper we build up a U(1) (i.e. one dimensional unitary) gauge
theory beginning with a standard complex scalar field Lagrangian, then by
introducing a local gauge transformation and subsequently redefining the derivative,
we will be able to obtain Maxwell’s equations with the Noether current. This will
show that electromagnetic fields arise in this form as the result of the invariance of
the complex scalar field Lagrangian under local gauge transformations. From there
we will extend to a U(1) x U(1) theory by introducing a second vector potential
which will result in Maxwell’s equations allowing magnetic charge and a Lagrangian
with an extra massless photon inconsistent with the Standard Model. Using the
Higgs’ mechanism this photon will gain mass and represent a new “magnetic
photon.” We will then extend the theory by introducing a second scalar potential

which will result in conditions on magnetic and electric charge.
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NOTATION
The notation used in the main section of this paper will follow that of Lewis
Ryder’ Quantum Field Theory, 2nd Edition. There are sections where the units
are those used in J.D Jackson’s Classical Electrodynamics 2nd Edition. Therefore
the reader might notice missing or erroneous units of ¢ and A from one chapter to
the next, but this is of no great concern since they are simply constants. The 4-vector

notation used in later chapters is standard Einstein notation.
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CHAPTER 1: INTRODUCTION

The magnetic monopole has been a sought after particle for well over a
century and a half. And while it has not been found, outside of a few monopole-like
simulations, the concept has led to new and interesting discoveries in physics.
Despite having not been found, physicists have constructed a handful of physical
descriptions of magnetic monopole particles including, but not limited to, the
structures that will be discussed in this paper. As a precursor to discussions of
magnetic monopoles, one must first address the fact that the Maxwell equations, as
we well know, do not allow for magnetic charge. The magnetic field, written as the
curl of a vector potential, cannot have divergence due to the mathematical caveat
that the divergence of the curl of a well behaved function is simply zero. This leads
to Maxwell equations that are strikingly symmetric with the exception that the
divergence of the electric field results in a charge density, while the divergence of the
magnetic field gives zero. Were it not for this lack of divergence in the magnetic
field, the theory would be symmetric with the interchange of the electric and
magnetic fields. That is, a duality transformation or a rotation through some
arbitrary angle of the electric and magnetic fields could be performed and the
Maxwell equations would still be satisfied. Moreover, observed particles would have
the same ratio of magnetic charge to electric charge. This lack of magnetic charge
density in Maxwell’s equations was not enough to discourage physicists from
throwing out the concept of a magnetic monopole.

Maxwell chose not to include magnetic charge in his equations due to the
fact that experiments at the time showed no profit in considering magnetic
monopoles. While this may have been the fruitful convention, notable physicists

such as Pierre Curie pointed out that monopoles were not strictly eliminated by
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Maxwell’s choice. The first suggestive monopole theory came from Paul Dirac [I] in
the early 1930s. Dirac envisioned an infinitely long and infinitely thin, solenoid-like
construction which would produce a magnetic monopole-like field at its end.
Choosing not so well behaved vector potentials, one could construct a magnetic field
that had a non-zero divergence, and as long as one posited that the resulting
nonphysical singularity could be “hidden” then the construction would appear
physical. Furthermore, the construction led to quantized electric charge which
excited many in the field since experiments at the time suggested electric charge
came in integer values. Today we observe quantized electric charge from quarks and
non-Abelian symmetry groups [2] rather than from the existence of magnetic
monopoles and the Dirac quantization condition.

In 1974, Gerard t’Hooft and Alexander Polyakov [3] found that when the
gauge symmetry is extended from the Abelian gauge group U(1) to a non-Abelian
group and symmetry breaking is performed the field equations produce a topological
magnetic monopole term [2]. Interestingly, they found the Dirac condition
multiplied by a factor of two. In addition, new research in Grand Unified theories
suggest the presence of t’Hooft-Polyakov monopoles, although such monopoles have
mass orders of magnitude larger than anything the Large Hadron Collider could spit
out [4]. While t’'Hooft-Polyakov monopoles may be impractical to consider in a
collider event, it is still suggested that elementary magnetic monopole-like particles
could be found in collisions and experiments such as ATLAS and MoEDAL at the
LHC continue to look for such specimens [4].

In this paper, we would like to formalize a new construction of the magnetic
monopole. Standard unitary U(1) gauge theory introduces a single vector potential,
usually denoted X, which is a necessity to keep the Lagrangian invariant under

local gauge transformations. Classically we understand the vector potential as the



result of V - ﬁ = 0 which means that the field B must be the curl of some vector
potential X such that § =V x Z Beginning with Maxwell’s equations and
allowing magnetic charge density, we will show that Maxwell’s equations can be
uniquely and efficiently described with the addition of a second vector potential.
This construction will allow us to treat magnetic and electric charge as gauge
symmetries. We will also show that such a construction leads to a second massless
gauge boson which is unwanted. This unwanted gauge boson will be resolved into a
new mass carrying photon-like particle through the introduction of the Higgs’
mechanism. The resulting particle will be what is labeled as a “magnetic photon”

which carries mass and arises from the introduction of magnetic charge [5].



CHAPTER 2: EARLY MONOPOLE FORMULATIONS

The Dirac Monopole

For 150+ years, physicists have questioned whether or not a magnetic
equivalent of the electron exists. This idea of a particle of charge that is not electric
in nature but rather something consistent with an isolated north or south magnetic
pole has yet to be discovered. The idea of a magnetic monopole is generally first
credited to Pierre Curie from his 1894 paper, despite this publication being long
after the Maxwell equations (~1860) were formally written and posited that
magnetic charge could not exist as V - § = 0.

It is worth noting here that this formulation for Maxwell’s equations
dismisses the possibility of a magnetic monopole as the result of pure math. If the
magnetic field, ﬁ is the curl of a vector potential, Z such that § =V x Z, then

we must have that

V-§:V-<VXZ>:O

since the divergence of the curl of a vector must be zero. Notice though that this
“proof” makes two subtle requirements; the vector potential must be
twice-differentiable, and it also must be “nice” in the sense that it doesn’t have any
singularities. If one were to consider a vector potential that is not “nice” then it
might be that V - § # 0 and there would be a monopole-like term.

One such vector potential that has singularities and can generate a radial

magnetic field term is as follows;
1 —cosf
A= g% 2.1
I sing ¢ (2.1)

If one considers an angle in € such that § — 7, then the denominator goes to zero

and the vector potential blows up to infinity. Furthermore, if we calculate the curl



of the vector potential we have

?ZVXX:

1 0 , 0Agl . 1[ 1 0A, 0 R
rsin 6 {% (Apsin) - 8_(;5} T r [sin@ o or (rAqb)} o
1[0 04,1 -
;[W"A@)‘ aew'

All terms above compute to zero except for ¢ components,

! l% (A(bsinﬁ)} f+% {—%( A¢>] .

rsin 6
If we then plug in the vector potential and canceling terms we will have,

g ﬁ 1 —cosf f_gg 1 —cosf p
rsinf | 90 r r | Oor sin 6 ’

Notice that the term containing the partial derivative with respect to r has no r

dependence; therefore, this term goes to zero leaving,

B - = inﬁ |:——COS¢9:| p=2p, (2.2)
As we anticipated we are left with a magnetic field term that is radial in 7 direction
and has a magnetic charge coefficient, g. The singularity of the vector potential
(2.1) extends along the z axis to infinity and is commonly known as the “Dirac
String.” Magnetic monopole vector potentials of this kind require a singularity and
as a result there will be a characteristic “string” that travels out of the particle to
infinity. Often this string is envisioned as an infinitely long and infinitely thin
solenoid with some current value. A singularity of this sort is not very physical and
hinders the prospect of a magnetic monopole. In standard solenoid examples, the

produced field is dipole in nature but if one considers the theoretical nonphysical

construction then the magnetic field that would be observed at one end would be



that of a monopole. As we will see, one can force conditions that make the
un-physical string “disappear.” The process will be to consider Aharonov-Bohm
effects and force conditions that make the string invisible to an incident particle.

Let us extend this example further by rewriting the magnetic field equation from

Taking the divergence of this field we obtain
V- B = 4783 (r)

Calculating the flux of the magnetic field we obtain

o = //§ - 7dS = B //7“2 sin §dfd¢ = 4rr?B = dmg (2.3)

Let us now take a free particle with electric charge, e, and place it in the monopole

field. The wave function for a free particle is

¥ = [yleh (777

When the free particle is subjected to an electromagnetic field it undergoes a phase
change from the potential through the Aharonov-Bohm effect. The Aharonov-Bohm
effect describes how the wave function for a free particle will pick up a phase
difference due to the potential of the field. That is, 7 — 7/ — (E) X, giving us,

Y - e AT

therefore if the phase is written as «, the change is @« — a — hiCX T [2]. Now if one
computes the total phase change along a closed path with fixed radial direction and

6 angular component but allow ¢ angle to rotate through 27 radians then one finds



that

:%fﬁm

An application of Stokes” Theorem allows us to write this as

So — Wxﬁ w——/ﬁds

hc

One notices that the change in phase is just constant terms times the magnetic flux
we calculated in 1} That is, da = %f g. The free particle we introduced picks up
a phase change that depends on the vector potential which gave us our magnetic
monopole term. The vector potential considered in had singularities which will
make the wave function vanish on the axis of the singularity making the phase
indeterminate [2]. We must require that the wave function remain single valued so
we must require that the change in phase da = 2mn. Therefore, from our phase
change calculation we end with the famous Dirac quantization condition,

2mn = 4“6 Fog or

1
eg = §nhc : (2.4)

This condition suggests that both magnetic charge and electric charge are
quantized, assuming magnetic monopoles exist. Furthermore, the condition suggests
that magnetic charge is a massive quantity in comparison to electric charge. The
electric charge strength is proportional to the square root of the fine structure
constant, a, the dimensionless fine structure constant which is defined as

2

=~ 137 The fine structure constant tells one about the strength of the

Qe =
electric interaction. Since o, << 1 this indicates that the electric interaction is
small. One can define a magnetic fine structure constant as o, = %—i. Due to the

Dirac quantization condition of (2.4) one finds that (for n = 1 in equation [2.4)
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QR %7. That is, the strength of the magnetic interaction of magnetic charges are

about 10* times stronger than their electric charge cousins.

The Wu-Yang Monopole

The method of finding the Dirac quantization condition for magnetic and
electric charges is not unique. The magnetic monopole that will be discussed is a
construction by Tai Wu and Chen Yang in 1975 [6], and while the construction is
physically different, we will find that the condition found in the previous section is
preserved. In fact, one might consider this formulation more physical than the
standard Dirac string formulation since the singularity in the vector potential is
stripped away. As the reader will see, using two vector potentials similar to the
Dirac string example, one can hide the nonphysical singular points of the potentials.
From the previous section, the Dirac monopole construction considered a vector

potential of the form,

— 1 —cosf ,

Al =g———— 2.5

1=9 rsin @ (25)

This vector potential leads to a singularity along the » = —z axial direction. We can

also consider a mirrored potential of the form

— 14 cosf »

Ay = —g———FH (2.6)

rsin 6

where now the singular point lies along the » = 42z direction. Using these two
potentials, we would like to stitch together a vector potential that is free of the
singularities on the 42z axis. More precisely, we would like to consider two
overlapping regions dividing the space around the monopole in which the vector
potential is defined by the two different potentials given above. We will have a

northern hemisphere where the vector potential is defined by ({2.5)) and a southern



hemisphere defined by the potential . In the regions of overlap the two vector
potentials will have different values. For this construction to be physical, our total
vector potential needs to be single valued. The trick then is to devise a way to write
one vector potential as a gauge transformation of the other [2].

If we consider just the components of these vector potentials,

g gcosd d z2 g gcosf
— an = — —
rsinf rsinf rsinf rsind

1
A¢:

then one notices that we can write the vector potentials as,

29 -
Al =A, - b . (2.7)

rsind

If computed, both of these potentials would give us the same magnetic field
equation. If we were to take the curl of both sides of equation then we would
have the curl of the difference equal to zero. In fact, we force this condition by
requiring that the difference between the two vector potentials be curl-less. That is,

the factor _r;i 5 must be the gradient of some other variable, call it a. Then, our

gradient term is Va. If we turn to look at spherical coordinates, we notice that the

gradient of the azimuthal angle is,

therefore we can write the difference between the two potentials as

29
rsind

$ =29V (2.8)

Now consider a gauge transformation of the form, S = €%9¢¢. We can use this gauge

to re-write ([2.8) as follows,
’ 1 0

gy, gt = _ L igeo 9
eSV¢S e’ L" sin 6 0¢

e—2ige¢:| _ _3622'_(]6(;5 [_2296 e—2igeq§:| quS _

e rsind
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2g -
_Tsin9¢

This allows us to write the transformation from one vector potential to the other as,

i
Af = Ay =290V = Ay — —SV,57 (2.9)

We now have have found our full gauge transformation. The requirement that our
vector potentials be single-valued means that our gauge transformation function, S,
must also be single-valued. Therefore, we require that as ¢ — ¢ + 27, we obtain the
same phase. If we allow ¢ — ¢ + 27, then the phase becomes 2ige¢ + 4mige. For
single valued-ness we must then have 4mige = 27n. This equates to,

1
ge=gn (2.10)

which we recognize (pending units of & and ¢) to be the Dirac quantization
condition from the previous section. Indeed, the quantization condition is not
unique to the physical construction of the magnetic monopole.

Furthermore, we can show that this construction does indeed give us a

monopole by calculating the total magnetic flux. The flux is given by,

@z/FMVd$“”2f<VXZ>-d?.

If we split the integral into two regions, R; and R, defined by the two vector

potentials with the union at § = 7/2, we can write

/R (vX/Ti).dSJr/R (VXZ;).d?.

We then apply Stokes’ theorem, noting the orientation of the boundary at § = 7/2,

]4 Z-dﬁ—f A dly .
O=m/2 O=m/2
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Now using the gauge transformation,

7{ A, -dly ‘]{ {Zi— fsws—l&} dl
0=m/2 0=m/2 €

we can re-write the last term in the second integral as a full derivative of the

natural log of the inverse of S giving,

o .
— éj{% (InS~Y) dp = é]{(—%ge)dgb = 4mg

which we note is consistent with the flux calculated in the Dirac string monopole
case . Thus we have obtained both the original Dirac condition and magnetic
flux of the Dirac string via the Wu-Yang monopole construction. One will be quick
to point out that the conditions were obtained in similar but different fashions. The
Dirac string formulation required single valued-ness of the wave equation for an
incident electron which would be effected by passing near the infinitesimal solenoid
due to the Aharonov-Bohm effect. The Wu-Yang monopole required single
valued-ness of the gauge factor in the gauge transformation relating the two vector
potentials with opposing singularities. This condition again forced the Dirac
condition. Amazingly, two different monopole defining structures have led to the
same condition between electric and magnetic charge.

At this point in time we would like to introduce a new formulation for the
magnetic monopole. Unlike the Dirac string and the Wu-Yang monopole cases, the
formulation we will discuss in a later section will not give an explicit vector
potential. We still require an non-zero divergence of the magnetic field of course.
With this assumption in Maxwell’s equations, we will introduce a second unspecified
vector potential and do a Lagrangian formulation in the realm of quantum field
theory. Before we jump into that, we must first introduce some basic mathematical
methods in the context of field theory. Then we will construct a Lagrangian that

contains Maxwell’s equations with a non-zero divergence of the magnetic field.



CHAPTER 3: GAUGE SYMMETRY

Complex Scalar Fields with a Global Gauge Transformation

We begin our discussion with a Lagrangian for a complex scalar field

containing a kinetic energy and a potential term,

L = 0,00"¢* —m*¢*¢ . (3.1)

We consider a complex scalar field because we want to consider symmetries other
than those under translation, rotation or Lorentz transformations. Such
transformations can be achieved with simply a single real scalar field Lagrangian [2].
Using this complex scalar field Lagrangian, we hope that once a local gauge
transformation is performed, we can show implicitly that the electromagnetic fields
arise from the gauge invariance of the scalar fields. To begin, let us first show that
the Lagrangian in gives us the appropriate equations of motion describing the
two real scalar fields. We can write the complex scalar fields in terms of two real

scalar fields as

1
V2

¢ (61 + i) (3.2)

and

. 1

V2

Using metric terms, we can rewrite the complex scalar field Lagrangian as,

L= g'wj u¢au¢* - m2¢*¢

¢ [P1 — iga] . (3.3)
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and then plug in the fields defined by (3.2]) and (3.3). This expansion will give us

the Lagrangian in terms of two real scalar fields as shown below;

L= %g“uaﬂ (61 +ic2) Oy ($1 — iha) — M™% =

1
59’” (Dur +10,0p2) (D1 — 10y h2) — M " =

m2

%g/ﬂ’ (0,010, 1 — 10,010, 02 + 10,020, 01 + 0,20, ¢2] — 7¢*¢

With inspection of the final line, one notices that the two terms with imaginary

coefficients are identical and cancel leaving a Lagrangian with two scalar fields;

1w m® ., 2
59 0,010,601 + 0,020, ¢2] — > (67 + 03] (3.4)

The Euler-Lagrange equations, in 4-vector notation, applied to this Lagrangian are,

oL oL
-0 =0 3.5
ho1 " 0(0rén) (3:5)
and
oL oL 0 (36)

nos (o)

These two Euler-Lagrange equations will give us relationships for the two real scalar
fields individually. Direct computation shows us that the equations of motion ¢,
and ¢9 respectively are

1 1
m* gy + 0 | 59" 50002 + 59" Duiad) | =

m2¢2 + a)\aAQSQ =0 (3.7)

and similarly,
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m?¢; + 0,0 Py =0 . (3.8)

We immediately recognize that these are just the Klein-Gordon equations for ¢; and
@2 which describe the two spinless scalar fields. We can reobtain expressions for ¢

and ¢* with the relations, \% [(3.2) +4(3.3))] and \/Li [(3.2) — (3.3))]. Using these we

obtain

(000 +m?*|¢=0 and [0,0*+m?] ¢" =0

We could have alternatively just performed the derivatives in terms of ¢ and ¢* and
arrived here without using the real parts but it is nice to see the de-construction
into real components. What we have achieved here is to show that this complex
scalar Lagrangian formulation gives equations of motion for two complex scalar
fields. Note that these are fields and not particles. In fact, the Klein-Gordon
equations, unlike the Schrodinger equation, allow a probability density to take on
negative values. Furthermore, the Klein-Gordon equations allow for negative energy
terms which seems problematic. The quantization of the scalar fields resolves these
issues [2].

To lead us into the next section, let us now consider a global gauge
transformation. The global gauge transformation has us multiply the scalar fields by

an exponential with some phase written as,

éd—e o and ¢ — Pt (3.9)

where AeR. It is simple enough to show that the equations are unchanged by such a

transformation. Direct application gives,

I = gw/au [e_iAQﬂ ay [eiA¢*j| . m2e—iA€iA¢*¢ )
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Since A for a global gauge transformation is a scalar, the exponentials are
unaffected by the derivatives and cancel. We immediately see that we are left with
the original Lagrangian. This transformation is a unitary transformation of
dimension one or U(1) and is isomorphic to the rotation group S0(2) [2]. We can
see this parallel to the rotation group by writing the transformation of the fields in

terms of its real expansion

¢ = @) +idh — e = e [P +igy]

¢ = @) —igh — € = €™ [y — ichy]

or

&) +idhy — (cos A —isin A) [y + igo] (3.10)

@y — iy — (cos A +isinA) [y — i) . (3.11)

The addition of (3.10) and (3.11)) gives
@) = cos Ay + sin Ao

while the subtraction of (3.10) and (3.11]) gives
¢y = —sin Ay + cos Agy .

Writing these relationships in vector and matrix notation gives,

! cosA sinA
¢\ b -

o —sin A cosA 02

which is essentially the rotation group S0(2). Arbitrary constant valued A allows the

matrix in (3.12)) to act as any rotation in the space defined by the two scalar fields.
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The global gauge transformation above is not sufficient. While we see that a
complex scalar Lagrangian is invariant under a global gauge transformation, we
would like to consider gauge parameters that are not constant in space-time. We
want to concern ourselves now with a gauge transformation in which A is explicitly
defined as a function of position in space-time. In the next section, since our phase

term will have space-time components, we will write it as A(z#).

The Local Gauge Transformation

When we considered the global gauge transformation we were restricted to
performing the rotation in ¢-space at all points in space at the same time. We want
to consider a transformation that is space-time dependent. Restrictions from
requiring local gauge symmetry has, as is seen in Yang-Mills theory, led to
fundamental descriptions of particle interactions. Such things as gauge bosons and
their interactions are described by local gauge symmetry. We must then consider a
gauge transformation with a space-time dependent phase. As we will see, this spoils
the symmetry we found in the global gauge transformation case. For the Lagrangian
to remain invariant we ultimately redefine our derivative and introduce a vector
potential. To start, consider the transformation,

¢ N e—iA(z“)¢ ¢* N eiA($“)¢*

and its derivatives

0utp — Oy [ 0] = —ie PO, + 70,0

0,0 — ie ¢ 9, A + 19, 0"

Applying this transformation to the Lagrangian,

L — g [—ie 0\ + e 0,0] [ie"¢*0,A + €0,4"] — m*po* (3.13)
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where as in the global case, the mass term has no change since the exponentials
simply cancel. If we then multiply out the first term in (3.13]) and ignore for now
the pieces that were in the original Lagrangian, (¢""0,¢0,¢"), we are left with only

the change in the Lagrangian. Labelling this difference, 0L, we find that
oL = g" (99" 0, A0, A — ip0, "0, A + 19" 0,00, \] =

$G 0 NOMN + i (870,00 A — 9D, A) . (3.14)

Looking at the term in (3.14) with the imaginary coefficient, we can raise and lower
the indices over the second term leaving the Noether Current,

JH =i (¢ 0'p — pO @*). Specifically, we can write,
0L = g™ 0, ANO* A + i, A (9" 0" — pO" ™) = pp* 0, A" A + (0" A) JH . (3.15)

Due to this extra term, our Lagrangian is not invariant under our global
transformation of the fields. We are forced to introduce a new 4-vector term coupled
to the 4-current to restore invariance. We also require that our new 4-vector term,
Ay, transforms as A4, — A, + 29,A.[2] We will first try adding a Lagrangian term
Ly = —eJ"A,, where e is the coupling strength. It will also become the charge of
the scalar field, ¢. Under the transformation of both the scalar fields and the
4-vector, this term becomes

Ly — —ie [e“\qb* (—ie_iAgzﬁ@“A + e_iAéV‘gb)—e_iAgb (ieiAqﬁ*@“A + eiA(?“qu*) } {Au + é@u/\] =

e [ — iGN + ¢ O D — i A — ¢aﬂ¢*} {Au + éauA] .

Simplifying this, we have
Ly = —eJ'A, — J'O, N — 2e¢p™ 90" NA,, — 20" 90" NO, A .
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Once again if we ignore the terms originally in L;, we have the leftovers dL; as,

SLy = —JFO,A — 2e¢" 90" AA, — 26 GO AD,A | (3.16)

There is now some cancellation between (3.15) and (3.16[), but we are still left with

extra terms. We must consider a third additional term to our Lagrangian, squared
in the scalar field as well as the 4-vector term. This new term is Ly = €A, A*¢¢*

and transforms as,

Ly — €2 [AM + %aMA} [Aﬂ + éa“A} o™

(where I have left out the exponentials from the transformed scalar field since they
trivially cancel). Multiplied out we get,
Ly — [eQA#A“ +eA,0"A + ed, ANA" + @LAa”A} pP*

Notice that the two terms with a vector potential and its derivative are equivalent
upon raising and lowering of indices. The leftover terms from the transformation

can be written then as,

Ly = 2eA,0"Ap¢" + "0, AO"A . (3.17)

We now have a complete cancellation of leftover terms. The addition of

(B15).(B-16), and B-17) gives,
OL+ 0Ly + 0Ly =

$6" 0NN + (O"A) J* — JFO, A — 2e¢" GOMAA, —
26" GO NI, A + 2 A, 0"Apo" + ¢ 9, A" = 0

If one now adds L;,; = L + Ly + Lo, the new total Lagrangian reads,
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Liot = 0,00"¢* — m?¢*p — eJ" A, + e A, Al g™ . (3.18)

Once again we have a Lagrangian that is invariant under gauge transformation.
Moreover, this Lagrangian is invariant under a local gauge transformation. To
restore invariance we had to introduce a vector field potential term coupled to the
current as well as a Lagrangian term that was squared in the coupling constant,
vector field and scalar field terms. While invariance has been re-established, this is
not the end of the story. Since we have introduced a vector field, we have to assume
it will contribute its own derivative terms to the Lagrangian [2]. The derivative
terms we add will also have to be invariant under the local gauge transformation

otherwise we will have gained nothing.

Local Gauge Invariance Implicitly Introduces Electromagnetic Fields

We have formulated a total Lagrangian that is invariant under local gauge
transformations with primarily the introduction of a 4-vector potential term.
Presumably, this term will also contribute its derivatives to the Lagrangian and the
Euler-Lagrange equations. We know of such a derivative term from relativistic
electrodynamics. The Field Strength tensor, F},, contains the derivatives of a vector
field and futhermore, this term is invariant under the transformation of the vector

field due to the local gauge transformation. Direct computation shows,

F,=0,A,—0,A,

1 1
F., — 0, [Al, + g&,/\} — 9, [A# + gauA} _

1 1
Oudy + —0,0,M = 0,4, — ~0,0,A
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where reordering the derivatives, we have a cancellation of the new terms and are
thus left with the same F},,. The standard Lagrangian term for electromagnetic
fields is L3 = —}LF W E,,. If F,, is invariant, so will be L3 and we add this to our

full Lagrangian,

1
L = 0,00"¢* —m*¢*¢p — eJ' A, + A, A' o — ZF’WFW . (3.19)

This Lagrangian can be made more succinct if we describe a covariant derivative,
D, ¢. This derivative is analogous to the covariant derivative in relativity,
V.V, =0,V, — I, V,, which uses the Christoffel symbols to describe the derivatives
of the basis vectors through a transport over a non-Euclidean surface. As a parallel,
our covariant derivative will have additional terms which can be viewed as a
consequence of transport through the vector field A, that has a local gauge
transformation. Thus we have D, ¢ = (0, + ieA,) ¢ and the conjugate,
(D,¢)" = (0, —ieA,) ¢*. We do not have to do any work to retrieve these terms
from the Lagrangian as they are already imbedded. Reordering the Lagrangian in
and looking strictly at the first two terms,

L = 0,00"¢* + 2 A, A " — m*¢* ¢ — eJ' A, — EF“”FW

we have exactly,

L = (D,¢) (D"¢)" — m>p*¢ — eJ'A, — iF’“’FW (3.20)

We can further show that these derivatives are in fact the covariant derivative by

transformation,

D¢ — {a# + ie (Au + 1aﬂA)} e e =
(&

—ie" G, N + e (0,0 +ieA,B) +ie PO, N = e N (D, +ieA,) b
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and so

D, — e ™D,¢ .

Similar computation gives

(D,g)" — e D,¢" .

We see that the derivative does transform covariantly under the local gauge
transformation. Furthermore, we can now associate the scalar fields, ¢ and ¢* with
the charges e and —e respectively.

So far we have only introduced a 4-vector potential and the field strength
tensor terms, but we have not actually shown how this implies the electromagnetic
field per se. Let us then show directly that the Maxwell equations arise from this
Lagrangian by taking the partials with respect to A, in the Euler-Lagrange

equations,

oL oL
o4, ~ O [a@m] =0

Let us use metric terms to get the indices the way we want,

o) o) 1
Y 2 ¥ _ LT _ _pu —
IR [9"7e* A A pd* — eJHA,] — O, { 1w ( i FW>]

Application of Euler-Lagrange gives a stand alone current term and the partials on

the field strength tensor,
0

1
(€*g"7 Ay + €*g" Audly) 66" — eJ" = 0, L‘a(a—A) <_Zglwgpr’YPF/W):| =0.
nlo

Combining the first two terms and performing the derivatives that are left over gives,

. Lo 0
2€2A“¢(b —eJV + Zg’”g pan {m ((%Ap - 8,,147) (aMAV - aVAH):| =0.

Reorganizing,

202 A G — e JH+
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1 v o o o o
ngg ’9, { (525{) — 5257) (0,A, — 0,A,)+(0,A, — 0,A,) (5251/ — 5Z5M) ] =0

and multiplying metric terms through the deltas what is left is,

22 AFpop* — e JH+

1
100 @797 = 79 O, 04,)4(0,4, - 0, (47" — 79) | =0

Or, written more efficiently,

262A‘u¢¢*—6<]’u+iaq7 [8”14"—8"A”—8"A”+(9’7A”—|—8”A"—8"A"—8"A”+877A"] =0.

Recombining the identical field strength tensor terms and factoring out a minus sign
gives,

2e2 APy — eJ" — D), {8"14’7 - am"} =0

or finally,
22 Al gt — eJH — 0, F7" =0 .

What is left is the derivative of the field strength tensor equal to the current plus an
extra term in 2e?A*¢¢*. But if we remember, the current J#* was not invariant

under our local gauge transformation. Remembering that the current was defined as,

0, F7" = 2e* Al pd* — ie (¢* 0" — pOM¢™) (3.21)

we can rewrite the two terms on the right hand side using the covariant derivative,
D, ¢ = (0, +ieA,) ¢, as
0,F°" = ~ie (¢"D"$ — pDH¢") .

Rewriting this term as, J" =i (¢*DH¢p — ¢D* "), as our conserved covariant

current [2] shows its explicit invariance under the local gauge transformation. We
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can then write,

9, F" = —eJ"

and note that the anti-symmetric property of F** gives 9,J" = 0. This derivative

on the covariant current gives Maxwell’s equations.



CHAPTER 4: U(1)xU(1) GAUGE THEORY

Introducing a Second Vector Potential

We would now like to consider the introduction of a new 4-vector potential,
CH = (¢, 6), with the intention of describing magnetic charge. First consider

Maxwell’s equations in the presence of a magnetic and electric charge [7],

V-E=p VX?Z%—?—Fl?e (4.1)

c

V-8B =pn —Vxﬁ:%—§+%7m (4.2)

Consider now the electric and magnetic fields as described by the standard 4-vector
potential, A* = (¢, Z), and the new 4-vector potential C*,
194
V x 8

E=-Vo -

p_n (4.3)

ﬁ:—wm—l@—vXZ (4.4)

If these 4-vector potentials are chosen to satisfy the Lorentz gauge condition then

one can write,

(10 106 o =
9, A" = (‘& v) (0 4) = “Sr ey A=0 (4.5)

9,0" = (1% v) : (%8) 13;: +v-C=0. (4.6)
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If these definitions of the fields are used in conjunction with Maxwell’s equations
with magnetic charge, we will obtain what is typically referred to as the
inhomogeneous Maxwell equations. The difference here is, instead of having an
equation relating a scalar potential to a charge density and an equation relating the
vector potential to a current density, we will have two sets of these equations: one
for each scalar potential and one for each vector potential. Let us begin with

electric charge density. Direct computation gives,

:v-ﬁ:v(—we—%@_vXB):

v, -0 A v (VX8> .

c Ot

If we assume the vector potential 8 is well behaved, then the last term is the

divergence of a curl which is zero. This leaves,

_V2, — lQv e

If we use the Lorentz gauge condition for the 4-vector A* (4.5), and substitute

directly into the equation for the electric charge density, this gives

1 e

J—— 2 —
=Vt G

(4.7)

This can now be understood as one of the original inhomogeneous Maxwell
equations relating the electric charge density and the scalar field associated to the
electric charge. In a similar fashion we can compute an equivalent equation that
related the magnetic charge density to the scalar field associated to the magnetic
charge. This does not appear in the original Maxwell equations. As before,

beginning with the magnetic charge density,

pmzv-§:V-<—V¢m—1@—V X)

0
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—v2¢m—%%v-8+v-<vX2> .

Once more, if we assume the vector potential Z is well behaved then we can throw

away the divergence of a curl which gives,
10
= V26— ==V C
P ¢ cOot
Using the Lorentz gauge condition imposed on the vector potential C* (4.6)), this

becomes

1 P

= —V2b, + ——2 .
p ¢ +02 ot?

(4.8)

What we have constructed so far are the scalar potential inhomogeneous Maxwell’s
equations. We have one for electric charge as is standard, but now we also have one
describing a magnetic charge. Now what is needed are the vector potential

formulations. Starting with the second equation in (4.1)),

VX§:1<@+76

c\ Ot

substitute in the new electric field definition (4.3)),

vxﬁzw(_wm_ga_?_m):

10
-V x (ngm)—E&VxﬁJer (sz> :
If the vector identities, [V x (V@) = 0] and [V x (V x ) = V(V - ¥) — V2], are
used then this can be written as,

Vxﬁ:—lngajLV(V-X)—VQX. (4.9)

c ot
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Also, from the second equation (4.2)), and substitution for £ with the new definition
(4.3)), the following relation can be written,

c Ot c 0

vxB-1? (—V(be—lg—VX?)—i—%?e. (4.10)

Equating (4.9) and (4.10) and immediately cancelling the repetitive time derivative

of the curl of the 4-vector 8 term gives,

V@%Z)—WZz—%%va—lyz+%7r

2 o2

Rewriting this as, Z
2
v G

2 0t?

+17,:vk%2+12@]
c cot

one immediately notices that the right hand side is simply the Lorentz gauge

condition, J,A" = 0. Throwing this term away leaves,

VA - 1A _%76 . (4.11)

2 ot?
This is the standard inhomogeneous Maxwell equation relating the electric charge
current and the vector potential. Again, we have introduced a second vector
potential and we can expect a similar relationship relating the new vector potential
and the corresponding magnetic charge current. To obtain the final equation, we
repeat the same procedure but instead begin with the second equation in (4.2]).

That is, starting with,

—VXE:—VX<4wff§z—VX8>

c Ot

and using vector identities we have,

—VXEZEQVX2+Vx(viﬂ—VﬁT

c ot
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Computation of the left hand side of this equation gives,

10 1
—Vxﬁz—g(—V%—25?+sz>+z7m.

Once more, equating the two sides and cancelling the time derivatives of the curl of

X gives,

g, PTG o(v.d) - viT

c ot 2 o2

and finally using the Lorentz gauge, 0,C*, we obtain

(4.12)

2
Summarizing, what has been constructed are the inhomogeneous Maxwell equations
describing the charge densities and current densities for magnetic and electric
charge. We see that the introduction of a new vector potential and the supplement
of magnetic charge in to Maxwell’s original equations allows for a new set of
inhomogeneous Maxwell equations with magnetic charge and magnetic current

density that was not previously present. Writing (4.7)), (4.8)), (4.11)) and (4.12])

together in succinct fashion

.. 13%, — 1A 1
Ve 2 o2 Pe » v X 2 o2 078
sy L P0m 1o, 100 1
Vo 2 o2 Prm c@tv¢m+ 2 o2 c7m

So far the analysis has been done primarily in 3-vector notation. We now convert
these equations to 4-vector notation to coincide with the notation that will be used
later in the paper. To write these equations in 4-vector notation, we begin by

describing two field strength tensors;

Frv = 9hAY — 9 A" (4.13)
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describing the Lagrangian contributions for the derivatives of the vector potential Z

and

G = grC — O™ (4.14)

describing the Lagrangian contributions for the derivatives of the vector potential
8. Notice that standard Maxwell’s equations typically only have the one field
strength tensor, , but since we have added a second vector potential we also
need to describe its field strength tensor. An application of 4-derivatives on the field
strength tensors allows us to reobtain the new inhomogeneous Maxwell equations we
just derived. Computation gives,

0, F" = 0,0"'A” — 0,0" A"

reordering the derivatives in the second term gives 9V9,A*, which is zero by the
Lorentz Gauge. We are left with
O, F" = 0,0"'A” =
1 9?

1
HAY = (V2= = — | A = ="
O ( c? 6t2> CJe

Similarly,
d0,G" = 0,0'C" — 0,0"C*

again reordering the derivatives in the second term gives 9”0, C*, which is zero by
Lorentz Gauge. We have,
0,G" = 0,0"'C" =

102 1
hov = (V2 - — v=_J¥
0,0"C ( =2 8t2) C ch
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Here, the notation used for the 4-currents respective to their charges are

J = (pe, 76) and J# = (pm, 7m> Inspection shows immediately that these are
exactly descriptions of the inhomogeneous Maxwell equations. The use of 4-vector
notation here allows us to write the four inhomogeneous Maxwell equations more
efficiently with just two equations. Now that we have built up the Maxwell
equations using a second vector potential to describe magnetic charge, we would like
to turn our attention to the Lagrangian. We are going to build a complex scalar
field Lagrangian with the contributions from the vector potentials as we have done
in the previous chapter. Since we now have two vector potentials and two field

strength tensors, we expect both terms to appear in the Lagrangian.

The Scalar Lagrangian Containing Magnetic Charge

Consider a complex scalar field Lagrangian, as we have in previous sections,
but now with an additional contribution from the derivatives of the second vector

potential in terms of the second field strength tensor. The Lagrangian is,

1 1
Ls = D@ D"® — 2 F P — 2Gu G — V(9?) (4.15)

where the full gauge-covariant derivative here is defined as,

DF = 9 —iq A" — iq,,C* and the potential term is V(®?) = m?(®*®) + \(0*P)2.
This Lagrangian has been constructed to remain invariant under local gauge
transformations as shown in the previous chapter. Notice the potential has a A\ term
which is a self interaction. This is typically referred to as as Lambda-Phi fourth
term and is crucial to the symmetry breaking we will perform in a moment. If we
write out the covariant derivatives explicitly, we have,

Lg = (0, +ig.A, + i¢,,C,,) ©* (0" —ig A" — 1¢,, C*) O—
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1 1
ZFHVFWJ - ZG,LWGMV - V(q)2) -

0,0 0"® — iq.0,0* AP — iq,, 0, P*C P + i A, P 0" P + ¢ A, A D* D+

Qeqm A, CHO*® + ig,,C, D* 0" P + q.q,,C AP D*® + ¢2,C,,CHD*P—

1 1% 1 174
" = 2Gu G = V(9%

One notices the standard kinetic energy term for the scalar fields. What appears to

be a nasty mess of terms can be made efficient if we define the currents as,

JH = ig, [0* (0"D) — B (0"D)"] (4.16)

T = gy [0 (0"D) — & (9"D)"] . (4.17)

These currents are written following the formulation of the Noether current. We
now have two currents, one describing electric charge current and one for magnetic

charge current. The subscripts e and m as well as the associated charges

differentiate the two. Using (4.16)) and (4.17]), we can simplify the Lagrangian as

1 1
Ls = 0,9 0"® — 2 Fu P = G G + JUA, + I3 0, — V(9?)

+@2 A A D + 2, C,CH'D* D + 2¢.¢,, A, CHD* D

Now we notice some higher order interaction terms left over from this Lagrangian

definition. These terms can be cleaned up by writing,

1 1
Ls = 0,8"0" = {F, F* = 1Gl, G + JI A, + T4C,—

V(9%) + (g Ay + amCh) (geA" + ¢ C") O* . (4.18)
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At this point, the Lagrangian really does not tell us much. What we would like to
do is apply spontaneous symmetry breaking and give the scalar field a negative
mass squared value. In doing so, the vacuum expectation value for the scalar field
will drop below zero and we will have to re-parameterize to the new minimum. This
same process was used by Jeffrey Goldstone to find the Goldstone boson and later
in the Higgs’ model as well as the Weinberg-Salam model for electroweak
interactions. The requirement that the mass squared be negative seems unphysical
since it implies imaginary mass. The “mass” at this point is really just considered a
parameter and not a mass per se. So let us consider m? < 0, then the minimum of
the potential V(®?) is

ov

—— =m2 422X\ D =0 .
8¢ m° +

This leads to a minimum of
—m?2 1/2
|D| = "D = { ]

8-

2\

When the fields are quantized, ® becomes an operator and the magnitude of ®

refers to the vacuum expectation value of the field, written as,

(@) = |(0]9]0)* = {

2112
=%
where |0) is the ground state of the wave equation. If the potential is now plotted
against the two real scalar fields, one would see the standard “Mexican hat” shaped
potential graph. The minimum value corresponds to a circle of points that are all
related through rotation about the potential of the real scalar fields. That is to say,
the ground state is degenerate and the symmetry of the Lagrangian is no longer
shared by the ground state solution. To resolve this, we use our new minimum for

the vacuum expectation value to parameterize our complex scalar field ® so that the
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vacuum expectation value lies along the real component. This gives

B(x) = % (v + n(z) +i¢())

Consider now the real components of the complex scalar field to be small

oscillations, then and exponential term e/? can be expanded as

% (v + n(x)) <@/ % (v+n(x)) (1 + z@ — %) =

¢(z)?

% (U +iC(x) — Ton +n(z) + m(x)@ — U(IE)M> ‘

20?2
Since we are considering small oscillation real scalar fields, we can ignore of order

greater than two in the scalar fields which makes this statement approximately

1 :
7 (v +iC(x) +n(z))

We therefore have the approximation that the complex scalar field acts as,

B(z) % (v + (@) +ic(z)) ~ % v+ ()] €@/ (4.19)

Writing the complex scalar field in this way has a nice feature in that we can apply
a gauge transformation and lose the exponential term. Consider a gauge
transformation, e~%¢/?, to the unitary gauge. This gauge transformation will
effectively eliminate the real {(x) component of our complex scalar field. The

transformation is computed as follows

'(z) = e C@P(g) & % (v+n(z)) (4.20)

9,(() (4.21)
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1

EMEC';(ZE) :CM_2(]—U

9u((2) (4.22)

For notational simplicity, I have redefined the transformed vector potentials under
new variables. When we write the gauge transformed Lagrangian later, instead of
writing out the explicit transformation of the vector potentials, the new notation
will be substituted. For now, to show the invariance of terms, I will continue to use
the primed notation. Notice that this gauge transformation transforms the covariant

derivative as it should,

D' = [6“ — 1, <A“(3:) _

2q.v

1
24,V

aug(x)> — g (cu - aﬂg<x)>] e~ H@ /(1) =

e Y (01D () — g A (1) D (x) — igmCPD(w)] —

e [—‘W D) -0 (a)p(a) - %aﬂg‘(x)@(o:)} .

v

The last two terms cancel and we are left with

D@ = e @D,

In addition, the field strength tensor terms are invariant under this transformation,

Fl = 0,4, — 9,4, = 9, [AV@) _ ag@:)} o, {Au(x) . LM((E)} _

2qev 2q.v

1

0,A,(x) o

1
0,0,((x) — 0,A,(z) + 2q_va”8“<(x) =F,

similarly,

G, = 0, — 8,0 = 0, [Cy(ac) !

B 2q,,v

1

2¢,nv

0.)| =0, |Cylo) - 5—0,(0)| = G

The complex scalar Lagrangian (4.15)), written with the potential terms,

1 1
Ls = D,®*D'd — ZFWFW - ZGWGW — m?(0*®) — \(d*P)?
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has now been shown to contain only terms that are invariant under the gauge
transformation. Expanding out the covariant derivatives using our new notation for

the vector potentials gives

Lg = [0, + ig.B,, + ig, E"]| ®* [0" — iq.B" — iq,,, B —

1 1
TP = GG — m(87) — A(@7)? .

Now using the approximation of the complex scalar field (4.20]), we have

% 0, + g By + g E"] (0 + n(a)) [0" — iguB* — ignD"] (v +n(x))  (4.23)

1 1 1
_ 12— nro_ - 2
4FWF 4GWG \% {2(?) +n(z)) }

Let us first deal with the potential term, V(®?). Using the approximation (4.20)),

this term becomes
2

"o (@) + G0+ () =

m2 2

A
- vt mun(z) + m?f(:c) + 5 (W' + 40Pn(@) + 6v () + oy (x) + ' ()

Adding constants to a Lagrangian will not affect the equations of motion, therefore
we can reduce this term by ignoring pure constants leaving,

1 1
m?on(x) + §m2772(x) + \vin(z) + g)\UQUQ(x) + A (z) + 1/\774(30)

1/2
Now if we recall that the vacuum expectation value was found to be (‘271\12> = \/Li

or A = —T—;, then we can write this as,
1 m? 3m? 1
mPon(x) + 5mn’(z) = —zo'n() = 530" (@) + don*(x) + ' (x) =

—m*n?(x) + don?(z) + %)\774(@ (4.24)
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The overall contribution then, labeling the term L, is
L, = m*n*(z) — Mvn?(z) — $ n*(z). Now referring back the derivative terms in
Lagrangian (4.15]), we can write this explicitly as,

% [Oun() + ige By (v + 1(2)) + igm E* (v + n(x))] x

[0"n(x) —ige B (v +n(x)) — igm E* (v + 1(2))]

(Note: the use of the multiplication symbol here is simply that and not a cross
product. The equation is too long for one line.) Now, expanding out further we see

a kinetic energy term, £8,n(z)9"n(x) and the following

2 2
qe A,
_QeQmBuEM('U + 7]@))2 . EBMBM(U + n(x))2 _ 7E,UEM(U + 77({17))2 —

1
—5 (v? + 20n(z) + n*(7)) [2¢eqmB.E* + ¢ B.B" + ¢, B, B"]

The cross terms we notice between the vector potentials are unsatisfactory
since they complicate the process of finding the mass spectrum of the gauge bosons.
We can write this term in the form of a mass-mixing matrix in order to “de-couple”
the vector potentials. The process, as we will see, actually removes one vector
potential from the Lagrangian with exception of the terms of the Field-Strength
Tensor.

Let us first define a variable, K, that can have values K = {%, Un(x), in?(z)}
then we notice that this last term can be written in the form of matrix

multiplication. More precisely, if we index K and sum only over that index, we have
2
Qe GeGm B
K, (Bm Eu) ) =
Qedm G Er

1 1
(5“2 +on(z) + 5772(95)) 2¢e4 B, E* + ¢B,B* + ¢, B, E"]

In this notation we can do a duality transformation and chose the phase angle
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appropriately so that we can diagonalize. It is worth pointing out that a similar
diagonalization of the mass matrix using the properties of the duality
transformation was performed by Glashow, Weinberg and Salam to find the mass
spectrum of the electroweak gauge bosons in the Standard Model. The duality
transformation we use is as follows,

B* — B*cosf + E*sinf

EY — —B*sinf 4+ E* cos

Notice that these are just rotations of the vector potentials about some angle. If we

apply these transformations to our interaction matrix we obtain the following,

(B,.E,) cosf) —sinf @ QeGm cosf sin@ B*
wr Lo
sinf cosd QeQm ¢ —sinf cosf E#

the computed matrix terms for the charge matrix and the rotations are,
(1,1) = g% cos® 6 — 2qeqy, sin cos O + g2 sin 0
(1,2) = (qf — qfn) sin @ cos 0 + qeqm (Cos2 6 — sin? 9)
(2,1) = (¢ — q2,) sin 6 cos 0 + qeqp, (cos®f — sin*0)
(2,2) = ¢*sin” § + 2q.qum sin 0 cos 6 + ¢2, cos® 0

The notation used here (i, j) simply represents the row-column element in the
matrix. The off diagonal terms in this matrix are the same, so to diagonalize this
matrix we simply make a choice of angle that forces,

(¢2 — q2,) sin 6 cos 6 + geqy, (cos® 0 —sin*6) =0
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ge

if we make the choice that cosf = \/ﬁ and sinf = i then,

2 2
2 2 QeQm Qm Qe
e Um + GeGm - =0
(64 )Cﬁ+q;i et (QEJrq% QE+q%>

One might think that the choices for cosf and sin  force a relationship between g,

and ¢, since the angle of rotation of the duality transformation, 6 is both

cos™! [ Lo ] and sin™! { L } This is not the case. In fact, we could have

v 2+a2, V@ +a2,

only given the cos 6 value and the sin 6 value would have followed. Furthermore,
with a little trigonometry one can show that the two conditions on # do not force a

condition between the electric and magnetic charges. Using the identity that

sin™'(2) = cos™!(—z) — 37 we find,
cos ™ % =sin"!
sqriq; + G

e

V@& +

cos™! C]—m = cos ! —L —17r
sqrtq? + ¢, | VE+@& | 2

or

Gm -1 de
= COS [ CcOoSs —

1
_— _— — _7'['
Vi +a, VE+a,| 2 ]
using the identity, cos(a + ) = cos v cos f — sin asin f3,
G SR cos <17T) —sin |cos ! | ———Te
VE+ta,  Vata, 2 V@ +a,

finally using the identity, sin (cos™ (7)) = v/1 — 22, we obtain,
¢

_ 1— —2¢
V¢ + ¢, Q@+ q2

and so they are equal as they should be and there is no condition relating ¢. and g,,.

) 1
sin [ —=
27T

Returning to the max mixing matrix, we have set the off diagonal terms to

zero by making conditions on the angle of rotation. Now we show what happens to
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the diagonal components.

q% cos? 0 — 2q.qm sin 0 cos 0 + ¢2, sin* @ 0

0 q?sin? 0 + 2q.q sin 0 cos 0 + 2, cos? 0

Making substitutions, the 1-1 component of the matrix becomes,

2 G doy, Jem s G
qu—l—q?n e1tm

+¢2 -
2+ et

and the 2-2 component becomes,

), Qe o G _ G+ 2000+ _

+2€m m -
Q2 + ¢ Ged Q@ + ¢, 4 Q@ + ¢, Q¢ + ¢,

(¢ +a2)° _ 2 2
a2 2t

7e + qm,
so we finally see that our Duality transformation with appropriate choice for angle

diagonalizes the interaction matrix leaving the following relationships,

0 0 B
K, (B,,E,) (4.25)
0 ¢+aq, EF

Writing out these terms we can see the Lagrangian contribution,

1 1 1
S0+ son(x)snP (@) ) (6 + an) BB
2 2 2
Now piecing together all of our transformed Lagrangian components and the field
strength tensor terms we have,
1

1 1 1
Ls = 50un(x)0"n(x) + 5(2m2)?72(fc) = Fw " = GG+

1 1 1 1
(502 + §vn(x)§7]2(x)) (qz + qfn) E,E" — Mon?(x) — Z)\774<$>

The initial set of particles in the Lagrangian were two massless Gauge bosons

and two scalar fields. Via the Higgs’ mechanism these have become one massive
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scalar field, one massless gauge field and one massive gauge field. The coupling
strength of the scalar field to the gauge boson is g = (¢ + qfn)lm. That is to say the

scalar field carries a magnetic charge of strength g.

Addition of a Second Scalar Potential

Let us begin with the Lagrangian considered in Scalar Lagrangian section

(L15). We have,
* 1 v 1 v
Ls = D,®*D'd — ZFWF“ - ZLGWG“ — V(qn)

which when written out became,

1 1
Ls = 0,9°0"® = 2Fu F" — 2 GG + JiA, + 1.0, =V (@7)

+@2 A AP D + @2, C,CHO* D + 24, A, CHD* D

We would now like to add a second scalar term. The hopes here are to reobtain the
A, vector potential interaction terms that we lost via the process of the Higgs

mechanism in previous sections. Let us consider then,

1 1
Lsy = Dy®1D"®y + Dy @3 D" 0y — 2 Fy " — 2G G — V(P

We do not add any new potential terms for the second scalar Lagrangian but it
should be noted that the covariant derivatives operating on ®; and ®, are different.
More precisely they are,

Drdy = (0% —ig. A" —iq,,C*) &4

D'®y = (0" — igl AP — igl,C") Dy

We will obtain the same expanded Lagrangian terms as before except we will have

new terms for ®, contribution,
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0,801 D — iq,0, D] APD) — i, 0, BLCHD, + iqeA, D7Dy + g2 A, APDT D+

Qeqm A, Cr O30y +iq,,C, ;0" Py + q.qnC A PP + ¢2,C,C ;P —
1 % 1 % 2
1 M — ZLGWG — V(®))+
0,950" Dy — iqé@M(IDEA“(IDQ — iq;ﬂu@;C’“fbg + iqéAMCI%@“CI)g + (q;)QAMAWI);(I)g—I—
0., A CrO5Dy + i), C 250" Py + ¢Lq,,C A D3Py + (q;n)2C’MC“<I>;q>2
Now if we consider current terms as
J' =g, [®] (0F D) — Dy (0HDy)7]
Jh =g, [@5 (0" ®y) — Oy (0" Dy)"]
Iy = iq), [©5 (0" ®y) — @y (0" Py)"]

then we can simplify the Lagrangian,

1 1
Ou®i0" By + 030" B + JL A+ TH A+ THCy + T Oy = T Fu P = 2 Gl G —

V(®?) + 2 A, A DEDy + ¢, CL.CHO D + 2¢uq A, CH OB+
(q))? A, AF®3D,y + () C.CrDDy + 2¢.q., A, CH 5D,

e

or combining terms as we have done before,

1 1
0, 910" @1 + 0, 850" o + JL A+ TG A+ JEC+ T Chu = TFu P — GG

V(q)%)‘F(‘JeAu + chu) (g A" + ¢, C*) (I)T(I)l‘i‘(qéAu + q:nC'H) (q::AH + q;ncu) P5P
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At this point we would like to consider the gauge transformation done in the

previous section. That is

¥ (z) = e DG, (z) = % (v + n(z))

1
A;(x) =A,(x) — 5 Ué?uC(a:)
1
CL) = Cy = 50,60

which in one recalls gave the covariant derivative transformation

DHFD, — B—Z‘C(w)/vDuq)1

We also must require that the covariant derivative that operates on ®5 remain
invariant under this same gauge transformation. The covariant derivative that
operates on ®, contains the vector potentials A, and C), which transform. The
requirement that this second derivative remain invariant will force a condition
between the charges q., ¢., ¢m, ¢,,,- We see this by transforming the derivative,

DF®, — (0" — igl A" — ig, C") Dy

Notice that the scalar potential ®5 does not transform. That is one avenue that will
be considered in another section. For now we will consider a scalar potential that

doesn’t transform. Continuing we have,

DF®y — [8“ —iq, (A”(a:) _ ! 8”((:1:)) —iq), (C“ —

2q.v

1
2¢,v

2O

/ /
0 i AMa) i () — i, O i 9 (0)| 0 =

€ 2m

" e o o u
Dty + [22%1}8 ((z) +ig Uf) C(x)} D,

m

So we see that the term on the right is in addition to the original covariant
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derivative operating on ®,. We require this term to be zero,

e gu A gy —
@2%1}8 C(x)+@2qm1)8 ((z)=0

simplifying we are left with a condition on the charges that,

Ge _ _n

e 4m

that is, the ratio of electric charges is the negative of the ratio of magnetic charges.
We note that this condition is similar to the original condition from Dirac’s work
that the ratio of electric to magnetic charges be equal. In fact, in the condition
above, one can make somewhat arbitrary conditions on the relationship of the
charges. That is, one may write a condition that ¢/, = kq,, where k is some
arbitrary constant. This condition would also then force ¢, = —kg.. Making such a
substitution into our Lagrangian gives,

1 1

OuP10" By + 0, 050" Dy + JE A, + TL AL+ ThClut T Cy = S FuF™ = GG =

V(®?) + (geAu + qmCp) (g A" + ¢ C*) D70, —
K (geAy — qmCl) (g A" — qrnC*) D30,

Let us return back to the unexpanded Lagrangian and perform the gauge
transformation as we did in the previous section. Upon visual inspection one
immediately sees that the process will return the same Lagrangian we had in the
previous section with the exception of the new terms involving ®5 and its conjugate.
The condition we forced on the covariant derivative acting on ®, means that the
gauge transformation will not have an overall effect on the term D, ®;D#®,. The
Lagrangian that will remain if we reuse the approximation,

K@/ P %(v +n(x)), is
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1 1 1
Loy = S0u(@)0"(x) + Du@3D Dy — L Fyy ™ — ~ G G+

1
2 (vz + 2om(z) + 772(3”)) [QqequuE“ + quuBu + quEuEu} +
2.2 3 L,y
() — dom'(@) — + A (z)

If we then expand the derivatives on the second scalar field and use the notation
above for the primed currents we will pick up the extra terms,

D, ®5D"®y = 0,050' Py + JLB, + JE E, + (¢.B, + q,,E,.) (¢.B" + 4, E") ®5P

Now if we use the charge condition mentioned above we can write this term as,

0,230"®y + kJ'B,, + kJ4E, + k* (¢ B, + qmE,) (¢.B" + g E") ®5®,

The last term above is the same mixed vector potentials term that we already have
in our Lagrangian. If we make the substitution,

1 1 1
Ly = Eﬁyn(x)ﬁ“n(a:) +0,950"®y + kJ!'B, + kJLE,, — ZF“”FW — ZGWG“”—F

1 k?
) (02 + 2un(z) + n*(z) + E@;Q&) [2qequ“E“ + quNB“ + qiE“E“} +

mP(r) — Ao (a) — D' (x)

Now our Lagrangian is in a form where we can once again use matrix notation and
diagonalize to remove mixed vector potential terms. Using the same results as in
the previous section we will obtain,

1 1 k?
La = g0(00u(e) — 3 (o + 2on(o) + (o) + S50 ) (2 + 2) BE*+

1 1 1
0,950"®y + kJ'B, + kJLE, — ZFWFW - ZGWGW +m?n?(x) — Ao (z) — Z)\n4(x)

Suppose we consider a ®, scalar field that also transforms under a gauge
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transformation. If we assume, ®, = e=*¢@)/v®, so that the transformation is just a
constant coefficient k£ multiple of the gauge for the ®; field then the covariant

derivative transforms as,

DF®y — (9" — igl A" — igl, C") e H@)/v P, —

1
2¢,nv

[aﬂ g (Aﬂ ! aﬂacc)) _id, (c“ -

p —ik¢(@) o
o 0 C(x))} e o,

If we compute this through and consider only the left over terms, then for the
covariant derivative to transform properly we must have the condition that these

extra terms go to zero. What is left then is,

k 4 . m ~ik((@)/
_iZon p p ikC(2) /v, —
( ’LU@ ((z) +22qeva ((z) —|—22 U(‘? C(m)) e ®y =0

m

canceling mutual terms leaves,
/

o  q,
=0
2q. - 2Gm

—k+

Since the term k is constant, we absorb the fraction on one half and consider a
gauge coefficient term w that must be
/ /
w=2k =1 + fm
de  dm

It is interesting to note that if we choose the gauge constant to be zero then (as
would be expected) we simply reobtain the charge condition found previously when
no gauge transformation was performed on ®,. This new charge condition says that
the ratio of magnetic charge must be an arbitrary constant value plus the ratio of
electric charge. In the Lagrangian, the only term that will differ from the previous
example will be the covariant derivative term,

Dueiké(m)/vq)QDue—ikC(m)/v@2 —

(0, +iq.B, +iq,,E,) @D, (9* — ig. B* —i¢, E*) e *@/0 g,
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Inspecting this, one can see that it will yield the same current terms, kinetic energy
terms and mixed terms as before with the exception that there will be the following
additional terms,

I ,

/

k
b (59 + B,) 030,

k. )
— (B"+ B,) ®3%: +
Notice that there is a particle in ®5 now that has a mass value of % and there is a
current associated with this particle, call it J;' such that
Jf =5 (9301 Dy — §20,P3). We can rewrite these new terms as,

2

k kq’ kq’
PP+ Y % (B* + B,) &30, + Z’"

(B" + E,) 50,

The last two terms are somewhat unsatisfactory. This leads us to believe
that performing a gauge transformation on the second scalar potential is not ideal.
From this point, the next option would be to give the second scalar field a negative
mass squared and potential term. This would make its vacuum expectation value
negative as we find the first scalar field. This more complicated example is where
this paper will meet its end. The examination of a second scalar potential with a

non zero expectation value will be left for further research.



CHAPTER 5: CONCLUSIONS

In this paper we have discussed a variety of magnetic monopole formulations
and laid the ground work to develop more sophisticated models. Starting with the
Dirac string monopole from PAM Dirac in 1931 and working up to the Wu-Yang
fiber bundle model of 1975, one could show a definitive quantization condition and
forced relationship between magnetic and electric charges. The original argument
was that if magnetic monopoles exist, such a quantized condition would occur and
more importantly, the quantization of electric charge was consistent with
experimentation at the time. The apparent quantization of electric charge is today
credited to isospin properties and [2] conditions rather than the still missing
magnetic monopole particle.

After discussion of monopole examples, the reader was thrust in to a
quantum field theory formulation of the monopole. Upon forcing the Maxwell
equations to contain magnetic charge, and without explicitly describing a vector
potential, an electromagnetic Lagrangian was written and a scalar vector potential
term was introduced. While the scalar potential was arbitrarily described, the
condition that it had a potential and a negative mass squared term allowed one to
apply the Higgs’ mechanism to the Lagrangian. Prior to the use of the Higgs’
mechanism, the Lagrangian with this scalar potential term would have yielded a
second massless photon which is undesirable in a physical model as only one
massless photon has been found in nature. The model would have been inconsistent
with the standard model. Application of the Higgs’ mechanism allowed one to
“shift” the mass to one massless photon making it massive, not unlike a W-boson.

With the introduction of a new vector potential term, no condition was

found on the magnetic-like particle. That is, no conclusions could be drawn as to its
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mass and no condition on electric and magnetic charge was found. The theory up to
that point started with one scalar potential and two vector potentials. Since scalar
and vector potentials are not so mathematically independent in electromagnetic
physics, it seemed natural to introduce a second scalar potential so that the theory
had two scalar potentials and two vector potentials. Two directions were taken with
the extra scalar field. First was scalar field with no gauge transformation. This
formulation led to interesting conditions on the electric and magnetic charges. In
fact, what was observed was the Dirac condition that magnetic charge and electric
charge must have the same ratio, except we observed that condition with a negative
sign. The second route was to perform a gauge transformation of a constant value
multiple of the gauge transformation on our original scalar field. This resulted in a
constant multiple added to the condition we obtained in the first method.

At this point, the next mathematical step would be to consider a second
scalar potential that had a negative mass squared value and a potential term in the
Lagrangian. With this arrangement we could find the vacuum expectation value of
the second scalar field and parameterize as we have done already. This next step

will be left for further research and hopefully publication.
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